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INTRODUCTION

This report covers three topics relative to mechanics issues in advanced composites:

effect of fiber cross-section on stiffness and strength of laminated composites; failure
criteria for composites under combined loading; and stress analysis models for thick

composites. The work was performed for WL/MLBM, Wright-Patterson, OH 45433-657,3

under Contract F33615-89-C-5609 with Universal Technology Corporation. Dr. Richard

Hall was the project monitor.

In the area of fiber cross-sectional effect, work is concentrated on looking at the effect

of elliptical fibers on the stiffness and inplane stress concentrations at the micromechanics
level. Calculated ply stiffness properties are used in conjunction with classical laminated
plate theory to determine the effect of fiber geometry on laminate inplane and bending

stiffness. The micromechanics model is based on a strength-of-materials approach in
conjunction with a laminate analogy. All nine elastic constants of the unidirectional

compr-site are determined. Numerical results show that fiber cross-sectional geometry has

only a modest influence on laminate elastic constants.
Failure criteria for filament dominated laminates subjected :o compression loading is

given consideration under the second topic. Of particular interest is the interaction between

longitudinal compression loading and transverse loading (tension and compression). Data

obtained in conjunction with a mini-sandwich beam are used to generate failure stresses.

Classical lamination theory, including thermal residual stresses due to cure, is utilized for

determining ply stresses. Residual stresses are based on initial elastic properties, while
mechanical stresses are based on secant modulus at failure (compression stress-strain curve

for both unidirectional and laminated composites is nonlinear at high strain levels).
Experimental results reveal little interaction between longitudinal compression and

transverse stresses as long as the transverse load is below uniaxial transverse failure. A

technical paper on this work was presented at the American Society for Composites

Conference held at Penn State University, October 13-15, 1992. The paper also appeared

in the conference proceedings published by Technomic Publishing Co., Lancaster, PA.

Under the topic of thick composites, the effect of shear deformation and transverse

normal stress on the cylindrical bending of laminated, anisotropic plates subjected to a

uniform lateral load is investigated. Field equations are based on Reissner's principle in a

modified form which requires assumed interlaminar shear and normal stress distributions in
addition to the inplane displacements. Closed form solutions are presented for laminates
with simply-supported boundaries. Numerical results indicate that the effect of transverse

normal stress on maximum deflection is small, even for relatively thick plates.
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1. EFFECT OF FIBER CROSS-SECTION ON STIFFNESS AND
STRENGTH OF LAMINATED COMPOSITES

The effect of fibers with elliptical cross-section shape on composite stiffness and local
strength is investigated. Analysis is accomplished at both the micromechanics and
macromechanics (laminate) level. At the micromechanics level a strength-of-materials
model based on a laminate analogy is utilized to determiae the nine elastic constants of a

unidirectional composite containing continuous fibers with elliptical cross-section shape.
The stress concentration factor at the fiber-matrix interface under transverse normal stress
and inplane shear stress is also determined. The effect of fiber geometry on these stiffness
properties of laminates under inplane and bending loads are then investigated using the
results of the micromechanics model in conjunction with classical laminated plate theory.
Stiffness results are compared using a [00/± 4 5 %]s laminate geometry in conjunction with

plies containing various combinations of circular and elliptic fibers.

Micromechanics Model for Elliptic Fibers

Consider a continuous unidirectional composite containing fibers with an elliptical
cross-section. A repeating element of the composite cross-section is assumed to be of the
form shown in Fig. 1. Because of symmetry it is only necessary to consider an upper

Z

zd

Zp/Yp

a- o

Figure 1. Analytical micromechanics model.
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quarter of this cross-section in the analysis. This upper quarter is divided into a series of
plates (or plies) of thickness dz. Using a strength-of-materials micromechanics approach

the stiffnesses of each of these plies are determined as a function of fiber properties, matrix
properties, fiber volume fraction, and fiber geometry. The dimension A can be determined

as a function of a/b and the volume fraction of fiber, Vf, as follows

2 Vf

where R = a/b.

Oxfp

G"p

-4 - - -a + A ------

Figure 2. Ply with biaxial normal stress loading
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A laminate is then constructed from these plies and the resulting stiffnesses detenmined
by integrating the ply properties. The effective elastic constants are determined in the same

manner as for a laminated plate [ 11. This procedure is referred to as the laminate analogy
micromechanics model for determining elastic constants of a unidirectional composite,
This is an extension of a model proposed by Eckvall 121 for transverse modulus and
inplane shear modulus of a unidirectional composite containing circular fibers in a square

array [2]. A similar model was used by Chamis [31 for determining the fiber-matrix
interface stress concentration factor under transverse tensile (or compression) load and

inplane shear load.

z

{•zfp {5zmp

S....... . • • dz•'
yy

a A+

Figure 3. Through-the-thickness ply loading.

We now consider the strip shown in Fig. 2 for the ply analysis. The subscripts f, m,

and p refer to fiber, matrix, and ply, respectively. Elastic moduli and Poisson's ratios are
determined by assuming the volume average inplane ply strains F, and ey to be constant

through-the-thickness, i.e we assume

Exp = E0 = constant, yp = = constant (2)
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Axial and transverse stresses are assumed to be applied and will vary from ply-to-ply

because of the change in local ply stiffness. Because of continuity requirements at the

fiber-matrix interface
0Yyfp = CYymp = Cyp (3)

Through-the-thickness ply loading is shown in Fig. 3. The total load produced by OY, is

assumed to vanish, i.e. there is no normal force transmitted through-the-thickness. Thus,

OzfpVfp + Gzmp(1-Vfp) = 0 (4)

where Vfp is the volume fraction of fiber in the ply, i.e.

Vfp YP (5)
(a + A)

and

yp =a b-)

Assuming a transversely isotropic fiber and an isotropic matrix the stress-strain

relations for the constituents are of the form

O'xfp = CI fE0 + C 1 2f (Fyfp + Ezp)

CYp = C12tf0 + C22fEyfp + C23ffzp

azfp = CI3fC0 + C23feyfp + C 2 2fEzp (6)

Oxmp = CllmEO + C12m(t#ymp + EIp)

alyp = C12m (ECx + ezp) + CeI ImEymp

azmp = C12m (EO + Eymp) + C1 imEzp

where Cij are stiffnesses. It should be noted that, although the volume average transverse
strain eyp is identical from ply to ply, eyp is not the strain of the fiber or the matrix. In fact

rCyp = y 8yfpVfp + Eymp( - Vfp) (7)
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In addition

a'xp = axfpV fp + Cxmp(I - Vfp) (8)

Combining eqs. (4), (7), and (8), with the constitutive relations, eqs. (6), we obtain

the fL:lowing relationships

C22p = C22fC I Im
[tCi](! - Vfp)]

____ _C__3____C__3_ +____C2_m-

C12p = [CV2fV_ + Cl2m (1 -Vfp)], 23p = C23- VfP +---- (I -Vfp)]
C22p C22f Cllm C22p C22f Cllm

Q11p = QllfVfp + Qiim(1 - Vfp), Q22p =Qz2fVp + Qiim(I - Vcp)

(9)

Ql2p = Q12fVfp + Ql2m(- Vfp)

= CI2p)2 CD

Clip =Qllp + C22p (C-2P) , C33p = 1Q22p + C22p ( )2I
C22P C2

"(Cl2p C 2 3p
C13p 1[Q2p + C 2 2p C 2  2p

where Qij are reduced stiffnesses for plane stress. The reduced stiffnesses for the ply can

now be determined utilizing the results from eqs. (9). In particular,

C 13p2  2)(C23p)2
Ql Ip = [Clip- 3 p Q22p = [C22p )(C 2 2  2 p

(10)
1 )(C 2 )(Ct 2 p)C 23p C

Q 12p = [C 12p - K•--( 22p ) .• --P)(C 3 1
[ C- 233p C22p C22P

These reduced stiffnesses are now averaged through-the-thickness to produce effective
values for the micromechanics model, i.e.

-ij I b Qijp dz (i, j = 1, 2) (11)

(+A -) Jo
b

6



This integration is performed numerical using 100 strips through-the-thickness. Elastic

constants can now be determined in the same manner as in laminated plate theory, i.e.

ElOl - Q12' E22 2 Q12 (12)

Q22 QI1 Q22

where El, E2, and v12 denote the modulus parallel to the fibers, the modulus transverse to

the fibers, and the Poisson's ratio as determined from a uniaxial tensile test parallel to the

fibers while measuring the strain transverse to the fibers, respectively.
Recognizing that (zp of the ply vanishes and utilizing the ply constitutive relations, we

can write

C1 3p 0 C23p c0 (13)rzP = -C33---pF" C33p •Y

Integration of eq. (13) leads to an effective value of the through-the-thickness strain, which

can be written in the form

S=- H130- H2 3 C0 (14)

where

Hi3 1 Ci3p dz (i =1, 2)
(I + C33p b

b

We now consider a uniaxial load applied parallel to the fibers. In this case we have

l =-V 1 2 Ex, =- V13 Ex (15)

where, obviously, v13 denotes the Poisson's ratio as determined from measuring the strain

transverse to the fibers during this uniaxial tensile test in the fiber direction. Combining

eqs. (14) and (15), and taking into account eq. (12), we find that

V13 = H 13 - H2 3 Q12 (16)
Q22

7



In a similar manner, measuring the strain through-the-thickness during a uniaxial tensile
test transverse to the fibers leads to the Poisson's ratio V23. In this case we have

0= E2 co, -- (7
Ex- VI2 E _y z- V2 3  (17)

Combining eqs. (14) and (17), and taking into account eq. (12), we obtain the result

V23 = H2 3 - H1 3 Q12 (18)
QI1

The through-the-thickness modulus, E3, can be calculated by rotating the model in

Fig. 1 by 90', i.e. substituting 1/R for R in the current analysis and letting E3 = E2.

Determination of the Shear Moduli G/2 and GIl

For determination of the inplane shear modulus G12 we consider the ply loading

shown in Fig. 4. The effective shear strain, Yxyp is assumed to be the same within each

ply, i.e.

txyp

S --a + A ---- -

Fig 4. Inplane shear loading at ply level.
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Yxyp = •)y = constant (19)

where fy is the macroscopic shear strain relative to the x-y plane.

Continuity of the shear stress at the fiber matrix interface requires ti

Txyf = Txym = Txyp (20)

and macroscopic stress-strain reiaition is of the form

"fl y = (21)"Gx = 12

where

(l++A--)JTXY b EXYP dz

b

The shear strain at the ply level can be shown to be the following function of the fiber and

matrix shear strains

7xyp = 7Xy = YxyfVfp + YxymO - Vfp) (22)

The constitutive relations for the fiber and matrix are of the form

Yxyf TXYP $ XXYP (23)

y=G xym Gm

Combining eqs. (22) and (23), we obtain the ply shear modulus

G 12p = "XY = G12f~m (4G1t~ (24)
?x y [Gl12K( I Vfp) + GmVfp]

The shear modulus G1 2 can be obtained by combining eqs. (21) and (24) with the result

9



r (1+•-)

G -2 b G12fGm • (25)
(I +A• [G12f(l - Vfp) + GmVfpJ b

b

The shear modulus G13 can be obtained in the same manner as E3, i.e. Fig. 1 is

rotated 90' and the same procedure implemented as for G12.

Determination of the Shear Modulus GU..

For the transverse shear modulus, G23, we consider the through-the--thickness ply

loading as shown in Fig. 5. The shear strain at the ply level is assumed to be constant, i.e.

Yyzp = Yyzf = Yyzm (26)

and the effective ply shear stress is assumed to be constant through-out the thickness of the

plate. Thus

•yzp = Tyz (27)

A simple force balance leads to the result

tCyzp = lyz = 'CyzfVfp + 'Cyzm (I - Vfp) (28)

This relationship does not maintain continuity of tyz at the fiber/matrix interface at the ply

Tyz

,111dz
~ a+ A

Figure 5. Through-the-thickness shear loading at ply level
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level. However, if we consider a very steep stress gradient near the fiber/matrix interface,

then we can accept eq. (28) on an average stress basis. The constitutive relations are of the

form

tyz = G 23p~yzp, Tyzf = G 2 3f*tyzp, tyzm = GmYyzp (29)

Substituting eq. (29) into eq. (28), we obtain a simple rule-of-mixtures relationship.

G2 3p = G 23 fVfp + Gm (1 - Vfp) (30)

The effective laminate shear strain is obtained by integrating yyp through-the-thickness

with the result

- (2byz Iz. b dz (31)
Yz=G23  +G 23 p b

b

which immediately leads to the relationship

(1 +4-
G23 b (32)

bm (-V)]dz
[G23fVfp + Gb (I - Vfp)l b

We have now determined all 9 elastic constants for the repeating elliptic fiber element.

Stress concentration Factor at the Fiber/Matrix Interface

The stress concentration factor (SCF) at the fiber/matrix interface is of interest for both

transverse and inplane shear loading. For these loadings the maximum stress will occur at

z = 0, y = b. In the scheme under consideration this represents the first element in the

integration procedure. Thus, for transverse loading

Oyp(1) = Q12p(l)E0 + Q22p(1)E0 (33)

11



where (1) denotes the first element in the integration scheme. Under transverse loading we

have

= E2E (34)

Utilizing eqs. (33) and (34) in conjunction with the definition of SCF, and taking into

account eq. (17), we obtain the following result

SCF Gypl)_ Q22p(1) - V12C1 Q12P(1)
SF=OyM E2 1(35)

A similar procedure in conjunction with inplane shear loading leads to the following SCF

relationship

SCF - Txyp(l) = G12p(1) (36)'Txy G12 (6

Numerical Results

In the results presented here the fiber is assumed to be transversely isotropic and the
matrix is assumed to be isotropic. We now consider the following constituent properties

Elf = 35x10 6 psi, E2f = 3x10 6 psi, Gi2f = 5x10 6 psi, Vl2f = 0.25 (37)
V23f = 0.55, Elf - 35x10 6 psi, Em = 5x10 5 psi, Vm = 0.35

Numerical results are shown in Table 1 for circular fibers and for elliptic fibers with
various a/b ratios. The fiber volume fraction is assumed to be 0.6. The fiber properties
given by eq. (37) are typical of state-of-the-art graphite fibers and the matrix properties are

those of high performance epoxy resins.
The results seem in Table appear to be reasonable. There is, however, an

inconsistency relative to G23. In particular the same value should be obtained for R and

I/R aspect ratios (e.g. R = 2 and 0.5 should yield the same values). This is not the case
with regard to the results shown in Table 1. These values may, however, be considered as
upper and lower bounds.

As one would anticipate, elliptical fibers with R > I increase the transverse
modulus and inplane shear modulus, while the same moduli are reduced for R < 1. The

12



percentage of these changes are not great. It should be noted, however, that the low

transverse modulus and low inplane shear modulus of the fiber contributes to the smaller
increase. In particular, the ratio of fiber to matrix property in this case is not significantly

large. For a high modulus isotropic fiber, such as boron, the effect of fiber cross-section

shape may be more significant.

TABLE 1 Micromechanics Results (Vt= 0.6)

R=1 R=2 R=4 R=1/2 R=1/4

E1 (msi) 21.190 21.190 21.190 21.190 21.190

E2 (msi) 1.452 1.507 1.562 1.406 1.375

E3 (msi) 1.452 1.406 1.375 1.507 1.562

V12  0.289 0.286 0.282 0.293 0.296

V13 0.289 0.293 0.296 0.286 0.282

V23 0.398 0.413 0.428 0.383 0.372
G12 (msi) 0.637 0.728 0.850 0.577 0.540

G13 (msi) 0.637 0.577 0.540 0.728 0.850
G23 (msi) 0.506 0.480 0.461 0.535 0.562

SCF (a 2) 1.456 1.540 1.621 1.384 1.332

SCF ('C12) 1.836 2.085 2.400 1.663 1.553

It should also be noted that the stress concentration factors at the fiber matrix
interface are increased for R > 1 and decreased for R < 1. Thus, it is anticipated that the

transverse strength and inplane shear strength would be effected in a corresponding

fashion.

Laminate Analysis

We now consider the effect of fiber cross-sectional shape on the inplane and bending

stiffnesses of laminates. This is accomplished by combining the ply elastic properties
produced for various fiber cross-sectional shapes (as given by Table 1) with classical

laminated plate theory.

13



Inplane Elastic Constants

Inplane elastic constants for symmetric laminates can be determined from classical

laminated plate theory by considering the laminate inplane constitutive relations in the form

Ti = Qjje° (i, j = 1, 2, 6) (38)

where

rh/2 h/2

i h/2 a) dz, Qij Qh/ Qij dz
J-h/2 j -h2

and the superscript k denotes the kth layer. Then the inplane effective laminate elastic
constants for balanced laminates (same number of angle-ply layers at ± 0) take the form

Q22 Q11 (39)

"= _ Q12
Gxy - Q66, Vxy = _

Q22

Balanced laminates produce orthotropic inplane elastic constants (no shear coupling). This

is due to the fact that the effective laminate stiffnesses are independent of stacking

sequence.

Elastic Constants Under Bending

Under bending loads, the constitutive relations for a symmetric laminate are of the form

Mi = Dij1Cj (i, j= 1, 2, 6) (40)

where Jh/2 D h/2

S= 3) z dz, = Q(ý)z2 dzM Qi

-h/2 f-h/2

and Kj are plate curvatures. Ini order to obtain effective elastic constants, we rewrite eq.

14



(40) in the form

Mi=h3 -b
Mi =j2-•QijKj (41)

where the superscript b denotes bending properties. The effective bending stiffnesses are

obviously given by

--b -12 D.jQij = •' i

Inverting eq. (41), we can write the constitutive relations in terms of compliances.

K=12 'b-M (42)
h 3  -,i

where S) denote effective bending coampliances of the laminate.

Since the bending stiffnesses, Dij, are a function of stacking sequence, the effective

stiffnesses for balanced laminates will not be orthotropic. Thus, shear coupling (in the
form of bending-twisting coupling) will be present for the general case of symmetric
laminates subjected to bending loads. Effective bending elastic constants can be determined

from the compliances in eq. (42) in the usual manner, i.e.

Eb,, = -__1__ Eb, _L_, b Eb

sb1 Y sb2 Yxy 12Ex
11 22(43)

G b y = b6I b S 16E x, ]b S 26E y

b' Eb

where TIb and rly are bending shear coupling coefficients.

Numerical Results

Elastic constants under inplane and bending loads are shown in Table 2 for a
[0°2/±4 5 °]s laminates. Ply properties are taken from Table 1. Four different combinations

of fiber geometries are considered as follows:

#1 All plies with R = 1

#2 0 'plies R=2, 45' plies R= 1

15



#3 00 plies R = 1/2, 450 plies R = 1

#4 All pliesR=2

#5 All plies R = 1/2

TABLE 2 Laminate Elastic Constants, [02/±45°]s

#1 #2 #3 #4 #5

E" (Msi) 11.900 11.910 11.890 12.040 11.800

Ey (Msi) 3.419 3.445 3.398 3.517 3.349

Vxy 0.711 0.708 0.714 0.689 0.727

Gxy (Msi) 3.059 3.104 3.029 3.109 3.025
Exb (Msi) 18.910 18.910 18.900 18.940 18.890

Eyb (Msi) 1.883 1.940 1.836 1.956 1.825
Vxyb 0.444 0.441 0.448 0.434 0.453

GXyb (Msi) 1.136 1.218 1.081 1.220 1.079
ilxb -0.208 -0.197 -0.216 -0.199 -0.215

Ilyb -0.358 -0.336 -0.374 -0.335 -0.375

As easily seen from Table 2, fiber geometry has little effect on either inplane or

bending elastic constants.

16



2. I'AILURE CRITERIA FOR COMPOSITES

UNDER COMBINED LOADING

The uniaxial compression strength of a 00 composite has long been a property of

significant interest to both materials engineers and designers. In the present paper,
however, the interaction between longitudinal compression and transverse loading of a 0'

composite is investigated. This is accomplished by subjecting a series of laminates with

different stacking geometries to inplane compression loading.

Laminate geometries were chosen to produce a number of longitudinal compression to

transverse stress ratios. In particular, for multidirectional laminates the 0' plies will be

under biaxial loading which creates an interesting challenge relative to failure criteria. For

example, consider the three loading conditions shown in Fig. 6. One would anticipate a

higher compression strength in the presence of transverse compression loading (Fig. 6b)

compared to pure compression (Fig. 6a). However, if the transverse load is tension (Fig.

6c), one would anticipate a lower longitudinal compression strength. We envision that

transverse compression would provide additional stability to the longitudinal compression
loading, while transverse tension would have the opposite effect. In addition transverse

tension could possibly induce longitudinal splitting followed by fiber microbuckling. If the

dominate failure mode, however, is fiber failure, then little interaction between longitudinal

and transverse load may be anticipated provided the transverse loads are below the uniaxial

transverse strength.

The anticipated difference in longitudinal compression strength between the loadings

shown in Fig. 6 are not predictable with a number of conventional jailure criteria.

Maximum stress and maximum strain do not recognize coupling between longitudinal and

transverse normal stresses. For criteria which recognize coupling between stress

components, such as the quadratic interaction criterion introduced by Tsai and Wu [1],

there are also problems which we will now consider. This criterion is of the form

aL2  + T2 _ 3L OT +rLr 2

SLTSLC STrSTC 2 VSLTSLCSiT;STC TLT2

(44)
+(:1 1 ),gL+( 1_____ I_..)TT= 1
SLT SLC STI STC

where aL, aT, and TLT, are the normal stresses parallel to the fibers, transverse to the
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fibers, and inplane shear stress, respectively. The strength parameters SLT, SLC, STF, STCO

and TLT, denote tensile strength and compression strength parallel to the fibers, tensile and

compression strength transverse to the fibers, and the inplane shear strength, respectively.

(a)

(b)

(C)

Fig. 6 Biaxial Loading

The linear terms and the interaction term between (TL and o"T govern the loading conditions

shown in Fig. 6b and 6c. In particular, different results between the loadings in Fig. 6b
and lc depend on a distinct difference between transverse tension and compression

strengths and/or differences between longitudinal tension and compression strengths. A
recent paper by Theocaris [2] discusses this behavior in some detail. The validity of eq.
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(44) in conjunction with the combined loading shown in Fig. 6 will be considered.

Experimental

Experimental data has been previously obtained by the University of Dayton Research
Institute under contract F33 615-92-C-5618 with the Materials Directorate of the Air Force

Wright Laboratory. A mini-sandwich specimen [3] consisting of composite face sheets

bonded to a neat resin core, as illustrated in Fig. 7, was utilized in obtaining this data. As

opposed to the original sandwich beam, which incorporated a honeycomb core, the mini-

sandwich specimen is small, relatively inexpensive to fabricate, and uses a smaller volume

of material.

COMPOSITE FACE SHEET

Fig.7 Mini-Sandwich Beam Specimen

The mini-sandwich specimen is loaded in a conventional IITRI test fixture (ASTM D-
3410) and the data reduced using classical laminated plate theory. The materials,

fabrication procedures, and test procedures utilized by the University of Dayton Research
Institute are described in the following paragraphs.

Material

The cores of the miniature sandwich specimens were fabricated from a neat epoxy resin
(Epon 828 from Shell Chemical Co.), cured with Jeffamine D-230 (a polyetheramine from
Texaco Inc.). The composite skins were fabricated from a graphite/epoxy AS4/350-6

prepreg (Hercules, Inc.).

19



Fabrication of Sandwich Panels

The miniature sandwich panels were fabricated in a two-step process. In the first step,

the following symmetric laminate panels, each 12 in. x 12 in., were first fabricated : 1012,

[02/±30]s, [±4 5/0!90]s, [0/4 5/90/- 4 5 1s, and [0/±60]s. Two plates, each 10 in. x 6 in.

were cut from each panel. These were lightly sanded to remove any residual release agent.

A mold was constructed by clamping these plates across a uniform Teflon spacer (3.18 mm

thick) along three sides to produce a rectangular cavity open at one end. Approximately

125 g of Epon 828 were mixed with 32 phr Jeffamine D-230, and debulked under vacuum

to remove entrapped air. The liquid resin was then cast in this mold and allowed to cure at

room temperature for 7 days. The product was a symmetric miniature sandwich panel with

excellent bonding between composite skin and resin core. In order to measure transverse

compression strength, a [900]24 solid panel (no core) was also fabricated.

Compression Testing of Sandwich Panels

After assuring laminate quality by ultrasonic C-scans, compression tests were

performed on specimens cut from these sandwich panels. Specimen sizes were in

accordance with ASTM standards for conventional laminates, and tests were also

conducted under similar conditions. Axial compression testing was performed in an TITRI

fixture on specimens 127 mm long, and 6.4 mm wide. Specimens were gripped through

bonded tapered glass/epoxy tabs with a gage length of 12.7 mim. Strain gages were

bonded to both faces of each specimen to monitor any bending or buckling resulting from

eccentric loading. An additional strain gage was bonded to the side of selected specimens

to simultaneously measure axial strain in the core. Tensile tests were also performed on

specimens from these panels. Failed specimens were examined in an optical microscope

and also in a JEOL JSM 840 scanning electron microscope.

Data Reduction

Data was reduced using classical laminated plate theory. This procedure involved initial

use of macroscopic constitutive relations, which are of the form

N [ All A1 ] 0 NIT"
N2 A 12 A2  C20 N2T

20



where

Ni= j i dx, NiT f Q AT dxh)

,k-= I/2 2-, 6)

Aij Qij dx- -h/2

In addition, ctk are the ply thermal expansion coefficients. Ply stresses are calculated from

the local constitutive relations

Gi = Qij( 0j - (C) (i, j = 1, 2, 6) (46)

The data reduction was accomplished in two stages and the results superimposed.

First, the residual stresses were calculated using the following initial ply properties

EL = 20 Msi, ET = 1.3 Msi, GLT = 0.8 Msi (47)

VLT = 0.3, aT = - 0.5 x 106/'F, XT = 14 x 106/OF, AT = -280'F

where as in eq. (44) the subscripts L and T refer to a coordinate system parallel and

transverse to the fibers. Thermal expansion coefficients in the longitudinal and transverse

directions are denoted by OCL and aT, respectively. The value of AT is chosen as the

difference between room temperature and cure temperature. For mechanical stresses the 00

secant modulus, El, at failure is utilized, while the other elastic properties are assumed to

be constant. Since the core is not co-cured with the face sheets, thermal stresses are based

on cure of the face shet~ts independent of the core.

For mechanical stresses the longitudinal compression secant modulus of the

unidirectional ply and the compression secant modulus of the core at failure are used due to

the nonlinear response of these properties. Other elastic properties are assumed to be

constant. The Poisson's ratio of the core is assumed to be v = 0.35. In the determination

of mechanical stresses, NiT and N2 (i.e. the load is applied in the x, direction) are allowed

to vanish. Typical stress-strain curves in compression for the core and a unidirectional

composite are shown in Figs 8 and 9, respectively. Because most of the lead is carried by

the unidirectional face sheets, the nonlinear response seen in Fig. 9 is due primarily to the
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compression response of the 0' composite.

10-
EPON 828 NEAT RESIN

8 /

* 4 :

2 . .......................................

0- I I I
0 0.5 1 1.5 2 2.5 3

COMPRESSIVE STRAIN, %

Fig. 8 Compressive Stress-Strain Curve for Neat Epon 828 Resin

Results and Discussion

Experimental results are shown in Table 3. All data are extrapolated to 60% fiber

volume. The compression strength of the face sheet in the x and y direction. are denoted
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by Sxf, and Syf, respectively, while the 0' ply stresses at failure (including thermal residual

350-

1[001 MINI-SANDWICH BEAM

300 - ........ ....

S250./

, 2 0 0 . .......................................

S 150.......-_-.......... ....- .... ........

S1 0 0 - ..--.----....... ............. ...... ............. ......... ....... ....................... .o 100

50

0 0.5 1 1.5 2 2.5

COMPRESSION STRAIN, %

Fig. 9 Stress-Strain Curve for 00 Mini-Sandwich Beam

stresses) in the longitudinal and transverse directions are denoted by GL and 0 T,

respectively. Longitudinal and transverse residual stresses of the 0' plies are denoted by

(YLT and aTT, respectively. Note that due to a mismatch between the effective Poisson's
ratio, vxy, of the face sheet and the core, the face sheets will be under biaxial inplane

normal stresses at the macroscopic (laminate) level. In addition, there are no inplane shear
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stresses present in the 0' plies. Thus, the unidirectional plies are only subjected to biaxial

normal stresses inplane. Results for the [0/ 4 5/9 0/- 4 5 ]s face sheets are not shown, as the

initial failure was due to free-edge delamination which reduced the apparent compression

strength considerably.

TABLE 3 Experimental Data, psi

Laminate Sxf Syf LL Cx (YLT OTT

[90°]24* -32,800 0 0 -32,800 0 0

[00]2 -281,550 765 -281,550 765 0 0
[00/900]s -141,750 7,964 -262,680 -213 -4,780 4,780

[±45/0A/J900 ]s -103,745 454 -260,680 5,027 -4,780 -4,780

[0 02/± 300]s -135,145 -3,241 -166,340 8,255 4,564 1,966

[0')±600 ]s -97,208 740 -290,612 5,215 -4,780 4,780

*Solid laminate tested for transverse compression strength

Experimental results from Table 3 were compared to the Tsai-Wu failure criterion, eq.

(44). For the ply loading under consideration, eq. (44) reduces to the form

('L 2  + OT2 -L (YT

SLTSLc STUSTC 21SLTSLCS TSTc (48)

+ (1_ _ S1) OL + ( 1  1 .I )
SLT SLC S'T STC

The following ply strength parameters were used in comparing theory and experiment:

SLT = 250 ksi, SLC = 282 ksi, ST' = 7.5 ksi, STC = 33 ksi (49)

A comparison between eq. (48) and the experimental data is shown in Fig. 10. Except

for the results of the [0 °2/± 3 0°ls laminate, the longitudinal compression strength appears to
be relatively insensitive to transverse load. In the case of the [0 °2/± 3 0°ls laminate the
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transverse tensile stress, YT, exceeds the transverse tensile strength, STr. When transverse

tensile failure occurs first, the fibers lose support from the matrix and fiber buckling

becomes the failure mode. For the other laminates the predominant failure mode appears to

be shear failure of the fiber as previously described by Crasto and Kim [2j. Thus if (FT <

STT, then little or no interaction exists between longitudinal compression strength and

transverse tensile loading. One caution must be raised here, however, because the laminate

geometries presented here do not induce transverse compression in the 0' plies (when

thermal residual stresses are included), other than the very small transverse compression
stress present in the [0'/90']s laminate.

10- I

5 9,# 5 -

00

0 00• . ................... ............. -.................. ......................

-5.

-FAILURE CRITERION

9EXPERIMENTAL

-10-
-350 -300 -250 -200 -150

(;, KS I

Fig. 10 Comparison Between Eq. (48) and Data in Table 3
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Thus a meaningful conclusion cannot be made concerning the interaction between
longitudinal compression and transverse compression. Such data is very difficult to obtain
in flat laminates, leaving combined axial compression and external pressure loading of
tubular specimens as the only likely means of generating this information.

It is also important to note that 0' compression strength is very high and carries over to
laminate in-situ unidirectional plies.
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3. STRESS ANALYSIS MODELS FOR THICK COMPOSITES

It is well recognized that shear deformation can be more significant in laminated,

anisotropic plates than in isotropic, homogeneous plates. This is due to the large ratios of

effective inplane tensile moduli to through-the-thickness shear moduli. Shear deformation

theories based on Mindlin's assumptions [4] have been developed for laminated,
anisotropic plates [5, 6]. A theory has also been developed [71 for the bending of
laminated, anisotropic plates which includes the effects of transverse shear deformation in a

manner similar to Reissner's theory for homogeneous, isotropic plates [8]. This theory is

based on Reissner's principle [9] in a modified form which requires assumed distributions
of inteilaminar shear stresses in addition to the inplane displacements. This theory has

been modified [10] to include the effect of transverse normal stress without increasing the
number of bending equations above those generated in classical shear deformation theory.
In this theory the interlaminar normal stress distribution is assumed, in addition to the
interlaminar sheai" stress distributions. Numerical results for cylindrical bending of
laminated, anisotropic plates subjected to a half sine wave lateral load showed that

improved results for bending deflections can be obtained by including transverse normal

stress effects as well as transverse shear deformation effects. These numerical results were

obtained for simply-supported boundary conditions and results compared to exact solutions

from classical theory of elasticity.

In the present effort the effect of transverse shear and normal stresses on the bending

of symmetrically laminated, anisotropic plates subjected to cylindrical bending under

uniform lateral load is investigated. Closed form solutions are developed for simply-

supported boundary conditions.

Modified Shear Deformation Theory

For continuity purposes, some of the details in the development of the field equations

developed by Whitney and Rose [10] will be outlined here. Consider a rectangular

laminated plate of thickness h with a symmetric stacking sequence relative to the plate
midplane. Each ply is constructed of an orthotropic material with the principle axis of

orthotropy oriented at an arbitrary angle, 0, relative to the x-axis of the plate. The inplane

displacements are assumed to be of the form

u = u°(x, y) + z Nfx(X, y), v = v°(x, y) + z Nty(x, y) (50)
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while the plate deflection, w, is expressed in terms of the weighted displacement

_- h/2w* 3- w(x, y, z) [I - 4 (z)2 1 dz (51)

2 hj fh h/2(

The ply constitutive equations are of the form

0-i = Cikck, Ej = Sjk0yk (52)

where Cik and Sjk are the stiffnesses and compliances, respectively. We now eliminate the
interlaminar normal strain P3 by utilizing the first of the constitutive relations, eq. (52), in

the form

Ci=QkEk+i3 G3 (i, k = 1, 2, 6) (53)
C33

where Qij are, as previously, the reduced stiffnesses for plane stress given by the
relationship

Qik = Cik Ci3Ck3
C 3 3

Reissner's principle is written in terms of the variational equation 6oi = 0. Omitting
boundary and surface traction terms for simplicity, the variational function 81I can be
written in the modified form [10]

fv ( (yi - (QF + i3 '03)] SE- + (E - Skmym) S•j

JV C33

+ (01.1 + 06.2 + 0-5,5) 5U + (0-6,1 + 0"2,2 + T4,4) 8V \k, m = 4, 5/ (54)

((75,1 + 0-4,2 + 0-3,3) Sw I dV

where a repeated index denotes summation and, in the usual manner, aYi and ei denote the
stress and strain components, respectively. Using conventional nomenclature, the
subscripts 1, 2, and 3 here denote, x, y, and z, respectively while 4, 5, and 6 correspond
to yz, xz, and xy, respectively.
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We now denote normal stresses, shear stresses, normal strains, and shear strains by
Qi, 'rij, ei and yij, respectively. In order to implement eq. (54), we need to assume a
distribution through the thickness for , y and az. As in the original work by Whitney

and Rose [10], we assume these stress components to be of the same form as utilized by

Reissner [81 for homogeneous, isotropic plates, namely

cx, = [1 -4 (z)21 3Qxh 2h

"TYZ = [1 -4 (z ) 2] 3Qy (55)
h 2h

(Tz =1{[3 -4 ( )2 (•)PI- P2) + (PI + P2)}
2 h h

where Qx and Qy are the shear force resultants defined in the usual manner

h/2

(Qx, Qy) = (xz, ry,) dz

and

P, = az(h/2), P2 = az(-h/2)

These relationships are consistent with linear inplane stresses through-the-thickness
for the case of homogeneous plates. It should be noted that the incorporation of (Y in the

constitutive relations, eq. (53), will induce some nonlinearity through-the-thickness with
regard to the inplane stresses. This may be of little consequence, however, in obtaining
macroscopic response of the laminate. Detailed local interlaminar stress distributions
require integration of the equations of equilibrium in conjunction with the inplane stresses

as determined from the laminated plate theory.

Substituting eqs. (50), (51), and (55) into eq. (54), we obtain the following inplane
constitutive relations in terms of force resultants and moments

Ni =Aij ej + Li (P1 + P2) (i, j = 1, 2, 6) (56)
Mi= Dij wj + Ji (Pl - P2)

where
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fh/2 h/2
(Ni, Mi) = f 2i (1, z) dz, (Aij, Dij) = Qij (1, z2) dz

1 h2Ci3 dJi f h/ Ci3 (-!)[3 - 4 (•)2] z dz
Li 1 = h2 ___C3 dz, f h 4h/2]2C3  C33 hh d

We note in eq. (56) that the inplane force resultants are coupled to the lateral surface

tractions. Thus, the midplane strains do not vanish in the case of the bending due to lateral
load when the effects of transverse normal stress are considered. Reissner [8] did not

consider midplane strains in the development of his theory for homogeneous, isotropic
plates. In a similar manner we obtain the constitutive relations for the transverse shear

force resultants, Q% and Qy, from eq. (54) with the result

[Qx1.. F55 F45 'J[ W + W: (57
Q J F45 F 4 4  Nfty + W*(5

where

F4 4  R 55  , F55 = R44 , F45 = R45

(R44 R55 - R.4 5
2) (R44 R55 - R45

2) (R44 R55 - R45
2)

and

4 h/2

Ri -4-• h/2 Si [1- .4 ()21 2 dz (i, j = 4,5)

Here Sii denotes the anisotropic transverse shear compliances.

The equilibrium equations in terms of force and moment resultants can be obtained

from the last three terms in eq. (5) with the result

Nxsx + Nxy = 0
Nxy,x + Ny y = 0

MxIx + Mxyy - Qx = 0 (58)
Mxy x + Myy - Qy = 0

QxIX + Qy,y + (Pl - P2) = 0

These five equations could be expressed in terms of the displacement variables u0, v0,
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WVx Vy, and w* by utilizing the constitutive relations, eqs. (56) and (57). The boundary

conditions are those of classical shear deformation theory as applied to laminated plates 161.

Cylindrical Bending Under Uniform Lateral Load

For cylindrical bending we consider a symmetric laminate where the length in the y-

direction is much longer than the x-direction, as illustrated in Fig. 11. If the laminate is

subjected to a lateral load which is independent of y, then the resulting deformations will be

independent of y. Such cases are referred to as cylindrical bending.

Fig. 11 Cylindrical Bending

The displacements in eq. (1) and (2) now take the form

U0= U(x), v0 = V(x), •I/ = Pl(x(), •/ = t[Py(x), w* = W(x) (59)
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Denoting differentiation with respect to x by a prime, the first two equilibrium

equations in (58) reduce to the following

Nx'=0, Ny' =0 (60)

which leads to constant values of N, and Nxy. Combining eq. (60) with the constitutive

relations, eqs. (56) and (57), and substituting the results into the last three equations in

(58), we obtain the following bending equations

D, 1 Tx" - F55 Tx + D16 Ty" - F45 Ty - F5 5 W' + J1 (PI' - P2') = 0

D 16 T~x" - F45 'Px + D66 'Py'" - F44 Ty F45 W' + J6 (PI' - P2') = 0 (61)

F55 Tx' + F45 t'y, + F55 W" + (PI - P2) = 0

For a uniform load

P, = Po = constant, P2 = 0 (62)

Because the lateral load is constant, the effect of transverse normal stress vanishes from the

first two equations in (61), with the result

Dll3 l x" - F55 sx + D 16 'y" - F45 T'y - F55 W' = 0

D16 Tx" - F45 T, + D66 Ty" - F44 Ty - F45 W' = 0 (63)

F55 Tx' + F45 W' + F55 W" + P0 = 0

The solution to eqs. (63) is given by

Nfx=C1 +C2 x+i-x2 -D16 (Acoshh V-+Bsinh7A)- PO X3

2 D11  h h 6D1 l

ty = Hi (c3- + A coshL+ B sinh X- (64)
Dh h

c2x 63-x)c 2 Po
W=C4 - ClX - C-- X2+(1, 2 x - (12H2 - X2) PO X2

2 6 24DI I
+ hW-3 (A sinh x+ B cosh X.)
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where

(F44F55 - F45
2)D 11h2  H, (F55D1 6 - F45 D1 I)

F55(DIVD66 - D162) (F 4 4 F5 5 - F 4 5
2 )

H2 _(F44D1l - F45D1 6) H3 (F 55 D1 6 - F45D111)
(F4 4F55 - F45

2) ' F55D11

The width of the plate is denoted by a and the axis system is placed at the middle such
that the boundaries are located at x = ± a/2 (see Fig. 11). At the laminate level, transverse
normal stress will only effect cases in which force and/or moment boundary conditions are
required. In particular, because transverse normal stress effects do not appear in eqs. (63),
they enter the problem through force and/or moment boundary conditions, as observed in
the constitutive relations, eqs. (56). Thus, for example, in the case of clamped boundaries,
which involves displacement conditions only, transverse normal stress effects will not be
present at the laminate level. Transverse normal stress will, however, have an effect on the

ply stresses by virtue of eq. (53).
We now consider simply-supported boundary conditions. For this case w will be

symmetric about x = 0, while both VVx and Nfy are anti-symmetric. This leads to the result

C1 = c3 = A = 0 (65)

For simply-supported boundaries, we require that at x = + a/2

w = Mx = Mxy = Nx = Nxy = 0 (66)

where, from the constitutive relations, eqs. (66)

Mx= DlINtxx + D16NJy,x + JlPO (67)

Mxy D16Wx.x + D66Wy,x + J6PO

Combining eqs. (64) and (67), we find that
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C2 = (8HID 1 6 + Djja 2 - 8J1D11) Po, B = h 1H1 - D11 (J6DII - J1 D1 6 ] Po
8DI12 D•11 X cosh X__a (D1 lD66 - D162)

2h
(68ý

C4 = ([48(H 2D11 + HID16 - J1DII) + Diia 2lXa

- 384h 2H3D1 I [H1 D11 (J6D11 - JID16 ] P
(DI1 D66 - D16

2) 384X.2D11 2

The maximum deflection will occur at the center of the plate, x = 0, and can be written in

the form

Wmax = WCL,' (1 + H) (69)
5

where

H 4- 8 H D 16 H-j1) 384h2H3  D 1 (J6DaI- JID 16) 2Osh2---'1

H = f2ýH [H 1 - 2h-a2  X2 a4 (DllD66 - D16
2) cosh X---

2h

and WCL•P is the maximum deflection as determined from classical laminated plate theory
with shear deformation and transverse normal stress effects neglected and is of the form

wCL = 5a4 Po (70)wC~f=384DII

Thus, the term H contains the effects of both transverse shear deformation and
transverse normal stress. We note that the classical solution is independent of the bending-
twisting coupling stiffness D16. For the case of an orthotropic material F45 = D16 = 0 and

eq. (69) reduces to

Wmax = WCLpTr [1 + 48(DI1 - J1F 55)] (71)
5F 55a2

We should also note that midplane strains will also occur. Combining the boundary

conditions, eq. (66), with eq. (60), we find that

Nx = Nxy = 0 (72)
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throughout the plate. Substituting eq. (72) into the first of the constitutive relations, eq.

(56), we obtain the midplane strains

C (A6tL1 - A16L6)

(A1 iA 66 - A16
2) (73)

4y O0 (AlIL6 - A16L1)
(AlIA66 - A16 2)

Numerical Results

We now consider laminates with the stacking geometry [0o/900ls and [±45°]s having the

following unidirectional properties

EL/ET = 14, GLT/ET = GL3/ET = 0.615, GT3/ET = 0.323, (74)
VLT VL3 = 0.3, VT3 = 0.55

where the subscript L, T, arid 3 denote axes parallel to the fiber, perpendicular to the fiber,

and through-the-thickness of a unidirectional composite, respectively. In addition Ei, Gij,

and vii denote the Young's modulus in the ith direction, the shear modulus relative to the i-j

TABLE 4 Maximum Deflection

Wmax/WCLPT

[0O/90°]s [±450]S

a/h WSN WSD WSN WSD

5 1.901 1.923 1.421 1.442

10 1.225 1.231 1.107 1.112

20 1.056 1.058 1.027 1.028

30 1.025 1.026 1.012 1.013
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e

plane, and the Poisson's ratio measured by contraction in the jth direction during a uniaxial

tensile test in the ith direction, respectively. These properties represent state-of-the-art

unidirectional graphite/epoxy composites.

Numerical results are shown in Table 4 for the maximum deflection. Equation (71) is

applicable to the [0o/900ls stacking geometry, while eq. (20) is required for the anisotropic

[±45']s laminate. The normalized deflection, WsN, represents eqs. (60) and (71) with both

shear deformation and normal stress effects included, while WSD represents these same

equations with normal stress effects neglected (J= = 0).

Discussion

A cursory examination of table 1 reveals that the inclusion of transverse normal stress

reduces the maximum deflection compared to shear deformation. This is consistent with

the results presented by Whitney and Rose [10] where comparison with exact elasticity

solutions showed that shear deformation alone overestimated the maximum deflection. The

inclusion of both shear deformation and transverse normal stress, in the same manner

presented here, gave almost identical results to exact elasticity.

The effect of shear deformation and transverse normal stress is more severe in the

[0/90']s laminate than in the [±4 5 °]s stacking geometry. This is anticipated as the [0o/90°Is

laminate has a higher effective inplane modulus to interlaminar shear modulus ratio than the

[±45°]s angle-ply composite.
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