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AN ANALYTICAL MODEL FOR TURBULENCE-INDUCED
FLEXURAL NOISE IN LARGE CONFORMAL SONAR ARRAYS

INTRODUCTION

Large-area conformal arrays that can be mounted to the hull of a ship
offer unique tactical advantages over towed arrays. The performance of
such arrays is usually limited by self-noise and platform noise. In the
latter category, the noise induced by the turbulent boundary layer, located
near the hull, is a major concera.

Boundary layer turbulence produces a random pressure field that is
detected by the array as a noise source. This is the so-called direct path
for flow noise. This patk for flow noise exists more or less independently
of how the sensors are supported and whether or not they are point sensors
versus extended sensors. Flow noise degrades the signal-to-noise ratio but
can be reduced by using outer decoupler blankets that serve to attenuate
the turbulent boundary layer (TBL) pressure field. The use of extended
sensors to provide spatial filtering of the flow noise is also an
attractive way to diminish flow noise.

Secondary sources for flow-induced noise can also be significant. If
the structural support plate (SSP) is relatively lightweight and compliant,
then the TBL can induce flexure of the SSP, which then serves as a
secondary source of noise. This noise can enter the array via direct
flexure of the extended sensors or as acoustic noise radiated by the edges
of the SSP. The radiated component has been addressed by other
investigators [1-8). The former source, flexure induced into the sensors,

is the focus of this paper.

Manuscript approved 19 January 1993




iIIII’EIi'IIIIIIIIIIIIIIIIII.l.lIl.lllll.l.llll.........lllllIIIIIIIIIIlIl-Ii_______

NRL Memorandum Report 7175

The problem will be modeled as follows: the SSP, sensor array, and
outer decoupler (0D) are considered to constitute a curved, layered
shell with water on the 0D side and a vacuum on the SSP side. A backing of
a vacuum was chosen because it is simple to model and, in additionm, it
represents a worst-case scenario; i.e., the case in which the SSP is backed
by a pressure release baffle. The Corcos [9] model will be used for the
TBL pressure spectrum although the theoretical development is applicable to
any model of the wall pressure spectral density. This baseline model is
illustrated in Fig. 1. The formalism to be developed makes no presumptions
about the boundary conditions on the plate. Later we shall assume that the
edges are simply supported in order to illustrate a specific application.
Numerous analytical studies of shell and plate motion indicate that, for a
large shell or plate, simple supports usually give results that accurately
reflect the actual response of a plate supported in more complicated ways.
The fluid loading on the plate will be included by using a rather simple
model developed by Junger and Feit [10]. The validity of this model will
be established by comparing the in-water displacements so derived with the

more exact predictions of Sandman’s model [11].

TURBULENT FLOW

HYDROPHONES

Fig. 1 - Baseline Model
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ARRAY RESPONSE TO PLATE FLEXURE

Typically, the extended sensor array is situated on or very near the
SSP as shown in Fig. 2. If the plate flexes in response to an external
excitation the sensors will follow; therefore, poise will be generated.
The external excitation will also be detected by the array even if the
plate is rigid; this is the so-called direct path for flow noise discussed
earlier. In order to analyze only the flexural contribution, it will be

assumed that the sensors do not respond to the direct component.

Fig. 2 - Mechanism by which flexural noise
is induced into the array

The flexural response of a piezoelectric plate has been modeled by
Ricketts [12]. The relevant constitutive equatinns are

D

12 8

+C - by D (1a)

2 31 "3
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g = Cjg 8) * Cgp Sy - by Dy, (1b)
By = -hg) S; - hgp Sy + f33 D3, (1¢)

and
T,=T,=T;=0, (1d)

where T, S, E, and D represent stress, strain, electric field intensity,
asd electric displacement, respectively. The matrix components
s
c.., ﬂ33, and h, , are the elastic, dielectric, and pieszoelectric material
ij i

constants [13]. The superscripts indicate that the designated parameter is
held constant.

According to thin plate theory, the strains S1 and 82 are related to
the displacement of the plate as follows:

2 2
2w D w
S§. =-4d%32 and 8. =-d % (2)
1 sz 2 012 ’

where d is the distance from the sensor midplane to the neutral plane. S
and S2 are assumed to be constant through the thickness of the sensor
hydrophone and D3 is also constant through the thickness, as can be shown
by applying Gauss’ law to a dielectric. Consequently, E3 is constant
through the thickness and we can write

1

B, =

3 ’ (3)

o<

where V is the voltage between the electrodes and a is the thickness of the
sensor.

Assume that the hydrophones are electrically connected in parallel.
This is equivalent to steering the array to broadside. Typically,
piezoelectric sensars operate in an open circuit mode; hence, the total

charge QT appearing on the electrodes is gero. Therefore, since D

3

corresponds to the charge density, we can write
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! 1

N x‘ y-

%=Q=ZI1J1D3hdy, (4)

i=1 x; ¥,
where the integrals are performed over the lateral dimensions of
each sensor. N denotes the total number of sensors in the array.
Using Eq. (lc), we obtain

1 !
N X. Y.

h 8 1
Z J I (Yby, 8)+hyy S,) dx dy =0 . (5)

i=1 L T

The first term is independent of x and y; therefor=,

> I I Yaxgy-—2TLv, (©

where 1x and 1y are the lateral dimensions of an individual sensor.
Combining Eq. (5) with Eq. (8) we can write

]
Vg L | (b3 8;%bap 85) A (xuv) dx dy , (7
x Yy

where A (x,y) is an array senmsitivity function. For an array composed of

unshaded hydrophones we can write

A lx,y) = {1 if (x,y) is on a sensor
XY 0 if (x,y) is not on a sensor . (8)
Equation (7) gives the noise (in volts) that results from a flexural
response in terms of the strain components S1 and 82' If the external
excitation function is deterministic, then there will exist unique, well-

defined strains that can be computed with thin plate or shell theories. On
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the other hard, if the excitation is a random pressure field (such as TBL),
then the displacement and strains must be thought of as stochastic
variables, which can be represented by a probability distribution function.
In such cases the vo.tage induced intu the array will also be a distributed
variable. There‘.re, in order to properly assess the noise due to flexure,
one must account for the statistical nature of the excitation, which, in

our case, is the turbulent boundary layer.

Before proceeding with the development of a stochastic model, it is
convenient to express the noise sensed by the array in terms of an
equivalent-plane-wave pressure field. This will allow direct comparison of
flexural noise with ambient sea noise and other noise specifications. In a
free field environment the sensors operate in a hydrostatic mode. An
incoming plane wave of amplitude P will produce an electric field, E

3!
across the electrodes of a nonflexing senmsor of magnitude

E; = (833+*831*833) P» (®)

where €33 is the transverse piezoelectric constant, and 831 and B3, are the
lateral piezoelectric constants for a piezoelectric slab that is poled
through its thickness. Since E3 is constant through the thickness, the
voltage across the electrodes is V = Esa. Therefore,

V= (2g,)P , (10)

where g, = B33 * B3; * €39 is known as the hydrostatic g constant.
Equation (10) allows the noise, Eq. (7), to be expressed in terms of an

equivalent-plane-wave pressure field impinging on an array in the free
field.
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POWER SPECTRAL DENSITY FOR FLEXURAL NOISE

The spectral density OPP(N) for direct flow noise is typically computed
by the following relationship:

0 ) = jjdzk A EK0) E &) T Ew P, (11)

where A (:,is,u) is the array function steered to is; H(;,H) is the
bydrophone function; T (i,w) is the transfer function; and P(;,u) is

the wall pressure spectrum. The essential features of the derivation of
this relationship are derived in Blake [14] and other referemces [15-17].
This equation gives the noise level sensed by the thickness mode (3-3
mode); however, for flexure, the noise is induced via an extensional mode.
Therefore, Eq. (11) is not appropriate. Starting with the first principles
that govern random vibration theory, an analogous expression for flexural
noise can be derived. The result will be formally similar to BEq. (11), but

the interpretation of the component functions will be quite different.

The following derivation of the power spectral density employs the
notation and terminology found in Lin [18].

By combining Egqs. (7) and (10) we can express the equivalent pressure

P(t) = ﬁg;li‘“i‘ j'J (hgy Sy+hgo Sp) Alx,y) dx dy . (12)
X'y -

As indicated previously, the excitation field is random; therefore, the

array output voltage, and bence the equivalent-plane-wave pressure, must be

considered as random variables. The transverse displacement w and the

lateral straians 81 and 82 are also random variables. The power spectral

density for the equivalent-plane-wave pressure can be found by taking the
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Fourier transform of the corresponding correlation function Rpp (t,t') that

is defined as

R (t,t ) = E [P(t) P(t)] , (13)

where E [ ] indicates the expected value. Because P depends linearly

on S1 and S2, we obtain from Eq. (12)

2
No_ [ 1 2 f. 2_'[,2 st t
R (6,t) = [“Bh I 1,] 1:] d2r _.j 4% [h31 By s(FitF o) (14)
+ 1 2 +  +f 1 -+ +!
+ 2 h31 h32 Rslsgr,t,r 6 ) + h32 Rszsgr,t,r ,t )]A(r)A(r ),

vwhere 33151’ Rs s

and RS g » are the cross correlations on strains.
12 2

2

For example,

By s, F.e,F ,6) =E [8,F,0) 8,6 6] . (15)

1 t
Let h(;,; yt,t ) denote the impulse response function of the plate,

which is defined as the displacement of the plate at ;,t due to an

impulsive load given by

Pr(r,t) = 53-7) 6(t-t ) (18)

t )
that is applied at P ¢ . The principle of causality requires that

]
h(;, T ,t,t ) be gero when ¢t < t'. A general excitation can be represented

by s superposition of impulses; likewise, the displacement can be
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represented as a superposition_of impulse responses when the system is
linear. In addition, h will depend only on the difference t-t'. Thus, we

can write
t »! 1 1
wE& H=[arf[ EP e P, enrd, 0, (17)
° R
where P is the applied pressure and R is the region occupied by the plate.

The in-plane strains are, therefore,

2 t ' ' 1
s, =-a82c_afer [ [ b _@ 7, enpd . aw

Bx o R
and
+ 82' t 2 ! + ! »!
s, G, ©) =-d;y3=-d[°drjxjd r b @ F, eTPG, T, (19)

where hxx = Ozh/ﬂx2 and hyy = Bzh/ayz.

Using Egs. (18) and (19), the correlation functions for strains [18] can be

written as
1
> +! U 2t t o 2 21 + -
R3131 (r, t, r, t) =d Iodr Iodr IBI d“s IRI d“s hxx(r’ s, t-1)

(20)

N o - N t
'hxx(I‘,B,t-T)RPP(S,T;B,T),

where Rpp is the correlation on pressure. A similar expression is found

for 33132 and Rszsz. The cross spectral densities are obtained from the
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Fourier transforms of the correlation functions. For example, the cross

spectral density for S1 is given by

»t !

1 -+ +! '
0 o (T, W, T , W) = —T]] (G, &7, t)
8,8, (5 Ju 1u'8,8,

(21)

. exp-i(wt -wt ) ge dt .

Assuming the excitation to be weakly stationary, the correlation function
for the wall pressure will depend only on the temporal separation

t-t'. I- this case, it can be shown [18] that the correlation

functions for the responses also depend only on the temporal separation.
Subsequently, the cross spectral densities depend only on a single

frequency parameter. Thus, for stationary excitations, Egqs. (20) and

(21) may be combined to yield

I t !
SCENDR dzjnj'dz ;jn.jaz e, G, MELG 5 W

(22)
. PN
*H, , (r,s,w.
X X
Similarly,
+ ! 2 2 + ' !
455, (1 7.0 =4 jnjd sjn,jdzz o GE L w E G S, )
(23)
t ]
'n‘l 1 (;’;)u)i
Yy
where the frequency influence function H(;,;,u) is defined as
B (F, 3, w) = r b (3, 8, t) a2 qt (24)
ps 4

10

IR =
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and 0 is the Fourier transform of Rpp with respect to time. The

!
subscrzpta on H denote partial derivatives with respect to Torr.

For spatially homogeneous excitations, QPP will depend only on the
spatial separation. In this case, we can replace the integrands of Egs.

(22) and (23) by their spatial Fourier transforms to obtain

03151(;' W)= d2£ f vpﬁ(I, W) 6 &, E v)
(25)

ec, ¢, ¢t wdk,
X X

where
(&,w) = (%]2 r j 0 ( 25wyt kG-3) dG-2) ,

and (26)
J'Rj B, 35, v) o ks 423

cu(z, £, W

Similar expressions are obtained for Os s and ’S s .- The function
272 172
G (;,i,u) is called the sensitivity function. It represents

the structural response at point T when the excitation is harmonic,

having wave number £ and frequency v
For linear structures, Lin [18] and Strawderman [3] have shown that

the sensitivity function may be written as a superposition of normal modes.

Using the method of Lin, we obtain

11
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2 -
3%t _() .
€, (T k, w) = E :;; s (k) B (v) for TeR| ,

=1 (27)

0 for reR

where fm(;) = normal mode m for the plate in vacuo, and

5. (®) = | Inf. (3 ei‘;.; a%r. (28)

The frequency response of mode m, Kn(u), is defined as the modal
displacement of the panel when the excitation is a unit harmonic pressure
having wave numbers corresponding to mode m. The function Sl(i) is

commonly referred to as the modal shape function. From Bqs. (25) and

(27), we get
- 2, 4 o2.» !
' 3°t_(r) 3L _(r)
+ 2 2 m n *
¢ (r, r, w =d — ——a— H (w) H (w)
S, S 2 12
11 2.0 8x Bx m n
(28)
. I:j N O ERGEM) d% .
Similarly,
® 2 -+ 2 +!
' 0°f (r) 8% _(r )
* _ 42 E m n *
(30)

. I:I ¢ Gy s, @ s © a’k .

Eq. (29) also gives ’S g by replacing 8/3x with 8/0y.
272

12




1

R.E. MONTGOMERY

Equations (29) and (30) give the cross spectral densities for strains
in terms of the modal response of the structure and the wave number
frequency spectrum of the excitation. The power spectral density for

flexural noise can now be found by combining the Fourier transform of
Eq. (14) with Eqs. (29) and (30). Again invoking temporal stationarity,

the time Fourier transform of Eq. (14) yields

0 ) - {"Sh ] rf & [ [ & [hgl s, 2 0

(31)
" 2hyby g g G5 w0 + b2, 8 S5, @7 ,w)]A(r) AG) .
Combining Egs. (28), (30), and (31) we obtain
_ 2
¢ ) = {Ngh ] Zn ORAO! rj v &8 @) s &) %
2, 4 .2,
\ 3%t () 8% (2)
29 22 2 m n
. d d h 7
j_:f i ﬁf Tl T2 T2
(32)
o 8% (F) 0%t (r ) o
32 ay 5 —2 5 A(r)A(r) .
y
If ve define &, (u) = £ | v & oW s, @ s B d%, (33)

13
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2, .2 2 2
and a (&, 7)=hnd a—fﬂi-f-‘-‘-+h h g—f—,‘!—g—f-!
mn \T? 32 32 o 2 31732 5 727,02
(34)
3%s_ 0% 3%t 8%t
+ hyhgy —5 —7B5 + b3, —3 —F5 ,
ox“ By 3y By
then Eq. (32) can be written as
2
d * 2
) (u)r-[—-—} EH(U)H(H)Q (u)rdr
PP Ngh lxly -~ m n 7 Pen _.J
(35)

Ej P o (%, yAadad) .

Equation (35) is the central result of this paper. It provides the
formal connection between the wave number-frequency spectral density of the
excitation field and the power spectral density for the equivalent-plane-
wave pressure sensed by the array. This relationship is the analog of Eq.
(11), the formula that is used for direct path flow noise. The term @_in
Eq. (35) is the analog of the term P(i,u) in Bq. (11). It accounts for"Ethe
spectrum of the excitation field through the relationship givean by Eq. (33),
where 'pp is identical to P(i,v). The last term in Eq. (35) is the analog
of the product of the array and hydrophone functions in Eq. (11). This term
accounts for the size and location of the sensors in the array. The terms
Hn(u) and H;(H), called frequency response functions (FRF), are not found in
Eq. (11). These terms account for the modal response of the plate to a
harmonic excitation; that is, the response to each modal component of
pressure in the spectrum of the excitatiou field. The FRF carries
information about the material properties of the plate as well as the
effects of water loading and intermodal coupling.

The double sum over modes in Eq. (35) can be thought of as representing
a type of intermodal coupling. Thus, one could have two types of intermodal
coupling: (1) via the water loading on the plate, and (2) via the off-

14
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diagonal terms in Eq. (35). These off-diagonal terms arise from cross-
correlations of normal mode strains.

THE FREQUENCY RESPONSE FUNCTION

The modal frequency response function Hm(u) can be found by solving for
the steady state motion of the system when a unit-amplitude, harmonic-
generalized force in mode m is applied. For a rectangular isotropic thin
plate, simply supported and fluid loaded on one side, Lin [18] derives the
following frequency response function:

2

4 2 2 2
i (w) = D[k + k ] - pw
] Lx Ly L y

4 (38)
ip, w
- d s B = (”xon )
W2 -2 o8 ’
a m m,

where Lx and Ly are the plate dimensions, p is the mass per unit area of
the plate, D is the plate flexural rigidity, ka is the acoustic wave

number, and Py is the density of the fluid. The modal wave numbers are

given by
m ¥
km=L——,mx=0, 1, 2,
X x
and (37)
k my
ny= ix— my =0, 1, 2,
y

Equation (38) provides a good model for the frequency response function

when the mass and stiffness of the isotropic support plate is much greater

15
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than those of the sensors and the outer decoupler. When the support plate

is orthotropic, and/or comparable in mass and stiffness to the other

components, then the eatire structure must be thought of as a composite

layered plate or shell. In such cases, the frequency response function may
be obtained using the Donnel shell theory as generalised by Dong {18] to
include layered shells.

Consider an open shell of N layers as shown in Fig. 3. The boundaries
of the shell are defined as x=0, 6=0 and X=X, 9=0°. The radius of the
shell is R. Each layer is homogenous and isotropic. The stress-strain
relationship for the kth layer is

r k 4 k k Y r 4
ax( ) ( A§1) A§2) 0 Ex
5o® | = [AE @ 0 € (38)
k k
\ sz ) J \ 0 0 Aés) J \ 1x0 J »
with
N O
T
G B g®
A B (39)
12 . V(k)z
and y
A(k) _ E( )

where E and v represent Young's modulus and Poisson’s ratio.

16
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-
Z
= T2

\

SURFACE

o '_’“

Fig. 3 - Composite shell model

Evaluation of the force-resultant and moment-resultant integrals
requires piecewise integration through the thickness. The resulting

equations of motion are

v L
[r} v = % ? (40)
v Y
where [[] is a differential operator matrix given by
2 C 2 2
] 66 8 [0
r,, =¢6 + -p 5 (41a)
11 11 8x2 n2 682 atz '
2 C 2 2
2 22 3 o
r =0 ot == =5 - p (41b)
22 66 ax2 R2 692 81:.2 !
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4 4 D, .4
3t 2 3 22 3
Ton = |D.. =— + £ ID__+2D + (41¢)
33 [ 11,4 " ;2 [ 12 ee) ox? 002 g* 368
*
. 2 [D* i R L B
B 112 a2 " g2 g2 g2 P52
C, ~+C 2
_ (C12*C%¢) 3
T2 =Ty =% 35295 (41d)
c 3 op* 3
Fy3 =Tg = - 52 %:E‘Dhaa“{nh gs] 52 (41e)
a R 8xo0d
and
c D}, .3 3
22 8 Dog g 1 (s %1 B
Tpg =T, =-—22 8. 228" 1w o 418)
2377327732 8" 3.3k [12 ss] 22 25’ (
where
N
* - E (k)
[clJ’ ij? 13] 4 Al] {(zk 1) 2 [zk“zk—l]’
=1
(42)

N
P = Z Py [zk‘zk-J : (43)

18
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and Py = Volume density of layer k, R = Shell radius, p = Area density of

the composite plate and q, qy q, are surface loads (pressures). All edges
are assumed to be supported by shear diaphragms; i.e.,

#
=
L1}
o

along x = 0 and x (44)

[
L
<

"
|

ft

O and N
x

and

0 and Ny = My =0 . (45)

O and 8

"
L)
[
]
4
"

along §

These boundary conditions are satisfied exactly by choosing displacement

functions as follows
u=u_e jut cos (As) sin (nf) ,

v=v e jut sin (As) cos (nf) , (46)

and

= jut
w=w e
o

sin (As) sin (nf) ,
where u is the displacement in the x direction, v the displacement in the §
direction, and w the displacement in the s direction. Also, s is defined

as x/R and

» =R po0,1,2
Q
(47)
n =& k=0,1,2
[o]
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In general n is not an integer. The index k is one more than the number of
longitudinal node lines along the shell.

Inserting Eq. (48) into Eq. (41), we obtain

2 6 2 2
rll = - C11 A° - ;5— n” o+ pu” (48a)
2 %1 2 2
[..=D A4+-2—[n m]xz 2 , Dy 4
33 © “11 g2 V127786 B R a
p? C
2 2 Dy o 11 2
‘i{";z" *""5*‘}*—5'" » (48¢)
R R
(C + C ]
12 * Cgg
¢ 2%
S, . 3 « Dgg] o
r13 = 3 A Dll AV« [Dlzwx-i-] An°, (48e)
and
r Jiu _2;-1- 3.1[9‘ +2n"]x2 481)
23=32 * "33 ° & P12 n, (
writing
ay =- Ty 49 = Tyg
%92 =~ Tgg 03 =-Ty3 (49)
33 =T33 %3 = = Tog |

The resonance frequencies of the shell can be found by solving
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%11 %12 %13
T Sop Ugg = 0. (50)
%13 %23 %33

Model Verification

The natural frequencies of a closed, two-layered cylindrical shell were
computed from Eq. (50). The results are identical to Dong’s results [18]
when the reference surface is taken to be the neutral fiber.

The resonance frequencies of various open shells of one layer of
isotropic material have been computed and compared to the Donnel-Mushtari
model values reported by Leissa [20]. A partial comparison, Table 1, shows
excellent agreement with the Donnel-Mushtari model for a single-layered,
isotropic open shell.
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Table 1 - Lowest Resonances of a Single Layer Open Shell [20]

xOI/mR Computed Resonance (Hz) Leissa (Hz)
n=1/3
0.10 14,27821 14,2782
0.25 2.471323 2.47132
1.00 0.9465441 0.946544
4.00 0.422183 0.422183
20.00 5.1433217E-02 5.14333E-02
100.00 2.6873313E-03 2.688290E-03
a=1/2
0.10 14.28020 14.2802
0.25 2.472818 2.47281
1.00 0.9308990 0.930899
4.00 0.3814158 .0381418
20.00 3.6844123E-02 3.88447E-02
100.00 2.33681256E-03 2.32640E-03
n=2/3
0.10 14.28297 14.2830
0.25 2.47491 2.47491
1.00 0.9103304 0.810330
4.00 0.3378275 0.337827
20.00 2.7429942E-02 2.74266E-02
100.00 3.7624016E-03 3.74949E-03

The results given in Table 1
published results that are known

show that the model is consistent with
to be valid for thin plate or shell
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applications. The key question is whether or not the model provides a good
representation of a typical support plate/sensor array/outer decoupler for
a practical sonar array. An illustrative example, to be discussed further
in a subsequent section of this report, consists of a 0.0254m thick
cylindrical steel shell overlayed with a 0.0508m thick elastomer blanket.
The lateral dimensions are Lx = 4m and Ly = 2m. The radius of curvature of
the shell is 5.2 m. The frequency range of interest is 1 kHz to 10 kHz.

The material parameters are

1.0¢10 Pa ¥ =0.40 p = 1200 kg/a°

Elastomer layer: E

2.1x101!

Steel support: E Pa v =0.3 p = 7900 kg/m3 .

Many resonances are found in the frequency range of 1 kHz to 10 kHz as
shown in Fig. 4. The same computation has been performed for a flat plate
having the same size as the structure of interest. Figure 5 shows a
comparison of the results for the flat plate and the shallow shell. The
differences are significant only for modes having B < 17 and m_ < S.

These modes are below 1 kHz; so, to simplify the model, the curvature of
the shell can be neglected. The same conclusions were found to be true for
a fiberglass support plate.

3000
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2 A, 1. l ! vy 1 JA_J
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A

Fig. 4 - Modes of a shallow shell
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As reported by Dong [19], the shallow shell model can be converted to a
~ flat plate model by making the following transpositions:

R+ e»
6,% 0 (51)

RGO » Ly’ the length along curved edge.

The equation of motion Eq. (40) now becomes

F33 .w=gq , (52)
with

k° -~ pw” , (53)
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and
L
km =i B = 0,1, 2, ..
x x
o T . =0,1, 2, (54

For a single layer of isotropic material these equations reduce to the

classical equation of motion for a thin rectangular plate.

Validity of the Thin Plate Assumption

A general criteria for the range of validity of a thir plate model does
not exist. The critical frequency proposed by Junger and Feit [10] for a
0.0254-mm thick steel plate is f = 8008 Hz, and even higher for a
fiberglass plate. Therefore, a thin plate approximation would seem to be
valid below about 8 kHz.

Water Loading and Driving Force

Let % denote the forcing function, and let P& represent the acoustic
pressure created in the fluid by the plate motion. Equation (52) becomes

T33 v =gqp - Pa' (85)

We assume that w can be expressed as a sum of in vacuo eigenvectors

w= Zl lenx-y sin [kmxx] sin [kﬂyy] . (586)
X y

Similarly, % and Pn can be expressed as:
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4 = :EE;I :z;:=1 qumy sin (kmxx] sin [kmyy] , (57)
X y

and

P = Zl Zﬂy=lexny sin [knxx] sin {kmyy} (58)
x

to obtain a linear set of equations.

Modal Decomposition of the Forcing Function

The forcing function used in flow noise computation is usually a wall
pressure spectrum. The amplitude 9 depends on the particular model used
to represent the spectrum. A given wave number component is equivalent to
a forcing function that can be expressed as

9 = g sin (k x) sin (kyy) - (59)

Following Timoshenko and Woinowsky-Krieger [21], a modal component of
. I Eq. (57), can be obtained by
xy

L. L
4 X,y o [a ) (m oy
qumy = E;f; jo fO % (x,y) sin [ :x ] sin Lﬁ%r} dxdy . (60)

Water Loading Effect

This problem has been studied by many authors [22-26]. Most of the
available models have been summarized by Leibowite [27]. The major
complication arising from water loading is that the orthogonal in vacuo
eigenmodes become intercoupled by the water loading. That is, the
interaction of the fluid and plate is a function of all the modes.
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We shall adopt the Junger and Feit model as described by Leibowitz
[27]); this model was developed for symmetric modes of the plate. However,
the analytical result is valid for both symmetric and antisymmetric modes

(Leibowits [27], Table 1).

The Junger and Feit model for the water loading can be decomposed into
modal components in the same way as was done for an externally applied
pressure {Eq. (60)]. The result for mode (m,n) is

P =iv E LIS (81)
Pq

pukmkn(-l)“'*nz
- m_n _1)P*a
I 3 Pk

Pq (62)

. J J Cos® Tl Cos? 7yI"yd7xd7y
/2
«  [erZa?) " (k2n?) (B2 (kB2 (124

= [rnnpq - i"mnnpq] LxLy /4

and

(63)

By examination of Eq. (61) we see that each mode (m,n) is coupled to all of

the other modes via the term Imnpq'
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Cross Coupling

Leibowitz [27] has shown that the cross coupling terms are much smaller
than the self-impedance components when kaLx and kaLy >3, which for wlw
is equivalent to kmix and km?y »>>1 (the thin plate criteria). Here ka is
the acoustic wave number w/c. This criteria is satisfied for the SSP over
the frequency band of interest. Moreover, Sandman [11] has shown that when
moderate structural damping is included, the cross coupling terms are
negligible. For reassurance, cross coupling terms were computed
numerically and were found to be negligible for the problem of interest.

Approximate Water Loading

VWhen cross terms are negligible, as is the case for the SSP, the
equivalent modal pressure on the plate can be expressed as [10]

.2
~ 1hg W 'hxgy
~ (64)

By [EE e ’

a mx my

By

where Pg is the density of water and k, is the acoustic wave number.

As a final check on this approximation, some typical modes were
computed and the results compared to the more exact results obtained by
numerical integration of BEq. (62). A representative comparison is shown in
Table 2 for 8 kHz, where the agreement is expected to be the worst. The
differences between the approximate values and the exact values are found
to lead to errors of no more than 1 dB in the final result.
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Table 2 - Water Loading: Comparison of Approximate
and Exact Methods

Frequency = 8000 Hs

I Approximate Exact
magr *is/m) (Ns/a)

7 7 . 6
L SR 1.388x10 (1.357x107 - j 1.666x10°)
I 7.687x10" (5.208x107 - j 2.671x107)
20 20 20 20 . : . .
I §5.222x10 (2.160x10° + j 4.963x10°)
21 21 21 21 . ’ .
Lso 30 30 30 j1.253x10 (3.281x10° + j 1.182x107)

Flexural Response of the SSP

Substituting Egs. (83), (56), (57), and (84) into Eq. (55) leads to an
infinite set of uncoupled equations

8 .6 2.2 2
D1y [km x*“n] + 2 (Dy5+2 Dgg) "nkay' pw

b £
(65)
ipf 02
- ) = -P
J kz ~ kz B kz ﬂxﬂy q.x-y Dxﬂ’
a m ny

The total displacement can then be found by summing over modes, as

w = :EE: ::E: w, o Sin [knxx] sin [knyy] . (66)

29




NRL Memorandum Report 7175

In practice, the response needs to be determined for only a finite number

of modes as follows:

w= Z Z v _ sin [kmxx] sin [knyy] : (67)

M. N. xy

The minimum and maximum values must be chosen to include all the modes that
contribute to the response of the plate in the frequency range of interest.

In order to assess reasonable values of “max and Nmax' a numerical
analysis was performed on a prototypical SSP subjected to a harmonic

excitation. The following material properties were assumed:
Elastomer layer: E = 1.0!106 Pa v=0.40 p=1200 kg/m3
= 11 = 3
Steel support: E=2.1x10""Pa v =0.3 p = 7800 kg/m

The forcing function was taken as

.

P = sin kxx eJ't , (88)

1 and £ =% - 1500 Bs .

where kx =25 m = 57

The computed normal displacement is shown in Figs. 6 and 7, taking into
account the 10, 73, and 886 modes that most contribute to the radiation
impedance. In this case, the radiation impedance has been computed
numerically using Sandman’s technique. It appears that about 73 modes are
required to model the essentials of the flexural response of the SSP. The
modes that make the largest contributions are those that have both resonant
frequencies and wave numbers that nearly match the excitation. It appears
possible to obtain an accurate descr:~tion of the flexure by keeping only
the modes having relative contributions higher than one percent.
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Fig. 6. - The normal displacement of the plate
at y = 1.065 n computed with varying numbers of modes
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Fig 7. - The normal displacement of the plate computed
at x = 2.13 m with varying numbers of modes
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Finally, the flexural response as computed with the radiation impedance
from Sandman’s [11] numerical technique was compared to a similar result
using Junger and Feit’s [10] approximate formula. Figures 8 and 9 compare
the results of these two methods for two representative sections through
the plate; one parallel to the x axis, the other parallel to the y axis.
The two methods give essentially the same results; i.e., the differences
are less than the resolution of the plots. These results support the use
of the simpler Junger and Feit expression for the purposes of modeling the
TBL excitation of the SSP. The additional developments that follow will
assume the Junger and Feit model is being employed; however, these could be
generaliged in a straightforward way to include Sandman’s model for the
water loading. Modal coupling, should it be important, could also be

accommodated, but the numerical computations would become much more

difficult.
_ 1.5 : T T T T T T T rm E
g'x.oE-MMMn“ﬂ!Mﬂ f
S o.sﬁ 1
S ool _
R A A
Y o e

X COORDINATE OF PLATE (M)

Fig. 8 - The normal displacement at y = 1.065 m computed
with the Junger and Feit radiation term, compared
with the more exact expression of Sandman
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Fig. 9 - The normal displacement at x = 2,13 m computed
with the Junger and Feit radiation terms, compared
with the more exact expression of Sandman

Recall from the structure of Eq. (35) that the double summation over
modes introduces an additional type of modal coupling into the problem.

Thus, one could have two types of modal coupling: (1) via the water

loading on the plate, and (2) via the double summation in Eq. (35) which

arises from crosscorrelations between modes. We bave argued above that the
first kind of modal coupling is negligible for our problem. We shall see

that the second kind is also negligible.

The Modal Frequency Response Function

The frequency response function Hn (w) is, by definition, the complex

modal amplitude LA when the applied excitation is a upit modal force [18]
given by
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B_ TX n_ Ty
=T 4L sin =— sin —L— . (89)
x 'y x y

The first factor serves only as a convenient normalisation factor. For

a composite panel, fluid loaded on one face, pressure-released on the other

face, we have already shown the following relationship between modal force
and modal displacement [see Eq. (65)]:

4 .4 2 .2
Dy {km a ] .2 [”12*2“55] 2 ok

x 'y x By
(70)
2 ipf v
- 3 5 o oo " %am
}k—k -k xy
a m m
x y
So, for the excitation of Eq. (89), Uag = L4 i - Therefore, by
X'y x 'y
definition of FRF, we have

_ 4 .4 2 .2

B,(w) = |D,, [km ey ] +2 [”12*2D66J L

x Yy x
(71)
. -1
2 _ ¥ 4
T L. L
sz Y x 'y
a m m
X Yy

THE ARRAY FILTER FUNCTION

As derived previously, the eigenfunctions for a plate of dimension Lx
and Ly are
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- mxfx m Ty
£ (r) = sin %— sin -IE——— , (72)
n x y

where m represents a pair of modal indices (mx, my) that take on integral

values from 1 to ». From Eq. (34) we have

s+ _[2 2 .2 2 2 .2 .2
amn(r’ r)= [h31 km kn * h31 h32[kn kn * km kn ]
X x X Yy Yy X
]
+ b2, k:y kﬁy] £ Mt G) (73)

_ 2 2 2 2 - +!
B [h31 knx * h32 kmy][hSI knx * h32 kny] fn (r) fn =) .

¥e can perform the integration over a single sensor located in region Ri €

(xi, Y5 x'i, y'i) obtaining

2 2! _ 2 2 2 2
ij d"r IB[ d%r %o = [h31 kn * h32 kn ][hSI kn * h32 xn ]
i i x Y x Yy

t
cos kn x; - cos km xg cos km y; - cos kn Ys
X p 4 - X X Y - Y (74)
L LS
1 [}
cos kn x; - cos kn x; cos kn y; - cos kn Y3
X x x X Y Y
kn kn
X y

By summing over all regions Ri occupied by sensors we obtain the total

array filter function.
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THE MODAL SPECTRAL DENSITY OF THE EXCITATION

Before evaluating Op (w) it will first be necessary to evaluate the
mn
form factors Sn(i), which are the Fourier transforms of the mode shapes;

i.e,,

IA£ SR [ %) si= [kmyy] dx dy , (75)

w
~~

Lahd
~

"

where Ap denotes integration over the surface of the composite SSP. This

integration can easily be done by parts, yielding

ko {1 - exp[ -1k Ly my ]]} k, {1 - exP[—i(kyLy-ny )]}
s, (k) = = .

(76)

The power spectral density of the excitation ’pp (i, w) will
be represented by the Corcos [9] model

P (0) [s, « o 2]

R = 3 [P P L i o P

where kc g u/Uc and Uc is the convection velocity. In additionm,

POW) =3, (1e7) g3 Vi fu,

where Py is the water density and V‘ is the friction velocity. The other

terns a_, 7, Xy, and a, are empirically determined constants.

We shall first evaluate the diagonal terms of ’p (w); that
mn
is, those terms for which m = n. In this case, we can combine Egqs. (33),
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(78), and (77) to obtain

’pm(v) = fpnx(w) ﬁpmy(v) p (k) , (78)
where
" ] k:x [1 - cos (e, 1, - m 1)) ak,
¢ (W) =2 ERVRY 3 31 (79)
pmx - [kx - kmx] [[kx = kc] * [al kc] ]
. I kiy [1 - cos [ky Ly - l’l)] dk’ (
w) =2 , 80)
2 .22 [.2 2
P ln {ky - k-y] [ [ep 1] ]
aad a, « k2
p(ky) = P(O,4) 1—'.3,—-9 (81)
Consider Eq. (79). This integral can be written as
2 kf [1 - ei[ZLx - .x') dz
¢ () = Real r X ,  (82)
Pa_ e [z-k.x]z[z«,k-x]z |2-k_(1+ia)) ] |2-k_(1-10))]

where the variable of the integration has been replaced by complex number
Z. This integral may be evaluated using the contour shown in Fig. 10a.

The numerator has been replaced by the real part of an exponential in order
to avoid a pole where the C, contour intersects the imaginary axis. There

are simple poles at -k. and + k. , and a second-order pole at
x x

Z=kc(1 + ill). Using the theorem of residues, we find the following

results:
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{

2

] (#) = Real {2r k 3
P 2 ST 22
- x @k {kc (14 ) k-x]

1 -expi [kc Lx (1+ia1] - mxf]

X \
(83)

AT R B R

The expression for fp (w) can be evaluated in a similar fashion, the only

difference being that the second order pole will be located on the

imaginary axis. The result is

l-exp |-« L | cosm¥x
$ W) =20kl [,‘;"lg ]2 X
P m czk[ k+k]

=, y o k.
(84)
rL
T2 g 2] -
[kn * [(2 kc] ]
y
This completes the evaluation of fp (v) for the diagonal terms m = n.
mn
The analogous expressions for the off-diagonal terms (m # n) are
SECETNORNOF RN (85)
n x 4
where
[7 ot (kax-'x’]][l - ei(kxbx’nx')]dk
(86)

RN x| IS CYYYL

and
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- !. [1 _ & (kyLy-my')][l _ ei(kyLy'nyf ]dk’
m_n

= 2 .2 1(.2 .2 112 2]
Po, Py %y ’s [ky-kuy] [ky—kny] [x’ v (2%

(87)

These expressions are similar to the previous ones except that there
are now four simple poles on the real axis (see Fig. 10b), and the off-axis

poles are now simple poles. The evaluation is straightforward if one

writes the numerator as 1 + ei[mx-nxJ' -ei(kax‘nx’ -Ei(kax"x'j.

The first three terms may be integrated using the upper contour in Fig.
10b, whereas the fourth term may be integrated using the lower contour.
The results will not be presented because they are at least two orders of
magnitude smaller than the diagonal terms for the problem of interest.
This is to be expected, for upon examination of Eq. (33) it is seen that

when 'pp(:,u) is a slowly varying function of 4 (as coapared to S. and Sn),

then the contributions from the orthogonal foram factors S- and 3; tend to
cancel upon integration. Thus, the cross terms are negligible except when
annd Ly are so amall that SIl and 8n vary as slowly as Qpp(i,u). Even if

this were not the case, the off-diagonal terms in the array filter function
are small for the problem of interest. A numerical study of the off-
diagonal terms indicates that they are typically eight orders of magnitude
smaller than the diagonal terms. The largest contributions from off the

diagonal are terms for which three of the indices L ly, n_, and ny are

x’
equal, and the fourth index is only slightly different from the others. 1In
such cases, the off-diagonal contribution is at least two orders of

magnitude smaller than the diagonal terms.
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(a)

Fig. 10 (b) - Contour of integration for Eq. (88)

Now consider the product Bn(u) H;(u). The diagonal terms have peaks at
frequencies where the real part of the FRF goes to zero. Fig. 11 shows sonme
cases for light damping. At the FRF resonance frequencies the major
contribution to the modal sum comes from only one mode. In the case of
heavy damping the  of these resonances is greatly reduced; thus, more than
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one mode may contribute. BEven so, the number of modes that need to be
retained is not large because only nearest neighbors contribute at that
frequency. For example, as seen from Fig 11, it is evident that to compute
OPP(U) at about 1.25 kHz one needs only to retain mod-. that have indices
clustered about mode mo=m =n = ny = 12. Exclusion of the other modes

y x
greatly reduces the computational complexity of Eq. (33).

10

menei2

meawts

.0001

4 5 s -7 ] ) 10
FREQUENCY (kHi)

Fig. 11 - Frequency response function for
several modes for which m = n

A representative plot of off-diagonal terms !!n(u) H;(U) is presented in
Fig. 12. It is seen that the off-diagonal terms may have peaks at an FRF
resonance frequency, but the amplitudes of the off-diagonal terms are still
at least one order of magnitude smaller than the diagonal terms.
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Fig. 12 - Comparison of FRF diagonal terms
with FRF off-diagonal terms

NUMERICAL PROCEDURES

Because the largest values of the product H;(w) H;(u) occur at the
resonances of the FRF, an upper bound on Q(w) can be found by evaluating
Eq. (35) at those frequencies alone. Only a few modes about each resonance
need to be retained in the summation. Additionally, the off-diagonal
contributions of each term in Eq. (35) are at least two orders of magnitude
less than the diagonal terms. Therefore, the product

*
EORNCKNEO [ [ o, axdy (88)
is at least six orders of magnitude less for m # n, than for m = n.

Therefore, no off-diagonal terms need to be retained.

The following procedure was used to evaluate Eq. (33). First, the

resonances of the FRF in the frequency range of interest were determined.

There are about 20 such resonances for the cases studied. For each of
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these resonant frequencies ¢ p(u) was computed by summing over 100 of the

nearest neighbor diagonal terms. Some results and conclusions follow.

RESULTS

- As iudicated previously, the spectral demsity Q;p(w) represents the
equivalent-plane-wave pressure sensed by the array. In this form Q(w) can

! be directly compared to sea states and also to specifications for flow
noise. Three specific casesz have been studied numerically. All three
cases are dual layer laminations consisting of a SSP and an elastomer of
0.051 m (the OD). The stiffness and mass of the sensor are not included.
This is done to obtain relative comparisons that do not depend on the
specific properties of the sensor. Thus, the three cases differ only in
terms of the properties of the SSP. Figure 13 shows the results for a
0.0254 m steel SSP and a 0.0191 m glass fiber plate. Two values of loss
tangent were used for the glass fiber SSP to show the influence of damping.
The smaller value is more representative of practical materials.

60.0
0.0~
5 40.0 |-
N§ 30.0 r— e,
2 ' —~
=
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3 10.0
Q.
a.
@
’ 0.00
-10.0
_20.0 1 i I 1 1 1> 4 3
1.0 10.0

FREQUENCY (kHz)

Fig. 13 - Spectral density for flexural noise induced
into support plates of various compositions
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CONCLUSIONS

The results indicate that a 0.0254 m steel SSP of light damping and a
0.191 m glass fiber SSP of heavy damping will both perform satisfactorily.
However, the glass fiber SSP with light damping may exceed many flow noise
specifications. It is also seen that flexural noise rises as frequency
decreases. Therefore, flexural noise arising from TBL excitations must be

congidered if the array is to be used at lower frequencies.

The results presented here do not account for sensor material
properties or for the effects of the inner decoupler (ID). This was done
for two reasons. First, the properties of the sensor and inner decoupler
vary with array performance requirements. In addition, it was comsidered
prudent to first exercise the model for a worst-case scenario in order to
determine the severity of a potential noise source. The added stiffness,
mass, and damping contributed by the sensor and the ID will lower the

predicted noise levels. Therefore, the results represent upper limits on

flexural noise for the various types of SSP’s. Inclusion of the sensor in
the analysis is a straightforward process if its properties are known.
However, to include the ID, more analytical development will be required.

One can draw a number of conclusions about flexural noise from an
examination of Eqs. (64), (67), and (73) without actually performing

numerical computations. To minimise flexural noise, one should:

* Minimige d, the distance from the midplane of the SSP to the mid
plane of the semnsor.

* Maximige sh/hl2 and gh/h13’ the ratios of the hydrostatic sensitivity
to the lateral sensitivities.

¢ Maximige the number of sensors in the array and the lateral
dimensicns of the SSP.
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e Minimige the gap between sensors. We -ee from Eq. (67) that if the
g3ps were closed in at least one dimension, then there would be
essentially no noise due to flexure of the sensors. However, noise
would still be radiated into the water by the edges of the SSP.

* Locate the neutral axis of the flexure at the midplane of the sensor.
For example, the piegorubber or Polyvinlidene deflouride (PVDF) type
sensors could be mounted on both sides of the SSP. Then, their
flexural responses would cancel. However, other noise sources such
as direct path flow noise and hull noise would be enhanced by such a
design.

SUMMARY

Large-area, hull-mounted conformal sonar arrays are evolving in the
direction of less weight and reduced hull standoff. These new array
designs employ lightweight, flexible, planar sensors and lightweight
support plates. Increased levels of flow-induced flexural noise may be one
undesirable consequence of replacing heavier, stiffer components with
lightweight, flexible components. Models exist for the radiated component
of flexural noise. In this report, a model is developed that accounts for
a heretofore neglected flexural noise mechanism; i.e., direct coupling of
the flexure with the lateral displacement of a planar sensor. The
development of the model was presented for piezoelectric semnsors such as
rubber-lead titanate composites and PVDF; however, the development could be
adapted to consider other sensor types such as fiber optic sensors. The
expression derived for the spectral density arising from this model [Eq.
(35)] has terms of which some are analogous to the expression for the
direct path spectral demsity [Eq. (11)]. On the other hand, some terms in
Eq. (35) are unique; these account for the modal response of the plate and
intermodal coupling arising from fluid loading as well as cross-modal
correlations.

Some perspectives on the model, and its implementation, were presented
for one particular array configuration that approximates arrays of
practical interest. The support plate with sensors and inner decoupler was
represented as a thin, finite, composite plate, water loaded on the sensor
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side and pressure relieved on the opposite face. The water loading was
modeled with an approximate expression derived by Junger and Feit [10].
The validity of these assumptions and approximations was demonstrated by
comparing the approximated resonances and displacements with values

obtained by more exact models.

An exact analytical "expression for the spectral density of flexural -
noise was derived for the case where the random excitation field is
characterized by the Corcos model. In general, this expression involves a
quadruple summation, each to infinity, over the normal modes of the plate.
However, it was shown that only a few modes need to be included for each
frequency of interest. Therefore, the model is easily tractable for

practical applications.

Finally, the sensitivity of the spectral demsity to various array
parameters was presented. The parameters of influence include the
piezoelectric constants of the sensors, the semnsor standoff distance, the
material constants of the support plate, and the size and spacing

characteristics of the array.

Most of the limiting assumptions of the model could be addressed
without modifying the basic approach. For example, if the assumption of a
pressure-release backing to the support plate is not valid for a given
application, then one could employ a boundary condition that specifies a
known impedance which might represent, for example, an ID placed between
the support plate and the hull of the ship. Another limiting assumption is
that the structure behaves as a thin plate. This assumption manifests
itself in the model via the relationships between lateral strains and the
normal displacement [Eq. (2)]. This limitation may be removed by replacing
Eq. (2) with analogous expressions obtained from thick plate theory.

The results of this report provide an analytical approach and a
mathematical expression for the noise induced in an array of extended
sensors that derives from the ccupling of the lateral sensitivity of the

sensor to the flexure of the support structure.
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