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Abstract

Kleisli categories over monads have been used in denotational semantics to describe functional
languages using various notions of computations as values. Kleisli categories over comonads
have also been used to describe intensional semantics rather than extensional. This paper explores
the possibilities of combining monads and comonads to obtain an intensional semantics using
computations as values. We give three alternative ways to combine the two and explore which
apply to known monads and comonads of interest. We will also look at various intensional
semantics for an example programming language that uses monads for computations and compare
them to the original extensional semantics.
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1. Introduction

Traditionally most denotational semantic interpretations of a functional programming language interpret a
program as a function from environments to values. Since these semantics focus exclusively on input-output,
or extensional behavior, they cannot easily be used to examine intensional properties of programs, such as
order of evaluation or complexity. Also, since they typically use simple values, it is difficult to extend
them to reason about programming languages with non-functional elements such as nondeterminism, error
handling, and assignments.

When adding such features to a language, originally the denotational semantics was changed on a
case-by-case basis, by adding new "values" to represent invalid results or by changing the structure of the
values, such as using sets of values for non-deterministic results. Moggi in [141 showed that many of these
techniques can be described uniformly using an algebraic structure in category theory called a monad. With
a monad, one can develop a formal semantics using category theory for a variety of functional languages
that also contain many non-functional elements.

There has been some work examining intensional properties for functional languages. Berry and Curien
[5] developed a semantics using the cartesian closed category of concrete data structures and sequential
algorithms, which include information on the order of evaluation as well as the final value. Brookes and
Geva [61 looked at expanding Berry and Curien's results to parallel computation as well as sequential, and
developed general notion of intensional semantics using comonads.

This paper explores the possibilities of combining both methods: using comonads to examine the
intensional properties of programs whose extensional properties are modeled by means of a monad. Section 2
defines and gives notation for many of the concepts contained in this paper. It is assumed that the reader has a
general knowledge of category theory and domains. Sections 3 and 4 define monads and comonads and give
examples that have been useful for examining programs. The monads and comonads are typically defined
in as general a fashion as possible, with examples given in specific categories, usually Cont, the category
of Scott domains and continuous functions. Section 5 describes the formation of the Kleisli categories
from comonads or monads. Sections 6 and 7 describe ways to combine comonads and monads (see 141)
and examines how they work with the examples given earlier. The last section then looks at a simple
programming language from [14] and at various semantics using comonads and monads together.

2. Preliminary definitions and notational conventions

2.1. Category theory

There are many books containing the basic categorical concepts used in this paper. The technical report [ 151
is a good introduction, and [3] is aimed for computer scientists.

A category has binaryproducts if for each pair of objects A and B there is an object A x B with projection
morphisms ir : A x B - A and 7r2 : A x B - B such that for all morphismsf : C - A and g : C - B,
there is a unique morphism (f ,g) from C to A x B satisfying r, o (fg) =-f and r, o (f,g) = g. For all
morphismsf :A -. Candg: B- D, wedefincf x g:A x B- C×x Dtobe(f o0r.go7r2 ).

Similarly a category has binary coproducts if for every pair of objects A and B, there is an object A + B
and a pair of injection morphisms t I : A - A + B and 12 : B - A +B, such that for all morphismsf : A - C



and g : B - C, there is a unique morphism[f,g] from A +B to C satisfying ff,g]oti =f and fglotl2 = g.
Forallmorphismsf :A -Candg B- D, wedefinef +g :A +B - C+Dto be [ti of,1 og].

An object 1 of a category is terminal if for every object A, there exists a unique morphism, denoted !,,

from A to 1.

A category is cartesian closed if it has binary products, a terminal object, and if for each pair of objects
A and B there is an exponentiation object [A - B] and a morphism aPpA,B [A - B] x A - C such
that for all morphismsf : C x A - B, there is a unique morphism curry(f) C - [A - B] satisfying
f = appA,B o (curry(f ) x idA). Here, as usual, idA denotes the identity morphism for A. Given a morphism
g : C -+ [A - B] we define uncurry(g) : C x A - B to be appA,.B o (g x idA).

A cartesian closed category is set-like if its objects are sets, its morphisms are functions, its products are
the usual cartesian products of sets, exponentiation objects [A - B] are subsets of the set of functions f, om
A to B, and application is the standard function application.

2.2. Partial orders

The definitions for domains and cpo's in this section come primarily from [10]; the discussion on Plotkin
orders it taken out of [9].

A poset is a set D with a partial order <D, i.e. a binary relation that is reflexive, transitive, and anti-
symmetric. A subset X of a poset is directed if every finite subset of X has an upper bound in X. A partial
order (D, <D) is directed complete if for every directed set X C D, the least upper bound of X, denoted UX,
exists in D. A partial order is pointed if it has a least element, usually denoted I. A cpo is a pointed directed
complete partial order.

A subset X of a poset is consistent or bounded if it has an upper bound. A partial order is bounded-
complete if every consistent set X has a least upper bound. In a bounded-complete poset, every pair of
elements x.y with a lower bound has a greatest lower bound, written as x n y.

An element k in a cpo D is compact (also called finite or isolated) if for every directed set X such that
k <D UX, k is less than or equal to some element in X. The set of compact elements of D is written as
K(D). A cpo D is algebraic if for every x E D, the set {k E K(D) I k <D x} is directed and its least upper
bound is x. A cpo D is w-algebraic [91 if it is algebraic and the set K(D) is countable. A Scott domain is a
bounded-complete, w-algebraic cpo. In this paper we will often use domain for Scott domain.

A bc-domain is an algebraic bounded-complete cpo. A bc-domain is distributive if for all consistent
pairs of elements y and z and all elements x we have that x fn (y U z) = (x n y) U (x ni z). An algebraic cpo
has property I if for each element x there are only finitely many compact elements below it. A dl-domain is
a distributive bc-domain that has property I.

A subset N of a poset A is normal if for every x E A, the set N n {y E A I y _<A x} is directed. A poset
A is a Plotkin order if for every finite subset X of A, there is a finite normal subset N of A with X C N. A
bifinite domain is an w-algebraic cpo D such that K(D) is a Plotkin order.

A functionf is monotone iff (x) < f(y) whenever x < y. A function is continuous if it is monotone and
preserves least upper bounds of directed sets. A function is strict if it maps least elements to least elements.
A continuous functionf : A -- B is stable if for all b < f (a) the set {a' < a I b < f (a')} has a least element,
represented as M(f,a,b). Given two functionsf 1 andf 2 from A to B, we define the pointwise ordering,
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<A-B such thatfj 1A-B f 2 if for all x E A,fI(x) <aBf2(x). We also define the stable ordering, <A-B such

thatf 1 _ý-tB f2 iff I •_A-B f2 and for all b < f I(a), M(f 1, a, b) = M(f2. a, b).

Given two posets DI and D2, theirseparatedsum D I+D2 is a domain consistingofthe set { (I xI) XI x DI }U
{(2,x2) I X2 E D2} U {I._} with the ordering _<'+2 defined by (i,x) •_0,+0 (i.x') whenever x <D, r'

(i = I or 2) and for all y E DI + D2, I <DI+D, y. The coalesced sum DI - ,D2 of DI and D2 is
(Di - {I 1D 1}) + (D2 - {I-D,}).

2.3. Specific categories

The categories used for the examples in this paper will generally be drawn from the following list:

Set: The category of sets and functions.

Cont: The category of Scott domains and continuous functions.

Conts: The category of Scott domains and strict continuous functions.

Bif: The category of bifinite domains and continuous functions. The only interest in this category is that
bifinite domains are closed under the Plotkin power domain (see section 3.5), but Scott domains are
not [9].

dl: The category of dI-domains and stable functions, stably ordered.

All the categories listed above are set-like, except for C-,nts which is not cartesian closed (since currying
does not preserve strictness). Virtually all of the examples that use Cont can be applied to any cartesian
closed category of cpo's and continuous functions, and most can be applied to any set-like category.

3. Monads

Definition 1 A monad on a category C, (T, q,/p) is a functor, T: C - C, with two natural transformations.
71 : I I. T and p T2 --t T, satisfying the following conditions for all objects A of C:

* PA 0 PTA = PA 0 TIYA

• PA 0 WirA = IPA o T77A = idTA

An alternative form is a Kleisli triple, (T, 77, _*), where T is a function from objects to objects, for each
object A, riA is a morphism from A to TA, and for all morphismsf : A - TBJ is a morphism from TA to
TB, all satisfying the three conditions below:

* f0 7A =f

* 77; = idTA

* (gof) =g.of.
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TA r/TA T2A Tr/A TA T3A TYA T2A

idTA PA dTA PUTA PA

TA T2 A P TA

Figure 1: Identity and Associativity laws for a raonad

The two forms are equivalent; for any a monad (T, i7,p), there is a Kleisli triple (T, r,_) where T is the
restriction of the functor T to objects, q is unchanged, and for allf • A - TB,f * = gg o Tf . Also for all
Kleisli triples (T, q/, _*), there is a monad (T, 71,/z), where Tf = (q7 of)', and p = id;A.

3.1. Identity monad

An obvious monad is the identity monad (I, id, id), where I is the identity functor, and the natural transfor-
mations are identity morphisms.

3.2. Lifting

In the category Cont, there is a monad (L, up. down) where

"* For all objects A, LA =A U {_ILA}, where -LLA ý'A is a new least element,

" For all morphisms (continuous functions)f : A - B, Lf (x) = f (x) otherwise

"* For all objects A, upA : A - LA is the inclusion function

"* For all objects A, downA : L2A -- LA is dOwnA(x) I= A X OtrA
= x otherwise

Lifting can be used (see [ 14]) to model partiality in programming languages, with the new bottom element
representing divergence.

3.3. Coproducts, Disjoint Sums, and Separated Sums

In any category C with finite coproducts, and a distinguished object E, there is a monad (E. q, p) such that

o For all objects A, EA = A + E.
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* Forallf :A -- B,Ef :A+E-B+Eisf +idE

* For all objects A, T)A A - A + B is t 1, the corresponding coproduct injection morphism.

* For all objects A, PA (A + E) + E - A + E is [idA. tI-].

This construction also defines a monad when using separated sums in Cont, even though they do not
satisfy the requirements for a coproduct (the [-,-] constructor is not unique for separated sums).

Coproducts are typically (see [ 14] and [18]) used to model exceptional handling, where E represent a set
of errors or exceptions.

As an example, in Cont, let E be the singleton set {err}. Then the monad (E. rj, P) looks like

"* Forall domainsA, EA = {(1,a) I a E A} U {(2, err)} U {IL} with the standard separated sum ordering

"* For all continuous functionsf :A - B

(l,f(a)) x=(l a)

Ef(x)= (2,err) x (2. err)
XI

"* For all domainsA, i)A(a) = (l,a)

"* For all domains A, PA : (A + E) + E - (A + E) is defined as

y x =(l~y)

PA(x) W (2. err) x (2, err)
2. x=I2

If we look at separated sums and lifting on predomains (domains that are not necessarily pointed), then
lifting is a specific kind of separated sum, namely LA = A + {}. In particular any property that is true of all
separated sums is also true of all lifted domains, and if a property fails to hold for lifted domains, it also fails
to hold for separated sums.

3.4. Products

Let C be any category with binary products and a terminal object. Then an object X is a monoid in C, if there
exist morphisms e : 1 -- X and m : X x X - X such that

"* (m o idx) x e = ri,

"* m o (e x idx) = Tr, and

"* m o (m x idx) o ax,x,x = m o idX x m, where aAB.AC is the natural isomorphism from A x (B x C) to
(A x B) x C.

Given a monoid X, there is then a monad (X, rq, p) defined as
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XxI idxxe XxX exidx Xx1 Xx(XxX) idxxm X X

7. (XxX) xX mm x idxI

X XxX m X

Figure 2: Identity and Associativity properties of a monoid

"* For all objects A, XA = A x X.

"* For allf : A - B, Xf =f x idx.

"* For all objects A, qA A - A x X is (idA,eo!A).

"* For all objects A, ZA " (A x X) x X - A x X is (idA X m)o QCA,,x, where o- is the natural isomorphism
from (- x -) x - to - x (- x _).

Products can be used to model a simple form of output processing ([18]) or to calculate resources (such
as time or space) used in a program ([1 1]).

As an example, let C = Cont and let X = VNat, the set of natural numbers (plus w to make it directed
complete), ordered vertically with least element 0 and greatest element w. Let e be the constant 0 function,
let m be addition. Then VNat is a monoid, and the monad (X. 17, y) looks like

* For all domains A, XA = A x VNat

* For all functionsf : A -, B, Xf (a, n) = (f(a), n).

* For all domains A, i1A(a) = (a, 0)

* For all domains A, YA ((a, n I), n2) = (a, n I + n2).

3.5. Power Sets and Power Domains

In the category Set the power set constructor forms a monad (P, {-1, U) where

"* For all sets A, PA is the power set of A,

"• For all functionsf : A - B and all X E VA, Pf (X) = {f (x) I x E X}.

S{- } : I P p forms singleton sets from elements

* U: p 2  P pis set union
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Thus we can model nondeterminism ([14]) by having the result of a program be a set of possible final
values.

To do the same in Cont, however, we need to form domains out of power sets, in particular we need a
partial order on the sets. Since we generally want to make use of the ordering in the underlying set. using set
inclusion as the partial order is insufficient. There are three orderings typically used for power set domains
(see [91):

Hoare or lower ordering: u C_• v if Vx E u. 3y E v such that x < y.

Smyth or upper ordering: u F v if Vy e v. 3X E u such thatx < v.

Plotkin or convex ordering: u _C v if u _C v and u _ v.

These orderings tend to form preorders instead of partial orders but, by a construction taken from 191,
we can get back a partial order.

Definition 2 An ideal over a preorder A is a nonempty set u C A that is directed and downwards closed.

An ideal u is a principal ideal if u = [a te=f {b I b < a} for some a E A. Idl(A) is the poset of all ideals in A.
ordered by inclusion.

Theorem 1 [91 For all preorders A, Idl(A) is an algebraic cpo, with compact elements being the principal

ideals.

Thus for any algebraic cpo A we can form another algebraic cpo, the power domain

PtA = ldl((PW(K(A)). Ct)).

where t E {54, 1} refers to any one of the three preorderings on powersets and !' (X) is the set of finite.
non-empty subsets of X. Thus an element s E PtA is a (directed, downwards closed) collection of finite sets
of compact elements of A.

Although theorem I gives us an algebraic cpo, what we are looking for is a Scott domain. IfA is Scott
domain, then so are the Smyth and Hoare power domains PdA and PA. The Plotkin power domain PIA,
however, may not even be bounded-complete (for example, consider Pb(Reol x Bool), where Bool is the
standard flat truth value domain {tt, ff, 1}). While the Plotkin power domain of a Scott domain is not
necessarily a Scott domain, the Plotkin power domain of a bifinite domain does remain bifinite (see [9]).

All three power domains can be used to form monads (Pt , I-at. [ýt) as follows:

For all domains A, and a E A, Let I -at : A - PtA be the function

flaat = {w E P;,,(K(A))I 3k E K(A).k <A aand w t {k}}

* For all functions f : A -- B, let ptf : PtA - PtB be defined as

Ptf,,(s)= U I
{a _.,a. I ef
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twhere for each domain A, otJ is the binary (associative) function from ptA x ptA to ptA defined by

s IA t={w E 'P;n(K(A)) I3u E s.3v E t. w t u U v}

Combining the above definitions gives us

Ptf (s) = U ew E Pýa(K(B)) I Va E u.3k, E K(B).k, < f (a) and w t {k,, I a E u}}
uES

Given a domain A, ( • Pt(PtA) - PtA is defined by

If we only look at compact elements and if we have anf : A - B that preserves compactness, then the
functions above simplify to

A jk[t = {w•E P7n(K(A))j Iw {k}}w ={k}.

" (u) (uJA (Iv) =i(u UV)

"* Ptf(t{al .... a.)=j(a,)) t ... L±J{f(a1)}=j{f(a,) .... f(a,)}, i.e. Ptf([u) =[Pf(u).

3.6. Exponentiation

Let C be a cartesian closed category and let V be any object of C. Then there is a monad ( V-. const. diag'
where

"• Forall objectsA, V,-A = [V- A]

"* For allf :A - B, V-f : [V - A] I- [V - B! is curry(f o appvA)

"* For all objects A, constA :A - [V-- A] is cury(7r1)

"• For all objects A, diagA :V -- [V - All -- IV - A] is curry(appv.A o (appv.v-•l ir))

In Cont the monad becomes

"* For all domains A, V-A is the domain of all continuous functions from V to A.

"* For all continuous functionsf A -- B, V-f(Av.av) = Avf(av).

"* For all domains A, constA(a) = Av.a.

"* For all domains A, diaga(Avl .Av2.av,,, 2) = Av.a,.v
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GA EGA G2 A G(A GA GA bl G2A

idGA idGA ( GA

GA G'A , G 3A
G6A

Figure 3: Conditions for a comonad

4. Comonads

A comonad in%" is a monad in the opposite category C0 P, namely, it is a functor G "C - C', with to natural
transformations E : G -. 1 and 6 : G -- G2 such that for all objects A of C

"* EGA06A =GEAo 6 A =idGA

"* 6 GA 06A = G6A6A

A comonad also has a form similar to the Kleisli triple: the Kleisli cotriple (G. E. f), where G is a function
on objects, and for each object A, (A is a morphism from GA to A, and for each morphismf : GA - B.f +

is a morphism from GA to GB, all satisfying the following conditions:

"* Forallf : GA - B, cB of ' =f

* For all objects A, c" = idGA

"* Forallf : GA - Band g : GB - C. g+ of =(g of)+.

4.1. Side effects

Let C be any cartesian closed category and let S be an object in C. Then there is a monad (S. q, It) where

"* For all objects A, SA = IS - (A x S)J

"* For all morphismsf : A - B, Sf : IS - (A x S)! - [S - (B x S)1 is curry((f "x ids) o apps.a)

"* For all objects A, qA :A - [S - (A x S)] is curry(idAxS)

"* For all objects A, IA :IS - (IS- (A x S)J x S)] - IS - (A x S)I is curry(appS.A.s o appS.SA's)

In Cont the monad becomes:
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"* For all continuous functionsf : A - B, Sf (As.(a,, z.)) = As.(f(a), z.,)

"* For all domains A, rIA(a) = As.(as).

"* For all domains A, !LA(As.(u,, :)) = As.u(z,)

This monad can be used to model side effects (see (141), where S represents some internal state; a
computation takes an initial state and returns a value plus a new state.

4.2. Product Comonad

Let C be a category with binary products and let X be any object of C. Then there is a comonad (X. 1. b)
where

"* For all objects A, XA = A x X

"* For alif : A - B, Xf ="f x idx.

"* For all A, 7r1 " A x X - A is the corresponding product projection morphism.

"* For all objectsA, 6A "A x X -. (A x X) x X is (idA~x, 7r2); in Cont, 6A(ax) = ((a.x).x).

4.2.1. Computation paths: Exponentiation comonad

Let C be a cartesian closed category, and let V be a monoid in C with identity element e : I - V and binary
operator m : V x V - V. Then there is a comonad (V. val. pre) where

* For all objects A, VA =[V - A]

* For allf : A - B, Vf :V - A] - [V - BI is curry(f o appvA~v)

* For all objectsA, valA [V - A] - A is appvAv o (idvA,eo!vA)

* For all objects A, PreA [V - A] - [V - [V - All is curry(curry(appv 4 v o (idA X m) o V.V))

where a- x -) x (X (×- x )

To see the above more clearly, in Cont it becomes

"* For all objects A, VA is the domain of continuous functions from V to A

"* For all continuous functions f A - B, Vf(Av.a,) = Av.f(av).

"* For all objects A, valA(Av.a,-) =a

"* For all objects A, preA,(Av.aV) = AvI.Av2.am(v,.,.V?
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One possible monoid in Cont has V = VNat, e = w, and m the greatest lower bound function. With
this monoid the monad becomes the path comonad mentioned in [7], where VA can be interpreted as a
non-decreasing sequence of elements of A, Vf mapsf onto the elements of the sequence, val takes the value
of a sequence at w, which by continuity is also the least upper bound of the elements of the sequence, and
pre returns the sequence of prefixes of a sequence.

4.2.2. Strictly increasing paths

When using the path comonad mentioned above, where V = VNat, etc., elements of VA can be thought of
as sequences of construction steps used to build a data value. Since the sequence is not necessarily strictly
increasing, there may be places in the sequence where the values remain unchanged. To get sequences
where the values always increase, we create a variant of the comonad (V, val, pre) in Cont using strictly
increasing paths. The resulting comonad (Vs, sval, spre) is defined as follows:

e For all domains A, let VsA be the set of finite or infinite strictly increasing sequences in A. The
finite sequences are represented as eventually constant (infinite) sequences. Therefore we have either
sequences of the form (an)' 0, where for each n, an <A an+i, or sequences of the form a0a1 ... aN- la-

where at) <A at <A ... <A aN. The ordering !SvsA is the least partial ordering such that

ao ... af.-.I..a < VsA ao ... api-. a

whenever a E VsA and aN <A ao. If we consider a sequence to be a (stable) flnction from VNat to A,
then this ordering of sequences is closely related to the stable ordering on functions.

* For all continuous functions f : A - A', let Vsf be the least continuous function such that for all
a, ao0 .a I A such that ao <a aI and for all a E VsA,

Vsf (a') = (f (a))'

Vs (aoaia) = (jf(ao))(Vsf(aja)) f(ao) $f(ai)

a Vsf(aIa) f(ao) =f(a,)

The definition is similar to the definition of V on functions except that any resulting duplications are
removed.

* For all domains A, svala(a) = aý, = U"'0an.

* For all domains A, spreA(a) = ((aminj))jw0)w 0 or equivalently, spreA(a) = (ao ... a,_ Ia-)-•).

5. Kleisli Categories

Given a category C and a monad (T, il, /ý there is a category K'(T), the Kleisli categor, of T. defined as
follows:

"• The objects in K(T) are the objects in C

" A morphismf : A I B in KI(T) is a morphismf : A - TB in C
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"* For all objects A in K(T), the identity morphism on A is qA : A - TA.

"* For all pairs of morphismsf : A - B and g : B - C, their composition is g o0f = pc o Tg of.

Similarly, for a comonad (G, c, 6), there is a Kleisli category IK(G), where

"* The objects in C(G) are the objects in C

"* A morphismf : A G B inKC(G) is a morphismf GA - B in C

"* For all objects A in C(G), its identity arrow is EA GA - A.

* For all pairs of morphismsf : A E B and g : B - C, their composition is g of = go Gf obA.

[7] and [141 (and section 6.1) show how to cbrain semantic interpretations of languages using Kleisli
categories. In particular the meaning of a functional program becomes a morphism in the Kleisli category,
and the Kleisli category composition rules are used instead of composition in the original category.

6. Double Kleisli Categories

The Kleisli category of a monad is generally used to represent a semantic interpretation of a functional
language with added non-functional features. The Kfeisli category of a comonad is generally used to look
at intensional semantic interpretations. In order to combine the two, we would like to form from a monad
(T, r7, A) and a cumonad (G, e, b5 in C a category C(G, 7) similar to the Kleisli categories, with objects in C,
and with morphisms of the form f : GA - TB.

In order to guarantee that we actually obtain a category, however, we need some additional conditions,
adapted from [4]:

Definition 3 Given a monad (T, q, y) and a comonad (G, c. 6), a distributive law of T over G is a natural
transformation a : GT -. TG such that the following four identities hold:

"* tA o G77A =iGA

"* TEA 0aA =ETA

"* " 0 GIAA AGA 0 TaA 0 aTA

" ?76 A 0aA ='GAOGaA O6 TA

a is distributive with 71 whenever the first identity holds. Similarly a is distributive with / when the
second identity holds, and so on.

For similar definitions, see [41, which related two monads, or [ 11, which related two comonads.

12



GA TA

G3/7IA \ 1JGA E TA \TEA

GTA aA - TGA GTA UA - TGA

aTGT TO' GA GAOGA
G7"IA TGTATGA GGTA G GTGA - TGGA

GPIA P1GA 6TA TbA

GTA OA TGA GTA OA TGA

Figure 4: Distributive laws

Theorem 2 Given a monad (T, 77, i•) and a comonad (G, E, 6) in a category C plus a distributive law o of T
over G, there is a category I(G, 7') defined as follows:

"* The objects ofIK(G, 7) are the objects of C.

GT"* A morphismf : A '!' B in KC(G. 7) is a morphismf : GA - TB in C.

* For each object A, the identity morphism idA' on A is qA o EA : GA - TA.

GT gG GT" For every pair of morphisms f : A B and g : B G!* C. their composition, g o f, is

PC O Tg 0 aB 0 Gf o bA.

Proof The proof involves some straightforward diagram chasing, shown in figures 5 and 6. Figure 5
contains a diagram showing that idB'r of =f o idA ' = f. The upper part of the diagram represents the
expansion of idB'r of, PB o Trja o TEB o UB o Gf o 6A, and the lower part of the diagram represents the
expansion off o idG'T, IB o Tf o oA o GqA o TEA 0 bA; in the center isf.

G,T G,T G,T g)G.T
Figure 6 contains a diagram showing that h 6 (g o f) = (h 0 g) af , The upper path represents the

G,T (gG,Tf G.T G.T
expansion of h 0 (g0 f) and the lower path represents the expansion of (h 0 g) 0 f, 0

6.1. Examples

We now check all the possible combinations of comonads and monads from our lists of examples to see
whether the distributivity condition holds. A summary of the results is in table I on page 26.
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GA 6A G2A Gf GTB aB TGB

5A \ idGA EGA T8 TCB

G2A G GA f TB T7B 7-B

G7IA 77GA q7TB idTB a PB

GTA • TGA T T2B TBetA Tf AB

Figure 5: Proof of the properties of identity in 1(G, 7).

6.1.1. The Product comonad

A distributive law a of any monad T over the product comonad X is a natural transformation from T_ x X to
T(- x X). For certain types of monads such a distributive law is guaranteed to exist:

Definition 4 LetC be any category with finite products. A monad (T. q, p) is strong if there exists a natural
transformation r: T_ x _ _L T(- x _), called a tensorial strength, satisfying the following conditions:

0 TlrI o 0rA,1 =7 '.

* *"A,B o (77A x idB) = T1AxB.

* IAAxB 0 T'rA,B 0 TTA,B = TA,B 0 (ALA x idB).

* 7AxB,C 0 ("A,B X idc) o aTA,B,C = TCIA,B,C 0 "tA,BxC, where again a: x × (_ x x -) A ( x × ) ×

This definition of strength is equivalent to the definition in (141, which uses a natural transformation
t: - x T_ 0 T(- x _). It is clear that given such a t we can get 7" with TA,B = T(r2, 7rT ) 0 t BA o (r. T and

similarly we can get t from r.

Unsurprisingly, if (T, ri,IL) is strong then there is a distributive law o of T over the product comonad X,

with aA = 7'A,X. Of course, determining the existence of strength is in general as difficult as determining the

existence of a distributive law directly. For set-like categories, however, there is a simple test for strength:

Theorem 3 Let C be a set-like category, and let (T, q, p) be a monad over C such that for each pair of

objects A and B the function tAB = Af .Tf : [A -, BJ -- [TA - TB] is a morphism in C. Then (7T, q, U) is
strong.
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GA '5A G2A

Gf G2f

GTB bTB- G' TB GO GTGB G2 'g GGTC GpC GTC

O' GB (7TC cYC

TGB -TG 2B - TGTC ----- -'- GC--- TGC
TbB TGg TaIC IIGC

T'hl Tit

T-3 D -Y - T2D

TY D ltD

Figure 6: Proof of associativity of composition in K(G, 1)
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A xB TA

71A x /idB \lnAXB r/ \Tlrr

TA x B TA,B , T(A x B) TA x I TA, 1 T(A x 1)

72A x B 7TAB T(TA x B) TrA.B T7(A x B)

PA x id8  PAxB

TA x B 7A,B T(A x B)

TAX x idc _ AX_.C
(TA x B) x C T(A x B) x C T T((A x B) x C)

aTA,B,C TaA,B,C

TA x (B x C) TA,8x C T(A x (B x C))

Figure 7: Requirements for r to be a tensorial strength
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Proof. Given such a category, let 7A,B = uncurry(tA,AXB o curry((7r2, r, I)))o (r 2, Ir) = A(a. b).T(Aa.(a,b))a.
For naturality, given a functionf : A - B and a function g : C - D, we have that

TC,D o (Tf x g)(a, c) = rco(Tf (a), g(c))
= T(Ab.(b, g(c)))Tf (a)
= T(Ab.(b,g(c)) o Aa.f(a))a
= T(Aa. (f (a), g(c)))a

= T((f x g) o Aa.(a,c))a
= T(f x g) o rA,s(a, c)

The other conditions can be shown in a similarly straightforward manner. 0

All of the monad examples given are strong in Cont [14]. The resulting or turn out to be:

Lifting: orA : LA x X - L(A x X) is defined by A(_L,x) = I and for a E A, aa(a,x) = (ax).

Separated Sums: oa: (A+E) x X - (A x X)+Eis defined by OA(tlI(a),x) = tI((a.x)), A(L((e), x) =2(e),

and An(I,x) = -.

Products: an : (A x X') x X - (A x X) x X' is defined by aA((a,ix),x) = ((a,x).x'), where Xdenotes the
object from the product comonad, and X' denotes the object from the product monad.

The product monad is strong in any category with products, where oA = (2r, x idx, ,r, o 7rz) is the
natural isomorphism from (A x X') x X to (A x X) x X'.

Side effects: ra : [S -- (A xS)]xX -- [S - ((A xX)xS)1 isdefinedby1A (As.(aq,z1 ).,x) = As.((a.,x).z,).

More generally, in a cartesian closed category we have aA = curry()A.s.X o (appsA.s x idx) o 3sA.x.s),

where 13A,B,C is the natural isomorphism from (A x B) x C to (A x C) x B.

Power Sets: (In Set) OA : PA x X - P(A x X) is defined by aA(u.x) = {(a.x) I x c u}.

Power Domains: aA : PtA x X-- Pt(A x X)(for t E {5,,}) is defined by

at(sx) = U{w I Va E u.3ka < (ax).w Ct {k, I a E u}}
uEs

For compact elements ( Iu, k), At (Lu,k =k { (a, k) I a E u}.

Exponentiation: aA : [V - A] x X - [V - (A × X)I is defined by oA(Av.a,,x) = Av.(a,.,x). A simiiar
definition holds for strict paths.

For all cartesian closed categories the exponentiation monad is strong, with

orA = curry((appA,v x idx) o /i3VA.X,V)

6.1.2. Exponentiation as a monad

A comonad (G, c, 6) is strong if there exists a natural transformation r : G- x - -L G(- x -) that satisfies
analogous conditions to the ones required for a strong monad (see figure 8). For all such comonads, there
exists a distributive law a' of the exponentiation monad V- over G, where GA = curry(GappxA 0 oV-A.x).
The proof is analogous to the proof for the product monad.
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AxB GA

EA X ifAxB / \G I

GA x B TA,B , G(A x B) GA x 1 7A,I - G(A x 1)

r(;AB) rTA,B
G2A x B TGA , G(GA x B) GGA,B G2(A x B)

6A x idB 6A.B

GA x B TA,B G(A x B)

TABa X idc _______,C

(GA x B) x C • G(AxB)xC AxBC G((A x B) x C)

oGA,B,C GA,.BC

GA x (B x C) TABxC G(A x (B x C))

Figure 8: Requirements for a strong comonad

As for strong monads, for set-like categories whenever the function gAB = Af .Gf is a morphism in that
category, then G is strong. The resulting a will be

curry(uncurry(gv-A,A 0 curry(appx,A o (7r2, r1))) o (r 2 , r1 ))

i.e. for g E G[X -. A], a(g) = Ax.G(Aa.a(x))g.

The comonad (V, val, pre) is strong in both Cont and dl, with the resulting a being defined by
a(Av.Ax.au,,) = Ax.Av.av,. The comonad (Vs, sval, spre), however is not strong in Cont, for the function
Af .Vsf is not monotone when functions are ordered pointwise (and given a tensorial strength 7, we can
derive as a morphism Af.Vsf, with Af.Vsf = curry(VsappAB o Vs(7r2, ri) a TA.[A-B] 0 (xi, r1r))). The
product comonad is strong and the a resulting from this construction is identical to the a mentioned in the
previous section.
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6.1.3. Product as a monad

For all comonads (G,E,6) there is a distributive law arA = (GirL. EX o Gr2) (= (Gir . 7r. 0 (AxX)) of the
product monad X over G. For example there is a distributive law a of X over V, where for standard cartesian
closed categories

aA = (curry(7rt o appV(AxX),V),7r2 o appV(AxX),V o (idv(AxX),eo!V(AX,)))

or, in Cont,

aA(Av.(aV,xv)) = (Av.av,xe)

For the strictly increasing paths comonad a is the same except that duplicates are removed.

6.1.4. Lifting with the path comonads

If we look at the lifting monad (L. up, down) with the path comonad (V, val, pre), using the monoid VNat
(e = ýý' and in = min) in the category Cont, we see that an element of VLA can have one of three forms:
it can be a path a E VA, the element 1•', or of the form iha for some path a E VA and some n > 0. An
element of LVA is either a path a E VA or I_.

In order for a natural transformation a to be distributive with up we must have that if a E VA, o-A(a) =
aA(VUpA(a)) = UpvA(a) = a. There is no value, however, that can be assigned to O'A(Ia) that satisfies
all distributivity requirements without violating monotonicity or naturality. For example, let us look at
the domain A = VNat and the element 10'. Since aVNat(O0) = 0' and 10' < 0', by monotonicity
of aVNat we must have that aVNat(lO0) _ 0' which in LVVNat means that either (YVNat(LO-') = 0- or
crVNat(±0w) = I.

If we let arVNat(J0Ow) = 1, then a is not distributive with val, since LvalVNat(rvNat(_LO1))
LvalVNat(L) = 1 and valLVNat(LO0) = 0.

So we must have that a(LOW) = 0'. Letf : VNat - VNat be the constant 1 function. Therefore by
naturality of a we have that

o'VNat(_L) = O'VNat(VLf (LOW))
= LVf (crVNat(_lO))

However we already know that OaVNat(Ol) = 01'. Thus we have that Ilt < 01W, but aVNat(±Ll) =
1W > aVNat(Ol). So a fails to be monotone.

This proof generalizes to any non-trivial monoid V but not to the strictly increasing path comonad or to
exponentiation in the category dl. In fact the natural transformation given by

_L- a= 1w

aA(a){ a' a = ata for some n > 0
a otherwise

19



is a distributive law of L "'er V(V = VNat) in the category dl (GA is stable for all dl domains A). When we
limit n to 1, a is a distributive law of L over Vs.

6.1.5. Coproducts

There is no distributive law a of the separated sum monad E over the exponentiation comonad V in the
category Cont, for reasons similar to the ones above showing that there is no distributive law of the lifting
monad L over V. Again there is again a distributive law a of E over VS and a distributive law a of E over V
in dl (for the monoid VNat), namely

oaA(a) = tl((ai-o) 3n > 0.a =

E(a) otherwise

This particular function depends not only on the structure of the comonad, but also on the structure of
the monoid and thus does not generalize easily.

For categories with coproducts and one extra (somewhat strong) condition we do get distributivity:

Theorem 4 Let C be a category with binary coproducts, (G, c, b) be any comonad over C, and E be some
object. Suppose that for each object A, the object GA + GE is naturally isomorphic to G(A + E), with one
half of the isomorphism being OA = [Gt 1A, Gt2E]. Then there is a distributive law a of the coproduct monad
E over G, namely

orA= (idA + EE) o .

Although the above condition does not hold with the comonad V in Cont, it does hold for V in the
category Conts of domains and strict continuous functions (using coalesced sums). For set-like categories,
the above condition will hold primarily when the structure of G(A + E) uniformly consists of either elements
of A or elements of E.

6.1.6. Power Sets and Power Domains with the Path comonads

In the category Set and for all monoids V, there is a distributive law a of the power set monad TP over the
exponentiation comonad V, with GA [V - PA] - P[V - A] defined by

aA(X) = {a E VA I Vv E V.a(v) E X(v)}

The equivalent function in Cont for the Hoare or Smyth power domains, and in Bif for the Plotkin power
domain is

aAA(S) = {w E 'P;,(K(VA)) I Vv E V.{a(v) I a E w) E s(v)}

For the Hoare or Smyth power domains, however, a is not natural, and for the Plotkin power domain, it
is not even monotone. In fact we can show that for all three power domains any choice of a will fail at least
one of the conditions needed for distributivity.
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Theorem 5 In the category Cont, let V be the monoid VNat with unit w and binary operator min. Then
there is no distributive law of the Hoare power domain monad (P, a- ý, U+ý) over the path comonad
(V, val, pre).

Proof. Assume that there exists an indexed collection of morphisms a such that for each domain A,
ra : VP'A - P"bVA and that cr is distributive with - i.e. for all objects A, aA o ViJ- } = I--I'VA. We
will show that there are domains A and B, an s E VPbA, and a continuous functionf : A - B such that a is
not natural.

Let A be the flat truth value domain Booi. Let B = 3, the domain of three points, {O, 1, 2}, with
0 < 1 < 2. Letf : Boot - 3 be the function withf(_-) = 0,f(tt) = l,f(ff) = 2. It is clear thatf is
monotone on a finite domain and therefore is also continuous. Let s = (f{ tt})([ tt. f f })". Then

o VP fs = OB(VP'f (([f{tt})(I{tt, ff})W))

= aB(P/f({tt})Pif (t{tt. ff}i))
= oB((I{f(tt)})( ty(tt),f(ff)})w) using the definition of P

on compact elements
= aB([})Q1 1 21)w

= aB(({ 1 })(,{2})w) [{2} = [11. 2}
=aB(J I a' J2 ')3 3
=aB 0 V4J31(l2w)

= ] 12wb}3 by assumption
= ,{[12-}

Now suppose that for some s E Pb VBool we have that PQ Vf (s) = 1{ 12"' }. Given that all elements of V3
are compact, we have that

[{112- = PkVf (s)
=U.[ {vf(x) xe u}
= {W E P7n(V3) 3u E s.w C_' {Vf(x) Ix E U}}

Thus we know that for every u E s, {Vf(x) I X E u} I PVf(s), i.e. {Vf(x) I x E u} _ {12-}. This
means that for all b c u, Vf(b) < 12'. We also know that since {12'} Et {12W'} = PýVf(s), there must
be an u such that {12w} ICb {Vf(x) x E u}, which means that there exists some b E u with 12' < Vf(b).
Since we also have that Vf(b) < 12', Vf(b) must equal 12'.

However the only sequence b in Boot such that Vf(b) = 12w is b = tt ffW, which is not an element of
VBool. Thus there is no value oreBOO can give tos to make cra o VPWf (s) equal to P Vf (aBoI(s)), so ar is not
natural. 0

Since the proof used valid Vs paths and did not use specific details of the ordering of the paths, we also
have shown that

Corollary 6 In the category Cont, there is no distributive law of the Hoare monad (Pt', U-• t, ') over the
strict paths comonad (Vs, sval, spre).
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Also, by a straightforward extension of the proof given above, we can show that there is no distributive
law for any monoid domain V that contains two points vi and v, with v, < v2, i.e. any non-trivial monoid
domain.

Theorem 7 In the category Cont. let V be the monoid VNat as in Theorem 5. Then there is no distributive
law of the Smyth power domain (P9 4_-,l.fJ) over the path comonad (V. val. pre).

Proof. Assume that there exists an indexed collection of functions oa such that for each domain A, GrA

VPUA - POVA. We will show that the a's cannot simultaneously satisfy monotonicity, naturality, and

distributivity with I -[}1-.

Let 2 be the two point set {i-, T} with .L < T. DefinefO,fI : Bool - 2 as follows:

fo(--) = I
fo(tt) = T
fo(f f) = T-

f 1(tt) = i-
f 1(ff)= T

Let s = (Q{tt, ff})(t{ff})w E VPdBool. If we assume that a, is distributive with 41-[}:, i.e. for all

objects A, GA o VI-5 = J-al , we get that

0a2 0 VP•fos = '2 (VP~fO((I{ tt, ff})(I{f f })))
= az(([f T})')

0 '2((J] T a]"•)-
= 4] T- }ý by assumption
= L.{Th}

Given any s E Pý VBool, we see that

PVfo(s) = UuEs L9,m. I Vf (x) a 12

= U, If Vf (t) It E u} since all elements of V2
are compact

Thus in order for P# Vfo(s) to be equal to 1{ T- } there must be a u E s with {I T} IC {Vf (x) E x u}, i.e.
for all t E u, T' _<v2 Vf (t). Since T' is the maximum element of V2, this is the same as saying that for all
t E u, Vf(t) = Tr.

Now the elements of VBool are all of the form L-', L"ttý, and J"ff f', where n is a non-negative
integer. If we apply Vfo to all of these we find that

Vf o(.L') = 1'

Vf70(-I"ttw) = _L" rT
Vfo(._" f fd) = L"T'

22



ThereforeforallswithP'Vfo(s) =I{T")},either {tt'}, {ff'},or {tt'. ff')} must be ins. Since those
three sets are maximal in the Smy!h preorder, s must therefore be either I { tt }, I{ f f'}. or I{ tt-a. f f "}.

If we assume or is natural we have that PtVfo(o' 3 oi(s)) =r 2(VPdfo(s)), but we know that a2(VPMfo(s))
equals I{-IT-}. Therefore aYBloI(S) must be either I{tt"}, 1{ff"}. or I{tt-. f f

Now withf1 we see that

0'2 o VPdf ,(s) = a 2 (VPof I(( I{ tt. ff})( {ff}),)
= a 2 ((Q I{_, T})(t{T})w)
= '2((],{L})(. IT })wa) ([±}-[ = {I-.T})

= 0'2((QfL a. )Q T [j)w)
= .LTLd d assuming distributivity

with {j-f
= 1{JTw}

To get naturality wichf1 we need PdVfI(o ool(s)) to equal I{ _L TW} for one of the possible values for
aBl0 l(s). However

P•4Vfj(j{tt-•}) = I{Tw)}

Vf (I{ff }) = t{± }1.and
Ptvfi(t{ f fW. ttw}) = I{-, rT1}

none of which are equal to 1{iIT'}. 0

Corollary 8 In the categoryv Cont, there is no distributive taw ofthe Smyth monad (Ps. - t.JU) over the
strict paths comonad (Vs, sval. spre).

Proof. The proof for theorem 7 can be adapted as a proof of this corollary, since the proof used only strict
paths and while the proof did use the path ordering non-trivially, all statements using that ordering (namely
that Tw', tt', and ffW are maximal in their respective domains), hold for the strict path ordering as well. 0

Even though there is no distributive law a, for the Hoare and Smyth domains there are lax distributive laws
• and -, in the sense that for all morphismsf : A - B, s E VPIA and S' E VP`A, s: o Vlf (s) < PO Vf o -(s)
and 4; o VP/f (s') >: PVf oa •(s') and ý satisfies all the other requirements. Here s, defined as

it(s) = {w E P;.(VA) I Vv E V.{a(v) I a E w} E s(v)} (t E {. :})

is the generalization of the distributive law for sets and exponentiation mentioned at the beginning of this
section. Unfortunately, the inequality in the naturality of ý translates to an inequality in the associativity law
for the double Kleisli construction, so we cannot form a Kleisli category this way.

Theorem 9 In the category Bit, let V be the monoid VNat as in Theorem 5. Then there is no distributive
law of the Plotkin monad (1P. J-t I, 1±') over the path comonad (V. val. pre).

Proof. Assume that there exists a natural transformation a : VPO0  P4 pV and that a is distributive with both
1j-5}4 and val. We will show that there exists a bifinite domain A and elements s, and s2 in VPMA such that
S1 32 but aA(SI) O'(S2).
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LetA be the bifinite domain consisting of the set {_L, a Ia 2 ,b I, b2,ci, c2,,dj.d 2} with the ordering <A

as shown in figure 9. Lets, = (l{aI,bl})( I{a.b 2 })w, and s2 =(I{cI.d,})( {c,,d2})w. Clearly s, < s2 .
We will show that otA(Sl) ý aA(S2).

c27 d2)

C l d,

a2 X tb2
a, b/

Figure 9: The domain A

Letf • A - VNat be defined as the least continuous function such that:

f (ai) =f (bi) = i i= I or 2

f(cq)=f(dj)=i+2 i=lor2

Figure 10 shows the values off for each value in A.

4 4

3 3

22
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! 1

0

Figure 10: Definition off on A

We then have that:

O'VNat 0 VPbf (s$) = OVNat(VPbf ((Q{at, bI})(ta 2 , b2})'))
= oVNat((Q{ 1 })(1{2}),)
= aVNat(] I all 2I lw)

= 112- WVNat assuming distributivity
with 1-14

= If{12'}

Suppose there exists an s E M VA such that PbVf(s) =1{ 12'}. Since the range of Vf consists only of
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compact elements, we have that

[{12w} =PUVf(s)
=UUE. [f{Vf(a) I a E u}

so for each u e s we must have that {Vf(a) I a E u} E_ {12'}, i.e. for all a E u, a < 12 '. Since the ai's
and the bi's are incomparable with each other in A, this means that there exists a uo C_ {aIaT. b'b2} with
u E• uo. This implies that s =juo. By the assumption of naturality for a we have L{ 12 } = VNato VPYf S=

PýVf o aAS, so aAS, =Juo. If we then use the assumption of distributivity with val we find that

PbvalVNat(u0) -- PbvaivNat 0 aAsl

= valpeVNatsI
= [{a2, b2}

The only value of uo that satisfies the above equations is uo = {ala', bjb'} = aAS .

By a similar argument we can also show that aAS2 = {clcT,didO2}. However, {aa-_,.bjb'} and
f{c1c2',di2d4} are incomparable, so aA is not monotone. 0

This proof generalizes to any monoid with two distinct and related elements; however, unlike the proofs
for Pd and P', it does not apply to the strict path comonad Vs, since s, and s2 are incomparable in VsA.
Moreover, the a given at the beginning of the section, is also not a distributive law over Vs since it not
distributive with I-[}. We do not currently know if such a distributive law exists.

6.1.7. Side Effects

If we have a comonad (G.E. •6) that is both strong and satisfies the equation

rAB o (idGA x cy) o (GrI, Gir2) = idG(AxB)

then there will be a distributive law a of the side effect monad (S. ), Lt) over G, with

Ga = curry((idGA x Es) o (Gr 1. Gr2 ) o GappS.A,,s 0 7sas)

This condition is rather stringent, essentially requiring that information lost when applying c to GB is "stored"
in GA so that it can later be recovered by 7. Even though this •,,ndition holds for the product comonad, for
the exponentiation comonad (and its variant, the strict path. ••,nad). it is equivalent to requiring that the
monoid V is isomorphic to 1. In fact the above definition toi ,ich in Cont turns out to be

aA(Av.As.(a,(s), Z,(s))) = \ . . Ze(S)),

does not distribute with/p for non-trivial monuids. It is highly unlikely that any distributive law exists for S

over any non-trivial exponentiation comonads.

7. Non-distributive double Kleisli categories

An alternative method to using both the comonad and the monad simultaneously is to lift the comonad into
the Kleisli category of the monad. One way is to let GA = GA and then coerce the morphism part of the
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idG(AXB)

G(A x B) G(A x B)

(Gr 1, Gr 2 ) TA.B

GA x GB - GA x B
idGA x EB

Figure 11: The condition 7"A,B o (idGA x EB) o (Gr1, Gir 2 ) iddG(AXB)

Comonads
General Paths in Cont Strict Paths Other

Monads Products Exponentiation (V = VNat) or Paths in dl comonad
Lifting yes -no yes

Exceptions yes see sec. 6.1.5 no yes if G(A + E) !- GA + GE
Products yes yes yes yes yes

Side Effects yes see section 6.1.7
Power sets yes yes --

P' yes - no no
Pd yes - no no
Ph yes - no see sec. 6.1.6

Exponentiation yes if strong yes dl only if strong
Other monad if strong ...

Table 1: Distributive laws of various monads over comonads

functor and the natural transformations into the Kleisli category K(T) (see figure 12). In order to get a valid
comonad, however, we need a distributive law or of G over T as before and in fact the resulting Kleisli
category K/(G) is identical to the doubly lifted Kleisli category K(G. 7). A similar result holds if we try to
lift the monad in to the Kleisli category of the comonad as shown in figure 12 (For similar constructions,
see [41 and [I]).

Since there are several combinations of monad and comonads that do not have distributive laws, we need
to find a way of combining them without one. One possibility is to lift the comonad using G'A = GTA:

Theorem 10 Let (7', iq, -') be a Kleisli triple and (G, c, -+) be a Kleisli cotriple on a category C. Then there

GA=GA tA =TA
Gf = aA o Gf : GA - TGA Tf = Tf o (TA :GTA - TA

iA = qA 
0°A : GA - TA ?A =1A 0oFA GA - TA

A =- qG,2A 0 
6A : GA - TG2 A i1A =lS•a oE'A : GT2 A - TA

Figure 12: Lifting the comonad or monad using a distributive law

26



GTA P GTB 77GTB TGTB

f ETB TETB

TB ')TB T2B

i dT T

TB

Figure 13: Proof that f'T = f.

exists a Kleisli cotriple (G', E', -') on the Kleisli category KI(1) defined as follows:

"* For all objects A, G'A is the object GTA.

* For all objects A, E' " GTA - TA is ETA.

"* For all morphismsf : GTA - TB, f +' : GTA - TGTB is the morphism iGTB of 0

Proof. The proof involves using straightforward diagram chasing to show that the three conditions specified

in section 4 are satisfied. Figure 13 contains a diagram proving that for allf : GTA - TB, C'q Of +' =f C

Given the above, we can construct a lifted comonad (G'. E'. h') from the lifted Kleisli cotriple (G'. ('. -+').

It can easily be shown by simplifying the definition given in section 4 that the resulting comonad is defined

as follows:

* For all objects A, G'A is the object GTA

* For allf : A - TB, G'f : GTA - TGTB is 1GTB o G(ILR o Tf)

* For all objects A, ' : GTA - TA is cTA

* For all objects A, 6 : GTA - TGTGTA (= T(G')2A) is qGTcTA o GqGTA o hTA

We can now construct the Kleisli category K(G') from K(T). Again it is straightforward to show that the

resulting category has the form

* Objects of /(G') are the same as for C.
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GTA 6TA G2 TA Gr7GTA GTGTA 17GTGTA TGTGTA

Gf GTf TGTf

G78 G 2B 71G728 TGT-B 7GTB

GTE 7T7-

TT7GTB

•idG GPsB TGtB AGTB

GTB 77GTB TGTB .TGTB
IdTGTB

g Tg Tg

TC _ 7c__ _ _ id c .• C

TC

T , T

Figure 14: Proof that g o Gf 0 = g o Gf o 6TA. The upper part of the diagram represents
T T

g o (Gf o 6 A) = PC o Tg o0GTB o TrGTB o TGPB o TGTf o 'JGTGTA o GrIOTA o 6 TA.

GG'* morphismf•A -- B is amorphismf:•GTA -- TB in C.

"• For all objects A, the identity morphism on A, idA', is EA = ETA.

G' G' G T
For allf : A ---* B and g : B -C, their composition g of isgoGf 6' g o Gf o 6 TA.

Figure 14 contains a diagram proving that g T Gf o 6 = g o Gf o 6T,4

Using similar definitions, we can also construct a lifted monad (7A, iA, pi) over the Kleisli category

/K(G) and then form the Kleisli category K/(T). It is straightforward to show that they have the following

forms:

* For all objects A, VA is the object TGA
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p r type
*-~ p type I- Tr type

-r type x: 7 T- e: dom(p)
x: r ý-x: r x : 7 I- p(e) :ran(p)

x: r. t- e 7'r x: r- e :T7'
x : r t- [e] T-r' x : r y-l(e) : 7'

x: rý- el : l 71 xI : 71-e2 : 2

x:r• let x, -'el in e2 :T2

Figure 15: Typing rules for simple programming language

" For allf :GA - B, Tf :GTGA --* TGB is T(Gf o 6A) o0 TGA

"* For all objects A, 7A : GA -- TGA Js r/Aa

"* For all objects A, p• GTGTGA(= G(T' 2A) - TGA is PGA o TETGA 0 ETGTGA

and

"* Objects in K(T') are objects in C.

"* A morphismf :A T B is a morphismf : GA - TGB in C.

* For all objects A, the identity arrow on A, id4 is qA = r7cA.

"* For allf : A - B and g : B Z C their composition g 7o0f isUic o Tg of

8. Examples with monadic languages

To apply some of these constructions, let us look at the "simple programming language" described in 1141,
with the following syntax:

r ;:= p Tp

e ::= xlp(e) I[e] I (e)Ilet x4-el in e2

Here p ranges over a set of atomic types, x over a set of variables, and p over a set of constant function
symbols. Note that expressions contain exactly one free variable.

The typing rules for this language are listed in figure 15, consisting of definitions for the judgements
I-r- type (denoting a valid type) and x : r F- e : r'. For each constant p we assume a given domain type
dom(p) and a range type ran(p).
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X:" 1"- e: 7i x: 7" - el ==,i e2 x: 7 r- e 2 Er' e 3

x: i-Fe T- e x: -r F- ei =-, e3

x : r F e! -- e 2  x : 7 F- el dora(p) e 2

x: r e2 - el x : r Fp(eI) =-.(p) p(e2 )

x: ri- el -. e2 x T el =Tr' e2

x: r F- [el I--r' [e2] x": T -F(e 1 ) =,, y(e2)

x :r F"- e : r' x: r ý- el ----r e, xj :r 71 - e2 E=., et2

: r L-([e]) =,, e x: r let xi - el in e2 -=, let x, 4= e' in e'

x" i- elm, x : 7 I- e : dom(p)
x: i-7 [Lj(e)] =rT, e x :7 - p(e) =-,,,,(p) let xj t e in p(xi)

x" r I- e : -r' x : r F- el Lt x! : rI F- e2 " r"2

x:i- let x, 4e in x -. ,e x:rF let x, el in e2=r2 [eI/xw]e2

x: T I-el :r7 X1 " TI i- e 2 " 7 2  x 2 T-2 F-e3 : - 3

x: r let x2 - (let x ,: el in e2) in e.3 =, let xl 4 el in (let x2 4 e2 in e3)

Figure 16: Equivalence rules for simple programming language

F-r type X : 7' F- el =-,e2 X : 7' ý el [, x : r ý- e : r'
X" 7 ý- x1, x: r F- e2[• x: r ý- [el tT,'

x : r F-e•, xj: 1- where 0 is one of el e2, e: r', ore,T'.
x: - F" fe/xi14,

Figure 17: Existence assertion rules for simple programming language
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The operational behavior of the language is described by an equivalence relation x : 7 e =,, e' (see
figure 16) and an existence relation x : 7 F- e t,, (see figure 17). The existence relation determines whether
or not an expression can be considered to have the form [e].

The denotation semantic functions considered for this language will all interpret types as objects and
typing judgments as morphisms in some category. A semantic function is sound if

1. whenever x: r F- el -, e2, the meaning ofx: 7 F- el : 7- is equal to the meaning ofx : T- F- e2 : 7"

2. whenever x : 7 F- e .i,, there exists a unique morphism h from the meaning of r to the meaning of 7'

such that the meaning ofx : r P e : r' equals q o h.

8.1. Extensional semantics

For a category C with a monad (7T. 77, ) we define the extensional denotational semantics, taken from [14],
for this language as follows:

"* For each base type p, let A,, be some object in C.

"* If-7 = Tr', let A, = TA,,.

"* For each p, let [p] be a morphism from Adorp) tO TAn(p).

"* For each judgment x : r F e : r', let lt4[x : r F- e : -r]n be a morphism from A, to TA,, (i.e. a
morphism from A, to A,, in the Kleisli category), defined inductively as follows:

M•4[x: 7 x : r7 = j
= id~r

A4x: - F p(e) : ran(p)1 = PA,,,,, Toip 1 0,4[x : 7 F- e : dom(p) I
T

= ThpJ a Mix: r F e dom(p)J
M.x: r f [el : Tr'] TA r, 0 Mx: o F- e: 7'1

-tf[x: r F g(e) : 7-1] = /-Ar, o Mix : r F e: T-']
MiVfx : T- F let x, -# el in e 2 : TA

= PAr,o0TAMx1 71 I-e 2 : 7T,]o A4x 7 el rI1

= Ia'. : 71 Fx e2 : r2 j J o %i x: r F 711 : :

Moggi in [141 showed that if the monad satisfies the mono-requirement, namely if qA is a monomorphism
for every object A, the above semantics is sound. It is easy to see [141 that all the monads given in this paper
satisfy the mono-requirement.

8.2. Intensional semantics

Suppose we have a category C with both a monad (T, q, pi) and a comonad (G, e. h). It is easy to show that if
a monad (T, q, p) satisfies the mono-requirement then so do the lifted monads (t fl. it) and (71. P'. p'). We
can then use the extensional semantics above to define an intensional semantics by starting with the Kleisli
category K(G) instead of C and using a lifted monad instead of the original. Thus we get the following two
intensional semantics:
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Mix: r F- x: 7]'G, =
= 71AGT 0 CA GT

= id ,T '=IdGT,

GG
Mix: - i- p(e): ran(p)JG,T =nAG.Tr o 1 IPIG,T o 0 ix: r , - e : dom(p)]GT

=Iran(p) o ?TpIG,T O UAGT o Gx: r - e : dom(p)G,T 0 •,r
domtp)

G.T
= [PIG,T o Mix: r F- e : dom(p)IGT

MIx: -r F- [e] : Tr']G,T = ??TAGT 0 MIx: r F e: 7T'GT

II = i7TAGT 0 MX: 7 F e: 7IGT
G

Mitx: r F (e): IGT =YAG.r 0 MIX: 7I- e: Tr2]G,T

= i.AGT 0 MTX : T -e 2 T 2'G,T

MIX:.F- let x, -el in e-, 2:"2"GT

G G M IX:_;

=o eAacT b TMi x, : 7"1 F, e : T-T 0 A71 T 0 TAF e=JGT
1")

= PAT 0J TAMtx, :7 ~ e2 : 72GTiO (T0 AG;T o G.It~x: 'r -Fel : TIJG.T0 b'A~T

GT
=AtXi :7 1  e, : 2]GT a MX:7-Fel : 7-IGT

Figure 18: Denotational• semantics using the monad (t. G, AT)

1. Using the lifted monad (T, T, A) (thus assuming the existence of a distributive law) we define

" For each base type p, AeT = A,, and for typer =Tr', AtA = T'A j = TA G.
GT GT

"* For each constant p, let [PIGT be a morphism from GAdon) to TArtp)

" For each type judgement x : r ý- e : 7', let AMitx : 7 ý- e : r'G.T : GAGT - TAGtJ be defined as

shown in figure 18.

2. Using the lifted monad (to gT', p') we define

a ~ ~ ~ ~ ~ ~~ ' =ophs from an for 7 is a' moehis APo =T toý T= nteognlct gory

* For each base type p, let A' ,andforTT ',letA' -TA,'. -

"" For each constant p, let ip] be a morphism from GA7 ) to TGA3

"* For each type judgement x : T-F-e : T', let Mtx : i-F-e : 7'Jr : GA 1 - TGArP1 be defined as
show in figure 19.

These two semantics are clearly sound; they are essentially the extensional semantics using different base
categories and monads, and all such semantics are sound whenever the monad satisfties the mono-requirement.

One more semantic function can be derived for this language by taking the original semantics and
directly adding a cornonad to get a semantic definition in the other non-distributive Kleisli category, where
a morphism from A to B is a morphism from GTA to TB in the original category.

*For each base type p, let A G' = A.,, and for r = Tr', let A GI=TAG'
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M[Ix: r7 x : 71p = '

= qGa~r

= id'p

M1[x: r F p(e) ran(p)17, G Gp]7, o I[x: 7- e: dom(p)lr
ATm(p)

= AGAr oT 7.I[P o M[x: 7- e dom(p)]rp
m~n(p)

= [p o M"[x: 7 F e: dom(p)]r

MIx" -e i-[e]: T-7'7 =VA' oM[x: 7 e: r'],'I

= 'IGTGA I o GM[x: 7 F e • '17v 0 bA

M[x: 7 - #u(e): " 'I, =1" J Mlx: 7- e : TT-
A,,

IzGA,, o TTGAV o MIx": 7" - e : Tr'17

Mix: i- let x1 el in e2 : 7-2 ]7=/.IAT' 0a iMtx :71'I- e2: " -21 o0 x V(X 7- el :71-pI
=11GaV 0 T.Jx, r,- - e2-) " 71 oM.,[x : r el : 7-1]

r2r
= .•["x 1 : 71 F ] e2 " T-21r 0 %4[x: r F- el : 7fli,

Figure 19: Denotational semantics using the monad (71, qi,/)

G' G/

" For each constant p, let IPJG, be a morphism from GTAan,,Q) to TAran(p)

* For each judgment x : 7 F- e : T-', let 4[x: 7- Fe • 7']G, : GTAG' -TAG' be defined as shown in
figure 20

Unfortunately, this semantics is not sound (x 7 7- F x t, is false). This is because we lack control
over the monad part of GTA. If instead we restrict GTA to the range of GriA we can get the following
"semi-soundness" property:

Theorem 11 For all expressions e, el. and e2 the following two properties hold:

1. Ifx: 7-F el =-, e2 then M[x: 7T - el : 7'II o G0G AG, = Mix: i7 -- e. 7 1G' o GqAG,.

2. Ifx: -r e L' then there exists an h : GAG' - AG'such thatM[x r-e 7-IG, 0 GqAG. =JA< oh.

Proof. By structural induction on e, using as a substitution lemma

M[x: r F- [e/xle' : rIG' = M[x: i- F : r iG' o G0G4[x i F e: i-]G' 0 6TA•

whenever x : r F e : r' and x : r' F- e' : r". r0
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Mix: r F- x: TI, = fraG.
= idG'.,

AMi x : "r F- p(e) : ran(p)IG, = [PIG' o GA4[x: r I- e : dom(p)IG' 0 A

= [PIG' o A

Mix: rf[eI:-TT'I .- =iG, o TA,[x:r e:r7G
MIx: T- ',(e) = /TAG,0 o.MIx: r I- e: TT']G'.rl

M[x: r- - let x, 4= e l in e2 :21G'
= Mxi : "1 F- e2 : 72JG, o GAM[x: T- el : iIG, o 6TA,

G1

=Mx1 : -1 r- e, : 72IG' 0 .%[x: r - eI • rj]IG,

Figure 20: Denotational semantics using the comonad (G', E, 6')

8.3. Relating intensional and extensional semantics

For all comonads (G, E,tS ) there is an (adjoint) pair of functors F: C - K(G) and U: A(G:
the Kleisli category KI(G) to the underlying category, where

* For all objects A, FA = A

* Forallf :A - B, Ff =EAoGf =f oEA

* For all objects A, UA GA

* Forall a: GA - B, Ua=Gao6A.

(see [2) and [6)). There is also a similar pair of functors, of course, for monads.

For some comonads there is a much closer relation:

Definition 5 A computational comonad (G, E, 6. y)[61 is a comonad (G, c, 6) plus a natural transformation
I : I A G such that

"* A o 7A = idA

"* 6 A o '(A = G7A o 'A (= 6 A o 7GA by naturality)

Whenever (G, ,, 6, 7) is a computational comonad, then there is another functor, H :/(G) - C defined
by

"* HA=A

"* Fora:GA-A, Ha =aoA.
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A 7A _GA

GA

AAA

A idA A
GA 'YGA G2 A

Figure 21: Properties of - for a computational comonad

From this we can define a family of relations -A,B: if a : GA -* B andf : A - B then a "-A.B f
wheneverf = Ha = a o yA (the subscripts will be dropped when A and B are understood). We can also
define two functions aig and fun as the morphism parts of the functors F and H respectively. When we use
comonads to represent intensional semantic behavior, fun takes an extensional function and give a default
intensional algorithm, and aig takes an algorithm and returns its extensional behavior (for further details see
[71).

All of the comonads given in the paper, if we assume one very general extra condition, are computational,
with -7 defined as follows:

Product comonad (X, rl, 6): Assume that there exists at least one morphism from 1 to X. Then for all
objects A, and for all morphisms x : 1 - X, -/x = (idA,XO!A). For Cont, given x E X and for all
objects A, -y' = Aa. (a, x).

Exponentiation comonad (V, val. pre): For all objects A, let 7A = curry(7r1 ). For Cont, -,A(a) = Av.a.

Strict path comonad (Vs, sval, spre): For all objects A, 7A = Aa.a', essentially the same definition as the
one for exponentiation.

8.4. Relating C(G, 7") to C(7)

Theorem 12 Let (G, c, 6, y) be a computational comonad on C, (T, 77, ,) be a monad on a category C, and
o, be a distributive law of T over G. Iffor every object A, oA o 77-A = T7A (figure 22) then the lifted comonad
(G, @, 6, ') is also computational, where for each object A, YA = ?7GA 0 IM

Proof. By straightforward diagram chasing. Figure 23 contains the diagram proving naturality of -. The
T7 -(ý T

upper path represents the expansion of iB off, the lower path represents the expansion of ;f 0 "A. -

From the results of the previous theorem we can construct a lifted pair of functors (F. H-), and a family

of relations ý-AB relating the Kleisli category AC(T) to the doubly-lifted category AK(G, 7), as follows:

"* For all objects A, FA = HA = A

*For allf : A -, TB, Ff =foA =f o CA
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TA

-7 TA \T7A

GTA , TGA

Figure 22: Condition needed to lift computational comonad

GA f TB

7 GA 'YTB

S~TnG
G2A • GTB O TGB T GB GB

""IG2A 77G1n• 77TGB AGB

TG2A TGf TGTB T •8 T"GB -1G1 TGB

T T
Figure 23: Proof that iB Tf = Gf o
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G" For all a: GA - TB, ha =a o fA =aoo1A.

"* For all a: GA - TB andf : A - TB, a,ý-f wheneverf = H/a = a o YA.

There are also functions aig and fun as before, with alg(f) =f o (A, and fufl(a) = a o 1,A. Note that all
of these relations are the same as for the standard computational comonad, but for different categories.

All the comonad/monad combinations from table I that have distributive laws also satisfy the condition
of figure 22 except for the power set monad over the exponentiation comonad. It can easily be seen why it
fails. If we let V = {1,2} (e = 2 and m = max) and A = {a, b}, then

JA o ypA({a,b})= oA([l I- {a,b},2 1.- {a.b}])
I {[ I a,.2,-- a], [ I . a, 2 ý- b], [ I b, 2 - bl}I

but P-tA({a, b}) = {TIA(a), 7A(b)} = I [I - a, 2 - a], [I .- b, 2 - O] }.

Note, however that the lax distributive laws ýt for the Hoare and Smyth power domains do satisfy the

requirement of figure 22. Essentially the closure properties of the two power domains fill in the elements
missing when using the plain power set.

8.5. Relating /(7) and C(G')

If we look at the lifted comonad G', which did not require a distributive law, the obvious candidate for
7 : A -- TGTA is -y = i7GTA o -YTA o r7A. This -t', however, is not natural. Nevertheless we can relate both
K(7) and C(G') to C (actually, the subcategory of C generated by the range of 7). To do this we define a pair
of functors (UT, HG), with UT : K(7) - C and HT : IC(G') - C, defined by

"* For all objects A, UTA = HGA = TA

"* For allf : A -- TB, UTf =JLB o Tf

"* For all a: GTA - TB, Hla = a o yTA.

Note that Ur is the monad equivalent of the functor U mentioned at the beginning of this section, and
HT is the functor H restricted to objects in the range of T. Thus if we let FT to be the functor F restricted to
objects in the range of T, we then have that HTFT = I and thus HTFTUT = UT.

From these functors we can define a family of relations -G as follows: given a morphismf : A - TB

in the Kleisli category and a morphism a : GTA - TB in the lifted Kleisli category, a -A.B f if and only if
HTa = UTf, i.e. if a o -yTA = pB o Tf

Forf : A -- TB and a: GTA -- TB, the relation -G.B has the following properties:

"* FTUTf =B o Tf o ETA f . Thus we can define a function alg G(f) = o Tf o ETA giving us a
default intensional morphism for each extensional one.

"* It is possible that there is no morphism f such that a -G f. For example in the category Set, let
E = {erri, err2}, let B and X be sets, and let x E X. Then using the computational product comonad
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(X, r,,X), where for b E B, 7y(b) = (bx), and the coproduct monad (E, t1 ,iL), we define the
function a: (B + E) x X - B + E to be

a((b. x)) -" I t(b) b il(b)

I 2 (err2 ) b= L2(e)

Thenforallf : B - TB, #BoEf (tz(err 1)) = (idn, t,)o(f +idE)(t2(erri)) = t1(errI), buta(-j`(,,(errI))) =

12(err 2), so a ýGf.

We can find similar examples for most other non-trivial monads. In fact if for every a there exists an
f such that a -,G f, then r7TA = Ti7A (to see this let a = qTA o eTA) implying that T2A is isomorphic to
TA.

" Ifa -a Gf, thenf = a o -yTA o 07A. Thus we can define a function fun (a) = a o fTA o TA, giving us the
extensional part of a. Although this function is defined for all a, from the item above we know that it
may not be true that a -G funfG(a).

"* funG(algG(f)) =f (although it may not be true that algG(funG(a)) = a).
For allf• B - TCanda' : GTB - TC, ifa -Gf anda' ,Gfthena' T a aG f, of. This

Forllf / of g~ )GIf_ u a n 'G f.n Thi
means that algG~ft of) = aig (f ) 0 algG(f). and when a ,, [unG(a) and a' ,, fuflG(a'), then

f , , G ,G G GGG
fun (a' o a) = funf(ad) o fun(a) (and also a' a- a fun (a 0 a)).

8.6. Relating/C(T) and (IQ')

These two categories are not related via a Kleisli construction (actually C(T') is (isomorphic to) a full
subcategory of /C(T)); there is thus no point in looking for a version of -f. We can, however, form a family
of relations as we did in the previous section. For any pair of morphismsf : A - TB and a : GA - TGB,
leta A,- B f if and only ifa o 1A = Ty/8 of. Note that, unlike the last section, the constructions T-1B of and
a o yA are not parts of functors, since the resulting morphisms are of the form A - TGA and do not compose
properly to form a category.

The family of relations -,T has similar properties to _,G: for alIf A - TB and a : GA - TGB

"* TYB of o CA Jf, so again we can define a function algT(f) = TY of o (A on morphisms in K(T).

"* Again there are morphisms a such that there is nof with a -rfj. For example, in Set, let (X. r 1, b.
be the product comonad from from the set { 1, 2} with -yA = Aa.(a, I) for any set A, and let B be any
set. Let the monad te the power set monad P. Let a = A~b,n).{(b.2)}. Then for all morphisms
f : B -- PB, P-y of(b) = {(b', 1) 1 b' Ef(b)}, but a o -yB(b) = a((b, 1)) = {(b.2)}. In order to
guarantee that there is always anf such that a -Gf, we must have that 'IA 0 •A = idGA, which implies
that GA is isomorphic to A.

" If a -,,f thenf = B o a 0 7A. Thus again we can define a function funrT(a) = TB o a o 7,.A and
again funr(algT(f)) =f.

For all f' : B - TC and a' : GB -- TGC, if a -,T f and a' I f, thena'oa , f of

(when the composition is well defined). Thus we know that algr(f o f) = algTf ) ' algr(f ) and

funT(aI 0 a) = funT(ad) o fun (a) whenever a' and a have the property that a' ". fln(a') and
a ,,r funrT(a).
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8.7. Relating the intensional and extensional semantics

Theorem 13 For all computational comonads (G. c, 6. -j) and all monads ( T. q1. p) that satisfjy the mono-
requirement, whenever [PIG,T - pj for all constants p, it follows that

A'T = A,, and

M[x: r l- e : •r'GT A4[x "7- e 7r', i.e.

4j[x " :F- e :r'T] ,MIx rF e 1r 1G, To A

Proof. That AGJT = A, is obvious, since they have the same definition. The rest is shown by straightforward
induction over the structure of e. 0

For the A4[]7, function, we cannot simply state that %t[x : 7- - e :r 7,' -T Atlx : r H- e : r'] since
the types do not match (A7 ý A,). All we need to do, however, is add enough -i's after the evaluation of
,%4[x• r H- e : r'J to match up the types and then we do get an equivalence. This is made precise below:

Definition 6 For all types r, let F[71 : A, - A7 be defined inductively by Fapi = idA, and FIT7"j =
TT•Aý ' TF[7"].

Theorem 14 For all computational comonads (G. E, 6. -1) and any monad (T. q. /1) that satisfies the mono-
requirement, F[Th'] o A4 Ix : 7 H" e : 7"' = A4lx •": r - e" r'lh. o 1Ar' o F0r[7 0 whenever for all constants p.
F[Tran(p)m o IwI = IPi• T'Y ,, o Fldom(p)].

Proof. By straightforward induction on e. 0

For the third semantics, k],G', the relationship M4ix : 7- e : 7'BG, -. j Mix : 7H - e : 7'1 does not
hold when e = [e'], except where qTA = TilA. Since ItA %0 qTA =It. o TqA, with certain restrictions we can
relate the two semantics:

Definition 7 Forall n > 0, let p" : 7"+A - TA be defined inductively as follows: p0 = idta and torn > 0,
n+1 = n

Definition 8 A morphismf : T"'•'A - 7"+'Bissimple if thereexists anf' : A - TB, called asimplification
off, such that An of = pB o Tf' o .

Note that for a : GTA - TB, if there exists anf such thatf -L-, a, then a o 3T4 is simple andf is
a simplification, i.e. an, algorithm that has been built from a morphismf : A - TB in a natural way
will be simple. Also note that for all morphismsf : A - TB, n > 0 and m > O,f is a simplification of

Pt o 0"f o PAn*

An example (in Set) of a morphism that is not simple is the set complement functionf : -PA - PA,
f X = A - X. To see this, suppose that there existed a simplificationf' f A P PA off. Then f = UA a PfN,
i.e. for any set X C A,

fX=U{f'(x) xI X} = {a E A I a d X}.

39



This implies that for all X C A, and all x E X,f '(x) q/X. By setting X = A we can easily see that no suchf'
can exist.

Theorem 15 Let (G, e, 6, -y) be a computational comonad and (T, 1, u) be a monad over a category C that
satisfies the mono-requirement. Suppose that for every constant p, both gA•,P) o TjpI and IPIG' 0 'ITAj,m.p,

are simple, with equal simplifications. Then for all x : r I- e : 7",

+a TAMix: -He:T" r' = oA4Mx: T7e: T•IG, a p-wAG,

where r = 71fp and r' = T'1p' for base types p and p'

Proof. It can be shown by straightforward structural induction that for all x : 7p H- e : 7P',A, o rAp ix :
7np F- e : 7p'] and Mix : 7l"p " e : 7Tp'],G, o ,a are both simple and that A4ix : p H- F : pl' is a
simplification for both, where F is formed from e by removing all /'s and []'s and converting any constants
p to new constants /, whose meaning is a simplification Of/ZAp, o 71[p and [IPG' o YTA,,.,,, (by assumption
they have equal simplifications). The theorem then follows directly. 0

From the proof it is not difficult to see that the two semantics were related by effectively removing all
explicit references in the language to the u and the [I construct. For more monads, however, there is no
need to use the (I construct to get a meaningful language. For example typical language constructs that
use the power set and power domain monads, such as parallel composition and nondeterministic choice,
require only simple morphisms to be meaningful, even when adding intensional behavior. Thus we still have
a useful relationship between the intensional and extensional semantics as we had for the other semantic
interpretations, stated in theorems 13 and 14.

9. Conclusions and Future Work

The combination of a comonad and a monad using a distributive law provides an elegant method for obtaining
an intensional semantics from a monadic extensional semantics. It relates as well to the extensional monadic
semantics as the standaid intensional semantics does to the plain extensional semantics. Unfortunately.
there are monads and comonads currently of interest in computer science that do not have distributive laws.
Thus we discussed alternative ways to combine comonads and monads without a distributive law and have
explored the more complex relationship between extensional and intensional interpretations obtained this
way.

There are still other monads and comonads of interest to computer science that were not explored in this
paper, such as the monad representing cont' uations. It may be that later on some combinations will be
found that will be interesting enough to explore further. It should also be interesting to explore the uses and
limitations of the lax distributive law of the Hoare and Smyth power domain monads over the exponentiation
comonads. Also the language given in this paper was extremely simple and not particularily useful in itself;
it mostly exists so w- -,n study monads without worrying about products; most of the Kleisli categories
built over monads 'o i- nave products. There are many other more complex languages that use monads
and are worth studine.
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