“_ﬁ

[AD-A265> 600 jraionbacE
' ARRIERNR

Management ang Budgel wasninglon, LG LU
1. AGENCY USE ONLY (Leave Blank}

Form Apgproved
OPM No. 0704-0188
hour Per 1ESPONEA . 1 iuding e 1:Me 10! reviewing MELLCTIONS. 843:ChING G1ISLNG CATA SOUCES QAN 37D MM v e 0ala

16 Durden eshmale or &7y 0ther 2508t of g COlSCION O KHOIMAON NCIUGIK + AJQUSICTE ' L1 feOYIg T8 Lo 10 Washingon
Jatterson Davie Highway, Sulle 1204, Arkngron. VA 22202-4302. ang to e Othice o informaton anc Reguiatory Aftars. Onos of

2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

Final: 5 Aug 92

5. FUNDING NUMBERS

(3 TITLE AND SUBTITLE
Validation Summary Report: DDC-|, Inc., DACS MIPS RISC/os to MIPS R3000 Barg
Ada Cross Compiler System, Release 2.1-16, MIPS M/120-5 (host) => Lockheed
Sanders STAR MVP R3000/R3010 Board (target), 92080551.11263

['6. AUTHOR(S)

National Institute of Standards and Technology

Gaithersburg, MD

USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Institute of Standards and Technology

National Computer Systems Laboratory

Bldg. 255, Rm A266 o

Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCGY NAME(S) AND ADDRESS(v ‘ ‘ € ;

Ada Joint Program Office ED 51 t
12

8 PERFORMING ORGANIZATION
REPORT NUMBER

NIST92DDI510_1_1.11

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

United States Department of Defense —\’EC 3
Pentagon, RM 3E114 ; yNO3 199 I
Washington, D.C. 20301-3081 '{f‘\ 3

11. SUPPLEMENTARY NOTES

S e == = A A v ==
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

120. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DDC-I, Inc., DACS MIPS RISC/os to MIPS R3000 Bare Ada Cross Compiler System, Release 2.1-16, MIPS M/120-5
(under RISC/os Version 4.50) (host) to Lockheed Sanders STAR MVP R3000/R3010 Board (bare machine) (target), ACVC
1.11

93-12472
P ISR

93 ¢ O ¢

74 SUBJECT TERMS
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

15. NUMBER OF PAGES

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSUMIL-STD-1815A, AJPO.

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT _
UNCLASSIFIED

8. SECURITY CLASSIFICATION
UNCLASSIFED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

e ————————————
20 LIMITATION OF ABSTRACT

NSN 7540-01-280-550

Standard Form 298, (Rev 2-89)
Presctibed by ANSI Std. 239-128

AVF Control Number: NIST92DDI510_1 1.11

DATE COMPLETED

BEFORE ON-SITE: 92-07-24
AFTER ON-SITE: 92-10-06

REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 92080551.11263

DDC-I, Inc.

DACS MIPS RISC/os to MIPS R3000 Bare Ada Cross Compiler System,

Release 2.1-16

MIPS M/120-5 => Lockheed Sanders STAR MVP R3000/R3010 Board

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

P QUaL Ty INSPECTED o

Accesion For

NTIS CRA& X
DTIC TAB

Unannounced P

dustification

BY o,
Distribution/

aveeedraaian s anmee s aen

Availability Cotles

' Avall and/{or
Dist Special

-1

AVF Control Number: NIST92DDI510_1 1.11
Certificate Information
The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on August 05, 1992.

Compiler Name and Version: DACS MIPS RISC/os to MIPS R3000 Bare
Ada Cross Compiler System, Release

2.1-16

Host Computer System: MIPS M/120-5 under RISC/os Version
4.50

Target Computer System: Lockheed Sanders STAR MVP

R3000/R3010 Board (bare machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
92080581.11263 is awarded to DDC-I, Inc. This certificate expires
2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

o
: Sty ~——T e
Ada Validatio Ada Validation Facility
Dr. David K. Jeffe Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

M, Ll

/&f/

Ada Va&lidation Organization ~Kda Joint Program Office
Direétot' omputer & Software Dr. John Soloaond
Engineerinfng Division Director

Institute for Defense Analyses Department of Defense

Alexandria VA 22311 Washington DC 20301

NIST92DDI510_1 1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: DDC-~I, Inc.

Certificate Awardee: bDDC-I, Inc.

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS MIPS RISC/os to MIPS R3000 Bare
Ada Cross Compiler System, Release

2.1-16

Host Computer System: MIPS M/120-5 under RISC/os Version
4.50

Target Computer System: Lockheed Sanders STAR MVP

R3000/R3010 Board (bare machine)
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-181S5A I1SO
8652~-1987 in the implementation listed above.

/. . s) .
A/éfi//ﬁﬁz 7%4;L/€Aé;¢£ ety éi/ﬁzéx{
Customer Signature Date”
Company DDC-I, Inc.

fiﬁ}f: President

2y - ~ V2
G T b M g b 199
Certiticate Awardee Signature Date’

Conmpany DDC-I, Inc.
Title: President

TABLE OF CONTENTIS

CHAPTER 1 . . . ¢ o ¢ ¢ ¢ o o o« o o o o
INTRODUCTION . .« .« o ¢ o o o o o o « o &
1.1 USE OF THIS VALIDATION SUMMARY

1.2 REFERENCES

1.3 ACVC TEST CLASSES

1.4 DEFINITION OF TERMS . . .

CHAPTER 2 . . . &« « ¢ o o o & e o o e .

IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS
2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS

CHAPTER 3 .+ ¢ ¢ & ¢ ¢ ¢ o ¢ o « o s o « =

PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT . . .
3.2 SUMMARY OF TEST RESULTS .
3.3 TEST EXECUTION

APPENDIX A . . . ¢ ¢ & o o o & o s o «
MACRO PARAMETERS« . .
APPENDIX B« . . o e e e .

COMPILATION SYSTEM OPTIONS
LINKER OPTIONS « + .« &

APPENDIX C

APPENDIX F OF THE Ada STANDARD . . .

REPORT

»

.

.

e e
| t L
WK

NN
! |
B e e

WWwWwWww
| I I B
N e

|
—

7RY XX
N

29
W

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90) against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 1In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systens,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

{Adag83) Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User’s Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK_FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3. .

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada

Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user’s guide and the template for

the validation summary (ACVC) report.
Ada An Ada compiler with its host computer system and
Implementation its target computer system.
Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) system.
Ada The part of the certification body which carries
Validation out the procedures required to establish the

Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.

(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.

Implementation
Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

ISso

LRM

Operating
System

Target
Computer
Systen

Validated Ada
Compiler

Validated Ada
Implementation

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, proce=s or service of
all requirements specified.

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro90].

1-4

validation

Wwithdrawn
test

The process of checking the conformity of an Ada
compiler tc¢ the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVQO)} at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the A F. The publication date for
this list of withdrawn tests is 91-08-0Z.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B c83026A Cc83041Aa
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A cCi223a BCl226A CCl226B
BC3009B BD1BO2B BD1BO6A AD1BOS8SA BD2A02A CDZ2AZ21E
CD2A23E CcD2A32A CD2A41A CD2R41E CD2AB7A CD2B15C
BD3006A BD4008A CcDh4o022Aa CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED70C5D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CDS005A CD3005B CDAZO1lE
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DICITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..2 (15 tests)

2-1

C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..Z (15 tests)
C45641L..Y (14 tests)

C45321L..Y (14 tests)
C45521L..2 (15 tests)
C45621L..2 (15 tests)
C46012L..2 (15 tests)

C24113I..K (3 TESTS) use a line length in the input file which
exceeds 126 charac.ers.

The following 21 tests check for the predefined type SHORT_ INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG INTEGER;
for this implementation, there is no such type:

C35404¢C C45231C C45304cC C45411cC C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C Cc45632C B52004D
C55B0O7A B55B09C B86001W c86006C CD7101F
C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,

LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B&6001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for

this implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation’s largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than

2-2

type DURATION; for this implementation, there is no such type.
C96005B uses values of type DURATION’s base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on dgeneric units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

and AD8011A use machine
provides no package

BD800O1A,
code insertions;
MACHINE CODE.

BDSOO3A, BD80O4A..B (2 tests),
this implementation

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to createz a file and expect NAME_ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external

files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE32032 EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)

CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE?406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2.3

TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A E33301B
B35101A B37106A B37301B B37302Aa B38003A B38003B EG8002A
B38009B B55A01A B61001C B61001F B61001H B61001I Ba100IM
B61001R B61001W B67001H B83A07A B83A07B B83A07C ESCHDIC
B83EO1D BS83EOQ1lE B85001D B85008D B91001A BS1002a Be100eB
B91002C B91002D B91002E BS1002F B910062G B91002H EB10RT
B91002J B91002K B%1002L B95030A B95061A B95061F BE061G
B95077A BS7103E B971046G BA100O1A BA1101B BC1109A B110eC
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report’s body, and thus the
packages’ calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit’s body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled

2-4

after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This iIs acceptable behavior because
this implementation does not support external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

In addition to the host computer system and the target computer
system, there are execution controllers which are a pair of
cooperating processes. The Remote Process Administrator (RPA) runs
under MIPS RISC/os and is a translator/ downloader. The Remote
Process Monitor (RPM) runs on the target MIPS R3000 bare machine
(the Lockheed Sanders STAR MVP R3000/R3010 board OR the Integrated
Device Technology (IDT) board). The two processes communicate via
a RS232 1link. The RPM is constantly executing on the target
computer waiting for requests from the RPA process on the host
computer.

For technical information about this Ada implementation, contact:

Jonathan Schilling
DDC-Inter, Inc.
New York, NY 10017
Telephone: 212-661~5100 ext. 221
Telefax: 212-661-5472

For sales information about this Ada implementation, contact:

Jennifer Collins
DDC-I, Inc.

410 North 44th Street, Suite 320
Phoenix, AZ 85008
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer’s
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

3-1

When the Ada program finishes its execution, it gives control back
to the RPM. The RPA then gives control back to the user on the
MIPS RISC/os.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the ©processing options for this
implementation. In general default options were used except as
detailed below. The options invoked explicitly for validation
testing during this test were:

For all tests the following explicit option was invoked:
-a which specifies the current library.

In addition to the above, the following explicit option was invoked
for the B tests and E tests:

-1 which specifies that a compilation listing be produced.
Test output, compiler and 1linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in {UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX IN LEN 126 =-- Value of V

$BIG_ID1 (1..V-1 => 'A’, V => 1)

$BIG_ID2 (1..V-1 => 7A!, V => 127)

$BIG_ID3 (1..v/2 => 'A’) & '3’ & (1..V-1-V/2 => ‘A’)
$BIG_ID4 (1..V/2 => ’A’) & '4' & (1..V-1-V/2 => ‘A’)
$BIG_INT LIT (1..V=3 => ’0’) & "298"

$BIG_REAL_LIT (1..V=-5 => 70’) & "690.0"

$BIG_STRING1 rwr & (1..V/2 => 'A") & 'V

$BIG_STRING2 v & (1..V=-1-V/2 => 'A’) & 17 & 'V
SBLANKS (1..V=-20 => 7 1)

$MAX LEN_INT BASED LITERAL
"2:" & (1..V-5 => ’0’) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => ‘0’) & "F.E:"

$MAX STRING LITERAL '"/ & (1..V-2 => ‘A’) & ‘"7

The following table contains the values for the remaining macro

parameters.

Macro Parameter

————— - —— ————_—— - -

$ACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT_MEM_SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
SENTRY_ADDRESS
S$ENTRY_ADDRESS1
$ENTRY_ADDRESS?2
$FIELD_LAST
SFILE_TERMINATOR
$FIXED_NAME
$FLOAT_ NAME
SFORM_STRING

$FORM_STRING2

Macro Value

G - ——— T ——— - A —— " ——— . -~ t—

2_147_483_647
4%1024*%1024*%1024

8

MIPS

1.0/2.0%*(system.MAX MANTISSA)
SYSTEM.MODx

SYSTEM.TLBL

SYSTEM.TLBS

35

v

NO_SUCH_FIXED_TYPE
NO_SUCH_FLOAT_TYPE

“CANNOT_RESTRICT_ FILE CAPACITY"

$GREATER_THAN_ DURATION 131_071.0

SGREATER_THAN DURATION_ BASE_LAST 131_072.0

$GREATER_THAN FLOAT BASE_LAST 2#1.0#E129

SGREATER_THAN_ FLOAT_ SAFE_LARGE

2#0.111111111111111111111#E126

SGREATER_THAN SHORT FLOAT SAFE LARGE 0.0

SHIGH PRIORITY

255

$ILLEGAL EXTERNAL_FILE_NAME1l ILLEGAL_FILE NAME 1

$ILLEGAL EXTERNAL FILE NAME2 ILLEGAL_FILE_ NAME 2

S$INAPPROPRIATE LINE_LENGTH -1

S$INAPPROPRIATE PAGE_LENGTH -1

$INCLUDE_PRAGMA1
$INCLUDE_PRAGMA2
$INTEGER_FIRST
$INTEGER_LAST
$INTEGER_LAST_PLUS_1
$INTERFACE_LANGUAGE

$LESS_THAN DURATION

PRAGMA INCLUDE("A28006D1.TST")
PRAGMA INCLUDE ("B28006F1.TST")
-2147483648

2147483647

2_147_483_648

ASSEMBLY

-131_072.0

$LESS_THAN_DURATION_BASE_FIRST -131_073.0

SLINE_TERMINATOR

$LOW_PRIORITY

177

0

$MACHINE_CODE_STATEMENT NULL;

$MACHINE_CODE_TYPE
$MANTISSA_DOC
$MAX_DIGITS

$MAX_INT
$MAX_INT_PLUS_1
$MIN_INT

$NAME

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2

$NAME_SPECIFICATION3

NO_SUCH_TYPE
31

15

2147483647

2 _147_483_648
-2147483648
NO_SUCH_INTEGER_TYPE
MIPS
NAME_SPEC_1
NAME_SPEC_2
NAME_SPEC_3

A-3

$NEG_BASED_ INT
SNEW_MEM_SIZE
$NEW_STOR_UNIT
SNEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
STASK_SIZE
$TASK_STORAGE_SIZE
$TICK

$VARIABLE ADDRESS
SVARIABLE ADDRESS1
SVARIABLE ADDRESS2

$YOUR_PRAGMA

16 #FFFFFFFE#
4%1024%1024%1024

8

MIPS

77

NEW INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
32

1024

2.0%%(-14)
16#800E0000# —- 2%%32
16#800F8000# - 2%%32
16#80100000# - 2%%32

N A --test withdrawn

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
not to this report.

Appendix B
Compilation System Options Used

The following pages contain excerpts from the appropriate sections of the DACS Unix to MIPS R3000 Bare Ada
Cross Compiler System User's Guide, showing all the compiler and linker options.

When the ACVC tests are compiled, default compiler options are generally used. The only exceptions are:

e for all tests, the -a library-name option, which specifies the current program library to compile into, is
used

e for B-tests and certain E-tests, the -1 option, which specified that a compilation listing is to be produced,
is used

When the ACVC tests are linked, default linker options are generally used. The only exceptions are:
e forall tests, the -a library-name option, which specifies the current program library to link from, is used

e for some tests, the -0 "string" option, which specifies override values for stack and heap allocations, is
used (this option is only used for those tests that cannot run using the default stack and heap allocations)

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into MIPS R3000 object code.

Diagnostic messages are produced if any errors in the source code are detected. Wamning messages are also pro-
duced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal representation of the compilation, which

includes any dependencies on units already in the program library, is stored in the program library as a result of a
successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the Unix assembler as(1) to translate
this assembly code into object code, and then stores the object code in the program library. (Optionally, the gen-

erated assembly code may also be stored in the library.) The invocation of the Assembler is completely transparent
to the user.

4.1. The Invocation Command

The Ada Co.npiler is invoked by submitting the following Unix command:

% adamips {option} source-file-name ({source-file-name}

4.1.1. Parameters and Options

Default values exist for all options as indicated below.

source-file-name
This parameter specifics the file containing the source text to be compiled. Any valid Unix file name may be used.

If the file name specified does not have a suffix, then the suffix .ada is assumed.

More than one file name can be specified. Each source-file-name may contain pattern matching characters as
defined by the shell (such as "*" and "?7"). The compilation starts with the leftmost file name from the command
line, and ends with the rightmost. If any of the file names specified contain matching characters, the matching files
are compiled in alphanumeric order. If any file name occurs more than once in this process, then it is compiled

4-2 The Ada Compiler

more than once.

The format of the source text is described in Section 4.2.1.

L or -l

The user may request a source listing by means of this option. The source listing is written to the list file. Section
4.3.1 contains a description of the source listing.

If the option is not present, no source listing is produced, regardless of any use of pragma LIST in the program or of
any diagnostic messages g~ ™ ~ed.

In addition, this option provides generated assembly listings ior each compilation unit in the source file. Section
4.3.3 contains a description of the generated assembly listing,

X

A cross-reference listing can be requested by the user by means of this option. If it is present and no severe or fatal
errors are found during the compilation, the cross-reference listing is written to the list file. The cross-reference
listing is described in Section 4.3.1.3,

-a file-name

This option specifies the current sublibrary and thereby also specifies the current program library, which consists of
the current sublibrary through the root sublibrary (see Chapter 2). If the option is omitted, the sublibrary desig-
nated by the environment ariable ADAMIPS_LIBRARY is used as the current sublibrary.

&

Section 4.4 describes how the Ada compiler uses the current sublibrary.
¢ file-name

This option specifies the configuration file to be used by the compiler in the current compilation.

If the option is omitted, the configuration file designated by the file name $release/compiler/config is used oy
default. Section 4.2.2 contains a description of the configuration file.

-n
N check_kind {check_kind}

check_kind ::= index | access | discriminant | length | range |
division | overflow | elaboration | storage | all

By default, all run time checks will be generated by the compiler.

‘When the -b option is specified, all runtime checks will be suppressed.

The Ada Compiler 4.3

When the -N option is used, the checks corresponding to the particular check kinds specified will be omited. These
kinds correspond to the identifiers defined for pragma SUPPRESS [Ada RM 11.7].

Suppression of checks is done in the same manner as for pragma SUPPRESS (see Section F.2).

-W

Use of this option directs the compiler to accept an extended set of address clauses for interrupt entries, correspond-
ing to additional interrupts found in the GISA architecture (sce Sections F.5 and F.8).

S or -s

By default, the source text of the compilation unit is stored in the program library. In case that the source text file
contains several compilation units, the source text for each compilation unit is stored in the program library. The
source texts stored in the program library can be extracted using the Ada PLU type command (see Chapter 3).

By using the -S or -s option, this saving of the source text will not occur. While this will reduce somewhat the

space needed by the program library, it will also prevent automatic recompilation by the Ada Recompiler, and
hence is not recommended for normal use.

-k

When this option is given, the compiler will store the generated assembly source code in the program library, for
each compilation unit being compiled. By default this is not done. Note that while the assembly code is stored in
the library in a compressed form, it nevertheless takes up a large amount of library space relative to the other infor-
mation st-red in the library for a program unit. =

This option does not affect the production of generated assembly listings.
P

When this option is given, the compiler will write a message to the standard cutpuvt as each pass of the compiler
starts to run. This information is not provided by default.

-d
-D limit_opt | full_opt

When this option is given, the compiler will generate symbolic debug information for each compilation unit in the
source file and store the information in the program library. By default this is not done.

This symbolic debug information is used by the DACS Unix to MIPS R3000 Bare Symbolic Cross Debugging Sys-
tem.

If -D full_opt is specified (which is also the default if just -d is specified), the compiler will generate code with all
optimizations enabled. This code will be the same object code as if the option had not been specified at all (though
there may be some minor differences in the generated assembly code, due to some extra labels being present).
However, this full level of optimization may result in some unreliable symbolic debug information being produced.

4-4 The Ada Compiler

If -D limit_opt is specified, the compiler will suppress those optimizations which might result in unreliable sym-
bolic debug information. These optimizations include code motion across Ada statement boundaries; not storing the
values of Ada variables 10 memory across statement boundaries; and the eliminaton of unnecessary library pack-
age elaboration routines. Users may also wish to specify this option to make the gencrated machine code more
understandable relative to the Ada source code.

The remaining options pertain to the various optimizing components of the compiler. By default, the compiler
operates with all optimizations turned on. The principal reason why users might want to turn off some optimiza-
tions is covered by the -D limit_opt option described above, and that option should be used accordingly.

The options described below directly turn off particular optimizing components, and should only be used to circum-
vent the capacity or other problems described below.,

-f

This pertains to the "front end” optimizer. This sometimes places capacity limits on the source program (e.g.,
number of variables in a compilation unit) that are more restrictive than those documented in Section F.13. If a
compile produces an emror message indicating that one of these limits has been reached, for example

*** 1562S-0: Optimizer capacity exceeded. Too many names in a basic block.
then use of this option will bypass this optimizer and allow the compilation to finish normally.
3

This pertains to the "g-code” (intermediate language) optimizer. This optimizer presents no spcaal capacxty or
other problems, so use of this option is unlikely to be necessary.

U

This pertains to the "back end” optimizer. This optimizer is the most powerful in the compiler, and accordingly
uses a fairly large amount of host resources, in both CPU time and virtual memory. If such resource utilization is
causing a problem or is undesired, then this option may be used.

Examples of option usage

% adamips navigation_constants
% adamips -Ix event_scheduler.a

% adamips -p -a test_versionsalb /usrl/source/altitudes b

[remainder of chapter deleted]

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

Chapter §
The Ada Linker

Before a compiled Ada program can be executed it must be linked into a load module by the Ada Linker.
In its normal and conventional usage, the Ada Linker links a single Ada program.

The Ada Linker also has the capability to link multiple Ada programs into one load module, where the programs
will execute concurrently. This capability, which is outside the definition of the Ada language, is called multipro-
gramming, and is further discussed below.

The Ada link, while one command, can be seen as having two parts: an “Ada part” and a "MIPS pant”.

The Ada part performs the link-time functions that are required by the Ada language. This includes checking the

consistency of the library units, and constructing an elaboration order for those library units. Any errors found in
this process are reported.

To effect the elaboration order, the Ada link constructs an assembly language “elaboration caller routine” that is
assembled and linked into the executable load module. This is a small routine that, during execution, gets control
from the Ada runtime executive initiator. It invokes or otherwise marks the elaboration of each Ada library unit in
the proper order, then returns controf to the runtime executive, which in turn invokes the main program. The action
of the elaboration caller routine is transparent to the user.

If no errors are found in the Ada part of the link, the MIPS part of the link takes place. This consists of assembling
the elaboration caller routine, then invoking the DACS Unix to MIPS R3000 Bare Cross Linker, linking the pro-
gram unit object modules (stored in the program library) and the elaboration caller routine together with the neces-
sary parts of the Ada runtime executive (and some other runtime modules needed by the generated code). The out-
put of the full Ada link is an executable load module file.

The invocations of the MIPS Assembler and Linker are transparent to the user. However, options on the Ada link
command allow the user to specify additional information to be used in the target link. Through this facility, a wide
variety of runtime executive optional features, customizations, and user exit routines may be introduced to guide or
alter the execution of the program. These are described in the DACS Unix to MIPS R3000 Bare Ada Run-Time Sys-
tem User's Guide. This facility may also be used to modify or add to the standard DACS Unix to MIPS R3000 Bare
Cross Linker control statements that are used in the MIPS part of the link; in this way, target memory may be pre-

cisely defined. The control statements involved are described in the DACS Unix to MIPS R3000 Bare Cross Linker
Reference Manual.

{portion of chapter deleted]

5.2 The Ada Linker

5.1. The Invocation Command

The Ada Linker is invoked by submitting the following Unix command:
% adamips.link {option} main-program-name (main_program_name)

As part of the "MIPS pant” of an Ada link, a temporary subdirectory is created in /tmp (unless the -k or -K option
has been used, in which casé it is created below the current directory). Use of this subdirectory, the name of which
is constructed from the Unix process-id, permits concurrent linking in the same current directory. The subdirectory
contains work files only, and it and its contents are deleted at the end of the link.

5.1.1. Parameters and Options

Default values exist for all options as indicated below.

main-program-name

If a single program link is being done, main-program-name must specify a main program which is a library unit of
the current program litrary, but not necessanly of the current sublibrary. The hbrary unit must be a parameteriess

procedure. Notc that main-program-name is the identifier of an Ada procedure; it is not a Unix file specification.

When main-program-name is used as the file name in Ada link output (for the load module, memory map file, etc.),
the file name will be truncated to 29 characters if necessary.

K2
If a multiprogramming link is being done, multiple main-program-names are specified, separaied by spaces. The
first name supplied is the one used for the file name in Ada link output.

The first three of the options below pertain to the "Ada part” of the Ada link. The remaining options pertain to the
"MIPS part” of the link.

<1 file-name
-L

This option specifies whether a log file is to be produced during the linking. By default no log file is produced.
If -L is used, a log file named main-program-namelog is created in the current directory. If -1 and a file
specification are given, that file is created as the log file. The contents of the log file are described in Section 5.3.

-a file-name

This option specifies the currenc sublibrary and thereby also the current program library, which consists of the
cwrrent subhbrary through the root sublibrary (see Chapter 2). If the option is omitted, the subhbrary designated by
the environment variable ADAMIPS_LIBRARY is used as current sublibrary.

The Ada Linker 5.3

This option specifies that a multiprogramming link be done. By default a single program link is done.
0 “symbol-name=value{ symbol-name=value)"

This option is used to override certain default values that are used by the Ada runtime executive. If the opdon is
omitted, no overriding takes place

The option specifies a quoufd string, containing one or more special symbol assignments that override the default
values of these symbols. Numeric values are treated as decimal.

If a multiprogramming link is done, suffixes are used in the special symbol names to indicate which programs the
overrides are for.

Since the option value cannot be continued onto a new line, an altemative method is available if a large number of
overrides must be specified. This involves creating a file of Assembler preprocessor directives specifying the over-
rides, and then defining that file with the environment variable adamips_rte_opts.

The names of these special symbols, their default values, and the runtime behavior that they control, are described
in the Ada Run-Time System User's Guide, as are the details of the alternative method.

-5 file-name

This option specifies the file name of "standard” DACS Unix. to M{IPS R3000 Bare Cross Linker control statements
that are to be used for all links for an installation or project. If the option is omitted, the environment vagiable
adamips_std_ctl is assumed to define such a file. If that environment variable is not defined or the specified file
does not exist, no standard control statements are used.

« file-name
-C

This option specifies the file name of "user” DACS Unix to MIPS R3000 Bare Cross Linker control statements that
are to be used for this particular link. If -C is used, main-program-name.ctl is used as a default. If the opton is
omitted or the specified file does not exist, no user control statements are used.

The files designated by the previous two options are used to form the full input control statement stream to the
DACS Unix to MIPS R3000 Bare Cross Linker, in this concatenated order:

"standard” control file (if it exists)
<statements generated by the Ada part of the link>
“user” control file (if option active and it exists)

The statements generated by the Ada part of the link are usually just object_file statements for the elaboration
caller routine(s) and main program(s).

The Compiler System is delivered with the environment variables described above defined to files that contain
default sets of standard control statements. These consist of the minimal relocation statements required by the

5.4 The Ada Linker

DACS Unix to MIPS R3000 Bare Cross Linker, and various other necessary directives.

-u directory-list

This option specifies a colon-separated list of directories that contains either user-dependent RTE modules, such as
a change to the task scheduler for a particular application, or pragma INTERFACE (ASSEMBLY) bodies for sub-
programs that are not library units (see Section F2). Modules in this list’s directory(ies) are taken ahead of those in
the directories specified by the -t option (see below) and those in the standard RTE directories (including those

RTE modules in the predefined library). If the option is omitted, environment variable adamips_user_rts is used,
if it has been defined. .

-t directory-list

This option specifies a colon-separated list of directories that contains MIPS-implementation(target)-dependent
runtime executive (RTE) modules, such as modules to do character /O for a particular simulator or microprocessor.
Modules in this list's directory(ies) are taken ahead of those in the standard RTE directory. If the option is omitted,
environment variable adamips_target_rts is used, if it has been defined.

-d

When this option is given, the Ada Linker will produce a symbolic debug information file, containing symbolic
debug information for all program units involved in the link that were compiled with the -d or -D options present.
By default no such file is produced, even if some of the program units linked were compiled with a debug option.

This symbolic debug information file is used by the DACS Unix to MIPS R3000 Bare Symbolic Cross Debugging
System.

K4

The show -invocation_command command of Ada PLU may be used to determine what options units in the pro-
gram library were compiled with.

It is important to note that the identical executable load module is produced by the Ada Linker, whether or not this
option is used.

By default, the "diagnostic traces" of the Ada runtime executive are linked in and activated. These traces print out
information when unusual conditions occur, such as unhandled exceptions and task deadlock. See the Ada Run-
Time System User's Guide for full details.

By using the -i option, these diagnostic traces will not be linked in or activated.

-T

When this option is present, the "optional traces” ‘of the Ada runtime executive are linked in (but not activated).
These traces print out information during normal program execution, to assist in debugging and in better under-
standing program behavior. See the Ada Run-Time System User' s Guide for full details.

By default, the optional traces are not linked in.

The Ada Linker 5-5

- "DACS Unix to MIPS R3000 Bare Cross Linker options"
This option specifies a string containing one or more command options to be passed to the execution of the DACS

Unix to MIPS R3000 Bare Cross Linker.

<k naumber
-K

This option, when used with no number, results in the Ada link stopping after the "Ada part” has done all Ada-
required checking, and has created a command file (Unix Bourne shell script) (located in the temporary subdirec-
tory) that executes the "MIPS part”, but before that file has actually been invoked.

When used with number 1, the file is invoked, but stops before the DACS Unix to MIPS R3000 Bare Cross Linker
is invoked, leaving the temporary subdirectory and its files in place. When used with number 2, it executes the

DACS Unix to MIPS R3000 Bare Cross Linker but then stops before the symbolic debug information file is pro-
duced.

This option is useful for trouble-shooting, or for giving the user an intervention point for Ada link customizations
not covered by any of the available options.

5.12. Examples

Some examples of single program and multiprogramming links:

% adamips.link flight_simulater # single program

% adamips.link -m able baker charlie # multiprogramming
An example of overriding default runtime executive values, in this case the systemn heap size and main stack size:

% adamips.link -0 "rtheapsz1=48*1024,rtmstacksz1=8000" flight_simulator

An example cf overriding values when multiprogramming is involved (the system heap size is overridden for each
program):

% adamipsdink -m -0 "rtheapsz1=20*1024,rtheapsz2=12*1024,rtheapsz3=50*1024" able baker charlie

Now, an example of introducing "user” DACS Unix to MIPS R3000 Bare Cross Linker control statements:
% adamips.link -C test_driver

where test_driver.ctl in the current directory contains

5-6 . The Ada Linker

scarch_path is
/dma/object
end
object_file is
dmacheck
end
informational messages are off

Now, an example of the use of user and target RTE directories:

% setenv adamips_target_rts "/tektronix/io/test:/tektronix/io”
% adamips.link -u "/sys_user/test/stor_mgr" flight_simulator

Runtime executive modules will be looked for in the directory specified by the -u option, then in the two directories
specified by the adamips_target_rts environment variable, and lastly in the standard RTE directory.

To revert to referencing only the standard RTE directory:

% unsetenv adamips_target_rts
% adamips.link flight_simulator

[remainder of chapter deleted]

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies —correspond to
implementation-dependent pragmas, to <certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2_147_483_648..2_147_483_647;

type FLOAT is digits 6 range -2#1.0#E128..
2#0.111111111111111111111#E128;

type LONG FLOAT is digits 15
range -2#1.0#E1024..
2#0.1111111111111111131121123111311111111111221111111111111#E1024;

type DURATION is delta 2**(-14)
range -131_072.0..131_071.0;

end STANDARD;

Appendix C ,
Appendix F of the Ada Reference Manual

Y

This appendix includes in its entirety Appendix F from the DACS Unix to MIPS R3000 Bare Ada Cross Compiler
System User's Guide.

Note that the implementation-specific portions of the package STANDARD are included in this appendix, as Sec-
tion F.1. '

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the DACS Unix to MIPS R3000 Bare Ada Cross Compiler System, including those required in the Appendix F
frame of Ada RM.

F.1. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STANDARD [Ada RM Annex C], and the relevant attributes of these types.

F.1.1. Integer Types -

One predefined integer tyi)e is iinplemented, INTEGER. It bas the following attributes:

INTEGER'FIRST = -2 147 483 648
INTEGER'LAST = 2 147 483 647
INTEGER'SIZE = 32

No other predefined integer types (such as SHORT_INTEGER or LONG_INTEGER) are implemented, as
there are no corresponding underlying machine base types.

F.1.2. Floating Point Types
Two predefined floating point types are implemented, FLOAT and LONG_FLOAT. They have the following
attributes:

FLOAT'DIGITS
FLOATFIRST

6
2#10#E128

[]

SE A

F-2 | Appendix F of the Ada Reference Manual

FLOATLAST 2#0.111111111111111111111#E128

FLOATMACHINE_EMAX = 128
FLOAT'MACHINE_EMIN = -125
FLOAT'MACHINE_MANTISSA = 24
FLOAT'MACHINE_OVERFLOWS = TRUE
FLOAT'MACHINE_RADIX = 2
FLOAT'MACHINE_ROUNDS = TRUE
FLOAT'SAFE_EMAX = 125
FLOAT'SAFE_LARGE . = 2#0.111111111111111111111#E125
FLOAT'SAFE_SMALL ' = 2#0.1#E-125
FLOAT'SIZE = 3
LONG_FLOAT'DIGITS 15
LONG_FLOATFIRST -2#1.0#E1024

LONG_FLOAT'LAST

LONG_ FLOAT’MACHINE EMAX = 1024
LONG FLOA’I"MACI—HNE EMIN = -1021
LONG_FLOATMACHNE_MANTISSA = 53
LONG_FLOAT'MACHINE_OVERFLOWS = TRUE
LONG FLOAT’MACHINE “RADIX = 2
LONG FLOA'I"MACH]NE “ROUNDS = TRUE
LONG FLOAT'SAFE EMAX = 1023

|

LONG FLOAT’SAFE LARGE
LONG FLOAT’SAFE SMAILL
LONG_ “FLOAT'SIZE ~ ~

2#0.1#E-1023
64

-4

No other predefined floating point types (such as SHORT_FLOAT) are implemented, as there are no
corresponding underlying machine base types.

F.13. Fixed Point Types

One kind of anonymous predefined fixed poiat type xs unplemcntcd fixed (which is not defined in package
STANDARD, but is used here only for reference), as well as the predefined type DURATION.

For objects of fixed types:, 32 bits are used for the representation of the object.

For fixed there is a virtual prcdcﬁned type for each possible value of smail [Ada RM 3.5.9]. The possible values
of small are the powers of two that are representable by a LONG_FLOAT value, unless a length clause specify-

ing T"SMALL is ngen in which case the specified value is us;d.

The lower and upper bounds of these types are:

lower bound of fixed types
upper bound of fived types |

-2_147 483 648 * small
2 147 483 647 * small

oo

A declared fixed point type is represented as that predefined fived type which has the largest value of small not
greater than the declared delta, and which has the smallest range that includes the declared range constraint.

Any fixed point type T has the following attributes:

2#0.11 11111#E1024

2#0.11111131111111113123131111713311111111113111111111111#E1023

Appendix F of the Ada'R'éfer"éiice Manual e o F-3

TMACHINE OVERFLOWS
TMACHINE_ROUNDS '

TRUE
TRUE

Type DURATION

LS S
'

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 5 \
DURATION'DELTA = DURATION'SMALL
DURATION'FIRST = 131 0720
DURATION'FORE = 7 ,
DURATION'LARGE = 131071999938965E05
DURATION'LAST = 131 0710
DURATION'MANTISSA = 3.
DURATION'SAFE_IARGE = DURATIONLARGE,
DURATION'SAFE_SMALL = DURATION'SMALL
DURATIONSIZE ~ . = 3R
DURATION'SMALL = 2°*(-14) = 6.10351562500000E-05

L

2. Predefined Language Pragmas

This section lists all language-defined pragmas and any restrict.uns on their use and effect as compared to the
definitions given in Ada RM.

7.@
F2.1. Pragma CONTROLLED
This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.
F22. Pragma ELABL .\ATE

As in Ada RM.

F23. Pragma INLINE
This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.c., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement. ’

|
1

F-4 Appendix F of the Ada Reference Manual

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED_CONVERSION or UNCHECKED_DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

4. The subprogram is declared ir a generic unit. The body of that generic unit is compiled as a seion-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

F2.4. Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE_LANGUAGE
in package SYSTEM.

Language ASSEMBLY

Ada programs may call assembly language subprograms that have been assembled with the Unix assembler
as(1). Note that if the host system is DECStation/ULTRIX, assemblies must be done using the -EB option;
otherwise, object code will be produced according to the host (Little-) endianism.

The compiler generates a call to the name of the subprogram (in all upper case). If a call to a different external

name is desired, use pragma INTERFACE_SPELLING in conjunction with pragma INTERFACE (see Section
F.3).

Parameters and results, if any, are passed in the same fashion as for a normal Ada ca.l (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program urits from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-

cedure specification for the main program must contam context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automat c;uly include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object

codz modulc (via the -u option, see Section 5.1}, so that the DACS Unix to MIPS R3000 Bare C Jss Linker can
find it.

Appendix F of the Ada Reference Mapual ’ F.S

Languages C, C+ +, Fortran, and Pascal

It is possible to use pragma INTERFACE to call subprograms written in these other languages supported by
MIPS Computer Systems, Inc. derived compilers. (These are the compilers licensed by MIPS for their RISC/os
systems, by Digital for their DECStation ULTRIX systems, etc.), This is because the object code format and the
compiler protocols [MIPS Appendix D] used by the Compiler System are the same as those used in the MIPS-
supplied compilers. (Note however that special data mapping is done peculiar to the other languages, e.g. it is

the user’s responsibility to null-terminate Ada strmgs when passing them to C, to reconcile Ada versus Fortran
array layouts, etc.) L

Te do this, .compile such subinrograms using the normal Unix compile command (cc(1), etc.). Note that if the
host system is DECStation/ULTRIX, compiles must be done using the -EB option; otherwise, object code will
be produced according to the host (little-) endianism.

Note that C+ + is not a valid language name to pragma INTERFACE; use C instead.

F235. Pragma LIST

Asin.Ada RM.

F2.6. Pragma MEMORY_SIZE

This pragma has no effect. Se¢ pragma SYSTEM' NAME. - - '~

2.7. Pragma OPTIMIZE

This pragma bas no effect. - VoY

2.8. Pragma PACK

This pragma is accepted for array types whose component type is an integer, enumeration, or fixed point type
that may be represented in 32 bits or less. (The pragma is accepted but has no effect for other array types.)

The pragma normally has the effect that in allocating storage for an object of the array type, the components of

the object are each packed into the next largest 2° bits needed to contain a value of the component type. This

calculation is done using the minimal size for the component type (see Section F.6.1 for the definition of the
minimal size of a type).

However, if the array’s componcnt type is declared, with asize spccxf ication length clause, then the components
of the object are each packed into exactly the number of bits specified by the length clause. This means that if
the specified size is not a power of two, and if the array takes up more than a word of memory, then some com-
ponents will be allocated across word boundaries. This achieves the maximum storage compaction but makes
for less efficient array indexing and other array operations.

Some examples:

type BOOL_ARR is array (1..32) of BOOLEAN; -- BOOLEAN minimal size is 1 bit
pragma PACK (BOOL_ARR); -- each component packed into | bit

F-6 PR K Appendix F of the Ada Reference Manual

. .

type TINY_INT is range -2..1; -~ minimal size is 2 bits

type TINY_ARR is array (1..32) of TINY_INT;

pragma PACK (TINY_ARR); ° -- cach comporent packed into 2 bits

type SMALL_INT is range 0..63; -~ minimal size is &6 bits, not a power of two

type SMALL ARR is array (1..32) of SMALL_INT;

pragma PACK (SMALL_ARR); -= thus, each component packed into 8 bits

type SMALL_INT_2 is range 0..63; -- minimal size is 6 bits, but

for SMALL_INT_2/SIZE use 6; == this time length clause is used

type SMALL_ARR_2 is array (1..32) of SMALL_INT_2;

pragma PACK (SMALL_ARR_2); -- thus, each component packed into 6 bits;

-- some components cross word boundaries

Pragma PACK is also accepted for record types but has no effect. Record representation clauses may be used to
"pack” components cf a record into any desired number of bits; see Section F.6.3.

F2.9. Pragma PAGE

As inAda RM.

F2.10. Pragma PRIORITY o Lo

As in Ada RM. See thc DACS Uniz to MIPS 125500 Bare . -ia Run-Time System User’s Guide for how a default
priority may be set. h o '

F2.11. Pragma SHARED "

This pragma has no effect, in terms of the compiler (and a warﬁing message is issued).

F2.12. Pragma STORAGE_UNIT

This pragma has no effect. Sec pragma SYSTEM_NAME.

F2.13. Pragma SUPPRESS

Ouly the “identifier” argument, which identifies the type of check to b~ omitted, is allowed. The "[ON =>]
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all ckecks other than I:)'IVI'SION_C!-'ECK results in the corresponding checking code
not being generated. The implementation of arithmetic operations is such that, in general, pragma SUPPRESS
with DIVISION_CHECX has no effect. In this casc, runtime executive customizations may be used to mask the
overflow interrupts that are used to implement these checks (sce the DACS Unix to MIPS R3000 Bare Ada
Run-Time Systern User's Guidde for details). .

Appeandix F of the Ada'R"efc;"gi}ce Manual AR SR TS g

F2.14. Pragma SYSTEM_NAME Ty

This pragma has no effect. The only possible SYSTEM_NAME is Mips. The compilation of pragma
MEMORY _SIZE, pragma STORAGE_UNIT, or this pragma does not cause an implicit recompilztion of
package SYSTEM.

F3. Implementation-dependent Pragmas

F3.1. Pragma EXPORT

This pragma is used to define an external namc for Ada ob]ccts, so that they may be accessed from non-Ada
routines. The pragma has the form s K

pragma EXPORT (object_namc [,extemal_name__striﬁg_literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Unix assembler as(1) is case-
sensitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package {or package nested within a library package), and
must not be a stahcally-valued scalar constant (as such constants are not allocated iz memory). =

Identical cxtemal names should not be put out by multnplﬂ uses of the pragma (names can always be made
unique by use of the second argument).

Objects which are allocated indirectly by the compiler (such as dynamically-sized arrays and renames of
dynamically-addressed objects) must be so interpreted by non-Ada routines.

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma EXPORT (ABLE);

Baker : STRING(1..8):
pragma EXPORT (Baker, "Baker");

end GLOBAL;

may be accessed in the following assembly language fragment

lw $8,ABLE # get value of ABLE

la $9,Baker # get address of Baker

F-8 Appendix F of the Ada Reference Manual

F32. Pragma IMPORT

]

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram. The pragma has the form

pragma IMPORT (object_name [,external_name_string literal]);

The pragma must appear imnediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Unix assembler as(1) is case-
sensitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package). The
associated object may not have an explicit or implicit initialization.

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma IMPORT (ABLE);

Baker : STRING(1..8); . .
pragma IMPORT (Baker, “Bakeru);

end GLOBAL;

y

are actually defined and allocated in the followirg assembly ianguage fragment

.globl ABLE
.lcomm ABLE, &

. .globl Baker
.lcomm Baker, 8

F33. Pragma INTERFACE_SPELLING
This pragma is used to define the external name of a cubprogram written in another language, if that external
pame is different from the subprogram name (if the names are the same, the pragma is not needed). Note that

the Unix assembler as(1) is case-sensitive; this pragma must be used if the external name is to be other than all
upper case. The pragma has the form

pragma INTERFACE_SPELLING (subprogram_name, external_name_string _literal);
- e . v 1

The pragma should appear after the pragma INTERFACE for the subprogram.

This pragma is useful in cases where the desired external name contains characters that are not valid in Ada
identifiers. For example,-

o o -t T
'

Appendix F of the Ada Refercnce Manual F9

procedure Connect_Bus (SIGNAL : INTEGER);
pragma INTERFACE (ASSEMBLY, Connect_Bus); . - *
pragma INTERFACE_SPELLING (Connect_Bus, "“Connect Bus");

F3.4. Pragma SUBPROGRAM _SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit nuraber. The pragma has the form

pragma SUBPROGRAM _SPELLING (subprogram_pame [.external_name_string literal]);

The pragma is allowed yvheréver a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the object name in all upper case is used as the external name. Note that the Unix assem-

bler as(1) is case-sensitive; the second argument must be used if the external name is to be other than all upper
Ccase. . e U)

B RN 3

This pragma is useful in cases where the subprogram is to be fefercnccd from another language.

'

F.4. Implementation-dependent Attributes

F.4.1. X’PASSED BY REFERENCE

For a prefix X that denotes a formal parameter (of either a subprogram or an entry) or any type, this attribute
yields the value TRUE if the formal parameteris’(or. would be, in the case of a type, assuming a formal param-
eter of that type) passed by reference; it yields the value FALSE otherwise, that is, when the formal parameter

is (would be) passed by copy-in/copy-back [4da RM 6.2 (6-8)]. The value of this attribute is of the predefined
type BOOLEAN., ‘ :

Examples of the use of this attribute:

type SOME_TYPE is ...
B : BOOLEAN ;= SOME_TYPE'PASSED_BY_REFERENCE;

accept E (PARAM : SOME_TYPE) do
if PARAM/PASSED_BY_REFERENCE then

else
end {f;
end E;

e s e ot et e

i ——

F-10 Appendix F of the Ada Reference Manual

F.5. Package SYSTEM
The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS is new INTEGER;

ADDRESS_NULL : constant ADDRESS := 0;

type NAME is (Mips);

SYSTEM_NAME : constant NAME :z Mips;

STORAGE _UNIT : constant 3= §;

MEMORY_S1ZE 3 constant := 4 * 1024 * 1024 * 1024;
MIN_INT s constant 1= <2 147 483 647-1;
MAX_INT 1 constant := 2_147_483_647;
MAX_DIGITS : constant := 15;

MAX_MANTISSA : constant := 31;

FINE_DELTA : constant := 1.0 / 2.0 ** MAX_MANTISSA;
TiCK s constant 3= 1.0 /7 2.0 ** 14;

subtype PRIORITY is INTEGER range 0..255;
type INTERFACE_LANGUAGE is (Assembly, C, Fortran, Pascal);

-- these are the possible ADDRESS values for interrupt entries

MODX s constant ;= 1 % 2%=2. -- (MOD is reserved word)
TLBL : constant = 2 * 2**2.

TLBS s constant := 3 % 2%%2- &=
ACEL : constant := 4 * 2**2:

ACES : constant := 5 * 2%%2;

1BE : constant := 6 * 2%%2;

DBE : constant := 7 % 2**2;

Sys s constant 3z 8 ¥ 2%e2.

8p : constant ;= 9 % 2%%2.

Rl : constant := 10 * 2**2;

cpU : constant := 11 * 2%*2;

ovf : constant = 12 ¥ 2%*2.
Reservedi3 : constant := 13 * 2*w2.
Reservedid : constant = 14 % 2%*2.
Reserved1S : constant = 15 * 2e%2-

SWo : constant := 2**0Q * 2**§;

W : constant := 2%%] * 2++g.

1P0 : constant := 2*%0 ¥ 2+*1Q;
1P1 : constant := 2wl ¥ 2eeqQ.
P2 1 constant = 22 * 2%%q(;
13 : constant sz 2%*3 * 2we{Q.
1P : constant :=z 2*%% * 2%*10; '
19S : constant := 2%%5 * 2%#1Q;

=~ these are only meaningful for the GISA processor

GISAC : constant := JPQ + 1 + O;
Gisal : constant := IPQ + 1 + §;
GIsA2 1 constant := 1P0 + 1 + 2;
GISA3 : constant := [P0 + 1 + 3;
GISAL : constant := IF0 + 1 + 4&;
GISAS : constant := [P0 + 1 ¢+ 5;
GISAé ¢ constant 3= 1P0.+ 1 + §;
GISA7 : constant := 1P0.+ 1 + 7;
GISA8 : constant := [P0 + 1 + 8;
GISA9 : constant := [P0 + 1 + 9;
GISA10 : constant := IPO + 1 « 10;
GIsSAN : constant :x 1P0 + 1.4+ 13;
GISA12 s constant := IPG + 1 + 12;

L ve T

Appendix F of the Ada Refercnce Manual F-11

GISA13 : constant := JPO + 1 + 13;
GISAYL : constant := IFO + 1 « 14;
GISA1S : constant := IPO « 1 + 15;
GISA16 : constant := [P0 + 1 + 16;
GISA17 : constant := IPO + 1 + 17;
GISA18 : constant := [P0 « 1 ¢ 18;
GISA19 : constant := [P0 + 1 + 15;
GISA20 : constant := 1PO + 1 ¢+ 20;
GISA21 T constant := IPO + 1 + 21;
GISA22 : constant := JPQ + 4 ¢ 22;
GISAZ3 v constant := IPQ + 1 + 23;
GISA24 : constant := IP0 « 1 « 24;
GISA2S : constant := IP0 ¢ § + 25;
GISA26 : constant := IPQ + 1 + 25;
GISA2? : constant := IP0 + 1 + 27;
GISA28 : constant := [PO + 1 + 28;
GISA29 : constant := 1P0 + 1 + 29;
GISA30 : constant = IF0 + 1 + 30;
GISA31 : constant := IPJ + 1 + 31;
end SYSTEM;

Note that since timers are not part of the MIPS R3000 architecture specification, different MIPS R3000 target
implementations may contain timers with varying characteristics. This has an effect on the granularity of the
CLOCK function in package CALENDAR. .The valu= of the named number TICK above, which represents
that granularity, corresponds to the MIPS R3000 target implementation that the DACS Unix to MIPS R3000
Bare Ada Cross Compiler System is validated upon. ‘It also is the most common value for the different MIPS
R3000 target implementations that the Compiler System supports; however, for some supported target imple-
mentations, it is incorrect. e
. N | I
For more details on timers and the different’ MIPS R3000 target implementations, see the DACS Unix to MIPS
R3000 Bare Ada Run-Time System User’s Guide.

o
v '
L

F.6. Type Representation Clauses

The three kinds of type rcpresentation claises = length clauses, enumeration representation clauses, and
record representation clauses - are all allowed and supported by the compiler. This section describes any res-
trictions placed upon use of these clauses.

Change of representation [Ada RM 13.6] is allowed and supported by the compiler. Any of these clauses may
be specified for derived types, to the extent permifted by Ada RM.
2 . [w oot 1 oo

L oves - -
.
[.

F6.1. Length Clauses ~ = * P SR

The compiler accepts alf four kinds of length'clauses. = '+
Size specification: T'SIZE
The size specification for a type T is accepted in the following cases.

If T is a discrete type then the specified size must be greater than or equal to the minimal size of the type, which
is the number of bits necded to represent a value of the type, and must be less than or equal to the size of the
underlying predefined integer type.

I - ‘-

The calculation of the minimal size for a typels done not only'in the context of length clauses, but also in the

F-12 _ Appendix F of the Ada Reference Manual

context of pragma PACK, record representation clauses, the T'SIZE attribute, and unchecked conversion. The
definition presented here applies to all these contexts.

The minimal size for a type is the minimum number of bits required to represent all possible values of the type.
When the minimal size is calculated for discrete types, the range is extended to include zero if necessary. That
is, both signed and unsigned representations are taken into account, but not biased representations. Also, for

unsigned representations, the component subtype must belong to the predefined integer base type normally
associated with that many bits.

Some examples: i

type SMALL_INT is range -2..1;
for SMALL_XNT'SIZE use 2; -+ OK, signed representation, needs minimum 2 bits

type U_SMALL_INT is range 0..3;
for U snALL INT/SI2E use 2; -- 0K, unsigned representation, needs minimum 2 bits

type B_SMALL_INT is range 7..10;
for B_ SMALL INT'SIZE use 2; ~-- illegal, would be biused representation
for B_SMALL_INT'SIZE use 4; -- OK, the extended 0..70 range needs minimum 4 bits

type U_BIG_INT is range 0..2%*32-1;
for U_BIG_INT/SIZE use 32; ~-- illegag, range outside of 32-bit INTEGER predefined type

If T is a fixed point type then the specified size must be greatér than or equal to the minimal size of the type,
and less than or equal to the size of the underlying predefined fixed point type. The same definition of migimal
size applies as for discrete types.

If T is a floating point type, an access type or a task type, the specified size must be equal to the number of bits
normally used to represent values of the type (32 or 64 for floating point types, 32 for access and task types).

If T is an array type the-size of the array must be static and the specified size must be equal to the minimal
number of bits needed to represent a value of the type. This calculation takes into account whether or not the
array type is declared with pragma PACK.

If T is a record type the specified size must be equal to the minimal number of bits needed to represent a value

of the type. This calculation takes into account whether’ or not the record type is declared with a record
representation clause.

The effect of a size specification length clause for a type depends on the context the type is used in.

The allocation of objects of a type is unaffected by a length clause for the type. Objects of a type are allocated
to one or more storage units of memory. The allocation of coinponents in an array type is also unaffected by a
length clause for the componeat type (unless the array type is declared with pragma PACK) components are
allocated to one or more storage units. The-allocation of components in a record type is always unaffected by a
length clause for any component types; components are allocated to one or more storage units, unless a record

representation clause is dcclarcd, in which case componcnls are allocated according to the specified component
clauses. _ T

There are two important contexts where it is necessary to use a length clause to achieve a certain representa-
tion. Oane is with pragma PACK, when component allocations of a non-power-of-two bit size are desired (see
Section F.2.8). The other is with unchecked conversion, where a length clause on a type can make that type's
size equal to another type’s, and thus allowed the unchecked conversion to take place (see Section F.9).

pas . Ty !

Appendix F of the Ada Reference Manual b o F-13

Specification of collection size: TSTORAGE SIZE ' "

This value controls the size of the collection (implemeated as a local heap) generated for the given access type.

It must be in the range of the predefined typc NATURAL Space for the collection is deallocated when the
scope of the access type is left .

H

See the DACS Unix to MIPS R3000 Bare Ada Run-Time System User‘s Guide for full details on how the storage
in collections is managed.

Y

Specification of storage for 2 task activation: TSTGRAGE: SIZE

This value controls the size of the stack allocated for the given task. It must be in the range of the predefined
typc NATURAL.

It is also possible to specify, at link time, a default size for all task stacks, that is used if no length clause is
present. See the DACS Unix to MIPS R3000 Bare Ada Run-Time System User’s Guide for full details, and for a
general description of how ta:K'stacks, and other storage assodatcd with tasks, are allocated.

Specification ol‘ a smaII fora ﬁxed point type T’SMALL

Any real value (less than the ,pecxfied delta of the fixed pomt tync) may be used.

F.62. Enumeration Representation Clauses

Enumeration representation clauses may onig"spedfy representations in the range of the predefined.type
INTEGER.

When enumeération répresentation clauses #fe present, the représentation values (and not the logical values) are
used for size and allocation purposes. Thus, for exampje,

-

type ENUM is (ABLE, BAKER, CHARLIE);
for ENUH use (ABLE => 1, BAKER => 4, ChARLIE s> 9),

e
for ENUH'SIZE use 2 --.,_1llegal 1..9 range needs minimum &4 bits
for ENUM'SIZE use'l. = X

" . Lo

type ARR is array (ENUA) of INTEGER; -- will occupy 9 storage mits, not 3

“a 4 L
. .
Enumeration representation, clauses often lcad to. less effi cxcnt attribute and indexing operations, as noted in
[Ada RM 13.3 (6)].
F.63. Record Represent:ntio; Clauses
Alignment clauses are allowed.

The permitted values are 1, 2, and 4. However; if the- typc isused as thc componeat type of an array type, then
the only permitted valuc is 1

In terms of allowable componcnt clauses, rccord components fall into three classes, depending on their type:

F-14 . N : Appendix F of the Ada Reference Manual

¢ integer, enumeration, and fixed point types whose minimal size (sce Section F.6.1) is less than 32 bits;
e statically-bounded array types declared with pragm:'a' PACK, and record types declared with a record
represeantation clause;

e all others.

Components of the “less-than-32-bit integer/enumeration/fixed" class may be given a component clause that
specifies a storage place at ady bit offset, and for any number of bits, as long as the storage place is greater than
or equal to the minimal size of the component type, and less than or equal to 32 bits. Furthermore, if the
storage place is less than 32 bits, the component may cross a word boundary.

Components of the "packed array/record rep clause” class may be given a component clause that specifies a
storage place at any bit offset, if the size of the array or record is less than a word, or at a word offset otherwise.
The size of the storage place must be the same as the minimal size of the array or record type. Note that the
component clause for an array or record component type cannot specify a representation different from that of
the component’s type.

Components of the "all others” class may only be given component clauses that specify a storage place at a word
offset, and for exactly the number of bits normally allocated for objects of the underlying base type.

If a component clause is used for a discrimi;uant, that discriminant must be the only discriminant of the record

type.

An example of the rule regarding array and record component types:

vy e a—— v o —

- PRI S

Appendix F of the Ada Reference Manual F-15

type SMALL_INT is range 0..15;

type INNER_REC is record
A & SMALL_INT;
: SMALL_INT;
end record;

type BOOL_ARR is array (1..8) of BOOLEAN;

type REC_ILLEGAL is record
IR : INNER_REC; D
BA : BOOL_ARR;
end record;
for REC_ILLEGAL use record
IR at 0 range 0..7; «- jllegal, not enough storage space
BA at 0 range 8,.15; ~-- illegal, no: encugh storzcge space
end record;

type INNER_REC_R is new INNER_REC;
for INNER_REC_R use record

A at 0 range 0..3; °

B at 0 range 4..7;
end record;

type BOOL_ARR_P is Pew GCOOL_ARR;
pragma PACK (BOOL_ARR_P);

type REC_LEGAL is record
IR 3 INNER_REC_R;
BA : BOOL_ARR_?;

end record;
for REC_LEGAL use record
IR at 0 range 0..7; -- OK, now that component typs is packed . &

BA at 0 range 8..15; -- OK, now that ccmponent typs has rep. clause
end record;

Component clauses do not have to be in storage order, and tbcre may be gaps in storage between component
clauses. No other components are allocated.in svch gaps,

. S

Components that do not have component clauses are allocated in storage places beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 1K words (32K bits) in size.

The ordcnng of bits within storage units is defincd to be big-endian. That is, bit 0 is the most significaat bit and
bit 31 is the least significant bit. Note that this coavention differs from the one used in [MIPS p. 2-6] for bit-
ordering.

F.7. lmp!ementation-&ependcnt Names for Implementation-dependent Components

None arz defined. ‘ "

F-16 D v | Appendix F of the Ada Reference Manual

F.3. Address Clauses

Address clauses are allowed for variables (objects that are not coastants), and for interrupt entries. Address
clauses are not allowed for constant objects, or for subprogram, package, or task units.
. I VIS

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. (Note that the
effect of such address clauses may depend on the context in which they are instantiated; for example, whether
multiple address clauses specifying the same address are erroneous may depend on whether they are instan-
tiated into library packages or subprograms.)

F3.1. Address Clauses for Variables
Address clauses for variables must be static expressions of type ADDRESS in package SYSTEM.

It is the user’s responsibility to reserve space at link time for the object. See the DACS Unix to MIPS R3000
Bare Cross Linker Reference Manual for the means to do this. Note that to conform with Compiler System
assumptions, space so reserved should begin and end on 16-byte storage boundaries, even if the variable itself is
not allocated on a 16-byte storage boundary. Also note that any bit-addressed object (a packed array or a
record with a representation clause) must be allocated on a fullword (4-byte) boundary.

Because the value of a variable with an address clause must also be stored in memory, rather than kept in a
register, compilations of source units containing references to address clause variables are done with less optim-
izations than normal. The compiler issues a warning message when this happens. The user may want to isolate
such references into small, separately compiled units, to limit the effect of this consequence. =

Type ADDRESS is a 32-bit signed imteger. Thus, addresses in the memory range
16#8000_0000#..16#FFFF_FFFF# (1e the upper half of target memory) must be supplied as negative
numbers, since the positive (unsigned) interpretations of those addresses are greater than ADDRESS’LAST.
Furthermore, addresses in this range must be declared as named numbers, with the named number (rather than
a negative numeric literal) being used in the address clause. The hexadecimal address can be retained in the
named number declaration, and user computation of the negative equivalent avoided, by use of the technique
illustrated in the following example:

X : INTEGER;

for X use at 16#7FFF_FFFF#; -- legat
Y : INTEGER;
for Y use at 16#FFFF FFFF# -« illegal

ADDR_HIGH : constant 3= 14#FFFF_FFFF# - 2**32;
Y : INTEGER; DAL

for Y use at ADDR_HIGH; -- legal, equlvalent to unsngned 16H#FFFF_FFFF#

F.82. Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use target addresses but rather, the values in the target Cause regis-
ter that correspond to particular interrupts. For convenience these values are defined as named numbers in
package SYSTEM, corresponding to the mnemonics used in {MIFS pp. 5-4, 5-5]. Note that if the -w compile
option is on, indicating that the target is the Westinghouse GISA architecture, an additional set of interrupt
values is available (see Sections 4.1.1 and F.5).

e — e e

Appendix F of the Ada Reference Manual 4‘ » F-17

The following restrictions apply to interrupt entries. An interrupt entry must not have formal parameters.
Direct calls to an interrupt entry are not allowed. An accept statement for an interrupt entry must not be part of
a selective wait, i.e., must not be part of a sclect statement. If any exception can be raised from within the accept
statement for an interrupt entry, the accept statement must include an exception handler.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in brder for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the target machine state and with the Run-
time Executive. For these details, see the DACS Unix fo MIPS R3000 Bare Ada Run-Time System User’s Guide.

F.9. Unchecked Conversion
Unchecked type conversions are allowed and supported by the compiler.

Unchecked conversion is only allowed between types that have the same size. In this context, the size of a type is
the minimal size (see Section F.6.1), unless the type has been dec!arcd with a size specification length clause, in
which case the size so specified is the size of the type.

In addition, if UNCHECKED_CONVERSION'& instantiated 'with an array type, that array type must be stati-
cally constrained.

In general, unchecked conversion operates on thc data for a' value, and not on type descriptors or gther
compiler-generated entities. !

re }
For values of scalar types, array types, and record types, the data is that normally expected for the object. Note
that objects of record types may be reprcscnted in two ways that might not be anticipated: there are compiler-
generated extra components representing array type descriptors for each component that is a discriminant-
dependent array, and all dynamically-size array components (whether discriminant-dependent or not) are
represented indirectly in the record object, with the actual array data in the system heap.

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in either direction bétween access types and’type SYSTEM.ADDRESS (which is derived from type
INTEGER). (The only exception is that access objects of unconstrained access types which designate uncon-
strained array types canzot reliably be used in unchecked conversions.) The named number
SYSTEM.ADDRESS_NULL supplizs the type ADDRESS equivalent of the access type literal null: Note how-
ever that due to compiler assumptions about the machine alignment properties of objects, unchecked conver-
sions from SYSTEM.ADDRESS to access objects must be done on 4-byte (word) aligned addresses only.

For values of a task type, the data is the address of the task’s Task Control Block (see the DACS Unix to MIPS
R3000 Bare Ada Run-Time System User’s Guide). .
For unchecked conversions involving types with a size less than a full word of memory, and different representa-
tional adjustment within the word (scalar types are right-adjusted within a word, while composite types are left-
adjusted within a word), the compiler will correctly readjust the data as part of the conversion operation.

Some examples to illustrate all of this:

type BOOL_ARR s array(1..32) of BOOLEAN;
pragma PACK (BOOL_APR);

m s a e o o oy s

F-18 fawi-n: @y Appendix F of the Ada Reference Manual

. : N . ¥] f
function UC is new UNCHECKED_CONVERSION (BOOL_ARR, INTEGER); - OK, both have size 32

type BITS_8 is array(t..8) of BOOLEAN;
pragma PACK (BITS_8); .- . '

function UC is new UNCﬂECKED_CONVERS[Oﬁ (BITS_8, INTEGER); -- illegal, sizes are 8 and 32

type SMALL_INT is range -128..127;
function UC is new UNCHECKED_CONVERSION (BITS_8, SMALL_INT); --0K, both have size 8

type BYTE is range 0..255; :

function UC !s new’ UNCHECKED _CONVERSIONT(BITS_8, BYTE), --0K, both have size 8
type 81G_BOOLEAN is new BOOLEAN;
for BIG_BOOLEAN’SIZE use 8; '

function UC is new UNCHECKED_CONVERSI1ON (BITS_8, BIG_BOOLEAN); --0K, both have size 8

SM @ SMALL_INT; -- actual data is rightmost byte in obfect's word
BI : BITS_8; -- actual data is leftmost byte in object’s word
SM := UC (BI); -- actual data is moved from leftmost to rightmcs: byte as part of conversion

Calls to instantiations of UNCHECKED_CONVERSION are 'a]ways gcnera[ed as inline calls by the compiler.

The instantiation of UNCHECKED | CONVERSION as a h’brary unit is not allowed. Instantiations of
UNCHECKED_CONVERSION may ‘not be used as generic actual parameters.

.

F.10. Other Chapter 13 Areas

F.10.1. Change of Representatlon ‘,

Change of representation is allowed and supported by the compller

F.10.2. Representation Attributes

All representation attributes {Ada RM 13.7.2, 13.7.3) are allowed and supported by the compiler.

For certain usages of the X’ADDRESS attribute, the resulting address is ill-defined. These usages are: the
address of a constant scalar object with a static initial value (which is not located in memory), the address of a
loop parameter (Wthh is not located in memory), and the address of an inlined subprogram (which is not
uniquely located in memory). In all such cases the value SYSTEM.ADDRESS _NULL is returned by the attri-
bute, and a warning message is issued by the compiler,

When the X’ADDRESS attribute is used for a package, the resulting address of that of the machine code asso-
ciated with the package specification.

The X'SIZE attribute, when applied to a type, returns the minimal size for that type. See Section F.6.1 for a full
definition of this size. However, if the type is declared with a size specification length clause, thcn the size so
specified is returned by the atmbutc

Since objects may be allocated in more space than the minimum required for a type (see Section F.6.1), but not
less, the relationship O’SIZE > = T'SIZE is always true, where O is an object of type T.

— i

Appendix F of the Ada Reference Manual e ' F-19

F.103. Machine Code Insertions

Machine code insertions are not allowed by the compiler. Mote that pragma INTERFACE (ASSEMBLY) may
be used as a (non-inline) alternative to machine code insertions.

F.10.4. Unchecked Deallocation
Unchecked storage deallocation is allowed and supported by the compiler.

Calls to instantiations of UNCHECKED_DEALLOCATION are always generated as inline calls by the com-
piler.

The instantiation of UNCHECKED_DEALLOCATION as a library unit is not allowed. Instantiations of
UNCHECKED_DEALLOCATION may not be used as generic actual parameters.

F.11. Input-Output

The predefined library generic packagcs and packages SEQUENTIAL 10, DIRECT_IO, and TEXT_IO are
supplied. However, file input-output is not supported except for the ‘standard mput and output files. Any
attempt to create or open a ﬁIe will result in USE _ ERROR being raised.

TEXT_IO operauons to the standard input and output files are implemented as input from or output to some
visible device for a given MIFS R3000 target implementation. Depending on the implementation, this may be a
console, a workstation disk drive, simulator files, etc. See the DACS Unix to MIPS R3000 Bare Ada Run-Jime
System User's Guide for more details. Note that by default, thc standard input file is empty.

15 e

The range of the type COUNT defined in TEXT_IO and DIRECT_IO is 0..SYSTEM.MAX_INT.
The predefined Lbrary package LOW_LEVEL _IO is empty.

In addition to the predefined library units, a package STRING_OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT_10 operations to the device connected to the stan-
dard output file. (It does not use the actual standard output ¢ file object of TEXT_IO, so TEXT_IO state func-
tions such as COL, LINE, and PAGE are unaffected by use of this package).

The specification of STRING_OUTPUT is:

package STRING_OUTPUT s LR

procedure PUT (ITEM : in STRING);
procedure PUT_LINE (!:T‘EM : in STRING);, -
procedure NEW_LINE;

end STRING_OUTPUT;

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT 10. The advantage of this is that STRING_OUTPUT is smaller than
TEXT_IO in terms of object code size, and [aster in terras of execution speed.

Use of TEXT_IO in multiprogramming situations (see Chapter 5) may result in uncxpected exceptions being

ot . . toa e

F-20 o - ' Appendix F of the Ada Reference Manual

raised, due to the shared unit semantics of nn.lnprog,ramn-mg In such cases STRING_OUTPUT may be used
instead.

F.12. Compiler System Capacxty leltatlons o

) ST

The following capacity lmutatxons apply to Ada programs in the Compiler System:

e the names of all identifiers, including compilation units, may not exceed the number of characters

specified by the INPUT_LINELENGTH component in the compiler configuration file (see Section
422y,

e asublibrary can contain at most 4096 compilation units (Library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
cach level. An Ada program can contain at most 32768 compilation units.

The above limitations are all diagnosed by the compiler. Most may be circumvented straightforwardly by using
separate compilation facilities.

[5":”'" [RN ;)

F.13. lmplementatlon-dependent Predefi ned Library Units

In addition to the predefined library units required by [Ada RM Ainex C}, the predefined library in the Com-

piler System is delivered witli‘several other library units that application developers may be interested in. These
are:

e package STRING_OUTPUT, described in Section F.11 above

]
I

e anumber of packages constituting the Application Runtime Interfaces, which allow for applications to
access or control ruatime executive functions in ways that are in addition to, or an alternate to, stan-

dard Ada language features. These are‘described in thc D.ACS Unix to MIPS R3000 Bare Ada Run-
Tme System Uscr’s qude €

e generic package GENERXC MATH FUNCI'IONS This is a public domain math package, taken
from the Ada Software Repository, based on the algorithms of Cody and Waite. It supplies a set of
elementary mathematics functions. The source for both the specification and the body of the package
can be extracted from the predefined library through the Ada PLU type command.

In addition to these units, there are also a number of units in the predefined library that are used as part of the
runtime system itself. These are “called” by thc code gcncratcd by thc compiler, and are not intended for direct
use by application devclopcrs : ‘

!

