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Force-Free Magnetic Fields,
Curl Eigenfunctions, and the
Sphere in Transform Space,
with Applications to

Fluid Dynamics and
Electromagnetic Theory

I. INTRODUCTION

More than two decades ago Moses! developed representations for eigenfunctions of the curl operator,
applying them to a number of physical problems of interest. We employ these functions here to
construct a new basis for the representation of force-free magnetic fields that will facilitate their
application to the solution of geophysical and astrophysical problems.

The concept of the force-free magnetic field (FFMF) has‘proven very useful in modeling a number of
physical systems of interest since its introduction by Lundquist?, the initial development by Lust and
Schliiter, and the appearance of the useful mathematical description by Chandrasekhar and Kendall®.
While physical applications have ranged from stellar astrophysics to controlled thermonuclear fusion.
the dominant topic of papers published has been the modeling of solar magnetic fields and their eftects
on the upper atmosphere of the sun®. The magnetic clouds ejected from the sun which have produced
the major perturbations to the Earth's radiation belts during the satellite era seem to possess FFMFs
which have budded from the solar magnetic field (Burlaga and Leppingé, Klein and Burlaga’.
Lepping, Jones, and Burlaga8). The present work, which is motivated by the desire to describe these
solar magnetic clouds, their origins, and their interactions with the Earth's magnetosphere. introduces
a new viewpoint for the investigation of these fields and indicates its broader application in fluid
dynamics and electromagnetics.
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In spite of the numerous papers which have dealt competently with various parts of the theory. the
mathematical description of FFMFs remains incomplete with many ramifications unexplored. (As a
cogent example, note the recent appearance of a modern analysis of properties of the curl operator:
Yoshida and Giga®.) The purpose of the present paper is threefold: to introduce a new representation
ot these fields which offers both practical computational advantages and a change in theoretical
viewpoint. to suggest a scheme for classifying FFMFs, and to indicate the broad applicability of the
new representation to fluid dynamics and electromagnetics.

2. THE GENERAL FORCE-FREE MAGNETIC FIELD
The concept of a force-free magnetic field arose naturally in describing the equilibrium states of a non-

resistive plasma. Considering the particular limiting case in which the hydrostatic pressure and the
Lorentz force are both zero

Vp=JxB = 0. (hH
Lundquist? realized that the requirement that the current density satisfy the static Maxwell equation

VxB =pulj (2)
amounted to a constraint on the magnetic field

(VxB)xB =0 (3}
which may be equivalently stated

(VxB)Y=aB. (4

Thus, for the magnetic field to be force-free, the magnetic field vorticity must be parallel to the ficld
itself with a proportionality that is in general a function of the spatial coordinates:

a = a(x) (5

The type of functional dependence of a partitions the class of force-free magnetic fields into two sub-

classes: variable a characterizes the so-called nonlinear subclass, while constant a characterizes the
other subclass. We restrict our attention here to this latter case, as have most previous investigators.

The investigation presented here is mathematical; the results obtained are thus independent of the

degree to which the FFMI" model is applicable to any given system and thus applicable 1o all

appropriate systems. See Roberts!?, Chapters 1 and 4, for a helpful discussion of the physical




idealizations and approximations commonly used.

3. THE CONSTANT-a FORCE-FREE MAGNETIC FIELD

3.1 The Mathematical Boundary Value Problem

The mathematical problem addressed here is the determination of the magnetic field. B, which
satisfies the first order partial differential - quation system

VxB
V- B

"

aB

it

(with a constant) together with appropriate boundary conditions.

A thorough discussion of the boundary value problem (BVP) is complex and lengthy. and would
divert us from the main point of the report: it is deferred to a later report. The question of the proper
posing of the BVP may be perceived as an undercurrent running through many of the published
papers, especially those dealing with the numerical modeling of the fields. The early intuitive
comments of Grad and Rubin!! have frequently been used to justify the approaches taken by those
later authors who have confronted the problem directly. The literature here is extensive: consult the
review by Sakurai!? for orientation, and the following papers for a small sampling of the variety of
approaches: Saks!3, Bostrom!4, Semel!5, Aly!6, and Yan et al.!7. The series of papers by
Kress18.19.20 present a careful formulation of certain FFMF BVPs in terms of integral equations.

The constant parameter a plays a central role in the development below. Although it can be viewed
merely as a scale factor in physical space (as is evident on inspection of the system (6)). the choice of

this scale factor has significant implications, as will be seen below. It was recognized early that ais
intimately involved with the boundary conditions imposed on the field (Lust and Schliter?.
Chandrasekhar2!), but even today this relationship is not well understood. Were we to address this
here it would involve us deeply with the boundary value problem. In keeping with the decision to defer
the BVP discussion, we do not follow this path here.

The mathematical basis for the approach taken here may be found in the works of Ehrenpreis?2 and
Palamodov?3, in which Fourier transform methods are applied ta the solution of systems of partial
differential equations with constant coefficients. We assume that the general solutions derived below
can be fitted to appropriate boundary values using the inverse Fourier transform, such as exemplified
by Sneddon?*. Since our primary concern is the elucidation of a new approach to FFMFs, no direct
application of this technique is presented here.




Remark. There are interesting ties between the current approach and a number of areas that are worth
mentioning en passant. The BVP as treated by Chandrasekhar and Kendall* invokes the second order
vector Helmholtz equation obtained by applying the curl to the first of Egs. (6) above. The field is then
obtained by constructing a vector solution from solutions to the scalar Helmholtz equation in analogy
with the vector waves found by Hansen?3 and developed by Elsasser?6. The sphere in transform space
is as fundamental a concept for the scalar Helmholiz equation as it is for the curl eigenfunction
representation (Miller??, Newton??). Algebraic group operators restricted to the sphere (the transtorm
images of differential group operators in x-space) can probably be used to investigate the separability
of the FFMF equation in various coordinate systems in a manner completely analogous to that
expounded by Miller?’, In this connection the FFMF group structure derived by Yemets™ and
Kovbasenko® should be helpful. While a number of investigators have implicitly recognized the role
of the sphere in transform space (e.g.. Meyer3, Dombre et al.31), and others have approached the use
of curl eigenfunctions (McLaughlin and Pironneau®?, Constantin and Majda®?), it is the explicit use of
the Moses curl eigenfunctions. with their orthogonality, completeness, and associated vector Fourier
transtforms. that has made possible the analysis described here.

3.2. Curl Eigenfunction Representation of Force-Free Magnetic Fields

The system (6) reveals that an FFMF must possess vorticity and no divergence: it is a solenoidal.
rotational field. Follo'ving Moses' extension of the Helmholtz theorem. such a field may be
represented as a sum over the rotational curl eigenfunctions (see the Appendix for a summary ot
properties of the curl eigenfunctions):

Bx) = ) jd Tk yalx 1K) bak) (N

where the prime on the summation index indicates the omission of the 4 = 0 (irrotational)
eigenfunction, restricting the summation to the values A = + 1. Substitution of this representation into
the defining equation (1) and making use of the eigenproperties of x;(x | k) leads immediately to the
equation

Z’ Jd 11( (Ak -y dx 1 k) buk) = 0. (8)

A

Taking the spatial scalar product of this with x;(x I k') and using the orthogonality of the curl
eigenfunctions transforms the relation to




Z'Id3k (Ak-a)5(k-K) 8,3 bak) =0 — (uk'-a)byk) =0 9)
A

with solution (remembering 12 = 1/u for y = 1)

bu(k) = ST g (6 (10)

where we have made use of the radial delta function (see Barton3*), x’ is a vector drawn to a point on
the unit sphere, and s5,(X') is a function yet to be determined. This is the central result which provides
the basis for the rest of the report. There are two immediate consequences of this relation:

(1) an arbitrary constant-a force-free magnetic field is defined entirely in terms of the values

of its transform on the sphere k' = a/y = au:

(2) since k’ must be positive (as the magnitude of the real vector k'), only one eigenfunction
contributes to the field: the one whose sign matches the sign of oz g = sgn(a).

Reconsidering the defining equation (4), we see that in the constant-a case, « is merely a (signed)
reciprocal length unit, and the subsequent formulation can be simplified by introducing the non-
dimensional variable &:

E=lalx (1)
which, reverting to 4 as the designator of the curl eigenvector comtunc~., changes Egs. (6) to the
form

V'xB
V'-B

It Il
o =
=

where the prime indicates differentiation with respect to &, with the result that the unit sphere in
transform space assumes a domirant position in the thecry. The expression for the FFMF now
simplifies to:




B (&)

j kidk dQ Xk _:1 * $:00) 1€ 1 x)
K2

i

J’d.Q A& ! x) s3(x) (13)

H

('.n)"mJ. dQe'*8Qw $3(%).

where d €2 = sin ndn dy denotes the surface element on the unit sphere in terms of the polar angle
7 and the azimuthal angle v :

sk B cE-
k-x = kxla!—/lialtc«é—rg (14)

Remark. Tt has been known for some timne that the general solution to the scalar Heimholtz equation
may be cast in terms of a Fourier integral ove. the unit sphere in transform space; see Miller??, as well

as the recent detailed investigation of Newton?®, The essential difference between the FFMF and
Helmholtz solutions is the appearance of the Q 3(x) matrices in the FFMF transform expressions.

Thus the general three-dimensional constant-a FFMF is defined entirely by the variation of the scalar
function s;(x) = s;(n, W) in conjunction with the curl eigenfunction Y;(x | k* over the unit sphere

i ransform space, a reduction of the 3-D problem in physical space to a 2-D proiem for a function
of compuct support in transform space.

An additicnal simplification appears on examining the requirement that the FFMFs be real. For this to
be so. the field must be equal to its conjugate:

B;(&) = B;*&) (15
or

J- d2e'* 5 Qux) 5;(K) = J d2e '*8Q;3%x) $:.%(x). (16)

Inverting x on the right-hand side. multiplying by e **" § and integrating over & and ¥’ leads to

Qa(x') s;(x') = Qa*( X) a*(-X') . amn




which, making use of the inversion relation between the Q1 (see Apperlix),

Qi*(-x) = —[-’-" ——-5-4-52)(2;(:) (18)

Ky +i4K

leads to the restriction on s ;(x):

-idk
SA(K) = _ [Kl ,.‘, ZJ Sl*(—x) (19}
Ky +i 4K
or. equivalently,
4 .
—i )
si-%) = - L ST e (20)
Ky +iAi,)

This means that the complex FEFMF tranzform need only be definea on a hemisphere of the unit
sphere, since the transform on the "lower" half-space is defined when the conjugate function is
known on the "upper” half-space. This is precisely what Moses found in the general vector field case!.

The general expressior for the FFMFs may now be simplified by using the above relation to restrict
the transform to a hemisphere in transform space. Consider the general expression:

Bk = (2n)3’2j d2 e ® & Qix) s3(x) Q1)

For ease of calculation, we orient the z-axis along &, defining the polar angle 1 as the angle between

xand &:

cosn =x-&§/& (22)

and we split the integration over the sphere into that over the +z and -z hemispheres:




Ic L2

Bi&) = (27) 3/2,[ dy [j sinn dn e’ Q) 5;0%)

0 0

(23)
+ j sinn d1ne' s Qax) s3(x) ]
=N
Now invert xin the —z integral. setting
K=-x n=n-n. y=n+y (24)
to obtain
iz L2}
Bit) = (2;:)‘”! dy [J sinn dn e’ S Q) 53(K)
° ' 25)

2

+J sinn' dn' e 1505 Qi~x) 53(-%") ]

and make use of the reality conditions to find

. . ' YT A K
Qu-Kis;(—x') = Kai+iAx Qi*x") (f—-’ hAK 2-)s;““(x’) = Q1% (x') 5;*(x") (26)
K'i-iAK" K'1+1AK';

leading to the expression

i L2

UE) = (2n) mI dy [J sinndne rEeox () 1(%) 53(x)

o [+

2

+j sinn' dn’ e SN Qar(x') s (X)) ]



which is obviously real, since the second integral is clearly the conjugate of the first, and taken only
over the limits of the upper z-hemisphere.

Thus we have shown that ¢ g nicrad constant-a force-free magnenc field 1s defined compictely by us

variation on a unit hemisphere in Fourier tranform space.

4. APPLICATIONS OF THE CURL EIGENFUNCTION REPRESENTATION

We now demonstrate that the representation introduced above readily simplifies and clanfies certain
FFMF concepts and is capable of generalized application to fluid dynamics and electromagnetics.

4.1. Vector Potentials for the Force-Free Magnetic Field

The current density and the magnetic field must both be nonzero within the region considered in order

for an FFMF to exist. For nonzero a, an FFMF must be described by a vector potential. since
otherwise the system (6) becomes inconsistent. [n the curl eigenfunction representation. the vector
potential is in general a sum of two rotational modes analogous to Eq. (7) (equivalent to adopting the
Lorentz gauge in the absence of an electric potential):

A(x) = z'J‘ dk Lx k) az(k) (28)
A

If this is now equated to an FFMF mode

Bax) = VxA(x) = Z' lj d?k kga(x 1 k) az(k) 29
A

then the spatial scalar product leads to the expected relation between the field and vector potential
transionns :

bak) = Ak azk) = aayk). (30)

The modes must match. On transforming to x-space, we find the corresponding relation
Bx) = Jd3k bak) alx I k) = aj dk ak)pi(x 1k)y = aAx) (3n

As Moses found in the general case, there is no mixing of modes: i.e., a magnetic field described by an



eigenfunction with 2 = +1 must be derived from a vector potential also descnibed by an eigenfunction
with A = +1. For an FFMF this becomes a more stringent result: the only curl eigenfunction
component needed to describe the vector potential of an FFMF is the one whose eigenvalue matches

that of the magnetic field. After all. a constant-a FFMF is fundamentally a curl eigenfunction. and

vice versd.

4.2, Magnetic Helicity of the Force-Free Magnetic Field

Several papers by Chandrasekhar and Woltjer3® and by Woltjer36.37.38 (see also the recent work of
Laurence and Avellaneda3”) were devoted to exploring the energy and stability of an FFMF by
examining the behavior of a pseudoscalar quantity which we denote by M:

M = Id3x A(x) B(x) (32)

where the integral is taken over the space occupied by the field. This quantity. termed the magneric

helicity by Moffatt?0, has a fundamental importance for any magnetic field (see the discussion by
Rariada*! and references therein, and Berger and Field*?), but takes on a simple form for a constant-

a FFMF in the curl eigenfunction representation,where it takes the form
LI 3 2
M;EJ’(lel(x)-B;‘(x)zaJd x|A,1(x)| {33)
or. inserting the transformed expression, we find:
3 2
Mj = aJ' d*k ay (k)] (34)

Thus the magnetic helicity for the constant-a FFMF is proportional to the mean square magnitude of
the vector potential taken over x-space or to the mean square vector potential transform taken over k-
space with a proportionality constant equal to a (known in differential geometry as the abnormality
of the vector field B (or A. since they satisfy the same equation for the given gauge choice): see
Ericksen*' and Truesdell*!). The abnormality, a,may be defined to be the normalized magnetic

helicity, M ;;

J‘(I],x' A;(x)' Bi(x)
a=M;="%- (35)

J‘(I"x A;(x) A(x)

10




‘The magnetic helicity is but one element of an infinite helicity hieruschy whose individual terms can be

very simply expressed in terms of the curl eigenfunctions in the constant-a case. We consider this
hierarchy, couched in terms of fluid dynamics, in the following section.

4.3. Trkalian Motion in Fluid Dynamics

It is well known that the general force-free magnetic field is equivalent to the general Beltrami flow in
fluid dynamics, while the constant-a FFMF is equivalent to the Trkalian subset of the Beltrami flow
(Beltrami?*3, Trkal46, Truesdell*4, Bjgrgum*’, Bjgrgum and Godal*8, Godal*?). Although the
development above is couched in terms of the magnetic field problem, everything discussed there can
be interpreted in fluid dynamical terms with the velocity of the fluid acting as the counterpart of the
magnetic field. In particular, the Trkalian problem can be formulated entirely in terms of the behavior
of the velocity transform on the unit sphere in transform space. Note, however. that the stability
analysis for the fluid case must be distinguished from the analogous magnetohydrodynamic case, as
pointed out by Moffatt 50.51,

In this section we consider a sequence of integrals that are second-degree functions of the fluid velocity
and which we call, for want of a better term, the helicity hierarchy. In keeping with the restriction of

this paper to constant-a fields, the hierarchy is considered for Trkalian fluids. though the formal
application to general Beltrami flows is straightforward and will be addressed in a later report.

In analogy to the definition of helicity, we introduce the helicity hierarchy as the following set of
integrals of the scalar product of the various interated curls of the fluid velocity:

Hupn = Jd 3xi Vx Jmu(x)~{ Vx }”u(x) (36)

where (m, n) are taken to be (positive) integers. The (kinematic) helicity is immediately recognizable
as Hy,. Three other low order elements of this sequence occur more or less frequently in the
literature: the (incompressible) kinetic energy per unit mass. Hyy: the enstrophy, Hy,. and the
superhelicity, H, (Hide52). A given member of the set, H,, . can be described in statistical fluid
dynamic terms as the correlation of the mth iterated curl of the velocity with the nth interated curl,
and we note that the matrix of the 4

mn

is symmetric. We now consider the form which this hierarchy
takes for Trkalian fluids.

A Trkalian fluid possesses a velocity, u, that satisfies the system (6) above:

11




Vxu =qu
(37)
V-uw=20
hence the analysis of Section 3 goes through unchanged and we can write
UA(X) = j a2 S:(£82) Xa@' x) (38)

In view of the properties of the curl eigenfunctions, we can immediately write down the expression for
the nth interated curl of the velocity:

L Vx [Tux) = A'"J-d 3 k™ Uak) ga(x 1 k)
(39)
= a"'J. d2 S8 11 %)
enabling us to evaluate the helicity hierarchy defined above as the sequence of integrals
Hyp = a’"*"‘3j ds2 S;(K)J df2' Si(x') Jd 3{ x;(E_,l x) 2281 x)
(30)

a’"*"'3J- dQ| s

This is a remarkable result. It says that for a Trkalian velocity field the elements of the set of fluid
correlation functions defined by Eq. (36) are all reducible to Hy, the kinetic energy per unit mass and
a power of the velocity field's abnormality (or normalized helicity). The magnitude of H,,, grows or
diminishes with the order (m+n) according as « is greater or less than unity. The extreme simplicity
of the helicity hierarchy for this case emphasizes both the very special nature of this type of field and
its intimate connection to the concept of helicity.

Normalizing the H,,, analogously to the magnetic helicity of the previous section, we find




~

Hon = Qm* (41)

so that the first four named normalized correlations become:

~

kinetic energy: Hop = 1
kinematic helicity: Hyy = a;
enstrophy: Hyy = a?;

superhelicity: Hy = o3,

Thus the energy and enstrophy are positive definite, while the kinematic helicity and superhehcity
adopt the sign of a. For negative a, the elements of odd index (m+n) are all negative and the
even elements are all positive, while for positive a. all elements are positive.

The analogous magnetic helicity hierarchy is obtained by replacing the velocity by the magnetic field,
though the indices differ for the unnormalized elements because the analogue of the fluid velocity in the
definition of magnetic helicity is the vector potential, not the magnetic field. Of course, a cross helicity
hierarchy can be defined in terms of the convolutions of the fluid and magnetic transforms. but we
shall not pursue that here.

4.4 Bivector Form of the Maxwell Equations in the FFMF Representation

The representation developed above for the force-free magnetic field can be applied directly to
electromagnetic theory to produce a new and potentially very useful viewpoint, which is introduced
here and will be developed in a subsequent report.

At the turn of the century Silberstein33 introduced a bivector formulation of the Maxwell equations by
defining a complex field vector with real and imaginary parts given by the electric field. E, and
magnetic field, B, resp. The Maxwell equation system then takes a form that is easily treated by the
FFMF formalism. Following Stratton34, but changing notation slightly to avoid a conflict with that
used above, we introduce the field bivector

G =B +iE/ 42)

where we use rationalized MKS units and ¢ is understood to refer to the speed of light in the medium:

13




2

cC = EN. (43)
The Maxwell equations then take the form

[~%}

-4

(
VxG +4+— = uJ, VG =ipucp. (44)

o e

¥ |

where (p, J) are the charge and current source densities. In the absence of sources they become

v«G +19G _ o v =0, (45)
c ot

while for harmonic time dependence (read equivalently: Fourier analysis in time) their formal similarity
with the FFMF equations is striking:

V<G = 2., G. V-G = 0. (46)

where we have defined the electromagnetic helicity as a,m = % The analysis of Section 3 is fully

applicable here, and we find that the three-dimensional electromagnetic wave problem is completely
defined on the sphere in transform space for which

k= Aa,, 47

with the fundamental difference from the FFMF problem that the full sphere must be utilized because
we cannot require the field to be real: the real and imaginary parts of the vector G are independent,
being the magnetic and electric field vectors. Turning this result around, we see that the real and

imaginary parts of an FEMF may be interpreted as the magnetic and electric fields of a corresponding
electromagnetic problem.

This result can be generalized immediately (by an appropriate redefinition of «,,, and G) to encompass
chiral media characterized by the Drude-Bom-Fedorov constitutive relations, simplifying significantly
the equation system obtained recently by Lakhtakia®S (see also Lakhtakia, Varadan and Varadan36).

Moreover. the full BVP for the electromagnetic field should be accessible from this treatment through
appropriate Green's function techniques. If further work confirms the utility of this approach. it could
have a significant impact on both the theory and practice of electromagnetics.

We leave the mathematical problem at this point, having established the formal connection between the
more general electromagnetic theory and the force-free magnetic field formulation, the latter clearly a
subset of the former. Although the bivector description of the electromagnetic field has been known for
some time (Weber™?, Silberstein®?, Bateman38, Stratton34), the FFMF connection has not been

14




previously pointed out.

5. CLASSIFICATION OF CONSTANT-aFORCE-FREE MAGNETIC FIELDS

Having found the general approach to constant-a force-free magnetic fields outlined above. it 18
natural to ask whether it can be used to elucidate general properties of these fields. In particular. does it
suggest a basts for classifying the various types of FFMFs? Such a classification can be approached in
various ways, depending in part on the motivation of the classifier. For example, one type of
classification might be based on the generalized multipole expansion of List and Schliiter® (see also
Liist, Schliter & Trefftz®9), arranging fields into classes according to the parametric dependence of
their multipole coefficients. By analogy with electrostatic multipoles., such an approach would be
expected to be useful in describing FFMFs that are concentrated in limited regions of space. In contrast
to such a scheme, which relies on the characteristics of the fields in coordinate space, the classification
we sketch here is based on the dimensionality, symmetry, and complexity of the FFMF transforms on
the sphere in transform space. Whether this provides a useful classification of types remains to be
proven by subsequent development, but the insight gained in the attempt already seems quite valuable.

Viewed at the most general level, any function or distribution, defined on a set of points on the
transform sphere, which possesses a curl transform (as we denote the Fourier transform containing the
complex vectors Q) satisfying the defining system (6) is a valid FFMF. We partition the class of
FFMF transforms first of all according to the dimension of the supporting set into point. curve and
area transforms, or sets of dimension 0, 1, 2, as well as possibly fractal dimension. The further
partitioning of the transforms within these groups is done in terms of complexity. aided by
considerations of group symmetry. Only the barest outline of this program can given here: details will
be given elsewhere. To provide a hint at the results, examples of the simplest fields in each category
are exhibited with brief indications of their properties.

5.1 Point Transform Fields

The simplest point transform, corresponding to a single point, is a delta function characterized by a
given amplitude and unit vector drawn to a point on the transform sphere:

XK -%K) _

528 = 5 5, X110 ¥ - vo)

sin 7) sin 1

(48)

leading to a field expression
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whose real or imaginary part can be recognized as the standing wave that is the well-known simplest
FFMF. discussed in Moffatt*® (with the wave vector x, oriented along the positive z-axis). An
ordered hierarchy of point fields may be constructed using the fundamental expression (49) by simply
summing the fields corresponding to different point constellations. In so doing, some surprises are
found. While the lines of force of the single point field (49) are straight lines, the lines of force of a 2-
point quadrature field are already rather complex, and those of a 3-point quadrature field are in part
chaotic (and can be related to the ABC field suggested as a prototypical turbulent velocity field in fluid
dynamics; see Amnol’d®0 and Dombre3!). This is consistent with the viewpoint introduced by Sweet®!.
and developed by others (e.g., Cary and Littlejohn®2), that the magnetic field lines of force are
equivalent to the phase-space trajectories of a dynamical system in which the increase in complexity of
the dynamical system leads to a progressive loss of integrals of the motion and the appearance of chaos
( Zaslavsky er al3). What new features in complexity may be introduced in higher order members of
this hierarchy remain to be discovered.

5.2 Curve Transform Fields

For ttus group of fields the transforin is defined on a continuous curve on the sphere so that our
reliance on distributions can give way to the use of ordinary functions. At the same time we must
actively take into consideration the variation of the transform amplitude on the defining curves. It
seems natural to consider first those transforms that have constant amplitude on the curve, then 1o
expand the treatment to encompass amplitude variation. As an example, consider the simplest family of

curve transforms, those for which the amplitude is constant on a circle of constant polar angle 1,

) = (50
sin n
After evaluating the integrals, the complex field takes the form
Bix) = 3-1;)/2' el 2/l { (cos Mg+ 1) Jo (PILp) a5  (cos 1lg — ) Sy (pIL ) e 1240 a,»
2n
(51)

~V2 hisinngdy (pIL,) e’ *Pk

where the constant vector ay is defined as

16




A ' ‘
a; = £1\1,i4,0 52
* fi{ i2.0) e
the length scales are

1 _ .
asin 7

1

0L cos 1

L,
(53)

]

and (p. @, z) are circular cylindrical coordinates in x-space, and the J, are the usual Bessel
functions. In the limit of g - 0, L,—> o, L, > l/a, we recover the point field found above
which is periodic in z but has no p or ¢ dependence, while as o > /2, L, - lia. L. -

oo, and we find a completely new field without z dependence but which is periodic in ¢ and quasi-
periodic in p.

5.3 Area Transform Fields

These fields correspond to transforms defined on 2-dimensional subsets of the sphere. The simplest is
constant on the sphere and is equivalent to the Fourier transform of the Q;:

Bi(x) = (27) " bip [ jolar) +iji(ar) Pi(cos 8)|a; - "2 Ai Pl(cos 8) ¢ 'A% j (ar) k
(54)

- -
—'\/l S i) @n+ D jatar) BB pcos gy ¢ 1240y
T onz2 (n+2)!

Here r represents the spherical radius and the j, are the spherical Bessel functions, reflecting the
essential spherical nature of this field (and the essential spherical nature of the curl eigenvector
component Q;).

To handle other area fields, it seems expeditious to expand the transform in spherical harmonics. since
any function defined on a sphere can be so represented (Courant and Hilbert®*). Other functions are
also available, such as vector spherical harmonics (Moses!) and Heun functions (Kalnins. Miller, &
Tratnik6%) which could prove more useful to represent functions with specific Symmetry properties.
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5.4 Fractal Transform Fields

The previous three sections have exhibited FFMFs whose defining sets on the transform sphere have
integral dimensions of 0. 1 and 2. Other sets possessing non-integral dimensions are easily imagined
within the context of modem fractal geometry. Mandelbrot's definition of fractal is "a set for which the
Hausdortt-Besicovitch dimension strictly exceeds the topological dimension” (Mandelbrot®; see also
Edgar®’). Fractal support sets have recently been introduced for dynamo magnetic field models (Finn
and Out%¥%). Whether such sets have an important role to play in the further develonment of FFMF
theory and practice remains to be seen. Their construction and curl transform seem non-trivial and are

not attempted here, but the possibility of their existence must be explicitly acknowledged.

6. SUMMARY, SPECULATIONS, AND FUTURE DIRECTIONS

6.1 Summary

By introducing the Moses curl eigenfunctions to describe constant-a force-free magnetic fields. we
have been able to show that such fields are defined entirely by the value of their curl transform on the
unit hemisphere in transform space. This change of viewpoint enables an orderly exploration and
classification of their properties, an introduction to which was briefly sketched. exhibiting the simplest
fields defined on 0. 1, and 2-dimenstonal sets on the transform sphere. The new representation was
applied to the determination of several quantities of interest: (1) the magnetic vector potential, showing
no mode mixing: {2) the magnetic helicity, demonstrating that the parameter o can be interpreted as a
normalized magnetic helicity: (3) the helicity hierarchy (correlation sequence) for a Trkalian fluid.
proving that the members of the hierarchy are defined entirely in terms of the mean kinetic energy and
puwers of the parameter a. Applying the representation to electromagnetics. we showed that the
bivector formulation of Maxwell’s equations reduces to a force-free magnetic field problem in which
the unit sphere in transform space plays an essential role, opening the way to a new approach to
electromagnetic theory and applications.

6.2 Speculations
The geometrical viewpoint employed above suggests further immediate developments and applications
of the curl transform representation. several of which are being actively pursued (see §6.3). We

mention briefly here connections to two current problems that are more speculative in nature.

Turbulence: Lagrangian, Trkalian and magnetic. The form of the helicity hierarchy derived
above undoubtedly has significant implications for Trkalian turbulence (if it exists!), making the
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determin: tion of a from the boundary conditions a h'gh priority item. While & connection has not
been attempted here between the helicity hierarchy and direct or inverse cascades of energy. enstropk,
helicity or any of the other fluid parameters, it bears looking into (¢f. Moffatt® and references therzin,
especially: André and Lesieur’?; Kraichnan’!; Frisch et al.’?). The corresponding effects in
magnctohydrodynamics and their influence on the generation, maintenance and decay of dynw.no fields
through the a-effect of Steenbeck, Krause and Ridler’? should also prove interesting. if not crucial
(see also: Krause and Radler’#). The time dependence of Trkalian flows, if similar to the
corresponding FFMFs, may be simply exponential (Lundquist=. Chandrasekhar and Kendall®.
Moffattd9; see also Marris and Wang’5, .nd Marris70.77). If more complex time dependences can he
found, a substantial insight into the cascades and other charactenstics of turbulence and dynamo theon
may result. The question of stability of FFMFs bears on this and has generated a long trail of papers in
the literature. A substantial fraction of these deals with the generation of current sheets. largely in the
context of solar flare mechanisms (sampling: Syrovatskii’®, and a long series of papers by Parker: see
Parker’? for earlier references). Do similar localized velocity sheets or jets exist in Trkalian/Beltrami
flows and do they contribute in an essential way to turbulent mechanisms?

Laboratory simulation of astrophysical magnetic fields. The most difficult part of
simulatii.g many astrophysical processes in the laboratory is getting the scaling of the essential
parameters correct. If this is not done, the physical processes which can be supported and studied tn
the laboratory environment may bear little relation to those of the real universe. Force-free magnetic
fields may turn out to be easier to model in the laboratory than expected because of the dependence on
the single parameter a, which is itself a length scale. The fixing of « through the specification of
appropriate boundary conditions will probably be the key to such modeling. We note :hat transient
force-free magnetic field configurations have been reported recently in the laboratory by Steiizel and
Urrutia®0,

6.3 Future Directions

The current work provides the foundation for a number of applications. first being the investigation
and classification of the FFMFs touched on in Section § and their relation to problems of current
interest, especially the description of solar magnetic clouds and their interaction with the Earth’s
magnetosphere. A complete solution to the FFMF problem can only be given when the influence of
boundary conditions on the field form is known, so that an investigation of the full boundary value
problem must be high or the agenda. The enlargement of the fluid dynamic investigation to estabhish
connections between the Trkalian helicity hierarchy and Lagrangian/Tralian turbulence holds out hope
of near-term progress. Reconsidering some of the classic electromagnetic problems. such as the proper
radiation condition, multipole expansions. and the description of polarization, in terms of the FFMF
formulation of the bivector Maxwell equations has the potential of providing new msights to old
problems. On a more distant time scale. the application of the present formulation to the dual fluid
velocity-magnetic field description involved in the dynamo problem would seem to present advantages
due to the natural and explicit representation of the essential effects of vorticity and helicity.
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Appendix
Summary of Properties of the Moses Curl Eigenfunctions

Moses! introduced the transform space vectors Q; defined by

IZ'

Qo (k)

& | (A1)
A kiatidky) okt tidky) o kitidky

Qi (k) , .
E( k(k + k3) k(k + k3) K

which have the following useful properties:

Q* (k) - Qu (k) = &3y,

2 Qi k) Qyk) = 5y,
A

k- Q;(k) =0 forA=t1,

kxQ; k) = —iAQ, (k).

t

Using these vectors he defined the vector functions y;

=32 .
X1 (xIk) = 2m) ek xQ, (k) (A.3)
which he was able to show are eigenfunctions of the curl operator:

Vxy, (xik)
V- x; (xik)

k Ay, (xlk),

0 for A=1%1, (A.4)

Voxo (1K) = —i k2m) 2 e ik x

and which satisfy the following orthogonality and completeness relations:
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[dx L (xIk) - x, (xlk') = 63, 6(k - k'),

(AS)
2 fdk Xu* (xIK) - xz, (x'Ik) = 8, 6(x - x').
A
The latter relations enabled him to show that any vector function u could be expanded as
u(x) = Efdkxx(xik) Uj; (k) (A.6)
A

It 1s the latter relation that is central to the current report. Moses original paper contains several other
significant results, including an extension to the Helmholtz vector function decomposition theorem.
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