
AD-A265 869 0
RL-TR-93-8 OELECTE fl "
Final Technical Report JUN 1 6 1993
March 1993 C

MULTICLUSTER

BBN Systems and Technologies

Edward F. Walker, Christopher E. Barber, James C. Berets,
Susan K. Pawlowski, Jonathan Cole, •
and Natasha E. Cherniak

APPRO1VED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

93-13403

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

..... 0

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

0

RL-TR-93-8 has been reviewed and is approved for publication.

APPROVED:

THOMAS F. LAWRENCE
Project Engineer

FO' THE COMMANDER

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE FOMW Appovea04-1
Pý&keD M ~r tar a-% oab drlamvna sam a tomwe I has, PWfV=l ý"xwjwIy'ws' LcI,'~t-w~~ u~ rW-mWV- i " u '-..Os #'d owo V "~ rwwwrg tt-u* y c~c d tuacTwri Ss'ii carvwts rogwdrg & tiac w 1 CSTm ,, Wa ali ,* 1.

DW I~w ShA 1 M4 A&,ioIVA 222a-43= Offo do Mwvg-.- wV 8ýld ieuwwcm ei~ RaaPrpa tOMA W V~ygýý rr

1. AGENCY USE ONLY (Leave Blanki) ;2 REPORT DAU- 3- RE PORT IYPL AND DAl It COV f1 it)
Mar,:Ii 1993 Final Sup 940- e'4

4. TITLE AND SUGTiTLE '5. FUNDING NUMIURS

MCULTICA1 ýSTER C F 3 02- t 1)--;*

6. AUTHOR(S)
!-A 1

Edward F. Walker, Christolpher E. Barber, James C. Berets, ýT

Susan. K. Pawlowski, Jonathan Cole, Natasha E. Chern jak

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 1 EFRMINGCGr 0 D
BBN SVSte~ns and Technolo10gies REPORT NUMiq I
10 MIoulton Street 7'

Cambridge M!A 02i138

9. SPONSORINa'MONITORING AGENCY NAMEIS) AND ADORESSIES) 100 SPONSORIN61MONITOITING

Rome Laboratory tC3AB) AGENCY REPORT NUMbfIl
525 Brookz; Rd R- -;n9I-
riff iss AFB NY 134Ai-,+505

11. SUPPLEMENTARY NOTES
iroe Ldibor.iL0ory Pro ject tnngineei Thomas F. Lawrence, CiAB! 131 -) 3i-5'
Prime Contractor: TASC, 555 French Road, N*ew Harttord, NY I 3. i-hoiýW

1 2a. DISTRIBUTIONiAVAILABILITY STATEMENT 112. DISTRIBIUTION 'OI1)l

Approved for public release; distribution unlimited,.

13 AR3STRACTTw,"2-'a~o
In this report we present the implementation of mul tic luster opr0 rin the r'c
dlistributed computing environment. A clus;ter is a, collection of hoti -zin
networks. Clusters are -4rne~d to organ ize and con~trol the re lot fonrli p betwekev-
,organ i at ions for reasoi i secuirity and admnifistrat ion. This dOCUnent pre-ýent s

the :nccian isms to suppo;- ste rc luster object addressing; these mecheiis-- - r;% t so
has ýis for multicluster operatioil. Obetoine disriutdg cri I 'ý et-

strive to present A uniform environment for building distributed appkicttioný b-,
providing host and network transparent access to resources. P v 1'the Cr,'nusý
distributed environment operated in an environment of different tvp,,, oz ho',-t
exeuit ing acossvrllclarea networks, connected by gatewavs. kronuýic nzeve,!

a nat torrn environment by treat ing the set ot hosts asaISingl e svste-'- in) tcmo .'

authent i 'I i -n and in bind ing ob ject ident it jers to the ir Iloca)t ion-; * I' ot ond
A Cronkis to large en" ironments * it is necessa rv to decompose the enviror'nennt i t't

col leut ion~s ot hosts. Decomposition is cr-uc ial to oyster, scalnai jiiiLv. It ýPeed-
tip the location of objects and reduces the number of rloll- noimv p

14 SUBJECT ERuMS O'E5 A;S
'ronus,, D~istributedl Computting -avi rnment ,Cutr, titt ic-lu'ster - 0

A coo~ (-ntrcli i,6 PP-rI cn"

I/ SEI.CURITY CLASSIFICATION IT& SECURITY CLASSIFICATION 19 SECURITY CLASSIFICAUION 120.1-IMITATION Of AIISIRACIOF REPORT OF T1113 PAGE QiV AB$ THAC f
INI-LASS I FIAl) I VNCIASS I F'V IA DCASS I FfIE1)h VI i

7% 00

MULTICLUSTER FINAL TECHNICAL REPORT 0

In this report we present the implementation of mufticiuster operation in the Cronus distributed
computing environment. A cluster is a collection of hosts on one or more networks. Clusters are formed
to organize and control the relationship between organizations for reasons of security and administration.
This document presents the mechanisms to support intercluster object addressing; these mechanisms
form the basis for multicluster operation.

0

0

A,-ce,'ior- For -

NTIS CRA&M
UTIC JAB

J. st Cf,c ~O•'

FlBy
... • lDtstribution I
Si A'.va.iability Codes

,)is, Sot-cial

Dist

, "0

Chapter 1. Introduction

Object-onented distributed computing environments strive to present a uniform environment for
building distributed applications by providing host and network transparent access to resources.
Previously, the Cronus distnbuted environment operated in an environment of different types of hosts
executing across several local area networks connected by gateways. Cronus achieved a uniform
environment by treating the set of hosts as a single system in terms of authentication and in binding
object identifiers to their locations.

To extend Cronus to large environments, it is necessary to decompose the environment into
collections of hosts. Decomposition is crucial to system scalability. It speeds up the location of objects
and reduces the number of global name spaces. Decomposition also accommodates the natural 0
organization of computer installations in the real world.

This document first motivates multicluster Cronus by highlighting limitations of Cronus before clusters
were supported. Then some basic definitions and design goals are presented. It then focuses on certain
key design detai's, concentrating on the areas of communication and replication. We then present details
of some of the new low-level communication protocols.

This document assumes the reader is acquainted with the Cronus distributed computing environment
ISS89], [WFN90].

-

0

0

-2-

_ - ~ . :

Chapter 2. Limitations of Cronus Without Clusters

Without clusters, several difficulties presented themselves to independent organizations desiring to
share services with each other. To accomplish sharing, organizations would have to "link up" their
separate Cronus distributed environments into a single, inter-organizational environment. The problem
was, once this was done, Cronus had no way to distinguish one organization's collection of hosts and
services from another's. There was no straightforward way for one organization to specify that it did not
want to share a particular service with another. If an organization wanted to share one of its services, it
would have to allow access to all of its services. With clusters, on the other hand, an organization can
readily prevent access to any of its services from other organizations.

Even more problematic was that Cronus only supported the notion of a single configuration service
for a distributed environment. The configuration service plays an important role in Cronus; it serves as
the depository and source of information concerning services, hosts, and --- most significantly --- what
hosts run which services. Hosts use the information in the configuration service to determine the
services they are to run. If organizations "linked up," they would have to decommission their existing
separate configuration services, and manually merge their data and deposit it in a single new shared
configuration service. But by doing so, each organization would give up control over its own assignment
of services to hosts. if a user had permission to assign a service to his organization's hosts, there was
no way to prevent him from assigning it to some other organization's host as well. By linking up, each
organization gave up autonomy over its own configuration.

RL BBN
clen on id istobjects

COnfig manager config manager

{sd} {sd}

Figure 2-1: Anomalous Request Routing

If organizations linking up their environments chose to forego merging their separate configuration
services into one, serious operational anomalies could occur. The basic problem was that the system
could legitimately route requests intended for one configuration service to the "wrong" configuration
service. A user trying to request a list of the services that run at his organization could instead get back a
list relevant to some other organization. A host's request at boot time for the list of services it is
supposed to run could go to the "wrong" configuration service.

.3- •

The problem is that all these requests are invocations on a generic object. All configuration services
manage the same generic objects. Figure 2-1 illustrates the problem. A user at one organization, RL,
wants a list of services that run at his organization. To do this, he invokes the ListObjects operation on
the generic service data object, (sd). This operation will return the a list of all the service data objects
stored at the replying configuration manager. (Each service data object contains information about one
particular service.) RL's configuration service manages the (sd) object, but so does the other
organization's. Cronus can legitimately route the ListObjects request to any host with the (sd) object As
illustrated, the system chooses to route the request to BBN's configuration service. The user will get
back a list of service data objects that describe BBN's services, not RL's.

With clusters, Cronus supports the notion of several independent and separate configuration services
within a single Cronus environment. Each organization can have its own configuration service, and
therefore maintain complete autonomy over its own assignment of services to hosts. Invocations on
generic objects can be constrained to be routed to those belonging to a particular organization.

Two organizations "linking up" would encounter problems with other services analogous to those 9
with the configuration sei vice. For example, the authentication service. Before clusters, only one
authentication service was supported per distributed environment. An organization would either have to
accept the operational anomalies that would occur if it did not give up its own au.hentication service, or
give up its autonomous control over its principals and groups. Another problematic service would be the
directory service, (formerly known as the catalog service). Again, each organization would have to merge
its separate service into a single new shared service.

With clusters, Cronus circumvents all these problems. Each organization can have its own separate
authentication service and directory service. By adding clusters to Cronus, the system can recognize and
respect organizational boundaries.

-4- .

Chapter 3. Definitions, Goals, and Design Overview

Clusters allow boundaries to be erected between organizations. This chapter will define a cluster
precisely. With that definition, we can examine some of the facilities that support inter-organizationai
cooperation and sharing.

3.1 Clusters

A cluster is a set of hosts grouped together into a single administrative unit. Each cluster is
autonomous, responsible for its own administration and control. No host is permitted to be a member of
more than one cluster. •

Physical network layout does not have to play a part in determining host cluster membership. Two
hosts on the same physical local area network can belong to different clusters. Two hosts widely
dispersed and connected by a long-haul network can belong to the same cluster, as shown in Figure 3-1.

e

Network B Network A

Cluster

Figure 3-1: Network Topology and Cluster Boundary

Clusters are intended to allow adrrinistrative units to maintain control over their part of a Cronus •
environment, yet share services across cluster boundaries if so desired.

o

-5- 0

3.2 Sharing Services

A cluster is not an isolated unit: clusters can cooperate and share services with one another. If a
cluster supports a service, it can permit other clusters to access that service, If a cluster does not permit
access to a service, then operation requests from foreign cdusters on objects managed by the service will
be summarily rejected. If the cluster does permit access, the request is accepted as long as the requester
has the necessary access rights as specified on the object's access control list.

Each cluster must explicitly enumerate which foreign clusters have access to its services A service
to which access by a foreign cluster is permitted is called an exported service, or simply an export. The
service is said to be exported to the foreign cluster.

A cluster must explicitly declare that it wishes to access a service exported by a foreign cluster. An
exported service to which a cluster desires access is called an imported service, or simply an import. The
servic9 is said to be imported from the foreign cluster.

If a client in cluster B wishes to access a service S in cluster A, then A must export the service to B •
and B must import the service from A. If the service is imported but not exported, the service will reject
any access attempt from B. It the service is exported but not imported, hosts in cluster B will not be able
to locate any of the objects. See Figure 3-2..

Cluster A Cluster B

0

AccestoOB Import S from A
ExpoAccess OK

Figure 3-2: Importing and Exporting a Service

3.3 Replicating Services

A cluster can permit objects managed by its services to be replicated in foreign clusters. This is a
stronger notion than merely permitting access to a service from foreign clusters. Permitting objects to be
replicated across cluster boundaries implies that the service itself spans cluster boundaries, and thus
several clusters must cooperate with regards to the administration of the service.

A cluster must explicitly declare the foreign clusters where objects of one of its services may be
replicated. The foreign clusters are called the domain of the service.

-6-

For a replicated service to run successfully across cluster boundaries. all clusters involved in the
replicated service must agree on the service's domain. It cluster A lists B as Part of the domain of service
S, then B must list A as part of the domain of S. Similarly, it A lists B, and B lists C, then A must also list
C.

If a foreign cluster is a member of a service's domain, the service is implicitly considered to be
exported and imported to the cluster.

Cluster A Cluster B

0 .-B Is In the service A Is In the service
domain of S domain of S

Figure 3-3: Service Domains

0

3.4 Configuration Control

In addition to providing configuration control within a cluster, the Cronus Configuration Manager has
been extended to maintain a cluster's information about its imports, exports, and service domains.

3.4.1 The Configuration Service

The information about a cluster's imports, exports, and domains is stored by the cluster's
configuration service. Each cluster must run the configuration service, and it may not have any foreign
clusters in its service domain. This restnction ensures that every cluster maintains autonomous control
over its service configuration. The nght to modify and create objects managed by the configuration
service should be a closely guarded right. restricted to a few trusted and authonzed individuals, and
never granted to individuals whose "home" is a foreign cluster.

The Configuration Manager manages three types of objects: Host_Data objects, Service_Data
objects, and Cluster_Data objects.

Cluster Data Strvke Data Host Data

ClusterName: RL ServiceName: A HosName: sox
ID: 432 TypesManaged: Address-

Dscription: CTa I, CATdr2 19.12.1es

Rome Laboratory HostiRun0n: sox ServkesRun: A
Contact:
admin@rl.ar.mil Exported To: RL Description:
MemberHosts: Imported From: Ed's Workstation
host 1.rlaf 11, Domain:
host2.rtaf.mil,
host3A.riAf.ml"

ServiceName: B

Exports: A TypesManaged: HostName: pats

Imports: B CTrbl Address:

Domain: C HostsRuoO: 189.12.1.3
S~rvikesRtun: C

Exported To:
Imported From: RL Description:

Domain: Machine in room
&'396.

ServiceName: C
TypesManaged:

CT_c I, CTc2
HOtSRunOn: pate

Exported To:
Imported From:
Domain: RL

Figure 3-4: Example Configuration Database

A cluster's configuration service has a HostData obiect for each host that is a member of the cluster.

"8"0

S. - -,• Irl1 I Il]1 I I II Bg0 ,

The HostData object for a given host contains the host s name, address, and a list of Service Data
object identifiers identifying the services installed on the host.

A Service_Data object records information about a service. It contains the service's name, the set of
the types the service manages, and the set of HostData objects identifying the hots where the service
is instailed. It also contains three sets of Cluster Data objects The first identifies the clusters the
service is imported 'rom, the second identifies the clusters the service is exported to, and the third
identLfies the cluster ,r the service's domain.

A Cluster Data object stores infoimation about a foreign cluster. It contains the cluster's symbolic
name and its unique cluster identifier. It also contains three sets of ServiceData objects. The first
identifies the services imported from the cluster, the second identifies the services exported to the
cluster, and the third identifies the services whose domain includes the cluster. The Cluster Data oblect
also contains a list of the IP addresses of some of the hosts belonging to the remote cluster. (Tt-is Its!
provides a list of "contacts" in the remote cluster. As will be discussed, the multicluster location algoitnrm
finds an object in a remote cluster by delegating the task to some host in the remote cluster The host is
chosen from the host list maintained in the ClusterData object.)

3.4.2 Configuration Management Tool

Mutticluster Cronus adds to the work required to administer a Cronus distributed computing
environment. ine administrator is no longer just responsible for maintaining his own organization's
internal configuration of hosts and services. In Multicluster Cronus, the administrator must also mr'inta~n
the service sharing relationships with outside organizations.

criis cws°ef ° "

ýLa Cr~ea~te ~ Vfti~e DumpReiQ F ew OurV Fite Cf~e~ WCriJeXe sewct :iustersD (______

e et e it
a C c p 1yý a icc p p !j ~~

u o0e0 ! U 10 0 ou ell IU io 0 0

t.o 1 1 is t I. ale= l lt n s I al t • o In sllI l I
-Id d Im I t 1d In b F d d m I d ibnc d d r.tl tld

eT li t c e dc ead Ut Ln ceee al. w devet el
mn.2 1s.re sfrtrht n a g.rTrns on__ the ze : arrestr ne

bbn 9bb

- 1

Exports imports Service domains

Figure 3-5: Configuration Management Tool

To lighten the burdtn of these added tasks on administrators, an interactive tool was developed. The
main screen of the tool is shown in Figure 3-5. The names on the sides of the grids are cluster names;
the names on the top are ;ervice names. A black square indicates !he given service is exported (or etc)

!o the given cluster. To export (or etc) a service to a cluster, the administrator just clicks the mouse in
the appropriate place in the gnd. Similarly, to stop exporting (or etc.) a service to a cluster, the
administrator just has to click on the appropriate blackened point in the gnd. With the tool, it is very easy
for an administrator to quickly view service sharing relationships with other clusters, and change those
relationships if need be.

An additional complication caused by multicluster operation is the possibility of inconsistencies
existing between clusters. The tool helps identify inconsistencies. Each cluster has completely
autonomous control over its configuration. Although this is a desirable quality, it raises the very real
possibility that clusters fail to cooperate properly and thus fail to establish consistent service shanng
relationships between themselves. As has been discussed, it is important that service domains be
consistent For example, if cluster A lists B as part of the domain of service S, but B does not list A, an
inconsistency exists. Inconsistencies in service domains can cause replicated services to malfunction
Another type of inconsistency involves imported services. A cluster can import a service from a foreign
cluster that does not export it. If a service is imported, the administrator probably believes the service is
accessible, and might like to be warned if this is not the case.

When the Check Inconsistencies button shown in Figure 3-5 is clicked, the tool checks for
inconsistencies in service domains, and for imported services that are not exported. The tool does this
by comparing the information in its own cluster's configuration service with that stored by each
appropriate foreign cluster's configuration service. For the tool to be able to access a remote cluster's
configuration service, it must be imported by the local cluster and exported by the foreign cluster. Once
the tool is finished searching for inconsistencies, it displays any it finds to the user in the manner shown •
in Figure 3-6.

Nkn.irrwof rrfors found 3 j e
Fatal Errors

Ar ronsistency in the dowan for ser'vce oW has been rotiaid iri cluster Mir,

Errors

Cluster cecom mports service bug w1,4m is not eq~orled byi "i cluster

Cluster bbmri iports wyce poker ~Ie is not exportedl by "~ duster

Figure 3-6: Configuration Management Tool Error Report

-10-

S i~ m .. . I I I I l l l l I I I I1 . . . N ~ l• " ' , , - u r ,, , 0 ,

Chapter 4. Key Design and Implementation Details •

In this section we provide detailed discussion of several key algorithms and approaches that provide
robust multicluster operation.

4.1 Object Location

Cronus supports location-independent invocation; the location of an object does not have to be
supplied when invoking an operation on it. The system takes complete responsibility for finding a copy of
the object and directing the invocation request to it, The part of the system that locates objects is called
the Locator. The Locator is part of the Cronus Kernel. Once the Locator finds an object, information
about its location is stored in the Kernel's locafton cache. The Locator is used only if relevant information 0
is not first found in the location cache.

The Locator was completely redesigned and reimplemented for Muhticluster Cronus. The old Locator
was very simple, but suffered from some severe limitations. To find an object, the Locator would
broadcast a Locate invocation on the object. The broadcast would be heard by every host on the
network, (except those that dropped the incoming unreliable broadcast message). If a host had a copy of •
the object, it responded affirmatively. If a host did not have a copy, it did not respond. The Locator
would wait for an affirmative response. If one was not received within about five seconds, the Locator
reported a LOCATEFAILED error.

Network B Network A

Broacas

Repeater

Figure 4-1: Broadcast Repeater

-11 -

-71

The old Locator relied on Broadcast Repeaters in Cronus environments encompassing more than
one network. Network gateways do not forward broadcasts; a broadcast on one network is not heard on
another. The old locator relied on every host hearing its broadcast Locates, regardless of the physical
network topology. Cronus uses Broadcast Repeaters to make sure a broadcast on one network is heard
on all other networks. A Broadcast Repeater is run on one host on each network. It is given a list of
hosts, each on other networks, to repeat broadcasts to. When the Broadcast Repeater's host hears a
broadcast, it is provided to the Broadcast Repeater. The Broadcast Repeater then transmits the
message to all the hosts on its list. These hosts then rebroadcast the message. (They also tag the
message so that it will not be repeated again.) See Figure 4-1.

The old Locator suffered from several problems and limitations. First, it was not robust. The old
Locator relied on a single broadcast to find an object. In some environments it is not uncommon for the
network to regularly drop broadcast messages. Second, the old Locator did not scale well, since it made
every host process every locate. Third, it required the use of broadcast repeaters between networks,
complicating the maintenance and administration of a Cronus environment. Fourth, the arbitrary five
second wait for Locate replies was not appropriate for widely dispersed systems.

We established the following major requirements for the new multicluster Locator design.

1. The Locator must be robust, meaning that it must not fail to locate an available object. Itf an
irrelevant host (not "ne where the requester or object resides) crashes, the location attempt
should not fail.

2. The Locator must be efficient, meaning it must avoid communicating with hosts that do not have
the object.

3. The Locator should find objects in a timely fashion.

The multicluster Locator satisfies these requirements. The old Locator, on the other hand, failed to
satisfy the first two. In the situation where a Cronus environment encompassed more than one network,
necessitating use of a broadcast repeater, a failure of the repeater host or the host repeated to could
cause the old Locator to fail to find an available oiect. The old Locator certainly did not satisfy the
second requirement, since it broadcast Locate requests 'o every host in the distributed environment.

The new multicluster Locator works basically as follows. The Locator is given the unique identifier
(UID) of an object to find. The UID contains information identifying the type of the object. The Locator 0
first extracts the type of the object from the UID. It then identifies the service that manages the type as
follows. The Locator first checks a cache it maintains of service information. If this is unsuccessful, the
Locator contacts the local cluster's configuration service. The configuration service keeps track of which
services manage what types. The configuration service sends back information about the proper service,
which the Locator then stores in its cache.

The information about a service that the configuration service returns to the Locator (and that is
cached) includes the following: (1) a list of the hosts in the local cluster that run the service, (2) a list of
the clusters the service is imported from, (3) a list of the clusters in the service's domain, and (4) a list of
hosts in each cluster mentioned in items (2) or (3). This information comes from data stored in the
configuration service's relevant ServiceData, HostData, and Cluster_Data objects.

The Locator then makes use of the list of hosts in the (local) cluster that run the service. The locator
sends each one of these hosts a Locate request, as illustrated in Figure 4-2. Here two hosts, a.bbn and
b.bbn, are registered with the configuration service as running the service that manages the appropriate

-12-

,.- -.... .. ,=i 'III - '

type. (The Locate messages are transmitted using UDP, an unreliable protocol. The Locator times out
and retransmits them to guard against message loss.)

CLUSTER BBN CLUSTER RL

bbbn
0.

Figure 4-2: Contacting Local Cluster Hosts

The Locator then makes use of the rest of the information about the service to search for the object in
remote clusters. A host in every cluster the service is imported from is sent a ProxyLocate request.
Likewise, a host in every cluster in the service's domain is also sent a ProxyLocate request. The
ProxyLocate operation is invoked on the generic Cronus_Host object; the UID of the object being located
is included as an argument. The Cronus Kernel manages the generic CronusHost object; every Cronus
Kernel manages such an object. (Every host runs the Cronus Kernel.) A Cronus Kernel that receives a
ProxyLocate request looks for the specified object in its own cluster, and then sends back a reply
indicating the object was found and its location, or else a negative reply. The ProxyLocate request is sent
using a reliable protocol (TCP).

CLUSTER BBN CLUSTER RL0 0-

Ucta ,I x• l otr

Figure 4-3: Contacting Remote Clusters

-13-

Figure 4-3 illustrates this step. In this case, the service is imported from cluster RL. The service
information includes a list of some of the hosts in cluster RL, which includes the host "x rl." The Locator
chooses `x.rl" from the list and directs a ProxyLocate request to it. (The Locator's choice of a host from
the list is fairly arbitrary.) "x.rl's" Cronus Kernel then has its Locator look for the object in just its own
cluster. "x.rl's" Lcator follows the same steps discussed above to accomplish what was illustrated in
Figure 4-2. "x.rls" Locator sends out Locate requests to each host in its cluster running the relevant
service and collects the responses. If all are negative, it sends a negative renly back to BBN's Locator.
If one is successful, a positive reply to the ProxyLocate is transmitted immediately.

If the attempt to send the ProxyLocate to "x.rl" fails because it is down, BBN's Locator selects
another host from its list of hosts in cluster RL, and tries again.

BBN's Locator waits for responses to its Locate and ProxyLocate requests. The Locator stops with a
successful outcome when the first positive reply is received. If all the replies are negative, the Locator
becomes suspicious that its cached service information is out of date. It the service was installed on an
additional host since the information was cached, or if the service was imported from an additional
cluster, and If the object resides on the added host or in the added cluster, the Locator will obviously fail 0
to find it.

The Locator checks if its cached service information is out of date by calling upon its local cluster's
configuration service. The configuration service maintains an ascending modification count for each
service. The Locator stores the modification count for each service in its cache. Checking if the cached
information is out of date is a simple matter of comparing the actual versus the cached modification count 1

for the relevant service. If the cache is out of date, it is updated, and the Locator tries to locate the object
anew. If the cache proves to be up to date, the Locator reports back a LOCATEFAILED error.

A host processing a ProxyLocate also similarly checks if its cache is out of date it it fails to find the
requested object.

A summary of the full Location algorithm follows. This summary includes some details not mentioned
in the discussion above. The steps the Locator takes to find an object of type T are as follows:

1. The Locator broadcasts a "Locate" request for the object. The broadcast will only be heard by
hosts on the local area network and any networks repeated to by a Cronus Broadcast Repeater.

2. The Locator starts listening for a positive response to any "Locate" (or "ProxyLocate") request. If 0
one is received, the Locator immediately terminates this algorithm at that point, having
successfully found a host that has the object.

3. The Locator looks in it location cache for information about T. The cache stores information
previously obtained from the Configuration Manager about the location of the services that
manage each type. 0

4. I1 nothing for type T is found in the location cache, the Locator continues with Step 8.

5. (Information for T was found in the location cache.) The cache information includes the list of the
hosts running a manager of type T. If this list is empty, the Locator continues with Step 7.
Otherwise, a "Locate" request is sent to each of these hosts, using the User Datagram Protocol
(UDP). If a response is not received to one of these requests within a set time period, the request 9
will be retransmitted.

6. The Locator waits a fraction of a second.

-14-

7. The cache information also includes the clusters in the service's domain and the clusters it is
imported from. The cache also stores a list of hosts in each cluster. A "ProxyLocate" request is

sent to a host in each cluster in the service's domain and to a host in each cluster the service is
imported from using a reliable protocol. If the request fails because a host is unreachable, 0

another host in the cluster is chosen and the request is retransmitted. The destination host
processes the "ProxyLocate" by following this location algorithm, except that this Step and Step

1. are omitted, and reports back the result.

8. If the locate receives a positive response to a "Locate" or "ProxyLocate," then the object has

been found. If not, then the Locator waits for a negative response to each "ProxyLocate," and for
either a negative response to each "Locate" sent to a host within the local cluster or a timeout to
occur.

9. Having failed to find the object, the Locator assumes that its cached location information is

incorrect. It communicates with the Configuration Manager to see if its information for T is out of

date. If not, the Locator terminates reporting LOCATEFAILED. If so, the Locator updates its

cache and starts over with Step 3. If this step is reached again, the Locator immediately
terminates and reports LOCATEFAILED.

The broadcast performed in Step I serves several purposes. First, the least loaded and/or "closest"

manager with the object is likely to respond to the broadcast first, resulting in desirable toad-balancing

qualities. Second, before the Locator can obtain any location information from the configuration service, it
must first locate a Configuration Manager. The broadcast provides a mechanism for finding a

Configuration Manager. Third, the broadcast will locate objects that are not registered with the

configuration service; this is a common case when new services are being developed and tested.

Several features of the location algorithm work to make it robust. In Step 5, a "Locate" request is

sent to each host individually. This is an important robustness feature for clusters encompassing more

than one local area network. If the broadcast "Locate" request was the only means of finding objects
residing in the local cluster, the Locator would be susceptible to failures of the host running the Broadcast

Repeater, or the host the Broadcast Repeater forwards broadcasts to. Neither of these hosts need be

where the requester or object resides, and yet the failure of one of them could prevent the Locator from

finding an object.

In addition, in Step 5 an individual "Locate" request is retransmitted if no response is received. Since

the request is transmitted using an unreliable protocol, this guards against failing to find an object due to

message loss.

The fashion in which the Locator searches for objects in foreign clusters also has several features

that make it robust. In Step 7, the "ProxyLocate" request is transmitting using the normal Cronus reliable

transmission protocol. This ensures that a reply (or an error) is eventually received. In addition, if the

chosen host in the foreign cluster turns out to be down, the Locator then tries another. If the Locator did

not do this, the crash of a host not containing the object could cause the object not to be found.

4.1.1 Alternative Locator Design

We had considered a Locator design that extended the Broadcast Repeater to a Cluster Broadcast 0

Repeater. The basic idea was to simply repeat Locate broadcasts in remote clusters.

This scheme was attractive since it appeared to require relatively little implementation work; in

particular the old Locator would not need modification,

-15-

There were some serious problems with this approach. First of all, this scheme violated our goal of
efficiency for the Locator, since the Locator would require every host in every cluster to process a Locate
The multicluster Locator limits its search of the object to those clusters a service is imported from and to
those in the service's domain. Secondly, the Cluster Broadcast Repeater would suffer from the same
robustness problems as the original Broadcast Repeater: a crash of the host running the Repeater or of 0
the host it repeated to would cause locates to fail. This violated our robustness goal for multicluster
object location.

To try to fix the efficiency problem, we investigated adding a cluster ID to object UID's. The cluster
ID would indicate the cluster in which the object resided. This scheme was rejected since it abandoned
the previous stance in Cronus of not encoding an object's location in its UID. Placing a cluster ID in a 0
UID would have made it difficult, if not impossible, to support migrating an object from one cluster to
another.

4.2 Invocation Request Delivery Options
0

Cronus supports location independent invocation. A client does not have to supply any location
information when invoking an operation on an object. The system itself finds the object and routes the
invocation request to it.

In cases where more than one instance of an object exists, however, it is sometimes desirable to
have control over which instances are eligible to receive the invocation. For example, when invoking an 0
operation on the generic Host_Data object, managed by every Configuration Manager, one might desire
to have the operation processed by an instance in a particular remote cluster. A concrete example would
be to obtain the list of hosts in a specific remote cluster.

The Cronus manager development tools generate RPC stubs that send operation requests to
managers. The INVOKECONTROL argument in these stubs allows control over the instances eligible to •
receive a particular invocation. A NULL value, the common case, will result in the invocation being routed
by the system to the first object instance it finds.

When an INVOKECONTROL strucure is provided, three fields specify the instances eligible to
receive the invocation: HostUse, Host, and Cluster. The interpretations of the Host and Cluster fields
depends upon the value of the HostUse field. The semantics of the choices for the HostUse field are •
given below.

HOSTANY
Any object instance can receive the invocation; the values of the Host and Cluster fields are
ignored. This is the default behavior.

HOSTHINT 0
Same semantics as HOSTANY, except that the Host specifies a host where the sender
believes the object to be.

HOSTDIRECT
Only the object instance at the host specified by the Host fi,1d is eligible to receive the
invocation. 0

HOSTANY_INCLUSTER
Any object instance residing in the cluster indicated by the Cluster field can receive the
invocation; object instances in other clusters are ineligible.

-16-

S01

HOSTHINTINCLUSTER
Same semantics as HOSTANYIN CLUSTER, except the Host field specifies the host
where the sender believes the object resides.

HOST ANY IN DOMAIN
Any object instance residing in the service domain of the object's type is eligible to receive
the invocation- Any object instance not residing in the local cluster's service domain for the
type is ineligible to receive the invocation.

HOST-HINT INDOMAIN
Same semantics as HOSTANY IN DOMAIN, except the Host field specifies a host where
the sender believes the object resides.

An example of an application that requires control over the instances eligible to receive an invocation
request is the configuration management tool. One of the tool's functions is to check a foreign cluster's
configuration information against the local cluster's for inconsistencies. In order to obtain a particular
foreign cluster's configuration information, the tool must be able to specify that an invocation on a generic
ServiceData object is only to be sent to the a generic object in the foreign cluster. This ensures that a
Configuration Manager residing in the foreign cluster answers the request.

HOSTANYINCLUSTER is implemented as follows. Each location cache entry consists of an
object's UID, the address of a host it resides on, and the id of the cluster the host belongs to. When a
request is sent using HOSTANYINCLUSTER, the kernel first tries to use the location cache to
determine the target host. The kernel looks for an entry in the location cache that matches both the 0
object's UID and the proper cluster id. If one is not found the Locator is asked to find the object, with the
condition that the discovered location belong to the proper cluster. The Locator basically follows the
steps it normally does, except it omits any steps that send messages to clusters other than the one
specified.

HOSTANYINDOMAIN is supported in a similar fashion, except here there are several clusters the 0
target host is permitted to belong to (in general) instead of just one. The Cronus Kernel determines the
clusters in the service domain by consulting its cached information for the service that manages the type
of the relevant object. (The local cluster is always considered implicitly included in the service domain.)

HOSTHINTINDOMAIN (and HOST_HINT IN_CLUSTER) are implemented by first sending the
request to the supplied hinted host address. If the hint turns out to be incorrect, the message is returned 0
to the original sender. The original sender then changes the HostUse to HOSTANYIN_DOMAIN (or
HOSTANYINCLUSTER) and starts over.

In addition to directing an invocation to a single object instance, one might want to broadcast a
message to several i.lstances of an object. The following HostUse field values specify that an invocation
request is to be distributed to several object instances and gives control over the set of instances eligible 0
to receive the request:

HOST-ALL
A copy of the invocation is sent to all instances of the object.

HOST ALLINCLUSTER 0
A copy of the invocation request is sent to all instances of the object in the cluster specified
by the value of the Clusterfield.

-17-

0

HOST-ALLIN_DOMAIN
A copy of the invocation request is sent to all instances residing in the local cluster's service
domain for the object type.

Reliable delivery is not provided when a request is broadcast to several instances. The request might
be received by some eligible instances, but not by others.

CLUSTER A CLUSTER B

.UDP

D

"Orequeqes

ProxyDistribute 0

Figure 4-4: HOSTALL Implementation

HOST_ALL is implemented as follows. The kernel looks up the service for the type of the target 0
object in its service information cache. If there is no information for the type in the cache, the request is
broadcast.

If there is information for the type in the cache, the HOST-ALL request is sent as follows. The
cached service information includes the list of hosts in the local cluster that run the service. Each one of
these hosts is sent the message via UDP, an unreliable protocol. The cached service information also
includes the list of clusters the service is imported from, plus the clusters in the service's domain. A host •
in each one of these clusters is sent a ProxyDistribute request via TCP, a reliable protocol. The
ProxyDistribute is an operation invocation on the generic Cronus-Host object; it includes the HOSTALL
request as an argument. The generic CronusHost object is managed by the Cronus Kernel. A kernel
that receives a ProxyDistnbute request uses its cached service information to send the HOSTALL
request to each host in its cluster via UDP. If the kernel has no cached information for the type, it
broadcasts the HOSTALL request. See Figure 4-4. 0

If the cached service information is out of date, the message might not be sent to all the managers it
should be. This is acceptable, since HOSTALL is specified to be unreliable; delivery is not guaranteed.
To prevent a host's cache from being out of date for a long period of time, the configuration service
notifies each host in its cluster individually whenever a service's configuration is altered.

HOSTALL_INCLUSTER and HOSTALLINDOMAIN are implemented in a fashion similar to
HOST_ALL. The same steps are used as in the HOSTALL case, except messages going to clusters
other than the desired ones are not actually transmitted.

-18 -

4.3 Intercluster Replication

The Cronus replication algorithm required only minor enhancements to be able to accommodate
services that are replicated across cluster boundaries.

When a replicated manager is first installed, it needs to contact one of its peers in order to obtain
local copies of replicated objects. To find a peer, the old algorithm broadcasted a locate request. In
multicluster Cronus, this approach is inadequate since broadcasts are not heard across cluster
boundaries. Instead, the locate is "logically broadcasted" throughout the service domain, by using the
new HOSTALLINDOMAIN request delivery option.

A peer replicated manager needs to be able to manipulate its fellow peer managers. For example, it
must be able to transmit updated objects to its peers in order to keep their copies current. In order to
accomplish this, each peer needs access control permission to carry out the necessary operations on its
peers. This access was previously achieved by requiring each peer run under the same Cronus principal
UID. (Managers, like all processes running under Cronus, run under some Cronus principal.) The Cronus
access control algorithm permits a caller running under the same principal as the callee to perform any 0
operation.

We chose not to require that each peer run under the same principal in multicluster Cronus, We fell it
was desirable to support the case where each peer's principal was managed by that peer's cluster's
authentication service. Cronus principal objects cannot be replicated across cluster boundaries. To
ensure cluster autonomy, multicluster Cronus restricts the service domain of the authentication service to 0
a single cluster. (This is also true of the configuration service.) Therefore if peers in different clusters are
to run under locally managed principals, peers must be permitted to run under different principals.

To permit this, for a service whose domain includes remote clusters, the configuration service stores
a list ol pnncipals used by peers residing in remote clusters. A manager obtains this list of peer principals,
and if a caller's principal is on the list, the caller is permitted to invoke any operation. •

4.4 Kernel Virtual Reliable Connections

Unlike older implementations of Cronus, multicluster Cronus does not place any limit upon the
number of reliable connections that may be open at one time. Multicluster Cronus accomplishes this by 0
multiplexing a limited number of physical TCP connections among reliable virtual connections. This is
done in a fashion that protects against undetected message loss and message reordering on the virtual
connection.

Most of the operating systems Cronus runs on impose a limit on the maximum number of TCP
connections a process can have open at a given moment. In particular, most versions of Unix allow no
more than about sixty concurrently open connections. In older implementations of Cronus, once this limit
was reached, attempts to establish new connections resulted in "host inaccessible" errors. Normally this
error is reported only when the destination host is down or the network has failed.

In multicluster Cronus, it was suspected that the connection limit could be especially problematic,
because of the connections used by the Locator. The multicluster Locator makes use of reliable
connections to communicate with remote clusters. Therefore a kernel could need several connections to
talk to remote cluster hosts, plus several more that remote clusters hosts could have established to it to
use it as a proxy for locates. Therefore a Cronus kernel potentially might have to have a substantial
number of connections open just to support locates, leaving few connections left for actually transmitting

-19-

application requests to their ultimate destinations. In any case, the restriction on open connections is
unpalatable since it effectively restricts the number of remote hosts with which an application can reliably
communicate.

0
Each virtual connection has its own message queue. When a virtual connection has no assigned TCP

connection, any messages that to be transmitted on the virtual connection are merely added to the end of
the queue. When a virtual connection does have a TCP connection assigned to it, messages to be
transmitted are still added to the end of the message queue, but when the TCP connection is ready to
accept data for transmission, the first message is taken off the queue and transmitted.

Whenever there is a virtual connection without a TCP connection, the system chooses a virtual
connection with an assigned TCP connection and starts the process of deassigning it. Once the TCP
connection is deassigned and closed, the waiting virtual connection is allowed to open a TCP connection
and start transmitting its queued messages. A TCP connection is deassigned by placing a marker at the
end of the message queue. Once the messages before the marker in the queue are all transmitted, the
connection is ready to be closed. At this point, no more queued messages will be transmitted using the
TC P connection.

The connection closing algorithm uses a handshake to ensure that no messages are lost. First a
"Ready to Close" message is sent to the destination host on the other end of the connection. Once the
other end receives this message, it starts the process of deassigning the connection it it has not already
done so. Eventually the other end sends back a "Ready to Close" message. At this point, an "OK to
Close" message is transmitted. An "OK to Close" message is transmitted whenever one side of a
connection has itself transmitted a "Ready to Close" and has received an "Ready to Close" message
from the other end of the connection, signifying that both ends of the connection have agreed not to use
the connection further. (Thus the other side transmits an "OK to Close" message at this point as well.)
The first side that receives an "OK to Close" message closes the connection. After transmitting the "OK
to Close" message, an "OK to Close" message is either received or the connection is broken, the latter if
the other end processes the "OK to Close" before this end gets its "OK to Close." When the connection •
is closed or broken, it frees up a descriptor so that a TCP connection can be established for a virtual
connection that needs one.

The algorithm uses a queue marker when deassigning a physical connection to ensure that progress
is made with regards to message transmission. Using the marker avoids a possible situation where the
system could thrash constantly deassigning and assigning TCP connections to virtual connections, but 0
without any actual application messages being transmitted. The marker ensures that all messages that
have been waiting for a virtual connection to get a real connection get transmitted once the virtual
connection is awarded a real connection.

When opening a physical connection, it may be the case that the target host does not have an
available TCP connection. Every host tries to keep a TCP connection free at all times. When a
connection is made that causes the last connection to be used, a "refusal" message is immediately
transmitted down the connection and it is then closed. When a host sends such a "refusal" message, it
opens a virtual connection to the source host, so that eventually the refusing host will itself initiate a
physical connection to the source host. A host that is refused a connection earmarks an available
connection only to be used when the refusing target host eventually initiates a connection. This ensures
that the connection will be successfully set up when the intended target initiates the connection. This
ensures that two hosts do not thrash constantly tryirj to connect to the other and being refused each
time.

-200

- 20 -

S. _ . . 0

Setting an available connection aside when a connection is refused creates the potential for
deadlock. The worst situation that could occur would be all hosts setting aside all available connections
To avoid deadlock, a certain number of physical connections are set aside only to be used to accept
incoming connections and make outgoing connections to formerly refused hosts.

4.5 Directory Sharing

The directory service supports a hierarchical symbolic name space for Cronus objects. (The directory
service has in the past also been known as the catalog service.) See Figure 4-5. The leaves of the
name space tree are entries cc itaining arbitrary object UID's. Pathnames are formed by separating the
component names with ":'s." For example, in Figure 4-5, the path name :cronus:config:hosts-pats
resolves to the identifier of a particular HostData object, presumably the one that contains information
about the host named pats.

paLs (Host Data)

config sox (Host Data)

cronus services
~* ~ 'mold (COSIFle)

user
0

dart

dbs - croracle (Oracie)

FIgure 4-5: Directory Name Space 0

To ensure that a cluster has autonomous control over its own directory name space, the service
domain of the directory service is limited to a single cluster, The same directory cannot be stored in two
different clusters.

In multicluster Cronus, one can mount a remote cluster's directory name space. This makes the
remote cluster's entire name space appear to be hung off an arbitrary path name in the local cluster's
name space. In Figure 4-6, cluster BBN's entire name space is hung off cluster RL's path name
:rmt.bbn. For example, a RL user can use the pathname :rmt:tbbn:dbs:croracte to look up the object
stored in BBN's name space under :dbs:croracle. RL's pathname :rmt:bbn is called a mount point.

Mountpoints are easily created by using the createmount command. The mountpoint shown in Figure 0
4-6 was created by the administrator typing createmount bbn :rmt. For a remote directory to be mounted
successfully, the mounting cluster must import the directory service from the remote cluster, and the
remote cluster must export it to the mounting cluster.

Mountpoints simplify accessing remote cluster directory name spaces. Without mountpoints, users
would have to explicitly specify the cluster whose directory service should resolve a given path name.
When mountpoints are used, path names can always be submitted to the local cluster's directory service.
Mountpoints also permit symbolic links from the local cluster's name space into the remote cluster's
name space to be readily supported.

- 21

Mountpoints are implemented as follows. Mountpoint entries in the directory name space contain the
UID of !he root directory in the remote cluster, and an indication that it is a mountpoint, rather than a
normal directory. When the directory service encounters a mountpoint when resolving a pathname, it
invokes an operation on the foreign root directory to resolve the rest of the pathna me.

coeflg
cr0. cI.ac

bbn
Srvt Coring

I cronus

mOtd

Jz user

RL
admin

Figure 4-6: Mounting a Remote Directory

4.6 Cronus Commands

Most of the Cronus commands had to be upgraded to function properly in a multicluster environment.
The command implementations were changed to make sure requests were processed in the proper
cluster. For example, the displayservice command displays a list of all services. The desirable behavior
for displayservice is that it lists the services known to the local cluster's configuration service. This
command is implemented by invoking the List Objects operation on the generic ServiceData object. As
was illustrated in Figure 2-1, by default a request on a generic object can legitimately be routed to any
cluster. The displayservice command's implementation must be careful to constrain the generic
ServiceData objects eligible to receive the ListObjects request to those residing in the Icca! cluster.
Therefore, the ListObjects on the generic ServiceData object was changed to use the
HOST_ANY_INCLUSTER delivery option discussed in section 4.2.

A Icluster qualifier was also added to several commands. This qualifier was added to commands that
normally display information concerning the local cluster. The qualifier permits the user to instead force
the command to display information about any desired cluster. For example, the displayservice
command supports the Icluster qualifier. The command displayservice /cluster-bbn lists all the services
defined by cluster bbn's configuration service.

- 22 -

4.7 Authentication

Mufticluster Cronus provides privacy: the protection against unauthorized release of data. Data in
messages can be protected by encryping it with a secret key known only to the sender and receiver.
Assuming that the encryption algorithm is secure and that keys are not divulged, no unauthorized party
can decrypt a message.

Multicluster Cronus also provides fo, duthentication: the assurance that when two parties interact with
one another, each is certain of the other's identity. Only hosts that have been registered with the
authentication service can successfully issue and process secure requests.

Just as each cluster has autonomy with regards to its configuration (e.g., the assiynment of se,'vices
to r.osts), each cluster also has autonomy with regards to authentication. Each cluster has the
responsibility of creating and maintaining principals for its members, and for safeguarding their secret
keys. Each cluster must run the authentication service. The authentication service may not have any
foreign clusters in its domain. This ensures that each cluster maintains sole control over its authentication
information.

4.7.1 Request Security

There are three types of security for requests and their associated replies, listed in order of
increasing safety'. The Security field of the INVOKECONTROL structure is used to specify a request's
security. The field may contain any of the following values:

SECNONE
Self-explanatory

SECAUTHENTICATED
Messages contain an authenticator.

SECPRIVATE
Messges contain an authenticator and the data portion will be encrypted.

4.7.2 Ticket and authenticator formats

The format of the tickets and authenticators used in the authentication scheme are as follows:

Kernel to Kernel Ticket - encrypted by target host's secret key
HOSTNUM Sending Host
CLUSTERID Sending Cluster
DATE Expiration Time S
U321 Random number
OVEC Session key

Kernel to Kernel Authenticator - encrypted by session key
HOSTNUM Sending Host
CLUSTERID Sending Cluster •
DATE Timestamp
U321 Sequence number

- 23-

4.7.3 Secret keys

The following types of keys are maintained.

KERNEL KEY
Unique to a particular kernel and known to that kernel and its cluster's authentication
service.

SESSION KEY
Unique to a particular link between two specific kernels. Session keys will be used in both
directions. These keys will be generated by an Authentication Manager and handed to the
kernels in a Kernel to Kernel ticket, described in section 4.75.3.

INTER-CLUSTER AUTHENTICATION KEY
Unique to a particular pair of clusters. Known to the Authentication Managers of both
clusters and used for private communications between them.

4.7.4 Special Groups

A special authentication group is supported to simplify cluster administration, the CronusOperators
group. The UID of this group is a well-known constant. This group existed in Cronus before cluster
support was added. The CronusOperators group essentially defines a Cronus environment's super or
privileged users. Multicluster Cronus prevents one organization's super users from also automatically
being considered super users in other organizations.

Each cluster is responsible for designating certain principals as being CronusOperators. This is done
by using the conventional facilitibl f the authentication service for establishing group memberships. By
convention, CronusOperators are allowed to modify authentication and configuration service information
as they desire. (The Cronus installation scripts automatically set this up.)

Multicluster Cronus prevents one cluster's CronusOperators from being able to modify administrative
data in another cluster. If a request comes from a remote cluster, and its sender claims to be a member
of CronusOperators, this claim is ignored. The mention of the CronusOperators group in the sending
process's access group set (AGS) is deleted by the receiver before performing access checks.

4.7.5 Protocols

The following sections provide detailed outlines for several of the low-level communications protocols
used in multicluster Cronus. The notation "[packet]somekey" is used to mean that the packet (or
whatever is in the brackets) is encrypted with "somekey" as the encryption key.

4.7.5.1 Outgoing Reliable Request

I. Client library sets Securiy field in the Cronus request header from the value specified in the
INVOKECONTROL structure.

2. The library sends the message in cleartext to the kernel:

<Cronus Header><Request Header><Data Header><Data>

-24-

3. The kernel determines the target host for the request, by either consulting the location cache or
consulting the Locator.

4. If the target host is the current host then no further security operations will be performed, the

request is handed to the proper manager.

5. The message is then sent to the target host using the procedure in 4.7.5.2

4.7.5.2 Outgoing Reliable Message

This procedure is used to send both request and reply messages reliably to remote hosts. If the
"remote host" is the same as the sending host, the following procedure is dispensed with and the
message is immediately handed to the appropriate local process. The security of a reply message is set
to match that if its matching request.

1. If a reliable connection has not already been established to the target host, then one is opened.
This connection is initially not secure.

2. If the message is SECNONE the kernel immediately sends the message down the connection.
If the connection was previously secured, the connection%3 sequence counter is incremented.
(Each secured connection has a sequence counter that is set to zero when the connection is first
secured.)

3. Otherwise, the message is SECQPRIVATE or SECAUTHENTICATED. If the connection has 0
not been secured, the connection is secured using the procedure in 4.7.5.3

4. The kernel will make an authenticator using the address of the target host, a timestamp (t), and
the incremented sequence number (s+1) --- all of which are encrypted by the session key for the
connection:

[Daddr,t,s+l]Sessionkey

5. For SECPRIVA1 E messages, the kernel will encrypt the data portion of the messag..

6. The message is sent down the connection and the sequence counter is incremented.

4.7.5.3 Getting the Kernel to Kernel Ticket

This is the procedure two kernel use to secure a connection between themselves. At the end of the
procedure, both kernels will possess a session key known only to them (and the authentication service).
The source kernel will also be certain that the target kernel is properly registered with the authentication
service, and is not a host unauthorized to run Cronus. The recluests sent in the following procedure use

SEC_NONE. •

1. The requesting kernel (RK) sends a request to its cluster's authentication service with the
address of the destination kernel (DAddr) and a timestamp (t), all encrypted by the secret key of
the requesting kernel (RKkey). Each Cronus kernel in multicluster Cronus has a secret key
known only to it and its cluster's authentication service.

[DAddr,t]RKkey

2. The authentication manager decrypts the message and generates a session key (skey) and an

expiration date for the ticket (exp).

-25-

3. If the destination kernel is in the same cluster, the authentication manager will be able to make
the ticket for the destination kernel using the address of the requesting kernel (RAddr) and the
secret key for the destination kernel (DKkey). The ticket has the following format:

(RAddrexp,skey]DKkey

If the destination host is in a remote cluster, then the authentication manager obtains the ticket
from the remote cluster's authentication service as follows. If the destination host's cluster is not
known, a request is first sent to the host asking it what cluster it is in.

A. The local authentication manager will send the address of the requesting kernel, the
address of the destination kernel, the session key, the expiration date, and the timestamp
encrypted by the secret key shared by the authentication services in the two clusters
(Authkey). If hosts in two clusters are to communicate with each other securely, a
mutual secret key must first be established for use between the two authentication
services. The authentication manager determines the appropriate Authkey to use based
on the ID of the remote cluster.

[DAddr,RAddr,expskey,tJAuthkey

B. The remote cluster's authentication manager will decrypt the message and form a ticket
for the destination kernel encrypted by the key of the destination kernel, as in Step 3.

C. The remote cluster authentication manager will increment the timestamp and return the
message back to the first authentication manager:

[t+l, [RAddr,exp,skey]DKkey]Authkey

D. The local authentication manager will then check the timestamp increment and extract
the ticket.

The following will then be returned to the requesting kernel:

[DAddr,exp,skey,t+l, (RAddr,exp,skey]DKkeyJRKkey

The requesting kernel unwraps the above using its secret key. It extracts the session key (skey), and the
ticket. It checks the timestanp and DAddr for evidence of foul play. Then it sends the ticket together
with an authenticator to the destination kernel. The destination kernel unwraps the ticket with its secret
key, which reveals the session key. It checks the authenticator for evidence of foul play. At this point,
both kernels possess the session key and can transmit messages in privacy.

4,7.5.4 incoming Reliable Message

The procedure used to process Incoming reply or request messages is as follows.

1. If the connection was secured, the kernel increments the sequence counter. If security is not
used it will hand the message to the destination process with the access group set (AGS) (the
identity of the sender) set to NULL.

2. Otherwise, the kernel will unwrap the authenticator using its session key and check it. If the
message is a reply, the message is rejected if its security does not match that of its request. In

-26- •

addition, the authenticator for a reply includes the sequence number on its request. If this does

not match the actual sequence number on the request, the reply is rejected,

3. The kernel will decrypt the data part of the message for SEC PRIVATE messages.
4. The kernel then hands the message to the proper local process.

4.7.5.5 Encryption Algorithm

We had intended to use the DES encryption algorithm. However, the slow speed of software DES
encryption presented several problems. First, performance of the system significantly suffered.
Hardware DES encryption would signifcantly boost performance. Second, the slow speed of DES
encryption meant the Cronus Kernel became unresponsive for significant periods of time. The encryption
of a message is not multiplexed with other activity in the kernel. A local process attempting to
communicate with the kernel while it is busy encrypting a large message will not receive a response for a
significant amount of time. The local process will eventually time out and incorrectly assume the kernel is
dead. The process then returns "ipc failure" errors for RPC's. To work around these problems, the
system currently uses exclusive-or encryption. If in the future the kernel is improved so that it multiplexes
encryption with other activity, software DES can be used. It is interesting to note that other distri;xited
systerm1s have encountered similar problems and were forced to use exclusive-or encryption as a work
around (SAT89g.

0

-

0

-27 -

Chapter 5. Conclusions

Multicluster Cronus supports organizations wishing to cooperate and share distributed services. but
still retain autcnomy and control over their own part of the distributed environment. This report discussed
why this was not possible in older versions of Cronus. Multicluster Cronus models a set of hosts
operating under an autonomous authority as a cluster.

Clusters establish service-sharing relationships among themselves by explicitly declaring imports,
exports, and service domains. These relationships are stored in each cluster's configuration service.

The basic supporting mechanism for mrutticluster operation is the Locator. The Locator was totally
redesigned for Multicluster Cronus. The Locator makes use of the information stored in the configuration
service to narrow the search for an object. The Locator is capable for finding an object regardless of the
cluster it resides in.

Applications sometimes need control over what cluster a request is carried out in. To permit this, the
Cronus INVOKECONTROL structure was expanded.

Older versions of Cronus suffered from a limit on the maximum number of concurrent reliable
connections a kernel can have open. This limit was overcome in Multicluster Cronus. Overcoming this
limit makes application development much easier since the number of reliable connections needed is now
irrelevant. Previously, an application developer would have to use unreliable, instead of reliable,
communication when there was a danger of hitting the limit.

Authentication was also improved in Multicluster Cronus. Authentication suggests several avenues
for future study and work. First the kernel should be upgraded so that it multiplexes encryption activity
with other activities. Second, the scheme could be extended to include unreliable, as well as reliable,
messages. Currently unreliable messages are all unauthenticated and privacy is not supported. Third,
the scheme could also be extended to include direct connections. The protocol used to establish a direct
connection is authenticated, but authentication of each message and privacy on a direct connection are
not supported. By supporting private direct connections, much encryption activity could be off loaded from
the kernel, by having the system prefer to send private messages over direct connections.

-28 -

Chapter 6. References

[BS89] Berets, J., Sands, R., "Introduction to Cronus," Technical Report 6986, BBN systems and
Technologies, January 1989.
[SAT89] Satyanarayan, M., "Integrating Secunty in a Large Distributed System," ACM Transactions on
Computer Systems, Vol. 7 No. 3, Association for Computing Machinery, August 1989, page 272.

[WFN90] Walker, E., Floyd, R., Neves, P., "Asynchronous Remote Operation Execution in Distributed
Systems," Proceedings of the 10th Int'l Conference on Distributed Computing Systems, IEEE Computer
Society, May 1990, pp. 253-259.

0

"-US GOVERNMENT PAlINTING OFfIC "

"29"

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities 0

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3 1 systems. In addition, '

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle 0

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, ,jnal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

0

