AD-A265 878

DTIC @

ELECTE
6 1993

University of Southern California
Information Sciences Instltut@_EAREo
Common Lisp FrameworRoPenPusuearon
Final Technical Report JiN08 1993 4

TORATE FOR FREEDO OF INFORMATION
OO N ECURITY REVEW (OASO-PA)
DEPARTMENT OF DEFENSE

David S. Wile
Sponsored by Defense Advanced Projects Agency (DOD)
DARPA/CSTO - ' ST T
Title of Contract: ‘ ‘
“A Proposed Research Program in Strategic Computlng
- Project: Common LISP Framework
DARPA Order No. 6096

Issued by DSS-W under Contract MDA903-87-C-0641

Period of Performance: 09/01/87 - 05/31/92

February 8, 1993

P8 6 i5

]
—

Ei
f—_1

'The views and conclusions contained in this document must not be interpreted as rep-
resenting the official policies either expressed or implied of the Defense Advanced Research
Projects Agency or the U.S. Government,

v WONE LN
e

e

é/‘/f“t/;"%’/_’f i

-—

RAECURITY CLASSIFICATION OF THIS PAQE.
REPORT DOCUMENTATION PAGE

ta. AEPOAT SERCURITY CLASSIFICATION Ta. RESTRICTIVE MASUGNGS

28, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVALABLTY OF REFOAT

3. DECLASSFICATION/DOWNGAADING SCHEDUAE

4. PERFORMING OROGANIZATION REFORT NUMBERA (o) 6. MONITORING ORGANIZATION REPOAY NUMBER ($)
Sa. NAME OF PERFORMING ORGANIZATION . OFMICE BYMSOL Ta. NAME OF MONITORING ORGANIZATION
usc
INFORMATION SCIENCES INSTITUTE
8. ADORESS (City, Btals, and ZIP Code) 7o, ADDREGS (City, Siate, and 2@ Code)

4876 Admiraity Way
Marina del Rey, California 80292

Sa. NAME OF ™. OPPICE SYMBOL §. PROCUREMENT INSTRUMENT IDENTIFICATION NLAMBER
ORGAMNIZATION
h A903-87-C-0641 4
. > _
nﬁ?&?&cé?dmfcr gat an Eiego (A-034) PROGRAM PROJCT NO. TASX NO. WORKX UnNIT
gggﬁ}?ﬁ}lt tﬁ (:€ %eﬁggrap \ ELEMENT NO. ACCESSION NO. v
an Diego, a‘A. 82593- 34
11, TITLE @NCLUDE SECURITY CLABSIFICATION)
Common Lisp Framework
2. PERSONAL AUTHOR(S)
David S. Wile
138. TYPE OF REFPOAT 3. TBME COVERED . ‘ear, Month, 0. PAGE COUNT
Final mons901/87 531192 _| * February 8, 1993 20
18. SUPPLEMENTARY NOTATION
17. COSBATI CODES 18. SUBJECT TERMS {Continue on reverse N necessery and identfy by dock rurmber)
. aAOus sus-anous | Programming Environments, Persistent Objects, Relational Abstraction,

Program Generators, Codewalkers, Transformational Programming,
Program Specification, User Interfaces

Y~ | The pri ‘61 Jgoal of the COMMON LISP Eramework proj i ing (SC
e principle/goal o ic Computin

con '%1 a compre?ncnsive. state-of-threa-lgcﬁv;%léxpmag ?rsafgesxg?f?oﬁ%c eSc opn?ent a%u(})
evolution of COMMON LISP programs. The CLF has affected the technical community by shaping both
the structure of modern programming environments and the development paradigm they support. This
structure rests upon an active objectbase which maintains integrity, integrated tools and provides persistence.
CLF's integrity management is unique in providing declarative integrity condition statements--which can be
reasoned about and analyzed--while still permitting efficient algorithmic maintenance of these conditions.
Its declarative persistence mechanism, based on conceptual aggregations of objects. is also unique. Tools are
integrated with the objectbase rather than each other. They gather their inputs from, and place their results
back in. the objectbase and are invoked (demonically) by relative activity in the objectbase.
The final years of the COMMON LISP framework project were primarily devoted to extracting important
functionality from the CLF and packaging it in a form suitable for use in other environments. This allowed
its use by clients who could not use the monolithic CLF system in their in place svstem architectures.

20. OISTRBUTION/AVARRBILIY OF ABSTRACT 21. ARSTRACT SECURITY CLASSIFICATION
[d UNCLASSIFIED/UNLIMITED] SAME AS RPT[] DTIC USERS UNCLASSIFIED
22s. NAME OF RESPONSIBLE NOMDUAL 220 TELEPHONE {include Ares Code) 2e OFFAICE SYMBOL
. (310) 822-1511
00 FORM 147). 92 JAN SECURITY CLASSIFICATION OF THIS PAGE

o . o o o 1

1 Task Objectives

The principal goal of the COMMON LISP Framework project was to support Strate-
gic Computing (SC) contractors with a comprehensive, state-of-the-art programming
framework for the development and evolution of COMMON LISP programs. This
framework provides the programmer with a fileless environment of persistent objects.
Their relationships with other objects are manipulated via a set of generic operations
and are used to associatively retrieve the objects. The COMMON LISP Framework
system (the CLF) maintains the consistency of these obje<ts and initiates automated
processing for the programmer via a set of rules.

The CLF has affected the technical community by shaping both the structure
of modern programming environments and the development paradigm they sup-
port. This structure rests upon an active objectbase which maintains integnity, inte-
grates tools, and provides persistence. CLF’s integrity management is unique in pro-
viding deciarative integrity condition statements-which can be reasoned about and
analyzed-while still permitting efficient algorithmic maintenance of those conditions.
Its declarative persistence mechanism, based on conceptual aggregations of objects, is
also unique. The persistence of these aggregates is automatically maintained. Tools
are integrated with the objectbase rather than each other. They gather their inputs
from, and place their results back in, the objectbase and are invoked (demonically)
by relevant activity in the objectbase. Military and societal impact will accrue from
the infusion into routine practice of programming environments which maintain all
information relevant to the programming process within them; viz., product lifetime
support, synergistic tool support and tightly coupled systems.

The final years of the COMMON LISP Framework project — covered in this report
~ were primarily devoted to two goals, one mundane and the other, laudable. First,
we needed to port the CLF to our Hewlett Packard 400 Serics workstations as the un-
derpinnings for our everyday computing environment. More importantly, we wanted
to open up our technology to other researchers by extracting important functionality
from the CLF and packaging it in a form suitable for use in other environments.
This allowed use of the functionality without potential clients having to buy off on
the monolithic CLF system, which often could not be used in their in-place system
architectures.

e B

or

DTIC QIALILY [LCPEL Il 8

2 Technical Problem

The idea for the COMMON LIS Framework project arose as DARPA recognized the

importance of the ongoing rescarch in the Formalized System Development project-—

at ISI, especially its potential for use by its SC contractors. The project began in_

é

o

~10

je I

R e

/

s ee———

wiw Rekd v Codeg’

1 ioa
jDISf. | Lpeet

A

ad/er

~

e oy

FSD System,.; = CLF Plateau,_y
i f
I i
i f
mmmmms FSD Demo,
Il

il 3 months

I
ISI Applications,

i
Il 3-6 months
f
FSD System, ======
I I

i 6 months||

i I
CLF Plateau, = FSD Demo,,

Figure 1: FSD-CLF plateau cycle

1984. A preliminary version of the CLF was in beta test by the end of 1985 and was
delivered to other SC contractors in early 1986.

Hence, CLF was basically a technology transfer project, adapting well-understood
aspects of the FSD system to COMMON LISP programming support. The develop-
ment cycle of functionality obeyed the diagram in Figure 1. As each system feature
matured in the FSD system, it was incorporated into the CLF. That CLF facility then
became the foundation for the next version of the FSD system. Generally, features
underwent two distinct phases. The initial “demonstration™ phase (FSD Demo.,) was
incomplete with respect to some intended functionality, but demonstrated a portion
of that intended functionality as a straw man, a rapid prototype. After about three
months, the demonstrated features were robust enough to endure “alpha test™ in 151
applications. They then became official FSD system features (FSD System,) and
were “beta tested” at ISI for several months by a wider user community before being
incorporated into the CLF (CLF Plateau,). This plateau then hecame the base of
the next FSD demonstration.

From the outset, the COMMON LISP Framework was intended to go through
three major phases. The functionality of the initial CLF was hest characterized as
flexible management of program objccts and tools. A prelininary version of this

portion was in beta test at the end of 1985 and was delivered to other SC contractors
in early 1986. During the second phase. the tools provided in the mitial systen
were made more reliable and robust. The third phase was to begin to incorporate
the FSD technology for program specification, implementation via transformation,
and reimplementation via replay of previously formalized developments on changed
specifications. These phases were viewed as merely the first of many in which spinoffs
from the FSD testbed are incorporated into the CLF for technology transfer to the
SC contractors.

The functionality of the initial CLF was best characterized as fully flexible man-
agement of all program objects and tools. It incorporated: the relational database
of program objects {modules, functions, record declarations, etc.}, analysis predi-
cates (flow reiationships, call relationships. variable usage patterns) via which all
tools communicate; facilities for creation, modification, destruction, retention, orga.
nization, and retrieval of these objects; the interactive standardized user interface to
these facilities using a menu/window system; tools which interface to these objects
including the ZMACS editor and a batch invoked tool for program- and data-flow
analysis; and, the “DEVELOP” mechanism to record a history of change withiu the
FSD environment.

The system was released for “beta test” in FY86, incorporating: a facility for
converting existing programs for use in the framework; a preliminary facility for
managing system releases based on the DEVELOP facility mentioned above; and,
a brief manual and an excellent on-line tutorial introduction to normal usage of the
system. Access to the underlying CLF facilities was provided so that developers could
provide a “consistent underlying viewpoint” to the users of their {acilities. CLF was
ported into Common Lisp and onto other host machines.

During the second phase, the tools provided in the initial system were made more
reliable and robust; new versions of the database and our interface were incorporated
to increase responsiveness through heterogeneous data representation and to provide
object-oriented browsing and editing.

In fact, the technical problem was redefined during the progress of the current
contract, for two fundamental reasons:

o The FSD technology for program specification, transformation. and develop
ment replay did not progress rapidly enough to advantageously be incorpo-
rated in the CLF. Indeed, the technology ultimately was rejected in favor of
a more domain-specific aproach to specification and a much more automated
wayv of developing good implementations (See follow -on project. “Annofations
+ Mctaprograms”.

e The CLIY was not accepted externally because it was perceived as a “monolnh”

which had to be accepted as a whole, rather than adopted inerementally into

[3
:
It

existing environments containing important, entrenched functionality.

Hence, the technical problems gradually devolved to exporting the techinology
a form suitable for use by other technologists. This involved porting the CLF to au
open-architecture system, Unix, before we could sciiously propose that others use
the system components (they were written for Lisp Machines of the early 1980s).
Of course, then there was considerable refining, redesigning of component interfaces,
production of user manuals, etc., so they could indecd by extracted from the systein
and presented to ¢ <ternal users.

3 General Methodology

3.1 Salient Features of the CLF
The COMMON LISP Framework comprises the following major components:

¢ Al Operating System (CLF Kernel);
e Program Management Service;
o Program Development Service.

The Al operating system kernel of the CLF provides the programmer with a fileless
environment of persistent objects. Their relationships with other objects are manipu-
lated via a set of generic operations and are used to retrieve the objects associatively.
The CLF maintains the consistency of these objects and initiates automated process-
ing for the programmer via a set of rules.

A unique feature of the CLF is that all objects manipulated by programmers are
represented in this persistent object-base — specifically structured objects, like mod-
ules with components, as well as primitive program structures, like function, variable,
and structure declarations. Also, relationships and objects elsewhere represented in
a very ad hoc, diversified fashion, such as flow analysis relationships, versions, time
stamps, developers, and users, are all represented uniformly in the object-base.

The kernel provides generic facilities for manipulating these programming objects
as objects. In addition, special facilities have been introduced into the framework to
provide programming assistance in the following areas:

e Module creation:
o Component addition;

e Importing existing files;

e Component modification and editing;
¢ Codec instaliation.

Each of these facilities requires user intervention or initiation.

Especially important are the facilities for managing the consistency of program
information, built using the rule-based kernel. These facilities perform the following
activities:

e Automatically compile functions that are “installed” by the user;

e Allow multiple-buffer editing of the same object while maintaining correct views
in each buffer;

e Automatically (re)analyze functions when they are installed:
e Automatically maintain program object ordering by load-order and view-order.

Each of these activities is managed differently in existing programming environments.
Some are managed by the user only-the system provides no help for such consistency
maintenance.

The CLF’s Program Development Service provides automated maintenance docu-
mentation by maintaining an annotated development history. The user is responsible
for providing development step annotations briefly characterizing his activity when
he changes the program. The programmer may explicitly indicate substructure in his
development, whereupon the system maintains his stated goal structure.

Of considerable importance is the ability of a user to indicate his plans for future
programming activity, through creation of development steps called “pending steps.”
The user can subsequently-perhaps at a much later time-handle these development
steps; the system automatically incorporates them as new steps in the existing struc-
tured history.

Not only is the development service able to recall the history of the programming
activity itself. but it is linked into the persistent object-base management activity in
such a way that information associated with the changes may be used for maintenance
documentation and release and for version management. Thus. since the generic
objert-base facility is used to store the development history itself. one can find all the
development steps affecting a particular object, as well as all the objects affected by
a particular development step.

This Iink into the incremental saving mechanism allows the development cerviee
to provide automated distribution of program objects to users of the systems of which
they are components, as well as to aid in tracking the installation of sets of changed
program objects when the affecting development steps are accepted. The documenta-
tion used to deseribe development steps is used to document the distributed changes

s]

to users of the system. This is a particularly interesting side-effect of our efforts to
record as much as possible of the programming process in the machine. where the
information can be analyzed and the user aided based on this analysis.

The reader may feel more comfortable with these concepts by considering the
normal usage scenario in Figure 2. New users of the CLF usually have running
code that they must import into the CLF environment. Often they will analyze
and reorganize their original flat files into a more logical structure of nested modules
using the CLF’s object manipulation capabilities. After this importing 1s complete,
the development phase is repeatedly performed. In each cycle development steps
are created, augmenting the system, fixing a bug, or tuning the system. A series
of modifications is made to accomplish that change. The changes are installed and
tested. When the changes work properly. the development step is closed and the
changes in it are distributed to the user of the modified system. All of this recording.
installation, and distribution is automated.

From time to time the developer needs to reestablish his persistent object-base
in a new virtual address space (e.g., when a new version of the CLF is released or
when the system crashes). The distribution information automatically saved by the
CLF is sufficient to automatically restore the current state of his systems and their
development in the new object-base.

3.2 Conversion and Porting

The general approach taken in converting facilities in the existing CLF in order to
port them onto a Unix platform was to convert base functionality, a-test it for a
few weeks on the new platform, and then let the rest of the Software Sciences Divi-
sion personnel S-test it to wring out the bugs. This entailed converting the “AP5”
system — our virtual rnemory database programming language — before any of the
rest. A second major problem involved the linkage between the editor, Epoch, and
the Common Lisp system. On the Lisp machine implementations of the CLF from
previous years, the editor was an implicit, integral part of the Lisp environment. On
the Unix platform, the editor process was quite separate from Lisp, and did not com-
municate with other processes. Hence. another major conversion problem was setting
up a remote procedure call linkage between the Common Lisp process and the «ditor
process, through the use of Unix “sockets.” Some details of the porting process are
reported in the Technical Results section below.

3.3 Exporting Components

The approach to component exportation was quite simple: we identified which com-
ponents could be exported, what other components they relied on both internally

[]

Startup Phase:
Three ways to obtain a system:
Conversion
Convert existing file into module
Reorganize and subdivide module
Analyze
Make module into system (or Save module)
Load Saved System
Analyze
Create New System
Development Phase:
Plan development
Make modifications
Test
Examine modifications and iterate
Distribute modifications
Shutdown Phase: (moving to a new band)
Save module
Update systems in new band

Figinre 2: Normal Usage Scenario
4

produced and externally produced, and then made them available as they were ported.
This last task sometimes entailed decoupling them from their environment and usy
ally required producing some kind of user manual or at least a reference manual for
them.

The components we identified early as both suitable and desirable for exportation
are described in Figure 3. Several other components arose during the course of the
project which were also made available for distribution. These are all deseribed below
in the Technical Results section.

4 Technical Results

4.1 APS

AP5 is the basis for the Al operating system provided by the CLF. In particular.
it is an extension of Common Lisp providing a virtual memory data base with au-
tomatic consistency maintenance, demonic function invocation, and user-suppliable
implementations for relations.

During FY87, we introduced several “specification-based™ facilities to separate
specification of functionality from implementation. Foremost was compiler “annota-
tions” which instruct the compiler to chocse particular representations for abstract
data structures, and to optimize based on size and effort estimates for particular
structures. Another such annotation was to allow PGPART’s ability to build and
maintain grammatical structures act as relations. We also incorporated incremental
flow analysis and compilation facilities.

Basically, AP5 was ready for exportation as soon as it was ported to the Unix
based Common Lisp system. An important training manual was written to enhance
its appeal.

4.2 Worlds

“Worlds™ was a less mature systen |
virtual database objects and relations. Worlds partition the database into layers of
conceptually related data which can be composed to construct “complete” objects
or relations. The mechanism is now used routinely to maintain mail and personnel
data and is in experimental use in maintaining programming service data. Worlds is
unigue in that a world is really just a “view” of the database rarely including all

built on top of APS 1o provide persistence for

attributes of any particular object that it contains.
During FYB8S the worlds system matured considerably. During FY89 we intro-
duced a facility we built to allow users to specify a set of ‘seeds” via a predicate. The

The CLF Framework itself:
Dependencies: Common Lisp, cne of Symbolics 3600, TI Explorer,
HP Bobcat
Interface: Extends environment of host machine
Description: (See text)

APS
Dependencies: Common Lisp
Interface: Language extension to Common Lisp
Description: Provides virtual memory data base vith automatic
consistency maintenance, demonic function invocatic: .
and user-suppliable implementations for relations.

Forms Kit
Dependencies: Com on Lisp, X-Windows, Common Objects
Interface: Common Lisp macros for form definiticn; function
invocation for display.
Description: Generic object display mechanism with support for a
variety of standard formats.

Popart

Dependencies: Common Lisp

Interface: Function calls, ZMACS macros, pseudo-LISPX macros

Description: Language independent programming environment
generator from la.guage description in BNF variant.
Provides: parser, pattern matcher, lexical analyzer,
pretty-printer, semantic "action" routine mechanism,
structure editor, and transformation system.

Worlds
Dependencies: APS, Common Lisp
Interface: Function invecation
Description: Dbject persistence maintenance mechanism based on
conceptual aggregates of types and rela.ions into
"worlds".

Popart-DB
Dependencies: APS, Popart, Common Lisp
Interface: Popart and APS5 Interfaces
Description: Integrates Popart’s abstract syntax declarations for
a grammar with APS'ijrelation and type declarations.

l"i!‘llrl‘ { i\,'\ﬂ]ullliigl;t’ :‘-vinén)ll ST

T T T

worlds mechanism then uses this predicate to start its closure algorithm to determine
what belongs in the world. Most importantly. the mechanism understands the -
cremental changes to the seed set when subsequently invoked to repopulace a world
that has changed. This somewhat simple enhancement will significantly decreased
the overhead of the users of the persistence mechanism. We also discovered that
the simultaneous commital of information from several worlds to the persistent store
can be done more efficiently than the sequential commital of cach. We modified the
algorithm to take advantage of this opportunity.

USC graduate student Surjatini Widjojo completed a demonstration system (for
her dissertation work) called “Worldbase™. This system allows the definition of vorlds,
information aggregates which can be used to make persistent, data accumulated in
the workstation. These world images can then be loaded, transformed. and merged
into other workstation environments. This is especially nice work giving the project
visibility in the database community.

4.3 Popart

Popart is a language independent programming environment generator that takes a
language description in BNF variant and provides a parser, pattern matcher, lexical
analyzer, pretty-printer, semantic "action” routine mechanism, structure editor, and
transformation system. It was developed under DARPA and NSF support during
the late 1970s and early 1980s. It is unique in that it provides a concrete syntactic
view to all tool builders and users of the system, despite maitaining everything in an
abstract syntax internally. This is just one aspect that makes it extremely useful for
rapid prototyping of language processing facilities.

Early in 1989, the FSD project developed “Barrel”, a ‘Passive Virtual Database’
programming architecture. It shares AP5’s representation library concept with the
active database architecture but requires no run-time support, and thus, no run-time
overhead. This invention presented an opportunity to generalize our Popart system
considerably. Particular areas of generalization were:

o Grammar-related state variables. Previously, most grammar related informa
tion was only accessible in one direction. viz from the grammar to the infor
mation. There are situations where it would be useful to access the grammar
from the information. This was simply impossible without cousiderable repro-
gramming. Representing these relationships as Barrel relations gives us the
flexibility of changing the representation and allowing the inverse access with
out changing the pregram at all. More important, over-restrictive constraints
on uniqueness of names, productions, operators, etc., were required in the past.
because these bits of information were not parameterized with respect to the

10

grammar in which they occur. This quarter we reparameterized these items,
allowing the relaxation of the uniqueness constraints.

e Similarly, the abstract syntax used in Popart was very rigidly implemented
using list structures. Barrel allowed us first to generalize the abstract syntax to
include the grammar of which it is a part as an argument to relations describing
it. Then differential abstract syntaxes (for different grammars) were invented.

The reprogramming of Popart to incorporate these two extensions was a major ac-
complishment of FY90. About 85% of the code that we intended to convert was
converted and tested. This not only effected a cleaner, easier-to-modify version of
Popart but allowed for additional functional enhancements®.

During FY91, a generic facility to permit “whitespace parsing” was added to the
Barrel version of Popart. The unique feature of this mechanism is its unobtrusive
impact to the original syntax of the language in which the whitespace is embedded.

4.4 Luke

An important component developed in the FSD project and subsequently exported
through the CLF project was LUKE (Lisp Universal Kode Elaborator), a code walking
“shell” for Common Lisp and languages embedded within it. Code walkers are used
for a variety of program analysis tools. Luke is a shell in the sense that it performs no
useful task in its own right; it must be tailored to a particular application by providing
certain methods that determine the code walking path and result computation for that
application. LUKE can be used either to compute a transformation (some image) of
a piece of code, or solely for side effect — e.g., to gather statistics about the code.

Conceptually LUKE derives extensibility by viewing the task of code walking as
an example of recursive descent programming, and enabling the programmer to factor
concerns about a given recursive descent application into

e the problem of identifying the relevant subtrees of a given tree, and
¢ the problem of composing the result for a given application.

Programmatically LUKE derives extensibility from its implementation in CLOS.
This enables the user to define a new application as a specialization of another, similar
application and to describe only the differences. The use of mulitmethods enables
these differences to be described in terms of a “natural” syntax for Common Lisp.

'Although most of the reprogramming of Popart was concluded, the efficiency with which it
runs was never acceptable: the appropriate Barrel annotations were not programmed. Hence, the
reprogrammed Popart did not replace the existing one for most of its user community. As time
permits, follow—on contracts will continue development of the Barrel version of Popart.

I

E ..

The standard LUKE shell maintains contextual information that can be accessed
by an application, including: declarations in effect for the code being processed. en-
closing lexical blocks, erclosing named definitions, and contextually imposed type
requirements. LUKE provides a template language to ease the programming of ex-
tensions to cover user-defined macros. Templates are compiled into methods, not
interpreted during the code walk.

4.5 APS, Barrel, and Compilation Framework

As was mentioned above, early in 1989, the FSD project developed “Barrel”, a ‘Pas-
sive Virtual Database’ programming architecture. It shares AP5’s representation
library concept with the active database architecture but requires no run-time sup-
port, and thus, no run-time overhead. In the CLF project, Barrel was extended to
keep track of statistics of relation update and 2ccess for those relations using the
default implementation. After using a system for a while, the user can then check to
see what relations’ speeds are proving to be bothersome.

At the same time, a Relational Abstraction Compilation Framework was developed
in the FSD project which generalizes both the Barrel compiler and the AP5 compiler
to provide a framework for compiling extensions to arbditrary programming languages
to provide relational abstraction. Some of that work was taken up by the CLF project
as the FSD project wound down. In particular, methods were added to allow more
update interfaces to the abstract relations. A more elegant encapsulation of retrieval
methods was also discovered, whereby despite using an iterative interface to retrieval
generation, efficient single-selections and simple queries are supported.

During FY91 the framework was extended in two major ways:

e Derived relations in logic formulae were implemented. Target-language-independent
algorithms are produced (consisting of neutral instructions like “generate this
domain first”, “test this predicate now”, etc.) by the well-formed-formula com-
piler. Subsequently, target-language-specific source code generators and cost
estimators are invoked by the framework.

® A compositional specification language was designed and implemented, allowing
users to describe how to represent a relation by composing different indexing
regimes from a library of predefined representations.

4.6 Forms Kit

“T'>rms Kit” is a generic object display mechanism with support for a variety of stan-
dard layout formats. It was another component whose functionality was obviously

12

ready for exportation, but whose porting onto Unix platforms was problematical be-
cause of the discrepancies between X-windows and the idiosyncratic window systems
of the Lisp Machines. In addition, it made several assumptions about the existence
of AP35, which made it inappropriate for exportation to the research community —
there was no reason for us to bundle these two potential products together?.

During FY88 we completed the design, implementation, and documentation of a
specification-based user interface, independent of AP5. Specifications control content,
layout, graphic characteristics, and user interaction with displayed data. We also
particularized this tool (by adding a new abstract interface) for use within CLF so
that the data is obtained from the AP5 database and the form is kept consistent with
changes in the database.

During FY89 the Forms Kit was enhanced in the following ways:

e The performance of our Screen Updater, which keeps views up-to-date with the
objectbase, was improved with the implementation of a new algorithm based
on the observation that the number of distinct relations modified in a typical
objectbase update is quite small, whereas the number of interface units whose
contents are sensitive to the objectbase may be large.

e We improved the update speed for small form changes by BITBLTing informa-
tion that has not changed into new locations, rather than recomputing it as is
our current practice.

¢ The Forms Kit system was factored into the subset necessary to create and
present forms and the subset controlling user interactions, so that now the
system builders can use the underlying CLX mechanisms for this control. Forms
Kit will only deal with layout and presentation in the future.

o We extended documentation of the generic functions in the Forms Kit into a
manual using the Intesleaf System.

At this point the Forms Kit system had been factored into the subset necessary
to create and present forms and the subset controlling user interactions, so that
now the system builders can use the underlying CLX mechanisms for this control.
Forms Kit only deals with layout and presentation now. Documentation of our Forms
Kit user interface facility was updated to reflect this factoring. This completed the
development of the Forms Kit facilities.

Some later additions to Forms Kit functionality included enhancing the interface
package to allow the substructure of a form to be modified after it has been created
and the X11 Inter—client Comrnunication Convention Standards (ICCS) was adopted

2This is also one reason we implemented Popart using Barrel, rather than APS.

13

el

PSSO |

in the Forms Kit implementation, allowing more effective communication between
forms and X11 window managers. Functionality can now react more gracefully to
mouse clicks and other gestures.

4.7 Browser

During FY90 we extended the AP5 Browser to present information in forms tailored
to the data being traversed. This mechanism simply allows one to traverse the virtual
database from the terminal, seeing all relations with other objects reachable from the
“current” object. This facility is particularly important for HP Bobcat machine usage
because of the general inability to point at items and have a mouse interface that
understands how to copy them into other windows (as we had become accustomed
to on the Symbolics and T1 Lisp Machines). Hence, this facility — coupled with the
EMACS interface — made Bobcats viable alternatives to the aging Lisp machines,
by providing an interface with a ‘hyptertext feel.’

4.8 Conversion/Porting

During FY89 AP5, POPART, and LUKE (code walker) were ported to Unix worksta-
tions (running Allegro Common Lisp), and our browsing/viewing mechanism (Forms
Kit) was ported to X11/CLX. Conversion of the CLF to work on HP Bobcat ma-
chines continued. Another major package converted this fiscal year was the persistence
mechanism, ‘worlds’. In addition, the existing CLF source code was restructured into
10 major subsystems with known dependency links (from the simple-minded linear
sequence of many more modules that used to constitute its structure).

During FY90 conversion of the CLF to work on HP Bobcat machines continued.
The large ‘programming service’ modules were converted. Because of virtual memory
thrashing problems, conversion of the ‘program development’ modules was delayed,
but ultimately, additional memory to aided the situation, and the development service
was converted. This concluded the conversion of the CLF, but the system remained
unusable, awaiting conversion of the editor GNU (EMACS) on the HPs to act as a
server. This editor interface was the final missing piece of functionality preventing
our daily use of CLF on the HP machines.

During FY90 we also converted Popart to Barrel and ported our ‘AP5 Browser.’
Previously, AP5 had been converted to run under Allegro’s version of Common Lisp.
Toward the end of the fiscal year we converted AP35 to work within Lucid Common
Lisp as well. Unfortunately, AP5 stresses every Common Lisp implementation it
has been converted to, not by using non-Common Lisp features, but by extensive
use of the more complex features {mostly having to do with closures). Hence, every
conversion has entailed some implementation specific “work-arounds” to stear clear

14

B—

of implementation bugs. This one only entailed implementing non-Common Lisp
functionality.

We ported APS to the Lucid Common Lisp implementation on the HPs, partly to
test the performance of that platform. The performance of the ported CLF was in-
strumented and measured under different memorv management configurations within
Allegro Common Lisp.

During FY91 the port of CLF to Lucid was completed and a-testing of the CLF
system began in earnest by the original designers of the kernel facilities. Later the
CLF Allegro port was given a thorough beating through §-testing by nondevelopers.
The normal intensive debugging pains were incurred for a period of several weeks.

4.9 Protocols

During FY90 a new facility was developed which allows remote use of our AP5 virtual
memory data base by a client machine. All relational access from this client machine
is then via a remote procedure call facility. In effect, this allows a client to treat AP5
as a traditional relational database. The technical challenges here have to do with
maintaining surrogate relations and objects to track the state of the other machine’s
view of the server’s state.

We also completed the interface design between the CLF system and GNU {(EMACS).

The design calls for speeding up communication by replacing the use of files for in-
terprocess communication with uses of Unix pipes and C foreign function calls for
reading and writing. Toward the end of the fiscal year, CLF was converted to use
a new interprocess communication protocol, sockets, instead of pipes. Using this
protocol, inter-machine communication is possible, as well as the local editor/Lisp
process communication that it replaced. That completed the conversion to GNU and
the port of CLF to the HP platforms.

During FY91 a prototype local area network “program development server” was
designed and demonstrated wherein program objects are assigned persistent identifiers
and shared between several workstations. In addition, our optimistic sharing support
system for program developments was propagated into the design of this server.

The conversion of AP5 to Lucid was finished. \We were pleasantly surprised that
we were able to obtain a significant performance improvement over the Allegro imple-
mentation, due to Lucid’s facility for user-advice to control the number and sizes of
ephemeral storage areas for garbage collection. Additionally, Lucid promised to sup-
port our eventual RISC-based HP platform. Hence. we chose Lucid as our Common
Lisp base for further development on CLF and began to port the remainder (bulk) of
CLF to Lucid.

Finally, The CLF was converted from using the GNU editor to the Epoch editor.
This had fairly minor effects: allocating a single 1/0 buffer per process became possi-

15

N

|

ble, and “I/O state indicators” can be used to indicate a process’ state. Most impor-
tanrt is that Epoch enabled making a “Hypertext™ facility available. We programinied
the ability to have mouse actions available for CLF objects printed to ordinary text

buffers.

4.10 EGS

During FY89 we made progress on a version of the EGS compiler (our specification
language subset related to database programming) using our Popart transformationzl
mechanisms called ‘syntax-directed experts.” Although development of this language
was ultimately dropped, the subset was later explored in the ARIES project within
our division.

4.11 Training

A training manual was created for APS, greatly facilitating its transfer to Arthur
Anderson. The creation of simplified syntax for functional use of relations also helped.
A manual describing our persistence mechanism, ‘worlds’ was updated thoroughly.
The manual describing our Common Lisp code-walker, ‘Luke,” was distributed.

5 Important Findings and Conclusions

5.1 Ph.D. Degrees Awarded

Surjatini Widjojo and Ed Ipser each received the Ph.D. degree in Computer Science
from the University of Southern California. David Wile was the committee chairman
on both committees. Both were supported by the CLF project during their tenure as
graduate students.

5.2 Collaborations

During FY88 significant progress was made towards designing a proposal for “Higher
Order Abstract Syntax:’ a concensus building activity in the DARPA community.
The attempt here was to achieve agreement between DARPA contractors on a stan-
dard interface for grammar-based systems so that components from different sites
could interoperate. The major accomplishment here was to propose a non-intrusive
version of the higher order abstract syntax-an abstract interface to it is provided by
the designer of the (simple) abstract svntax. This way the representation of the HOAS

16

does not have to dominate systems, but can rather coexist with (possibly) many rep.
resentations of a program. Unfortunately, no imnplementation of the concepts {eg.
interoperating with other universities) occurred.

In order to understand the impact of an open architecture, Unix-style program-
ming environment on CLF, and in order to gain leverage from the use of others’
components, we began talking with Tom Cheatham, Mike Karr, and Glen Holloway
of Software Options to understand how their E-L language and environment could
interface with ours. We developed an agenda of repsonsibilities for both groups.
During FY90 we converted the ‘worlds’ facility (our persistence mechanism) to use
their ‘remote lock’ facility, rather than those provided by the file system, as was
our practice. In addition we experimented with Software Options’ “artifacts” pack.
age with an eye toward integrating its coarse-grained persistence management with
AP5s fine-grained object management in the virtual memory database.

Also during FY90 we discussed with Lucid Corp. use of some of the features of
their Cadillac system. In particular, they have developed a protocol for talking with
editors that allows communication of structural modifications to buffers, and have
converted GNU Emacs to use this protocol.

During FY90 we intended to establish a communication protocol between our
Popart System’s transformational semantics package and UC Berkeley’s Pan system
for editing grammatically structured objects. We believe that both systems have
been designed flexibly enough to permit the appropriate “impedence matching” to
the other’s abstract syntax and grammar conventions. Pan’s grammars are more
limited than those accepted by Popart, so some validity checking will be necessary in
the long run. Unfortunately, this collaboration was not really consumated in the end.

6 Significant Hardware Development

None.

7 Special Comments

None.
8 Implications for Further Research

The CLF is in daily use in ISI’s Software Sciences Division: for several researchers
it is the only system used for all computation and administration needs. It forms a

17

solid testbed for development of other research ideas®.

Moreover, having ported and subsequently exported several pieces of the sys
tem has enabled collaborations both within the division and institute, and beyond.
The ARIES project has used several of the foundational pieces — AP35, Popart,
Popart/DB, Kodewalker — to produce its system for obtaining and reasoning about
program requirements. The Popart mechanisms have been used in Knowledge Base
representation systems transformation within another division.

Furthermore, collaborations with other DARPA contractors has been facititated
Subsequent integration of some of the Software Options artifacts with the CLF to
provide a “process programming” base have been especially interesting.

CLF indeed has influenced the development of research programming environm-
ments — e.g. Marvel on Unix by Gail Kaiser — and the development of industry
products, such as Cadillac by Lucid. Virtually every modern programming environ
ment has adopted some of the concepts for an ntegrated programming environment
that CLF provides.

Development and research on several of the products of the CLF continues on
new projects now: the Popart work is continued on the Annotations + Metapro-
grams project and the Relational Abstraction Compiler Framework continues on the
Relational Abstraction project in our division. These are both playing key roles in
the emerging technology of the DARPA sponsored Domain Specific Software Archi-
tectures program.

9 Major Publications

[A1189] Dennis Allard. Worlds Manual, May 1989.

[AWS89] D. G. Allard and D. S. Wile. Aggregation, persistence. and identity
in Worlds. In Workshop on Persistent Object Systems. University of
Newcastle, Australia, January 1989,

[Feadl] M.5. Feather. Transformational implementation of historical reference.
In B. Moller, editor, Constructing Programs from Specifications, pages
225-242. North-Holland, 1991. Proceedings of the IFIP TC2/WG 2.1
Working Conference on Constructing Programs from Specifications. Pa-
cific Grove, CA, USA, 1316 Mayv 1991,

3The unfortunate lateness of this report at least allows us to validate these claims for success in
influencing subsequent research!

[Gol89]

[Gol91]
(HWW9Q]

[HWWY91]

(1JW90]

[1ps90]

[Mey89]
[Mil89a]
[Mil89b)
[Nar91)

[Wid90)

[WilS9]

[WWH90)

Neil Goldman. Code walking and recursive descent: A generic approach.
In Proceedings of the Secand CLOS Users and Implementors Workshop,
New QOrleans, October 1989.

Neil Goldman. CLF Manual, September 1991.

R. Hull, S. Widjojo, and D. S. Wile. A Specificational Approach to
Database Transformation. Morgan-Kaufmann. December 1990. cditors:

A. Dearle and G. Shaw and S. Zdonik.

R. Hull, S. Widjojo, D. Wile, and M. Yoshikawa. On data restructur-
ing and merging with object identity. IEFEE Data Engineering Bulietin,
Special Issue on Theoretical Foundations of Object-Oriented Database
Systems, 14{2), June 1991.

Edward A. Ipser, Jr., Decan Jacobs, and David S. Wile. A multi-
formalism specification environment. In Proceedings of the Fourth In-
ternational Conference on Software Development Environments, Irvine,

California, December 1990.

Edward A. Ipser, Jr. Toward A Multi-Formalism Specification Environ-
ment. PhD thesis, University of Southern California, Computer Science
Department, 1990. University of Southern California Information Sci-
ences Institute.

Jay Meyers. AP5 Training Manual April 1989.
Brent Miller. Forms Rit Kernel Manual, 1989.
Brent Miller. ISI Ertensions Manual, 1989.

K. Narayanaswamy. What exactly is a variant? In Proceedings of the 3rd
International Workshop on Software Configuration Management. ACM,
June 1991.

S. Widjojo. WorldBase: A Distrhuted Information Sharing System.
PhD thesis. Compnter Science Department, University of Southern Cal-
ifornia, Los Angeles, CA. 1990.

David S. Wile. Carving up SCAD databases. [Proceedings of a Work-
shop on Softwware ('AD} Databases. Napa, California. February 1939,

S. Widjojo, D. S. Wile, and R. Hull. WorldBase: A New Approach to
Sharing Distributed Information. Technical report, USC/Information
Sciences Institute, February 1990

19

20

