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1. INI RODUMTON

The compressive behavior of composite materials has been studied during the last

three decades. Nevertheless, many issues still remain unresolved at the present time.

Extensive listings of references on the subject can be found in several articles, such as that3 by Shuart [11 and the review by Camponeschi [2]. The latter author also lists numerous

factors which affect the compressive response and strength of composites. These factors
include, among others, local inhomogeneities and defects, constituent properties, and fiber

waviness - which will be addressed in the model presented in this work.

This paper concerns failure by fiber microbuckling, accounting for effects which

were not considered elsewhere. These involve a formulation which incorporates the non-

linear shear response of thc polymer withini dH., field equation, the accounting for intertacial

separation between matrix and fibers upon reaching the ultimate shear strain within the
polymer and, especially, the incorporation of the statistical variability of fiber spacings into

the model. A significant consequence of the latter aspect is that it induces highly localized

transverse loads on the fibers, which could lead to their failure by kinking.

Following Rosen [3] and many other investigators we employ the Cartesian two

dimensional model shown in Figure 1 (a) where fiber and matrix regions are considered as
lamellar zones. This geometric idealization enables us to investigate the effects of non-

linearities and statistical variations in fiber spacings in a tractable manner. It should be
noted that the cylindrical-geometry models of Sadowsky et al. [4], Hermann et al. [51,

Lanir and Fung [61, and Greszczuk [7] were restricted to linear elastic behavior.

Rosen's model predicts a compressive failure stress ca = GW/Vm, where Gm and

Vm are the matrix shear modulus and volume fraction, respectively. This prediction sub-

stantially exceeds experimental values. Several modifications to Rosen's model were

introduced subsequently, in order to achieve closer correlation with data. Primarily, these

modifications, such as the works of Wang (8], Lin and Zhang [9], Guynn et al. [10], and

Highsmith et al. [1I], considered non-linear matrix shear response and initial fiber wavi-

ness. The incorporation of the foregoing material and geometric factors into the
microbuckling analysis of Rosen [3] resulted in improved predictions of compressive

I strength.
The analyses of Wang [8] and Lin and Zhang [9] considered the non-linear shear

behavior of the resin but did not explicitly address the variation of the matrix shear strain

parallel to the fiber direction, which is incorporated herein. On the other hand, it appears

that the finite element method employed by Guynn et al. [10] and the iterative numerical

scheme utilized by Highsmith et al. [II] would become excessively cumbersome in
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handling the more complicated circumstances of fiber/matrix interfacial debonding regions

and non-uniform fiber spacing considered in the present article.

2. FORMULATION AND RESULTS
Consider a uni-axially reinforced composite which, following Rosen [31, is repre-

sented by a two-dimensional layered array as shown in Figure 1 (a). Let x and y denote
Cartesian coordinates in directions parallel and transverse to the layers, and designate by 2h

the thickness of a "fiber layer" centered within a composite layer of thickness 2c. Conse-
quently we have Vf = h/c and Vm = (c-h)/c, where Vj and Vm are fiber and matrix volume

fractions, respectively.

Following Rosen's premises [3], we assume that the external compressive load N
is borne entirely by the fiber region, which is modeled as a Bernoulli-Euler beam, while the

matrix responds in shear only. In addition, we consider a micro-buckling length L and an
initial fiber waviness vf(x) with periodicity of 2L. In the sequel, we let vf (x)
=0 cos(nx/L), though this specific choice is not essential to our method. Finally, in antici-

pation of the circumstances which emerge due to non-uniform fiber spacings, we denote byI
q(x) the distributed lateral load on the fiber. See Figure 1 (b).

Focusing attention on the case where all fibers buckle in phase, the so-called
S"shear-mode" nicrobuckling (Rosen [3], Garg et al. [121), we have the following familiar

expression for y m , the shear strain in the matrix:
_I (1)

I1-Vf dx

I In equation (1) vf denotes the lateral displacement ( in the y-direction ) of the fiber. In view

of the assumption of Bernoulli-Euler theory, vf, aad thereby also 'tm , depends only on x.

Considering non-linear shear response of the matrix, we write

IEMy = Gm 'F(ym) (2)

where Gme is the linear elastic shear modulus at infinitesimal shear strains, in which caseI ~F(,ymy) - 'ym.

The longitudinal strain in the fiber, Ef, under the combined effects of compression

* and bending is given by
df+ Ir(dvf +_ dl, V),2 ]

""ddx y v2 J(3)
dx dx dx dx2

In equation (3), uf denotes the fiber displacement in the direction of x.

I3

1_ 3



Consequently, the axial displacement at x=L12 is given by

fI-ft [,dVf V_2 - AV_'. 2] ,,L N1
ux W=A 2t~x--l)d+- (4)

u2L'zA dx d x. J 2 EA

As can be noted from equations (3) and (4) the hypothesis that fibers deform in-phase

implies that uf and vf are common to all fibers regardless of their spacing. On the other

hand, equations (1) and (2) state that the support provided by the matrix varies with the

fiber volume fraction Vf. These observations imply the existence of lateral loads, q=q(x),

which enforce a common, in-phase deformation of all fibers in the case of non-uniform

spacing. To emphasize their dependence of the spacing c, we shall write q=q(x,c).

Consider an individual cell of width 2c. The principle of virtual work yields

of cyf8xf dVf + xm y ,my dVm - q(x,c) 8vf dx + N 8A = 0 (5)

Substitution of expressions (1)-(4) into equation (5) and employment of integrations by

parts yield the following field equation and boundary conditions for each individual cell:

EI d•'•vf 2_(c-h)_ -dnF( I dvf) + N ( dvf + d2v) q(xc) (6)
dx4  I-Vf dx 1-Vf dx dx2  dx2

with

dv f= 0 , d3vf=o0  at x=O
dx dx 3

Svf =0, d2vf=0d at x=L

dx2  2

Turning to the case of random fiber spacing, let p(c) denote the probability density

of the cell dimension 2c. Obviously

"j p(c) dc = 1 (8)

In the present circumstance the principle of virtual work gives

P(c) ( of 8ef dVf + f T1y ymy dVm - q(x,c) 8vf dx + N BA dc = 0 (9)

I 4



Furthermore, in the absence of external lateral loads, equilibrium in the direction of y

requires

3 j p(c) (j q(xc) dx dc = 0 (10)

Integration-by-parts of equation (9), upon expressing all variations in terms of 8(44)

gives the following field equation for vf

IA3Vf. 2(c-h) Fvfd•) dc + N 41f + dvtPC))-F ý0 1I)

E1X3  1c IVf "I - Vf dx dx dx

The boundary conditions for the case of randomly spaced fiber remain the same as those5 given in equations (7).*
It is advantageous to further reduce the order of the differential equation given in

(11) and express it in a non-dimensional form in terms of the following non-dimensional
parameters:

X=-& Y~dyf- E=8 (12)L dx' L

In addition, the probability distribution function p(c) can be converted to a probability
distribution function F(Vf).

In view of expressions (12), the non-dimensional form of Equation (11) reads

" (Vf) a 2(Vf) (l-Vf) F(-lV ) dVf + (2Y X2Yo (13)
dx 2  fVf

where

X2...2h GeL 2 NL2 Y. =-t sin X (14)

Vf ( I-Vf) Elf ' Elf

I The boundary conditions which accompany the second order non-linear differential

* equation (13) are

- In view of equation (10) it was possible to derive differential equation (11) which is one order lower than
that given in equation (6). The lower order equation (11) enables the determination of the lateral
displacement vf to within a rigid translation, which is of no relevance to the failure mechanisms considered
in this work. An additional integration of expression (11) with respect to x. further reduces the order of the5 differential equation, leading to a solution which incorporates an indeterminate rigid body rotation.

I5



I

Y(O)=O0, AYI0 (15)

I In the case of uniform fiber spacing equation (13) reduces to

dbY - ot2(1-Vf)F(•Y ) + %2y X2yo (16)
dx2  lVf

Note that for the linearly elastic case with uniformly spaced fibers equation (16) takes the

simple form

&I - a 2 Y + X2Y = ) Y2yodx2

with the solution

Y = EX) sin xX
X2 x2 - a2

This corresponds to the buckling load predicted by Rosen [31, namely X2 = X2 + a 2. Note

that the above result assumed an unbounded shear strain in the matrix (yr, --ý oo).

However, if one considers a linearly elastic matrix response followed by an ideally3plastic deformation atyyý = yp, then plastic yield begins at X=1/2 and the onset of plastic

deformation is found to occur at

),2 = (X2 + (12) (l-Vf)yp = X2(-yp) (17)
ex + (l-Vf)Yp

IThe above result agrees with the value obtained by Steif [13] for the slippage initiation

load, beyond which the matrix no longer supports the deformed fibers.

Il Case 1: Uniformly Spaced Fibers with Bi-linear Shear Modulus of the Matrix

Consider a bilinear shear stress-strain response of the matrix material, given by the

following expression for F(y'my)
Gmyy-y+Gmy i3p( y 'y) Y if Yxy >Y•y

Ge F(gy)= -Gmexy- if - Y•y <Yxy <Ty (18)

uG(yxy +yy)- Gemy if yxy y

6
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In equation (18) Gn' and Gm are the slopes of the stress-strain curve in the elastic and strain

hardening domains, respectively. It will be shown in this section that the buckling associ-

ated with the response expressed in equations (18) can be handled analytically.
For loads which correspond to X2 which exceeds X2('y) in equation (17) the shear

response of the matrix will follow the bi-linear stress-strain relation over a region
4<X<1/2, but will still remain linearly elastic within the central region O<X<4. ObviouslyI decreases with increasing X2. Substitution of expressions (18) into equation (16) gives

d2y _ ai y + k2y ?_2yo at 0<X<
dx 2

(19)

d3y -_qY+X2Y=-X2Yo-•12  at 4<X<I
dx2  2

where cc and ap defined according to (14) with shear moduli Gem and GM, respectively,
and

p2_ 2h (Gel - Glp)L 2

Vf ( - Vf) Elf

The boundary and continuity conditions associated with equations (19) are

sY)-0, Y(0) =0, Y(t+) = Y(-), RY4 +) = Y~,Y(t) =-Vm~y (20)£ dX 2 'dX dX

The above conditions correspond, respectively, to the vanishing of the moment at x=L/2,
and of the shear at x--0, the continuity of shear and moment at x=tL and the requirement

that, by hypothesis, i y,,, i = yy at x=ýL. The five conditions given in equations (20)

determine the four unknowns associated with the two second order differential equations
(19), as well as the yet unknown location ý.

Note that the solution for Y determines the displacement vf to within arbitrary rigid

translations and rotations, which are determined from the requirement of continuity of vf

Iand dvf at x=4L, as well as vf(0) = 0 and dv = 0 at x=L/2.
dx dx

The solution to equations (19) reads:

I for 0<X<ý

Y_(X) sinh KX 2 _ sin 4 + (1-Vf)y + sin 7cX (21)IsinhK Y, L ,2_)' L E -t 2-

7
I
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for 4<X<l/2 and X2 < c2p

1Y(X) cos icp(l-2X)/2 ' 2 sin rce + (l-Vr)&y - (22a)cos rp(l-24)/2 •2 _ 7E2 - p2

+-EXX2 sin 7cX - 2

)L+ X 2 _ _ Cq

while for ý<X<I/2 and X2 > q

""(X) cosh rp(1-2X)/2 ERA2 sin/ x + (I-Vf)y - 2 (22b)
cosh K,(1-2t)/2 ).2 - R2 - X _ -

+ C•,2 .sin EX -2P

),2 - It2 - (Cq •, -q

- In the above equations ic = )-2 and rp a2, X 2.

Equations (21) and (22) match all the conditions (20) except the continuity d•XdY )

= dy(•-). The latter condition yields a characteristic equation, upon differentiation of
dX

equations (21) and (22), which relates the position of 4 to the load parameter ).2. This

characteristic equation must be solved numerically, with the physically meaningful solution3- corresponding to the lowest value of X2.

In our computations we utilized the constituent properties reported by Guynn et al.
[101 for AS4/PEEK at 21C. Accordingly, we took Ef= 67 GPa, L = 330 Am and S. =

1.65 1-n and Vf = 0.6. For purposes of comparison we also considered additional values

of Vf in the sequel. The non-linear shear stress-strain response was approximated by a bi-

linear relationship with G.' = 1.3 GPa, G' = 0.33 GPa and yy = 4.2%.

The resulting stress-deflection cur'=• are shown in Figure 2 for various values of

Vf. The symbols "+" on those curves correspond to load and displacement values at onset
of departure from linearity in the shear stress-strain response of the matrix. Such departure3 occurs when I yq I = Ty at X = 1/2. Note that when Vf = 0.9 the composite can carry com-

pressive loads which exceed the level which cause departure from linear matrix response.
However, for Vf = 0.3 and Vf = 0.6 the stress-deflection curves exhibit the so called "finite

disturbance buckling behavior," resembling the buckling of cylindrical shells under uniaxial

1 8
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I compression or spherical shells under external pressure (Simitses [ 141). It is interesting to

note that for Vf = 0.3 and Vf = 0.6 the cusps in the stress-deflection curves, which corre-

I spond to maximal load I-vels prior to buckling, occur at magnitudes just above those which

cause I Ym I = y at v 4./2. It is obvious that the theoretically predicted cusps for Vf = 0.3I and 0.6 cannot ",. realized experimentally. Under load controlled tests the maximal loads

will be followed by total collapse and under displacement controlled circumstances the

spe.men would snap through to the lower load levels along the vertical dashed lines
shown in Figure 2.

Further insight into the compressive response predicted by the solution to equations

(19) and (20) is provided in Figures 3 and 4. The dimensionless length , (t=12 - , ) of

the regions where the matrix shear strain I ymXy I exceeds the linear elastic limit yy is plottedI vs. the applied compressive stress o, in Figure 3 for fiber volume fractions Vf = 0.3, 0.6

and 0.9. Note that oc increases monotonically with , for Vf = 0.9, but decreases (after

I very slight initial amplifications ) for Vf = 0.3 and 0.6.

The variation of the matrix shear strain 'my with the dimensionless distance X along

I the fiber/matrix interfaces is shown in Figure 4 for Vf = 0.6. The four curves in that figure

correspond to distinct levels of non-dimensional load X. The top curve, with X = 23.10

i represents typical linear elastic results, with I ym I < ,y for all X and thereby also E = 0. In

this case we obtain a sinusoidal variation of ymy which agrees with earlier results (Wang

[81, Lin and Zhang 191), namely ym = A sinitX with A = CErX 2 / [(1-Vf)(X 2 - !2 -a2). The
foregoing sinusoidal variation persists until the onset of inelastic response at X=1/2 which

occurs at X = Xy = 30.79. This result is shown by the dashed line in Figure 4. The maxi-

mal value of the compressive load, associated with X = Xmax = 30.81 corresponds to an

inelastic zone of dimensionless length • = 0.05. In this case the variation of fym with X,

I shown by the dotted line in Figure 4, is no longer sinusoidal. Beyond • = 0.05 values of X

decrease while A/L increase according to Figure 2. A typical circumstance, corresponding

to • = 0.1 and X = 30.23, is shown by the solid line in Figure 4.

Case 2: Non-Uniformly Spaced Fibers

,5ptistical Considerations of Cell-Size Distributions

As noted in the Introduction, non-uniformity in fiber spacing introduces a new

aspect into the compressive and buckling behavior of fiber-reinforced composites, namely

transverse internal lateral loads associated with the common deformation of the fibers.

Following the statistics of spatially distributed data and the concept of Voronoi cell tessella-

tion, as employed to represent the spatial distribution of spherical and cylindrical inclusions

9



(Davy and Guild [15]), we assume a cumulative distribution function for the cell size 2c

described by a Poisson's point process

P (C>c) = exp ( -2itc) (23)

In equation (23) gt is the frequency of Voronoi cells in a unit length, with a mean cell size

of g-1. The above consideration is subject to the restriction that fiber regions cannot over-

lap, namely c > h ("Gibbs hard core process"). Therefore, equation (23) is modified to

read

P (C>c) = exp (-2it'(c-h)) (24)

Since g-4 is still the expected value of the Voronoi cell size, namely,

g-1 = E(2c) = - 2c IP (C>c) dc

W 1= (2c =- dc

One obtains

It' = t (25)
1-2gh

Equations (23)-(25) can be expressed in terms of the fiber volume fraction Vf, as employed

in equation (13). Let Vf denote the average ( "nominal" ) value of the fiber volume fraction

and 2c = gt-1 the average length of the Voronoi cells, then Vf = h/c = 2hg. Consequently,

we have

It= Vf

2h ( 1-Vf)

and

P(C>c) =exp [ Vf -.,- )

Therefore, the cumulative probability that the fiber volume fraction Vf exceeds a value Vf is

P(Vf > Vf) = I - P (C>c) = 1 - exp -)]Vf (26)

The probability density distribution which corresponds to equation (26) is

Vf)=-d-•d P(Vf"Vf)= V-L- exP -Vf (_LVf (27)

dVf I- VVf I- 1Vf1Vf0

10
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I Computational results for ý(Vf) vs. Vf are shown in Figure 5 for three nominal (average)
values of Vf ( Vf = 0.3, 0.6, and 0.9 ).

The Compressive Resoonse with Randomly Spaced Fibers

The probability density AV() given in equation (27) was incorporated into the for-

mulation expressed in equations (11) and (13) and employed to predict the compressive

response of Gr/PEEK (APC-2) composite with Vf = 0.6 at a temperature of T = 21 C.

Based upon the data of Guynn et al. [10], the nonlinear shear behavior of the PEEK resin
was fitted by a Ramberg-Osgood expression

Try + (28)

where Gm = 1.3 GPa as in the previous section, A = 94.4 MPa and n = 0.12. In addition,
we took e = SAo/ = 1/200 as before and assumed, somewhat arbitrarily, resin failure to
occur atyn = u= 10%. The latter assumption was guided by the observed tensile failure

at eu - 4%-5% for PEEK at room temperature reported by Johnson et al. [161. The shear

stress-strain response considered in the foregoing representation is shown in Figure 6.

The solution to equation (13), with Y(0) = 0, d =0, together with (27) and

(28) was obtained numerically. Note that equation (28) was supplemented by 't2 = 0 for

iyky, I > yu. To implement the numerical solution, the field equation (13) was expressed by

finite difference! f17], and solved iteratively by a quasi-linearization method.

In the above implementation, the probability distribution function of the Voronoi3 cells, RVf), was evaluated at 100 equally spaced, discrete value of Vf varying between Vf =
0 and Vf = 1.0. With the exception of Figure 12, all computations were performed for

Vf = 0.6.
Further details of the numerical schemes are given in the appendix.

Upon attaining convergence to a prescribed degree of accuracy, the computational

program gives the values of vf, Y, Y' and Y, as well as the shortening of the column A.
Results for the non-dimensionalized lateral deflection vf/L and for the slope Y vs. X are
shown in Figures 7 and 8 for three values of non-dimensional compressive loads X,
namely 4 = 10, 20 and 26.4. The latter value corresponds to the buckling load, since no5 equilibrium configuration could be computed for X>26.4. The variation of ¥q, the shear
strain in the matrix vs. the distance X at X=26.4 is shown by the solid line in Figure 9.3 This variation is contrasted with the variation of ykry vs. X for uniformly spaced fibers at
the same load level, as shown by the dashed line, and against the variation of yy\ vs. X for

I
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II
-- uniformly spaced fibers at X=29.5, which is the maximal load level attained in the uni-

formly spaced case, as shown by the dotted line. All the plots in Figure 9 correspond to VfI = 0.6 (in the case of random spacing Vf = 0.6 and the results are plotted for the cell with

SVf = 0.6).3 Substitution of the numerically obtained solution for vf into equation (6) determines

the lateral load q(x) for each Voronoi cell, as specified by its fiber volume fraction Vf.

Results for q vs. the non-dimensional distance X = x/L are shown in Figure 10 for a typical
"matrix rich" cell, with Vf = 0.25, at load levels corresponding to X = 10, 20 and the buck-
ling value X = 26.4. Similar plots are shown in Figure 11 for a "matrix poor" Voronoi cell,

with Vf = 0.95. Note that sufficiently low levels of X, i.e. X = 10, yield small values of

lateral load q, while increasing levels of X. raise the magnitude of q. It is especially interest-

ing to note the "spikes" in the plots of q vs. X. These localized amplifications occur at
places where 7ym attains its ultimate value yu at some Voronoi cell, with the sharpest spike3 located near the place where 'ym I = yu at the Voronoi cell under consideration. For

instance, the spikes in q(X) for X = 20 in Figure 10 occur at X = 0.15 and X = 0.3, which3 are the locations where Iymy I = Yu at the Voronoi cells of fiber volume fractions Vf = 0.99

and Vf = 0.98, respectively, at X = 20. (Obviously, the matrix material in those cells failed

over the ranges of 0.15 < X < 0.5 and 0.3 < X <0.5, respectively). On the other hand, the

sharp spike at X = 0.25 for X = 26.4 in Figure 11 is associated with 'yjr attaining its ulti-

mate value 'yu within the very same Voronoi cell (with Vf = 0.95) considered in that figure,

while the remaining peaks are associated with shear failures in other cells. Peaks which

occur at locations X < 0.25 are due to failures in cells with values of Vf > 0.95, while3 spikes located at X > 0.25 are due to failures within more resin-rich Voronoi cells.+

Comparison between Figures 10 and 11 shows that resin-rich Voronoi cells are3 subjected to relatively lower lateral loads. This observation is attributable to the fact that the
above mentioned cells sustain shear strains yxy of comparatively smaller magnitudes.

Predicted axial-stress axial-strain relations and compressive strengths under mono-

tonically increasing compressive loads are illustrated in Figure 12 for various values of Vf.

The continuous lines, terminating at points which corresponds to failure, correspond to

uniformly spaced fibers, while symbols represent computational results for the case of

5 +-It may seem that lateral equilibrium is not satisfied for the individual Voronoi cells since ý 2q(X)dX *0

i in the plots shown in Figures 10 and 11. However, due to symmetry about X = 0 and X = 0.5. ; q(X) dX

indeed vanishes.

1
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a randomly spaced Voronoi cells with filled symbols representing failure. The stress-strain
responses shown in Figure 12 are dominated by the last term on the right side of equation

(4) and thus remain nearly linear until failure. Note the reduced levels of failure stresses

and strains for random fiber spacings.3 Unlike the circumstance of uniformly spaced fibers with bi-linear shear response of
the matrix, the computational scheme for randomly spaced fibers cannot be extended to3 predict post-buckling behavior such as shown in Figure 2. The specific values of the com-

puted compressive failure stresses are listed in Table 1. That Table exhibits the effects of
the nominal volume fraction Vf, the amplitude of geometric imperfection 8,/L, and the

presence or absence of an ultimate value of matrix shear strain yu. The Table also

illuminates the effect of random fiber spacing.

3. CONCLUDING REMARKS3 This article presented a mechanics model for the compressive response and failure

of uni-directionally reinforced polymeric composites loaded parallel to the fiber direction.
The model accounted for the non-linear shear response of the resin, including its ultimate
shear strain, and incorporated two kinds of geometric imperfections, namely, initial fiber
waviness and random fiber spacings. Heretofore, the latter kind of imperfection has not

I been considered elsewhere.
Unlike earlier works, it was shown herein that a proper accounting for the non-

Slinear shear response of the matrix yields a non-linear field equation for the compressive

behavior of the composite. In general, the above equation could be solved numerically up3 to failure. Nevertheless, in some special circumstances, it was possible to generate a
solution into the post buckling range.

Both kinds of geometric imperfections, initial fiber waviness and random fiber

spacings, were shown to substantially reduce the compressive strength of the composite.
However, random fiber spacings, when combined with the foregoing non-linear shear

response of the matrix, was shown to introduce imbalances in the support furnished by the

matrix against fiber microbuckling - resulting in highly localized transverse loads on the3 fibers. The emergence of these transverse loads could explain the transition from failure

through microbuckling to the more commonly observed collapse by microkinking.
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I Uniform Spacing Random Spacing

V 0 /L Y___=___ 'YU =O0.1 Y tUo = ______= _

0.0025 1360 1360 1381 1292

0.3 0.0050 1103 1103 1116 10293 0.0075 941 941 947 867

0.0025 2023 2023 2144 17463 0.6 0.0050 1541 1541 1583 1234

0.0075 1253 1253 1281 969

5 0.0025 4228 4228 4228 2927

0.9 0.0050 2702 2702 2685 1700
- 0.0075 2023 2023 2023 1194

5- Table 1. Comparison of Failure Strength (MPa)

I
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I APPENDIX: THE NUMERICAL SCHEME

I The nonlinear second order differential equation (13) can be expressed as

Y" = Q(X,Y) (a I)

3 where the prime denotes derivatives with respect to X, and

3 Q(X,Y) •(V,) a2(Vf) (I-Vf) F(-y.- ) dVr- X2Y - X2Yo
l-Vf

An error quantity at i-th iteration step is defined as

S6(i) = y"(i) - Q(X,Y(i))

Consequently, upon employing a Taylor series expansion, the subsequent error quantity is

given by

I 0,+.)_ )(i) + 14 _.)(i>yoil)_ y(,)) + ý 0 '(i)y.(i~l)_- Y,(0))(2

Noting that 0(- = and(ay" = 1, we obtain, upon imposing 0(i)=,(i ) = 0

in equation (a2) Y"(i+i) - - Q(XY(i)) - ( 0)

Y" ) -a•( =y(i)

3 Expression (a3) is a linear ordinary differential equation for y(i+1) involving the known

results of the previous iteration y(i). Note that the derivative of Q with respect to Y is

Furthermore, a2(Vf) F Y dVf - X

Furthermore, upon employment of the Ramberg-Osgood model, we have

F = I
+ om , (1-n)1+--

Obviously, the boundary conditions in equation (15) must be satisfied in every iteration

* step.

The linear differential equation (a3) is solved by finite difference scheme as

follows. Divide the abscissa 0<X<I into N equal intervals of length h=I/N. Then at each

node X=Xn=nh the second order derivative Y" is expressed as

I
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Ih3 Using the above relation, equation (a3) can be converted to an algebraic equation of

the form
~+1) +b(ni+l)Y(,i+l) +<i+l) r(+l)a4)

n-I + n n n+1l

H ere, h ni+ l) = -h2 Q2

-~'' h2 (a1Q-)(i 2 )~Y IQ(Xn~y')) -2 I

The boundary conditions in finite difference scheme are y(+1) -0 and S(Ni+I) - yNi+1)

The system of equations (a4) can be represented as
A(i+5)Y(i1)= S(i+1) (a5)

whereI
b(i+') 1 0 "++1

"1 1•+1

b('1'2 1 y(i+l) 0+1)
2( r2

A(i+')= ]b3il ly(i+I)= S(i+1)=I I b i•: 1

I _ 0 2 _ý +I)-)/r•l

Equation (a5) can be solved by means of the LU decomposition[17]. Accordingly, the

matrix A(0+ 1) is decomposed into the product Ai+l) = L(i+I)u(-+l).

5 Here,

I
I
I
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I L (i+1) =o". U.i(i) = "

U L~i~l)= I'2 -

1 1'N-1

L 0 2 _ 0 I

and b(,+') -

nI4+)y(i+I)= 1 (n = 1,2... N-I)

S••+ (i+) (n = 2,3...N-1)
IOV = •I) ,,vi+' )

I D eno ting 
-- N -=

z(i+l) = U(i+l) y(i+l) (a6)3 equation (a5) is transformed to L(i+l)Z(i+l) -- SO+l), where the components of Z(i+I) are

computed by3 z¶~+1') > i+l) /00i+l)

z+1) = +(1(n+) - 11+))/I•+1) (n = 2,3...N-I)

3 4•,+l)(r(i+1) - i+I)

The recursive relations between z4+1 's and Yi+l ,s are obtained from equation (a6) as5 ,Y(0+1) =(z+1)

y(i+i) Y+n).,(i+I)y(i+l) (n= N-1,N-2I....!)

The values of yni+l) express the solution to equation (13) at the (i+,)th iteration step.
N

When I 1i+I)- Y(in1 2 attains a constant value within a prescribed tolerance, the iteration
n= I

is halted and post-processed to compute deflection, shear strain and stress, lateral stress

3 and other quantities.

I
I
I
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Figure 1. (a) A Fiber composite modelled as a two dimensional lamnellar region consisting

of fiber and matrix plates; (b) a deformed single cell.

3 Figure 2. The scaled compressive displacement A/L at X--0.5 vs. applied compressive
stress cc for various fiber volume fractions Vf (symbol "+" corresponds to the

circumstance of k'(X=Y 2 = yy).

Figure 3. The dimensionless length, • = 0.5 - 4, of the inelastic zone of matrix shear
response (k2ym4 > yy in equation (18)) vs. applied compressive stress for Vf =

0.3, 0.6 and 0.9.

Figure 4. The variation of the matrix shear strain yq' vs. the non-dimensionalized distance
X along the fiber/matrix interface at several values of non-dimensionaiized
applied compressive stress X. Fiber volume fraction Vt = 0.6. Onset of
departure from linear elastic matrix shear response at X = y= 30.79, maximum
compressive stress at X = X.m = 30.81.

Figure 5. Distribution of local fiber volume fraction for randomly spaced fiber composites
with average fiber volume fraction, Vf, of 0.3, 0.6 and 0.9.

Figure 6. Shear constitutive relation of PEEK at 21"C based on Guynn's estimation [101

with shear failure strain assumed at 10%.

3 Figure 7. Non-dimensionalized deflection, vf/L, vs. X for randomly spaced fiber
composite with Vf = 0.6, under compressive loads corresponding to X = 10, 20
and 26.4. Failure shear strain yu is 10%, and X = 26.4 is the compressive
strength of the composite.

Figure 8. Solution Y of the governing equation for randomly spaced fiber composite with3. Vf = 0.6, under compressive loads corresponding to X. = 10, 20 and 26.4.
Failure shear strain yu is 10%, and X = 26.4 is the compressive strength of the3 composite.

Figure 9. Comparison of matrix shear strain for the Voronoi cell with Vf = 0.6 in randomly
spaced fiber composite under its failure load X. = 26.4 with matrix shear strainI- for uniformly spaced fiber composite under the same load level and its own
failure load X = 29.5. Vf is 0.6 for both cases (RS and US imply randomly and3 uniformly spaced fiber composite, respectively).

Figure 10. Lateral stress q(X) vs. X on a Voronoi cell with Vf= 0.25 in randomly spaced
fiber composite with Vf = 0.6 at various levels of non-dimensional compressiveIrl loads X. The load X. = 26.4 corresponds to the failure strength of the
composite.

I1
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Figure 11. Lateral stress q(X) vs. X on a Voronoi cell with Vf = 0.95 in randomly spaced
fib,, composite with Vf = 0.6 at various levels of non-dimensional compressive
loads X. The load X = 26.4 corresponds to the failure strength of the
composite.

I Figure 12. Dimensionless displacement -A/L at X=0.5 vs. applied compressive stress.
(Solid lines are for uniformly spaced fiber composite. Symbols are for
randomly spaced fiber composite. The ends of lines and the filled symbols
indicate compressive failure strength for uniform and random spacings,
respectively.)

II
I

I ___ _

7* 2h

i ----- ••• _

(a)

S~q(x)

I- L

(b)

"Figure 1. (a) A fiber reinforced composite modelled as a two dimensional lamellar region
consisting of fiber and matrix plates; (b) a deformed single cell.

20



3 4000-

a-~ 3000- Vf - 0.9

0

,i
02000

A? O0 vf0.6
'a 1000-

0.Vf o.3

"'"0 2' ' 4 ' ' 6 ' ' 8 ' 10

-A/ L(%)
Figure 2. The scaled compressive displacement A/L at X=0.5 vs. applied compressive

stress a( for various fiber volume fractions Vf (symbol "+" corresponds to the

3 circumstance of kmy(X=½) =y
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If SFigure 3. The dimensionless length, =0.5 - Fof the inelastic zone of matrix shear
response ( ý xrn > y y in equation (18)) vs. applied compre ssive stress for Vf=

-- 0.3, 0.6 and 0.9.
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Figure 4. The variation of the matrix shear strain ym vs. the non-dimensionalized distance
X along the fiber/matrix interface at several values of non-dimensionalized
applied compressive stress X. Fiber volume fraction Vf = 0.6. Onset of
departure from linear elastic matrix shear response at X = = 30.79, maximum
compressive stress at X = , = 30.81.
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I Figure 5. Distribution of local fiber volume fraction for randomly spaced fiber composites3 with average fiber volume fraction, Vf, of 0.3, 0.6 and 0.9.
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Figure 6. Shear constitutive relation of PEEK at 21 C based on Guynn's estimation 110]5 with shear failure strain assumed at 10%.
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Figure 7. Non-dimensionalized deflection, vf/L, vs. X for randomly spaced fiber3 composite with Vf = 0.6, under compressive loads corresponding to X = 10, 20

and 26.4. Failure shear strain y. is 10%. and X = 26.4 is the compressive
strength of the composite.
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Figure 8. Solution Y of the governing equation for randomly spaced fiber composite with
Vf = 0.6, under compressive loads corresponding to X = 10, 20 and 26.4.
Failure shear strain yu is 10%, and X = 26.4 is the compressive strength of the
composite.
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Figure 9. Comparison of matrix shear strain for the Voronoi cell with Vf = 0.6 in randomly

spaced fiber composite under its failure load X = 26.4 with matrix shear strain
for uniformly spaced fiber composite under the same load level and its own
failure load X = 29.5. Vf is 0.6 for both cases (RS and US imply randomly and
uniformly spaced fiber composite, respectively).
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Figure 10. Lateral stress q(X) vs. X on a Voronoi cell with Vf = 0.25 in randomly spaced

fiber composite with Vf = 0.6 at various levels of non-dimensional compressive
loads X.. The load X, = 26.4 corresponds to the failure strength of the

i composite.
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Figure 11. Lateral stress q(X) vs. X on a Voronoi cell with Vf= 0.95 in randomly spaced
fiber composite with Vf = 0.6 at various levels of non-dimensional compressive
loads X. The load X, = 26.4 corresponds to the failure strength of the
composite.
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I Figure 12. Dimensionless displacement -A/L at X=0.5 vs. applied compressive stress.
(Solid lines are for uniformly spaced fiber composite. Symbols are for
randomly spaced fiber composite. The ends of lines and the filled symbols
indicate compressive failure strength for uniform and random spacings,
respectively.)
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