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ABSTRACT

One-to-one tutoring 1s more eftective than alwemauve raming methods, vet there have been few stiempis o
examine the process of naturalistic wioring. This project explored dialogue patterns in two corpory:
graduate students tutoring undergraduaws in rescarch methods, und high school students witenng 7th
graders in algebra. We analyzed pedagogical strategies, feedback mechanisms. question asking, yuestion
answering, and pragmatic assumptions during the tutonng process. One pervasive dialogue pattern was g
five-step frame: (1) tutor asks question, (2) student answers guestion, (3 tator gives short feedback on
answer quality, (4) tator and student collaborauvely improve on answer qualiy, and (51 itor assesses the
student's understanding of the answer. Tutor quesuons were pnimanly mouvated by cumculum senpts
and the process of coaching students through exemplur problems -- rarely by attempts to diagnose and
remediate the student's idiosyncratic knowledge deficits.

Dialogue patterns were simulated by two computational models: a recurrent connectonist network and a
recursive transition network. These models capture the systemaucity in the sequental ordenng of speech
act categories. That is. to what extent does a model accurately predict the category of speech act N+,
given speech acts | through N7
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Graesser 4

It is well documented that one-to-one tutoring 1s a better method of training students than normal
pedagogical strategies in classroom settings. The effect size of the advantage of tutoning over classrooms
has ranged from .4 10 2.3 standard deviation units (Bloom, 1984; Cohen, Kulik, & Kulik. 1982; Mohan.
1972). However, it is ditficult to determine the cause of this advantage until there is a better understanding
of the tutoring process.

Unfortunately, only a handful of studies have systematically examined the process of tutoring at a fine-
grained level (Fox, 1992; Graesser. 1992, 1993; Graesser & Person. in press; Leinhardt, 1987;
McArthur, Stasz, & Zmuidzinas. 1990; Mivake & Norman, 1979; Putnam. 1987; van Lehn, 1990). It
takes a great deal of time and effort to perform an in-depth qualitative analysis of tutorial interacton.
Consequently, some of the observations and results reported by these researchers may have limited
generality. Because of limited sample sizes in qualitative process-oriented studies, there have been few
attempts to relate components of the tutorial process to student achievement or to tutoring outcomes. In the
present project, we analyzed patterns of tutorial dialogue in a comparatively large sample of wtoring
sessione,

According to Cohen et al.'s (1982) meta-analysis of 52 tutoring studies, the impact of tutoring on learning
is not significantly related to the amount of tutoring training that the tutors received. It is also not related to
age differences between tutor and student. In some studies. the peers of the students do an excellent job
serving as tutors for students having problems (Fantuzzo, King, & Heller, 1992; Mohan, 1972; Rogoff,
1990). These outcomes are rather counterintuitive. Most of us would expect that tutoring age and
expertise would improve learning outcomes. One explanation of these results is that the training and
expertise of tutors is normally minimal in naturalistic tutoring sessions. Most tutors in a school system are
peers of the students, slightly older students, paraprofessionals, and adult volunteers rather than highly
skilled tutors (Fitz-Gibbon, 1977). Perhaps a tutor needs extensive training on both the topic knowledge
and tutoring strategies before tutoring expertise shows appreciable gains in learning outcomes.
Nevertheless, the counterintuitive finding does support one conclusion about the relationship between
tutoring process and outcome: The reported facilitation of tutoring over classroom settings can be
attributed to pervasive dialogue patterns of normal tutors rather than to special pedagogical strategies of
highly trained ttors.

Several hypotheses may explain the advantage of one-to-one tutoring over classroom settings. According
to an active inquiry hypothesis, students perhaps have more active control over their learning in tutoring
sessions and therefore have a better chance of correcting their own idiosyncratic knowledge deficits.
Educational researchers have frequently advocated the construction of educational settings that promote
active learning (Bransford, Arbitman-Smith, Stein, & Vye, 1985; Brown, 1988; Nathan, Kintsch, &
Young, 1992; Papert, 1980; Scardamalia, Bereiter, McLean, Swallow, & Woodruff, 1989; Zimmerman,
Bandura, & Martinez-Pons, 1992). Tutoring allegedly supplies such an environment. According to an
error-remediation hypothesis, tutoring provides an opportunity for the tutor to diagnose and repair the
idiosyncratic misconceptions and knowledge deficits of a particular student (Anderson & Reiser. 1985:
Anderson, Conrad, & Corbett, 1989; van Lehn. 1990). Teachers in classrooms have the time to focus on
general problems of several students, but rarely the idiosyncratic problems of a particular student.
According to an gxplanatory reasoning hypothesis, tutoring may expose patterns of reasoning and problem
solving that a classroom setting cannot furnish because of time and resource limitations. Learning is
facilitated to the extent that students construct explanations and justifications of the content in the material
to be icarned (Anderson et al., 1989; Chi, Bassok. Lewis, Reimann, & Glaser, 1989: Cobb, Wood.
Yackel, & McNeal, 1992; Keiras, 1992; Moore & Ohlsson, 1992; Pressley, Symons. McDaniel. Snyder.
& Turnure, 1988; Reiser, Kimberg, Lovett, & Ranncy. 1991). There no doubt are additional hypotheses
that account for the advantages of tutoring over classroom settings. The aualyses in this project narrowed
down the set of plausible hypotheses.

Ideal tutoring strategies have beza proposed by rescorchers invettigating the cogmitive tfoundations of
complex leaming and by developers of intelligent tutoring systems (Bransford, Goldman, & Vye, 1991:
Lesgold, 1992; Ohlsson, 1986; Scardamalia et al., 1989; Sleeman & Brown, 1982). These researchers
have identified pedagogical techniques that the tutor can implement during tutoring, such as the Socratic
method (Collins, 1985), inquiry teaching (Collins, 1988). diagnosis-remediation {Anderson & Reiser,
1985; van Lehn, 1990), the reciprocal training method (Palincsar & Brown, 1984), modeling-scaffolding-
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fading (Collins, Brown, & Newman, 1989; Rogott, 1990), and curmnculum scrpi " Putnam, 1987
These pedagogical techniques fall somewhere between the extremes of complewe student conuol e
active inquiry by the student) and complete tutor control tee s witor fecture). However. the exient o
which these pedagogical wchniques have been used in nuzuuh_\m twtenng has yet o be documenied
Given that the vast majority of ttors in school systems have recerved hitde or no traming in titonng (his-
Gibbon, 1977). the sophisticated pedagogical technigques presumably are infrequent.

This ONR project investigated the dialogue patterns in naturahsue twtonng sessions. We anabyzed tutonyd
dialogue as knowledge was collaboratively constructed und modified. In addition o dovume nung son
basic facts about tutorial dialogue, we focused on four components in depth

1. Question asking and answerng. What mechanisms account tor the uestions and answers of
tutors and students?

i stuction of common ground. Does the student give accurate
fccdbauk to the tutor on the student’s understanding of the material? Doces the wtor give the
student accurate feedback on the quality of the student’s contributions?

3. Dialogue paiterns. What are the pervasive dislogue patterns duning tutoring™ In particular, we
will concentrate on a S-step dialogue frame.

4. Pragmatic assumptions. What pragmatic assumpuions are followed duning tutonng?” To what
extent are these assumptions the same as or ditferent from the pragmatc assumpuons in everyday
conversation?

These aspects of tutorial dialogue may or may not be compatible with the goals of good pedagogy. We
will identify ways that tutors might strategically improve learning by changing the normal course of tutonial
dialogue.

We reported some analyses of tutoring sessions in previous reports (Graesser. 1992, 1993; Graesser,
Person, & Huber, 1992, 1993 Graesser & Person. in press: Person, Graesser, Magliano, & Kreuz.
1993). A final report on our previous ONR grant ("Questioning Mechanisms during Complex Leaming”.
NO0O14-90-J-1492, R&T 4422548) summarizes earlicr analyses of the tutoring data.

Research methods corpus

Graduate students in the psychology department at Memphis State University tutored undergraduate
students on troublesome topics in a research methods course (offered by the psychology departmenti. All
25 students in the course were tutored as part of a course requirement, so there was a full range of student
achievement (i.e., not just underachieving students). The three tutors had received A's in a graduate-level
research methods course. Therefore, the corpus involved "cross-age” tutoring. which is one of the
common types of tutoring in school systems. The tutors had never tutored in the area of research methods
before this study, but they had occasionally tutored on other topics.

There were 44 one-hour tutoring sessions. The tutoring sessions were videotaped and transcribed. The
room used for tutoring was equipped with a video camera, a television set, a marker board. colored
markers. and the texthook for the course. The camera was positioned so that the student and the entire
marker board was in sight. Theretore, the transcripts of the tutoring sessions included both spoken
utterances and messages on the marker board. The transcribers were instructed to transenbe the entire
tutoring sessions, including all "ums”, "ahs”, word fragments, broken sentences, and pauses. Messages
on the marker board were sketched in as much detail as possible.

The sessions covered six iroublesome topics in an undergraduate rescarch methods course. The topics
were operaticnal definitions of variables. graphs. inferential statistics. the evolution of hypothesis to
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design, factonial designs, and interacuons. An index card was prepared for cach topic: 3-5 subtopics were
listed under each subtopic. The witor was asked w cover the topic and subtopies on the index card dunng
the course of the wtoring session.  The titors were not grven a specitic format to tollow but they were
told to resist the temptaton of simply lecturing w the student. The students were exposed to the matenal
covered on a topic before they parucipated in a wionng sesston. The topic wis covered in g classroom
lecture by the instructor betore the witoring session. In additon, both the student and the tutor were
required to read specific pages in a research methods wext hetore the tutonng session.

Each of the 25 students participated in two twonng sesstons, viclding 50 sessions altogether. Each
student was randomly assigned to 2 of the wtors. Six of the 50 sessions could not be anulyvzed because
the voices were not sutticiendy audible on the videowpe. Thus, analvses were performed un 34 witonng
sessions.

Examination scores and tinal grades were available tor the 25 undergraduate students, so we could
investigate the relationship between student achievement and witoning processes. A toal examination score
was based on three objective examinations throughout the semester; there was a total of 150 four-
alternative forced-choice questions. The 25 students had a mean score of 100.6 (SD = 11.4). Regarding
the final grade received in the course, 4 students received an A, 9 received a B, 10 received a CLoand 4
received a C- or D.

Algebra corpus

This corpus consisted of 22 tutoring sessions in which high schoo! students wtered 7th graders on
troublesome topics in algebra. There were 13 students who were having rouble with particular topics in
their algebra course (according to their wachers). There were 10 tutors who nommally provided the
tutoring services for the middle school. On the average. a tutor had 9 hours of prior tutonng expenence
before tutoring a student in this sample. The corpus of tutoring sessions included almost all of the tutonng
sessions that occurred in the middle school for 7th graders leaming algebra during a one month period.
Unlike the research methods corpus. the tutoring sesstons in this algebra corpus were remedial activities
for underachieving students. Unfortunately. grades and test scores were not available for these students.
S0 it was not possible to assess the relationship between achievement and tutoring processes.

Almost all of the tutoring sessions covered three tutoring topics that are frequenty problematic to 7th
graders. These include (a) calculation of positive and negative numbers, (b) constructing equations from
algebra word problems, and (c) fractions. An examination and chapter excerpt from a textbook were
normally associated with each topic. The tutoring sessions lasted approximately &) minutes. which was
comparable to the resecarch methods corpus. A rescarch assistant from Memphis State University
videotaped the sessions in a similar manner as the scssions were videotaped in the research methods
corpus.

Previous reports and articles have < scussed how the transcripts were analyzed on content categories
(Graesser. 1992; Graesser & Person, in press; Graesser, Person, & Huber, 1992, 1993). Therefore.
these details will not be covered in this report. Trained research assistants were capable of reliably coding
most of the data: segmenting transcripts into speech act units, assigning speech acts to speech act
calegories, identifying questions. assigning questions to question categories. identifying mechanisms that
generate questions, and classifying tutor feedback. Whenever these categories were scored. two judges
indegendemly fumnished the judgments and achieved sufficient interjudge rehiability (ie.. Cronbach’s alpha
= .70 or higher).

The judges needed to have more expertise in the case of some coding analyses. One such analysis
consisted of the quality of a contribution in a wtoring session. There were four levels of answer quality:
(1) error-ridden answer, (2) vague answer or no information, (3) partially correct answer. and (4)
completely correct answer. The judges needed to have a high amount of domain knowledge about
research methods to make these judgments. Therefore these judgments were made by professors.
postdocs. or 4th-year graduate students in experimental psychology. Other analyses that required special
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“expertise involved global levels of the wtonal duslogue (e g, whether an excerpt involved the application
of a curriculum script, error-remediation, or some other global provessy In this case. the judges needed to
have sophisticated knowledge about the twtonng process in addinon o exiensive doman knowledge. A
pair of judges collaboratively supplied judgments in the case of dimensions or categones that required high
expertise.

Student Conunbutions in Tutongl Dialogue

Tutonal dialogue is presumably guided or constrwned by the knowledge deficits and misconcepuons of a
particular student. To what extent does the student actively guide wtonal dialogue” Does the tutor
accurately infer the level of knowledge and the misconcepuons of the student”? s the student capable of
detecting his or her own knowledge deficits and level of understanding” This section addresses the role of
the student in tutorial dialogue. We present a number of claims. with empincal data backing each claim.

0 .. inloe N

Students rarely initiate exchanges that excert control over the wtonal dialogue. In the research methods
corpus, only 5% of the subtopics were initiated by the student whereas 95% were initated by the tutor.
The corresponding percentages in the algebra sample were 10% and 90% , respectively. When students
did initiate a new subtopic, they normally brought up an example problem or concept that they were having
difficulty with (e.g., "I had wouble with problem 4", "l don't understand what an antagonistic interaction
is"). Students never set the agenda for the tutoring session. In both tutonng corpora, the tutor carned the
burden of setting the agenda, introducing subtopics. and proposing problems to solve.

This result is incompatible with the active inquiry hypothesis that was briefly discussed earlier. That is,
the advantage of tutoring over classroom settings cannot be attributed to the student taking active control of
the learning experience. With rare exceptions, students were not inquisitive, active, self-regulators of their
knowledge in these tutoring sessions. Tutors need to impose special strategies of transferring control to
the student if there is a commitment to promote active leaming. Such strategies were not in the repertoire
of the normal tutor.

There was one finding that indicated that students are somewhat more active in tutoring contexts than in
classroom settings. Student questions were more frequent in the tutoring settings than in classroom
settings (Graesser & Person, in press). The mean number of student questions per hour was 21.1 (SD =
13.0) in the research methods corpus and 32.2 (19.7) in the algebra corpus. In contrast, a particular
student in a classroom setting asks only .11 question per hour; an entire class of students asks only 3.0
questions per hour (Dillon, 1988 Graesser & Person. in press). From the standpoint of a single student.
student questions were approximately 250 times as frequent in tutoring sessions as in classrooms. In spite
of the high incidence of student questions during tutoring. tutor questions were substantally more
prevalent than student questions in tutoring sessions. We found that 80% of the questions in a session
were asked by the tutor (82% in the research methods corpus and 78% in the algebra corpus). This
percentage is somewhat lower than the percentage of teacher questions in a classroom (96%). In
summary, student questions are much more prevalent in tutoring sessions than in classrooms, but it is still
the tutor who asks most of the questions and thereby governs the course of the session.

Most of the questions that students asked during the tutoring session did not address their own knowledge
deficits. Knowledge deficit questions occur under the following conditions: (a) when the student
encounters an obstacle in a plan or problem, (b) when the student detects a contradiction, (¢) when an
unusual or anomalous event is detected. (d) when there is an obvious gap in the student’s knowledge base.
and (e) when the student needs to make a decision among a set of aliernatives that are equally likely
(Graesser & McMahen, 1993; Graesser. Person, & Huber, 1992, 1993). Only 29% of the student
questions were knowledge-deficit questions (Graesser & Person, in press), which amounts 10 7.7
questions per hour. Most of the student questions (549 ) were attempts to confirm the validity of their
own beliefs (e.g., "Doesn't a factorial design have two independent variables?”) or to confirn common
ground (e.g., "Are you talking about the second condition?").
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Good students did not ask more questions. Good students also did not end to ask more knowledge-
deficit questions. The frequency of student quesuons was not robustly related o achievement in the
research methods corpus. The correlations were low between examination scores and (a) the towl number
of student questions (f = -.22) and (b) the proportion of student questions that addressed knowledge
deficits (r = .15). The correlauons were also low when final gmdx, was the measure of achievement ([ =

-.34, p < .05 for total number of questions: [ = .32 for proportion of questions that involved knowledge
deficits). Other researchers have also failed to show a posttive relatonship between question asking and
achievement (Fishbein, Eckart, Lauver, van Leeuwen, & Langmeyer, 1990).

In summary, the available evidence supports claim 1. Students rarely take an active role in governing the
agenda in the tutoring session. They rarely expose their own knowledge deficits and acuvely seck
remediation. Students ask far fewer questions than tutors and most of their questions do not address their
knowledge deficits. It is not the case that the good students are more active and ask more questions.
Students apparently need to be trained how to ask questions and to be active learners. It is the tutor who
carries the burden of establishing the tutoring agenda. introducing topics, presenting examples to work on.
and exposing the student's knowledge deficits. The active inquiry hypothesis does not explain why
leamning is better in one-to-one tutoring than classroom settings.

There is extensive evidence that comprehension improves if students are trained how to ask good
questions and to seek answers to the questions (King, 1989, 1992; Rosenshine & Chapman, 1990: Singer
& Donlan, 1982; Wong, 1985). However, the process of asking good questions does not come naturally
to students, so they need to be trained in developing this cognitive skill (Pressley, 1990). Therefore, we
investigated the quality of questions in the tutoring protocols.

One index of question quality is whether the question exposes deep reasoning about the problems and
domain topics. In logical reasoning, the statements expressed in an answer consist of the premises and
conclusions of a logical syllogism. In causal reasoning, the answer conveys the antecedents and
consequences of events. In goal-oriented reasoning, the answer traces the goals and planning of agents.

It is well documented that comprehension and memory for technical material improves to the extent that the
learner constructs explanations and justifications (Chi et al.. 1989; Cobb et al.. 1992; Pressley et al.,
1988). According to the explanatory reasoning hypothesis discussed earlier, tutoring facilitates learning
because it exposes explanations and justifications.

Graesser's question taxonomy specifies those question categories that expose deep reasoning (Graesser &
Person, in press; Graesser, Person, & Huber, 1992, 1993). They inciude the following six categories.

1. Antecedent questions (why?, how?). What caused a state or event? What logically explains
or justifies a proposition?

2. Consequence questions (what if?, what next?). What are the causal consequences of a state or
event? What are the logical consequences of a proposition?

3. Goal orientation (why?). What are the goals or motives behind an agent's action?

4. Enablement (why?, how?). What object or resource allows an agent to perform an action?
What state or event allows another state or event to occur?

5. Instrumental/procedural’ (how?). What instrument or plan allows an agent to accomplish a
goal?

6. Expectational (why not?). Why did an expected state or event not occur? Why didn't an
agent do something?
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These questions are manifested in a tutoring session 1o the extent that the tutor and student explore deeper
levels of comprehension. It should be noted that these deep reasoning questions were highly correlated
with the deeper levels of cognition in Bloom's axonomy of educational objectives in the cogmiive domain
(Bloom, 1956), r = .64, p < .05. Low-level questions in Bloom's taxonomy inquire about specific facts,
terminology, and explicit information in a text; deeper level questons involve reasoning. application,
analysis, synthesis, and evaluation (see also Scardamalia & Bereiter. 1992).

Our analysis of the research methods corpus and algebra corpus uncovered an impressive number of deep
reasoning questions. The proportion of student yuestions that were deep reasoning questions was .22 in
the research corpus and .39 in the algebra corpus; the corresponding proportions for tutor questions were

.16 and .17, respectively. Ina typlcal tutoring session, a student asked approximately 8 deep reasoning
questions (per hour) whereas a tutor asked 19 questions. The incidence of deep reasoning questions was
much higher in the tutoring sessions than in normal classroom settings. according to our best esumates
from published studies on classroom questioning (Dillon, 1988; Graesser & Person, in press). The
incidence of student questions in a classroom is extremely low in all published studies (.11 question per
student per hour), so deep reasoning questions would also be low. Only 4% of the teacher questions in a
classroom are deep questions in Bloom's taxonomy; the vast majority of teacher questions are short-
answer questions that grill students on explicit material (Dillon, 1988; Kerry, 1987). Therefore, the
explanatory reasoning hypothesis provides a very plausible account of the finding that leammg is better in
tutoring than in classroom settings.

The good students asked a higher proportion of deep reasoning questions. There was a significant
positive correlation between the proportion of student questions that were deep reasoning questions and (a)
examination scores (f = .44, p < .05) and (b) final grades (r = .58, p < .05). Therefore, good students
penetrated the deeper levels of comprehension.

Although the incidence of deep reasoning questions is quite high in tutoring sessions, we believe that the
quality of student questions and tutor questions could substantially improve. Most of the students’ deep
reasoning questions were in the instrumental/procedural category (.59 in the research methods corpus and
.74 in the algebra corpus). This is the least sophisticated category of the deep reasoning questions. The
student is merely requesting that the tutor describe how to compute a function or perform a procedure
(e.g., "How do you solve this problem?"). The student might learn how to apply a formula or procedure
mechanically, without any understanding of the reasons, justifications, and principles behind each step
(Cobb et al., 1992; Greeno, 1982; Mayer, 1992; Ohlsson & Rees, 1991). Given that one of the
contemporary missions of the National Council of Teachers of Mathematics (1989) is to promote learning
with understanding, one approach to meeting this objective is to teach better question asking skills.

We have developed computer software that requires students to ask questions and that exposes them to
good questions. Qur "Point and Query” (P&Q) software forces students to learn entirely by asking
questions and reading answers to the questions (Graesser, Langston, & Lang. 1992: Graesser, Langston.
& Baggett, 1993). In order to ask a question, the student first points to a word or picture element on the
computer screen and then to a question that is relevant to the element (from a menu of relevant questions).
The menu of relevant questions is formulated on the basis of background knowledge structures and a
theory of human question answering called QUEST (Graesser & Franklin, 1990; Graesser, Gordon, &
Brainerd, 1992; Graesser & Hemphill, 1991; Graesser, Lang, & Roberts, 1991). The P&Q system is
similar to some other menu-based question asking systems that have been developed (Schank. Ferguson,
Bimbaum, & Greising, 1991; Sebrechts & Swartz, 1991). The incidence of student questions is quite
high on the P&Q software. Whereas a student asks .1 question per hour in a classroom and 27 questions
per hour in a tutoring session, the student asks 135 questions per hour when using the P&Q software.

The P&Q software is a promising environment for teaching question asking skills. The quality of the
students’ questions should improve by exposing them to good questions on the queston menu. After
extensive experience with the P&Q software, students would automatize good question asking skills. This
might have a radical impact on improving comprehension because, as discussed earlier. there is extensive
evidence that comprehension improves after students are trained how to ask good questions.
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Ideally, the tutor should be able to adjust the level of instruction and remediation to the idiosyneraue
knowledge deficits and misconceptions of a particular student. This requires the tutor to have a vahd way
of assessing what the student understands. The developers of many intelligent tutoning systems. for
example, have embraced stydent modeling as an important principle of ITS design (Anderson & Reiser,
1985; Burton & Brown, 1982; Clancey, 1983; Ohlsson, 1986; Van Lchn, 1990). Hence the quesuon
arises: How does the tutor accurately infer what the student knows? We performed some analyses on the
research methods corpus in order to determine whether the students’ achievement is reflected i their
questions and their answers to questions.

Table 1 presents correlations between student achievement and several measures of student guesuons and
answers. Consider first the measures that do not correlate with achievement. Tutors did not accurately
infer student knowledge on the basis of the frequency of student questions or the proportion of student
questions that were knowledge-deficit questions. These correlations were either nonsignificant or
marginally significant at a lax alpha-level.

Tutors also could not accurately gauge student understanding by merely asking the students (e.g.. "Do you
understand?”, "Do you follow?", "Okay?"). When these comprehension-gauging questions are asked. the
student either answers YES ("I understand”), answers NO ("I don't understand”). or gives an indecisive
response (no answer, "I don't know"). Are these answers a valid reflection of the student's true
understanding? The data revealed that they are not accurate. There was a near zero correlation between
student achievement and the likelihood of the students’ answering YES. In fact. this relation was found to
be significantly curvilinear, .46, .62, .61, and .52 for students receiving final grades of A, B. C, and C-
/D, respectively. This was the only significant curvilinear relationship in all of the correlational analyses
involving the measures in Table 1. Regarding the NO answers, there was a significant positive correlation
between exam scores and the likelihood of students’ answering NO (I don't understand). This is a
counterintuitive outcome: It was the good students who tended to say that they did not understand. Chi et
al. (1989) also reported a positive correlation in the domain of physics between student understanding and
the likelihood of students answering NO. Therefore, available evidence indicates that a tutor cannot
simply ask students whether they understand and expect the students to supply accurate feedback. The
feedback is misleading. Students are very poor at calibrating their own comprehension of material
(Glenberg, Wilkinson, & Epstein, 1982; Weaver, 1990).

According to Table 1, there was a robust correlation between achievement and the proportion of student
questions that were deep reasoning questions. This correlation was discussed earher. We suspect,
however, that it would be difficult for the tutor to gauge student understanding by this index. An average
student asks only 8 deep reasoning questions per hour, so the tutor would be basing the computation on a
low frequency event. Although good students had a higher proportion of deep reasoning questions than
poor students, the absolute frequency of deep reasoning questions did not significantly vary with student
achievement (because good students tended to ask fewer questions). It would indeed be a very subte
cognitive computation for the tutor to estimate the proportion of student questions that are deep reasoning
questions. We conclude that the occurrence of students’ deep reasoning questions does not provide a
reliable basis for inferring student knowledge.

The students' answers to topic-related questions provided the most reliable basis for inferring student
knowledge. There was a robust negative correlation between student achievement and the proportion of
students’ answer contributions that were in the categories of error-ridden. vague. or no-answer. There
was a positive correlation between achievement and student answers that were completely correct. It
should be noted that tutors asked a large number of questions (104 questions per hour). so there was
ample opportunity for the students to give answers and for the tutor to evaluate the quality of the answers.
Therefore, it is the tutor's burden to judiciously select questions that diagnose the student’'s knowledge
deficits, bugs. and deep misconceptions.
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We have established that the tutor plays the primary role in setiing the agenda, introducing wopies, selecung
exemplar problems, and asking questions. In fact. 90-95% of the new wpics and problems were imuated
by the tutor in the research methods corpus and the algebra corpus. The witor asked 78-82% of the
questions. The tutor established the ground rules and format in all of the witoring sessions. This section
wdentifies the pedagogical strategies and dialogue patterns that were implemented by the witor,

Claim 4: Sophisticated lutoring SUAICEICs are far.

Tutors rarely implemented sophisticated tutoning strategies, such as the Socratic method (Collins, 1985),
inquiry teaching (Collins, 1988). the reciprocal training method (Palincsar & Brown, 1984), and
modeling-scaffolding-fading (Collins et al.. 1989 Rogoff, 1990). These methods were virtually
nonexistent in the research methods corpus and the algebra corpus. It takes a large amount of training and
experience for tutors to use these sophisticated pedagogical strawegies. It is therefore not surprising that the
strategies were nonexistent in our sample of 13 tutors, and presumably are nonexistent in real school
settings. There should be high payotfs in leaming outcomes for those researchers and practitioners who
introduce sophisticated tutonng strategies in research projects and in school curnicula.

We analyzed a sample of tutor questions in order to determine what mechanisms generate tutor questions
and what agenda is set by the tutor. We selected 249 questions from the research methods corpus and 93
questions from the algebra corpus. Approximately half of the questions were deep reasoning questions {as
defined earlier) and half were short-answer questions (e.g.. concept completion, quantification, feature
specification). For each of these questions, we identified one or two mechanisms that generated the
question (see Table 2). We also specified how the tutorial dialogue continued after the tutor question was
answered (see Table 3). The latter analysis provides a snapshot of the typical agenda set by the tutor or
initiated by the student.

The data in Tables 2 and 3 support the conclusion that the tutors' curriculum scripts genérated most of the
tutor questions, new subtopics, and tutoring activities. The curriculum script consists of a set of
subtopics, examples, and questions that the tutor selects for the tutoring session (Putnam, 1987). In the
case of the research methods corpus, the tutor selected the subtopics in a top-down fashion. The selected
subtopics had a close correspondence to the information in the chapter excerpts and the index cards
supplied by the experimenter (with the major topic and 3-5 subtopics). Virtually all of the examples
selected by the tutor came directly from the book. Very often a tutor introduced the same example.
subtopic, or question to several students that were tutored on a particular topic. Most (67%) of the
questions were asked in the context of an example problem in the research methods course. Examples
played an even more predominant role in the algebra corpus; 92% of the tutor questions were asked in the
context of a specific example. The tutor normally selected a problem from the student's examination or
textbook. After the tutor selected the example problem, the tutor typically coached the student to a
solution, or the tutor and student collaboratively solved the problem. It should be noted that the
curriculum script is not necessarily a rigid structure in terms of the selection of material and the ordering of
material. According to McArthur et al. (1990). the tutor revises and replans the agenda throughout the
course of the tutoring session. The revision and replanning are no doubt influenced by the student's
performance.

The results in Tables 2 and 3 support this claim. The tutor did not spend much time diagnosing,
dissecting, and troubleshooting the student errors that were manifested in the dialogue. According to

i is- iation models of intelligent wioring (Anderson & Reiser. 1985; van Lehn, 1990), the tutor
should spend time diagnosing and correcting the student's conceptual bugs and misconceptions. These
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bugs and misconceptions are manifested by the errors commitied by the student. As will be reported later,
the tutor does normally correct errors that surface. However, the tutor does pot spend much ume
rectifying the buggy rules and deep misconceptions that explain the errors. Itis very difficult for a wior 1o
idenufy the underlying bugs and misconceptions, let alone o repair them. Consequenty, tutors do not
normally invest the time in such activities.

An extremely pervasive dialogue pattern consisted of a S-step dialogue frame that was iniuated by a ttor
question.

Step 1: Tutor asks question

Step 2: Student answers question

Step 3: Tutor gives short feedback on the answer

Step 4: Tutor improves the quality of the answer by directly supplying information or by initiating
a collaborative exchange

Step S: Tutor assesses the student’s understanding of the answer

Figure 1 specifies further the components of this dialogue frame. An example of this frame is provided
below:

TUTOR: Now what is a factorial design?

STUDENT: The design has two variables.

TUTOR: Uh-huh.

TUTOR: So there are two or more independent variables and one dependent variable.
TUTOR: Do you see that?

STUDENT: Uh-huh.

W B WIN) —

In step 1, the tutor normally asks a single question. Sometimes the question is not posed clearly or as
intended, so the tutor revises the question. Successive tutor questions drift systematically in a manner that
makes it easier for the student to answer the question (Graesser, 1992). For example, in the excerpt
below, an answer to the first question would involve an elaborate construction of information, whereas a
simple YES or NO would be an adequate answer to the second question.

TUTOR: So how could we do that [operationally define intelligence]? I mean, do you think that
everyone agrees on what intelligence is?

In the following example, the tutor restates the question in different words that provide a more succinct
focus on the intended question. It illustrates that the process of constructing a question is iteratively
distributed over time,

TUTOR: Did you see how they did that? How did they manage to do that? What did they do
there?

Sometimes the student does not understand the question, particularly when the question is not adequately
specified. The student asks a counter-clarification question to gain clarity on what the question is. The
tutor answers the embedded counter-clarification question and then the student answers the original
question. This is illustrated in the excerpt below.

TUTOR: Why would a researcher even want to use more than two levels of an independent
variable in an experiment?

STUDENT: More than two levels?

TUTOR: Uh huh.

STUDENT: They would, um, it'd be real accurate 'cause it would show if there's a curvilinear.

In step 2, the student produces an answer to the question. The process of the student constructing an
answer is ileratively constructed over time, as the above example illustrates. Answers are not immediately
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articulated in a clear, succinct, coherent form. The student frequently produces single words or incoherent
fragments of information. The tutor ends up working with these fragments (in step 4) in a fashion that
allows a reasonable answer 1o evolve. When a student's initial answer is incomplete. the witor frequenty
pumps the student for additional information by expressing neutral feedback in step 3 (¢.g.. "uh huh™).
There is an iteration of steps 2 and 3 when the tutor pumps the students for more answer information.

In step 3, the tutor gives short feedback on the student's answer. The feedback is positive, negative. or
neutral. Most of the time the feedback is expressed verbally. Occasionally the tutor nods or shakes his
head to express feedback. When the feedback is neutral on the writien transcript, it is pecessary o view
the videotape and code the intonation of the utterance in order to accurately classify the feedback as
positive, negative, versus neutral (Fox, 1992). We have found that 34% of the neutral observations on the
written transcripts ended up being either positive or negative when the videotape was viewed. Tutors
rarely used lengthy pauses or hesitations to signify negative feedback. The likelihood of the tutor pausing
or hesitating in step 3 did not vary as a function of the quality of the student's answer in step 2; the mean
likelihoods were .08, .13, .15, and .13 when the students’ answers were error-ridden, vague, partially
correct, and completely correct, respectively.

In step 4, the tutor initiates a variety of methods to improve the quality of the answer (see Figure 1).
Sometimes the tutor directly splices in the correct answer. More frequently, the tutor uses scaffolding
techniques that encourage the student to supply information in a collaborative fashion. For example. the
tutor might provide a hint or ask an embedded question, as illustrated below.

[The tutor and student are discussing how 1o 6peralionally define the quality of a restaurant.]

TUTOR: What type of scale would that be?

STUDENT: Oh, let me think, which one. I don't know.
TUTOR:’ Try to think. Nominal or (pause)?

STUDENT: Ordinal, yeah.

TUTOR: It would be. Why would it be an ordinal scale?

Therefore, the construction of an answer is a collaborative activity -- not a burden that rests entirely on the
shoulders of the student. On the average, the tutor ends up supplying more answer information than does
the student, even though the tutor originally asks the question (Graesser, 1992).

In step S, the tutor assesses whether the student understands the answer. In most cases, the tutor simply
asks the student whether the student understands ("Do you understand?", "Do you follow?", "Okay?").
Unfortunately. student answers to these comprehension-gauging are inaccurate, as was discussed in the
context of claim 3. Tutors occasionally ask a simple follow-up question that tests the student’s
understanding of the answer (7% of the cases). Very rarely does the tutor thoroughly test the student's

uniierstanding by asking a complex question or by requiring the student to solve a problem, as illustrated
below.

TUTOR: Do you have any problem with these kinds of word problems (referring to a section in
the book). Where they say--

STUDENT: (interrupts) Uh, not really.

TUTOR: You don't? Youdon't? You don't have any trouble with that?

STUDENT: No.

TUTOR: Let's just do one of them. Um, Dan earned 56 dollars, which was twice more than
what Jim eams. Now you're supposed to write an equation.

STUDENT: Uh, I can't write the equations.

Teachers in classrooms normally enact a 3-step dialogue frame instead of a 5-step dialogue frame. Mehan
(1979) identified a persistent dialogue pattern in classrooms which includes elicitation, response, and
evaluation. The teacher elicits information from the student, the student responds, and then the teacher
evaluates the response. This classroom dialogue pattern corresponds to the first three steps of our 5-step
dialogue frame in tutoring. What makes tutoring special is the prevalence of the two extra steps (4 and 5).
It is conceivable that these extra two steps account for the advantage of tutoring over classroom settings.
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Research in conversation has emphasized the point that conversation is a collaborative acuvity (Clark &
Schaefer, 1989; Kreuz & Roberts, 1993). The listener assists the speaker by filling in words and by
providing backchannel feedback that acknowledges that the listener is following what the speaker is saying
("uh huh"). The listener does this while the speaker is speaking.

Not surprisingly, question answering is a collaborative activity in tutorial dialogue. This claim is
supported in a simple analysis of the number of turns in the answers of tutor questions. There would be
only two tumns if the student answered the question (step 2) and the tutor supplied feedback (step 3).
Mehan's (1979) elicitation-response-evaluation sequence requires a minimum of two turns. In fact,
however, there are many more turns when tutors pose questions in a naturalistic tutoring environment.
The median number of turns was S in the research methods corpus and 10 in the algebra corpus. The wtor
and student collaborate in the construction of answers to questions.

with higher 1 10n .

Tutors elliptically deleted words, phrases, and clauses from their questions under the assumption that the
context is sufficiently rich for the student to reconstruct the intended question. Unfortunately, tutors are
frequently incorrect in making this assumption. As a consequence, the student ends up misinterpreting the
question or answering the wrong question. Tutor questions were classified on degree of specification,
with values of high, medium, and low (Graesser & Person, in press). Only 2% of the questions had high
specification and 50% had low specification. Students sometimes did not have enough context to interpret
the question so they asked counter-clarification questions (see step 1 in Figure 1). The likelihood of a
student asking a counter-clarification question decreased as a function of higher question specification,
.17, .08, and .00 for tutor questions that were low, medium, versus high in specification. Therefore,
tutors should make every effort to formulate their questions with a higher degree of specification.

Claim 10: Tutors need 10 ask more long-answer questions.

Tutors need to ask better questions in step 1 of the 5-step dialogue frame. More specifically, questions
could be posed in a manner that exposes more reasoning on the part of the student, such as the deep
reasoning questions. Graesser and Person (in press) reported that there was a tendency for tutors to ask
simple short-answer questions that required minimal contributions from the student (e.g., a single word, a
YES/NO decision). Tutors need to be trained on question asking skills that encourage the student to
become a more substantial contributor.

11: n i ) nt aNSwers.

Tutors could be more patient in allowing the student to supply an answer in step 2 of the 5-step dialogue
frame. Students need time to think, reason, and plan an answer (Dillon, 1988). The knowledge is
normally fragile so it takes considerable time to construct an answer. Tutors do frequently pump the
student for additional answer information in step 2, as mentioned earlier. However, the tutors could
increase the pause duration in step 2 so the student has ample time to think and reason. In a classroom
study reported by Swift, Gooding, and Swift (1988), learning improved when teachers increased the
pause duration.

A good tutor presumably adjusts the feedback in step 3 to the quality of the student's answer in step 2.
We performed some analyses that tested this intuitively plausible claim. We segregated student answer
contributions into four quality levels: error-ridden, vague (or no answer), partially correct. and completely
correct. "Short feedback consisted of the brief positive, negative, or neutral responses in step 3 (e.g..

"yeah , "right”, "good”, "okay"., "uh huh", "not 50", head movement). Long feedback consisted of
lengthier comments on answer quality during step 4 (¢.g.. "that is correct because...", "there is a problem
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with your claim that..."). Corrective feedback is a more complex form of negative feedback: the tutor
produces information in step 4 that corrects erroncous or misleading information in a student’'s
contribution.

Table 4 presents our analyses of tutor feedback as a function of the quality of the students’ contnbutions.
Most of the feedback was provided in the short form (step 3). The long feedback provided a very small
increment of evaluative information. Corrective feedback was particularly important in the case of error-
ridden answers. We performed statistical analyses on the data by treating each of the 13 wtors from the
two corpora as a case. We collapsed the error-ridden and vague answers in order to obtain a sutficient
number of observations for each tutor. The likelihood of 4 tutor giving positive feedback (long or short)
increased as a function of answer quality, F(2,24) = 30.27, p < .05. There were significant differences
among all three levels of answer quality (error-ridden/vague, partially correct, versus completely correct).
The likelihood of a tutor giving negative feedback significantly decreased as a function of answer quality,
E(2.24) =24.38, p < .05. Once again, there were significant differences among all pairs of means. These
findings indicate that tutors give discriminating feedback to the students.

On the other hand, the tutors were not perfectly discriminating when they administered posituve and
negative feedback. When error-ridden answers were produced by students, the tutors gave positive and
negative feedback with an equal likelihood, E(1,12) = .01. When the students produced vague answers,
the tutors were more likely to give positive feedback than negative feedback. Clearly, the feedback is off
the mark in these cases. Part of the reason for this misleading feedback is that tutors are reluctant to give
negative feedback. Perhaps the tutors believe that negative feedback will traumatize the student or reduce
the willingness of student to supply information. Alternatively, perhaps tutors are following the politeness
conventions of normal conversation (Brown & Levinson, 1987).

Tutors frequently "spliced in" correct information when a student produced error-ridden answers. Yet the
tutors did not normally acknowledge the error as an error, or pursue the implications of an error-ridden
statement (see also McArthur et al., 1990). There was a significantly higher likelihood of giving corrective
feedback than short negative feedback or long negative feedback, F(2,24) = 35.87, p < .05. Itis quite
possible that students were unaware that their contributions were error-ridden. Table 5 summarizes how
the tutors responded to the errors of the students.

Step 4 in Figure 1 lists many of the strategies that the tutor uses to improve the quality of the answer.
Sometimes the tutor directly splices in the correct answer. Alternatively, the tutor encourages the student
to collaborate by asking follow-up questions, giving hints, offering suggestions, and so on. Step 4 is the
critical locus of applying scaffolding techniques.

We performed some analyses that traced the evolution of an answer to each question. We observed the
quality of contribution N+1, given that the tutor and student had together achieved a particular level of
quality via contributions 1 to N. Once again, there were four levels of answer quality: error-ridden,
vague/nothing, partially correct, and completely correct. A transition matrix was prepared for the tutor;
this specified the likelihood that a tutor supplied a contribution of quality Q at N+1, given that the student
and tutor had achieved a cumulative state of quality C at contribution N. A similar transition matrix was
prepared for the student. This analysis permitted us to quantify the quality of the information that was
supplied by each speech participant.

Table 6 presents the transition matrices for the tutors and students in the two corpora. The data can be
interpreted from many perspectives. We were intrigued by three patterns.

A. Th r wai inf} i i
vague or nothing. Th:s generdhlamn can be captured by the tollowmg produ‘.uon rule

IF [quality of cumulative collaborative exchange = vague or no answer]
THEN [tutor pumps student for more information]
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The tuiors were reluctant to give a completely correct answer when the cumulative quality was vague or no
answer; the likelihoods were .12 and .03 in the research methods corpus and the algebra corpus,
respectively. The comparable likelihoods for students were sigmficantly higher (.37 and .14). Therefore,
it was the student, not the wtor, that supplicd correct information in this situation, even though the tutor
was more knowledgeable. Tutors normally pumped the student with neutral feedback at step 3 (e.g.. "uh
huh"} in order t0 encourage the student 1o supply more informaton (partcularly at the beginning poruon of
an answer). Tutors were reluctant to rush in with a complete answer at the beginming of the answer
evolution.

error. This generalization is captured by the following production rule:

IF [student's contribution is error-ridden]
THEN [tutor splices in an answer that is partially or completely correct]

The likelihood of a tutor giving a partially or completely correct answer on contribution N+1 signiticantly
varied as a function of the cumulative quality state at contribution N, E(3,36) = 8.43, p < .05 (when
combining the 13 tutors from the two corpora). The likelihoods were .59, .62, .58, and .81 for the
quality states of completely correct, partially correct. vague/no-answer, and error-ndden at contnbution N.
The .81 value was significantly higher than the other values. Therefore, wtors had the wndency to splice
in a good answer when students committed errors. They frequently did this without informing the student
that the student's answer was error-ridden (see claim 12).

C. The tutor carried the burden of summarizing or recapping the answer. The production rule for this

generalization is:

IF [quality of the cumulative collaborative exchange = completely correct]
THEN [tutor supplies a summary or recap of the answer]

Tutors were more likely than students to give a completely correct answer when the cumulative exchange
had already reached the guality state of completely correct, .16 versus .04, respectively, F(1.12) = 6.08, p
< .05. It would be preferable for the student to take on the burden of providing these summaries and
recaps because such activities improve organization and retention. Tutors perhaps need'to be trained to
shift this burden onto the student.

There are a large number of sophisticated scaffolding techniques that could be applied in step 4 of the 5-
step dialogue frame. Tutors would need to be trained to use these techniques effectively. For example.
the modeling-scaffolding-fading technique could be delivered more completely and skillfully. Tutors need
to learn how to fade and let the student take more control when they are siarting to achieve some success.
We were struck by the fragmentary and poorly articulated contributions of the student. As a consequence,
the tutors supplied most of the information, leaving the students to fill in short contributions (e.g.. a single
word, phrase, proposition, step, number). The tutors could relinquish control of the conversation much
sooner and could gradually encourage students to supply longer contributions.

4: w r nt understan WET.

The tutor assesses whether the student understands the answer in step 5 of the 5-step dialogue frame. In
92% of the observations, the tutor conducted this assessment by simply asking the student a
comprehension-gauging question (e.g.. "Do you undersiand?”. "Do you follow?", "Okay’").
Unfortunately, the students’ answers to these comprehension-gauging questions were notortously
unrehable, if not misleading (see claim 3 and Table 1). Tutors apparently assume that students understand
anything that gets discussed during wtoring. If something gets said, tutors assume that it must be
understood. the tutors merely seek a quick verification from the student that this is the case.

A good tutor would assess the student’s understanding more rigorously. The tutor could ask one or more
follow-up questions that are diagnostically discriminaung and that troubleshoot potential
misunderstandings. The tutor could present a similar problem and request that the student solve it in order
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1o actively demonstrate understanding. However, the 13 wtors in our naturalistic sample were rarely
rigorous in step S.

“he pragmatic rules of normal polie conversation have been identitied by Grice (1975) and others (Brown
& Levinson, 1987). These rules are pervasive and highly automauzed. Unfortunately, they somcumes
present a barmier to effective pedagogy. A good tutor may need to violaw some rules and conversational
maxims in order to crack the barrier. For example. rather than following the Gricean "maxim of uantty.”
tutors need 10 be redundant and repetitious to enhance student understanding. Instead of beiny pohie and
"face saving” when a student makes an error, the tutor needs to "take off the gloves™ and directly confront
the student.

The rules followed by participants in normal conversations have been described by Grice (1975).
Discourse is governed by one overarching ¢ooperative pringiple: conversational participants make a good
faith effort to contribute and to collaborate in the ongoing discourse. Cooperation is augmented by tour
conversational maxims: quantity (don't say more or less than is required), quality (don't say thirg, that are
untrue or that lack evidence), relevance (don't say things that are extraneous). and mannd: (don't say
things that are vague or disordered).

Brown and Levinson (1987) studied linguistic politeness in seve:al cultures. They proposed some general
principles and discourse strategies to facilitate social interaction. Central to their analysis is the notion of a
face. or one's self image. Individuals in a culture attlempt to maintain a positive self-image. and help
others to maintain their self-images. This is not always possible, however, hecause face is frequenily
endangered by face threatening acts. such as requests, criticisms, and demands. Each culture has a
number of linguistic strategies to mitigate the impact of these face-threatening acts.

Table 7 presents some of the maxims of Grice and politeness strategies of Brown and Levinson.
Associated with each of these are costs and benefits from the perspective of effective pedagogy during
tutoring. ' is appropriate to follow the maxims and poiteness strategies under some conditions, but to
violate them under other conditions.

The following examgple illustrates that there are potential pedagogical costs to the politeness strategy of
"avoiding disagreement.” The tutor and student were discussing various types of graphs.

TUTOR: ...and that's our frequency distribution... What is that one called again (pointing 0 a
bar graph)?

STUDENT: A histogram.

TUTOR: Alright. or a bar graph.

STUDENT: Bar graph.

The student failed to acknowledge the important distinction between histograms (involving continuous
variables) and bar graphs (involving discrete variables). However, the tior did not acknowledge that the
student had made an error; in fact, the tutor gave potentally positive feedback in step 3 (“alright”). The
tutor was sufficiently ambiguous in step 4 to permit the erroneous interprewation that a histogram and a bar
graph are interchangeable.

Once again, a good tutor may need to breach the normal conversational maxims and politeness strategies.
This could be very uncomfortable to the student. of course. A possible solution to this problem would be
to establish some "conversational ground rules” at the beginning of a wtoring session. The twior could
cxplain to the student that it is important for the ttor to provide critical feedback. to point out
misconceptions, and to challenge the student. The witor could encourage the student to articulat: answers
in detail and not to get rattled when negative feedback is given. The tutor could resurrect the adage that
students leamn trom their ervors. It is a question for further rescarch whether these conversational ground
rules will minimize face-threatening acts during tutoring, and whether systematic violations of maxims will
facilitate leaming,
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fication of Diglogue Patierns

Researchers in discourse processing, sociology. and sociolinguistics have analyzed prominent dialogue
patterns (Clark & Schaeter, 1989; D'Andrade & Wish, 1985; Gotfmaa, 1974; Graesser, 1992 Mchun,
1979; Schegloff & Sacks, 1973; Turner & Cullingford, 1989). Some of the systematicity resides at a
categorical level that does not cons:rer the world knowledge, beliefs. and goais of the speech participants.
That is, there are appropriate orderings of speech act categories and inappropnate orderings. Scheglotf
and Sacks (1973) analyzed the adiacency pairs of conversational turns: Givea that one speaker utters a
speech act in category C during temn N, what is the appropriate speech act category for the other speaker at
the next, adjacent turn N+17 The most common adjacency pair is the [Question --> Reply-to-question]
sequence. The adjacency pair analysis considers only one speech act of prior context when geaerating
predictions for the subsequent speech act.

Researchers have identified larger sequences of dialogue patterns. Mehan (1979) identified a frequent
triple in classroom environments, as illustrated below.

TEACHER QUESTION: What is the capital of Florida?
STUDENT ANSWER: Athens.
TEACHER EVALUATION OF ANSWER: No, that's not right.

As discussed in the previous section, this triplet is expanded to a 5-step dialogue frame in tutoring
environments. Counter-clarification questions produce a quadruple sequence. as illusu. ted below.

QUESTION-A: Where did you go yesterday?
QUESTION-B: Yesterday morning?
ANSWER-B: Yeah, in the morming.
ANSWER-A: To Jack’s, for breakfast.

The knowledge accumulated in the study of dialogue patterns has been fragmented and largely untested.
No one has developed a model that ties together the assorted observations. No one - s quantified how
successfully these patterns account for the speech acts in naturalistic conversation. There is no model that
is sufficiently broad in scope that it could be applied to any conversation or text. In view of these
shoricomings, we developed some computational models that attempt 10 capture the systematicity in speech
act sequences (Graesser, Swamer, Baggett, & Sell, in press, Swamer, Graesser, Franklin, Sell. Cohen, &
Baggett, 1993). Two classes of the models have radically different computational architectures: a
connectionist architecture and a symbolic architecture.

The computational models assur.ie that the stream of conversation (or text) can be segmented into a lincar
sequence of speech act categories. There have been extensive debates over what speech act categories are
needed for a satisfactory analysis of human conversation (see D'Andrade & Wish, 1985). We adopted a
slightly moditied version of D'Andrade and Wish's (1985) set of speech act categorics. Their categories
were both theoretically motivated and empirically adequate i the sense that trained judges could agree on
the assignment of categories. Table 8 presents the 8 speech act categories that were adopted in our
analyses. Given that there are two speakers in a dialogue, each speech act in a conversation can be in one
of 16 categories (2 speakers x 8 basic speech acts = 16). A Juncture (J) category was also included in
crder o signify lengthy pauses in a conversation and excerpts that are uninterpretable to judges. This
yielded 17 categories altogether. In summary. the stream of dyadic conversation was scgmented into a
sequence of speech acts and each speech act was assigned to one of 17 speech act categorics.

Children's’ dyads. Scll. Cohen. Crain, Duncan, MacDonald. and Ray (1991) adopted this 17-category
speech act scheme in their analysis of 90 conversations involving pairs of children. Dyads of second
graders and sixth graders were videotaped for 10 minutes in three difterent contexts: playing 20 questions,
solving of a puzzle. and free play. The dyads were further segregated according to how well they kaew
each other: mutual friends (A and B like cach other). unilateral friends (A likes B. but B neither likes nor
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dislikes A), and acquaintances (A and B do not like each other or dislike each other). All of the children in
the dyads were from the same ¢lassroom so they were never strangers. Sell etal (1991) reported that the

17-category speech act scheme could be successtully applied to the 16.657 speech acts in this corpus
Trained judges could segment the stream of conversation into speech acts with high rehiability. The 17
categories were sutficiently complete in the sense that all of the speech acts it into one of the 17
catcgories. Trained judges also could reliably categorize the speech acts: the Cohen's kuppas were .82,
.76, and .74 for the question task, the puzzie sk, and the tree play task, respectively. There was a mean
of 2.3 speech acts per conversational turn.

. A subset of the research methods wtoring corpus was extracted and analvzed. We
extracted all deep reasoning questions posed by the tutor (1.e.. why, how, what-if, as discussed carher).
The question and answer sequence for each of these quesuons was included in the college tutoning corpus.
There were 2013 speech acts in this corpus, and a mean of 2.9 speech acts per conversational turn.

Telephong conversations. We had access to a corpus of telephone conversations recorded by the Nynex
corporation. The conversations were between telephone operators and customers in New York City.
There were 1102 speech acts in this corpus. and 2.5 speech acts per tum.

Goodness-of -prediction (GOP) ». pe

The goal of each model was (0 capture the systematicity in the sequential ordening of the speech act
categories. That is, to what extent can the category of speech act N+1 be successtully predicted, given the
sequence of speech acts | through N7 A hjt rate 1s the likelithood that a theoretically predicted category
actually occurs in the data, as specified in formula 1.

p(hit) = p(category C occurred at N+1 | category C is predicted by the model at N+1) (1)

A hit rate is not a satisfactory index of the success of a model, however, because there is no consideration
of the likelihood that a speech act would occur by chance. For example, if a particular speech act category
occurred in the corpus 90% of the time, then there would be a high hit rate, assuming that the model
predicted that category most of the time. A satisfactory index of the model's success would need to
control for the baserate likelihood that the predicted speech act occurred in the empirical distribution of
speech act categories (called the a_posteriori distribution). For example, the baserate likelihoods of the
speech act categories in the Sell corpus were .21, .14, .04, .02, .40, .03. .07. .03, and .07 for categorics
Q.RQ,D.ID, A,E. R, N, and J. respectively. We computed a goodness-of-prediction (GOP) score that
corrected for the baserate likelihood that a speech act category would occur by chance, as specified in
formula 2.

GOP score = [hit-rate(category C) - baserate(C))/[ 1.0 - baserate(C)] (2)

Semetimes a model specified that more than one speech act category could occur at observation N+1. In
this case, formulas 1 and 2 are still correct except that the values are based on a set of categories rather than
a single category.

Recurrent connectionist network. Researchers in the connectionist camp of cognitive architectures have
developed a recurrent network that is suitable for captuning the systematicity in the wmporal ordening of
events (Cleeremans & McClelland. 1991; Elman. 1990). The recurrent connectionist network preserves

an encoding of all previous input. and uses this information to induce the structure underlying temporal
sequences,

There are four layers of nodes in the recurrent network. as shown in Figure 2. The input layer specities
the category of speech act N. There are 17 nodes in the input layer, one for each speech act category. The
appropriate node is activated when speech act N is received. For example. if person 1 asked a question,
then the Q1 node would be activated in the input layer of the network. The output layer contains the
network’s predictions for speech act N+1. There are 17 outpur nodes. one for cach speech act category.
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An output node has an activation value that reflects the degree 1o which the network predicts that output
node. If the input were Ql, for example, then we would expect RQ2 to receive a high activauon value in
the output layer. This would capture the regulanty that people are expected 1o answer quesuons that others
ask. The hidden layer captures higher order constituents that are activated by speech act N. Hidden layers
are frequently implemented in connectionist architectures in order to capture internal cognitive mechanisms
(Rumelhart & McClelland, 1986). The hidden layer is needed when direct input-output mappings fail to
capture systematicity in the data. There were 10 nodes in the hidden layer of our network. The ¢ontext
layer allows the network to induce temporal sequences. The context layer stores the activations from the
hidden layer of the previous step in the speech act sequence (as designated by the fixed weights ot 1 in
Figure 2). The activations of the hidden layer at step N depend on: (a) the input at N and (b) the acuvation
of the context layer at N (which was the hidden layer at N-1). Therefore. the hidden layer is receiving
information about the present input and past inputs. The resulting activaton pattern of the hidden layer's
10 nodes at step N is subsequently copied into the context layer at step N+1. The context layer must have
the same number of nodes as the hidden layer, namely 10 nodes in our model.

There are a total of 440 connections that are allowed to vary in the weight space of this model. There are
170 connections between the input layer and the hidden layer, given that there are 17 input nodes and 10
hidden layer nodes. Similarly, there are 170 connections from the hidden layer to the output layer. The
other 100 nodes link the 10-node context layer to the 10-node hidden layer. There are also connections
from the hidden layer to the context layer that are fixed at 1.0. In preliminary simulations, we varied the
number of nodes in the hidden layer and the context layer (from 6 to 14 nodes). However, the success of
the model did not significantly depend on the number of nodes in these layers, at least within the range of
6 to 14 nodes.

The performance of the recurrent network was evaluated by computing two different GOP scores (sce
formula 2). A maximal activation GOP score considered only one output node as the predicted speech act
category for step N+1. The predicted category was the one that had received the highest activation value in
the output layer. An above-threshold GOP score allowed for the network to accommodate multiple speech
act categories at each step. All output nodes that met or exceeded a threshold activation level were
predictions for step N+1. Preliminary tests had revealed that a threshold of .18 provided an appropriate fit
to the three corpora. On the average, 1.7 speech acts were above threshold at any given siep in the
conversation.

We tested some connectionist models that removed one or more components of the recurrent connectionist
model. This permitted us to assess which components of the recurrent connectionist model had the most
robust impact on the prediction of speech act systematicity.

- k ion network. This network considered only two speech acts of context (N-1
and N) when predicting speech act N+1. This was accomplished by removing the context layer of the
recurrent network (see Figure 2) and adding 17 nodes for N-1 as additional nodes in the input layer
(yielding 34 input nodes). The hidden layer was preserved. There were 510 connections in the weight
space for this network.

Single-entry backpropagation network. This network considered only one speech act of context (N) when
predicting speech act N+1. This was accomplished by removing the context layer of the recurrent
network, but preserving the hidden layer. There were 340 connections in the weight space.

Perceptron. This network removed both the hidden layer and the context layer of the recurrent network.
Thus, there were direct connections between the input layer and the output layer. There were 289
connections in the weight space (17 x 17 = 289).

cursive transition network (RTN) . This model had a symbolic computational architecture (Graesser.
Swamer, Baggett, & Sell, in press: Stevens & Rumelhart, 1975). One advantage of a symbolic
architecture is that the investigator can trace and articulate the dialogue patterns that explain systematicity in
the data. In contrast, it is difficult (o identify paterns in a weight space from a connectionist model and to
articulate the patterns succinctly.
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Figure 3 shows a recursive transition network (RTN) for speech act prediction that was developed by
Graesser, Swamer, Baggett, and Sell (in press). Some modules in the RTN would be anticipated on the
basis of common sense and theoretical developments in the literature. Following Clark and Schaefer
(1989), for example, the RTN in Figure 3 segregates a Contribution from an Acknowledgment of the
contribution by the other party. There are four modules that emanate from the Contribute node
(Interrogate, Inform, Direct, and Evaluate), which capture four basic goals of communication. Counter-
clarification questions (i.e., k-Interrogate) are embedded in the second step of the Interrogate, Direct. and
Evaluation modules. The Challenge module is a reaction of person A when person B tries to evaluate
something or B tries to get A to do something (i.e., the Direct and Evaluaie modules, respectively).

The RTN in Figure 3 has seven modules, aliogether. Each module has two or three state nodes and a set
of arcs that emanate from each state node. The arc specifies the set of legal speech act categories and set of
recursively embedded modules that are legal at that point. The speech act categories are the same 8
categories that were defined earlier: Q. RQ, D, ID, A, E, V, and N. There are 7 recursively embedded
modules: Contribute, Acknowledge, Interrogate, Direct, Evaluate, Inform, and Challenge. The j and k are
indices that keep track of which of the two individuals is speaking. In some cases. the same individual
produces a sequence of speech acts. In other cases, the turn transfers to the other person.

The RTN generates a set of legal speech acts at each step of the conversation. A speech act at N+1 is legal
if there 1s at least one path in the family of alternative paths that emanate from speech act N. A hit occurs
when speech act N+1 matches one of the legal alternatives. Hit rates and GOP scores can be computed in
the same way that they were computed for the recurrent connectionist network (see formulas 1 and 2). In
a discrete RTN, there is an all-or-none prediction for each speech act at step N+1. In a weighted RTN,
each arc is weighted according to the likelihood that the arc would be traversed while accounting for the
speech act corpus; consequently, each speech act was predicted with some likelihood that varied from 0 to
1. We tested a weighted RTN because it provided a closer fit to the data. This was accomplished by an
optimization procedure that determined the best-fit set of weights which maximized the GOP score. A
speech act was scored as predicted if it met or exceeded a strength threshold. '

Schegloff and Sacks' adjacency network. This was an RTN that captuied the adjacency pair analysis of
Schegloff and Sacks (1973). Therefore, only one speech act of context would be considered when
predicting speech act N+1, and the speaker of N was always a different speaker than the speaker of N+1.
The speech act categories of Schegloff and Sacks were translated into those categories in Table §.

Perform f i ictin h > ri

Table 9 presents performance data on the four connectionist models of speech act prediction. Goodness-
of-prediction (GOP) scores are listed for each model and corpus. Table 9 alsc includes the hit rate.
baserate, and mean number of speech acts predicted by the recurrent connecticnist network. It was
possible to perform statistical analyses on the simulations of the connectionist networks by having a
different set of random starting weights in the weight space and running the simulation 10 imes. As a
crude, but conservative estimate, a GOP score difference of .010 is significant (p < .05).

Maximum activation GOP scores were available for the four connectionist models. The predicted speech
act for a model was the one speech act that had the highest activation score. The recurrent connectionist
network was the best network according to this performance measure. When averaging over the three
corpora, the GOP scores were .337,.317, .290 and .290 for the recurrent network, the double-entry
backpropagation network, the single-entry backpropagation network. and the perceptron. A very similar
pattern of scores emerged for the gbove threshold GOP scores, where more than one specch act was
predicted: 1439, 442, 326, and 328, respectively. In this case. however, there was no difterence
between the recurrent network and the double-entry backpropagation network. These results are
consistent with the following conclusions.
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1. The recurrent connectionist network correctly predicts the next speech act 34-44% of the time
(after controlling for baserate guessing).

2. The average number of predicted speech act categories is 1.7.

3. Only 2 (or possibly 3) speech acts of context are effective in formulating successful
predictions of the next speech act category. (This was further substantiated in follow-up analyses
of the recurrent network that plotted GOP scores as a functon of the number of context items
available).

4. Two speech acts of context are much better than one.

The third conclusion suggests that it is futile for speakers to plan several speech acts into the future.
Speakers are constantly replanning, re-evaluating, and revising the conversation in the face of constantly
changing situational constraints (Clark & Schaefer, 1989; McArthur et al.. 19%0; Winograd & Flores,
1986). Speaker A's next speech act category appears to be formulated on the basis of speaker A's last
speech act, together with speaker B's last speech act. The centext prior to this is not very useful for
formulating predictions. A global, top-down, expectation-driven model of conversation would have
problems explaining our results.

The performance on the recurrent connectionist network was compared to the two recursive transition
networks. In order to compare each RTN network with the recurrent connectionist network, we computed

a model comparison gatio, which is specified in formula 3.

Ratio = GOP (RTN | S speech acts predicted) / GOP (recurrent | S speech acts predicted) 3)

The GOP score of the recurrent network was yoked to the GOP score of the RTN network so that both
models predicted the same number of speech acts at N+1 (on the average). A model comparison ratio
score of 1 means that the two models perform the same. A ratio of less than 1 means the recurrent
network performs best, whereas a ratio of greater than 1 means that the RTN performs best.

The recurrent connectionist network performed better than the two RTN's. The maximum values of the
model comparison ratios were determined over varying values of S (i.e., number of predicted speech acts,
which vary with the threshold value). For Graesser's RTN, the maximum values were .89, .43, and .50
in the children's dyad corpus, the college tutoring corpus, and the telephone corpus, respectively. The
mean number of predicted speech acts at a step were 6.6, 2.9, and 3.7, respectively. Therefore, on the
average, 61% of the systematicity that was picked up by the recurrent connectionist network was also
captured by Graesser's RTN. The performance of the Schegloff and Sacks RTN was much worse. The
maximum model comparison ratios were .53. .29, and .12, respectively, so this second RTN captured
only 31% of the systematicity of the recurrent connectionist network. In this case, the mean numbers of
predicted speech acts at a step were 2.7, 2.8, and 2.9, respectively. The fact that the adjacency RTN
performed much more poorly than the Graesser RTN supports conclusion 4 (i.e., two speech acts of
context are quite a bit better than one).

Viewed from another perspective, it could be argued that Graesser's RTN did an impressive job in
capturing the systematicity of the speech act sequencing. We might view the recurrent connectionist model
as a statistical upperbound in capturing the sequential systematicity in dialogue patterns (when considering
only speech act categories, not the content of the speech acts). Graesser's RTN captures 61% of the
upperbound in systematicity. This is perhaps an impressive figure.

Additional analyses

Follow-up analyses were performed in order to answer some additional questions about the dialogue

patterns. We analyzed the children's dyad data to assess whether GOP scores varied as a function of type
of task, age. and type of relationship. These analyses revealed that the type of task had a robust impact on
GOP scores. The maximum activation GOP scores were .38, .07. and .18 in the question task. the puzzle
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task, and free play, respectively. The children apparently engaged in parallel monologues in the puzzle
task, whereas the 20-questions game placed substantial constraints on the dialogues. In contrast, the age
of the children and the type of social relationship (i.¢.. mutual friends, unilateral friends, versus
acquaintances) had absolutely no impact on the GOP scores.
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Measures of Student Questions and Answers

Achievement Measure

Total number of student questions

Proportion of student questions that are
knowledge deficit questions

Proportion of student questions that are
deep-reasoning questions

Proportion of students’ answer contributions
that are:

Completely correct

Partially correct

Vague or no answer

Error-ridden

Error-ridden, vague, or no answer

Proportion of Yes answers (by student) to
comprehension-gauging questions
(by tutor)

Proportion of No answers (by student) to

comprehension-gauging questions
(by tutor)

Examination Scores Final Grade
-22 -.34**"
15 32
44* .58
32** 43"
.09 -.09
-.30 -.46*
-.32* -.10
-.52* - 49*
.07 .05
42" 20

* p < .05, two-tailed
** p < .06, one-tailed
***p < .10, two-tailed
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Table 2
I ion
CORPUS
Research
MECHANISMS Methods Algebra
Curriculum script .70 .93
Driven by student error .05 .06
Elaboration of an idea 19 .03
Summary-recap .14 .0t
Get student to justify something. explain
something, or generate an example 14 .01
Other .03 .00
Table 3
CORPUS
Research
Methods Algebra
Activity or question guided by tutor's curriculum script .67 .79
Tutor diagnosis, dissects, or remediates student errors .02 .04
Elaboration of an idea .22 .03
Summary - recap 15 .06
Tutor prompts student to introduce next topic or example .05 00
Student initiates next topic or example .05 10
Other .05 01
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, o Contibu

Quality of Student Answer
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Measure

Number of observations

Proportion of observations

Positive Feedback

Short feedback
Long or short feedback

Short feedback
Long or short feedback

Negative feedback

Short feedback

Long or short
Long, short, or corrective

Short feedback
Long or short

Long, short, or corrective

Neutral or No feedback

Corpus

Research
Methods

Algebra

Research
Methods

Algebra

Research
Methods

Research
Methods

Algebra
Algebra

Research
Methods

Research
Methods

Research
Methods

Algebra
Algebra
Algebra

College
Algebra

Error-
ridden

48

47
A3

24

31
31

.30
.30

10
12

40

.36
.36
.83

A1

None or Partially

Vague Correct
56 131
13 109
15 .36
.07 .56
40 .47
45 .50
23 .65
31 73
.00 .01
04 .03
12 .07
.15 10
15 A1
23 17
50 44
.54 12

Completwely
Correct

130

25
.36

13

.56
.63

.80
.92

.00
.00

.04

00
.00
.04

33
.08

30
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Table 5
Analysis of Student Errors Manifested in the Sample of Tutor Questions
CORPUS
Research
Methods Algebra
Number of errors in sample 48 47
Type of error
Slip .16 13
Bug or glitch 25 .23
Deep misconception .59 63
Tutor's treatment of error
Error is acknowledged in short or long feedback A2 36
Tutor splices in correct answer 40 .36
Tutor supplies a hint 10 .45
Tutor reasons to expose derivation of correct answer A7 34
Tutor asks student question to extract correct answer 17 21
Tutor issues directive to extract correct answer 04 A6

Likelihood of the student catching his/her own =rror .00 .04
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Table 6
Cumulative Quality of the Answer Duning Tums [ 10 N, W r : s ) N
TUTOR CONTRIBUTION
Research methods corpus Algebra corpus
Turn N+1 Tumn N+|
Turn N E NV PC CC E NV  PC CC
CC 0D0] 591 24 .17 D01 261 601 14
PC 00 461 .39f .14 N0 291 621 08
NIV 00} .56 321 .12 D0 281 691 .03
E 061 .21} 44| .27 00) .10f .78 12
STUDENT CONTRIBUTION
Research methods corpus Aigcbra corpus
Turn N+1 Tum N+l
Tumm N Cc NV PC CC E NV PC CC
cC | 01 ] 761 .19] .04 04] 681 .24 .03
PC 081 .54 .25} .14 A2 1 48 34 .06
NV 091 331 .21 ] .37 211 27, 381 .14
CC  =Completely correct answer
PC = Partially correct answer
N/V = Nothing or vague answer

E = Error-ndden answer
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Table 9

1T°Q
CRPUS

Children’s Cuollege Telephone
Dyads Tuonng Conversations
Maximum Activation Analysis
Goodness-of-prediction Score
Recurrent connectionist network 289 .264 358
Double-entry back propagation network 292 330 330
Single-entry back propagation network 268 A1 291
Perceptron 268 331 291
Hit rate (recurrent network) 379 451 472
Base rate (recurrent network) 122 136 178
; Number of speech acts predicted 1 1 1
Above Threshold Apalysis
Goodness-of-prediction Score
Recurrent connectionist network 376 .420 520
Double-entry back propagation network 367 420 .540
Single-entry back propagation network 322 364 .292
Perceptron 320 A7 292
Hit rate (recurrent network) 565 .560 696
Base rate (recurrent network) .309 242 366
Number of speech acts predicted 1.8 1.5 1.9




STEP I: TUTOR ASKS QUESTION

IF the tutor connot understand the question or the question is not posed

as intended, THEN the tutor asks a revised question.

IF the student does not understand the question, THEN the student asks

a counter-clarification question.

l

STEP 2: STUDENT ANSWERS QUESTION

The tutor sometimes pumps the student for more answer information
by a neutral response (e.g., "uh-huh").

]

STEP 3: TUTOR GIVES SHORT FEEDBACK

The tutor's feedback is positive, negative, or neutral.
The feedback is linguistic or paralinguistic (e.g., head nod).

Intonation is important.

STEP 4: TUTOR IMPROVES QUALITY OF ANSWER

The tutor splices in a complete or partial answer.

The tutor summarizes answer.

The tutor gives hint.

The tutor traces explanation or justification.

The tutor elaborates on answer.

The tutor asks question to elaborate on answer.

The tutor presents an example.

The tutor corrects a misconception.

The tutor issues a command or indirect request for student to

complete an activity.

STEP 5: TUTOR ASSESSES STUDENT'S UNDERSTANDING

The tutor asks whether the student understands.

The tutor asks a simple question.

The tutor asks a complex question.

The tutor requests the student to solve a similiar problem.

Graesser

36
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