AD-A265 641 _

O N

EHAIEINAN rcumenTaTION PAGE sl |)

fimated 1o average 1 hout per (esponse. InCiuding the time fof reviewling Instiuctiung
malntaining the cala needed, and compieting and reviewing tiie collection of information Send comments regarcingthls burden estimale ot any other
suggestlons for reduclng this burden, to Washington Headquarters Services, Directorate for Information Operalions and Reports 1215 JeMerson Davis rugh (AR LRgl
and 1o the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washincien. DC 20507

1. AGENCY USE ONLY (Leave blank 2 REPORT DATE
March 1993

3 REPCART TV AND LATEZ GOV

Professional paper

4. TITLE AND SUBTITLE

AN OBJECT-ORIENTED PARALLEL SIMULATION ENVIRONMENT PR: ECB2

L FUNGING NUHBEL R,

PE: 0602234N

8. AUTHOR(S)
L. dJ. Peterson and P. C-Y Sheu

WU: DN30086

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

8 PERFORMING CRGANIZATION
REPORT NUMBLR

8. SPONSORING/MONTTORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
Block Programs
San Diego, CA 92152-5001

10 SPONSORINGMONITGRING
AGERCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

122 DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT {(Maximurn 200 words)

08 & ¢ N33

This paper describes an approach to parallel object-oriented simulation. Parallel evaluation of simulation programs is
accomplished by compiling objects into sets and production rules so that they can be evaluated with parallel, set-oriented
operations which effectively utilize the capacity of parallel processors with minimal communications overhead.

Published 1n Proceedings 1993 Object Oriented Simulated Conference, January, 1993.

93-12969
I

14. SUBJECT TERMS

massive parellel processing

15 NUMBER OF PAGES

high performance computing 16 PRICE CODE
17. SECURITY CLASSIFICATION I 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
CINCLASSIFIED UUNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard form 268 (FRONT)

UNCLASSIFIED

21a NAME OF RESPONSIBLE INDIVIDUAL 21b TELEPHONE (include Area Coae} 21¢ OFFICE SYMBOL
L. J. Peterson (619) 553-4070 Code 421
Acce-inn For -
T
NTIS CRigy \)
LS T
\ ‘e
toa 1 i
Jor '
Ol
By]
D'*t ot !
e e
e ' ¢S
POAVAL G ,“_;,:_ -
Dist AT
ISTORNOT
A-1|2o
»
.»»
o
NSN 7540-01-280-5600 SUNdard form 298 (BACKQ

UNCLASSIFIED

AN OBJECT-ORIENTED PARALLEL SIMULATION ENVIRONMENT

Phillip C-Y. Sheu (sheu@caip rutgers edu)
Department of Electrical & Computer Engineening
Rutgers University
Piscataway, NJ 08855

Abstract® This paper describes an appruach to parallel objeci-oriented
simulation. Parallel evaluation of simulation programs is accomplished by
compiling objects into sets and production rules so that they can be evaluated
with parallel, set-oriented operations which effectively utilize the capacity of
parallel processars with minimal communication overhead.

1. Iatroduction

Since Smalltalk was introduced in the early 805, it has been generally
accepted that object-oriented programuming languages can provide a number
of attractive features for software development [n an object-oriented system,
data can be naturally expressed as a set of ¢ bjects. This feature is very general
and can handle any type of conceptual abstraction and organization. A
collection of abstract classes and their Lscociated algorithms (methods),
constitute the kind of framework into which particular applications can insert
their own spedialized code by constructing concrete subclasses that work
together. With the method/message protocol, objects can be acoessed
without knowledge of their internal structures. (lasses can be organized into
hierarchies so that ail methods and attributes of a class can be automatically
inherited by all of its subclasses. In addition, the nature of object-oriented
representations suggests that an object-oriented simulation program can be
executed in parallel.

Unfortunately, despite the nice features described above, the object-
oriented methodology has focused on general-purpose programming with no
definition of object control, management, and information retrieval. Our
research by and large addresses the area called “active object base®. Our
definition of active objects goes beyond the traditional object-orienied
paradigm by induding a control component in each object, so that it can
always be active, capable of performing state transitions and handling
asynchronous events. Hence an active object base is defined to be a large
collecdon of objects instrumented with states and asynchronous state
transitions. Such a maodel can be best illustrated by a battlefield, in which all
command and control units are active objects, and whose states are extremely
sensitive to environmental changes. Our research addresses five major
problems sssodated with active object bases: representation, presentation,
management, programming, and execution. This paper reports the
representation and execution aspects of an object base, taking simulation as
the domain. By representing the control portion of an active object as a
production system, parallel evaluation of a simulation program is
accomplished by compiling objects onto an interconnected network, so that
they can be evaluated with parallel, set-oriented operations which effectively
utilize the capacity of parallel processors with minimal communication
overhead. This paper is organized into the following sections: Survey of
Related Work, The Object Model, Object-Oriented Simulation, Rule
Processing, Incremental Network Campilation, Paralle]l Evaluation, Primitive
Experiment Results, and Conclusion.

2 Survey of Related Work

Work related to the simulation environment described in this paper can
be classified {nto three categories: object-oriented and paralle! simulation
systems, object-oriented databases, and active databases.

-Qri rail
The features provided by the object-oriented paradigm naturally lead
to the use of the object-oriented paradigm in simulation systems. To our
knowledge, more than a dozen object-oriented simulation lan-
guages/systems have been developed. a survey of such systems/languages

imsdation

! This work is funded by the Office of Naval Technology, Code 227, Computer
Technology Block Program through the Office of Naval Rescarch ASEE Summer
Facuity Research Program

larry | Peterson (pémosc mul)
Naval Command, Control and (cean Surverlance Cenur
RDT&E Drvision (NRaldy, Code 421
San Dhego, CA 92152-5000

can be found in [ThRMU90}. Typically. such systems/languages exiend an
object-onented programming language with the necessary comstructs for
simulatdon, for instance, with “..the notion of simulaton ume and
mechanisms for entities in the language to mampulate sumulaton time ~
Mors30].

The problem with parallel processing of sumulation systems har a
tracted much attention recently. A number of parallel computation models
and their associated problems have been investigated {[Fup20]{Mors90l. The
models can be classified into two categones: synchronous and asynchroniaus
In a synchronous, paralle} simulation system, processes and even's are
scheduled and executed by the simulator with a global clock Fach process,
however, in an asynchronous, parallel sumulation system mantains its own
dock, and processes and evenis are scheduled and executed 1n a fully dis-
tributed fashion. This means there exists no scheduler to synchronuze the
events globally. According to (Fup90], “ . few sumulator events oacur at any
single point in simulated time; therefore paralielization techruques based on
lock-step execution using a global sinwlation clock perform poorly or require
assumptions in the timing model that may compromise the fidelity of the
simulation.” Accordingly, “Concurrent execution of events at duferent pownts
in simulated time is required, but. ., this introduces interesting synchroniza-
tion problems...” Most of these synchronization problems anse from data
dependencies among different processes which run at different speeds
Approaches to the synchronization problems can be in turn disanguushed by
two approaches: conservative and optimistic. A conservauve approach
prevents any synchronization problem from happening, but it degrades per-
formance. An optimistic approac.: allows synchronization problems to oc-
cur, and rollbacks are often necessary once these problems are detected

Obiect-Ori Datat

In the past, several object-oriented databases have been proposed. In
brief, researchers and developers have approached object oriented database
implementation along two lines: by extending the relational model (e g.
POSTGRES [Ston86] {StRo86] [RoS5187), GENESIS (BBGS86), Starburst
[SCFL86], Iris {Fish87], EXODUS [GDRS861. and PROBE [DBGH86]), or by
applying the ideas of object-oriented programming to permanent storage
(e.g, GemStone MSCP86) and Jasmine [MaWiBo; {WiebB6]). Mos! of the
systemns in the first category have been designed to simulate semantic data
models by including mechanisms such as abstract data types, procedural
attributes, inheritance, union type attributes, and shared subobycts And
most of the systems in the second category extend an object-oriented
programming language with persistent objects and some degree of
declarative object retrieval.

Both approaches have drawbacks in processing a large number of
active objects. The first approach suffers from the instablity problem
resulting from the separation of control and data The second approach, on
the other hand, loses the advantages provided by fact-oriented database
operations.

Actrye Database Systems

The idea of incorporating rules into a database system as integrity
constraints and triggers came about in with the early CODASYL systems 1n
the form of ON conditions. More recently, the idea of combining rules and
data has received much serious consideration. ihe term “acove datapase”
has been used frequently in referencing such databases. For example, rules
have been built into POSTGRES {Ro5t87): there are no differences between
constraints and triggers; all are implemented as a single rule mechanism. In
addition, POSTGRES allows queries to be stored in a data field which is
evaluated whenever the field is retrieved. In HiPAC (DBBC881 the concept
of Event-Condition-Action (ECA) rules was proposed. When an event
occurs, the condition is evaluated; if the condition is satisfied. the acton is
executed. It can be shown that ECA rules can be used to realize integnty
constraints, alerts, and other facilities. Rules have also been incJuded in the
context of obyect-oriented databases. [n Starburst {WiCL91), for example,
rules can be used to enforce integrity constraints and to tngger consequc..
*rions In Irs [Fish87., a query can be momitored by first defining st as a

113

THIS
PAGE
IS
MISSING
IN
ORIGINAL

DOCUMENT
W//S/

2. The calling object resumes execution immechately after the reply is
received from the called object.

Communication between two objects is said to be asynchronous if the
catling object continues its execution after a message is sent The noply
assoaated with the message is later picked up by a recerve operation These
can be accomplished with the following method predicates:

® msend(), which is true if a message m is sent from the object to
another object. The message contains the sender, the recpient, a
timestamp, the method to invoke, and a set of arguments if
necescary.

® mreceive() which is true if a message m is received at the object

Based on the above, an operation of the form ca(....) implements a
synchronous communication; it is equivalent to a send operation immediately
followed by a receive operation. { a send operation is followed by a receive
operation in a deterministic state, with some other operations in between
them, then the communication is more or less synchronous (et us call it semi-
synchronious). If a send operation is followed by a recaive operation in an
indeterministic state, then the communication i= asynchrorous.

4. Object-Oriented Simulation

As discussed in Section 2, most of the existing object-oriented
simulation systems provide an object-oriented user interface so that a
simulation program can be described in an easy and friendly fashion.
Execution of an object-oriented simulation program can be completely
sequential or fully distributed as the program specifies. As attractive as it
seems, executing a simulation program as a fully distributed, object-oriented
system could be inefficient due to the shortage of physical resources and the
overhead associated with process management. Motivated by this, our
approach is to compile an object-oriented simulation program, in which each
process object is represented as a production system, into a (production) rule
network. If each process object is treated as a passive object, then each node
of the network corresponds to a set-oriented operation. The compiled
network (or the set of operations of the network) is evaluated in parallel.

fa Physical
i Simulator
etwork ssors
Builder ‘
Rule Network
] Objects]

Figure 1. Structuze of the simulator.

to objects are generated at the terminals of the network. Events generated by
a process, if any, are expressed as new production rules and are compiled
into (and removed from) the ne.work dynamically. The overall architecture
of the object-oriented simulator is shown in Figure 1. When operational, the
simulator executes a loop with the following steps (see Figure 2):

r iory

The rule network is evaluated. At the terminals of the network, events
are generated. This step basically selects those processes which have one or
more productions eligible for firing based on their current states.

p o Firi

Fur - ._h process selected, the actions associated with each production
rule, which is ready to fire, are taken. (Note that a rule, which is ready to fire,
could be an event created earlier) Su-h & active wwuld be an uperauon
which changes tiw vaiue uf a {passive) object, a communication operation
(send and/or receive), or an operation which produces an event {which will

be executed in the future), which 1s convernd o the (omm of production ruies
and compiled into the network by the network tarlder It necessary, the
value of the clock assoaated with the process 1s updated based om the
operation(s} At thus pont, if a causality eTrur ocvury. necessary rollbacks are
performed in the processes wnvolved

Tpdate Objects
, ——
r [Via Operations)

evise Rule
Network

ule Network
Evaluation

senerae
Events

Communication
’_ A ——
Operations

Figure 2. Logic of the simulator.

As described, this approach merges a set of process obpcts 1nto a
(much) smaller set of operation processes Sumulaton can be perfarmed
synchronously or asynchronously. Asynchronous simulation 15 more
complicated as different versions of the same objpect must be considered i
making a decision. This will be reported in a separate paper.
synchronous mode, a global dock is employed so that every process object 1
synchronized with respect to the global cdloxk The network can be evaluated
continuously every clock cycle or discretely according to the everts
produced. It requires, however, that the states of each obpect be recarded and
rollbacks be performed whenever causabty errors are detected

Since the object model allows objects to be shared among duferent
processes (although they are accessed through messages), serualizability
{BeHCS7] must be maintained all the time. Thuis means that the effects
created by multiple processes which are executed concurrently shauid be the
samne as those created by a (any) serial schedule among the processes. To
assure this, the design employs the two-phase locking protocol. which
requires all objects accessed by a process be locked before accessed, that al
locks be acquired before any unlock, and that all objects be unlocked before
the process terminates. Clearly, two-phase locking cannot be implemented at
the method level, because two consecutive method calls can violate the two-
phase requirement Consequently, it is required that each method lock any
object it may access but not to subsequenty unlock 1t The List of locked
objects should be returned to the calling process so that it can unlock the
locked objects before terminating.

Lot

S. Rule Processing

In general, the processing of production rules or integnty comstraints
can create serious performance bottlenecks when a large volume of facts and
rules are integrated. Since multiple instances of the same class share the
same copy of production rules, it is useful to compile a set of niles into one
system in which some set-oriented operations can be employed to process the
data (treated as sets) collectively. Furthermore, given a set of rules, it 1s
fruitful to merge those expressions that are common o more than one rule so
that duplicated effort can be avoided. A network approach s taken for thus
purpose. This approach is similar to the RETE algonthm
([ACARB6}{Forg&21]), but is more general in the treatment of logical formulas
Although integrity constraints and production rules are treated shghuy
differently, both are processed based on a network that 1s compiled from a set
of logical formulas.

71 ing {ntegrit nstraints

Civen a set of constraints {f —» 71 ... [, — r,l, at the cutset, each
constraint f; — r;is convented into the form f; A ~r, (i.e, the negaton of the
original rule). All the converted rules are subsequently compuded into a
network (see below) in which each rule corresponds to a termunal a¢ +he
wtnm ~f the network. and there ic ho violatinn of “he rube i noresa!™ can
“fluw” out from that tenminal

THIS
PAGE
IS
MISSING
IN
ORIGINAL

DOCUMENT
pro— (/@

t m

cost (RN)=Cpg ‘.z L] oEllmi !
)-

im
1

aCg + Y, (a; *f (e lnjy N[(elnj; D)
‘a1

m

.’% 18 *f (e lusi»)

where Cpg is the sum of the cardinalities of the base relations which are
initially read for joins or selectians. Since MGFs are counted only once, the
sharing of information in the relational network are reflected in the above
cost function. Once a network is built, it can be evaluated ingemen-
wlly. Sperifically, ench operation is evaluated once based on the initial state
of the system. In the meantime, for each operation, the results are stored.
Subsequently, as the state of the system is changed, only those rules which
are affected by a changed fact need to be evaluated during each iteration.
When an update of the database is made, operations are performed from the
bottom of the network. First, the updated fact is matched against the MGPs.
Only those MGPs having the same head as the updated fact and whose
arguments can be unified by the arguments of the updated fact are activated.
After the a te MGPs are activated, the operations connected to the
activated ave activated. For each activated operation node, the content
of the stored result {s changed according to the change(s) in its input
relations. If the update is an addition of a new fact, a new tuple of values
may be added after a select operation. If the update {s a deletion, the tuple

to the deleted fact may be deleted from the result stored in the
operation node after a select operation. Similarly, tuples may be deleted
from the result of a join operation if some tuples are deleted from its inputs;
and tuples may be added into the result of a join operation if some tuples are
added into its inputs. A modification of an existing fact can be handled by
first deleting the old fact followed by adding the new fact. After all the
related operations to an update are performed, the final changes obtained at
each terminal node are spplied to the associated action(s).

|P(1.2.9).9(0,1.3)] |p(22.3).9(8,4.3) |p(1.2,3).9(1.4,0).(4,3)

g

P(1.2,3),q9(s,4,3)

[z |

[e@237]
LP(1:23) | r«uw)%]

Figure 3. A rule network.

[2)

6. Incremesntal Network Compilation

Let N be a rule network corresponding to the set of production rules R
={rf.,...nl and letp wp7 A p2 A ... A pn be the condition part of a new
production rule 7. Also let Ny = [n7,...,n5} be the set of nodes of N’ and the
function, f, map each n;, 1 <i < s, to its corresponding conjunctive formula,
A simulator requires that N' be revised with minimal effort to a new network
N which corresponds to the aupmented rule set R = {ry,...ry7 §.

Instead of recompiling the augmented rule set from scratch, it is
de<irable to incrementally connect the new rule into the existing network. To
realize this, a cover of the new rule, 7, with respect to N is defined to be any
subset of [ny,...n4} from which ¢ can be derived. The cost of a cover is
defined 0 be the sum of the costs associated with the nodes and the arcs

which have to be added into the network so that r can be computed from the
nodes of the cover. Among all the covers, the one with the smallest cost is

selected to implement ¢ wath the current network Tne toliowing procedure
can be fallowed 1o identify all the possible covers for r :

Identifying Covers for A Naw Rule
input: N and ¢ as described in the above
output. C, the set of all the covers for r with respect to N,

Step 1
LetC we, T «{im)t mye Ny

Step2
Findu and 0 of T where f () f(p) is moTe general than a sub-
formu'aof - and (ko llisnotinT or C. atthispaintu Ao =7 , v Jis
a cover for r ; therefore C = C {{w, v l}. Otherwise, letT =T U flu,o if
Repeat this step until no more of u and v pairs can be found.
=]

7. Parallel Evaluation of 2 Rule Network
The following approaches can be applied in order to evaluate a rule
network, depending on how logical objects are packed into physical objects:

Class-Levd Parallelizn

In this approach, each node of the network is implemented as a
physical object, where each terminal node is a clase object and each internal
node is an operation object. The network is evaluated as an active network
which operates in a pipelined fashion. Specifically, each operaton obgpect re-
trieves inputs from its input object(s) and produces the outputs, which are
available to the operation object(s) at the next higher level. Unlike operation
nodes, each class object functions as a data store from which data can be
retrieved by operation objects.
2et-Level Paulleliom

In this approach, each terminal node is implemented as a set of objects,
in which each object corresponds to a subset of & class. The network is
transformed into an equivalent network in which each terminal node

corresponds to & subclass object. The transformation can be done in »
straight-forward fashion based on the following prindiples:

L. R=RjUR}IA(S =51 US2) =R IxIS « (Ry Ixi Sy VU(Ry
Ixt §3 JURy Ix1S; YU(Ry Ix153)

2. (R =Ry Ry)= selecty (R) = selectp (R) usdectp (Ry)

Qlearly, this approach can achieve a higher degree of paralelism,
however it is more complicated to implement. In addition, the number of
operator objects can grow exponentially as each class is split into smaller and
smaller subsets.

8. Primitive Experiment Resalts
Some primitive experiments have been performed on an ENCORE
parallel computer (with four processors) to compare the performance of
different approaches for a simple scenario. The scenario consists of a number
of battle divisions comprising two sides, blue and red. The divisions are
initially located on the boundaries of a battlefield which is modeled by a2
of grid tiles. The scenario is set up so that all the red divisions are
distributed on the east border of the battlefield and the blue divisions are
distributed on the west side. Once initiated, the blue divisions march to the
west and the red divisions march to the east. Throughout the simulation
each division is characterized by its strength, speed, direction of movement,
and its location. When two divisions of opposite sides encounter each other,
the strength of the weaker is reduced to zero, and the strength of the stronger
is reduced by that of the weaker. On the other hand, when two divisions of
the same side meet with each other, they are merged into a larger division.
In any case, the number of divisions in each grid tile cannot exceed two
The scenario was simulated using four approaches: sequennal (S),
paralld synchronous (PS), asynchronous (A), and the network approack (N) as

117

