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Report Summary
Task Objectives
Characterization of local and regional wave propagation in the crust
and upper mantle around the short-period arrays, NORESS and ARCESS.

Technical Problem

A condition for short-period, small-aperture arrays, which are key 1o
reliable regional nuclear test monitoring, to be reliable, is proper knowledge
of the regional wave propagation. In particular, the composition of L g and
how it varies with distance and azimuth. This will ensure accurate phase
identification and possibly enable detection of depth phases, resulting in
accurate distance and depth locations. Distance mislocations by IMS of local
and regional events at NORESS and ARCESS mainly occur as a result of missed
small amplitude Pn arrivals at NORESS and due to misidentified onset of Lg at
both arrays as a result of improper knowledge about L g wave propagation.
Backazimuth mislocations occur due to insufficient knowledge about the
location of crustal hegerogeneities and Moho undulations, which cause
multipathing near the arrays.

General Methodology
f-k analysis is applied in sliding time-windows to detect phases and
determine phase velocities and azimuth of approach. Composite seismograms
for events arc made from time pieces of array beams, with each time section

represciiing an arrival. Composite-seismogram record sections are
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constructed and compared to synthetic secismograms calculated by
wavenumber integration in plane-tayered velocity models

Phase-velocity dispersion curves of Rg waves are inverted tor near-
surface shear-wave velocity under ARCESS and NORESS.

Technical Results

Important Findings and Conclusions

Lateral variations in crustal structure near ARCESS are apparent from
the observations: A westward dipping Moho 75 km NE of ARCESS causes an
approximately 8° backazimuth mislocations of e¢vents from Varanger
Peninsula; lateral velocity changes cause a 13 backazimuth mislocation of a
high frequency event from the Nikel mine; low phase velocities in the Ly
wave train from easterly azimuth may be indicative of scattering east of the
array; off-azimuth arrivals in Pn from events SW of ARCESS are probably
caused by upper mantle heterogeneities.

Rg propagates efficiently out to at least 400 km in the ARCESS region,
with a group velocity of 3.0 km/s in the region east of ARCESS, and 2.8 km s in
the region SW of the array.

Amplitude-maximums in the Lg wave train can be explained in terms of
arrivals of rays, in order to simplify the interpretation and to understand the
distribution of the wave energy in the crust. From such simple interpretation
of the composite record-sections and through synthetic seismoegram
calculations it is concluded that [ g is dominated by turning waves with each
order of reverberation dominating over a short distance interval until the
next higher order takes over.

Depth phases of events studied are small and can only be accurately
identified and thus used to extract source depth if the travel-time curves and
amplitude pattern of the crustal phases are accurately known.

The wave propagation pattern at ARCESS is significantly different from
that at NORESS. Upper mantle waves are of larger amplitude at ARCESS and are
easily detected. I g also has a strikingly different character: At NORESS the [ g
wave train is dominated by discrete arrivals representing Moho reflections.
Each order of reflection is sustained over a distance range of approximately
300 km, so that at some distances more than one reflection is of significant
amplitude. The dominance of turning waves at ARCESS causes cach
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reverberation to be concentrated over a smaller distance range
{approximately 150 km), so usually only one dominates the Lg wave train.
Common to both regions, however, is that as distance increases, the first

apparent arrival in the Lg wave train is of successively higher order multiple.

Significant Hardware Developmernt

Special Comments

Implications for Future Research
The difference in character of L g in the NORESS and ARCESS regions
demonstrates the necessity to perform a similar study for other regional
arrayvs, to extract the propagational characteristics of L g in each region. This
is a precondition for accurate phase identification and possible depth
discrimination with a regional array.




Introduction

A regional seismic array provides a unique opportunity in event
location and discrimination, in that it allows the determination of phase
velocity as well as backazimuth of each phase detected from a seismic event.
As a result, if velocity structure is adequately known, the travel path ot cach
arrival can determined. Repeated explosions in known mines provide the
basis for building knowledge about the phases that dominate at local and
regional distances, and how their amplitudes and travel times vary with
distance and azimuth. As more events in a specific region are studied the
characteristics of the regional wave propagation emerge and any additional
arrivals, such as depth phases can be accurately identified to reveal source
depth. The Lg wave train is of particular interest since it is usually the largest
wave on local and regional seismograms and can propagate to great distances.
It is composed of waves trapped in the crusy, turning and multiply reficcting
off the Moho, with the order of multiple increasing with distance. The crustal
P wave train, on the other hand leaks its energy into the mantle, by mode
conversion and therefore does not propagate efficiently.

In a previous study we obtained the characteristics of wave propagation
near the NORESS seismic array in southern Norway (Vogfjord and Langston,
1990; Vogfjord, 1991). In this paper we report the results of a similar study of
wave propagation near the ARCESS array in northern Scandinavia, with
emphasis on [g. Location of the ARCESS array and the structural units of the
northern and central part of the Baltic shield are shown in Figure 1. The age
of the Baltic shield decreases from Archean in the northeast, to Proterozoic in
the center and southwest, [t is built up by crustal accretion to the southwest
by subsequently younger Proterozoic orogenies. Along the western margin
runs the younger Caledonian Province (Gaal and Gorbatschev, 1987). In the
region east of ARCESS, the Pechenga-Varzuga belt separates two Archean
blocks and marks the suture of a continent-continent collision that took place
during the early Proterozoic. Later in the Proterozoic this suture was offset by
the N-S striking North Karelian Megashear (dashed in Figure 1). As a result of
the continental collision a slice comprised of metasediments and continental
crust was thrusted over the Archean basement to the south. This overthrusted
wedge forms the Lapland Granulite Belt and the Inari Terrain (Berthelsen and
Marker, 1980; Gaal et al., 1989).




The most detailed refraction profiles crossing the region of study are
the FENNOLORA profile, which runs just west of ARCESS (Galson and Mueller,
1986: Guggisberg and Berthelsen, 1987; Guggisberg et al., 1991; Lund, 1987)
(Figure 1) and the POLAR Profile, which runs just east of ARCESS and crosses
the Granulite belt and the PV suture (Luosto et al, 1989). Other profiles include
FINLAP, which extends east from FENNOLORA (lLuosto et al, 1983) and profiles
in Russia (Azbel et al., 1989: Glaznev et ai., 1989). Crustal thickness on POLAR
varies between 40 and 47 km, being thinnest under the center of the profile.
A northward dipping wedge of higher velocities was found in the upper crust
where the profile crosses the Granulite Beit and rather low velocities (6.8-6.9
km-s) were obtained for the lower crust in the center of the profile(Luosto et
al, 1989; Behrens et al., 1989). Figure Za shows the average velocity function
under the northern end of the POLAR Profile. Near ARCESS the crustal
thickness on FENNOLORA is around 45 km and near the intersection of
FENNOLORA with FINLAP the structure consists of intermittent high and low
velocity layers in the upper crust (Guggisberg et al., 1991). This is also the
part of FENNOLORA that runs along the Baltic Bothnian megashear, a vertical
shear zone extending througl. the crust (Berthelsen and Marker, 1986). The
velocity profile in Figure 2b represents the velocity on FENNOLORA just north
of the intersection with FINLAP. Crustal thickness obtained under FINLAP is
49 km (Luosto et al, 1983). Interpretation of refraction profiles that cross the
Kola Peninsula has revealed a 10 km deep high-velocity region under the
eastern end of the Granulite Belt and a crustal thickness varying from 36 km
under northeastern Kola peninsula to 44 km under the southwestern
Peninsula (Azbel et al.. 1989; Glaznev et al., 1989). The velocity profile obtained
in the Kola superdeep drilihole, which penetrates the Pechenga Belt, near the
Nikel mine (Figure 1) shows higher velocities in the upper, 6.8 km thick,
Proterozoic section than in the Archean basement below (Kozlovsky, 1987).
The effects of this higher velocity in the suture zone may be the cause for
multipathing observed in one event from Nikel. The effects of Moho
undulations are also observed in a few events.

The dataset consists of 29 events from the IMS database, at distances
between 60 and S83 km from ARCESS, representing 16 {ocations. Three of the
events are identified as earthquakes. The azimuthal distribution is between
30 and 250° and magnitudes are between 1.8 and 3.2. Events are listed in Table
I and their distribution is shown in Figure 1. IMS locations are shown by
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triangles on the map and relocated positions, which in some cases coincide
with known mines, are indicated by solid circles. Distance mislocations by NS
are caused by missed onset of I g, while backazimuth mislocations are caused by
Moho undulations and-or lateral velocity gradients, causing svariations in
backazimuth between the different phases of an event.  Backasimuth
misfocations are most prominent for mine explosions on the Varanger
Peninsula, northeast of the array, for an explosion in the Nikel mine, cast of
the array and for an explosion southwest of the array, in the vicinity ol the
Malmberget mine. Three events are located in the Caledonian region
northeast of the array, the four most westerly events, near Kiruna and
Malmberget mines, are in the Proterozoic region and the rest is located in
Archean crust.

Coherent arrivals in the data are detected and identified with -k
analysis in sliding time windows, beams are formed for the major phases and a
composite seismogram for each event is then made from time sections of the
beams. In this form the data is used to construct record sections in order 1o
study the characteristics of regional wave propagation in the ARCESS region.

Phase-velocity dispersion curves of Rg waves trom 12 of the events are
used to obtain the near-surface shear velocity under the ARCESS arrav and Rg
waves from 11 additional events (Table 2) recorded at NORESS are used to obtain
the near-surface velocity structure under that array as well.

The composite seismograms are plotted on four record sections. based on
backazimuth range, in order to observe and model the phase behavior with
distance and backazimuth. The pattern that emerges puts constraints on lower
crustal and upper mantle velocity structure. As expected the crustal P wave
train quickly diminishes with distance, while arrivals in the I g wave train
remain large over the 600 km distance range st.died. A synthetic record
section is constructed to model the phase behavior observed in [ g Calculations
are done by wavenumber integration in the plane-lavered velocity model of
Figure 2a, which is based on the average velocity obtained for the northern
part of POLAR (Luosto et al., 1989). The Q model used is also shown in Figure 2a.
For a comparison with the characteristics of wave propagation in southern
Norway a composite record section from NORESS is also shown and a svathetic
record section, calculated using the Caledon velocity and Q model shown in
Figure 2c. The model is based on upper crustal velocities of the Precambrian
model of Gundem (1984) and the tower crustal model obtained for the Arsund-
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Otta refraction profile (Mykkeltveit, 19801, The Qs models used are constrained
in the top 3 km of the crust by the observed Kg weve attenuation in the region.
The Q-values used for the middle and tower crust are needed for efficient [y
wave propagation, but are otherwise not constrained.  From the comparison of
record sections, it is concluded that wave propagation in the Archean Baltic
shield is governed mostly by velocity gradients in the lower crust and upper
Mantle, as well as by the Moho discontinuity. In southern Norway, on the
other hand the gradients are small and the Moho discontinuity has the
greatest effect on the regional wave propagation, giving rise to reflections,
which can be traced over greater distances than those in the north.

After having established the propagational characteristics of the
ARCESS region, three events can be identified as carthquakes. Their source
depths is constrained by the timing and phase velocities of the observed
phases. which in two events include depth phases

N-E Profile

Three events are located north of the array, 998975 and 1206599 in the
same focation on Varanger Peninsula and 1361299—a possible earthquake—near
the northern tip ot Nordkinn Peninsula. A composite record section with
events from the two locations is shown in Figure 3, with event 1361299 high-
pass filtered at 1 Hz to get rid of low-frequency noise. Superimposed on the
plot are travel-time curves for the major phases expected from a near-surface
source in a Polar velocity model with a 45-km thick crust. The 45 km crustal
thickness is constrained by the PmP-Pg and SmS-5g travel times of the events at
150 km distance. Slopes on the travel-time curves show what the expected
phase velocities are for cach phase at a particular distance. The slope can be
read from the velocity template in the top center of the plot. Phase velocities
obtained from the data by {-k analysis and used for beamforming, are
indicated above the beam sections of the composite seismograms.

The two events on Varanger Peninsuvla are from a quartzite mine at
7O48N and 38.50E (Mykkeltveit, 1992 pers. comm.) and appear very simular. S
waves of both events are dominated by 2.2 Hz frequencies. P phases, however,
of event 989975 are dominated by 5.5 Hz waves, while event 1206599 is
dominated by 9.1 Hz Pg waves and 7.4 Hz PmP waves. The phase velocity of the
2.2 Hz 5g is unusually low (3.3 km~s), which may be due to scattering near the

array. The small amplitude of the phase, makes contamination by background
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noise also a possi. le cause. Less energetic waves of higher frequencies,
however (3.3 and 4.4 Hz} have the expected 3.0-4.0 km s phases velocities. N6
Rg waves are found in the records from this mine This is probably caused by
propagation across the innermost section of the Tanafjord. Common 1o
seismograms from the two events |, is a difference in backazimuth between the
crustal waves (Pg, Sg) and the Moho reflections (Pnd’. Sm%). This can also be
seen in Figure 3, where the broad-band power spectra for the four main
phases of event 989975 are inset. The Pg phase has been band-pass filtered
between 4.8 and 5.8 Hz and the Sg phase between 1.5 and 7.0 Hz. The
backazimuths obtained for the crustal waves ar¢ between 46.3  aad
48.9°.(except for the higher frequency Pg of event 1206599, where it is 42.1 ).
The Moho reflections on the other hand have backazimuths between 52.3 and
54.9°. Comparing this to the true backazimuth of the mine, which is 45.9°, it is
clear that the crustal waves give a backazimuth which is closer to the true
backazimuth. To account for the difference between the crustal phases and
the Moho reflections, a westward dip in the Moho is required at the point of
reflection, 75 km northeast of ARCESS. The IMS locations, (shown by triangles
in Figure 1) are mainly based on backazimuths of the Moho reflections, whose
quality is much higher than that of the crustal waves i.e. amplitude is greater
and range in backazimuth is smaller.

Due to its loration, near the tip of Nordkinn Peninsula, event 1361299
could be an earthquake. The absence of Rg also supports that. The phase
velocities obtained for the first arriving P and S waves however indicate
crustal waves, Pg and 5g. constraining the source depth to be in the top S
Kilometers below the surface; greater source depths would cause Pnand Snto
be the first arriving phases. All the energy in this event is limited 1o the 3-S5
Hz band, with energy peaking at 4 Hz. This may be indicative of an explosion.
however maximum amplitude on the tangential component is roughly twice
that on the vertical which conversely may be indicative of an earthquake.

The nature of this event can therefore not be determined.

E Profile
Four locations are represented by the events on this profile, as shown
in Figure 4. Two locations ar¢ known mines: the Sydvaranger mine at 69.652N
30.025E and the Nikel mine at 69.409N 30.955F. The other two events, despite

the absence of Kg waves, are probably from near-surface sources also: they
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are fairly well matched by surface-source travel-time curves ard their
locations coincide with many other events. Travel-time curves for the major
phases in a Polar velocity model are superimposed. A 42 km thick crustal
model fits the arrival tmes in the data, however thickness is not well
constrained. The Moho reflections for the three closest events occur in a
region near the POLAR Profile, where crustal thickness varies between 41 and
45 km (Luosto et al., 1989). Rg waves on this profile move out with a group
velocity of 3.0 km .

Even though events from the Sydvaranger mine have Pg arriving ahead
ol PmP, explosion practice at the mine prevents the resolution of crustal
thickness from PmP-Pg time. This is demonstrated in Figure Sa, where four
events from Sydvaranger are plotted, aligned on the first arrival. Following
are sequences of arrivals, depending on the multiplicity of the explosion. This
is particularly clear in event 460928, which demonstrates multiple discrete
arrivals, with varying phase velocities. The first arrival has a dominating
phase velocity around 7 km/s, representing diving waves turning in the lower
crust. The last P arrival. with a dominating phase velocity around 8.7 km’s
represents the Moho reflection, PmP. The apparent velocity of 8.1 km s
obtained for the intermediate arrival is probably due to interference between
PmP and Pg because of the muluple source. The source multiplicity is also
seen in the § waves and can be interred from the interference patterns in
some of the Rg waves. From the slopes on the travel-time curves for PmP and
smS, the expected phase velocities are 7.5 and 4.3 km/s, respectively. The high
phase velocities obtained for the Moho reflections from Sydvaranger,
therefore indicate a westward dipping Moho at the point of reflection.
Backazimuths obtained for the different phases are close to the true
backazimuth of the mine.

The five events shown in Figure Sb are from the Nikel mine. They have
been stacked with phase velocities of the Moho reflections. PmP and $SmS, and
the surface wave Rg. Ixcept for 326360a and 282554, the events appear to
consist of multiple explosions. Expected first arrival from this distance (see
Figure 4} is the upper mantle Pnwave, followed by Pg and PmP. The apparent
velocity in the first 0.5 s, however represents crustal waves so Pn amplitudes
must be small. Moho reflections have the largest amplitude at this distance
and, except for event 326360, they are dominated by low trequencies, 2-3 Hz.
Event 326360 starts off with 2.2 Hz and the same phase velocity as in the other
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events, but then higher frequency waves, 7 and 10 Hz, take over. and phase
velocity increases. Except for these high frequency waves, backazimuth
range obtained for the different phases is close 1o the true backazimuth of
91.2°, or 92.8-93.8° for P waves and 93.1-98.4 for § waves. The backazimuth of
the high-frequency P arrivals on the other hand is 105°. The t her
frequency waves therefore have traveled a different path to the array. lhis
effect is not seen in events from the Sydvaranger mine. iocation of the Nikel
mine, in the Pechenga belt and close to the Kola superdeep borehole, where
velocities in the Proterozoic top 6 km are greater than in the Archean
basement below (Kozlovsky. 1987), suggests that the high-frequency waves
experience lateral velocity gradients within the Pechenga belt, which do not
affect the lower frequencies.

Even though event 348962, at 245 km distance, apparently lacks an Rg
wave (Figure 4) it is probably an explosion. It is followed approximately one
minute later by a near identical event and the vertical and tangential
components are approximately equal in amplitude. This event is dominated by
3 Hz waves, it has no detectable Sn wave and an unusually low phase velocity,
3.4 km/s, dominates the S waves. The expected 4.2 km- s phase velocity of SmSis
obtained in the frequency band around 6 Hz, but the energy is only 15 of the
energy of the 3 Hz waves. Due to the small amplitudes in this event Rg may be
overshadowed by the low-frequency background noise.

At 350 km distance, in event 335253, the second Moho reflection has
become prominent, while the first reflection has decreased in amplitude (see
Figure 4) a pattern seen in other events in the region east and southeast of
ARCESS. PmP is not detected. but SmS still is, with the appropriate phase
velocity. Its amplitude however, is smaller than that of 2xSmS. Most arrivals
are dominated by 3-4 Hz waves and backazimuths for most phases are between
87" and 92°, except for the second order reverberations where backazimuth is
around 100°. This may be caused by the surface reflection occurring in the
Pechenga belt near Nikel. The arrivals can be matched with travel-time
curves for a surface souice and the absence of Rg can be explained by passage
across a sea channel near the source region.

Missed onset of Lg by the IMS system causes distance mislocations of
events on this profile, and multipathing probably due to lateral velocity
gradients causes backazimuth mislocations of high frequency events at Nikel.
The IMS time picks tor Pnand Lg are indicated by arrows on Figure 5, showing
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many missed onsets of g For example, in event 760713 Rg is misidentified as
Ig. Bvent 335253, at 350 km distance was also mislocated due to missed $Sn and
smd arrivals. The IMS time pick for [ gin event 335253 is indicated by an arrow
at 59 sec in Figure 4.

S-E Profile

Events from four locations south-cast of ARCESS are plotted in Figure 6
with travel-time curves for a 45 km thick crust. Over the distance range
shown, Pn, Sn, 2x5¢ and 3x5g dominate the seismograms. <xPmP and 2xSmS$ are
detected out to 400 km distance, while PmP and $m$ have disappeared. Rg, with
a group velocity of 3.0 km- s is observed out 1o 400 km distance.

Comparing ev~nt 1350700, at 350 km distance, with event 335253, at 350
km distance on the record section due east (Figure 4), it is apparent that the Ig
wave train between 50 and 63 sec in event 1350700 is much more complex than
Lgin the same time window of event 335253: At 52 s and 56 s, arrivals with 4.0
Kkm-s and 5.2 km/s phase velocity, respectively, interfere with the expected Sg
Z2xSg arrivals, which have phase velocities around 3.8 km~s. In event 335253,
only the 2xSg arrivals with the expected phase velocity of 3.9 km's are seen in
this time window. A possible explanation is a second, delayed explosion, so that
the alternating high and low velocities in the Lg wave train are caused by
interference between Sn, 2xSgand 2xSmS from the two sources. The arrival at
30 seconds is probably ZxPmP-PmS, rather than the third Pn, since there is no
corresponding S arrival at 67 seconds. The extended duration of the Rg wave is
also indicative of a double explosion. Except for Rg, all the phases of event
1350700 are dominated by 5 Hz waves, and backazimuth obtained for the upper
mantle waves is 119, while the crustal waves have backazimuths near 110°.

Event 329173 is from one of the mines near Apatity, which have
backazimuths between 117.36° and 118.12. The location plotted in Figure 1
corresponds to the Koashva mine at 67.64N 34.02E. Backazimuths obtained for
the different phases of the event are mostly between 117° and 119°. The
dominating phases at this distance are 2xSg, 3xSg, 2xSmS, Pn and Sn. Rgis also
of significant amplitude. A second smaller event studied, from the Apatity area
has similar phase velocities and backazimuths, but a Pn amplitude comparable
to that of 2xSmS. Probably due 1o its smaller size however, it has no detectable
Kg wave.




Event 1143047 at 510 km distance is the largest event studied and
therefore more multiple bounces are observed from it; possibly the fourth
Moho reflection is detected in the crustal P wave train. Largest amplitudes,
however are observed at the arrivals of the many branches of 3xSg (see Figure
6). The phase velocity of the dominating arrivals (3.5 km-s) is representative
of these turning waves. An increase in amplitude and phase velocity, 10 s
later coincides with the travel-time curve for 3xSmS. The event is dominated by
low-frequency waves, 2- 4 Hz and backazimuths of the various phases rangs
between 135° and 140°. The large amplitudes of S waves as compared to those
of P waves might suggest an earthquake source, but no depth phases are
observed. SH amplitudes are only slightly larger (x1.4) than the vertical SV-
waves. The amplitude difference between P and S waves can be entirelyv
explained by the entrapment of shear waves in the crustal wave guide, while P
waves continually loose some of their energy into the mantle, by mode
conversion.

At 583 km distance, the upper mantle waves, Pn and Sn, in event 240323
have the largest amplitudes. The second multiples, 2xPn and 2x5n are also
detected. The crustal P wave train has practicaily vanished, but 3xSg and 3xSmS
are still observed. Phase velocities in the Lg wave train range between 3.0 and
4.4 km/s, with the lower phase velocities dominating, early on in the wave
train, then phase velocities near 3.5 km/s become more energetic. The
explanation for the low phase velocity (3.0 km/s) can be the dominance of
turning waves in this region, in which case the low phase velocity means the
waves have travelled in the upper crust. Alternatively it can be due to
scattering in the vicinity of the array. Rg is not detected at this distance.
Comparison with a second event obtained from this location, reveals that the
small, low-frequency Pn precursor is probably the result of a double source
rather than a structural effect. A phase velocity of 8.2 km/s dominates the Pn
arrivals in event 240323. In the other event however, the main Pn arrival has
a higher dominating velocity, 8.8 km/s. Backazimuths vary between 151 and
157°. The two events are associated with a mine location (SC17) at 64.685N
30.660E, with a backazimuth of 155.1",

S-W  Profile
South-west of ARCESS, the three events nearest to the array are
earthquakes. Of the remaining three locations, one corresponds to a known
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mine; at 286 km distance the Kiruna mine is located at 67.83'N 20.21°E (Figure
1). The Kiruna event is also the only one in this region with a detectable Rg
wave. Its group velocity is 2.8 km/s, or lower than on the | and SE profiles.
Figure 7 shows a record section with the three surface events and one of the
earthquakes (at 261 km distance). Travel-time curves for the major phases in
a 45 km thick FENNOILORA velocity model (Figure 2b) are superimposed. This is
the velocity model obtained for the section of FENNOLORA just north of its
intersection with the FINLAP profile (Figure 1). The earthquake, event 392870
at 261 km distance, is included on the record section to demonstrate that depth
phases may be mistaken tor higher order reverberations, i.e. 2xPmP, when
propagation characteristics are not known. From the other events on the
record section it is clear that ZxPmP has not attained large enough amplitude to
be detected in this distance range. The sequence of three separate 7.0 km/s P-
arrivals in event 392876 can not be an effect of a multiple explosion either,
because it is not matched in the [ g wave train.

Backazimuths obtained for the Moho reflections of the Kiruna event
vary somewhat from the true backazimuth of 231°. The upper mantle waves Pn
and Sn and the low frequency tail of the Lg wave all have backazimuths
around 232°, whife PmP and the higher frequency (>3 Hz) SmS have
backazimuths around 225°. The same pattern is also observed for the phases of
event 905793, at 310 km distance. Thus the Moho between 145-155 km distance
southwest of ARCESS dips southward and so causes the Moho reflections, PmpP
and SmS, to arrive off azimuth. Propagation paths from these two events cross
the FENNOLORA profile approximately 50 km north of the intersection with
FINLAP. At this location on FENNOLORA the upper crustal structure is complex,
with intermittent high- and low-velocity layers and a velocity of only 6.95
km s at the base of the crust (Figure 2b). This value is lower than the velocity
south of the intersection, along the propagation path from events 1206482 and
309164 (distance=342 km, backazimuth=210") (see Figure 1), where the velocity
above the Moho is 7.2 km/s. PmP and Sm$ from this location therefore arrive
earlier than predicted by the FENNOLORA travel-time curves.

The Moho reflections, PmP and SmS, are still large and the second
reverberation is just starting to emerge at 342 km distance and 210
backazimuth (events 1200482 and 309164). At the 230" backazimuth however,
the amplitude of the Moho reflections have already started to decrease near
310 km distance {event 905793), and Z2xPg and 2xSg carry much of the energy
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(see Figure 7). This may be indicative of a greater velocity gradient in the
upper crust and a smaller velocity gradient in the lower crust along the 210 -
backazimuth travelpath, causing more of the energy to reflect off the Moho.
For comparison, at 350 km distance on the profile due cast from ARCESS. the
first Moho reflection has started to loose energy and the second reflecuan,
2x8niS, dominates the Lg wave train (Figure 4).

Event 1206482 is mislocated in backazimuth to the vicinity of the
Malmberget mine, which is at 67.18°N 20.67°E. This is due 1o off azimuth Pn
arrivals at frequencies above 5.5 Hz. In both events 120648/ and 309104,
backazimuth around 225° and high phase velocities, 8.6-9.2 km-s and 5.0 km s
are obtained for the Pn and Sn arrivals, respectively at frequencies > 5.5 Hz.
The higher frequency waves also appear to arrive later than the lower
frequencies. Lower frequencies in the Pnand Sn windows however have the
correct backazimuth of 210°. Event 120682 is mislocated in backazimuth
because 8.2 Hz frequencies dominate the Pn arrival. The cause of these double
upper mantle arrivals is probably in the upper mantle. Interpretation of
FENNOLORA travel times by Guggisberg and Berthelsen (1987) shows a high
velocity region (8.6 km/s) in the upper mantle along the southern half of the
propagation path.

Earthquakes

Three events all in the southwestern quadrant, can be identified as
earthquakes, based on depth phases and/or phase velocities. Event 580540 is at
a distance of only 60 km from the array. The three-component composite
seismograms, shown in Figure 8a have no undisputed depth phases. However,
the phase velocities obtained, 7.2 and 4.2 km/s for Pg and Sg respectively. are
too high for this to be a surface event: at 60 km distance in the Fennolora
model, Pg has a phase velocity of 6.2 km/s. Allowing for a =0.2 km's
uncertainty in phase velocity, the source depth can be constrained between 26
and 32 km with closest match at 30 km depth. This depth range is the same for
both the Fennolora and the Polar velocity models. Attempts to extract a source
mechanism for this event proved unsuccessful. Synthetics were calculated for
a source in both the Polar and the Fennolora velocity models, but it was
impossible to simultaneously fit the amplitudes of the two components of Pg
and the three components of Sg. This may be due to an unmodeled P-to-S
conversion interfering with Sgon the vertical and radial components. Figure
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8a shows a high frequency arrival at 20 sec on the vertical and radial
components, which may be just such an arrival. Since it is not observed on
the tangential component it must be created by mode conversion at a velocity
discontinuity. The amplitude of this phase could not be reproduced in the
svnthetics. A three-component synthetic calculated for a vss source at 30 km
depth in the Fennolora model is plotted in Figure 8b. Considering the complex
velocity model obtained for Fennolora in this region it is probably nontrivial
to model events in this region.

The source depth of event 981647 is constrained by depth phases and
high phase velocities of the first arriving P and S waves. With a P-S time of
19.2 sec, an event can only have first arriving Pn if the source is located at
depth. Travel times and phase velocities of the detected phases can be maiched
with the source at 32 km depth and a 45 km thick crust. This is shown in
Figure 9a, where travel-time curves are superimposed on a vertical composite
seismogram. A tangential composite (shifted in distance) is ailso plotted for
comparison. Its amplitude is more than double the amplitude of the vertical
component. Synthetic seismograms were calculated, for a source at 32 km
depth and 180 km distance in the Polar and Fennolora models. The separation
of Pn, Pg and PmP, seen in the data is better matched by Fennolora synthetics.
This is due to the lower phase velocity (6.95 km/s) at the base of the crustal
model. The vertical-component composite and synthetics for the three
fundamental dislocation sources are shown on Figure 9b. A mechanism could
not be constrained, because first motions of arrivals were difficult to
determine. IMS was not able to separate the Pnand Pg arrivals of this event. It
triggered 0.3 s into the Pn arrival and the phase velocity reported, 6.8 km/s,
reflects that of the Pg arrival. sPgwas detected but not identified.

Due to a location close to the Kiruna mine, event 39876 was initially
mistaken for an event from the mine, however as more events {rom the area
were studied it became apparent that the two P arrivals following Pmb are the
depth phases, pPmP and sPmP. The vertical and tangential composite
seismograms for the event are plotted in Figure 10, both high-pass filtered at 2
Hz. Travel-iime curves of the main phases from a source at 18 km depth in the
Fennolora model are superimposed on the plot. Dominating phase velocities of
0.9 and 7.1 kmy/ s, obtained for the two arrivals following PmP, correspond well
with the slopes on the travel-time curves of pPmP and sPmP, respectively.
Following SmS$ in the Ig wave train however, 3.7 km.s phase velocities,
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representative of sSg, are as energetic as those of sSmS. With the domindting
phase velocities obtained for the depth phases so similar to those of the Moho
reflections, separate beams were not formed for any of the depth phases.
Backazimuths obtained for crustal phases vary between 223 and 228 , while
those of the upper mantle waves appear to be higher. Because of their small
amplitudes however, they are not as reliable. This event was mislocated by
IMS due to missed onset of Pn and misidentification of PmP as Pn, despite a low
phase velocity of 7.25 km/s. Both sPmP and sSg were detected but not identified.

Rg Waves

F-k analysis of Rg waves from 11 events recorded at the NORESS arrav
and 12 events recorded at the ARCESS array, was used to gather information
about the near-surface shear-wave velocity under the arrays. Event locations
are shown in Figure 11a and -b. The phase-velocity dispersion curves
obtained are plotted in Figure 12 over the frequency range where power is >
1% of the maximum. Maximum amplitude occurs around 1 Hz. Higher
frequencies are increasingly attenuated with source distance and the 3 km
array-aperture, limits resolution to frequencies above 1 1lz. Also shown is the
weighted mean dispersion-curve and standard deviation for each array. where
each curve is weighted by the maximum amplitude of the Rg wave. The
distance range of events recorded at NORESS is 22-83 km, with the events from
within 45 km distance containing significant energy up to 2.3 Hz. 7Thus
allowing resolution of velocity between 1 and 3 km below the surface. The
mean dispersion curve is nearly flat between 1 and 2 Hz at a phase velocity of
294+ .12 km/s The apparent decrease in the phase velocity above 2 Hz is
within the limits of one standard deviation.

The Rg-wave producing events near ARCESS are at distances of 175, 210
and 350 km from the array. Phase velocity can therefore only be obtained for
frequencies up to 1.5 Hz, allowing resolution of velocities between 2 and 3 km
below the surface. The mean phase-velocity at 1 Hz is 3.15 =+ .04 km~s,
increasing to 3.27 = .07 kin/s at 1.4 Hz. The increase is outside the limits of one
standard deviation and may therefore indicate an increase in velocity as the
surface is approached.

The mean dispersion curves for the 1-2.3 Hz frequency band at NORESS
and the 0.7-1.5 Hz band at ARCESS were inverted for shear velocity. The top 2.5
km were resolved. The data and inversion results are shown in Figure 13. The
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inversion fits a near straight line to the data thus obtaining a constant shear-
velocity of 3.16 km/s under NORESS and 3.45 km/s under ARCESS. The ARCESS
mode! has velocity increasing towar is the surface, but the increase is within
one standard deviation and therefore not significant.

Discussion and Conclusions

Rg waves propagate very efficiently, with a group velocity of 3.0 km/s,
in the region due east and southeast of ARCESS, where Rg is observed from a
distance of 400 km. Southwest of the array however, Rg is absent from all but
the Kiruna event, at 286 km distance and group velocity is also lower, 2.8 km/s.
This suggests greater attenuation near the surface and lower surface velocity
at southwesterly backazimuths. The results from the Rg-wave inversion
indicate a near-constant S-wave velocity, of 3.5 km/s in the top 2.5 km under
the ARCESS array and a lower, but constant velocity of 3.16 km/s under
NORESS.

Apart from the top 2.5 km of the crust under ARCESS, upper crustal
structure near the array can not be resolved, as no good quality events are
available from within 100 km distance. Velocity structure in the lower crust
however, is resolved. in the Archean region east of the array, velocity in the
lower crust is well described by the POLAR Profile model (Figure 2a), while the
lower crust in the region southwest of the array is maybe better described
with the FENNOLORA model (Figure 2b). The difference between the lower
crusts of the two models lies in the velocity gradient; the Polar model has a
higher gradient. East of ARCESS the velocity gradient in the lower crust is
large enough to cause each Moho reverberation to be concentrated over a
limited distance range (150-200 kmj), with the first reverberation dominating
out to 250 km distance (Figures 4 and 6). On the southwestern record section
however, the first Moho reflection dominates to at least 340 km distance
(Figure 7). The velocity gradient therefore is probably lower in the region
southwest of the array.

Crustal thickness on the POLAR and FENNOLORA refraction profiles
varies between 40 and 47 km in the ARCESS region (Guggisberg et al., 1991;
Luosto et al.,1989). Due to the distance range of the events studied, raypaths
are largely horizontal, so crustal thickness is not well resolved, but arrival
times of the main phases in most events can be approximately matched with
crustal thickness between 42 and 45 km. Effects of undulations in the Moho
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are seen in off-azimuth arrivals of PmP and $mS from Varanger Peninsula and
from the Kiruna mine. High phase velocities of the Moho reflections from the
Sydvaranger mine are also indicative of a dipping Moho. Off azimuth arrivals
in Pn and Sn, from an event southwest of the arrav are probably caused by
lateral variations in upper mantle velocity. Phase velocities dominating the Ig
wave train from southeasterly azimuths are very low (3.0-3.5 km~s), indicating
that a significant part of the energy propagates in the upper crust and
possibly that the S-waves are scattered in the vicinity east of the array.

To compare propagational characteristics in the ARCESS region to that
in the NORESS region, a combined record section of composite seismograms
from events in the Archean region east of ARCESS, covering distances between
150 and 583 km, is plotted in Figure 14. Travel-time curves for a near-surface
source in a 45 km thick Polar model are superimposed. Figure 15 shows a
composite record section of NORESS events located in the Caledonian region
northwest of that array, covering a distance range between 50 and 500 km.
Travel-time curves for a near-surface source in a 36 km thick Caledon model
are superimposed. The ARCESS record section shows each order of Moho
reflection dominating over a short distance interval until the next higher
order takes over. A large portion of the energy is also carried by waves
turning in the crust. This is particularly clear in the Lg wave train which
propagates much more efficiently than the crustal-P wave train; crustal-P can
not sustain many bounces off the Moho, as some of the P-wave energy escapes
into the mantle as SV-waves. In Lg the first Moho reflection, SmS, dominates
out to approximately 300 km, then diminishes and the second order reflection
and turning wave, 2xSmS and 2xSg, dominate from 300 km to approximately 500
km distance, where 3xSg and 3xSmS take over and dominate Lg at 600 km
distance. Compare this with the NORESS record section in Figure 15, where
each reflection can be followed over a greater distance range and more than
one order of reverberation is large at each distance. The first reflection is
large out to 300 km, the second reflection from 250 km and further. At 500 km
SmS has vanished and 2xSmS, 3xSm$ and 4xSmS dominate the seismogram. This
adds considerable complexity to the I g wave train, as compared to the Archean
region at ARCESS. The propagation distance of Rg in the NORESS region is less
than 200 km and the upper mantle waves, Pn and Sn, are of smaller amplitude
than in the ARCESS region.
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The Lg wave train at distances > 100 km is dominated by waves turning
in the lower crust and reflecting off the Moho. The wave train is therefore
most sensitive to the velocity structure of the lower crust. A gradient in the
lower crust will turn a significant amount of the wave energy, thus lessening
the amount that reflects off the Moho and concentrating the energy of each
reverberation over a short distance interval. A constant-velocity lower crust
lets all of the energy reflect off the Moho after the critical distance for each
reverberation is reached. The difference in propagation characteristics
between the ARCESS and NORESS regions, can be explained by the difference
between the Polar and Caledon velocity models (Figure 2a and 2c¢). Their main
difference lies in the velocity of the lower crust. The Polar model has a
significant velocity gradient in the lower crust (0.024 /s}, whereas the Caledon
model has a constant velocity lower crust. Synthetic seismograms calculated
for an explosion source at 0.1 km depth in the Polar and Caledon velocity and Q
models ar shown in Figures 16 and 17, respectively. The Polar record section
has the same characteristics as the ARCESS record section, with each
reverberation dominating over a short distance range where the next higher
order reverberation takes over. A significant amount of the energy is also
carried by the waves turning in the fower crust. n the Caledon record section
each reflection can be traced over greater distances and a smaller amount of
the energy is carried by the waves turning in the crust. At 600 km distance all
four reflections can be observed in the crustal P and Lg wave trains. Rg
propagates to only 150 km distance in the Caledon model due to the 0.3 km thick
low-Q surface layer. This layer is only (0.1 km thick in the Polar model, which
allows Rg to propagate to at least 600 km distance.

Amplitudes of upper mantle waves are larger on the ARCESS record
section than on the NORESS profile (Figures 14 and 15). This can be due to a
greater velocity gradient in the ARCESS 12gion and/or higher Q values in the
upper mantle. The Polar model has both a greater upper mantle velocity
gradient and higher Q values in the upper mantle than does the Caledon model.
This results in larger amplitude Pnand Sn waves on the Polar record section.

The Q structures of the Polar and Caledon crustal models are identical
except for the thickness of the low Q surface layer, which in the Caledon model
(0.3 km) limits the propagation distance of Rg to 200 km distance. A 0.1 km
thickness in the Polar model allows Rg to propagate to at least 600 km. The
upper mantle Q is also lower in the Caledon model. Despite the near-identical Q
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values in the crust, the maximum-amplitude decay with distance of [g is
greater in the Caledon model as the energy is divided among the many Moho
reflections (Figures 16 and 17) and moveout of the maximum amplitude is not
constant. The energy in the Polar model, on the other hand, is carried by
waves turning in the crust and the maximum amplitude moves out with a
constant group velocity of 3.6 km/s, When estimating the apparent-C from [ g

Sh

waves, a correction factor for geometric spreading of an Airy phase, A~
where A is the distance in km (Nuttli, 1973), is normally applied. Then

amplitude is assumed to decays as e 4, where a-——l’-%. with { = frequency and U =

group velocity at the maximum amplitude. The apparent Q-values obtained
from the synthetics, by this method are, approximately 1000 for the Polar
model and approximately 750 for the Caledon model (increasing the thickness
of the low-Q surface layer in the Polar model to equal that of the Caledon model
gives the same results). The apparent Q obtained from Lg. therefore appears to
depend on velocity structure as well as the Q structure of the crust. The reason
for the lower apparent Q of the Caledon model may be inappropriate
assumption for geometric spreading when the velocity gradient in the lower
crust is small and Lg is dominated by Maoho reflections with varying group and
phase velocities. A similar conclusion was reached by Bowman and Kennet
(1991) after obtaining unreasonably low Q values from I g waves in a region of
Australia, where the Moho is replaced by a gradient-zone allowing leakage of
Lg energy into the mante.

The ) value obtained by Sereno et al, (1988) from [ g recorded at NORESS
is 560f"“", which corresponds to 600-800 for the frequency range of the
synthetics. This was obtained for the fixed group-velocity range 3.0-3.6 km s.
However, from the NORESS record section (Figure 15) it is clear that the move-
out of maximum amplitude in the 200-300 km distance range is close to 3.9
km/s. 1t can therefore be assumed that their analysis missed a significant
amount of Lg energy from events in the region west of NORESS, where crustal
thickness is near 36 km. The crustal thickness of the Caledon model in Figure
17 is 42 km, which gives maximum amplitude in Lg within the 3.0-3.6 km s
group velocity window.

The Lg wave has been the object of theoretical and observational study
for some time (see¢ Hansen et al., for a short review). Because of its observed

waveform complexity, seen from single station data, the lg wave has been
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difficult to explain in detail. In practice, I g is usually thought of as the
superposition of higher mode Love and Rayleigh waves (e.g.. Nuttli, 1973) with
scattering due to crustal inhomogencities producing added complexity
(Baumgardt, 1990). Theoretical mode calculations show that mode theory can
explain much of the character of the [ g wave for wave propagation in planc
lavered media. However. the superposition ol normal modes is otten ditficuh
to understand since 10's of modes are needed to produce high frequency
arrivals in the Lg wavetrain. We have shown that simple ray theory
explanations of arrivals within the lg wavetlrain are very useful in
understanding their amplitude and phase velocity behavior. Although
individual ray arrivals are composed of the superposition of many modes, the
resulting waveform is easily understandable from a ray theorv point of view.
These results show that the influence of crustal velocity gradients is very
important in defining the character of lg in shield areas. Stan.lard
simplifications of wave propagation using mode approximations may not apply
when the maximum amplitude arrival of 1gis actuaily composed of a particular
S multiple sensitive to o specific “eiocity gradient within the (rust. Indeed,
the maximum amplitude wave group of an Lg wave will be expected to change
with distance as a new crustal multiple dominates. Array observations, such as
those used here, are invaluable in deducing the wave propagation
characteristics of this complex phase.

From the differences in character of Ig beiween the ARUESS and NORESS
regions it is ciear that when constructing travel-time curves for Lg in a
region, to be used for event locations it is critical for accurate distance
locations that the characteristic of the I g wave train be known. This ensures
that the correct order of reflection is associated with the first detected arrival
in [ g at each distance and allows identification of depth phases of earthquakes.
Azimuth variations in wave train characteristics can also be significant. For
example it appears that the Lg wave train from events southwest of ARCESS
mayv have character more similar to the one from events near NORESS, with
Moho reflections dominating over waves turning in the lower crust. To
determine the [ g wave pattern in the southwest region however, events from
greater distances are needed. Our search of the IMS database did not return
any large enough events from this distance and backazimuth range. We
conclude that before automatic locations of local and regional events can

become reliable, travel-time curves for the phase~ dominating Lg must be
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obtained for all azimuths. This is particularly important where Sp waves are
small and I g onset is used for distance determination.
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Table 1

List of Events recorded at ARCESS

Date O.T. Id* Lat® Lon’® ML
10/17/1989 | 11:10:33.05 167198 69.629 30.684 2.50
11/04/1989 | 10:05:21.28 240323 04.776 30444 2.70
11/17/1989 | 12:42:57.85 282554 69.336 30915 2.72
11/24/1989 | 16:02:28.82 309164 66,951 21.662 2.35
01/31/1990 | 12:45:51.20 | 326360a 69.175 30.772 240
01/31/1990 | 12:47:44.68 | 326360b 68.990 30.396 2.4
03/07/1990 | 10:24:51.49 329174 67.615 34.030 3.20
04/12/1990 1 12:09:06.46 335253 69.208 35.281 2.78
07/26/1990 | 06:12:31.59 348962 69.533 31.968 2.98
10/19/1990 | 12:31:46.01 389141 67.018 33.354 243
10/26/1990 | 12:36:08.02 391745 69.446 31.277 2.61
10/31/1990 | 00.07:48.90 392876 67.954 21.223 2.07
11/06/1990 | 12:18:2061 | 1350700 68.093 32.503 2.49
11/28/1990 | 12:02:07.10 | 1356637 04.716 30.362 277
12/16/1990 | 00:58:27.57 | 1361299 71.108 28.357 2.26
03/07/1991 | 11:57:42.14 460928 69.681 30.351 2.63
04/13/1991 | 21:18:33.99 580540 69.310 23.768 2.30
04/26/1991 | 12:38:57.00 | 709134a 69.261 30.774 2.20
04/26/1991 | 12:39:37.00 | 709134b 69.229 30.710 232
05/08/1991 | 11:56:12.68 760713 69.203 32.175 2.37
06/13/1991 | 10:48:23.23 905793 67.754 20.156 2.49
07/13/1991 | 01:42:20.70 981647 67.995 23.862 2.19
07/20/1991 | 16:53:30.81 998975 70.371 29.338 1.90
08/13/1991 ) 06:57:53.64 | 1106255 69.583 30.425 2.26
08/24/1991 | 10:57:35.13 | 1143047 65.712 32.100 3.18
09/05/1991 | 15:30:39.71 | 12006482 67.074 20.954 2.32
09/05/1991 | 17:07:51.25 | 1206599 70.376 29.552 1.80
04/24/1992 | 07:21:3043 | 1907025 69.686 30097 2.25
08/29/1992 | 22:4001.96 | 2621571 67.859 20.682 1.97

* Name of waveform file n the IMS database at CSS.
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Table 2

List of Events recorded at NORESS

Date O.T. 1d Lat” Lon” ML
09-05/1991 | 17:18:21.05 | 1205897* 00.273 11.134 1.22
07/17/1992 | 11:24:09.79 | 1996500* 00.361 11,213 1.23
11-21/1991 | 15:15:53.91 [ 1430815~ 60917 11,043 1.34
06/03/1991 | 15:05:5000 | 876819* 60.855 11.048 1.43
061871992 | 11:02:18.07 | 2181139* 60.844 10.986 1.09
05-12/1988 | 17:45:55.90 88133t 01.3 9.5 20
09/23/1988 | 05:46:10.40 88267+ 61.1 10.1 20
06/07/1988 | 13:006:14.40 88159+ 61.5 8.8 2.1
05/26/1988 | 11:56:46.80 | 88147at 61.2 9.3 24
1171171988 | 15:38:27.90 88316t 61.1 10.1 2.1
08/31/1988 | 12:09:52.60 88244+ 609 10.7 1.7

* Name of waveform file in the IMS database at CSS.

+ Julian date of events obtained from NORESS bulletin at CSS.
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Event tLocations

\Pechengé_- Varzuga

Figure 1. Map showing structural units, and Iccation of ARCESS (square) and cvents (triangles).
Relocated positions are shown with circles. Known mines are indicated. The FENNOLORA,
POLAR and FINLAP refraction profiles are also identified.
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Figure 2. P- and S-wave velocity and Q structure of three crustal and upper mantle models. Gradient
velocity models (dashed) are used for tavel-time calculations, constani-velocity models (solid) are
used for synthetic seismogram calculations. a) Average structure under the northem part of POLAR
refraction profile. b) Structure on FENNOLORA, just north of intersection with the FINLAP profile:
¢) Structure in the Caledonian region northwest of the NORESS array.
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Sydvaranger Mine - Dislonce=175.6 km
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Figure 5. Events from Sydvaranger mine (upper) and Nikel mine (lower) aligned on first arrival. Traces are

normalized to maximum amplitude, shown to the left. Stacking velocities are indicated above each beam
section. Armrows indicate Pn, Lg and Rg time picks from IMS. Note the multiplicity in some of the events.
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Earthqucke
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Figure 8. a) Three components (vertical, radial and tangential) of composite seismograms for an event
60 km southwest of ARCESS. The high phase-velocities require the source depth to be around 30 km.
b) Three component strike-slip synthetics at 60 km distance in the Fennolora model.
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Earthquake - FENNOLORA-—44 km crust Depth = 32 «km
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Figure 9. a) Vertical and tangential composite seismograms for event 981647, with travel-time curves calculated for
a source at 32 km depth in the Fennolora model. The tangential component is offset in distance to lign up with the
vertical. b) Vertical-component synthetics for the threc fundamental dislocation sources at 32 km depth and
180 km distance.
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Earthquake SW of ARCESS, FENNOLORA-45 km crust Depth = 18 km
A3 ] T T

ssc "' T W ,' l:' ‘ T T 1 1 I Ro l T l "’
g ' D I
' [ o
i S A
[
i -
3001~ ' Vol
] LRI 7, I
i vt
- ps 20ci)
N Y ;
i PO ]
250}~ Vo Ll
T L : o R
o , ! i g Q.
~ S v or) tR E
'y ! 1 e ‘o
2 L MY R
5 vLE T
s r na o
© 200}~ I
‘ 1 'i Col
Lo l‘...i. ......................
R .
F ;:' ’ o
t Q?"\: ‘ .
L p 1 .
. ; A
1501~ N :: ;
L "
r ¢ !
L 1 : !
L ;o !
' 1
- N ) :
10 1 | ;' I N L 1 i i { A _L 1 ] L ! Il 1 1
-] 10 15 20 25 30 35 40 45 S0

[* - x/8.2] (sec)

Figure 10. Verucal and horizontal composite seismograms for event 392876 high-passed at 2 Hz. Travel-time
curves calculated for asource at {8 km depth in the Fennrlora model are superimposed on the plot. The tang-
ential component is shifted in distance to lign up with the vertical component.
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Event Locotlons In Rg study

/ Caledonides ‘\J

fnan
terrain

Figure 11. Location of events (triangles) used in Rg study. Locations of arays are marked by squares.
a) ARCESS region, main structural units arc outlined and number of events from each location is indicated:
b} NORESS region. the Permian Oslo Graben and Caledonides are shaded. White arca is Precambnan.
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Rg Dispersion Curves ot NORESS
T T T A T T T T

153 — Gatez2 Bore 0B | .

87 - ~794

3
coe s vold dww
wee oo S 11010997 - 76866554 wqt meon ]
3. --v--mm‘_

1 ]
i, ]
2 1 4 1 1 A i 3. 4. 1 e
(. ] [E] 7Y Ta 18 + 8 20 37 14 18
Feoauency (M2}
Rg Dispersion Curves at ARCESS
4. —T T - Y \ T T T T t T
138 Got=176 Borata
174 - - - dnte178
0 - -~ Sntwl?§
M - - - G178 Boz=84 —
298 —— ost=21) Bozesd)
212 - - - dit=213 Boa=gt 4
- 131 -~ dnte21) Bozwdt
- T2 - - Gete213 Bor=9) ~
130 —— dotw213 Bar=@!
200 - - - dsl=213 Bozedt
733 -~ Getel13 Bor=$!
143 -~ - - G330 Boz=118_
'] i $ 3 e i i l }. 3 "
1 T T T T T T T Bl - hi
Lo 12 211109 6 T 4Ne dev
oQt Maon
~310 Oew
J
2 1 4, L 1 i " 1 N . 1

7?2 14 28 8

Figure 12. Rg-wavc phasc-velocity dispersion curves obtained from NORESS (Upper pancl) and ARCESS
data (lower pancl). Weighted mean dispersion curves with one standard deviation hmits are plotted below
the dispersion curves, The numbcer of samples at each frequency is shown.
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Dispersion Curves ond inversion Results
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Figure 13. Fitof the final dispersion curves (circles) obiained form inversions to the weighted mean dispersion
curves (triangles) of the data. Inversion results, i.e. S-wave velocities of the layers resolved, for each array are
shown below.
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