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Abstract. For a maximally decimated nonuniform filter bank. the perfect reconstruction

(PR) property is equivalent to biorthonormality. We start from this result and derive a number of

properties of PR filter banks. For example, no two integer decimnators in a biorthonornmal systern

can be coprime; moreover if all analysis and synthesis filters have unit energy, theni perfect recon-

struction is equivalent to orthonormality. We also generafize the Nyqiiist and power coniplementary

properties of orthonormal filter banks, for the biorthonormal case, We then show that whenever thie

decimation ratios are such that biorthonormality is possible with rational filters, it is in particular

possible to obtain orthonormality with rational filters. This is done by developing an orthonornial-

ization procedure. While reminiscent of the Gram-Schmidt approach, the procedure converges in

a finite number of steps and furthermore preserv-s the filter-bank like form of the basis functions.

We then modify the orthonormalization procedure for the appfication of subband decorrelation.

It will be demonstrated that mere decorrelation of subband signals does not necessarily optimize

the coding gain of a system. Finally we consider the problem of alias cancellation, and obtain a

generalization of a previously known necessary condition called compatibilitv.
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1. INTRODUCTION

Fig. 1(a) shows an M channel filter bank with integer decimation ratios lik. Ihe inputl signal r(")

is split into M signals which are passed through the analysis filters 1Ho(z). 111(z) .... _ H ,-:j

and decimated by nk (integers) for k = 0. 1 ,....M - 1. At the synthesi., end. these signals

are expandeded, passed through synthesis filters 1j)(z), t'(z).. F. -(z) and added. \\Whc.n

i(n) = ex(n - no), this system achieves perfect reconstruction (PR). In this paper tho PR proprty

corresponds only to i(n) = x(n), as this eliminates some inconvenient notations willhour much loss

of generality.

When Zk 1/nk = 1. we have a maximally decimated filter bank. A special casv is when

nk = M for all k. We call it the uniform filter bank. Every nonuniform maximally decimated filter

bank can be equivalently represented by a "larger" uniform "1ter bank as in Fig. l(bh (see [1]. 112

and [3]). The theory of uniform fi!ter banks is well developed and such a systeni is shown in Fig.

2(a). The analysis and synthesis fil:ers can be expressed in polyphase form as

M-1 A A-1

Ijdz) Z- Eik(Zl ) and F,(z)= E : kRk,(Z'"f (1.)
k=O k=0

With each filter rei s:ýented like this, the system can be drawn as in Fig. 2(b) where E(z) and

R(z) are. respectively, the polyphase matrices of the analysis and synthesis banks. This system

has the PR property "1(n) = x(n) if and only if R(z) = E-'(z). There are different ways to design

a uniform filter bank that achieves PR. so the existence of rational filters (i.e.. transfer functions

which are ratios of two polynomials) satisfying the PR property is trivially guaranteed. But in the

nonuniform case, it is not always possible to achieve PR with rational filters [I] (block decimation

[3] is not considered in this paper). Notice, however, that ideal filters (non rational, with possibly

complex impulse response) can always be found such that the PR property holds for any set {nIk}

satisfying -k l/nk = 1. So, whenever we discuss existence of PR systems, the discussion pertains

only to rational filters.

A set of necessary and sufficient conditions on the set {nk} for PR to be possible is not known.

On the other hand. we know some sufficient conditions. If the numbers {nk } are coming from a



tree structure. for example, then we can have PH with rational filters [4], [ Not all dcitnatioli

ratios allowing PR, allow it with a tree structure. tl'or exarnple consider .\ = 23 and lie smt

f{6. !0, 1 -. ')o..... 3ol.

20 1 iilles

This set satisfies satisfies k= ln1k = 1. The lilters that achieve PR are tt,( 1z) I)= Z-1

where theset ofl,'s is 4O, .2,3.4,5,7.8.9. 10, 13. 14. 15, 16. 1),, 20.22.23.2") .2".27- 2.2,). [or thils

note that the output of the ith decimator is x(not, - !, ). \Ve want mverv input sam pli, to "0 througlh

one and only one branch. which is equivalent to sayvirg that nin, - I, k Kul - I, for $ j aid

"q.fy choir- of tit and k. On the ,thcr haiid, sl;ý,.,c.. ,u. , .... ) . i o i ril), ..........

come from a tree structure (if there were a tree. the decimation ratio at the first level of the Ir,,

would be a factor of this gcd). Because of such possibilities. we will not assume I li~it j {q. } s coi,,

from a tree. Before we discuss these issues in greater detail, let us explain some Conventionis and

definitions in this paper.

All our signals are in 12 space (i.e.. the space of finite energy sequences). The inner product i,

defined as

< X(n),y(n) >= (n)yY(n). (1.2)

and the norm Ix(n)112 will be defined according to 11x(n)jI• =< X(10.[x(n) >

Filter bank-like systems

The reconstructed signal f(n) at the output can be written as

Al - I or

fln) >3 E 3 E* h,(n~k - in).r(ni)f,(n - n~k)
i=O k=-xx

i-=O k=- t

where

= >3 hd(n,k - rn)x(m) (deciniated subband signals). (1.1)
Yn = - e

t The authors would like to thank Tsuhan Chen for pointing out this example.
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Equation (1.3) is an expansion of i(n) in terms of sequences {f,(n - V V- k E 3 (2 ih the

set of all integers). Here xi(k)'s are the -filter bank transform coefficients" (i.e.. the decimated

subband signals). The set of sequences

rlik(n) = {fi(n - n,k)}'L-. k E 3 (1.5)

is made of a special form of functions namely shifts (by integer multiples of n, ) of a finite number

of sequences. We refer to (1.5) as a filter bank-like system. The set of sequences f,(ii - nk) will

be referred to as the ni-shifted versions of the synthesis filters f,(n). Later on it will be shown that

this system is a Riesz basis for 1.2 space. [This is subtle because, in an infinite-dimensional H1ilbert

space, completeness and independence (see Sec. 2.2. for the definition) of a set of vclor.ý is n1t

sufficient to conclude that these vectors form a Riesz or uncornditional basis: see Corollary -1. Sec.

2.2.]

Birothonormality

Definition 1.1. A system of sequences {hi(n - mrti). f1(n - kn)}}, 0< i.1 < AM - I for all IIk E F

is called a biorthonormal system if

< hj(n - rnnj),ft(-n + knj) >= b(i - 1)6(k - m) (biorthonormality). (1.6)

In the special case of orthonormal filter banks, the perfect reconstruction property is achieved by

setting fk(n) = hZ(-n). In this case, the biorthonormality reduces to

< hi(n - mni), hj(n - knl) >= 6(i - 1)6(k - m) (orthonormality). (1.7}

If the above equation holds for some i and 1, we often say that "the two filters H1(z) and Hl(z)

are orthonormal". It should be borne in mind that the acutal meaning depends on n, and 7-.

It will be shown that perfect reconstruction (PR) in a maximally decimated filter banks implies

biorthonormality. t In Section 2.1., we will show that the most general form of PR for a maximally

t This is a fairly subtle fact, holding only because of maximal decirnation. For example, consider

a two-channel undecimated system with fillers 11((z) = 1 + z- 1 , Hi(z) = I - . 1. V((z) = F1 (z)

1/2. Then we have Pit. but it can readily be verified that biorthonormality is not satisfied.



decimated filter bank is a biorthonornial ba.sis for 12 space. formed by the aiialysis and synthesis

filters. This issue has come up in earlier work. but has not been shown or proved this waN. 'hl'e

relation between filter banks and wavelets, and the role ot ortlhonorinality lias been diiscussed in

[61, [71, [8], [9] and [4].

From this result we can obtain useful conclusions. For example we will conclude that lwrf,

must be no coprimne pairs in the set of decimation ratios 01nk)'%= in order for PH10 ito h, posible(

with rational filters (ideal perfect rcconstruction filters can always be delined for any maximally

decimated filter bank). Thus, the existence of ralional filters achieving PtR is a nontrivial ,upestion

in the nonuniform case. By contrast, in the uniform filter bank theory. we can design analysis filt er.,

and just invert the polyphase matrix E(z) (as long as its determinant is not identically zero) in

order to obtain PR (with possibly unstable or noncausal synthesis filters).

Orthonormality

A second question of interest in nonuniform filter bank theory is the following: suppo.e the

integers {flk}k-= are such that a biorthonorrmal PR system (with biorthonornial. rational filters)

exists. Does it mean that an orthonormal PR system also exists? (Again. for the uniform case.

the existence is trivially guaranteed simply by constraining E(z) to be paraunitary.) We will

show by construction that for a given set of integer decimation ratios ink)'I.=I the( existence of

biorthonormal systems implies the existence of o:thonormal PR systems as well (Sec. 3.).

The procedure to convert the biorthonormal system to an orthonormnal one is reminiscent of t ie

Gram-Schmidt (GS) procedure, but is not the same, for a variety of reasons. First. the orthonor-

malization of the basis is required to preserve the filter bank-like form of the basis: conventional

GS procedure would not give us this. Furthermore. using z-domain analysis and the special form of

our system, we will be able to do the orthonormalization process in a finitl numbrr of sth-ps (even

though 12 is an infinite dimensional space). This is another point of departure from the traditional

GS technique.

At this point, the reader should be warned that this orthonorinalizatioji procedure is mostly

4



of theoretical importance. The filters resulting from the orthonornualization not only are III( inI

general, but also have huge orders; the proposed orthonormalizatioh is not an alternative design

technique for filter banks (after all we do not have biorthonornial filters to start the or'holo!nmaliza-

tion with). For the purpose of subbad coding. there exists a simple scheme to generate inexplensive

orthonormal filter banks, based on the so-called power symmetric filters (pp. 204 i t)]}. These can

also be used in a tree structure to obtain a subclass of nonuniform IIHR ort honormal syst,,eiis.

1.1. Paper outline

In Sec. 2. we discuss the detailed reasons why biorthonormality and perfect reconstruction

(PR) are identical concepts for maximally decimated filter bankst. Several corollaries of this result

ale derived in Sec. 2.2. For example, we show that for PR to be possible. no two decimation ratios

can be relatively prime. We also show that if a perfect reconstruction system is such that all the

analysis and synthesis filters have unit energy, then the system becomes orthonorial (paraunilary

in the uniform case).

In Sec. 3. we show that whenever the decimation ratios {In} of a maximally decimated system

are such that perfect reconstruction is possible (i.e.. such that there exist biorthonortnal filters).

then in particular, there exists an orthonormal filter bank. The proof is constructive, that is. given

a set of biorthonormnal filters we show how to find a set of orthonormal filters starting from these.

NumericýJ examples are included. In general, the resulting orthonormal filters turn out to be IlR

even if we start with an FIR biorthonormal system. However, the IR filters are guaranteed to

be free from poles on the unit circle. This means that, should they turn out to be unslable, a

noncausal implementation can be found which is stable [12J, [131.

The orthogonalization technique will then be used in Sec. 4. for a different purpose. namely

decorrelation of subband signals of a uniform filter bank. In other words, referring to Fig. 2(a),

imagine that we are given a wide sense stationary input signal x(n). We will show how to find the

analysis filters {Ilk(Z)} such that the decimIated subband signals xk(n) and x,(m) are uncorrelated

t A brief sketch of some of the results has been presented in [11]



for all n,in (for k 3 i). While this might appear to be similar to the Karhuen- Loev' transform

(KLT) [14], there is a fundamental difference. N amely. the KIT decorrelates x0( ;i and X,(0m o01lY

for n = m. It is of course true that we can decorrelate .vk( U) and x,(m) for all n. il t riviall, bY u.,e

of ideal non overlapping filters. But we will construct finite order (ralioial) fiher•. tiuned to Oh

statistics of the WSS input x(n) with the power spectrum S,( z) which is a.,unied to be a rational

function.

As a consequence of the analysis in Sec. 4.. we learn that if a uniform filter bank is orthonornial

[paraunitary E(z)], then the subband signals cannot be decorrelated in this way. unless the power

spectrum S,,(ei-) of x(n) has the form F(e''d') (i.e., has a period of 2-/J] rather than 27r).

Whether this is a disadvantage of orthonormal systems is arguable because. d(ecorrelation of tOw

subband signals does not necessarily maximize the coding gain of the system. agail unlidk( in

transform coding! We will demonstrate this with an example. This sectiojn is restricted to the

uniform case, mainly because of a technical difficulty: even though the subband signals of a filter

bank are NVSS for WSS input x(n), they are in general not jointly wide sense stationary in the

nonuniform case; many of the standard second order statistical tools cannot then be applied.

In Sec. 5. we derive some further necessary conditions on the decimation ratios {nk). for

perfect reconstructibility. These can be regarded as generalizations of the compatibility condition

given in [1] and [p. 285 of 101. Some of the technical details which arise in the proofs have been

moved to the Appendices (A-C) to provide a smoother reading.

1.2. Notations and conventions

1. The quantities AT and A t stand for transposition and transpose conjugation of the matrix

A. fthe notation ft(z) = Ht(l/z*). Thus H(s) = H1(-) on the unit circle.

2. Z represents the set of all integers 0. ±1, ±2....

3. Special integers. The integer Ml denotes the number of channels of the nonuniform system

(Fig. 1(a)). The integer L = 1cm (no, .... *l, -t-). Also. gj3 = gcd (n,. n)) throughout the
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paper. The integers {k,} are numbers that sat isfY

L = kon 0 = knj = ... = k- ,nM-•. 1.x)

4. 11 L = e - The subscript L is omitted whenever it is clear from t1h1 (ojlext. W is Ifiv

L x L DFT matrix. It has elements [W],,,, = U'E'". Note that WTW = LI.

5. The AC (alias-component) matrix for analysis filters (defined for uiniform ,-cihannel filter

banks) is the one with components [H(z)],.,, = Hf(z1lin). For the synithesis filter, wo define

a similar matrix: [F(z)],. = Tn(zW").

6. A delay chain is represented by e(z) = [1 z .. . z-'t+ ]r (see. e.g.. Fig.2(b)).

7. The Al-fold decimator has input-output relation y(n) x(Mn), or in the -- doniain

M1

The M-fold expander has the input-output relation

S{n x(n/M). ith= mu!. of .. 1
y~)= 0 otherwise. (1 ~

or in the z-domain

Y(z) = X(zm). (1.10b0

The notations Iv! and ,,M are used to denote these operations. Thus nooi) V denotes the

decimated •cicw1 a(.Ml,,and A(z)I The corre:ipr, n ci'rg --transfort,, thal is z-transform

of

8. For uniform filter banks, E(z) and R(z) are the polyphase matrices of the analysis and synthesis

filter banks (Fig. 2(b)).

9. Perfect reconstruction (PR) means i(n) = x(n). In the uniform case it is equivalent to

R(z)E(z) = I (see Fig. 2(b)).

10. The so-called noble identity for multirate systems [10] can be stated, for our purpose, as follows

(A(z .. )B(z)) { A(Z) (B(Zt)Im) { 1



2. EQUIVALENCE OF BIORTHOGONALITY AND PR PROPERTY

For the study and design of uniform filter banks. ihere exist powerful tools much ai the jolypla1-

formulation and the AC matrix formulation. It order to use thein in a nowmiftOrin filter bam k. w,

have to transform it into the equivalent uniform one [1]. [2]. This is shown in Fig. If bj . "hvr, are

L branches (where L is the lcm of {n,}), and each of thein has the sanme dclimat ion railu. ti•e

analysis filters are numbered as

So(z),S 1 (z) ...... 5,)_1(),Sk 0 (z). (2.1

and similarly for the synthesis filters Q,( z). Thus t he analysis arid synt, leis filhrs art,

Si(z-) = Zl"'Hj(z). Qk.(Z) f -• ' .,{ . 2.2)

where
1-1 rn-I

i =p + kj. 0 < p• ki - 1. k = r~ + k,, 0 < r < 1.n -2A

3=0 J=0

Here kj = L/nj and its meaning is clear; we just made k, delayed filters from each original filler

H i(z), i.e. each new filter comes from one of M original filters. The hiorthlioornali% ( 1.6) means

Zhi(n - mn)fj(-n + kn) = (i- 1)(ni - k), 0• -<il I . 2>,. (2.41

Eqn. (2.4) can also be rewritten as (4]

Z hi(n)f(mga -itn) =(i - l)b(ni). 0< K <i, K Al - 1, in E Z (biorthonorniaitv). (2.5)
n

where g9 =gcd(n,,n 1 ). This infinite set of conditions can be compactly written as a finite seo of

conditions in the z-domair

(ii(z)Ft(z)) /z - 1), 0 < i, I < m - 1 (biori honormalit. (2.6i

Again, if F1(z) = Hj(z). then the above property is called the orthonormal property, and can be

written as

H(I! )1(zT(z)) 1 =.1 1) (orthonorinality). (2.7)



or equivalently as

(Fi(z)fT(z))• bci - I, (orthoniornahtli). 2.

A filter bank with analys;• .d synthesis filters satitfviii these biorthlh)ln<ormal ,m11,iorniall CIOD

ditions will be called a biorthonormal (orthonorital) filter bank. \We >,otteinm,, -av I ha Iwo lilterr

HI(z) and Fk z) are biorthonormal if they satisfy (2.6). It should be in liced that 1 Hie biort•honr-

mali: , diefinition involves n, and Ti.

In this section, we will show that the most general trin of PR for a mnaximally , dciniated filh,(,

bank is a biorthonorma1 basis for 1? space. fbrned by the anavysis and siitihi,>1i, filitrý. Th-li s ,,

has come up in earlier work, but has not been showui or proved thlis way. Thi- will bi, fofl wvd by.

the derivation of a number of corollaries.

2.1. PR Implies Biorthogonality of Analysis and Synthesis Filters

Thcorem 2.1. Let the system in Fig. l(a) be a maximally decimaled filt(,r bamik wiih deTniGa

tion ratios {nk k •M= If the filter bank has the p)erfe ct reconstruction prop*'rt, , Owhe filters form a

biorthonormal system, that is satisfy (2.6).

RE m a rks.

1. This is a fairly subtle fact. holding ondy bfcaus( of morimal dt-rmaton. 1-or ,Xa in pie,. rtcsidir

a two-channel undecimated system with filters lfo(z) = 1 + h- . I -1 - . ()

F)(z) = 1/2. Then we have PR, but not biortlhtiernialit.v.

2. The converse of the above theorem also holds: see Appendix B of [15].

Proowf. Let S,(z) and Qk(z) be analysis and syn hiesis fillers of the eqivalent uniform filter bank.

They are related to fHr(z) and FM(S) by (see Fig. l(b))

S,(z) = ZP"' HI,(z), QA(z) = - (2.9)

where

i=p+Z k,. O<p k,- 1, k +.,r+ Zk, < ,r< k,, - 1. (2.101
.1=0 )=O

j• t III



Let S(z) denote the AC matrix of the above analvyis bank S,(:). that is [S( :)11, W, ,, :."V ) (So.

1.2.) and let E(z) be the corresponding polyphas-: matrix. Those are related as 10. p p. 23 1i

S(:) = W TA(-)E1 (zl), '2.1 1

where A(z) = diag( I. .- .... .- (L-1)). Similarly for Ili, Yvntliv,,,is bank definie Q(-z such thal

Q,(z ll" . and let R(z) be the polývpha•e matrix as deli med in• Soc 1. We ha'e

Q(z)= WA-(2-)R(z.l "212!

"Then
=I

S(z)Q'(z) WTA(z) (R(.,')EI -1)) A 1(z)V = .'W.

This is because R(z)E(:-) I. due to PR propwrty. So ve get [since St:) ind Q ) are -.quar,

mat rices]

Qtz)ST(Z) 2 S Qflz) L., (2.1 1

Notice that without the assumption of maximal dcimation, the matrix A( -) would liot be squa r.

A-1(z) would not exist and we would not have S'(z:)Q(z) = Q ( z )s -) = L (which i, an

important ste.,p in hie proof!).

The condition S'(z)Q(z) = LI itplies, in view of Ihe definitions of S(- ). Q(z) aad (1.9). thal

(S(:-)Qk(Z)) il 7 = ý0 - k). (21.5)

Now suppose that , k are such that 1 $ r in (2.3). i.e. that S' (z) and Qk(z) do not come from the,

same original branch. Then (2.15) can be written as

((-p)n*;,,,, ))j = 0. (2.16)

for 0< p< - land 0_< r < k,,, - 1. With

n1 = fTY01,,, and ", 2, 2 6,01011n. (2.17

10



where gi,, =gcd(n, ), this becones

( (pb,,,-rb,•,4)g,,,, f , )",( ) t } 2 1

L

By multiplying (2.18) by zd, we get

d pt -bi0. v~d c-Z2.I19

or using L = k,n, = kmbigmri

((zpb4_-rb''j+dk-•b''3' l,j~gi,,, ( ) It 0. (2.20,

It is shown in Appendix A that (pblf, - rbmi + dk,,,b,,,1 ) can take any inl eger valu, a. under Ole

conditions 0 < p _< ki - 1, 0 < r < kmr 1. and d .: 2. Then

(za1-ill t(Z)frn(Z)) =ki0 Vab 2j. (2.21 1

This is equivalent to

(zQIl( FM~s)) jA =0 V a E 2.(2.221

Since this holds for all integers a, we can rewrite it as

(!I(z)I ,,,(:)) , = 0. (2.23

Let now S,(z) and Qk(z) come from the same branch, i.e. I = rn. Then (2.15) Inedas

(zP(-•r''m ( (z)) { =(p- r)' (2.24

that is,

(I)- r) ý(W - (2,2)

Now p - r can reach any integer in [-k,, + 1. k,,, i- ], so that the last equal io: is 4,quivalcill to

(ll,(Z ,,,z)) .... 1. (2.26)

II



Together with (2.23), this implies biorthonorinaity (2.6).

2.2. Corollaries

Corollary 1. No two decimators can be coprime.

If any two ni's are relatively prime, then their gcd is I and we cannot satisfv thw coriditioný,

for PR with rational filters. This is because (2.6) now implies 1Ii(z)I',,z) 0 for ; 71, and thi>

cannot be satisfied with rational filters.

Corollary 2. Completeness.

Definition 2.1. A set of vectors {x,}, 0 in an infinte-dimensional Hlilbert ,,pace is said lo ho complol,,

if the zero vector is the only vector orthogonal to all of x,*s (pp. 6. [1(iU).

Assuming that the filter bank has the perfect reconstruction properly, Ihe completeness of tle,

filter bank follows immediately. To see this, let us write (1.3) [with 2(70 = x(nI)] in a dilforent way

Al- I

x(n) = E (x(-m)'h(n + nik))f,(n - nk). (2.2 7
i-O k

Assume there is a nonzero input x(n) such that .r(-n) is orthogonal to all the analYsi., filters and

their ni-shifted versions. Then the above sum would be zero and the system would not be a PR

system. Similar conclusion can be made for the synthesis fillers if we interchange the analysis and

synthesis filters (because PR is not violated by such an interchange).

Corollary 3. Linear independence.

Definition 2.2. A set of vectors rhik(n) = {f,(n - n,,k)}-!f k E F in an infinte-dimensional space

is said to be linearly independent (or minimal) if none of 11,,,( It s lie in the closure of the linear

span of {Tm()}0 m K for I = J (see pp. 28. (16]).

Since the synthesis filters form a biorthonornial system, it can be proved [161] thai the set

of sequences riT,(n) is linearly independent. We will often say "filters lF(z) and I,( ) are lii-

12



early independent", meaning that the corresponding time sequences and their shifts are liiwarlv

independent in the above sense. Using z-doniain techniques, we hav-e another uefui manifes-

tation of linear independence. Let AdZ) be rational funuction. 1henP lHIe linear inTdepenW1dnTC of

{Fo(s), Fl(:), . . ., F,\,_t(z)} implies

Z Ai(sj)F((-)=O A,(z)-=0 fori =0,1..... J]- 1. (2.2S
i=0

To see this, just take inverse s-transform of (2.28). The result is

l-I :Y, Y a,,(k). it,- k.n,I 0),o
t=O k=-om

where {0} denotes the zero sequence. Taking inner product of both sides with li,( n - ii,k) for

i= 1,2 ..... - 1 and V k E Z, we get (2.2-S).

Corollary 4. Basis property.

In a Hilbert space, completeness and independence of a set of veclors is not sufficieni to

conclude that these vectors form a basis t . However, by using the further assumnplion lhat tle

synthesis and analysis filters are stable (i.e. F, ,( n )t < o and F, n( )I < xv or, " .

HI(eO) exist and are upper bounded by a finite constant). we show that {f,( u - ru,)};Vo• and

{hi(n- mrinn"W-} V mn E Z are bases for 1, space. For this. we will invoke Theorem 9. pp. :32.

[16]. Since completeness and existence of a complete biorthonormal sequence have been est ablished

earlier, it is sufficient, according to the above theorem, to show

I > < x(n), m7 - n) > 12 < >j ani < .X( , ). ,,( TO,,, - i7)> 12 <
i=0 Mn --0 M

(2.29)

for any x(n) E 12. In this discussion, all sumniations with unindicated limits are from -x to x.

We will show that
M-1

E E I < x(n), f1,(nT, - n) > 12 < CIIX(! 1()l. (2.:10)

I In this paper, the term 'basis' stands for the RIiesz or unconditional basis, as defined in [16]

pp. 31. or [17) pp. 71. Other kinds of bases, the Schauder and larnel bases [16] do not (concern us

here.
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for any sequence x(n) E 12. Thus
M-1 M-11: I 1< x(n), sI (,,- i) > E E Z SI E X(7)f,(1 7?, -"1,
s=0 M t=0 rn 1

(2.31)

1=0 r
where zi(n) is the ni-folcd decimation of the convolution x(u) * f,(n). Using Parseval's relation the

above can be rewritten as

00- o Al-i I 2ir

E I < x(n,),fN(mn, - i) >1? S - ]- Z,(e'i)d.-:
i=O-1= 10[n.

M - II

-'d._ (2,[,2)•

as long as x(n) E 12.

The first inequality follows because the energy of a decimated sequence is no greater than

that of the undecimated version. The proof for the analysis filters is similar. So. we really have a

biorthonormal basis formed by the set of ni-shifted versions of the synt hesis and analysis filters.

Corollary 5. Unit energy implies orthonormality!

Consider the maximally decimated system [Fig. l(a)]. Suppose the following two properties

are satisfied:

1. Perfect reconstruction property, and

2. All analysis and synthesis filters have unit energy, i.e., E. Ih,()1 2 = E, fdi)2 = 1. for

0< i < M -1.

Then the synthesis filters satisfy orthonormality. In other words, eqn. (2.7) holds. (This does

not, of course, imply that a biorthonormal system can be orthonormalized simply by scaling Ihe

filters to have unit energy.) To prove this, note that the perfect reconstruction property implies

biorthnormality (Theorem 2.1.), so that, in particular,

E hb(n)f,(-v) = 1. (2.33)
fl'
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Now, Cauchy-Schwarz inequality says

- 2.

Sjhj(n)V' E Ifidn)12 > j hi(IOf,-0) (2.3-1

The right hand side is unity, by (2.33). The left hand side is also unity if the analysis and synthesi•

filters have unit energy. But equality in Cauchy- Schwarz inequality implies h,( n) = ' Af,( -ii) for

some 8,. Substituting in (2.5) we readily conclude that O, = 0 and that the set of synthesis filters

(equivalently, the set of analysis filters) satisfies orthonormality.

Corollary 6. Generalization of Nyquist and power complementary properties.

For uniform filter banks (ni = M for all i) it is well-known that if the syslein is orthonormal

(paraunitary), the filters H1(z) and Fi(z) are spectral factors of Nyquist(M) filters (or .lth band

filters) [10, page 297]. In the more general (nonuniform, and biorthonorinal case), this property is

replaced with the property that H,(z)F,(z) is a Nyquist(nm) filter. We can readily see this from the

biorthonornialbly condition (2.6) by setting i = I

(H,(z)F,(:))In, = 1. (2.35)

Next, for the uniform paraunitary filter bank, it is well known that the anaysis filters are power

complementary, and so are the synthesis filters [10, p. 296]. For the general case (nonuniform.

biorthonornial) we have

1 H(z)F,(z) = 1, (2.36)
ni

(see [15]) which reduces to the power complementary property

Z H.(z)/ti(z) = M (2.37)

in the uniform paraunitary case.
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3. ORTHONORMALIZATION OF BIORTHONORMAL FILTER BANKS

From the second section. we know that if the integers {n. }J=-, are such that P11i is possible.

the analysis and synthesis filters (and their shifted versions) form a biorthornorjml basis. Vitder this

condition, does there exist a PR system with orthonormal filters" The answer to thi.s question is In

the affirmative; we will present an orthonormalization process which preserves the filter hank-like

form of the system {h,(7, - mn,), fj(n - kni)} for 0 _< i, 1 < Al - I and m. k E 2. If one wants just

to orthonormalize some set of vectors, the Gram-Schmidt technique is one way of doing this. but

we want more, namely to preserve the filter bank-like form of the system. We now show how to

achieve this aim. Our procedure is reminiscent of the Gram-Schmidt technique. but it converges in

a finite number of steps even though the space has infinite dimension.

3.1. Normalization condition or Nyquist condition

Let Fk(z) be a rational transfer function. I)efine

Gk(z) = 0k( Z1k )Fk(z). (3.1

Then Gk(z)Gk(z) = ak(z'k )ak~( zfk )Fk(z)Fk(z), so that

(ak(Z" )ik(Z"'Fk(Z),k(z) { (k(Z)iik(Z) (f()k~ z) (3.2)

Now if we choose ak(z) such that

Qk(Z)ak(Z) =

we get

(Gk(z)(&k(z)) , = 1. (3A)

A function Gk(z) with this property will be called normalized. This is different from the usual

meaning of normalization of vectors in 12. In the time domain, lhe above normalization condition

16



means that the nk-shifted versions of gk(n) (i.e., 19gk( n - ilk )}) form an ortlhonorial se. Equiva-

lently, (G'k(z)Gk(z) is a Nyquist( nt) filter 110. p. 1513; that is its impulse responsse coeflicient s 1101

satisfy h(nki) = 0 for i $ 0.

The existence of ok( z) satisying (3.3) is assured because of t he following. We have

(Fk(Z)TA) , ~kZ~1I(I/ I.(3)
L=0

Since Fk(z)Fk(z) > 0 on the unit circle, each term in the above expression remainsa nonnegative.

Thus whenever Fk(z) is rational, the function (Fk(.z)h(z)) { is rational and nonnegative oi, the

unit circle. Such functions can always be written as a product a( ). h'le spectral factor a(--) a

rational function, not unique) can be obtained by standard spectral factorization techni(ues. N-o

take Qk(Z) = 1/a(z) so that

1
Ok( )(k(Z = a(z)a(Z) = (F k(-Z ) {

and (3.3) is satisfied. The function Q(z) can be chosen to have no poles outside the unit circle (by

choosing a(z) to have minimum phase), but what if o(z) has a zero on the unit circle? Then ok(z)

will have a pole on the unit circle! This potential instability will be handled later on.

If two filters F2(z) and Fk(z) are orthogonal. will that property be preserved by the above

operation? Let G,(z) and Gk(z) be the normalized versions of F,(z) and 'k(z). Then

(G z G(Z)' ) 1j s, = oi(- .n ,g'k )it(Z " gk =)(F F ( )) 0 (3.7)

=0

showing that orthogonality is preserved (notice that 71k/i.i and n1 /g.ik are integers). Summarizing.

if we have a set of orthogonal filters {Fi(z)}• i hen the above normalization can be used to obtain

a set of orthonormal filters {G,(z)}, .

3.2. Orthogonalization

Let {F&(z)})M= be the set of rational synthesis transfer functions for a maxinially decimated

PR filter bank with decimation ratios {n}kjk'.- %e now describe a procedure to get a new set of
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rational transfer functions {Gk(Z)}k""' which are mutually orthogonal, i.e. satisfy

(Gk(z)}G(z)) j =0 for k.I = 0,1,...,M -1 and k $1. (3.8)

We start by making Go(z) = Fo(z) and Gj(z) orthogonal to GO(z). For this, let us look for GI(z)

of the form

Gl(z) = F(z) - ,30o(z 90')Go(z). (3.9)

We want

(Gj(z)Go(z)) j =0 (orthonormality), (3.10)

or, using (3.9)

This can be satisfied if we choose 001(z) as

(Fi(z)GO(z)) {go, (3.12)
(Go(z)Go(z)) 1.•go

Clearly 130 1(z) is a rational transfer function. Then, Gt(z) as in (3.9) remains a rational transfer

function. This is how we start this orthogonalization process. Now assume that we have made

Go(z),Gl(z),. .. ,G.-.(z) orthogonal to each other in the sense of (3.8). In the sth step we want.

to make G,(z) orthogonal to Go(z), G 1(z),..., G,-I(z). Assume G,(z) in the form

s-I

G8(z) = F.(z) - ZJjis(z9")G,(z). (3.13)
i=0

Let

L = gsoc~o = gcl = (3.14)

After expanding /3is(z) into csi-fold polyphase components we get

C.i--I

J3,(zg")3 (zL). (3.15)

so G 8 (z) is of the form

s-I c.j -1

G8 (z) = F5(z) - Gi (z). (3.16)
t=O 1=0



We want to make Gs(z) orthogonal to Gk(z) for k = 0, 1. . - 1. In other words we want

(G,(Z~dkz-)) { (Fs(ZAk(z)) I 9.k- -t{ 0. (3.17)

It is easily verified that a rational function A(z) satisfies (A(z)) I'g= 0 if and only if (zm •A( i)) L.,L= cq

= 0 for m = 0,1,...,c- 1. Then, (3.17) can be written as

a--1 c*,-1
8- '- l3ija(.1(M9k 9.i G j(Z)G4(Z)) { = (Z-'" ' F8 (Z)6k(sJ) { 3.

i=0 1=0

for m ,1. Ck- I and k = 0, .... s- 1. So we have I:"- c,, unknowns , and the

same number of linear equations. If the determinant of the system (which is a rational function

of z) is not identically zero. we can solve the system of linear equations for d, 51 z)s. If this is not

the case, we can keep decreasing the number of unknowns until we have a determinant that is not

identically zero (see Appendix C). After solving it, we see that O3i,(z)'s are rational functions, so

G.(-) w;11 rernain a ratiot.al transfer function. At the end of this process., we have a new set of

rational transfer functions {Gk(z)}•.M- satisfying (3.8).

3.3. Stability

In this subsection we show that if the transfer functions resulting from the orthonormalization

have poles outside the unit circle, they can be moved inside, preserving the orthonormal and PR

property. We also show that in the process of orthogonalization and normalization described in

Sec. 3.2. and 3.1., the poles will automatically be excluded from being on the unit circle.

First assume that after the orthonormalization we got {G' (z)}4' with some poles outside

the unit circle. For example, let z0 be a pole outside the unit circle. Construct the FIR filter

nk -1
I] ( I -zlzWO (3.19)

1=0

(Recall W'VN =e-j"I as usual). This has zeros at

z0 Wnt, 0 < I < n1, - 1. (3.20)

19



Simplifying (3.19) we obtain the form (1 - z-"' z"" ). Define the product

Qk(Z-) 0 zO0' )(1 - Z- ) ... (3.21)

where z 0 , z, . .. are the poles of G'(z) outside the unit circle, and construct the allpass function

Ik(Z"k) = Qk ) (3.22)
Q*(zf",)

This has all poles inside the unit circle. Now form a new set of functions as

Gk(Z) = Yk(Z k )Gk(z). (3.23)

Then Gk(z) has no poles outside the unit circle. The new set satisfies orthogonality because. for

m k,

(Gk(Z)d&m(Z)) 19 =(-k(Znh )Gc(zfj.(z--m )G (z)) m

Ilk (G~,(z (z)) I Q, 0. (3.24)

=0

(Recall that nk/gkrn and nm/gkm are integers.) Normality is preserved too since

(Gk( z)) & = 'T,(Z)ik(Z) (G'(z)G•(z)) , = 1. (3.25)

=-1 =1

So, we have shown how to replace the poles outside the unit circle with poles inside, without

destroying orthonormality.

Avoiding poles on the unit circle.

Let us repeat (3.13) below, but call it P8 (z) for notational convenience.

s-1

P,(z) = F.(z) - 19(zl")ajz). (3.26)
i=O

This function, in general., can have both poles and zeros on the unit circle. First, assume that it

has a pole of order r at zP = ej WP. It will be shown that this will be cancelled in the process of

normalization. Recall that the normalized function G5 (z) is constructed according to

G.(z) = o (-z' )P.(z), (3.27)
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where

o 8 (z)~(z) =(3. 2 s)

It is shown in Appendix B that if P.(z) has a pole of order r oil the unit circle, then os(:' ) defined

as per (3.28) will have a zero of order at least r at the same point. This zero will cancel out the

pole of P,(z), so that the normalized G,(z) will not have any pole at that point. We see that G,(z)

cannot have any pole on the unit circle coming from P,(z).

The other possibility is that a,(z"") itself has a pole on the unit circle. i.e.. (P8 (z)is(z)) L,
has a zero on the unit circle. Assume that a,(z"' ) has a pole of order r at z0 = 0"', and hence at

zoWk, 0 < k < n, - 1. We have

1 (3.29)

From this equation we conclude that a,(z"') can have a pole of order r at some point, on the

unit circle, if and only if ((Ps(z)A"(z,) has a zero of order 2r at that point. For this

to happen P8 (z) must have zeros of order at least r at z 0=W', for k = 0.1 ... n - 1 (for the

proof see appendix B). These zeros will cancel with the above mentioned poles of o,(z"°) when

G,(z) is formed. From this we can conclude that G,(z) cannot have any poles on the unit circle.

Together with the fact that poles outside the unit circle can be moved inside, we conclude that the

described procedure leads to stable filters.

3.4. Numerical Examples

Example 3.1. Uniform system. As an example of the above described procedure, we orthonor-

malized an uniform, four-channL' filter bank. The filters that we started with were all FIR, linear-

phase, obtained from a two-level tree of two-channel filter banks. Each filter in the two-channel

module has length 10 ([181). The resulting orthonormal filters are 1R. and their numerator degrees

are 28, 44,140, 380 and denominator degrees 25,41, 77,377 respectively. We see that the orders

of the filters increase rapidly as we proceed with the orthonormalization process. The magnitude
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responses [see Fig. 3(a) and 3(b)] are more or less the same before and after ot honormalization.

Most of the polynomial coefficients after orthonormalization are very snall and can be discarded

without harming the frequency response, but it deteriorates the orthonorinalily property.

Example 3. .Vonuniform system. We orthonormalized a three-channe! filter bank with deci-

mation ratios 4,4 and 2. The filters that we started with were all FIR with lengths 2D.2xM and 10.

After the orthonormalization, we got IIR filters with numerator degrees 100, 28. 10 and denomnina-

tor degrees 33, 25,9 respectively, Again their magnitude responses [shown in Fig. .4(a) and 4(0)1

do not differ much.

The examples show that, while the above procedure is of theoretical interest, the resulting

filters are far from being efficient. The main aim of the section is to emphasize the existenc(,

of orthonormal systems for nonuniform filter banks where biorthonormal systemns exist. and then

demonstrate the orthonormalization technique.

3.5. Numerical Considerations

In actually implementing the orthogonalization algorithm, one faces the problem of decimaating

IIR trasfer functions [(3.6), (3.12), etc.]. Theoretically, we could expand the rational transfer

function into partial fractions, then expand each of them into a power series in .- and retain every

n! term. This does not yield numerically accurate results. There are several ways to avoid thie

factorization of polynomials.

The first one is based on a state-space manifestation of the decimation. Namely, if A is a state

transition matrix in some realization of H(z), then A'i is a transition matrix of the decimated

system H(z) J,,. Now in order to get the denominator of the decimated system. we need to find the

characteristic polynomial of A'. We see that this already may be a rather big numerical problem.

especially if the order of the system is big.

Another method, again system theoretical, relies on the fact that a rational transfer function

(with no common factors in the numerator and denominator) of order N can be deternmined from

the first 2N + 1 impulse response coefficients (it can be shown that the determinant of the system
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is nonsingular [19]). The impulse response coefficients of the decilnated sVsterI calt be olota i ed

from the impulse response of the original systvlem. which can be easily obtained fronl the' difrfereii ce

equation described by that transfer function. The problern with this approach is that th, itat rix

of the system of linear equations. even though nons.ingular. is typically ill-condit oloed.

The third method is based on the frequency manifestation of the deciniation .Namnelv. wv

know that

(I (z) = (1/n,) H( lI/"l.l'k). (3.30)
ArO

Now if we write H(z) as a ratio tI(f) V(z)/D(z). the denonlinator of the decimated •ystvin cart

be written as

l)dtzl = Z, J D I S/n1l1k)" (3.31 1
k=O

So in order to get the denomirnator of the decimated systeni. we have to find FFILs of the modulated

denominators of the original system D(zil ) . multiply them. stretchi n, times (i.e. decimate b\

n, ) and multiply by n,. The inverse FFT of Ihe result will give us Dd(:). Not ice that here we have

a product of polynomials, which is appropriately inipleinented using the VFT. The critical factor

is the number of terms in the product. It depends o•l n, only. not on the order of the filler.

After we get the denominator, getting the numerator is easy. We can again use ""T ltechniq uvs.

Calculate the sampled DFT of lt(zi'Vk).

H(s3 .,,li~k) _ 1 1,+ ~k (3.32)

where ,;'ts are the sampling frequencies (frequencies at which l)FT is tlihe satnpled Fourier transform

of the numerator and denominator). We add all of these, divide by ni,. and stretch n, timnes. to pet

the sampled DFT of 11(z) 1,, = Id(z.. Since we already know the DFT of the denominator of thiti,

sampled frequency response, we can gel the DFT of the numerator. 'Fhle product of this sampled

DFT and the DFT of I)d(z) will give us

I'd(( J". lld( ) Da( ( .
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After doing the inverse l)FT of this sequence. we get. the numerator polynotnial !P :). ()i, has t),

pay attention to the number of points of FFT (sampling density of l)lTI). to avoid iliasing in th,,

freq uency.

The third method yielded much better results than the second one. especiall.y for high order

filters and large decimation ratios. This method was actually used for producimi, all t'he abov•e

examples.

4. COMPLETE DECORRELATION OF THE SUBBAND SIGNALS

4.1. Decorrelation with Orthonormal Filters

4.1.a Uniform Case

In the traditional transform coding, where the polyphase matrices oft lie correspoidi(ing uniform

filter bank are just constant unitary matrices (KLT for example). the subband signals x,(n) arn,

decorrelated for the same time instant. That is. E{x1 (= 0 -whenever i € j and ,u =

n. In the other -xtrenme case where the fillers are ideal brick wall filters (the ,polyphase matrix

having infinite order) the subband signals are completely uncorrelated. that is t"{.r( i ) o )} =0

whenever i € j, for any choice of n. 7n.

In this section we will consider the problem of complete decorrelation by use of rat ional (filtitle

order) filters. We will show that the subband signals cannot be decorrelated in thiý, way,. if w,,

use rational paraunitary filter banks (unless the input signal has severely restricte(d statistical

properties: see below).

Consider an uniform system (nk = Al for all k). Let the filter batik input x(n) be, WSS with

power spectrum S*(z). assumed to be a ralional functiou of :.

Definition 4.1. For arty scalar input signal x(n) we can form a vector signal

.r(nM1)
x ~ uA) = I (1.1 }

x(nI .11 + 1)

This vctor signal is the output of the delay chain in Fig. 2(b) after d(,cimiatin,. artd is called t he
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M -fold blocked version of thie input signal x(n). It is known 1201i h at Ih1w powver sp,, trai mat rix of

this vector WSS process is pseutdocirculant. Na anielv

S-15",o I ) S-1-'.1. : ,I % :) :

where S,,.i(z) is the ith polyphase component of the autlocorrelatiou fu'ict ion S11. Z l. After pasI-I'

x(n) through the analysis bank polyphase mat rix E( :). the out put signal y! it has It pl er , !.pet rim,

Syy(z:) = E( - )Sx,,( :)E;( -). (1.•

If we want the subband signals to be decorrelated, then Syy ha) hato a b iagoe a mat rix.

Furthermore, if we use orthonormal systems. the polyphase matrix has to be u i ita ry on the 11ni

circle, Thus. on the unit circle. (4.3) can be regarded as a unitary diagonalizationi of t h, Hormitiall

matrix Sx×(ej'). .N,w we recall that a pseudocirculant matrix can be written as '211

r(z)w W '-i(j()
~viVm

where

r(z) = diag(1. z-J/! z--'/ (i.5

W is the DFT matrix, and D is a diagonal matrix. Since the matrix r ,vis unitar on the unitv 1 7,av•llte•.1i

circle, it follows that the diagonal matrix Syy(Oe') is identical to the dia.onal matrix ,ID((2-') up

to rearrangement of the diagonal elements. Ignoring I his rearrangement, we get

Sy( r) = MD(rW).

Now assume that Sx,( )') is rational, and that we wish to diagonalize it with the rational parati-

nitary matrix E(Oe`'). From (41.6) we see that D( -') has to he rational. Now Eq. (.I) Iimplies

",'D(z)Wt = F-( -)S,,,( ý)F(z). (.1.7)

By multiplying out the left. hand side, and using thie pseudocirculant propetrty of S,,i 7) we conclude

that the rationality of S, (z-) and D(--) implies that S,:,((z) has the form f'(:)I. That is. iI is a



diagonal matrix with identical diagonal elements. '[his umeains that t he power sp)ectrum of" he input

process x(n) has the form S,'(.z) = C(z'" ). In other wordls. the autocorrelation R( k) = 0 ilila•,ss k

is a multiple of Al.

4.1.b Nonuniform case

The subband signals can be expressed as

Xi( n) = E x( n~rt - rn ,m ) and Xi~n) x iy - k)Jy k), (4,S.)
rn. k

Then the crosscorrelation between these two sequences is

r,•(n,1) = E-x,(1)x'(-)} = I') h(,)h;(k)E{x(nn - n,)x'(,,(n - 1)-.)}. (19)
k in

Let the autocorrelation of the input signal x(n) (assumed WSS) be r(k). Then

rj(., 1) = • • h1(mn)h;(k)r((i, - ,1 ,)n + njI + k -,',)- (4.m0

k

We see that r1j(n,l) depends on n if ni ý n , so that x,(n) and rtj(n) are not joinitly \\'SS even

though they are WSS themselves. Because of this we cannot apply Ihe above arguument to this-

problem.

4.2. Biorthogonal Decorrelation

Having shown that an orthonormal filtei bank cannot in general be used for decorrelation. we

will decorrelate the subband signals using a biorthonormal filter bank. Assume again that x(i) is

WSS. For the uniform case (ni = Al for all i) we obtain from (4.10)

r,E(l) =r(nj) Z jh,(,,)h-(k)r(MI + k - 7n).
k nx

The subband signals are decorrelated if this is zero for i j. Equivalently. in the :domain,

S,(Z)) 0 for i . j. (4.11)

where S.,(z) is the z-transform of r,j(l).
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Given a PR (birothonormalt) system with analysis filters 1I1(z). we shiny how to obtaill a ni('\

set of analysis filters such that the above holds. For this we apply leci•ilquIe similar to ihe one>

in Section 3. The new analysis filters will be Gi(:z). S'Ynthesis filters will bh obtainied hx itirr,

the polyphase matrix (possibly unstable). Let Go(s) = Heo(-). In order to make .Jtr nial ;1X,1 ,

decorrelated, we look for Gj(z) in the form G1(z) = Hl(:) - .3oi( We )(;o z). \\ want

For this, we choose
_(Ili(z)G@o(z)S(z)) 'M(11,

'301( (4 "t-. 13

(Goz (z)Sz) .,"

If He(z) and Hl(z) are linearly independent (in the sense described in Sec. 2.2.). it cani be readily

verified that Go(z) and Gj(z) are also linearly independent. If we continue this process. in tIe li

step we have:
N- I

G,(:) = H,(z) - Z IkA Gk(z). (Z.1-

We do not want x,(n) to be correlated to any of .rx(n) for i < s. For this. we need

k(Z. (kZ )(Z)) A(h(z)t)s(z)) for I = 0.1..... 1 (4..15)
k=O

We have s linear equations and that many unknowns. This system has detvrminanl that is not

zero identically (see appendix C for the proof in the case of orthogonalization). Otherwise there

exist ak(Z), such that

s--i

ak(z-)(Gk(z)Gi'(z)S( z))I =0 for 1= . 1 (.4.161
k=O

Now if we multiply by aj(z) and add all these equations, we get t

ak(Z-%)G'k(Z) o( )(l ) S z) =0. (41.17)

t While it is not obvious, it can be shown, using the theory of Smith-forins [19]. [22]. that Ok(Z t

are polynomials whenever G&(kz) and S(z) are rational.
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Since S(z) is a nonnegative function on the unit circle, we can conclude [see the explanation of

(C.3)]
3-1
E ak(:M )Gk(z) = 0- (4.1)

k=O

This means that Gk(z) for k = 0, 1, ., s - 1 are linearly dependent (2.28). It can be shown that

this is not possible if Hi(z)'s are finearly independent. So the determinant of the system (4.15) is

not identically equal to zero. After the system is solved, we have new analysis filters G,(z:)s which

decorrelate subband signals. The corresponding synthesis filters can be obtained by inverting the

analysis bank polyphase matrix (stability cannot be guaranteed. not even for the analysis filters).

As an example of the above decorrelation procedure, we take a lowpass AR(6) process [14] and

a paraunitary two-channel filter bank [23] with FIR filters of order 7 (filter 8A). Fig. 5(a) and 5.(b)

show the frequency responses of the original and modified analysis filters that decorrelate subband

signals. The resulting analysis filters are FIR of order 7 and 18. The synthesis filters are 1Wl of

orders 18 and 12. To see whether this decorrelation improves the performance of the systelm. we

calculated the coding gain of the system. t Since the coding gain depends on the frequency response

magnitudes, stability of the filters does not enter into our calculations. The original coding gain

with the paraunitary system was GpLu = 3.09. After decorrelation it is GD(" = 2.8. This indicates

that decorrelation of the subband signals itself does not necessarily increase the coding gain. On

the other hand, the coding gain of the ideal brick wall two-channel filter bank is GstI: = 3.38 and

subband signals are fully uncorrelated.

The filters that decorrelate the subband signals depend heavily on the filters that we start

with and the coding gain we can achieve with them. The filter banks that decorrelate the subband

signals are not paraunitary, so there is nothing to ensure that the coding gain will be greater than

one [24].

5. THE COMPATIBILITY CONDITION, AND GENERALIZATIONS

t See [141 or [24] for the definitions of coding gains.
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We now present a different type of necessary conditions for perfect reconst ructability in iionuziiform

filter banks. These can sometimes I)e used to quickly reject certain sets of integer deciniation ratios

{11,} from being considered for perfect reconstruclion. In all our discus-ions we assume rnaximal

decimation, that is i-'=0 1/n, 1. The discussions of this section do n(ot applY to th, case of the

so-called block decimation [3].

5.1. Compatibility

In Fig. 1(a), the reconstruced signal X(z) is given by

X(z) = Fk(Z)- !k(-li', )(z-t0 ,,. ().1)
k=O 

nIO

In order for each of the alias terms X(zlV1n" ), n $ 0 to be cancelled, it is nwcessary 1 hat for every k

and n there exist t j k and 771 such that 11"'k = T4" This requirement is called Ihe coimpatibilitY

condition and is a necessary condition for alias cancellation (see [11 and page 2S5 of [10). If the

set of integers {nij satisfies this, we say that it is a compatible set.

For example, the set. {2. 3.6} is not compatible because the quantity N (zlb;) cannot be paired

with any of the terms X(zW!) or X(zil z ). On the other hand the set {2. (i,6.(i} is coinpalible: these

decimation ratios conic from a tree structure, whose first level has deciniators (2.2) and second

level splits the bottom branch using three filters and decimators (3.3.3). .n(d an*\ set of decimalors

that come from a tree is compatible. because we know we can design the tree structure to be alias

free. The converse is not true, i.e.. not every PR systeni can be drawn as a itre structure. We saw

this in Sec. 1., where a counterexample was presenied to demonstrate this point.

Test for compatibility.

Assume that the integers v, are numbered such that

"11o < < . .. _ Af- . (5.2)

The shifted versions of the input which appear in .\ (z) are

X.(z , I). I 1 _< 71 K 7 k - I (5.3)
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The compatibility condition is equivalent to the following statement: for every pair of integers

(n ,, fi), 1 _< f, _< n , - 1. (5 ..1

there must exist a pair of integers

(n., f.). I < t,,, < n,- 5,

with m $ i, such that 11" = W*. First consider uM - which is the largest. (Clearly Ii

cannot be equal to Wn' for any ni < nM-i. So it is necessary that

TIM-2 = 1IMX-1. (.

This also ensures that all the powers of Wn _, have been paired.

Now consider some smaller ni. Suppose this is a factor of - that is nt-I = 71,p,. Then

W -= P' and

fli -• i_

So all the powers of WI, have been paired. Thai. means that we need not worry about the set of

integers which are factors of nA-1.

Next let n,,, be some integer which is not a factor of nf-1. Suppose II', ran he paired with

W,,-, for some J < nkl- 1 . Then

27rJ 2 r___ - 2irn (5.,S)
nM-1 7 nM

for some integer n. That is, = - - n. But since 0 < J < nM-l, this is possible only for n = 0.
'2,"- _ i

Thus nM,- 1 = Jnm violating the assumption that n,,, is not a factor of.t-. Thus Iv,, x ,.

for any J in 1 < J < nj-Aj. It cannot therefore be equal to a power of 11,. for any 71, which is a

factor of nMI- (because the powers of 147n,, form a subset of powers of I',,1 M_, ).

Summarizing, we can partition the set of decinators {(i} into two classes.

Set 1: Those that are factors of nM-1.

Set 2: Those that are not factors of rAi-1.
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For each ni in Set 1. Wt' has been paired with a power of W'.•f And none of the u,'s in Set

2 can be paired with any member of Set 1. Thus. the original set of decimators {n,} is compatible

if and only if Set 2 itself passes the compatibility test.

Statement of the test. Summarizing the above, we can test for compatibility as follows.

Step 1. Check if riM-2 = nM-1. If no, lhen {ni} is not compatible. If yfs, continue.

Step 2. Form the smaller set by collecting those n•, that are not factors of - Then imaginie

that this is the given set, and repeat the test, i.e.. go to Step 1.

At some point, if the answer is no in Step 1, thei, the original set is not compatible. If we keep

getting yes in Step 1, then after a finite number of repetitions. the "-smaller sel"" in Step 2 beconies

empty. The original set {nil is then compatible. Thus. the test always gives a decision in a finite

number of steps.

To demonstrate the test, consider the set (2,6. 10.12.12.30 30). We have n- I = -1 = 30

so that Step 1 is successful. The smaller set of numbers that are not factors of 30 is given by

(12, 12). This set again passes Step I successfully. The next smaller set is empty. Thus the test has

been completed, and the given set (2,6, 10,12.12.30.30) is indeed compatible. It turnls out that

this set of integers cannot come from a tree structure (binary or otherwise). For, if it did, then the

first level of the tree would have to be a two channel system with d(ecimators (2,2). The second level

then splits the lower branch of the first level only. with the deciniators (3.5.6.6.15,15). Since 3

and 5 do not have common factors, this set of numbers could not have come from a tree-structured

connection of uniform filter banks.

It turns out that while the above set is compatible, it is still not consistent with another

necessary condition for alias cancellation (hence PlR). This statement will be elaborated at the end

of the next subsection.

5.2. Generalizations

We can obtain further necessary conditions by looking deeper into the details of alias cancella-

tion. Thus consider the PR condtion. expressed in terms of thie L-channel equivalent uniform filter
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bank (where L is the lcm of ni's; Sec. 1.2.), it takes the formE O Woz S, (z) .. -L - Z) / ~ Qol
SO(ZWL) S1(zVVL) ... Sl,-l(ZWL). Q(z) 0

SO(Z '-1) S(ZWLL- 1) S._.. ZQ -1(0

By substituting for the L pairs of filters {Sk(z).Qk(z)} in terms of the original Al pairs filters

{Hk(z), Fk(z)} using (2.9), we can rewrite this in the form

-L'

10HL(Z)f(Z) = ,(.0

where f(z) - [Fo(z) ... -T and HL(Z) is an L x M matrix. The i"t column of this matrix

has the form

[kiHi(z) 0 kH 2 (zW,,) 0 kjH,(zTVi. ) ... 0 k.H(zi 7 n5-),1) 07. (5.11)

where 0 is a string of ki- 1 zeros. (Recall that k, are integers such that k,n, = L). The compatibility

condition says that any nonzero row of HL(Z) should have at least two nonzero entries.

Now notice that the decimation ratios noni.... nM-1 of the Al channel nonuniform filter

bank may not all be distinct. Let us relabel them in terms of distinict integers, for convenience of

discussion. Thus let the decimators be

no.no -.. .no, njln, -n j .. n .. ln - . . •; l (5.12)

N0 times N, times N,.-- 1 times

In this notation, ni are distinct integers and No + N, + . .. -I = M.

For example, let us fully understand the 011 column of the matrix HL(z). If No = 2. then there

are two columns (zeroth and first) of the form (5.11). with the same decimation ratio 71( (and the

same k0 ). More generally. there are No columns of the form (5.11) with the same n0 and the same

k0 . These No columns have nonzero entries occuring in the same positions, namely 0", klh, 2k, h

and so forth. Consider now another column, say the one corresponding to rij. This has nonzero

elements occuri•ig at the locations 0, k,. 2k,, and so forth. Now compare this with the 01'f column.
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and identify the locations where nonzero elements overlap. With the exception of the 0"' location,

the first overlap of nonzero elements will occur at the location lcni(ko, k,). Define

I= minijo Icm (ko, k,) (5.13)
(5.13k)

Then the nonzero elements of the leftmost column in the koh 2kth, ... ( - I )k~h positions do not

overlap with any nonzero elements from any other columns, except of course, columns 1, 2 ... No.

We can isolate these nonzero elements in the first N 0 columns of equation (5.10), and write

Ho(zWno) Hl(zW4•o) . .. H _1v(zWT4) 1 o(z) 1
Ho(zW .0 ) H I(zW o,") . . -(z ) [ (z) 0. (5.11)

Uo(zWno-1) Hj(Z1%'0') °- 1)•-(~ I )J FZ• W0-(z)

g(:)

A necessary condition. We will now prove that, if the number of rows m0 - 1 > number of

columns No, then perfect reconstruction is not possible! So the condition

mi- 1 <N. 0_<j_< K-1 (5.15)

is necessary for perfect reconstruction, where N, is the number of decimators equal to ii., and

= ini= 1 Icm (k i .kj) (5.1()•ni =kj

This is a generalization of the compatibility condition which merely said that any nonzero row of

THL(Z) should have at least two nonzero entries.

Proof of the necessary condition. Eqn. (5.1-1) implies that the columns of the matrix are

linearly dependent [unless all the Fi(z)'s in that equation are zero. which is not possible in a

maximally decimated perfect reconstruction system]. If ni0 - I > No, this means that the rows are

linearly dependent. Denoting the first row of the matrix in (5.141) as h(z:W,,0 ). the remaining rows

are h(zW20 ) ... h(zWA °-o). The linear deý -- dence implies that

Yno - I
h(zWno) = E o,(z)h(zl 0 )" (5.17)

i1=2
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Since this holds for all z, we can replace z with z1V-j 1 to obtain

mo--2 o--2h(z) =j I+ (z147 o1 )h z l"o
o ZW )h(z 7 ,,) = Z 3i(z)h(zl',o). (58)

But eqn. (5.14) says that h(-z'V. 0)g(z) = 0 for I < i < m0 - 1. Using this in (5.18) we conclude

h(z)g(z) = 0. That is,

Ho(z)Fo(z) + Hl(z)Fi(z)+ .. . + 11No_(z)F, o_(z) 0=. 5.19)

But this cannot happen in a maximally decimated perfect reconstruction system. To see this note

that the biorthonormality condition (2.6) implies, in particular,

( H~zFo~) H~z)l~) .. +H.vo- (~fyoj 10= No. (5.20)

which is not possible if (5.19) is true! This completes the proof of (5.15) for j = 0. The same

argument can be used to show that (.5.15) is true for j = 1,2,..., K - 1 as well.

This test is strictly stronger than the test for compatibility. To demonstrate, consider the same

set (2, 6, 10, 12, 12,30,30) from the end of the previous subsection. As shown there, it satisfies the

compatibility condition. According to the notation in this subsection, ni's are distinct. numbers

and we have " = 5, L = 60 and

i 0 1 2 3 4
N, 2 2 1 1 1
ni 30 12 10 6 2
ki 2 5 6 10 30
m, 3 2 1 1 1

Since mo- 1 = 2 = No, we conclude that PR is not possible.

6. CONCLUSION

For a maximally decimated nonuniform filter bank, the perfect reconstruction (PR) property

is equivalent to biorthonormality. Using this fact we derived a number of properties of PR filter

banks. We then showed that whenever the decimation ratios are such that biorthonormality is

possible, it is in particular possible to obtain orthonormnality This was done by developing an
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orthonormalization procedure. While reminiscent of the Gram-Schmidt approach, the procedurec

converges in a finite number of steps and furthermore preserves the filter bank-like form of' the

basis functions. We then modified the orthonormalization procedure for the application of subband

decorrelation. It was demonstrated that mere decorrelation of subband signals does not necessarily

optimize the coding gain of a system. Finally we considered the problem of alias cancellation, an(d

obtained a generalization of the so-called compatibility condition which is a necessary condition for

perfect reconstruction in maximally decimated systems.

APPENDIX A. REACHING ARBITRARY INTEGERS

In connection with equation (2.20), we will show that the quantity pbt,, - rb. 1 +dk,,,bna can be

made to take any integer value by proper choice of the integer d, and the integers p. r in the ranges

0 < p < k, - 1, 0 < r < km- 1. For this recall the meanings of the integers b,,,I. bt, and L. namely.

eqns. (1.8), and (2.17). Since 1, = kinj = k,,n, by definition, we have kbjp,., =g kjmbmgim. So

klbt, = k,,,bmI. Since bim and bmi are relatively prime by construction, there exist integers P and

F such that

ýbLm - Fbnj = any" desired integer a. (..1)

We can always decompose j and F as • = p + nki and F = r + ikm, where 0 <_ p < ki - 1. and

0 < r < k,, - 1. Substituting this into (A.1) and rearranging, we get

pb,. - rbmt + dk.,b.j = a. (A.2)

where d = (n - i). Thus, we can write any in~teger a as above where p and r are in the stated range.

provided we can assign any integer value to d.

APPENDIX B. POLES ON THE UNIT CIRCLE

We will show that when a biorthonormal filter bank is orthonormalized. the resulting filters

will naturally be free from poles on the unit circle. We will do this in Iwo parts.

Observation 1.
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Let A(z) be a rational function with a pole on the unit circle. at zo (J-o. Let r", be the order

of this pole. Then, in the neighbourhood of z0 , the function A((W')A((J) behaves as

Ca
A(e")jA(eJw) aJ-

This is the behavior of a pole of order 2 r,. Since A(z)A(z) >_ 0 on the unit circle, we haw, c, > 0.

Now let B(z) be another rational function with a possible pole at the same point s0 , with order rb.

Then B(eJ')B(ej') can be expressed in a similar way. So

Ca Cb
A(eJw)A(e3Jl) + B(eJW)B(eJ"j + ior(- (~ ~ c~

(B.2)

Since ca,Cb > 0. we see that there can be no cancellations, and as ; approaches .'n. the result

behaves like a pole of order = max(2ra, 2 rb). Similarly, if we have a suni of several nonnegative

functions having poles of various orders on the unit circle, the sum behaves like a pole of order

equal to the largest one.

Consequence of observation 1. Now consider the normalization step (3.29). The denotiniator

of t,(z"- )6,,(z'" ) can be written as

n, -]

k=O

Each term on the righthand side is nonnegative on the unit circle. So if P,(z) has a pole of order

r at zo = ej4° then the above summation still has this pole, with order > 2r. As a result. o,(z:",

has a zero of order r. This means that when we form tlh- .. r,!:,. f,, (- ( ()

this unit-circle pole will be completely cancelled.

Observation 2.

From (3.29) we see that a,(z"') will have a pole of order r at z0 o= if and only if

((P,(z),A,(z)) 1)i has a zero of order 2r at z = Z0-= . Now consider (B.3). Each terni

in this sumation is nonnegative. Suppose the function PR(zW4, ) has a zero of order rk at z0 . Then

P.(e,•.'•I.( )P,(eW,,_)- (ew - )r(C- , x (,nonnegative function) (B.4i)
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on the unit circle. If the summation in (13.3) has thle factor (iJ" - J-,' ( - - • - it i:'

therefore necessary that rk > r for each k. 71That is. each of thlie (uantitieI'. zl¶ " ") has to have a

zero of order > r at zo. It particular. therefore. P,(z) has a zero oforder > r at

The conclusion is that, if o (z" ) has a pole of order r at :0 .•, thI le P,:( ) it uit /ero, of

order at least r at Z0.

APPENDIX C. ELIMINATING REDUNDANT VARIABLES

If the system of equations (3.18) has a determinant that is identically zero. we can reduce The

size of the problem as follows. In this case. there exists a,,k(Z), wit h at least one, of hem differen

from zero. such that
s-1 c.k--I

Sa,,.k() (zC9k 9i.)(i o (1
k=0 rn=0

for i = 0,1 . s - I and I = 0.1. c,, - 1. While it is not obvious that t hore are polyno-

mials amk(z) satisfying (C.I), this can be verified to be the case. by use of the Sinith-.Mc.Millan

decomposition for rational functions 119]. '22). The previous equation can be rewritten as

'I C.A -I 
I~ (= 0.h1.. .. I

SG E0 foi all (C .2. )
k=0 rn=0 ) 11 / = 0.1. .. ... c", -- I

After multiplying each of these equations by ýiu(:). and sunitning t heni wit Ih respect I o I and i. we

get

(( i'(Z9" )(,diz))( d 9  Gs) 0. t'3
s=0 L

where A(z-) zam,(Z)•Now. for any rationa] P(z). the equation (t(:)J'(s))jt 0

implies P(z) 0. This is because P(eO")P(eJ"•) > 0 on the unit circle. and the decimated version

cannot otherwise be identically zero. So (C.1) implies

8--I

, = 0. (('..1)
1=0

There is at least one am,(z) 0 0, say ajk(z) ;t 0. Then (CA) implies

z~~~~kýkkz = ij L) >1 S ~ I)-?9% )(C'.5)

3 J7 f, r =1
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From here we see that the form (3.16) of G;,(z) is redcundaw and we can just drop thOle 1rm

-3ksj( )Z - GJgk(z) and form a smaller linear system like (3.17). We can keep doing his till ihb

determinant is not identically zero.
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Fig. 4. Example 3.2. Magnitude reson..s o.analysis filters,
(a) before ort-"onormaization, (b) after or-honormalizatiOn.
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Fig 5. Magnitude responses of analysis filters,
(a) before decorrelation, (b) after deconrelation.


