_7

93 6 15 1238

s

AD' 265 918 @
H

Iﬁl\\\l\l\NIMll\lil\lll\lmll\\llllll!
DTIC

September 1991 E LECTE
JUN16 1993
CLF MANUAL |

CLEARED
FOR OPEN PUBLICATION

JUN § 1993 12

DIRECTORATE FOR FREEDOM OF INFORMATION
AND SECURITY REVIEW SOASD-PA)
DEPART'ENI’ OF

REVIEW 0}‘ THIS MAYERIAL DOS NOT IMPLY
DEPARTMENT OF DEFENSE INDORSEMENT OF
PACTUAL ACCURACY OR OPINION,

CLF Project
USC Information Sciences Institute
4076 Admiralty Way
Marina Del Rey, California 90292

Copyright © 1991 USC Information Sciences Institute. All righis reserved.

This research is supported by the Defense Advanced Research Projects Agency under Contract No.
MDA903-87-C-0641 and by the Naval Ocean Systems Center under Contract No N66001-87-D-0136/#+40.

9 3-13421
RAANAL

/jof- 207y

Intraduction 10 CLF

Table of Contents

& &
T .

1. INTRODUCTION
2. SPECIFICATION LANGUAGE

_ 21.APS
. 8. Tasks
4. USER INTERFACE
4.1. The Epoch Interface VRSN N
4.1.1. The Task Interfdee 727t =0 1ot 0 0

4.1.2. Command Shell Tasks
4.1.3. Editing Modes
4.2. Editing Objects
4.2.1. Hypertext
4.3. Interface-Database Synchronization - . 2.
4.4. Using the Mouse L S
4.5. The Kevboard
4.5.1. Quit
4.5.2, Menu
4.5.3. Activate
1.5.4. Complete
4.5.5. Help
4.6. Browsing
4.6.1. Browsing by Pointing
1.6.2. APROPOS
4.6.3. Tell-Me-About
4.7. Menus
4.8. Miscellaneous

§. CLF SOFTWARE MODEL

5.1. Attributes of Software Objects
5.1.1. Reader Attributes
5.1.2. Module Component. Orderings
5.2. Software Classes
5.2.1. Common Lisp Software Classes
5.2.2. Defining New Software ('lasses
5.3. Software Inierface Commands
5.4. Editing CLF Objects
5.4.1. Buffer Coordination
6. Software Evolution Monitor

6.1. Model for Software Evolution
6.1.1. Atomicity of a Development Step
6.1.2. Ordering of Development Steps
6.2. Bringing a System Up-To-Date
6.2.1. Ordering the Systems for Update
6.3. Development Steps
6.3.1. Finishing an Open Step
6.3.2. Undoing Selected Modifications
6.3.3. Background Step Saving Activities
6.3.4. Tvpe of Step«

. .
v 3 3 .
LT P ‘o

o Wy Y 1Y 1
Z83JT S

wow ow oW ww
R O I A

6.1.

6.5.

6.6.
6.7.
6.8.

6.9.

Installation Order for Modifications

6.4.1. Fixing Frozen Steps Which Cause Errors
Non-Maintainer Suggestions

6.5.1. Making a Suggestion

6.5.2. Updating a System with Suggestions
6.5.3. Maintainer’s Handling of a Suggestion
Querying the History

Making New Release of a Svstem
Operations

6.8.1. Additional Editor Commands
Examples

Appendix 1. Lisp Universal Kode Elaborator

I.1. Overview
Appendix II. Source Code Importer
Appendix III. CORONER -- An AP5 Debugging Facility
Appendix IV. User Interface Resources

IV'.1. Color Resources

n.2

. Font Resources

Appendix V. Site Configuration

Index

i QUALTTY INSPECTED 3

Accesion For

P—-—

NTIS CRA&I
DTIC TaB
Unannounced
Justitication

/
0
@
8

A

By
Distribution}
Availability Codes
Avail andfor
Swecial

Invroduction 1o CLF i

List of Figures

Figure 4-1: CLF User Interface 10
Figure 4-2: Task state model 12
Figure 6-1: A transition network of the states of development steps and the actions that can 40

change them.

Introduction 10 CLF

List of Tables

Table IV-1: CLF Task Status Colors _ 65
Table IV-8: CLF Logical Colors 66
Table IV-8: Logical Font Resource Names

Introduction to CLF

NOTATIONS and TERMINOLOGY

e Lisp, unless otherwise qualified, refers to the Common Lisp Language, as described in
COMMON LISP - The Language, Second Edition, Guy L. Steele Jr, Digital Press (CLtL).

e Names of macros, functions, variables, relations, commands, keywords and arguments are
shown in boldface type.

e Descriptions of syntax follow the conventions laid out in section 1.2.5 of the above mentioned
Common Lisp language document.

W

1. INTRODUCTION

Common Lisp [CL] is a programming language with an expressed goal of providing a common dialect of
Lisp that will be adopted by a broad segment of the Lisp programming community. Common Lisp has
been implemented by several commercial hardware and software vendors and is in wide use within both
academic and industrial research and development centers. A standards committee is actively preparing a

proposal for an ANSI language standard.

Several sophisticated and quite diverse programming environments had grown up around various Lisp
dialects since the appearance of Lisp 1.0 over twenty years ago. Since 1980 these environments have
evolved to take advantage of more powerful processors and user interface hardware and modern window
interface concepts. For many indivividuals, these environemnts are one of the major attractions of Lisp.
In fact, many development efforts have been able to avoid, or at least postpone, significant costs by
making innovative uses of the Lisp programming environment tools as part of the “run time*
environment of their applications. Nevertheless, no programming environment standard has been

established for Common Lisp, nor is one envisioned.

Although CL provides no window interface standards of its own, all major commercial implementations
of CL are able to act as clients for X11 user interface servers via the CLX library, non-proprietary
software providing functionality similar to that found in the XLIB library used by C language

programmers to program clients for X11 servers. CLF relies on CLX for its window interface.

Several major activities in software development involve the manipulation of text-—program source
code, textual input and output of applications being developed, and the input and output of
instrumentation and debugging tools. CLF relies on Epoch (an extension of Gnu EMACS) for all text
manipulation. CLF’s user interface is therefore comprised of windows belonging to CLF itself and
windows belonging to Epoch. The content of the latter windows is provided by CLF and by user

interactions.

Several hardware vendors continue to support high quality program development environments for the
implementations of Common Lisp on their machines. The Common Lisp Framework [CLF] differs from
these environments in three major ways:

o CLF provides an object based, rather than file based, organizational view of software. The
object based view comprises not only the definitions that make up an application, but
specification, documentation, development history and other non-procedural information
necessary to the development, maintenance, and distribution of large software systems.

o CLF strives to provide an "open® architecture, occasionally even at the cost of considerable
efficiency, to enable programmers to tailor and extend the programming environment to meet
their individual needs without the necessity of reimplementing the existing environment.

e CLF has been produced and is maintained by a non-commercial organization, the University
of Southern California’s Information Sciences Institute (ISI). It is not targeted at any
particular vendor’s CL implementation or hardware, but tries to provide a highly portable
programming environment that interfaces naturally to the native operating system
environment on each supported CL implementation. Originally developed on special purpose
lisp machine hardware produced by Symbolics, Inc., and Texas Instruments, CLF has now
been ported to Unix-based workstation platforms. In particular, it can run under both Allegro
and Lucid CL, and has been tested with these software platforms on both HP300 series
workstations and SUN Microsystems SPARC workstations.

2. SPECIFICATION LANGUAGE

2.1. APS
Software developed under CLF may be written in an extension to CL called AP5. APS5 affords several

advantages to a programmer over the use of pure CL in writing applications. First, programs can be
written using a relational notation for access to data. The programmer thereby avoids early
commitments to particular data structures and algorithms for accessing that data. By adding
annotations to the program, the programmer can guide the AP5 compiler’s selection of data structures
and algorithms. The resulting "object code® is CL with limited reliance on run-time facilities that are
themselves written in CL. Because the annotations can only affect the efficiency of the resulting object
code, not its functionality, we consider the use of AP5 to be a specification based programming
paradigm. In addition to the use of relations for describing data access, AP5 affords the programmer the
ability to define rules as a means of specifying some processing that would have to be specified

procedurally in pure CL. Two sorts of rules are provided.

Consistency rules define, using an extended first order logic notation, invariants that must hold at all
times on the data. AP5 produces code that detects any attempt by a program to modify its data in a
way that would violate one of these invariants. It can then reject the modification and signal a
handleable error to the program. Alternatively, the programmer can associate with a consistency rule a
repair procedure. This procedure, which is given access to the invalid data, has an opportunity to
incorporate additional data modifications that will restore the rule’s invariant. If it is able to do so, no
error need be signalled to the program. APS5 provides a number of utilities, based on consistency rules, to

define class hierarchies and incorporate class restrictions into CL.

Automation rules are analogous to "whenchanged® rules in some Al languages, although they provide
more power than procedural attachment in frame-based paradigms. The programmer is able to define
transitions of interest to him. An automation rule consists of the specification of such a transition
together with a response procedure. Whenever a program modifies its data in a way that instantiates a

rule’s transition specification, its response procedure is applied to the relevant data.

CLF itself relies on AP5. Even if CLF is used manage the development of applications that are
independent of AP5, the use may wish to take advantage of AP5 to tailor and extend CLF to better meet
personal or organizational needs. This document describes the most significant relations that are used in
CLF’s implementation — the relations most likely to be needed in writing new rules or delining new
derived concepts. However, due to the significant amount of material needed to document AP35, and
because AP5 may be used in any CL programming environment, independent of the presence of CLF,

reference documentation for AP5 is not included here. Consult the AP5 Reference and Training Manuals.

APS5 uses the term “type* as a synonym for "unary relation*. This usage does not match the
traditional concept of types in programming languages, although it is consistent with the extended potion
of type offered by CL’s DEFTYPE primitive. In this manual, the term "type* will be used in the AP5
sense unless otherwise noted. An object "belongs to® or "is an instance® of a type in any database state

in which the one-tuple consisting of that object is a tuple of the type.

The term “attribute® in this document is synonymous with *binary relation®.

3. TASKS

Although CLF runs as a single OS process, communicating with another process, Epoch, to provide a
user interface to text and with an X11 server to provide a windowing interface, internally CLF may be
interleaving multiple tasks for the user. Tasks may be busy building user interface displays, compiling

programs, installing programs, testing an application under development, etc.

CLF implements multitasking with multiprocessing extensions to CL that have been provided by the
vendors on all platforms to which CLF has been ported. In all cases, these extensions provide a
preemptive scheduler; tasks may be interrupted at almost any time. Some of these platforms have a
priority scheme imposed on the scheduler. Where possible, CLF tries to give its user interface manager a

relatively high priority.

AP5 provides considerable synchronization at points of database access; a task that wants to modify the
database may block for a noticable period of time while another task has access to the database. With
this exception, users are aware of multitasking mainly because of the user interface support of interactive

tasks, described in Section 4.1.1.

4. USER INTERFACE

CLF’s user interface requires a bitmap display controlled by an X11 server, a pointer device, and a
network server connection to an Epoch process. The CLF process, X11 server, and Epoch process may be
running on any physical hosts providing suitable network connections. CLF makes limited use of color in

its displays; the interface is usable on a monochrome display, but some distinctions are lost.

A typical CLF screen consists of a help window, a *System Operations button®, editor windows, and
object views. Figure 4-1 exemplifies a CLF screen. CLF does not provide its own interfaces for moving,
deleting, resizing, restacking, or iconifying windows. Its windows obey the Xi1 X11 Inter-Client
Communication Conventions for interacting cleanly with an X11 window manager. The help window is
an output-only area; as the user moves the pointer over various object depictions in object views, text will

appear in the help window summarizing the effect of the three mouse buttons.

The System Operations button is a small window from which a menu of useful operations can be
exposed. Each member of the initial set of operations is described in this document in the section
relevant to its functionality. Selecting an operation from this menu will cause the operation to be

performed as a new task.

Object views are of three varieties:

® Browsers display a static view of a focus object and the relationships in which it participates.
By selecting visible depictions of objects related to the focus object, the user changes the focus.
A history of focussed objects is maintained; the user may display a menu of these and reselect
any one as the current focus.

e Dynamic Views display a selected view of information in CLF’s virtual database. Commonly
this information consists of a focus object and a collection of its attributes. The information
presented in a dynamic view is synchronized with the virtual database; at screen
synchronization points, these displays are updated as needed to reflect the current state of the
view.

e Jcons are truncated dynamic views. Each icon displays only the name of its focal object.
Icons require little screen real estate; they are useful because of the standard operations that
can be invoked from them using the mouse.

Whenever an object view contains one or more vertically or horizontally scrollable subviews, an

appropriate scroller will be attached to the window. A scroller consists of three elements:

e The analog control displays the percentage of the overall view that is currently visible and its
relative position within the overall view. By clicking the mouse in the analog control the user

can select a different portion of the overall view to be visible.!

lEventuslly the analog control will support continuous drag.

20B3JI93UT J98(] 41D]~ 9Indy3

daig) marp sweul Acpu di2H L
(d=15) Anv..\mv M M“ poupd Jumqanpoy ¢
uogsuo: b [[9Y4S puswwwo) []

30 mIng A9y, 14

—_mmm —-:M QM suonjeiadQ wness .n
(3mpop) matp oureuiq g L o

({lc2 0 u sBusa-ui-aebesul) "3°s (u)) uojjIufjep:

#403820U8D-0400D ¢

10

11
(((27 T u sbuva-ut-zebeus) *31°s (u)) UOEIIULIOPI
TTU #403830U0 Yyowo !
(21_(Indano)) esys:
HINCK suucqo.-momm
(((6s 0 u ebusa-uj-aebBesul) *3°s (N)) uopjTurIep:
T3U $303030ueB-0 0001
(09 (aindano)) esys: |
SSINNIN UOTIeTe. -oEn
{((c2 0 u oBusa-ut-ebequs) *3°s (N)) woyaIuiZep: N
TIU #3038 I0ueS-010901 ¥
(v3_(ind3no)) o
xabng SAL-dILS
039°y do3s WWQIIND WI0j-PeIWFIUTIBU]
3 N340
<4y
vm..m de1g HVONITYD W107-peqs}Iuwisul
19 YVaNBTVO) & tugsn-d SU00}) <ITd
0 TOHATN-TNIINELS u.—gi ° axa
AL ST (OX:15dV d318~INIHALNZAIA) '8 (0X::SdY) JO 6118 pejwwiasy 1Sujuasy) ncewn..du&h.nau_wﬁoao»on
(de3s-juemdoteasp: i 1ap Aus) < of 1~ 40-0ORLIN-NUNLINYLS-2IVTED JO 1XIL-2D¥)08 +NOILVIIII008
T S aod P ooy ymasul] WEONTTND-J0-JuewdoleA®d NOZIVILIIOOH®> ||
e Aoy PUN ROl 8800T) ATl 20-GOMLIN-TUNIIMELE-TLYTID JO AKIL-IINNOS .
(NGRIIVI) « 3P U0 UOIINE VTH: 67 eaeqy JT UeAS ‘SWIOIGNE ¢ SAYY PINOUS SLINIY NOZJ
\OPIO PEOY AQ PEIIOS 18;3NQ SUO U] A9Y0B07 eInpowm BIYI *o s3ueuodeoo oYy 11PIR WEANITNI-Jo-Jusmdoteasd d¥L9-
(31Pe Wo3sAs - Jupueted {4 tN) <iTOH 38) 4
(HTHOUEMYORRANS) ONILSISUIA: INION-4TO [o¢g°'¢ de3s wva
((ONIISISYIA: 1 MINA-ITD _IusucOmOD) JO18TT) <4ORBREEES o
(IONIIITRATA) « 27PT U0 LOIING TR ' : : .
\®PI0 peol AQ POIIOS Jej NG euO uj Jeyjebol e1n SIY2 3O eausuodecy ¢ Blomommae s oo s e e v e e Ight
b P P BT 0 EA e s 1a sira ! SLIAI1-40-GOHLIN-GUNIONNLS-AAVIND P LX34 -FONNOS WOTL Y2147 00N
CTkesta S4INIT-40-GORLIN- INLONKIS - RIVIED EAaNONOD |
) Au._m_,. AINAON-NOILVTIVISNI® 8 i
. g . $=HOIVI-UVARI'TVD #72000-42L¥4]
(v ::%: b..il!ﬂnoal._zl-lsr!:rl:l.ﬂ_z_
(wo3sks upueten iy e <aDl
TINE
R d13S NOBIAY
) YVARTTVO-P-10ulipad 40-NOILVI 14 100N
_ £l
L

S R L H ST STR D RYE 115 YR

11

o The backward control allows the user to discretely seroll the view to make portions nearer
the start visible. The three buttons scroll by one unit, and entire viewport’s worth, and "all
the way to the start”.

o The forward control is just like the backward control, but makes portions nearer the end of
the view visible.

4.1. The Epoch Interface

4.1.1. The Task Interface

Each task initiated by CLF is assigned its own Epoch buffer for textual interactions with the user The
buffer and task are assigned a mnemonic name. For tasks generated by menu selections, this name is the
text that appeared in the menu item selected®. The text in these buffers may be edited with the full

complement of Epoch editing commands.

CL defines several variables that should always be bound to input, output, or input-output streams.

When CLF starts a task, it binds these varibles local to that task to the task’s buffer.

CLF provides a display of active tasks that are in certain distinguished states. It is based on a simple
finite-state model, shown in figure 4-2. Each state has an associated color. CLF maintains a single buffer
in Epoch, named <CLF-HOST >-active-tasks-<nnnn>. <CLF-HOST> will be the name of the host
on which the CLF process is executing; <nnnn> is a four-digit number that distinguishes that CLF
process from any other CLF processes that may be running on the same hostt. This buffer, hereinafter
referred to as the task status buffer, will display one line for each task that is currently in a distinguished
state. The text is the name of the task’s buffer. It is displayed over a background whose color designates
the state.

The distinguished states are:

e Output Available (green): The task has produced some output in its buffer that the user may
not have seen.

e Output Available/Task Terminated (black): This indicates that unseen output is available,
and further that the task bas terminated.

e Input Block (red): The task is blocked waiting for the user to provide input to its buffer.

2A bufTer is Epoch’s largest contiguous textua} unit. An Epoch process may manage any number of buffers.

3Epoch may append a few characters to the buffer name to guarantee uniqueness.
A single Epoch process may provide edit services to multiple CLF processes, and a single CLF process may utilize services from

multiple Epoch processes. A similar many-many relationship exists in CLF's window interface. This makes it possible for a user at
one workstation to tie into another user’s CLF process and both view and modify data.

12

Output
All / Available \
Output / l Output Availabile/
utpu
Task Terminated
Seen Input
\ Block

Figure 4-2: Task state model

The user may select a task’s buffer through the usual Epoch buffer selection mechanisms at any time,
regardless of whether the task is in a distinguished state. When a task is in a distinguished state, the user
may expose and select? its buffer by clicking a mouse button on the line displaying it in the active tasks
buffer. This will remove its entry from the active tasks buffer. In the case of the Output Available state,

it will also consider the user as having “seen® the available output.

When a process is in the Output Available/Task Terminated state, a line containing *Click here to free
this buffer® is placed at the end of the buffer. Clicking any mouse button over this text will free the
buffer and remove any entry for the task from the active tasks display. Clicking the middle button over
the entry for a terminated task in the active tasks display will remove the entry and free the buffer
immediately, without exposing it.

When a terminated task’s buffer is eliminated, the content of that buffer is appended to a ®transcript
buffer® that CLF establishes when it creates its connection to Epoch. The transcript buffer will be
named “transcript buffer <CLF-HOST >-<nnnn>*, where the host and four-digit number are the same
as for the task status buffer.

6E:qmnure refers to making the buffer content visible in sn Epoch window. Selection means that interactive editing commands
will be interpreted relative to that buffer,

13

4.1.2. Command Shell Tasks

A CLF user typically runs one or more command shell tasks. A command shell task runs a lisp read-
eval-print loop, in which the user enters a lisp expression (program) into the command shell’s task buffer.
The expression is then parsed (read), executed (eval), and its value(s) output (print) to the command
shell’s task buffer. The active tasks buffer does not display the state of command shell tasks, because
they are typically already the focus of the user’s attention®.

4.1.3. Editing Modes

Each task buffer has an associated editing mode that may change depending on the use being made of
that buffer by the task. The primary function of the mode is to determine:

o when user input is to be transmitted to the task. Most modes provide some buffering so that
the user can prepare, inspect, and modify input before transmission.

o what text to transmit. A task buffer gives the user the full range of editing power of Epoch.
Text in the buffer may be arbitrarily modified, and cut-and-paste may be used to prepare
input.

When a task buffer is visible, its editing mode will be displayed in a status line, which also shows the
buffer name, below the visible portion of the buffer’s text. The modes employed by CLF are:

o Explicit — Each task buffer keeps track of the position of the last character tranmitted to it
by the task. In explicit mode, a transmission always consists of all text in the buffer following
this location or the end of the last transmission, whichever is later. The keyboard command
c-2 2 (the ®control® key depressed concurrently with a “2*, followed by another "2*), initiates
transmission. The keyboard command m-<return> (the *meta” key depressed concurrently
with the <return> key) inserts a new line at the end of the buffer and then transmits.

o Response — Response mode is almost identical to explicit mode. The only difference is that
the starting point of text to be transmitted is the end of the buffer at the time it entered
response mode. CLF tasks use this mode to provide the user with text to modify and send
back. A task typically sends some instructions for the user into its buffer, then places the
buffer in response mode, and then sends the text to be modified into the buffer. The user
makes the desired modifications, then types c-z z to transmit the text back to the task.

o Line — This mode is used by interfaces that want a single line of text from the user.
Transmission occurs only when a <return>> is entered with the text cursor positioned at the
end of the buffer. The final line of text in the buffer is transmitted, even if that line is empty.

o Character — This mode is used by "completing® interfaces. In character mode keystrokes
that normally cause insertion of single characters (including the <return> key) are
transmitted immediately to the task. The character is not inserted in the buffer by the editor;
any echoing is performed by the task upon receipt of the character.

o Shell — This mode is used in command shell task buffers. In this mode, a <return> typed
at the end of the buffer initiates trensmission if and only if the text between the command

6Soon it will be possible to have command shell tasks included in the sctive tasks display at the user's option.

14

shell prompt and the return constitutes a well-formed lisp command’.

4.2. Editing Objects

In addition to buffers that provide an interface to command shells and other interactive tasks, CLF
provides buffers in which users edit textual representations of objects. When the user is editing text in
task buffers, a task is explicitly waiting for the user’s transmission. In the case of buffers that are editing

objects, a new task is created to deal with any changes transmitted by the user.

This is a generic facility, supported for any type of object that provides “parsing® and “unparsing®

methods. The only such type documented here is software definitions.

A buffer may present an entire module, a single definition, or a collection of definitions and/or modules
that satisfy some condition. In any case, what the user sees is a sequence of individual objects. For each,
there will be a single read-only line with the object’s name, followed by the object’s source text. If the
object has a documentation attribute, the documentation text is presented, labeled as such, above the line

with the object’s name. These labels initially have a green background.

The user may change the text at his own initiative, other than in the labeling lines. When the text of a
definition or documentation unit has been changed in the buffer, but not yet transmitted back to CLF as

the new version, its label’s background changes from green to red.

The user may transmit the new text of all modified units in a buffer by typing the keyboard command
c-2 2. If the new text for a unit is acceptables, the unit’s label will revert to a green background. The
labels of unaccepted units will remain red; in addition, the task rejecting the nmew text will print a

notification in its task buffer.

If a unit has been modified, but the change has not yet been committed back to CLF, the user may
restore the text to the version currently held by CLF. To do this, the user enters the command m-x
Revert-Object while the text cursor is within the object to be reverted.

The user may also selectively dispose of the objects that have been changed but not yet been committed
back to CLF. The command m-x Dispose-of-Changed-Objects presents the user with a check-off menu.
For each modified unit, the user may choose to commit the changes, revert to CLF’s current version, of

simply leave the unit in its modifed state.

7Well-formedness is beuristically determined. Basically, any text with no parentheses or with balanced parentheses is deemed
well-formed.

8ln the case of a documentation unit, any text is acceptable. In the case of a software definition, syntactic well-formedness is
required.

15

The text cursor may be move forward and backward over entire units. c-z f moves the cursor to the
start of the next unit; c-z2 b moves to the start of the previous unit. Both commands accept numeric

arguments.

4.2.1. Hypertext

When CLF prints objects to task buffers, it prints them as a form of hypertext®. The hypertext objects
appear over a background color that contrasts with the buffer’s overall background. The user can

perform operations on hypertext objects with the mouse, as described in section 4.4.

4.3. Interface-Database Synchronization

Dynamic object views are synchronized with changes to the database in two phases. The database
undergoes atomsic updates that lead from one consistent state to the next. On each such state transition,
sufficient data is recorded to synchronize affected object views to the new state. The synchronization
currently only happens automatically in three ways. First, at the start of each top-level iteration of a
command shell the interface is synchronized to the current database state. Second, each task created
from a menu selection requests synchronization when it completes. Finally, a small set of operations that
can be initiated by commands given from Epoch (see section 4.2) request synchronization when they

complete.

4.4. Using the Mouse

Wherever CLF displays a depiction of an object, whether in an object view or as hypertext!, three

standard operations are available:

e Left button: The object will be entered into the current Epoch buffer at the position of the
text cursor. This is useful when entering commands interactively to a read-eval-print interace,
such a a listener or a lisp debugger. If the object has a readable print representation — e.g., it
is an integer or a string —~ that print representation is used. Otherwise, a lisp symbol will be
created and globally bound to the object, and the symbol will be printed in the buffer.

e Middle button: A browser will be prented with the selected object as its focus. If the selection
is made from a browser display, the focus of that browser is switched to the selected object.

¢ Right Button: A menu of operations applicable to the selected object is presented to the user.
The content of the menu is sensitive not only to the object’s type, but to the current state of
the database as well. In the menu operations appear in groups, separated by vertical space. A
group corresponds to operations defined at the same layer of type hierarchy. Selecting an
operation from one of these menus will cause the operation to be performed as a new task.

QCurrently, only some objects are printed in this way

lOWit,l: respect to mouse inititated operations, the label of an object in a buffer editing the object behaves exactly like a hypertext
depiction of the object.

16

Each command shell is initialized to have package CLF-USER and readtable CLF. This is a CL
readtable with the addition of a read macro, #!. #!<string> reads in as an expression whose value is
any object whose name is <string>. If <string> contains no whitespace characters, the string quote
delimiters may be omitted. In this context, an object may have many names. Any string or symbol that
is the value of one of the attributes in the list bound to the variable AP5::*NAME-ATTRIBUTES* will
be considered a match. The possibility of ambiguity can be reduced by specifying a required type for the

object. This is done by following the name with a *.* and a typename — e.g. #!email.system.

Clicking on the System Operations button with any mouse button will present a menu of operations

that are not obtainable from available objects’ menus.

4.5. The Keyboard

Although CL has no "standard Keyboard,* all workstations having Cl implementations are likely to
contain several (non-shift) keys in addition to the standard QWERTY set. If the CL implementation

makes these keys transmit new CL characters, they can be useful in the interface for that workstation.

We have identified several ®"generic uses® of these extra keys, described below. For each, there are two
special global variables in the implementation. One is bound to a string, the label found on the
appropriate key for that implementation. The other is bound to a character object, the character

transmitted by the key for that implementation.

For the sake of portability, applications programs, as well as CLF kernel programs, should use these

variable rather than their literal values.!! For example:

(format *query-10* *Type your answer. ~
< press the ~a key to quit the operation>*
*QUIT-KEY-LABEL *)

(LET ((response (Get-Users-response)))

(when (EQL response *QUIT-KEY*) (throw :operation-quit NIL)!?

4.5.1. Quit

Sometimes it is desirable to let a user drop out of a dialog if he decides he does not wish to perform an
operation, or has made an error earlier in the dialog. *QUIT-KEY* and *QUIT-KEY-LABEL* are in
intended to be used for this purpose.

“The character variable should always be compared with EQL, of course.

lz'l'he charscter variable are declared with DEFCONSTANT. The label variables are declared with DEFParameter, to account
for the possibility that a given implementation may run with several keyboard variants.

4.5.2. Menu

In some input contexts, a user is given the choice of entering a response from the keyboard or mouse, or
of asking for a menu of possible responses. *MENU-KEY* and *MENU-KEY-LABEL* are used for this
purpose.

4.5.3. Activate

In some input situationd, the user needs a special gesture to indicate that he has finished entering his
response. *ACTIVATE-KEY* and *ACTIVATE-KEY-LABEL* are used for this purpose.

4.5.4. Complete

In some input contexts, the user can ask the system to supply some of his input automatically, usually
echoing it as if it had been typed. *COMPLETE-KEY* and *COMPLETE-KEY-LABEL* are provided
for this purpose.

4.5.5. Help

Whenever an application is awaiting user input, it is desirable to provide the user a means for obtaining
an explanation of what is expected from him (e.g., an address for a message), how it may be provided
(type an address or pointer to a person or mailbox), and how it will be used (as a CC recipient of the
message you are composing). *HELP-KEY* and *HELP-KEY-LABEL* are provided for this purpose.

4.6. Browsing

4.6.1. Browsing by Pointing

The dynamse browser is a mechanism for finding information of interest in the database when you are
not certain of the relational path you need to reach information. It is a blend of the TELL-ME-ABOUT

facility and the standard form windows.

The browser is invoked by applying the function SELECT-AND-SHOW-ATTRIBUTE-VALUES to an
object, or by clicking the middle mouse button on an object in a form window or command shell. The
browser appears (near the mouse) in a window displaying the object, its most specific classification(s), and
all attributes and their values.!® From this display, all the operations that can be initiated from a
standard CLF form window can be performed, using the same gestures. Moving the mouse outside the

window causes it to disappear, just like a temporary menu. Clicking the middle button on one of the

l:’Scmeda.,y this may extend to show information about occurrences of the object in relations of arity greater than 2, as
TELL-ME-ABOUT does.

18

values displayed in the window also causes the window to be replaced by a dynamic browser viewing the
selected object. A small area labeled *CHAIN® can be moused to provide a menu of all objects viewed in
a session with the dyanamic browser (excluding the one currently being viewed). Selecting one of those

objects will replace the current window with one viewing the selected object.

4.6.2. APROPOS

APROPOS Junction
APROPOS-LIST Junetion
APROPOS-LIST variable
APROPOS-LIST* varsable
APROPOS-LIST** variable
APROPOS-WILDCARD variable

The common lisp functions APROPOS and APROPOS-LIST provide a way to find symbols whose name
contains a given substring. A package argument determines a subspace of all known symbols in which to
search. CLF extends these two functions to allow search spaces other than packages. The first argument
is still a string. If the second argument is a package or package name the CLF functions execute their

common lisp counterparts.

The CLF functions extend their counterparts primarily by allowing search spaces other than subsets of
symbols. The second argument is the search space designator. If it is the name of a type, then the search
space is all objects of that type. If the designator it is an instance I of some type for which a Default-
Structuring-Attribute A has been declared, then the search space consists of I and all objects reachable
from I via A.M For example, the Default-Structuring-Attribute of the type Module is Component. So if
the search space designator is a module, the search space includes all of that module’s direct or indirect
components. The name of each object in the search space is matched against the string pattern.
Matching objects are either printed (APROPOS) or gathered into a list that becomes the value
(APROPOS-LIST).

In the standard CLF release, the Default-Structuring-Attribute of the type TYPE is Isubrel, which
relates a type to its immediate subtypes. Therefore, if an instance of the type TYPE (as opposed to the

name of a type) is used as the search space designator, the space searched consists of that Class and its

“ln other words, all objects in the transitive closure of] under A.

19

subclasses, not instances of those classes.!®

Uses of CLF’s apropos (other than the package searches provided by CL) permit a more general string
pattern. The string may contain any number of occurrences of the character bound to the special
variable *APROPOS-WILDCARD* (initially #\$). Appearances of this character may match arbitrary
(including empty) subsequences of an object’s name — e.g., the pattern "hassup$” matches both the
names “has-any-supervisor® and “hassupervisor®. The matching uses CHAR-EQUAL, so it is case
insensitive. If the string pattern provided as the first argument to CLF’'s APROPOS contains no
occurrence of *APROPOS-WILDCARD*, a wildcard is automatically appended to the front and end of
the given string. Finally, a pattern may be a list of the form (and . patterns) or (or . patterns), with the

"obvious" interpretation.

The search space for the CLF extensions to APROPOS may be augmented by passing further arguments
to the function. All arguments after the search space designator may be (the names of) attributes. In
this case, the string pattern is matched not only against the name of each object in the search space, but
also against the name of each value of each designated attribute of that object. A match with the
object’s name or the name of any of the values of any of the attributes is sufficient for including the
object in the set of successes. For example, (APROPOS *(reply® M ’Source-Text) would find every
component of a module M that either had the string "(reply* as part of its name or as part of its source
text.“

Finally, the symbol T may be included in the list of attributes. This serves as a shorthand for including
every attribute declared to be a Standard-Apropos-Attribute for the search space class or any of its

superclas,ses.17

4.6.3. Tell-Me-About

The function Tell-Me-About (documented in the AP5 reference manual) provides a means of mapping
over all true tuples in which a given object appears.’® The default functional parameter causes the tuple
to be printed on the *standard-output* stream, which is the typical use of Tell-Me-About as a browsing
tool. When the stream is a command shell, the related objects printed in the tuples can then be selected

1 5Rev.rac'.ing the Default-Structuring-Attribute of the class Class will result in use of a class and & class npame being equivalent as
search space desigations.

lsTbe fact that some components bave no value for the Source-Text attribute, and could not even logically have a value for the
attribute, causes no error. For those components, only the name of the component is matched agains the string.

l7'l‘he search space class is determined by the search space designator. When the search space is determined by an instance and a
Default-Structuring-Attribute, the search space class is the declared range restriction for that attribute. When the search space is all
instances of a class, that class is the search space class.

laSulbject, to generability considerations.

20

with the mouse.

4.7. Menus

There are two kinds of menus which appear generically in CLF’s user interface. One is the menu of
operations on a particular object, which typically appears when the user selects a depiction of the object
with the right mouse button. The other is the menu of “system operations®, exposed by selection the
System Operations button. The contents of these menus may be modified with the macros described in
this section.

DEFINTERFACE-COMMAND [NAME CLASS &key (TEST T) (AUX NIL) (MENU-HELP-
STRING NIL) (LEFT-HELP-STRING NIL) (MIDDLE-HELP-STRING NIL)
(RIGHT-HELP-STRING NIL) (INTRO-HELP-STRING NIL) MENU-LABEL
(PROCESS-IN-LISTENER T) (BUTTON-SENSITIVE NIL) (BODY NIL)
(BODY-LEFT NIL) (BODY-MIDDLE NIL) (BODY-RIGHT NIL) ...] macro
Defines an interface command (menu-item and associated action) to be offered for
instances of CLASS which satisfy TEST. TEST is an arbitrary form, which may use
the variable mouse-object freely. Mouse-object will be bound to the object selected
with the mouse. If TEST evaluates to NIL, the menu item will not be offered in the
menu for the object that failed the test.

MENU-LABEL is a form evaluated at menu generation time that evaluates to a string
to display in an operation menu.

BODY-LEFT, BODY-MIDDLE, and BODY-RIGHT should be forms to execute when
the respective mouse buttons are clicked on this menu item. If all three buttons have
the same response, a single code body may be provided with the BODY keyword rather
than being duplicated for each button. These forms may also use mouse-object freely.
If BODY is given as well as one or more of BODY-LEFT, BODY-MIDDLE, and BODY-
RIGHT, then the BODY form applies to all mouse clicks not explicitly given a form to
execute. That is, if BODY-LEFT and BODY are given, then both middle and right
clicks will cause the BODY code to execute.

INTRO-HELP-STRING is a string or a form that evaluates at menu generation time to
a string that is the first element of the string that appears in the help window when the
mouse is over this item in the menu. It should be a string applicable to the menu item
regardless of which button is pressed.

LEFT, MIDDLE, and RIGHT-HELP-STRING also appear in the help window. If
given, MENU-HELP-STRING is used for any of the LEFT, MIDDLE, or RIGHT-
HELP-STRINGSs that are not given. Heuristics are used to prevent repeatedly printing
the same string in the help window; for example, if only a MIDDLE-HELP-STRING
and a MENU-HELP-STRING are given, the second line of the help window will appear
as:

L: menu help string here M: middle-help-string R: same as L

The string-valued forms may also refer to mouse-object. The INTRO-HELP-STRING
is printed on the first line of the help window, with the rest of the help strings printed
on the second line.

The AUX keyword has as its value a list of aux variables. Each element of the list is
either a symbol, in which cas= the variable is initialized to nil, or a pair, the car being a
symbol and the cadr being an initialization form. The initialization forms may refer to
mouse-object.

The TEST returns a value treated as a boolean. But it may use the aux variables
(reading their initial values) and as a side effect may set them as well. If the test
returns non-nil, the final values of the aux variables are retained. They are then made
available to the MENU-LABEL, HELP-STRING, and BODY code. These may read the
aux variables, and will see the values they had at the end of the TEST. But they
cannot change the values of the aux variables in order to communicate with each other.

Rationale: Although frequently the label and
help-strings are constants, and occasionally the
test is simply T, all of them as well as the body,
may be arbitrary computations that have access
to the OBJECT that was buttoned to create the
menu and the gform/window as well. In order
to make the menus come up fast, it is important
that the test, label, and help-string computations
be efficient.

The content of the label and, more
importantly, the help string, influence the users
choice of whether to select an item, and which
button to use for button-sensitive items. Thus
the results of computations that go into
computing this text MAY be needed in the
BODY. There are two reasons why
REcomputing them may be UNSAFE, regardless
of their efficiency.

o The computations may be non-applicative —
e.g., rely on the database. The database is not
locked while the menu is up, and, for that
matter, all that happens when an item is
selected is to QUEUE up the body action to
happen when the listener process next checks its
queue. So redoing the computation in the body
may not yield the same result as at menu
creation time.

o The computation may be non-deterministic.
For instance, there is no guarantee of retrieval
order consistency from the database for multiple
valued attributes, so it might be necessary to
introduce some arbitrary SORTing to ensure
that a recomputation got the same results.

Instances of a subclass will inherit the interface commands for all superclasses.
However, NAME is used to provide a shadowing mechanism. If an interface command
for a subclass is written with the same name as one for a superclass, the one for the
subclass will *shadow® the one for the superclass. In particular, defining such a
command with a test of NIL will block the command from appearing as a choice for

22

instances of the subclass (and is often preferred to adding a condition to the test in the
interface command for the superclass.)

DEFSYSTEM-OPERATIONS-COMMAND [NAME &key ...} macro
Defines a menu item for the menu associated with the *System Operations® window in
a CLF frame. See DEFINTERFACE-COMMAND for an explanation of the keyword
parameters. Any command already defined with the name NAME is replaced. The
response functions take no parameters. Because these menu items are not defined for
particular types, there is no issue of shadowing.

UNDEFINTERFACE-COMMAND [NAME CLASS] macro
Removes the interface command named NAME for CLASS.

UNDEFSYSTEM-OPERATIONS-COMMAND [NAME] macro
Removes the system operations command named NAME.

Menu selection can be simulated by entering calls on the macros described next in the command shell.
These macros take a *pattern® argument. Depending on the specificity of the pattern provided in a given
call, an operation may be selected without even exposing a menu, or a reduced menu may be exposed.
These macros make it possible to display a menu of operation for an object for which no depiction is

available for selection.

ML [X Zoptional (Pattern *")] macro
Simulates selecting the item whose label matches Pattern from the menu for object
X. X is evaluated. Pattern is quoted and may be a string or symbol. For a symbol
pattern, the symbol’s print name is used. If exactly one item in the menu for X would
have a label matching Pattern, the action that would be performed by selecting that
item with the LEFT button is performed. If more than one item’s label would match
pattern, a menu of the matching items is presented and the user may select from it. (If
any of the items in this menu are button sensitive, the button sensitivity applies. In
other words, even though the menu was generated with ML, a non-left-button operation
may be chosen.)

Matching is defined by case-insensitive string comparison. A $ appearing in Pattern
acts as a segment wildcard. If no $ is explicitly present in Pattern, one is appended to
the end. (Thus there is no way to force an exact match.)

MM (X &optional (Pattern **)} macro
Like ML, but simulates pressing the middle button.

MR [X &optional (Pattern *")] macro
Like ML, but simulates pressing the right button.

M [X] macro Generates a menu for object X exactly as if it had been obtained by right clicking on a
presentation of the object.

CLFL [&optional (Pattern "*)] macro
Like ML, but for the System Operations menu.

CLFM [&optional (Pattern "*)] macro
Like MM, but for the System Operations menu.

23

CLFR [&Zoptional (Pattern **) macro
Like MR, but for the System Operations menu.

CLF || macro Like M, but for the System Operations menu. Generates a System Operations menu

just as if the System Operations button had been selected.

4.8. Miscellaneous

Each command shell runs a fairly standard lisp read-eval-print loop. Some tailoring of this interaction
is possible.

TOP-LEVEL-READ-EVAL-PRINT || Junction
A recursive Read-Eval-Print loop. Uses the current value of *terminal-io* as the stream
for reading/printing. This is an infinite loop. The only exit is via a THROW or some
non CL mechanism. An anonymous restart is provided whose select will restart the
loop. TOP-LEVEL-READ-EVAL-PRINT establishes new bindings for and maintains
the Lisp variables *, **, *** 4+ ++, +++, /,//,and ///.

TL-PROMPT variable
A list consisting of a format control string and its arguments. This variable determines
the prompt displayed on each iteration of TOP-LEVEL-READ-EVAL-PRINT. Its
global value is (*~&> *). CLF binds it to (*"~&CLF > *) for its top level loops.

TL-PRINT variable
To print each result value, TOP-LEVEL-READ-EVAL-PRINT applies the function
bound to *tl-print* to the value and *terminal-io*. This function, together with *tl-
prompt®, are responsible for transmitting newline characters.

TL-READ ‘ variable
The binding of this variable determines the reading function for TOP-LEVEL-READ-
EVAL-PRINT. Its only parameter is a stream. It is globally set to Lisp’s READ
function.

TL-EVAL variable
The binding of this variable determines the evaling function for TOP-LEVEL-READ-
EVAL-PRINT. Its only parameter is a form to evaluate. It is globally set to Lisp’s
EVAL function. ‘

Introduction to CLF 25

5. CLF SOFTWARE MODEL

CLF represents software in terms of MODULEs whose Components are either other modules or
INDIVIDUAL SOFTWARE OBJECTs. The individual software objects include all the standard
Common Lisp categories, such as functions and variables. They also include a set of extended software
components which utilize the facilities of the objecthase allowing programs to be written that define and
manipulate objects in the objectbase. Much of CLF itself was written with these extended software
components. They include class definitions. attribute definitions, interface commands, and views. The
combined class of modules and individual software objects is called SOFTWARE OBJECTS.

5.1. Attributes of Software Objects

The individual software objects have an attribute Source-Text whose value is a siring. The string
should be a legitimate Common Lisp expression. For example. a function definition would have
“(defun...)* as its Source-Text attribute’s value. The module hierarchy is defined through the
Component attribute. Its transitive closure. Component®. is also defined. Component-of is the

inverse of Component.

A module can have a Maintainer. The value for this attribute should bhe a PERSON. Maintainer® is
an "inherited® version of Maintainer — that is. its value is the value of the Maintainer attribute of the

*closest® parent module having a value for the attribute.

The Module-Directory of a module expects to have a pathname as a value. In general. only root
modules have a value for this attribute. The pathname determines the directory in which CLF saves
source. binary. and development files for the module. Module-Directory® is the inherited version of

Module-Directory.

5.1.1. Reader Attributes

Because C'LF stores the individual definitions as text. a programmer must provide the environment with

enough additional information to allow Lisp’s parser (the function READ) 10 correctly interpret that text.

Lisp’s parser is controlled by three parameters:

o *read-base® -— this variable. which must be hound to an integer. controls the mapping from
the textual representation of numbers to a Lisp numeric datatype.

e *package® --- this variable. which must be bound to a package. controls the mapping from
character sequences in text to Lisp symbols.

e *readtable® --- this variable. which must be bound 10 a readtable. provides a finite ~tate
"lexical scanner® for the Lisp parser. as well as some characteristies that go bevond the power

20 Attributes of Softwiare Olbjects

of a fimte state machine

Detail of the effects of these variable~ on the Lisp parser may be found in CLiL'® The CLF
environment manages the proper binding of these variables whenever it needs to invoke the Lisp parser.

It does so by associating values for each of them with each individual definition.

Corresponding to the three variables are three CLF attributes — Read-Base . Read-Package. and
Read-Syntax. Values for these attributes may be specified directly for any individual definition. or may
be ®inherited* from some module of which the individual is a direct or indirect component. If no value is
explicit or inherited, a default is used. The attribute names read-base®. read-package®. and
read-syntax® are derived from these three attributes 50 as to take into account inheritance from parent

modules and defaulting.

The value of the Read-Base attribute must be a Lisp integer. The default value for the Read-Base

attribute is the value of the variable *default-code-read-base*. which is initialized to 10.
The value for the Read-Package may bhe a Lisp package. or a package name (a string or symbol).20

Two packages are defined in addition to the ones already in the workstation environment.

o CLF -- The home package of most of the CLF code extensions documented for CLF users.

o CLF-USER - A package that uses both CLF and Common-Lisp.

The default value for the Read-Package attribute is the value of the variable
*default-code-read-package®. which is initialized 10 CLF-USER.

The value for the Read-Svntax may be a Lisp readtable. This is sufficient for operating within the Lisp
environment, but is not sufficient for saving and restoring data outside Lisp’s virtual address space. For
this reason. we require the value of the attribute to be either a named readtable. or the name of a
readtable. Common Lisp provides no standard for associating readtables with names.. We use CLF's
objectbase to store the association. maintaining the name as the value of the readtable’s Proper-Name

attribute. Four named readtables are predefined:

e Common-Lisp - a copy of the initial common Lisp readiable.

e CLF — Common-Lisp. augmented with the read macro #!.

‘9("0.\1M0!\' LISP - The Language. Gny L. Steele Jr.. Digital Press.

mlln ZetaLisp. because package pames are not necessarily globally known. names must e interpreted relative to some package
Al names used s the value of the Rewd-Packige atirilune are interpreted rolative ta the € snnon Lisp parkage. Users ecan avoid
~oncerping themssives with thi- detail =ither Ly neng real puckages a5 the value for the =ttrilute, or by avoiding use of name-
assigned with the ZetaLisp's Rebative-Nanes option.

Introduction 1o CLF 27

The default value for the Read-Syutax attribute is the value of the variable *default-code-read-syntax®.

which is initialized 1o CLF.

It is prohibited for any software object. whether module or individual definition. to have no explicit
value for any of the three attributes but be an immediate component of two (or more} distinct modules
that differ in their explicit (or inherited) values for the attribute. For example, if a function definition F
is an immediate component of both modules Afl and M2, and the explicit or inherited read-base
attributes of M1 and Af2 are 8 and 10 respectively. then it is required that F have an explicit read-base

4|

attribute.' The situations in which CLF uses these attributes include:

e Installing and compiling software objects.

e Static analysis of software objects.

e Assigning fonts to source text.

e Producing loadable ‘compileable source text files.

e Zmacs commands. such as C-S-E or (C-S-C'. thar necessitate parsing text from buffers
displaying software object definitions.

5.1.2. Module Component Orderings

Although the Component attribute serves only to define a set of immediate components for a module.
some activities in software development require placing a meaningful ordering (or more usually. partial

ordering) on a module’s components.

In most programming environments. a single totally enumerated ordering. such as that implicit in the
positioning of a sequence of definitions in a source file. is used for multiple purposes. CLF will be moving
towards the specification of different partial orderings for different purposes. Currently. however. only

two orderings are defined.

e The Load-Order attribute of a3 module determines the order in which that module’s
components are processed when installing or compiling the module, as well as the order in
which the components appear on source text files written by SAVE-MODULE. [If a module
has no Load-Order specified for it. all its components are treated as equal and the
implementation may process them in any order.

o The View-Order attribute is used to control the order in which the components appear when
editing the module. in listings produced by Hardcopy. and in the display of components in an
object viewer. If no View-Order is specified for a module. alphabetical ordering based on the
components’ Proper-Names is used.

2l'l'h»r" are consistency rules in the environment that attempt to enforee this condition. but until the AP35 hased refease of CLF.
it is possible to violate the restriction in some circamstances without being infornied. But this can only hisppen if soltware oljects
are components of iultiple modules. and only in citcymstances wheee modules (not individuals) helow the root are assigne? exphient
valuss for the attributes.

2~ Attributes of Software Ohjects

The orderings that can currently be specified for these slots are toral orderings. with “ties® allowed.

The value for an ordering attribute can be in either of 1wo forms:

e a function of two arguments, returning non nil if the first is to be treated as less or equal to
the second.

e a list of immediate components of the module. For any two components 4 and B. if hoth are
in the list. the ordering is induced by their positions. If only one is in the list. that one is
treated as strictly less than the other. If neither is in the list. theyv are treated as equal in the
ordering.**

An ordering associated with a module is treated as local to that module. It is not “inherited" to
submodules in any way. For example, if a time-of-creation comparison were specified as the View-Order
for module Utilities. and Utilitics contained as a component another module String-ltilities with no
View-Order specified for it. then the components of String-ltilities would be sorted alphabetically (the

default for Vicw-Order) in a hardcopy.

IMPLEMENTATION NOTE: CLF uses LOAD-ORDER as an ordering for both compilation and
installation (just as common lisp compiles forms in a file in the same order in which it loads them). The
LOAD-ORDER must account for both load and compile dependencies. Typically both are partial
orderings whose union is also a partial ordering. For example. the compiler must process macros before it
compiles functions that use them. but. when installing those components from a compiled file. the
ordering is irrelevant. On the other hand. initialization forms must. often be installed in a particular
order when one relies on the global state established by another. However. the compiler could usually
process them in any order. We have not encountered situations in which the dependencies between

compile and installation orders conflict with one another.

The initial setting of *DEFAULT-MODULE-LOAD-ORDER-GETTER* enforces a partial ordering on
components induced by the classes mentioned in the list

*SOF TWARE-CLASS-LOAD-ORDER-PRECEDENCE®. The initial setting of this list is:
(PROCLAMATION STRUCTURE SOFTWARE-CLASS TYPE-DEFINITION
RELATION-DEFINITION EVENT-DEFINITION GENERALIZED-VARIABLE-DEFINITION
UPDATE-MACRO-DEFINITION MACRO-DEFINITION FUNCTION-DEFINITION
GLOBALVAR CONSTANT INITIALIZATION-FORM LISP-FORM MODULE)

A component D1 precedes another component D2 if and only if there is a class C in this list such that DI
is an instance of (' but not of any class preceding (' in the list. and D2 i~ neither an instance of (' nor of

any class preceding C.

FOCAL-COMPONENT attribute

Do) N

““There 1~ not currently total enforcement of a restriction on the use of fists to spec:f3 component orderings that the list contain
only »omponents of the module it orders, There is likely to be such a restriction at ~ore future time If for no other rexson. it -
thus unwise 10 huiid 2 single list of software objects from multiple modules and use it 4~ the speaficgtion of the ordering for all of
the.

Introduction 1o CLF 29

Focal-Component is an optional attribute of MODULE. 1t is constrained to be a subrelation
of COMPONENT. i.e.. the Focal-Component of a module must be one of it~ immediate
components. The only semantics behind this relation (so far) has to do with CONPUTED
Load-Orders and View-Orders.

When the effective load ordering for a module is specified with an ordering function (such as
the default ordering based on component class described recently). the function will ordinarily
be asked to compare obj-:is that are IMMEDIATE components of the module. However.
when an immediate component is 3 module with a Focal-Component. that component is
passed to the ordering function. rather than the module. More specificallv. when comparing
two immediate components with the ordering function, the function is passed to the "ordering
surrogate® for each component. If X is not a module. or is a module with no Focal-
Component. X is its own ordering surrogate. Otherwise. the ordering surrogate for X ix
defined to be the ordering surrogate for the focal component of X. %

5.2. Software Classes

At the leaves of the component hierarchy in the CLF environment are individual software objects.
These objects are subcategorized into a number of distinet classes. These classex correspond primarily to
the various "name spaces® of Common Lisp -- functions. variables. type~. structures. ete. Moxt

operations in CLF are common to all the elasses.

Each software class has a number of attributes that enable CLF 1o hehave in ways specific to that class.
These include:

o Installer. Compiler. and Uninstaller {optional}. These should be functions obeying the
protocols for these three methods [*** to be documented ***|. The values for these attributes
are inherited through the class hierarchy. The root class. Individual-Software-Object. has an
Installer attribute that EVALuates the lisp form(s) that result from READing the value of the
Source-Text attribute. It has a Compiler attribute that Compiles the form(s). Individual-
Software-Object has no value for the Uninstaller attribute.

¢ Defining-Function. A symbol that is defined as a function. macro. or special form. When
parsing lisp text into software objects, forms having the defining function of a class ax their
CAR will vield objects classified in that class.

o Defining-Template {optional} should be either a symbol or a string. The defining template
is used as a format control string . applied to the proper-name of a software object of the
defined class. for generating an initial source-text for the object if it i~ edited prior to being
given any explicit source-text. A symbol S i~ equivalent 10 the string *(S (2~<0) >

).
'3Th’ Foeal-Component of module M plays no role in ordering the compenents of M 11 i only used in ordering the components of
modules CONTAINING M

B
"Th* appearance of (nin these strings je cureentdy the prenns of <pecitving FONT information. Thindk of 10 o o formet e vve
¢switeh to font n®. In CLF software object buffers, fopt 2 defanits to a boldface font, Font 0. the defanlt o« CPTFONT

Software Classes

5.2.1. Common Lisp Software Classes

FUNCTION-DEFINITION claxs
Function-Definitions are software objects that hold the definitions of functions. DEFUN s
recognized as a Defining-Function.

MACRO-DEFINITION class
Macro-Definitions embody the definitions of macros. DEFMACRO is recognized as a Defining-
Function. MACRO-DEFINITION is a subclass of FUNCTION-DEFINITION.

TYPE-DEFINITION claxs
Ty pe-definitions embody the definitions of new types. DEFTYPE is recognized as a Defining-
Function.

STRUCTURE-DEFINITION class

Structure-Definitions embody the definitions of new structures. DEFSTRUCT is recognized as
a Defining-Function. STRUCTURE-DEFINITION is a subclass of TYPE-DEFINITION.

UPDATE-MACRO-DEFINITION class
Update-Macro-Definitions embody the definitions of read-modify-write macros. DEFINF-
MODIFY-MACRO is recognized ax a Defining-Funetion. UPDATE-MACRO-DEFINITION i~
a subclass of FUNCTION-DEFINITION.

GENERALIZED-VARIABLE-DEFINITION class
Generalized-Variable-Definitions embody the definitions of generalized variables. DEFSETF is
recognized as a Defining-Function.

CONSTANT-DEFINITION class
Constant-Definitions embody the definitions of named constants. DEFCONSTANT is
recognized as a Defining-Function.

GLOBAL-VARIABLE-DEFINITION class
Global-Variable-Definitions embody the definitions of global variables. DEFVAR and
DEFPARAMETER are recognized as Defining-Functions.

LISP-FORM class
Lisp-Forms provide a catch-all for code that needs to be executed in the process of creating a
software system, but does not fit readily into any other software class. The Source-Text of a

LISP-FORM is expected to be a sequence of one or more evaluatable lisp forms.>®> Typical
uses of LISP-FORMs include:

o Initialization of global data structures.
¢ Tailoring the environment in which the application resides.

o Providing traces or logs of the system creation compilation process,

B)
25
More precisely it should be possible to READ suecessive forne from the text, evaloating cach one aa it s read.

Introduetion to CLF 31

5.2.2. Defining New Software Classes
SOFTWARE-CLASS-DEFINITION class

Software-Class-Definitions embody the definitions of new software classes.

DEFSOFTWARE-CLASS is recognized as a Defining-Function.
DEFSOFTWARE-CLASS macro

(name &key (superclasses °(individual-software-object))
installer compiler uninstaller
defining-functions defining-template)

This macro permits the definition of new subclasses of individual-software-object.
SUPERCLASSES, if provided. should contain at least one type compatible with
INDIVIDUAL-SOFTWARE-OBJECT. SUPERCLASSES may be a single class name or a list
of class names. DEFINING-FU'NCTIONS. if provided. should be a single symbol. or a list of
symbols, to be the value(s) for the Defining-Function attribute of the new class.
DEFINING-TEMPLATE should be a string or svinbol to use as the value for the
Defining-Template attribute of the new class. :

5.3. Software Interface Commands

Install
software-object imter face command
Install an interpreted version of the current source text definitions of the object.

Compile
software-object intcr face command
Install a compiled version of the current source text definitions of the object.

Save
module inter face command
This invokes the function SAVE-MODULE on the module. saving a permanent version of all
the module’s components. and their attributes, in a file in the module’s directory. Clicking
left. saves source only: clicking right saves source and binary form.

Break
function inter face command
Modifies the definition of the function so that the debugger is entered when the function i
invoked.

Unbreak
function iter face command

Removes the "Lreak® mechanism from the definition of the function.

5.4. Editing CLF Objects
CLF provides the user with an editing environment similar to that of Epoch for editing the textual
representation objects. There are. however. a few important differences. The buffers used are created by

CLF and are unknown to the normal Epoch buffer commands and operations. When an object is selected

32 Editing CLEF Obyjeers

for editing. normally by clicking on the edit option from the menu of operations obtained by selecting an
object with the right button, a buffer is created if necded and added 10 CLF s buffer queue. If a function-

definition with the name TRY-ME were =elected for editing the Epoch status line would appear as:
Zmacs (Lisp) TRY-ME

Here Lisp is the mode, and TRY-ME is the buffer’s name. As soon as the buffer is altered an asterisk will

also appear in the status line.

The buffer itself will contain

TRY-ME
on the top line, with a green background, and be followed by the function's
source text

(defun TRY-ME ()

Should a collection of objects, such as a module. be selected for editing. a buffer will be created for the
whole collection with the collection’s name appearing as the buffer’s name in the Epoch *mode line® and
each of its members appearing separated by the (initially green) label lines. It is not possible to delete
members of a collection by deleting the corresponding section of text from the buffer. nor to add a new
member by inserting text between existing units. Except for the label lines. which may not be altered. the
user may perform editing functions in the usual way using all the standard Epoch facilities as they apply

to the text heing manipulated.

5.4.1. Buffer Coordination

Coordination is maintained between a software ohject and all textual views of it so that when the
source-text of a software object is changed (by saving a buffer. by loading updates to a system. or direct
assertion in the objectbase) all buffers containing the old text are updated. If any of these buffers had
been modified the system interacts with the user to determine their disposition. Similarly. if the same
object has been differently modified in distinct buffers. if you attempt to save any of the buffers. you will
be informed of a possible anomolous situation. and the system will interact with vou in an attempt to

resolve the anomaly.

Coordination extends to both deleted and added components of a module.

Introduction to CLF 33

6. Software Evolution Monitor

Develop is the portion of the CLF system which structures the evolution of a system into meaningful
units of work called development steps. It records changes to software definitions in those steps, and uses
this recorded history to manage the installation of those changes. and distributing the (accepted} updates
to users of the changed system. It also offers version and release control. and provides maintenance

documentation.

Specifically, Develop provides the following capabilities:

1. Automated code installation: the execution environment is updated whenever a meaningful
unit of work has been completed.

w

. Automatic distribution of software revisions: Accepted revisions are automatically distributed
to the user community.

3. An agenda of pending work: Pending development steps can be created which represent future
commitments.

4. Ability for non-maintainers to make suggestions about the handling: of either bugs or
enhancements: The maintainer can choose to accept the suggestion for general users. or permit
the originator of the suggestion to continue having her own suggestions installed into her own
environment.

5. Semi-automatic production of documentation: The type of documentation that can be
produced is a development history. possibly enhanced with analyzed program listings using
other tools in CLF .

3 . . . i
6. Support for the development of true program alternatives and multiple-version systems=’.

6.1. Model for Software Evolution

A system is a specialization of a2 module. CLF automatically records the evolutionary changes made to
a system by keeping a development as a sequence of structured development steps. Each
development may have a current step. While any step is the current step. any changes made to the
system are considered to be part of that st.ep28 . The step which represents the current goal being worked

on is the valur of the current-step attribute of the development of the system.

A development step can have zero or more modifications. where each modification can be either
another development step (i.e.. a sub-step) or a development modification. Each development step

must have a step type and an explanation. both entered by the human developer. indicating the

264, .

This has< not hean conpleted.
Qi .
' Thi- feature i- in the dexign phase,

28 . . .
If sotie gapect of o system is altersd when there i~ no current steg. a new one i~ created

34 Model for Software Exvolution

purpose of the step. A~ the developer changes the syvstem to achieve this goal. these changes are
automatically recorded as modifications to the current development step. When the developer has
achieved the goal of a step. she can finish(close) it. All of the changes are then automatically installed
in her environment. After testing, the developer can make these changes available to other users of the

system by distributing (accepting) the step.

A development step represents a particular goal to be achieved by the alterations which are part of it.
Development steps may have sub-steps. just as goals may have sub-goals. The idea is that when one
wishes to make some change to a system. a step is opened. representing the main goal of the alterations.
This “root step® is called the top-level step. Any step created when a particular step is the current step
is automatically made a sub-step of the current step. and itsell becomes the new current step of the

development. This affords the ability to structure a series of changes in a comprehensible manner.

The leaves of the step sub-step hierarchy are development modifications. These are the primitive
alterations carried out as part of the implementation of the higher level goal represented by a
development step. Each development modification records a single change. addition. or deletion to a
system at the level of individual attributes of the objects in the system. For example, if the source-text
attribute of an individual definition is changed. then Develop appropriately represents that change as a

development modification. part of whatever the current development step might be.

6.1.1. Atomicity of a Development Step

Decoelop views each top-level development step as an atomic change to the database. In other
words. while restoring the objects in a system, Develop performs the development modifications in each
top-level development step atomically. This is primarily to ensure consistent replay of the development
history and ensures that no program or individual is permitted to view the state of the database after
only a few of the modifications in the development step have been carried out. The state of the database
may be viewed either before one has started to carry out the modifications. or after all the modifications
have been carried out. The development history of a system is viewed as a partially ordered sequence of

such atomic changes .

Naturally. when one actually alters a system. one might have a particular development step open
indefinitely while completing and testing one’s changes. and those changes may. in fact. occur in some
chronological order. However. for replay purposes. the changes represented by the modifications in the
step are carried out atomically. Because of the uncertain duration for which a step could be open and
current and because it is possible that one might make a mistake with modifications. Derelop
automatically fixes up a step should it be able 10 detect that atomic replay of the step will not succeed.
For example. if one alters the source-text attribute of the same object many times in the same 1op-level

~tep. Dovclop recognizes that this would result in contradictory updates when the step is replayed

Introduction to CLF 35

atomically. and fixes up the step appropriately. representing only a single change to the attribute from it~
original value to 1ts final value. Similarly. if one adds a component 1o the system and then deletes gt
from the system in the same top-level development step. Develop fixes up the step so that neither the

component addition nor deletion are part of the step .

6.1.2. Ordering of Development Steps

Top-level development. steps are ordered by the time that they are first finished. Steps which have
never been finished are incomparable to one another. Ordering by the time-of-first-finish is used to
determine in what order steps should be restored. A step which was finished at some time is deemed to
occur before a step that has never been finished. Given this ordering scheme. and remembering that in
Develop finished steps can be resumed. we must enforce certain consistency requirements to ensure proper
replay:

e A given {single-valued) attribute of an object cannot be modified in two incomparable (i.e..
never finished). top-level steps. Since incomparable steps are not ordered amongst themselves,
depending on which one of the steps is restored first. one could get different results. Thus.
this <ituation is prohihited. Never finished top-level steps must either modify disjoint <et< of
objects or different atiributes of the same object.

e A component cannot be removed in an earlier step if it has alreadv been modified in a later
step. This would render the later step meaningless. and must be prohibited.

e A particular (single-valued) attribute of an object cannot be modified in an earlier step after
the same attribute of the object has already been changed in a later step.

These consistency requirements are enforced strictly by Develop through the use of consistency rules.

Without these rules. it is impossible to guarantee correct replay of the changes made to a svstem.

6.2. Bringing a System Up-To-Date

The systems that exist in an environment can be updated by using the update-systems and
update-individual-system functions (similar o ZetaLisps load-patches).®® Precisely what
information gets incorporated into one’s environment when one updates a system depends on the update

mode attributes of a system. The following update mode attributes are used™® :
e execution-mode: What updates to the execution environment must be incorporated?

o Possible values are :never-load. :frozen-steps-only. :all.

o definitions-mode: What updates to the object definitions must be incorporated?

o Possible values are :never-load. :frozen-steps-only. :all.

These aperations may also heynvoked through the e intertqee

30,. . .)
For maintuiners. there are two additional mode-. vne o indeate if they want suggestion ohjests pestore§ and 4 ~ecand to

specify whether to restore pending <teps

36 Bringing a Syatem Up-To-Date

e skeleton-mode: For what kind of steps should the skeleton of the step object alone be
restored? '

o Possible values are :never-load, :frozen-steps-only.

e details-mode: For what kind of steps should the entire step object be restored?
o Possible values are :never-load. :frozen-steps-only, :volatile-steps-only. :all.
Briefly. by a “frozen® step we mean a step that cannot be altered. In Develop. this means a step which
has already been distributed. suggested. or terminated. since only such steps may never be altered.
Volatile steps are steps which have not vet been frozen. A volatile step can be altered by making it the

current step. and making more modifications to the objects in the system while that step is current.

Typical users do not. care about the details of a development step or the definitions of the objects
involved. They merely want the binary versions of the updates installed into their environments. System

stubs for such users usually have the following update mode attribute values:

e execution-mode == . :frozen-steps-only
o definitions-mode = :never-load

o skeleton-mode = :never-load

e details-mode ==- :never-load

The values indicate that only execution updates for newly distributed steps must be restored. No other

aspects of the system are visible to the typical user.

A maintainer of a system. in contrast to a typical user of the system. requires much more information --
including the definitions of all the objects in the system. details of at least the volatile development stepx,

etc. Thus. update mode attribute values for a system stub in its maintainer’s environment might be as

follows:
e execution-mode == . :all
o definitions-mode — - - :all
e skeleton-mode =— - :frozen-steps-only
e details-mode == .- :volatile-steps-only

The values indicate that the execution environment must be updated using all the steps that were

distributed or finished at some time®! . The definition= of the objects must be updated for all steps.
whatever their status. Drvelop restores steps at two levels:

o Skeletal view: suppresses the intricate detailc of a step. providing just the step <ubstep

SII)n'rlnp sscumes that open of xuspended stepe are ton unstakies to he jnstalled. Thus wnemanes ®alt® foeonormetude <uch
steps for installation purposes

Introduction 1o CLY 347

hierarchy. and the modified objects of the step.

e Detailed view: the entire step in all its detail. including all the modifications of the step. and
their attributes, representing the changes carried out in the step

Typically. one would like the skeletons of frozen steps to be restored rather than the details. Frozen
steps cannot be altered. and it could be wasteful of one’s virtual address space to have the details of these
steps in the database at all times just in case one needs to review the development history. The details
can be restored on demand through the menu interface. by buttoning on the step whose skeleton alone
was restored. and selecting the "Load Details®* command. There is not much choice but to restore the

details of volatile steps because they can still be changed.

The above are the typical values for the update mode attributes of a system in a given environment. If
any update mode attribute is not specified. Derclop behaves as if the attribute had the value :never-load.
However. if the update mode attributes of a system are not set to one’s satisfaction. they may be changed

conveniently using the *Change Update Modes" menu item from the menu for the system.

There are rules in Develop which automatically incorporates new information into one’s environment {as
necessary) when one changes the update mode values of a system. At all times. therefore. a system’s
update mode values will be an accurate reflection of what aspects of that system have been restored into
that environment. For example. if the Definitions-Mode of a system i changed 1o :all from :never-load.
Develop will proceed to restore the initial definitions for the system from disk. and then the series of

incremental definitional updates to the system from each step.

6.2.1. Ordering the Systems for Update

It is usvally required that the systems in an environment be brought to up-to-date in a specific order.
The order is determined by some notion of which syvstems depend on others. i.e., which systems use
resources provided by other systems. Systems which provide certain resources must be initially installed
and updated before systems which use those resources. While Develop has no idea why a system mighit
depend on another. it offers a way for users to specify the dependencies between the systems. Thereafter.
when Drurlop need- to update the systems. it will find an order consistent with the specified dependencies.

and update the systems in that order.

In order to specify system-to-system dependencies. one uses the global interface action *Add Remove
Dependency®. The middle button on this menu item lets one specifv a dependency between a pair of
systems. one of which must necessarily be before the other. In thi~ manner. one can specify so-called
*global® dependencies among systems. These dependencies determine the order in which Dreclop will

update sv~tems.

3% Bringing a Systen Up-To-Date

Over a large evolutionary period. however. the above ordering scheme for updating sy<tems usually
breaks down. It may be necessary o update system~ out of order. at least in specific cases. For example.
the MAIL-SERVICE system uses facilities from the system EMPLOYEE-SERVICE. Thus one would
specify a dependency to the effect that the EMPLOYEE-SERVICE should be updated before the MAIL-
SERVICE. Suppose. that Step 50 of the MAIL-SERVICE introduces a message sending feature that the
maintainer of the EMPLOYEE-SERVICE would like to use in Step 68 of that system’s development.
Clearly. what we need is a way to ensure that the MAIL-SERVICE is up-to-date until at least Step 50.
before we install Step 68 of the EMPLOYEE-SERVICE. In this situation. we cannot specify a global

dependency.

Develop offers a way to specifv requirements or pre-conditions for steps to be incorporated. These
requirements are of the form: In order to install Step N, of system .'5'1. first ensure that Step ‘\‘j of
system S, has< already been installed. Such a specification would cause the following behavior: Derelop
first find< an order to update systems. If S, preceded S, in this order. then Dcrvelop’s usual default
hehavior will ensure that Step Nj of S, gets installed before Step N, of S,. However. if S| preceded S, in
this order. then. just before installing step N;. Dcvelop will note the requirement placed on installing that
step. and switch to updating S,. It would bring S, up-to-date up to Step Nj‘ and then switch back to

updating S,. installing Step N.. and steps which follow?? .

Dependencies between specific steps of two systems can be specified using the ®Add Remove
Dependency® from the CLF global menu. The left button lets the user specify a new dependency between
a particular step of one system and a particular step of another. Similarly. the right button permits the
user to remove a previously specified dependency between the steps of systems. The instructions 1o be

followed are fairly simple after using either the left or right buttons on this menu option.

In summary. use global or system-to-system dependencies between systems when the usual pattern of
dependencies between systems is well-established and understood. This will establish a default order of
update for systems. However, if it is required that before installing a specific step of a system. one needs
to ensure that a particular step of another system be installed first. and one cannot be sure that the
default order will guarantee this. one can actually specify a step-to-step dependency as discussed in this
manual. While updating svstems. Develop will then use the default order. changing it a~ necessary when

the step-to-step dependencies require it to update other systems first.

32 . . .
Yeso b= possitte that there ure cyeles in the specified dependencies While Jhrrelop does not detest the eyeles when the
dependencies gre specified. it does detect then at update time

Introduetion to CLE 39

6.3. Development Steps

As noted before. a development step is the basic unit of evolutionary change in Develop. In this section.

we see more of how development steps are used to structure the evolution of a program.

Initially, there are two possible states that a development step may be in -- pending and open. A
pending step represents a commitment to a future software revision. that when handled will become the
current step. An open step. on the other hand. is a step that is currently being worked on. Once opened.
moadifications may be made to the system or its components. These modifications are then recorded as

part of the current step of the corresponding development.

When all the modifications have heen made the maintainer must finish the step which causes the step
to be saved to disk {so that its persistence is ensured.) If the step is a top-level step. the revisions in the
step are (optionally) automatically installed imo the maintainer’s LISP environment. Afterwards. the
majntainer of the svstem may distribute these changes to the user community. making the step visible
to the users at large. It is also possible to terminate a finished step. Termination of a step has the same
effect a~ distribution for modified definition< in the step. but there is no executional update associated
with a terminated step at all. In effect. it is a step of some historical and definitional interest. and does

not affect one’s LISP environment.

In addition, steps may also be aborted, suspended. or resumed. as shown in Figure 6-1. Suspending
a step causes it to be saved to disk. but not installed. In addition. the parent of the suspended step. if
any. becomes the current step. Resuming a step makes it the current step. As a side effect. the step that

was current and its ancestors are suspended.

Aborting a step has the effect of undoing all its constituent modifications. Under certain
circumstances. it may not be possible to abort a finished development step. For instance, one cannot
abort a development step if there are later steps that modify a (single-valued) attribute of a particular
object which is modified in the same attribute within that step itself. The later steps "depend” in some
sense on the earlier steps in our ordering. and one cannot abort steps arbitrarily. Thus, "dependent® steps
of a development step must be aborted before a de\'elopm.ent step can be aborted. Aborting a step may
become difficult to do if multiple top-level steps modify the same attribute of the same object. Finally. an

aborted step may not be further modified. distributed. or terminated.

Similarly. distribution of a finished step will not be permitted if there are earlier (undistributed)
development step< which modify the same objects and attributes. For example. if step 5 was finished
before step 6. step 5 occurs before step 6 in the ordering. Say there is a modification to the source-text
attribute of an object foo in both steps 5 and 6. In this situation. the earlier step (5} must be distributed

before step 6. since both modify the same attribute (source-text) of the object foo.

10 Development. Steps

From the above, 11 must be kept in mind that if 3 maintainer intends to work with several active top-
level steps, she does need a broad plan about what she 15 going to modify in each step so that she can
avoid having a confusing number of top-level steps: otherwise care must be taken to ensure that the top-
level steps modify either disjoint sets of objects or different attributes of the common objects. If Develop
does not let a user do something in a specific step or carry out some operations that the user thinks she
should be able to do, it is almost certainly because permitting that operation would make it impossible to

have a consistent replay of the development history

Suspended

Pending

Resuyme

Abort

Accepted <
Distribute

Figure 6-1: A transition network of the states of development steps and the
actions that can change them.

6.3.1. Finishing an Open Step

As we have already pointed out, finishing an open (top-level) step is one of the important occurences in
the life-time of the step. For one, it determines the ordering of the step relative to other steps. Further, it
does indicate that the unit of work represented by that step has come to a nieaningful state of completion
{at least temporarily). For this reason. Develop chooses this time to remind the maintainer of a series of
book-keeping details having to do with that step. For example. Druvelop permits one to install the

modified definitions into one’s LISP environment.

Often, one forgets to include certain changes in the step. For example. a common scenario is that the
user makes the textual changes to the objects in the object edit buffers. but {orgets to commit the changes
to the database. When a step is finished. Develop looks for around for modified buffers containing objects
in the relevant system to see if the modifications in those buffers are also to be committed in that step,

before actually finishing the step. This provides a valuable reminding serviee to the user.

Introduction to CLEF 11

Another activity supported by Develop at finish time is the task of supplying a load order for newly
added modules. or a new load order for modules to which new components have been added in that step.
Devclop offers the capability to construct a load order interactively before finishing a step. Users often
forget to specify necessary dependencies between the objects they add to a system. This invariably results

in an unexpected order of installation of the objects. causing anomalous behavior and errors.

Develop also deduces a load order for an installation module®® at the time the corresponding
development step is finished. This load-order can be tailored appropriately by the user. The deduced load
order for the installation module is based on the load orders for different modules in the system that the
user has already provided. Based on those specifications. Develop deduces a load order for installation
modules. If the deduced load order is incorrect. it can be changed as needed at the time of step finishing

through a series of interactions with Devclop.

6.3.2. Undoing Selected Modifications

Aborting a development step has the effect of undoing all its modifications. The attributes of objects
modified are all reverted to values they had when the sl"(-p was first created. In essence. the state of the
system components and their properties are as if the step were never created. Often. one doex not want
to abort a complete step. but merely wants the effects of selected modifications to be reversed. Perhap-~.
some changes were not needed or some were simply mistakes which one needs to retract. Denclop offers
one the capability to undo selected modifications. Button on the development step which contains the
modifications. and select the *Undo Modifications® menu item. A menu of all the modifications will be
displaved. The user selects the changes which she wants undone. and exits the menu by buttoning the
mouse in the area labelled *Do It". If she wants to abort the undoing operation. the mouse should he

buttoned in the area lahelled *Abort".

A pre-requisite for one to be able to undo modifications of a step is that the step be the current step of
the development. i.e., it is the step being worked on. Also. in keeping with Develop’s consistency
requirements. one cannot undo modifications if there are later steps (i.e.. steps finished later than the
current step) which assumed those modifications. The selected modifications will be removed from the
development step. and their effects on the database will be reversed. i.e.. the changes which they represent

will be undone.

Since the most frequently occuring changing attribute is the =ource-text of an individual-softwar.-
object. there is another way to revert the definition of an individual-software-object. When a particular
step is current. and the user wants a particular object whose definition was altered in that step to be

reverted to its previous definition. button on the object. and select the *Revert Definition® menu item.

a3
Installation modules yre discussed later in this <ection of the suannad

2 Development Steps

This will revert the source definition of the object, and remove the corresponding development

modification from the step.

6.3.3. Background Step Saving Activities

The persistence of everything that one does using Develop is assured by periodically writing out the
contents of development steps to permanent storage. Typically. this saving operation is carried out when
the status of a step is altered by the user. Develop tries to execute all activities related to saving steps or
compiling step files in the background. This frees up the user from having to wait until the saving or
compiling is finished. and she can resume other activities. Thus, there could be an appreciable lag
(typically a few minutes) between the time one changes the status of a step. and the effects of that change

are actually recorded on disk.

While Devclop does not actively prohibit further changes to the step. it has sufficient information
during the background activities that it can restore the step and the files corresponding to it to their last
consistent state. Each step has its own dumping process and queue. The dumping of multiple processes

dumping different steps is svnchronized wherever necessary.

In most cases. the process dumping the step is active for just a few minutes, unless the step contains a
lot of modifications. If the process runs into an error while dumping. the changes are relatively easy to
undo. Develop protects the user againt dumper process errors as much as possible. (e.g.. the remote host
machine to which one is writing is down) by restoring the database to the state before the step status
change was made. Thus. one is free to keep working on the system while something has already

committed is being saved to disk.

6.3.4. Type of Steps

Each development or pending step must categorize the kind(s) of change to be effected and give an
explanation of it. The explanation is simply text that describes the change. The step types used to
categorize the change are predefined but can be extended by the user via the ADD operation. The
primary ones are:

Augment menu tlem
Add a new capability.

BugFix
Fix a bug.

CleanUp menu ttem
Simplify existing functionality.

Fortify

Introdu tion 10 CLEF 13

A modification that makes the associated software more robust.

Generalize menu item
A change that allows software to accept more cases.

Maintain menu stem
A modification that is made to retain functionality when other software (i.e.. the environment)
has changed.

Reorganize menu ttem
Move components between modules or code between components.

Revise
A change that is not upwardly compatible.
Tune

Improve the efficiency of the underlying algorithms or data representations.

6.4. Installation Order for Modifications

We have seen how the modifications in a top-level development step are viewed a= occuring atomically
from the point of view of the database. Thus. the ordering of modifications has no effect on the
resultant definitional state of the system after the step is replaved. However. this is clearly not true
for updates to the LISP environment. Order could be vital in creating a compilable form of a step for
distribution as a patch to users. and different orders of installing the revisions could give different results.
An example of a case where order is important for compilation is when a macro has to appear before any
function which calls it. Clearly. therefore. some ordering mechanism has to be set up for the purpose of

compiling and installing a step into the LISP environment.

Deuvelop allows one to have an installation-module corresponding to each development step. created
automatically when the step is created. The installation module is intended to contain all the objects
whose new definitions will be distributed as updates to the LISP environment of each user of the system
when the corresponding step is distributed. When the maintainer modifies an object. it is automatically
inserted as a component of the installation module for the step under which the modification was carried

out. Thus. Derelop fleshes out the installation-module for each step.

The maintainer is free to alter an installation module in any way. Components may be added or
removed as needed by the maintainer. If the order of installation i< crucial. she can then assert a

load-order for the module®! . as she could. indeed. for any other module. This load order is used as the

’“r\'mu thut Derelop assists u user in finding a load arder when o step i< finished

1+ Installation Order for Modifications

order in which the modified objects will get written out and compiled. The installation module for a step
is part of the default view for a step. It is the value of the patch-module attribute of a developnient

step.

Develop offers another convenient mechanism of inserting components into the installation module of a
step. This is the editor command "HYPER-i®, similar to the Hyper-z command in the Programming
Service. This command can be issued while editing software objects in a system. The meaning of the
command is as follows: Unlike the hyper-z editor command which saves new definitions of changed objects
in the edit buffer, the hyper-i command creates copies of the changed objects in the buffer, making
the copies components of the installation module for the current. step®® . The original objects, if they were
in the installation module. are removed from it. Also, the definitions of the originals are unchanged. The
command provides a convenient way to handle cases where what is installed is not the permanent
definition of an object. but some other piece of LISP which has a close relationship to the permanent
definition. Devrlop will notify the user if the original changes subsequently IN THE SAME STEP.

reminding her to change the copy if needed.

Installation modules permit a very important conceptual separation in Develop: updates to the
definitions of the objects in the database are handled through atomic updates using the (unordered)
modifications in a step. and updates 1o the LISP environment are handled through an installation module
corresponding to the step whose contents are determined jointly by Dcuvelop and the maintainer, and for

which a load-order can be asserted to ensure installation in a specified order.

Installation modules are particularly handy in some fairly common boot-strapping situations in software
maintenance. For example. say there are some forms which must be evaluated before a particular feature
is distributed. The easiest way is to handle this by creating a step. and inserting all the boot-strapping
forms as components of the installation module. This is a step with no actual modifications to the
objects in the system. but will serve the purpose of distributing the boot-strapping forms when it is
distributed to other users. Similarly. it is possible to have definitional updates alone in a step by
removing all the components of its installation module. Such a step serves as a definitional update with

no effect whatsoever on the LISP environment.

6.4.1. Fixing Frozen Steps Which Cause Errors

It often happens that after a step is frozen. i.e., it is distributed. one discovers that users report errors
when it is installed into their environments. This could happen for a variety of reasons, usually because of
an oversight on the maintainer’s part while creating the step. Develop provides certain facilities to deal

with this common situation.

A3, . . .
It i~ an error to issue the conunand when there is no current steg..

Introduection to CLF 45

Onece a step is distributed. nothing about its definitional aspects can be altered since this would have
an adverse impact on the integrity of the database state when the steps are replaved. However. one can
alter the execution aspects (i.e.. installation module} of a distributed step. removing and adding thing~ to
it to fix up the problems when the step is installed. In most cases, the maintainer must create a later step

to fix up the definitional environment if needed.

One can "thaw® out a frozen (distributed) step by buttoning on the distributed step and selecting the
*Prepare to Redistribute® option. If the details of the step need to be restored, Develop will automatically

36 Now, the user can alter the installation

do that. and mark the step as being ready for redistribution
module as needed with one important caveat: the objects in the system itself cannot be altered

unless those modifications are to be recorded as new modifications to the system.

The procedure just discussed assumes that one i= in a environment. where the distributed step already
exists. In case the step is not present (in either detailed or skeletal form) in the environment, one can
button on the development object for the system (part of the default view of a system). and select the
Load Specific Step menu item. Provide the appropriate step numher when prompted. and Develop will
restore the step. setting the stage to use the above procedure. To get the appropriate step number (i.e..
to remember which step needs to be re-distributed) one could use the Develop facilities to examine the

off-line development history of a system. discussed later in this manual.

After making the changes necessary. the user huttons the step . and selects the "Re-Distribute® menu
item. Develop will then use the altered installation module to create new executional updates which

incorporates the changes made to the installation module.

This feature of Develop is intended to provide a convenient method to correct the inevitable gaffes that

one makes in patching a system. There are limitations:

¢ People who have already installed the step in its wrong form cannot be helped without a later
step which corrects things. Of course, there are cases where once the wrong version of a patch
is installed, there is no way to recover. period.

o The definitions of the objects mav need to be fixed up depending on how the problem caused
while installing the step was resolved.

The points above should emphasize that the redistribution feature is not to be construed as an invitation

to be careless about what gets distributed the first time around.

26 . L .
¥ If somebody tries to update the system at a tune when a distributed step s in the *thawed® state. this step and all orhers
oceuring after it are NOT installed

16 Instaltation Order for Modifications

6.5. Non-Maintainer Suggestions

D« velop has features to help non-maintainers communicate their recommendations to the maintainer
in a reasonably clear manner. Especially in environments where the users of a svstem are also expert
programmers. users do not just report problems and wish lists to the maintainer. they may also wish to
communicate how the problem they experienced can be solved or an enhancement ought to be

implemented. Develop’s suggestion Tacility is tailored to suit these needs.

The fundamental idea is that if a potential suggestor can get hold of the definition= in a system that she
. is using. she can recommend ways to change those definitions or adding new definitions by creating a
“suggested™ step with those changes. The maintainer reviews the recommended changes. and if they look
useful to the user community at large. a regular development step containing the changes is distributed.
making the suggestions visible to every one. This permits every one to share the development burden
somewhat by letting them think of ways to implement the things on their minds. The maintainer is left
with the task of synchronizing possibly conflicting suggestions with the ongoing agenda of development

for the system.

There are basically three aspects to supporting suggestions. First. how suggestions are made by a non-
maintainer: second. giving the suggestor the capability to have his or her own suggestions installed during
updates to the system if the maintainer has not yet acted on them or has acted but not accepted the
changes: and, finally. how the maintainer can act on a suggestion. examining and either incorporating or

rejecting the suggestion.

6.5.1. Making a Suggestion

A non-maintainer can make suggestions to the maintainer. The suggestion could involve new definitions
for objects which are already in the system or the addition of new objects to the system. For example, if
one discovers a bug in a function. and knows how to change its definition to fix the problem. one would
create a suggestion proposing a new definition for the function. Later. this suggestion would be examined

and perhaps incorporated into the system by the maintainer.

The manner in which suggestions are created is not substantiallv different from the way in which steps
are created. A non-maintainer merelv opens a step. puts her suggested modifications into that step.
finishes the step. and. finally. “distributes® it. The step is not actually distributed. it merely gets written
out as a suggested step which the maintainer will eventually examine. No users other than the suggestor

and the maintainers of the system will see the suggested update until the maintainer incorporates it.

A key aspect of making suggestions is ta get the "current® definitions of the ohjects ta maodify The
current definition for non-maintainers is the definition a~ of the last frozen <step. In order 10 get the

definitions to modify. a non-maintainer has two choices. First. the definition~ can be restored via the

horoduction to CLE I

“Load Svstem* global CLEF mterface action. This is likely to be much more than isx needed for the
suggestion because it would restore all the definitions in the system. whereas the contemplated suggestion
may volve just one or two functions. A second possibility is to use the “Hyper-.* editor command to
edit the definitions of specific objects. The Hyper-. command brings in the last distributed definition of an

object from disk by reading a master file containing these definitions.

The universe of alterations which a suggestor can make is restricted. For example. a suggestor cannot
alter the release or maintainer attributes of a system. She can only change deflinitions or add components.
In fact. the components added by a suggestor Lo a system are not represented as true components of the
system. Rather. they are represented as suggested-components of the system. Develop. nevertheless.
monitors alterations to these objects in its usual manner. It is important that any components added 1o a
svstem have the proper package and syntax designations. The suggestor should ensure thix for the

components that she might explicitly add 1o the system.

After a suggestion has been made. if the suggestor wishes to retract it ax a suggestion. and treat it like
an aborted step. she can button on the suggestion. and select the *Cancel® option?* . Derelop simply
updates the status of the suggestion to be aborted in the patch directory. During subsequent updates by a

maintainer or by the suggestor. the step will be treated like any other aborted step--it will be ignored.

6.5.2. Updating a System with Suggestions

In general. a suggestor's patches do not affect the patches installed for the typical user. who still gets
only the patches distributed by a maintainer. However. Denclop will install the suggested patches when

the author of the suggestions does ap update to a system.

Jt 1s conceivable that a person is neither a maintainer nor the author of a suggestion to a system. but
wishes to install it while updating the system . Develop offers a mechanism to do this. One can select the
® Accept Others” Suggestions® menu item by buttoning on the appropriate system for which one want 1o
receive the suggested patches. Develop will prompt for the person whose suggestions are to be received.
During subsequent updates. any applicable suggestions authored by that person will be included in the set
of patches to be considered for installing. One can receive suggestions authored by more than one per<on
by repeating the procedure above. If one should choose to remove one of these persons from the livt of
people whose suggested patches one wants to receive. the "Stop Accepting Suggestions® menu item when

one buttons on the appropriate system i< used.

Whether a user is the suggestor (in which case Deurlop automatically assumes the user wants her

';'Th'r- is no difference hetwern the effects of this operation and an *Abopt® operaton voged while the syggested crep wns -nli

volatls

_

4% Non-Maintamer Suggestions

suggestions to be considered for installing if they have not been handled by a maintainer) or a general
user who has opted to receive suggestions authored by one or more persons. Develop will permit the

installing of suggested patches under certain circumstances.

It is not easy to characterize just when it is safe to install the suggestions because the suggestions
contain arbitrary LISP code. Deuvelop supports the suggestor in figuring out if it is safe to install a
suggestion. When a suggestor does an update to the system. Develop collects all the relevant suggestions.
and displays them in a menu along with diagnostic information. The diagnostic information includes the
following:

e What was the maintainer’s action on the suggestion? There are four possibilities:

o :pending-action — indicating the suggestion has not been acted upon.

o :totally-subsumed -- the suggestion has been acted upon and is entirely incorporated into
a later step.

o :partially-subsumed -- the suggestion was partly incorporated into a later step.

o :rejected -~ the suggestion was not received well. and was not deemed appropriate for the
public at large.

e An explanation by the maintainer of her action in the cases where an action has been taken.
This enhances the above information.

e Are there later steps (i.e.. steps to be installed after the suggestion) which modify the same
objects? Develop categorizes each suggestion as being:

o :safe — no later patches at all.

o :probably-safe -- there are later patches. but they modify other objects than the ones
modified in the suggestion.

o :probably-unsafe — there are later patches which modify some of the objects modified in
the suggestion.

Based on the above diagnostic information printed for each suggestion. the suggestor selects which
suggestions are to be installed through the menu. The selected suggestions are installed. and the others

are ignored.

6.5.3. Maintainer’s Handling of a Suggestion

At the outset. the maintainer can choose not to deal with suggestions at all by simply setting the
load-suggest-info? attribute of the system in question to nil®® . Suggestions can be accepted by setting
the same attribute to t. This can be done by using the menu interface, buttoning on a system. and
selecting the option to either ®"Load Suggested Steps® or ®Don’'t Load Suggestions* when the

load-suggest-info? i~ set to nil and t respectively.

When a system’s update mode attributes indicate that the steps are to he restored. and the system’s

load-suggest-info? attribute i< <ot 1o t. suggestions are restored when a svstem update is done

xR . . , -
Devilop treats o <y<tein with no value for the load-suggest-info? attrilate a5 if it had o value of nil

Introduction 1o CLF 19

Restoring a suggestion has the effect of restoring the step without affecting in any way the objects
in the system. The suggestions and their constituent modifications are merely stored a~ part of the

development history.

The maintainer can examine a suggestion in a “read-only®" manner. This can be done by selecting the
“Examine® option from the menu one gets by buttoning on a suggestion. Examining hasx the effect of
displaying the suggested modifications in a read-only buffer. edits the installation module for the
suggestion. and displays the current definitions of any modified objects if possible. This gives the user a
chance 1o assess the value of the suggested change. Develop also printx information about which changes
are possible to incorporate exactly as they were suggested (meaning. the suggestor modified what is the
current definition for the object in the maintainer’s environment) and which changes may require a merge

between the current definition in the maintainer’s environment and the suggested definition.

A suggestion can be rejected by choosing the "Reject® menu item after buttoning on the suggestion.
This has the effect of making the step invisible to general users (except the suggestor himself!) and the

maintainer for subsequent npdates.

The suggestion can be incorporated by selecting the "Incorporate® menu item after buttoning on the
suggestion. Dervelop now put< up a menu of modifications from the suggestion. The maintainer selects
those modifications she feelx should be made a permanent part of the system. If new component~ are
proposed in the suggestion. and the maintainer likes them. the modifications corresponding to their
addition must be selected as well. Dcrelop opens a new step. and the selected modifications are viewed as
having occurred in the new step. If a step is already open. one has the option of either using that <tep

itself to incorporate the suggestion or 1o suspend that step and create a new step.

Incorporation happens automatically except for suggested-components. Recall that these are not
true components of the sysiem. but. rather. are components suggested by the suggestor. At incorporation
time. Develop prompts the maintainer to decide which module the suggested component should become a
part of. An object is not permitted to be both a suggested-component of a system and an actual
component of the system. If there are objects in the installation module of the suggestion which are not
part of the system. Driclop queries the user about whether to add each to the installation module for the
step into which the suggestion is being incorporated. After this. as part of the incorporation. Dervclop
prompts the maintainer to describe her action regarding the suggestion. This information is used in

helping suggestors to figure out if their suggestions are still safe to install.

After the selected modifications are put into the currently open step. and the database refleci< the
appropriate definitions. the maintainer merely finishes and distributes the <tep as <he would any other

This makes the suggested changes available to all user< of the svstem

50 Non-Maintainer Suggestions

6.6. Querying the History

Develop maintains a detailed history of how the objects in a system change over time. The intention is
that such a history will provide the maintainer important information about when and how an object was
changed. relieving the maintainer of much of the tedious book-keeping burden which she might otherwise
assume. However, merely having the information is not sufficient. There must be some way for users to

access the information as well.

Develop can present several paraphrases about the development steps in one’s environment at any time.
For example, when one buttons on a system. the *Overview® and "Active Steps® menu items provide a
summary of all the development steps in the user’s virtual address space. and all the volatile steps
in the user’s virtual address space respectively. However. these kinds of reports presuppose that the
development step objects are already in the environment. What should one use to find out about sieps

that do not exist in that environment?

Develop permits one to view summaries of the off-line history it maintains. The facility can be accessed
by simply buttoning on a system and selecting the “Off-line History* menu item. *Off-line*. in thi~
context. means the history is not in the user’s virtual address space. but is out on persistent storage. This
facility comes in handy if one wants to find out about the development of the system without actually

restoring the steps into one’s environment.

The facility permits one to get an overview of all the steps in the system. or just the volatile steps. just
the suggestions, just the pending steps. or steps which modify a specific object etc. A rich variety of
information is made available through this facility. The limitations are that there is no general query
mechapnism to interface to the information on persistent storage. Drvelop provides some ®*canned* queries
to access the off-line information. However. if one needs to navigate the information in some arbitrary
manner. there is no way to do this unless the relevant steps. in all their gory detail. are restored into the

user’s virtual address space. The user is then free to use AP5 queries to navigate the history as desired.

6.7. Making New Release of a System

The steps in the development history of a system apply to a specific release of that system. Whenever
one has to start a new major generation of the system. for example. when one needs to make a major
change in the surrounding kernel software. one has to make a new release of the system. By making a
new release of a system. one is essentially starting a new development history for the svstem. a new
sequence of development steps which will apply only to the new release of the system. Obviously. creating
new releases is not a routine or commonly occuring maintainer activity. Nevertheless. it does happen. and

Divelop supports creation of new releases (o make the transition to the new pelease simooth.

Only a maintainer can make a new release of a svstem. and even she cannot do so if there are volatile

Introduction to CLF o1

steps in the development of the system at that time. Volatile steps indicare an initiated. but unfini-hed.
agenda. Therefore. creation of a new release of a system is not permitted when the system has volatile
steps. One can create a new release by buttoning on a system. and selecting the *New Release® menu

item.

Creating a new release of a system has the effect of saving the system completely - all its definition~
and a complete recompile. Develop increases the release attribute of the system by 1. and then sets up a
new patch directory to hold its steps. Develop permits the transfer of certain kinds of steps interactively

from the old history the new history:

e suggestions by non-maintainers which have not yet been handled.

o pending steps which have not vet been handled.

Thus. the ongoing agenda of things to do can be transferred 1o the new release at the maintainer's

discretion.

An important decision needs to be made by the maintainer. Is it safe for users of the old release of the
svstem to continue 1o receive upgrades from steps made to the new release of the system? There is no way
for Dcvelop to determine this automatically. It merely finds out from the user. If the two releases are
incompatible. as is often the case. the development steps corresponding to the old release should be
maintained disjointly from the step= for the new release. If the maintainer wants to permit users of the
old release to continue receiving upgrades. she can specify that she needs a bridge step from the old
release to the new release. A bridge step automatically increments the release value of a system when it is
installed. thereby enabling users of the old release 1o receive the upgrades to the new release on

subsequent updates.

6.8. Operations

CLF enables the user to edit. install, compile. add. or delete software in CLF. Develop records those
modifications. encourages the user to structure them into meaningful units of work, and uses this recorded
history to manage the installation of changes. for revision and release control, for distributing updates.
and for providing maintenance documentation. Most operations can be chosen by selecting items from a
menu. This menu is generally obtained by selecting a CLF object with the right mouse button which

pop~ up an appropriate menu. The operations are:

Abort
development step interface command
Abort a development step. A dump file is written. This step. however. can never be resumed.
finished. or distributed. This interface command is only offered when a ~tep is pending. open.
or finished.

Accept Others’ Suggestions
SVstem interfaee command

Operations

Prompi~ for a person who will be added to the list of people whose xuggestions to that system
will be installed into one’s environment at the next update.

Active Steps system infcr face command
Displays the open steps for a development (i.e., those that have been created but not yet
finished). or the previously opened step if none are currently open.

Add Attribute . software object interface command
Adds an attribute to an object. For software objects. this is the standard way to add
maintainer, documentation. local-declaration. module-directory. read-syntax.
read-base. and read-package attributes.

Add New Component(s)* module inter face command
Creates a new software object and adds it to the module. Clicking right on this item will
select the editor as the current process and ask vou to enter the defining form(s) for the new
component(s) using the editor. The appropriate type of component is deduced by the defining
form. Clicking left. on the other hand. would prompt you for the type of object and it~
definition. During prompting for the object type. typing COMPLETE will pop up a
menu of valid types. one of which must be selected. Finally. clicking middle alows an existing
component to be added to a module. attribute) command when applied to modules.

Add/Remove Dependency global infer face action
Command to specify new dependencies between a particular system and step and another
system and step. Can also be used to remove such dependencies. and to add global
dependencies.

Add Type/Explanation development step inter face command
Add a step type and ‘or explanation to a development step.

Bring Up To Date individual program object interface command
Installs the most recent definition of the object {and correspondingly updates its source-text
definition). Only offered on objects whose source definition is not current {because a previous
version of it had been installed by the (Re)Install command).

Cancel suggestion inter face command
Abort a suggested step after it has already been suggested to the maintainer. If no-one hax
already handled the suggestion, this will let a user retract her suggestion.

Change Update Modes svstem inter face command
Puts up a menu of the update mode attributes and their possible values. C'urrent values are
marked. Newly specified values are used to reset the update mode attributes.

Checkpoint development step inter face command
Dump a development step but leave it open.

Coerce To System module inter face command
Coerce a module to a system. If a module-directory has not alreadyv been given for the
module then the user will be queried for one. One should type in something that can be
coerced into a valid pathname specification. A development is then ereated with an initial
step that records the initial definitions of the component~ of the <ystem

Create Step system interface command

Introduction to CLE 53

Create a new development step as a sub-goal of the currently active step. If no <step is curpent.,
Develop will pop up a menu containing open and pending: one of these must he <elected as
the initial status. Otherwise. the status of the step is :open. Then. another menu will pop up
which asks if you want to “set the type and explanation®: clicking on a mouse button is an
affirmative reply. moving the mouse away means that you will provide a type and explanation
at a later time. If you decide to add a type and explanation, a menu of valid step types will
be displayed. You must choose one. and must input an explanation for the change.

Create/Load System®* global inter fuce command
Clicking left causex a new system with no components to be created. one must specify the
module-directory attribute, which specifies the directory where the software will reside. A
development is also created. Clicking right loads an existing system.

Definition development modification tnfer face command
Display the recorded object definition for a modified software object and; or the incremental
change that was made to it. Module modifications are always incremental changes. whereas
modifications to individual software objects are generally newly recorded object definitions.

Describe Copies individual-software-object inler face command
Shows information about the different copies of a given individual software object in different
installation modules.

Distribute

development step inter face command
Distribute a patch to the user commiunity. This causes the modifications in a step to be
compiled. which will then be installed into a users environment when she updates the systein
which corresponds to the step. When distributing a step the compiled text corresponds to that
which has been installed in the maintainers environment. The maintainer is warned if a
modification made within the step has been superceded by another from a step not vet
distributed.

Dont Load Suggestions system inlcr face command
Do not restore suggested steps for this svstem at future updates. lssued by the maintainer
when she does not want i review suggestions.

Edit ‘

program object inter fare command
Modify an object by editing its textual representation. The textual representation of an CLF
object will be placed in an CLF object buffer. After editing has been completed (as indicated
by hyper-g or hyper-x control-s) the modified textual representation will be reparsed to
define the structured definition of the object. For individual software objects. the new
definition will be saved and a development modification will be created corresponding to this
change. If a development step is not open then Develop will automatically prompt the user 1o
create one.

Edit Patch Module
generalized-step inter face command
Edits the installation module of the buttioned development step or suggestion. The order of
editing can be selected by using different the left or right click.

Examine
suggestion interface conumand
Examine a suggestion -- edits the current definitions of the modified ohject<. puts the

Operations

suggested definitions of the objects in a buffer. and edits the installation module if it contain~
objects not already in the system.

Finish
development step inler face command
Only the author of a step can finish it. The step and its modifications will be dumped to
ensure its persistence. If it is a top level step. all modifications made within it that have not
yet been installed will be installed.

Finish Active Steps* system inter face command
Finish the open step(s) of the system and dump them. Only the current step will be finished if
the left button was depressed. Otherwise, all open steps will be finished. If a top-level step ix
finished, all of its modifications which have not vet been installed are automatically installed.

Handle
development step tnter face command
Handle a pending development step now. The status of the step is changed from pending to
open. and the step becomes the current step.

Incorporate
suggestion tnter face command
Incorporate a suggestion. If a step is already open. it may be used. Otherwise, a new step i
created. A menu of suggested modifications is put up. Selected modifications are inserted into
the step in which the suggestion is incorporated.

Install/Compile development step inter face command
Install any uninstalled modifications of the development step into the environment.

Restore Details development step inter face command
Restore the most recent details about the development step. restoring it completely. Used
often when one has only the skeleton of the step restored.

Restore Specific Step
development inter face command
Prompts for specific step number. and restores the step. with all its details. The objects in the
object base are not affected.

Restore Suggested Steps system inter face command
Puts up a prompt to determine whether to restore the suggested steps to the system. either
when the next update to the system is done or right away in the background. Carries out the
selected option.

Modifications* applies to several types intcr face command
Print the modifications made to a individual program object in reverse chronological order if
the object clicked on was either a software object or development modification. However if it
was a development step then print the modifications made within it. If the middle button i<
used then also print the modifications to embedded steps.

New Release system inter face command
Creates a new release of the svstem. a fresh dump of the svstem. and a new pateh direetory.
The system must be definitionally up-to-date. and there must he NO volatile steps in the
development for one to he able to use this command.

Introduction 1o CLY 35

Off-Line History system tnter fuce command
Provide~ facilities to view the history of the development of the system using canned gqueries.

Overview*
system or development step intcr face command
Print an overview of the changes to a system or development step. In the case of a system.
the user has the option of seeing all development steps. all pending steps. or all suspended
steps by clicking left. middle. or right on the menu item. respectively. In the case of a
development step only an overview of that step is provided.

Prepare to Redistribute
development step inter face command
Prepares a distributed step for redistribution by restoring the details of the step if necessary.
and marking it appropriately.

Query History
individual-software-object inter face command
Summary of changes to a specified object from the development steps in virtual address space
or out on persistent storage.

Re-Distribute
development step intcr face command
Re-distributes the designated step by creating a new lisp file for its installation module and
re-compiling it. Will be offered only if the step is prepared for redistribution (See above.)

(Re)Install
development modification inter face command
Install a development modification. This updates both the definition of the modified object in
the database and also, possibly. the LISP environment.

Reject
suggestion mler face command
Reject a suggestion. issued by a maintainer. The suggestion will hecome invisible to everybody
except the suggestor herself.

Resume
development. step terface command
A suspended step may be resumed, which causes it to become the currently active step. Any
open steps which are not ancestors of the resumed step are themselves suspended.

Revert Definition
individual-software-object inter face command
While a step is current, this is used to revert the source definition of an object modified in
that step to its previous definition. and remove the corresponding modification from the step.

Stop Accepting Suggestions
svstem inter face command
Prompt-~ for a person who should be deleted from the list of people from whom suggestion~ are
being accepted. Suggestions from the person will not be installed at the next update to the
i"<'P"]

Suspend

56 Operations

development step tter face command
Suspending a step causes the step to get dumped and its parent (if one exists) to be selected as
the current step.

Terminate
development step inter face command
Terminate a finished step. For the maintainer. it like a distributed (i.e.. frozen step}. but no
non-maintainers will ever see it.

Undo Modification
development step intcr face command
When a step is current, this command lets one selectively undo modifications in that step.

Update
system inter face command
Update the system as directed by the update mode attributes.

Update Systems global inter face command
Causes all systems to be updated according to the specified update mode attributes. These
attributes are usually pre-set to either a user profile or a maintainer profile. Depending on
need, one can alter them directly.

View Dependencies
system inter face command
View the dependencies specified between the steps of the buttoned svstem and the steps of
other systems.

6.8.1. Additional Editor Commands

HYPER-i editor command
Create copies of the changed objects in the buffer. making the copies components of the
installation module of the current step of the development. The original objects are
unchanged. and will themselves be removed from the installation module if they are already
components of the installation module. Error to do hyper-i without a current step in the
development.

HYPER-. editor command
edit the definition of an object. The last frozen definition of the named object is obtained from
a master file. The object is created in the user’s environment as a suggested-component. of the
system of which it is a part.

68.9. Examples

To create a step without specifving a type or explanation.
user input:
Selected menu item: Create Step (FOO)
Current step:
O-Step 3 of FOO
FOO

To create a new system.

Introduction to CLF

user imput:

Selected menu item: Create System

Input the proper-name of the system: foo
Specify the default system directory: local:>
No step active. No previous step.

Development FOO created for system FOO.

”

Introducton o CLEF 39

Appendix I
Lisp Universal Kode Elaborator

1.1. Overview

LUKE (Lisp Universal Kode Elaborator) is a code walking ®shell*. Code walkers are used for a variety
of program analysis tools. Luke is a shell in the sense that it performs no useful task in its own right: it
must be tailored to a particular application by providing certain functional parameters. and. perhaps.
designating specific control for selected macros. special forms, or functions.3® LUKE can be used either to
compute a transformation (some *image®) of a piece of code, or solely f"or side effect -- e.g.. to gather

statistics about the code.

LURE imposes a limited sort of *grammar® on Common Lisp that suffices to factor code into roughly a
dozen subcategories. The code walk is driven by a walker function for each categorv. The defaull walker
for each category may be overridden. The actual walker 10 use for each category is passed through the

code walk in keyword parameters.

LUKE is highly extensible. The collection of "grammatical® categories can be extended by adding a
new kevword and a default walker for the category. A LUKE code-walk ix guided by an *application®
name. Each application may specify dispatches to special purpose code (designated walkers) on forms
having designated symbols in their CAR position. Designated walkers may also be designated as
application-independent *defaults®. This is primarily used to tell LUKE how to treat macro uses without
t:xpa.nding them. It is essential for extending LUKE 10 cover embedded languages. A designated walker

may override the default behavior or simply augment it.

LUKE provides a template language to ease the specification of designated walkers. Templatex are

compiled mto designated walkers. not interpreted during the code walk.

39 . - . "
B not possible 1o designate specific control for uses of Jexically ~coped necepaos or funetion-

Introduction to CLE 61

Appendix II
Source Code Importer

To support the use of CLF in maintaining software developed in other environments. a facility is
provided for importing source code files. The facility works by making a single pass over the file 1o

produce a module containing a single software object for each top level lisp form in the file.

Each software object is given a Source-Text attribute. The value of thi~ attribute ix the siring
representation of the text in the file from the beginnning to the end of the form on the file. In particular.

case distinctions. read macros, and comments are preserved as they appear on the file.

Top-level comments on the file. whether in “:* or “#|* form. are turned into strings and made the
value of the Documentation attribute. Since it js not possible to be sure just what software ohject a
comment would be best attached to. the following heuristics are used. Any comments appearing hefore
the first software object form on the file. or after the last one. are attached 1o the module. All others are

attached 1o the first form following the comment.

Two wop level forms are given special treatment. When an IN-PACKAGE form is encountered. no
software object is created. ¥ Instead. *package* 3= changed so that following form~ will be read in thix
package. If no components have vet been created for the module. this package i~ made the Read-Package
of the module. As each component is created. if the current package differs from the module’s Read-
Package. then the component is given an explicit Read-Package attribute. Otherwise it is allowed to

inherit from the parent.

A top level EVAL-WHEN form does not lead to the creation of a new component. Instead. each form
within the eval-when is treated as a top-level form of the file. The components created for these forms
are given explicit values for their Eval-When attribute corresponding to the times list of the eval-when

form. Y

MAKE-LISP-FILE-INTO-MODULE |[Pathname &key given-module module-name]
This i= the function for importing a file. Pathname should be either a pathname. string. or

. N4 - .
file stream.** If the :given-module keyword is provided. its value should be an existing module.
In this case, the module created is made a component of that module, and the initial reading

mTh*rfor'. when an IN-PACKAGE form is the first form in a file, comments immediately following it are regarded as pert-aning
to the module. not to the next form

“Nq:(-d eval-when ciauses recult in the somponents heing given Eval-When attribute values for the intersection of the tipes lists
secoped over then.

9
4'An,\' ehararter streuin would do. ot the fmporter relies on the ®rundom aceeso® cypabifities proade b the FILE-POSTRION
function.

G2

environment is determined by the given module. Otherwise the reading environment from the
calling environment i~ used. values for the Read-Package. Read-Base. and Read-Syntax
attributes are assigned to reflect that environment. and a Maintainer attribute is assigned to
be the logged-in user. The Proper-Name of the new module is that specified by the :module-
name keyword. if provided. Otherwise, the name component of the file is used.

IMPORT FILE system operation

This system operation conducts a dialog to obtain a pathname and module name from the
user. It then invokes MAKE-LISP-FILE-INTO-MODULE.

Introduction to CLE 63

Appendix II
CORONER -- An AP5 Debugging Facility

The "CORONER®™. provides a means to debug failed AP5 atomic transactions. There are numerous
reasons why an ATOMIC transaction may fail to complete sueccessfully in AP5. Two of the most common
are UNFINED-CONSISTENCY-VIOLATION (finite termination of consistency cycles with a rule still
violated) and CONTRADICTORY-UPDATES (attempting to hoth ++ and — the same tuple in the

atomic transition. whether from the originating program or a consistency rule repair clause).

For these two classes of failure. if the abort is not caught by the originating progam. a
PROCEEDABLE ervor is signalled. If vou choose the corresponding proceed option, you will be given a
chance to inspect and modify information about the transaction in the editor. When you indicate you are

done editing (hyper-Z). vou will be offered the opportunity to retry the (possibly modified) transaction.

While vou are editing the transaction. vou are OUTSIDE of any atomic. so you may modify the

database (including 1ts rules}.

The text vou edit looks like the following:

;. introductory explanation

(atomic
Tuples asserted by the originating program
)
#|
“analysis" of each consistency cycle
I#

B
In the tuples you see in the text. objects that have a readable print representation are printed in their
readable form. Other objects are bound to generated variables (which have names like the defaultname of
the object) and the variables are printed. If vou answer YES to the "retry?"® query after concluding your
editing. the program vou have ereated i< exeented in place of the atomic transaction from the originating

program.

64

Introducnion to CLYF 65

Appendix IV
User Interface Resources

The X11 window protocol provides a concept of "resources® which allows an end-user 1o state general or
application specific preferences and a means for an applications (called a "client* in Xi1 jargon) to view
and. if it chooses, honor those preferences. The preferences may be used for tailoring color and font

choice. among other things.

IV.1. Color Resources

There are a number of different. logical ®colors* that CLF uses to highlight text in epoch. The binding

to server colors is up to the user, and is now controlled by entries in the server resource database.

The resource entries take the form epochserver.- logical color name : server color name Table

V-0 enumerates the logical colors used for displaying task status in the task status buffer.

Logical Color Default Interpretation

outputavailable green The background used in the task status buffer for
displaying running tasks with available output.
inputhlock red The background used in the task status buffer for

displaying 1asks blocked for user input.

terminated black The background used in the task status buffer for
displaying terminated tasks with available output.
Also used for the notice placed at the end of a

terminated task’s buffer.

Table IV-1: CLF Task Status Colors

Tahle N1 enumerates the remaining logical colors and their uses.

If neither foreground nor background is explicitly specified for hypertext. the Epoch default~ will apply.
and thu~ the text will not be highlighted at all. although it will ~til respond 1o wmouse elicks 1f ondy o

background i< specified. the foreground will use textcolor. A background must be specified W a

b

Color Resources

Logical Color Default Interpretation

textcolor black The foreground color for highlighted text of all kinds.
This is the color of the letters.

uptodatecolor green The background color of an object label (in buffers editing
collections of objects) when the buffer text reflects
the current database state.

outofdatecolor red The background color of an object lahel when the buffer text
does not reflect the current database state.

remotecolor yellow The background color of an ohject label (in buffers editing
collections of objects) when the buffer vext reflects
the current database state. but the object is being modified
on some other machine on the network.

promptcolor red The background color used for prompts for user input.

hypertextbackground * The background color for hypertext objects printed 1o text
streams.

*

hypertextforeground

The foreground color for hypertext objects printed to text

streams.

Table IV-2: CLF Logical Colors

Introduction to CLEF iy

foreground is also to be specified.

If no value is specified for terminated. white text on a black background ix used. If a value is specified.

the Textcolor on the specified background is used.

IV.2. Font Resources

CLF's interface windows {other than the text editor) are generated by a tool kit called FormsKit.
FormsKit applications are free to specify any fonts they choose for various forms. However. FormsKit
provides X-server-dependent bindings for a number of *logical® fonts. so application writers can simplify

font selection if they choose. CLF's interface forms, such as browsers and dynamic views. use these fonts,

The logical fonts comprise three sizes with four faces cach. as depicted in table V-2, The resource

entries take the form Forms-kit. logical font name . server font name

size\Tace Plain lualic Bold Bold-ltalic

small | smallFont smallltalicFont smallBoldFont smallBoldIwalicFont
medium font italicFont boldFont boldltalicFont
big bigFont biglalicFont bigBoldFont bigBoldltalicFont

Table IV-3: Logical Font Resource Names

FormsKit applications expect that all fonts of the same logical size will be bound to server fonts of the
same height 43 There is also one other *logical® font. specified with the resource name
"workstationStandardFontname®. This determines the font that forms use by default if no font i
specified at all. either in the form definition. by the program which creates the form instance. or in the

X11 server's resource database.

43) .
A ~econd property thit enfuences many applications s for chiaracter widths 1o correspoid aoross all Boes of g given see This

Adoes pot mean that the fonts need to be fived-width, but only that. e g an ®a* in the fom ~elected for itaicFont s the swme width
st 0 ® i the font selected for holdFont

Introduction to CLI 69

Appendix V
Site Configuration

Although CLF is primarily a virtual memory application. it does require a file system for specific
purposes. most notably. to make software objects and evolution history persistent. Because each software
system designates a directory for its persistent data. no special site configuration is necessary. The user
simply must be running an OS configuration that makes the strings used as module-directory attribute

values resolve to legal and accessible directories.

At a given site. CLF maintains a master directory of all the software systems it manages. Each site
should dedicate a file system directory for this purpose. The variable pgm::*SITE-NMODIULE-
REGISTRY™* should be globally set to a value (list of strings). suitable as a directory value for CLs

make-pathname function. that will designate the chosen directory.

To interface with a sites hardcopy capabilities. CLF requires a directory where it can create temporary
text files. The variable ap5::*HARDCOPY-DIRECTORY* should be be globally set to a value (hist of
strings). suitable as a directory value for CL’s make-pathname function. that will designate the chosen
directory. The initial setting of ap5::*HARDC'OPY-DIRECTORY™ is {(*tmp*}. which ix suitable for most

Unix platforms.

On some lisp platforms. CLF must create temporary files in order to compile source code. The variable
pgm::*TEMP-FILES-REPOSITORY™* should be be globally set to a value (list of strings). suitable as a
directory value for CL’s make-pathname function. that will designate the chosen directory. The initial

setting of pgm::*TEMP-FILES-REPOSITORY™* is (*tmp"). which is suitable for most Unix platforms.

0

Introduction 1o CLF

Index

(ReMnstall (interface command] 355

ACTIVATE-KEY® 17

ACTIVATE-KEY-LABEL® 17
APROPOS-WILDCARD® 19
*APROPOS-WILDCARD?® (variable) 18
COMPLETE-KEY 17
COMPLETE-KEY-LABEL® 17
*Jefault-code-read-hase® 26
*default-code-read-syntax® 27
DEFAULT-LISTENER-PACKAGE® (variable) 24
DEFAULT-MODULE-LOAD-ORDER-GETTER 28
HELP-KEY 17

HELP-KEY-LABEL 17

MENU-KEY 17

MENU-KEY-LABEL 17

QUIT-KEY® 16

QUIT-KEY-LABEL 16
*SOFTWARE-CLASS-LOAD-ORDER-PRECEDENCE® 28
*STANDARD-LISTENER-BINDINGS?® (varinble) 24

Abort {interface command) 51

Active Steps (interface comm:nd) 52

Add Attribute (interface cominand) 52

Add New Components (interface command) 52
Add Type/Explanation {(interface comnmand} 52
APROPOS 18

APROPOS ({function) 18

APROPOS-LIST 18

APROPOS-LIST (function) 18
APROPOS-LIST (variable) 18
APROPOS-LIST® (variable) 18
APROPOS-LIST?*® (varialle) 18

Atomie changes (concept) 34

Augment {nienu item) 42

BASK-MENU (form) 20

Break (interface command) 31

Bring Up To Date (interface command} 52
BugFix (menu item) 42

Cancel a suggestion (concept) 47

Cancel Suggestion (interface command} 52
Change Update Modes (interface command) 52
Checkpoint (interface cotnmand) 562

CleanUp (menu item) 42

CLF 26

CLF-USER 26

CLFL (marro} 23

CLFM {marro) 23

CLFR (macro) 23

CLL 1

Coeree To Systen {interface cornmand) 52
Common-Lisp 26

Compile (interface command} 31

Comipiler 29
Component 25
Component® 25
Component-of 25

Consistent replay ironeept} 45

Constant-Definition {~lass) 30

Copies of Objects (interface command) 53
CORONER 63

Create Step (interface command} 52
Create/Load System {interface command) 53
Current step (concept) 33

DEFAULT-LISTENER-READTABLE® {varialie) 24
Defining-Function 29, 31

Defining-Template 29. 31

Definition (interface command) 53
DEFINTERFACE-COMMAND {macro} 21
Defsoftware-Class 31

Defsoftware-Class (macro) 31
DEFSYSTEM-OPERATIONS-COMMAND (wmacro) 23
Dependencies {interface command) 56

Develop (programming environment} 33
Development (concept) 33

Developnient modification {concept} 33
Development step (coneept) 33

Distribute (interfare command) 53

Dont Load Suggestions {interfare connmand 53

Dy namic Browser 17

Edit (interfuce command) 53
Examine (interfiuce command 53

Finish {interface commmand) 54

Finish Active Steps (interface comand) 54
Fixing Distributed Patches (concept) 45
FOCAL-COMPONENT (attribute) 28
Fortify (tnenu item) 42

Funetion-Definition (class) 30

Geaeralize (menu item) 43
Generalized-Variable-Definition (¢lass) 30
Global Dependency (interface command) 52
Global-Variahle-Definition (¢lass) 30

Handie (interfare command) 54

HYPER-. {editor command) 56
Hyper-Dot {program) 47

Hy per-i (#ditor command) 44. 56

Hy per-x M (ZMACS Command) 23
IMPORT FILE (system operation) 62
Incorporate (interface command) 54
INDIVIDUAL SOFTWARE OBJECTs 25
lnstall (interface command) 31
Install'Compile (interface command) 54
Installation module (conrept) 43
Installation Module Editing (interface command) 53
Installation Order (concept) 43

Installer 29

Lisp-Form (class) 30
LISTENER-CONTEXT-BIND (function) 24
Load Others’ Suggestions (interface-cormmand 51
Load Sperific Step {interface command) 54

Load Suggested Steps (interfuce command) 54
Lond-Order 27 28

Miero-Definition (~luss) 30
Maintain {menu item) 43

Introduction 1o CLE

Miintaimner 25

Maintainer®* 25
MAKE-LISP-FILE-INT()-MODULE (function} 61
Making a1 Suggestion (concept}] 46
Making New Releases (concept 50
ML (macro) 23

MM (marro) 23

Modifications (concept) 33
Modifications {interface command) 54
MODULE 25

Module-Directory 25

MR (macro) 23

New Release (interfare cominand) 54
Non-maintainer Suggestions (concept) 46

Object Definitions. getting (concept) 47
Off Line History {interface command) 55
Open developnient step (voneept) 39
Overview (interface fommand) 55

Pending developmient step (concept) 39
Prepare 10 Redistribute (interface command) 59

Query History (interfsce command) 55

Re-distribute (interface command) 55
Re-distributing steps {¢oncept) 45
Read-Base 26

Read-base* 26
READ-EVAL-PRINT-LOOP {function) 24
Reud-Package 26

Reud-package® 26

Read-Syntax 26

Read-syntax* 26

Receiving Others Suggestions (coneept}) 47
Reject (interface command) 55

Rejecting Others Suggestions {concept) 47
Releases {concept) 50

Reorganize (menu item) 43

Rezume (interface command) 55

Revert Definition (interface command) 55
Revert Object (concept) 42

Revise (inenu item) 43

Save (interface command} 31

Scrolling 9

Selecting Suggested Steps (concept} 48
SHOW-MENU (marro) 23

SOFTWARE OBJECTS 25
Software-Class-Definition (class) 31

Source-Text 26

Step Details (interfare command 54

Step explanation {concept) 33

Step-to-Step Dependency (interface command) 52
Step-type {roncept) 33

Stop Accepting Sugge<tions {interface command) 55
Structure-Definition (~lass) 30

Suggestions (conrept) 46

Suspend tinterface command) 55

SYS-MENU {marcrey 23

Tell-Me-Alout 19
TEMPORARY-MENT {form) 20

TEMPORARY-MENU-CHOOSE (fun-tion) 2}
Terminate {interface conunand) 56

Tune (1ienn item) 43

Type-Fefinition {class) 30

Unbreak (interface command 31
UNDEFINTERFACE-COMMAND (macro) 23
UNDEFSYSTEM-OPERATIONS-COMMAND {macro)
Undo Modifications (interface command) 56
Undoing Modifications (roncept) 41

Uninstaller 29

Update (interface command) 56

Update mode attributes (coneept) 35

Update Systems (system operations coniuand) 56
Update-Macro-Definition {class) 30

Updating a system {concept} 35

View-Order 27

WINDOW.STREAM-P {function) 24

23

