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Foreword

This report was prepared as part of the Markov Models of Random Urinalysis Sampling Pro-
cedures project (Reimbursable, Work Unit 92PODD911) and the Statistical Methods for Drug
Testing project (Program Element 0305889N, Work Unit 0305889N.R2143.DROO1), both spon-
sored by the Chief of Naval Personnel (PERS-63). The objectives of the projects are to determine
if urinalysis strategies based on time since last test can be used to improve the Navy's drug de-
terrence program and to develop a unified set of statistical methodologies for the analysis of drug
testing programs and data. The work described here was performed during FY92 and FY93.

This is the second in a series of reports on the use of Markov chains for the analysis of random
urinalysis programs. The first report is Markov Chains for Random Urinalysis I: Age-Test Model
(NPRDC-TN-93-5). Related work also iiiludes Probability of Detection of Drug Users by Random
Urinalysis ;_n the U.S. Navy (NPRDC-TN-93-2).

MURRAY W, ROWE
Director, Manpower Systems Department
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Summary

Background

This is the second of a series of papeis on the ise o, Markov cham s to model random urinalysis
programs. Previous work (Thompson, Boyle & Hentschel, 1993) introduced the age-test Markov
chain. This chain was used to model random urinalysis strategie-s stratified by time since last
tested. This paper extends the age-test model by including an absorbing state for detection of
drug users.

The Nuclear Regulatory Commission (NRC, [1988]) proposed a urinalysis testing strategy based
on time since last tested. That is, the probability of a person being tested depends on the amount
of time since the person was last tested. Southern California Edison (SCE) has implemented a
variation (Murray & Talley, 1988) of the NRC proposal at Ihe San Onofre Nuclear Generating
Station in Southern California. We have shown (Thompson, et al., 19M3) that age-test urinalysis
strategies trade off predictability of an individual being tested for fewer people not tested within a
year and fewer people tested excessively during a year.

Objective

The objective of this work is to quantify the extent to which age-test urinalysis strategies can
be*~~ .. ,mtdl by d ug C

Approach

The approach includes (1) extending the age-test model to include an absorbing state for
detection of drug users, (2) developing the needed theory, and (3) analyzing a number of specific
age-test urinalysis strategies.

Results

We define a class of age-test models extending the models presented in 'rhompson, et al. (1993).
The theory and formulas for calculating the distribution of time to absorption (e.g., detection of
drug users), the mean time to absorption and the expected number of visits to intermediate states
(e.g., number of test. prior to detection) are developed.

This model is used to analyze three age-test strategies. These strategies include an age-test
model of the NRC proposal, an age-test model of the SCE process, and an age-test model meeting
Navy requirements and assuming a 15% monthly testing ratc. Th- mean times to detection for
the NRC proposal are 58 and 200 months for nongaming and gaming drug users, respectively. The
mean times for the SCE process are 46 and 84 months. The mean times for the Navy model are
33 and 50 months. These results are based on age-test models assuming drugs are detectable i;
the user 20% of the time.
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Conclusions

Markov chains provide a framework for the systematic analysis of drug testing strategies strat-
ified by time since last tested. Age-test strategies do not change detection time for nongaming
drug users. As long as the annual testing rate is fixed, average time to detection is unchanged by
using age-test strategies. Age-test strategies do allow gaining drug users to significantly increase
time to detection. Constant testing strategies. defined by equal testing probabilities for all states,
are resistant to gaming.
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I Introduction

This is the second in a series of papeis on the use of Markov chains to model random urinalysis
programs. Previous .;ork (Thompson, Boyle and llcntschel, 1993) introduced the age-test Markoý'
chain. Ths chain was used to model random urinalysis strategies stratified by time last tested.
This paper extends the age-test model by including an absorbing state for detection of drug users.

The Nuclear Regulatory Commission (NRC, [1988]) proposed a urinalysis testing strategy based
on time last tested. That is, the probability of a person being tested depends on the amount of time
since the Verson was last tested. Southern California Edison (SCE) has implemiented a variation
(Murray and Talley, 1988) of the NRC proposal at the San Onofre Nuclear Generating Station in
Southein California. Urinalysis testing strategies based on time last tested are defined by (1) a
high testing rate for personnel not yet tested in a given time period and (2) a low testing rate for
personnel found to have negative results in a given time period. The NRC's adopted rillee and
regulations (Nuclear Regulatory CGmmission, 1989) for urinalysis do not require a time last tested
strategy. Heoever, SCE continues to use their variation of this strategy with NRC approval.

We have shown (Thompsor, et al., 1993) t.at age-test urinalysis strategies trade off predictabil-
ity of an iidividual being tested for reduced tMil arca of the distribution of the number of tests in
a fixed time period. Age-test strategies provide fewer people not tested within a year and fewer
people tested excessively during a year than siuple random sampling. Age-test strategies ale also
more predictable, have lo'. variance in the number of tests, and as a result are subject to gaming
by drug users.

Age-test models of both the NRC proposal and the SCE process were shown to have undesirahle
properities. The NRC proposal required that at least 90% of the individuals be tested each, year and
that testing rates for individuals already tested witii negative results be at least 2.5% per month.
A minimum cost &6,-test model uds developcd for this proposal. SCE states a 5% annual chance
of not being tested and a 130% average mnnuai testing rate. An equal cost age-test model similar to
this process was developed. These strategies involve large differences in the testing rates between
people tested within the past year arid thos._ wno were not tested. This implies that, once tested,
an individual has a high probability of not being tested again within a year. These probabilities
are 0.74 for the age-test model of the NRC proposal and 0.48 for the age t.c-t mni'el of the SCE
process. The age-test model of the SCE process is such that almost half the tests every month are
given to people who know they will be tested.

A related use of Maikov chains, modeling classes of drug users, is given in Evanoviclh (195).
Previous work (Thompson and Boyle, 1992) at NPRDC includes models of detection and gaming
of drug users under simple random sampling.

ThiF paper reports on our work to quantify the extent to which age-test urinalysis strategies
can be gamed by drug users. This paper (1) extends the age test model to include an a'bsorbing
state for detection of drug users, (2) develops the needed theory, and (3) analyzes a number of
specific age-test urinalysis strategies. The NRC proposal, the SCE process, and a model meeting
Navy requirements are analyzed.
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2 Maikov Chains

This section develops the theory and notation that will bc used in the rewiainder of the report.
Here, we develop the formulas for calculating tht. distribution of time t., absorption (e.g., detection
of drug users), including mea'i time to absorption and for cal ulating the cxxpected number of visits
to intermediate states. It can ;e considered a continimAtion of Section 2 cf Thompson, et al. (1993).
Most of the material and notation is taken from Taylor and Kailin (1984) and Hod, Port and Stetne
(1972).

Again, we consider finite state Markov chains, but with the following special structute. The
states are labeled 0, 1,..., N with transient states 0, 1,... r- 1 and ab,,orbimg states r, r+ ,... , IV.
A state a is absorbing if, once at a, the chain stays at a for all time. Also, -,tartiig at any transient
state, the chain must be eventually trapped by one of the absorbing states. The transition matrix
for such a Markov chain can be partitioned as

where Q is an r x r matrix, R is an r x (N - r + 1) matrix, 0 is an (N - r + 1) x r ,ratrix of zero
entries, and I is the (N - r + 1) x (N - r + 1) identity matrix.

Using matrix algebra it can be shown that the u-step transition matrix is

P ", Q * 0 + Qi - --- ", )

L J

for n > 2. Also, from page 20 of lloel, et al. (1972), Q" - 0 as n -- oo. Thus, the infinite series
(I+ Q + -.-+Q,-)__ (I- Q)- W as n .oo, and from Equation 1

limaP =- 0 WR (2)

Let ui,,(n) be the ith row, ath columi, entry from the r x (N - r 4 1) subintiurix (I + Q +--- +
Q" 1-)R in the n-step transition matrix, Equation 1. nrom page 15 of Hoel, et al. (1972), we have

uia,(Yz) = P[Ta < n,XA = a!Xo = i] (3)

where T. is the time to absorption by state a, 7 is the time to absorption for the process, and i is
any of the transient states. Equation 3 states that the (i, a) entry in the subinatrix froni Equatioi! I
is the probability that, starting at state i, the process is absorbed by state a within n time periods.
By basic probability laws,

lim u,.(n) = P[XT = aj~o = i] = u,,.

Thus, u,a is the (i, a) entry of the submatrix U = WR in Equation 2, and we have observed that
the entries in the ith rowv of U represent the probabilities, starting at state i, that the process will
be trapped by the %arious ahsorbing states.

2



Another way to estallbsli that U = VVHR is to employ what Taylor and Karlrii (1984) call firbt
step analysis. Note

U.. = P[Vr = aXo = i]
1.-I

SP[XT =a,X,= aIXo = iJ E lPXT =a, X = jiXo= i]

= P[Xr = alXa = a,Xo =i]P[X -= alXo =i]
7-1

-ZP[XT =at•lX =j, Xo =:i]P[X =jlXo =i]
j=O

-" +sa+• ujapaj.
1=0

Irn matrix notation the above relations become

UOQ POQ

(I-Q) a=r,...,N.

Ur- a Pr-la

These equations can be summarized in the single matrix equation (I - Q)U R and we see that
U = (I - q)-'R = W R.

The matrix (1- Q)-' = W is often called the fundantiental miatrix. First rjtep auialysis can be
used to yield a probabilistic iuterpretation of the elements of W. Let i and k be transient states
and set

V'k = E lk(X4)IXO Z; i] (4)
FtI=O.1

where lk(X,,) is the indiator function associated with state k The expiession in Equatiou 4 is the
expected or mean number of visits to state k before absorption, given the process starts at state i.
Using conditional probabilities we see that

p = E lk(X,)IXI = a, X0 = i P[X, = aIXo = il

a=r n = 0

N -

- k*)i + E't)k + lk(4)1Pil

for i, k = 0, 1,..., - 1. The last equation followh since P is stachastic and its rows surn to unity.
bik is the Kronecker delta, which equals 1 when i = k and equals 0 otherwise.

3



The set of Equations 5 has the matrix representation

1- pM -PO . PUr-i tNA

-PIo 1 - . Plr-I 1iA

• k =(6)

-Pr-o -Pr-i ... Pr-I -I 1 ',_1k

where ek is the kth column of an r x r identity matrix. Combining all systems in Equation 6 for
k = 0,l,...,r- 1 leads to the single matrix equation

VOO VOr•. I ]
(I-q) j=x (7)

L "r- 0 """ • -Ir-

From Equation 7 it is clear that Vk = w•,-, and wi, equals the mean number of visits to state k
from state S before absorption. When i -k in Equation 4, the expectation counts the starting
state i as a visit to state i.

Lastly, define Wk as the number of visits to state k for k 0, 1,... , r - 1. Clearly, we must
have

U = VIW 4 VO "4 11r -

where, again, T equals time to absorption. Hence

EJTIXo = i] = E =41k IX0 ] =
E 0 k=O

and we may compute the expected time to absorption sta-ting at state i as the sum of the elements
in the ith row of the matrix 'W.

3 Age-Test With Absorption

We now define a class of age-test models extending the models presented in Section 3 of Thoinp-
son, et al. (1993). The transition matrix is

( - ai)p1  q, 0 0 - 0 alpi
(1 - a2)p2 0 q2 0 0 a2P2

(1- a 3 )p3 C 0 93 "".0 aap3

P -. (8)

(I - ad)pd 0 0 0 qd adPd
0 -- ad+I)Pd+l 0 0 0 " qd+l Qd+lPd+i

0 0 0 . 0 1

4



In Equation 8, an individual is in state i (1 < i < d) if the individual tested negative i time periods
ago, and in state d + 1 if tested d + 1 or more time periods ago. The p,'s are the probabilities of
being tested given state i, and the a,'s are the condition.l probabilities of a positive result given
the individual is tested. State d+ 2 iF I],e single absorbing state defined in Equation 8. A person is
absorbed or caught if tested positive To summarize, an individual residing in state i (1 < i < d)
must in the next period test negative and move to state 1, age to state i + 1, or be absorbed to
state d + 2 by testing positive. A pcison in state d + 1 "ages" by staying in state d + 1.

As in- Section 3 of Thompson, et al. (1993), we impose the restrictions 0 < P1,... ,pd < I and
0 < Pd+l < 1. We allow the al's to be unrestricted probabilities, i.e. 0 < -0 ..... d+1 _< 1, except
we insist at least crie of the oi's be positive. All of this guarantees that states 1 -.hrough d + 1
must lead to the absorbing state and, by Theorem 2 on page 21 of R{oel, et al. (1972), these states
are transient and the results from Section 2 apply.

3.1 Time to Absorption

Using the notation frcm the previous section we have

(1 - )p, q, 0 0 ... 0 Orpi
(- a2)pN 0 q2  0 ... 0 ap
,1- 03)p3  0 0 9 "'" 0 f3P3

R =(9)

S(1-ad)pd 0 0 0 .qd Od•
(0- aOd+I)pd+l 0 0 0 "" qd+l JLd+lPd+l

The matrix U= (I - Q)-'R = WR = 1 is a (d + 1) x 1 column of l's, since there is only one
absorbing state and the process is absorbed with certainty. Also, for the same reasons, T = T, =
Td+1 and {IXT = d + 1} is the certain event. Thus, from Equation 2 of Section 2, we have

Uid+l(n) = P[T < nIXo = i] (10)

equals the distribution function of time to absorption, conditional on the process starting at the
transient state - This is precisely the ith element of the (d+ 1)x I column (I + Q + -.- + Q'-')R.

We can also define the mean time to absorption E(TIXo = i) through a limiting argument.
From elementary methods, the expected value of a random variable taking on positive integer
values is

n

li~m I + El-F(k)] (1
k=1

where F is the distribution function of the random variable. Applying Equation 11 and using
Equation 10 yields

71

E(TIXo = i) = 1 + lim [[l - Uid+1(nL)] (12)
k=l

where we have conditioned on the event X0 = i. The result Equation 12 can be put into matrix
terms as

1 + lim n1- [R + (I + Q)R +-+ (I + Q +- +

n--o5



= 1+ irm n1-[(I-Q)WR+(I-Q 2)WR +. + (I + Q)WR]
= 1 + lim nl - [(I - Q) + (I - Q 2 )+ + (I + Qn)]1

since WR = 1. The above limit reduces to

1 + lim ni -- [nI - (Q + Q2 + + Qn)]I
= 1+ lim (Q+Q 2 +...+Q")1

n oo

= 1+ lim [(I -- Q )W - I)1

- 1+ (W- I)1

W1

because limo Q,-1 0. Again we note that the expected time to absorptioi,, starting at state i,
is the sum of the elements in the ith row of W.

3.2 Number of Tests Prior to Abso-ption

Recall from Section 2 that, in general, Wik equals .e mean number of visits to state k prior to
absorption, starting at state i. For the age-test model with absorbipg state, we will be interested
in calculating the mean number of tests prior to absorption. Since testing negative is equivalent to
visiting state 1, this amounts to selecting the ith element from the fizst column of the fundamental
matrix W.

3.3 Drug User Gar ig

An interesting problem arises in considering the process of Equation 8. Given a fixed set of
pi's, a drug user might be interested in choosing ai's in such a way that their average usage rate is
at a desired level and the mean time to absorption is a maximum. Here we define the usage rate
as

_ ti WI + + ad+]Wd+l
WI ... + Wd+l

where, again, Wk represents the number of visits to state k prior to absorption. The average or
expected usage rate, starting in state i, is E(YIXo = i) and represents the average percentage of
time that the user would test positive prior to absorption. Since taking the expectation of a ratio
of random variables is somewhat intractable, we henceforth approximate the average usage rate
with the ratio of expectations, i.e.,

E(YIXo = i) ClWil+" +Cd+lWid4-1
wi I + ".+ Wid+l

Formally, the drug user, knowing the pi's, wishes to find the ai's that

Maximize E(TjXo = i) = wi I + + wi d+I (13)

ubjectto lW '+ "+ cd+iwid+1 _
subiI -- .- + tVid+l

0<a <, Vi

6



where d is some dusired average usage rate. The itext sectioi. contains a number of examples
illustrating Equation 13.

We conclude this section with a result proved in the Appendix. If the pi's are equal in Equation 9
or the ai's are all equal to a in Equation 13, the mean time to abs(,rption, starting at state 1,
is given by 1/1a&. Equal pi's means testing rates are the same regardless of state and equal ag's

means drug usage rates are the same regardless of state. Here 7r1 represepts the expe-ted number
of tests per time period for a nonuser starting at steady state. Steady statc is defined in Thompson,
et al. (1993).

This result is very important for two reasons. First, urinalysis strategies with equal A $s cannot
be gamed. To prevent ganming, age-test urinalysis strategies with unequal pi's should be avoided.
Second, age-test urinalysis strategies with unequal pi's do not change mean time to detection for
,iongaming drug users. Mean time to detection for nongaming drug users is only a function of the
average test rate. This implies age-test strategies are not problematic if gaming is not a concern.

4 Applications

Three age-test strategies presented in Thompson, et al. (1993) are revisited here. These
strategies are the age-test model of the NRC proposal, the age-test mode! of the SCE process, and
the age-test model meeting Navy requi'ements and assuming a 15% monthly test;ng rate.

The number of tests prior to detection. and the time to detectinn for both nongc.ming and
gaining drug users is presented for all three age-test strategies. Average drug use (5) for all
following examples is 0.20. That is, drugs are detectable in a user's system an average of 20% of
time or about 6 days per month. This is roughly equivalent to using drugs twice a month.

4.1 Nuclear Regulatory Commission (NRC)

The Nuclear Regulatory Commission (1988) proposed two ur~nalysis testing alternatives. One
alternative required that at least 90% of the individuals are tested each year and that testing
rates for individuals already tested with negative results be at least 2.5% per month. The age-
test strategy {P, = P2 -- -.- = P12 = 0.025 and P13 = 0.6338) is the least cost solution to this
NRC proposal. The distribution of the number of tcsts within 12 months is shown in Figure 1.
By contrast, simple random sampling at the 103% annual rate (same rate as the minimum cost
age-test model) gives a 34% chance of no tests and a 7,7% chance o, 3 or more tests.

Time to detection results are presented in Table 1. Average drug use is the same (20%) for
both the nongaining and gaming drug user. The gaming strategy is the obvious one. Drug usage in
state 13 is Fet to zero. To keep average usage at 20%, drug usage in states I through 12 is increased
to 22%. The average time to detection increases significantly from 58 months to 200 months. Also;
the average number of tests prior to detectioa increases from 5 to 17 tests. If detection of drug
users and prevention of gaining are high priorities, this age-test strategy should not be used.

7



1.0

.8 .780

.6
Probability Mean = 1.03

.4 Variance = 0.252

.2 .100 .110

0 1 .009 .001 0
0 1 2 3 4 5+

Number of Tests

Figure 1. Steady state d' tribution of number of tests within 12 months for age-test
model of NRC proposal.

Table 1

Time (in Mcnths) to Detection for Age-Test Model of NRC Proposal

Drug User
Nongaming Gamnihg

Mean 58.2 200.2
1st Quartile 20 58

2nd Quartile 41 128
3rd Quartile 79 278

8



4.2 Southern California Edison (SCE)

SCE has implemented a composite random sampling (Murray & Tailey, 1988) approach to
urinalysis. Their approach is based on a sampling scheme that is part s; Lipling with replace-
ment (individuals are subject to sampling after having been selected) and part sampling without
replacement (individuals are not subject to sampling after having been selected). The entire pop-
ulation is sampled at a specified rate with replacement. People who have not been sampled within
the past year are sampled at another specified rate without replacement. SCE states a 5% an-
nual chance of not being tested and a 130% average annual testing rate. The age-test strategy
{PI = P2 = ... = P12 = 0.0595, P13 = 1.0} yields similar results. The distribution of number of
tests within 12 months is shown in Figure 2. Simple random sampling at the 130% annual rate
gives a 25% chance of no tests and a 13% chance of 3 or more tests.

Time to detection resu!ts are presented in Table 2. The gaming strategy is, again, the obvious
one. Drug usage in state 13 is set to zero. "'T, keep average usage at 20%, drug usage in states 1
through 12 is increased to 21%. The average time to detection increases significantly firom 46
months to 84 months. Also the average number of tests prior to detection increases from 5 to 9
tests. If detection of drug users and prevention of gaming are high priorities, this age-test strategy
should not be used.

1.0±

.661

.6
Probability Mean = 1.30

.4 Varia.nce = 0.462

.231
.2

S.052 .04-I [-'-'--..007 .001 m0
0 1 2 3 4 5+

Number of Tests

Figure 2. Steady state distribution of number of tests within 12 months for age-test
model of SCE'b process.

4.3 United States Navy

U.S. Navy policy (Chief of Naval Operations, 1990) directs commands to test 10-20% of their
personnel each month. We developed an age-test strategy {PI = P2 = P3 = 0.1, P4 = 0.1145,

9



Table 2

Time (in Months) to Detection for Age-Test Model of SCE Process

Drug User
Nongaming Gaming

Mean 46.2 83.9

1st Quartile 15 24
2nd Quartile 33 58
3rd Quartile 63 116

Ps = --. P13 = 0.2} that mayJmizes the number of people tested at least ouce a year given an
average monthly testing rate of 15% and giveli all pi between 10 and 20%. The midpoint value 15%
was chosen. Although the Navy does not use this strategy, the strategy does comply with Navy
policy. For this age-test strategy, the distribution of number of tests within 12 months is shown in
Figure 3. Simple random sampling at the 180% annual rate gives a 14% chance of no tests and a
8.2% chance of 4 or more tests.

Time to detection results are presented in Table 3. A gaming strategy that seems reasonable
is as follows. Drug usage in states 1 to 3 is increased to 30%; drug usage in states 5 through 13
ic elrroacd tn 19Wý Th Iwr1a, :2'jarncr iiecro nt Ilk dlrugf iaetf i;nscttat A iQ set at 1R FC The.
average time to detection increases moderately from 33 months to 38 months. Also, the average
number of tests prior to detection increases from 5 to 6 tests. Since this gaming strategy yielded
only slight gains, we cAculate1 the optimal gaming strategy. Results from using this strategy are
also included in Table 3. This optimal gaming strategy is 100% usage in state 1, 37% usage in
state 2, and zero usage for all other states. Using it increases the average time to detection to
50 months. Although this strategy does not seem reasonable, it is presented to show the optimal
amount of gaming possible. This age test strategy, which contains no large differences in the values
of the pi's, limits the amount of gaming possible for users.

4.4 Reiative Merits

We conclude this section with a comparison of these three age-test strategies. Assume Company
XYZ has 100C employees and the typical drug user has drugs detectable in their system an average
of 6 days per munth. Also assume that one urinalysis test costs $10.00. A comparison of the relative
merits ot the 3 age-test strategies is shown in Table 4. The number of tests per year is simply 1000
times the average number of tests per person per year. The average number of tests per person
per year is obtained from the steady state distribution of the Markov chain without an absorbing
state. The table also includes the number of months until detection with probability 0.10, 0.50
and 0.95. Both gaming and nongaming times are presented. The optimal gaming strategy is used
fo) the age-test model meeting Navy policy.

'Excel Solver (Microsoft Corporation, 1991) was used to solve optimrization problems.
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Figure 3. Steady ntite distribh A..ou of number of tests within 12 months for an age-test
model meeting Navy requirements.

Table 3

Time (in Months) to Detection for an Age-Test Model
Meeting Navy Requirements

Drug User
Optimal

Nongarning Gaining Gaining
Mean 33.3 38.3 50.0

1st Quartile 11 i1 11
2nd Quartile 24 27 33
3rd Quartile 46 53 71
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Table 4

Relative Merits of Three Age-Test Strategies

Age-Test Strategy
"N-RC SCE Navy

Number of Tests per Year 1030 1300 1800
Cost per Year $10,300 $13,000 818,000

Nongaming User Time in Months
Detection Probability 0.10 13 9 5

0.50 41 33 24
0.95 163 131 97

Gaming User
Detection Probability 0.10 21 9 1

0.50 128 58 33
0.95 600 250 157

Company XYZ: 1000 employees, typical drug user has
drugs detectable in system 20% of the time

5 Conclusions

Markov chains provide a framework for the systematic analysis of drug testing strategies strat-
ified by time last tested. For nonusers the steady state distribution provides estimates of the

number of tests per month and the number of people who have not been tested in the pa.st year.
The distribution of the number of tests in a fixed time period (e.g., year), given any initial state,
can be calculated. Furthermore, given t •sting cost estimates, the relative merits of different testing
strategies can be easily calculated. For drug users, tLe distribution of time to detection and the
expected number of tests prioj to detection can be calculated given any initial state.

Age-test urinalysis strategies trade off predictability of an individual being tested for reduced
probability of not being tested and reduced probability of excessive tests. Thi. -educed tail area

of the distribution is sometimes perceived as more equitable.

Age--test doez not change detection for nongaming drug users. As long as the annual testing
rate is fixed, average time to detection is unchanged by using age-test strategies. Therefore, if
gaming drug users are not a concern, age-test may be beneficial.

Age-test allows gaming drug users to significantly increase time to detection. The more ex-
treme the age-test strategy, the more gaming is possible. Extreme strategies have large changes in
probability tested over time (since last tested).

Constant testing strategies are resistant to gaining. Constant strategies are defined by c •ual
probabilities of testing by state. Since the past and present provide no information about the
future, gaming as defined here is impossible.

12
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Minimax Gaming

This appendix proves the result mentioned at the end of Section 3.3. A minimax theorem

associated with gaming is also established.

Recalling the definition of Q from Equation 9, we have

a1Pl + q, -ql 0 0 ... 0 0
"P(2P2-P2 1 -q2 0 .-- 0 0

03P3 - P3 0 1 -193 ... 0 0

I-Q=

UdPd Pd 0 0 0 1 -qd
ad+lPd+l -1Pd+l 0 0 0 ... 0 1 - qd+l

We are interested in deriving the first row of the fundamental matrix W = (I-Q)-l. The first
row of W provides the mean number of visits to each transient state prior to detection given the
system starts in state 1. First we calculate the determinant of (I - Q). Expanding by elements of
the first column yields

d+[

DET(I - Q) = pd+l alp [ 4- ql +- - j(cpm - -
i=2

L ,w= J i=2 .

where we definer, = I-= 1 q', i - 1,..,d - 1; and rd = (ql ". "qd)/Pd+I. It can be shown that the
last expression in Equation Al vanishes. Thus

DET(I - Q) = Pd+l [pl + E Oipii-1 • (A2)
i=2

Next, observe that the cofactors of the first column of (I - Q) are

[Pd+l, pd+1T1, pd+1T2, ... , Pd+lrd.1, Pd+l1d]. (A3)

Since this row equals the first row of the adjoint of (I - Q), the first row of W is expression A3
divided by the expression in Equation A2.

From the above arguments, we can write Equation 13 of Section 3.3 and the associated con-
straint as

d
Pd+l E Ti

Maximize E(TiXo =1) == ? d+l

Pd+l alpi + E aipir"-!

i=2

ir (A4)

A ailp. + ipi'i-1
i=2

A-1
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d+IE_. Clt,_ l
subject to i- - (A5)

d+ I

where we set r0 = 1. The constiaint Equation A5 cau be solved for Qd+i to yield

d

Qd+ =+ E - (a- C,). (A6)
j=1 "rd

Since r, does not involve the a,'s, maximizing E(TIXo = 1) with respect to the ai's is achieved
by minimizing the bracketed expression in Equation A4. Substituting the right side of Equation A6
for Qd+1 in Equation A4 leads to

d+1

'IPI + Eaiptrs-l
i=2

d d Ti-l= ajop,•r,-, + ek + : Td ( - a,) Pd+17,
i=1 I i=1 I
d d )"dp7" .a:p,•,-i - Da - a,)p,•,_ +/ + L--7(Ck -i) ,)Pd+i~d

==_ = d d

d+-I d

P= 1 + -i-l(Pd+l -p,)(-Cti)

Recalling the definition of the Ti's, note that

d+I

rPit-tl -= PlT0+i-P27i + ...- +pdTd- I +-Pd+lTd

= p + p2q + ... + pd(q "'" qd-1) + (q ."'" qd)
= 1

by an induction argument. Thus we have proved that

E(TIXo = 1) = - - (A7)• a + _• -I-(Pd+I - Pi)(& - Cti]

and maximizing E(TlXo = 1), for fixed pi's, subject to Equation A5 is equivalent to the optitniza-
tion problem

d

Minimize 6 + Zri-1 (Pd+I -pi)(& - ai) (A8)

subject to 0 <ai ! 1; i =1,...,d (A9)
d

0 _- ad+l 2+ . i ( _i) (AIO)T d

A-2_=



Pecause of Equatiot, A7, we have shown

E(TIXo = 1)=

whenever a, = 2= .. = ok4+1 or p`1 = = ... = Pd = Pd+1. This gives the first result.

It is not difficult to show that given increasing, not all equal p,'s, one can construct a feasible
solution to Equations A9 and Ala. This bilution takes the following form

0 < <1
"141,'--,;+1 = 0.

By inspection of all cases for "dues of k = d + 1, d,..., 1, it can also be shown that a soluticn of
this form will provide Equation AS strictly less that 6. This guarantees that the objectivc function
A8 is strictly greater than 1/ir1 &. Therefore, the maximunm expected tine to detection for the
gaming drug user is minimiied when the p,'s are equal. This establishes the nminimax theorem.
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