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INTRODUCTION

The tupc of gun tibe muzzle drift from thermal gradients generated by solar hearng and convection is
generally well udarstood. Tebamal shrouds have proven effective in reducing such effects (rmfs 1.2). The
present study was motivated by reports (ref 3) that some muzzle drifts appear to correlate with overall tube
temperature rather than themal gradietus; there is speculao d thube sulgp:ng p e may be
responsible for di type of muzzle drift (termed muzzle "walk*). A farmiia example where muzzle onentaion
changes with tube temperature is muzzle droop: a changein the orieitano of the muzzle occurs on heating.
independent of convection effects, because of the external moment from the weight of the rube itself and the
temperature dependence of the modulus (or. equivaledy, the stess dependence of the expansuion coefici•,o,.

One pupose of this report is to clarify the basic concepts regrding the important role of stress on
thermal expansion and the connection between the thermal expansion coefficient and the temperawr dependence
of the modulus. Rosenfield and Averbach (ref 4) have experimentally confirmed the theoretical relation
between derivatives of the expansion coefficient and the elastic modulus. A key point that is not generaUy
recognized is that the assumption of path independence of the strain permits formulation of the problem in terms
of the effect of stress on expansion coefficient or, equivalently, in terms of the temperature dependence of the
elastic modulus. This provides an answer to the question of how to treat the effect of stress on the expansion
Coefficient. The concepts are illustrated through several elementary examples: muzzle droop and clevated
temperature tensile testing.

In principle, long-term muzzle drifts can also arise from nonuniform temperature properties of the steel
within the tube. Such effects can, in principle, arise from asymmetric plastic deformation or from different
responses to tensile and compressive deformation in the tube straightening process, for example. Rosenfield and
Averbach (ref 4) observed that the thermal expansion coefficient of steel is affected by plastic deformation.

Similarly, the temperature dependence of the modulus can be affected by plastic deformation. For
example, nickel and iron-nickel alloys show dramatic changes in modulus with deformation because of
magnetoelastic effects; with low-nickel steels, such as gun steels, however, the effect from this source is
observed to be small (ref 5).

With the increasing premium on gun accuracy, there is a need to address the more subtle contributions
to muzzle motion. With the exception of the work of Rosenfield and Averbach (ref 4), there is little discussion
in the literature on the relationship between modulus and thermal expansion. Since the effects are small and
complicated, misconceptions are possible, so a review of the basic concepts may be helpful. To that end, a
development of the elementary formalism is included below, along with a discussion of examples relevant to
muzzle drift.

THEORY

As long as the loading is elastic (i.e., plastic deformation and anelastic effects are negligible), and the
temperature remains below the point where annealing or transformation effects are important. the strain E can be
assumed to depend uniquely on the independent coordinates, stress cr, and temperature T. The total differential
de is then given by

deuA5I 1 da+ A.Jd (1

1.=



The tinew thermal expansion coefficiet i is appphae for te one- md two-direnenimmu pobleas
consideed hem and is defined a

(2)

Th1e i emal dame modulus E(r is defined as

1 0(C') (3)

Equation I can thus be rewritten as

do-, do + a ,,7. (4)

TIe assumption that e is a unique function of T and a requires that the line integral of de be path-
independenL As shown below, this requiremenu imposes a coanecdon tberween the expaaion coefficiera and the
modulus. For a homogeneous system unde unifor stress and temperature, Eq. 4 can conveniently he itegrated
along two differect pahs (pth 1 * dashd line in Figure 1; pith 2 soLid line in Figure ) in the T -a piase.
It is assumed that the tempersture difference 8T-T1 -T0 and stress h e 8 -o are sufficiently small that
only linear terms in a and E need be considered. (The more general results will be stated in integral form.) For
many examples of interest, To is room temperantre and ea is zero.

For path 1, the system is first heated to T1 and the suess is then iný d to a,, giving

• (v•,. dsua•e(s0)8T.--• .(•

For path 2, the ressinceases to c and the system is then heated to T,. ecT, 1a,) is given as

,(T1, 1)- - T- 8 (6)

Path independence requires that the strains in Eqs. 5 and 6 be equal so that

,,(q8)T4. Ac =c(ax)6T÷ '5 . (7)

S(T) ATC)
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A Taylor series expansio to first order on a abou q, givas

alaC)-GO)a4._6O (8)

Similaly, expamding l/E about To gives

-1,51 a I16 (9)
1(T,) B(TO) r1)

Substituting into Eq. 7 gives

.(q).q() .(_.60, (10)

and

1 1 8. (11)
1(rT) A(V) ad

and

a 1 1a (12)

The above detailed development provides several equations that are needed for the discussion section;
however, a simpler and more general proof for Eq. 12 is available: path independence implies that the line
integral of de (Eq. 1) around any closed path is zero; under this circumstance, Green's theorem requires

(13)

Equation 13 is called the "integrability condition" for the state function e(Ta). Substituting the definitions for a
and I/E yields Eq. 12.
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TO estimate the effect Of Suves cn fth eWwans"o coeffiment, one can isa Eq 12 in Eq. 8, giving

a ( ma,(14)

Since E usually decreases with T, the thermal expansion coefficient will generally increase under a tenil load
and decrease under a compressive load. To first order, the mailgnite Of fth Change In themal expaso
coeftmiet will vary lne~arly with the magnitudle of the staws

DISCUSSION

Conseuences of Plath Indevendence

Path indepedenc Provides fte two equivalent solutions to Eq. I given by Eqs. 5 and 6. For
convenience, at is assumed here that the inita temperature is room tempetature and the initial smue is z=n. The
stram, in an clement of volume subjected to 8T and 8a, can be obtained by using eu/itt the zero stress value for
ot and the tempetatmr-dependent E or the room temperature value for E and the stress-dependent value of C.

Although this follows formally ftom path independence, Figin 2 shows the physical interpretation for the
connection between strews dependence of the expansio coefficient and the temperantre dependence of tie
modulus. Crhie orgin of thermal expansion is die asymumetry in the interatomxic potential V that causes the
equilibrium poisitions to vary with temperature along the diagonal line labeled vo and a, for the two different
stres levels.) The effect of sc~ss on a and the effect of temperature on E are simply different manifestations of
the same general phncamenon~.

One prac".i application involves the analysis of data from standwd tensil testing at various
temperatures. Equation 7 applies directly to a specimen that is subjected to both uniaxial sumes and temperature.
Specifically, path independence allows the fiction that fth measured strain originated from either path I (thermal
expans~ion at zero stress followed by an elastic stain at the final temperature), or path 2 (elastic strain at room
temperature followed by thermal expansion under sawes to the final temperature), and fths gives the correct value
for e even if neither path was taken in the actual experiment. In other words, the strain that occurs when a
specimen under smrss is heated can be interpreted as originating frm a stress-modified thermal expansion
coefficient or a temperature-modified modulus. This fact is not generally appreciated.

For an estimate of the size of the effects one may encounter during tensile teszing. for example, assume
a steel specimen is loaded to 200 Ksi in a furnace at 300 0C above ambient, ot(0)u10'3/C. and that the average
reduction in E for this 8T is approximately 9 percent (ref 6). For a one-inch gage length, the thermal expansion
from (z(0) is 0.0030 inch. The room temperature elastic strain from the 200 Ksi load is 0.0067 inch (assuming
E=30x10' psi). 7liw temperature rise causes an additional 9 percent in elastic strain (0.0006 inch) because of the
modulus reduction;, however, this, can he interpreted according to taste as arising from either the temperature
dependence of fth modulus or the sumes dependence of the expansion coefficienL To illustrate, the expansion
coefficient approximated from Eq. 14 for the 200 Ki load is 12 micniinches/(inch C), giving a thermal
expansion of 0.0036 inch, which is a 0.0006-inch increase over the unstressed value; as expected, this increase is
equal to fth increase in strain estimated from the temperattm dependence of the modulus (0.0006 inch), The
magnitude is small because of the small gage length, but fth following shows that the effect is significant for
long lengths.
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Mizmi droop is the othe example uind to ilumum rhes ccmepa Assum te problem can be
apwMiimaed by the ekwentry beam equatwas for a undtm caudeveed tdan beam with moment of werus 1,
and kn&l L aligned along the x-axis, urider an etmal momea= M palpamcular to the x-y plane The steu
disrnbtion is given by

Selecting path I to obtain te smn for the thin ekawnt of volume uaijocted to smu oa, amd
tempempr T, gives

(16)

Along this path, the entve beam is viewed as imifwinly dhennally expanded m the usessed condiaon and
subsequently bent at temperanhre by applictv of the momen T. e additional bending beyond roon
temperature arises from the change in E due to ST.

Selecting path 2, the strain is given by

• J40 -G()6"

Along this path, the beam is initally bent at room temperatre, and it is the subsequent heating through
ST in the presence of a sutess-dependent expansion coefficent that produces the additional bending. The
additional strains on heating along the two paths ar expected to be identical This can be shown by first
substituting Eq. 10 into Eq 17 as follows:

Then substituing Eqs. 9 and 15 into Eq. 18 gives

.=_• 1..( )67a(0)67' My,-- ,(O) T. (19)

Equation 19 shows that the bending produced along path 2 is identical to that from path 1 (Eq. 16).

S



The interpxetation of fe origin of the additonal beading from 8T in a stressed beam is agrn primarily
a moar of comevence. Since the relevaat data of this type obtained frto mensile tests, beam resonance
experian and ultrasonics measurenents are genovlly presented in terms of E(7) rather than the equivalent
a(a), it is easier to use the former. Thus, temperature dependences can be addressed using the standard beam
solutions derived from Eq. 15 by simply including a temperatm-dependent E and a uniform thermal expansion
computed from a(O). as in the unaxial case. The same arguments apply for the more general cases.

For the muzzle droop problem, one can therefore use the standard solution of a cantulevered beam with
total weight w by explicitly including EMr, LMT), and I(M). The end deflection D(I) is given by

DQ•) - !L' (20)

where L = L-(l+41(O)(T-T0)), and I = 1,(l.a(0•(T-T,))4,

For a rough estimate of the expected muzzle droop in gun tubes from this effect, assume a canulevered
uniform cylinder of 15-foot length, 4-inch inn diameter, 6-inch outer diameter, and 8T=300"C. The computed
room temperature droop is 0.380 inch in acý xdace with known room temperature values for gun rubes. The
9 percent reduction in E on heating increases the muzzle droop by 0.034 inch. The W0) terms tend to cancel
each other and a slight decrease in droop is contributed from this source (-4.00: inch). (-his Ls the reverse of
the tensile testing example discussed above where the contribution from the modulus change on heating was
much smaller than the a(O) contribution to the total strain.) The net predicted muzzle droop (0.033 inchi on
heating is comparable in size to deflections producd in solar heating experiments on gun tubes (refs 1 2) and
therefore cannot be neglected. Since the muzzle droop in this case is due to uniform heating, shrouds will have
little effect on its magnitude.

An estiae of the magnitude of the effect on gun accuracy can be obtained from the derivative of the
deflection evaluated at L

dD wL2 4D (21)
dxZL 6M 3L'

The predicted drop in projectile position in 1000 meters from the room temperature droop is 2.7 meters.

The additional 9 percent drop expected on heating through 300*C is 0.24 metzr.

Tube Straightening Effects

The topic of possible long-term muzzle drift originating from tube straightening is addressed in this
section. Short-term effects from temperature transients are not considered here. (Data from thermal shroud
studies (refs 1,2) suggest that temperature transients in large caliber gun tubes decay exponentially with a time
constant of approximately 10 minutes). As indicated earlier, a possible source for the long-term phenomenon of
muzzle "walk" is a difference in thermal expansion coefficient along the cross section of the tube caused by
nonuniform plastic deformation (i.e., differences in the magnitude and direction of the plastic flow in tension and
compression) during straightening. Plastic deformation in tension is reported to produce changes of the order of
5 percent in the expansion coefficient of steel (ref 4).

6



The source of the tube deflection from the plastic deformation differs from the thermal expansion and
modulus effect examples considered earlier where nonuniform elastic loading generated the temperature-
dependent muzzle motion. As in a bi-metallic strip, an expansion coefficient difference (Le., difference in a(O))
within the tube will set up temperature-dependent thermal stresses that will produce temperature-dependent
deflections. A change in expansion coefficient can be treated, for convenience, as a change in tempe-rature for a
given element of volume. So a difference of 5 percent between the top and bottom of a tube is equivalent to a
temperature difference of 151C for a tube heated through 3000C. This is similar to the magnitude of the

mp•raure differences recorded in solar heating experiments on gun tubes (refs 1,2). so comparable deflections
are therefore possible.

Nonuniformities in plastic deformation from the straightening process might also produce different
temperature depondenws in the moduli in the different regions of the tube. Any such differences will produce
temperature•dependent tube deflections in the presence of residual axial stresses, as the temperature-dependent
differential in the strains is accommodated.

In summary, the consequences of path independence of the strain were reviewed, and the connection
between temperature dependence of the modulus and the stress dependence of the expansioli coefficient was
described. The question of how to treat the effect of sus on thermal expansion coefficient is shown to have a
simple solution as long as the system remains within the elastic limit. Elevated temperature tensile testing and
muzzle droop were discussed to illustrate the basic concepts. On the topic of long-term muzzle "walk" frcn
tube straightening, published data shows that plastic deformation can affect the expansion coefficient, so this may
be one source of the reported muzzle "walk." Formal studies of the muzzle "walk" phenomenon itself are
needed along with careful measurements of deformation effects on expansion coefficient and modulus before
firm conclusions can be drawn regarding the possible deleterious role of straightening on accuracy.
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