
AD-A265 918

DTIC
September 1i91 • ELECTE

~ JUN1 6 199311I

CLF MANUAL U c 1i9

CLEARED
FOR OPEN PUBUCATION

JUN 8 193 12
DIRECTOPATE FOR FIEDO#JOV WIFORMATION

ANDSECURI RVE=P)

UZVIEW OF THIS MAW=ERL DO!, NOT IMPLy
DEPARTMENT OF DEFlIJSE INDORSEMENT Op,
FACTUAL ACCU(=CY OR OPINION.

CLF Project

USC Information Sciences Institute

4678 Admiralty Way

Marina Del Rey, California 90292

Copyright) 1991 USC Information Sciences Institute. All rights reserved.

This research is supported by the Defense Advanced Research Projects Agency under Contract No.
MDA903-87-C-0641 and by the Naval Ocean Systems Center under Contract No N66001-87-D-0136/#40.

93-13421

93 6 .15 12I q5-f:- Z t Z/

Int rdhu.l, tol to ('11I-

Table of Contents

1. INTRODVJCTION 3
2. SPECIFICATION LANGUAGE 5

2.1. AP5 5

. 3. Tasks 7
4. USE-R PINTERFACE 9

4.1. The Epoch Interface " 't* " i"

4.1.1. The Task lnterf ..e - -- - . II
4.1.2. Command Shell Tasks 13
4.1.3. Editing Modes . 13

4.2. Editing Objects % 14
4.2. L Hypertext 15

4.3. Interface-Databa.se S.ynchronizationa . 15
4.4. Using the Mouse 15
4.5. The Keyboard 16

4.51, Quit 16
4.5.2. Menu 17
4.5.3. Activate 17
1.5.4. Complete 17
4.5.5. Help 17

4.6. Browsing 17
4.6.1. Browsing by Pointing 17
4.6.2. APROPOS is
4.6.3. Tell-Me-About 19

4.7. Menus 20
4.8. Miscellaneous 24

5. CLF SOFTWARE MODEL 25

5.1. Attributes of Software Objects 25
5.1.1. Reader Attributes 25
5.1.2. Module Component. Orderings 27

5.2. Software Class.es 29
5.2.1. Common Lisp Software ('lasses 30
5.2.2. Defining New Software (lasses 31

5.3. Software Inierface Command- 31
5.4. Editing CLF Objects 31

5.4.1. Buffer Coordination 32
6. Software Evolution Monitor 33

6.1. Model for Software Evolution 33
6.1.1. Atomicity of a Development Step ;4
6.1.2. Ordering of Development Steps 35

6.2. Bringing a System Up-To-Date 35
6.2.1. Ordering the Systems for Update 37

6.3. Development. Steps 39
6.3.1. Finishing an Open Step 40
6.3.2. Undoing Selected Modifications 41
6.3.3. Background Step Saving Activities 42
6.3.4. Type of Step, 42

ii

6.1. Installation Order ror Nlodificat ions 1:3
6.4.1. Fixing Frozen Step. Which ('ause Errors 414

6.5. Non-Maintainer Suggest ions 46
6.5.1. Making a Suggestion 46
6.5.2. Updating a System with Suggestion- 47
6.5.3. Maintainer's Handling of a Suggestion 48

6.6. Querying the History 50
6.7. Making New Release of a Systemn 50
6.8. Operations 51

6.8.1. Additional Editor Commands 56
6.9. Examples 56

Appendix I. Lisp Universal Kode Elaborator 59
1.1. Overview 59

Appendix 11. Source Code Importer 61

Appendix Il]. CORONER -- An AP5 Debugging Facility 03
Appendix IV. User Interface Resources 65

f\V.1. Color Resource. 65
I1\.2. Font Resources 67

Appendix V. Site Configuration 69
Index 71

1Accesion :For
NTIS CRA&I
OTIC TAB El
Unannounced a
Justification

lay
DistrlbuHoni

Availability Codes

"7-'.": QTTAL!TrY Ava y Codes
Avail andforDist S pecial

hiii rodu•iact 111 o ('IF iii

List of Figures

Figure 4-1: CLF User Interface 10
Figure 4-2: Task state model 12
Figure -1: A transition network of the states of development steps and the actions that can 40

change them.

iv

IlrulAurf-it"I 14) CIF'

List of Tables

Table IV-1: CLF Task Status Colors 65
Table IV-2: CLF Logical Colors 66
Table IV4: Logical Font Resource Names 67

Introduction to CLF

NOTATIONS and TERMINOLOGY

"* Lisp, unless otherwise qualified, refers to the Common Lisp Language, as described in
COMMON LISP - The Language, Second Edition, Guy L. Steele Jr, Digital Press (CLtL).

"* Names of macros, functions, variables, relations, commands, keywords and arguments are
shown in boldface type.

"* Descriptions of syntax follow the conventions laid out in section 1.2.5 of the above mentioned
Common Lisp language document.

-1

3

1. INTRODUCTION

Common Lisp LCL] is a programming language with an expressed goal of providing a common dialect of

Lisp that will be adopted by a broad segment of the Lisp programming community. Common Lisp has

been implemented by several commercial hardware and software vendors and is in wide use within both

academic and industrial research and development centers. A standards committee is actively preparing a

proposal for an ANSI language standard.

Several sophisticated and quite diverse programming environments had grown up around various Lisp

dialects since the appearance of Lisp 1.0 over twenty years ago. Since 1980 these environments have

evolved to take advantage of more powerful processors and user interface hardware and modern window

interface concepts. For many indivividuals, these environemnts are one of the major attractions of Lisp.

In fact, many development efforts have been able to avoid, or at least postpone, significant costs by

making innovative uses of the Lisp programming environment tools as part of the "run timea

environment of their applications. Nevertheless, no programming environment standard has been

established for Common Lisp, nor is one envisioned.

Although CL provides no window interface standards of its own, all major commercial implementations

of CL are able to act as clients for Xl1 user interface servers via the CLX library, non-proprietary

software providing functionality similar to that found in the XLIB library used by C language

programmers to program clients for X11 servers. CLF relies on CLX for its window interface.

Several major activities in software development involve the manipulation of text--program source

code, textual input and output of applications being developed, and the input and output of

instrumentation and debugging tools. CLF relies on Epoch (an extension of Gnu EMACS) for all text

manipulation. CLF's user interface is therefore comprised of windows belonging to CLF itself and

windows belonging to Epoch. The content of the latter windows is provided by CLF and by user

interactions.

Several hardware vendors continue to support high quality program development environments for the

implementations of Common Lisp on their machines. The Common Lisp Framework ICLFI differs from

these environments in three major ways:

"* CLF provides an object based, rather than file based, organizational view of software. The
object based view comprises not only the definitions that make up an application, but
specification, documentation, development history and other non-procedural information
necessary to the development, maintenance, and distribution of large software systems.

"* CLF strives to provide an *open" architecture, occasionally even at the cost of considerable
efficiency, to enable programmers to tailor and extend the programming environment to meet
their individual needs without the necessity of reimplementing the existing environment.

4

* CLF has been produced and is maintained by a non-commercial organization, the University
of Southern California's Information Sciences Institute (ISI). It is not targeted at any
particular vendor's CL implementation or hardware, but tries to provide a highly portable
programming environment that interfaces naturally to the native operating system
environment on each supported CL implementation. Originally developed on special purpose
Nlisp machine" hardware produced by Symbolics, Inc., and Texas Instruments, CLF has now
been ported to Unix-based workstation platforms. In particular, it can run under both Allegro
and Lucid CL, and has been tested with these software platforms on both HP300 series
workstations and SUN Microsystems SPARC workstations.

5

2. SPECIFICATION LANGUAGE

2.1. AP5

Software developed under CLF may be written in an extension to CL called APS. AP5 affords several

advantages to a programmer over the use of pure CL in writing applications. First, programs can be

written using a relational notation for access to data. The programmer thereby avoids early

commitments to particular data structures and algorithms for accessing that data. By adding

annotations to the program, the programmer can guide the AP5 compiler's selection of data structures

and algorithms. The resulting mobject codeu is CL with limited reliance on run-time facilities that are

themselves written in CL. Because the annotations can only affect the efficiency of the resulting object

code, not its functionality, we consider the use of AP5 to be a specification based programming

paradigm. In addition to the use of relations for describing data access, AP5 affords the programmer the

ability to define rules as a means of specifying some processing that would have to be specified

procedurally in pure CL. Two sorts of rules are provided.

Consistency rules define, using an extended first order logic notation, invariants that must hold at all

times on the data. AP5 produces code that detects any attempt by a program to modify its data in a

way that would violate one of these invariants. It can then reject the modification and signal a

handleable error to the program. Alternatively, the programmer can associate with a consistency rule a

repair procedure. This procedure, which is given access to the invalid data, has an opportunity to

incorporate additional data modifications that will restore the rule's invariant. If it is able to do so, no

error need be signalled to the program. AP5 provides a number of utilities, based on consistency rules, to

define class hierarchies and incorporate class restrictions into CL.

Automation rules are analogous to mwhenchanged" rules in some Al languages, although they provide

more power than procedural attachment in frame-based paradigms. The programmer is able to define

transitione of interest to him. An automation rule consists of the specification of such a transition

together with a response procedure. Whenever a program modifies its data in a way that instantiates a

rule's transition specification, its response procedure is applied to the relevant data.

CLF itself relies on APS. Even if CLF is used manage the development of applications that are

independent of APS, the use may wish to take advantage of AP5 to tailor and extend CLF to better meet

personal or organizational needs. This document describes the most significant relations that are used in

CLF's implementation - the relations most likely to be needed in writing new rules or defining new

derived concepts. However, due to the significant amount of material needed to document APS, and
because AP5 may be used in any CL programming environment, independent of the presence of CLF,
reference documentation for AP5 is not included here. Consult the AP5 Reference and Training Manuals.

6

AP5 uses the term "type" as a synonym for 'unary relation'. This usage does not match the

traditional concept of types in programming languages, although it is consistent with the extended notion

of type offered by CL's DEFTYPE primitive. In this manual, the term "type* will be used in the AP5

sense unless otherwise noted. An object Obelongs to' or Nis an instanceN of a type in any database state

in which the one-tuple consisting of that object is a tuple of the type.

The term "attribute" in this document is synonymous with "binary relationo.

7

3. TASKS
Although CLF runs as a single OS process, communicating with another process, Epoch, to provide a

user interface to text and with an XlI server to provide a windowing interface, internally CLF may be

interleaving multiple tasks for the user. Tasks may be busy building user interface displays, compiling

programs, installing programs, testing an application under development, etc.

CLF implements multitasking with multiprocessing extensions to CL that have been provided by the

vendors on all platforms to which CLF has been ported. In all cases, these extensions provide a

preemptive scheduler; tasks may be interrupted at almost any time. Some of these platforms have a

priority scheme imposed on the scheduler. Where possible, CLF tries to give its user interface manager a

relatively high priority.

AP5 provides considerable synchronization at points of database access; a task that wants to modify the

database may block for a noticable period of time while another task has access to the database. With

this exception, users are aware of multitasking mainly because of the user interface support of interactive

tasks, described in Section 4.1.1.

8

9

4. USER INTERFACE

CLF's user interface requires a bitmap display controlled by an XII server, a pointer device, and a

network server connection to an Epoch process. The CLF process, Xli server, and Epoch process may be

running on any physical hosts providing suitable network connections. CLF makes limited use of color in

its displays; the interface is usable on a monochrome display, but some distinctions are lost.

A typical CLF screen consists of a help window, a OSystem Operations buttono, editor windows, and

object views. Figure 4-1 exemplifies a CLF screen. CLF does not provide its own interfaces for moving,

deleting, resizing, restacking, or iconifying windows. Its windows obey the Xil XI1 Inter-Client

Communication Conventions for interacting cleanly with an Xi1 window manager. The help window is

an output-only area; as the user moves the pointer over various object depictions in object views, text will

appear in the help window summarizing the effect of the three mouse buttons.

The System Operations button is a small window from which a menu of useful operations can be

exposed. Each member of the initial set of operations is described in this document in the section

relevant to its functionality. Selecting an operation from this menu will cause the operation to be

performed as a new task.

Object views are of three varieties:

" Browsers display a static view of a focus object and the relationships in which it participates.
By selecting visible depictions of objects related to the focus object, the user changes the focus.
A history of focussed objects is maintained; the user may display a menu of these and reselect
any one as the current focus.

" Dynamic Views display a selected view of information in CLF's virtual database. Commonly
this information consists of a focus object and a collection of its attributes. The information
presented in a dynamic view is synchronized with the virtual database; at screen
synchronization points, these displays are updated as needed to reflect the current state of the
view.

"* Icons are truncated dynamic views. Each icon displays only the name of its focal object.
Icons require little screen real estate; they are useful because of the standard operations that
can be invoked from them using the mouse.

Whenever an object view contains one or more vertically or horizontally scrollable subviews, an

appropriate scroller will be attached to the window. A scroller consists of three elements:

* The analog control displays the percentage of the overall view that is currently visible and its
relative position within the overall view. By clicking the mouse in the analog control the user
can select a different portion of the overall view to be visible.1

IEventually the analog control will support continuous drag.

10

IAI

C A

0 0-4

.0 V .0 -i aC -C;

re a 43 --1

Me 0 .09

A^ 3jý&. %.1-

AP 1U. SU S

T 0 0

.4A 05 Af UA

qC t.. 5
i f

a

11

"* The backward control allows the user to discretely scroll the view to make portions nearer
the start visible. The three buttons scroll by one unit, and entire viewport's worth, and "all
the way to the start".

"* The forward control is just like the backward control, but makes portions nearer the end of
the view visible.

4.1. The Epoch Interface

4.1.1. The Task Interface

Each task initiated by CLF is assigned its own Epoch buffer for textual interactions with the user 2 The

buffer and task are assigned a mnemonic name. For tasks generated by menu selections, this name is the

text that appeared in the menu item selected 3 . The text in these buffers may be edited with the full

complement of Epoch editing commands.

CL defines several variables that should always be bound to input, output, or input-output streams.

When CLF starts a task, it binds these varibles local to that task to the task's buffer.

CLF provides a display of active tasks that are in certain distinguished states. It is based on a simple

finite-state model, shown in figure 4-2. Each state has an associated color. CLF maintains a single buffer

in Epoch, named <CLF-HOST>-active-tasks-<nnnn>. <CLF-HOST> will be the name of the host

on which the CLF process is executing; <nnnn> is a four-digit number that distinguishes that CLF

process from any other CLF processes that may be running on the same host4 . This buffer, hereinafter

referred to as the task status buffer, will display one line for each task that is currently in a distinguished

state. The text is the name of the task's buffer. It is displayed over a background whose color designates

the state.

The distinguished states are:

"* Output Available (green): The task has produced some output in its buffer that the user may
not have seen.

"* Output Available/Task Terminated (black): This indicates that unseen output is available,
and further that the task has terminated.

"* Input Block (red): The task is blocked waiting for the user to provide input to its buffer.

2A buffer is Epoch's largest contiguous textual unit. An Epoch process may manage any number of buffers.

3 Epoch may append a few characters to the buffer name to guarantee uniqueness.

4 A single Epoch process may provide edit services to multiple CLF processes, and a single CLF process may utilize services from
multiple Epoch processes. A similar many-many relationship exists in CLF's window interface. This makes it possible for a user at
one workstation to tie into another user's MY process and both view and modify data.

12

Output

All Available

outputOutput Availabile/

if Task Terminated
Seen Input

Block

Figure 4-2: Task state model

The user may select a task's buffer through the usual Epoch buffer selection mechanisms at any time,

regardless of whether the task is in a distinguished state. When a task is in a distinguished state, the user

may expose and select1 its buffer by clicking a mouse button on the line displaying it in the active tasks

buffer. This will remove its entry from the active tasks buffer. In the case of the Output Available state,

it will also consider the user as having "seen" the available output.

When a process is in the Output Available/Task Terminated state, a line containing "Click here to free

this buffer" is placed at the end of the buffer. Clicking any mouse button over this text will free the

buffer and remove any entry for the task from the active tasks display. Clicking the middle button over

the entry for a terminated task in the active tasks display will remove the entry and free the buffer

immediately, without exposing it.

When a terminated task's buffer is eliminated, the content of that buffer is appended to a "transcript

buffer" that CLF establishes when it creates its connection to Epoch. The transcript buffer will be

named "transcript buffer <CLF-HOST>-<nnnn> ", where the host and four-digit number are the same

as for the task status buffer.

Expoeure refers to making the buffer content visible in an Epoch window. Selection means that interactive editing commands

will be interpreted relative to that buffer.

13

4.1.2. Command Shell Tasks

A CLF user typically runs one or more command shell tasks. A command shell task runs a lisp read-

eval-print loop, in which the user enters a lisp expression (program) into the command shell's task buffer.

The expression is then parsed (read), executed (eval), and its value(s) output (print) to the command

shell's task buffer. The active tasks buffer does not display the state of command shell tasks, because

they are typically already the focus of the user's attention8 .

4.1.3. Editing Modes

Each task buffer has an associated editing mode that may change depending on the use being made of

that buffer by the task. The primary function of the mode is to determine:

"* when user input is to be transmitted to the task. Most modes provide some buffering so that
the user can prepare, inspect, and modify input before transmission.

"* what text to transmit. A task buffer gives the user the full range of editing power of Epoch.
Text in the buffer may be arbitrarily modified, and cut-and-paste may be used to prepare
input.

When a task buffer is visible, its editing mode will be displayed in a status line, which also shows the

buffer name, below the visible portion of the buffer's text. The modes employed by CLF are:

"* Explicit - Each task buffer keeps track of the position of the last character tranmitted to it
by the task. In explicit mode, a transmission always consists of all text in the buffer following
this location or the end of the last transmission, whichever is later. The keyboard command
c-s z (the Ocontrol" key depressed concurrently with a UzO, followed by another OzO), initiates
transmission. The keyboard command m-<return> (the rmeta" key depressed concurrently
with the <return> key) inserts a new line at the end of the buffer and then transmits.

" Response - Response mode is almost identical to explicit mode. The only difference is that
the starting point of text to be transmitted is the end of the buffer at the time it entered
response mode. CLF tasks use this mode to provide the user with text to modify and send
back. A task typically sends some instructions for the user into its buffer, then places the
buffer in response mode, and then sends the text to be modified into the buffer. The user
makes the desired modifications, then types c-z z to transmit the text back to the task.

"* Line - This mode is used by interfaces that want a single line of text from the user.
Transmission occurs only when a <return> is entered with the text cursor positioned at the
end of the buffer. The final line of text in the buffer is transmitted, even if that line is empty.

*Character - This mode is used by "completing" interfaces. In character mode keystrokes
that normally cause insertion of single characters (including the <return> key) are
transmitted immediately to the task. The character is not inserted in the buffer by the editor;
any echoing is performed by the task upon receipt of the character.

* Shell - This mode is used in command shell task buffers. In this mode, a <return> typed
at the end of the buffer initiates trensmission if and only if the text between the command

6Soon it will be possible to have command shell tasks included in the active tasks display at the user's option.

14

7£

shell prompt and the return constitutes a well-formed lisp command7.

4.2. Editing Objects

In addition to buffers that provide an interface to command shells and other interactive tasks, CLF

provides buffers in which users edit textual representations of objects. When the user is editing text in

task buffers, a task is explicitly waiting for the user's transmission. In the case of buffers that are editing

objects, a new task is created to deal with any changes transmitted by the user.

This is a generic facility, supported for any type of object that provides "parsing" and ounparsing"

methods. The only such type documented here is software definitions.

A buffer may present an entire module, a single definition, or a collection of definitions and/or modules

that satisfy some condition. In any case, what the user sees is a sequence of individual objects. For each,

there will be a single read-only line with the object's name, followed by the object's source text. If the

object has a documentation attribute, the documentation text is presented, labeled as such, above the line

with the object's name. These labels initially have a green background.

The user may change the text at his own initiative, other than in the labeling lines. When the text of a

definition or documentation unit has been changed in the buffer, but not yet transmitted back to CLF as

the new version, its label's background changes from green to red.

The user may transmit the new text of all modified units in a buffer by typing the keyboard command

c-s z. If the new text for a unit is acceptables, the unit's label will revert to a green background. The

labels of unaccepted units will remain red; in addition, the task rejecting the new text will print a

notification in its task buffer.

If a unit has been modified, but the change has not yet been committed back to CLF, the user may

restore the text to the version currently held by CLF. To do this, the user enters the command m-x

Revert-Object while the text cursor is within the object to be reverted.

The user may also selectively dispose of the objects that have been changed but not yet been committed

back to CLF. The command m-x Dispose-of-Changed-Objects presents the user with a check-off menu.

For each modified unit, the user may choose to commit the changes, revert to CLF's current version, of

simply leave the unit in its modifed state.

7Well-formedness is heuristically determined. Basically, any text with no parentheses or with balanced parentheses is deemed
well-formed.

81n the case of a documentation unit, any text is acceptable. In the case of a software definition, syntactic well-formedness is
required.

15

The text cursor may be move forward and backward over entire units. c-z f moves the cursor to the

start of the next unit; c-z b moves to the start of the previous unit. Both commands accept numeric

arguments.

4.2.1. Hypertext

When CLF prints objects to task buffers, it prints them as a form of hypertexte. The hypertext objects

appear over a background color that contrasts with the buffer's overall background. The user can

perform operations on hypertext objects with the mouse, as described in section 4.4.

4.3. Interface-Database Synchronization

Dynamic object views are synchronized with changes to the database in two phases. The database

undergoes atomic updates that lead from one consistent state to the next. On each such state transition,

sufficient data is recorded to synchronize affected object views to the new state. The synchronization

currently only happens automatically in three ways. First, at the start of each top-level iteration of a

command shell the interface is synchronized to the current database state. Second, each task created

from a menu selection requests synchronization when it completes. Finally, a small set of operations that

can be initiated by commands given from Epoch (see section 4.2) request synchronization when they

complete.

4.4. Using the Mouse

Wherever CLF displays a depiction of an object, whether in an object view or as hypertext' 0 , three

standard operations are available:

"* Left button: The object will be entered into the current Epoch buffer at the position of the
text cursor. This is useful when entering commands interactively to a read-eval-print interace,
such a a listener or a lisp debugger. If the object has a readable print representation - e.g., it
is an integer or a string - that print representation is used. Otherwise, a lisp symbol will be
created and globally bound to the object, and the symbol will be printed in the buffer.

"* Middle button: A browser will be prented with the selected object as its focus. If the selection
is made from a browser display, the focus of that browser is switched to the selected object.

"* Right Button: A menu of operations applicable to the selected object is presented to the user.
The content of the menu is sensitive not only to the object's type, but to the current state of
the database as well. In the menu operations appear in groups, separated by vertical space. A
group corresponds to operations defined at the same layer of type hierarchy. Selecting an
operation from one of these menus will cause the operation to be performed as a new task.

9Currently, only some objects are printed in this way

10 With respect to mouse inititated operations, the label of in object in a buffer editing the object behaves exactly like a hypertext
depiction of the object.

16

Each command shell is initialized to have package CLF-USER and readtable CLF. This is a CL

readtable with the addition of a read macro, #!. #!<string> reads in as an expression whose value is

any object whose name is <string>. If <string> contains no whitespace characters, the string quote

delimiters may be omitted. In this context, an object may have many names. Any string or symbol that

is the value of one of the attributes in the list bound to the variable AP5::*NAME-ATTRIBUTES* will

be considered a match. The possibility of ambiguity can be reduced by specifying a required type for the

object. This is done by following the name with a 0.0 and a typename - e.g. #!email.system.

Clicking on the System Operations button with any mouse button will present a menu of operations

that are not obtainable from available objects' menus.

4.5. The Keyboard

Although CL has no "standard Keyboard,u all workstations having Cl implementations are likely to

contain several (non-shift) keys in addition to the standard QWERTY set. If the CL implementation

makes these keys transmit new CL characters, they can be useful in the interface for that workstation.

We have identified several "generic uses* of these extra keys, described below. For each, there are two

special global variables in the implementation. One is bound to a string, the label found on the

appropriate key for that implementation. The other is bound to a character object, the character

transmitted by the key for that implementation.

For the sake of portability, applications programs, as well as CLF kernel programs, should use these

variable rather than their literal values."1 For example:

(format *query-10* *Type your answer. -
<press the -a key to quit the operation>
*QUIT-KEY-LABEL *)

(LET ((response (Get-Users-response)))
(when (EQL response *QUIT-KEY*) (throw :operation-quit NIL)12

4.5.1. Quit

Sometimes it is desirable to let a user drop out of a dialog if he decides he does not wish to perform an

operation, or has made an error earlier in the dialog. *QUIT-KEY* and *QUIT-KEY-LABEL* are in

intended to be used for this purpose.

liThe character variable should always be compared with EQL, of course.

12The character variable are declared with DEFCONSTAINT. The label variables are declared with DEFParameter, to account
for the possibility that a given implementation may run with several keyboard variants.

17

4.5.2. Menu

In some input contexts, a user is given the choice of entering a response from the keyboard or mouse, or

of asking for a menu of possible responses. *MENU-KEY* and *MENU-KEY-LABEL* are used for this

purpose.

4.5.3. Activate

In some input situationd, the user needs a special gesture to indicate that he has finished entering his

response. *ACTIVATE-KEY* and *ACTIVATE-KEY-LABEL* are used for this purpose.

4.5.4. Complete

In some input contexts, the user can ask the system to supply some of his input automatically, usually

echoing it as if it had been typed. *COMPLETFKEY* and *COMPLETE-KEY-LABEL* are provided

for this purpose.

4.5.5. Help

Whenever an application is awaiting user input, it is desirable to provide the user a means for obtaining

an explanation of what is expected from him (e.g., an address for a message), how it may be provided

(type an address or pointer to a person or mailbox), and how it will be used (as a CC recipient of the

message you are composing). *HELP-KEY* and *HELP-KEY-LABEL* are provided for this purpose.

4.6. Browsing

4.6.1. Browsing by Pointing

The dynamic browser is a mechanism for finding information of interest in the database when you are

not certain of the relational path you need to reach information. It is a blend of the TELL-ME-ABOUT

facility and the standard form windows.

The browser is invoked by applying the function SELECT-AND-SHOW-ATTRIBUTE-VALUES to an

object, or by clicking the middle mouse button on an object in a form window or command shell. The

browser appears (near the mouse) in a window displaying the object, its most specific classification(s), and

all attributes and their values.13 From this display, all the operations that can be initiated from a

standard CLF form window can be performed, using the same gestures. Moving the mouse outside the
window causes it to disappear, just like a temporary menu. Clicking the middle button on one of the

1 3 Someday this may extend to show information about occurrences of the object in relations of arity greater than 2, as
TELL-ME-ABOLUr does.

18

values displayed in the window also causes the window to be replaced by a dynamic browser viewing the

selected object. A small area labeled *CI-LHAIN" can be moused to provide a menu of all objects viewed in

a session with the dyanamic browser (excluding the one currently being viewed). Selecting one of those

objects will replace the current window with one viewing the selected object.

4.6.2. APROPOS

APROPOS function

APROPOS-LIST function

APROPOS-LIST variable

APROPOS-LIST* variable

APROPOS-LIST** variable

APROPOS-WILDCARD variable

The common lisp functions APROPOS and APROPOS-LIST provide a way to find symbols whose name

contains a given substring. A package argument determines a subspace of all known symbols in which to

search. CLF extends these two functions to allow search spaces other than packages. The first argument

is still a string. If the second argument is a package or package name the CLF functions execute their

common lisp counterparts.

The CLF functions extend their counterparts primarily by allowing search spaces other than subsets of

symbols. The second argument is the search space designator. If it is the name of a type, then the search

space is all objects of that type. If the designator it is an instance I of some type for which a Default,-

Structuring-Attribute A has been declared, then the search space consists of I and all objects reachable

from I via A.14 For example, the Default-Structuring-Attribute of the type Module is Component. So if

the search space designator is a module, the search space includes all of that module's direct or indirect

components. The name of each object in the search space is matched against the string pattern.

Matching objects are either printed (APROPOS) or gathered into a list that becomes the value

(APROPOS-LIST).

In the standard CLF release, the Default-Structuring-Attribute of the type TYPE is Isubrel, which

relates a type to its immediate subtypes. Therefore, if an instance of the type TYPE (as opposed to the

name of a type) is used as the search space designator, the space searched consists of that Class and its

141a other words, all objects in the transitive closure of I under A.

19

subclasses, not instances of those classes.16

Uses of CLF's apropos (other than the package searches provided by CL) permit a more general string

pattern. The string may contain any number of occurrences of the character bound to the special

variable *APROPOS-WELDCARD* (initially #\$). Appearances of this character may match arbitrary

(including empty) subsequences of an object's name - e.g., the pattern Ohassup$O matches both the

names ohas-any-supervisoro and "hassupervisor". The matching uses CHAR-EQUAL, so it is case

insensitive. If the string pattern provided as the first argument to CLF's APROPOS contains no

occurrence of *APROPOS-WILDCARD*, a wildcard is automatically appended to the front and end of

the given string. Finally, a pattern may be a list of the form (and . patterns) or (or. patterns), with the

"obvious' interpretation.

The search space for the CLF extensions to APROPOS may be augmented by passing further arguments

to the function. All arguments after the search space designator may be (the names of) attributes. In

this case, the string pattern is matched not only against the name of each object in the search space, but

also against the name of each value of each designated attribute of that object. A match with the

object's name or the name of any of the values of any of the attributes is sufficient for including the

object in the set of successes. For example, (APROPOS "(reply" M 'Source-Text) would find every

component of a module M that either had the string "(replyu as part of its name or as part of its source

text.
1 6

Finally, the symbol T may be included in the list of attributes. This serves as a shorthand for including

every attribute declared to be a Standard-Apropos-Attribute for the search space class or any of its

superclasses.
17

4.6.3. Tell-Me-About

The function Tell-Me-About (documented in the AP5 reference manual) provides a means of mapping
over all true tuples in which a given object appears.18 The default functional parameter causes the tuple

to be printed on the *standard-output* stream, which is the typical use of Tell-Me-About as a browsing

tool. When the stream is a command shell, the related objects printed in the tuples can then be selected

15Retracting the Default-Structuring-Attribute of the class Clas will result in use or a class and & class name being equivalent as
search space desigations.

1aThe fact that some components have no value for the Source-Text attribute, and could not even logically have a value for the
attribute, causes no error. For those components, only the name of the component is matched agains the string.

17 The search space class i determined by the search space designator. When the search space is determined by an instance and a
Default-Structuring-Attribute, the search space class is the declared range restriction for that attribute. When the search space is all
instances of a class, that class is the search space class.

"l$Subject to generability considerations.

20

with the mouse.

4.7. Menus

There are two kinds of menus which appear generically in CLF's user interface. One is the menu of

operations on a particular object, which typically appears when the user selects a depiction of the object

with the right mouse button. The other is the menu of "system operations", exposed by selection the

System Operations button. The contents of these menus may be modified with the macros described in

this section.

DEFINTERFACE-COMMAND [NAME CLASS &key (TEST T) (AUX NIL) (MENU-HELP-
STRING NIL) (LEFT-HELP-STRING NIL) (MIDDLE-HELP-STRING NIL)
(RIGHT-HELP-STRING NIL) (INTRO-HELP-STRING NIL) MENU-LABEL
(PROCESS-IN-LISTENER T) (BUTTON-SENSITIVE NIL) (BODY NIL)
(BODY-LEFT NIL) (BODY-MIDDLE NIL) (BODY-RIGHT NIL) ...I macro
Defines an interface command (menu-item and associated action) to be offered for
instances of CLASS which satisfy TEST. TEST is an arbitrary form, which may use
the variable mouse-object freely. Mouse-object will be bound to the object selected
with the mouse. If TEST evaluates to NIL, the menu item will not be offered in the
menu for the object that failed the test.

MENU-LABEL is a form evaluated at menu generation time that evaluates to a string
to display in an operation menu.

BODY-LEFT, BODY-MIDDLE, and BODY-RIGHT should be forms to execute when
the respective mouse buttons are clicked on this menu item. If all three buttons have
the same response, a single code body may be provided with the BODY keyword rather
than being duplicated for each button. These forms may also use mouse-object freely.
If BODY is given as well as one or more of BODY-LEFT, BODY-MIDDLE, and BODY-
RIGHT, then the BODY form applies to all mouse clicks not explicitly given a form to
execute. That is, if BODY-LEFT and BODY are given, then both middle and right
clicks will cause the BODY code to execute.

INTRO-HELP-STRING is a string or a form that evaluates at menu generation time to
a string that is the first element of the string that appears in the help window when the
mouse is over this item in the menu. It should be a string applicable to the menu item
regardless of which button is pressed.

LEFT, MIDDLE, and RIGHT-HELP-STRING also appear in the help window. If
given, MENU-HELP-STRING is used for any of the LEFT, MIDDLE, or RIGHT-
HELP-STRINGs that are not given. Heuristics are used to prevent repeatedly printing
the same string in the help window; for example, if only a MIDDLE-HELP-STRING
and a MENU-HELP-STRING are given, the second line of the help window will appear
as:

"L: menu help string here M: middle-help-string R: same as LO

The string-valued forms may also refer to mouse-object. The INTRO-HELP-STRING
is printed on the first line of the help window, with the rest of the help strings printed
on the second line.

21

The AUX keyword has as its value a list of aux variables. Each element of the list is
either a symbol, in which ca.i- the variable is initialized to nil, or a pair, the car being a
symbol and the cadr being an initialization form. The initialization forms may refer to
mouse-object.

The TEST returns a value treated as a boolean. But it may use the aux variables
(reading their initial values) and as a side effect may set them as well. If the test
returns non-nil, the final values of the aux variables are retained. They are then made
available to the MENU-LABEL, HELP-STRING, and BODY code. These may read the
aux variables, and will see the values they had at the end of the TEST. But they
cannot change the values of the aux variables in order to communicate with each other.

Rationale: Although frequently the label and
help-strings are constants, and occasionally the
test is simply T, all of them as well as the body,
may be arbitrary computations that have access
to the OBJECT that was buttoned to create the
menu and the qform/window as well. In order
to make the menus come up fast, it is important
that the test, label, and help-string computations
be efficient.

The content of the label and, more
importantly, the help string, influence the users
choice of whether to select an item, and which
button to use for button-sensitive items. Thus
the results of computations that go into
computing this text MAY be needed in the
BODY. There are two reasons why
REcomputing them may be UNSAFE, regardless
of their efficiency.

o The computations may be non-applicative -
e.g., rely on the database. The database is not
locked while the menu is up, and, for that
matter, all that happens when an item is
selected is to QUEUE up the body action to
happen when the listener process next checks its
queue. So redoing the computation in the body
may not yield the same result as at menu
creation time.

o The computation may be non-deterministic.
For instance, there is no guarantee of retrieval
order consistency from the database for multiple
valued attributes, so it might be necessary to
introduce some arbitrary SORTing to ensure
that a recomputation got the same results.

Instances of a subclass will inherit the interface commands for all superclasses.
However, NAME is used to provide a shadowing mechanism. If an interface command
for a subclass is written with the same name as one for a superclass, the one for the
subclass will 6shadow" the one for the superclass. In particular, defining such a
command with a test of NIL will block the command from appearing as a choice for

22

instances of the subclass (and is often preferred to adding a condition to the test in the
interface command for the superclass.)

DEFSYSTEM-OPERATIONS-COMMAND [NAME &key ...] macro
Defines a menu item for the menu associated with the "System Operations" window in
a CLF frame. See DEFINTERFACE-COMMAND for an explanation of the keyword
parameters. Any command already defined with the name NAME is replaced. The
response functions take no parameters. Because these menu items are not defined for
particular types, there is no issue of shadowing.

UNDEFINTERFACE-COMMAND [NAME CLASS] macro
Removes the interface command named NAME for CLASS.

UNDEFSYSTEM-OPERATIONS-COMMAND [NAME] macro
Removes the system operations command named NAME.

Menu selection can be simulated by entering calls on the macros described next in the command shell.

These macros take a "pattern" argument. Depending on the specificity of the pattern provided in a given

call, an operation may be selected without even exposing a menu, or a reduced menu may be exposed.

These macros make it possible to display a menu of operation for an object for which no depiction is

available for selection.

ML [X &optional (Pattern ")] macro
Simulates selecting the item whose label matches Pattern from the menu for object
X. X is evaluated. Pattern is quoted and may be a string or symbol. For a symbol
pattern, the symbol's print name is used. If exactly one item in the menu for X would
have a label matching Pattern, the action that would be performed by selecting that
item with the LEFT button is performed. If more than one item's label would match
pattern, a menu of the matching items is presented and the user may select from it. (If
any of the items in this menu are button sensitive, the button sensitivity applies. In
other words, even though the menu was generated with ML, a non-left-button operation
may be chosen.)
Matching is defined by case-insensitive string comparison. A $ appearing in Pattern
acts as a segment wildcard. If no $ is explicitly present in Pattern, one is appended to
the end. (Thus there is no way to force an exact match.)

MM [X &optional (Pattern "0)] macro
Like ML, but simulates pressing the middle button.

MR [X &optional (Pattern "")] macro
Like ML, but simulates pressing the right button.

M [X] macro Generates a menu for object X exactly as if it had been obtained by right clicking on a
presentation of the object.

CLFL [&optional (Pattern "0)] macro
Like ML, but for the System Operations menu.

CLFM [&optional (Pattern "a)] macro
Like NMM, but for the System Operations menu.

23

CLFR [&optional (Pattern on)] macro
Like MR, but for the System Operations menu.

CLF [macro Like M, but for the System Operations menu. Generates a System Operations menu
just as if the System Operations button had been selected.

4.8. Miscellaneous

Each command shell runs a fairly standard lisp read-eval-print loop. Some tailoring of this interaction

is possible.

TOP-LEVEL-READ-EVAL-PRINT [function
A recursive Read-Eval-Print loop. Uses the current value of *terminal-io* as the stream
for reading/printing. This is an infinite loop. The only exit is via a THROW or some
non CL mechanism. An anonymous restart is provided whose select will restart the
loop. TOP-LEVEL-READ-EVAL-PRINT establishes new bindings for and maintains
the Lisp variables *, * * +, ++, +++, /,// and/f.

TL-PROMPT variable
A list consisting of a format control string and its arguments. This variable determines
the prompt displayed on each iteration of TOP-LEVEL-READ-EVAL-PRINT. Its
global value is (-&>). CLF binds it to (0-&CLF> ") for its top level loops.

TL-PRINT variable
To print each result value, TOP-LEVEL-READ-EVAL-PRINT applies the function
bound to *tl-print* to the value and *terminal-io*. This function, together with *tl-
prompt*, are responsible for transmitting newline characters.

TL-READ variable
The binding of this variable determines the reading function for TOP-LEVEL-READ-
EVAL-PRINT. Its only parameter is a stream. It is globally set to Lisp's READ
function.

TL-EVAL variable
The binding of this variable determines the evaling function for TOP-LEVEL-READ-
EVAL-PRINT. Its only parameter is a form to evaluate. It is globally set to Lisp's
EVAL function.

24

"Int roduction to (2IF

5. CLF SOFTWARE MODEL

CLF represents software in terms of MODULEs whose Components are either other modules or

INDIVIDUAL SOFTWARE OBJECTs. The individual software objects include all the standard

Common Lisp categories, such as functions and variables. They also include a set of extended software

components which utilize the facilities of the object.base allowing programs to be written that define and

manipulate objects in the objectbase. Much of CLF itself was written with these extended software

components. They include class definitions, attribute definitions, interface command.,, and views. The

combined class of modules and individual software objects is called SOFTWARE OBJECTS.

5.1. Attributes of Software Objects

The individual software objects have an attribute Source-Text whose value is a string. The string

should be a legitimate Common Lisp expression. For example. a function definition would have

"(defun...) as its Source-Text attribute's value. The module hierarchy is defined through the

Component at~tribute. Its transitive closure. Component*. is also defined. Component-of is the

inverse of ('omponent.

A module can have a Maintainer. The value for this attribute should be a PERSON. Maintainer* is

an minherited' version of Maintainer - that is. its value is the value of the Maintainer attribute of the

sclosesto parent. module having a value for the attribute.

The Module-Directory of a module expects to have a pathname as a value. In general. only root

modules have a value for this attribute. The pathname determines the directory in which ('LF saves

,ource. binary. and development files for the module. Module-Directory* is the inherited version of

Module-Directory.

5.1.1. Reader Attributes

Because CLF stores the individual definitions as text. a programmer must provide the environment with

enough additional information to allow Lisp's pars.er (the function RE.AD) to correctly interpret that text.

Lisp's parser is controlled by three parameters:

" *read-bae* -- this variable, which must be bound to an integer, controlq the mapping from

the textual representation of numbers to a Lisp numeric datatype.

" *package* -- this variable, which must be bound to a package. controls the mapping from

character sequences in text to Lisp symbols.

"* *readtable* --- this Aariable. which must be bound to a readtahl,-.. I)romid"'- a finite itatv

"lexical scanner" for ie Lisp parser. as well a., some charact-trist icr- hat go he. ondI lir' pw% evr

26i Xii1,11M1 c- of Sofi ~arv be i

of a 1,i1ui14. Stan :ii t' miliin

Detaik of the effetst of the-.e variabit'- on the Lisj) par'er may I)- found in CItA.1 The ('LU

environment manageA the proper binding of these variables whenever it needs to invoke the Lisp parser.

It does so by associating value, for each of them with each individual definition.

Corresponding to the three variables are three CLF attributes - Read-Base . Read-Package. and

Read-Syntax. Values for these attributes may be specified directly for any' individua~l definition, or may

be uinberit~ed" from some module of which the individual is a direct or indirect, component.. If no value is

explicit or inherited, a default is used. The attribute names read-base*. read-package*. and

read-syntax* are derived from these three attributes so as to take into account. inheritance from parent

modules and defaulting.

The value of the Read-Base aitribute must be a Lisp integer. The default value for the Read-Ba~se

attribute is the value of the variable *default -code- read- base*. which is initialized to 10.

The value for t~he Read-Package may lie a Lisp package. or a package name (a string or symbol). 20

Two packages are defined in addition to the ones already in the workstation environment.

* CLF - The home package of most of the (IF code extensions documented for CLF users.

* CLF-USER - A package that uses both (iF and Common-Lisp.

The default value for the Read-Package attribute is the value of the variable

default-code-read-package. which is initialized to CLF-USER.

The value for the Read-Syntax may be a Lisp readt able. This is sufficient for operating within the Lisp

environment, but is not, sufficient for saving and restoring data outside Lisp's virtual address space. For

this reason. we require the value of t~he attribute to be either a nameFd readtable. or the name of a

readt~able. Common Lisp providess no standard for associating readtables- with names.. We use ('LF's

objectbase to store the association, maintaining the name as the value of the readtable~s Proper-Name

attribute. Four named readtables are predefined:

"* Common-Lisp -- a copy of the initial common Lisp readtable.

"* CLF - Common-Lisp. augmented with the read macro .

19C()MMON LISP - The' Litngiiago Gliy L. Ste'4. Jr.. Digital Pre"ý

20 ,Zetatej.l he'e i~e .kag- nam-' 'ire' nfo ne'.e'":rihr gedi)Ialt % known. nampe' muiuu r- inte'rijre-e' relkitive' xo tonip rwi~g,

All nam-e' w;-]' ;t. I he' vaiele ,r the' R-ad-tPewk;,g.- aei ril.ut ire' inieri-re'te1 rel;ieit, te' to he (" jfhunifm Li~l- 1-ikage' tU'rý -an av ii

*'on'.rning thrree'I ye witlo thi- 'ettl -ithe'r I. ' Y -ong reel 1:okb-g- i- the' valit' for the' -11161.0. or I-Y avoidjing u.. or neri'-

Inthroduction to ('1, 27

The default value for tihe l-A't:d-S•vlllx: atlribut .I- th %alue of the %ariable *dlf ault -code-r'ad--.,y t a*

whiclh is initialized to (IF.

It. is prohibited for any software object. whether module or individual definition, to have no explicit

value for any of the three attributes but. be an immediate component. of two (or more) distinct modules

that. differ in their explicit (or inherited) values for the attribute. For example, if a function definition F

is an immediate component of both modules Af1 and W2. and the explicit or inherited read-base

attributes of MI and At are 8 and 10 respectively. then it is required that. F have an explicit read-base

attribute. 21 The situations in which CLF uses these attributes include:

"* Installing and compiling software objects.

"* Static analysis of software objects.

"* As-signing fonts to source text.

"* Producing loadable 'compilea-ble source text files.

"* Zmacs commands, such as C-S-E or (-S-C'. that necessitate parsing text from buffers
displaying soft ware object definitions.

5.1.2. Module Component Orderings

Although the Component attribute serves only to define a set of immediate components for a module.

some activities in software development require placing a meaningful ordering (or more usually. partial

ordering) on a module's components.

In most programming environments, a single totally enumerated ordering, such as that implicit in the

positioning of a sequence of definitions in a source file. is used for multiple purposes. CLF will be moving

towards the specification of different partial orderings for different purposes. Currently. however, only

two orderings are defined.

" The Load-Order attribute of a module determines the order in which that. module's
components are processed when installing or compiling the module, as well as the order in
which the components appear on source text. files written by SAVE-MODULE. If a module
has no Load-Order specified for it. all it.s components are treated as equal and the
implementation may process them in any order.

" The View-Order attribute is used to control the order in which the components appear when
editing the module, in listings produced by Hardcopy. and in the display of components in an
object viewer. If no View-Order is specified for a module, alphabetical ordering based on the
components' Proper-Names is used.

T2]''hpr,, ar,. 'onsvl tPn,f'y rlj'i in th- onvirnmp w ir hal att•mpi , t' , -t ntor. thi4 ,.onlition. 1-tt until thp AP. 5 has1 rlr'.s- f ,I (LF.
it i- Ios-ilI to violalt. th.' ro..tri, on In -. ,n ,'iruv t-tan,'e without Iwing inirýrr=•,i. But this ,.an only haltit n ir ort~ar.ý ol --

sro.. n - in,,nntt- of inultiol*p itoduj*. amti ni nly in il','ul It in, p' whr'fr o io• -uI. fn,'; individual) Iltnw th' root ar- a•ign.! oxtli,'
v:,hi- ror ilh,-, :.,trilut",.

2', Attribute, of Soft warv 06j..ci

Trh, orcleringi that can current l% be specified for these slots are total orderings, with "lie-w allowed.

The- alue for an) ordering alttrilbute can be in either of Iwo forms:

*a function of two arguments. returning non nil if the first. is to be treated as less or equal to

the second.

*a list of immediate components of the module. For any two components .4 and B. if both are
in the list., the ordering is induced by their positions. If only one is in the list, that one is
treated as strictly less than t~he other. If neither is in the list, they are treated as equal in the
ordering.2 2

An ordering associated with a module is treated as local to that module. It is not. winherited" to

submodules in any way. For example, if a time-of-creation comparison were specified as the lieuv-Ordtr

for module VT'64114.4. and 1.1612tics contained as a component. another module Siring-! Tfilifiw's with no

Viru.-rdir specified for it. then the components of String-Ililifiehs would be sorted alphabetically (the

default for I-if-ii-Ordir) in a hardcopy.

IM4PLEMENTATION NOTE: CLF uses LOAD-ORDER as an ordering for both compilation and

in-oallation (just as common lisp compiles forms in a file in the same order in which it loads, themi). The

LOAD-ORDER must account for both load and compile dependencies. Typically both are partial

orderings whose union is also a partial ordering. For example. t~he compiler must process macros before it

compiles functions that use them, but,. when installing those component, from a compiled file, the

ordering is irrelevant.. On the other hand. initialization forms must. often be installed in a particular

order when one relies on the global state established by another. However, the compiler could usually

process them in any order. We have not encountered situations in which the dependencies between

compile and installation order-, conflict, with one another.

The initial setting of *DEFAtITJTMODITLE.LOAD-ORDER..GETTER * enforces a partial ordering on

components induced by the classes mentioned in the list

SOFTW%'ARE-CL.A'SS-LOAD-ORDER-PRECEDENCE. The initial setting of this list, is:
(PROCLAMATION STRUCTURE SOFTWARE-CLASS TYPE-DEFINITION
RELATION-DEFINITION EVENT-DEFINITION GENERALIZED-VARIABLE-DEFINITION
UPDATE-MACRO-DEFINITION MACRO-DEFINITION FUNCTION-DEFINITION
GLOBALVAR CONSTANT INITIALIZATION-FORM LISP-FORM MODULE)

A component D1 precedes, another component. D2 if and only if there is a class (' in this list such that DI

is an instance of C' but not of any class preceding (' in the list, and D2 is neither an instance of C* nor of

any class preceding C.

FOCAL-COMPONENT affribuht

221i'1ro i- not! *urro.ntl ' total ontror,o~niomi orn mqtrs'iertjon on h- uit. ollists to s -'onii-moi-flt .r~lritig- Iit~o t h, li.? -ontmril

iI,iyr tila titft or th- inodidiil it or1J-rs. Th-re is likely to I-P siwh a r#,tri.tiotn :it -%. liit urt tii- If fmr is''' ohr it-li

ihii- minvis i n. to 9ulis a si ngi. list or Sort wStp oftjp"t fraom it nitiihipl- nit tin - in. I itfr it - t h- I i,. vv)r!si Ili.oi- r 1', Fr allof
li-its.

lilt rodlifIi loll 10 (ii 2

Focal-Component is anl optional attribute or MODULE. It is constrained to be a subrelatioii
of COMPONE:NT. i.e.. thei Focal-(oil pont'n of 3 module, must be oil' or),- iiiiii,.diat,
components. The only semantics behind this relation (so far) has to do with COMIPUTED
Load-Orders and View-Orders.

When the effective load ordering for a module is specified with an ordering function (such as
the default ordering based on component class described recently). the function will ordinarily
be asked to compare obj--Ls that are NIMEDIATE components of the module. However.
when an immediate component is a module with a Focal-Component. thatl component ik

passed t~o the ordering function. rather t~han t~he module. More specifically, when comparing
two immediate components with the ordering function, the function is pas'sed to the "ordering
surrogatem for each component. If X is not a module, or is a module with no Focal-
Component. X is its own ordering surrogate. Otherwise, the ordering surrogate for X is
defined to be the ordering surrogat~e for the focal component of X. 23

5.2. Software Classes

At the leaves of ithe component hierarchy in the (iF' environment are' individual s-oftware objects.

These objects are subcategorized into a number of distinct clas;ses. These classes. correspond primarily to

the variolls "'ame sPace-" of Common Lisp -- function,. variablt's. type,. srtrcture-ý. etc. NMo~t

operat~ions in CLF are common t~o all t~he classes.

Each -oftware class has a number of attributes that enable (iF to behave in wvays specific to that clIass.

These include:

"* Installer. Compiler, and Uninstaller {opt~ional). These should be function.; obeying the
protocols for these three methods 1** to be documented **) The values for these attrribute's
are inherited through the class. hierarchy. The root class. Individual-S-oftwart-Object. has an
Installer attribute that FNALuates the lisp form+s) that result from READing the value of the
Source-Text attribute. It has a Compiler at-tribute that Compiles the form(s). Individual-
Software-Object has no value for the Ilninstaller attribute.

"* Defining-Function. A symbol that is defined as a function. macro, or special form. When
parsing lisp text into software objects, forms having the defining function of a class as their
CAR will yield objects classified in that. class.

"* Defining-Template (optional) should be either a symbol or a string. The defining template
is used as. a format control string . applied to the proper-name of a software object of the
defined clas-, for generating an initial source-text for the object if it i., edited prior to being
given any explicit source-llext. A symnbol q i', eqiaen o timsting u(,-, (2_,(-'f)u2

23 Tho FoerI-C'oniponpitt or nwodui- mI plays no rolp in ord-ring th' -*orlp')'1ntý ofMN Ii i- on :i i-i m .'ii th 'op.i-n-nl 4

;nodtif- ('iNT.1N'I\N(; NI

21 Th- 1pa-IP ran'. or n in ihp- 4ttritgý i- im-ri't~ylY rt'"I-:fln- of p'-'"if*'vTTg FO1 NT ini 'riiatwlon. Thii -iit i-' ,r!o tir 0'

--ith t, font n". In (LF 4,otIwair" ý~ liffrsp . foni 2 I-f ilit- to T. to r .,ni. F,mt o. i h,..4 C T(f'J NT

30 ,ofl war,' ('11.-v

5.2.1. Common Lisp Software Classes

FUNCTION-DEFINITION cl.
Function-Definitions are software objects that hold the definitions of functio.•s. DEFUN i,
recognized as a Defining-Function.

MACRO-DEFINITION Class
Macro-Definitions embody the definitions of macros. DEFMACRO is recognized as a Defining-
Function. MIA(CRO-DEFINITION is a subclass of FUNCTION-DEFINITION.

TYPE-DEFINITION cla.s.
Type-definitions embody the definitions of new types. DEFTYPE is recognized as a Defining-
Function.

STRUCTURE-DEFINITION cla,-s
Structure-Definitions embody the definitions of new structures. DEFSTRUCT is recognized as
a Defining-Function. STRU('CT1RE-DEFINITION is a subclass of TYPE-DEFINITION.

UPDATE-MACRO-DEFINITION clas•-
Update-Macro-Definitions embody the definitions of read-modify-write macros. DEFINE-
MODIFY'-MA('RO is recognized as a Defining-Function. UPDATF,-A'RO-DEFINITION i
a subclas- of FUN('TION-DEFINITION.

GENERALIZED-VARIABLE-DEFINITION clas.q
Generalized-Variable-Definitions embody the definitions of generalized variables. DEFSETF iN
recognized as; a Defining-Function.

CONSTANT-DEFINITION cla.s
Constant-Definitions embody the definitions of named constants. DEFCONSTANT is
recognized as a Defining-Function.

GLOBAL-VARIABLE-DEFINITION cla..
Global-Variable-Definitions embody the definitions of global variables. DEFV.AR and
DEFP.ARAM.4ETER are recognized as Defining-Functions.

LISP-FORM cla.s
Lisp-Forms provide a catch-all for code that needs to be executed in the process of creating a
software system, but does not. fit readily into any other software class. The Source-Text of a
LISP-FORM is expected to be a sequence of one or more evaluatable lisp forms.25 Typical
uses of LISP-FORMs include:

"* Initialization of global data structures.

"• Tailoring the environrnent in which the application resides.

"* Providing trace" or logs of the system creation compilation process.

25NI,,r," i i•. i:•y Ait •,ldt I,P ipo-0l o. REA DI -. ''•iw ',ror , rr,,11 dhw i,.xt. evaij~aiiiig -. ' ; ,.-Ii ,, a, 0l 1- r,.ad.

Introd lIciot) to ('IY 31

5.2.2. Defining New Software Classes

SOFTWARE-CLASS-DEFINITION r/a.s.,
Soft ware-Class-Definitions embody the definitions of new soft ware class"'.
DEFSOFTWARE-CLASS is recognized as a Defining-Function.

DEFSOFTWARE-CLASS macro

(name nkey (superclasses '(individual-software-object))
installer compiler uninstaller
defining-functions deflnlng-template)

This macro permits the definition of new subclasses of individual-software-object.
SUPERCLASSES, if provided, should contain at least one type compatible with
INDIVDIUAL-SOFTWARE-OBJECIT. SVPERCLASSE,5 may be a single class name or a list
of class names. DEFININcJ -FT WCTJON.. if provided, should be a single symbol. or a list of
symbols, to be the value(s) for the Defining-Function attribute of the new class.
DEFININO-TEMPLATE should be a string or symbol to use as the value for the
Defining-Template attribute of the new class.

5.3. Software Interface Commands

Install
software-object interface command
Install an interpreted version of the current source text definitions of the object.

Compile
software-object intrrfac. commnand
Install a compiled version of the current source text definitions of the object.

Save
module inbrrfacE commnnand
This invokes the function SAV,'E-MODUILE on the module, saving a permanent version of all
the module's components. and their attributes, in a file in the module's directory. (licking
left. saves source only: clicking right saves source and binary form.

Break
function intcrfaer command
Modifies the definition of the function so that the debugger is entered when the function is
invoked.

Unbreak
function it, rfac command
Removes the lbreak" mechanism from the definition of the function.

5.4. Editing CLF Objects

CLF provides. the user %ith an editing environment similar to that of Epoch for editing the textual

representation objeci.-. Tl,.r," are. ,•o e% ' r. a fei% iinlor'lan diff,'rt-,n',i . The buffe'r, ii-,d ar•. cr,.ald 1,%

(LF and are unknown to th,, normal Epoch buffer command- and operatioi-. When an obj,-ct i- ý,.It,.d

32 Editing ('LF OI,j-eis

for editing. normally by clicking on tihe edit OptIion from ILL,4 inenu of operations obl ained by selecthiii an

object with the right button, a buffer is created if needed and added io CLF's buffer queue. If a funriolt-

definition with the name TRY-ME were ,elected for editing the Epoch- status line would appear as:
Zmacs (Lisp) TRY-ME

Here Lisp is the mode, and TRY-NWA is the buffer's name. As soon as the buffer is altered an asterisk will

also appear in the status line.

The buffer itself will contain

TRY-ME
on the top line, with a green background, and be followed by the function's
source text

(defun TRY-ME 0

)

".hould a 'ollertion of objects. such a" a module. be ;elected for editing, a buffer will be created for the

whole collection with the collection's name appearing as the buffer*s name in the Epoch "mode linea and

each of its members appearing separated by the (initially green) label lines. It is not possible to delete

members of a collection by deleting the corresponding section of text from the buffer. nor to add a new

member by inserting text. between existing units. Except for the label lines, which may not be altered. the

user may perform editing functions in the usual way using all t.he standard Epoch facilities a-s they apply

to the text being manipulated.

5.4.1. Buffer Coordination

Coordination is maintained between a software object and all textual views of it so that when the

source-text of a software object is changed (by saving a buffer, by loading updates to a system. or direct

assertion in the objectbase) all buffer. containing the old text. are updated. If any of these buffer., had

been modified the system interacts with the user to determine their disposition. Similarly. if the same

object has been differently modified in distinct buffers, if you attempt to save any of t.he buffers. you will

be informed of a possible anomolou-, situation. and the system will interaet with you in an attempt to

resolve the anomaly.

Coordination extends to both deleted and added components of a module.

lint rodtlciloll CII 33

6. Software Evolution Monitor

Detvlop is the portion of the CLF systeem which structures the evolution of a system into meaningful

units, of work called development, steps. It records changes to software definitions in those steps, and uses

this recorded history to manage the installation of those changes, and distributing the (accepted) updates

to users of the changed system. It also offers version and release control. and provides maintenance

documentation.

Specifically, Develop provides the following capabilities:

1. Automated code installation: the execution environment is updated whenever a meaningful
unit of work has been completed.

2. Automatic distribution of software revisions: Accepted revisions are automatically distributed
to the user community.

3. An agenda of pending work: Pending development steps can be created which represent future
commitments.

4. Ability for non-maintainers to make suggestions about the handling- of either bugs or
enhancements: The maintainer can choose to accept the suggestion for general users. or permit
the originator of the suggestion to continue having her own suggestions installed into her own
environment.

5. Semi-automatic production of documentation: The type of documentation that. can be
produced is a development history. possibly enhanced with analyzed program listings using

other tools in (O.YF26

6. Support for the development of true program alternatives and multiple-version systems'.

6.1. Model for Software Evolution

A system is a specialization of a module. CLF automatically records the evolutionary changes made to

a system by keeping a development as a sequence of structured development steps. Each

development, may have a current step. While any step is the current, step. any changes made to the

system are considered to be part of that step28 . The step which represents the current goal being worked

on is the vali,. of the current,-step attribute of the development of the system.

A development step can have zero or more modifications, where each modification can be either

another development step (i.e.. a sub-step) or a development modification. Each development step

must have a step type and an explanation. both entered by the human developer, indicating the

:26Thi.- ha• nof 1-,•,oni,'on~lted.

S7Thi- r;•dt i n- f i Iph s .V ign ,has*.

281f. - ,Ir S* .•. p0t 1 i-i lh.rt., whpn iht.'r-- in' w , rr ii l t •i q. a ni.w on-- i- et

31 t Model for Soft ware 1'- olut ioj;

pL'rplO-, of thet step. A. Olw, developer changes the system)to achieve this goal. these chanz-p are

autlonlaticallv recorded a.-; modifications to the current development step. When the developer has

achieved the goal of a step. she can finish(close) it. All of the changes are then automatically installed

in her environment. After testing, the developer can make these changes available to other users of the

system by distributing (accepting) the step.

A development step represents a particular goal to be achieved by the alterations which are part of it.

Development steps may have sub-steps. just a~s goals may have sub-goals. The idea is that when one

wishes to make some change to a system, a step is opened. representing the main goal of the alterations.

This wroot st.ep* is called the top-level step. Any step created when a particular step is the current step

is automatically made a sub-step of the current step. and itself becomes the new current step of the

development. This affords the ability to structure a series of changes in a comprehensible manner.

The leaves of the step sub-step hierarchy are development modifications. These are the primitive

alterations carried out as part of the implementation of the higher level goal represented by a

development step. Each development modification records a single change. addition, or deletion to a

system at Lhe level of individual attributes of the objects in the system. For example. if the source-text

attribute of an individual definition is changed. then Dfvelop appropriately represents that change as a

development niodification. part of whatever the current development st.p might be.

6.1.1. Atomicity of a Development Step

De,,'lop view., each top-level development step as an atomic change to the database. In other

words, while restoring the object-s in a syst.em, Develop performs the development modifications in each

top-level development step atomically. This is primarily to ensure consistent replay of the development

history and ensures that no program or individual is permitted to view the state of the database after

only a few of the modifications in the development, step have been carried out.. The state of the database

may be viewed either before one has started to carry out the modifications, or after all the modifications

have been carried out. The development, history of a system is viewed as, a partially ordered sequence of

such atomic changes .

Naturally. when one actually alters a system, one might have a particular development step open

indefinitely while completing and testing one's changes. and those changes may. in fact. occur in some

chronological order. However. for replay purposes, the changes represented by the modification, in the

step are carried out atomically. Because of the uncertain duration for which a step could be open and

current and because it is possible that one might make a mistake with modification,. Duflop

atitonialalal]i fixes up a step should it be able to detect that atomic replay of the ,;tep will not -•ucceed.

For exaiunple. if one alter, the source-text attribute of the same object many tinme, iii the ,anw*' top-lmel

Siep. Di s'lop recognize> that this, would result in contradictory update., whon the slep i- re-played

atontically, and fix". up tlie step appropriatel% repre-,enting only a singl, change to the ati ribut e frout i t,

original valtie to it- final value. Si milarly. if one adds a component to the systemn and henvi delete it

from t-he sy:stem in the samie top-level development step. Devclop fixes up the step so t-hat neither the

component. addition nor deletion are part. of the st-ep

6.1.2. Ordering of Development Steps

Top-level development steps are ordered by the time that. they are first finisihed. St~eps which have

never been finished are incomparable to one another. Ordering by the time-of-first-finish Is used to

determine in what order steps should be restored. A step which was: finished at some time is deemed to

occur before a step that has never been finished. Given this ordering scheme, and remembering that iM

Ditwdop finished steps can be resumed. we must enforce certain consistency requirements- to ensure proper

replay:

"* A given (single-valued) attribute of an object cannot he modified in two incomparable (i.e..
never finished), top-level steps. Since incomparable steps are not ordered amongst t~hemnselves,
dependitng on which one of the steps is restored first. one could get different. result,,. Thus.
tOk situation is prohibited. N~ever finkhied top-level -4tep, must either modlify disjoitit ..4et of
objects or different attributes of ithe same object.

"* A component cannot be removed in an earlier step if it has already been modified in a later
step. This would render t~he later step meaningless. and must be prohibited.

"* A particular (single-v al ued) att~ribut~e of an object cannot be modified in an earlier st~el after
the same attribute of t~he object has already been changed in a later st~ep.

These consistency requirementsq are enforced strictly by Develop through the use of consist~ency rules.

Without these rule-,. it is impossible to guarantee correct. replay of the changes mtade to a system.

6.2. Bringing a System Up-To-Date

The syst~ems that exist in an environment can be updated by using t~he update-systems and

update-individual-system functions (similar to Zet.aLisp's Ioad-patches).4- Precisely what

information gets incorporated into one's environment when one updates a system depends on the update

mode at~tributes of a syst~em. The following updat.e mode attributes are used'

"* execution-mode: What updates to the execution environment muitst be incorporated?

o Possible v'aluies are :never-load. :frozen-steps;-only. All.

"* definitions-mode: What updates to the object definitions must be incorporated?

o Possible values are :ne-s-er-load. frozen-steps-only, :all.

2qr-,,nppr~ition4 fla) ais,' t, invokfd t hrough tho ni~imr i w "rt

Nl'or in a in!:iinprs. I h'rp arp twoa'i' iti'oia I innj..-. I) I no , in J!, ; it - i-tte'ý ;in, ýiigg-ii,mr j r-tl' i :11, - 11.j .,.j.1 I

"whptfx -r it)rI rosiorp ppwfiinig 'i-p

36 iringiiig a -t'iiIJ-ola

"* Skeleton-mode: For what kind of steps, should the skeleton of the step ob~ject alone he
rest ored'.

o Possible v'alues are never-load, :frozen-st eps-only.

"* details-mode: For what kind of steps should the entire step object be restored'

o Possible v'alues are :never-load. :frozen-st~eps-only. :volat~ile-st-eps-only. :all.

Briefly, by a "frozen" step we mean a st~ep that cannot. be altered. In Dcvclop. this means a step which

has already been distributed. suggested. or t~erminated, since only such steps may never be altered.

Volatile st~eps are steps which have not yet been frozen. A volatile step can be altered by making it the

current. st~ep. and making more modifications to the objects in t~he system while that step is current..

Typical users do not. care about t~he details of a development. st~ep or the definitions of the objects

involved. They merely want t~he binary versions of the updates- installed into t~heir environments. System

stub-, for such users usually have the following update inode attribute values:

"* execution-mode = :frozen-st-eps-only

"* definitions-mode - never-load

"* Skeleton-mode m=:ev er-load

"* details-mode =-:nev er-load

The values indicate that only e~xecution updates for newly distributed steps must be restored. No oilher

aspects of the system are visible to the typical user.

A maintainer of a system, in contrast t~o a typical user of the systemn. require-, much more information --

including the definitions of all the objects in the system. details of at least the volatile development steps.

etc. Thus. update mode attribute values for a syst~em stub in its maintainer's environment might be as

follows:

"* execution-mode =-:allI

"* definitions-mode - :all

"* Skeleton-mode :frozen-st~eps-only

"* details-mode :Vol at ile.-Steps-only

The values indicat~e that the execution environment must be updated using all the steps that were

distributed or finished at somne time 31 . The definitioD.- of the object, must be updated for all steps.

whatever their status. Difucop restore-s steps, at two levels:

e Skeletal view: suppresses the intricate detaik of a step. providing just the -tep 'ubstep

311)evd'p ad-ljnie- that ot..n or ai.'r''. rý to'- ljn~l-l,. to I.- inoallii1. Thu-.t,nie l' N . I itinhiPnt

sip .- s for rn,stallatinlotir.. ..

Ilt 1r0(11(' iof I1 (I'1,. 57

hiertrchdv, and li,. modified object', of hli. step.

* Detailed view: the entire step in all its detail. including all the modificationim of the step. and
their attributes, representing the changes carried out in the step

Typically. one would like the skeletons of frozen steps to be restored rather than the details. Frozen

steps cannot be altered. and it could be wasteful of one's virtual address space to have the details of thc-,.

steps in the database at all times just. in case one needs to review the development history. The details

can be restored on demand through the menu interface, by buttoning on the step whose skeleton alone

was restored, and selecting the oLoad Details" command. There is not much choice but to restore the

details of volatile steps because they can still be changed.

The above are the typical values for the update mode attributes of a system in a given environment. If

any update mode attribute is not specified. Driclop behaves as if the attribute had the value :never-load.

However, if the update mode attributes of a system are not set. to one's satisfaction, they may be changed

convenient ly using the "Change Update Modes" menu item from the menu for the system.

There are rules in Dciyop which automatically incorporates new information into one's environment (as

necessary) when one changes the update mode values of a system. At. all times. therefore. a system's

update mode values will be an accurate reflection of what aspects of that system have been restored into

that environment. For example. if the Definitions-Mode of a system is changed to :all from :never-load.

Divelop will proceed to restore the initial definitions for the system from disk. and then the series of

incremental definitional updates to the system from each step.

6.2.1. Ordering the Systems for Update

It is usually required that the systems in an environment be brought to up-to-date in a specific order.

The order is determined by some notion of which systems depend on others. i.e., which systems use

resources provided by other systems. Systems which provide certain resources must be initially installed

and updated before systems which use those resources. While Detelop has no idea why a system might

depend on another. it offers a way for users to specify the dependencies between the systems. Thereafter.

when Dr'vlop need', to update the systems. it will find an order consistent with the specified dependencie,.

and update the systems in that order.

In order to specify system-to-system dependencies. one uses the global interface action 6Add Remove

Dependency". The middle button on this menu item lets one specify a dependency between a pair of

systems, one of which mus.t necessarily be before the other. In this manner, one can ,pecif.ý s.>-called

"global" dependencies among systems,. These dependencies determine the order in which T)fsrlop will
Update "s •l elnl,.

:• ~~BIh'i.gill": a\1. p-'ro-I)atv

Over a large e'olhtionary period. however, the above ordering -clheme for updating s.-tem,, us;ually

break, down. It maN be necessary to update syst.em.- out of order, at least in specific cases. For example.

the N.MAR-SERVICE syst~em uses facilities from t~he system EMPLOYEE-SERVICE. Thus one would

specify a dependency to the effect that the EMPLOYEE-SERVICE should be updated before the MAIL-

SERVICE. Suppose. that St.ep 50 of the MI•tL-SERVI('E introduces a messag, sending feature that the

maintainer of the EMWLOYEE-SERVICE would like to use in St-ep 68 of that system's development.

Clearly. what we need is a %\ay to ensure that. the MtIL-SERVICE is up-to-date until at least Step 50.

before we install Step 68 of the EMPLOYEE-SERVICE. In this situation, we cannot specify a global

dependency.

Detvelop offers a way to specify requirements or pre-conditions for ;teps to be incorporated. These

requirements are of the form: In order to in.stall Stp Ni of .sectm S•1. first rns.ur that Shttp NXJ of

sy.-4tit .•., ha.4 already I&vin in.stallhd. Such a specification would cause the following behavior: Dr,'loI

first find& an order to update systeems. If S., preceded S, in this order. t.hen D(t'flop's usual default

behavior will ensure that Step N. of S) gets installed before Step Ni of SF. However. if S, preceded S., in

this order. then. just before installing step NV. DT,'lop will not.e the requirement placed on installing that

step. and swit.ch to updating S.,. It. would bring S., up-to-date up to Step N.j and then switch back to

updating S. . installing Step Ni. and steps which follow3 2

DependencieS between specific steps of two systems can be specified using the "Add Remove

Dependencyv from the CLF global menu. The left button let.s the user specify a new dependency between

a particular step of one system and a particular st.ep of another. Similarly. the right button permit.s the

user to remove a previously specified dependency between t.he steps of systems. The instructions to be

followed are fairly simple after using either the left. or right, buttons on this menu option.

In summary. use global or system-to-system dependencies between syst.ems when the usual pat.tern of

dependencies between systems is well-established and understood. This will establish a default order of

update for systems. However, if it is required that before installing a specific step of a system. one needs

to ensure that a particular step of another system be installed first. and one cannot be sure that the

default order will guarantee this. one can actually specify a step-to-step dependency as dicussed itt thi,

manual. While updating ysteins. DIr'Hop will then use the default order. changing it a., ncessary when

the step-to-step dependencies require it to update other sywtems first.

)i-*.. it i- fos;il tý thait thor, fir-, v,-y,-- in t h- q--.,ifi•',l Won|'v i n- I' , - , /) ,I , -r , ,,. not -1-f -f. t h* '.' Vo1I. 'All'h,,r I(I]

,|a,' ,f ru' -- r, ,..r,,. it ,dw,. ,&,t,,,. th,.'1m at u , ; , titlel'

li,,tit r od t, (ol i" :oL 39)

6.3. Development Steps

As noted before. a development step is the basic iunit of evolutionary change in Dev clop. In this section.

we see more of how development steps are used to st~ructure the evolution of a program.

Initially, there are two possible states that a development step may be in -- pending and open. A

pending step represents a commitment to a future software revision, that when handled will become the

current step. An open step. on the ot~her hand. is a step that is currently being worked on. Once opened.

modifications may be made to the system or it.s components. These modifications are then recorded as

part. of the current step of the corresponding development.

When all the modifications have been made the maintainer must finish the step which causes t.he step

t~o be saved to disk (so that its persistence is ensured.) If the step is a top-level step. the revisions in the

step are (optionally) automatically installed into the maintainer's LISP environment. Afterward.s. the

maintainer of the system may distribute these changes to the user community. making the step visible

to the users at large. It is also possible to terminate a finished step. Termination of a step has the saine

effect a& distribution for modified definitions in the step. but there is no executional update a.ssociated

with a terminated step at all. In effect. it is a step of some historical and definitional interest, and does

not affect one's LISP environment.

In addition, steps may also be aborted, suspended. or resumed, as shown in Figure U-1. Suspending

a step causes it to be saved to disk. but not installed. In addition. the parent of the suspended step. if

any. becomes the current step. Resuming a step makes it the current step. As a side effect. the step that

was current and its ancestors are suspended.

Aborting a step has the effect of undoing all its constituent modifications. Under certain

circumstances, it may not be possible to abort a finished development step. For instance, one cannot

abort a development step if there are later steps that modify a (single-valued) attribute of a particular

object which is modified in the same att.ribute within that step itself. The later steps Odepend" in some

sense on the earlier steps in our ordering, and one cannot abort. steps arbitrarily. Thus, "dependent* step,

of a development step must be aborted before a development step can be aborted. Aborting a step may

become difficult to do if multiple top-level steps modify the same attribute of the samre object. Finally. all

aborted step maly not be further modified, distributed, or terminated.

Similarly. distribution of a finished step will not be permitted if there are earlier (undistributed)

development step- which modify the same objects and attributes. For example. if stop 5 waý finishvd

before step 6. step 5 occur, before step 6 in the ordering. Say there is a modification to the source-text

attribute of an object foo in both stelps 5 and 6. In thi, situation, the earlier st,.p (5) n•.t hbe distribut,,d

before step 6. since both modify the sa.m attribute (source-text) of the object too.

40) l)(evlopiincil !4teps

From 1.th above. 11 musl be kepi in mind t~hat. if a mnaintainer intends to work- with several active top-

level steps, she does need a broad plan about. what. she [is going to modify in each step so that, shte can

avoid having a confusing numiber of top-level steps: otherwise care must. be t~aken to ensure that. the top-

level steps modify either disjoint, sets of objects or different attribut~es of the common objects. If Develop

does not. let a user do something in a specific step or carry out. some operations that, the user thinks she

should be able to do, it, is almnost certainly because permitting that operation would make it. impossible to

have a consistent. replay of the developmen~t history

6..1eFnisinng an nOp en Stepusen

odifiedorte defniton inoenssumeenirnen.

OfnoneFogrget to1 inld certanitin chngeswr if the staep. For deeloampent a tcommond tcenroi ath
usermake th texual hanes t theob actions the t oect.ei.bferabtfren ocmih changestem

to the dateabrade. When tep ist finishedg anweope ltooklvel forp arn fore modfi tuher montainin objuects i

inthe rlevatm ofyestem. tor one, ifeerie the oiiainntordern ouffterste relalotoibe tomotheteps. inrthat, itep

beforen oneal finieshtoinclude cetain chisprvges ia tahlae se.Fr e xinding ac~- tomo n th senr. oi ht h

lilt I' I li l 't l to (IL " 41

Another activiiy supported by Dcvclop at finish lime is thlle task of supplying a load order for niewly

added niodule,. or a new load order for module, to which new components have been added in that step.

Ddclop offers the capability to construct a load order interactively before finishing a step. Users ofteen

forget. to specify necessary dependencies between the objects they add to a system. This invariably results

in an unexpected order of installation of the objects. causing anomalous behavior and errors.

D i'lop also deduces a load order for an installation module 3: at the time the corresponding

development step is finished. This load-order can be tailored appropriately by the user. The deduced load

order for the installation module is ba.sed on the load orders for different modules in the system that the

user has already provided. Based on those specifications. Detelop deduces a load order for installation

modules. If the deduced load order is incorrect, it can be changed as needed at the time of step finishing

through a series of interactions with Divdlop.

6.3.2. Undoing Selected Modifications

Aborting a development step has the effect of undoing all its modifications. The attributes of objects

modified are all reverted to values they had when the step was first created. In essence. the sta.te of the

system components and their properties arv as if the step were never created. Often. one doe, not want

to abort a complete step. but merely wants the effects of selected modifications to be reversed. Perhaps.

some changes were not needed or some were simply mistakes which one needs to retract- Dr'wlop offers

one the capability to undo selected modifications. Button on the development step which contains the

modifications. and select. the "Undo Modificationso menu item. A menu of all the modifications will be

displayed. The user selects the changes which she wants undone. and exits the menu by buttoning the

mouse in the area labelled "Do It*. If she wants to abort the undoing operation. the moue should he

buttoned in the area labelled uAbort'.

A pre-requisite for one to be able to undo modifications of a step is that. the step be the current step of

the development. i.e., it is the step being worked on. Also. in keeping with Detvlop's consistency

requirements. one cannot undo modifications if there are later steps (i.e.. steps finished later than the

current step) which assumed those modifications. The selected modifications will be removed from the

development step. and their effects on the databa.,e will be reversed. i.e.. the changes which they represent

will be undone.

Since t.he most frequently occuring changing attribute is the sourc(-1.x1t of an individual-softwar,.

object. there is another way to revert the definition of an individual-sofiware-object. When a particular

step is current. and the user wants a particular object whose definition was altered in that step to be

reverted to its previou,; definition, button on the object. and select the "Revert Definition" menu iteni.

; dLi3;l :jl ~itn m,,.tuui- ;,r- ,ti,'is.j,-, lal Ir inI thi- -* 1 ion 4f h. 1:$li'

42 Developnment si ep,

This will revert the source definition of the object, and remove the corresponding developnment

modification from the step.

6.3.3. Background Step Saving Activities

The persistence of everything that one does using Develop is assured by periodically writing out the

contents of development steps to permanent. storage. Typically. this saving operation is carried out when

the status of a step is altered by the user. Det'dop tries to execute all activities related to saving steps or

compiling step files in the background. This frees up the user from having to wait until the saving or

compiling is finished, and she can resume other activities. Thus, there could be an appreciable lag

(typically a few minutes) between the time one changes the status of a step. and the effect. of that change

are actually recorded on disk.

While DoTvlop does not actively prohibit. further changes to the step. it has sufficient information

during the background activities that it, can restore the step and the files corresponding to it to their last

consistent state. Each step has its own dumping process and queue. The dumping of multiple processes

dumping different steps is synchronized wherever necessary.

In most cases, the process dumping the step is active for just a few minutes, unless the step contains a

lot of modifications. If the process runs into an error while dumping. the changes are relatively easy to

undo. Dfvilop protects the user againt dumper process errors as, much as possible. (e.g.. the remote host

machine to which one is writing is down) by restoring the database to the state before the step status

change was made. Thus. one is free to keep working on the system while something has already

committed is being saved to disk.

6.3.4. Type of Steps

Each development. or pending step must. categorize the kind(s) of change to be effected and give an

explanation of it. The explanation is simply text that describes the change. The step types used to

categorize the change are predefined but. can be extended by the user via the ADD operation. The

primary ones are:

Augment ,nenu itm
Add a new capability.

BugFix

Fix a bug.

CleanUp mnru itfun
Simplify existing functionality.

Fortify

ill I ht,)l , I.)ilI I U J 1.13 "

A modification that. makes the associated software more robtli.

Generalize n1flill if
A change that allows software to accept more cases.

Maintain nu'tit
A modification that is made to retain functionality when other software (i.e.. the environment)
has changed.

Reorganize nit'(Flu itein
Move components between modules or code between components.

Revise

A change that, is not upwardly compatible.

Tune

Improve the efficiency of the underlying algorithms or data representations.

6.4. Installation Order for Modifications

We have seen how the modifications in a top-level development step are viewed as occuring atomically

from the point of view of the database. Thus. the ordering of modifications has no effect on the

resultant definitional state of the system after the step is replayed. However. this is clearly not true

for updates to the LISP environment. Order could be vital in creating a compilable form of a step for

distribution as a patch to users, and different orders of installing the revisions could give different results.

An example of a case where order is important for compilation is when a macro has to appear before any

function which calls it. Clearly. therefore, some ordering mechanism has to be set up for the purpose of

compiling and installing a step into the LISP environment.

Detvlop allows one to have an installation-module corresponding to each development step. created

automatically when the step is created. The installation module is intended to contain all the objects

whose new definitions will be distributed as updates to the LISP environment. of each user of the system

when the corresponding step is distributed. When the maintainer modifies an object, it is automatically

inserted as a component, of the installation module for the step under which the modification wa., carried

out. Thus. Di'dop fleshes out the installation-module for each step.

The maintainer is free to alter an installation module in any way. Components, may be added or

removed as needed by the maintainer. If the order of installation iN crucial, she can then assert a

load-order for the module3 4
. a., she could. indeed, for any other module. Thi,' load order is uti-d as the

N34 ,t No ht Dthalt p a,..i.t- y ;a i r in rintfing a t.a or.rt.r whh•it a t, fiit•h,,I

+4 ln•,t'dllti•,u Ord,+r F<>J" Modii'i,-:,li<)l,-

order m wi]ieh tile modified object.• •ill get writt.en out and compiled. The inslallalion moduh' I'oz" a ,,tt.p

is par1 of the defauh view for a step. It is the value of the patch-module al.tribut+, of a de\elol)n•enl

step.

Develop offers another convenient mechanism of inserting components into the installation module of a

st•p. This is the editor command "HYPER-i°, similar to the Hyper-z command in the Programming

Service. This command can be i.•ued while editing software objects in a system. The meaning of the

command is as follov+'•: Unlike the hyper-z editor command which saves new definition.• of changed object.s

in the edil buffer, the hyper-i command creates copies of the changed objects in the buffer, making

the copies components of the installation module for the current, step35 . The original objects, if the)' were

in the installation module, are removed from it. Also, the definitions of the originals are unchanged. The

command provides a convenient, way to handle cases where what is installed is not the permanent

definition of an object, bnl some other piece of LISP which ha.• a close relationship to the permanent

definition. D(v,•lop will notify the user if the original changes subsequently IN THE SA.ME STEP.

reminding her to change the copy if needed.

Installation modules permit a very important conceptuM separation in D•v,'lop: updates to the

definit, ions of the object.• in the databa.•e are handled through atomic updates using the (unordered)

modificat, ions in a step. and updat• I• the LISP environment are handled through an inst.allat.ion module

corresponding to the .•tep whose contents are del.ermined jointly by Dc'twlop and the maintainer, and for

which a load-order can be asserted to ensure installation in a specified order.

lnstallat, ion modules are particularly handy in some fairly common boot-strapping situations in software

maintenance. For example, say there are some forms which must. be evaluated before a part.icular fea!ure

is dist, ribut.ed. The easiest way is to handle thi• by creating a step. and inserting all the hoot-strapping

forms a• components of the installation module. This is a step with no actual modifications to the

objecls in the sysrem, but will serve the purpose of distributing the boot-strapping forms when i! is

distributed to other users. Similarly. it, is possible to have definitional updat, es alone in a step by

removing all the components of its installation module. Such a step serves a• a definitional update wit.h

no effect what.soever on the LISP environment.

0.4.1. Fixing Frozen Steps Which Cause Errors

it often happen• that after a step i.• frozen, i.e., it is distributed, one discovers t.ha! users report errors

when it i• inslalled into their environment.•. This could happen for a variety of rea.•on•, u•ually becaus,, of

an oversight on the maintainer'.• parl while creating the .•tep. D•1,flop provide.• certain facilitie• to deal

with this common situation.

:]5|| i:• •1|1 P.Pl'or t.<} i•,,;lip | Jl• "Ollllllal|,• W}i"ll thor,, i• n- ,.qrr•n! •t•l,.

• Introdul [iln to, C'LF 45

Once a step is distribuied. nothing about its definitional aspects call be altered since this would have

an adverse impact oil the integrity of the database state when the steps are replayed. However. one call

altler the execution aspects (i.e.. installation module) of a distribut.ed step, removing and adding things to

it to fix up the problems when the step is installed. In most cases, the maintainer must. create a later step

to fix up the definitional environment if needed.

One can "thaw" out a frozen (distributed) step by buttoning on the distributed step and selecting the

"Prepare to Redistribute" option. If the details of the step need to be restored, Develop will automatically

do that, and mark the step as being ready for redistribution 36 . Now, the user can alter the installation

module as needed with one important caveat: the objects in the system itself cannot be altered

unless those modifications are to be recorded as new modifications to the system.

The procedure just discussed assumes that one is in a environment where the distributed step already

exists. In case the step is not present (in either detailed or skeletal form) in the environment, oti" can

button on the development object for the system (part of the default view of a system). and select the

"iLoad Specific Step" menu, item. Provide the appropriate step number when prompted. and Df,,lop will

restore the step. setting the stage to use the above procedure. To get. the appropriate step number (i.e..

to remember which step needs to be re-distributed) one could use the Detvlop facilities to examine the

off-line development history of a systent. dikcussed later in this manual.

AMter making the changes necessary. the user buttons the step . and selects the "Re-Distributeo menu

item. Develop will then use the altered installation module to create new executional updates which

incorporates the changes made to the installation module.

This feature of Drvelop is intended to provide a convenient. method to correct, the inevitable gaffes that

one makes in patching a system. There are limitations:

"* People who have already installed the step in its wrong form cannot. be helped without a later
step which corrects things. Of course, there are cases where once the wrong version of a patch
is installed, there is no way to recover, period.

"* The definitions of the objects may need to be fixed up depending on how the problem caused
while installing the step was resolved.

The points above should emphasize that the redistribution feature is not to be construed as an invitation

to be careless about what gets distributed the first time around.

36ilr so ,nt-,dy tri,.ý to update th, ,Ys•lln at a tim- %•i, W aj distriI,ut-,t si, i. in th,. llhaw'w state. thi- ..t,'I. %nd 311 t,,h-r-
(,-uring iftr it ar, N,)T installedI

16 In-1. allat ion Order or f lodificat ionI

6.5. Non-Maintainer Suggestions

D, vt lop has feat.ures to help non-maintainers conimunicate their recommendations to the maintainer

in a reasonably clear manner. Especially in environments where the users of a system are also expert

programmers. users do not, just, report problems and wish lists to the maintainer, they may also wish to

communicate how the problem they experienced can be solved or an enhancement ought to be

implemented. Dfv'dop's suggestion facility is tailored to suit these needs.

The fundamental idea is that if a potential suggestor can get hold of the definitions in a system that she

is using. she can recommend ways to change those definitions or adding new definitions by creating a

"suggestedu step with those changes. The maintainer reviews the recommended changes. and if they look

useful to the user community at large. a regular development step containing the changes is distributed.

making the suggestions visible to every one. This permits every one to share the development burden

somewhat by letting them think of ways to implement the things on their minds. The maintainer is left

with the task of synchronizing possibly conflicting suggestions with the ongoing agenda of development

for the system.

There are basically three aspects to supporting suggestions. First. how suggestions are made by a non-

maintainer: second, giving the suggestor the capability to have his or her own suggestions installed during

updates to the system if the maintainer has not yet acted on them or has acted but not accepted the

changes: and, finally, how the maintainer can act on a suggestion. examining and either incorporating or

rejecting the suggestion.

6.5.1. Making a Suggestion

A non-maintainer can make suggestions to the maintainer. The suggestion could involve new definitions

for objects which are already in the system or the addition of new objects to the system. For example, if

one discovers a bug in a function, and knows how to change its definition to fix the problem. one would

create a suggestion proposing a new definition for the function. Later. this suggestion would be examined

and perhaps incorporated into the system by the maintainer.

The manner in which suggestions are created is not substantially different fromn the way in which step,

are created. A non-maintainer merely opens a step. put.s her suggested modifications into that step.

finishes the step. and. finally. Odist-ribut~esm it.. The step is not actually distributed, it merely get.s written

out as a suggested step which the maintainer will eventually examine. No users other than the suggestor

and the maintainers of the system will see the suggested update until the maintainer incorporate" it.

A key aspect of making stggestioný is to get th, ",utrrrent" definitionn (f th, ohjeir to niodify Th,.

current definition for non-maintainers is the definition aý of tOw la.t frozen step. in order to get thi

definitions to modify. a non-maintainer has two choie-. Fir~t. the definition- can he restored via the-

lilr,,t p ,111.11(to CLIA 47

"MLoad S.\slein" glolm:l (CLI" interface action. This is likely to 6e mu-h nmore than is ineeded for the

•nagestion because it would restore all tihe definitions in the system. whereas the (.ontel)plated suggestion

may involve just one or two functions. A second possibility is to use the "Hyper-." editor command to

edit the definitions of specific objects. The Hyper-. command brings in the last distributed definition of an

object from disk by reading a master file containing these definitions.

The universe of alterations which a suggestor can make is restricted. For example. a suggestor cannot

alter the release or maintainer attributes of a system. She can only change definitions or add components.

In fact. the components added by a suggestor to a system are not represented a.s true components of the

system. Rather. they are represented as suggested-components of the system. Develop. nevertheless.

monitors alterations to these objects in its usual manner. It. is important that. any components added to a

system have the proper package and syntax designations. The suggestor should ensure this for the

components that she might explicitly add to the system.

After a suggestion has been made. if the suggestor wishes to retract it as a suggestion. and treat it likv

an aborted step. she can button on the siiggestion. and select the "Catlcel" option37 . Duva,•inp pl.

updates the status of the suggest.ion to be aborted in the patch directory. During subsequent updates by a

maintainer or by the suggestor. the step will be treated like any other aborted step--it will be ignored.

6.5.2. Updating a System with Suggestions

In general. a suggestor's patches do not affect the patches installed for the typical user. who still gets

only the patches distributed by a maintainer. However. D(a'lop will install the suggested patches when

the author of the suggestionis does an update to a system.

It is conceivable that a person is neither a maintainer nor the author of a suggestion to a system, but

wishes to install it while updating the system . Dvelop offers a mechanism t.o do this. One can select the

"Accept Others" Suggestionso menu item by buttoning on the appropriate system for which one want to

receive the suggested patches. Detvelop will prompt, for the person whose suggestions are to be received.

During subsequent updates. any applicable suggestions aut.hored by that person will be included in the set

of patches to be considered for installing. One can receive suggestions authored by more than one person

b. repeating the procedure above. If one should choose to remoyv one of these persons from the li,it of

people whose suggested patches one wants to receive, the "Stop Accepting Suggestioný" menu item %,heii

one buttons on the appropriate system is used.

"Whetlher a user is the suggestor (in which ca.,e D(1dop autoinaticalIN a.ssume- t-h, user 'Aant- her

37 T -r' k nI dirr, n,-- i. ,,n- ,, f.- of tht- ,1-r i limi :mi i "AI.,) rl l , .1 l l ,- w"l -111,

4-8 Non-Maiui aiugg,.t iou-

suggestions to be considered for installing if they have not been handled by a maintainer) or a general

user who has opted to receive suggestions authored by one or more persons. D Oldop will permit the

installing of suggested patches under certain circumstances.

It is not easy to characterize just when it is safe to install the suggestions because the suggestions

contain arbitrary LISP code. Deiwlop supports the suggestor in figuring out if it is safe to install a

suggestion. When a suggestor does an update to the system. Dcvelop collects all the relevant suggestions.

and displays them in a menu along with diagnostic information. The diagnostic information includes the

following:

"* What was the maintainer's action on the suggestion? There are four possibilities:

"o :pending-action - indicating the suggestion has not been acted upon.
"o :totally-subsumed -- the suggestion has been acted upon and is entirely incorporated into

a later step.
"o :part~ially-subsumed -- the suggestion was partly incorporated into a later step.
"o :rejected -- the suggestion was not received well. and was not deemed appropriate for the

public at large.

"* An explanation by the maintainer of her action in the cases where an action has been taken.
This enhances the above information.

"* Are there later steps (i.e.. steps to be installed after the suggestion) which modify the same
objects? D,,f lop categorizes each suggestion as being:

"o :safe - no later patches at all.
"o :probably-safe - there are later patches. but they modify ot.her objects than the ones

modified in the suggestion.
"o :probably-unsafe - there are later patches which modify some of the objects modified in

the suggestion.

Based on the above diagnostic information printed for each suggestion. the suggestor selects which

suggestions are to be installed through the menu. The selected suggestions are installed, and the others

are ignored.

6.5.3. Maintainer's Handling of a Suggestion

At the outset, the maintainer can choose not to deal wit-h suggestions at all by simply setting the

load-suggest-info? attributt of the system in question to nil38 . Suggestions can h)e accepled by setting

the same attribute to t. This can be done by using the menu interface. buttoning on a system, and

selecting the option to either *Load Suggested Steps" or wDon't Load Suggestions" when the

load-suggest-info? is set t.o nil and t respectively.

When a system's update mode attrihutes indicate that the steps are to be restored, and the gystem'

load-suggest-into? attribh,- is set to t. suuggestion- are re-tored when m 'Yvtem update- i- done

381, r, hsF f r,.:et - :, -Y-I,-ii, A ith w,. %I':du ,.,r t h, Ioad-suggemt-lnfo? att rihlii- as if il : I ',f

hit rodu,'t i,)n I() (11,: I

Re'.toring a sugg0,t iol ha1 the, efl'ect of re,.toring th, step without affecting in any way the objects

in the system. The sugge-.tions and their constituent modifications are merelN slor,.d a- part of the

development history.

The maintainer can examine a suggestion in a "read-only" manner. This can be done by selecting the

"Examine" option from the menu one gets by buttoning on a suggestion. Examining ha.s the effeci of

displaying the suggested modifications in a read-only buffer, edits the installation module for th,,

suggestion. and displays the current definitions of any modified objects if possible. This givle the uer a

chance to asse-,s the value of the suggested change. Develop also prints information about which chaiges

are possible to incorporate exactly as they were suggested (meaning. the suggestor modified what is the

current definition for the object in the maintainer's environment) and which changes may require a merge

between the current definition in the maintainer's environment. and the suggested definition.

A suggestion cal l)e rejected by choosing the "Reject." menu item after buttoning on the suggestion.

This has the effect of making the step invisible to general users (except the suggestor himself!) and the

nmintainer for uilhsequient updatel.

The suggestion can be incorporated by selecting the "Incorporate* menu item after buttoning on the

suggestion. D~rwlop now put, up a menu of modifications from the suggestion. The maintainer selects

those modifications she feels should be made a permanent part of the system. If new component- are

proposed in the suggestion. and the maintainer likes them. the modifications corresponding to their

addition must be selected as well. Dcv'lop opens a new step. and the selected modifications are viewed as

having occurred in the new step. If a step is already open. one has the option of either uing that step

itself to incorporate the suggestion or to suspend that step and create a new step.

Incorporation happen. automatically except for suggested-components. Recall that these are not

true component.% of the system. but. rather. are components suggested by the suggestor. At incorporation

time. Detvlop prompts the maintainer to decide which module the suggested component should become a

part of. An object is not permitted to be both a suggested-component of a system and an actual

component of the system If there are objects in the installation module of the suggestion which are not

part of the system. Df,'rlop queries the user about whether to add each to the installation module for the

step into which the suggestion is being incorporated. After this. a.s part of the incorporation. D,,ivofi

prompts the maintainer to de,,cribe her actioti regarding the suggestion. This information is used in

helping suggestors to figure out if their suggestions are still safe to install.

After the selected modificationt are put into the currently open qtep. and th, databa,, refl..ct- the

appropriatýe definition-, tihe, maintainlr n•merol fini..he- and di-trihti.- t•lh,, .tel :i- .dh,, omld :If) . th,',

Thi. makes the sugg'-'ted change" a-tilatl' lo all user. of th,. s. stein

50 Noti-aInal :,iuivt Sugge,-t i,,

6.6. Querying the History

Drv,'lop maintains a detailed history of how the object, in a system change over tinme. The intention i,-

that such a history will provide the maintainer important information about when and how an object was

changed. relieving the maintainer of much of the tedious book-keeping burden which she might otherwise

assume. However, merely having the information is not sufficient. There must be some way for users to

access the information as well.

Dct,dop can present several paraphrases about the development steps in one's environment at any time.

For example. when one buttons on a system, the "OverviewN and "Active Steps" menu items provide a

summary of all the development steps in the user's virtual address space. and all the volatile steps

in the user's virtual address space respectively. However. these kinds of reports presuppose that the

development step objects are already in the environment. What should one use to find out about steps

that do not exist in t.hat environment?

DeIlop permits one to view summaries of the off-line history it maintains. The facility can be accessed

by simply buttoning on a system and selecting the "Off-line History" menu item. "Off-line". in this

context. means the history is not in the user's virtual address space. but is out. on persistent storage. This

facility comnes in handv if one wants to find out about the development of the system without actually

restoring the steps into one's environment.

The facility permits one to get an overview of all the steps in the system. or just the volatile steps. just

the suggestions, just the pending steps. or steps which modify a specific object etc. A rich variety of

information is made available through this facility. The limitations are that there is no general query

mechanism to interface to the information on persistent storage. Driflop provides some "canned" queries

to access the off-line information. However. if one needs to navigate the information in some arbitrary

manner. there is no way to do this unless the relevant steps. in all their gory detail, are restored into the

user's virtual address space. The user is then free to use AP5 queries to navigate the history as desired.

6.7. Making New Release of a System

The step, in the development hi-tory of a system apply to a specific release of that system. Whenever

one has to start a new major generation of the system, for example. when one needs to make a major

change in the surrounding kernel software. one has to make a new release of the system. By making a

ne%% release of a system. one is essentially starting a new development history for the system. a neA

sequence of development steps which will apply only to the new release of the system. Obviously. creating

npw release,, is not a routine or commonly occuring maintainer activity.. Nevertheless. it does happen. and

P) rolop I ipporl' cr,'alion of Il % I'- elem.m.-', to 11k1 Ik 1 I I'talltil toII t, h h 1' A I'vl.,ta.,vt' ,11)O Ih.

Onl.% a ,naintainer can make a new release of a ,sytem. and even -he cannot do so if there are %olatil,

lit iloducl lont to ('1.F 51

steps in the development of the s.\steni at that tinie. \olatile step, indicate an initiated. but unfini'hed.

agenda. Therefore. creation of a new: release of a system is not permitted when the system has volatile

steps. One can create a new relea.e by buttoning onl a system. and selecting the "New Relea.se" menu

item.

Creating a new release of a system has the effect of saving the system completely -- all its definition,

and a complete recompile. Devflop increases the relcas, attribute of the system by 1. and then set, up a1

new patch directory to hold its steps. Dvfclop permits the transfer of certain kinds of steps interactively

from t~he old history the new history:

"* suggestions by non-maintainers which have not yet. been handled.

"* pending steps which have not yet been handled.

Thus. the ongoing agenda of thing, to do can be transferred to the new release at the maintainer',

discretion.

An important decision needs to be made by the maintainer. 1, it safe for users of the old release of the

system to continue to receive upgrades from steps made to the new release of the system? There is no way

for Dctvlop to determine this automatically. It merely rinds out from the user. If t.he two release., are

incompatible. as is often the case, the development steps corresponding to the old release should be

maintained disjointly from the step, for the new release. If the maintainer wants to permit users of the

old release to continue receiving upgrades. she can specify that she needs a bridge step from the old

release to the new release. A bridge step automatically increments the release value of a system when it is

installed. thereby enabling users of the old release to receive the upgrades to the new relea-se on

subsequent, updates.

6.8. Operations

CLF enables the user to edit. install, compile. add. or delete software in CLF. Dftwlop records those

modifications. encourages the user to structure them into meaningful units of work, and uses this recorded

history to manage the installation of changes. for revision and release control, for distributing update,.

and for providing maintenance documentation. Most operations can be chosen by selecting items from a

menu. This menu is generally obtained by selecting a ('LF object with the right mnouse button which

pop, up an appropriate menu. The operation, are:

Abort

development -tep inm rfarc roynmia id

Abort a development step. A dump file is written. Thi- step. however, can never be re.sumned.

finished. or distributed. This interface command is onl. offered when a step is pending. open.

or finished.

Accept Others' Suggestions

"•.tIvln i lve rI COrfar, 1•omia id

52 Op'.1()l~or:nt

Prompt- for a person who will be added to the list of people whose suggestion- to thai ,tem
will be installed into one's environment at the next update.

Active Steps system inh(rfaoc command
Displays the open steps for a development (i.e., those that have been created but not vet

finished), or the previously opened step if none are currently open.

Add Attribute software object it(rfacr command

Adds an attribute to an object. For software objects. this is the standard way to add

maintainer, documentation. local-declaration. module-directory. read-syntax.
read-base. and read-package attributes.

Add New Component(s)* module interfacef command
Creates a new software object. and adds it to the module. (licking right. on this item will

select the editor as t.he current process and ask you to enter the defining form(s) for the new
component(s) using the editor. The appropriate type of component is deduced by the defining

form. Clicking left. on the other hand. would prompt you for the type of object and it,

definition. During prompting for the object type. typing COMPLETE will pop up a
menu of valid types. one of which must be selected. Finally. (licking middle Mows at) exi-Ing
component to be added to a module. attribute) command when applied to module.,.

Add/Remove Dependency global inter fac. action
Command to specify new dependencies between a particular system and step and another
system and step. Can also be used to remove such dependencies. and to add global

dependencies.

Add Type/Explanation development step ibt-rrface command
Add a step type and "or explanation to a development, step.

Bring Up To Date individual program object interface command
Installs the most recent definition of the object (and correspondingly update., its source-text
definition). Only offered on objects whose source definition is not current (because a previous
version of it had been installed by the (Re)Install command).

Cancel suggestion inter face com wand
Abort a suggested step after it has already been suggested to the maintainer. If no-one has
already handled the suggestion, this will let a user retract her suggestion.

Change Update Modes system inter face command

Puts up a menu of the update mode attributes and their possible values. Current values are
marked. Newly specified values are used to reset the update mode attributes.

Checkpoint development step iY trrfac comiand

Dump a development step but. leave it. open.

Coerce To System module intrrfac. cotm~nand

Coerce a module to a system. If a module-directory has not already been given for the
module then the user will be queried for one. One should type in something that can be
coerced into a valid pathname specification. A developni.nt is then creatd with ati initial

A.tep that record- the initial definition• of the omiponient- of ih,. ,y- ci

Create Step s.tem i oc IMrfa CellO 1d

lilt r d ,iu 't o C 1t.. (5I:

('reat. :a iie\% delelopinent step a. a sub-goal of thw currently active step. If no tqe;, iý curi-ni.
Develop will pop up a menu containing open and pending: one of thle-e must h, -elected a,
the initial stat us. Otherwise. the status of the step is :open. Then. another menu %%,iIl pop uip)
which asks if you want to "set the type and explanationn: clicking on a mouse button is an
affirmative reply. moving the mouse away means that you will provide a type and explanation
at a later time. If you decide to add a type and explanation, a menu of valid step types will
be displayed. You must. choose one. and must input an explanation for the change.

Create/Load System* global intlrfacr command
(licking left causes a new system with no components to be created. one must specify the
module-directory attribute, which specifies the directory where the software will reside. A
development is also created. Clicking right loads an existing system.

Definition development, modification int ierface command
Display the recorded object definition for a modified software object and.'or the incremental
change that was made to it. Module modifications are always incremental changes. whereas
modifications to individual software objects are generally newly recorded object definitions.

Describe Copies individual-soft ware-object mint r fact comn mand
Shows information about the different copies of a given individual software object in different
installation modules.

Distribute
development step interfact command
Distribute a patch to the user communit.y. This causes the modifications in a step to he
compiled. which will then be installed into a users environment when she update, the system
which corresponds to the step. When distributing a -tep the compiled text corresponds to that
which has been installed in the maintainers environment. The maintainer is warned if a
modification made within the st-ep has been superceded by another from a step not yet
distributed.

Dont Load Suggestions system int(rfac' command
Do not restore suggested steps for this system at future updates. Issued by the maintainer
when she does not want toý review suggestions.

Edit
program object, intfrfarf command
Modify an object by editing its textual representation. The textual representation of an CLF
object. will be placed in an CLF object buffer. After editing has been completed (as indicated
by hyper-z or hyper-x control-s) the modified textual representation will be reparsed to
define the structured definition of the object. For individual software objects. the new
definition will be saved and a development modification will be creat.ed corresponding to this
change. If a developmenit ste) is not open then Df #wlop will automatically prompt the u~er to
create one.

Edit Patch Module
generalized-step inf rfact cormmaad

Edits the installation module of the buttoned development step or suggestion The order of
editing can be selected by using different the left or right click.

Examine
suggestion int, rfui, coma t.d
Examine a suggestion -- edit, the current definition- of thO modified ohj,-ct,. piut- the

suggest.ed definitions of the object-ý in a buffer. and edits the installation module if it contair,•

objects not already in the system.

Finish
development, step intcrfacv command

Only the author of a step can finish it. The step and its modifications will be dumped to

ensure its persistence. If it is a top level step. all modifications made within it that. have not
yet been installed will be installed.

Finish Active Steps* system int(rfar(conimmand

Finish the open step(s) of the system and dump them. Only the current step will be finished if
the left button was depressed. Otherwise, all open steps will be finished. If a top-level step is
finished, all of its modifications which have not yet. been installed are automatically installed.

Handle
development step interfacr command
Handle a pending development step now. The status of the step is changed from pending to
open. and the step becomes the current step.

Incorporate
suggestion int•rfacf command
Incorporate a suggestion. If a step is already open. it may be used. Otherwise, a new step is
created. A menu of suggested modifications is put up. Selected modifications are inserted into
the step in which the suggestion is incorporated.

Install/Compile development step int rfacr com manid
Install any uninstalled modifications of the development step into the environment.

Restore Details development step intcrfact command
Restore the most recent details about the development step. restoring it completely. Used
often when one has only the skeleton of the step restored.

Restore Specific Step
development inthrfacr command
Prompts for specific step number, and restores the step. with all its details. The objects in thte
object. base are not affected.

Restore Suggested Steps system int.rfacf command
Puts up a prompt to determine whether to restore the suggested steps to the system. either
when the next update t.o the system is done or right away in the background. Carries out the
selected option.

Modifications* applies to several types inthrfacr command
Print the modifications made to a individual program object in reverse chronological order if
the object clicked on was either a software object or development modification. However. if it
was a development step then print the modifications made within it. If the middle button i',
used then also print the modifications to embedded steps.

New Release sN-tetn it h rfacr coni maid

('rate:e a new relha.-, of the svyt em. a fresh dunip of the' .t cm and a mne' patch dir,.leo' .
The sYv•tem mu-t be definitionally up-io-date. and t hre ,iu-t h.. N() olatih.e -;ilp- in ih,,
development for one to be able to use thik command.

Off-Line History NNyst emI i .I tlrfari ri-, ninatd
Pro% ide. facillities- to view the hist ory of thle developmne:t of lilt sN~temI using canneid qLeiiei-(-.

Overview *

system or development, st~ep tnicirfac(corn .::and

Print, an overview of t~he changes to a syst-em or dev'elopmnent st~ep. In t-he case of a system.
t.he user has the option of seeing all development steps. all pending st~eps. or all suspended
steps by clicking left.. middle. or right on t~he menu it~em. respectively. In the case of a
development. st~ep only an overview of that step is prov'ided.

Prepare to Redistribute
development step i .nierfaci, cominan~d
Prepares a distribut~ed st~ep for redistribution by restoring t~he details of t~he step if necessairy.
and marking it appropriately.

Query History
individual-soft ware-olbject itti-rfac(cominand
Summary of change., to a specified object front the development step, in virtual addre's space
or out on persistent storage.

Re-Distribute
development step ititr face' command
Re-distributes the designated step by creating a new lisp file for its installation nmodule and
re-compiling it. Will be offered only if the step is prepared for redistribution (See above.)I

(Re)lnstall
development. modification inkir face' cornmai:ad
Install a development modification. This updat~es both the definition of the modified object in
the database and also., possibly. the LISP environment..

Reject
suggestion int-rfare, com::mand
Reject a suggestion. issued by a maintainer. The suggestion will become invisible to everybody
except the suggestor herself.

Resume
development. step inicirfacc comm and
A suspended step may be resumed, which causes it. to become the currently active step. Any%
open steps which are not. ancestors of the resumed step are themselves suspended.

Revert Definition
:iidiv-iduMzi-.s-oft ware-obje-ct inl!'rfac(commatinad
While a step Is, current, this is used to revert the source definition of an object modified inl
that step to its previous definition, and remove the corresponding modification from fthe step.

Stop Accepting Suggestions
symt m int(rfacE con: nmard
Prompt'. for a person who shotuld be deleted front the 1k:i of people front whom suggest ton., are
being accepted. Suggestioný fromt the person will not b,- in~t all--] it thlet next uipdate to t he-

Suspend

•()perat ionl.

development step i .t(rfacr cominand
Suspending a step causes the step to get dumped and its parent (if one exists) to be selected as

the current step.

Terminate
development step inter fac(command

Terminate a finished step. For the maintainer. it like a distributed (i.e.. frozen step). but no
non-maintainers will ever see it.

Undo Modification
development step inthrface command
When a step is current. this command lets one selectively undo modifications in that. step.

Update
system infer face comnmand
Update the system as directed by the update mode attributes.

Update Systems global intrfacf command
Causes all systems to be updated according to the specified update mode attributes. These
attributes are usually pre-set to either a user profile or a maintainer profile. Depending on

need, one can alter theni directly.

View Dependencies
system interface command

View the dependencies specified bet.% een the steps of the buttoned system and the steps of

other systems.

6.8.1. Additional Editor Commands

HYPER-i editor command
Create copies of the changed objects in the buffer. making the copies components of the
installation module of the current step of the development. The original objects are
unchanged. and will themselves be removed from the installation module if they are already
component:s of the installation module. Error to do hyper-i without a current step in the
development.

HYPER-. editor command
edit the definition of an object. The last frozen definition of the named object is obtained from

a master file. The object is created in the user's environment as a suggested-component of the
system of which it is a part.

6.9. Examples

To create a step without specifying a type or explanation.
user input:
Selected menu item: Create Step (FOO)
Current step:

O-Stip .-? of FO0
fO0

To create a ne,, syt en.

Introductioti to C) (iF

user input:
Selected menu item: Create System
Input the proper-name of the system: foo
Specify the default system directory: local:>
No step active. No previous step.
Development FO) created for system FOG.

5"

Appendix I
Lisp Universal Kode Elaborator

1.1. Overview

LUKE (Lisp Universal Kode Elaborator) is a code walking "shell*. Code walkers are used for a variety

of program analysis tools. Luke is a shell in the sense that it performs no useful task in its own right: it

must be tailored to a particular application by providing certain functional parameters. and. perhaps.

designating specific control for selected macros, special forms, or functions.39 LUKE can be used either to

compute a transformation (some "image*) of a piece of code. or solely for side effect -- e.g.. to gather

statistics about the code.

LUKE imposes a limited sort of "grammar" on ('ommon Lisp diat suffices to factor code into roughly a

dozen subcategories. The code walk is driven by a walker function for each category. The defaihi walker

for each category may be overridden. The actual walker to use for each category is passed through the

code walk in ke.%word parameters.

LUKE is highly extensible. The collection of "grammatical" categories can be extended by adding a

new kevword and a default, walker for the category. A LUKE codt-walk is guided by an aapplication"

name. Each application may specify dispatches to special purpose code (designated walkers) on forms

having designated symbols in their CAR position. Designated walkers may also be designated as

application-independent odefaultsO. This is primarily used to tell LUKE how to treat macro uses without

expanding them. It is essential for extending LUKE to cover embedded languages. A designated walker

may ovrrridr the default behavior or simply augcrnl it.

LUKE provides a template language to ease the specification of designated walkers. Templates are

compiled into designated walkers, not interpreted during the code walk.

91 "I- lit , 4 ", 1- 4ýl• I,, .A,..ignattp sj,,.,ifi,, con~ro1 ft-r iii- of I,. .' l -, j, -1iw,,t ,,: r, ,r FI11, 11, 11,, -

GO

Appendix II
Source Code Importer

To support the use of CLF in maintaining soft~ware developed in other eiivironmnents, a facilitY Is

provided for importing source code files. The facility works by making a single pass over the fili' to

produce a module containing a single software object. for each top level lisp form in the file.

Each software object. is given a Source-Text attribute. The value of Ithi attribute Is the strinig

representation of the text in Che file from t~he beginnning to the end of the form on the file. InI part icuilar.

case distinctions, read macros, and comments are preserved as tbhey appear- onl the rile.

Top-lev'el comments on the file, whether in ":" or 0#10 form, are turned into strings and made the(

value of the Documentation attribut~e. Since it is not possible to be sure just what sofi wari- obje.ct a

comment would be best attached to. t~he following heuristics are u-sed. Any conininient appearinig be~fore

t~he first software object form on t~he file, or after the last one. are attached to the module. All other, are

attached to the first form following the comment.

Two top level forms are given special treatment. When an NPAlG forin is encountverd, no

software object is created. 40 Inst-ead. *'pardkage*' is changed so I~hati following formn-. will be'- read In tisI

package. If no coinpotient.s have yet been created for the module, this package is miade the Read-Package

of t~he module. A4s each component is created, if the current package differs fronm the module's Read-

Package, then t-he component is given an explicit Read-Package attribute. Otherwise it is allowed to

inherit from t~he p~arent.

A top level EV~AIL-WHEN form does not lead to the creation of a new compotient. Instead, each rorm

within the eva-l-when is t~reated as a top-level form of the file. The components~ created for these forms

are given explicit values for their Eval-When attribute corresponding to t~he time,, list of the eval-when

form. 41

MAKE-LISP-FILE-INTO-MODULE J~athname &key given-module module-name]

This is the function for importing a file. Pa~thname s-houild be eit her a pat linaite. otrg.0

file streami.42 If the :given-module keyword is provided, it., value :should Ibe an exi-.ting motcehile.
InI this ca~se, the module created is made a component of that miodule, and tie. initial reading

40 ThorrorA. when an IN-PACKAGE form is the first form in a rile, eomrnnern,t inimpliatel~v fd(Ww~irg it :er, r-g'tI : w-rlining
1,, the' mnodule', not Io the' ne'xt fornm

41 Nostei eval-wh-n *iau-ý' rp-ult ini the mloie enprits t-ping give'n FEval-W~he-n att~rj.ite.f N:slie- fr The'ine- e i:r1*?Ih'1n l

4.,)-io e

42 n 'v e'tarw-e r ýImjw~e wmel~i -it). tevit the' tnporie'r relie, ~,n Ihe' I~,'~e N... 1;eie . - 1 11 t-p J, tti.'i i(
rei nt ion.

envirouniewl is determined by the given module. Otfherwise he 'reading environmenl froin the
calling environment is used. values for t,he Read-Package. Rvad-Ba-e. iand Read-Syntax
attributes are assigned to reflect that environment, and a Maintainer at~tribule is assignned to

be the logged-in user. The Proper-Name of the new module is that specified bN the :module-
name keyword. if provided. Otherwise, the name component of the file is used.

IMPORT FIlllE s.y.stem op)ration
This system operation conducts a dialog to obtain a pat.hname and module name from the
user. It then invokes NAIKE-I,ISP-FILFINTO-MODt'I,E.

fliti r%) 111t ltn tI (163

Appendix II1
CORONER -- An AP5 Debugging Facility

The "CORONERN. provides a mean., to debug failed AP-5 atomic transactions. There are numerous

reasons why an ATOMIC' transaction may fail to complete successfully in AP5. Two of the most conmmon

are UiNFP\-D-('ONSISTEN(')Y-VIOL]ATION' (finite termination of consistency cycles with a rule twill

violated) and CONTRADI CTOR Y-UPDATES (attempting to both +-+- and - the -,ame tuple in the

atomic transition. whether from tlie originating program or a consistency rule repair clause).

For these two classes, of failure, if the abort is not caught by the originating progan). a

PROCEEDABLE error is istigalled. If you choose the corresponding proceed option, you will be giVenl a

Chance to inspect and modify informatiotn about the trawsaction in the editor. Whetn you indicate you are

done editing (hYper-Z). y-ott will be offered the opportunity to retry the (possibly modified) transaction-

While voni are editing the transaction, You are OUTSIDE of atny atomic. so y-oul may modifyi the

database (including its rules).

The t~ext you edit looks like the following-

introductory explanation

(atomic
Tuples asserted by the originating program

#1
Manalysis- of each consistency cycle

In the tuples, you see in the text, objects that have a readable print, representation are printed in their

readable form. Other object., are bound to generated variables (which have names like the defaultniane of

the object) and the variables are printed. If youi answer YES4 to the oretry?" query after concluding your

editing. the program You have created i, >ecte ini place of the atomic transaction from the originating

program.

64

Appendix IV
User Interface Resources

The X1I window protocol provides a concept of "resources" which allows an end-user to state general or

application specific preferences and a means for an applications (called a "clientm in Xi1 jargon) to view

and. if it chooses, honor those preferences. The preference- may be used for tailoring color and font

choice. among other things.

IV.A. Color Resources

There are a number of different, logical ecolors" that CLF uses to highlight text in epoch. The binding

to server colors is up to the user, and is now controlled by entries in the server resource database.

The resource entries take the form epochserver. logical color namne : server color name Table

FV-O enumerates the logical colors used for displaying task status in the task status buffer.

Logical Color Default Interpretation

outputlavailable green The background used in the task status buffer for

displaying running tasks with available output.

inputblock red The background used in the task status buffer for

displaying tasks. blocked for user input.

terminated black The background used in the t-ask status buffer for

displaying terminated tasks with available output.

Also used for the notice placed at the end of a

terminated ta.k's buffer.

Table IV-1: (LF Task Status (olor,

Table IV-- enumerates the remaining logical color, and their tiies.

If neither foreground nor background is explicitly specified for hyperlext. th,. Epoch default- will appl.y.

and t1 1,- ibe text will not be highlighted at all. although it \%ill -till r,.polid to uiiui. 'click- If ,,,I\ a

background i- specified. the foreground will use textcolor A backgrouund nu..t he 1.-,cified if a

66i (olor f '-,,,'

Logical Color Default Interpret at ion

textcolor black The foreground color for highlighted text of all kinds.

This is the color of the letters.

uptodatecolor green The background color of an object label (in buffers editing

collections of objects) when the buffer text. reflects

the current database state.

outofdatecolor red The background color of an object label when the buffer text

does not reflect the current database state.

remotecolor yellow The background color of an object label (in buffers editing

collections of objects) when the buffer text reflects

the current database stat-e, but the object is being modified

on some other machine on the network.

promptcolor red The background color used for prompts for user input.

hypertextbackground The background color for hypertext obje.ct, printed to text

streams.

hypertext.foreground The foreground color for hypertext objects printed to text

strea ms.

Table IV-2: CLF Logical Colors

Foregrounid is also to be specified.

If no value is specified for terminated, white text on a black background is used. If ai %alut' is, speeified.

the Text.color on the specified background is used.

rV.2. Font Resources

CLF's interface windows (other than the text editor) are generated bY a tool kit called Forni~sl'.

FornisKit applications are free to specify any fonts they choose for various formns. liowe~er. ForiniKit

provides, X-server-dependent bindings for a number of fflogical" fonits, so application writer., can -jlimplif.%

font selection if they' choose. CLF's interface forms, such as browsers and dynanmic views. use these fonts.;

The logical fonts comprise three si:c.,t with four farc.- each. as depicted in table R"-2. The resotirce

ent ries take t~hu formn Fornit-kit. logical font name : erver font nanw

aiize\fae-e Plain ItlcBold Bold-Italte

s;mall SniallFoni sniallitalieFont smalllloldFont sniallBoldlt alicFont

medium font italicFont boldFont boldlialicFoiit

big bigFont bigltialiiFont bigBoldFont big~oldlt alicFont

Table IV-3: Logical Font Resource Name,

Formshit applications expect that. all fonts of the same logical size will be bouind to server fontt of the

same height. 43 There is also one other "logical" font., specified with the resource naitte

"workstationSt~andardFont name". This determinesý the font that form-nki-se by defauilt if no font i

specified at all. either in the form definition, by the program which cremte, the formt inst Thiee, or ill ill"

Xl I server's resource database.

-to-,; not fl1patl that th' rowi n-it-r. t(, t-P t'i\(-wmtt t. til ontY that. -.g.. ýn lag in I h'ton -Im 'i 't tri ,IIl I- t11 -:11 %tt h

EM'

lilt lr)dl-tilol to ('L.'" 69

Appendix V
Site Configuration

Although CLF is primarily a virtual memory application, it. does require a file system for specific

purposes. most notably, to make software objects and evolution history persistent. Because each software

syst-em designates a directory for its persistent data. no special site configuration is. necessary. The user

simply must be running an OS configuration that makes the strings used as module-directory attribute

values resolve to legal and accessible directories.

At a given site. CLF maintains a master directory of all the software systems it manages. Each site

should dedicate a file system directory for this purpose. The variable pgm::*SITE-.%ODI ILE-

RE(GISTRY* should be globally set to a value (list of strings), suitable as a directory value for (''.,

make-pathname function. that will designate the chosen directory.

To interface with a sites hardeopy capabilities. CLF requires a directory where it can create temporary

text files. The variable ap.5::*HA-fDC'OPY-DIRE('TORY* should be be globally set to a value (list of

stringsl. suitable as a directory value for CL's make-pathname function, that will des.ignatv the chosen

directory. The initial setting of ap5::*HARD('OPY-DIRECTORY* is ("trap"). which is suitable for most

Unix platforms.

On some lisp platforms. CLF must create temporary files in order to compile source code. The variable

pgm::*TEMP-FILES-REPOSITORY* should be be globally set to a value (list of strings), suitable as a

directory value for ('L'. make-pathnaine function. that will designat.e the chosen directory. The initial

setting of pgm::*TEMP-Fll,E.S-REPOSJTORV* is ({tmp"). which is suitable for most U'nix platform.,.

7',

ini rod11('t ionl io (LF 71

Index

(Rp)lnst~aII (interfa~e comtmand) 5.5

ACTIVATE-KEY 17
ACTIVATE-KEY-LABEL 17
APROPOS-WILDCARD 19
APROPOS-WILDCARD (variabele 19
*COMPLETE-KE' I-,

'(OM"PLETE-KEY'-LABEL 17
*default-eode-read-l-ase' 26
*default eod&-read-svnt~ax. 27
DEFAULT-LISTENER-PACKAGE (variable) 24
*DEFAUTLT-MODUTLE-LOAD-ORDER-GETTER' 28
HELP-KEY' 17
*HELP-KEY'-LABEL' 17
'MENU'-KEI'* 17
'MENU-KEY-LABEL' 17
'QUTIT-KEY' 16
QtTIT-KE)'-LABEL 1fI
*S(FTWARtE-CLASS-L(.IAD-(ORDER-PREC EL)ENC'E'
'STANDAkRD-LISTENER-BINDINGS'.* (v 'rctaotel 24

Abort linterra.-e command) 51
.4ctive Step., (nteýrrace conini:nd) 52

Add Attribite (int~erfaee commuanud) .52
Add New Couuponents (int~erface c-ommand) .52
Add Type/iExplanation linterraep omnoinuad) .52
APROPOS IS
APROPOS (fun.7tion) 18t
APROPOS-LIST 18
APROPOS-LIST (function)I 18
APROPOS-LIST (variab-le) 18
APROPOS-LIST' (variable1) 18
.APROPOS-LIST** (variablel) 18
Atumiii changes Icon--e;t.) 34I

Augment (nuenu item) 42

Break (interface -command) .11
Bring Up To Date (interfa.e coruumand) 52
BugFix (menu item) 42

Cancel a suggestion (concept) 47
Cancel Suggestion (interface command) .52
Change Update Modes (interr;.ce comnu-und) .52
Checkpoint (interfacoe ownian~i) 62
CleanUp (menu itema) 42
(CLF 26
C'LF-USER 26
C7LFL (macro) 23i
CUFM (marro) 0-1
CLFR (marro) 23
CtL 1
C'oerce To System i(interrfac.oP-raaaaaaiadl) 52
(Common-Lisp, 26
C*ompile (inte!rface -omniand) 31
('oraipiler 29
(`*riar-nen- 2',
C'om;-ponent* 25ý
(ompononi-of 2.5
(on.-isient rq oniay lone 1l

72

('.st ant -Definif ion (,lass) 30

(jpi.- of Wj)tj..1 (iiterfa- orumnandi.) F,3

('0R)NER 63
Create Step lint erface command) .52
Crpate/'Loadi System (interface eoijinand) .53
Current step (concept) 33

DEFAU.LT-LISTENER-READTABLE* (varial-1e) 24
Dpfining-Function 29. 31
Defining-Tempiatoe 29. 31
Definition (interface command) .53
DEFINTERFAC E-C'OMN4AND (ma~ro) -21
Defsoftware-Cl!a-,;: 31
Defsort~ware-Cla.c,s (ma~cro) 31
DEFSYSTEM-OPERATIONS-(OMMAND (tiaero(2
Dependencies (interface ýommnand) .56
Dfvelop (programming environment] &I
Development (c~oncept.) 33
Development modification (cone-pt) 33
Development stop (econcept) 33
Dktrihut~e (interface '-omniand) U5
Dont Load Suggostions (interlfac com~inand1 .5.3
Dynamnic Browser 17

Edit lintorf'a-' -oinnijand) .53
Examine (interfawe "ormnand 53

Finish (interfare oommand) 54
Finish Ac!tive Steps (interface cominaaand) .54
FixNing Distrib~uted Patches (eonncel t5
FOCAL-COMPONENT (attribist-) 28
Fortify (menu iteml 4-2
Fun.'tion.Derinit~ion ("last) 30

Generalize (menu item) 43
(Generalized.-Variahle-Derinition (dawss) .30
Glob~al Depe~ndency (interfaep command) .52
Gloha-l-ariablo-Dofinit~ion (clas-) .30

Handle (interfacpe ommandl) 5-4
HYPER- (editor command) 56i
My per-Dot (program) 47
ly per-i (editor command) 44. 8

Mly por-x M JZLEACS Command)I 23

IMPORT FILE (system op~eration) 62
Incorporate (intoerfa.-e command) I54
INDIVIDUAL SOFTWARE OBJECTs 2.5
In-tall (interfare commandi) 31
Install 'Compile (interface oomnian'1) .54
Installation module (concept) 413
Installation Niodlu Editing (int-rfa. commitand) .53
Installation Ordor (coneopt) 43
Installer 29

Lisp-Formn (class) 30
LISTENER- CONTEXT- BIND (function) 24
Load Oth-rs* Sugg-stions, (int ertse-,-ornm~and .51

Load Spe~ifi., Stop (interfacpecomnitand) 541
Load Sugg-fsted Slep~s (intorface *ointmiand) I54
ILond-Ordler 27 29

N4osinC aiii I ni-m 'ii-) 13

hi l odti(t101 iot) C IA. 73:

Maintam~tr 25

4MAKE- LISPTIF[LEINTO- MODULE (rune~tion) 61
Making a Suggestion fenncept) 46
Making New Release- (concept 60
ML (macro) 23
MM (macro) 23
Modifications (eoncepr &A
Modifications (interfac~e command) 54
MODULE 25
Module-Direct~ory 2-5
MR (mapro) '23

New Release (interra~p commtand) 54I
Non-maintainer Suggestions (concept.) 46

Object. Definitions, getting (concept] 47
Off Line History (interfare command) 55
Open dpvolornient step. (.on.'ept) 39
Overview (intorfa.' command) 5.5

Pending developm~ent mteI' (e-oncept 1 39
Prepare to Redi.stribuite (interfac'e commnand) 455

Query HistorY (interrfa.- commiand) .55

Re-distributeP (intrrfa-.- omiuodl .54
Re-distrib-uting stop1, looneept) 4.5
Rpad-Ba~e 26
Read-lhase* 26
READ-EVAL-PRINT-L(tOP jf~mtion~ *24
Road-Pa~k:.gp 26
Rotd-package* 26
Read-Syntax 26
Re~a.-synt~ax' 26
Ro~oiving Others Suggestions (coneept) 47
Reject (interface --otintand) 5.5
Rejoeting)t~hers Suggestions iconceppt) 47,
Release, (concept-) So
Reorganize (menu item) 43
Resumo (interface command) .55
Revert Definition (interfare command1) .55
Revert Object (coneopt) 421
Revise (menu item) 43

Save (interface command) 31
Scrolling 9
Selecting Suggested Steps (coneept) 48
SHOW-MENIT (maero) 23
SOFTWARE OBJECTS 25
Soft war--Class.-D-fini iotn (elass,) 31
Sourop-Text 26
Stop Details (interra'e command .54
Step explanation (conep~t.) 33
Ste(.-to-Stol, Depeiinleny (int~erface command) 52
Step-type (concept) 33
Stop. A.,-o'pting Sugg-ýtions (interfa.e command)1 .55
Struet ure-Dorinition 'lIass) .30
Suggestions, (conrept) 46
SUIJp#nlt inrfe cotia11nian) 57)
S'tS-MIEN17 lanaer' 23

TellMe-A~out 19
TEMPORARY-MENU (formp) 201

74I

TENIPO)HAR'-MENU-(HO()'SE (fu-ioni) 21

Tun- (mlnoji tem) 43
TYI-Fefinition (rlass) 30

Un break (interrace command 31
UNDEFJNTERFACE-C'OMMAND (macro) 23
tI.NDEFS)YSTEM-OPERATIONS-COMNItAND (ina'rn) ~
Undo Modifications (jntprra'e command) 5
Undoing Modifications (eon.eppt) 41
Uninstaller 2,9
Updato (interfaee .:onmand) .66
Update mode attributes O.-on~ept- 3.5
Ul~date Systems (system opprations 'ona .I 6
Updat -Ma~rroDefinitioii Wcass) 30
Updating a systs- en .oneept) 365

N'ipw-Ordpr 27

WINDOW-STREAM-P Ilfinelion) -14

