
AD-A265 641 ppfo--.

l1 ! |)CUMENTATION PAGE orm ovca

rlmaled t average 1 houl pel lesponseIcun ~eIm r ev~, ~1 v , 4. -t! -'<~ 'ýu:a
main amning theoalaneede, anocompleting aqd roview ng uw colleOon ot ntom",iofl end comments regar.ingthis butder 0~ mae ot any virw a 1e'1 a' / c..': .r A .
suggestlons lo reducing this burden, to Wa~shington Headquarters Serckos. Directorale for Infomaitco Opw.anlons and Repo•'s 121J J"emCltr [la l,•'.vay 1 Ji,- " .iA A5/g A
and to tie Office of Management and Budgol. Papeiwaori Reduction Proloct (0704-0188), Wasr,,fn<on. DC 20_50_

1. AGENCY USE ONLY (Leave Lav 2 REPORT OATE 3 EPcLpiR "Y'0 AALLA1; ; GC. ,,1

I March 1993 Profc.srrial Iralr

4- TITLE AND SUBTITLE 5 FUW."N('.; NWi•iA >,.

AN OBJECr-ORIENTED PARALLEL SIMULATION ENVIRONMENT PR: ECB2
PE: 0602234N

S. AUTHOR(S) WVU: DN30086

L. J. Peterson and P. C-Y Sheu

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8 PERFOP.M:NG ORG;,•kZ.ATKA
REPORT NUM•i.i

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

g. SPONSORINGIMONITOJNG AGENCY NAME(S) AND ADORESS(ES) 10 SPONSOR[,I'M4ONiTOR1NG

Naval Command, Control and Ocean Surveillance Center (NCCOSC) AGENCY REPORT NUMBER

RDT&E Division
Block Programs
San Diego, CA 92152-5001
1I. SUPPLEMENTARY NOTES D T

ELECTE
12a. DISTRIBufTOWAVAILABILfIY STATEMENT 1 2b

Approved for public release; distribution is unlimited. A
13. ABSTRACT Iftfax, 200 words)

This paper describes an approach to parallel object-oriented simulation. Parallel evaluation of simulation programs is
accomplished by compiling objects into sets and production rules so that they can be evaluated with parallel, set-oriented
operations which effectively utilize the capacity of parallel processors with minimal communications overhead.

93-129699'3 C 9 ~ ~0 5,I HI~i~iiIllltll

Published in Proceedings 1993 Object Oriented Simulated Conference, January, 1993.

14. SUaJECT TERMS 15 NUMBER OF PAGES

massive parallel processing
high performance computing 18 PRICE ODE

17. SECURITY CL.ASSIFICATION 18. SECURITY CAASSIFICATION 19. SECURITY CLASSIFICATION 20 UM[TATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED T!NCLAStFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01.200-56M standard form 298 (FROCW

UNCLASSIFIED

21a NAME OF RESPONSIBLE INOIOUAL 21b TELEPHONE (IocI.Al'ea Coe) 21C DUICE SYMI30L

L. J. Peterson (619) 553-4070 C(xle 421

NT3 cr?,: yi

S -T 1. .

By

Dist

A-1 2.

.4 -

NSN 754"01-200-660 Sndd toNC 2MASIM

AN OBJECT-ORIENTED PARALLEL SIMULATION ENVIRONMENT

Philip C-Y. Sheu (sheu.caip rugrs edu) Larry J Petersin 4l1popnoi miDl)
Department of Electrical & Computer Engtneering Naval Corrnnand. (mtrxol and Ocean Survoilan, v (e u-r

Rutgers University RDT&E Division (NRal)), Code 421
Piscataway, NJ C88SS San IDsego, CA 9V i 2-S00x

Abstract
1

This paper describes arn approach to parallel objec-oenrted can be found in [ThMU9OI Typically. such systems/languages extend an

simulation. Parallel evaluation of simulation programs is accomplished by object-onrented programming language with the necessary constructs for
compiling objects into sets and production rules so that they can be evaluated simulation, for instance, with -... the notion of simulation time and

with parallel. set-oriented operations which effectively utilize the capacity of mechanisms for entities in the language to manipulate sunulaUton time'

parallel processors with minimal communication overhead. (Mors9Ol
"The problem with parallel processing of simulatiom systems ho! a'

traded much attention recently. A number of parallel computAtirm models
and their associated problems have been investigated [Fup9Oi]fMors9 The

2 latoduluion models can be classified into two categornes- synchronous and asynchronmus
Since Soalltalk was introduced in the early 80Ws, it has been generally In a synchronous, parallel simulation system. processes and even's are

accepted that object-oriented programming languages can provide a number scheduled arid executed by the simulator with a global clock Each process,
of attractive features for software development. In an object-oriented system, however, in an asynchronous, parallel simulation system mairtauins its own
data can be naturally expressed asa setof t b"e. This feature is very general dock, and processes and events are scheduled and executed to a fully dis
and can handle any type of conceptual abstraction and organization- A t'ibuted fashion. This means there exists no scheduler to synchronize the
collection of abstract classes anid theor Lo.cated algorithms (methods), events globally. According to fFuui90l, " few simulator events occur at any
constitute the kind of framework into which particular applications can insert single point in simulated time; therefore parallelization techiuques based on
their own specialized code by constructing concrete subclasses that work lock-step execution using a global suitulationr dock perform poorly or requme
together. With the method/message protocol, objects can be accessed assumptions in the timing model that may compromise the fidelity of the
without knowledge of their internal structuires. (Isses can be organized into simulatom' Accordingly, "Cnncurrnt execution of events at different p(onts
hierarchies so that all methods and attributes of a class can be automatically in simulated time is required, but.., this introduce% interesting synchr(miza-
uihented by all of its subclasses. In addition, the nature of object-oriented tion problems...- Most of these synchronization problems a•nse from data
representations suggests that an object-oriented simulation program can be dependencies among different processes which run at different speeds
executed in parl. Approaches to the synchronization problems can be in turn distinguished by

Unfortunately, despite the nice features described above, the object- two approaches: conservative and optimistic. A conservative approach

oriented methodology has focused on general-puirpose programming with no prevents any synchronization problem from happening, but it degrades per-

definition of object control mainagement, and information retrieval. Our forumsnce. An optimistic approac allows synchronization problems to oc-

research by and large addresses the area called 'active object base'. Our cur, and rollbacks are often necessary once these problems are detected
definition of active objects goes beyond the traditional object-oreneed
paradigm by including a control component in each object, so that it can . . .
always be active, capable of performing state transitions and handling
asynchronous events. Hence an actfite object bw is defined to be a large in the pansL severa h objct-oeented databases have been proposed. In

collection of objects inst•rumented with states and asynchronous state brie, researchers and developer hav approached objeltorented database

transitions. Such a model can be best illustrated by a battlefield, in which all implementation along two lines: by extending the relational model (e g..

command and control units are active obiects, and whose states are extremely POSTGRES (Ston86] 1StRo86J (RoSt87], GENESIS (BBGS861, Starburst

sensitive to environmental changes. Our research addresses five major ISCFL86], Iis (Fsh8l7, EXODUS [GDRS86L and PROBE [DBGIH8611. or by

problems associated with active object bases: representatimon presentation, applying the ideas of object-oriented programming to permanent storage

management, programming, and execution. This paper reports the (e.g., GemStone iMSOP86) and Jaminsm [MaW isi lWiebi6j) MoFZ of the
representation and execution aspects of an object base, taking simulation as systems in the first category have been designed to simulate semarntic data

the domain By representing the control portion of an active object as a models by including mechanisms such as abstract data types, procedural

production system, parallel evaluation of a simulation program is attributes, inheritance, union type attributes, and shared subobjects And

accomplished by compiling objects onto an interconnected network, so that most of the systems in the second category extend an object-oriented

they can be evaluated with parallel, set-oriented operations which effectively programming language with persistent objects and some degree of

utilize the capacity of parallel processors with minimal communication declarative objeci retrieval.
overhead. This paper is organized into the following sections: Survey of Both approaches have drawbacks in processing a large number nf
Related Work, The Object Model, Object-Oriented Simulation, Rule active objects. The first approach suffers from the instability problem
Processing, Incremental Network Compilation, Parallel Evaluation, Primitive resulting from the separation of control and data- The second approach, on
Experiment Results, and Conclusion. the other hand, loses the advantages provided by fact-onented database

operations.

2. Survey of Related Work Aclra Dalabay Sysfems

Work related to the simulation environment described in this paper can The idea of incorporating rules into a database system as integrity
be classified into three categories: object-oriented and parallel simulation constraints and triggers came about in with the early CODASYL systems in
systems, object-oriented databases, and active databases. the form of ON conditions. More recently, the idea of combining rules and

data has received much serious consideration. -he term "active dataoase"
has been used frequently in referencing such databases. For example, rules

Obic.d-Orienufd and Paralld Simulalion Sysgems have been built into POSTGRES (RoSt87l there are no differences between
The featiures provided by the object-oriented paradigm naturally lead constraints and triggers; all are implemenited as a single rule mechanism In

to the use of the object-oriented paradigm in simulation systems To our addition. POSTGRES allows queries to be stored in a data field which is
knowledge, more than a dozen object-oriented simulation lan- evaluated whenever the field is retrieved In HFPAC [DBBC881 the concept
guages/systems have been developed; a survey of such systems/languages of Event-Condition-Action (ECA) rules was proposed. When an event

occurs, the condition is evaluated; if the condition is satisfied, the action is
executed. It can be shown that ECA rules can be used to realize integrity

I This work is funded by the Office of Naval Technology, Code 227, Computer constraints, alerts, and other facilities. Rules have also been included in the

Technology Block Program through the Office of Naval Research ASEE Summer context of object-oriented databases. In Starburst [WiC[.91), for example,
Faculty Research Program rules can be used to enforce integrity constramts and to tnggr crnsa'quc.,

"--tions In Irs [Fish7:, a query can be monitored by first defining it as a

113

THIS

PAGE
IS

MISSING

IN
ORIGINAL

DOCUMENT

2 The calling object resumes execution immediately after the reply be executed in the future), which is convertud u, the form ot pnroluti.'r

received from the called object. and compiled into the network by the network builder It nme"ssary, tte
value of the clock associated with the prits.ss is updated based •'•, the

Communication between two objects is said to beasynchronoi f the operaton(s) At this point, if a causality error tv•urs rtoe's-sari rsll~,sa am

calling object continues its execution after a message is sent The nrply performed in the proxesses involved

associated with the message is Later picked up by a rereme operation These
can be accomplished with the following method predicates.

" m:sendO, which is true if a message n is sent from the object to Via Operatlotts)

another object. The message contains the tender, the recipient, a
tmestamp, the method to invoke, and a set of arguments if
necescAry.

"* m:receive)O which is true if a message m is received at the object- A I

Based on the above, an operation of the form ca.....) implements a m 6
synchronous communication; It is equivalent to a send operation immediately
followed by a receive operation. f a send operation is followed by a receive
operation in a deterministic state, with some other operations in between
them, then the communication is more or less synchronous OGt us call it semi-
synchronous). If a send operation is followed by a receive operation in an i otmmunlilcaosn
indeterministic state, then the communication ii, -synchor.ous. Operatlons

Figure 2. Logic of the simulator.
4. Ob-ed-Odevited SimuLation

As discussed in Section 2. most of the existing object-oriented As described, this approach merges a set of process objects into a
simulation systems provide an object-oriented user interface so that a (much) smaller set of operation processes Simulation can be perfrn-md
simulation program can be described in an easy and friendly fashion, synchronously or asynchronously. Asynchronous simulatiin is mr,,r,
Execution of an object-oriented simulation program can be completely complicated as different versions of the same object must be considered kii
sequential or fully distributed as the program specifies- As attractive as it making a decision. This will be reported in a separate raper. *, 6,
seems. executing a simulation program as a fully distributed, ob)ect-oriented synchronous mode, a global clock is employed so that every pr,•cess obit Ls
system could be inefficient due to the shortage of physical resources and the synchronized with respect to the global clock The network can be ev-as!aole
overhead associated with process management. Motivated by this, our continuously every clock cycle or discretely according to the eterts
approach is to compile an object-oriented simulation program in which each produced. It requires, however, that the states of each objeci be reconded and
process object is represented as a production system. into a (production) rule rollbacks be performed whenever causality errors ai deteected
network. If each process object is treated as a passive object then each node Since the object model allows obrects t be shared among d ifferen•
of the network corresponds to a set-oriented operation. The compiled processes (although they are accessed through messages), serLizability
network (or the set of operations of the network) is evaluated in parallel- (BeHG,87 must be maintained all the time. This means that the effects
Cha~nges created by multiple processes which are executed concurrently should be the

same as those created by a (any) serial schedule among the processes 7o

Logical assure this, the design employs the two-phase locking protocol which
requires all objects accessed by a process be locked before accessed, that all

Physical locks be acquired before any unlock, and that all objects be unlocked before
Simulator the process terminates. Oearly, two-phase locking cannot be tmplemented at

the method level, because two consecutive method calls can violate the two-
phase requiremnenL Consequentlv, it is required that each method lock any

Builder ssors object it may access but not to subsequently unlock It. The list of locked

Builde objects should be returned to the calling process so that it can unlock the
locked objects before terminating.

Rule Network

O S. Rule processing
In general, the processing of production rules or integrity constraints

O e can create serious performance bottlenecks when a large volume of facts and

- . . J rules are integrated. Since multiple instances of the same class share the

Figure 1. Structue of the simulator, same copy of production rules, it is useful to compile a set of rules into one
system in which some set-oriented operations can be employed to process the
data (treated as sets) collectively. Furthermore, given a set of rules, it is

to objects are generated at the terminals of the network. Events generated by fruitfuJ to merge those expressions that are courmon to tnerre than one rule so
a process, if any, are expressed as new production rules and are compiled that duplicated effort can be avoided- A network approach is taken for this
into (and removed fromn) the newwork dynamically. The overall architecture purpose. This approach is similar to the RETE algorithm
of the object-oriented simulator is shown in Figure 1. When operational, the ([ACAR86){Forg821). but is more general in the treatment of logical formulas
simulator executes a loop with the following steps (see Figure 2): Although integrity constraints and production rules are treated slightly
fir~cir $ded ion differently, both are processed based on a network that is comrdled from a set

of logical formulas.
The rule network is evaluated. At the terminals of the network, events

are generated. This step basically selects those processes which have one or
more productions eligible for firing based on their current states. Proisng Integrity Constraints

Given a set of constraints lfh "- F- f n -0 rn, at the outset, each

Production Firin constraint f, - r, is converted into the form f, ^ - r, (i.e. the negation of the
original rule). All the converted rules are subsequently compiled into a

F,,r _h process selected, the actions associated with each production network (see below) in which each rule corresponds to a tsrnural i*f #f,
rule, which is ready to fire, am taken. (Note that a rule, which is ready to Ere, 1'-nm -r the netwk, arid therp i, oo violation of h- nit' ii no ie-!- n an
could be an event created earlier) S,-b .- actio, -,juld IN aui oux.auon "flow ,ut from that terminal
wrich change- ti, .aiiue uf a (passive) object, a communication operation
(send and/or receive), or an operation which produces an event (which wil

I l~q• !,,:,,-.•. • , ... 11..

THIS

PAGE
IS

MISSING

IN

ORIGINAL

DOCUMENT

S Iselected to inplement r' with the curent retwoark I .e tollowing pn••ýdure

cost (RN.C)-a C -tii I I calnbe folowed toidentiy all the FoSS•blecovers for Y'i -l j -1
I

"CB 4 Y, I ai f (e (nj, MI) (e (ni, 2))l Idenrilfng CoEsfr A New Rule
d -1

input: N andr as described in the above

lb °1 (e (nsi))I output. C, the set of all the covers for r with rrspect to N.

i-I
Step I

where CB I the sum of the cabinalties of the base relaons which are Let C . 4, T - in, J I n, e Kn I

initially read for joins or selections. Since MGFs are counted only once, the
sharing of information In the relational network are reflected in the above Stup 2
cost hfnction. Once a network Is built, it cam be ev-aluated irremnen- Fund u and v of T where f (iu) ^(vj) is more general than a sub-
tally. , ewi! ope,-,o is v-,,-nluated onice baed on the initial state
of the system. In the meant•me, for each operation, the results am stored. .rmtLaofr ' andi 1isnotiTorC iatthipoint ^t,- ,W. VIS

Subsequently, as the state of the system is changed, only thoseues which a cover for r ; therefore C - C 'A tu(, V I. Otherwise. let T - T U, II U. v II

are affected by a changed fact need to be evaluated during each iteration. Repeat this step until no more of u anid v paent can be found.
When an update of the database is made, operations are performed from the
bottom of the network. Frt the updated fact Is matched against the MGPs.
Only those MGC? having the same head as the updated fact and whose
arguments can be unified by the arguments of the updated fact ame activated 7. Paralel Evaluation of a Rule Network
After the appropiate MGPs are activated, the operations o0mnected to the
activated MPS re activated. For each activated operation node, the comtent The following approaches can be applied in order to evaluate a rule

of the stored result Is changed according to the change(s) in its input network, depending on how logical objects are packed into physical oblects

relations. I the update Is an addition of a new fact, a new tuple of values
may be added after a select operation. If the update is a deletion, the tuple
corresponding to the deleted fact may be deleted from the result stored in the
operation node after a select operation. Similarly, tuples may be deleted In this approach, each node of the network is implemented as a

from the result of a join operation if some tuples are deleted from its inputs; physical object, where each terminal node is a dams object and each internal

and tuples may be added into the result of a join o if some tuples we node is an operation object. The network is evaluated as an active network

added into its inputs. A modification of an esting fact can be hndeby which operates in a pipelined fashion. Specifically, each operation oblect re-

first deleting the old fact followed by adding the new fact, Alter all the tileies inputs from its input object(s) and produces the outputs. wtuch are
related operations to am update are prmd, the final changes obtained at available to the operation object(s) at the next higher level. Unlike operation

each terminal node awe applied to the assocated action(s) nodes, each cdas object functions as a data store from which data can be
retrieved by operation objects,

p(1,2,3),q(a41,3) a,,Z3),q(a,4, p(Z).q(J,4,#)W,(4,34 li hSapprah ahtria i is implmne as as et of objc
in which each object corresponds to a subset of a class. The network is
transformed into an equivalent network iin which each terminal node
corresponds to a subclass object. The transformation can be done in a
stralght-krward.fashon based on the following principles:

JA3).(A643)JI. (R -Rl UR 2)^~(S -S-j VS2) eR lxi S - (RI 1 " Slx I-(R
& Ilxi S2)R(2 lIxlS1 l)-(R 2 WlS 2

q(aI2,3) q(1,2A) 2. (R - Rl % R2) ,, selecF (R seldF (RI) usdectF (2)

Cearly, ths approach can achieve a higher degree of parallelism.
pIZ)"1) r(1,2) however it is more complicated to,.mpletrent. In addition,, the number of

operator objects can grow exponentially as each class is split into smaller and
smaller subsets.

Figure 3. A rule network.

I Prisitive Experiment Results

6. lucreesetal Network Compllatio" Some primitive experiments have been performed on an ENCORE

Let N be a rule network corresponding to the set of production rules R parallel computer (with four processors) to compare the performance of
- r rtl end let p - PI A P2 ^ ... A pn be the condition part of a new different approaches for a simple semario. The scenarioconsists of a number

production rule r fl. Also let Nn n-. I be the set of nodes of N and the of battle divisions comprising two sides, blue and red. The divisions ar
fdunction. frmaplea I'. Ao let Neto hit,.,s corespondng o njuncties formulahe initially located on the boundaries of a battlefield which is modeled by a

cio, f, map each hi, 1 : i !5 s, to its corresponding •ojucive formula. square of grid tiles. The scenario is set up so that all the red divisions are
A simulator requires that N be revised with minimal effort to a new network distributed on the east border of the battlefield and the blue divisions a"
Nwtsidt o7oesponds to th augmented nu. set R -rl,...,vt . disibuted on the west side. Once Initiated, the blue divisions march to the

Instead of recompiling the augmented rule set from scratch, it i west and the red divisions march to the east. Throughout the simulation
desirable to6 ncrementaly connect the new rule Into the existing network. To eac division is characterized by its strength, speed, direction of movement,

" of tand its location. When two divisions of opposite sides encounter each other,
r the new rule, r, with respect to N Is defined to be any the strength of the weaker is reduced to zero, and the strength of the stronger

subset of In1 ,..as I from which r can be derived. The cost of a cover is is reduced by that of the weaker. On the other hand, when two divisions of
defined to be the sum of the costs associated with the nodes and the arcs the same side meet with each other, they are merged into a larger division

which have to be added into the network so that r" can be computed from the In any case, the number of divisions in each gra tile cannot exceed two
nodes of the cover. Among all the covers, the one with the smallest cost is The scenario was simulated using four approaches: sequentual (S),

paralld synchnimous (PS), esynchronous (A). and the network eppromch (N) as

117

