
AL-TR-I9-0175 AD-A265 547 -

AIRBORNE WARNING AND CONTROL SYSTEM (AWACS) ' •
INTELLIGENT TUTORING SYSTEM (ITS)

A DTIC
n David R. Strome ECTE
M Systems Research Laboratories, Incorporated JUN9 1993

S 2800 Indian Ripple Road

T Dayton, OH 45440-3696 C
R
0

HUMAN RESOURCES DIRECTORATEN TECHNICAL TRAINING RESEARCH DIVISION
7909 Lindbergh Drive

Brooks Air Force Base, TX 78235-5352

L
A May 1993

B Final Technical Report for Period 1 April 1991 - 12 December 1991

0
R
A
T Approved for public release; distribution is unlimited.

0
R
Y

93-12870

AIR FORCE MATERIEL COMMAND
BROOKS AIR FORCE BASE, TEXAS

IForm NAPpoe
REPORT DOCUMENTATION PAGE nOM Noved

Public reporting burde for tde collection of info nnato n is esima ed to a 1 hour per reapon a., including the time o rev.Ie n nstructi o , searching exiting d ata sources, gathering
and rnaintaining the date needed, and complating and rmevlwing the collectioi of infm14oran. Se commente regading thie burden aetimate or any other aspect of this collectuon or
int�1�o tlon, Inr:uding ote for rduclng this bu=den, Ci WDilregtonHa ua fe Seicaa, OIrctorate for Infornition Operatons a , 1215 JeffersOn Davis Highway, Suite
1204, Arlington. VA -4302, and to the Ofce of na ent and tp Reduction Proact (0704-0188), Washington, DC

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1993 Final - 1 April 1991 - 12 December 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F33615-87-D-0601

Airborne Warning and Control System (AWACS) PE - 62205F
Intelligent Tutoring System (ITS) PR - 1121

6. AUTHOR(S) TA - 09
WU - 83

David R. Strome

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Systems Research Laboratories, Incorporated REPORT NUMBER
2800 Indian Ripple Road
Dayton, OH 45440-3696 4

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Armstrong Laboratory REPORT NUMBER
Human Resources Directorate AL-TR-1992-0175
Technical Training Research Division
7909 Lindbergh Drive
Brooks Air Force Base, TX 78235-5352

1. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Capt Alan Goodman, (210) 536-2034

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The Intelligent Training Branch of the Armstrong Laboratory supports and conducts research in intelligent

tutoring systems (ITSs). The purpose of this project was to apply this technology in the construction of an ITS
which applied to Air Force Specialty Code (AFSC) 17XX, Air Weapons Personnel. The specific domain included
task conducted on the E-3B/C Airborne Warning and Control System (AWACS) aircraft. Re. Its indicated the
need for further development of the applicable software, but also indicated the plausibility for this type training in
the selected domain.

4

14. SUBJECT TERMS 1S. NUMBER OF PAGES
Artificial intelligence Student modeling 200
Inteligent tutoring systems Team training 16. PRICE CODE

17. SECURITY CLASSIFICATION SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF TH!§ PAGE OF ABSTRACCTI Unclassified Unclassified OF cassified UL

N9N 75404 0i248 -1 F2

298-10

II

Table of Contents

Background .. 3

Developing Criteria ... 3

Preparation .. 4

Benefits of an ITS .. 5

Designing the ITS .. 6
ITS Paradigm .. 6
Knowledge Dom ain .. 6
Simulator.......6
Instructor M odel.. .. 7
Student M odel 8

Necessary WD Knowledge/Skills 8
Skill Levels .. 9 9

Course Structure .. 10
Student Skills Assessment 10
Lesson O ne ... 11

Developing the Software ... 12 a

AWACS ITS Program Documentation 12
Silicon Graphics Software 13

Im plem entation .. 14
Program Documentation 18

DEC VAX 780 .. 22
Im plem entation .. 22
Program Documentation 27

Recommended Development 32

ListofApp Accesion For

NTIS CRA&I

Appendix A 3 SEP 91 Ltr from Capt. Fowler DTIC TAB 0
Appendix B IQT-WD READING GUIDE Unannounced 0
Appendix C Experience Questionnaire JustitCon __

Appendix D ITS Source Files
Appendix E ITS User's Guide By
Appendix F Decision Tree Distribution I

Availability Codes

I Avai andlot i
iii Dist S.ecial

R -__

AIRBORNE WARNING AND CONTROL SYSTEM (AWACS)
INTELLIGENT TUTORING SYSTEM (ITS)

Background

The United States Air Force (USAF) at Tinker AFB, Oklahoma, trains USAF officers to fulfill 4
the role of Weapons Directors (WDs) aboard the E-3B/C Airborne Warning and Control
System (AWACS) aircraft. The AWACS platform supports Command, Control and
Communications (C3) missions in the airborne environment. USAF Armstrong
Laboratory, Crew Technology Division, Sustained Operations Branch (AL/CFTO), in
cooperation with Systems Research Laboratories, Inc. (SRL), configi ired WD crewstations
and affiliated systems in the Aircrew Evaluation Sustained Operations Performance
(AESOP) facility to run defensive counter air (DCA) mission simulations. Teams of three
WDs detect, identify, intercept, and destroy enemy aircraft attempting to attack friendly
forces or penetrate friendly airspace. A Senior Director (SD) serves as the immediate
supervisor in the chain of command. In a DCA mission, the SD oversees and coordinates
WD efforts to execute the directives of the senior battle staff. 4

In cooperation with the Technical Training Research Division, Human Resources
Directorate (AL/HRT), SRL began research and development of an Intelligent Tutoring
System (ITS) in the Air Force Specialty Code (AFSC) 17XX C3 domain. The effort was to
provide a proof of concept, with recommendations for future development.

Develpkg Criera

One of the first tasks involved narrowing the instructional domain. The following criteria
were established: e

1. The domain was restricted to that of weapons controllers: WDs, SDs,
Weapons Controllers (WCs), and Weapons Assignment Officers (WAOs).

2. Due to practical limitations on equipment and funds, interactive voice
communications were not included.

3. The domain included areas that would fill an immediate need of the Air
Force's 17XX operational training community.

4. The domain was limited in order to accomplish development in the time
available.

1

5. The ITS was restricted to Initial Qualification Training (IQT). By focusing on 4
initial training, changes in performance would be more dramatic and
therefore easier to measure.

6. Finally, in order for the ITS to teach something more than a routine
procedure, we wanted to incorporate some decision-making skills.

Using these criteria, training systems at Tyndall AFB and Tinker AFB were deemed
appropriate for adapting to an ITS. At Tyndall AFB, all 17XXs receive their initial Air Force
training in the weapons controller career field. After graduating from Tyndall's introductory
course, some 17XXs continue to Tinker for initial WD training in AWACS.

After initial contacts with training sites, we chose to focus on Tinker's AWACS community.
After a fact-finding trip to Tinker (11-13 August 1991), the main subject area for initial
development was identified as Block I, AWACS WD Initial Qualification Training. This
subject area is taught at Tinker in the mission simulations. It is an introduction to the
switch actions a WD uses in performance of job tasks. Block I IOT met the first five
criteria for narrowing down the domain for developing an ITS. In addition, the Director of
Operations of the 552 Tactical Training Squadron indicated that an ITS for this instructional
block would widen a traditional training bottleneck for AWACS WA training, thus fulfilling
criterion # 3.

Criterion # 6, decision-making skills, was not met. However this criterion was of a lower
priority for two reasons. First, only Block I IOT WD instructional materials were set and
the AWACS WD training program was being rewritten to take into account lessons learned
from Desert Shield/Storm. Second, there is an ongoing reorganization by the Air Force
in the training of 17XXs.

Preparation

While at Tinker, SRL tried to ascertain how Instructor WDs (IWDs) taught and evaluated
IOT WD students--particularly as related to Block I IOT WD training. Important findings
included:

1. Time for task completion is ill-defined in early instructional blocks.

2. Number and types of errors are also ill-defined.

43. Window for task completion, while not critical at first, rapidly becomes more
important than time for task completion. The size of the window remains
ill-defined.

2

4. Fighter Weapons School is considered more important for good experience
in initial categorization of student abilities and capabilities than any other
prior experience.

5. Students are not accelerated through training, even if they show exceptional
skill or aptitude.

6. Prior experience and training records play a part in evaluating students, but
is an exception, not a rule.

7. Only some IWDs used a dual tracking task in training of Block I IOT WDs,
but this technique was being institutionalized as part of the formal program.
The dual tracking task consists of a single piece of symbology on a single
track in an oval orbit. The student is required to keep the symbology on the
track throughout the lesson and while performing the procedures. This dual
tracking task is not objectively measured, but subjectively indicates to the
IWD that the student WD learned the lesson well.

8. Most switch actions are taught and used for two simulations in a row and
then not trained or used until a student progression test is administered.

9. Most student evaluation is subjective.

Beneftis of an ITS

ITS can eliminate or ameliorate many obstacles to efficient and effective training, including
those mentioned above. ITS can take full advantage of quantitative measures developed
in cooperation with expert IWDs, allow individually paced escalation of complexity and 4
volume of tasks, and implement consistent application of evaluation criteria. In addition:

ITS allows better use of manpower by enabling an IWD to manage the
training of many student WDs rather than two or three. At the same time,
ITS effectively allows a one-to-one student-to-teacher ratio.

Because of the self-paced aspect of ITS, training can proceed at a faster rate
for more able or experienced students and allow less able students ample
practice time and opportunities to hone their skills.

As the need for rapid response escalates, a WD must increase the work
pace. This increase can occur only where there Is spare capacity. The
optimum area for this increase is that of console operations. ITS can

3

objectively judge this spare capacity and thereby enhance WD training by
developing high-performance knowledge and skills in console operations.
ITS simulations can foster achievement of these skills through "consistent
practice" (Regian, 1990).

ITS allows a student WD to consistently build on recently acquired
knowledge and skills rather than moving on to other tasks before these new
skills are reinforced.

Designing the ITS

ITS Paradigm

The second task under this effort required the creation of a conceptual paradigm of an
ITS. The five important elements that must be related to each other are:

* a Simulator,

0 a Knowledge Domain,

0 an Instructor Model,

* a Student Model, and

* an Intelligent Interface that links them together (Burns & Parlett, 1990).

These elements are graphically represented in Figure 1.

4

-J 4

:a5

LaL

caI

L~wC,

CDI

u5
wI

Each of these five elements is interrelated to the others. A development in one element
often requires a corresponding development in one or more of the other elements. In this
way the different elements remain fitted together as a coherent whole. Take for example
teaching the procedures for executing a Commit switch action. The procedural steps
for executing this switch action must be included in the relevant Knowledge Domain.
The Simulator must have this switch action and be able to execute it. The Instructor 4
Model must indicate how, when, and where in the course of instruction to teach the
Commit switch action. The how, when, and where of the instruction depends heavily on
the Student Model. The Intelligent Interface must make the match of the Student Model
to the student, pick the correct format of instructions for the lesson, execute the lesson
on the simulator, and evaluate the student's progress.

Knowledge Domain

For practical reasons, the Knowledge Domain element comes first. Specifically, this is
identified as the 552 AWACW l0T WD Block I, Weapons Director Student Study Guide,
Volume 1, of training course E3000BQODX. This guide introduces students to AWACS,
the WD Multi-Purpose Console (MPC), and several switch actions, building a declarative
knowledge base and a procedural knowledge base. The emphasis is on procedural
knowledge base, that is, how to perform certain WD switch actions. A specific list of
these switch actions is found in Appendix A, a letter from Capt. Fowler, representative
of the 552 AWACW/DOQMW office, which is responsible for the training course
development at Tinker for WDs.

Simulator

The next element, the Simulator, is the nearest to completion. These are the C3 Generic
Workstations (C3GWs) and the supporting AWACS Simulation software in the AESOP
facility (Schiflett, Strome, Eddy, and Dalrymple, 1990). The C3 GWs have most of the
switch actions taught in Block I at Tinker AFB. The following list includes all the Block I
switch actions that have rnt yet been implemented on the C GW:

Restricted Area
RN/DES/NTN SD
Add/Delete Airbase
Area Define/Delete
Corridor IFF SD
Radar/IFF Tracking

These switch actions amount to 28% (6/21) of all the switch actions taught in Block I, IOT
WD training. An estimated 280 man hours of programming development are needed to
fully develop these switch actions. In all other respects, the Simulator element closely
emulates the presentation and functions of an AWACS WD MPC.

6

4

1Instructor Model

The Instructor Model element contains instructional goals, accounts for student attributes,
structures the Knowledge Domain, and presents the structure. The goals center around
transfer of knowledge from the Knowledge Domain to the student. Specifically, these
goals are to teach the student:

1. The physical layout of the MPC, i.e., where the switch action buttons are

located.

2. The procedural steps for executing MPC Console Checkout.

3. The procedural steps for executing the following switch actions:

Assign Console TD Index
Line Circle
Coordinate Tactical Bearing & Range
Restricted Area Bearing and Range
RN/DES/NTN SD Initialize Special Point
Add/Delete Airbase Area Define/Delete
Locate SIF Corridor IFF SD
Request SIF Initiate
Mode IV Reinitiate
Radar/IFF Tracking Assign/Defer
Request/Assign IFF/SIF ADS Panel Channel activations

These goals lay the foundation for evaluating the student's performance. Acceptable
execution of these procedures by a student WD indicates successful transfer of
knowledge. However, defining acceptable execution involves several measures:

* time of complete task execution,

* time of execution of each step within the task,

a time window for accepting task start and end, error toleration, and
alternate step sequencing, when it exists.

The values that address these measures are not currently known with certainty.
Therefore, our initial set of values for evaluation were determined by a Subject Matter
Expert based on years of experience as a WD/SD/IWD. The set of values chosen for
different students is based on student attributes.

7

Student Model

Accounting for student attributes requires recognizing appropriate student differences,
setting appropriate goals based upon these student differences, and then selecting a
mode of instruction that best matches both the student and the instructional goals.
Recognizing appropriate student differences relies heavily upon the Student Model. A WD
student is matched to his/her appropriate type in the Student Model. Once the student
type is known, then the Instructor Model has the correct set of instructional goals to tie
to that student type. Our prototype has only one set of instructional goals based on the
lowest level of student type. Selecting a mode of instruction impacts how the Knowledge
Domain is structured and how information is presented.

Necessary WD Knowledge/Skills

There are three distinct, but interrelated areas of knowledge/skill necessary to be a
functioning and qualified AWACS WD. These are declarative knowledge, procedural
knowledge, (Barr & Feigenbaum,1981; Anderson, 1988) and operational skills.

Declarative knowledge refers to that specialized body of knowledge about the system, its
purpose, components, events, and the relationships among them. A few examples are
how radar works, the different types of intercept geometry, airpower doctrine, and brevity 4
code words.

Procedural knowledge deals with task procedures needed to operate the equipment.
Some examples include reading scope presentations, talking and listening using the
communications equipment, and executing switch actions.

Operational skills encompass knowledge at both cognitive and meta levels (Burton, 1988).
At the cognitive level, the WD needs to acquire some high level skills to cope with the
demands of a complex task environment in order to properly apply the declarative and
procedural knowledge in both normal and abnormal problem solving situations (Woods,
1988). Time management and cost-benefit analysis are two skills necessary for the 4
proper coordination of multiple WD tasks in a complex and dynamic environment. Proper
coordination is important because system events compete for the operator's attention.
Other critical skills resulting from the dynamic, complex nature of the system include
adaptiveness and disturbance management that are common to other complex systems.
Two that are critical to the WD world include dichotic listening and three dimensional
spatial orientation involving motion of objects while remaining stationary.

Meta skills concern knowledge about how to learn effectively. The body of knowledge the
novice WD must learn can be overwhelming. Consequently, at the meta level, the WD

8

needs to know how to monitor the learning process and manage different activities to
get the most out of training.

The declarative and procedural knowledge together form the domain knowledge the
operator must have. Operational skill can be viewed as the operator's successful
acquisition and application of the domain knowledge during training that transfers to the
actual task environment.

Skill Levels

In each of the three areas, a WD is rated on a scale of 1-5, with 5 being the highest.
Each numerical rating corresponds tc a label ranging from 1-Naive, 2-Novice,
3-Journeyman, 4-Expert, and 5-Master. The following is a description of each
label/rating:

1 NAIVE: Indicates a complete lack of knowledge and/or skill.

2 NOVICE: Has some knowledge and/or skill, but not enough to operate
independently to complete assigned tasks in a timely manner.
Does not recognize all patterns of stimuli. Does not know how
to order behavioral actions in response to recognized patterns
of stimuli.

3 JOURNEYMAN: Has enough knowledge (score 85% or better in written exams)
and/or skill to operate independently to complete assigned
tasks, but not always in a timely manner. Recognizes common
stimuli variable patterns and applies domain rules of behavioral
responses. Does not recognize situations in which the domain
rules do not apply, and/or in which new variables or patterns
exist. Perseveres in attempting to apply what is known. Not
yet capable of solving difficult or complex problems or
developing new rules.

4 EXPERT: Has superior knowledge and/or skill. Operates well
independently to complete all assigned tasks in a timely
manner. Recognizes common stimuli variable patterns and
applies domain rules of behavioral responses. Recognizes
existence of new variables and/or situations in which the
domain rules no longer apply, and can usually develop a
solution. Capable of solving most difficult or complex
problems.

9

5 MASTER: Has superior knowledge and/or skill. Operates well
Independently to complete all assigned tasks In a timely
manner. Recognizes common stimuli variable patterns and
applies domain rules of behavioral responses. Recognizes
existence of new variables and/or situations In which the
domain rules no longer apply, and can develop new rules.
Capable of solving difficult or complex problems.

The goal of the training in Block I AWACS WD training is to bring all students up to the
NOVICE/level 2 for Procedural Knowledge, Declarative Knowledge, and Operational skill.

Course Structure

Since the Knowledge Domain consists largely of Procedural Knowledge, the required step
sequences are already structured. Yet there is a need for a comprehensive course outline
that addresses the goals of Procedural Knowledge to be taught in each lesson, how
many lessons there will be, and how fast the pace of presentation will be. The course
outline is currently taken from Appendix A and Appendix B, the IQT-WD READING GUIDE
(6 JUN 90). Note that the maximum time allowed for the course is specified, but no
minimum time is established.

Student Skills Assessment

For this proof of concept prototype, we developed a Student Skills Assessment module
to categorize student WDs (from 1-Novice to 5-Master) according to experience and
ability. This module consists of an Experience Questionnaire and a Switch Action Exercise
that students complete on the console prior to the first lesson. A printed copy of this
questionnaire is included as Appendix C. Although it is highly probable that the students
taking this course are novice WDs just graduated from the introductory course at Tyndall
AFB, exceptions occur with sufficient frequency that they must be addressed. For
example, occasionally a student may have extensive experience either as a WD or as an
aircraft controller and must be requalified as required by regulations. The multiple-choice
questionnaire ascertains the same information usually gleaned from the student's records
or informally gathered by the instructors during the lesson breaks. In addition, where the
student indicates a proficiency above basic entry level, the Switch Action Exercise is
presented to validate the evaluation. The normal Lesson One, Block I instruction is then
presented.

The first lesson consists of three parts and is presented at only one pace of instruction.
The Instructor Model does not evaluate the student during the lesson, only after the
lesson is complete. The capability to evaluate the student during the lesson and the
capability to change the lesson mode if necessary, need to be more fully developed.

10

Leson 013e

The Simulator Model is the means of instructional presentation and involves five phases
of instruction in this high performance Knowledge Domain (Fink, 1990):

(1) Static overview knowledge,

(2) General procedure-oriented knowledge,

(3) Guided example exercises,

(4) Unguided example exercises, and

(5) Automated example exercises.

Static overview knowledge consists of a general description of the salient parts and
features of the particular piece of equipment on which the task will be performed. This
static overview is not included in the prototype. Instead, it is left to the written material
found in the IOT WD Student Study, Vol. I.

General procedure-oriented knowledge consists of a description of the steps that must
be performed in executing the procedure being taught. Parts of the equipment involved
and the motivation or effect for each step are indicated. Each of the lessons should start
here for the lowest level student. The first part of Lesson One describes the steps and
indicates where the switches are. It doesn't give any motivations for each step or each
step's effect on the overall status of the goal.

Guided example exercises provide the student with the opportunity to practice with
specific examples while being prompted and coached in order to develop accuracy in the
skill. The second part of Lesson One presents a procedure the student must perform on
the Simulator. Instructions guiding the student are presented, but the student is not
evaluated during the lesson.

Unguided example exercises provide the student the opportunity to practice the whole
process with specific examples without interruption in order to develop speed with
accuracy. This is the third and final part of the Lesson One. The student is given ten
minutes to execute the Console Checkout while reading and following the Console
Checkout checklist. After ten minutes, the lesson is terminated and the data on student
performance is gathered and evaluated. In future ITS development, this process should
be automated.

11

Automated-example exercises provide the student the opportunity to practice the entire
process with specific examples while doing another task. These types of exercises allow
the WD to develop the capability to perform tasks automatically. The first lesson is not
designed to use this phase. However, Console Checkout is done at the beginning of
each and every lesson. As the lessons proceed, the time for this procedure's completion
will narrow down from ten minutes to three minutes.

Developing the Software

The development of this prototype was accomplished with a minimum amount of coding
change to the existing AWACS Simulation software. Rather than having the two pieces
of software integrated, the ITS software executes as a separate process from the
simulation, but uses the data collected in the Logger File as input for evaluation. The
intent is to have both pieces of software execute in an alternating fashion so the results
of one can be used in the next execution of the other. Hence, the ITS software brackets
the simulation to provide the appearance of an imbedded simulation without actually
accomplishing the imbedding process. On the front end, the ITS software provides the
interaction necessary to instruct and evaluate the student before selecting an appropriate
scenario for the AWACS Simulation. Then on the back end, the ITS software evaluates
the student's performance during the simulation before presenting the appropriate follow-
on instruction area.

Admittedly, using two computers systems to provide the functionality for the AWACS ITS 4
is not the ideal solution. However, it does provide a flexible test platform upon which to
develop some quantitative metrics for estimating the skills of the student WD. While
pedagogy suggests the development of high-performance skill is best accomplished via
consistent practice, establishing the criteria to judge the WD student still requires
significant amounts of definition and refinement. 4

AWACS ITS Program Documentation

The software for the AWACS ITS was developed on both the UNIX based Silicon Graphics
(SG) 4D/50 and the DEC VAX 780 computers using C and the Curses screen handling
package. With the exception of the simulation graphics (SG only), all user interaction can
be accomplished using either the SG graphics or DEC VT200 series terminals. Source
files are included as Appendix D.

The AWACS ITS operates as three separate parts. 4

1. The SG 4D/50 software provides the instructional capability for the ITS.

12

4

2. The Simulation software provides the hands-on aspect of the WD's console
operation.

3. The VAX 780 software is the first iterative trial to evaluate a WD's actual
console operation.

Since the Simulation software is documented elsewpere, it will not be reiterated and
documentation of the remaining two functions follows . An ITS User's Guide is included
as Appendix E.

Silicon Grdphics Software

As developed, the software exists in 7 source files and have the following functional
relationships:

itsdef.h: Header file for the ITS software.

ITS.c: The overall controlling function

its rutns.c: Common functions shared by the software

instructor.c: Controls the presentation of the test material.

instr rutns.c: Common functions shared in the instructor function.

student.c: Provides the student interface and student function.

stdt rutns.c: Common functions shared in the student function.

All source and executable files exist on the SG 4D/50 called Picard. In addition, there
is an ancillary file, called ITS.mak, that can be used with the UNIX Make utility to control
the compilation and linking of the modules that are required to form the executable.

Documentation for the calls to the Curses screen management package can be found
in the IRIS-4D Programmer's Guide Vol. II and the IRIS Programmer's Reference Manual.
Vol. I1. Sec. 3. Curses(3X).

1 Systems Research Laboratories, Inc.: "Research and Development Computer Software Report, Delivery

Order 0008, Attachment 2, Sequence 1"% Contract No. F33615-87-D-0601, September 1990.

13

Implementation

In order to provide a means of presenting a flexible curriculum, the instruct.blk file was
created. This file exists in the Instructor directory and contains a catalog of available
instruction blocks (max = 50) and the individual lessons (max = 50) that comprise each
instruction block. Each catalog entry (logical record) is a string of 634 characters that
consists of 52 fields as follows:

1. Brief description of the instruction block (max = 80 characters).

2. A two digit field containing a count of the lessons in this instruction block.

3-52. 50 10-character fields containing the names of the lesson files.

Additionally, each field is separated by a 1. As developed, each catalog entry can thought
to be an instructional block comprised of one or more lessons. Wherein, each lesson
consist of a series of text and questions.

Since the intent was to create a subject matter independent ITS, the majority of the
intelligence has been placed in the formation of the lesson file. Consequently, the lesson
file has a "programmable" flavor to its format and usage. Currently, each lesson file can
be created by specifying the following types of text_types via the use of the "vi editor".

a) Each text type is separated by a CtuI-L character. In addition, this character
also causes a form feed when the file is printed.

b) The first line of each text type has the following format:

numeric id texttype

where:

numeric id = a decimal value that uniquely identifies (within a given
lesson context) the texttype.

texttype = one of the following:
1. text
2. multiple choice
3. true/false
4. yes/no
5. noscore
6. score
7. instruct/lesson

14

For example, suppose you wanted to specify a multiple choice presentation
and 4 other displays already exist in the lesson. Additionally, let the previous
presentations be numbered 1, 10, 20, and 30, respectively, then this multiple
choice presentation could be specified as:

12 multiple choice

c) The second line of each text type has the following format:

numeric idI numeric id2 numeric id3 numeric id4 numeric id5

where:

numeric id = the numeric id of a text type that is associated with a given
"knowledge level" where level 1 corresponds to the lowest and 5 to the
highest.

Continuing the previous example, suppose we plan to advance to text type
identified as 11 for knowledge levels 1 through 3, and 15 for all others.
Our example would now appear as:

12 multiple choice
11 11 11 1515

d) If the text type is that of text, then the third line contains a count of the
number of lines in the presented text that follows it.

Varying our example slightly to account for the text specification, the
example would appear as:

12 text
11 11 11 15 15
36
This is a test example of the text...

where the ellipsis indicates the continuation of 36 lines of text as specified
by the third line of our example.

e) For the remaining text types, the third line consists of multiple occurrences
of the format:

z)y

15

For the score and noscore types, the y values are maximums for intervals
that are used in the determination of upgrades in knowledge level, i.e.,

0 < score.sjyI - > knowledge level 1
yl <score<sýY2 -> knowledge level 2
Y2 < score<:.Y 3 -> knowledge level 3
Y3 < score<:LY4 -> knowledge level 4
Y4 < score<-:-Y 5 -> knowledge level 5

For example, these options could appear as:

12 score
11 11 11 1515
1)10 2)20 3)30 4)40 5)50

or
12 noscore
11 11 11 1515
1)10 2)20 3)30 4)40 5)50

Whereupon, if the student's accumulated score were 23, then the next
display would be the one that is annotated as 11.

For the instruct/lesson type, the zn is the index of an instruction block and
the associated Yn is also an index of the appropriate lesson within the
instruction block.

An example of this type may appear as:

12 instruct/lesson
1111020
0)0 0)0 0)0 1)0 2)0

Whereupon, if the student were estimated to have a knowledge level of 5,
then the next instruction block to be presented has an index of 2 within
which the lesson having the index of 0 will be used. Furthermore, the
display annotated as 20 will be the beginning presentation.

f) For the text type of multiple choice, true/false, and yes/no, the fourth line
specifies the number of lines in the text that follows it.

g) The text type of score and noscore resulted from attempted use of a lesson.
The noscore type uses the accumulated score to branch to an appropriate

16

follow-on text/question. Whereas, score updates the knowledge level
variable in the student's data base and resets the accumulated score to
zero.

Each of the lesson files that are created using the above format must also reside in the
Instructor directory along with the file labeled welcome. This file is another lesson file
and contains the queries for the Experience Questionnaire.

In addition to the Instructor directory and its associated files, a Student directory must
also exist. This contains a file that is associated with each student that uses the system.
The purpose of each student file is to house the critical values from each student's run.
However, these critical values have yet to be determined so each student file is for all
practical purposes empty.

Each student's file is labeled as sdb xxxx. Wherein, the xoxx field consist of the last four
digits of the student's SSAN.

Program Documentation

itsdef.h

This is the header file for this portion of the ITS software. It contains the definitions of the
variables and structures that are common to a large majority of the modules.

ITS.c

This file contains the basic controlling logic for the appropriate calling the of the Instructor
and Student functions. It also presets some of the global variables.

its rutns.c

This module contains those functions that are, generally, common to all the other modules
and functions in this portion the ITS.

Contains the following functions:

void cntr In(int y coord, char *txt str)
Tl-is funct Con will center the-text in txt str in the line specified by y_poxrd.

17

void get pathstr(char *directory, char *path str)
TFiis function queries the user for the lull directory path for directory and
returns the full path string in path_str.

void file str(char *path, char *filename, char *fullstr)
This function returns the full file string in fulstr from path and ilenarne.

void its stop0
This function cause the appropriate escape from Curses and terminates
the execution of the program.

int chk file(char *path, char *filename)
This function checks the accessibility of the file specified from the
conjunction of path and filename.

void lesson blk io(char io type, int ndx)
This funciion provid-es the read/write function for the instbuct.blk file. (See
section on the instrmUcblk for full description of this file.) By specifying a
R or W for the read or write function, respectively, this function will
read/write the record that is indexed by ndx.

void work msgo
This function presents a blinking "Working..." message while some time
consuming operation is being performed.

void getstrecho(char *str)
This function echoes the contents of the character string str as it is being
entered.

void strg blnk pad(char *strng, int str len)
ThPis fun'ction pads a left justifiecFstring, strng, with blanks until the specified
length, str_len, is attained.

instructor.c

As currently implemented, this routine provides the maintenance functions (add, delete,
and modify) for the entries in the instructblk file. Consequently, it is used to govern the
flow of presentations for the ITS.

As seen on the main selection menu, provisions do exist for:

a. reviewing a prepared instruction block,
b. reviewing a student's record, and

18

c. adjusting a student's record, i.e., examining the scores that have the student
has accumulated and adjusting these values as required.

Regrettably, none of these options were implemented because of the lack of quantifiable
information concerning the criteria that could be used to appraise the skills of a WD
student. It is hoped that with continued development these criteria will be further defined.
Whereupon or concurrent with this development, the contents of the student record would
be established as well as the methods and content of the material to be taught.

instr rutns.c

These routines support the knstrutor.c.

void lesson blk rec init(int ndx)
This Tunction Tinitializes the record in inshtrcbilk that is specified by ndx.

int lesson list(max cnt)
ThE' function presents a list of the available instruction blocks, as specified
by maxcnt, in in#srciblk and returns the index of the selected record.

void lesson blk chkO
This -unaion is a debug tool that will display a selected record from
kwucblk.

void instr blk vis(int ent no)
Th's function displays a record from instruct.blk that is specified by ent-no.

void make pos(nt ndx, int *y pos, int *x pos)
This function will providFe the screen coordinates, xpos and y pos, relative
to the instr_-bk-vis display that corresponds to index ndx oT the desired
lesson.

student.c

This routine uses a lesson file to present the material in a manner that resembles the
traversal of a decision tree. The working version of this decision tree is included as
Appendix F. The combined use of knowledge level and accumulated score are the
attributes that key the order of presentation to the student.

It should be noted that there exists a software imposed limit of 100 entries (occurrences
of text type) per lesson file. This limit can be easily changed as required. Also, the
software does not preclude the concatenated presentation of multiple lesson files.

19

Consequently, the 100 entry limit can be circumvented by the subdivision of a large
lesson file into smaller files.

stdt rutns.c

Contains the following functions:

void student ident(char *namestr, char *idstr)
This routine queries the user for the student's name and SSAN and returns
the values in namestr and id str, respectively.

void get ssan(char *a_strng)
This function controls the user's specification of a SSAN and returns the
value in asting.

void student blk io(char io type, int rec ndx)
This fun6cion provides the eqiuivalent I/O capabilities as found in
lesson blk io, but these apply to a student data base.

void read_prsnttxt(int map, int *fileoffset, int *dispmap, int *disp_ndx, char
*disp_str)

This routine reads a line of text, pointed to by fileoffset, from a streamed
file into a buffer that is pointed to by dispstr. If map equals a -1, then the
entry that is indexed by disp_ndx in the seek address list, dispmap, is built.
And in all cases, the next value of file-offset is computed.

int prsnt txt(int map_ndx)
This routive presents a text that is pointed to by map_ndx, which is an index
into another list that contains some positional information about each block
of text in a given lesson.

int score txt(int mapndx)
This routine uses the lesson map entry, indexed by map_ndx, to score the
preceding portion of a lesson block. It also asks the user to review any
preceding answers before scoring the section.

int lesson txt(int map_ndx)
This routine uses the lesson map entry, indexed by mapndx, to determine
the next instruction/lesson block to be presented based upon the user's
knowledge level.

20

void get max min(int map ndx)
This r•utine uses -Ihe lesson map entry, indexed by mapndx, and
determines the highest and lowest values that are in the answer set. The
sum of the max and min values are stored in the user's data base.

void replypos(int map_ndx)
This routine uses the lesson map entry, indexed by mapndx, to position the
cursor in the appropriate screen position for a user's response to either a
multpl choice, true/false, or yes/no type of question.

EC VA&X 7

As stated earlier, the interviews with several IWDs were inconclusive in the attempt to
establish some quantifiable criteria for measuring the developing skills of a student WD.
But these interviews did indicate that a common appraisal basis did exist in a non-verbal
context. Consequently, the approach of this development was to provide a first
approximation and target for criticism using "timely completion of an action" as a starting
criterion in order to elicit critiques from the IWDs. In turn, these comments would be used
to improve the criteria, find new metrics, and improve the expert model. Hence, several
versions of the software are expected to evolve. So rather than saying that the software
"evaluates ...", the term "attempts to evaluate ... " is applied to connote that major revisions
to this software are expected with the possibility that our initial criteria could be
decomposed, tossed out, or embellished.

As developed, this software exists in 3 files and have the following functional relationships:

sdt eval.h: This is the header file for the DEC VAX 780 portion of the software.

sdt eval.c: This is the overall controlling function for this portion of the software.
It attempts to evaluate the switch responses of the WD user.

evalrtns.c: These are the common functions that are used in sdt eval.c during
the evaluation process.

Implementation

In order to evaluate the output from an AWACS scenario in the most flexible manner
possible, the software uses a script to evaluate a WD's console operation skills. This
script can consist of one or more user-supplied events that are described to the software
by the use of keyword values. All these values are taken from either a streamed filed
called switches.det or are part of the software.

21

The keyword values that are taken from switches.dat consist of the names, coded values,
and code ids of the:

a. Feature and Category Select switches
b. Alarm/Display Control Panel switches
c. Function Select Panel switches

All fields are left-justified and separated with the I character to assist with visual
discrimination. The format of each record is as follows.

Field 1 (27 characters): This is the name of the switch as they are identified on a
WD's workstation console.

Field 2 (4 characters): A 4-digit field that corresponds to numerical value of the
switch as it is encoded in the Simulation software (See file switches.h).

Field 3 (3 characters): When available, these characters correspond to an
abbreviated value used by the switches.c software in its output to the Logger file.

For example the specification of Bearing & Range function switch appears as:

BEARING RANGE 123 I B-R

Those keyword values not taken from the switches.dat file are coded into the software.
These consist of the terms:

a. Checkout Console: Used to demarcate an event consisting of the Console

Checkout procedure.

b. Done: Used "') indicate the termination of a script.

c. Window: Used to specify a maximum period of time (no. of seconds) during
which an event should occur.

d. Key: Used to specify the numerical value that is associated with an event
on a logger file.

e. Text: Used to specify a text value that can be used for additional
discrimination.

22

f. Alternate: Used to specify a function switch action. In addition, this option
can be specified in groups such that each group represents an another
method of performing an equivalent action.

Each user-supplied event is listed in a file and separated from each other by an empty
line. In addition, each event is tagged with a field [1-4 characters] that must start with a
numeric and is terminated with a :. The follow-on field can be either:

a. A label [1-27 characters]
b. Keyword value Checkout Console, Done, or those that are found in the

switches.dat file.

Thus, an event is denoted by a line that has the follow specification:

tag: {label, appropriate keyword}

where one of the fields enclosed between {...} is necessary, but
interchangeable. Additionally, if a label is used, then the use of the key,
text, and alternate options are also required.

For example, suppose we wanted to describe the Console Checkout event follow by
some event called "Find and Tag a Tanker." These could appear as:

1: Checkout Console

E] Other options

2: Find & Tag Tanker

E] Other options

The next line that is associated with the specification of an event has the following format.

window = xxx.xx

where the field xxx.xx denotes the specification of a floating point value
indicating the number of seconds within which the associated event must
be completed.

In our example this specification would appear as:

23

1: Checkout Console
window = 180.0

Other options

2: Find & Tag Tanker
window = 60.0

* • Other options

The key option line has the following format.

key = xxxx

where the field xxxx is an integer value that corresponds to a keyword value
that is found in the keywords.h file from the Simulation software.

For our example, i each event were tied to a message, then they would appear as:

1: Checkout Console
window = 180.0
key = 1014

. Other options

2: Find & Tag Tanker
window = 60.0
key = 1014

Other options

The text option line has the following format.

24

text = '{text string (1-27 characters)}'

where the text string that is enclosed between single quotes consist of the
scme or all of the leading characters in the free text portion of a logger file
record.

Again, in our example this specification would appear as:

1: Checkout Console
window = 180.0
key = 1014
text = 'a text string'

2: Find & Tag Tanker
window = 60.0
key = 1014
text = 'another text string'

.] Other options

The specified key and text values are use to find the next occurrence of these values in
the logger file and constitutes the start of an event. Whereupon, the use of one or more
groups of the alternate option takes place.

For the Checkout Console, the use of the next option is recognized. However, it is limited
to the specification of the Assign Console switch action. This feature was added so that
the Assign Console switch action could be tied to the Checkout Console event.

Each alternate option line has the following format.

alternate {tag} = {switch action keyword)

where:
tag = 1-8 character field that must start with a numeric.
switch action keyword = the name of a switch that is found in the
switches.dat file.

A group can consist of one or more repetitions of the alternate keyword. For example,
suppose an event called "Find & Tag a Tanker" could be identified by the message "01
FIND & "r, and could be accomplished using either the Request SIF SD, Locate SIF, or

25

Re-lnit switch actions. In addition, suppose that this event had to be done in one minute
from the time of the message. The event could appear in a script as:

1: Find & Tag a Tanker
window = 60.0
key = 1014
text = "'01 FIND & T"
alternate 1 = Request SIF SD
alternate 2 = Locate SIF
alternate 3 = Re-lnit

Now suppose that a fourth method of accomplishing the same event required two switch
actions called Switch 1 and Switch 2, then the same event would appear as:

1: Find & Tag a Tanker
window = 60.0
key = 1014
text = "01 FIND & T"'
alternate 1 = Request SIF SD
alternate 2 = Locate SIF
alternate 3 = Re-Init
alternate 4 = Switch 1
alternate 4 = Switch 2

It should also be noted that the total number of alternate options that can be specified
in any single event has a software limit of 25.

Another file of interest is the logger file. This is file is a derivative of the original logger.out
file that is produced during an execution of the Simulation sjftware. This logger file is
the output of the Pass 6 operation from the REDUCE software and represents the all the
captured data in a time order manner.

Program Documentation

sdt eval.h

This is the header file for this portion of the ITS software. Uke itsdef.h, it contains the
definitions of the variables and structures that are shared by the programs in the
application, i.e., sdteval.c and evalrtns.c.

2 Systems Research Laboratories, Inc.: "Research and Development Computer Software Report, Delivery
Order 0008, Attachment 2, Sequence 1', Contract No. F33615-87-D-0601, September 1990, pp. 22-26.

26

Of the structures that are included in this file, the evnt skelt specification and its use as
evnt desc requires so some explanation. As evnt aesc, this structure contains the
controlling information for the analysis of an event. Tfie values are initialized and loaded
from the event script file for the each event at the onset of processing. The following is
an explanation of this structures usage.

evnt seq: This is a 4 character array that contains the tag value that is associated
with the event.

struct evnt var evnt label: This structure contains the information extracted for the
event demarcation Hne, the Window, Key, and Text specification options.

no var: The contains the number of variations that were specified via the alternate
opUions. Suppose that the following event specification were used.

1: Find & Tag a Tanker
window = 60.0
key = 1014
text = '"01 FIND & T"'
alternate 1 = Request SIF SD
alternate 2 = Locate SIF
alternate 3 = Re-Init
alternate 4 = Switch 1
alternate 4 = Switch 2

The value of no var would be 4.

step per var: This is an array of 5 integer values. Each represents the number of
functlon iswitch actions that comprise each specified alternate. In the above case,
the assigned values would be 1, 1, 1, 2, and 0 for each of the entries in
step_pervar.

struct evnt var variant: This is an array of structures that contains the function
switch action information for each of the alternate option specifications. Again for
the cited example, the first 5 structures would contain the appropriate values.

sdt-eval.c

This program provides the controlling klgic for the evaluation of the acquired console
operation data.

27

eval rtns.c

This is a collection of routines that perform a partial evaluation of the data collected in the
logger file.

void cntr In(int y coord, char *txt str)
"Pis routine is identical to -that found in its rutns.c. It centers the text in
14tstr in the line specified by y_coord.

void quick exit0
This routine calls the endwino function to clean up the Curses software
before exiting.

void getfil_str(char *filename)
This routine prompts the use for an appropriate filename and store the
requested string in filename.

void openerr(char *filename)
This routine prints a message indicating that an error occurred while opening
the file specified in filenrme.

void read swt data(FILE *switchfp, struct switch ent *swt-ptr)
Thi routine reads a record from the fie pointed to by switch Vp,
switches.dat, loads the values into the entry of the table that is pointe" to
by swtptr.

void readlogO
This routine reads a line from the logger file and partially parse the data
into the appropriately labeled variables found in the structure of cur_log_rec.
It also ensures that all fields are null terminated strings.

In addition, this routine also counts excessive pushing of the message
acknowledge button. (The term "excessive" means pushing the button
when no message acknowledgement is required.) Three or more excessive
depressions will trigger the start of the computation to determine the tapping
variability and the occurrence of the next message will trigger the print of the
variability statistic.

void left just(char *txt str)
This routine will left-justify the text in txt sWr.

28

int swt labelmatch(struct switch ent *swttabptr,
int sv7i cnt, int ent no)

"l'lis routine Will search the function switch table, with swt cnt many entries,
that is pointed to by swt_tab_ptr for a matching value in the evnt desc
structure. If ent no is a -1, then the switch keyword specified in the-event
demarcation line is used. Otherwise, the name specified in the alternate
line is used. Moreover, along with the indication that a match has occurred,
the associated switch number and abbreviated switch name are also
returned.

void blink msg on(int line no, char *txt str)
This rouirne will prisent the text Tn txt_str in a blinking format on the line
specified by line no.

void blink msg off(int lineno)
This rouAine clears and turns off the blinking message on line number
line no.

void read evento
This routine reads the event script file and loads the evnt desc structure that
describes the desired event to the software. It is the values in this evnt desc
structure that are used to evaluate an event.

void opt chkO
TFiis routine is called by readevent to load the evnt desc structure with the
values taken from the W'ndow, Key, Text, and Alternate option specifications.

void swt stateo
"T'iis routine gets the state (on or off) of the category and feature select
switches as they exist prior to the use of the simulation by the WD.

void consolechko
Currently, this routine attempts to identify the correct execution and
completion of steps that affect the category and feature select switches on
the Console Checkout checklist. Consequently, this routine's execution is
contingent upon the specification of the Checkout Console event in a script
file.

However, certain empirical assumptions were made as to the action that
constitutes the end of the al switches on and al switches off process.
Currently, the completion of the al switches off is indicated when the first
feature select switch goes to the on position and the al switches on is
indicated when the first function switch action is taken.

29

In addition, the inclusion of the alternate option specifying the Assign
Console switch action is allowed with the event specification. Hence, taking
this switch action is a optional part of the Console Checkout process.

void switch chk(struct evnt var *swt ent)
This routine checks for the selection and complete status return of a function
switch action, pointed to by swt ent, within a specified time window. This
check also exists for a follow-on switch action in which the antecedent
switch action remains in effect.

In addition, some very minor checking of some associated switch options
were included for only a few of the function switches. This was done as a
check of the feasibility of including more expanded option checking.

void csl chk(int ndx)
This routine is one of the attempts to expand the option checking capability
of the application. It tries to examine the Assign Console switch action for
the WD station indicated by ndx.

void cmt chkO
ThiTs routine is an attempt to expand the checking associated with the
Commit switch action. It tries to identify the pairing, intercept, and mission
that were specified.

void win chko
TFis routine is an attempt to expand the Init switch action. It tries to
determine the object whose symbology was initiated.

void wmc chko
This routine is an attempt to expand the Mode IV switch action. It tries to
determine the object of the mode check.

void multiswitch0
This routine provides the controlling logic to check the alternate option
specifications that can be associated with an event.

30

R omn W De eopet

The following are some suggested software improvements that are directed toward the
development of a functional AWACS ITS.

1 . Integrate the AWACS Simulation and ITS software into a single package so
that it will qualify as an expert system that is limited to switch action
procedures. This limitation obviates the knotted problems that are often
associated with the inclusion of strategy.

For the start of this effort, the current ITS operation will be continued, i.e.,
maintain execution in batch fashion, and improve the software so it can
reliably detect the beginning and ending responses to events. In turn, each
established detection scheme will be coded into the Simulation software so
that the end result should be the limited expert system that is desired.

2. Using the just described, limited expert system as a kernel, this development
would add the capability to detect and suggest solutions to switch action
procedural problems while the Simulation is running.

Knowing that the Simulation software controls the scenario presentation to
the student and that it can now determine the correctness of switch action
procedures, it is now possible to determine the appropriateness of proffered
switch action procedures in response to controlled scenario situations. This
development would allow the software to passively monitor a student's
actions and provide real-time diagnostics as procedural errors occur.

3. Incorporate a reactive Instructor and Student Model into the software that
was developed during Step 2.

Since the software can now monitor a student's switch actions to known
situations, this would begin the development of both the Instructor and
Student Model software. Essentially, the software will be given the capability
to evaluate a student and determine whether the student requires either
advancement, remediation, or be kept at status quo. These software
decisions will be based upon actions that were taken. Consideration of
actions that were omitted will be avoided unless outcomes are blatantly
obvious.

31

The following are suggested changes to the existing software.

I1. Besides determining the start and stop of each switch action, each of the
of the associated switch-checking modules could be made considerably
more intelligent, e.g., devise methods of linking such things as time delays
and erroneous inputs with help messages and switch menus. This would,
in effect, provide an interim capability for both the student and instructor to
review performance.

2. Provide a better prompt for Control key paging functions. This may entail
just displaying paging options in appropriate places on the screen, i.e.,
Ctrl-P, up-arrow, Ctrt-B at the top of the screen and Cbr-N, down-wrow,
CtrI-F at the bottom of the screen.

3. Options to develop:

a. Establish a criteria for those values that are to be scored and stored.

b. Provide a mechanism for the student to review material and answers,
but preclude the capability to change original values.

c. Establish criteria for demotion, promotion, or instructor intervention
based upon scores.

4. Build a utility to assist in the development of a lesson and/or instruction
block so the instructor's attention can be focused on content and not
procedure.

32

Anderson, J.R. (1988). "The Expert Modulem. In M.C. Poison and J.J. Richardson (Eds.),
Foundations of Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Barr, A. and Feigenbaum, E.A. (1982). The Handbook of Artificial Intelligence. Vol. I1. Los Alto,
CA.: HeurisTech Press.

Burns, Hugh and Parlett, James. (1990). " The Dimensions of Tomorrow's Training Vision: On
Knowledge Architectures For Intelligent Tutoring Systems." In Bums, H., Luckhardt, Carol,
and Parlett, J. (Eds.), Proceedings of the Second Intelligent Tutoring Systems Research
Forum. AFHRL-TP-89-31. San Antonio, TX.: Air Force Systems Command, Air Force
Human Resources Laboratory, Brooks AFB.

Fink, Pamela K. (1990). "Issues In Representing Knowledge For Training High Performance
Skills." In Bums, H., Luckhardt, Carol, and Parlett, J. (Eds.), Proceedings of the Second
Intelliaent Tutoring Systems Research Forum, AFHRL-TP-89-31. San Antonio, TX.: Air
Force Systems Command, Air Force Human Resources Laboratory, Brooks AFB.

Regian, Wesley J., "Representing and Teaching High-Performance Tasks Within Intelligent
Tutoring Systems", Proceedings of the Second Intelligent Tutoring Systems Research
Forum, Hugh L. Burns, James Parlett, and Carol Luckhardt (Eds), Brooks AFB, TX,
AFHRL-TP-89-31, April 1990, p. 15.

Schiflett, Samuel G., Strome, David R., Eddy, Douglas R., and Dalrymple, Mathieu A. (1990).
Aircrew Evaluation Sustained Operations Performance (AESOP): A Triservice FacIlaxitO.
Technology Transition. USAFSAM-TP-90-26. San Antonio, TX.: Air Force Systems
Command, Human Systems Division, Brooks AFB. Woods, D.D. (1988). "Coping with
complexity: The psychology of human behavior in complex systems. In L.P. Goodstein,
H.B. Anderson, and S.E. Olsen (Eds.), Tasks. Errors and Mental Models. London: Taylor
& Francis.

Systems Research Laboratories, Inc.: "Research and Development Computer Software Report,
Delivery Order 0008, Attachment 2, Sequence 1N, Contract No. F33615-87-D-0601,
September 1990.

33

Appendix A

3 SEP 91 Ltr from Capt. Fowler

35

Mat t,
As promised, here's a breakout of the switch actions I:.auglt

during Block I of the new IQT WD course, which I believe will
enter tryout in late Oct/early Nov. Sorry -for the delay; seems
something always comes up and obscures little projects lil:e this.

Let me know if. I can be of any more assistance. My newi
number is DSN E84-7232, but Roy H4ouchin and Tina Livingston are
still at the old number (DSN 884-7785).

Day I - Course Orientation; Pubs Posting

Day 2 - Sim Safety; Console Checl::out; Assign Console S/A

Dy 3 - Assign Console S/A; TD Inde: S/A; Line S/A; Cir c:le
S/A; Coordinate S/A; Tactical erg/rrng

Day 4 - Same as Day 3, but add ADS Panel familiarization

Day 5 • Restricted Area S/Ai, Bearing arid Range S/A; RN/I)ES/NTN
SD S/A; Initialize Special Point S/A! ,.Add/Delete Airbase S/A

Day 6 - Same asDay_5, but-add ýrea Define/Delete S/A, L.ocate
SIF S/A; orridor -FF SD S/A-"

Day 7 - Request SIF S/A; Initiate S/A; Mode IV S/A; Re.inIi-L
S/A

Day 8 - Same as Day 7, but add Radar/IFF Tracking S/A; Assign/
Defer S/A; Request/Assign IF1-/SIF S/A; and study of tractl
bl ockIs.

Day 9 - building database and situational awareness throuoLh use
of previously-taught switch actions; using assigned radios.
performing flight follow missions

Day 10 - Flight follow; inflight separation; inFlight ererneen-..

ties; and completion of mission related paperwork

Day It - Same as Day 10

Day t2 - Practice for unit proficiency check

Pay 13 - Block I proficiency check

$ 3 (k 0

37

Appendix B

IQT-WD READING GUIDE

39

IQT-WD READING GUIDE
(AS OF 6 JUN 90)

This guide lists the required daily reading for the IQT-WD course. The daily
reading should be accomplished prior to each day training.

Section I lists the reading for Block I (Training Days 1-13). The left column
shows the lesson title or switch action and the right column shows the
required reading. The documents you'll be reading for Block I are broken down
into two volumes (student study guides) and the 28AD HB 55-1, Vol II 20/25.1),
also known as the "Positional". The abbreviation (SG) followed by a number
tells you which chapter(s) to reference in the study guides. Read the
infcrmation in the chapter(s) and positional to better prepare yourself for
academics and simi.lator instruction. Many switch actions take up entire
chapters. The abbreviation (P) followed by a number tells you on what page

the information begins in the "Positional". Some (P) references list specific
sections to read. The abbreviation (M) refers to the specific study module
that relates to that subject. Again, accomplish all related reading before
class.

SECTION I

Day 1 Familiarization & Mechanics P 1-1 thru 1-12, 1-22 thru 1-28
1-38 thru 1-40, 3-1 thru 3-14

SG 1 thru 7, 9 & 10 Assign Cons
P 3-30 SG 8

TD Index P 3-77 SG 15 & 16
Hard Copy P 3-41 SG 15
TD Update P 3-83 SG 17
Assign Console M MS21:EMER Sim Emergency Proc

Day 2 Line P 3-49 SG 12
Circle P 3-56 SG 12

Coordinates P 3-71 SG 13 & 14
Arrow P 3-60 SG 11
Message P 3-64 SG 11

Day 3 Winds Aloft TD (#44) P 4-47 SG 17
Air Base Weather TD P 3-92, 3-26 & 27, SG 17
Initialize Special Point P 3-132 SG 18
RN/DES/NTN SD P 3-139 SG 19

Day 4 Identifying Tracks P 3-15 thru 3-18 SG 22, 24
Initiate P 3-148 SG 23
reinitiate P 3-151 SG 23
Mode IV P 3-300 SG 34
Drop P 3-159 SG 23
Assign/Defer P 3-239 SG 29 Request SIF P

3-121 SG 5 (Review), 20

Locate SIF P 3-201 SG 29

41

Day 5 Track Blocks P 1-28 thru 1-37 SG 25
Track TDs/Special Point TDS P 3-164 SG 26

Day 6 Radar/IFF Tracking P 3-207 SG 29
Request/Assign IFF/SIF P 3-268 SG 29
Area Define/Delete P 3-125 SG 21
Corridor IFF SD P 3-129 SG 21

Day 7 RCT Initialization TD P 3-184 SG 27
Add/Delete Air Base P 3-204 SG 34
Commit P 3-212 SG 28, 30
Cap P 3-229 SG 28
RTB P 3-236 SG 28
Alter Control P 3-192 SG 24

Day 8 RCT Mission/Augmented MSN TD P 3-184 SG 28
Manual Guidance P 3-258 SG 29
Fuel/Configuration P 3-94 SG 29
Armament Update/Override P 3-97
Command Tracking P 3 SG 29
RCT Mode Control P 3-256 SG 34
Aircraft Down P 3-190 SG 29

Day 9 Mission Modifier P 3-217
Recovery Air Base P 3-217 SG 28
Beam Rider P 3-217
Bearing and Range P 3-43 SG 31
Tactical Bearing and Range P 3-4 & 3-89 SG 31

Day 10 Order of Battle Add/Delete P 3-101 SG 33
Order of Battle SD P 3-112 SG 32
Restricted Area P 3-306 SG 33
Present Altitude P 3-242 SG 34
Target Altitude P 3-244 SG 34

Day 11 Intercept Line SD P 3-143 SG 29
MA/Kill P 3-179
UHF Tune P 3-295 SG 34
WT Handover P 3-262
Accept/Reject Handover P 3-272
Wilco/Cantco P 3-274

Day 12 Review All Block I Academics

Day 13 Written Eval and Critiques

42

SECTION II

Section II lists the reading for Block II (Training Days 14-27). The left
column gives the lesson titles while the right column shows the required
reading. The following abbreviations will be used: (55-3) refers to TAC
Regulation 55-3 and associated supplements/attachments, (55-79) refers to
Joint Regulation 55-79 and associated documents, (T.O.) refers to Technical
Order l-E-3A-43-1-2, (M) refers to the individual student modules, and (SDC)
refers to the Readiness Enhancement Program modules. The SDC readings are
optional but do contain valuable information. They are located in the Boeing
Learning Resources Center.

Day 14 Mission Flow/WD Responsibilities M WIL:CCO3 Daily Training
Missions

ADS Panel 55-3 Ch 5-2c pgs 5-5 - 5-7
Ivl Cutoff Geometry T.O. Pgs 1-166-1-181,5-16& 17

55-3 Ch 5-3e pg 5-16
M WIL:CMOl Audio Distribution

System
M ACC:CCO Crew Coordination
55-79 Chs 2, 5 & 7 (TAC)

Day 15 Weapons Airspace M WIL:PEO3/PE04 Airspace Types
and Usage/FAA Procedures

Intercept R/T M ICC: R/T Radio Telephone
Transmissions

MCM 3-1 Brevity Code Words MCM 3-1 Vol I Attach 1 pgs Al-l-A1-
11

Day 16 FAA/Ground Agency Procedures
Letters of Agreement (LOA)

Day 17 E-3 Restart Recovery Procedures 55-3 Sup 1 Ch 6-4D
Intercept Mission Administration 55-3 Sup 1 Atch 1-19 pgs A19-1I

A19-21 (WD Log)
Contending With Variables/Stress M WIL:CCO5 Stress/Contending

with Unknown Variables

Controlled and Uncontrolled 55-3 Ch 6-4Ce6 pgs 6-25C and 6-16
Aircraft Emergencies (Sup 1)

M WIL:EEO1 Controlled Aircraft
Emergencies

Day 18 55-79 Training Rules 55-79 Review Chs 2, 5 & 7
Stern Geometry 55-79 Atch 10 pgs AI0-I-AI0-2
Special ROE/55-79 VID Procedures MCM 3-1 Vol I Review Atch 1

M Review WIL:CCO3

Day 19 E-3 Weapons Guidance/Computer M ACC:LOG Intercept Logic
Logic (Secret, in WPNS safe)

43

Day 20 Transition Mission
ART Briefing 55-3 Ch 5-2f pgs 5-9 and 5-10

SDC #19 E-3A Radar System General
Description (Secret)

SD(7 #20 E-3A Radar Operations/
ASO Briefing 55-3 Ch 5-2b pgs 5-4 & 5-5

SDC #21 ECM/ECCM Concepts and
Procedures (Secret)

SDC #22 ECM/ECCM Tactics and
Techniques (Secret)

Day 21 Flyups/High Fast Flyer SDC #16 E-3 Threat Neutralization
& Self Defense Tactics
(Secret)

Tadil-C/Link 4 Mechanics and R/T 55-79 Atch 8 pg A8-1

Day 22 Multiple Cutoff Positioning M Review WIL:CCO3

Day 23 Stern Geometry Multiple/ M Review WIL:CCO3

Simultaneous Intercepts

Day 24 F-15 Liaison Briefing

Day 25 CDMT Briefing 55-3 Ch 5-2e pgs 5-8 & 5-9
CSO Briefing 55-3 Ch 5-2d pgs 5-7 & 5-8

M WCH:HQ Have Quick
M XOM:CSEP Communications

Security

Day 26 Review Review All Academic Material

Day 27 Written Eval and Critiques

SECTION III

Section III lists the reading for Block III (Training Days 28-32). (SG refers
to the Block III Study Guide.

Day 28 Tanker Rendezvous Overview 55-79 Ch 4, Atch 9
SG 3.1 Air Refueling Overview

Receive Turn-ons SG 3.2 Receiver Turn-on Refueling
Tanker Turn-ons SG 3.3 Tanker Turn-on Refueling

Day 29 Rules of Thumb for Tankers SG 3.4 Non-Standard Refueling

Procedures
55-3 Sup 1 6-2Cd pg 6-6C
55-3 Sup 1 Atch C-3 pg A3-1C

44

Day 30 Master Question File (MQF)
Local Operating Procedures (LOP)

Day 31 Review Review All Academic Material

Day 32 Written Eval and Critiques

SECTION IV

Section IV lists the reading for Block IV (Training Days 33-44).
Abbreviations for the reading will be the same as Section II.

Day 33 NORAD/ADTAC Lane Defense and 55-79 Ch 3, Review Ch 5, 7, Atch and
Threat Assessment Atch 10

55-3 Ch 5-1b pg 5-2
55-3 Ch 5-2a pgs 5-3 and 5-4
MCM 3-1 Vol XIV Para 3-3 pgs 3-5

thru 3-8 (Secret)
CINCNORAD Oplan 3000-84 pg C10-1

(Secret - in Battle staff Rm 118)
Region/Sector Oplan 3000 read sector

unique book and sup for one (1)
of the regions (Secret - Rm 118)

SDC #17 NORAD Identification Pro-
cedures (Secret)

SDC #37 NORAD Organization
SDC #39 Authentication Systems and

Materials Handling
Day 34 NORAD Briefing SDC #38 NORAD/AWACS Interoper-

ability
SDC #40 Authentication Usage

Day 35 Authenticators Review MCM 3-1 Vol I Atch 1 &
SDC #40

Day 36 Elements of Broadcast Control 55-79 Ch 2, 3, 5, 6 & 7 (TAC)
Resource Battle Management SDC #11 Close Air Support
Strike Controller SDC #12 Interdiction

SDC #13 Interdiction/Battlefield
Air Interdiction (Secret)

SDC #32 E-3 Employment in the
Tactical Arena (Secret)

45

Day 37 Tactical Battle Elements SDC #23 Intelligence Support to
AWACS (Secret)

SDC #2 Elements of the TACS
SDC #3 Roles of TACS in Tactical

Air Operations
M PTP:MSN Point-to-Point

Missions

Day 38 CF Crew Concepts/Force SDC #1 Tactical Air Roles and
Controller Missions

Day 39 Navy Briefing SDC #26 US Naval Organization
Navy Interoperability SDC #27 US Naval Operations

(Confidential)
Naval Anti-Air Warfare Interoper-

ability (Secret)
Breaking the ATO SDC #5 Air Tasking Order

Day 40 Mission Planning Documents 55-3 Ch 3
and Resources 55-3 28 AD Sup 1 Ch 6 pgs 6-1A/B

thru 6-16C
M WDA:INI Initialization
SDC #28 Mission Planning - Part
SDC #29 Mission Planning - Part

Mission Planning Considerations M WDA:RHO Relief Handover
Map Preparation M WIL:MP04 Performing AWACS

Monitor

Day 41 Emergency Equipment and T.O. Section III pgs 3-1 thru 34
Procedures Walk around(Flight line) T.O. Section I pg 1-203 thru

252B
M WIL:MP03 Flight Procedures
SDC #30 Aircrew Interfaces Part

SDC #31 Aircrew Interfaces Part

Day 42 Pre-Eval Mission Planning MCM 3-1
Block V Aircraft Brief Prep
DOV Briefing

Day 43 Pre-Eval Mission Planning
Block V Aircraft Brief Prep

Day 44 Final DOV Sim Check

46

SECTION V

Section V lists the reading for Block V (Training Days 45-47). Abbreviations
for the reading will be the same as Section II. (SG) refers to Block V Study
Guide.

Day 45 Introduction to ACT/DACT SG 5.1 Introduction to ACT/DACT
ACT R/T SG 5.2 ACT Radio Transmissions
ACT Formations and Tactics SG 5.3 ACT Formations and

Tactics
F-15/16 Employment/Characteristics SG 5.4 Aircraft Characteristics

MCM 3-1 Volumes IV & V (Secret)
SDC #4 Aircraft, Weapons and

Tactics (Secret)

Student Aircraft Briefs SDC #34 Allied Fighter
Characteristics

55-79 Ch 2, 3, & 5

55-79 TAC Ch 7

Day 46 F-14/18 Employment/ Naval Anti-Air Warfare Interoper-

ability (Secret)

Student Aircraft Briefs Review

Day 47 Written Eval and Critiques

NOTE: This Reading Guide is subject to change.
Last update: 6 Jun 90 Capt Mike Challman

... PREVIOUS VERSIONS ARE OBSOLETE

Characteristics

47

Appendix C

Experience Questionnaire

49

EXPERIENCE QUESTIONNAIRE

1. Have you ever been Mission Ready (MR) qualified as a 17XX ?

A. Yes

B. No

2. Were you MR as a ?

A. U.S. or NATO E-3 WD/IWD/SD/ISD
B. U.S. or NATO E-3 ASO
C. Other

3. You are here because

A. You've been DNIF for more than 180 days.
B. You failed an EVAL and are being retrained.
C. You've only been NATO qualified.

4. Do you have any other 17XX experience ?

A. Yes
B. No

5. Your other 17XX experience includes

A. MCE
B. 407L CRC/CRP WC/WAO
C. 407L CRC/CRP ASO
D. NORAD/ICELAND/ALASKA ROCC/SOCC WC/WAO
E. NORAD/ICELAND/ALASKA ROCC/SOCC ASO
F. Manual Radar (FACP/TSP-43E)
G. Other

6. Does your other 17XX experience include a stint as an exchange officer with the
US Navy in the E-2C ?

A. Yes

B. No

7. Did you graduate from Tyndall's Basic WC Course (E30BP-1741A-004)?

A. Yes
B. No

51

8. Were you _ ?

A. a Distinguished Graduate
B. in the top 25% of your class
C. average
D. barely passed

9. Did you take the automated course?

A. Yes
B. No

10. Were you prior enlisted?

A. US Air Force
B. US Navy
C. US Army
D. US Marine
E. No

11. Are you a former 16XX ?

A. Yes
B. No

12. While you were prior enlisted in the Air Force, did you have the AFSC ?

A. 11XXX
B. 276XX
C. 3OXXX (Air Traffic Controller at a RAPCON)
D. Other

13. While you were prior enlisted in the Army, did you have a previous job as

A. Helicopter pilot
B. Fire control officer for Patriot or I-HAWK battery
C. Radar Air Traffic Controller
D. Joint Stars operator
E. Other

14. While you were prior enlisted in the Navy, did you have a previous job in

A. Radar Air Traffic Control
B. Air Intercept Control
C. Other

52

15. While you were prior enlisted in the Marines, did you have a previous job in

A. Radar Air Traffic Control
B. Air Intercept Control
C. Other

16. Are you an exchange/liaison officer from ?

A. the U.S. Army
B. the U.S. Navy
C. the U.S. Marines
D. anothor nation

17. In the US Army, your previous jobs included

A. Pilot
B. Joint Stars
C. Air Defense Artillery
D. Radar Air Traffic Control
E. ASOC (Air Support Operations Center)
F. Other

18. In the US Navy, your previous jobs included

A. Pilot
B. Radar Intercept Officer
C. E-2C Naval Flight Officer
D. Radar Air Traffic Control
E. Air Intercept Control
F. Other

19. In the US Marines, your previous jobs included

A. Pilot
B. Air Defense Artillery
C. Radar Air Traffic Control
D. F-4 Weapons System Operator (WSO)
E. MACS 5/6/7 Radar Control/Air Intercept Control
F. Other

20. You are a officer.

A. United Kingdom
B. Canadian
C. French
D. German
E. Other

53

21. You have experience in/as

A. Pilot/Navigator
B. Weapons System Officer (WSO) in F-4/Tornado IDS
C. Schackelton AEW.2
D. NATO E-3 or UK E-3D AEW.Mk.1 ASO
E. NATO E-3 or UK E-3D AEW.Mk.1 WC/WAO
F. Other Radar Control Air Defense Work
G. Other (work not involving Radar)

22. You have experience in/as

A. U.S. E-3 ASO
B. NATO E-3 WC/WAO
C. NATO E-3 ASO
D. NORAD ROCC/SOCC
E. Ground Radar Weapons Controller
F. Other

23. You have experience in/as

A. Pilot/Navigator
B. NATO E-3 WC/WAO
C. NATO E-3 ASO
D. NADGE WC
E. Other

24. You have experience in/as

A. Pilot/Navigator
B. French E-3F WC/WAO
C. French E-3F ASO
D. Other

25. Are you a Fighter Weapons Instructor Course graduate?

A. Yes
B. No

54

Appendix D

ITS Source Files

55

NAME: SWITCHES. DAT

For the following, the numerous switches are presented in numerical
order, but the use of pagination is done to infer a logical order.
This logical ordering" is as follows:

a. 0-79: Function select switches

b. 80-87: Feature & Vector switches Required Switches
88-105: Category Select switches for WD Console
142-159: Category Select switches Checkout

c. 106-141: Optional Category Select switches

d. 160-184: Display Panel switches

UHF TUNE 0

PDA 1

ORD BAT ADD/DEL 2
FLIGHT PLAN 13
FLT PLN ADD/DEL 4
FLT PLN ASC/DIS 65
TRACK TD 6 TRK
TD INDEX 17 1TD
INIT SPCL PT 18 lISP
RN/DES/NTN SD 19
ORDER BAT SD 10
RADAR IFF TRK i12

AIRBASE WX TD 112
ADD DEL AIRBASE 13
HARD COPY 14
TD UPDATE 115
RCT INIT TD 116 IRIT
WEAPONS SUMY TD 17
RESTRICTED AREA 118
OPNL COND TD 219
UNUSED 1 20
UNUSED 2 21

CIRCLE 122 'CIR
BEARING RANGE 123 iB-R
COMMAND 24
AADCP OPTION 125
ADA ENG STATUS 26
DATA REQUEST 27
UNUSED 3 28
UNUSED 4 29LINE 130 LINCOORDS 131 ICRD

WILCO/CANTCO 32
HANDOVER FREQ 133
CONTROL UNIT TD 134

57

FORCE TELL 35
SAF PAS CORIDOR 36
AADCP SD 137
ARROW 138 'ARW
MESSAGE 39 MSG
WT HANDOVER 140

ACC/REJ HANDOVER 141
CORIDOR IFF SD 142
AREA MONITOR 43
AREA DEF DEL 144
A/C DOWN 145 IDWN
DIALOG TEST 146
ASSIGN CONSOLE 47 'CSL
MODE IV 148 'WMC
LOCATE SIF 149 ILSF
FUEL/CONFIG 150
ARM UP/ORIDE 51
MA KILL 52
INT L/R LINE SD 153
TRK ALT ORIDE 154
REQUEST SIF SD 55 SIF
RCT MSN TD 56 IRCT
COMMAND TRACKNG 57
PRESENT ALT 58
TARGET ALT 59
RCT MOD CONTROL 60
REQ/ASG IFF/SIF 61 6 IRQI
DROP 62 IDRP
ALL 63
MANUAL GDNC 64
CRUISE ORIDE 65
COMBAT ORIDE 66
PROFILE ORIDE 67
RCVY AIRBASE 68
ALTER CONTROL 69
INIT 70 IWIN
OFF 71
COMMIT 72 : CMT
MISSION 73
CAP 74 ',CAP
RTB 75 IRTB
BEAM RIDER 76
ASSIGN/DEFER 177 'ARD
RE-INIT 178 1WRN
HOOK 79

58

FEATURE SEL B 80
FEATURE SEL A 81FEATURE SEL D 82
FEATURE SEL C 83
FEATURE SEL F 84

FEATURE SEL E 85
VECTOR SW DOWN 186
VECTOR SW UP 187

59

BOUNDRIES ADIZ 88
BOUNDRIES ADIZ MOM 89
UNSAFE AREA/ENEMY INSTL 90
UNSAFE AREA/ENEMY INSTL MOM 91
GEOREF LAT LONG 92
GEOREF LAT LONG MOM 93
MAP #1 94
MAP #1 MOM 95
MAP #2 96
MAP #2 MOM 97
MAP #3 98
MAP #3 MOM 999
STOPR/BASES 100
STOPR/BASES MOM 101
WEAPONS AIRBASES 102
WEAPONS AIRBASES MOM 1103
SELF-GENERAT GEOGRAPHY 1104
SELF-GENERAT GEOGRAPHY MOM 105

60

IDBO 106
IDBO MOM 107
REQUESTED/FORCED SDS 108
REQUEST/FORCED SDS MOM 109
NET PART PRIMARY E-3A 1110
NET PART PRIMARY E-3A MOM 1111
SPECIAL POINTS 1112
SPECIAL POINTS MOM 113
FRIENDLY 114
FRIENDLY MOM 1115
HSTL/UNK/FAKER TRK 1116
HSTL/UNK/FAKER TRK MOM 117
CROSSTOLD TRACKS-AIR 1118
CROSSTOLD TRACKS-AIR MOM 119
SPECIAL MISSION 1120
SPECIAL MISSION MOM 1121
INTERCEPTOR 1122
INTERCEPTOR MOM 1123
CROSSTOLD TRACKS-SURF 124
CROSSTOLD TRACKS-SURF MOM 1125
ASSIGNED TRACKS 126
ASSIGNED TRACKS MOM 127
UNASSIGNED TRACKS 128
UNASSIGNED TRACKS MOM 129
TADIL-A/LINK 11 DATA 130
TADIL-A/LINK 11 DATA MOM 131
STROBE HISTORY C 132
STROBE HISTORY C MOM 133
STROBE PRESENT C 1134
STROBE PRESENT C MOM 1135
JTIDS/ERCS DATA 136
JTIDS/ERCS DATA MOM 137
STROBE HISTORY U 138
STROBE HISTORY U MOM 1139
STROBE PRESENT U 1140
STROBE PRESENT U MOM 1141

61

RADAR HISTORY C 142
RADAR HISTORY C MOM 143
RADAR HISTORY U 1144
RADAR HISTORY U MOM 1145
RADAR PRESENT C & U 146
RADAR PRESENT C & U MOM 147
SIF/IFF HISTORY C 148
SIF/IFF HISTORY C MOM 149
SIF/IFF HISTORY U 150
SIF/IFF HISTORY U MOM 151
SIF/IFF PRESENT C & U 152
SIF/IFF PRESENT C & U MOM 153
EXERCISE C&U 154
EXERCISE C&U MOM 155
MARITIME HISTORY C&U 156
MARITIME HISTORY C&U MOM 1157
MARITIME PRESENT C&U 1158
MARITIME PRESENT C&U MOM 1159

62

DATA INTEN TRK 160
DATA INTEN SNSR 161
DSPL MODE SID 162
DSPL MODE FTAB 163
TEST MODE STANDALONE 164
TEST MODE WRAP AROUND 165
TACT B/R RESET 1166 BRR
NOT USED3 1167 CLR
NOT USED4 1168 TST
ALARM/ALERT CLEAR 1169 AAC
MSG ACK 170 ACK
ALERT 171 ALT
ALARM 172 AIM

SCALE EXPANSION 1 173
SCALE EXPANSION 2 174
SCALE EXPANSION 4 175
SCALE EXPANSION 8 176
SCALE EXPANSION 16 177
SCALE EXPANSION 32 178
RETURN TO CENTER 1179 RTC
CANCEL OFFSET 180 CAN
OFFSET 181 PAN
SID CURSOR BLINK/STDY 1182 IBSD
TAB CURSOR BLINK/STDY 183 BTD
TACTICAL B/R 1184

63

NAME: SDTEVAL.H

#define MAX LOG BUF 200

FILE *pass6_fp;
FILE *event fp;

int xmid, ymid; /* Center coordinates for screen */

int wd cnt; /* No. of WDs that were tested */

For the following arrays, the values are ordered corresponding to the value
sequence in "wd consoleno". In addition, "wdcnt" contains the number of
valid entries in each array.

char wd console no[3]; /* Console no. of each WD tested (ASCII) */
char wd-id no[3]; /* WD id no. (ASCII) for associate console */
int msgackcnt[3]; /* Count of extraneous sequential ACKs */
float msgprev-tim[3]; /* Time of previous message action */
double msgelaptim(3]; /* Sum of elapse time */
double msgelaptim2[3]; /* Sum of (elapse time)**2 */

int evlskllvl; /* Skill level for evaluation */

long int prevpass6_pos;

struct switch ent
{ /* Function switch entry */

char func sw name[28];
char func sw num[4];
char func sw altnm[4];
char func sw state[3];

);/* Function switch entry */

int func sw cnt; /* Number of function switches */
struct switch ent func sw[80];
#define FUNC_SWLEN (sizeof(funcsw))

int req-sw cnt; /* Number of required feature & category switches */
struct switch ent reqsw[44];
#define REQ_SW_LEN (sizeof(reqsw))

int opt sw cnt; /* Number of optional switches */
struct switch ent optsw[36];
#define OPTSWLEN (sizeof(optsw))

int panel_swcnt; /* Number of Alarm/Display panel switches */
struct switchent panelsw[25];
#define PANEL_SWLEN (sizeof(panelsw))

struct logrec
(/* Partially parsed log record */

char timestr[13];
char modstr[10];

64

char key str[5];
char tins str(MAX_LOGBUF-28J;

);/* Partially parsed log record *

struct evnt-mrk
/* Event marker *
long int evnt -file offset;
struct log rec mrk~evnt;

);/* Event marker */

struct log rec cur log rec;

struct evnt mrk strt rec;
long mnt sim strt-time;
long int. preyý-evnt-strt-rec;

struct evnt-var
{/* Event variation *
char name fld[28];
char nbr -fld[5];
char alt -nm -fld[4J;
char add -mtch -txt(28J;
float tim-win;
float strt, tim;
float end tim;

);/* Event variation *

struct evnt -var prey_swt;
long prev-rec~pos;

struct evnt skelt
(/* Event diescription *

char evnt~seq[4];
struct evnt -var evnt-label;
mnt no var;
int step~per -var[5];
struct evnt -var variant(25J;

);/* Event description */

struct evnt-skelt evrit-desc;

65

NAME: SDTEVAL.C

#include <stdio.h>
*include <ctype.h>
#include <string.h>
#include <curses.h>

#include "sdteval.h"

This program is an attempt to evaluate a student WD for proficiency in the
subject matter from Instruction Block 1.

main()
(
extern int x mid;
extern int ymid;
extern FILE *pass6_fp;
extern int wdcnt;
extern char wd_consoleno[];
extern int evlskllvl;
extern int func sw cnt;
extern int req sw cnt;
extern int opt_sw cnt;
extern int panelswcnt;
extern struct switch ent funcsw(];
extern struct switch-ent req_sw[];
extern struct switch-ent optsw[];
extern struct switch-ent panelsw[];
extern FILE *eventfp;
extern struct log rec cur logrec;
extern struct evnt mrk strt rec;
extern long int simstrt time;
extern struct evnt skelt evnt desc;
extern char wdidno(];
extern int msgackicnt[];
extern long int prevpass6_pos;

extern void cntr ln);
extern void quick exit(;
extern void read swt data();
extern void get_f ilstro;
extern void openerr();
extern void blink msg on(;
extern void blinkmsg off);
extern void consolechk);
extern void swt state();
extern void multi_switch);

struct switch ent *swtptr;
char filename(30];
char txt-str[81];
char reply;
int i;

66

int valid, noevents;
FILE *switchfp;
int tmpint;
char *tmp chr_ptr;

/* Initialize curses screen management */
initscr(;
x mid = COLS/2 - 1;
y-mid = LINES/2 - 1;

/* Initialize program variables *Q
func-sw cnt = 80; /* Number of function switches */
reqswcnt = 44; /* Number of required feature & category switches */
optswcnt - 36; /* Number of optional feature switches */
panel-sw-cnt = 25; /* Number of alarm/display panel switches *Q
for (i=O; i<3; i++)

msgack cnt[i) = 0;
prevypass6_pos = 0;

I* Get name of data file */
mvaddstr(ymid-1, 10, "Enter name of data file");
getfil_str(filename);

I* Verify that data file was generated from REDUCE pass6 *1
sprintf(Lxt str, "Is file \"%s\"", filename);
cntr_ln(y_mid+l,txt_str);
cntrln(ymid+2, "a \"REDUCE pass6\" output [YIN]?");
reply = tolower(getch());
if (reply != 'y')
I /* File requires processing */
clear(;
cntrln(yjmid, "Input data file must be preprocessed by REDUCE");
cntr ln(y mid+l, "and the resultant of at least \"pass6\" processing");
getcho;
quick exit (;

/* File requires processing */

/* Open specified file */
pass6_fp = fopen(filename, "r");
if (pass6_fp == NULL)

open_err(filename);

/* Get number of WDs that were tested */
valid = FALSE;
while (!valid)
(/* Get number */

clearo;
cntrln(y mid, "Enter number of WDs that were tested: ");
reply = getch(;
sscanf(&reply, "%d", &wd cnt);
if (wd_cnt<=0 11 wd cnt > 3)
(/* Invalid count */

cntr ln(ymid+l, "An invalid number of WDs was entered");
getcho;

67

) /* Invalid count */
else

valid = TRUE;
/* Get number */

/* Get WD's console number */
for (i=O; i<wd cnt; i++)
(/* Get consoie numbers */

clear ();
if (i == 0)

sprintf(txtstr, "Enter console no. of %ldst WD: " i+l);
else if (i == 1)

sprintf(txtstr, "Enter console no. of %ldnd WD: " i+l);
else

sprintf(txtstr, "Enter console no. of %ldrd WD: ", i+1);
cntriln(y_mid, txt_str);
wd consoleno[i] = getch();

} /* Get console numbers */

/* Get WD id number */
for (i=O; i<wdcnt; i++)

/* Get WD id */
clearo;
sprintf(txt_str, "Enter WD id no for console %c: ", wd_console noli]);
cntr ln(y_mid, txt_str);
wd id no[i] = getcho;

/* Get WD id */

/* Get skill level */
clear ();
mvinsstr(ymid-4, x mid-17, "Select skill level for evaluation:");
mvinsstr(ymid-2, x-mid-6, "1) Naive");
mvinsstr(y_mid-l, x mid-6, "2) Novice");
mvinsstr(ymid, x_mid-6, "3) Journeyman");
mvinsstr(y_mid+l, x mid-6, "4) Expert");
mvinsstr(ymid+2, x mid-6, "5) Master");
mvinsstr(ymid+4, x-mid-5, "Selection: ");
valid = FALSE;
while (!valid)
{

reply = tolower(getch();
if (reply == 'q')

quick exito;
sscanf(&reply, "%d%", &evlsk i vl);
if (evlskl Ivl < 1 evlskl lvl >= 4)
(/* Not available */

cntr_ln(ymid+5, "Evaluation criteria not available");
getch(;
move(y_mid+4, x mid+6);
clrtobot(;
refresh(;

) /* Not available */
else

valid = TRUE;

68

/* load Feature arnd Category switch tables *
switch-fp = foperi("switches .dat", "r");
if (switch fp, - NULL)

open err ("switches. dat");

/* loading Function switches *
for (swt~ptr=func_sw; swt~ptr<func~sw+func_sw_crit; swt~ptr++)

read swt-data(switch-fp, swt~ptr);
fgets (txt-str, 80, switch fp);

/* Loading Feature Select switches (Console Checkout) *
for (swtyptr=rec~sw; swt~ptr<rec~sw+8; swtyptr++)

read swt_data(switch fp, swt~ptr);
fgets(txt_str, 80, switch fp);

1* Loading top 9 Category Select switches (Console Checkout) *
for (swt~ptr=req~sw+8; swtyptr<req~sw+26; swt~ptr++)

read-swt data(switch fp, swt~ptr);
fgets(txt_str, 80, switch-fp);

/* Loading middle 18 Category Select switches *
for (swtjptr=opt sw; swtyptr<opt~sw+opt_sw-cnt; swt~ptr++)

read_swt data (switch fp, swt~ptr);
fgets(txt_str, 80, switch-fp);

/* Loading bottom 9 Category Select switches (Console Checkout) *
for (swtyptr=req~sw+2 6; swtyptr<reqgsw+req~sw-cnt; swt~ptr++)

read-swt_data (switch fp, swtyptr);
fgets(txt_str, 80, switch-fp);

/* Loading Panel switches */
for (swt~ptr=panel~sw; swtyptr<panel_sw+panel sw_crit; swt~ptr++)

read_swt_data(switch~fp, swt~ptr);

fclose (switch fp);

/* Get event script file *
clearo;
mvaddstr(y~mid-l, 10, "Enter name of event script file");
get fil_str(filename);
event_fp = fopen(filename, "r");
if (event~fp == NULL)

open_err(filename);

clearo~;
blink-msg on(y mid, "Getting initial switch settings");
swt_state();
blink-msg of f(y mid);

clearo;
blink -msg on(y mid, "Searching for Sim start");
valid = FALSE;

69

while (!valid)
{/* Find start of simulation *
strt-rec.evnt-file-offset = ftell(pass6_fp);
read logo;
if ((strcmp(cur~log~rec.key~str,"848") != 0)

(strncmp(cur log rec.trns-str,"SCN 2",S) N= 0))
continue;

tmp~chryptr = strchr(&cur_log_rec.trns~str[5], 'P');
if (tmp -chryptr == NULL)
continue;

tmp-imt = -1;
for (i=tmp~chr~ptr-cur_log rec.trns_str+l;

i<strlen(cur log_rec.trns~str); i++)
{/* Search for blanks */

if (cur_log rec.trns~str(i)]
{/* Possible start */

if (cur_log rec.trns_strri] =''

{/* Start found */
strcpy(strt_rec.mrk-evnt.time-str, cur_log rec.time-str);
strcpy (strt_rec mrk evnt. key_str, cur log_rec. key str);
strcpy(strt_rec-mrk-evnt.trns_str, cur_log rec.trns_str);
tmp~int = 0;
break;

)/* Start found *
break;

/* Possible start *
I/* Search for blanks *

if (tmp~int == 0)
valid =TRUE;

4/* Find start of simulation *
sscanf(strt rec.mrk evnt.time_str, "%d", &sim-strt-time);
blink_msg of f(y mid);

no-events = FALSE;
while (!no_events)

/* Process Event file *
read -evento;
if (strncmp(evnt - l~sc.evnt-label.naxne-fid, "CONSOLE CHECKOUT",16) ==0)

console_chko;
else if (strncmp(evnt_desc.evnt-label.name_fld, "DONE", 4) ==0)

no events = TRUE;
else If (strlen(evnt_desc.evnt label.alt_nm_fld) != 0)

switch chk(&evnt -desc.evnt label);
else if (evnt_desc.no var =0

multi switcho;
else
/* Invalid event *
clear()
inove(y~mid,1O);
printw("Event: %s lacks sufficient description",

evnt desc.evnt-label.name-fld);
getch(T;
/* Invalid event *

/* Process Event file *

70

/* Terminate curses screen management */
endwino;

71

NAME: EVALRTN.C

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <curses.h>
#include <math.h>

#include "sdteval.h"

72

void cntr_ln(int ycoord, char *txt_str)
(/* Center text on specified line */
extern int x mid;
extern int y~mid;
int i, xoffset;

x offset = 0;
for (i=O; i<=strlen(txtIstr)-l; i++)
{ /* Search for printable characters */

if (isprint(*(txtstr+i)))
x offset++;

) /* Search for printable characters */
x offset /= 2;
mvinsstr(y-coord, x-mid-xoffset, txtstr);
return;

) /* Center text on specified line */

73

void quick exit()
(/* Stop Curses and exit */
endwino;
exit(O) ;
) /* Stop Curses and exit */

74

void get_fil_str(char *filename)
{ /* Get a file string */
extern void cntrlno;
extern void quickexit(;

*filename = '\0,;
while (strlen(filename) == 0)

/* Filename */
mvaddstr(ymid, 10, "Name: ");
getstr(filename);
if (strlen(filename) == 0)
{ /* No name entered */

cntr ln(y-mid+l, "ERROR: No name was entered");
getch(;
move(ymid, 0);
clrtobot();

) /* No name entered */
} /* Filename */
if (strlen(filename) == 1 && tolower((*filename) == ,q,))

quickexit();
return;
) /* Get a file string */

75

void openerr(char *filename)
(/* Error opening a file */
extern int ymid;

extern void cntr_ln);
extern void quick exit(;

clearo;
cntrln (ymid-i, "Error occurred while opening");
cntr ln(ymid, filename);
getch(;
quickexit(;
return;
} /* Error opening a file */

76

void read swt data(FILE *switch-fp, struct switch-ent *swt~ptr)
4 /* Read a r-ecord from "switch.dat" *
char txt-str[80];
char *blnk;
char fill[2];
int ndx;

fgets(txt_str, 80, switch fp);
strncpy(swt~ptr->func-sw-name, txt-str, 27);
swtyptr->func-sw-riame(27) =1\;
while (swtjptr->furic-sw-name~strlen(swt~ptr->func-sw-name)-1] =

swt-ptr->func -sw -name~strlen(swt~ptr->func-sw-name)-l] = \;
strncpy(swtyptr->func-sw-num, &txt-str[28J, 3);
swtyptr->func_sw Inuin(3) = \;
while (swtyptr->func-sw-num(strien (swt~ptr->func-sw-num) -1)
I)

swtyPtr->func sw num(strlen(swt~ptr->funcsw-num)-lJ =\1

if (txt_str[32J ;;--01
4/* Alternate name */

strncpy(swtyptr->func-sw-alt-rim, &txt str[331, 3);
if(stjtr->func -sw Ialt -nm(2] == I 1 1
!isprint(swt~ptr->func-sw-alt_nm(2]))
swtyptr->func-sw-alt nm[2] = \;

else
swt~ptr->func-sw-alt nm[3] = \;

)/* Alternate name *
else

swtjPtr->func-sw-alt nm[0J = \;

return;
)/* Read a record from "switch.dat" *

77

void read_logo
(/* Read a logger entry *

extern FILE *pass6_fp;
extern struct log~rec cur -log rec;
extern int msg ack -cnt[];
extern float msg~prev_tim[];
extern double msg~elap~tixn[];
extern double msg~elap~tim2[];
extern long int prev~pass6ypos;

extern void left justo;

int i;
unsigned mnt tmp long int;
float tnp~flt;
double tnp~dbl;
char log str[MAXLOGBUF];
char *sep;
char *beg scan;
long mnt rec~pos;
char *rd-stat;

rec~pos =ftell(pass6_fp);
rd-stat =fgets(log~str, MAXLOGBUF, pass6_fp);
if (rd_stat == NULL)
{/* End of file or error *
cur -log rec.time str[O] =\1

return;
/* End of file or error *

/* Partially parse logger record *
beg scan = log str;
sep = strchr(beg scan,
strncpy(cur log rec.tixne -str, beg-scan, sep-beg scan) ;
cur_log rec.time_str[12]= \;
beg scan = sep + 1;
sep = strchr(beg scan, '1)

strncpy(cur log rec.mod-str, beg scan, sep-beg scan);
cur_log rec.mod-str[9] = \;
while (cur log rec.rnod -str[strlen(cur log rec.mod_str)-l] =

cur log rec.mod str~strlen(cur log rec.mod-str) -1] = \;
beg scan = sep + 1;
sep = strchr(beg scan,
strncpy (cur log rec. key str, beg scan, sep-beg scan) ;
cur_log rec.key str[4) = \;
left just (cur~log~rec.key~str);
beg scan = sep + 1;
strcpy (cur log rec. tins-str, beg scan) ;
cur_log rec.trns-str[strlen(cur_log_rec.trns_str)-l] = \;

if (rec~pos < prev~pass6_pos)
return;

prev~pass6_pos = rec~pos;

78

/* Evaluate Message ACK tapping *
if (strcmp(cur~log~rec.key~str, "11014"1) == 0)
/* Message Presented *
for (i=0; i<3; i++)
{/* Find WD console *

if (cur log rec.mod str[8] != wd-console no[i])
continue;

if (abs(msg~ack -cnt~i]) > 2)
{ * Compute variability */

tmp~dbl =(abs (msg ack cnt[i)) *msg elap tim2 [i]) -

msg~elap~tim[i];
tmp~dbl 1=abs(msg ack cnt(i]) *(abs(msg ack cnt~i])-1);
tmp~dbl sqrt (tmp~dbl);
tmp~flt =msg elap tim[i]/abs(msg ack-cnt~i]);
clears,;
move(y mid, 10);
printw("IACK tapping: Avg: %f Var: %f", tmp~flt,

tmp-dbl);
getch();

)/* Compute variability *
msg_ack-cnt[i] = 0;
msg_ack_cnt[i]++;
msg~elap~tim[i) =0.0;

msg~elap~tim2[i] =0.0;

}/* Find WD console *
)/* Message Presented *

if (strcmp(cur~log~rec.key~str, "1170"1) =0)

(/* Message Acknowledged *
for (i=0; i<3; i++)
(/* Find WD console *

if (cur log rec.mod str[7] != wd-console no~i])
continue;

msg_ack -cnt~i]--;
tmp long mnt = atol (cur log rec.time_str);
if (msg~ack-cnt == 0)

msg~prev~tim[i] =tmp_long_int/30000.0;

else
{ /* Multiple ACK *

tmp~flt = tmp long int/30000.0;
msg~elap~tim[i] += (tmp~flt - msg~prev -tim~i]);
msg~elap~tim2[i] += pow((tmp flt - msg~prev~tim~i]),

2.0) ;
msgyprev~tim[i] =tmp-flt;

)/* Multiple ACk *
}/* Find WD console *

)/* Message Acknowledged *
return;
/* Read a logger entry *

79

void left_just(char *txtstr)
(/* Left justify string */
int blnksp;
int i;

blnk sp = TRUE;
while (blnk-sp)
(/* Left justify */

if (isspace(txtstr[O]))
(/* Space found */

for (i=O; i<strlen(txt_str); i++)
txtstr[i) = txt-str[i+l];

) /* Space found */
else

blnksp = FALSE;
) /* Left justify */
return;
) /* Left justify string */

80

int swt label match(struct switch-ent *swt~tab~ptr, int swt_cnt,
int entno)
(/* Search for matching switch name *
extern struct evnt-skelt evnt-desc;

struct switch-ent *swt-ptr;
int match;

match = FALSE;
for (swtyptr=swt_tab~ptr; swtyptr<swt tabyptr+swt-cnt; swt-ptr++)
(/* Search for matching Function switch *

if (ent -no == -1)
{/* Check main event header *

if (strcmp(swt~ptr->func-sw -name,
evnt-desc.evnt-label.name~fld) !=0)

continue;
I/* Check main event header *

else
{/* Alternate switch event *

if (strcmp(swt~ptr->func-sw-name,
evnt desc.variant[ent no] .name-fld) !=0)

con-tinue;
)/* Alternate switch event *

match = TRUE;
if (ent Ino == -1)
(/* Main event */
strcpy(evnt-desc.evnt -label.nbr -fld, swt~ptr->func-sw-num);
strcpy(evnt_desc.evnt-label.alt-nm-fid,,

swtyptr->func -sw -alt nm);
) /* Main event *
else
{/* Alternate switch *
strcpy(evnt -desc.variant[ent no] .nbr-fld,

swtyptr->func -sw -num);
strcpy(evnt -desc.variant[ent no] .alt-nm-fld,

swt~ptr->func -sw -alt nm);
) /* Alternate switch *
break;
/* Search for matching Function switch *

return match;
)/* Search for matching switch name *

81

void blink msgon(int lineno, char *txt_str)
(/* Blink message - ON */
extern void cntrln);

setattr(_BLINK);
cntr ln(line_no, txtstr);
clrattr(_BLINK);
refresh();
return;
) /* Blink message _ ON */

82

void blink msg off(int lineno)
(/* Blink message - OFF */
move(lineno, 0);
clrtoeol();
refresh(;
return;
) /* Blink message _ OFF */

83

void read_event()
(/* Read event file *
extern FILE *event_fp;

extern void left -justo;
extern mnt swt label matcho;
extern void opt chk:);

char evnt_rec[81];
mnt i;
char *colon_ptr;
mnt ndx;
mnt match;
struct switch ent * swt~ptr;

fgets(evnt_rec, 80, event_fp);
for (i=0; i<strlen(evnt_rec); i++)

evnt-rec[i] = toupper(evnt_rec[i]); /* Change to UPPER case

ndx =strlen(evnt~rec) - 1;
if (iscntrl(evnt_rec[ndx]))

evnt -rec[ndx] = '\0'; /* Eliminate appended control
character */
left just (evnt~rec);
if (isdigit(evnt_rec[0]))
/* Event found */
/* Initilize event description *
evnt desc.evnt seq[0] = \;
evnt desc.evnt label.name_fld[0] = \1
evnt. desc.evnt label.nbr~fld[0] = \;
evnt desc.evnt label.alt -nm -fld[0] = \1
evnt desc.evnt label.tim win = 0.0;
evnt desc.evnt label.strt tim = 0.0;
evnt desc.evnt label.end tim = 0.0;
evnt desc.no var = 0;
for (i=0; i<5; i++)

evnt-desc.step~per~var[i] = 0;

colon-ptr = strchr(evnt_rec, 1:1);
ndx = colon ptr - evnt -rec;
strncpy(evnt_desc.evnt-seq, evnt_rec, ndx);
evnt -desc.evnt-seq[ndx] = \;
strcpy(evnt_desc.evnt -label.name_fld, &evnt-rec[ndx+lJ);
left just(evnt -desc.evnt-label .name_fid);
match = FALSE;
match = swt -label-match(func~sw, func_sw_cnt, -1);
if (!match)

match = swt label-match(req~sw, rec~sw~cnt, -1);
if (!match)

match = swt-label-match(opt_sw, opt sw~cnt, -1);
if (!match)

match = swt label-match(panel_sw, panel sw-cnt, -1);

84

if (match) /* Check if single switch */
optchko;

if (!match)
(/* Action Label (Mulitple switch sequence) */

if (strncmp(evnt-desc.evntlabel.name-fld, "DONE", 4) == 0)
return;

optchko;
) /* Action Label (Multiple switch sequence) */

) /* Event found */
return;
) /* Read event file */

void opt chk()
(/* Parse for event options *

extern FILE *event~fp;
extern struct evnt-skelt evnt-desc;

extern void left_justo;
extern mnt swt -label -matcho;
extern void cntr_lno;

char evnt_rec[81];
mnt input options;
char *chr-ptr;
mnt ndx, ndxl;
mnt i;
char cur -alt -label[9];
char alt-label[9];
mnt match;
char err_str[81];
char tmp~str[80];
mnt tmp-int;

input options =TRUE;

alt -label[0] \;
while (input options)
/* Process event record *
fgets(evnt_rec, 80, event fp);
if (strlen(evnt~rec) 0 :0 (strlen(evnt~rec) ==1&&

evnt -rec[0] == In)
/* No more options *
input options = FALSE;
continue;
/* No more options *

left -just (evnt~rec);
for (i=O; i<strlen(evnt~rec); i++)

evnt_rec[i] = toupper(evnt~recLi]fl;
evnt -recfstrlen(evnt~rec)-l] = \;
while (evnt_reclstrlen(evnt~rec)-l] -

evnt_rec[str'-n(evnt~rec)-l)= \;

if (strncmp(evnt~rec, "ALTERNATE", 9) == 0)
7* Alternate switch sequence *7
for (i=9; i<strlen(evnt~rec); i++)
/* Search for label */
if (isdigli.(evnt~rec[i]))

7* Label found *7
chr~ptr = strchr(&evnt_rec[i],'
ndx = chr~ptr - &evnt~rec[i];
strncpy(alt label, &evnt_rec[i], ndx);
alt -labe1[ndxj = \;

7* Label found *7
7* Search for label *

if (strcwp(cur_alt label, alt-label) != 0)

/ * Another variation *7

86

strcpy(cur -alt -label, alt_label);
evnt-desc.no-var++;

)/* Another variation *
chr~ptr = strchr(evnt_rec, 1=1);
ndx =chr~ptr - evnt-rec + 1;
ndxl =0;

for (i=0; i<evnt desc.no var; i++)
ndxl += evnt -desc.ste-pper-var[i];

evnt -desc. step~per~var~evnt-desc. no-var-l]-4+;
strcpy(evnt -desc.variant[ndxl] .name_fid, &evnt~recllndx]);
left_just(evnt -desc.variant[ndxl] .name_fld);
match =FALSE;
match = swt label-ýMatch(func_sw, func-sw-cnt, ndxl);
if (!match)

match =swt-label-match(req~sw, req~sw-cnt, ndxl);
if (!match)

match =swt-label-match(opt~sw, opt sw-cnt, ndxl);
if (!match)

match =swt-label_match(panel~sw, panel_sw_cnt, ndxl);
if (!match)
I/* Invalid switch *
sprintf (err_str, 1"\"%s\" is either misspelled or does

not exist",
evnt-desc.variant[ndxl] .name~fld);

clearo);
cntr-lniy_mid, err str);
getch();
return;

/* Invalid switch *
continue;

}/* Alternate switch sequence *

if (strncmp(evnt_rec, "WINDOW", 6) ==0)

/* Window option specified *
chr~ptr = strchr(evnt_rec, ')

ndx = chr~ptr - evnt -rec + 1;
for (i=ndx; i<strlen(evnt~rec); i++)
/* Search for first numeric *
if (isdigit(evnt~rec[i]))
(/* Digit found *

ndx = ;4
break;

4 /* Digit found *
/* Search for first numeric *

if 'evnt desc.no-var == 0)
sscan-f(&evnt_rec[ndx], "1%f"i,

&evnt-desc.evnt-label.tim win); 4
else

sscanf(&evnt_rec~ndx], "1%f",
&evnt -desc.variant~evnt-desc.no-var-l].tim win);

continue;
/ * Window option specified *

if (strncmp(evnt_rec, "KEY", 3) == 0)

87

/* Keyword - numeric form *
chr~ptr = strchr(evnt_rec, =)
ndx = chr-ptr - evnt-rec + 1;
strcpy (tmp~str, &evnt_rec [ndxJ);
left just (tmp~str);
if (evnt_desc.no -var == 0)

strcpy(evnt-desc.evnt-label.nbr-fid, tmp~str);
else

strcpy(evnt-desc.variant[evnt_desc.no-var- 1].nbr-fld,
tmp~str);

continue;
)/* Keyword - numeric form *

if (strncmp(evnt_rec, "TEXT", 4) == 0)
{/* Matching Text */

chr~ptr = strchr(evnt_rec, '\'');

ndx = chr-ptr - evnt-rec + 1;
chr~ptr = strchr(&evnt_rec[ndx), '')
ndxl = chr~ptr - &evnt-rec~ndx];
if (evnt_desc.no_var == 0)

strncpy (evnt_desc. evnt-label. add-mtch-txt,
&evnt-rec~ndx], ndxl);

else

strncpy (evnt_desc variant revntfiesc. no var-i].add-mtch-txt,
&evnt~rec~ndx], ndxl);

continue;
)/* Matching Text *

1/* Process event record *
return;
)/* Parse for event options *

88

void swt_state()
(/* Get state of switches */
extern FILE *pass6_fp;
extern int wdcnt;
extern char wd console no(];
extern struct logrec cur log rec;

extern void readlogo;

int i, j;
char modname[10];
long unsigned int swt bit map(2];
long unsigned int bit~pic;
int found;

strcpy(modname, "Display x");
for (i=o; i<wd cnt; i++)
{ /* Get switch state for each WD console */

mod name[8] = wd consoleno(i];
fseek(pass6_fp, 0, SEEKSET);
found = FALSE;
while (!found)
{ /* Search for switch state */

read_log);
if (strlen(curlog-rec.time str) == 0)

/* End of file or error */
clear();
cntrlin(y mid, "EOF/error reading Logger: swt_state");
getch();
return;

) /* End of file or error */
if (strcmp(modname, curlog rec.modstr) '= 0

strcmp(curlogrec.key str, "7") != 0)
continue;

found = TRUE;
I /* Search for switch state */
sscanf(&cur log_rec.trns str[2], "%8x %8x",

&swt_bitmap(O], &swtbitmap[l]);

bit pic = 1;
for (j=0; j<9; j++)
(/* Top 9 Category switches */

if (((bit pic<<j) & swt bit map[l]) != 0)
reqsw[(j+4)*2].func sw state[i) = 1;

else
reqsw((j+4)*2].func sw state(i] = 0;

) /* Top 9 Category switches */

for (j=9; j<27; j++)
/* Optional Category switches */

if (((bit pic<<j) & swtbitmap[l]) != 0)
optsw[(j-9)*2].func swstate[i] = 1;

else

89

opt sw[(j-9)*2].func_sw-state~i] =0;
)/* Optional Category switches *

/* Bottom 9 Category switches *
for (j=27; j<32; j++)

if (((bit~pic<<j) & swt-bit-map~l]))! 0)
rec~sw[(j-l4)*2].funcsw-state[i] = 1;

else
req~sw[(j-14)*2].func-sw-state~i] = 0;

for (j=0; j<4; j++)

if (((bit~pic<<j) & swt-bit-map[O]) !=0)
req~sw[(j+l8)*2].func-sw-state~i] =1;

else
rec~sw[(j+l8)*2].funcsw-state~i] =0;

for (j=4; j<12; j++)

if (((bit~pic<<j) & swt bit map[O]) 1=0)
req~sw[j-4].funcsw-state~i] = 1;

else
rec~sw[j-4].func-sw-state[i] = 0;

1/* Get switch state for each WD console *
fseek(pass6_fp, 0, SEEK-SET);
return;
)/* Get state of switches *

90

void console chic (
(/* Evaluate CONSOLE CHECKOUT *
extern int wd cnt;
extern char wd -console -no[];
extern int req~sw~cnt;
extern struct switch ent req~sw[];
extern mnt opt sw -cnt;
extern struct switch ent opt sw[];
extern struct evnt -skelt evnt-desc;
extern struct log rec cur log rec;

extern void read logo;
extern void cntr lno;
extern void switch chico;
extern void csl -chico;
extern void quick exit 0;

struct evnt -mrk beg con;
mnt valid, chic-on-off;
mnt i,j;
mnt tmp -int;
char mod_name[lO];
mnt key code, on -off-state;
float elap~tim;
unsigned mnt tmp long int;
float tmp~flt;
char tmp~str[80];

/* Find starting event *
valid = FALSE;
while (!valid)
/* Search for starting event *
beg_con.evnt-file-offset = ftell(pass6_fp);
read-logo;
if (strlen(cur log rec.time -str) == 0)
/* End of file or error *
clear 0;
cntr_in~y mid, I"EOF/error in Logger: console_chic (I)");
getcho;
quick -exit 0;

I/* End of file or error *
if (strcmp (cur log rec. key str, evnt-desc. evnt-label .nbr~fld)

!=0)

continue;
if (strncmp(cur log rec.trns -str,

evnt-desc.evnt-label.add-mtch-txt,
strlen(evnt -desc.evnt-label.add-mtch-txt)) != 0)

continue;
valid = TRUE;
strcpy (beg con.mrk -evnt time str, cur~log~rec.time~str);
tmp long_mnt = atol (cur log -rec.time str);
evnt -desc.evnt-label.strt-tim =tmp long int/30000.O;
strcpy (beg con.mrk-evnt. key str, cur log rec. key str);

91

strcpy(beg~con.mrk-evnt.trns-str, cur log rec.trns str);
)/* Search for starting event *

for (i=O; i<wd cnt; i++)
(/* Cycle all WDs */

fseek(pass6_fp, beg con.evnt-file-offset, SEEKSET);
tmp-int = 0;
for (j=o; j<rec~sw -cnt; j++)

tmp-int += rec~sw[j].func sw -state~i];
for (j=0; j<opt_sw -cnt; j++)

tmp~int += opt sw~j].func sw -state~iJ;
strcpy(mod_name, "Switch x");
mod name[7] =wd console no~i];
if (tmp-int OT 0
/* All switches must be turned off *
chk on off = FALSE;
while (!chk -on off)

/* Check for switch turn off *
read log U;
if (strlen(cur -log rec.time_str) ==0)
/* End of file or error *
clearo;
cntr-ln(y mid, "EOF/error in Logger: console-chk

(2)"
getcho;
fseek(pass6_fp, beg con.evnt-file-offset, SEEK-SET);
return;

1/* End of file or error ~
if (strcmp(mod name, cur_log_rec.mod~str) != 0

strcmp(cur log_rec.key-str, "1101"1) != 0)
continue;

sscanf (cur log rec.trns-str, 11%d %d", &key-code,
&on-off-state);

if (key code < 80 1:key-code > 159)
continue;

if (key code > 87 && (fmod((double)key code, 2.0) !

0.0))

continur'; /* Momentary switch *

if (on off -state == 1)
/* Check if all switches are off *
if (key code ==87)

7* Vector *
reg~sw[6].func -sw -state[i] = 0;
req~sw[7].func-sw-state[i] = 1;
continue;
/* Vector *

if (key code < 80 :1key code >87)
continue; /* Ignore all other switches *

tmp-int = 0;
for (j=0; j<rec~sw~cnt; j++)

tmp_int += req~sw[j].func_sw_state[i];
for (j=0; j<opt~sw~cnt; j++)

tinpint += opt~sw[j].func~sw~state~i];

92

if (tmp~int != 0)
(/* Error - All switches not off *

clearo;
cntr_ln(y~mid+l, "Error: Not all category and

feature switches");
cntr_ln(ymiid+2, "have been turned of f");
for (J=O; j<req~sw cnt; j++)
(/* Search for switch */

if (req~sw~jJ.func_sw_statefi]==)
(/* Found a switch *
move(y~mid+3,O);
clrtoeol();
sprintf(tmp~str, M% iS ON",

rec~sw[j).func_sw_name);
cntr_in (y~mid+3, tmp~str);
getcho;

)/* Found a switch *
)/* Search for switch *

for (j=O; j<opt~sw~cnt; j++)
(/* Search for switch */

if (opt sw~jJ.func sw state(i] ==1)
(/* Found a switch */

xnove(y~mid+3,0);
clrtoeol();
sprintf(tmp~str, "%S is ON",

opt sw[j].func_sw_name);
cntr_ln(y~mid+3, tmp~str);
getchoi;

)/* Found a switch *
)/* Search for switch *

move (y mid,0) ;
clrtoboto;
ref resho;

)/* Error -All switches not of f
chk on-of f =TRUE;
continue;

/ * Check if all switches are of f

if (key code >= 80 && key code <= 87)
(/* Feature & Vector -of f */

if (key code == 80 key code == 81)
(/* A/B - off */

recm sw[O].func_sw_state(i] = 0;
req~sw[l].func_sw_state~i] = 0;

) /* A/B - off */
else if (key code == 82 11key-code ==83)

1 * C/D - off */
req~sw[2).func_sw_state[i] = 0;
reqgsw[3].func_aw_state~iJ = 0;

) * C/D - off */
else if (key code -= 84 :1 key_code ==85)
/* E/F - off */
req~sw[4].func_sw_state[i] = 0;
req~sw[5].func_sw_state~i] = 0;

93

) /* E/F - off */
else

/* Vector */
req_sw[6].func_sw_state[i] = 0;
reqsw[7].func_sw state[i] = 0;

/* Vector */
} /* Feature & Vector - off */

else if (keycode >= 106 && keycode <= 141)
/* Turning off optional category switch */

for (j=0; j<opt sw cnt; j++)
/* Find switch and reset state */

if (strncmp(optsw[j].funcswnum,
curlog rec.trns_str, 3) != 0)

continue;
optsw[j].funcsw state[i] = 0;
break;

/* Find switch and reset state */
) /* Turning off optional category switch */

else
/* Turning off other require switch */
for (j=O; j<req_swcnt; j++)

/* Find switch and reset state */
tmp-int = 2;
if (keycode > 99)

tmpint = 3;
if (strncmp(reqsw[j].funcswnum,

curlog rec.trnsstr,
tmpint) != 0)
continue;

reqsw[j].funcswstate[i] = 0;
break;

/* Find switch and reset state */
/* Turning off other require switch */

} /* Check for switch turn off */
/* All switches must be turned off */

chk on off = FALSE;
fseek(pass6_fp, begcon.evntfileoffset, SEEKSET);
while(!chkonoff)

/* Required switches must be on */
readlog();
if (strlen(curlog_rec.timestr) == 0)

/* End of file or error */
clear()
cntrln(y_mid, "EOF/error in Logger: consolechk (3)");
getch();
fseek(pass6_fp, begcon.evntfile_offset, SEEKSET);
return;

} /* End of file or error */
if (strcmp(mod_name, cur_log rec.modstr) != 0

strcmp(curlogrec.keystr, "101") ! 0)
continue;

94

sscanf(cur_log rec.trns-str, "%d %d", &key code,
&on-off -state);

if (on_off -state == 0)
continue;

if (key code > 159)
continue;

if ((key code > 87 && key -code < 160) &&
(fmod((double)key code, 2.0) N= 0.0))
continue; /* Momentary switch *

if (key code <80)
(/* Assume checkout complete *

tmp-int =0;
for (j=l; j<8; j+=2)

tmp~int += rec~sw[j].func_sw_state[i];
if (tmp~int < 4)

continue;
for (j=8; j<req~sw_cnt; j+=2)

tmp~irt += req~sw(j].func_sw_state[i];
if (tmp -int < 22)
/* Error - Required switches not set *
clearo;
cntr -ln(y~mid+l, "Error: Required switches not set");
for (j=l; j<l; j+=2)
/* Feature & Vector *
if (req~sw[j].func-sw-state[i) ==0)
/* Not set */
move(y_mid+2,0);
clrtoeol();
sprintf(tmp~str, "%s is OFF",

req~sw[j].func_sw_name);
cntr ln(y~mid+2, tmp_str);
getchQ;
}/* Not set *

4/* Feature & Vector *
for (j=8; j<req~swcnt; j+=2)
{/* Category switches */
if (req~sw[j].func_sw_state~7i] == 0)
/* Not set */

move(y_mid+2,0);
clrtoeol();
sprintf(tmp~str, "%s is OFF",

req~sw[j].func sw~name);
cntr ln(y~mid+2, tmp_str);
getcho;

4/* Not set *
4/* Category switches *

move (y mid,0) ;

refresho;
/* Error - Required switches not set *

tmp long_mnt = atol (cur log rec.time -str);
evnt desc-evnt label.end tim = tmp long int/30000.0;
fseeK(pass6 fp, beg con.evnt-file_offset, SEEK_SET);

95

chk on of f =TRUE;
continue;

)/* Assume checkout complete *

if (key code ==86)

(/* Vector *
rec~sw[6).func_sw_state[iJ = 1;
req~sw[7J.func_sw_state(iJ = 0;

)/* Vector */
else if (key code >= 106 && key code <= 141)
{/* Turning on optional switch *

for (j=0; j<opt_sw_cnt; j++)
{/* Find and reset state */

if (strncmp(opt~sw[jJ.func_sw_nun,
cur_log rec.trns_str, 3) N= 0)

continue;
opt sw[j].funcsw-state[i) =1;

break;
)/* Find and reset state *

)/* Turning on optional switch *
else
{/* Turning on required switch *

for (j=0; j<req~sw_cnt; j++)
{/* Find and reset state *
tnp-int = 2;
if (key code > 99)

tmp~int = 3;
if (strncmp(rec~sw[j].func_sw_num,

cur_log rec.trns_str,
tmp~int) != 0)
continue;

rec~sw~j].funcsw-state(i] = 1;
break;

)/* Find and reset state *
tmp~int = 0;
for (j=l; j<8; j+=2)

tmp~int += rec~sw[j].func_sw_state(iJ;
if (tmp~int < 4)

continue;
for (j=8; j<req~sw_cnt; j+=2)

tmp~int += req~swlj).func sw_state~i];
if (tmp~int < 22)

continue;
tmp long_mnt = atol (cur log rec time str);
evnt-desc.evnt-label.end_tim =tmp long int/30000.O;
chk-on-off = TRUE;
continue;

)/* Turning on required switch *
)/* Required switches must be on *

if (evnt Idesc.no -var 1= 0)
(/* Assume console assignment *

evnt-desc.variant(0) .tim -win
evnt-desc.evnt-label.tim-win;

96

evnt -desc.variant[0).strt-tim=
evnt-desc.evnt-label.strt-tim;*

switch-chk(&evnt-desc.variant[Ofl;
if (evnt desc.variant[0].end tim !=0.0)

evnt Idesc.evnt label.end-tim
evnt -desc.variant[0].end-tim;

) /* Assume console assignment *
)/* Cycle all WDs */

if (evnt -desc.evnt-label.strt tim !=0.0 &&
evnt -desc.evnt labei.end tim != 0.0)
/* Console checkout complete *
clearo;
elap~tim = evnt -desc.evnt-label.end-tim -

evnt -desc.evnt -label.strt-tim;
move (y_ mid, 10) ;
printw("Console Checkout Completed (%f sec)", elap~tim);
tmp~flt = elap tim -evnt desc.evnt-label.tim win;
move(y_mid+l, 15);
if (tmp fit <= 0.0)
{/* Within window *
printw("%f sec. within %f sec. window", tmp-flt,

evnt Idesc.evnt -label.tim-win);
)/* Within window *

else
/* Outside window *
printw("%f sec. outside of %f sec. window", tmp fit,

evnt-desc.evnt -label.tim-win);
}/* Outside window *

getcho;
)/* Console checkout complete *

return;
1/* Evaluate CONSOLE CHECKOUT *

97

void switch chk(struct evnt -var *swt_ent)
(/* Evaluate switch action */
extern struct evnt -skelt evnt-desc;
extern struct log -rec cur log rec;
extern mnt wd cnt;
extern char wd -console-no[];
extern FILE *pass6_fp;
extern struct evnt-var prey_swt;
extern long mnt prey-rec~pos;

extern void read_logo;
extern void csl chk();
extern void cmt chko;
extern void win chko;
extern void winc-chk();

int i;
mnt valid;
long mnt rec~pos;
char mod_name(l0];
mnt key code, on off-state;
mnt tmp-int;
unsigned mnt tmp long int;
float tmp~flt;
float elap~tim;
int swt-err-cnt;

rec~pos = ftell(pass6 fp);
if prerecos < 0 Th prevrecyos > rec~pos)
prey_rec~pos =rec~pos;

swt-ent->end tim =0.0;

for (i=0; i<wd-cnt; i++)
{/* Process switch action *

fseek(pass6_fp, rec~pos, SEEK-SET) ;
swt err cnt = 0;
strcpy(mod_name, "Switch -x"l);
mod-name[7) = wd -console no[i];
valid = FALSE;,
while (!valid)
(/* Search for starting switch selection *
read_logo;
if (strlen(cur log_rec.time~str) == 0)
{/* End of file or error *
clearo;
cntr-ln(y mid, "IEOF/error in Logger: switch chk");
getcho;
fseek(pass6_fp, rec~pos, SEEK-SET);
return;

1/* End of file or error *
if (swt_ent->strt Itim != 0.0)
(/* Time constraint search */
tmp~iong_int = atol(cur log rec.time-str);
tmp~flt = tmp long int/30000.0;

98

if ((tmp_fit - swt -ent->strt -tim) > swt Ient->tim- win)
(/* Check if same follow-on switch action */

if (strcmp(prev_swt.name_fid, swt-ent->name-fid) =

0)
(/* Same foullow-on switch action *

fseek(passE~fp, prev~rec~pos, SEEKSET);
valid = TP'JE;
continue;

)/* Same follow-on switch action *
return;

1/* Check if same follow-on switch aciton *
)/* Time constraint search */

if (strcm~p(cur -log rec.mod str, mod_name) != 0
strcmp(cur log rec.key-str, "1101"1) != 0)
continue;

if ((strncmp (swt~ent->nbr-fld, cur log rec. trns~str,
strlen(swt -ent->nbr_fid)) != 0) 11
cur log -rec.trns str[strlen(swt_ent->nbr-fld)] !
continue;

if (swt_ent->strt -tim == 0.0)
{/* Get start time */
tmp~long~int = atol (cur log rec.time str);
swt -ent->strt tim =tmp long int/30000.0;

) * Get start time *
valid = TRUE;

}/* Search for starting switch selection *

swt -ent->end-tim = 0.0;
strcpy(mod_name, "Display x");
mod-name[8) = wd-console_no~iJ;
valid = FALSE;
while (!valid)
{/* Search for switch action completion *

read logo(;
if (strlen(cur log_rec.time str) == 0)
/* End of file or error *
clear Q;
cntr -ln(y mid, "IEOF/error in Logger: switch chk");
getcho;
fseek(pass6_fp, rec~pos, SEEK_SET);
return;

I/* End of file or error *
tmp long mnt = atol (cur -log rec.time_str);
tmp fit = tmp long int/30000.0;
if ((tmp~flt - swt -ent->strt_tim) > swt -ent->tim-win)
{/* Switch action not completed in time *

clearo,;
move(y mid, 10);
printw(1"%s not completed in %f sec. (%d errors)",

swt-ent->name-fid,
swt -ent->tim win, swt_err_cnt);

getchoi;
valid = TRUE;
continue;

99

} /* Switch a.:tion not completed in time */
if (strcmp(curlogrec.modstr, modname) .=' 0 Jlll

"848") ! 0)
strcmp(curlogrec.keystr, .=
continue;

if (strncmp(cur logrec.trns str,
swt ent->alt nm fld, strlen(swtent->altnmfld)) != 0)
continue; - -

if (curlog rec.trnsstr[strlen(swtent->alt nm fld)+l] !=
'2')

(/* Input error */
swt err cnt++;
continue;

) /* Input error */
tmp longint = atol(curlogrec.timestr) ;
swt ent->endtim = tmplongint/30000.O;
elaptim = swt ent->endtim - swtent->strttim;
clear () ;
move(ymid, i0) ;
printw("%s COMPLETED (%f sec) (%d errors)",

swtent->namefld, elaptim,
swt err cnt) ;

tmpf•t =-elaptim - swtent->timwin;
move(ymid+l,15) ;
if (tmpflt <= 0.0)
{ /* Within window */

printw("%f sec. within %f sec. window", tmpflt,
swt ent->tim win);

-) /* WYthin window */

else
(/* Outside window */

printw("%f sec. outside %f sec. window", tmpflt,
swt ent->tim win);

- } /* Outside window */

getch();

/* Save last processed switch action */
prevrecpos = ftell(pass6_fp);
strcpy(prevswt.namefld, swtent->name fld);
strcpy(prev swt.nbrfld, swtent->nbrfld);
strcpy(prevswt.alt nm fld, swt ent->altnmfld);
strcpy(prevswt.add-mtchtxt, swt ent->add mtchtxt);
prevswt.tim win = swt ent->timw•n;
prey swt.strt tim = swt ent->strt tim;
prevswt.endtim = swtent•>endt•m;

if (strcmp(swt ent->altnmfld, "CSL") == 0)
cslchk (i) ;

if (strcmp(swtent->altnmfld, "CMT") == O)
cmtchk() ; _ "WIN") == O)if (strcmp(swt ent->altnmfld,
winchk() ;

if (strcmp(swtent->altnmfld, "WMC") == O)
wmc chk () ;

valid= TRUE;

100

) /* Search for switch action completion */
) /* Process switch action */
return;
j /* Evaluate switch action */

101

void cslchk(int ndx)
(/* Evaluate Assign Console Switch */
extern struct log_rec cur logrec;
extern int wd cnt;
extern char wd_idno(];

if (strlen(curlogrec.trnsstr) == 6)
t /* Assign console TD */

move(y_mid+2, 0);
clrtoeol();
mvinsstr(ymid+2, 15, "Assign Console TD requested");
getch();
return;

) /* Assign console TD */
if (strncmp(&cur logrec.trnsstr[6], "WD", 2) != 0)

/* Error - Station type */
move(y_mid+2, 0);
clrtoeol();
mvinsstr(y mid+2, 15, "Error: (CSL) Station type

specification");
getch();

} /* Error - Station type */
if (curlogrec.trns str[9] != wdid-no[ndx])

/* Error - Position number */
move(y_mid+2, 0);
clrtoeol();
mvinsstr(ymid+2, 15, "Error: (CSL) Position number

specification");
getch();

/* Error - Position number */
return;
1 /* Evaluate Assign Console Switch */

102

void cmt_chk()
(/* Evaluate Commit Switch *
extern struct log rec cur log rec;

extern void left justo;

int i, j;
char *brkt;
int ndx;
char cmt~str[80];
char obj~str[5];
char tgt~str[5];
int tgt~fnd;
char * bink;
char cmt type, cmt intercept;

strcpy(cmt~st~r, cur_log rec.trns_str);
for (i=O; i<strlen(cmt_str); i++)
/* Eliminate "hook" character *
if (cmt~str[i] != \x9f')

continue;
cmt_str[i] = I
brkt =strchr(&cmt~str~i], '}');
ndx =brkt - cmt str;
for (j=i; j<ndx-4; j++)

cmt~str[j]'
cmt-str[ndx]
left_just(&cmt~strlil);

I/* Eliminate "hook" character *

strncpy(obj~str, &cmt~str[67j, 4);
obj~str[4] = \;

for (i=6; i<10; i++)
cmt_str[i] = 1'1

left just(&cmt_strf76]);

ndx = 6;
tgt_fnd = FALSE;
tgt~str[Q]= \;
while (!tgt~fnd)

/* Search for target *
if (strlen(&cmt_str~ndx]) < 4)
(/* No string */
tgt_fnd =TRUE;
continue;

) /* No string *
blnk = strchr(&cmt~str~ndx], I
if (blnk == NULL)
/* End of ttcmt str" *
if (strlen(&cmt-strj~ndx]) == 4)
/* Assume target */
strncpy(tgt~str, &cmt_str(ndx], 4);

103

tgt~str[4J = \;
)/* Assume target *

tgt-fnd = TRUE;
continue;
/* End of "1cmt str" *

if ((bink - &cmt-str~ndx]) < 3)
(/* Not target */

ndx += ((bink -&cmt_str[ndxJ) +1);
continue;

) /* Not target *
strncpy(tgt~str, &cmt~str[ndxj, 4);
tgt~str[4) = \;
tgt-fnd = TRUE;

I/* Search for target *

if (strlen(tgt~str) 1=0)
(/* Shorten string *

for (i=ndx; i<ndx+4; i++)
cmt~str~i] = 1'1

left just(C&cmt str~ndx]) ;
) /* Shorten string *

cmt type = II
cmt -intercept = 'CI;
for (i=6; i<strlen(cmt~str); i++)
(/* Get Commit type & intercept *

if (isspace(cmt_str~iJ))
continue;

if (cmt~str~i] == 111 H cmt~str~i] == D')
cmt type = cmt-str[i];

else
cmt intercept = cmt str[iJ;

) /* Get Commit type & in-tercept *
move (ymrid+2, 15);
clrtoeol();
printwQ'%s committed on %s using", obj~str, tgt;str);
move(y~mid+3, 15);
clrtoeol();
printw("Intercept geometry: %c Mission: %c", cut intercept,
cut -type);
getch o;

return;
)/* Evaluate Commit Switch *

104

void win chk()
(/* Evaluate Init Switch Action *
extern struct log rec cur_log rec;

extern void read logo;

mnt crrlt;
char cor obj [5:1;

crrlt = FALSE;
while (!crrlt)
(/* Find correlation *
read_logo;
if (strcmp(cur log rec.mod~str, tustarget 1") 1- 0
strcmp(curlog~rec.key~str, "845") N= 0)
continue;

strcpy(cor~obj,
&cur -log_rec.trns str[strlen(cur log rec.trns_str) -4));

crrlt = TRUE;
)/* Find correlation *

move(y~mid+2, 15);
printw("%s was initiated", cor~obj);
getcho;

return;
)/* Evaluate Init Switch Action *

105

void wmc~chk()
(/* Evaluate Mode IV Switch Action *
extern struct log rec cur log rec;

char *brkt;
int ndx;
char mode obj[5];

if (strchr(cur -log rec.trns_str, '\x9f') != NULL)
{ /* Find object */

brkt =strchr(cur log rec.trns_str, 1)');
ndx =brkt - cur log_rec.trns-str - 4;
strncpy (mode obj, &cur log rec. trns str (ndx], 4);
mode_obj[4) = \;

) /* Find object *
else

return;

move (ymid+2, 15);
printw(I"Mode IV check on %s", mode_obj);
getcho;
return;
)/* Evaluate Mode IV Switch Action *

106

void multi-switch()
{ /* Evaluate switch sequence variations *
extern struct evnt-skelt evnt-desc;
extern mnt wd cnt;
extern char wdi console -no[];
extern char wd id~no[J;
extern FILE *pass6_fp;
extern struct log rec cur -log rec;
extern long mnt prey evnt-strt rec;*

mnt i, j, k;
long mnt rec~pos;
char mod_name~lO];
mnt valid;
mnt strt ent;
unsigned int tmp long int;
float elap_tim;

rec~pos = ftell(pass6_fp);
if (prev -evnt-strt-rec < 0 11prev-evnt-strt-rec > rec~pos)

prev-evnt-strt-rec = rec~pos;
else

rec-pos = prey-evnt-strt-rec;
for (i=0; i<wd cnt; i++)
{/* Process switch sequences *

fseek(pass6_fp, rec~pos, SEEKSET);
strcny(mod_name, "Display x");*
mod-name[8] = wd -console_no[iJ;
valid = FALSE;
while (!valid)
/* Find start *
read logoj;
if (strcmp(cur log rec.mod_str, mod name) !0

strcmp(cur log rec.key-str, evnt-'desc.evnt-label.nbr-fld)
0- 01

strncmp(cur log rec.trns_str,
evnt desc.evnt label.add mtch txt,

strlen(evnt~desc.evnt-label.add-mtch-txt)) != 0)
continue;

tmp long -mt = atol (cur log rec.time_str);
evnt-desc.evnt -label.strt-tim = tmp long int/30000.O;
rec~pos = ftell(pass6_fp);*
prey_evnt -strt-rec = recypos;
valid = TRUE;

)/* Find start *

strt-ent =0;
for (j=0; j<evnt -desc.no-var; j++)
/* Process a switch sequence */
fseek(pass6_fp, rec~pos, SEEKSET);
for (k=strt-ent; k<strt-ent+evnt-desc.step~per-var(j]; k++)
/* Variation j */
evnt-desc.variant[k].strt-tim=

107

evnt-desc.evnt-label.strt-tim;
evnt -desc.variant~k].tim-win=

evnt-desc.evnt-label.tim-win;
switch -chk(&evnt-desc.variant[k));
if (evnt -desc.variant[k] .end tim == 0.0)
{/* Switch start not found *

break;
I/* Switch start not found *

evnt Idesc.evnt-label.end tim=
evnt-desc.variant(k) .end tim;

) /* Variation j *7
if (evnt_desc.evnt -label.end-tim ==0.0)

{/* Start not found */
strt-ent += evnt-desc.step~per-var~j];
continue;

/* Start not found *
elap~tim = evnt -desc.evnt-label.end tim-

evnt-desc.evnt -label.strt-tim;
clearo;
move (y~mid,10);
printw("1%s Completed (%f sec)",

evnt-desc.evnt -label.name_fid, elap~tim);
getcho;
break;
/* Process a switch sequence *

if (evnt -desc.evnt-label.end tim == 0.0)
/* Event not found *
clear 9;
move(y~mid,lO);
printw("1%s Not Found", evnt-desc.evnt-label.name-fid);
getcho;

4/* Event not found *
/* Process switch sequences *

return;
/* Evaluate switch sequence variations *

108

NAME: ITS.C

#include <curses.h>
#include <string.h>

#include "itsdef.h"

main()
(/* Intelligent Tutor */
extern int xmid;
extern int yjmid;
extern char instrpath[];
extern instruct_blk-open;
extern char stdtjpath[];
extern int instr review;
extern int usertype;
extern int first qujs;

int pick;
int x coord, y-coord;
int rtn state;
char buf[81];

Initialize window for Intelligent Tutor interface
VT100: no action is required to establish a window.
IRIS: "wsh -n 'ITS Menu' -p2,2 -s113,52" is used to establish a

full screen window.

initscr(;

Gain control of keyboard

cbreak(); /* Pass all keystroke to program */
noecho(); /* Suppress character echoing */
nonl(); /* Suppress carriage return recognition */
keypad(stdscr,TRUE); ,'* Access user's keypad */

Instructor/Student function selection

x mid - COLS/2 - 1;
ymid = LINES/2 - 1;
instrpath(O] ='\of;
instruct blk open = FALSE;
stdt path[O] - #\Of;
instr review - -1;
first ques - -1;

cntr ln(ymid - 2, "Use cursor to select:");

109

attrset(A_STANDOUT);
mvaddstr(y_mid, xmid - 10, "Instructor");
attrset(0);
mvaddstr(ymid, x mid + 3, "Student");
cntr in(y mid + 27 "then press 'Enter"');
move(y mid, x_mid - 10);

******* ***** ** ** ****** *** *** **** *** **************************

Move and highlight appropriate field according to cursor use, then
retrive desired selection.

for (;;)
/* Wait for Instructor/Student selection */

x coord = 0;
y-coord = 0;
pick = getch(;
switch (pick)
{ /* Examine keyboard input */
case KEYLEFT:

attrset(ASTANDOUT);
mvaddstr(ymid, xmid - 10, "Instructor");
attrset(0);
mvaddstr(ymid, xmid + 3, "Student");
move(ymid, xmid - 10);
break;

case KEY RIGHT:
attrset(0),:
mvaddstr(ymid, x mid - 10, "Instructor");
attrset(ASTANDOUT);
mvaddstr(ymid, x_mid + 3, "Student");
attrset (0)
move(ymid, xmid + 3);
break;

case '\r':
case 0x157:

getyx(stdscr,y coord,x_coord);
break;

default:
break;

) /* Examine keyboard input */
if (x_coord != 0)

break;
) /* Wait for Instructor/Student selection */

if (x_coord == x mid - 10)
/* Instructor */
getstr(buf);
if (strcmp("password",buf) != 0)
{ /* Feeble attempt at security */

endwin(;

"110

exit (0) ;
) /* Feeble attempt at security */
user type = Instructor;
rtn state = 1;
while (rtn state != 0)
(/* Continue to call */

instructor(&rtnstate);
if (instr review >= 0)
{ /* Review an instruction block */

student(&rtnstate);
instr review = -1;

) /* Review an instruction block */
) /* Continue to call */

I /* Instructor */

else
/* Student */
user type = Student;
student(&rtnstate);
if (rtn state == 0)

itsstop();
clear (;
refresho);

) /* Student */

endwin(;
exit (O) ;

/* Intelligent Tutor */

111

NAME: ITSDEF.H

Common variables

#define Instructor 157
#define Student 208
#define instr_path-def "/usr/people/neal/instructor"
#define stdt_path-def "/usr/people/neal/student"

int user type; /* Indicator of user type (Instructor/Student) */
int xmid; /* x coordinate of screen center */
int ymid; /* y coordinate of screen center */

Variables for Instructor

char instrpath[80]; /* Directory string to Instructor files */
int instructblk open; /* Indicator that file open and in memory */
int instr blk cnt; /* Count of exiting instruction blocks */
int instr-review; /* If >= 0 then curricula review occuring */

/* & value is entry index into instruct.blk */

FILE *lesson fp; /* Declare file pointer for lesson block */

Structure for a block of instruction
Each occurrence of "curricula" repesents a block of instruction

title - brief description
no_qa_sets = number of Q&A sets in this instructional block
qa sets = each occurrence is a file containing one or more

related Q&As.

struct filnms
(/* 10 character fields */

char names[10]; /* Name of a lesson file */
);/* 10 character fields */

struct curricula
(/* Lesson blk record */

char title[80]; /* Brief description of instruction block */
int no qasets; /* Number of lessons in instruction block */
struct filnms qasets[50]; /* Names of lessons in instruction block */

);/* Lesson blk record */

struct curricula instr blks(50];

Variables for Student

char stdtpath[80]; /* Directory string to Student files */
FILE *student-fp; /* Declare file pointer for student profile */
FILE * present-fp; /* Declare file pointer for lesson presentation */

112

int stdt accscore; /* Student's accumulated score */
int first ques; /* Index of 1st question in a lesson */

Structure for a student's data base

struct level
int max(val; /* Maximum value accumulation

int min val; /* Minimum value accumulation */
int actval; /* Actual value accumulation */
int spare val; /* Spare */1;

struct stdt db
(/* Student's DB */

char ssan[9]; /* SSAN *1
char name(26]; /* Name */
int instr blkndx; /* Index into instr blks */
int lessonndx; /* Index of lesson in instr_blks entry */
int textblkndx; /* Numeric id of text to be presented */
int knowphase_ndx; /* Knowledge level/phase index */
struct level know_phase[5];

);/* Student's DB */

struct stdtdb pupil;

struct ans val entry
(/* Entry for multiple choice */

char ans_desig; /* Designation of answer, e.g. a,b,c...,or 1,2,3,...*/
int ans val; /* Value of the answer */

);/* Entry for multiple choice */

struct lessonfile_entry
{ /* Entry in lesson file map */

int num id; /* Numeric identifier of text */
int text_type; /* Type of text */
long int file_pos; /* Offset from start of file */
int prev num id; /* Numeric id of previous text */
int know_level[5]; /* The follow-on text for each knowledge level */

/* and correspond to the numid of the text. */
int mc anscnt; /* Number of entries in mcans */
struct ansvalentry mcans(8);
char stdt-ans;

);/* Entry in lesson file map */

struct lesson fileentry lessonmap(200];

113

NAME: ITSRUTN.CWP

#include <curses.h> /* <stdio.h>, <termio.h>, <unctrl.h> *
#include <unistd.h
#include <errno.h>
include <string.h

include "itsdef.h

114

void cntr In(int y-coord, char *txt-str)
(* cntr:-in */

extern int x -mid;
extern int yjmid;

int i, x-offset;

x-offset = 0;
for (i=0; i<=strlen(txt~str)-1; i++)
(/* Search for printable characters *

if (isprint(*(txt~str-fi)))
x of fset4-+;

} /* Search for printable characters *
x-offset /= 2;
mvaddstr(y-coord, x-mid - x-offset, txt_str);
return;

/* cntr-in *

115

void get_pathstr(char * directory, char * pathstr)
{ /* Get path to specified directory h/

extern int x mid;
extern int ymid;

int reply;
char buf[80];

if (strlen(pathstr) != 0)
(/* Directory path already specified */

return;
) /* Directory path already specified */

strcpy(buf, "Enter path to \"");
strcat(buf, directory);
strcat(buf, "\" file directory");
clearo;
cntrln(y_mid-1, buf);
mvaddstr(ymid, xmid-(strlen(buf)/2), "->");
move(ymid, xmid-(strlen(buf)/2)+3);

while (TRUE)
(/* Get directory path */

echo (;
clrtoeol();
getstr (pathstr);
noecho);
if (strlen(pathstr) == 0)
(/* Use default path */

move(y_mid, x mid-(strlen(buf)/2)+3);
if (strcmp(directory, "Instructor") == 0)
(/* Use instructor path default */

addstr(instrpathdef);
strcpy(pathstr, instr_pathdef);

) /* Use instructor path default */
else
{ /* Use student path default */

addstr (stdtpathdef);
strcpy(pathstr, stdtpathdef);

) /* Use student path default */
refresh);

) /* Use default path */
cntr_ln(ymid+2, "Is path correct? [Y/N/Q]: ")
reply = tolower(getch();
if (reply == 'y')

break;
if (reply == 'q')
(/* Terminate process */

pathstr = '\0'; / Set NULL string */
break;

) /* Terminate process */
move (ymid+2, 0);
clrtoeol();

116

refresh (;
move(y mid, xmid-(strlen(buf)/2)+3);

/* Get directory path */

clear 0;
refresh 0;
return;

) /* Get path to specified directory */

117

void file str(char *path, char *filename, char *fullstr)
(/* Form full filestring */
int trim;
char *blankyptr;

strcpy(fullstr, path);
strcat(fullstr, "/");
strcat(fullstr, filename);
trim = TRUE;
while (trim)
(/* Trim of trailing blanks */

blankptr = strrchr(fullstr, '
if (blankptr == NULL)

/* Blanks trimmed off */
trim = FALSE;
continue;

) /* Blanks trimmed off */
fullstr(blank_ptr-fullstr] = NULL;

) /* Trim of trailing blanks */
return;

) /* Form full filestring */

118

void itsstop()
(/* Halt ITS unconditionally */

endwin();
exit(o);

) /* Halt ITS unconditionally ./

119

int chk file(char *path, char *filename)
(/* Check accessibility */
extern int xmid;
extern int ymid;
extern int user-type;

int reply;
int status;
char fullstr[80], txtstr[80];

file str(path, filename, fullstr);
status - access(fullstr, FOK);
if (status - 0) return(O);
clear (;
if (errno =- ENOTDIR)

printw("Path specification error in \"%s\"", path);
else if (errno == ENOENT)
(/* File does not exist */

if (user type = Student)
return(l);

clear);
sprintf(txtstr, "File \"%s\" does not exist", fullstr);
cntr in(ymid-l, txtstr);
cntr ln(yjmid, "Continue [Y/N]: ");
reply = tolower(getch();
if (reply - 'y')
(/* Indicate condition */

clear(;
refresh(;
return(l);

) /* Indicate condition */
) /* File does not exits */
else

printw("File access denied w/ errno = %d", errno);
refresh 0;
its-stop();

) /* Check accessibility */

120

void lesson-bik-io(char io-type, int ndx)
(/* Provide I/0 for lesson block file *
extern, FILE *lesson-fp;

char shrt-str[81];
char rec-str(635J;
int offset;
int 1;

if (tolower(io type) -= 'w')
(/* Write a record of lesson block *

sprintf(rec~str, "%s ,%02d", instr -blks(ndx] .title,
instr-blks(ndx) .no~qa sets);

for (i-0; i<50; i++)
{ 1* Format qa file names *

strncat(re-c -str, instr -blks(ndxj .qa sets~i) .names, 10);
) /* Format qa file names *
strcat(rec_str,"\n");
fseek(lesson -fp, 634*ndx, SEEKSET);
fputs(rec -str, lesson -fp);

) * Write a record of lesson block *

else if (tolower(io type) == 'r')
(/* Read a record of lesson block *

fseek(lesson -fp, 634*ndx, SEEKSET);
fgets(rec_str, 634, lesson-fp);-

strncpy(iristr blks(ndx] .title, rec-str, 80);
offset = 81;
sscanf (&rec_str(offset], "1%2d", &instr-blks~ndx] .no-qa sets);
offset += 3;
for (i=0; i<50; i++)
(/* Unblock qa file names *

strncpy(instr -blks~ndx) .qa_sets~i) .names, &rec-str~offset], 10);
offset += 11;

) 1* Unblock qa file names *
)/* Read a record of lesson block *

else
(/* Error in 1/0 specification *

clearoi;
addstr('llesson blk io error: 1/0 type specification");
refresho;
its -stop();

) /* Error in 1/0 specification *
return;

)/* Provide I/0 for lesson block file *

121

void workmsg()
(/* Present blinking 'working...' message *1

clearo;
attrset (A_BLINK);
cntrln(y.mid, "Working... t ');
attrset(O);
refresh);
return;

) /* Present blinking 'working...' message */

122

void getstr echo(char *str)
(/* Enable character echoing with getstr function */

echo();
getstr(str);
noecho(;

) /* Enable character echoing with getstr function */

123

void strgblnk_pad(char *strng, int str_len)
(/* Pad a left justified string with blanks */
int i;

if (strlen(strng) > str_len)
(

cntr_ln(22, "String too long");
cntr_ln(23, "Press any key to continue");
getch();
return;

if (strlen(strng) < str_len)
(/* Pad with blanks */

for (i=strlen(strng); i<str_len; i++)
strng(i] = ' ';

) /* Pad with blanks */
return;

) /* Pad a left justified string with blanks */

124

NAME: ITSRUTN.C

#include <curses.h> /* <stdio.h>, <termio.h>, <unctrl.h> *
include <unistd.hi>
#include <errno.h>
#include <string.h>

#include "itsdef.h"

125

void cntr -in(int y~coord, char *txt-str)
(* cntr_in */

extern int x mid;
extern int y_ýmid;

int i, x-offset;

x-offset = 0;
for (i=O; i<=strlen(txt~str)-l; i++)
(/* Search for printable characters *

if (isprint(*(txt~str+i)))
x of fset++;

) /* Search for printable characters *
x-offset /= 2;
mvaddstr(y~coord, x_mid - x-offset, txt_str);
return;

/* cntr-in *

126

void get_path str(char * directory, char * path str)
(/* Get path to specified directory */
extern int xmid;
extern int y-mid;

int reply;
char buf[80];

if (strlen(pathstr) != 0)
(/* Directory path already specified *1

return;
) /* Directory path already specified */

strcpy(buf, "Enter path to \"");
strcat(buf, directory);
strcat(buf, "\" file directory");
clear(;
cntr-ln(ymid-l, buf);
mvaddstr(y mid, x mid-(strlen(buf)/2), If->@$);
move(ymid, x-mid-(strlen(buf)/2)+3);

while (TRUE)
(/* Get directory path */

echo(;clrtoeol () ;
getstr (pathstr);
noecho);
if (strlen(pathstr) == 0)
(/* Use default path */

move(ymid, x mid-(strlen(buf)/2)+3);
if (strcmp(directory, "Instructor") == 0)
{ /* Use instructor path default */

addstr (instrpath-def);
strcpy(path_str, instrpath def);

) /* Use instructor path default */
else
(/* Use student path default */

addstr (stdt_path def);
strcpy (path_str, stdt path def);

) /* Use student path default */
refresh();

) /* Use default path */
cntr-ln(ymid+2, "Is path correct? [Y/N/Q]: ");
reply = tolower(getch();
if (reply == 'y')

break;
if (reply == ,q')
(/* Terminate process */

pathstr = '\0'; / Set NULL string */
break;

) /* Terminate process */
move(y-mid+2, 0);
clrtoeol();

127

refresho;
move(y_mid, x mid-(strlen(buf)/2)+3);

) /* Get directory path */

clearo;
refresh (;
return;

} /* Get path to specified directory */

128

void filestr(char *path, char *filename, char *fullstr)
(/* Form full filestring */
int trim;
char *blank_ptr;

strcpy(fullstr, path);
strcat(fullstr,"/");
strcat(fullstr,filename);
trim = TRUE;
while (trim)
(/* Trim of trailing blanks */

blank_ptr = strrchr(fullstr, '

if (blank ptr == NULL)
(/* Blanks trimmed off */

trim = FALSE;
continue;

) /* Blanks trimmed off */
fullstr[blank_ptr-fullstr] = NULL;

) /* Trim of trailing blanks */
return;

) /* Form full filestring */

129

void itsstop()
{ /* Halt ITS unconditionally */

endwin(;
exit(o);

} /* Halt ITS unconditionally *1

130

int chkfile(char *path, char *filename)
(/* Check accessibility */
extern int xmid;
extern int ymid;
extern int user_type;

int reply;
int status;
char fullstr[80], txtstr[80];

file_str(path, filename, fullstr);
status = access(fullstr, FOK);
if (status == 0) return(0);
clear(;
if (errno == ENOTDIR)

printw("Path specification error in \"%s\"", path);
else if (errno == ENOENT)
(/* File does not exist */

if (usertype == Student)
return(l);

clear);
sprintf(txtstr, "File \"%s\" does not exist", fullstr);
cntr ln(ymid-l, txtstr);
cntr ln(ymid, "Continue [Y/N]: ");
reply = tolower(getch();
if (reply == 'y')
{ /* Indicate condition */

clear);
refresh(;
return(l);

) /* Indicate condition */
) /* File does not exits */
else

printw("File access denied w/ errno = %d", errno);
refresh(;
itsstop();

/* Check accessibility */

131

void lesson-blk io(char io_type, int ndx)
(/* Provide I/O for lesson block file */
extern FILE *lesson_fp;

char shrt_str[81];
char recstr(635];
int offset;
int i;

if (tolower(iotype) - 'w')
(/* Write a record of lesson block */

sprintf(rec_str, "%s0%O2d", instrblks[ndx).title,
instr blks[ndx].noqasets);

for (i=0; i<50; i++)
(/* Format qa file names */

strcat(rec str, "i");
strncat(rec_str, instrblks[ndx].qa_sets[i].names, 10);

) /* Format qa file names */
strcat(rec_str,"\n");
fseek(lesson_fp, 634*ndx, SEEKSET);
fputs(recstr, lessonfp);

) /* Write a record of lesson block *Q

else if (tolower(iotype) == 'r')
(/* Read a record of lesson block *1

fseek(lesson_fp, 634*ndx, SEEKSET);
fgets(rec_str, 634, lesson_fp);

strncpy(instr_blks(ndx].title, recstr, 80);
offset = 81;
sscanf(&recstr[offset], "%2d", &instr blks[ndx].noqasets);
offset += 3;
for (i=O; 0<50; i++)
(/* Unblock qa file names */

strncpy(instrblks[ndx].qa_sets[i].names, &rec str[offset), 10);
offset += 11;

) /* Unblock qa file names */
/* Read a record of lesson block */

else
(/* Error in I/O specification */

clear(;
addstr("lesson_blk io error: I/O type specification");
refresh();
its stop ();

) /* Error in I/O specification */
return;

) /* Provide I/O for lesson block file */

132

void work msg()
(/* Present blinking 'working...' message */

clear(;
attrset (ABLINK);
cntr ln(ymid, "Working...");
attrset(O);
refresh);
return;

) /* Present blinking 'working...' message */

133

void getstr echo(char *str)
(/* Enable character echoing with getstr function */

echo();
getstr(str);
noecho);

} /* Enable character echoing with getstr function */

134

void strgblnk_pad(char *strng, int str_len)
(/* Pad a left justified string with blanks */
int i;

if (strlen(strng) > str_len)
(

cntrln(22, "String too long");
cntr ln(23, "Press any key to continue");
getcho;
return;

if (strlen(strng) < str_len)
(/* Pad with blanks */

for (i=strlen(strng); i<str_len; i++)
strng(i] = ' '-

) /* Pad with blanks */
return;

1 /* Pad a left justified string with blanks */

135

NAME: INSTRUCT.C

#include <curses.h>
#include <string.h>
#include "itsdef.h"

void instructor(int *rtnstate)
/* Instructor */
extern int xmid;
extern int ymid;
extern struct curricula instrblks[];
extern FILE *lesson fp;
extern char instrpath[];
extern instructblk open;
extern instr blkcnt;
extern instrreview;

int pick, valid, select, reply, replyl;
int filestate;
int i,j,k;
int xpos, ypos;

char filestr[80];
char any_str[81];

Present Instructor's Menu

clearo;
cntrln(ymid - 4, "Enter index of desired option:\n");
mvaddstr(ymid - 2, xmid - 13, "1. Add an instruction block");
mvaddstr(yjmid - 1, x-mid - 13, "2. Delete an instruction block");
mvaddstr(ymid, x mid - 13, "3. Modify an instruction block");
mvaddstr(ymid + T, x mid - 13, "4. Review an instruction block");
mvaddstr(ymid + 2, x-mid - 13, "5. Review a student's performance");
mvaddstr(ymid + 3, x-mid - 13, "6. Adjust a student's instruction");
cntr ln(y mid + 5, "Selection:");
move(y.mid + 5, x mid + 6);

Get selection

valid = FALSE;
select - 0;
while (Ivalid)
(/* Examine user's selection */

pick - getcho;

if (pick -- '\r' U pick == 0x157)
{/* Possible termination of input or process *1

if (select != 0)

136

(/* Terminate selection process */
valid = TRUE;

) /* Terminate selection process */
else
(/* Check if process terminating */

cntrln(ymid+7, "Terminate ITS [YIN]:");
move(ymid+7, xmid+12);
pick = tolower(getch();
if (pick == 'y')
(/* Terminate */

clear);
refresh(;
*rtn state = 0;
return;

I /* Terminate */
else
(/* Continue selection process */

move(y_mid+5, xmid+6);
clrtobot(;
select = 0;

) /* Continue selection process */
) /* Check if process terminating */

) /* Possible termination of input or process */

else if ((isalpha(pick)) H1 (pick <= 0x30 H pick > 0x36))
(/* Invalid response */

mvaddch(ymid+5, x mid+7,pick);
cntrln(ymid+7, "Invalid response");
refresh(;
select = 0;

) /* Invalid response */

else
(/* Valid reponse */

valid = TRUE;
select = pick;
mvaddch(ymid+5, xmid+7, pick);
*rtn state = 1;

) /* Valid response */
I /* Examine user's selection */

if ((select <= 0x34) && (!instructblk open))
(/* Get desired path */

getpathstr("Instructor", instrpath);
if (strlen(instrpath) == 0)
(/* No path specified */

rtnstate = 0; / Terminate Instructor */
return;

) /* No path specified */

file state = chkfile(instr_path, "instruct.blk");
file-str(instrpath, "instruct.blk", filestr);
if (filestate == 0)

lessonfp = fopen(filestr, "r+"); /* Open existing file */

137

else
lessonfp = fopen(filestr, "w+"); /* Open new file */

if (lesson fp == NULL)
(/* Error */

clearo;
printw("Error opening \"%s\"", filestr);
refresh();its_stop () ;

) /* Error */

if (file state != 0)
(/* Initialize new file */

workmsg);
for (i=O; i<=49; i++)
{ /* Initialize instruction directory and file */

lesson_blk recinit(i);
lesson blk-io('W', i);

) /* Initialize instruction directory and file */
} /* Initialize new file */

) /* Get desired path */

if (!instruct_blk_open)
(/* File already in memory */

work msgo;
instr blk cnt = 0;
for (1=0; i<50; i++)
{ /* Find available lesson blocks */

lesson blkio('R', i);
if (instr_blks[i).noqasets != 0)

instr blk cnt++;
) /* Find available lesson blocks */
instruct blk open = TRUE;

) /* File already in memory */

/* Check if list of instruction blocks is desired */
clear ();
if (instrblkcnt == 0)
{ /* No list available */

cntr ln(ymid+l, "No instruction blocks exist");
cntr-ln(ymid+2, "Press any key to continue");
pick = getch(;
if (select != '1') return;

) /* No list available */

/* Process chosen option */
if (select == '1')
(/* Adding an instruction block */

pick = lessonlist(instr_blk_cnt);
if (instrblkcnt == 0)

pick = 0;
else

pick = instr_blk_cnt;

138

/* Get a title *
clearo;
mvaddstr(y_ mid-i, 0, "Enter title (max So8 chars):");
move (y_ýmid+l, 0) ;
getstr echo (any str);

if (strlen(any-str) == 0)
(/* Return to main menu *

*rtn-state = 1;
return;

)/* Return to main menu *

instr-bik-cnt++;
strg~blnk~pad (any str, 80);
strncpy(instr-blks (pick] .title, any str, 80);

/* Get list of associated lessons *
clearo;
cntr -in~y_ mid-i, "Any lessons in this instruction block? (YIN]:");
reply = tolower(getcho);

if (reply == In')
(/* Create a dummy entry *

strncpy(instr blks [pick] .qa_sets(instr-blks(pickJ .no_qa sets] .names,
"dummy", 10);

strg~blnk~pad(
instr-b ks (pick] .qa sets (instr-biks (pick) .no qa sets] .names,

10)
instr -blks(pick] .no~qa~sets++;
lesson -bik-io('W', pick);
return;

)/* Create a dummy entry *

instr -bik -vis(pick);
valid =TRUE;

select =0;

while (valid)
{/* Get lesson filenames *
make~pos(select, &yypos, &x~pos);
mvaddstr(23, 0, "Enter lesson name (max =10 char):");
move(23, 34);
getstr_echo(any~str);
if (strlen(any~str) ==0) continue;
if (strlen(any~str) ==1 && (any str[0] == q' any str[0] =

(/* Exiting *
lesson bik io('W', pick);
valid =; FALSE;
break;

) /* Exiting *
if (strlen(any~str) > 10)
/* String too long */

139

move (23, 50) ;
addstr("'Too long");
getcho;
move (23,34) ;
clrtoeol();
refresh(;
continue;

} /* String too long */
mvaddstr(ypos, x_pos, any-str);
refresh();
strgblnk pad(anystr, 10);
strncpy(instr blks[pick] .qa_sets[select].names, any-str, 10);
instr blks[pick].noqa_sets++;
select++;
move (23, 34)
clrtoeol();
refresh(;

) /* Get lesson filenames */

} /* Adding an instruction block */

else if (select == '2')
(/* Deleting an instruction block */

pick = lesson list(instr-blkcnt);
instr blk vis(pick);
mvaddstr(23, 0, "Do you want to delete lessons? [YIN]:");
reply = tolower(getch));
if (reply == 'y')
(/* Determine complete or selective deletion */

move (23,0);
clrtoeol();
addstr("Delete (a)ll or (s)ome of these lessons?");
reply = tolower(getch));

if (reply == 'a')
{ /* Delete all lessons */

for (i=0; i<instr blks(pick].no-qasets; i++)
/* Get lesson file */
strcpy(anystr, instr path);
strcat(anystr, "/");
strncat(anystr, instrblks[pick] .qasets[i] .names, 10);
anystr[strlen(instrpath)+ll] = '\0';
remove(any str);
instrblks[pick].qa_sets~i].names[O) = '\0';
strgblnkpad(instr_blks[pick].qasets[i].names, 10);

) /* Get lesson file */
/* Delete all lessons */

if (reply == 's' 11 reply == 'S')
(/* Delete selected lessons */

valid - TRUE;
while (valid)

/* Delete selection */
move(23, 0);

140

cirtoeolO);
mvaddstr(23, 0, "Enter index of lesson to be deleted:");
getstr -echo (any str);
move(23, 37);
clrtoeol();
refresho;
if (any str(0] - 'qI 1, any~str(0] -''

(/* Exiting */
valid - FALSE;
continue;

) /* Exiting *
sscanf (any-str, "Wd", &reply);
strcpy (fiiestr, instr~path);
strcat(filestr, 0/0);
strncat (filestr, instr-bika[pick) .qa _sets (reply-i) .names,

filestr[strlen(instr~path)+iiJ -=\1
remove(filestr);
for (i-reply-i; i<-instr-blks~pick].noqa~sets-2; i++)
(/* Compress lesson list */

strncpy (instr blks (pick] .qaý_setaf i] .names,
instr-blks(pickJ .qa ~sets[i-s-iJ.names, 10);

) /* Compress lesson list *
instr -blks~pick].

qa sets~instr blks~pick].noý_qa_sets-l].names(O] - \;
strgbElnkypad (in~str blks [pick].

qa~sets~instr -blkis~pick] .no-qaý_sets-i] .names, 10);
instr blk cnt--;
instr-blk~vis(pick);

)/* Delete -selection */
)/* Delete selected lessons *

) * Determine complete or selective deletion *
for (i-pick; i<instr-blk cnt-i; i++)
(/* Delete selected inst-ruction block entry *

strncpy(instr-blks~i] .title, instr-blks[i+i] .titie, 80);
instr-blks (i] .no qa~sets - instr-blks[1+l] . noqak_sets;
for (J-0; J<50; J4.+)

strncpy(instr-blks[i] .qa-sets~j] .names,
instr-blks~i+i].qa~sets~j].names, 10);

) /* Delete selected instruction block entry *
lesson blk rec init (instr-blk-cnt-i);
for (iZo; i<instr_blk_cnt; i++)

lesson blk io(IWI, i);
instr~blk_cnt7--;

)/* Deleting an instruction block *

elso if (select - '31)
(/* Modifying an instruction block *
pick - lesson -list(instr-blk-cnt);
valid - TRUE;
while (valid)
(* Modify selected fields *

instr-blk-vis(pick);

141

mvaddstr(23, 0, "Modifying (t)itle or (l)esson:"l);
reply =tolower(getchofl;

if (reply =='q')
(/* Modification completed *
valid = FALSE;

)/* Modification completed *

else if (reply == It' reply -'IV)
(/* Modifying title *

mvaddstr(22, 0, "Enter title:");
clrtoboto;
move (23, 0) ;
getstr echo (any str);
strg~blnkypad(any~str, 80);
strncpy(instr~blks(pick] .title, any str, 80);
lesson bik io('W', pick);

) /* Modifying title */

else if (reply == Ill H reply == LI)
(/* Modifying a lesson name *

move(22, 0);
clrtoboto;
mvaddstr(22, 0, "Enter index of lesson to be changed: "1);
getstr echo (any str);
sscanf(any~str, "I%d"I, &reply);
reply--;
mvaddstr(23, 0, "Change: (d)elete, (m)odify, (i)nsert:"1);
replyl = tolower(getcho);

if (replyl == 'dl)
/* Delete lesson from list *
for (i=reply; i<instr -blks~pick].no -qa_sets-i; i++)

strncpy(instr -blks[pick] .qa sets~i] .names,
instr~blks[pick] .qa sets[i+l) .names, 10);

instr -blks~pick] .qa sets(instr-blks(pickj .no~qa sets-i).
names[0] = \;

strg~blnk~pad(instr_blks(pick].
qa~sets[instr~blks~pick] .no -qa sets-i] .names, 10);

instr -blks~pick) .no qa sets--;
lesson -blk~io('W', pick);

/* Delete lesson from list *

else if (replyl == 'in' replyl == 'M')
(/* Modify lesson name *

move(23, 0);

addstr("Enter lesson name: ti);

getstr_echo(any~str);
strg~blnkypad(any_str, 10);
strncpy(instr-blks(pickj.qa_sets(reply).riames, any_str, 10);
lesson-blk~io('W', pick);

) /* Modify lesson name */

142

else if (replyl == 'i' 11 replyl == 'I')
(/* Insert a lesson name */

for (i=instrblks[pick).no_qasets-l; i>=reply; i--)
strncpy(instrblks(pick].qa_sets[i+l].names,

instrblks[pick].qasetsi)].names, 10);
move(23,0);
clrtoeol();
addstr("Enter lesson name: ");

getstr_echo(anystr);
strg blnkjpad(anystr, 10);
strncpy(instrblks[pick].qasets[reply].names, anystr, 10);
instrblks[pick].noqasets++;
lesson blk io('W', pick);

) /* Insert a lesson name */

else
(/* No change */

continue;
) /* No change */

) /* Modifying a lesson name */

else
(/* No change */

continue;
) /* No change */

) /* Modify selected fields */

) /* Modifying an instruction block */

else if (select == '4')
(/* Review an instuction block */

instrreview = lessonlist(instr blk-cnt);
*rtn state = 1;
return;

) /* Review an instuction block */

else
(/* Option not yet available */

cntrln(ymid, "Option is not available");
refresh();
*rtn state = 1;

) /* Option not yet available */

return;

) /* Instructor */

143

NAME: INSTRRU. C

include <curses.h>
#include <string.h>

#include "itudef. hm

144

void lesson blk recinit(int ndx)
(/* Initialize a record in lesson block file */
nt i,j;

for (i-0; i<80; i++) /* Blank fill title area */
instr blks[ndx].title[i] - ' 1;

instrblks(ndx].noqa_sets - 0; /* Zero number of Q&A sets */

for (i-0; i<50; i++)
(/* Blank fill each Q&A set name */

for (j=0; j<10; j++)
instr blks[ndx].qasets[i].names[j] - '

) /* Blank fill each Q&A set name */
return;

) /* Initialize a record in lesson block file */

145

int lesson list(maxcnt)

(/* Display lesson block titles */

/* Routine assumes that the area consisting of lines 2-22 is clear and will

return the values of:
(value) = entry number of selection

-1 = display terminated without selection*/
extern int x mid;
extern int instr_blk_cnt;

int loopcntl;
int beg-ent, endent;
int dsp_ln, curin;
int cur ent;
int i;
int reply;

char str-buf[81];

clearo;
mvprintw(O, xmid-21, "The following %d instruction blocks exist:",

instr blk-cnt);
mvprintw(23, 0,

"Use cursor to position, 'Enter' to select, or 'Q' to quit");

loopcntl = TRUE;
begent = 0;
if (max cnt < 9)

end ent - max cnt-i;
else

end ent = 9;
cur-In = 2;

while (loopcntl)
(/* Prepare and display list */

dsp-ln = 2;
for (i=beg-ent; i<=endent; i++)
(/* Present list */

strncpy(str buf, instrblks[i].title, 80);
str buf(80] =\0';
if (curIn == dsp_ln) attrset(AREVERSE);
mvaddstr(dspin, 0, str buf);
if (cur_in -= dspin) attrset(O);
dspln++;

) /* Present list */
move(23,60);

reply - getch(;
cur ent = beg ent + cur-in - 2;
switch (reply)
(/* Examine user's input */

146

case KEY UP:
if (cur ent == 0) break;
cur in--;
cur ent--;
if (curent < begent)
(/* Scoll display down *1

cur ln++;
begent--;
end-ent--;

) /* Scoll display down */
break;

case KEY DOWN:
if (cur ent == (max_cnt-1)) break;
cur ln++;
cur ent++;
if (cur ent > end ent)
(/* Scroll display up */

cur_in--;
beg-ent++;
end ent++;

) /* Scroll display up */
break;

case '\r':
case 0x157:

loop-cntl - FALSE;
break;

case 'q':
case 'Q':

loopcntl = FALSE;
cur ent = -1;
break;

default:
break;

) /* Examine user's input *1
/* Prepare and display list */

return cur ent;

1 /* Display lesson block titles */

147

void lesson-bik-chk()
(/* Display a selected record from lesson.blk *
int view;
int ent-no;
int i,j;
int reply;

char txt-str[81J;

struct.

char namesf 11);
lessons(5J;

view = TRUE;
while (view)
{/* View an instruction block record *

clearo;
addstr("Enter index of entry to be viewed:)
echoo;
getstr (txt_str);
noechoo;
sscanf(txt_str, "I%d"I, &ent_no);
if (ent 'no ==-2)

/* Exft *
its_stop();

)/* Exit */
if (ent -no < 0)
(/* End viewing of records *

view = FALSE;
break;

) /* End viewing of records *

cleary,;
strncpy(txt_str, instr-blks~ent no] .title,80);
txt-str[80J = \;
printw("ITitle:\n%s\nI", txt -str);
printw("I Q&A set count = %2d\n", instr blks(ent no) .no~qa sets);

for (i=0; i<l0; i++)
{/* Display lesson files *

for (j=O; j<5; J++)

strncpy (lessons (j J names,
instr blks(ent no] .qa sets~i+(j*lO)].names,1O);

lessons[j).names(lOJ -1\;

printw(11%2d)%s %2d)%s %2d)%s %2d)%s %2d)%s\n", i,lessoris(OJ .names,
i+l0,lessons(1] .names, i+20,lessons[2].names,
i+30,lessons(3J.names, i+40,lessons(4J.names);

)/* Display lesson files */
mvprintw(23,O,"Press any key to continue");
reply - getcho;

148

) /* View an instruction block record */
return;

) /* Display a selected record from lesson.blk */

149

void instr-blk-vis(int ent no)
(/* Display entry from 'instruct.blk' *
extern struct curricula instr-blks(J;

int i, j;
char txt-str[81];

struct /* Lesson filename strings *

char names(ll);
lesson[5];

clearoe;
strncpy(txt~str, instr-blks(ent no] .title, 80);
txt -str[80] = \;
printw("'Title:\n%s\n', txt-str);

for (i=0; i<10; i++)
(/* Display lesson files *

for (j=0; j<5; J++)
(/* Make filename strings *

strncpy(lesson(j) .names,
instr blks(ent no].qa sets~i4-(j*1O)]).names, 10);

lesson(j).names(1l0) =1\;
) /* Make filename strings */
printw("%2d)%s %2d)%s %2d)%s %2d)%s %2d)%s\n\n', i+1,lesson(OJ .names,

i+ll~lesson[lJ-names, i+21,lesson(2J.names, i+31,lesson[3].names,
i+41,lesson(4].names);

) /* Display lesson files *
refreshoC;
return;

/* Display entry from linstruct.blk' *

150

void makepos(int ndx, int *y_pos, int *x_pos)
(/* Convert ndx to screen coordinates */
int quo, rem;

quo = ndx/1O;
rem = ndx - (quo*1O);
*y_pos = (rem*2) + 3;
*x_pos = (quo*14) + 3;
return;

) /* Convert ndx to screen coordinates */

151

NAME: STUDENT.C

For the following, the numerous switches are presented in numerical
order, but the use of pagination is done to infer a logical order.
This logical ordering" is as follows:

a. 0-79: Function select switches

b. 80-87: Feature & Vector switches Required Switches
88-105: Category Select switches for WD Console
142-159: Category Select switches Checkout

c. 106-141: Optional Category Select switches

d. 160-184: Display Panel switches

#include <curses.h>
#include <string.h>
#include "itsdef.h"

void student(int *stdtstatus)
(/* Student */
extern void getmax min();
extern int user type;
extern char instrLpath[];
extern char stdtpath[];
extern FILE *lessonfp;
extern instr blk cnt;
extern int ymid;
extern int xmid;
extern struct stdt db pupil;
extern FILE *present fp;
extern struct lessonfileentry lessonmap[J;
extern int stdt acc score;

int i;
int file status;
int valid, nextlesson;
int reply;
int map_cnt;
int mapndx;
int scanit;
int prey_text;

long int fileoffset;

char name str[27], ssanstr[10];
char any_str[81);
char any_strl[81];
char *srchchar;

152

)/* Error opening file *
work-msgo;
instr-bik-cnt = 0;
for (i=O; i<50; i++)
(/* Load 'instruct.blk' into memory *

lesson-blk-io('R', i);
if (instr blks[i].no_qa_sets != 0)

instr-!bik-cnt++;
) /* Load 'instruct.blk' into memory *
instruct-bik -open = TRUE;

)/* Establish path to instructor files *

get~path-str (I'tdn" stdt~path);
if (strlen(stdt~path) == 0)

return;

if (user -type == Student)
(/* Check student's registration *
valid = FALSE;
while (!valid)
{/* Validate *

student-ident(name_str, ssan-str);
strgblnk~pad(name-str, 26);
strcpy(any-str, "1sdb"1);
strncat(any~str, &ssan-str(5), 4);
file-status = chk-file(stdt~path, any str);
file str(stdtypath, any str, any strl);
if (file -status == 1)
{/* Possible New Student *
clearo;
cntr -ln(ymid-l, "Are you a new student? [Y/N]:"1);
reply = tolower(getcho);
if (reply == 'y')
(1* Open new student file *

valid = TRUE;
student~fp = fopen(any~strl, "1w+"1);

/* Initialize student db file */
strncpy(pupil.name.. name-str, 26);
strncpy(pupil.ssan, ssan Tstr, 9);
pupil.instr -bik -ndx=-;
pupil.lesson -ndx = -1;
pupil.text-bfk-ndx = 1
pupil.know~phase_ndx =1

student blk io('W', 0);
for (i=O; i<5; i++)
(/* Initialize knowledge phase data *

pupil.know~phase~i].max -val = 0;
pupil.know~phase[i).min -val = 0;
pupil.know~phase~i].act -val = 0;
pupil.know~phase[iJ.spare -val = 0;
student_blk_io('W',i+l);

) /* Initialize knowledge phase data *
) /* Open new student file *

153

else
(/* Error */

clear();
cntrln(yjmid,"Please validate name and SSAN again");
cntr-ln(yjmid+1, "Enter any key to continue");
getcho;

) /* Error */
) /* Possible New Student */
else
(/* Existing Student */

studentfp - fopen(any-strl, "r+");
student blk io('R', 0); /* Read header */
for (i•1; i<-5; i++)

student blk_io('R', i); /* Read knowledge phase data */
if (strncmp(pupil.name, namestr, 26) != 0 I

strncmp(pupil.ssan, ssan_str, 9) != 0)
(/* Name or SSAN mismatch */

clear();
cntr_ln(yjmid,

"Name or SSAN mismatch with original registration");
cntr-ln(ymid+l, "Please validate name and SSAN again");
cntr ln(ymid+2, "Press any key to continue");
getch();

) /* Name or SSAN mismatch */
else

valid - TRUE;
) /* Existing Student */

)/* Validate */
I /* Check student's registration */

if (user_type - Instructor)
(/* Reviewing an instruction block */

pupil.instr blk ndx = instrreview;
pupil.lessonndx = 0;

) /* Reviewing an instruction block */

valid = TRUE;
present fp - NULL;
stdt acc score = 0;
file-offset = 0;
prey text - pupil.text_blk_ndx;
while (valid)
(/* Presenting a lesson */

if (present fp =- NULL)
(/* Open lesson file */

if (pupil.instr blk ndx - -1)
strcpy(any_str, "welcome"); /* New Student */

else
(/* Get next lesson *1

strncpy(anystr,

instrblks[pupil.instr_blk-ndx].qasets[pupil.lessonndx].names,
10);

any str[10] - '\0';

154

) * Get next lesson *
file-status - chic-file (instrjpath, any-str);
if (file-status -- 1)
(/* File doesn't exist *
valid = FALSE;
continue;

)/* File doesn't exist *
file_str(instrypath, any str, any stri);
present-fp = fopen(any~strl, "r");

/* Build map of lesson file *
file-offset = 0;
map cnt = 0;
next-lesson = TRUE;
fseek(present_fp, file Ioffset, SEEKSET);
while (fgets(any~str, 81, present_fp) != NULL)
{/* Build map *1

if (next_lesson)
(* Build map entry *

lesson -map(map cnt].file..yos = file-offset;
file -offset += strlen(any~str)p*
sscanf(any~str, "1%d", &lesson -map~map~cntj .nwa-id);
srch char = strchr(any-str, 1')
if (strncmp (&any~str (arch-char-any str+l],

"Itext", 4) -= 0)
lesson -map (map cnt] .text type = 1;

else if (strncmp(&any-str~srch-char-any str+1),
"multiple choice", 15) == 0)
lesson -map(map cnt].text_type. = 2;

else if (strncmp(&any-str~srch-char-any str+lJ,
"true/false", 10) == 0)
lesson-map~map~cnt].text_type = 3;

else if (strncmp (&any str(srch-char-any str+l J,
"1yes/no", 6) == 0)
lesson map(map cnt] .text type = 4;

else if (strncmp (&any-str (rch-char-any str+l J,
"score", 5) == 0)
lesson-map~map_.cnt).text_tYpe = 5;

else if (strncmp (&any-str (srch-char-any str+l J,
"instruct/lesson", 15) -0)
lesson map~map cnt) .text type = 6;

else if (strncmp (&any str £srch_char-any str+1 J,
"noscore", 7) == 0)
lesson map(map cnt) .text type = 7;

else
(/* Problem with file format *
clearoi;
any str[strlen(any_str)-1J =\1

mvprintw(y_ mid, 0, "I%s is not a valid text type",
&any~str[srch~char-any~str+1));

refresho;
return;

)/* Problem with file format *

155

/* Get next identifiers of follow-on texts */
fseek(presentfp, file offset, SEEKSET);
fgets(any_str, 81, present fp);
fileoffset += strlen(anystr);
srch char = anystr;
for (i=O; i<5; i++)
{ /* Get each follow-on */

sscanf(&anystr[srch char-anystr], "W".
&lessonmap[mapcnt].know_level[i]);

if (i < 4)
/* Search for blank and advance */
srch char = strchr(&anystr[srchchar-anystr], '
srch char++;

) /* Search for blank and advance */
) /* Get each follow-on */

/* Indicate no previous display */
lesson map[mapcnt].prevnumid = -1;

/* Blank out student repsonse */
lessonmap[mapcnt].stdtans = '

/* Get answers and values for:
2) multiple choice
3) true/false
4) yes/no */
5) scoring function
6) instruct/lesson branch
7) No scoring function

if (lessonmap[mapcnt].text_type >= 2 &&
lesson map[mapcnt].texttype <= 7)

/* Other text types */
fseek(presentfp, fileoffset, SEEKSET);
fgets(any str, 81, present_fp);
fileoffset += strlen(anystr);
srchchar = any str;
map-ndy = 0;
scan it = TRUE;
while (scanit)

/* Get answers and associated values */
srch char = strchr(&any str[srch char-any str], ')');
if (srch char != NULL)
(/* Store possible answer and its value */

lessonmap[mapcnt).mc ans[mapndx].ans_desig =
anystr[srchchar-anystr-l]; /* Answer */

sscanf(&any str[srch char-anystr+l], "%d",
&lesson map[mapcnt].mcans[map ndx].ans-val);

srch char++;
map-ndx++;

) /* Store possible answer and its value */
else

scan it = FALSE;
/* Get answers and associated values */

156

lessonmap[mapcnt].mcanscnt = map_ndx;
) /* Other text types */

next lesson = FALSE;
map-cnt++;

) /* Build map entry */

else
(/* Skip this line */

file offset += strlen(anystr);
if (anystr[O] == '\f')

next-lesson = TRUE;
) /* Skip this line */

fseek(presentfp, file-offset, SEEKSET);
) /* Build map *7

) /* Open lesson file */

if (pupil.text blk-ndx == -1)
(/* End of current lesson */

clearo;
cntr ln(y mid, "End of lesson");
getch(;
fclose(present fp);
student blk io('W', 0);
for (i=O; i<5; i++)

studentblk io('W', i+1);
valid = FALSE;
*stdt status = 1;
break;

) /* End of current lesson */

file offset = -1;
for (i=0; i<mapcnt; i++)
{ /* Search for selected text */

if (pupil.text blk ndx == lesson-map[i].numjid)
(/* Match found */

file offset = lesson map[i].filepos;
if (lesson map[i].prevnum id == -1)

lesson map[i].prevnumid = prey_text;
map-ndx = i;
break;

) /* Match found */
) /* Search for selected text */

if (fileoffset < 0)
(/* Text does not exist */

clear);
mvprintw(ymid, x mid-23,

"Text %3d does not exist for block %2d, lesson %2d",
pupil.textblk-ndx, pupil.instrblk-ndx, pupil.lessonndx);

refresh(;
itsstop();

) /* Text does not exist */

157

fseek(presentfp, lessonmap[mapndx].filepos, SEEKSET);
switch (lesson map[mapndx]J.texttype)
(/* Display text types */
case 1:
case 2:
case 3:
case 4:

reply = prsnttxt(mapndx);
break;

case 5:
case 7:

reply = score txt(mapndx);
break;

case 6:
reply = lessontxt(mapndx);
break;

default:
clear();
cntrln(y_mid, "This is impossible and should not have happened");
refresh();
itsstop();

/* Display text types */

if (reply == 1)
valid = FALSE; /* Terminate lesson presentation */

else if (reply == 2)
/* Get next text block */

if (lessonmap[mapndx].text_type <= 4)
prev text = pupil.text blkndx;

if (lessonmap(mapndx].text_type != 7)
pupil.textblkndx =

lessonmap[mapndx].knowlevel[pupil.knowphase_ndx-1];
/* Get next text block */

else if (reply == 3)
(/* Get previous text */

if (pupil.textblkndx != lessonmap[mapndxj.prev_numid)
pupil.text blk ndx = lesson-map[mapndx].prevnumid;

for (i=0; i<mapcnt; i++)
/* Get index */

if (pupil.textblkndx == lesson map[i].num id)
/* Match */

map ndx =
break;

/* Match */
/* Get index */

if (lessonmap(mapndx].text_tiype != 1)
get max min(mapndx, '-');

) /* Get previous text */
else if (reply == 4)

/* Get next instruction block/lesson */

158

) /* Get next instruction block/lesson */
else

/* oops ! */
clear(;
cntr in(y-mid, "This shouldn't have happened either");
refresh(;
its_stop();

}/* Oops ! */

) /* Presenting a lesson */

return;
/* Student */

159

NAME: STDTRUT.C

include <curses. h>
#include <string. h>
#include <ctype.h>

include "itsdef .h

160

void student ident(char *name str, char *id str)
{ I* Get student's name and identifier *
extern int x mid;
extern int y.mid;
extern void get ssano;

int valid, ack;

clearo;
cntr ln(ymid-2,"Enter name and SSAN:\n");
mvadddstr(y_ mid, x-mid-il, "Name:");

valid = FALSE;
while (!valid)
(/* Get name *
movu (y maid, x -mid-5);
getstr-echo(name-str);
cntr ln(ymid+2, "Is name spelled correctly? (YIN]");
ack =tolower(getcho);

if (ack IV'y)
valid =TRUE; /* Valid Name *

move (ymid+2, 0);
clrtoeol();

)/* Get name *

mvaddstr(ymid+l, x-mid-ll, "ISSAN:1");
valid = FALSE;
while (!valid)
/* Get Id */
mvaddstr(ymid+l, x -mid-5, "lxxx-xx-xxxx");
move(ymid+l, x~mid-5);
refresh 0;
get ssan(id_str);
cntr ln(ymid+3, "Is SSAN correct? (YIN]");
ack =tolower(getcho);

if (ack IV'y)
valid =TRUE;

move(y~mid+3, 0);
clrtoeol();
/* Get Id *

return;

)/* Get student's name and identifier *

161

void get ssan(char *a-strng)
(/* Get a SSAN string *

int pos;
mnt not -digit;
mnt x-coord, y~coord;

getyx(stdscr, y~coord, x-coord);
not-digit = FALSE;
pos = 0;
while (pos < 9)
(/* Get digits *

*(a~strng) = getch();
if (not -digit)
(/* Clear error msg *

move(y~coord+2,O);
clrtoeol();
move(y~coord, x_coord);
refresho;
not -digit = FALSE;

) /* Clear error msg *
if (!isdigit(*(a~strng)))
(/* Must be a digit */

cntr~ln(y~coord+2, "Must be a digit");
move(y-coord, x-coord);
refresho,;
not digit = TRUE;

) /* Mu-st be a digit *
else
(/* Next digit *

addch(*a~strng);
a_strng++;
pos++;
if (pos == 3 1 05 po 5)

x coord++;
x-coord++;
move(y-coord, x_coord);

) /* Next digit *
)/* Get digits *

noechoo;
return;

)/* Get a SSAN string *

162

void student -blic- io(char io~type, int rec ndx)
(/* Provide I/0 for student db file *

extern FILE *student~fp;
extern struct stdt_db pupil;

char stdt-rec(81];

if (tolower(io type) == 'win)
{/* write a record to student db *

if (rec -ndx == 0)
(/* Header record *

fseek(student~fp, 0, SEEK SET) ;
sprintf(stdt_rec, "%i9.9sli-26.26s'%02dl%02dI%02di%02d\n",

pupil.ssan, pupil.name, pupil.instr-bik-ndx, pupil.lesson-ndx,
pupil.text -blk ndx, pupil.knowyphase_ridx);

fputs (stdt~rec, student_fp);
)/* Header record *

else
(/* Knowledge phase record *

fseek(student~fp, ((rec ndx-l) *20) +49, SEEKSET);
sprintf(stdt_rec,"%04d%~O4dl%04dl%04d\nl,,

pupil.know~phase[rec -ndx-lJ .max-val,
pupil.know~phase(rec-ndx-l) .min-val,
pupil.knowjphase(rec~ndx-l] .act -val,
pupil. knowyphase [rec ndx-l . spare val);

fputs (stdt~rec, student-fp);
) /* Knowledge phase record */

/* write a record to student db *

else if (tolower(io Itype) == 'r')
{/* Read a record from student db *

if (rec -ndx == 0)
{/* Header record *

fseek(student~fp, 0, SEEK SET);
fgets(stdt~rec, 49, studenit fp);
strncpy(pupil.ssan, stdt -rec, 9);
strncpy(pupil.name, &stdt-rec[1O), 26);
sscanf(&stdt~rec[37], 11%2d", &pupil.instr -blk-ndx);
sscanf(&stdt~rec[40], 11%2d", &pupil.lesson ndx);
sscanf(&stdt~rec[43], "1%2d", &pupil.text-blk -ndx);
sscanf(&stdt~rec[46), 11%2d", &pupil.know~phase_ndx);

)/* Header record *
else

(* Knowledge phase record *
fseek(student~fp, ((rec~ndx-l) *20)+49, SEEKSET);
fgets (stdt_rec, 20, student fp);
sscanf(stdt~rec, 11%4d", &pupil.know~phase~rec-ndx-1] .maxval);
sscanf(&stdt~rec[4), 11%4d", &pupil.know~phase~rec~ndx-1) .min-val);
sscanf(&stdt~rec(8], "1%4d", &pupil.know~phase(rec~ndx-1J .act-val);
sscanf(&stdt~rec[12], 11%4d",

&pupil knowyphase [rec -ndx-l] .spare val);
) /* Knowledge phase record */

)/* Read a record from student db *

163

else
(/* Error in I/O specification */

clear(;
addstr("student_blk_io error: I/O type specification");
refresh();
its-stop();

) /* Error in I/O specification */
return;

) /* Provide I/O for student db file */

164

void readjprsnt-txt(int map, int *file_offset, int *disp map, int
*disp~ndx,

char *disp str)
{/* Read and map a line of text *

extern FILE *prsent-fp;

fseeic(present~fp, *file_offset, SEEK_ SET);
fgets(disp~str, 81, present_fp);
if (map -= -1)
(/* Map the text block *

disp~map(*disp~ndx] - *f ile-offset;
(*disp~ndx) ++;

) /* Map the text block *
*fjle_offset += strlen(disp~str);
return;

1/* Read and map a line of text *

165

int prsnt txt(int map ndx)
(/* Present text to user *
extern struct lesson -file -entry lesson-map(];
externi FILE *present fp;
extern int stdt-acc -score;
extern void get-max min o;
extern void reply-pos);
extern int first ques;

int disp~ndx;
int line-cnt;
int i;
int beg-in, endjIn;
int display it;
mnt reply;
int paint -it;
mnt match found;
int key_state;

long mnt file-offset;
long mnt dispmap(1OO);
char disp~str(8l);

/* Skip the first and second line *
disp-ndx - 0;
file -offset = lesson map~map ndx].file~pos;
read~prsnt-txt(O, &file-offset, disp_mpap, &disp~ndx, disp-str);
readyprsnt-txt(O, &file-offset, disp__map, &disp~ndx, disp~str);

/* Skip next line if multiple choice, true/false, or scoring *
if (lesson-map[map~ndx).text~type != 1)

read~prsnt_txt(0, &file-offset, disp map, &idispridx, disp~str);

/* Get line count */
readyprsnt~txt(o, &file offset, disp_ map, &disp-ndx, disp-str);
sscanf(disp_str, 11-9d", &line-cnt);

/* Create line display map *
for (i=0; i<line-cnt; i++)

readyprsnt~txt(-l, &file-offset, disp_ map, &disp~ndx, disp~str);

/* Present first page *
beg-ln = 0;
if (line-cnt <= LINES-2)

end -ln = line-cnt - 1
else

end-ln = LINES - 2;

if (lesson_map~map_ndx) .text type > 1 && first ques == -1)
first ques = map ndx;

if (lesson-map~map_ndx].text type > 1 && lesson-map(map~ndx].stdt ans 1=

166

(* Backout existing value *
for (i=O; i<lesson map(map ndx].mc-ans-cnt; i++)
{/* Search for match */

if (lesson -map~mapndx].stdt-ans-
lesson map~map ndx] .mc ans(i] .ans-desig)

{ /* Matching answer */
if ((stdt-acc-score - lesson-map(map ndx].mc ansti].ans-val) >=

0)
{ * Adjust score *

stdt acc score -

lesson -map(map ndx].mc ans[iJ.ans-val;
if (stdt-acc-score =-- 0 &i first_ques != map ndx)

stdt acc score +=
lesso-n map~map ndx] .mc ans~iJ .ans-val;

break;
)/* Adjust score *

) /* Matching answer *
)/* Search for match */

)/* Backout existing value *

if (lesson-map(map ndx].text -type 1=1)
get max min(map ndx,'+)

paint-it =TRUE;
display it = TRUE;
while (display it)
{/* Display a text block *

if (paint it)
{/* Paint screen *
clearo;
file-offset = disp map(begin];
for (i=beg in; i<=end -in; i++)
(/* Display text */

readjprsnt_txt(l, &file offset, disp__map, &disp__ndx, disp~str);
mvprintw(i-beg~ln, 0, "%'s"l, disp-str);

)/* Display text */
if (end_in < line -cnt-l)
{ /* Display "more" message *

attrset(A_BLINK);
cntr -ln(LINES-l, "'More"f);
attrset(0);

) /* Display "more" message *
else
(/* Clear "more" message and prompt for answer, if necessary *
move (LINES-, 0) ;
cirtoeol();
if (lesson map(map ndx].text_type != 1)
/* Possible response */
if (lesson -map~map ndx).text type == 2)

mvaddstr(LINES-l, 0, "Selection:); /* Multiple Choice

else if (lesson map(map ndx].text type == 3)
mvaddstr(LINES-l, 0, 1"(t)rue/(f)alse: 11); /* True/False

167

,/
else

mvaddstr(LINES-l, 0, "(y)es/(n)o: "); /* Yes/No */
if (lessonmap(mapndx].stdtans != ' ' &&

lesson_map[mapndx].stdtans I= 'x')
(/* Display previous answer */

addch(lesson-map[mapndx].stdtans);
replypos(mapndx);

) /* Display previous answer */
) /* Possible response */

) /* Clear "more" message and prompt for answer, if necessary */
paint it = FALSE;

) /* Paint screen */

reply = tolower(getcho);
switch (reply)
(/* Get user's reply */
case KEY UP:

if (end_ln < linecnt-1)
(/* Move up one line */

beg ln++;
if (beg ln+LINES-2 <= line cnt)

end In = beg_ln + LINES - 2;
else

end in = line cnt - 1;
paint_it = TRUE;

) /* Move up one line */
break;

case KEY DOWN:
case 0x43:

if (begin > 0)
(/* Move down one line */

begin--;
if (beg ln+LINES < linecnt)

end_in = begln+ LINES - 2;
else

end in = line cnt -1;
paintit = TRUE;

) /* Move down one line */
break;

case 'q': /* Quit */
key-state = 1;
displayit = FALSE;
break;

case 0x02: /* Ctrl-B: Page backward */
if (begin > 0)
(/* Paging backwards */

if (beg in-LINES+2 < 0)
beg-in = 0;

else
beg_ln = beg-In - LINES + 2;

168

if (beg_ln+LINES-2 > line_cnt)
end in = line cnt - 1;

else
end in = beg-in + LINES - 2;

paint-it = TRUE;
) /* Paging backwards */
break;

case 0x06: /* Ctrl-F: Page forward */
if (endin < linecnt - 1)
/ /* Paging forward */

if (endln+LINES-2 > line_cnt)
end in = line cnt - 1;

else
end in = end in + LINES - 2;

if (end_in-LINES+2 < 0)
beg in = o;

else
begin = end_in - LINES + 2;

paint-it = TRUE;
) /* Paging forward */
break;

case OxOe: /* Ctrl-N: Next text */
case '\r': /* Carriage return from VT1O0 */
case 0x157: /* Carriage return from SG */

if ((lesson map[map ndx].texttype == 1) &&
(reply == '\r' IT repiy ==-0x57) &&
(end_in < linecnt-l))
break;

if (lesson map[mapndx].text_type > 1)
{ /* Score result */

for (i=O; i<lessonmap[mapndx].mc_ans_cnt; i++)
{ /* Search for match */

if (lessonmap[mapndx].stdtans ==
lessonmap[mapndx].mcans[i].ans_desig)

{ /* Accumulate value */
stdt acc score +=

lesson map[mapndx].mcans(i].ansval;
break-

) /* Accumulate value */
) /* Search for match */

) /* Score result */
keystate = 2;
display it = FALSE;
break;

case OxlO: /* Ctrl-P: Previous text */
if (lesson map(mapndx].text_type != 1)

getxmaxmin(mapndx, '-');
keystate 3;
display it = FALSE;
break;

169

default:
if ((lessonmap[mapndx].text type == 1) H (end_in < line-cnt-1))

break;
replypos(mapndx);clrtoeol();
addch(reply);
reply_pos(mapndx);
match-found = FALSE;
for (i=O; i<lesson map[map ndx].mcanscnt; i++)
{ /* Determine if valid response */

if (lesson map(mapndx].mcans(i].ans desig == reply)
(/* Match found */

match-found = TRUE;
break;

) /* Match found */
) /* Determine if valid response */
if (! match_found)
{ /* In valid response */

printw("%c - invalid repsonse", reply);
replypos (mapndx);

) /* In valid response */
else
(/* Valid response */

lessonmap~mapndx].stdtans = reply;
) /* Valid response */
break;

) /* Get user's reply */
) /* Display a text block */

return keystate;
) /* Present text to user */

170

int score_txt(int map ndx)
{ /* Assess student's score *
extern struct lesson -file_entry lesson-map[);
extern int stdt acc score;
extern struct stdt -dib pupil;
extern int first gues;

int i;
int reply;

if (lesson map~map ndx].text-type == 5)
{ /* Verify satisfaction with previous answers *

clearo(;
cntr-ln(yjnid, "Are you satisfied with your previous answers? (Y/N]:

reply = tolower(gc~tcho);
if (reply != y'yi)
(/* Reviewing answers *

return 3;
) /* Reviewing answers *

) /* Verify satisfaction with previous answers *

if (lesson map(map ndx).text_type == 5)

pupil.knowyphase~pupil.know~phase~ndx-1].act-val += stdt-acc score;
first-ques = -1;

for(i=O; i<lesson map~map~ndx].mc_ans-cnt; i++)
/* Search of intEerval */
if (stdt_acc score <= lesson map~map~ndx].mc_ans(i].ans-val)
4/* Interval established */-

if (pupil.know~phase-ndx != i+1 && lesson-map[map ndx].text type
==5)

(/* Changing knowledge level *
pupil.know~phase~i].max -val = 0;
pupil.know~yhase~i].min val = 0;
pupil.know~phase(i].act val = 0;
pupil.knowyphase~i).spare-val = 0;

) /* Changing knowledge level */
if (lesson map(map ndx] .text type == 5)

pupil.know~phase-ndx = i + 1;
else

pupil.text-blk ndx = lesson_map~map ndx].know-level~i];
break;
/* Interval established *

/* Search of interval */
if (lesson -map(map ndx].text_type != 7)

stdt-acc-score = 0;

return 2;

/* Assess student's score *

171

int lesson -txt(int map ndx)
(/* Change lesson or instruction block *
extern FILE *present_fp;
extern struct stdt_db pupil;
extern struct lesson -file-entry lesson-map[];
extern int stdt-acc-score;

int i;
int reply;

fclose (present fp);
present~fp = NULL;
sscanf(&lesson map(map~ndx) .mc ans(pupil .know~phase ndx-1] .aris-desig,

"119d", &pupilf.instr-blk-ndx);
pupil.lesson -ndx =

lesson_map[map ndx] .mc ans~pupil .know~phase_ndx-lJ .ans-val;
pupil.text -blk -ndx =

lesson -map~map ndx] .know level [pupil. know~phase~ndx-1J;
student-blk-io('W', 0);
for (i=0; i<5; i++)

student bik io('W', i+1);
clearoi;
cntr-ln(y_ mid, "End of an instruction block");
cntr -ln(y-mid+l, "Continue [Y/N]:")
reply = tolower(getcho);
if (reply == 'y')

return 4;
else

return 1;

/* Change lesson or instruction block *

172

void get -max Imin(int map ndx, char op)
(1* Get maximum and minimum answer values *
extern struct stdt-db pupil;
extern struct lesson-file-entry lesson-map(J;

mnt i;
mnt temp_ max, temp mmn;

temp-max - 0;
temp-mmn - 9999;
for (i-0o; i<lesson-map~map ndxJ.mc -ans cnt; i++)
(/* Find maximum and minimum values *7

if (lesson -map~map ndxj.mc-ans~iJ.ans-val1 > temp__max)
temp__max - lesson -map (map__ndx] .mc an. (i] .ansval;

if (lesson -map (map ndx . mc an. (i . ans-val < tempmin)
tempai = lesson Imap (map ndx] .mc an. (i] ans-val;

)/* Find maximum and minimum values *
if (op -= 1+1)
(/* Add max & min values *
pupil.knowyphase(pupil.know~phase-ndx-2.].max -val +-tempmax;
pupil.k)nowyphase (pupil. know~phase-ndx-l J.min-val +=tempmnin;

)/* Add max & min values *
if (op = -1
(/* Subtract max & min values *
pupil. know~phase (pupil. know~yhase-ndx-l J. max-val -=temp..max;

pupil. know~phase (pupil. know~phase-ndx-l 3.min-val -- tempmýin;
/* Subtract max & min values *

if (op -= 1'
(/* Display values *

mvprintw(22,O,1"high = %4d score - %4d low - %4d indx W-
pupil.know~phase(pupil.know~phase-ndx-lJ .max-val,
stdt-acc_score,
pupil .knowyphase(pupil .Inow~phase ndx-l) .min-val,
map ndx);

getcho;
move (22, 0) ;
clrtoeol();
refresh 0;

) /* Display values *
return;

)/* Get maximum and minimum answer values *

173

void reply_pos(int mapndx)
(/* Position cursor for response */
extern struct lessonfileentry lesson-map[];

if (lesson map mapndx].text type == 2)
move(LINES-l, 11) ;

else if (lesson map~mapndx].texttype == 3)
move(LINES-l, 16);

else
move(LINES-l, 12);

return;
/* Position cursor for response */

174

Appendix E

ITS User's Guide

175

Inteigent Tutoring System

User's Guide

You may run the ITS program using a SGI terminal even though its software is spread
across a SGI/UNIX and DEC/VMS based system. Functionally, the software is used
as follows:

The presentation of the questionnaire function is accomplished using only
the SGI/UNIX system.

The presentation of the Simulation is accomplished using a combination.
of both the SGI/UNIX and DEC/VMS systems.

The presentation of the evaluation software is accomplished using only
the DEC/VMS system.

Each function is started separately. While having to start each function is not ideal, the
modularity did provide a better software development environment with no impact to
the existing Simulation software.

Questionnaire Function

To begin the Questionnaire Function, you must have the NITS Window" on the screen.
This window is sized to an 80 character by 24 line (80x24) display for the presentation
of questionnaire material. Enter the following command to initiate this window:

wsh -n 'ITS Window' -p175,300 -s8O,24

Enter ITS at the prompt within the window.

ITS prompts you as follows:

1.
Use cursor to select:
Instructor Student
then press 'Enter'

The desired selection is highlighted on the screen.

If you select the Instructor option, continue with Step 2.

If you select the Student option, continue with Step 13.

177

2. At this point, nothing on the screen changes. However, ITS expects you
to enter the proper password before continuing. Entry of any other value
causes the program to terminate without any indication. Once you enter
the proper password, continue with Step 3.

3. ITS displays the following prompt:

Enter index of desired option:

1. Add an instruction block
2. Delete an instruction block
3. Modify an instruction block
4. Review an instruction block
5. Review a student's performance
6. Adjust a student's instruction

Selection:

Enter the desired option by specifying 1, 2 etc.

Note: Only options 1-3 are implemented. Selections 4-6 are not
implemented at this time.

Enter one of the options 1-3, continue with Step 4.

Note: If you enter any value other than 1-6, ITS displays Invalid
response. Press the Enter key to acknowledge and ITS displays
the following message:

Terminate ITS [Y/N]:

If you enter any value other than Y, ITS interprets it as a N response and
returns to the start of this Step. If you enter Y, the program terminates.

4. ITS prompts you for the specification of the path to the Instructor
directory. However, if you have already accomplished this Step (on a
previous pass through the program), ITS continues with Step 5. If not,
the following display appears:

Enter path to "Instructor" file directory

178

You may either specify the Instructor file directory or press the Enter key
to get the default value as stipulated by instr_palh def in itsdef.h. In both
cases ITS prompts you to verify the specification:

Is path correct? [Y/N/Q]:

If you enter Q, the program terminates.

If you enter N, this Step is repeated.

If you enter Y, continue with Step 5.

5. ITS displays titles of existing Instruction Blocks 1 along with the following

message:

Use cursor to position, 'Enter' to select, or '0' to quit

If you selected option 1 in Step 3, Add an Instruction Block, ITS displays
a reminder of existing titles. For options 2 or 3, you may choose the
Instruction Block that is to be modified or deleted, respectively.

If you selected option 1 in Step 3, continue with Step 6.

If you selected option 2, Delete an instructon block, ITS continues with
Step 9.

If you selected option 3, Modify an instruction block, ITS continues with
Step 12.

6. ITS asks you to enter a title to the new instruction block:

Enter title (max = 80 chars):

Enter the title and continue with Step 7.

Refer to the srction Inplementation under Son mGcraphics Saftm of this document.

179

7. ITS asks you if there are any lessons 2 associated with this Instruction

Block:

Any lessons in this instruction block [Y/N]:

You may create the instruction block entry by entering a N and ITS
continues with Step 3, or if lessons are to be added, enter Y and
continue with Step 8.

8. ITS displays the title of the instruction block and a numbered list of empty

lesson entries, followed by the prompt:

Enter lesson name (max = 10 char):

Enter the names of the lessons that are to comprise this instruction
block. When you have finished, terminate this Step by entering a q to
lesson name and ITS continues with Step 3.

9. ITS displays the title of the instruction block and a numbered list of the

lessons in the block along with the following prompt:

Do you want to delete lessons? [Y/N]:

If you want to delete only the Instruction Block, enter N and ITS
continues with Ster' 3.

If you also want to delete lesson files, enter Y and continue with Step 10.

10. ITS displays the following prompt:

Delete (a)ll or s(ome) of these lessons:

If you want to delete aN the lesson files listed, enter a and ITS continues
with Step 3.

If you want to selectively delete some of the lesson files, enter s and
continue with Step 11.

2 Refer to the section Implementatlon under SIcon Gm.dpcs SlwAe for additional detals.

180

11. ITS displays the following prompt:

Enter index of lesson to be deleted:

Enter the number that appears with the lesson name.

Note: The numbered list is reorderd after each deletion so indices can
change for each specified deletion.

When you are finished deleting, enter q and ITS continues with Step 3.

12. ITS displays the title of the instruction block and a numbered list of the

lessons in the block along with the following prompt:

Modifying (t)itle or (I)esson:

If you want to modify the title of the instruction block, enter a t and the
prompt Enter title will overwrite the previous prompt and allow you to
specify a new title. ITS continues with a repetition of this Step.

If you want to modify a lesson, enter I and ITS displays the following

prompt:

Enter index of lesson to be changed:

Enter the number associated with the lesson to be changed and ITS
displays the following prompt:

Change: (d)elete, (m)odify, (i)nsert:

If you want to delete the selected lesson, enter d ITS continues with the
repetition of this Step.

If you want to insert or modify a lesson, enter m or i. ITS displays the
prompt Enter lesson name. Modify or Insert the lesson name and ITS
continues with a repetition of this Step.

To terminate this Step, enter a q and ITS continues with Step 3.

13. ITS asks you to specify the path for the Instructor and Student
directories. If one or both use the default values, the values for the
kistuctor and student paths are taken from the instrpath_def or the
stdt_pathdef values in itsdef.h, respectively.

181

For the instructor path, ITS displays:

Enter path to "Instructor" file directory

For the student path, ITS displays:

Enter path to "Student" file directory

Both are followed by the prompt:

Is path correct? [Y/N/Q]:

If you enter 0, the program stops.

If you enter N, this Step is repeated.

If you enter Y, then:

a. If this response is to the instructor path prompt, ITS
continues with a request for the student path.

b. If this request is to the student path prompt, ITS continues
with Step 14.

14. ITS prompts you (the student) for identification:

Enter name and SSAN:

Name:

ITS asks yoi to verify identification:

Is name spelled correctly? [Y/N]

If you answer N, this request is repeated.

If you answer Y, ITS requests your Social Security Number (SSAN):

SSAN: xxx-xx-xxxx

Verify your entry by answering:

Is SSAN correct? [Y/N]

182

If you enter N, SSAN portion of the this Step is repeated.

If you enter Y, continue with Step 15.

15. If the student is new, ITS displays the following verification step:

Are you a new student? [Y/N]

If you enter N, ITS repeats Step 14. Otherwise, if the student is either
new, as indicated by a Y reply, or has not completed the Experience
Questionnaire, as indicated in the student's database, ITS presents the
questionnaire.

At the conclusion of the questionnaire, ITS begins the Simulation. If the
student is above the base entry level, then the Simulation is used to
present a scenario to try and validate the determined level. Otherwise,
the Simulation consists of the Console Checkout lesson.

Simulation Function

Documentation for the Simulation Function can be found in:

Systems Research Laboratories, Inc.: "Research and Development
Computer Software Report, Delivery Order 0008, Attachment 2,
Sequence 1", Contract No. F33615-87-D-0601, September 1990.

Evaluation Function

To execute the Evaluation Function, you must be in a window with access to the VAX.
It is also assumed that the student has completed a session with the Simulation.
Prior to running the software to evaluate the student's performance, the data captured
by the Simulation must be preprocessed so it is time ordered. This is accomplished
by executing the following command on the logger file.

reduce "mindisk 0 f 11 6 sim 90 dir [logger file directory string] status"
go
quit

Upon completion of the REDUCE run, begin the evaluation by entering:

run sdt eval

183

Processing continues with the following steps.

1 . ITS asks you to specify the location of the output of the previously
mentioned REDUCE process.

Enter name of the data file
Name:

Enter the catalog/file string of the Pass 6 logger file from REDUCE.
Upon completion, ITS asks you to verify that the file specified is a
REDUCE pass 6 output.

2. ITS asks you to specify the number of WDs tested:

Enter the number of WDs that were tested:

3. ITS asks you to associate the WDs with a specific console number by

answering the following query for the each WD tested:

Enter con,-:)le no. of xxx WD:

4. ITS asks you to specify the WD id number for each console that
contained a tested WD.

Enter WD id no. for console x:

where x is substituted with the appropriate console number.

5. For this Step, ITS displays the following:

Select skill level for evaluation:

1) Naive
2) Novice
3) Journeyman
4) Expert
5) Master

Selection:

Enter an appropriate value. At this time, this value is not used. The
intent is to provide multiple criteria when evaluating the scenario from a
Simulation run.

184

6. ITS asks for the location of the event script file 3 :

Enter name of event script file
Name:

Upon answering the name of the event script file, processing continues
until the event script is exhausted. As the absence or presence of each
is event is detected, a brief message about the condition is displayed.
You must acknowledge each message with the Enter key before the
program continues. Currently, display of the captured data is limited to
the screen. However, recording these data to a file could be easily
accomplished.

3 Refer to the section Implementation under DEC VAX 780 for an explanation of the event script fle.

185

Appendix F

Decision Tree

187

-'ui

InI

m•m

-to'4"t0 m U.

48 P7

le

7o,

189

coi

< Qi c C

06

4 uz
z cz

- 6-O oc

oo 0d z

0:

< ~ o io .

-44

190 C

a I~

'U - a
co cz

oCJw
-

LL4

coo W-4

191

