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I. INTRODUCTION

A new theoretical procedure is developed for calculating light scattering by a spherical

particle that is on or near a conducting plane surface (mirror). This computational capability is

useful for both scieutific investigations and engineering design studies. The scattered light, for

example, can be used to detect and measure particles on a flat reflecting surface. This is relevant for

certain manufacturing processes where surfacts must be maintained in an uncontaminated

condition.1 The present work originated in the problem of modeling stray radiation in an optical

system due to light that is scattered from particles contaminating the surfaces of mirrors. Such stray

radiation can seriously degrade performance of the system.2 In addition, if the radiation is intense,

the energy absorbed by the particle can cause local heating, which may damage the mirror or

otherwise cause problems. Another possible application of the theory is to the study of

morphology dependent resonances (MDR) of small particles. 3 In recent years many studies have

been carried out that exploit resonance effects in isolated particles.4.5 Interesting new resonance

effects may be possible if the particle is on or near a conducting surface.

Previous work2,6,7 on light scattering from a particle on a mirror has included born

experimental and theoretical studies. Prior theoretical calculations have been based on

approximation methods. The method developed in this report is not an approximation, but rather it

provides a numerically exact solution to Maxwell's equations.

Section H begins with a general discussion of the scattering problem and a derivation of

the method of images. This method allows one to replace the system consisting of the sphere and

the conducting plane with an equivalent system consisting of the sphere and an image sphere. The

equivalent two-particle system is then solved by the multipole expansion method.8,9 Mirror

symmetry is exploited to simplify the calculation. The section concludes with a derivation of

formulas for the extinction and absorption cross sections. Except for the discussion of the method

of images, the procedures developed in this section are limited to cases in which the incident

radiation propagates normal to the plane of the mirror. This limitation is not fundamental to the

method and will be removed in a future work. Section III reviews two simple approximation

techniques that have been used in previous studies of light scattering from a particle on a mirror.

These methods are based on Mie theory. It is important to test the accuracy of these approximations

by comparing them to exact results. In section IV, we solve several test cases and compare the

exact results to the results obtained by the two approximation procedures discussed in section II.

Section V ends the report with a few concluding remarks.
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II. THEORY

Consider the system shown in Fig.la. This system is more general than the special case to

be considered in this report. We begin with this system because the method of images holds for the

general case and we did not want to limit the discussion to a specialized case.

The z = 0 plane is assumed to be the surface of a perfect conductor (infinite conductivity).

One or more particles are located on or above this plane in the region z > 0. The particles can have
arbitrary shapes and nonuniform composition. The electrical characteristics of the system are
completely described by specifying the dielectric constant e(r), the conductivity a(r), and the

magnetic permeability gt(r) as functions of the position coordinate r throughout the region z > 0. In

the region of space not occupied by the particles, it is assumed that e(r) = 1, t(r) = 1, and a(r) = 0

(Gaussian units). Inside the particle, these functions take on the values characteristic of the
particle. On the z = 0 plane, the conductivity is assumed to be infinite. A plane wave, En, is

incident on the system. This gives rise to a reflected plane wave, Epf, and a scattered wave, E te.

In the region outside of the particles, the total electric field is the sum of these three contributions,

E = Einc + Eref + Escat.

The electromagnetic field has a harmonic time dependence given by exp(-iot). In the

region above the reflecting plane, it must satisfy the time harmonic form of Maxwell's equations

VxH+i(e +i 4Z,)E =0

V x E - ikpiH = 0
(1)

V •(EE)=0

V .(g.H)=O

where k = o•/c, with c equal to the velocity of light. The field must also satisfy the following

boundary conditions on the z = 0 plane:

nxE=0

(2)
fn -H =0

7



(a)

Einc Escat Eref

MIRROR SURFACE

(b)E inc

E inc

Fig. 1. Illustration of the method of images. (a) Physical system,
(b) Equivalent "method of images" system.
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where 'n is the unit vector normal to the plane. These conditions, simply stated, say that there can

be no tangential component to the electric field and no normal component to the magnetic field at

z =0.
The solution to this problem, stated in its present form, is quite difficult to so:ve. A

technique very similar to the method of images in electrostatic problems can be used to reformulate

the problem in a much simpler form without explicit boundary conditions at the surface of the

mirror.

A. METHOD OF IMAGES

The method of images is intuitively obvious. An observer looking down on the system

will see the particles and mirror images of the particles and also the source of the incident wave

(e.g., a laser) and a mirror image of the source. The image of the source is the apparent origin of

the reflected wave. This apparent picture is turned into reality by creating the system shown in

Fig. lb, where the mirror has been removed, the images of the particles have been replaced by real

particles, and the image of the source has been replaced by a real source. The image source is the

origin of the plane wave kinc. By definition, Einc = Eref in the region z > 0. The functions E, CY,

and g., in this model, are symmetric with respect to the z coordinate; i.e., E(x,y,z) = E(x,y,-z),

a(x,y,z) = a(x,y,-z) and g.(x,y,z) = t(x,y,-z).

By the principle of linear independence, each of the incident waves, Einc and Einc, can be

considered separately. Einr gives rise to the scattered wave Esat, and finc gives rise to Escat- In

each of these separate scattering problems, a plane wave is bcattered by a muitiparticle system. It is

obviously not necessary to solve both of these problems since the solutions are related by

symmetry. Assume that we have solved the scattering problem for the field E = Einc + Escat. Write

the solution in Cartesian coordinates

E(x,y,z) = Ex(x,y,z)-x + Ey(x,y,z)-y + Ez(x,y,z)e-z (3a)

where -ex, ey, and ez are unit vectors along the x, y, and z axes, respectively. The accompanying

magnetic field is written similarly

H(x,y,z) = H,(x,y,z)ex + Hy(x,y,z)-ey + Hz(x,y,z)-'z (3b)

9



These fields are a solution to the scattering problem and therefore must satisfy Maxwell's

equations. We now claim that the field E = E-in + -Escat and its accompanying magnetic field H are

related to E and H by the expressions

E(x,y,z) = -Ex(xy,-z)•x - Ey(x,y,-z)•y + Ez(x,y,-z)iz

(4)
H(x,y,z) = H.(x,y,-z)-ex + Hy(x,y,-z)Fy - Hz(x'y,-z)iý

This claim is justified by the following argument. Insert the above expressions for E and H into

Maxwell's equations and use the symmetry of the functions £(x,y,z), C(x,y,z), and g(x,y,z) with

respect to z. From this analysis, we see that if E(x,y,z) and H(x,yz) satisfy Maxwell's equations,

then E(x,y,z) and H(x,y,z) will also satisfy these equations. The total electric and magnetic

fields for the scattering problem shown in Fig. l b are obtained by summing the two linearly

independent contributions

Etotl= E + E
(5)

Htotal = H + H

It is obvious from Eqs. (3) and (4) that the total fields EW and H.., satisfy the

boundary conditions given by Eq. (2). They also satisfy Maxwell's equations. Therefore, in the

region z > 0 these fields are a solution to the scattering problem shown in Fig. la.

B. MULTIPOLE EXPANSION SOLUTION

The physical problem to be considered in this report is illustrated in Fig. 2. The center of a

spherical particle of radius R is located a distance d (where d Z: R) above a perfectly conducting

plane surface. The center is assumed to lie on the z axis and the conducting surface to coincide with

the z = 0 plane. A circularly polarized plane wave traveling in the negative z direction,
Einc = -(e. + iie) e-i kz, is incident on this system. By the method of images, this physical

problem is converted to the two-particle scattering problem shown in Fig. 3. In addition to the
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incident wave, an image wave, traveling in the positive z direction, 9ic = (e-, + i •'y) ei kz, is also

present. The total incident wave for the two-particle problem is the sum of these two waves

Ei = (e-, + i -e) (eikz - e-i kz) (6)

This wave satisfies the boundary conditions given by Eq. (2) on the z = 0 plane.

In the region outside the spheres, the total electric field is conveniently written as the sum
of the incident wave and two contributions to the scattered wave

E =Ei + E"s) + E"s) (7)

The two scattered waves, E`'1 and E21) , propagate radially outward from the centers of the two

spheres, 01 and 02, respectively (see Fig. 3).

The electric fields can be expanded in terms of the vector spherical wave functions

M•?m = z4)(kr) einO Xn,m(O)

and (8)

N& = e'mo 4r z)(kr)j Y.,.m() + z4)(kr) ZMO)

where z•) is a qpherical Bessel function of type Jn, h) for j = 1,3 respectively. The vector

functions X, Y, and Z are defined by

Xn,m(0) = i 7tn,m(O) ' - Tnm(0) e

Yn,m(0) = Tn.m(0) eo + i 2tnm(0) eo (9)

Znjn(O) = n(n+l) Pmn (cosO)er

where

Icn~m(G) = m Pn(cos 8)
sin(O)

(10)

Tn'm(O)- = Pnm(cos 0)
a10
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"The function Pm'(x) is the associated Legendre polynomial, and (-er, ie', e') are unit orthogonal

vectors associated with the spherical coordinates r,0,0.

In the analysis that follows, only the functions Mom and Nn. with m = I will be needed.

Therefore, to simplify the notation, the subscript m = 1 will not be explicitly written. It will be

understood that Mn = Mn 1 and n,1. Using the standard formulas for the expansion of a

linearly polarized plane wave,10 1°I we can derive the following formula for the expansion of a

circularly polarized plane wave

(-e, + i ey± 'ik z = (--i)n+l 2n [uMnM(r,0O,) ± N0l)(r,0,0)] (11)
n=1 n(n+)

In the discussions that follow, the coordinates r,@,o are defined with respect to coordinate

axes with origin at 0 (see Fig. 3). A point in this coordinate space will also be represented by the

boldfaced position vector r. In addition, it will be useful to introduce two other coordinate systems

with origins, 01 and 02, located at the centers of the two spheres. The coordinates in these systems

will be identified with the subscripts 1 and 2, respectively [i.e., rj or (rj, 8j, j ); j = 1,2]. These

three sets of coordinates are related to each other by translations along the z axis.

The incident wave, defined by Eq. (6), can be expanded in terms of spherical wave
functions centered at 01

E1 (r1 ) = • [Pn M(nl)(r) + qn N(nl(rl)] (12)
n=1

The expansion coefficients in this equation can be obtained with the aid of Eq. (11). They are

p. -in+1 2n + I [e~ikd - (-1)n eikd]

n(n+I)

(13)

q = -in+1 2n + 1 [e-ikd + (-l)' eikd]
n(n+1)

where d is the displacement of the center of the sphere from origin 0 (see Fig. 3). In addition, the

13



scattered waves E"' and E"2 can be expanded around centers 01 and 02, respectively,

EP')rj) = ( [a•) M3)(rj) + W•) N$3)(rj)]; i = 1,2 (14)
n=

The scattering coefficients a,), O, a2), and bý2) are to be determined by the calculation. This task
is made somewhat easier by exploiting the mirror symmetry of the system and the boundary
conditions on the z = 0 plane. These conditions imply the following relations between the

scattering coefficients (see appendix A):

(15)

To carry out the calculations of the scattering coefficients, it is convenient to expand the

fields in the coordinate system with origin at 01. The fields Ei and EýI) are already in this form.

EP) is not, but can be converted to this form by means of the translation-addition theorem for

vector spherical wave functions. A general formulation and discussion of this theorem is given in

references 8 and 9. The special form of this theorem, needed for the present problem, is the

following:

Mý3)(r 2) = X [An.n' Ml)(rl) + Brn' N,)(r1 )]
n'=lIn

(16)

Nk3))(r) = n n N((rl)+ B+ n' M(.)(rl)

The formulas for the expansion coefficients An,, and Bn.n, and a discussion of the method for

calculating these quantities are presented in appendix B.

The electric field in the region outside the spheres is given by Eq. (7). The multipole

expansion of this field around origin 01 can be derived with the aid of Eqs. (12), (14), and (16).

The result is

14



E= Y I [Pn + Y (An'.na(n) + Bn'.,nbn))]Mý')(rj) + aý)Mý1)(rj)
n n'

(17)

+ [qn + Y (Bn',na1 naI + An',nbn))]NWi)(ri) + b?) NW3)(r1) }
n'

This equation is of the form

E= (an M1) + a1)M3+N(1)N + b( )N 3)) (18)
n

The ratios of the amplitudes of the scattered wave multipoles (M(3 ) and N(3)) to the incident wave

multipoles (M(') and N(1)) are

Un = a.

(19)

= =

The quantities un and vn are elements of the so-called scattering T matrix' 2 for the particle.
For a homogeneous sphere, un and vn are the Mie theory coefficients for the TE and TM scattering

modes, respectively. The formulas for un and vn, for the homogeneous dielectric sphere, are given

in appendix C. [ It should be noted that it is not necessary for the particle to be homogeneous. If
the index of refraction is a function of the radius, un and vn can still be calculated by an appropriate

theory. For example, the theory of Aden and Kerker 13 or Bhandari14 can be used for a layered
sphere, or the theory of Wyatt15 can be used for a sphere with continuous radially varying index of

refraction.]
Assume now that the Mie theory coefficients, un and vn , have been calculated for the

particle. Substitute the expressions for ocn and On, obtained from Eq. (17), into Eq. (19) to obtain

(20)

b~l) = v [qn + x (B ' a() + A - b(2))]

15



The sums over n' in Eq. (20) converge and can be truncated to the range 1 : n' _< N, where N is

the number of modes required for convergence of a Mie theory calculation for scattering from the

isolated spherical particle.

These equations can be cast in a much more elegant and easy-to-use form by expressing all

the quantities as either square matrices or column vectors. The quantities aý ), bl'), a4l, bý2), pn,

and qn are elements of the (length N) column vectors: a(M), bOl), a(2), b(2 ). p, and q. The

quantities An,. and 13,.n are elements of the N by N square matrices A and B. The scattering

coefficients u. and vn are elements of the diagonal matrices u = [un 8nn.] and v = [v, , It is

also useful to defime the diagonal matrix g = [(- 1)" 8kj. The set of 2N linear equations, Eq. (20),

can now be written in the super matrix form

(AT+ gu1j BT a(2))(P (21)
BT AT . gv- b(2) q

where we have taken account of Eq. (15) to eliminate a(') = - ga(2) and b(W) = gb(2) from the

equations. The superscript T indicates the transpose matrix. Standard linear equation-solving

subroutines are available on most computers to solve this matrix equation for the scattering

coefficients a(2) and bW2).

C. CROSS SECTIONS

The scattered wave is the sum of the two scattering components

Escat = Eý1) + EJ2) (22)

The asymptotic form of this wave can be evaluated in the limit r -* with the aid of Eq. (14) and

the following asymptotic formulas for the spherical wave functions:

MO) = (-i)n ."Xn (0) eiO
ilcr

(23)

N = i (-i)n & Yn (0)eiO

ikr

16



The result is N

Escat =- -i-r- e¢i I (-i)n [41) Xn(0 1) + i bW') Yn(i1)1
ikrl n=1

(24)
N

"+ ikr (0i)n ( [2) Xn(0 2 ) + i W2) Y.(02)]
iklr2  n=1

This formula is expressed in terms of the two coordinates systems, (rl, 01, 01) and

(r2, 02, 02). To be useful, it must be expressed in terms of a single set of coordinates (r,0, 40). The

asymptotic transformation relations between the coordinates, in the limit r -* 00, are

rl= r + d cos(O)

r 2 = r - d cos(O)

61 = 02 = 0 (25)

0)1 = 42=)

Substitute these transformation relations into Eq. (24) to obtain the scattered wave in terms of r, 0

and 0. This wave can be written in the form

Sei'k [So() e + i Sx(0) •] (26)Escat =- -, eiO SOO)'e + iS()'

where the vector components of the scattering amplitude are given by

SO(O) = eikdcos(O) S(1() + @-ikdcos(O) S(2)()

(27)

SO(O) = eikdcos(o) SM (0) + e-ikdcos(O) S(2)(0)

and where

S0~() - N i(1) e
n=1

(28)
(j) N

S 0 (0) = - I ("i)n+ [a4)'Cn (0) + bW) n (0)]
n=1

for j = 1,2.

17



The formulas for the differential scattering cross section can be taken directly from the

similar formulas obtained in Mie theory.1o 1' If the incident beam is right or left circularly

polarized or if it is unpolarized, the differential scattering cross section is given by

0(0) = 2- 11 SOM ()2 +[S'O ()12] (29)

If the incident beam is plane polarized, with the electric field vector parallel to the x axis, the

differential cross section is given by

0(0) = k--11 SO (0)1 2cos2(0) + I[S (0)1 2sin2(m)] (30)

If the electric field is polarized parallel to the y axis, the factors cos2(0) and sin2(0) in the above
formula are interchanged. The angle 0 in these formulas is restricted to the region above the
reflecting plane, i.e., 0•< 0 x r/2.

The total scattering cross section is the integral of the differential cross section over the 2n

steradian solid angle above the z = 0 plane. For either of the differential cross section formulas,

given in Eqs. (29) or (30), the result is

Cscaz = 0 f [I S0(0) 2 + I S 0() Ir] sin(O) dO (31)

In Mie theory, it is possible to substitute the series expansions for Se(O) and SO(0) into Eq.

(31) and then use the orthogonality properties of the functions irn(O) and tn(0) to obtain a simple

formula for the total scattering cross section. This approach is not feasible in the present case

because the functions S0(0) and SO(0) are much more complicated than in Mie theory. Instead, the

scattering cross section is calculated using the general relation

Cscat = Cext - Cabs (32)

where C,, is the extinction cross section and Cabs is the absorption cross section.

The extinction cross section can be computed with the aid of the optical theoreml

Cext= - 4M Re S(0) (33)

18



where S(O) = SO(0) = S,(O) is the scattering amplitude in the forward direction 0 =0. Use the

relations %tn(0) =Cn(0) = n(n+l)/2 and Eqs. (27) and (28) to obtain

N
CC-xt=2i- im X ('i)nn(n+l)eikd(a(1l) + + eikd(aý2) + b(2))] (34)

kc2  n 34
nl

The absorption cross section is calculated by utilizing formulas for power absorption

developed in Mie theory. The Mie theory formula for the power absorbed by spherical particle

scattering the plane wave (e, + i ey) eikz is

P=F-2 (2n+l)[LuI2+Reun)+Ovn12+RevflnJ (35)
kn=1

where F is the energy flux of the plane wave and the quantity in braces is the absorption cross

section. We now interpret this formula in terms of the contributions of each of the multipole

components of the plane wave to the total power absorbed by the particle. Define P(M) and P•) to

be the power absorbed from the n'th TE and TM multipole components, respectively, of the

incident plane wave

P(M) = -2M (2n+ 1)• un12 + Re un)

(36)

Pr '=F[ 2 (2n+ 1)JVn 12+ Re v,),(6

The expansion of the plane wave is given by Eq. (11). The amplitude of each of the

multipole components of this wave is

fn =-[in+l n2n+l)]l (37)

The power absorbed from each multipole component is proportional to the square of the amplitude
fn. Therefore, to obtain the power absorbed from a multipole of unit amplitude, we must divide

the results given in Eq. (36) by If" 12. The result is

19



-(M) [n(n+1)] 2 M)

(38)

N [n(n+1)] 2Pn -L-f-T Pr

The wave, which is incidcnt on particle 1, has a multipole expansion that can be deduced from Eq.

(18):

E (acn Mý) + On NýI)) (39)

n

The expansion coefficients, obtained from Eq. (19), are

aXn -- U-n-

UAn (40)

Vn

The total energy absorbed by particle I is obtained by multiplying Pm and Pn [defined in Eq.

(38)] by the squares of the amplitudes I an 12 and I in f and summing over all the terms. The

absorption cross section is then obtained by dividing this result by the energy flux F. The final

result is

k2_g X, [n(n+1)]2 ý aý') 12l[2)Cabs k2 -6 n 2n + 1 [ un 2n + Re un) + -- (Ivn F + Re vn)J (41)

n=1l

These formulas were tested by comparing the scattering cross section obtained by

numerically integrating the differential cross section, given by Eq. (31), with the results obtained

using Eqs. (32), (34), and (41). The tests were carried out using both real and complex values for

the index of refraction. The results were in complete agreement, within the numerical accuracy of

the calculation.
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III. APPROXIMATION METHODS

Approximation methods have been used in previous studies to calculate the differential
scattering cross section for a particle on a conducting plane.2-6 Two of these approximations will
be reviewed in this section. In addition, a technique known as the order of scattering (OS) method
will also be presented, and the relationship of this method to one of the approximations will be
discussed.

A. FORWARD SCATTER MIE APPROXIMATION

This method is illustrated in Fig. 4. Mie theory is used to calculate the scattering from the
spherical particle. The forward scattered rays are reflected from the mirror back to the detector. The
back scattered rays are usually much weaker than the forward scattered rays and are therefore
neglected. The mirror is assumed to have no effect on the Mie scattering cross section. The only
effect of the mirror is to reflect the forward scattered rays. Young2 developed this approximation
and obtained good agreement with experimental results. Nahm and Wolfe6 also used this method,
which they refer to as the unobstructed reflection model.

B. SINGLE SCATTER APPROXIMATION

The single scatter approximation (SSA) method is also based on Mie theory. This method
takes account of all of the ways in which a ray in the incident beam can interact only once with the
particle and be deflected to the detector. The four ways this can happen are illustrated in Fig. 5.
This method neglects all processes in which a ray is scattered two or three or more times by the
particle. This would happen, for example, if a ray were deflected by the particle toward the mirror,
then were reflected back and struck the particle a second time, and then were deflected to the
detector. Such multiple scattering processes are ignored in this approximation. The amplitudes of
the four scattered rays (waves) shown in Fig. 5 are added, taking account of the phase differences
due to the different distances that the incident rays must travel to reach the particle, the different
distances that the scattered rays must travel from the particle to the detector, and the phase shift of
x radians caused by reflection from the mirror. Only a single Mie theory calculation is required to
carry out this calculation; therefore, the method is very efficient. This method is almost identical to
the double interaction model (DIM) of Nahm and Wolfe.6 The DIM includes an "area factor,"
which is not included in the SSA model.

21



back scatter

"rreflected
f.forward scatter

Fig. 4. Forward scatter Mie approximation.
Backscatter is ignored.

Fig. 5. Single scatter approximation (SSA). The amplitudes of these
four single scatter events are added, taking account of phase
differences due to the different path lengths.
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The SSA can be considered to be the first term of an infinite series expansion in which the

second term takes account of all double scattering events, the third term takes account of all triple

scattering events and so on. The general technique of summing these multiple scattering events is

known as the OS method. This method and its relationship to the exact theory will be discussed

next.

C. ORDER OF SCATTERING METHOD

Most of the computational effort in solving the exact scattering problem is due to Eq. (21).

This matrix equation is of the form

(U-1- C)F=Q (42)

where

C = A BT(43)
BT AT

U = 0 gv (44)

F=a( 2) (45)
b(2)

and
Q-qP (46)

The formal solution to Eq. (42) is

F=(U-1 - C)"Q (47)

The inverse matrix in this equation can be evaluated by the following infinite series expansion
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(U1 - C = U + UCU + UCUCU +... (48)

If this series converges rapidly, it is a useful procedure for solving Eq. (42). This technique was

developed by Fuller and Kattawer16 and is used to calculate scattering from an ensemble of

spheres. The first term of the series represents the single scattering contribution, the second term is

the double scattering contribution, and so on. If we retain only the first term, the result is the SSA

method. The scattering coefficients for this case can be easily calculated:

•1) = un pn

(49)
b•1) =vn qn

This requires a single Mie theory calculation to obtain un and vn.

Based on the simple ray optics picture of the scattering process, one would expect the

probability of double scattering events to be small relative to single scattering events whenever the

scattering cross section is small (i.e., for small particles) or when the distance d of the particle from

the mirror is large. Under these circumstances, the single scatter approximation is expected to be

accurate and should converge to the exact result in the limit that the particle size approaches zero or

the distance d approaches infinity. In the next section, we will see that these expectations are

apparently borne out.
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IV. RESULTS

The results of several test calculations, which compare the predictions of the exact theory

with the predictions of the approximation methods (the forward scatter Mie approximation and the
single scatter approximation method), are presented. These results give a preliminary estimate of
the accuracy of the approximation methods. The cross sections are given in reduced units of area.

The reduced unit of length, in this system, is defined to be the wavelength of the scattered light
(i.e., in these units, X = 1). Results for particles of three different sizes are shown in Figs. 6, 7,

and 8. The radii of these particles, in reduced units, are R = 0.2, 1.0, and 2.5. The particles are

resting on the surface of the mirror. therefore, the distance parameters are given by d = R. The

index of refraction is n = 1.46. As anticipated, the SSA results are fairly good for the small

particle size.

In each of the cases shown in Figs. 6-8, the Mie theory approximation gives cross sections
for small angle scattering (0 < 08 <20") that are smaller than the exact cross sections. To dispel

any notion that this might always be true, we show Fig. 9, where the the index of refraction has
been changed to n = 1.3. The other parameters are the same as in Fig. 7, i.e., R = 1.0 and d = 1.0.

The Mie theory results are now much larger than the exact results for low angle scattering.

Figure 10 shows results for a particle that is suspended above the plane of the mirror. The

parameters for this case are R = 1.0, n = 1.3, and d = 5.0 (i.e., the center of the sphere is 5.0
units above the mirror). The SSA method, as expected, is a fairly good approximation for this

case.
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Fig. 6. Cross section for light scattering from a particle on a mirror. R = 0.2, d = 0.2,
n = 1.46. Comparison of exact solution with the forward scatter Mie approximation
(Mie) and the single scatter approximation (SSA).
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Fig. 7. Cross section for light scattering from a particle on a mirror. R 1.0, d

n = 1.46. Comparison of exact solution with the forward scatter Mfie approximation
(Mie) and the single scatter apnroximation (SSA).
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Fig. 9. Cross section for light scattering from a particle on a mirror. R = 1.0, d = 1.0,
n = 1.3. Comparison of exact solution with the forward scatter Mie approximation
(Mie) and the single scatter approximation (SSA).
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Fig. 10. Cross section for light scattering from a particle near a mirror. R =1.0, d =5.0,

n = 1.3. Comparison of exact solution with the forward scatter Mie approximation
(Mie) and the single scatter approximation (SSA).
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V. CONCLUDING REMARKS

This report describes a practical, efficient computational method for calculating light

scattering from a spherical particle on a conducting surface. The computational efficiency of this

method makes it possible to eliminate, for the most part, the need to use approximation methods.

We are presently using this procedure to calculate mirror Bidirectional Reflectance Distribution

Functions (BRDF)2 due to various distributions of particulate contamination on the surface of a

mirror.
The present form of the theory is restricted to the case in which the incident light propagates

in a direction normal to the surface of the mirror. This limitation will be removed in future work.
The listing of a Fortran computer code that implements the procedures outlined in this

report is presented in Appendix D.
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APPENDIX A
SCATTERING COEFFICIENT SYMMETRY RELATIONS

The symmetry relations expressed by Eq. (15) in the text are a consequence of the
symmetry of the system and the boundary conditions on the z = 0 plane. The boundary conditions
imply that at any point on this plane, the component of the electric field that is parallel to the plane
must vanish. This applies to the total field given by Eq. (7). Since the incident field, Ei, satisfies

this condition separately, it follows that the scattered field, Esat = E(s' + E2),s must also satisfy the

condition separately.
To carry out the analysis, we choose an arbitrary point P on the z = 0 plane. Assume that

this point has coordinates rl,01,€1 with respect to the coordinate system centered at 01. Then, the

coordinates of P with respect to the 02 coordinate system are given by

r2 = rl

02 = IC - 01 (Al)
02 = 01

At point P, the unit vectors 'eo, -eo, and eo2 are collinear and lie in the z = 0 plane. Thus,

the •e component of the total scattered field is obtained by algebraically adding the 4eo and e-0

components of the Eý1) and Eý2) fields. The e and 'e2 components of the scattered field can be

obtained with aid of Eqs. (8), (9), and (14). The result is

N

[Es(i). = -n__ exp(iej) z•3Z(krj) [a) 'tn(0)] - i { [ri z)(krj)]ý[ t)n( (A2)

where j = 1,2. The boundary conditions at P require that

[EP1], +1 [E+2)]42 = 0 (A3)

This relation can only be true if it holds for each individual multipole component of the field. This

implies that

W~)'Tn(01) + a•2)Tn(02) =0

and (A4)

Wl)nn(O1) + W2) nn(02) =0
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Use Eq. (Al) and the following symmetry relations for the nn and n functions

On((-O)= )
(A5)

"Tn (j-0)= (-1)n 'c(0)

to obtain the desired results given by Eq. (15) in the text.
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APPENDIX B

THE TRANSLATION-ADDITION THEOREM

The special form of the translation-addition theorem used is this report is given by Eq. (16)

in the text. This formula expresses the vector spherical wavefunctions M(3)(r 2) and N(n3)(r 2) about

origin 02 in terms of wave functions Mý)(r1 ) and N(l)(rl) about origin 01, where 02 is displaced a

distance 8 = 2d along the z axis from 01 (see Fig. 3). The expansion coefficients, An ,n and BnD,,

which appear in Eq. (16), are obtained from the general formulas given in the appendix of

reference 6:

An,n'=-in''n 2n'+l i-v [n(n+l) + n'(n'+l) - v(v+l)] a(n,n';v)ht)(k8) (Bl)
2n'(n'+l) v

B = in'-7 2;n'+ v i- (2ik8) a(n,n';v) hv($)(kS) (B2)
2n'(n'+)v

where hv(v)(kB) is the spherical Hankel function of the first kind and a(n,n'; v) is special form of the

Guant coefficient1 7, defined by the following product of two 3-j symbols

a...'v)= .v[, n(n+l) 1]1/2{n n' v)(1 _n' v) (B3)
a~nn';)=tVItn'(n'+)j (0 0 0 1-1 0

The definition of the 3-j symbol involves the summation of many factorial terms. As a

result, a straightforward evaluation of a(n,n'; v) is very inefficient. Bruning and Lo9 found a way

to overcome this difficulty by developing a recurrence relation for a(n,n'; v) that cycles on the

index v.

We did not use this method. Instead, we found it more convenient to use a procedure

developed by Schulten and Gordon18 for calculating the 3-j symbols. This procedure is also based

on a recurrence relation that cycles on the index v. It was more convenient because we could make

use of an existing computer subroutine available to us to do the calculations. We found this

approach to be very efficient.
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APPENDIX C
FORMULAS FOR THE u. AND v, COEFFICIENTS

The u, and v. coefficients are defined by Eq. (19) in the text. For the case of a
homogeneous sphere, they are identical to the Mie theory "an and bn" coefficients for the TE and

TM scattering modes, respectively. Since there are many different definitions of these quantities in

the literature, it seems advisable to give the formulas for these quantities that are consistent with
their usage in this report. The definitions we use are the same as those defined by Stratton10

(Section 9.25). If we take the permeability, g, of the particle and the surrounding medium to be

the same, these coefficients are given by

= - Vn(mx) V'n(X) - mi'n(x) YIn(mx) (Cl)

Vn(mx) 4'n(x) - m Wn(x) V'n(mx)

and
Vn =-- Nfn(x) V'n(mx) - mVn(mx) I'n(X) (C2)

Wx(x) V'n(mx) - mVn(mx) 4'n(x)

where m is the complex index of refraction; x = kR is the size parameter of the particle, the prime
means to take the derivative with respect to the argument of the function; and Vn(x) and •(x) are

Riccati-Bessel functions defined by iyn(x) = x jn(x) and tn(x) =x hb)(x).
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APPENDIX D
FORTRAN COMPUTER CODE

On the following pages is a listing of the Fortran computer code that implements the
procedures outlined in this report. The program runs interactively and prompts the user for input
data. The code is efficient and can quite reasonably be run on a personal computer. The output
consists of the differential scattering cross section as well as the extinction, absorption, and total
scattering cross sections for both the "spherical particle on a conducting plane" and for the
"isolated sphere." The scattering results for the "isolated sphere" (Mie theory) are a natural by-
product of the calculation. The results for the isolated sphere are, by definition, the "forward
scatter Mie approximation" cross sections.

Following the program listing is a sample output that was calculated using the default input
parameters. The cross sections in this example output correspond to the "exact" (and also the
"forward scatter Mie") cross sections shown in Fig. 7. (However, many more points were
calculated for the graph than are shown in the sample output.)

The code is self-contained except for the IMSL Library subroutine LECT1C, which
appears in the subroutine FSOLVE. LECTlC is a complex linear equation solver that solves
Eq. (21) in the text. The user must either supply this subroutine or an equivalent subroutine.
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PROGRAM MIRMX (input,output, tape5=input, tape6=output )
COMMON/RMIE/RAD, RFR, RFI, WL, KAY, LMAX
COMMON/AB/ A(60, 60) ,B (60, 60)
COMMON/CMIE/U (100) ,V(100)
COMMON/GFMAT/G (120,120) ,F (120)
COMMON/DIFF/NANG,THETA(400) ,DIFF (400) ,DIFS (400) ,QEXT,QSCA,QABS
COMM•ON/CRS2/Q2EXT, Q2ABS
DIMENSION TWRT (10)
COMPLEX A,B,U,V, G,F, CSUM, UA, UB,VA,VB
REAL KAY

C
C THIS PROGRAM CALCULATES SCATTERING FROM A SPHERICAL
C PARTICLE ON A MIRROR. IT USES THE METHOD OF IMAGES TO
C CONVERT TO AN EQUIVALENT 2 PARTICLE PROBLEM AND THEN USES
C THE METHOD OF BRUNING AND LO TO SOLVE THIS EQUIVALENT
C SCATTERING PROBLEM. (B.R. JOHNSON, MAY. 1990)
C MAJOR CORRECTIONS AND REVISIONS OCT. 1990)
C INTERACTIVE INPUT VERSION DEC. 1990
C

C PARAMETER DEFINITIONS
C WL = WAVELENGTH
C RAD = PARTICLE RADIUS
C DELANG = INTERVAL BETWEEN ANGLES OF DIFFERENTIAL CROSS SECTIONS.
C NANG = NUMBER OF DIFFERENTIAL CROSS SECTIONS CALCULATED.
C RFR = "N" = REAL PART OF INDEX OF REFRACTION.
C RFI = "K" = IMAGINARY PART OF INDEX OF REFRACTION
C DISP = DISTANCE OF CENTER OF SPHERE ABOVE MIRROR.
C LMAX = NUMBER OF MODES IN CALCULATION.
C C2EXT = EXTINCTION CROSS SECTION FOR PARTICLE ON MIRROR.
C C2ABS = ABSORPTION CROSS SECTION FOR PARTICLE ON MIRROR.
C C2SCA = SCATTERING CROSS SECIION FOR PARTICLE ON MIRROR.
C CEXT = EXTINCTION CROSS SECTION FOR ISOLATED PARTICLE.
C CABS = ABSORPTION CROSS SECTION FOR ISOLATED PARTICLE.
C CSCA = SCATTERING CROSS SECTION FOR ISOLATED PARTICLE.
C CDIF = DIFFERENTIAL CROSS SECTION FOR PARTICLE ON MIRROR.
C SDIF = DIFFERENTIAL CROSS SECTION FOR ISOLATED PARTICLE.

C DEFAULT VALUES OF INPUT PARAMETERS
WL=1. 0
RAD=1. 0
DELANG=5.
NANG=1 9
RFR=I. 46
RFI=0.
DISP=RAD

C FIXED INPUT PARAMETERS
999 LMAX=0

ACRCY=1. E2
LDIM=60

C READ INPUT VARIABLES
CALL INPVAR (WL, RAD, DELANG, NANG, RFR, RFI, DISP)
IF(WL.LE.0.) GO TO 2000
PI=ACOS (-I.0)
KAY=2.*PI/WL
SZP=RAD*KAY
AREA=PI*RAD*RAD
CON=PI/180.
DO 50 I=1,NANG

50 THETA(I)=FLOAT(I-1) *DELANG*CON
IF(LMAX.LE.0) CALL LMAXX(SZP,LDIM,ACRCY,IMAX)

C WRITE THE INPUT VARIABLES
WRITE(6,65)

65 FORMAT(/' PROGRAM MIRMX'/)
WRITE (6, 100) WL, RAD, SZP, DISP, LMAX, RFR, RFI
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100 FORMAT(' WL = ',1PE12.3/' PAD = ',lPE12.3/' SZP =',1PE12.3/
+1 DISP = ,1PE11.3/' LMAX =',14/' RFR =',1PE12.3/

+1 RFI =',1PE12.3/)

CALL ABMATR (LMAX, KAY, DISP)
CALL MIEUV
CALL GFMATX (LMAX, DISP,KAY, 1)
CALL FSOLVE (LMAX)
CALL CRSEC(SZP,DISP,KAY,LMAX)

C PRINT THE CROSS SECTIONS
Q2SCA=Q2E.XT-Q2ABS
C2EXT=AREA*Q2EXT
C2SCA=AREA*Q2SCA
C2ABS=AREA*Q2ABS
WRITE (6, 600) C2EXT,C2SCA,C2ABS

600 FORMAT(//' PARTICLE ON A MIRROR CROSS SECTIONS/!
+' C2EXT = ,1PE12.5,5X,'C2SCA = ',1PE12.5,5X,'C2ABS ',1PE12.5/)
CEXT=-AREA*QE.XT
CSCA=ARE.A*QSCA
CABS=AREA*QABS
WRITE (6,1050) CEXTJ.CSCA,CABS

1050 FORMAiT(/I' SINGLE PARTICLE CROSS SECTIONS'!
+' CEXT = ',lPE12.5,5X,'CSCA ' ,1PE12.5,5X,'CABS = ',,IPE12.5/)
IF(NANG.EQ.0) GO TO 800
WRITE (6, 998)

998 FORMAT(I//34X, 'SINGLE'/34X, 'PARTICLE')
WRITE (6, 1000)

1000 FORMAT(5X, 'ANGLE',6X, 'CROSS SEC',9X, 'CROSS SEC'!)
DO 1010 I=1,NANG
CDIF=ARF.A*DIFF (I)
SDIF=AREA*DIFS (I)
THETD=-THETA (I) ICON
WRITE (6,1020) THETD, CDIF, SDIF

1020 FORMAT (FlO .3,IPElS. 3, 3X,iPElS. 3)
1010 CONTINUE
800 WRITE(6,1030)

1030 FORMAT(1H / ********/

GO TO 999
2000 STOP

END

SUBROUTINE LMAXX (X, LDIM, ACROY, LMAX)
C THIS SUBROUTINE CALCULATES THE MAXIMUM VALUE OF L TO BE USED IN MIE
C SCATTERING FOR A PARTICLE OF SIZE PARAMETER X AND ACCURACY
C PARAMETER ACRCY. LMAX CANNOT EXCEED LDIM.

L=-IN (X)
ZR= (2*L+1) /X
TZR=-2./
PROD=1.
RJL1l.

100 L--L+1
ZR=ZR+TZR
RJL=-ZR- . /RJI.
PROD=PROD*RJL
IF(L.GT.LDIM) GO To 200
IF(PROD.LT.ACRCY) GO TO 100
LMAX=L
RETURN

200 WRITE(6,400)
400 FORMAT (' ERROR - LMAX IS LARGER THAN THE DIMENSIONED ARRAYS'!

+9X,' (CHANGE LDIM, AND THE CORRESPONDING ARRAY DIMENSIONS) '/
+9X,' (OR - CHECK FOR ERRORS IN THE INPUT VARIABLES) 'I)

STOP
END

SUBROUTINE ABMATR (LMAX, KAY, DISP)
C THIS SUBROUTINE CLACULATES THE TRANSFORMATION MATRICES A AND B FOR
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C TRANSLATION OF THE VECTOR SPHERICAL WAVE FUNCTIONS ALONG THE Z-AXIS.
C (SEE APPENDIX OF IEEE AP-19 PAGE 378 (1971)]

COMPLEX A, B, RBH, KD, SUMA, SUMB, COEF, IM
REAL KAY
DIMENSION RBH(0:400) ,FZ (400) ,FM (400)
COMMON/AB! A(60,60), B(60,60)
C0144ON/PRM/XCMIN, XMAX, NOJ

D=2. *DISP
LMX2=2*LMAX+l
KD=KAY*ABS (D)
CALL RBESH (K), LMX2, RBH)

C GENERATE A AND B MATRICES
DO 100 LL--1,,MAX
XLL=-LL
DO 100 LM4=1,LMAX
XLM=IMM
FLL=LLi* (LL+ 1)
FLM=-LM* (Im+1)
FFLM4=FLL+FLM
SUMA= (0. , 0.)
SUMB= (0. , 0.)
CALL THREEJ(XIJL,XLM,0. ,0.,FZ)
CALL THREEJ(XLL,XLM,1.,-1. ,FM)
LMN1[N=INT (XMIN+0. 001) -1
DO 200 J=1,NOJ,2
L=-LmIN+J
FL-L* (L+1)
TL1=2*L+1
COEF= (IM** (L) )*TL1*RBH (L)
SUMA=SUMA+COEF* (FFLM-FL) *FZ (J) *FM~(J)
SUMB=-SUMB+COEF*FZ (J) *EFM(J)

200 CONTINUE
CF--FLOAT(2*LM+1) /FLM*SQRT (FLL/Fy1) /2.
COEF=CF* (IM** (LM-LL))
A (LL, LM) =-COEF*SUMA
B(LL,LM)=COEF*SUMB* (2.*D)* (KAY*flA)

100 CONTINUE
RETURN
END

SUBROUTINE MIEUV
C THIS SUBROUTINE EVALUATES THE MIE COEFFICIENTS U AND V
C (WHERE U AND V ARE THE COEFFICIENTS THAT ARE USUALLY
C REFERED TO AS THE MIE A AND B COEFFICIENTS. THEY
C ARE DEFINED AS IN STRATTON'S "ELECTROMAGNETIC THEORY".

COMPLEX U,V,A,B,Q,D,G,N,ONE,IMG,RJ,RH,Z
COMMON/RMIE/RAD, RFR, RFI, WL, KAY, LMAX
COMM4ON/CMIE/U (100) ,V(100)
DIIMENSION A(100) ,B(100) ,RJ (100) ,RH (100)
REAL KAY
ONE= (1.,0.)
fl4G= (0.,1.)

C CALCULATE A AND B
N=CMPLX (RFR, RFI)
Z=N*KAY*RAD
CALL RATRBJ(Z, LMAX,RJ)
DO 100 L=1l,LMAX
D= (L+1) /Z-RJ (L)
A (L) =D*N

100 B(L)=D/N
C CALCULATE U AND V COEFFICIENTS

Z=PRAD*X<AY
CALL RATRBJ(Z, LMAX, RI)
CALL RATRBH (Z, LMAX, RH)
Q=- (CSIN(Z) /Z-CCOS (Z) ) *CEXP(-IMG*Z) /(IMG/Z+ONE)
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DO 500 L=1I,LMAX
D= (L+ 1) / Z -. J(L)
G-=(L+1) /Z-RH(L)
U(L)=-Q* (A(L) -0) /(A(L)-G)
V (L) =-Q* (B (L) -D) / (B3 (IL) -G)

500 Q=Q*pRJ(L) /RH(L)
RETURN
END

SUBROUTINE GFMATX (LMAX,0, KAY)
C CALCULATE THE SUPERMATRICES G AND F FROM THE SUBVIATRICES A, B AND U,V

COMMON/AB/A(60, 60) ,B(60, 60)
CO0MMON/CMIE/U (100) ,V(100)
C~tMN/ GFMAT/ G(12 0, 120) , F(12 0)
COMPLEX A,B,G,F,KIMD,U,V,EPS,EPSTA-R,EPE,EME
COMPLEX UA, tIB, VA, VB, RHO, IM
REAL KAY
DO 100 I=1,LMAX
12=I+LMdAX
DO 100 J=1,LMAX
J2=J+U@AX
G (I, J) =A(J,I1)
G (I, J2) =B (J,I1)
G (12, J) B (j,I)

100 G (12, J2)=A (J,I)
SGN-1 .0
DO 200 I=1,LMAX
SGNi--SGN
12=I+LMAX
G(I,I)=-G(I,I)+SGN/U(I)

200 G(12,I2)=G(I2,I2)-SGN/V(I)
C
C CALCULATE F VECTOR
C

KEND=IM*KAY*D
EPS=CEXP (-KlmD)
EPSTAR=-CONJG (EPS)
SGN1. 0
DO 300 I=1,LMAX
SGN-SGN
EME=EPS-SGN*EPSTAR
EPE=EPS+SGN*EPSTAR
FL=-FLOAT(2*I+1) /FLOAT(I* (1+1))
RHO=FL* (JI** (1+1))
F (I) =EME*P1O

300 F(I+LMAX)=EPE*RHO
RETURN
END

SUBROUTINE FSOLVE (LMAX)
COMMON/GFMAT/G(120, 120) ,F(120)
COMPLEX G,F
DIMENSION WA(120)
LMX2=2* MA
CALL LEQT3C(G,LMX2,120,F,1,120,0,WA,IER)
RETURN
END

SUBROUTINE CRSEC (X, DISP, KAY, LMAX)
C CALCULATE CROSS SECTIONS

COM4ON/GFMAT/G (120,120) ,F (120)
COMMON/DIFF/NANG,THETA(400) ,DIFF (400) ,DIFS (400) ,QEXT,QSCA,QABS
COM0N/ CRS2 /Q2EXT, Q2ABS
COI44ON/CbfIE/U (100) , V(100)
COMPLEX G,F,IM,IKD,ST1,ST2,SP1,SP2, ST,SP,A1,Bl,A2,B2,U,V,EXPS,EXMN
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COMdPLEX IL, IFL, ZERO
REAL KAY
CONST=-1.0/ (2.*ACOS(-1..) *X*X)
LMX2=2*l1-MAX
IM=-(0.,1.)
ZERO= (0. , 0.)
IKD=IM*KAY*DISP

C CALCULATE SINGLE PARTICLE TOTAL CROSS SECTIONS
SUMEX=0 .0
SUMSC=0.0
DO 300 L=1l,LMAX
FL=-FLOAT (2*L+1)
PEX=-FL* (REAL (U (L) )+REAL(V(L)))
PSC=FL* (U (L) *CONJG (U (L) )+V (L) *CONJG (V (L)))
SUt4EX=-sUmEX+PEX

300 SUM. ' =STJMSC+PSC
X2=2 . /(X*X)
QEXT=-X2*SUMEX
QSCA=X2 *SiMSC
QABS=QEXT-QSCA

C CALCULATE 2-PARTICLE EXTINCTION CROSS SECTION
ST1=ZERO
ST2=ZERO
SGN=1- .0
DO 400 L=1,LMAX
SGN=-SGN
A2=F (L)
B2=F (L+LMAX)
A1=-SGN*A2
Bl=SGN*B2
IFL=-FLOAT (L* (L+1) ) *( (..M) **L,)
ST1=ST1+IFL* (A1+Bl)

400 ST2=ST2+IFL* (A2+B2)
EXPS=CEXP (IKD)
EXMN=CONJG IEXPS)
Q2EXT=X2*AIMAG (EXPS*ST1+EXMN*ST2)

C CALCULATE 2-PARTICLE ABSORPTION CROSS SECTION
Q2ABS=0.
DO 500 L=-1,LMAX
L2=L+LMAX
AS=F (L) *CONJG (F (L))
BS=F (L2) *CON- (F (L2))
US=U (L) *CONJG (U (L))
VS=V (L) *CONJG (V (L) )
FL=-FLOAT( (L* (L+1) )**2) /FLOAT(2*L+1)

500 Q2ABS=Q2ABS+FL* (AS/US* (US+R-AL (U (L)))
++BS/VS* (VS+REAL (V (L))))
Q2ABS=-~X2*Q2ABS
IF(NANG.EQ.0) RETURN
DO 100 I=1,NANG
Z=COS (THETA (I))
STl=ZER0
SP1=ZER0
ST2=ZERO,
SP2=ZER0
ST-ZERO
SP=ZERO
P114=0.0
PI=1.0
SG=1. .0
DO 200 L=1I,LMAX
SGN=-SGN
A2=F (L)
B2=F (L+U4AX)
A1=-SGN*A2
Bl=SGN*B2
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FL=-L
S=Z*PI
TZ=S-PIM
PIP=S+ (FL+1.) /FL*T
TAU=FL*T-PIM
FLT=-FLOAT (2*L+1) /FLOAT (L* (L+1))
IL= (-IM) **L
ST1=ST1+IL* (Al*PI+Bl*TAU)
SP1=SP1+IL* (A*TAU+B1*PI)
ST2=ST2+IL* (A*PI+B2*TAU)
SP2=SP2+IL* (A*TAU+B2*PI)
ST-=ST.-FLT* (U (L) *J-PI/(L) *TAU)
SP=SP-FLT* (V (L) *PITj(L) *TAU)
PIMF-PI

200 PI=PIP
ST1=IM*ST1
ST2=IM*ST2
sP1=-sP1
SP2=-SP2
DIFS (I)=CONST* (ST*CONJG(ST) +SP*CONJG(SP))
EXPS=CEXP (IKD*Z)
EXMN=CONJG (EXPS)
ST=-EXPS*ST1+EXMN*ST2
SP=EXPS*SP1+EXdN*SP2

100 DIFF(I)=-CONST*(ST*CONJG(ST)+SP*CONJG(SP))
RETURN
END

SUBROUTINE RBESH (Z, LMAX, PBH)
C THIS SUBROUTINE COMPUTES THE SPHERICAL HANKEL FUNCTION Hi
C (SEPT,25,1989)

DIMENSION RBH(0:1)
COMPLEX ZIPRBH,RBH1,RBH2,U, IM
U=(1.10.)
IM,= (0., 1.)
CALL RATXBH (Z, LMAX, RBH)
RBH1=-IM/Z*CEXP (IM*Z)
DO 100 L=0O,LMAX
RBH2=RBH1*RBH (L)
RBH (L) =RBH1

100 RBH1=RBH2
RBH (LMAX+1 ) =RBH2
RETURN
END

SUBROUTINE RATXBH (Z, LMAX, RH)
C THIS SUBROUTINE COMPUTES THE RATIO (Li-i) L OF RICCATI
C HANKEL FUNCTIONS UP TO ORDER LMAX AND COMPLEX ARGUMENT
C Z BY UPWARD RECURRANCE. (SEPT. 22, 1989)

COMPLEX Z,ZR,TZR U,IM,RHL,RH
DIMENSION P11(0:1)

U(1. 0,0. 0)
IM=(0. 0,1. 0)
RHL=-U/Z-IM
RH (0)=RHL
ZR=U/Z
TZR=2. *ZR
L--0

100 L--L+l
ZR=ZR+TZR
RHL=-ZR-U/RHL
RH(L)=RHL
IF(L.LT.LMAX) GO TO 100
RETURN
END
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SUBROUTINE RATRBJ (Z, LMAX, RJ)
C THIS SUBROUTINE COMPUTES THE RATIO (L+1)/L OF RICCATI
C BESSEL FUNCTIONS "J" UP TO ORDER LMAX AND COMPLES ARGUMENT Z
C BY DOWNWARD RECURRANCE. (SEPT 22,1989)

COMPLEX Z, ZR, TZR, U, RJL, RJ, PROD, ERR
DIMENSION RJ(1)
u=(1.0,o0.0)

C CALCULATE INITIAL L VALUE FOR DOWNWARD RECURSION
RJL=U
ZR=U/Z
TZR=2. *ZR
PROD=U
ZR= (2*LMAX+1) *ZR
L=LMAX

100 L=L+I
ZR=ZR+TZR
RJL=ZR-U/RJL
PROD=PROD*RJL
E=SQRT (REAL (PROD) **2+AIMAG (PROD) **2)
IF(L.GT.5000) GO TO 200
IF(E.LT.1.E8) GO TO 100

C DOWNWARD RECURSION
RJL=U/ (ZR+TZR)

300 RJL=ZR-U/RJL
L=L-I
ZR=ZR-TZR
IF (L. LE. LMAX) RJ (L) =U/RJL
IF(L.GT.1) GO TO 300
RETURN

200 WRITE(6,400)
400 FORMAT(' L EXCEED 5000 IN RATSBJ')

STOP
END

SUBROUTINE RATRBH (Z, LMAX, RH)
C THIS SUBROUTINE COMPUTES THE RATIO(L+1)/L OF RICCATI
C HANKEL FUNCTIONS UP TO ORDER LMAX AND COMPLEX ARGUMENT
C Z BY UPWARD RECURRANCE. (SEPT. 22, 1989)

COMPLEX Z,ZR,TZR U, IM,RHL, RH
DIMENSION RH (1)
U=(1.0, 0.0)
IM=(0.0, 1.0)
RHI=U/Z-IM
ZR=-U/Z
TZR=2. *ZR
L=0

100 L=L+I
ZR=ZR+TZR
RHL-ZR-U/RHL
RH(L)=RHL
IF(L.LT.LMAX) GO TO 100
RETURN
END

• ** * *** ******** **** * ******** ** * *******

SUBROUTINE THREEJ (XJ2, XJ3, XM2, XM3, F)
C
C THIS SUBROUTINE COMPUTES THE 3-J SYMBOLS. IT IS BASED ON
C THE METHOD OF SCHULTEN AND GORDON J.MATH PHYS. VOL.16, P.1961.
C

DIMENSION F(500) ,S(500) ,T(500)
COMMON/PRM/XMIN, XMAX, NOJ

C
C TEST FOR BAD INPUT DATA
C

TST1=AMOD (XJ3+ABS (XM3), 1.)
TST2=AMOD (XJ2+ABS (XM2), 1.)
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IF((TST1.GT.0.).OR.(TST2.GT.04)) GO TO 990
IF(ABS(XM3).GT.XJ3) GO TO 990
IF(ABS(XM2).GT.XJ2) GO TO 990

C
EPS=1 .E-25
EPSLN=1 .E-10
XM.1=- (XM2+XM3)
XMAX=XJ2+XJ3
XM~IN=AMAX1 (ABS (XJ3-XJ2) ,ABS (XM1n))
NOJ=ýINT (XMAX-XMIN+1 .+EPSLN)

IF(NOJ.EQ.1) GO TO 900
C1= (XJ2-XJ3) **2
C2= (XJ2+XJ3+1. ) ** 2
C3= (XJ2* (XJ2+1. )-XJ3* (XJ3+1.) ) *XMf
C4=XM1*XM1
C5=XM3-XM2
IF((XM2.EQ0.04.AND.(XM3.EQ.0.)) GO TO 800
IF((XM2.EQ.XM3).AND.(XJ2.EQ.XJ3)) Go To 800
JCZ= (NOJ+1) /2
NL=-JCZ-1
NR=NOJ-JCZ

C
C UPWARD ITERATION
C

S (1) =0.
NLP1=NL+1
DO 100 I=1,NLP1
XJ=XMIN+FLOAT (I-i)
xJS=xJ*xJ
A=SQRT (ABS ((XJS-C1) *(C2-XJS) *(XJS-C4)))
B=- (2. *XJ1.3) *(C','-XJ* (XJ+1. ) *5)
yJ=xJ+1.
YJs=yJ*yJ
A1=SQRT (ABS ((YJS-Cl) *(C2-YJS) *(YJS-C4)))
DEN=-B+YJ*A*S (I)
IF (DEN.EQ. 0.) DEN=EPS
IF(XJ.NE.0.) S(I+1)=-XJ*Al/DEN
IF(XJ.EQ.0.) S(I+1)=-Al/C5

100 CONTINUE
C
C DOWNWARD ITERATION
C

T (NOJ) =0.
DO 200 I=1,NR
XJ=XMAX-FLOAT (I-1)
xJS=xJ*xJ
K=NOJ+1-I
A=SQRT (ABS ((XJS-C1) *(C2-XJS) *(XJS-C4)))
B=- (2. *XJ1.4) *(C3-XJ* (XJ+1.) *C5)
yJ=xJ+1.
YJS=yJ*YJ
A1=SQRT (ABS ((YJS-C1) *(C2-YJS) *(YJS-C4)))
DEN=-B+XJ*AJ.*T (K)
IF (DEN.EQ.0.) DEN=EPS

200 T (K-i)=-YJ*A/DEN
C
C CALCULATE F
C

F (JCZ)=1.
IF(NL.EQ.0) GO TO 350
DO 300 I=1,NL
J=JCz-I+1

300 F (J-1) =S (J) *F (J)
350 DO 400 I=1,NR

J=JCz+I-1
400 F (J+1) -T(J) *F (J)
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C
C NORMALIZE THE RESULTS
C

sum~o.
DO 500 I=1,NOJ
XJ=XMIN+FLOAT (I-i)

500 SUM-Sum+ (2. *XJ+1) *F (I) *F (I)
SUM=1. /SQRT (SUM)
DO 600 I=1,NOJ

600 F(I)=SUM*F(I)
GO TO 700

C
C SPECIAL CASES: (M1=M2=M3=0) OR (M2443 AND J2=J3)
C

800 DO 810 I=1,NOJ
810 F(I)=0.

F (1) =1.
SUM=-2. *XMN+1.
DO 820 I=3,NOJ,2
XJ=XMIN+FLOAT (I-1)
XJMl=Xj-1.

AJ=SQRT (ABS ((XJS-C1) *(C2-XJTS) *(XJS-C4)))
AJ1hSQRT (ABS ((XJS1-Cl) *(C2-XJS1) *(XJS1-C4)))
F (I)=-~XJ*AJ1/ (XJM1*AJ) *F (1-2)

820 SUM = SIJM+(2.*XJ+1.)*F(I)*F(I)
SUM=1 /SQRT (SUM)
DO 830 I=1,NOJ,2

830 F (I) =SUM*F (I)
GO TO 700

C
C SPECIAL CASE NOJ=l
C

900 F(1)=l./SQRT(2.*XMAX+1.)
C
C DETERMINE THE CORRECT SIGN
C

700 K=INT (XJ2-XJ3--XM+EPSLN)

S2=SIGN(1.,F(NOJ))
SG=-Sl*S2
DO 710 I=1,NOJ
IF(ABS(F(I)).LE.EPS) F(I)=0.

710 F (I) =SG*F (I)
RETURN

990 WRITE (6, 995)
995 FORMAT(//'------------ BAD INPUT DATA----------'I

STOP
END

SUBROUTINE INPVAR (WL, RAD, DELANG, NANG, RFR, RFI, DISP)
C THIS SUBROUTINE READS (OR GENERATES) THE INPUT VARIABLES.
C
C READ THE INPUT VARIABLES

WRITE (6, 700)
WRITE (6, 7 70)
WRITE (6, 701) WL
READ(5,*) WL
IF(WL.LE.0.) GO TO 1000
WRITE(6,702) RAD
READ(5,*) RAD
DISP=RAD
WRITE (6, 703)
WRITE(6,705) DELANG
READ(5,*) DELANG
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WRITE(6,706) NANG
R.EAD(5, *) NANG
WRITE (6, 707)
WRITE(6,708) RFR
P.EAD(5,*) RFR
WRITE(6,709) RFI
PEAD(5,*) RFI
WRITE (6, 714)
WRITE(6,712) DISP
READ (5,*-) DISP
WRITE (6, 710)

770 FORMAT (4X, 'TYPE A COMMA TO REPEAT THE PREVIOUS VALUE'
+4X,'IF NO RESPONSE,TYPE A SECOND COMIMA')

700 FORMAT(4X, 'ENTER WAVELENGTH AND PARTICLE RADIUS IN SAME UNITS (USE
+ WL=-0 TO END)')

701 FORMAT (F1O.3,8X, 'WL='l)
702 FORMAT(FlO.3,8X,'RAD=')
703 FORMAT (4X, 'ENTER INITIAL SCATTERING ANGLE (DEG), ANGLE INCREM4ENT (DE

+G) AND NUMBER OF'/4X, 'ANGLES(MAX=1000). USE NANG--0 FOR NO ANGULAR
+CALCULATIONS')

705 FORMAT(F1O.3,8X, 'DELANG--l)
706 FORMAT (110, 8X, 'NANG--')
707 FORMAT (4X, 'ENTER INDEX OF REFRACTION (M=N+I*K)')
708 FORMAT(F1O.3,8X, 'N=')
709 FORMAT(F10.3,Fx,'K-')
712 FORMAT(F10.3,61ý, 'DISP=')
714 FORMAT (4X, 'ENTER DISPLACEMENT FROM MIRROR')
710 FORMAT(///)

1000 RETURN
END
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PROGRAM MIRMX

WL = 1.OOOE+00
RAD = 1.000E+00
SZP = 6.283E+00
DISP = 1.000E+00
LmAX = 12
RFR = 1.460E+00
RFI = 0.000E+00

PARTICLE ON A MIRROR CROSS SECTIONS
C2EXT = 1.79407E+01 C2SCA = 1.79407E+01 C2ABS = -2.13531E-12

SINGLE PARTICLE CROSS SECTIONS
CEXT = 9.22655E+00 CSCA = 9.22655E+00 CABS = -7.58960E-13

SINGLE
PARTICLE

ANGLE CROSS SEC CROSS SEC

.000 8.686E+01 2.484E+01
5.000 7.719E+01 2.237E+01

10.000 5.333E+01 1.615E+01
15.000 2.731E+01 8.984E+00
20.000 9.610E+00 3.575E+00
25.000 2.426E+00 1.077E+00
30.000 9.241E-01 8.918E-01
35.000 6.348E-01 1.546E+00
40.000 7.631E-01 1.848E+00
45.000 9.904E-01 1.481E+00
50.000 5.704E-01 8.184E-01
55.000 3.518E-01 3.527E-01
60.000 6.999E-01 2.627E-01
65.000 4.685E-01 3.819E-01
70.000 9.596E-02 4.515E-01
75.000 1.861E-01 3.653E-01
80.000 6.593E-02 2.091E-01
85.000 2.744E-01 1.191E-01
90.000 6.653E-01 1.329E-01
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TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security
programs, specializing in advanccd -inilitary space systems. The Corporation's Technology
Operations supports the effective and timely development and operation of national security
systems through scientific research and the application of advanced technology. Vital to the
success of the Corporation is the technical staffs wide-ranging expertise and its ability to stay
abreast of new technological developments and program support issues associated with rapidly
evolving space systems. Contributing capabilities are provided by these individual Technology
Centers:

Electronics Technology Center: Microelectronics, solid-state device physics, VLSI
reliability, compound semiconductors, radiation hardening, dat2 storage
technologies, infrared detector devices and testing; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications; cw and
pulsed chemical laser development, optical resonators, beam control, atmospheric
propagation, and laser effects and countermeasures; atomic frequency standards,
applied laser spectroscopy, laser chemistry, laser optoelectronics, phase conjugation
and coherent imaging, solar cell physics, battery electrochemistry, battery testing and
evaluation.

Mechanics and Materials Technology Center: Evaluation and characterization of
new materials: metals, alloys, ceramics, polymers and their composites, and new
forms of carbon; development and analysis of thin films and deposition techniques;
nondestructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; development and evaluation of hardened
components; analysis and evaluation of materials at cryogenic and elevated
temperatures; launch vehicle and reentry fluid mechanics, heat transfer and flight
dynamics; chemical and electric propulsion; spacecraft structural mechanics,
spacecraft survivability and vulnerability assessment; contamination, thermal and
structural control; high temperature thermomechanics, gas kinetics and radiation;
lubrication and surface phenomena.

Space and Environment Technology Center: Magnetospheric, auroral and cosmic
ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radiation; solar physics, infrared astronomy, infrared
signature analysis; effects of solar activity, magnetic storms and nuclear explosions
on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic
and particulate radiations on space systems; space instrumentation; propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific
chemical reactions and radiative signatures of missile plumes, and sensor out-of-
field-of-view rejection.


