
AD-A266 422

Proceedings of the M 93Booo00-2

Association for Computing Machinery June 1993

Special Interest Group for Ada
Artificial Intelligence Working Group
1992 Summer Workshop

Janet Faye Johns

DTJC_S EL.ECTE C "M
JUN 3 01993 .A U

MITRE
1kdford, Massachusett 93-14820

7 
ltlP el



June 1993

Proceedings of the Association for Computing Machinery
Special Interest Group for Ada Artificial Intelligence
Working Group 1992 Summer Workshop

Janet Faye Johns

The MITRE Corporation
202 Burlington Road M 93B0000072
Bedford, MA 01730-1420

same as above same as above

Approved for public release; distribution unlimited.

On 24-27 June 1992, the Association for Computing Machinery (ACM) Special
Interest Group for Ada (SIGAda) Artificial Intelligence Working Group (AlWG)
held a workshop to discuss Ada real-time and Artificial Intelligence (Al) issues.
Workshop discussions covered blackboard architectures, experiences and lessons
learned, real-time development approaches and issues, and Ada 9X issues for Al
systems. These proceedings included papers by workshop participants describing
their large-scale AI with Ada systems. A summary of the related workshop
experiences and lessons learned discussions in the areas of requirements analysis,
design methodologies, development techniques, test and validation, and
maintainability are included.

Ada systems, Artificial Intelligence

Unclas;ified Unclassified Unclassified Unlimited



4 -



Proceedings of the M 93B•••,0,2

Association for Computing Machinery June 1993

Special Interest Group for Ada
Artificial Intelligence Working Group
1992 Summer Workshop

Janet Faye Johns

Ac- i cr

N 7

Dilt S ."

Contract Sponsor %/A
Contract No. N/A
Project No. G30D [- t
Dept. G033

Approved for public release.

distribution unlimited.

MITRE
Bedford, Massachusetts



ABSTRACT

On 24-27 June 1992, the Association for Computing Machinery (ACM) Special
Interest Group for Ada (SIGAda) Artificial Intelligence Working Group (AIWG) held a
workshop to discuss Ada real-time and Artificial Intelligence (AI) issues. Workshop
discussions covered blackboard architectures, experiences and lessons learned, real-time
development approaches and issues, and Ada 9X issues for Al systems. These proceedings
include papers by workshop participants describing their large-scale Al with Ada systems. A
summary of the related workshop experiences and lessons learned discussions in the areas of
requirements analysis, design methodologies, development techniques, test and validation,
and maintainability are included.

111ii



iv



EXECUTIVE SUMMARY

Artificial Intelligence (Al) with Ada is a reality! Based on the information presented
at the 1992 Summer Association for Computing Machinery (ACM) Special Interest Group
for Ada (SIGAda) Artificial Intelligence Working Group (AIWG) workshop, Ada is a viable
language for AI applications. This workshop provided a valuable opportunity to accumulate
more empirical evidence proving that Ada is being used successfully to implement large-
scale AI systems. Congratulations to the participants for their Al with Ada successes!

Workshop Highlights

The SIGAda AIWG held a very busy and informative workshop in conjunction with
the Summer '92 SIGAda meeting in Seattle, Washington. The workshop focus was Ada real-
time and Artificial Intelligence (AI) issues. Software researchers and practitioners from the
real-time and AI communities were brought together to exchange ideas and lessons learned.
Most of our workshop time was devoted to presentations by those who have implemented
large real-time AI with Ada systems. A summary of these Al with Ada applications is shown
in figure 1 with the size in Thousands of Source Lines of Code (KSLOC) and the number of
Knowledge Based Systems (KBS) rules.

Al with Ada Number of Rules in the

Applications Knowledge Based Systems

TC&E I ARTIE SM
ARTIE SMI, ARTIE SP
ARTIE SP

ARTIE MM ARTIE MM
DFTDS DFTDS. -

050' 100 150 200 250 0 200 400 600 800 1000 1200
KSLOC KBS Rules

Figure 1: Summary of Al with Ada Applications

The acronyms used in the figure are Data Fusion Technology Demonstrator System
(DFTDS), Ada Real-Time Inference Engine (ARTIE), tactical cockpit mission manager
(ARTIE MM), search area planner (ARTIE SP), automated sensor manager (ARTIE SM),

v



and Training Control and Evaluation (TC&E). These systems are a sampling of larger
applications than most of those documented in the 1991 AIWG applications survey'.

Workshop participants shared their experiences implementing large-scale real-time
Knowledge-Based Systems (KBSs) in Ada. Participants from the Defense Research Agency
(DRA) in the United Kingdom (UK) shared their experiences developing a real-time ship
borne Command and Control system and their research activities in the area of validation and
verification of safety-critical KBSs. A pair of related articles describing their activities, The
Data Fusion Technology Demonstrator System (DFTDS) Project by John Miles and
Validation and Verification of Safety Critical Knowledge-Based Systems by Jonathan Haugh
are included in these proceedings. DFTDS is undergoing sea trials at the present time.

Boeing provided an update on the latest developments with their Ada Real-Time
Inference Engine (ARTIE) and described some of their complex real-time reasoning based
avionics applications including a tactical cockpit mission manager, a search area planner, and
an automated sensor manager. George (Rick) Wilber and Robert Ensey provided a copy of
their briefing slides which are enclosed in these proceedings as the article Embedded Real-
Time Reasoning Concepts and Applications.

BBN has developed an Al with Ada application called Training Control & Evaluation
(TC&E). Their experience provides some insight into rapid prototyping with Ada followed
by the transition of a legacy prototype to Full Scale Engineering Development (FSED).
Although Dan Massey was unable to attend the workshop, he provided an article which is
titled Training Control & Evaluation fI'C&E) for these proceedings.

Minutes of the workshop have been written in the form of a workshop discussion
summary which is included with the Message from the Panel Chair for the Applications
Experiences and Lessons Learned Panel. A workshop participant list follows this Executive
Summary. Recommendations for specific AIWG actions are made at the end of this
Executive Summary.

Issues

The panel discussed issues covering the complete software life cycle including the
challenges of software engineering Al applications: the difficulties with Al requirements
analysis; the legacy of an Al requirements analysis; testing, verification, and validation of Al
applications; and maintenance for Al applications. Many of the issues and problems
discussed during the workshop are applicable to Al applications developed with any
language including the Ada programming language.

'J. Johns, June 1992, 1991 Annual Report for the ACM Special Interest Group for Ada
Artificial Intelligence Working Group, MITRE Document M92B0000056 and the
January/February issue of Ada Letters.

vi



Software Engineering

Al applications typically begin with few documented requirements and are defined as
well as developed with a series of evolutionary prototypes. This is the current staxe-of-the-art
for Al applications design and development with Ada or any other programming language.
Software engineering and Ada design methodologies typically begin with a set of well-
defined, testable, verifiable requirements. Therefore, due to the lack of requirements,
software engineering is a challenge for AI with Ada developers. Without a set of well-
defined requirements, how do you "engineer" Al applications? This question is the subject of
on-going debates and research. However, while there are no textbook solutions today, the
information in these proceedings describes how Al with Ada practitioners are successfully
"engineering" Al applications today.

Al Requirements Analysis

Requirements for Al applications are defined through iteration; that is, learning by
doing. Al requirements are difficult, if not impossible, to specify without prototypes. Most
of the effort for Al projects is spent defining requirements and prototyping. In the case of a
70,000 source line of code Ada application, 2/3 of the calendar time and labor were expended
developing prototypes to define the requirements for the Al application.

AI requirements analysis requires a flexible process because defining Al requirements
is an evolutionary process. This type of process is not a fixed price problem, and the typical
use of DOD-STD-2167A may be too rigid for Al applications even with the software
engineering discipline provided by the Ada programming language. We discussed many Al
specific issues associated with the software engineering process and DOD-STD-2167A.
These discussions led us to question whether Al requirements and design are the same as
understood in the DOD-STD-2167A and other software engineering environments. Rased on
these discussions, the AIWG decided to be more active in expressing Al specific
requirements and concerns to the standards bodies that are developing standards which
impact the development of Al applications with the Ada programming language.

The Legacy of Al Requirements Analysis

Prototypes and human understanding of the problem domain are the standard legacy
of an Al requirements analysis effort. What happens to this legacy? We would like to use
our human understanding to specify the desired ,ystem in clear unambiguous reouirements,
but this is rarely possible. Prototypes typically reflect our understanding of how to
implement a solution, and in many cases are required to prove that it is possible to "engineer"
the full scale system. Can you successfully "re-engineer" a prototype into a supportable and
maintainable system? Based on panel experiences described in these proceedings. Ada
prototypes are being re-engineered into supportable and maintainable systems.

vii



Testing, Verification, and Validation

The difficulties inherent in Al requirements analysis inevitably lead to problems with
the testing, verification, and validation (V&V) of Al applications. Testing and validation
activities ensure that the developed software system satisfies a well-defined set of
requirements which unfortunately do not normally exist for Al applications. Verification
activities ensure that the developed system is supportable and maintainable which raises
issues associated with the feasibility of verifying non-deterministic systems that can learn and
adapt over time. Testing and V&V are critical areas of current research because the public
and the software engineering community have begun to focu's attention on building trusted
systems that are correct, dependable, robust, safety critical, efficient, and secure.

The panel discussions regarding testing and V&V led to two interesting thoughts.
First, Al applications seek to emulate human intelligence and behavior. How do we test and
validate humans? In general, the proof of human intelligence and their ability to learn is
through on-the-job performance. Therefore, in essence, humans do not undergo the same
scrutiny of test and V&V that we are trying to impose on Al applications. Second, instead of
trying to perform an unnatural test and V&V scrutiny of Al applications, perhaps it would be
more meaningful to develop techniques and tools that determine if an At application is fit-
for-purpose; that is, does it match the problem domain, is it operable in the proposed
environments, and can it be learned with relative ease.

Maintenance

Maintenance is an area of critical concern as large-scale Al applications are fielded
and must be supported for a long life cycle. Knowledged-base maintenance is also a critical
concern during the iterative development of large knowledge-based systems. For an expert
system, maintenance traditionally involves changes to the rule base as well as the facts which
awe normally considered data. The discussions in this area included questions such as "What
is knowledge? Are rules considered data or software? Should facts in a knowledge-based
system be treated as data or software?

During the panel discussions, several implementation techniques currently being used
for expert systems were described as:

1. Implementing the rules in Ada for runtime performance.

2. Use two modes for the rule base: an interpretive mode for rule execution
during development and a runtime mode that involves translating the rules to
Ada for runtime performance.

3. A runtime mixture of interpreted rules and rules implemented in Ada.

One of the developers who is using the first approach of implementing the rules in
Ada lamented about the tremendous overhead -- approximately I week -- to rebuild his real-
time command and control system for any changes to the 510 rules in the rule base. The

viii



selected implementation, techniques for an expert systems rule base influence both system
maintainability ard -rformance. Based on their development and maintenance experiences,
the panel identit' A a critical need for a support environment that includes a real-time
browser for runtime "peeks" into the system and knowledge-base maintenance tools.

Rx.commendations

Software engineering is a challenge for the Al community due to the evolutionary
nature of Al applications. Software engineering is one of the strengths and advantages
offered by a properly managed Ada environment. We, the Al with Ada community, should
develop processes and tools that support the "engineering" of AI appficatio-,, with Ad:,.
The AIWG should add a section to the AIWG's annual report to describe software
engineering processes for Al applications and assess the progress that has been made in tile
use of software engineering principles to develop Al applications. The AJWG should
develop a database cataloging software engineering processes, tools, and applications with
periodic publication of this information in Ada Letters.

In order to manage and engineer Al with Ada projects, the AIWG should establish a
set of software metrics that are compatible with the evolutionary nature of Al applications.
Further, the AIWG should conduct annual surveys to determine the current values for the
software metrics so that this information can be used by the Ada community to manage and
engineer Al applications. The software metrics should be published in the AIWG's annual
report and Ada Letters.

The AIWG should become actively involved with standards bodies that are
developing standards and other guidance that impact the development of Al applications with
Ada. Of course, the first step in this process is to identify the Al specific requirements that
need to be communicated to the standards bodies. The issues and problems discussed at this
workshop should be matured into concrete requirements and recommendations for formal
submittal to the appropriate standards bodies.

Many of the issues and problems faced by the Al with Ada community are the same
problems faced by all Al researchers and developers. The AIWG should work closely with
the Al community to concentrate our combined efforts on solving our common problems
rather than focusing on the perceived differences between the Al and the Ada communities.

ix



ACKNOWLEDGMENTS

I would like to thank all of the workshop attendees for their participation and
contributions to the discussions and presentations that led to these proceedings. Jorge L.
Diaz-Herrera gave an excellent presentation covering the current state-of-the-art in
blackboard architectures. James Baldo coordinated the participation of our colleagues from
the United Kingdom and led an interesting discussion about the challenging aspects of using
Ada to implement real time systems. Rich Hilliard provided the AIWG workshop attendees
an update on the activities of the Ada Run-Time Environment Working Group (ARTEWG).
Henry Baker led the thought provoking discussions about Ada9X issues tor the AIWG.

The workshop attendees extend a hearty "thank you" to Boeing for hosting a tour of
their Boeing 757 testbed aircraft. While aboard the aircraft, we saw "Al with Ada in action"
with demonstrations of Boeing's Ada Real Time Inference Engine (ARTIE) and the complex
reasoning based avionics systems developed with ARTIE.

The MITRE Corporation has published these proceedings as part of their continued
support for my activities as Vice-Chair of the ACM SIGAda AIWG. I want to thank Susan
Maciorowski for her professional encouragement of my AIWG activities. Many thanks and
words of appreciation go to my secretary, Kimberly Cole Taylor, who has, worked very hard
to put together this and other AIWG reports.

X



AIWG '92 Workshop Participants

Henry Baker Rich Hilliard
Nimble Computer Intermetrics
16231 Meadow Ridge Way Cambridge, MA 08138
Encino, CA 91436 617-661-1840
818-501-4956 (phone) rh@inmet.coni
818-986-1360 (FAX)

Janet Johns
James Baldo Jr. MITRE Mailstop K203
Institute for Defense Analysis 202 Burlington Road
1801 N. Beauregard St Bedford, MA 01730
Alexandria, VA 22311-1772 617-271-8206 (phone)
703-845-6624 (phone) 617-271-2753 (FAX)
703-845-6848 (FAX) jfjohns@rnitre.org
baldo@ida.org

Mark Johnson
Mark R. Bowyer SMC/CNWS
DRA Famborough Q153 Los Angeles AFB, CA 90(Y09-296()
Hants GU14 6TD, UK 310-363-8770 (phone)
252-24461 x2503 (phone) 310-363-8725 (FAX)
252-377247 (FAX)
r_bowyer@uk.mod.hermes Michael Looney

DRA Portsdown
Jorge L. Diaz-Herrera Portsmouth Hants P06 4AA
SEI CMU (MSE project) Hampshire, UK
4500 Fifth Ave 44-0705-332330 (phone)
Pittsburgh, PA 15213-3890 44-0705-333543 (FAX)
412-268-7636 (voice) MJLARE-PN.MOD.UK@ Relay.MOD-
412-268-5758 (FAX) UK
jldh@sei.cmu.edu

John Miles
Rob Ensey DRA - Maritime Division
Boeing Computer Services ARE Portsdown
Box 24346, Mailstop 9H-84 Portsmouth Hampshire
Seattle, WA 98124 P064AA England
206-394-3055 (phone) 0705-333839
206-394-3064 (FAX)
rob@patty.amas.ds.boeing.com Howard E. Neely IIl

Hughes Research Laboratories
Jonathan Haugh 3011 Malibu Canvon Rd
DRA Portsdown Mailstop MA/254/RL69
Portsmouth Hants P06 4AA Malibu, CA 90265
Hampshire, UK 310-317-5606 (phone)
0705-333839 310-317-5484 (FAX)
0705-333543 (FAX) NEELY@MAXWELL.HRL.HAC.COM

'(i



John Tunnicliffe
DRA Portsdown
Portsuouth Hants P06 4AA
Hampshire, UK
0705-332002 (phone)
0705-333543 (FAX)

George (Rick) Wilbur
Boeing Computer Services
Box 24346, Mailstop 9H-84
Seattle, WA 98124
206-394-3055 (phone)
206-394-3064 (FAX)

Mik Yen
Boeing Defense & Space Group
Box 3707, MS4C-63
Seattle, WA 98124-2207
206-662-0213 (phone)
206-662-0115 (FAX)

xii



T XkBLE OF CONTENTS

SECTION PAGE

Appendix A Welcome Message by Jorge L. Diaz-Herrera A-I

Appendix B The Data Fusion Technology Demonstrator System (DF"DS) Project B-1

Appendix C Validation and Verification of Safety Critical Knowledge-Based C-1
Systems

Appendix D Embedded Real-Time Reasoning Concepts and Applications) D- 1

Appendix E Training Control & Evaluation (TC&E) E-1

Appendix F Ada 9X Issues for Al Systems F- I

Appendix G Message from the Applications Experiences and Lessons Learned G- 1
Panel Chair

xiii



APPENDIX A

Welcome Message by Jorge L. Diaz-Herrera

Editor's Notes

Jorge L. Diaz-Herrera is the Chair of the ACM SIGAda AIWG. Jorge opened the
AIWG Workshop with a welcome message describing the background and focus of both the
AIWG and the workshop. In his welcome message, Jorge addressed several key issues with
Ada, Al, real-time systems, and embedded systems.

A-I



10

00

0

~~~t O 2*C c.o 0

ck co

4, 
E

EUn -0 Z- b-o Q.aCx

(Dc

to in c
C n CE on~

cE E Q. *

in * . tN20%
d Cjt Oh E

R 0 V ,

E0 O 0ca

0~ -OO

0*
C r

0 0

00

0) CD

1.2 x Eo
H 0

'4~~C 0) EŽ0
0E C:Iý CL

Ei 0n

C

V SL

I L0



CDC

V0

C c

C a
C"" 

00)

0 -o. O

'->~ cE 0~~

C0 ca 0 = r

0 C 0 c o
76 0co Eo D = 0..

.2 a 0, -m c

r. E22 B 0 v
= 0 b

ca 00 M

c' a
E~ 01

0 (A E Z

> A 0 7rt tCo
-C C b-

CC

cK E1 o' a~-

4') E E 0 C.

CL C cc8 730 auto h.C oaI~ 4 CL.E%
cx Ax

CL C a'a 0 0 c



CL 0e 7a

0 C:0E E
0) 

0 q E
"0 0 tU - _ 0 C :C

6t. _ : 5r
00 Q.. 0P M > 00 _

m 0 w < = ". - t R *r

V 0 E~' E v0c o c

qca 0

r- >=Jo M E E 04.0"ama.
CL 5 o E 0c~ 0 0 00(

44 L C 0 d
* * o

E w c 5p.0 C X %) <5 E LC

E cc _ .. 4 0M '- -

in 41 N C W; -b .5 E OCR,
ýW 06. Q w0 0 no 2 z

to 2 0 E -f b.1 E=

cJ - 02 0 . ZC0&2 0 0 - L '0 w 0
0 54 inn =

. . .0&Z *0 L:~~ 0 E~ 'c *4LZOmaM~ 0 UE a-qtu-o 0- -L=6Zw0mcac

C_ a - 0 D m -
9020 ý on * Ej ~4 C..& .3

* x 5 0..MQ-

* ~~ ~ 0 0 * 0
2 = 1=MD U)00 C0 00M-3

0022,O
CL4 4



60 L

0 0-

c 0

V- CU
C .. 'a f-

Ca~ 0U

0cc 06 g.

A~ CL

03 01
060.2

CLC



APPENDIX B

The Data Fusion Technology Demonstrator System (DFTDS) Project

Editor's Notes

This article is a treasure trove of information about the advantages of using Ada to
implement large-scale real-time Knowledge-Based Systems (KBSs). The United Kingdom's
Defence Research Agency (DRA) has implemented a large-scale real-time KBS for ship
borne Command and Control. DFTDS has been implemented with 220 KSLOC of which 50
KSLOC implements KBSs for time-critical functions such as data fusion and situation
assessment. DFTDS is a true KBS in Ada application as the rules are coded directly in Ada
to achieve the run-time efficiency required by Command and Control applications which
must process data from radar, sonar, navigation, electronic support measures (ESM), and
other sensors. At the present time, DFTDS is installed on the Royal Naval Frigate HMS
Marlborough and is undergoing sea trials.

This article discusses the lessons learned using Ada to implement DFTDS. Dr. Miles
finds "Ada as a language has been found to be quite simple to use for a large real-time KBS
and in some respects, notably run-time efficiency, abstraction, exception handling, strict
typing, has distinct advantages over Al toolkits and expert system shells for engineered real-
time applications." Prototyping to assess the potential of implementing time-critical
functions such as those required for data fusion, situation assessment, planning, and reaction
are discussed in this article. Dr. Miles also describes the DFTDS Ada shell and the use of a
rule specification template with a semi-formal rule specification language to ensure a
consistent style was used to specify the hypotheses and rules.

AT Topics: Blackboard architecture, expert system, data fusion, situation analysis, planning

Domain Area: Command and control

Language Interfaces: Unknown

Project Status: Undergoing sea trials and evaluation

Size of Ada Source Code: 220 KSLOC

Number of Rules in Knowledge-Based System: 510

Design/Development Methodology: Iterative prototyping

Hardware Platforms: MicroVAX 3800

B-1



THE DATA FUSION TECHNOLOGY DEMONSTRATOR SYSTEM (DFTDS) PROJECT.

(presented at the SIGAda meeting Ada/Al workshop, Seattle, Washington, June 1992)

John A H Miles

DRA Portsdown, Portsmouth, Hampshire, UK.

A large-scale real-time Knowledge-Based System (KBS) has been implemented entirely in
Ada. The application is Data Fusion for shipborne Command and Control and the KBS is
interfaced to several sensor systems, a relational database and provides five user workstations.

Ada was chosen for its real-time performance and its system engineering features. An Ada
Shell using the Blackboard Model has been developed and a methodology for knowledge
specification and implementation in Ada has evolved; these are described in the paper.

The real-time performance of the KBS has met its targets and few problems have been
encountered with the Ada development system chosen. Experience with Ada, lessons learned
and suggestions for Ada improvements for KBS are included.

This paper describes a dcmonstrator project which resulted from a research programme to look
at the application of Al, particularly KBS techniques, to command and control. Several
laboratory prototypes were developed for functions such as Data Fusion, Situation
Assessment, Planning and Reactive Resource Allocation. The success of these prototypes and
particularly the potential of those addressing time-critical functions has led to a large-scale Data
Fusion Technology Demonstrator System (DFTDS) being constructed and fitted to a warship
for a two-year period of sea trials (reference [1]). The objectives of this programme are:

"• to explore the use of KBS and other new technologies for providing automated support
to Data Fusion and Situation Assessment functions

"* to reduce the risk of procuring systems which use these technologies by examining all
stages of the development, setting-to-work, performance and in-service support of a
large-scale prototype

Both the conventional software and knowledge-based modules of the DFTDS have been
successfully developed in Ada. All the modules including KBS operate in real-time, typically
processing 100 messages per second. These features make the DFTDS a valuable, in some
respects probably unique, source of data from a practical Ada/KBS application.

2. DFTDS DESCRIPTION

Figure 1 shows a block diagram of the main DFTDS modules. The Front-End Processor
(FEP) receives real-time input messages from all the ship's sensor systems, from data
communication links and from operators via the user interface module. Its main purpose is to
present the Data Fusion module with messages in a suitable format for knowledge-based
processing. The module provides filtering, re-formatting and recording of messages. It can
also operate in a replay mode using data previously recorded or simulated scenario data.



Data Fusion Situation User Interface
Radar Module Assessment Module(DFM) Prototype

(SAP) (UIM)
EFF--E

ESM Front-End
Processor

Datalink (FEP) L
Database

Sonar MdleModule
Nav.Database W f(DB)

Na.Terminal

Figure I DFTDS Block Diagram of Modules

The Data Fusion Module (DFM) is the first and currently largest KBS modu1z in the DFTDS.
It is structured along the lines of a Blackboard System with rules, knowledge sources and a
blackboard data structure entirely written in Ada. The purpose of the module is to correlate
and combine data from all available sources (sensors and manual inputs) to form a fused
tactical picture. It allows operators access to and interaction with each stage in the reasoning
through the user interface module. Some of the reasoning in DEM requires access to the
geographic and encyclopaedic databases held in the Database Module. Further details of DFM
operation are given later.

The Database Module (DBM) provides geographic data (coastlines, navigation features, seabed
features, shore features, air-lanes, etc.) for display and for answering on-line queries from
DFM. Similarly, the encyclopaedic database in DBM, contains ship, aircraft, shore base,
equipment, identity data etc., and provides query facilities for both DFM and for operators via
the user interface module.

All user interaction with the DFTDS other than system control and database maintenance is
carried out through the User Interface Module (UIM). This module provides a WIMP
(Windows, Icons, Menus, Pointer) style interface on five colour graphics terminals and a form
fill style interface for some data entry on two ordinary terminals. The windows on the
graphics terminals give visibility of all stages in the data fusion process and allow the user to
configure the display in any desired manner to suit his tasks.

The Situation Assessment prototype (SAP) is a second KBS module written in Ada using a
similar framework to DFM. Its purpose is to take the detailed tactical picture produced by
DFM and by applying further stages of reasoning construct a concise situation display showing
the main groupings of objects and a prioritised threat table. All user interaction with this
module is also through the UIM so that it appears as one system to the user even though it uses
distributed KBSs. SAP will be enhanced in functionality in a second phase of the project.

All the DFTDS application modules communicate using the facilities provided by a System
Support Module (SSM). This module, part of which resides with each application module,
also provides control, timing, monitoring and fault reporting.

2



3. S17R-AND PERFORMANCE.

The overall size of the Ada source code in the DFTDS is about 220,000 DSI (Deliverable
Source Instructions). Of this about 50,000 DSI are KBSs. Other sizing metrics for
individual modules are as follows:

DFM KBS:
Input Message Types 100
Number of Rules 510
Number .1f Knowledge Sources 180

SAP KBS:
Number of Rules 90
Number of Knowledge Sources 31

DBM (Encyclopaedic Database):
Number of Tables 244
Number of Stored Procedures 112
Number of MMI Forms 68
Overall data size 15 Mbytes

DBM (Geographic Database):
Number of Tables 12
Number of Queries 23
Overall data size 350 Mbytes

UIM:
Number of windows 44
Number of window overlays 18

The main performance criteria for the DFTDS are:

Front-end maximum input message rate 180 messages/second
Maximum message rate input to DFM 100 messages/second
Maximum response delay in any module 1 second
Database queries 20 per second

4. HARDWARE AND SOFTWARE

The DFTDS runs on a network of five DEC Microvax1 3800 processors. Each main module
(i.e. FEP, DFM, DBM, UIM, SAP) is allocated to a separate processor. This ensures that
there is no contention for processing resource between modules. Ethernet with Decnet 1

software has been used for inter-processor communications. This has proved to have
considerable overheads when used for high volumes of short messages and on some routes
messages have had to be blocked into larger packets to achieve required throughput.

The DEC VMSI operating system and the DEC Adal compiler have been used throughout.
Apart from the SSM and the encyclopaedic database server each module is a single Ada
program which runs as a single VMS process. DBM is written in Ada but uses a commercial
Relational DBMS (Sybase 2) for storing the encyclopaedic data and performing queries. The
Ada part of DBM interfaces to the SQL routines using the Sybase provided Ada libraries.

1 Microvax, Decter, VMS, Dec Ada are trademarks of Digital Equipment Corpration.
2 Sybase is a trademark of Sybase inc.

3



5. CHOICE OF ADA

Previous laboratory prototypes of the data fusion function had used a specially written
blackboard framework, called MXA (reference [21), because no suitable real-time KBS
package could be found at that time (1983); MXA was based on the Pascal language. This
framework provided some elaborate set intersection mechanisms but would only cope with
simple scenarios in real-time. At the beginning of the DFTDS programme a method had to
found to achieve real-time performance with the data rates found in a real operational setting.

A survey of available tools was carried out and three styles of implementation were
benchmarked using a subset of a data fusion knowledge base with a test scenario. This
benchmarking experiment is more fully reported and discussed in references [3] & [4].
Briefly it showed that a 'pure' production system implemented in a LISP machine environment
was far too slow whereas a hybrid production system - procedural language based solution
using an Al toolkit specially designed for embedded real-time applications produced better than
real-time performance. Even though good performance was achieved with this toolkit, only a
conventional language solution using a blackboard style framework actually achieved the
required real-time performance. Figure 2 summarises the benchmark implementations and
results.

System Hardware Time in minutes to process Fraction of

30 minutes of data real-time

ART Symbolics LISP machine 600 20.0

MUSE Sun 4/260 workstation 15 0.5

Ada Shell Microvax 3500 workstation 3 0.1

Figure 2 Benchmark Implementations and Results

Ada was chosen for the conventional language implementation because it is the latest language
specifically designed for real-time applications and on the results of some very simple
benchmarks seemed to have no significant performance penalties providing a good compiler
was chosen. Various compiler/machine combinations were tested using the data fusion
benchmark and the DEC Ada compiler runnii•g on a microvax proved to be the best
combination for speed, support and reliability. These results were obtained in the first quarter
of 1988.

6. KBS IMPLEMENTATION USING ADA

In order to produce the Ada data fusion benchmark a blackboard style framework had to be
developed. This proved relatively simple for a small rule-set but it was recognised that a more
engineered version with diagnostic facilities would be required to construct a large knowledge
base and an 'Ada Shell' was produced. Initially an Ada tasking approach was taken to vanous
functions of this shell but this was found to introduce run-time overheads owing to the high
input message rates required. The final version has proved very efficient and has remained
largely unchanged over the two and a half year DFTDS development programme.

A particular attribute of the Ada KBS approach taken is that the rules are coded directly in Ada
making it a true KBS in Ada application. Apart from the excellent run-time efficiency that this
approach gives it has also been found that the abstraction capability of Ada and the flexibiluiy of
a conventional language used in conjunction with a blackboard model, allows for an easier and

4



better designed implementation than the more common production system approach. The latter
is driven by the need for exact patterns to be specified for the implicit rule firing mechanism to
work whereas the rule firing mechanism in the Ada blackboard approach, although requiring
more hand-crafting, is much simpler, flexible and efficient and results in more concise rules.

A drawback in using Ada for the DFM is that a KBS demands a large amount of global data in
the form of blackboard hypotheses, whereas Ada data handling concentrates on data abstraction
and data hiding. The Ada compilation suite is not best suited to deal with this global data and
this means that relatively minor changes to the blackboard specification result in prohibitively
long re-compilation times - !asting an entire working day in some cases.

Figure 3 shows a diagram of the components of the Ada shell and the blackboard elements that
are part of the application. In normal operation the Scheduler takes the highest priority Event
off the Event Queue and calls the appropriate Knowledge Source(s) (if any). On completion
of the Knowledge Source control returns to the Scheduler and the cycle repeats. The
Scheduler also checks for input messages and for delayed Events as part of its cycle. A Clock
task maintains time and an Input task places input events on the Event Queues.

Knowedg BroserBrowser
SourcesTerminal

Messages Qee

Blackboard

Figure 3 Ada Shell Components

For development purposes there is a Browser task which can be invoked by typing control-C
on the Browser Terminal. This action transfers control to the Browser task and stops time and
further events from being processed. The Browser has commands for displaying the contents
of the Blackboard and Event Queues, for setting breaks on time/events and for stepping single
events. It also allows events on the queues tu be explicitly fired in any order, events to be
removed and specific events to be inhibited or permitted. A DCL sub-process can be spawned
from the Browser to provide access to the host operating system for viewing files, etc. With
these simple facilities the action of each Knowledge Source can be closely monitored.

5



A blackboard system has a number of components and these are represented in Ada in the
following manner:.

The Blackboard - this is a data structure consisting of hypotheses and links. Hypotheses are
implemented as record structures and these can be easily specified in Ada- Links are provided
by set operations in a generic package. These operations allow links with a many-to-one, one-
to-many and many-to-many relationships to be represented.

Rules - these are written as if...then..endif constructs within a procedure. The use of a
procedure allows rules to be called from one or more knowledge sources. Although in
principle similar to production rules, the Ada rules tend to contain more functionality and have
more complex actions than those typically found in other KBSs. Output, in the form of
messages to other modules, is generated directly by the rules. This output includes copies of
blackboard data and explanations generated on request from the UIM.

Knowledge Sources - these are implemented as procedures which generally contain nothing but
calls to rule procedures. In some cases it has proved convenient to provide some logic within
knowledge sources for more 'intelligent' invokation of rules.

Events - there are three types of event; input events which have a type and an input message
associated with them, nfrnal events which have a type and a hypothesis reference associated
with them and, delayed t, ents which have a type, a hypothesis reference and a time associated
with them.

The Ada shell operates as follows:

An input event is generated for every input message and there is a one-to-one correspondence
between input event types and message types. Other events are generated explicitly by rules to
indicate particular changes to the blackboard or to invoke processing at a later time. In theory
there could be an event type for every type of change to every type of hypothesis but in practice
events types are only created as required to suit the knowledge source and rule structure.

There are four normal event queues of different priority and the delayed event queue. The
scheduler takes the highest priority event and using a look-up table calls the knowledge source
applicable to the type of event. There can be more than one knowledge source assigned to an
event or none at all; in practice there is usually just one since any rules that can potentially fire
for the event can be put in a single knowledge source.

The event contains either a message or a hypothesis reference to which all of the rules called by
the knowledge source have access. In other words the rules are directed at the change in the
blackboard and they then apply their exact conditions to attempt to fire. This mechanism
means that there is no guarantee that a rule called by a knowledge source will fire and
consequently some time may be wasted evaluating rule conditions that fail but the event
mechanism is so simple and efficient that it easily out-performs more rigorous approaches such
as the RETE algorithm used in productions systems.

Rules from different functions can be called from the same knowledge source if their firing
conditions are similar thus implementing the opportunistic nature of the blackboard model. It
would be possible to implement more complex scheduling but the simple system described has
been found quite adequate for the real-time data fusion application. It has sometimes proved
useful to invoke a rule conditionally depending on the result of a previous rule but this can
easily be implemented within the knowledge source.

6



8. KNOWLEDGE SPEICATION

The knowledge base is specified in terms of Hypotheses and Rules; definition of events and
knowledge sources is considered to be part of the implementation process. Rules are written
in a declarative style so that each one completely defines when and what processing will occur.
A specification template has been designed (figure 4) together with a semi-formal language to
ensure a consistent style of specification. The semi-formal language contains a range of
keywords including 'if', 'and', 'actions', and a number of verbs for various types of action.
Each rule is restricted at the top level to one or more 'anded' conditions followed by one or
more actions. Conditions and actions may invoke further operations which can be of arbitrary
complexity. These operations are specified with the rules in a pseudo-code form because they
contain important domain knowledge. In other cases the rule specification may use a function
or procedure in order to keep the specification concise but for which the details of operation are
either self-explanatory or of a house-keeping nature unrelated to the domain knowledge; in
these cases no further specification is given.

Rule No RXXXnnn <name>
(aW ' 'rnmary
(- .ale Specification
RULE RXXXnnn <name>

if <condition 1>
and <condition 2>

actions

END RULE RXXXnnn
(c) Assumptions/Limitations
(d) Definition of Criteria
(e) Supporting Operations
(f) Hypotheses
(g) Data Structures

Figure 4 Rule Specification Template

The summary (a) of each rule is an English version of the domain knowledge contained by the
rule. The rule specification (b) is a more precise definition of what the rule does and it is
required that the Ada code, although more detailed, follows the content and order of this
specification, thus retaining the KBS philosophy of keeping specification and source code
closely aligned. Part (c) is a comment heading under which any assumptions or limitations
about the scope of the rule can be noted. Part (d) provides a 'definition of criteria'. This is
used to reference more detailed specifications of any conditions used in the rule; Complex
conditions or simply constants are generally expressed in meaningful words within the rule
specification in order to keep it concise. Part (e) is intended for specifying any supporting
mathematical operations used by the rule - in practice this is rarely used because such
operations are usually not visible at the rule specification level and if they are, they are mostly
self explanatory. Parts (f) and (g) list hypotheses and other blackboard data structures
accessed by the rule. This was originally intended as a means to trace rule access and hence
interaction between rules but such analysis has stil to be performed.

Specification of the knowledge base, principally in terms of hypotheses, rules and operations,
is contained in a document called the 'Acquired Knowledge-base Specification' or 'AKS'.
This document is then used both for implementation in Ada and for validation of the
knowledge-base by domain experts - it is the definitive reference for users, implementers and
maintainers. Because the user interface to the KBS is also a very complex piece of software, a

7



separate specification has been generated to detail every window and interaction with the user
and knowledge-base.

9. DFrDS PROJECT STATUS

The main development phase of the DFTDS is complete and the system including the data
fusion KBS has been integrated and set-to-work. Current activity is concerned with working-
up the system onboard the trials ship and tuning the knowledge-base to optimise its
performance against real data from ship's sensors.

A trials and evaluation programme has been formulated and has already commenced. It
encompasses the following areas of investigation:

"• KBS Performance
"• Technology Issues
• Human Computer Interface (HCI)
"* Manning and Personnel
• Value to command

KBS Performance involves the measurement of data fusion performance under a variety of
normal and extreme operating conditions. This performance can then be compared with that of
existing more manual systems, and the value and limitations of the KBS approach can be
found.

Technology Issues include all technical aspects of development and in-service support; the use
of Ada is one such topic.

The Human Computer Interface (HCI) has novel features for this type of shipborne system
both in terms of its WIMP style and its KBS features such as explanations. Feedback from
users who will be using the system under realistic conditions will be sought and will form
valuable guidelines for future KBS procurements.

Manning and Personnel issues will be examined to determine the impact which the advanced
level of automated support enabled by KBS technology has on the level of manning, the skills
and knowledge required and the training requirements.

Value to Command addresses the impact which the quality of output from the DFTDS will have
on the higher levels of command within the ship. If the DFTDS produces a more complete,
accurate and timely tactical picture and assessment then this should result in improvements to
the decision making process and hence to the whole command and control performance.

10. LESSONS LEARNED

At this stage in the programme the main lessons learned concern the development process.
Those that relate to the use of Ada for KBS applications are as follows:

Knowledge Engineering - Ada as a language has been found to be quite simple to use for a
large real-time KBS and in some respects, notably run-time efficiency, abstraction, exception
handling, strict typing, has distinct advantages over Al toolkits and expert system shells for
engineered real-time applications. The drawbacks to Ada are that does not directly provide the
KBS styles of programming and these have to be hand-crafted before knowledge engineering
can start. It might be possible, of course, to design a number of general purpose packages to
suit a range of Ada KBS applications.

Q



DEC Vax Ada Experience - this Ada system has proved extremely reliable with very few bugs
or limitations being experienced throughout the DFTDS development. It does, however,
require substantial computing resources to support the development teams and as the software
has grown, the re-compile times have become very long (several hours). This seems to be due
to contention for access to central libraries. No doubt other Ada systems have similar
problems with large systems. It is a particular difficulty with a KBS as a considerable amount
of iteration in developing and tuning the knowledge base is inevitable and indeed part of the
development philosophy.

Performance - The run-time performance targets have been achieved though some optimisation
has been carried out; the use of a run-time analysis tool (PCA) has proved very useful for
identifying where most time is spent. Use of generics seemed to cause unexpected overheads
and in some cases these have been removed. Run-time checking and exception handling has
proven to be most useful in ensuring that the system continues running even when errors
occur-, the overheads in this checking seem surprisingly low.

Ada Shell Facilities - Although rudimentary, the facilities of the Ada shell have proved to be
extremely useful for developing the data fusion KBS. The small units of processing
(knowledge sources) and simple scheduling cycle coupled with the break, step and display
facilities of the Browser provide good visibility of the program operation, though it is intrusive
and non-real-time. In fact the facilities would be beneficial to any Ada program whether
considered a KBS or not. Of course the facilities are not as sophisticated as an AI toolkit
because the Ada language does not allow easy access to the program source code at run-time
(though it can be used in conjunction with the source level Ada debug facility). Also, the
display of blackboard data structures by the Browser has to be hand-crafted as the system is
developed. If the Ada shell was integrated with the Ada debug tool then these drawbacks
could be overcome.

Ada Language Facilities - Ada is obviously not an AI prototyping language but as a means of
engineering a large real-time KBS application it has proved quite effective. A few features
could be added to make AI programming easier, such as:

"Variables could have a 'nil' state; KBSs particularly deal with partial data sets and very
large numbers of variables. To indicate whether a variable is set in Ada a further
variable must be defined whereas in most AI languages a variable can have a 'nil' state
to indicate it is unset.

" Objects; the DFTDS has used a rule-based approach throughout because rules are
simple and reasonably predictable in processing terms which is important in a real-time
system. However, it is recognised that Object Oriented Programme (OOP) is useful
for some knowledge representation and has been used in some of our laboratory
prototypes. Explicit support for OOP would be a useful addition to Ada.

" Type Hierarchies; Ada has a rather inflexible system of types, sub-types and
discriminents. It should be possible to define a hierarchical data structure and to write
packages or procedures with any required visibility of that structure. Currently, Ada
requires code to have full downwards visibility of the structure even though it may only
need visibility of one level. An example of this is where software is required to handle
messages without needing to know their content. A similar problem arose in the
design of the blackboard hypothesis structure where there are a number of different
types of hypothesis but general purpose links are required between them. Eventually a
single type of hypothesis was defined with discriminents for the contents.

" Atoms; For symbolic processing most Al languages have 'atoms' which are general
purpose identifiers for arbitrarily complex structures. Ada has enumerated type
variables, all possible values for which must be specified at compile time, and strings.
Strings are cumbersome in a strictly typed language and are inefficient for processing



purposes. The DFTDS implements an Ada interface to a relational database; the
database holds identifiers as strings and the interface converts some of these into
enumerated types, where they match types in the rest of the system, and some it keeps
as strings. The problem is that the strings are unchecked and inefficient and the
enumerated types are inflexible so that simple changes to the database require changes
throughout the Ada code. There seems to be a need for a run-time enumerated type
which is held internally as a number but appears as a symbol at input and output.

11. FUTURE WORK

As far as the DFTDS trials and evaluation programme is concerned the use of the Ada
language, Ada environment and tools will be reported under the technology issues area.
Further studies are planned into the knowledge engineering and knowledge base maintenance
aspects of the DFTDS. These studies will formalise the methodology for using Ada for KBS
which has evolved and will investigate tools for assisting the maintenance of a large knowledge
base. Now that the DFrDS rule set contains 500 or more rules it is becoming increasingly
difficult to maintain the specification and carry out verification of changes.

12. CONCLUSIONS

The DFTDS project has proved that Ada can be used effectively for large real-time KBS
applications with very little additional support software.

A large knowledge base has been established and this is entering an evaluation phase which
will report on all aspects of performance, procurement, support, HCI, manning and value to
users.

The experience with the Ada products selected has been good and some suggestions for
improvement to Ada for KBS have been put forward.

13. ACKNOWLEDGEMENTS.

The help of Dave Shaw and Mark Jeffard in checking and commenting on this paper is
gratefully acknowledged.

This work has been carried out with the support of the Procurement Executive, Ministry of
Defence, UK.

14. REFERENCES

[1] Byrne, C D, Miles, J A H, Lakin, W L, "Towards Knowledge-Based Naval Command
Systems", pp 33-42, procs. of 3rd LEE C3 1 Conference, Bournemouth, May 1989.

[21 Tailor, A, "MXA - A Blackboard Expert System Shell", pp315-333, Blackboard
Systems, edited by Engelmore and Morgan, published by Addison-Wesley, 1988.

[3] Miles, J A H, Daniel, J W, Mulvaney, D J, "Real-Time Performance Comparison of a
Knowledge-Based Data Fusion System using MUSE, ART and Ada", Presented at the
Expert Systems Conference, Avignon, 1988.

[4] Miles, J A H, "Artificial Intelligence Applied to Data Fusion and Situation Assessment
for Command and Control", Ph.D Thesis with Supplement, University of
Southampton, 1988.



APPENDIX C

Validation and Verification of Safety Critical Knowledge-Based Systems

Editor's Notes

The United Kingdom's Defence Research Agency (DRA) has a three year program to
study the validation and verification (V&V) of safety critical Knowledge-Based Systems
(KBSs) with the use of domain dependent virtual machines. In the first year, a Data Fusion
Language (DFL) was identified and formally defined and the requirements for a virtual
machine to support the DFL were established. A virtual machine to support the DFL was
designed and the design verified in the second year. A virtual machine prototype to support
the DFL will be implemented in the third year. At the present time (year two), the virtual
machine design is being verified.

This article provides some useful insight into the potential of domain dependent
virtual machines for V&V of large-scale Ada KBSs. This approach is being tested with a
subset of the Ada KBS which is currently installed on the Royal Naval Frigate HMS
Marlborough and described in the associated article "The Data Fusion Technology
Demonstrator System (DFTDS) Project".

C-I



Validation -and Verificatio

'Sa~fety Critica'

Knowledge-Based -Systemns

.T.M.Haug



This presentation concerned an investigation of the use of domain dependent virtual machines

to aid the verification and validation processes carried out during the development process of a

Knowledge-Based Systems (KBS). This virtual machine approach to KBS development may be

summarised as: prototype KBS for solving one or more specific problems from a domain of

interest; identify, from this prototyping exercise, a domain specific language (DSL) for expressing

solutions to problems in this domain; implement a virtual machine that has this DSL as its source

language; use this virtual machine to implement prototypes and deliverable KBS. The potential

advantages of this approach include:

"* much of the development process is brought into the realm of conventional software

engineering;,

"* less distortion of domain knowledge than would arise if it was expressed in the knowledge

representation language (KRL) of a development environment or KBS shell;

" satisfying engineering constraints, e.g. required speed of execution, target hardware, etc.,

can be addressed within virtual machine design, independently of particular knowledge

representations.

Additional benefits may result if formal semantics are defined for the domain specific language

and formal specification and development techniques are used to ensure that the virtual machine

implements those semantics.The utility of a virtual machine approach is to be tested by the creation

of a Data Fusion KBS, using a suitable subset of the knowledge-base of a large scale Knowledge-

Based Sensor Data Fusion Technology Demonstrator System currently installed on a Royal Naval

Frigate HMS Marlborough.

The work began in 1St June 1991, just over a year before this presentation and most of the

work is being carried out at the Royal Military College of Science, Shrivenham, Swindon,

Wiltshire, England. We are now at the stage of verifying our virtual machine design. By June

1993 we will have completed a review into the first two years of work. This review is intended to

assess the viability of our original concept and perhaps redirect the final year of the investigation in

the light of the problems we have encountered.



Developing Reliable KBS

Separate out those aspects of the system

that can be developed using conventional software

engineering techniques

from

those that are particular to the knowledge-base
approach.



Objective Of This Research

This research item investigates the effectiveness of

formally engineering virtual machines to support
application specific knowledge representation
languages. The objectives of this item are:

to being to bring as much possible of the
development of KBS within the domain of
conventional software engineering;

* to apply the software engineering techniques

associated with 'Safety Critical' software to
appropriate parts of KBS development.

Thus to increase the effectiveness of verification

and validation of such Knowledge-Based Systems.



Verification and Validation

Verification

The use of formal specification techniques in the
design and implementation of the virtual machine.

* The formal definition of the semantics of the
supported application specific KRL.

Validation

• The proof of properties of a system implemented in
the application specific KRL that is simpler to
perform than the direct formal transformation of a
knowledge specification into an implementation.



Application Sp~cific Knowledge
Reps aion Languages (KRLS)

The success of the virtual machine approach rests
with their definition.

They will imply one or more relevant knowledge-
based system paradigms

* They will incorporate domain specific abstractions.

6



Multi Layered Virtual Machine

Naval Data Fusion Example

TDS Like Application

Naval Data Fusion Language

Data Fusion Blackboard System Primitives

Blackboard System Primitives

Ada Code

I I II7



"Validation & Verificaion
of 'safety critical' KBS"

* Is being done under a 3 year contract by the Royal
Military College of Science at Shrivenham.

The work commenced on the Ist June 1991 and is,
therefore, due for completion by the end of May
1994.

8



Project _Go.

Year 1:

to identify and formally define a Data Fusion Language for

Naval Tactical Data Fusion, and to establish the requirements

for a virtual machine to support this Data Fusion Language.

Year 2:

to produce a verified design, using appropriate structured and

formal techniques, for the virtual machine to support the Data

Fusion Language, and to animate the design to validate the Data

Fusion Language.

Year 3:

to implement a prototype virtual machine to support the Data

Fusion Language, and to evaluate its utility for Naval Tactical

Data Fusion and the ability of the approach to provide high

levels os assurance for knowledge-based systems for domains

where reliability is regarded as a key requirement of those

systems.

9



First Year
(June 1991-June 1992)

'1 Familiarisation - with the ARE Technical Demonstrator Programme

and Data Fusion Technical Demonstrator System.

Review Formalisms - VDM; Z; [B; J CSP [ CCS; ] OBJ (and

similar methods ] and Scott-Strachey denotational semantics.

"Specify Subset of TDS Knowledge-Base -delivered in

English, VDM and Ada form.

Identify Data Fusion Language - postulated in terms of a

BNF syntax.

-- Define Formal Semantics of the Data Fusion

Language - taking slightly longer than anticipated but a complete

definition will be provided - almost complete.

X Investigate Non-functional Requirements - postponed

after an initial look.

10



Definition of Data Fusion Language
Formal Semantics

* No one formalism sufficient for defining the DFL
semantics.

• VDM for the semantics of the parts of the DFL
used to define the blackboard structure.

* CSP for the semantics of the parts of the DFL used
to define the control structures.

* Validity of the particular VDM/CSP mix will be
demonstrated.

11



Investigation of Non-functional

Requirements

Not fully investigated because:

Priority given to the definition of DFL semantics;

Available time limited;

Initial investigation indicated problem even more
difficult than originally seemed.

12



Second-Ya

• Identify Virtual Machine Design Approach - an

investigation of structured and formal methods to see which are applicable

and the tool support which is available.

Design Virtual Machine - design will comprise an architectural

model and a formal specification defining that model.

* Verify Virtual Machine Design - it is unlikely that full

formal verification can be brought to a logical conclusion within the cost

constraints of the project. However it is hoped that sufficient progress will

be made to establish what may be achievable in this area.

Animate Virtual Machine Design- by translating the formal

specification for the virtual design into an executable language.

• Review Data Fusion Language - so that amendments to its

definition can be made in the light of the design, design validation and

design animation of the virtual machine.

I J



Third Year

• Identify Virtual Machine Implementation - a review of

languages and tools suitable for the implementation of the virtual machine

on an available hardware such as a Vax or Sun.

Implement Virtual Machine - testing will be based upon

conformance to the formal semantics of the Data Fusion Language and the

virtual machine design (this will be the largest single task of the project).

* Evaluate Virtual Machine - In order to evaluate the utility of

the virtual machine approach, a different subset of the TDS knowledge.

base will be identified and translated into the Data Fusion Language - a

final report on the utility of this virtual machine approach will be generated

bringing this contract to a close.

14



End.Products

• The Virtual Machine Prototype.

* Assessment Of The Virtual Machine
Approach.

15



APPENDIX D

Embedded Real-Time Reasoning Concepts and Applications

Editor's Notes

Boeing has successfully implemented several intelligent real-time embedded avionics
systems with the Ada programming language. These systems include a Tactical Cockpit
Mission Manager (40 KSLOC of Ada, 250 rules), a Search Area Planner Tool (45 KSLOC of
Ada, 300 rules), and an Automated Sensor Manager (153 KSLOC of Ada, 1,181 rules). This
information is in these proceedings, but I wanted to emphasize that these applications are
operational Al with Ada applications totaling of 238 KSLOC that implements 1,731 rules of
complex reasoning based avionics systems.

Boeing developed these applications with an innovative approach that combines the
"engineering" rigor of conventional software development with Al rapid prototyping
techniques. Ada Real-Time Inference Engine (ARTIE) is a tool which provides an
interpretive development environment and a small, fast embeddable inference engine for
runtime performance. ARTIE offers an innovative approach to rapidly prototyping
embedded real-time reasoning software with an interpretative development mode and an
automatic code generator for generating embedded real-time code for execution on the target
platform. Workshop participants were in mutual agreement that interpretive tools such as
ARTIE are a valuable asset for real-time embedded systems prototyping, development, and
debugging.

Al Topics: Cooperating expert systems, forward chaining, iteratively recursive inferencing

Domain Area: Intelligent Avionics Systems

Language Interfaces: A Pascal inference engine was developed in 1987.

Project Status: Test and evaluation

Size of Ada Source Code: ARTIE is 25 KSLOC with associated tools and the
embedded inference engine is less than 3 KSLOC:
Avionics reasoning based applications total 238 KSLOC

Number of Rules in Knowledge-Based System(s): 1,731 rules in 3 Ada applications

Design/Development Methodology: Iterative prototyping

Hardware Platforms: Apollo 3000, 4000, and 590; Sun 2/60, 3/60, and 4/60; Digital
Equipment MicroVAX and VAX. Silicon Graphics IRIS

D-I



p-I

II.

p-p

otr�
LmftI)

�mE) I
��uhm� a..

L.4.�

=
3.qI� - I.'

0

-- U

��Im4

0

C�4

I

I a..

p-p
lm
U



tE

co c
0z 0M

ej

0.

-CZ 0 o

Ln



I-

03

cz CZ

t) U

0 E0

Q) ~ ~o~ Ln

(I) t) C

E
CL

Um m) CZ~C

vo P

0 > )

o cut G L~0 ~0

>

iIii
LS ml



0 C)

0..

QI)

0z 0

0 c

CC u C)
0 0 C-. m ) t

- -- c

Q ) CV **.)c
-~ 0

c) Ci C



CO.)

I'D)

> 2~

u . cc
cnrZ

un)
L.J\

Q).

uuc0 0)

E u 0

.L0 Q



00

0 -4

Cz Co

(el -z

cz)~j

I-/

') ci E

4b0



w CC

Ut
coU

I -L C!

C) 0
wA



ca u

... I.

II-

Il7S

CL

~ _ - e



-CLC

"0 I C

0 1-0

-a c
C ~ v. oo

gi cw cn

uC4*C C.) JQL



CL0

l2-

QZ
E0tl

-z

cicz

Cl)

crcz
co0



m = r

ujj

oc~

I.-.

cisci

00c

Q~ cA
,.- 0z

CA CA rz
coo cz

CU 64-
A ~ 0

rk,



Cf))

00

-ff

Ez-

E 0
T.r



ON

00

101

CLI w

4-o 
4)qIf

4) '<W,5



I.4

;t)

1C) 00

ci Ci

C-,

cc -

tm*0 uCd u

czi

CA cz
C) Q.

0 Cf) . C) 4o

cio

~mmE

C)4



gig)

-oo

0-0

C) CL)

0- u

070

-~ ~.4

4.A cidNC
N~~ u .)ko C.

b> C.) C) 0

co - .

ccI .



to
Z,, 03

a) W 0

A-0 04

0.)o u
ct u

I-0
cz u m

u. -

0.) 0

-~ -~40



'a

a..)

t

I,.
'a

C-,

�) �) C-, -�

St... - -.

-
I- 0a) - v-� 0 '-� � -
- CNI r�- Io

L.a)
(U 'a

(U
.' � 'a

o 'a

'a
- � 0 � '� -a) � (N r#) ho

UCl)
'aba)

(U Q

0
4.. 4-'

0.)
ho �I� 0.)
U

�U � -�

a., �- C.)

'a I-a
-�

0 0 �
-

'a 6.) 0.) 0%0%

'a
0 S 0 0 0 'a

S... U



czI

I,,5F

~c

40,

0 c
cIz

0 co) n

-- 0 *

~-H 0
4n U

(~) H~LOD
ts C4

00 CZ CZ-
cl 0z >

.- .- c



CIu
.......... .

0E
Cl)M
.... .. ...

C,) -J

ca

............

....................

.. 16



Ia
It)

'-

Oct.

cU,

"mmI

'Ab



mom

F0 T

CO

~c

rAd

0.

9-V)

24lo



CL

Ct'

E

QCZ

00 2c 14
LC

W4-



PEI

U,

-' )

- 0 . 0

CEC s ' 4 co-
IS, A "s m s 0_

C , .. .. . . .. .

0 0 z czC

00

00C

Ao cz

.........

........ ......

........ 
----



L.. . ..

to

OION

1 1

/ /

I ... 0
tA-

4u Cfs

4uL f4

'C ~ .-

E -'

ts"a



C13-

0uu

0n

cz < C

CzC

Cl) >u

Cuo c 0 E p- C

Uj C) CZ n

E~ E

CQ .- -0 &.
cn 0

CA0
0 _ ~.) -

>u? s- v_



-a4

Q-

CIO

'. cz A U

_~ u-~

'Eu~c'04
-n U' -

w Z

O- 0 be~ a

oj M

u C)L LL'
0 con (L)

U ca T;

0 u

AC (1
~ ~- ~ ~ O 0 0 ~ WD

p.' CZo~ rn-i .. .6w

A/ 0Q
cir0 - -'



APPENDIX E

Training Control & Evaluation (TC&E)

Editor's Notes

BBN has successfully used an iterative prototyping approach to perform requirements
analysis, design, and Full-Scale Engineering Development (FSED) for a 70 KSLOC
Artificial Intelligence (AL) application. This application, Training Control & Evaluation
(TC&E), is a valuable example of the success that can be achieved by rapid prototyping Al
applications with Ada. One of the most difficult tasks in a rapid protoryping requirements
analysis activity is the transition of the legacy prototypes and knowledge to the FSED. The
TC&E experience offers some valuable insight into a successful transition of prototypes from
the requirements analysis to a ESED for a DOD- STD-2 167A project.

Al Topics: Blackboard architecture, goal-setting, path-following, progress tracking, obstacle
avoidance, target selection

Domain Area: Training, simulation and modeling

Language Interfaces: C and 4GL

Project Status: Fielded

Size of Ada Source Code: 70 KSLOC

Design/Development Methodology: Iterative, rapid prototyping

Hardware Platforms: Sun

E- i



Training Control & Evaluation (TC&E)

Dan Massey

BBN
Cambridge, Massachusetts

617.873-3515

BBN recently completed development of a major distributed simulation system
(called AGPT) for the German Army. This system was built in Ada, and includes a group of
CSCIs (ax, '70 KSLOC of Ada) which support the instructor's interface to the system and
provide interactive control over simulated elements of a virtual environment which are
endowed with the ability to adapt and react to a changing tactical situation in an "intelligent"
manner. This part .?f AGPT, called the Training Control & Evaluation (TC&E) segment, is
based on a segment of the SIMNET system previously implemented in the US for DARPA,

The original SIMNET implementation (called Semi-Automated Forces, or SAF) was
built as a prototype in LISP on Symbolics workstations and gradually ported to C over a
number of years. The present implementation of SAF is about 300 KSLOC. These program
sizes are not comparable since TC&E includes functionality not present in SAF, and vice-
versa. In addition, about 65 KSLOC of C libraries (counted in the SAF total) are used in
TC&E to support certain system housekeeping functions (network connections, matrix and
quaternion math, real-time terrain analysis) that were common to both systems and for which
assured consistency of implementation was deemed to be very important.

Although the "higher-level cognitive functions" simulated in TC&E are entirely
written in Ada, including such functions as goal-setting, path-following, progress tracking,
obstacle avoidance, target selection, etc., and involve the systematic application of a set of
rules (some implem. -"ted explicitly as Ada procedures and others provided in a more general
rule definition language), the ability of the system to operate in real time does depend on the
fact that the most computationally intensive parts of terrain analysis (computing the lines of
visibility surrounding a point in the virtual world) are implemented in carefully crafted and
tightly coded C.

Most of TC&E Ada (about 80%) was built bottom-up, prior to agreement on either a
system specification or a definite detailed design. Essentially, the core of TC&E is a rapid
prototype, written in Ada, which has been subsequently refined through a series of
incrementally enhanced releases. During the early phases of development (prior to
agreement on the system specification) a number of pre-release versions of parts of TC&E,
up to about 50% functionality, were demonstrated and evaluated in depth with the client to
help in finalizing the specification.

The TC&E prototype (about 80% functionality) became an operational definition of
segment design that was used in the full-scale engineering development of the production
code, Through an agreed process of CSU documentation and test, large parts of the

E-2



prototype code were formally "adopted" into the final product. Other parts were significantly
reworked to improve testability, reusability, and reliability before adoption. Only about 20%
of the TC&E segment code was produced de novo during FSED. These parts, largely
enhancements to the prototype backbone, were specified, designed, and documented through
a relatively formal engineering change process.

We consider that the entire prototype development phase of TC&E (which
represented more than two thirds the calendar time and labor to obtain the final product) was
a requirements analysis activity (in the sense of Royce's water-fall life cycle) and covered the
inner cycles of a spiral development process (in the sense of Boehm).

TC&E Acronym List

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DARPA Defense Advanced Research Agency

FSED Full Scale Engineering Development

KSLOC Thousands of Source Lines of Code

SAF Semi-Automated Forces

SIMNET Simulation Network

TC&E Training Control & Evaluation

E-3



APPENDIX F

Ada 9X Issues for Al Systems

Editor's Notes

Henry Baker chaired this panel at the workshop and led some very thought provoking
discussions about Ada 9X issues for Al. Henry describes the classic implementation
characteristics of traditional Al programs -- late binding, large address spaces, extensive use
of shared memory for communication, extremely large programs, very dynamic problem
spaces, complex and non-homogeneous data structures -- and offers suggestions for an Al
Annex that includes procedures as parameters, a pragma Garbage-Collection, provides more
general type initialization, generic types, and type instantiation parameters. His issues paper
and briefing are titled Ada9X Issues for Al .Systems.

F- I



Issues paper for Ada/AI/RT WG Workshop, Summer '92 SigAda Meeting, June 24-25, 1992.

Ada9X Issues for Al Systems

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 501-4956 (818) 986-1360 (FAX)

We must offer suggestions to the Ada-9X Committee for allowing/enhancing Al programs in Ada.

Defense Al Applications in Ada-83? In Ada-9X? What are the issues?

Can Al programs be successfully written and deployed in Ada-83? Do the changes contemplated in
Ada-9X make the writing and deployment of Al programs any easier? Do there still exist major
"gotchas" in Ada-9X which will seriously decrease the performance and/or increase the cost of
developing and deploying Al programs in Ada?
AI programs are some of the largest programs around, in terms of lines of code, complexity, cost,
etc. I.e., they are large programs, but small amounts of data, relative to more traditional embedded
systems programs. E.g., compiled program text of large Al system can take 20 megabytes,
whereas "large" non-Al programs use 1-2 megabytes for both program and data (not counting large
passive databases such as terrain mapping databases).

What are the design, implementation and maintenance implications of such large programs in an
Ada environment? E.g., small changes may cause massive recompilations-it could take hours or
days to "make" a new version of a system. With a program of this size, is it ever "delivered"? If
only 10-3 of such a program is changed annually, this may still be 10,000 lines of code changed per
year. Rumors exist of massive software changes/fixes for the Patriot missile system while the unit
was already in battle. Significant changes may be required in a "Pilot's Associate" program for
every mission. In other words, "program" may have become "data", to be loaded for each and
every mission. Does this mean that "dynamic loading" a la Berkeley Unix or Unix V Rel. 4 should
become part of an Ada run-time system? Does this require a "persistent Ada heap", a la current
"object-oriented databases"?
A "signature" characteristic of AI programg is their "late binding" of control constructs, which are
universally implemented by means of first-class function closures. These closures are dynamically
constructed functions which can be passed as arguments, returned as values, and stored into data
structures as values. Ada-83 was expressly forbidden by its Steelman Requirements to have no
such capability. Ada-83 offers generic functions and procedures, which can emulate some, but not
all, of these late binding constructs. Do the capabilities of Ada-9X provide enough relief to satisfy
the AI developer, or should we send the Ada-9X team back to the drawing board?

Al people have been requesting garbage collection for Ada at least since 1980 [Schwartz80], yet no
vendor provides it, and Ada compiler/runtime validation does not require garbage collection. Yet
GC is an extremely valuable tool in allowing the decomposition of large systems without increasing
the probability of failure due to dangling references. Such dangling references are becoming more
and more likely with the dramatic increase in pointer-based programs due to the popularity of
"object-oriented" programming. Can garbage collection be emulated on top of Ada with enough
efficiency to support the heavy computational demands of Al programs?

Traditional Al systems require a large address space and the shared-memory paradigm. Yet many
embedded systems are designed with hardware that supports a distributed-memory/message-
passing model, and it may be quite difficult to map AI programs onto these platforms. The Ada
parallel process model clearly prefers an explicit exchange of information via the rendezvous
mechanism, and only grudgingly supports the notion of asynchronous access to shared data. Yet
the most popular model for parallel, embedded real-time Al systems is the "blackboard" model,
which has at its core a database shared and asynchronously updated by all processes!

© 1992 by Nimble Computer Corporation. 1 6/20/92



Issues paper for Ada,'AIRT WG Workshop, Summer '92 SigAda Meeting, June 24-25, 1992.

Although Ada was standardized in 1983, production quality compilers were not available until the
1986-87 time frame, and significant bugs are still prevalent in Ada83 compilers today. For
example, generics could not be used reliably in the first generation of Ada83 compilers, and
"storage leaks" continue even in today's Ada83 runtime systems. Thus, it seems prudent to
recognize that it may be 1995 before debugged, reliable compilers and runtime systems are available
for Ada-9X. In this case, another generation of weapons systems will be developed in Ada83-
i.e., they will not be able to take advantage of any of the newer Ada-9X capabilities. Since Al
capabilities are being put into systems today, what is the near-term effect of doing this in Ada83 v.
Ada-9X? What are the long-term effects-i.e., efficiency, maintenance, obsolete protocols, etc.-
of this delay?
Some "100% Ada" projects are using Ada as "just another language", to be loaded into a separate
address space on a classical operating system with multiple address spaces. Any synchronization
between the separate address spaces is implemented by means of non-Ada capabilities--e.g.,
locking in a "file" system. The Ada strong typing system is side-stepped by reading and writing to
external "files". Worst of all, Ada run-time checks within an "application" (i.e., address space) are
disabled, with any protection provided by the hardware--e.g., "bus error". Do such system
designs conform to the spirit, as well as the letter, of the Ada law, or are they a pragmatic solution
to an inflexible language standard? Perhaps such systems recognize the inevitable need to interface
Ada with COTS technologies-most likely C, C++ or even Lisp(!).
Issues of ancillary standards and tools. Are the MIL-STD's for software design, documentation,
implementation and testing appropriate for Al programs, or are they too rigid? Can the complex
notions of Al programs even be expressed in these "design methodologies" and "design tools", or
are new methodologies and tools required. Do the proposed documentation and coding standards
put the Al programmer into a straight-jacket (assuming that Ada itself hasn't already)? Are the
APSE/KAPSE/... tools part of the solution, or part of the problem?
Are real-time Al programs a mirage? Can an AI program ever be expected to always respond within
a fixed latency, or must we start planning for only stochastic response latencies? What sorts of
scheduling capabilities do AI programs require beyond those useful for other real-time programs?

Overall Goal of Workshop and Summary

Potential contractor/developers of defense software systems have little incentive to make
investments in standards or tools for the uncertain likelihood of future contracts. Since Al
capabilities are new, there is no established pool of experience in the defense software contracting
industry which can fight for the language changes and tools which will make Al programming
easier, cheaper and more effective. There are, on the other hand, major established groups to argue
for better signal processing support, better decimal/mainframe support, better network support,
better real-time support for traditional software control loops, etc. It is therefore likely that
significant "holes" exist in the Ada language and infrastructure, which will only become evident
later, when projects become late and costs balloon.

The overall goal of this workshop is a document which clearly states the requirements for
programming languages to support real-time embedded AT programs for defense applications.
These requirements need to be prioritized, and the consequences and costs of not meeting the
requirements need to be estimated. Since modem warfare puts the ultimate premium on up-to-date
intelligence, efficient resource allocation, and pin-point accuracy, Al will play a pivotal role in
making sure that the weapons are located at the right place and the right time, and used against the
right target with the appropriate ammunition with sufficient accuracy and concentration to knock out
the target once, but only once. We have to make sure that we are fighting the next war rather than
the previomv war.

© 1992 by Nimble Computer Corporation. 2 6/20/92



Issues paper for Ada/AI/RT WG Workshop, Summer '92 SigAda Meeting, June 24-25, 1992.

REFERENCES

Ada83. Reference Manual for the Ada® Programming Language. ANSI/M IL-STD- 1815A- 1983, U.S. Gov't Printing
Office, Wash., DC, 1983.

Baker, Henry. "List Processing in Real Time on a Serial Computer". Comm, of the ACM 21,4
(April 1978),280-294.

Baker, H.G. "The Automatic Translation of Lisp Applications into Ada". Proc. 8'th Conf. on Ada Tech., Atlanta, GA
(March 1990),633-639.

Baker, H.G. "Structured Programming with Limited Private Types in Ada: Nesting is for the Soaring Eagles". Ada
Letters XI,5 (July/Aug 1991), 79-90.

Baker, H.G. "Object-Oriented Programming in Ada83--Genericity Rehabilitated". Ada Letters XI, 9 (Nov/Dec 1991),
116-127.

Baker, H.G. "CONS Should rot CONS its Arguments, or A Lazy Alloc is a Smart Alloc". ACM Sigplan Not. 27,3
(March 1992), 24-34.

Baker, H.G. "The Treadmill: Real-Time Garbage Collection without Motion Sickness". ACM Sigplan Not. 27,3
(March 1992), 66-70.

Baker, H.G. "Equal Rights for Functional Objects or, The More Things Change, The More They Are the Same".
ACM OOPS Messenger, 1992, to appear.

Baker, H.G. "Iterators: Signs of Weakness in Object-Oriented Languages". ACM OOPS Messenger, 1992, to appear.
Barnes, J.G.P. Programming in Ada: Third Edition. Addison-Wesley, Reading, MA, 1989,494p.
Hosch, Frederick A. "Generic Instantiations as Closures". ACM Ada Letters 10,1 (1990),122-130.
Kernighan, Brian W., and Ritchie, Dennis. The C Programming Language. Prentice-Hall, Englewood Cliffs, NJ,

1978.
Kownacki, Ron, and Taft, S. Tucker. "Portable and Efficient Dynamic Storage Management in Ada". Proc. ACM

SigAda Int'l Conf., Ada Letters, Dec. 1987,190-198.
Mendal, Geoffrey 0. "Storage Reclamation Models for Ada Programs". Proc. ACM SigAda Int'l Conf., Ada Letters,

Dec. 1987,180-189.
Perez, E.P. "Simulating Inheritance with Ada". ACM Ada Letters 8,5 (1988),37-46.
Rosen, Steven M. "Controlling Dynamic Objects in Large Ada Systems". ACM Ada Letters 7,5 (1987),79-92.
Schwartz, Richard L., and Melliar-Smith, Peter M. "The Suitability of Ada for Artificial Intelligence Applications".

Final Report, Contract #AAG29-79-C--0216, SRI Int'l., Menlo Park, CA, May 1980,48p.
Smith, D. Douglas. "ALEXI-A Case Study in Design Issues for Lisp Capabilities in Ada". Wash. Ada Symp. 5

(June 1988),109-116.
Steele, Guy L. Common Lisp. The Language; 2nd Ed. Digital Press, Bedford, MA, 199 0,10 29 p.
Taft, Tucker, et al. [Ada-9X] DRAFT Mapping Document. Ada-9X Proj. Rep., Feb. 1991.
Taft, Tucker, et al. [Ada-9X] DRAFT Mapping Rationale Document. Ada-9X Proj. Rep., Feb. 1991.
Yen, Mike. "Adapting an Al-Based Application from its Lisp Environment into a Real-Time Embedded System".

Proc. AJAA Comps. in Aerospace VII, Monterey, CA, (Oct. 1989),1114-1122.
Yen, Mike. "Using a Dynamic Memory Management Package to Facilitate Building Lisp-like Data Structures in

Ada". Proc. AIDA-90, Nov. 1990, 85-93.

© 1992 by Nimble Computer Corporation. 3 6/20/92



rý Q a))

P-4

4-j CO

rzj -4A-
~1) 0.(-

Ct 4m-J C

a)0  *r 0=

Q aq ;4 7 00

- (U C) --

cu OpN

4-1 CA

0 00

C6~ 0 C5
ct r-4

P-4 ct 4-



I C)

4-ý = . C

Ecj -C Sý
0 >

4-4 ct

Ct~

-4-A

0. +o 0 'S

cr1 
-

S~t C- 
pj

0 crt

0 ~~ -1:jc~

4-J
>0

> 
-



- C

ct a) ) 0

C c~~ CA ~ c1-

S ~ci

CC

17:1

0:
t0 $.. -ic0 m

ci -~ 0 op
c0c

oce

4--E

oc C/)L

ci) x)~ "

0 <o



00

IIiU

424

czD

4'.

CI))

c~1 n

M -4 0 a) 0)

-

4-II l I I I0 III

03 to 0

.$-4



o-

00

4--

4-4

I.Z

40 z 00

00

4-4 -4

CI) Z

$-4



C,,M

00

(L)

N cu

a) ctL

M) 0

4-4-

Oct

U-

4~J a)



03

o. 00

C14 -4

4%
cu-

_b 0I'

0 I 0

V_ cu 003

I'I

-t ON
.-. I-'

ct ~ m 0 '
u- 0ý U C 0



QKA)

-Gn

00

zs M
1-4

tb u

0 Qz

_ .4-4
0 -

-1~



C) ~ 4) -j

- 00r_

0 -l

a.) 0
ot =

cn *) r. 0

-- c

-t 'a

0 T:

00r-

"C/0 r - -4 -

01 00
0r-4

- 0 -6-d 0 j

a /) cn



00

cl 0

'm 4-j

C13
cz)

---

- 4-)

o 0)

o$- (n-4-

-ii o 0
r..4rC13

cl C13 lm0.)

v-- 4 -- q M-

P.4 $- 4 ;-4C
C-) -- ,.

N 0



u -t

ci)t

0 t

- -4
">ci ci

~~ ci

C)t
- ci. 4-

42 Iz ci) 0ci

ci) C40 i

-&.. 2i ci) cu.
00

C13 ccci

Ui) U0 0"0
.4' 1)ciw



0 03

4-A
030

C)1-

ct~

cC,,

(0 4-4

00 C

> rj

4-a- C3
Cta)

- '~4-

1-4 0 -A
00 C-C3

0 >11

134 $-4-U Iz m

Ct)4-j
_ - I _ -

' (44 ~ .J

w- -C) '~I

C) 0 ~ ON

*- 4-

Cl) C@)



C4-

o ci) 0 c

4 -44 4 -

00
C400

Q ,Q .lc'z

m 0t
.4-.' 

.4

V..4
-1 'a.) -.,(

-0 m 0 (U

_2 ccO Q)

con~ 04 0

0n -
-.Ia)

-00"$0-
7tý "-I I = " (

M .- '7-: t Cactl
(U (0

0 C.4..4 0 00



4-

000

cti

00 0)4j 1

-q M

C/71

occz
- 0al

4--

CCl4

CC-0

4 -J c u 4 -j

- 0 _

-4- 0

4--)C

P-4 -4-

H 0 0 * CN

4-j.. a



C/71Z 0 0

o 4-ý

c1t

'-4 4- "0

+-* C- 0- 0

0 c0
CZ -

m .
4--(

""0- +0 00 0 - -

Q,. r-- 
-)( z

r-4 -4

U ~0

- C N



o 9ý

ct cn
40-

03 CIA~1-ý i P
C13 CZ (

4...)) u 4

z a0 U L

0 03

-4-I

+ -

V-4 CCU en

10 ".h r 0
ow - cn V-4

4 -j

0*' wL* 0

u (0

_ -



C/) (1)
(1) u

030

4 -

C) C) 0
00 ( zC

C1 - ý- M) a)
$= (U CA 4-j

C)n
C3 cz :z (

- 0m

C1 0)0

"- E

4- COD~ C471 0 W

-4C) a) I4C2

T.) - 0 '
0) - 0-- .-

-( 0

- * __



= CA

o S3

000

tC) ct
cn

- -1 03CI

0 -44"-
0u

40- ciu

00'

&O) 42,
41 N0 Cl 0m

$-, 0Q
00 0



CD'
000

fo a

'-4C CA C'

0 x-- to 0o

0 a.

1-4 C,'4 0 > -.



- 00 c

4--

CZ

C'Z

000
clO

"0~ ii
_ CCh



APPENDIX (;

MESSAGE FROM T HE
APPLICATIONS EXPERIENCES AND LESSONS LEARNED

PANEL CHAIR

SIGAda Artificial Intelligence Working Group

Summer '92 SIGAda Workshop

Janet Faye Johns

The MITRE Corporation

Bedford, Massachusetts

617-271-8206

This paper assesses the current state-of-the-art for Artificial Intelligence (AI)
applications development processes. The human and safety reasons why we need to"engineer" AI applications is discussed and information about the current processes used to
develop knowledge-based systems is presented. Issues associated with requirements
analysis, design methodologies, development techniques, test and validation, and
maintainability are discussed for Al applications and for Al with Ada applications.

Viewgraphs are in this paper with an accompanying discussion section that is divided
into two parts. The first states current issues while the secord part provides a summary of the
related workshop discussions.

G-1



APPLICATIONS EXPERIENCES AND LESSONS LEARNED PANEL

MESSAGE FROM THE PANEL CHAIR

BACKGROUND

During the past year, I have been collecting information about existing Artiflicial
Intelligence (Al) applications developed with the Ada programming language for the SIGAda
Artificial Intelligence Working Group's (AIWG) first annual survey 131. This was a
challenging task for a number of reasons, but I have come to believe that the major
impediment to my data collection efforts is the state-of-the-art of developing Al applications.
The basic nature of specifying and developing A] systems is a major stumbling block to
formulating detailed software metrics and other measures that are so common for"engineered" systems. Al systems generally begin with few documented requirements and
are developed with a series of evolutionary prototypes. Typical software metrics are not
readily available for Al systems. This fact led me to investigate the current processes used to
develop Al applications and the problems of applying current software engineering principles
to Al applications.

This briefing was presented at the general session of the Summer '92 SIGAda
conference. I presented this material as a devil's advocate challenge that stated the issues in
an effort to generate open discussions about the issues. These and many other issues were
discussed during the workshop. For the publication of this briefing in the workshop
proceedings, I have added relevant information from the workshop discussions to the
briefing. My briefing combined with my interpretation of the workshop discussions is the
method I have chosen to docunitnt the workshop discussions for these proceedings.

G-2



REFERENCES

1. P. Collard and A. Goforth, November/December 1988, Knowledge Based Systems and
Ada: An Overview of the Issues, Ada Letters, pp 72-81.

2. C. Culbert, D. Hamilton, and K. Kelley, 1991, State-of-the-Practice in Knowledge-
Based System Verification and Validation, Expert Systems With Applications, Vol. 3,
No. 4, pp 403-4 10.

3. J. Johns, June 1992, 1991 Annual Repor for the ACM Special Interest Group for Ada
Artificial Intelligence Working Group, MITRE Document M92B0000056.

4. N. Leveson, May 1992, High Pressure Steam Engines and Computer Software, Keynote
address at the 14th Intemationa! Conference on Software Engineering, pp 2-14 of the
Proceedings.

5. Xiaofeng Li, September 1991, What's so bad about rule-based programming?, IEEE
Software, Vol. 8, No. 5, pp 103-105. Editor's Note: Paul Sanders responded to this
article in the January 1992 issue of IEEE Software.

6. D. Woods, April 1992, Space Station Freedom: Embedding Al. Al Expert, Vol. 7. No.
4, pp 32-39.

G-3



4)
0
00
0CL

c~c
*JUL

um-

Cl)

G-5



0 U
Lmm

C0)0

ES

0M 0 0.

0 00

.0 0 -:

0.0

4) 0

0~ 0t >

= C

am 0 Ccb0

EUIE 0 LM- -
E 0

0 C

CL u

- G-6



-r m ;;=- E- L

wr 1

e* e
C

TS ~ -o2U

E op
CC

I--

r_ LA~

Co ~ - .- E -=

> E

Q0EE

c r- 0

cz v
-E E E J0-7m



C 
- .

o .'- h' U

o *00-a04)

... (nO0)--...>,

""MI 0 &-
0. U .. c

CoOiC) U) C

,_. cai.-a Lo.n ' •o• e

• =-0) 0)0. = "--s 0" E

0 4), ".a's
*0 I-. M C O " 0

:€•O ._: ME, .. c;; 0i:
sn"o ) 0E.

0

IlIOW

D .~ 0 ss~a.s 0-

or&= Cin =Oi0 *

0 00

MCD, lowmMUe.lo
G-8a,



E) C

E E

E c,

LUILI

E >

0 L

LU -7 - ~

L. -0 C U-

E <

G- E Lei -

E to

0~ t4 Q
V. CE ~ , -4

-2 CZ .<2 U

.~ ~ ~ r < 0<~~ooVU

4j :m* 4) 1.. u

C4 < cc 4,) M -

t3 4.)

v 10

E4 > v -

4) .Lo -3 v- C>

al. e.4 ~ >,1 -

0 ~ ~ ~ ~ C 0o ~ I ZL -

m a: 0 CL0c

0 CU

0G-9-



0 CD

Cc 0 m0 Ow
C *Nt0

0 C

CL CLC m 9400

0m 4) ~(c0C E
Cc- o r (IMO

0 .; - 0 . . 0.

0 000

C~Cc
*)- CD

WO SWORN -
M Loo~u >%w E-c

(UC - cC o 0 (U .m 00 ' N

E *~0 m W. Q0 G)0

_ 0 ~~~0OKhU C*E

mm Eu'-0
0 0c

0 0~

0 4 3: oEo'0 ,c I 0 1. 0
4400~0 .0 C )U a

0c C, 0 MO mocE C M0 za

cc C , C-0 OU



CLC

-0 E

-c

06 00

o E 0j

EE

Eu

c. c o c c
up 72>, v o.

V ~ v

r- >* E

U

o V)

0 c - =1-4 zU E a * 0 -
= E0 0

G-1



0.0
000 07 E

0 0600 am r

0.
0.

&MU CD 00u S
0 ol

C 0

> 0) 0

(0

U) 0 ) 0o
.I E~0 

*

0)

0 0 CDi

0 0n

EE~cc 00

'mmLm

00

G-12



C L U . u-

06 u~ Q 
0

00

= 0 E E

0-0

E V5

< -- L

0 60u >o 
U C

= W.U

00 mU uC

o 
0

0-~~ oo Cuu0u-~
<...C 4)

U) Z0 -= Cu
-r -r 0-00 -. *~

40 mu '

t. ) 0. .-- .- V -0

cc >ý U L> U V C

c E.o~~u ~. C -

W 0-

r- E m 9 -

A V, .
Eu cccc

G-13



CL'

00

0"

o~~ Ona 0
m Ow w %= 9 0

00 EoM 0
~X. ~ 4 0.- 000
c man &W
c CD C 0 I a-Uqv

0 0 . -

Cb C 4-
w 00 0.= C

us., (01- M C

-~~ 0()~.0)) 0w U ) ~

C) -w
03 0 0'.zE

E 11OO U) 00 0:
0 1 0~w 0

*0* ~ 1 4) x. >
Cl) 0O W..% ....

: -0 4 o. I-C....
x-1



-c'

cO -u

O O~VI ) Cd

E V
CL U. ) .

v. L=41 6.

0 aW

<. =c .2 .-

IE ed - -e-

a.. ~a.

L -O CU 0~ ~ V
~W

~ jll ju.u
4.55



CLL

0
U) oo.. 0

0))

m CA-

o :NOR"~

MI EU 0 :

0m U)~ 0%>
0 00.0 CD 0

00:- in

000 E

4) C 0 0
~wom E 0 qcc0.
(0) " = 0 .

0)CU 0

CDoa L. c

>CC
9G-1E



M U

>8.U = Z

UU

UU

00 -. 8 2 -5.2 v

E 8=

(P - 0 tw

0 -~

E co

CA.-

E; Dom -U.

bc~~ c*~ 4

C E oC0

0- 1-TC:6 C.

E uý V, "a . 0

0. 0
0~~~-~ q U, ~ > ~ ~

E C

u uE

cm1



(.4

0.
0 4

U) U). CID

C) f4)~ r r co

0) 0 c 4L. 0 _ I"

0. 0 0* 0
_) 

-m o-4

0") CL 4) C
4)n CL Cc0

GC 4- .62a

0 ohha 0 .c
W. 0 r0 0aU 0 3C

CL E. E

*-w 2 .. >
Lu 0 O CA 0 > 0

Co
4) Oi. 4)0 4)C

0
NgGG, oG-08



Co.-

tr. cz~.

=> =u 0

> c

oe QU.-

.-- 0- u 0

u 'A .L:

Li 0 w cz

E~ 0
co '0 v U

v=~ s vijUE)
~Cu CU~

>

M_ co. V.

C2

uu t~ 1 .g

u >c

CLL-~~

G-19



CWCd

00

cr)-

0 IO
BE BE

WOO. 0
"Ims"

%0 ow . 0.01

0U E
.0>

0 r >

o0 0'E

- C.m

&M (a (U BBBB..=O

c!) I.- = "0

mimC) 0

.0~ 0
.. rm. 0

ow 41001101*
foull 0 0

00 =m wb.O
0 0"Wol C

'4- (Uh~(Cc

U- ) SO 0
Cc)

je BO~(W .-mm w

G-20



CC

E - C,:u

0 a~

4.0~

u cu

E c)
E E

CuC

;; to Clo

L)U
C >

a: I.. us

t.S E -E v

lu m tr~. 9: -- '

Q. Cl) 
g-u~

cm C b

-0 WD0 Z3
_ d V >

="o 0 v

*Q( ton 8 C

. ~ . ~ ~ G 21



CC
e) I

Em 0 MEOW

1..E (0
0m. h)4)

u-Ca) 4)

-0 E 0 E
%m 0 w o cu0 0 ' .

CL0 CL & 0
0 0.0 0 C

M2 MJc 0
- 4).4C, 0c0

o w 4; 0. C
>~g 0& 0

>0%
CLA (0 0)00 0 t

*My ~ 4) > ) L!
DO COS -a W0

Eci) -Coc Z u A=
0 .SE fA-j MCCu0)0 4) 0 0
U) C 4b4 >cl

'~ou C>. C- 0

'-2~~ s- Z30~ C0.

E~~~ 0 c c

.C0

4 ~ 40*' 4 )..U C~ UW'

CD G-22



4.)4

cc~~ ~ .-M Zl

M -

V. -r .4 ) -0 -

-- 0 CS. m

C *cEr~o~..
tL E0

EE

v~ 0> 73 >-
V, -0 t- A

~ r -'4 Qj > - ' r 4) .) r-

4E E

E E

> b t --

02 m

> > 9 E .
4.- IC;

,E E 12 lt

0 0 cisýr u C:
C CL V. m .- - 4C3



CLC

o0-
LM.

CL U)
0 U C1

E 0

00 0Mac

_ ~ O.S M c(

4)*0 0= 0a 0 -O. .
0 v x r i

W C 0 0 0c

0 Q LO C =-0
> 0 ECow -aamC0 0 1.M G U

60 Li >i U

U)~~ 0' -

0 0 M C0

0 0~0 0 WUC . _

00 00
cc0 0 0 E a

0 00C.) 0 Rv

NnL n (CV) .C n CJ E

0UAW

G-24



0 <c cc

r- tz C CU

E E f

E ~ 0

(U t-

V C L v i-

u~~ rC. o AuD
-> .

.0 C.)

C.- tr)

u V m

&00

C UI v C

.00 0

C

a a

-. 02



0

0 
3:4 a)

r.L 0

oo .8 .
= V0

0)0=
0 Cl) 0

Em - * 0 0

o *3 t 0 0C>>, o
0w %. ~0 0Co0E

) jio 0 CRLc~
0. OW aw

r >

0 ~CL

0a 0

0l a. o q .00 a- o

0 C 0 0 C >

EE E 00) C.

0* C)) do
> -0 lowC

0...C 6 .00

-E - C

Ma CD4) 0C4) :o !c~ E

(A h=



-l uu c c

ct-

I-.In

> ~ j Lu - c.

C - v ,

E2< ) E
LI)

u~ - <~- - 0.A

E to 4) U,*zQ~J 0~o-~>
Eu r W.8~

E c w
w 0 Uc crE .-- m

cz 05 = m 0 < r o) c

E

E*~ 3!

0L 2U

M.-4) 7



0...

0 '-0

00 C1

C-) 0 >

0 > 0
4) 0 0a

o~c C;2
LM 4) 0 ..

0 Ij n>

CD) 0

> ~m 0 We

m0tE-0-E~~ Co.&.OmO

.0. 0C,~~ >0
0q~ c C

4) 4)



04

4) b

'A r- p

.0.
u 0 tw

Eo o r.0

W) ~ c U. C ~)4
0~ >'

C .C

to C 4)

F~>.

-j E~ .2 3:R

q0 cc 00
cc 0.

C) 0. oC0

CJ C

cc 4 0 a:
v0 4) C 0UC

00

0w 0 E u
0 0 - %.

0 c ~ "'E

.0 o0C V. .00
-~~ cc 0 t

G-29



ami

0*

C0 >

0 a)
Im (fl 0 .0

LM W a.. jmOwcc

0 C * a w_;E

0 ... Cu; Z
E. >

0CL 0.V~
(41)c 0.

70 00 C n I

IC.-

42) 0 6c ic.2m

0 ) C 4)

0)4)
NOW-30



C 0

2 E

E E. CL
00. E E

~. ~ -

Q cc

cn E

- Co C

~~0 t =0

v 0 >1

E Er

ccc IL)

~oE

t 0 *0 cc~ _ . .
-w -16E

- E

E

G-3


