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Abstract. For a maximally decimated nonuniform filter bank. the perfect reconstruction
(PR) property is equivalent to biorthonormality. We start from this result and derive a number of
properties of PR filter banks. For example, no two integer decimators in a biorthonormal system
can be coprime; moreover if all analysis and synthesis filters have unit energyv, then perfect recon-
struction is equivalent to orthonormality. We also generalize the Nyquist and power complementary
properties of orthonormal filter banks, for the biorthonormal case. We then show that whenever the
decimation ratios are such that biorthonormality is possible with rational filters, it is in particular
possible to obtain orthonormality with rational filters. This is done by developing an orthonormal-
ization procedure. While reminiscent of the Gram-Schmidt approach. the procedure converges in
a finite number of steps and furthermore preserves the filter-bank like form of the basis functions.
We then modify the orthonormalization procedure for the application of subband decorrelation.
It will be demonstrated that mere decorrelation of subband signals does not necessarily optimize
the coding gain of a system. Finally we consider the problem of alias cancellation. and obtain a

generalization of a previously known necessary condition called compatibility.
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1. INTRODUCTION

Fig. 1(a) shows an M channel filter bank with integer decimation ratios ng. The input signal r(n)
is split into M signals which are passed through the analysis filters Ho(z). Hy(2). ... Hagoq(2)
and decimated by n, (integers) for & = 0.1,....3f — 1. At the svnthesis end. these signals
are expandeded, passed through synthesis filters Fy(z). Fy(z)..... Fas_1(z) aud added. When
#(n) = cz(n — np), this system achieves perfect reconstruction (PR). In this paper the PR property
corresponds only to Z(n) = x(n), as this eliminates some inconvenient notations without much loss
of generality.

When 3, 1/nx = 1. we have a maximally decimated filter bank. A special case is when
ny = M for all k. We call it the uniform filter bank. Every nonuniform maximally decimated filter
bank can be equivalently represented by a “larger™ uniform *'ter bank as in Fig. 1(b) (see [1]. {2]

and [3]). The theory of uniform filter banks is well developed and such a svstem is shown in Fig.

2(a). The analysis and synthesis fil:ers can be expressed in polyphase form as

M-1 M-1
Hiz)= Z z“"E’,—k(zM) and Fi(z) = Z :"Rk,(:‘"}. {1.11
k=D k=0

With each filter rej: ::sented like this, the system can be drawn as in Fig. 2(b) where E(z) and
R(z) are. respectively, the polyphase matrices of the analysis and synthesis banks. This system
has the PR property Z(n) = z(n) if and only if R(z) = E~1(z). There are different wavs to design
a uniform filter bank that achieves PR. so the existence of rational filters (i.e.. transfer functions
which are ratios of two polynomials) satisfving the PR property is triviallv guaranteed. But in the
nonuniform case, it is not always possible to achieve PR with rational filters [1] {block decimation
[3] is not considered in this paper). Notice, however. that ideal filters (non rational, with possibly
complex impulse response) can always be found such that the PR property holds for any set {n}
satisfying 3", 1/nx = 1. So, whenever we discuss existence of PR systems. the discussion pertains
only to rational filters.

A set of necessary and sufficient conditions on the set {ng} for PR to be possible is not known.

On the other hand. we know some sufficient conditions. If the numbers {nx} arc coming from a
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tree structure, for example, then we can have PR with rational filters [4]. [5]. Not all decimation

ratios allowing PR, allow it with a tree structure. 'For example consider M = 23 and the set

{6.10.15.30.....30}.
L —

20 Limes

This set satisfies satisfies Ziio 1/ny = 1. The filters that achieve PR are H,i:) = 17,{:) = -k
where the set of [;’s is {0, 1.2.3.1.5.7.8.9. 10, 13, 14. 13,16, 19,20, 22, 23.25.26.27.28.20}. For this.
note that the output of the i'* decimator is z(mn, —{,). We want every input sample to go through
one and only one branch. which is equivalent to saying that mn, — I, # ku, =1, for + # ; and
any choice of 4 and k. On the sther hand, sinee gollogony oo nan) = 1. these numbeis Cananut
come from a tree structure {if there were a tree. the decimation ratio at the first level of the tree
would be a factor of this ged). Because of such possibilities. we will not assume that {1} s come
from a tree. Before we discuss these issues in greater detail. let us explain some conventions and
definitions in this paper.

All our signals are in [, space {i.e.. the space of finite energy sequences). The inner product is

defined as

< z(n).y(n) >= Z z(n)y"(n). (1.2)

n= -2

and the nerm |]z(n)]}2 will be defined according to ||x(n)}|3 =< x{n).r(n) > .

Filter bank-like systems

The reconstructed signal Z{n) at the ocutput can be written as

M~1 o o<
Tn)= Z Z Z hi{nk = az(m) filn — nk)
120 k=~ M=~ ,
Mol oo {1.33)
= > k) fuln = nik).
i=0 k= -o0
where
zi(k) = Z hi(n;k — m)z(m) (decimated subband signals). (1.1)

t The authors would like to thank Tsuhan Chen for pointing out this example.




Equation (1.3) is an expansion of Z(n) in terms of sequences { fi{n — kMol vk e Z (2 s the

set of all integers). Here r;(k)’s are the “filter bank transform coeflicients™ (i.e.. the decimated

subband signals). The set of sequences
mie(n) = {filn = )} 50 keZ (1.5)

is made of a special form of functions namely shifts (by integer multiples of n,} of a finite number
of sequences. We refer to (1.5) as a filter bank-like system. The set of sequences fi(n — n,k) will
be referred to as the n;-shifted versions of the svnthesis filters f;(n). Later on it will be shown that
this system is a Riesz basis for {; space. [This is subtle because, in an infinite-dimensional Hilbert
space, completeness and independence (see Sec. 2.2. for the definition) of a set of vectors 1s not
sufficient to conclude that these vectors form a Riesz or uncorditional basis: see Corollary 4. Sec.

2.2.]

Birothonormality

Definition 1.1. A system of sequences {f;(n— mn;). filn —kny)}, 0 < A< M - T1foral m ke Z
is called a biorthonormal system if
< hi(n = mn;), ff(=n + kny) >=6(1 — )é(k - m) (biorthonormality). (1.6)
In the special case of orthonormal filter banks, the perfect reconstruction property is achieved by
setting fix(n) = hx(—n). In this case, the biorthonormality reduces to
< hi(n —mn;). hi{n — kng) >= 8(1 — 1}6(k — m) (orthonormality ). (1.7}

If the above equation holds for some ¢ and [, we often say that “the two filters H,;(z) and H,(z)
are orthonormal”. It should be borne in mind that the acutal meaning depends on n, and n,.
It will be shown that perfect reconstruction (PR) in a maximally decimated filter banks implies

biorthonormality. ! In Section 2.1., we will show that the most general form of PR for a maximally

P Thisisa fairly subtle fact, holding only because of marimal decimation. For example, consider
a two-channel undecimated system with filters Hy(z) = 1+ 27"  Hy(2) = 127 Folsy = Fi(2) =
1/2. Then we have PR. but it can readily be verified that hiorthonormality is not satisfied.
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decimated filter bank is a biorthonormal basts for [, space, formed by the analvsis and synthesis
filters. This issue has come up in earlier work. but has not been shown or proved this way. The
relation between filter banks and wavelets. and the role ot orthonormality has been discussed in
[6]. 171, [8]. [9] and [4].

From this result we can obtain useful conclusions. For example we will conclude that there
must be no coprime pairs in the set of decimation ratios {71,&}2’:?,1 in order for PR to be possible
with rational filters (ideal perfect reconstruction filters can alwavs be defined for any maximally
decimated filter bank). Thus, the existence of rational filters achieving PR is a nontrivial question
in the nonuniform case. By contrast, in the uniform filter bank theory. we can design analvsis filters
and just invert the polyphase matrix E(2) (as long as its determinant is not identically zero) in

order to obtain PR (with possibly unstable or noncausal synthesis filters).
Orthonormality

A second question of interest in nonuniform filter bank theory is the following: suppose the
integers {nk};:’f__?)l are such that a biorthonormal PR system (with biorthonormal. rational filters)
exists. Does it mean that an orthonormal PR systemn also exists? (Again. for the uniform case.
the existence is trivially guaranteed simply by constraining E(z) to be paraunitary.) We will
show by construction that for a given set of integer decimation ratios {nk}‘;;’. the existence of

biorthonormal systems implies the existence of orthonormal PR systemis as well (Sec. 3.).

The procedure to convert the biorthonormal svstem to an orthonormal one is reminiscent of the
Gram-Schmidt (GS) procedure, but is not the same, for a variety of reasons. First, the orthonor-
malization of the basis is required to preserve the filter bank-like form of the basis: conventional
GS procedure would not give us this. Furthermore. using z-domain analysis and the special form of
our system, we will be able to do the orthonormalization process in a finite number of steps (even
though !, is an infinite dimensional space). This is another point of departure from the traditional

GS technique.

At this point, the reader should be warned that this orthonormalization procedure is mostly




of theoretical importance. The filters resulting from the orthonormalization not only are 1IR iu
general, but also have huge orders; the proposed orthonormalization is not an alternative design
technique for filter banks (after all we do not have biorthonormal filters to start the orthonormaliza-
tion with). For the purpose of subband coding, there exists a simple scheme to generate inexpensive
orthonormal filter banks, based on the so-called power symmetric filters (pp. 204 [10]). These can

also be used in a tree structure to obtain a subclass of nonuniform IR orthonormal svstems.

1.1. Paper outline

In Sec. 2. we discuss the detailed reasons why biorthonormality and perfect reconstruction
(PR) are identical concepts for mazimally decimated filter banks!. Several corollaries of this result
aie derived in Sec. 2.2. For example, we show that for PR to be possible. no two decimation ratios
can be relatively prime. We also show that if a perfect reconstruction system is such that all the
analysis and synthesis filters have unit energy, then the system becomes orthonormal (paraunitary

in the uniform case).

In Sec. 3. we show that whenever the decimation ratios {n,} of a maximally decimated system
are such that perfect reconstruction is possible (i.e.. such that there exist biorthonormal filters).
then in particular, there exists an orthonormal filter bank. The proof is constructive. that is. given
a set of biorthonormal filters we show how to find a set of orthonormal filters starting from these.
Numeric.| examples are included. In general, the resulting orthonormal filters turn out to be IIR
even if we start with an FIR biorthonormal system. However. the IIR filters arc guaranteed to
be free from poles on the unit circle. This means that, should they turn out to be unstable, a
noncausal implementation can be found which is stable [12], [13].

The orthogonalization technique will then be used in Sec. 4. for a different purpose. namely
decorrelation of subband signals of a uniform filter bank. In other words. referring to Fig. 2(a),
imagine that we are given a wide sense stationary input signal z(n). We will show how to find the

analysis filters { Hi(z)} such that the decimated subband signals z,(n) and x,(m) are uncorrelated

F' A brief sketch of some of the results has been presented in [11]
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for all n,m (for k # ¢). While this might appear to be similar to the Karhunen-Loeve transform
(KLT) [14], there is a fundamental difference. Namely. the KLT decorrelates ry{n) and ri(m) only
for n = m. It is of course true that we can decorrelate rx{n} and r (m) for all n.ne triviadly by use
of ideal non overlapping filters. But we will construet finite order (rational) filters. tuned to the
statistics of the WSS input z(n) with the power spectrum 5,,(2) which is assumed to be a rational

function.

As a consequence of the analysis in Sec. 4.. we learn that if a uniform filter bank is orthonormal
[paraunitary E{z)], then the subband signals cannot be decorrelated in this way. unless the power
spectrum S;(e?) of x(n) has the form F(e/*) (i.e., has a period of 2x/M rather than 27).
Whether this is a disadvantage of orthonormal systems is arguable because. decorrelation of the
subband signals does not necessarily maximize the coding gain of the system. again wnlike in
transform coding! We will demonstrate this with an example. This section is restricted to the
uniform case, mainly because of a technical difficulty: even though the subband signals of a filter
bank are W&S for WSS input x(n), they are in general not jointly wide sense stationary in the

nonuniform case; many of the standard second order statistical tools cannot then be applied.

In Sec. 5. we derive some further necessary conditions on the decimation ratios {n}. for
perfect reconstructibility. These can be regarded as generalizations of the compatibility condition
given in [1] and [p. 285 of 10]. Some of the technical details which arise in the proofs have been

moved to the Appendices (A-C) to provide a smoother reading.

1.2. Notations and conventions

1. The quantities AZ and Al stand for transposition and transpose conjugation of the matrix

A. I'he notation f:I(:) = Ht(l/:'). Thus ﬁ{:) = HT(:) on the unit circle.
2. Z represents the set of all integers 0, £1,4+2....

3. Special integers. The integer M denotes the number of channels of the nonuniform system

(Fig. 1{a)). The integer L = lem (ng,ny....na¢-1). Also. g;; = ged (n;.n,) throughout the
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paper. The integers {k,} are numbers that satisfy
L=kong=kiny =---=kpyynyoa. {1.%)

4. Wy = e~*m1/L_ The subscript L is omitted whenever it is clear from the context. W is the
L x L DFT matrix. It has elements [W,,,, = W["". Note that wiw = 11

5. The AC (alias-component) matrix for analysis filters {defined for uniform [L-channel filter
banks) is the one with components [H(z )}, = Hn(z1W™). For the synthesis filters we define
a similar matrix: [F(z)]mn = Fa{2W™).

6. A delay chain is represented by e(z) = [1 =7} ... z~M+#! ]r (see. e.g.. Fig.2(b)).

-3

. The M-fold decimator has input-output relation y(n) = z(Mn). or in the s-domain

Af-1
by L s A/ Mygr .
}(u)_;ﬁ;’fm Wi, (1.9)

The M-fold expander has the input-output relation

_Jan/M), n=mul of M
y(n) = {0 otherwise, (1.10a)
or in the z-domain
Y(z)= X(zM). (1.106)

The notations [pr and }as are used 1o denote these operations. Thus n(n)j Y denotes the

decimated versiou (M.}, and A(:)lM i+ *he corresponding ~-transform that is z-transform

of a(n)iM.

8. For uniform filter banks, E{z) and R(z) are the polyphase matrices of the analysis and syvnthesis
filter banks (Fig. 2(b)).

9. Perfect reconstruction (PR) means #(n) = r{n). In the uniform case it is equivalent to

R(2)E(z) = I (see Fig. 2{b)}.

10. The so-called noble identity for multirate systems [10] can be stated. for our purpose. as follows

(A(z'"‘)B(z))I = (/1(:)([3(:))1 )J' ) (1.11)

-1




2. EQUIVALENCE OF BIORTHOGONALITY AND PR PROPERTY

For the study and design of uniform filter banks. there exist powerful tools sucli as the polyphase
formulation and the AC matrix formulation. In order to use them in a nonuuiform filter bank. we
have to transform it into the equivalent uniform one [1], [2]. This is shown in Fig. Hbj. There are
L branches (where L is the lem of {n,}). and each of them has the same decimation ratio. The

analysis filters are numbered as

So(2).81(2)ee oo Skg—1(2) Sl 2)e oo (2.1
and similarly for the synthesis filters Q;(z). Thus the analysis and svnthesis filters are
Si(z) = PMH (). Qi) = 27T Fiz). (2.2
where
-1 m~—1
i=p+}:k,-. 0<p<hk—1, k:r+Zk1. 0<r <k, — L. (2.3
j=0 1=0

Here k; = L/n; and its meaning is clear; we just made k, delayed filters {rom each original filter

Hi(z),i.e. each new filter comes from one of M original {ilters. The biorthonormality (1.6) means
Zh,-(n ~mn) fil-n+ k) =8t -Dé(m-k), 0<iI<M-1. wm.belZ. (2.4
n
Eqn. (2.4) can also be rewritten as [4]
Zhi(n)f,(m!}u —n)=8i-NDé(m), 0<LI<M~-1, meZ {(biorthonormality)., (2.5)
n

where g,y =gcd(n;,n;). This infinite set of conditions can be compactly written as a finite set of

conditions in the z-domair
(H,-(z)ﬂ(:))l =8z-10), 0<il<M-1 {biorthonormality). {2.6)
¢l

Again, if Fi(z) = ﬁi(z). then the above property is called the orthonormal property. and can be

written as

e
-1
—

(H,-(:)I?‘(z)) l =81~ 1) (orthonormality), {

git




or equivalently as

(S
r.

(F,‘(:)IT}(:)) l = &1 — 1) {orthonormality ). ({

g

A filter bank with analysis .d svnthesis filters satisfving these biorthonormal torthorormal) con
ditions will be called a biorthonormal (orthonormal} filter bank. We sometimes ~ay that two filters
Hi(z) and F,1z) are biorthonormal if they satisfy (2.6). It should be noticed that the bhiorthonor-
malit v definition invelves n, and ny.

In this section, we will show that the most general form of PR for a maximally decimated filtes
bank is a biorthonormal basis for {; space. formed by the analysis and svuthesis filters. This issue
has come up in earlier work, but has not been shown ur proved this wayv. This will be followed by

the derivation of a number of corollaries.

2.1. PR Implies Biorthogonality of Analysis and Synthesis Filters
Theorem 2.1. Let the system in Fig. 1(a) be a maximally decimated filter bank with decima
tion ratios {nk}ﬁgl. If the filter bank has the perfect reconstruction property, the filters {orm a

biorthonormal system. that is satisfv (2.6).

Remarks.
1. This is a fairly subtle fact. holding vnly because of marimal decimation. Yor example, consider
a two-channel undecimated system with filters Ho(z) = 1 4 =71 Hy(zy = 1 = 271 Fo(2) =
Fi{z) = 1/2. Then we have PR, but not biorthoncrmality.

2. The converse of the above theorem also holds: see Appendix B of [15].

Proof. Let 5,(z) and Q(z) be analysis and synthesis filters of the egivalent uniform filter bank.

They are related to H((z) and Fr(z) by (see Fig. I{b))

S:(:) = P 2), Qk(:) = 27T Pl o). (2.9
where
t-1 m-1
i:p+Zk,. 0<p<h -1, L':r+Z&'J. 0<r<h, - L (2.10)
=0 =0
9




Let S{z) denote the AC matrix of the above analvsis bank 5,(2). that is [S{2 ) = 9.2 (Sec.

1.2.) and let E(z) be the corresponding polyphase matrix. These are refated as {10, pp. 238
S(z) = WA B! (1), (20

where A(z) = diag(l.z7"..... >0y Similarly for the synthesis bank define Q(z) such that

Q) mn = Qn(2W™ ) and let R(z) be the polyphase matrix as defined i Sec. 1. We have

Q(:z) = WA L R(5). (2121
Then
=1
S(HQ(2) = WA (RE=FIECI) ATHW = WIW = [ (213

This is because R{z)E{:) = 1. due to PR property. So we get [since Sz} and Qiz) are square
matrices;

Q)81 (z)=8(2)Q" () = il (2,143

Notice that without the assumption of maximal decimation. the matrix A(2) would not be square,
A71(z) would not exist and we would not have S7(2)Q(z) = Q(:)S”:) = LI {which is an
important step in the proof!).

The condition ST(:1Q(z) = LI implies, in view of the definitions of S{2). Q(z) and (1.9}, that
(SU=)Qu(=) |, = &(i = k). (2.15)

Now suppose that 1,k are such that { # m in (2.3).i.c. that 9,{s) and Q¢(z) do not come from the

same original branch. Then (2.15) can be written as

(:pnl—rnm i’l(:)l"m(:)>J' = 0. (2}(})
L

forO0<p<hk—land 0<r <k, —1. With

n = blm!}lm and Py = bmlﬂlm- 2100

10
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where g =gcd(ng, ny ). this becomes

(:("b""‘rb'“"g"" Hi :)I",“(:)) il = {. (2,18}
By multiplving (2.18) by z¢, we get
zd((z(”b'"'"'b"‘"g"" Hi(2)Fui2)) i;) =0. Yde 2z, {2.19)
or using L = kptn = Kmbmigmi
(lptm=rbmct dhbo it o) 1 (2)) L‘ = 0. (2.20)

It is shown in Appendix A that (pby, = tbmy + dk.by) can take any integer value a. under the

conditions 0 < p< k- 1,0<r<kp-1l.and d = Z. Then

= Ya & 2. (221

(co 1))

[
lkl bl w i

This is equivalent to

o
L
13V

(za(u[:(:)ﬁn(s))ig‘m))Lb =0 Va € 2. (2.

Since this holds for all integers a, we can rewrite it as

(Hl(z)[;u(:))lg‘m = {}. (2.23)

Let now 5;(z) and Q(z) come from the same branch,i.e. [ = m. Then {2.15) means

(3(”""'"‘ Ilm(z)]’m(:)) L‘ =&(p—r) (224

(:(”"r)((H,,,(:)Fm(:))l ))J = &(p-r) (2.23)
Mg, k

™m

that is,

Now p — 7 can reach any integer in [—km + Lok, - 1], so that the last equation is squivalent to

(Hm(z) iz |, =1 (2.26)

.
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Together with (2.23), this implies biorthonormality (2.6).

2.2. Corollaries

Corollary 1. No two decimators can be coprime.
If any two n;'s are relatively prime, then their ged is 1 and we canuot satisfv the conditions
for PR with rational filters. This is because (2.6} now unplies Hi(z)F,{z) = 0 for | # 1 and this

cannot be satisfied with rational filters.

Corollary 2. Completeness.
Definition 2.1. A set of vectors {x,}72, in an infinte-dimensional Hilbert space is said 10 be complete
if the zero vector is the only vector orthogonal to all of x;’s {pp. 6. [16]).
Assuming that the filter bank has the perfect reconstruction property. the completeness of the
filter bank follows immediately. To see this, let us write (1.3) {with F(n) = z(n)] in a different way
M-1
r(n)= Z Z {z(—-m).h,‘(m + n.-k))f,(n - n;k). (2.27)
=0 k
Assume there is a nonzero input z(n) such that r{—n) is orthogonal 10 all the analvsis filters and
their n;-shifted versions. Then the above sum would be zero and the system would not he a PR
system. Similar conclusion can be made for the synthesis filters if we interchange the analvsis and

synthesis filters (because PR is not violated by such an interchange).

Corollary 3. Linear independence.
Definition 2.2. A set of vectors nue{n) = {fi(n - n,l\")};‘:lgl, k € Z in an infinte-dimensional space
is said to be linearly independent (or minimal) if none of n;x{n)’s lie in the closure of the linear
span of {mm(n)}M5! m # K for I = J (sec pp. 25. [16]).

Since the synthesis filters form a biorthonormal system, it can be proved [16] that the set

of sequences 7 (n) is linearly independent. We will often say “filters F,(z) and F,(z) are lin-
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early independent™. meaning that the corresponding time sequences aund their shifts are linearly
independent in the above sense. Using z-domain techniques. we have another useful manifes-

tation of linear independence. Let A;{z) be rational functions. then the linear independence of

{Fo(z), F\(2)...., Fag—1(2)} implies
Af-1
Y AMF(z)=0 = A(:)=0fori=0.1...M~1L (2.2K)
=0
To see this, just take inverse z-transform of (2.28}). The result is
M-1 =
Z Z ai(k)fitn = kn,) = {0}.
1=0 k= -

where {0} denotes the zero sequence. Taking inner product of both sides with h, (s — n,k) for

e=1,2..... M —1land Vi€ Z, weget (2.28).

Corollary 4. Basis property.

In a Hilbert space, completeness and independence of a set of vectors is not sufficient to
conclude that these vectors form a basis'. However. by using the further assumption that the
synthesis and analysis filters are stable (i.e. 5 Ih(n)] < x and 3 |filn)] < x or F(c?<).
H;(e¥) exist and are upper bounded by a finite constant). we show that {fi(n — rnn,')};‘:’g] and
{hi(n — mn;)}M=V ¥ m € Z are bases for I space. For this. we will invoke Theorem 9. pp. 32.

[16]. Since completeness and existence of a complete biorthonormal sequence have heen established

earlier, it is sufficient, according to the above theorem. to show

M-1 AT-1
ZZl(m(n),fi'(nzn;—n)>l2<oo and ZZl<r(n).h,‘(rrm,—n)>{"’<x.
i=0 m 1=0 m

(2.29}
for auy z(n) € (5. In this discussion, all summations with unindicated limits are from —x to .

We will show that
A -1

S N <) frmng = 0y > 2 < Clla(n)]]3 (2.30)

=0 m

F' In this paper, the term ‘basis’ stands for the Riesz or unconditional basis, as defined in [16]
pp. 31. or [17] pp. 71. Other kinds of bases, the Schauder and Hamel bases [16] do not concern us

here.




for any sequence z(n) € I;. Thus

M-1 A -1 "
Z Z( < x{n), fi(mn, —n) > i“2 = Z Z i Zr(n)f,(nm, - n)!-
=0 m \.’:_Ol m n (2.:“)
= Z Zi:,(m)lz.
=0 m

where z;(n) is the n;-fola decimation of the convolution r(n) * fi{n). Using Parseval’s relation the

above can be rewritten as
M-1 oo A1 n

* 2 _. 1 ” w2 g
Z Z ' < x(n')vfi (m'ni - TZ) > ] = Z :z-; A kd,‘(f" ” ..
1i=0 m=-—00 =0
Al—l 1 2,( )
< 5= X () F ) dw 2.32
".};{,2”/0 [X () F 2] d (2.32)
A= X
< el sup [Fi(e?)] < x
L g e

as long as z(n) € [s.
The first inequality follows because the energyv of a decimated sequence is no greater than
that of the undecimated version. The proof for the analysis filters is similar. So. we really have a

biorthonormal basis formed by the set of n;-shifted versions of the synthesis and analvsis filters.

Corollary 5. Unit energy implies orthonormality!
Consider the maximally decimated system [Fig. 1(a)]. Suppose the following two properties

are satisfied:

1. Perfect reconstruction property, and
2. All analysis and synthesis filters have unit energy, ie., 3 lh(m)f* = X, 1fi(n)|* = 1. for
0<1<M-1.
Then the synthesis filters satisfy orthonormality. In other words, eqn. (2.7) holds. (This does
not, of course, imply that a biorthonormal system can be orthonormalized simply by scaling the
filters to have unit energy.) To prove this, note that the perfect reconstruction property implies

biorthnormality (Theorem 2.1.), so that, in particular,
Y him)fi(-n) = 1. (2.33)
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Now, Cauchy-Schwarz inequality says
E 5y i z . »
P LHCI L PRTAC lzh-s(n)f.'(—n) : (2.3
The right hand side is unity, by (2.33). The left hand side is also unity if the analysis and synthesis
filters have unit energy. But equality in Cauchy-Schwarz inequality implies f,(n) = ¢/% f*(~u} for
some §;. Substituting in (2.5) we readily conclude that §; = 0 and that the set of svnthesis filters

(equivalently, the set of analysis filters) satisfies orthonormality.

Corollary 6. Generalization of Nyquist and power complementary properties.

For uniform filter banks (n; = M for all ) it is well-known that if the system is orthonormal
(paraunitary), the filters H;(z) and F;(z) are spectral factors of Nyquist( M) filters {or Mth band
filters) [10, page 297]. In the more general (nonuniform, and biorthonormal case), this property is
replaced with the property that H,(2)F;(z)is a Nvquist(n;) filter. We can readily see this from the
biorthonormality condition {2.6) by setting i =1

(Hi(z)F,-(:))L_ = 1. (2.35)

i

Next, for the uniform paraunitary filter bank, it is well known that the anaysis filters are power
complementary, and so are the synthesis filters [10, p. 296]. For the general case (nonuniform.

biorthonormal) we have
1
Z;Hi(z)ﬂ(z)= 1, (2.36)

(see [15]) which reduces to the power complementary property
ZH.(:)I?,-(:) =M (2.37)
i

in the uniform paraunitary case.
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3. ORTHONORMALIZATION OF BIORTHONORMAL FILTER BANKS

From the second section. we know that if the integers {n: },:‘if)' are such that PR is possible.
the analysis and synthesis filters (and their shifted versions) form a biorthonormal basis. Under this
condition, does there exist a PR system with orthonormal filters” The auswer to this gquestion is iu
the affirmative; we will present an orthonormalization process which preserves the filter bank-like
form of the system {h(» — mn,), filn — kn;)} for 0 < i,/ < M —~ 1 and m.k € Z. If one wants just
to orthonormalize some set of vectors, the Gram-Schmidt technique is one way of doing this. but
we want more, namely 1o preserve the filter bank-like form of the system. We now show how 1o
achieve this aim. Our procedure is reminiscent of the Gram-Schmidt technique. but it converges in

a finite number of steps even though the space has infinite dimension.

3.1. Normalization condition or Nyquist condition

Let Fi(z) be a rational transfer function. Define

Ge(z) = ap(=" YFi(z). (3.1)

Then Gk(z)ék(z) = ap(z™ )ag(z™ )Fk(z)fk(z). so that

(an(=")@t ") Fel2)Fu(2)) | = ant)@t=) (Fu(2)Fu2) 1 (3.2)

ny

Now if we choose a(z) such that

ar(2)ak(z) = — . (3.3)

we get

(Gk(z)ék(z)) J =1 (3.4)

A function Gi(z) with this property will be called normalized. This is different from the usual

meaning of normalization of vectors in /,. In the time domain. the above normalization condition
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means that the ng-shifted versions of gi(n) (i.e., {gx(n ~ ing)}) form an orthonormal set. Equiva-
lently, (:’k(z)G'k(z) is a Nyquist(ng) filter [10. p. 151]; that is its impulse response coefficients hin)
satisfy h(nxt) = 0 for ¢ # 0.

The existence of ai{:) satisving (3.3) is assured because of the following. We have

N

-1
~ 1 N I o
(Fu:)mz)H =— Y Rl Rt (3.5)

na Ty

Since Fy(z)Fix(z) > 0 on the unit circle. each term in the above expression remains nonnegative.

Thus whenever Fi(z) is rational. the function (Fk( :)f’k(:)) J' is rational and nonnegative on the
unit circle. Such functions can always be written as a pmduct"(:(:)??( z). The speciral factor a(2) (a
rational function, not unique) can be obtained by standard spectral factorization technigues. Now
take ax(z) = 1/a(2) so that
I U i
a(z)a(z) ([‘k(:)fk(:))i ‘
N

and (3.3) is satisfied. The function a{z) can be chosen to have no poles outside the unit circle (by

(3.6}

choosing a(z) to have minimum phase), but what if a(z) has a zero on the unit circle? Then ag{z)
will have a pole on the unit circle! This potential instability will be handled later on.

If two filters Fi(2) and Fi(z) are orthogonal. will that property be preserved by the above
operation? Let G;(z) and Gk(z) be the normalized versions of Fi(z) and Fi(z). Then

= Q‘-(zni/gik )ak(:”k {9k ) (F,( :)i':k(

N

) Ly =0 (3.7)

L ¥

Qik

(Git2)Gu(2) |

—

=0
showing that orthogonality is preserved (notice that ny/gix and n,/gir are integers). Summarizing.

if we have a set of orthogonal filters {Fi(z)}M5! *hen the above normalization can be used 1o obtain

a set of orthonormal filters {G(2)}M51.
3.2. Orthogonalization

Let {Fk(z)}ﬁal be the set of rational synthesis transfer functions for a maximally decimated
PR filter bank with decimation ratios {nk}ﬁf,'. We now describe a procedure to get a new set of
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rational transfer functions {Gk(z)};:;l which are mutually orthogonal, i.e. satisfv

(Gk(z)é,(z))l =0 forkd=0,1,....,M —1and k # L. (3.8)

Gkt

We start by making Go(z) = Fp(z) and G;(z) orthogonal to Gg(z). For this, let us look for Gy(z)

of the form
Gi(2) = Fi(z) — 301(2%")Go(z). (3.9)
We want
(Gl(z)éo(z)) lgm =0 (orthonormality), (3.10)
or, using (3.9)
(Fl(z)éo(z)) lgm - Bor{z) ((;0(3)60(30 Lm =0. (3.11)

This can be satisfied if we choose fg1(z) as

(Fl(z)éo(z)) lgox

Bor(z) = (GO(:)G'()(:)) L gon .

(3.12)

Clearly 3o1(2) is a rational transfer function. Then, Gy(z) as in (3.9) remains a rational transfer
function. This is how we start this orthogonalization process. Now assume that we have made
Go(2),G1(z),...,G,-1(2) orthogonal to each other in the sense of (3.8). In the s** step we want

to make G,{(z) orthogonal to Go(z),G1(2),...,Gs—1(2). Assume G,{(z) in the form
s—1
G_,(Z) = F,(Z) - Z_d,‘s(’zg"")G,‘(Z). (313)
=0

Let

L= Gs0Cs0 = Gs1Cs1 = *~* = f5,5-1Ca,5-1- (3.14)

After expanding §is(z) into cg-fold polyphase components we get

Coi—1

Bis(29) = Z s Bzt (3.15)

=0
s0 G4(z) is of the form

s—1cyi—~1

Ga(z) = Fy(z) - Z Z Fia(z5)z719 Gy 2). (3.16)

1=0 =0
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We want to make G4(z) orthogonal to Gi(z) for k = 0,1....,s — 1. In other words we want
s—1cg—1

-y (;}isl(zl‘);'"lg“G,(:)(;k(:Ol = 0. (3.17)

=0 =0 9ok

(Go()Gk(2) | = (Fu=)Ga(2)) |

Gok Gok

It is easily verified that a rational function A(z)satisfies (A(z)) |g= 0if and only if (z™94( :))ichg
=0form=0,1,...,¢— 1. Then, (3.17) can be written as

a=1cyi—1

>3 B (et GG 2) | = (2 F(2)Gu ) | (3.1%)

i=0 =0
form=20,1,...,cax~1and £k =0,1,...,5 — 1. So we have Zf;(; ¢y; unknowns J,4{z). and the
same number of linear equations. If the determinant of the system (which is a rational function
of z) is not identically zero. we can solve the system of linear equations for ,5(z)’s. If this is not
the case, we can keep decreasing the number of unknowns until we have a determinant that is not
identically zero (see Appendix C). After solving it, we see that 3;,(z)’s are rational functions. so

G,{~) will remain a rational transfer function. At the end of this process, we have a new set of

rational transfer functions {Gk(z)},’:{__‘(‘)l satisfying (3.8).

3.3. Stability

In this subsection we show that if the transfer functions resulting from the orthonormalization
have poles outside the unit circle, they can be moved inside, preserving the orthonormal and PR
property. We also show that in the process of orthogonalization and normalization described in
Sec. 3.2. and 3.1., the poles will automatically be excluded from being on the unit circle.

First assume that after the orthonormalization we got {G;(:)},’i‘dl with some poles outside

the unit circle. For exaniple, let zg be a pole outside the unit circle. Construct the FIR filter
[ (1 -=""=Wl) (3.19)
(Recall Wy = e=727/N 35 usual). This has zeros at

aWh, 0<I<n-L (3.20)
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T T T TIEEEE——————
(3.21)

Simplifying (3.19) we obtain the form (1 ~ 27" z7'*). Define the product
Qrl(2™ ) = (1= 27 2% ) (1= 2™ i)

where 2g, 21 ... are the poles of G(2) outside the unit circle, and construct the allpass function

= ?—k(—i—n:-) (3.22)

Yi(2"*) .
* Qulz™)
(3.23)

This has all poles inside the unit circle. Now form a new set of functions as
Grlz) = (2™ )Gl (2).

Gkm
— 0. (3.24)

Then G(2) has no poles outside the unit circle. The new set satisfies orthogonality because. for
ghg

= (Wl )G (" B(2)) |

m # k, N
(G(=)Gmi=)) |
= 'yk(z""/g""‘ )7,,,(::""‘/9"'") (GL(Z)&L,,(Z)) l
=0

(3.25)

N )
e
=1

(Recall that ng/gim and n,,/gkm are integers.) Normality is preserved too since
(Y )

=1

Gi(2)Gilz =yl 2)klz '(2)Gh(z =1
(Gu21Gu2) | | = w2t (Gua)Eu2) |,
So, we have shown how to replace the poles outside the unit circle with poles inside, without
destroying orthonormality.

(3.26)

Avoiding poles on the unit circle.
Let us repeat (3.13) below, but call it Py(z) for notational convenience.

s—~1
Py(z) = Fo(2) = Y_ Bin(2%)Gi(2).
1=0

This function, in general, can have both poles and zeros on the unit circle. First, assume that it
has a pole of order r at z, = e/, It will be shown that this will be cancelled in the process of

{3.27)

ay(2" ) Py(2),

Gi(z) =

20
e

normalization. Recall that the normalized function G,(z) is constructed according to




where

-~ | .
03(3)(13(3) = . {3.2%)

(PA:)R(:)) j-n.

It is shown in Appendix B that if P,(z) has a pole of order r on the unit circle, then a (2" ) defined

as per (3.28) will have a zero of order at least 7 at the same point. This zero will cancel out the
pole of Py(z), so that the normalized G,(2) will not have any pole at that point. We see that (G,(z)
cannot have any pole on the unit circle coming from Py(z).

The other possibility is that a,(2"+) itself has a pole on the unit circle. i.e.. ([’3(:)]’33(:)) l

n,

P 13

has a zero on the unit circle. Assume that a,(z™*) has a pole of order 7 at zp = €/°, and hence at

zoW,'f’, 0 <k <ng—1. We have

as(zn. )a(zn,) =

. (3.29)
((Ps(z)ﬁ,(_z)) j) 1.
From this equation we conclude that a,(z") can have a pole of order r at some point. on the
unit circle, if and only if ((Ps(_z)ﬁs(z)) ln.) L' has a zero of order 2r at that point. for this
to happen P,(z) must have zeros of order at least » at =z = sOW,’f‘ for k=0.1..... ng — 1 (for the
proof see appendix B). These zeros will cancel with the above mentioned poles of a4 (z") when
G,4(z) is formed. From this we can conclude that G4(z) cannot have any poles on the unit circle.

Together with the fact that poles outside the unit circle can be moved inside, we conclude that the

described procedure leads to stable filters.

3.4. Numerical Examples

Ezample 3.1. Uniform system. As an example of the above described procedure, we orthonor-
malized an uniform, four-channe' filter bank. The filters that we started with were all FIR, linear-
phase, obtained from a two-level tree of two-channel filter banks. Each filter in the two-channel
module has length 10 ([18]). The resulting orthonormal filters are IIR and their numerator degrees
are 28,44,140,380 and denominator degrees 25,41.77.377 respectively. We see that the orders

of the filters increase rapidly as we proceed with the orthonormalization process. The magnitude
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responses [see Fig. 3(a) and 3(b)] are more or less the same before and after orthonormalization.
Most of the polynomial coefficients after orthonormalization are very small and can be discarded
without harming the frequency response, but it deteriorates the orthonormality property.

Ezample 3.2. Nonuniferm system. We orthonormalized a three-channe! filter bank with deci-
mation ratios 4,4 and 2. The filters that we started with were all FIR with lengths 2%, 2% and 10.
After the orthonormalization, we got IIR filters with numerator degrees 100, 25. 10 and denomina-
tor degrees 33, 25,9 respectively. Again their magnitude responses [shown in Fig. 4(a) and {(b)]
do not differ much.

The examples show that, while the above procedure is of theoretical interest. the resulting
filters are far from being efficient. The main aim of the section is to emphasize the existence
of orthonormal systems for nonuniform filter banks where biorthonormal svstems exist. and then

demonstrate the orthonormalization technique.

3.5. Numerical Considerations

In actually implementing the orthogonalization algorithm, one faces the problem of decimating
IIR trasfer functions {(3.6), (3.12), etc.]. Theoretically. we could expand the rational transfer
function into partial fractions, then expand each of them into a power series in = and retain every
nt* term. This does not yield numerically accurate results. There are several ways to avoid the
factorization of polynomials.

The first one is based on a state-space manifestation of the decimation. Namely. if A is a state
transition matrix in some realization of H(z), then A™ is a transition matrix of the decimated
system H(z) |,,. Now in order to get the denominator of the decimated system. we need to find the
characteristic polynomial of A™. We see that this already may be a rather big numerical problem.
especially if the order of the system is big.

Another method, again system theoretical, relies on the fact that a rational transfer function
(with no common factors in the numerator and denominator) of order ¥ can be determined from

the first 2V + 1 impulse response coefficients (it can be shown that the determinant of the system
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is nonsingular [19]). The impulse response coeflicients of the decuinated system can be obtained
from the impulse response of the original system. which can be easily obtained from the difference
equation described by that transfer function. The problem with this approach is that the matrix
of the system of linear equations. even though nonsingular. is tyvpically ill-conditioned.

The third method is based on the frequency manifestation of the decimation. Namely., we

know that

n,—1
(H(:)M =(1/n,) Z H{Ymagky, (3.301
™ k=0

Now if we write H(z) as a ratio H(z) = N(z)/D(z). the denominator of the decimated svstemn can

be written as

t,—!

Datzy=mn, [ pezt/muk, (331

k=0
So in order to get the denominator of the decimated system. we have to find FFT's of the modulated
denominators of the original svstem D{z¥W¥). multiply them. stretch n, times (i.e. decimate by
n; ) and multiply by n;. The inverse FFT of the result will give us Dg{z}). Notice that lere we have
a product of polvnomials., which is appropriately implemented using the FFT. The critical factor
is the number of terms in the product. It depends on n, only. not on the order of the filter.

After we get the denominator. getting the numerator is easy. We can again use FI7T techniques.

Calculate the sampled DFT of H(zW¥),

Pl
H(edWky = — 3.32
I = D (332

where w;’s are the sampling frequencies (frequencies at which DFT is the sampled Fourier transform
of the numerator and denominator). We add all of these, divide by n,. and stretch n, timoes. to get
the sampled DFT of H(z) |n, = Ha(z). Since we already know the DFT of the denominator of this
sampled frequency response, we can get the DFT of the numerator. The product of this sampled

DFT and the DFT of Dg4(z) will give us

Pyle?™y = Hale?YDg(ed74). (3.33)
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After doing the inverse DET of this sequence. we get the numerator polynomial Fyiz). One has to
pay attention to the number of points of FFT {sampling density of DFT}. 10 avoid ~hasing in the
frequency.
The third method yvielded much better results than the second one. especially for high order
filters and large decimation ratios. This method was actually used for producing all the above
g \ ] g

examples,
4. COMPLETE DECORRELATION OF THE SUBBAND SIGNALS

4.1. Decorrelation with Orthonormal Filters
4.1.a Uniform Case

In the traditional transform coding, where the polyphase matrices of the corresponding uniform
filter bank are just constant unitary matrices {(KLT for example). the subband signals r;(n) are
decorrelated for the same time instant. That is. E{x;i(n;x;(m)} = 0 whenever ¢ # j and e =
n. In the other extreme case where the fillers are ideal brick wall filters (the polvphase matrix
having infinite order) the subband signals are completely uncorrelated, that is E{a (n)c5(m)} =0
whenever ! # j, for any choice of n.m.

In this section we will consider the problem of complete decorrelation by use of ratiounal (finite
order) filters. We will show that the subband signals cannot be decorrelated in this wav, if we
use rational paraunitary filter banks (unless the input signal has severely restricted statistical
properties: see below),

Consider an uniform system (n, = M for ali k). Let the filter bank input r(n) be WSS with
power spectrum S,,{z}. assumed to be a rational functiou of z.

Definition 4.1. For any scalar input signal #{n) we can form a vector signal
r{nM)
r(nM-1)
x(n)= : . {1.1
r(nM - M4+

This vector signal is the ontput of the delay chain in Fig. 2(b) after decimation. and is called the
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M-fold blocked version of the input signal r(n). It is known [20] that the power spectral matrix of

this vector WSS process is pseudocirculant. Namely

SII.OI :) 51‘!.1 ‘ :) T 5:1',.”— 14T } ;
3_15‘:&,\1—1(:) ‘S‘rx,(J(:) e Srl.,\l—_’(:)
Sxx(z) = (1.2
ESeals) T Sz e St

where S,; i(z)is the i*® polvphase component of the autocorrelation function S, (1. After passing
Iz, A p i L

x(n) through the analysis bank polvphase matrix E{z). the output signal y(n) has power spectrum

Syy(z) = El2)Syx(2)E(2). (4.4

If we want the subband siguals to be decorrelated. then Syy(z} has to be a diagonal marrix.
Furthermore, if we use orthonormal systems. the polyphase matrix has to be unitary on the unit
circle. Thus, on the unit circle. {4.3) can be regarded as a unitary diagonalization of the Hermitian

matrix Sxx(€’¥). Nuw we recall that a pseudocirculant matrix can be written as {21]

T(:)W wir-i(s)
Syx(z) = ——VUD(:)———. (1.1
1= A7 A ’
where
T{:)= diag(l.:"/‘",:")/“’..A..:_M—‘—fx). (4.5

. . . . . . . Tiaw . . .
W is the DFT matrix. and D is a diagonal matrix. Since the matrix ‘v,;—’ is unitary on the unit

circle, it follows that the diagonal matrix Syy(e’~) is identical to the diagonal matrix MD(¢7%) up

to rearrangement of the diagonal elements. Ignoring this rearrangement. we get
Syy(¢7) = MD(el). (4.6)

Now assume that S, (¢?*) is rational. and that we wish to diagonalize it with the rational parau-

nitary matrix E(e?%). From (4.6) we see that D(¢/*) has to be rational. Now Eq. (1.4) implies
DW= TV ()8, (2)T(2). (4.7)

By multiplying out the left hand side, and using the pseudocirculant property of Sxy1 2} we conclude
that the rationality of Sxx(s) and D(z) implies that Sy, {z) has the form ({21 That is. it is a
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diagonal matrix with identical diagonal elements. This means that the power spectrum of the input
process z(n) has the form S,.() = C(z*). In other words. the autocorrelation Rk} = 0 unless &

is a multiple of M.

4.1.b Nonuniform case

The subband signals can be expressed as

xi(n)zz;r(n,n—m)h,(m) and rj(n):Zu‘r(njn-—k)h]{k). (4.%)
k

m

Then the crosscorrelation between these two sequences is

rij(n, ) = E{;r,-(n)x;(n -0} = Z Zh,-(rn)/t;(k)lf{r(n,n —mrT(n,(n — 1) - K} (4.9

k

Let the autocorrelation of the input signal z(n) (assumed WSS) be r(&). Then

rij(nd) = ZZhi(m)h;(k)r((ni ~njjn4 il +k —m). {4.101
k m

We see that r;;(n,l) depends on n if n; # n;, so that r;(n) and »j{n) are not jointly WSS even
though they are WSS themselves. Because of this we cannot apply the above argument to this

problem.

4.2. Biorthogonal Decorrelation
Having shown that an orthonormal filter bank cannot in general be used for decorrelation, we
will decorrelate the subband signals using a biorthonormal filter bank. Assume again that r{n) is

WSS. For the uniform case (n; = M for all 1) we obtain from (4.10)
rii{l) = ri;(n, 1) = Z Zh,(m)h;(k)r(MI + k= m).
kK m
The subband signals are decorrelated if this is zero for i # j. Equivalently. in the - domain,
Si(2) = (ﬁ,(z)n,(z)S(z)) LM =0 for  i#] (4.11)

where §,;(z) is the z-transform of r,;(1).
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Given a PR (birothonormatl) system with analysis filters H;(z). we show how 1o obtain a new
set of analysis filters such that the above holds. Vor this we apply tecimiques similar 1o the ones
in Section 3. The new analysis filters will be G;(z). Svnthesis filters will be obtained by inverting
the polyphase matrix (possibly unstable). Let Go(s) = Hglz). In order 1o make ryini and ry;

decorrelated, we look for G1(z) in the form Gy(z) = H (2) = 351 (zM )Gl 2). We want

For this, we choose

=M (1.13

If Ho(z) and H,(z) are linearly independent (in the sense described in Sec. 2.2.).it can be readily
verified that Go(z) and G(z) are also linearly independent. If we continue this process. in the «!*
step we have:

s—1

Gol2) = Hylz) = Y dks(=*Gi(2). (1.141

k=0

We do not want z4,(n) to be correlated to any of r;(n) for i < s. For this. we need

h M

g.@ks(z) (Gk(z)éz(z)S(z)) iw = (HA:)&;(:)S(:)) 1 for  1=0.1....5~1. (115

We have s linear equations and that many unknowns. This system has deterniinant that is not
zero identically (see appendix C for the proof in the case of orthogonalization). Otherwise there

exist ap{z), such that

|
—

8

[
>~
Py

(33
—

Pt
o

&
~—

D
-
-

t
~—

n
Pty

t

)>L\1=0 for 1 =0.1,..... s — 1. (1.16)

k=0

il

Now if we multiply by a;(=) and add all these equations. we get“

s—1 s—1
((Zak(:”)ck(s)) (ZE:{:”)&I(:)) 5(:)) J = 0. (4.17)
k=0 =0 M

t While it is not obvious. it can be shown. nsing the theory of Smith-forms [19]. [22]. that ax(2)

are polynomials whenever G (z) and S(:z) are rational.
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Since 5(z) is a nonnegative function on the unit circle. we can conclude [see the explanation of
(C.3)]

s-1

Zak )Gi(z) = 0. (4.1%)

k=0
This means that Gi(z) for k = 0,1.....s — | are linearly dependent (2.28). It can be shown that
this is not possible if H;(z)’s are linearly independent. So the determinant of the system (4.15) is
not identically equal to zero. After the system is solved. we have new analysis filters G,{z)’s which
decorrelate subband signals. The corresponding synthesis filters can be obtained by inverting the
analysis bank polyphase matrix (stability cannot be guaranteed. not even for the analysis filters).

As an example of the above decorrelation procedure. we take a lowpass AR(6) process [14] and
a paraunitary two-channel filter bank [23] with FIR filters of order 7 (filter 8A). Fig. 5(a) and 5.(b)
show the frequency responses of the original and modified analysis filters that decorrelate subband
signals. The resulting analysis filters are FIR of order 7 and 18. The synthesis filters are 1IR of
orders 18 and 12. To see whether this decorrelation improves the performance of the system. we
calculated the coding gain of the system. I Since the coding gain depends on the frequency response
magnitudes, stability of the filters does not enter into our calculations. The original coding gain
with the paraunitary system was Gpp = 3.09. After decorrelation it is G'p¢ = 2.8. This indicates
that decorrelation of the subband signals itself does not necessarily increase the coding gain. On
the other hand, the coding gain of the ideal brick wall two-channel filter bank is Gspe = 3.38 and
subband signals are fully uncorrelated.
The filters that decorrelate the subband signals depend heavily on the filters that we start

with and the coding gain we can achieve with them. The filter banks that decorrelate the subband
signals are not paraunitary, so there is nothing to ensure that the coding gain will be greater than

one [24].

5. THE COMPATIBILITY CONDITION, AND GENERALIZATIONS

T See [14] or [24] for the definitions of coding gains.
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We now present a different type of necessary conditions for perfect reconstructability in nonuniform
filter banks. These can sometimes be used to quickly reject certain sets of integer decimation ratios
{n;} from being considered for perfect reconstruction. In all our discussions we assume maxinmal
decimation, that is Zﬁgl 1/ni = 1. The discussions of this section do not apply to the case of the

so-called block decimation [3}.

5.1. Compatibility

In Fig. 1(a), the reconstruced signal X(z)is given by

AM—1 Nk —1
Z Fi(z )—— Y HEWL)X(UT). (5.1)
nx=0

In order for each of the alias terms X (sW7, ). » # 0 1o be cancelled. it is necessary that for every &
and n there exist £ # & and m such that WD = WM. This requirement is called the compatibility
condition and is a necessary condition for alias cancellation (see (1} and page 285 of {10}). If the
set of integers {n;} satisfies this, we say that it is a compatible set.

For example, the set {2.3.6} is not compatible because the quantity X (zHj) cannot be paired
with any of the terms X (z} V') or X(zW{). On the other hand the set {2.6.6.6} is compatible: these
decimation ratios come from a tree structure, whose first level has decimators (2.2) and second
level splits the bottom branch using three filters and decimators {3.3.3). And any set of decimators
that come from a tree is compatible. because we know we can design the tree structure to be alias
free. The converse is not true, i.e., not every PR svstem can be drawn as a tree structure. We saw

this in Sec. 1., where a counterexample was presented to demonstrate this point.
Test for compatibility.

Assume that the integers n, are numbered such that

ng <y < oo < npgoge (!

7
|2
——

The shifted versions of the input which appear in X(z) are

X(=w)? < n<ng - 1. (5.

ot
P

ng )
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The compatibility condition is equivalent to the following statement: for every pair of integers
(ni.€i), 1<6<n; -1, {5.4)
there must exist a pair of integers
(R lm). 1<, <0y -1 {5.5)

with m # 1, such that W% = W/n. First consider nas—y. which is the largest. Clearly W

cannot be equal to W,‘,'; for any n; < nas—1- So it is necessary that
NAM -2 = H)y[-1- (5.61

This also ensures that all the powers of Wy,,,_, have been paired.

Now consider some smaller n;. Suppose this is a factor of nas_;. that is nas_; = n,p,. Then

W,, = WP and

nM-1

<t
-1

Wh = pb (5.

AL "

So all the powers of Wy, have been paired. That means that we need not worry about the set of
integers which are factors of nps_;.
Next let n,, be some integer which is not a factor of nys_;. Suppose H’,"m can be paired with

W,{M_l for some J < nas_y. Then
2nd 2%

~— = 27n {5.8)

Nap—-1 Nm

"MJ - - ;;1—- = n. But since 0 < J < nps_. this is possible only for n = 0.
- m

for some integer n. That is,
Thus nar-1 = Jn,, violating the assumption that n,, is not a factor of ny;_;. Thus H"',fm # H'"JM‘[
for any J in 1 < J < mpq_,;. It cannot therefore be equal to a power of W, for any n, which is a
factor of nas_1 (because the powers of Wy, form a subset of powers of W, ).
Summarizing, we can partition the set of decimators {n,} into two classes.

Set 1: Those that are factors of nas_1.

Set 2: Those that are not factors of npr-.
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For each n; in Set 1. H",f: has been paired with a power of W,,,_,. And none of the »,’s in Set
2 can be paired with any member of Set 1. Thus. the original set of decimators {n,} is compatible

if and only if Set 2 itself passes the compatibility test.

Statement of the test. Summarizing the above, we can test for compatibilitv as follows.
Step 1. Check if nas.2 = nas—;. If no, then {n;} is not compatible. If yes. continue.

Step 2. Form the smaller set by collecting those », that are not factors of nas—;. Then imagine
that this is the given set, and repeat the test, i.e.. go to Step 1.

At some point, if the answer is noin Step 1, then the original set is not compatible. If we keep
getting yesin Step 1, then after a finite number of repetitions. the “smaller set™ in Step 2 becomes
empty. The original set {n;} is then compatible. Thus. the test alwavs gives a decision in a finite
number of steps.

To demonstrate the test, consider the set (2,6, 10.12.12.30.30). We have na;_y = nayy_; = 30
so that Step 1 is successful. The smaller set of numbers that are not factors of 30 is given by
(12,12). This set again passes Step 1 successfully. The next smaller set is empty. Thus the test hasx
been completed, and the given set (2,6,10,12.12.30.30) is indeed compatible. It turns out that
this set of integers cannot come from a tree structure (binary or otherwise). For. if it did. then the
first level of the tree would have to be a two channel system with decimators (2,2). The second level
then splits the lower branch of the first level only. with the decimiators (3.5.6.6.15.15). Since 3
and 5 do not have common factors, this set of numbers could not have come from a tree-structured
connection of uniform filter banks.

It turns out that while the above set is compatible, it is still not consistent with another
necessary condition for alias cancellation (hence PR). This statement will be elaborated at the end

of the next subsection.

5.2. Generalizations

We can obtain further necessary conditions by looking deeper into the details of alias cancella-

tion. Thus consider the PR condtion. expressed i terms of the L-channel equivalent uniform filter
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bank (where L is the lem of n;’s; Sec. 1.2.), it takes the form

50(2) S1(z) Se-1(2) Qol2) L
So(zWL)  Si1(zWr) .-+ Spa(zWL) Q1(2) 0 i
: . , : : =11 (5.9)
So(zWE™Y) SuzW[™Y) o SpaGWETY \QLa() 0

By substituting for the L pairs of filters {Sk(2),Q«(z)} in terms of the original M pairs filters

{Hi(2), Fi(z)} using (2.9), we can rewrite this in the form

L
0 -
Hy(2)f(z)= | . |. (5.10]
0
where f(z) = [Fo(z) ... Far—g ]T and Hy(z)is an L x M matrix. The i*® column of this matrix
has the form
(kiHi(z) 0 kHi(:W,) 0 kH(:W&) ... 0 kH(:Wx-1) o], (5.11)

where 0 is a string of k;~1 zeros. {Recall that k; are integers such that k;n; = L). The compatibility
condition says that any nonzero row of Hy(z) should have at least two nonzero entries.

Now notice that the decimation ratios ng,nj....nar—1 of the M channel nonurniform filter
bank may not all be distinct. Let us relabel them in terms of distinict integers, for couvenience of

discussion. Thus let the decimators be

Ilo.’no‘...’n(), pl,nl,...nl. P (5 " TS 17 NGRS IR I S BN (512)

No times N, times Nk -1 times
In this notation, n; are distinct integers and No+ N+ ... Nxg-1 = M.

For example, let us fully understand the 0% colamn of the matrix Hy{z). If N = 2. then there
are two columns (zeroth and first) of the form (5.11). with the same decimation ratio ng (and the
same ko). More generally, there are Ny columns of the form (5.11) with the same ng and the same
ko. These Ng columns have nonzero entries occuring in the same positions, namely 0th, k{)"‘ Qk(‘)h
and so forth. Consider now another column, sav the one corresponding to n;. This has nonzero

elements occuriug at the locations 0, k;. 2k,, and so forth. Now compare this with the 0'f column.
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and identify the locations where nonzero elements overlap. With the exception of the 0" location.

the first overlap of nonzero elements will occur at the location lem(kg, &;). Define

min,-¢o jem (kOs kl)

o {5.13)

Tno =

Then the nonzero elements of the leftmost column in the k{P 2k&h, ... (mg — 1)k{P positions do not
overlap with any nonzero elements from any other columns. except of course, columns 1, 2..... No-

We can isolate these nonzero elements in the first Ny columns of equation (5.10), and write

Ho(zWhp, ) H1(3 ’r;o) H.Vo—l(zw-;o) Fo(z)
Ho(zW,fo) Hl(;'VV,;O) HNO—I(ZI'VF;O) Fi(z)
. . . . . =0. (5.14)

Ho(zW,',’;°"1) Hl(zW,’,’;O“) Hm-o-l(:W,f;O") Frng-1(2)
N, e
8(z)

A necessary condition. We will now prove that, if the number of rows mg — 1 > number of

columns Ng, then perfect reconstruction is not possible! So the coudition
mj-1<Nj‘ 0<j<HK -1 (5.15)

is necessary for perfect reconstruction, where ¥, is the number of decimators equal to ;. and
p 7 1 J

n, = min, ]le“ (l.',-.kj). (5.16)
This is a generalization of the compatibility condition which merely said that any nonzero row of
H,(z) should have at least two nonzero entries.

Proof of the necessary condition. Eqn. (5.11) implies that the columns of the matrix are
linearly dependent [unless all the Fi(z)’s in that equation are zero. which is not possible in a
maximally decimated perfect reconstruction system]. If mg — 1 > N, this means that the rows are
linearly dependent. Denoting the first row of the matrix in (5.14) as h(zW, ). the remaining rows
are h(zW,fD) h(zi'V,',';Vl ). The linear dej ~1dence implies that

mo—1

h{zW,, ) = Z a(2)h(zW) ). (5.17)

=2
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Since this holds for all 2, we can replace z with zW ! to obtain
mgo—2 . mg—2
h(z) = Z a1 (W Rz W) ) = Z Bi(z)h(zW7 ). (5.18)
i=1 i=1
But eqn. (5.14) says that h(zl'i",‘;o )g(z) =0 for 1 <7< mg— 1. Using this in (3.18) we conclude

h(z)g(z) = 0. That is,
Ho(z)Fo(z) + H( /(2 +...+ HA'O—!(E)R\'D*I('?) = Q. {3.19)

But this cannot happen in a maximally decimated perfect reconstruction system. To see this note
that the biorthonormality condition (2.6) implies, in particular,
(Ho(z)Fo(z) + H{(2)F(2)+ ...+ Hz\'gox(z)F:\'o—x(s))j = M. (5.20)
LD
which is not possible if {5.19) is true! This completes the proof of (5.15) for j = 0. The same
argument can be used to show that (5.15)is true for j = 1.2,..., K — 1 as well.
This test is strictly stronger than the test for compatibility. To demonstrate, consider the same
set (2,6,10,12,12,30,30) from the end of the previous subsection. As shown there, it satisfies the
compatibility condition. According to the notation in this subsection, n;’s are distinct numbers

and we have k' = 5, L = 60 and

Since mp ~ 1 = 2 = Np, we conclude that PR is not possible.

6. CONCLUSION

For a maximally decimated nonuniform filter bank, the perfect reconstruction (PR) property
is equivalent to biorthonormality. Using this fact we derived a number of properties of PR filter
banks. We then showed that whenever the decimation ratios are such that biorthonormality is

possible, it is in particular possible to obtain orthonormality. This was done by developing an

3




orthonormalization procedure. While reminiscent of the Gram-Schmidt approach. the procedure
converges in a finite number of steps and furthermore preserves the filter bank-like form of the
basis functions. We then modified the orthonormalization procedure for the application of subband
decorrelation. It was demonstrated that mere decorrelation of subband signals does not necessarily
optimize the coding gain of a system. Finally we considered the problem of alias cancellation, and
obtained a generalization of the so-called compatibility condition which is a necessary condition for

perfect reconstruction in maximally decimated systems.

APPENDIX A. REACHING ARBITRARY INTEGERS

In connection with equation (2.20), we will show that the quantity pby, — 78 + dk by can be
made to take any integer value by proper choice of the integer d, and the integers p.7 in the ranges
0<p<k~1,0<r<k,—1. For this recall the neanings of the integers b,,. bipm. and L. namely.
eqns. (1.8), and (2.17). Since L = kyny = k,npm by definition, we have kb g1 = knibmigim. So
kibim = kmbmi. Since by, and by are relatively prime by construction. there exist integers p and

7 such that

Pbim — Tbyy = any desired integer a. {4.1)
We can always decompose p and 7 as p = p+ nk; and 7 = 7 + th,,, where 0 < p < &y — 1. and
0 < 7 <k — 1. Substituting this into (A.1) and rearranging, we get

Pbim — Tt + dk by = a, (A.2)

where d = (n — ). Thus, we can write any integer a as above where p and r are in the stated range.

provided we can assign any integer value to d.

APPENDIX B. POLES ON THE UNIT CIRCLE

We will show that when a biorthonormal filter bank is orthonormalized. the resulting filters

will naturally be free from poles on the unit circle. We will do this in two parts.

Observation 1.




Let A(z) be a rational function with a pole on the unit circle, at zg = €7*°. Let r, be the order

of this pole. Then, in the neighbourhood of zg, the function E((l‘ JA{e7+) behaves as

() A(e7) ~ Ca . (B.1)

(€2« — gIwo )Ta(g=Iv ~ g~ Jwo }a

This is the behavior of a pole of order 27,. Since A(z)A(z) > 0 on the unit circle. we have ¢, > 0.
Now let B(z) be another rational function with a possible pole at the same point z. with order ry.

Then E(ej“‘)B(ej"’) can be expressed in a similar way. So

Ca + Co
C]WO Ta —Jw g7 w0 €I — (I N[ e Iw — T Jw0 T ’
(e € { Jre( )

(B.2)

A(eI%) A7) + B(e"")B (e7¥) ~

Since ¢q,¢p > 0. we see that there can be no cancellations, and as w approaches wy. the result
behaves like a pole of order = max(2r,,2rp). Similarly, if we have a sum of several nonnegative
functions having poles of various orders on the unit circle. the sum behaves like a pole of order
equal to the largest one.

Consequence of observation 1. Now consider the normalization step (3.29). The denominator

of a,(2™ )a,(z™ ) can be written as

((P,(:_)E(z)nm)h 7-1—2 PuWE NPz ), (B.3)

Each term on the righthand side is nonnegative on the unit circle. So if Py(z) has a pole of order
r at zp = €790 then the above summation still has this pole. with order > 2r. As a result. a (:"")
has a zero of order 7. This means that when we form the norimalized flter 77 0~V = a {2 )Py(2).

this unit-circle pole will be completely cancelled.

Observation 2.
From (3.29) we see that a,(z™) will have a pole of order r at z = ¢/ if and only if
((P,(z)f’,(z)) l ) T has a zero of order 2r at z = zy = €/*°, Now consider (B.3). Each term
n, n,

in this sumation is nonnegative. Suppose the function P_,(zW,f. ) has a zero of order ry at zp. Then

P,(ej“’W’,'f‘ )f’,(e’“ﬂ’,’f‘) = (¥ — e7¥0) (eI — ¢7I¥0)Tk % (nonnegative function) (B.4)
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on the unit circle. If the summation in (B.3) has the factor (e~ — v« (¢ 7~ - ¢ 74=o3" §t s
therefore necessary that ri > r for each k. That is. each of the quantities P,(z1%) has to have «
zero of order > 7 at zp. In particular. therefore. P (z) has a zero of order > r at 2.

The conclusion is that, if a,(2™) has a pole of order r at 2y = e/~ then {2} has a soro of

order at Jeast r at zp.

APPENDIX C. ELIMINATING REDUNDANT VARIABLES
If the system of equations {3.18) has a determinant that is identically zero. we can reduce the
size of the problem as follows. In this case, there exists a, i {2). with at least one of them differemt

from zero. such that

s—=1cye—1 R
ST amls) (e | = 0. (1)
k=0 m=0 L

for i = 0,1,....s =1 and !l = 0.1.....¢c,; — I. While it is not obvious that there are polyno-

mials ami(z) satisfying (C.1), this can be verified to be the case. by use of the Smith-McMillan
decomposition for rational functions [19]. |22]. The previous equation can be rewritten as

8—~1 Co — _ r=U.10. .. s -1
( 271G (2) Z Umi( 2" )29k Gk(:)> J =0 for all { e
L

{=0.1..... Cor — 1

After multiplving each of these equations by a;{ ). and summing them with respect to l and 1. we

s—1 s—1
((Z Az ) (3 e >€:,(:>)) J = 0. (C3)
i=0 L

get

1=0

where A;(z) = Z:,;:_(Jl 2™ Ay (7). Now. for any rational P(z). the equation (f’(:)[’(:))l,_ =0

ll

implies P(z) = 0. This is because F(e¢?*)P(e?*) > 0 on the unit circle. and the decimated version

cannot otherwise be identically zero. So ((.1) implies

There is at least one a,,,(z) #Z 0, say aji(z) Z 0. Then (C.4) implies

I Gy (2 = ,L)Z $° b (C.5)

m=0
mzJ fori=k
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From here we see that the form (3.16) of G,(z) is redundant and we can just drop the term
Biss(zL)2= 792 Gi(2) and form a smaller linear system like (3.17). We can keep doing this till the

determinant is not identically zero.
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Fig. 1. (a) A nonuniform filter bank and (b) an equivalent uniform bank.
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Fig. 2. (a) An uniform filter bank and (b) its polyphase decomposition.
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Fig. 3. Example 3.1. Magnitude responses of analysis filters,

(a) before orthonormalization, (b) after orthonormalization.
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Fig. 4. Example 3.2. Magnitude resonses of analysis filters,
(a) before orthonarmalization, (b) after orthonormalization.
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Fig 5. Magnitude responses of analysis filters,
(a) before decorrelation, (b) after decorrelation.




