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ABSTRACT

In this study, a large set of microwave and infrared parameters, derived

from the Special Sensor Microwave/ Imager (SSM/I) and the Indian

Geosynzhronous Satellite (INSAT), are examined to qualitatively determine how

much contrast exists between raining and non-raining conditions over land. The

precipitation regime of the Indian summer monsoon was chosen for the

evaluation testbed. Each of the microwave parameters contain measurements

which were enhanced, through a deconvolution technique, to match the spatial

resolution of the 85 GHz channel (15 x 13 km). The microwave and infrared

measurements are grouped into Probability Distribution Functions (PDFs) and

Cumulative Distribution Functions (CDFs) containing one week of

measurements for each parameter and time of satellite measurement within a

Indian subdivision. The mean and standard deviation of each PDF and the slope

and intercept factors of each CDF are tested for robustness against weekly

subdivisional raingage data.

The robustness of each of the parameter variables are determined by an

evaluation of their correlation coefficient obtained through a linear least squares

fit. Once the robustness of each parameter variable is quantified in terms of its

relationship to rainfall, a statistical rainfall estimation algorithm is generated on a

training data set from 1988. The algorithm is then validated on independent data

xii



sets from two different years. The algorithm achieves correlation coefficients of

-0.75 and -0.80 in 1987 and 1988, respectively. The algorithm performance suffers

in 1989 due to the lack of useable measurements from parameters containing the

85V channel.
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CHAPTER 1

Introduction

1.1 Background

Since the advent of satellite technology, atmospheric scientists have sought to

monitor global weather conditions from space, including the distribution of rainfall.

Early satellite precipitation retrieval techniques relied on visible and infrared data

which related cloud parameters such as cloud-top-temperature, albedo, or fractional

cover to rainrate or volumetric rainfall. These techniques could only give an indirect

estimate of precipitation at best, and it was not until the introduction of microwave

sensors that direct estimates of rainfall from satellite platforms were possible.

Physically-based passive microwave rainfall retrieval methods fall into three

classes, emission-, scattering-, and inversion-based. Emission-based retrievals make use

of the low frequencies (e.g. 19 GHz) and are primarily useful over oceanic regions. At

microwave frequencies, even though water is a strong dielectric, the ocean appears cold

due to the low emissivity of its surface (- 0.5) caused by only a portion of the wave

being transmitted across the relatively flat ocean-atmosphere interface with the

remainder reflected back into the ocean. In contrast, raindrops have a high emissivity,

due to the dimensions of the emitted waves being equal or exceeding that of the drops,

thus allowing the internally generated waves to pass through the drop surface.

1
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Therefore rain appears warm against the radiometrically cool ocean background. Land

surfaces, on the other hand, have generally high microwave emissivities and thus

appear warm. This decreases the contrast between rain and the land. As a result,

emission methods do not work as well over continental regions.

Scattering-based retrievals utilize higher frequencies such as 37 or 85-90 GHz

which are quite sensitive to the amount of ice suspended within the atmosphere. A

depressed brightness temperature (TB) arising from scattering by frozen hydrometers

can then be used to estimate the amount of precipitation falling out of a cloud because

of the inherent correlations between ice concentrations and rainrates. Inversion methods

attempt to determine the vertical hydrometer structure of the atmosphere using

forward radiative transfer (RTE) models to adjust initial guess hydrometeor profile

information until the calculated TBS are in agreement with the measured TBS. Once the

vertical rain water profile is known, a surface rainrate can be calculated. Of these three

physically-based retrievals, the emission- and scattering-based methods are useful in

evaluating the performance of the microwave parameters examined in this study. The

inversion method is not applicable because information concerning the vertical

hydrometeor structure, on the time and space scales used in the study, are not available.

Wilheit, et al. (1977) developed an emission-based retrieval scheme using a

successive order of scattering RTE model incorporating a Marshall-Palmer raindrop

distribution and fixed thermodynamic and cloud water parameters, to retrieve rainfall

over oceanic regions. Tests of the scheme utilizing Nimbus 5 Electrically Scanning

Microwave Radiometer (ESMR-5) 19 GI-Iz data showed that satellite estimates could be

related to radar derived rainrates within a factor of two. Of major significance was that

the theoretical calculations revealed a strong non-linear relationship between rainrate
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and 19 GHz TBS emerging from the top-of-atmosphere (TOA). The non-linearity results

in two significantly different rainrates for the same TB. Wilheit's paper demonstrated,

for the first time, that rainrates could be determined by microwave radiometry based

upon a physically-based model over oceanic regions. More recent emission-based

algorithms such as those of Smith and Mugnai (1988) and Hinton et al. (1992), have

simply refined various aspects of the Wilheit algorithm.

Microwave retrieval methods over land have been more difficult to formulate

due to the lack of contrast between the rainfall and the radiometrically 'hot' land

background. The problem is compounded by the varying emissivities of different

components of the surface (i.e. vegetation, bare rock, sand, etc.), varying soil moisture,

and temperature within a radiometer field-of-view (FOV). Schmugge (1983) showed

that soil moisture has a strong inverse effect on land surface emissivity since it increases

the dielectric constant of the soil which in turn results in lower emissivity. Thus, for the

lower microwave frequencies in which the surface contributes to the TOA signal in the

presence of rain, varying soil moisture poses a difficult boundary condition problem.

Early theoretical work using both 19 and 37 G-Iz ESMR-5 and ESMR-6

measurements suggested that rainfall over land could be detected at 37 GHz but not at

19 GHz due to incomplete beam filling by either rain or land caused by the large FOVs

at 19 GHz (Savage and Weinman, 1975; Weinman and Guetter, 1977). In addition, they

suggested that discrimination between rainfall, and wet or dry land would be possible

by taking advantage of the degree of polarization at 37 GI-{z. At the intermediate

frequencies, rainfall and dry land are essentially unpolarized with land often having

higher TBS than rain. On the other hand wetted land surfaces can be significantly

polarized and thus present another type of signal contrast to rain. Variations in the

degree of polarization at 37 GHz can also be related to land surface characteristics and
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their temporal variability (Choudhury, 1989). His study shows that polarization

decreases with increased vegetation and surface roughness, while polarization increases

with increasing soil moisture and FOVs contaminated by open water such as lakes or

rivers. Therefore, the degree of polarization can be used as a signature which

discriminates between rainfall and various characteristics of the underlying surface.

Observational work by Rodgers et al. (1977) concluded that rain detection over

dry land is difficult if the surface thermodynamic temperatures are less that 150 C. This

is because as the surface thermodynamic temperature decreases, the TB of the surface

also decreases which in turn leads to a lack of contrast between rainfall and the land

surface. However, if surface temperatures exceed 150 C and dew is absent, synoptic

scale rainfall can be detected at 37 GHz. Spencer et al. (1983) reported that extremely

low 37 GHz TBS over land are indicative of heavy rainfall associated with

thunderstorms, in which high concentrations of ice in the upper reaches of the

thunderstorms act as volume scatters to upwelling radiation.

Using the polarization and frequency diversity of the Nimbus 7 Scanning

Multichannel Microwave Radiometer (SMMR) and implementing statistical techniques,

several investigators developed rainfall retrieval algorithms for land surfaces which

were able to screen out wet lanO from rainfall (Rodgers and Siddalingaiah, 1983;

Spencer, 1984). Spencer and Santek (1985) improved this type of

multichannel/polarization algorithm by isolating and removing the effects of variations

in thermometric surface temperature, soil moisture, and snow cover on the measured

microwave TBS.

On June 19, 1987, the Department of Defense launched a Defense Meteorological

Satellite Program (DMSP) polar orbiting satellite which carried the first Special Sensor
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Microwave/Imager (SSM/I). This instrument measures four frequencies (19.35, 22.235,

37, and 85.5 GHz), with dual polarization for three of the four (only vertical polarization

is measured at 22 GHz). The 85 GHz channels represent the highest frequency and

highest resolution microwave field-of-view ever flown on a satellite (see Table 1.1). The

85 GHz channels were expected to improve global precipitation monitoring capabilities,

especially over land. Preliminary attempts at utilizing SSM/I measurements have

provided encouraging results. The SSM/I 85 GHz channel is sensitive to volume

scattering by precipitation and ice within a cloud which results Ln low TE5 By making

use of the polarization diversity at 85 GHz to discriminate precipitation from the surface

background, a polarization corrected temperature (PCT) can be formulated which

isolates the precipitation (Spencer, et al, 1989). A PCT represents a hypothetical TB that

a surface would emit solely due to the presence of an atmosphere. Therefore, the PCT

of a precipitating cloud is lower than that of a cloudy non-precipitating region because

of the strong volume scattering affects of precipitation. Spencer empirically found that

85 GHz PCTs less than 255 K generally denote precipitation areas. PCTs are useful for

both ocean and land background situations and in areas with land-water boundaries

since PCTs are a measure of volume scattering rather than of surface emissivity.

A problem with a sequence of frequencies on a microwave sensor is that their

instantaneous fields of view (IFOV) are not the same, as illustrated in Figure 1.1. To

ensure that the signal to noise ratio is large enough to compensate for the low energy

levels emitted by the earth and atmosphere, lower frequencies must have larger IFOVs.

Recently, this problem has been overcome by deconvolution procedures which can be

used to match the spatial resolution of the various frequencies (Olson, 1986; Farrar and

Smith, 1992; Robinson et al., 1991). Deconvolution procedures introduce itoie into the

data, but steps can be taken to insure that these effects are minimized (Farrar, 1991). By
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TABLE 1.1: SSM/I Channel footprint dimensions.

Frequency Polarization Footprint (kmn)

(GHz) A.T. C.T.

19.35 Vertical 69 43

19.35 Horizontal 69 43

22.235 Vertical 50 40

37.0 Vertical 37 28

37.0 Horizontal 37 29

85.5 Vertical 15 13

85.5 Horizontal 15 13

A.T. is Along Track, C.T. is Cross Track
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using deconvolution procedures, spatial resolutions at different frequencies can be

matched, facilitating direct comparisons between measurements at distinct frequencies.

Polar orbiting, sun-synchronous satellites such as the DMSP only pass over a

given location twice a day, so sampling problems arise due to the diurnal variability of

precipitation. Sampling errors over oceanic regions, based on two satellite samples per

day to obtain monthly rainfall, can be shown to have an error of about 10% (Bell, et al.

1990). In contrast, Seed and Austin (1990) showed that satellite sampling of precipitation

over Florida, if sampled only twice per day, would result in errors as large as 130% for

daily precipitation. If the same sampling is used to obtain a monthly areal average, the

error drops to 22%. For a weekly areal average, such as used in this study, satellite

sampling errors of rainfall in excess of 22% can be expected.

Another problem associated with satellite monitoring of precipitation at

microwave frequencies, is the beam filling error. This occurs when an FOV does not

contain homogeneous cloud optical properties. That is, it may be composed of varying

amounts of clear sky, cloud, and rain, thus leading to a measurement representin6 the

combined effect of the cloud, rain and surface background. Beam filling errors result in

rain rates that are necessarily underestimated in emission algorithms due to the

underlying non-linear relationship between brightness temperature and rainrate (Smith

and Kidder, 1978).

Up to now, all techniques which have been reviewed represent instantaneous

rainrate schemes. To understand how much rain falls in a week, a month, or some

extended time period over a given area, other techniques can be used. Shin et al. (1990)

developed an area-time averaged rainrate retrieval scheme to get monthly averages of

precipitation over 5' x 50 oceanic regions, using ESMR-5 19 GHz data obtained during

GATE, in which the raw TBS were first collected into histograms. The shapes of the
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histograms suggested that they were composed of a normal distribution of

temperatures from the ocean background (the width of the distribution being partly

related to channel noise) and a skewed distribution of precipitation at higher TBs. By

application of a statistical estimation scheme to identify the background distribution,

which can then be separated from the overall histogram, the rain distribution can be

isolated. Brightness temperatures of the rain-only distribution are converted to rainrates

based upon an exponential form of the brightness temperature - rainrate relationship,

developed by Wilheit (1977), a estimate of the freezing level, and the background

temperature represented by the peak of the histogram.

Durkee (1980) developed a histogram technique to estimate summer

precipitation frequency over the north central United States using ESMR-6 37 GIHz data.

The shape of the TB histogram was represented by a normal distribution of non-raining

pixels and a skewed distribution towards colder TBS of raining pixels. The deviations

from the mean of the normal portion of the distribution reflect variations of the

contribution from the atmosphere and surface conditions. Any pixels greater than two

standard deviations from the mean of the normal portion of the histogram are identified

as rain. Although this study did not calculate rainrates, it did relate the TB histograms

to precipitation frequency and correlated the results with observed raingage data,

which produced satisfactory results except in the northeast portion of the north central

United States.

A multichannel, area-time histogram oceanic precipitation retrieval scheme using

the 19 and 22 GHz frequencies of the SSM/I has recently been developed by Wilheit et

al. (1991) to estimate monthly rainfall. The method uses the two frequencies in a linear

combination to offset the effects of water vapor variability and to estimate rain layer

thickness based on simplified theoretical calculations of an idealized rain layer from the
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Wilheit et al. (1977) study. The technique is based upon a lognormal representation of

the probability distribution function of rainfall intensity, which is used in a forward

RTE model to generate a predicted TB histogram. The predicted histogram is compared

to the observed TB histogram for a given oceanic region, and the lognormal parameters

(logarithmic mean rainrate, probability of non-zero rainrate, standard deviation of

logarithmic rainrate) adjusted until the predicted TB histogram matches the observed

TB histogram.

1.2 Motivation

Recent studies indicate that physically-based precipitation retrieval schemes can

detect instantaneous rainrates and area-time averaged rainfall. However, the major

successes are for oceanic retrievals stemming from the high contrast between

precipitating clouds and the ocean background and the fact that rain layers produce the

rain signal. Land-based retrievals have only had limited success because of the general

lack of contrast between the land background and precipitation except when large ice

particles are present. In that case rain estimates are only indirect. The main scientific

objective of this study is to methodically and quantitatively determine how much

contrast does exist between raining and non-raining conditions for each of a large set of

passive microwave parameters. Once the robustness of each of the parameters is

quantified in terms of its relationship to rainfall, a statistical rainfall estimation

algorithm is generated on a training data set from one partial year of data then

validated on independent data sets from two different years. The seven channel/four

frequency SSM/I microwave measurements along with Indian Geosynchronous

Satellite (INSAT) infrared measurements serve as a starting point for this study. In
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addition to the basic channel brightness temperatures, 12 additional parameters are

created based upon the individual microwave channels. These include three

unpolarizcd TB quantities, three frequency dependent PCTs, three differential TBS at

vertical polarization, and three frequency dependent normalized degree of polarization

quantities. Furthermore, the shapes of the histograms for the separate frequencies will

be investigated. All of these parameters are listed in Table 1.2 and will be discussed, in

depth, in section 4. The robustness of these parameters are tested against weekly

precipitation totals from the subdivisional states of India during the summer monsoons

of 1987, 1988, and 1989.

The precipitation regime of the Indian summer monsoon was chosen because of

it's diverse rainfall characteristics. Indian monsoon precipitation is highly organized on

a variety of time and space scales. In addition, the magnitude of rainfall accumulation

over a week, is highly variable between weeks and regions due to factors such as

topography, latitude, continentality, and the phase of the monsoon. The character of

precipitation across India also shows variability with showery precipitation in the north

to more constant rains in the south (Ramage, 1971). Strong intra-seasonal variability at

various time scales related to northward propagating low frequency modes, quasi-

periodic formation of monsoon depressions, and the qausi-periodic passage of synoptic-

scale waves are well known features of the monsoon. The most well known intra-

seasonal variation, is the monsoon burst-break sequence, which is likely induced bv the

resonance of two distinct intra-seasonal modes. Signmficant inter-annual variability in

monsoon rainfall also occurs and is triggered by variation in the large scale circulation.

For example, the Indian monsoon season of 1987 is considered to be a year of deficient

rainfall (Das, et al., 1988), whereas the monsoon seasons of 1988 and 1989 provided the

,highest and second highest rainfalls of the decade (Das. et al., 1989; Gupta, et al., 1990).



11

TABLE 1.2: Definition of microwave and IR parameters.

19V
19H
22V
37V
37H
85V
85 H

19U = (19V + 19H)/2
37U = (37V + 37H)/2

85U = (85V + 85H)/2

19 PCT = 2.4(19V) - 1.4(19H)
37 PCT = 2.1(37V) - 1.1(37H
85 PCT = 1.82(85V) - 0.82(85H)

19/22DIF = 19V - 22V
19/37DIF = 19V - 37V
19/85DIF = 19V - 85V

19NDP = (19V - 19H)/19U
37NDP = (37V - 37 H)/37U
85NDP = (85V - 85 H) / 85U

INSAT IR



CHAPTER 2

Methodology

2.1 Probability Distribution Function Formation

The 35 subdivisional states of India shown in Figure 2.1 extend over the region

being used to examine the robustness of microwave and infrared parameters for

detection of time-area averaged rainfall over land. In order to assemble the satellite

measurements into the proper subdivisional states, the boundaries of each subdivision

are first determined by latitude and longitude coordinates which are entered into a non-

uniform grid file. Since microwave TBS exhibit significantly differen, signatures

depending upon whether the pixel is located over land or water, steps must be taken to

ensure that pixels contaminated by water along coastlines are eliminated. Therefore, TB

data within 60 km of a coastline have been removed from the grid file. The Andaman

and Nicobar Island Chain (subdivision 1), and the Lanshadweep Island Group

(subdivision 35) were removed because pixels over these subdivisions at microwave

frequencies do not contain a significant number of land pixels devoid of oceanic

contamination.

12
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Figure 2.1: Indian subdivisions used for weekly rainfall totals.
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Before the SSM/I measurements are mapped to the subdivisions, the

measurements are deconvolved to the spatial resolution of the 85 GHz channel. Once

the measurements are deconvolved and the subdivision grid file defined, the data are

mapped to the subdivisional states in a non-ambiguous way. Given the mapping,

histograms of brightness temperature are created by counting the number of times each

brightness temperature occurs in a given subdivision over a period of one week. The

histograms are then normalized by dividing the individual frequencies by the total

frequency within a complete histogram. This defines a probability distribution function

(PDF) of TBs with the normalization allowing for straightforward PDF comparisons

between different sized subdivisions and different sample counts in the histograms.

Probability distribution functions have been produced by subdivision for each of

the seven SSM/I frequencies, and twelve frequency combinations on a 1-week basis,

treating morning and evening data separately for the Indian monsoon seasons of 1987

through 1989. In terms of nomenclature, the seven SSM/I frequencies and twelve

frequency combinations will be referred to as parameters, in which M and E subscripts

are attached to the parameters to designate morning and evening time periods,

respectively. In India, morning orbits range in time between 2200-0200 GMT (0330-0730

MST) and evening orbits range from 1100-1500 GMT (1630-2030 MST).

In addition to the SSM/I parameters, INSAT IR measurements have been

mapped to the subdivisional grid and subsequently formed into PDFs in the same

manner as the SSM/I parameters. The main differences between the SSM/I and INSAT

data sets are that the IR measurements are available twice daily in 1987, eight times

daily in 1988, but not at all during 1989.
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2.2 Quality Control Procedures

Although steps were taken to remove ocean contamination from pixels along

coastlines, PDFs were also visually checked to ensure contamination did not occur due

to satellite navigation errors. Specifically, 19 GHIz PDFs that contained secondary peaks

at low TBS which did not fluctuate with time were deleted from the data set. These

secondary peaks are representative of pixels which contain ocean areas which appear

radiometrically cold when compared to land surfaces. Figure 2.2 and 2.3 help illustrate

the ocean contamination problem. Figure 2.2 shows 20 weeks of 19 VE PDFs for the

Konkan and Goa region (subdivision 23). Secondary peaks at about 220 K are evident

throughout the 20 weeks and are most pronounced during the first 5 weeks (days 119-

153) when little to no rain fell in the region. In comparison, Figure 2.3 contains 20 weeks

of 19 VE PDFs for Madhya Maharashtra (subdivision 24) which is located inland and

adjacent to the Konkan and Goa region. None of these PDFs exhibit secondary peaks

associated with low emissivity ocean surfaces. This data elimination procedure resulted

in removing Gangetic West Bengal (subdivision 6), Saurashtra, Kutch, and Dui

(subdivision 22), Konkan and Goa (subdivision 23), Coastal Karnataka (subdivision 31),

and Kerala (subdivision 34), from the data set.

Mountain regions, sometimes covered by snow, also presented problems because

their PDFs are strikingly different from PDFs in the remaining subdivisions of India.

Snow varies in emissivity depending upon whether it is characterized as dry or moist.

Dry snow has low emissivity which approaches the emissivity of a water surface,

whereas moist snow has emissivities nearly equal to that of dry land (Wilheit, 1972).

These PDFs are characterized by a broad range of TB, caused by combinations of dry

and moist snow mixed in with precipitation and other types of land surfaces, with a
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minor peak related to the land background at high TB. Figure 2.4 contains 20 weeks of

3 77VE PDFs for Jammu and Kashmir (subdivision 16) which has a bimodal distribution

which can be used to identify regions containing snow. The distribution of cold TB has a

mean near 225 K and is composed of FOVs containing dry s-iow. As summer

approaches the cold TB distribution shrinks and the mean of the entire PDF warms.

However, a significant number of pixels exhibit cold TBS representative of FOVs

containing either moist snow on the surface or rain. In contrast, Figure 2.5 contains the

37VE PDFs for East Rajasthan (subdivision 18) which is located in north central India

and shows the monomodal shape characteristic of 37 GHz PDFs. The peak of the

monomodal distribution in East Rajasthan is located near 275 K and can also be seen in

Jammu and Kashmir as a minor peak, which is representative of a snow-free land

surface. The subdivisions removed by this process include Arunchal Pradesh

(subdivision 2), Hills of West Uttar Pradesh (subdivision 12), Himachal Pradesh

(subdivision 15), and Jammu and Kashmir (subdivision 16). In total, 11 subdivisions

have been deleted from the data set, because of either ocean or snow contamination.

In addition to water-snow contamination quality checks, data quality checks

were made to eliminate weeks with significant bad data or insufficient satellite coverage

during 1988. Significant amounts of bad data can be detected by analyzing the mean of

the vertical polarization difference between 19V and 22V (19/22DIF). This parameter is

useful in detecting bad data because it has a narrow range of variation associated with it

and so large deviations are readily discernable. This parameter revealed 3 weeks in

which the weekly subdivisional means were greater than 3 standard deviations from

the grand mean in every subdivision. Because this occurred in every subdivision for the

same 3 weeks regardless of rainfall, it is assumed that bit dropouts or pixel mislocation

errors had impacted those data.
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Finally, a check for insufficient satellite coverage was applied. If the largest

number of pixels in a given subdivision and week for the entire six month season

represents full satellite coverage, then any week which had less than 15% of full

coverage was eliminated. The above two final checks result in 4 weeks of eliminated

data for 1988.

2.3 Robustness of Individual Parameters

To determine the robustness of individual parameters, four variables based upon

each parameter are considered. The first two are defined from the means and standard

deviations of each microwave and infrared parameter PDF. The other two are defined

from cumulative distribution functions (CDF) created by associating the number of

pixels at each TB coordinate within a PDF with the cumulative count from the cold end.

From the CDF, slope and intercept factors are obtained. The slope factor is determined

by measuring the gradient of TB accumulation over the range of TBS within the CDF.

The intercept factor is defined as the coldest TB present within a CDF.

In regards to nomenclature, the mean and standard deviation of a PDF and the

slope and intercept factors of a CDF will be referred to as variables. The four variables

are used to test the robustness of each microwave and infrared parameter against

measured subdivisional weekly rainfall.

For a one parameter least squares linear regression test of robustness, the

coefficient of determination (R2) is used to calculate the correlation coefficient (R). This

quantity is then is used as the criterion tor evaluating microwave and infrared
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parameter performance of a given variable (mean, slope factor, etc.). R2 is calculated as:

R2 = 100(1 -. ,SS)
SST (1)

where SSE is the error sum of squares, SST is the total sum of squares and the

correlation coefficient is found by taking the square root. All statistics calculations used

in this paper were obtained from the IMSL statistics library (IMSL, 1989).

2.4 Robustness of Multi-parameter Combinations

The coefficient of determination (R2) increases as new parameters are added to a

regression model, however a larger R2 is not necessarily indicative of a better model. If

the error sum-of-squares in the new combination does not decrease by an amount equal

to the original combination mean square error (the sum of a multi-parameter squared

bias plus its variance), the new combination will have a larger mean square error due to

the loss of one degree of freedom for error, thus resulting in a worse regression. For this

reason, an adjusted coefficient of determination called R2, (defined below), is used to

calculate the correlation coefficient since it does not necessarily increase as additional

parameters are introduced. The definition of R2 is given by (Montgomery and Peck,

1982):

R = 100[1 - (n..l) (SUS&)]

n-p-l SST (2)

where n is the number of observations, and p the number of regressors.



23

2.5 Testing of Single and Multi-parameter Models on Independent Data Sets

The results obtained during the 1988 monsoon season are validated on

independent data sets from the 1987 and 1989 monsoon seasons. To determine how

individual parameters compared to the 1988 training data set, an unadjusted R2 is

calculated from the independent data sets, which in turn yields (R) the correlation

coefficient. Multi-parameter model validation is accomplished by applying the optimal

regression model from the 1988 satellite measurements to the 1987 and 1989

measurements, and then analyzing the differences in correlation coefficients against

those obtained from independent regression models from 1987 and 1989. For 1989, the

optimal regression model, referred to as W085V, is calculated without parameters

containing the 85V channel because this channel completely degraded after late 1988.

As a result, 85V, 85U, 85PCT, 19/85DIF, and 85NDP must be eliminated from the 1989

analysis. Thus, two regression models have been obtained from the 1988 data training

set, one for use with 1987 (the optimal model) and the other for 1989 (the W085V

model).



CHAPTER 3

Data Sources

The data used in this study include Indian subdivisional weekly rainfall, passive

microwave measurements from the DMSP SSM/I instrument, and INSAT infrared

measurements.

3.1 Indian Subdivisional Rainfall

Indian subdivisional weekly rainfall data were obtained from the Indian

Meteorological Department's Weekly Rainfall Reports. [These were kindly provided by

the staff librarian at the National Center for Atmospheric Research.] The data consist of

weekly averages of rainfall recorded at raingages for each of India's 35 subdivisions

(Figure 2.1) for the inclusive periods: Jul 9 - Oct 28, 1987 (16 weeks); Apr 28 - Oct 26,

1988 (26 weeks); and May 4 - 25, Oct 1989 (25 weeks). The dates for each week are listed

in Tables 3.1 for 1987, 1988, and 1989.
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Table 3.1: Weeks used in 1987, 1988, and 1989 for this study.

1987

9 -15Jul 3 - 9Sep
16 - 22 Jul 10 - 16 Sep
23 - 29 Jul 17 - 23 Sep
30 Jul - 5 Aug 24 - 30 Sep
6 -12Aug 1 - 7Oct
13 - 19 Aug 8 - 14 Oct
20 - 26 Aug 15 - 21 Oct
27 Aug - 2 Sep 22 - 28 Oct

1988

28- 4 May 28 Jul- 3 Aug
5 -11May 4 -10 Aug
12 - 18 May 11 - 17 Aug
19 - 25 May 18-24 Aug
26 May - I Jun 25-31 Aug
2 - 8 Jun 1- 7 Aug
9 -15 Jun 8 -14 Sep
16 - 22 Jun 15-21 Sep
23-29 Jun 22-28 Sep
30 Jun - 6 Jul 29 Sep - 5 Oct
7 - 13 Jul 6 -12 Oct
14- 20 Jul 13- 19 Oct
21 - 27 Jul 20 - 26 Oct

1989

4 -10May 3 -9 Aug
11 - 17May 10 - 16 Aug
18 - 24 May 17 - 23 Aug
25 - 31 May 24 - 30 Aug
1 -7 Jun 31 Aug - 6 Sep
8 -14Jun 7 -13 Sep
15 - 21 Jun 14 - 20 Sep
22 - 28 Jun 21 - 27 Sep
29 Jun - 5 Jul 28 Sep - 4 Oct
6 -12Jul 5 -11Oct
13 - 19 Jul 12 - 18 Oct
20 - 26 Jul 19 - 25 Oct
27 Jul - 2 Aug
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3.2 Passive Microwave SSM/I Measurements

The SSM/I measurements used in this project were obtained from antenna

temperature data tapes produced by Remote Sensing Systems (Wentz, 1991) and

provided by NASA. The basic SSM/I data set produced for this project consists of

brightness temperatures for each of the seven channels over the Indian subcontinent

an.d surrounding waters. The brightness temperatures are all deconvolved to the spatial

resolution of 85 GHz channels (15 km x 13 kin). Each PDF contains one week of data for

each of the parameters listed in Table 1.2 coinciding with the weekly rainfall reports of

the Indian Meteorology Agency.

3.3 INSAT Infrared Measurements

The INSAT infrared (IR) measurements used in this project were obtained from

the Indian Meteorological Department (IMD) through the U. S. National Science

Foundation under the auspices of the Indo-US Science and Technology Exchange

Program (Smith et al., 1988). The d. ta set consists of reduced resolution (22 km) IR

measurements corresponding to the dates of the available Liclian subdivisional rainfall

reports as described in section 3.1 and bounded by the region described in section 3.2.

Normally IR measurements are available two times per day at 0600 and 1200 GMT for

1987 and eight times per day at 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 GMT

for 1988. Lamm et al. (1991), has provided a detailed description of the INSAT data,

including the calibration and navigation procedures.



CHAPTER 4

Analysis of Microwave and Infrared Variables

In this section, the properties of the microwave (MW) PDFs and CDFs and IR

PDFs will be examined in detail. This involves the means and standard deviations of the

MW PDFs, the means of the IR PDFs, and the slope and intercept factors of the MW

CDFs. Then, multi-parameter regression models will be built to evaluate how

individual MW and IR parameter variables behave in conjunction with other MW and

IR parameter variables.

4.1 Robustness Analysis of Individual Parameters

4.1.1 Properties of the microwave probability distribution functions. The mean

of each parameter PDF is used to estimate the measured area-averaged rainfall in each

subdivision during one week. The mean of a PDF of a particular parameter represents

the average value of the samples in the distribution. The units of the average brightness

temperatures, polarization corrected temperatures, or polarization difference

temperatures are in degrees Kelvin. For the frequency dependent normalized degree of

polarization parameters, the mean represents a non-dimensional quantity. Scatter

diagrams of the means of the PDFs of a given parameter versus measured subdivisional

27



28

rainfall show that, in most cases (except 19NDP and 37NDP), rainfall increases as the

mean of the parameter decreases. However, the means tend to decrease slower as the

weekly rainfall amounts increase, particularly above 200 mm. The underlying behavior

of the scatter diagrams becomes difficult to interpret beyond 200 mm because there are

so few events at these higher totals, thus revealing the limited sampling capabilities of

polar-orbiting satellites. Additionally, at very low rain rates, the mean exhibits a

significant amount of scatter. Part of this is due to the wide variety of background

radiances emanating from the surface due to surface temperature, hydrologic and

orographic variability within and among subdivisions.

Figure 4.1 illustrates the variation of the parameter means in terms of the

correlation coefficient for the morning and evening MW parameters. Table 4.1 lists the

correlation coefficients and the root mean square (RMS) error of the PDF means for the

morning and evening parameters. From the results, it is evident that the evening MW

measurements exhibit a 20 percent stronger correlation with the observed rainfall than

do morning MW measurements, except for 85V, 85U, and 85PCT. No morning MW

parameter has a correlation greater than 0.60, however, evening MW parameters have a

few over this threshold (19V, 19U, 37U, 19/22DIF). In addition, the RMS errors

associated with all the parameters are large, ranging from 35.12 to 46.56 mm. The higher

rainfall totals contribute significantly to the size of these errors. In many of these cases

when using the associated regression equation to estimate total measured rainfall,

underestimates exceed 150 mm.

An analysis of the parameter means provides insight into how each behaves with

respect to measured subdivisional weekly rainfall. The 19 GHz channels have the

highest correlation for evening data of any MW frequency at that time. Figure 4.2a-d

shows the scatter diagrams for 19 VM, 19 HM, 19 VE, and 19 HE. Figure 4.2b shows that the
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Table 4.1: Correlation coefficients and RMS errors for the
mean of the 1988 microwave PDFs.

Parameter Morning Orbits Evening Orbits

R rms error R rms error

19V -0.512 40.15 -0.638 35.96
19H -0.482 40.96 -0.593 37.60
22V -0.426 42.30 -0.562 38.64
37V -0.510 40.21 -0.563 37.17
37H -0.483 40.94 -0.554 38.89
85V -0.546 39.17 -0.551 40.13
35H -0.473 41.19 -0.493 40.64
19U -0.538 39.40 -0.651 35.46
37U -0.545 39.20 -0.659 35.12
85U -0.527 39.72 -0.514 40.07
19PCT -0.247 45.29 -0.397 42.87
37PCT -0.294 44.67 -0.390 43.01
85PCT -0.540 39.35 -0.488 40.77
19/22DIF -0.527 39.72 -0.632 36.17
19/37DIF -0.338 43.99 -0.477 41.03
19/85DIF -0.149 46.23 -0.446 41.81
19NDP +0.106 46.49 +0.076 46.56
37NDP +0.103 46.50 +0.156 46.13
85NDP -0.182 45.96 -0.219 45.56
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scattering is most tightly grouped for 19 VE in comparison to the other 19 GHz

parameters. For all of the 19 GHz parameters, a clear decrease in the mean TB occurs as

rainfall increases. The sensitivity between low and high rainfall situations is in excess of

20 K for all 19 Gi-z parameters. These parameters are sensitive to variations in surface

emissivity and relatively insensitive to surface temperature variations and since the

measurements have been deconvolved, the affects of beam filling have been

substantially reduced, thus leading to the relatively high correlation coefficients.

The lowest correlation of the first seven parameters (that is the individual

channel mean TBS) is found for 22 VM. The mean of 22 VE shows a stronger correlation

but appears to be due to variations in TB caused by surface heating near zero rainfall

which shifts the intercept of the least squares fit to warmer TB. The 22 GHz channel is

sensitive to variations in atmospheric water vapor and therefore by itself, not a reliable

parameter for detecting rainfall, because it responds similarly to precipitating and non-

precipitating clouds. The scatter diagrams (Figure 4.3a-b), show that the mean of the

22V PDFs approach a lower limit near 280 K across the range of rainfall. This represents

a loss of sensitivity due to the presence of water vapor when compared to the mean of

19 GHz channels.

Turning to 37 GIz channels scatter diagrams (Figure 4.4a-d), the decrease in the

mean of the PDF in the vertical polarization TB, with respect to rainfall, during the

morning and evening reveals a sensitivity of about 10-15 K The mean of the PDF of the

horizontal channel has a slightly greater sensitivity of 15-25 K. The mean of the

parameter 3 7 VE ranks third among the first seven parameters, falling behind 19VE and

19 HE. The mean of the parameters 3 7HM and 3 7HE exhibit significant scatter at mid-

range rainfall totals (100-200 mm) as compared to the 3 7VM and 37 VE. The amount of

scatter at the mid-range rainfall totals may be indicative of the rainrate at the time of
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measurement with higher TB representing surface attenuation of the surface emission

by light rainfall and lower TB representing scattering caused by ice during heavy

rainfall.

The 85 GHz channels are very sensitive to scattering cauzeci by ice in the upper

regions of precipitating clouds and are therefore a less direct measurement of rainfall

for the case of cumulonimbus clouds. Oddly, the vertical and horizontal 85 GHz

channels for evening data exhibit the lowest correlation coefficients of the first seven

parameters (except for 22 GHz) but 85VM exhibits the highest correlation of the same

parameters during the morning. Unlike these seven parameters, the difference between

the morning and evening correlation coefficients is small. This suggests that the 85 GHz

channel is less sensitive to diurnal fluctuations in rainfall. Figure 4.5a-d contain the

scatter diagrams for the mean of the PDF for the 85 GHz parameters. The sensitivities of

the 85 GHz parameters are less than those of the 37 GHz parameters, averaging about

10K.

Before an evaluation of the remaining 12 parameters is made, an explanation of

each is warranted. The first class of parameters (in terms of nomenclature, they are

referred to as 19U, 37U, and 85U) are unpolarized brightness temperatures. They

represent the average of the vertical and horizontal polarizations.

The mean of parameter 19UE, has the second highest correlation coefficient

(-0.651) of any morning or evening parameter mean. The scatter diagram (Figure 4.6b),

shows a clear decrease in TB with increasing area-averaged rainfall and a sensitivity of

at least 20 K. This is due to the intrinsic properties of MW radiation at 19 GHz. At this

frequency, for low rainrates, surface emission dominates the brightness temperature,

but as rainfall increases attenuation of the surface emission increases leading to colder

TBS. The unpolarized parameters are desensitized to surface processes that induce
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polarization (soil moisture, vegetation cover, etc.). This can be seen by looking at the

variance of the means of the PDFs of 19V, 19H, and 19U. Both 19V and 19H have higher

TB variance than does 19U. For evening data the variance is 67.3 and 74.4 for 19VE and

19 HE, respectively versus 59.7 for 19UE.

The most robust parameter is 37 UE with a correlation coefficient of -0.659. This

intermediate frequency is affected by both emission and scattering depending upon the

intensity of rainfall. At low rainrates surface emission is the dominant radiative feature.

At higher rainrates, surface attenuation occurs and as the rainfall continues to increase,

scattering becomes the dominant radiative feature due to large ice concentrations above

the freezing level. Figure 4.6d shows that it has a sensitivity of more than 20 K.

The parameter 85U, although having a comparatively high correlation

coefficient, does not provide any new information that can not already be attained by

using the polarized 85 GHz channels separately (the correlation between 85U and 85V

or 85H exceeds 0.965).

The next class of parameters is the PCT, which was described in section 1.1. PCTs

are not robust parameters of area-time averaged rainfall over land. However, the

correlation coefficients generally increase with increasing frequency because PCTs are

primarily determined by volume scattering (in the presence of a scattering surface)

which is readily detected at the higher frequencies. The scatter diagrams of each

frequency dependent PCT parameter are shown in Figure 4.7a-f. From these diagrams,

it can be seen that 19PCT and 37PCT occasionally exhibit very high mean TBS at low

rainfall totals. It may be possible that the coefficients for the vertical and horizontal

channels in the PCT formulation may not be optimal for use over India.

Differential TBs at vertical polarization between 19 GI-z and 22, 37 and 85 GHz

provides another class of parameter to test for robustness. For terminology in this
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paper, the difference between 19 GHz and the other three MW frequencies will be called

19/22DIF, 19/37DIF, and 19/85DIF. The scatter diagrams of these parameters are

contained in Figure 4.8a-f.

The parameter 19/22DIF, is sensitive to atmospheric water vapor which

attenuates emitted radiation from the surtace. In addition, 19/22DIF exhibits warming

between morning and evening at low rainrates due to surface heathg, as did both 19

and 22 GHz. The parameter, 19/22DIFE, has the 3rd highest correlation coefficient (-

0.632). The range of TB for 19/22DIFE is +7 to -14 , with a slow decrease in TB as area-

time averaged rainfall increases. The sensitivity of this parameter is about 10 K.

The 19/37DEF parameter is a nmeasure of the difference in surface emissivity and

rainfall attenuation of the surface at 19 GHz and the emission and scattering

characteristics at 37 GHz. For 19/37D1F, the mean of the PDF of 19 GHz is generally

greater than the mean of the PDF at 37 GHz, leading to a mean difference of about 3 K

and variance of 9.7 K2 . Although the data are highly concentrated, they are oriented

along a horizontal lirne. This explains the !ower correlation coefficients in Table 4.1 and

Figure 4.1.

The last parameter of this type, 19 / "5DIF, is a measure of the surface emnission

after the affects of scattering are removed. Based upon the correlation coefficients for

this parameter, it does not appear to be well suited as a reliable estimator of

subdivisional weekly rainfall. In addition, the scatter diagram for 19/85DIFM kFigure

,..8e), shows significant and unorganized scatter thus confirming the parameter's lack of

robuscness.

The last three parameters are frequency dependent n-,'nalized degree of

polarizations. These will be referred to as 19NDP, 37 NDP, and 85NDP. All three of
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these parameter means show very low correlation coefficients during both morning and

evening orbits and are not robust parameters of subdivisional weekly rainfall.

The standard deviation of the PDF might have a significant correlation with

measured weekly subdivisional rainfall based upon the assumption that as rainfall

increases, the variances of the TB PDFs increase due to the presence of colder TBs in

FOVs containing rain. A review of the correlation coefficients of the standard deviation

of each parameter regressed against weekly rainfall does not generally support this

assumption. Table 4.2 shows the results for each parameter for morning and evening

orbits during 1988. For most parameters, the correlation coefficients are small with large

RMS errors. However 8SHM and 85 UM show correlation coefficients of 0.584 and 0.509,

respectively. This suggests that the strong scattering effects at 85 GHz can produce 2nd

moment correlation in a PDF. In general, morning orbits have larger correlation

coefficients than evening orbits. Also, as rainfall totals increase, the standard deviations

also increase, as seen by the generally positive sign of the correlation coefficients.

The next logical step is to investigate whether the addition of the standard

deviation to the mean to create a linear two-variable model for each parameter results in

a better estimate of the measured subdivisional rainfall. The linear two variable model

is given by equation 3.

y = ao + a, * (mean) + a2 * (standard deviation) (3)

where y is the estimated rainfall; a0 is the model intercept and a, and a2 are the

regression coefficients. Once the coefficients are calculated, the estimated rainfall totals

are calculated and corrected for negative rainfall. The resulting correlation coefficients

for morning and evening orbits are given in Figure 4.9. Correlation coefficients using
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Table 4.2: Correlation coefficients and RMS errors for the standard
deviation of the 1988 microwave PDFs.

Parameter Morning Orbits Evening Orbits

R rms error R rms error

19V 0.028 46.73 0.180 45.98
19H 0.079 46.60 0.137 46.30
22V -0.194 45.86 -0.042 46.71
37V 0.040 46.71 0.075 46.62
37H 0.079 46.60 0.148 46.24
85V 0.287 44.78 0.147 46.24
85H 0.584 37.96 0.236 45.43
19U 0.085 46.58 0.206 45.75
37U 0.094 46.54 0.242 45.36
85U 0.509 40.24 0.229 45.50
19PCT -0.008 46.74 0.129 46.36
37PCT 0.133 46.33 0.067 46.64
85PCT 0.101 46.51 0.028 46.73
19/22DIF 0.183 45.96 0.264 45.09
19/37DIF 0.180 45.99 0.149 46.23
19/85DIF 0.284 44.83 0.264 45.09
19NDP 0.014 46.74 0.033 46.72
37NDP 0.051 46.69 0.194 45.86
85NDP -0.126 46.37 -0.119 46.41
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the mean-standard deviation combination generally increase, especially for morning

orbits, over correlations using the mean only. In addition, the differences between

morning and evening orbits is significantly reduced for most parameters when using

the two variable model as compared to the one variable model as shown in Figure 4.10.

This is true except for 85H and 85U, which may be due to the large differences in the

standard deviations between morning and evening orbits of these parameters. It would

be speculative at best to physically explain why the difference between morning and

evening parameters decreases when the standard deviation is added to the model.

4.1.2 Properties of the infrared probability distribution functions. The mean of

the IR PDFs represent the time-area averaged cloud-top temperature, or under cloud-

free conditions, the surface skin temperature attenuated by the overlying atmosphere.

The means of the IR PDFs for 1988 are independently evaluated following the methods

in section 2.3. Rainfall retrieval algorithms based upon IR measurements, unlike MW

measurements, provide an indirect estimate of rainfall because these measurements are

only able to detect cloud top temperatures and cannot penetrate through cloud layers.

In addition, different cloud types can have similar temperatures but far different surface

weather conditions. For example, high, dense cirrus may have the same cloud-top

temperature as a cumulonimbus, however, dry surface conditions prevail under the

cirrus while heavy rainfall occurs under the cumulonimbus.

The results of the IR analysis are compiled in Table 4.3. Correlation coefficients of

the mean of the IR PDFs are high when compared against the mean of the PDFs of most

MW parameters. Only a few of the evening MW parameters have correlation

coefficients that approach those of the IR correlation coefficients. In addition, the IR

correlation coefficients appear to be out of phase with the MW correlation coefficients.
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Table 4.3: Correlation coefficients and RMS errors for the mean of
the 1988 IR PDFs.

GMT MST Correlation RMS
Coefficient error

0000 0530 -0.7140 32.73
0300 0830 -0.7217 32.36
0600 1130 -0.6856 34.03
0900 1430 -0.6212 34.63
1200 1730 -0.5624 38.65
1500 2030 -0.5534 38.94
1800 2330 -0.6100 37.04
2100 0230 -0.6710 34.66



48

The mean of the morning IR PDFs have high correlation coefficients while the mean of

the morning MW PDFs have low correlations, and vice versa in the evening. Figure 4.11,

show that a pronounced diurnal cycle in the correlation exists using the mean of the IR

PDFs.

Studies have shown that the preferred period of thunderstorm occurrence, in

India, is during the night with maximum occurrence during the early and late evening

and a secondary maximum in the afternoon (Sivarmakrishnan, 1990). Thunderstorm

activity is at a minimum in the morning. It should be noted that significant departures

from the general diurnal cycle occurs near coastal regions and elevated topography.

Based upon this, it would seem that the high morning IR correlations are erroneous.

This can be .explained by understanding that the ER measures only cloud top

temperatures and not rainfall. For example, when thunderstorm activity begins to

increase throughout the afternoon, cirrus anvil debris is generated, thus contaminating

the FOVs with non-raining clouds having low temperatures. In contrast, the mean of

MW parameter PDFs have gernerally higher correlations than the mean of IR PDFs

during the evening because at MW frequencies, cirrus clouds are essentially

transparent. Thus only the raining cloud and the underlying surface affect the MW

measurements.

4.1.3 Properties of microwave cumulative distribution functions. The

properties of the MW CDFs investigated include the slope and intercept factors. The

slope factor represents behavior in the tail of the CDF under varying rain conditions.

For example, as rainfall increases, the slope should decrease due to colder TB being

present within the CDF. The intercept factor as used here represents the coldest TB

found within a subdivision for a given week and may not be representative of overall
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conditions during the week. Other definitions of the intercept factor are possible and

may return better results, however, they were not investigated in this study.

A linear least squares fit of the slope factor to measured rainfall is calculated in

the same manner as used for the PDF analysis. The correlation coefficients and RMS

error for the morning orbits and evening orbits are compiled in Table 4.4. An

examination of these figures reveals that the slope factor of the CDF is not a robust

variable to be used as an estimator of subdivisional rainfall. The highest correlation at

any frequency is -0.331 for 85HM.

A.r an;ilvsi of the intercept factor of the CDF reveals that it is not a robust

variable. Table 4.5 list the correlation coefficients and the mean square errors for the

morning and evening orbits. The most effective frequency for subdivisional rainfall

detection is again 85HM with a correlation coefficient of almost -0.382-

4.2 Multi-parameter Regression Analysis

Although a correlation coefficient of -0.659 using the mean of the 37UE PDF is

respectable for estimating rainfall over land from MW measurements, improvements

are possible by using a multi-parameter regression model based upon the mean. All 38

MW parameters are entered into a multiple linear regression model which selects the

optimal regression model for each subset of parameters for use in 1987. The 85 GHz

vertical channel malfunctioned in 1989, therefore 28 parameters are used in a multiple

linear regression program to obtain the optimal model, W085V, for use in 1989. A

Regression Model Correlation Function (RMCF) is generated to describe model

behavior by obtaining the correlation coefficient after new parameters are sequentially

added to the model.
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Table 4.4: Correlation coefficients for the slope factor of
the 1988 microwave CDFs.

Parameter Morning Orbits Evening Orbits

R rms error R rms error

19V -0.081 46.59 -0.060 46.66
19H -0.184 45.95 -0.196 45.84
22V 0.240 45.38 0.241 45.37
37V -0.064 46.65 0.006 46.75
37H -0.103 46.50 -0.083 46.58
85V -0.169 46.08 -0.127 46.37
85H -0.331 44.11 -0.187 45.92

Table 4.5: Correlation coefficients for the intercept factor
of the 1988 microwave CDFs.

Parameter Morning Orbits Evening Orbits

R rms error R rms error

19V -0.096 46.53 -0.147 46.24
19H -0.034 46.72 -0.055 46.67
22V 0.124 46.39 0.026 46.73
37V -0.046 46.70 0.003 46.75
37H 0.019 46.74 -0.003 46.75
85V -0.121 46.40 -0.082 46.59
85H -0.382 43.20 -0.142 46.28
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4.2.1 Model building with microwave parameters. The RMCF of the optimal

1988 multi-parameter regression model is shown in Figure 4.12. The correlation

coefficient reaches a limit near -0.80, beyond which the addition of MW parameters to

the optimal model yields little information with which to predict the measured

subdivisional rainfall. Table 4.6 lists the MW parameters used in the optimal regression

model up to 8 variables, along with correlation coefficients and RMS errors.

Interestingly, some of the parameters that appear in the optimal models are not

individually robust. For example, the two-parameter optimal model contains 37 UE and

19/85DIFM. From Table 4.1, the correlation coefficient of 19/85DIFM has a correlation

coefficient of -0.149, but in the two-parameter model it is more important than any of

the remaining 36 parameters. It is difficult to say why 19/85DIFM entered the model at

this point, however, it is instructive to examine the top five optimal two-parameter

models. Four of the top five contained 3 7 UE and some form of a morning 85.0HGz

parameter (19/85DIFM, 85PCTM, 85VM, and 85UM). Therefore, information concerning

the scattering measured during the morning at 85 GHz appears to be important and

should be included in any regression model used to estimate area-time averaged rainfall

over land.

An optimal model containing three parameters adds, in addition to the terms

from the two-parameter model, 19/22DIFM and increases the correlation coefficient to

0.736 and reduces the RMS error to 31.62 mm. This term provides information

concerning the attenuation by water vapor of the surface emission. Individually,

19/22DIFM and 19/22DIFE have high correlations with rainfall of -0.525 and -0.623,

respectively. Based upon it's early entry into the regression model and its high

correlation with measured rainfall, it is clear that this is a robust parameter to use to

observe area-time averaged rainfall over land regions. In the optimal three-parameter
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Figure 4.12: Regression Model Correlation Function (RMCF) for optimal multi-
parameter model based upon the mean of the 1988 PDFs.
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Table 4.6: Parameters used in optimal regression model along
with correlation coefficients and RMS errors at each step.

Parameter R rms error

37UE -0.659 35.12

19/85DIFM -0.704 33.18

19/22DIFM -0.736 31.62

85PCTE -0.749 30.97

19PCTM -0.779 29.28

19 PCTE -0.786 28.89

85VE -0.791 28.60

85NDPM -0.804 27.79
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model, another trend is noticeable in the top five parameter candidates for inclusion

into the model. Each of the candidate parameters is a form of the 19 GHz channel

(19DIFM, 19/37DIFM, 19/22DIFE, 19NDPM, and 19 HM). In addition, the top three are

differential TB at vertical polarizations of the lower frequencies. Therefore, it appears

that the surface and rain-layer emission and degree of water vapor absorption

variability is taken into account with the addition of these parameters. Moreover, when

additional parameters are added to the optimal model, it appears that the key physical

radiative processes (surface and rain-layer emission, within cloud volume scattering,

water vapor absorption variability, and polarization differences) are accounted for.

When a combination of the mean and standard deviation are used in a multi-

parameter regression model, results similar to that of models using only the mean are

obtained. Figure 4.13 shows the RMCF of the optimal mean-standard deviation multi-

parameter regression models for the first 8 parameters. The combination mean-standard

deviation have slightly higher correlation coefficients than the mean-only models ,

however, the difference is insignificant. The primary difference between the two

approaches is the subset of parameters that are chosen in each optimal regression

model. Only three of the parameters are common to both approaches; 19/22DIFM,

85PCTE, and 19/85DIFM. Table 4.7 lists the parameters used in the first 8 regression

subsets, along with correlation coefficients and the RMS model errors.

4.2.2 Model building without 85V GHz parameters. Table 4.8 lists the best

parameters, without 85V parameters (W085V), at each step through an 8 parameter

regression model. An interesting feature of this model is that with the exception of

3 7 UE, when fewer than five parameters are used, only SSM/I frequencies appear. Also,

the correlation coefficients of the W085V model, are approximately 5 percent less than
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Table 4.7: Mean + standard deviation regression model
parameters with correlation coefficients and RMS errors.

Parameter R rms error

l9UE -0.676 34.45

85HM -0.725 32.14

3 7UM -0.740 31.42

19/22DIFM -0.754 30.69

85PCTE -0.763 30.16

19VM -0.794 28.40

85HE -0.801 28.03

19/85DIFM -0.807 27.94
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Table 4.8: W085V multi-parameter regression model parameters
correlation coefficients and RMS errors.

Parameter R

37UE -0.659
22 VM -0.677

19VE -0.706

85 HM -0.739

37HE -0.747

19NDPE -0.760

37PCTE -0.767

19PCTM -0.777
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the optimal 1988 model. The small difference is probably due to the high degree of

correlation between some parameters.

In the W085V two-parameter model, 2 2VM enters into the model following

37UE, however only a marginal increase in correlation occurs (0.018). Of interest, is that

in both this model and the full parameter models, a form of 22 GHz (19/22DIF) enters

into the regression very quickly. These parameters provide the model with information

concerning the average water vapor content of the atmosphere within a subdivision.

In the W085V three-parameter model, 19 VE enters the model, as a form of 19

GHz did in the models containing the 85V parameters. This and the fact that a form of

22 GHz appears in the optimal and WO85V regression models emphasis the importance

of these emission-based parameters. Until now, these parameters were of little use in

the detection of rainfall over land due to the size of the FOVs and associated beam-

filling errors. However, in this study the beam-filling errors have been reduced by

deconvolving the MW measurements to the higher spatial resolution of the 85 GHz

channels. Therefore, a higher degree of sensitivity to rainfall over land can be attained

by using deconvolved low frequency MW measurements. Again, as the number of

parameters in the W085V model increases, the key physical radiative processes are

accounted for. However, the parameters accounting for volume scattering are based

upon 37 GHz instead of 85 GHz.

4.2.3 Model building with microwave and IR parameters. Before a mixed IR-

MW multi-parameter regression model is created, an IR-only multi-parameter model is

examined using all eight of the daily measurements that are available in 1988. As shown

in section 4.1.2, the 0300 GMT measurements have the highest correlation (-0.721) with

measured subdivisional rainfall than any other IR measurement times. However, a

multiple regression of the means of the IR PDFs for the eight times they are available
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shows that the highest correlation (-0.738) occurs after four parameters (0300, 0900,

1500, and 2100 GMT) are entered into the model and then decreases as more parameters

are added. Based upon this, it is apparent that only one IR parameter is needed in a

mixed IR-MW optimal regression model due to the high correlations between IR

measurements. This was verified by using all eight IR parameters plus the 38 MW

parameters in a multiple linear regression program to obtain the best mixed IR-MW

regression model.

Section 4.1.2 shows that some morning IR parameters have higher correlation

coefficients than any of the MW parameters. An optimal IR-MW multi-parameter

regression model was obtained which shows that a mixed model can be constructed

which uses fewer parameters to attain the same performance level of MW models. Also,

as the number of parameters increase, a limit is again approached nearly equal to that of

the MW-only models. Figure 4.14 shows the RMCF based upon 0600 GMT IR

measurements in combination with MW parameters.

The optimal IR-MW models containing either 0000, 0300, 0600, or 2100 GMT IR

measurements all contained the same additional MW parameters. In addition, these

parameters all entered into the model in the same order. Table 4.9 lists the first 8

parameters based upon a optimal 0600 GMT IR-MW model. Individually, the remaining

IR measurements have correlation coefficients less than some evening MW parameters

and therefore do not enter the optimal IR-MW model until the third parameter.

Of interest, are the type of MW parameters which enter the optimal IR-MW

regression model. The second parameter to enter is 19/22DTFE, albeit evening, it is the

same parameter which enters the optimal MW regression models. In addition, the next

two parameters are differential TB at vertical polarizations (I 9 /85DIFM and

19/85DIFE).
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Figure 4.14: RMCF of optimal JR-microwave model based upon the mean
of the 1988 PDFs.
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Table 4.9: IR-microwave optimal regression model parameters
with the correlation coefficients and RMS errors.

Parameter R rms error

INSAT 06 GMT -0.685 34.03

19/22DIFE -0.759 32.14

19/85DIFM -0.789 31.42

19VM -0.800 30.69

19/85DIFE -0.811 30.16

85NDPM -0.812 28.40

85NDPE -0.816 28.03

19/22DTFM -0.818 27.94



CHAPTER 5

Validation Tests

Verification of the results obtained for the 1988 monsoon season is accomplished

by testing against results obtained from the monsoon seasons of 1987 and 1989.

Validation will be performed for the single and optimal (W085V) 1988 multi-parameter

models using the mean of the 1987 (1989) MW PDFs.

5.1 1987 Tests

Figure 5.1 illustrates the variation between individual parameters in terms of

correlation coefficients for morning and evening orbits. Table 5.1 lists the individual

parameter correlation coefficients and RMS errors. An interesting result, is that during

1987 the mean of the morning MW parameters have higher correlation coefficients than

their evening counterparts. This is the opposite of the results obtained for the 1988 MW

parameters. In particular, during 1987, 8 5PCTM has the highest correlation coefficient (

0.601); during 1988, 85PCTM has a correlation of -0.540 and was one of the few

parameters which had a higher correlation in the morning than it did in the evening.

This may be due to the evening 85PCTs being adversely affected by high surface

63
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Figure 5.1: Correlation coefficients of the mean of the 1987 morning and
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Table 5.1: Parameter correlation coefficients and RMS errors for 1987.

Parameter Morning Evening

Correlation RMSE Correlation RMSE

19V -0.512 36.06 -0.468 34.32

19H -0.461 39.16 -0.400 40.66

22V -0.398 40.44 -0.374 41.31

37V -0.520 37.45 -0.468 39.22

37H -0.470 38.96 -0.403 40.60

85V -0.598 35.25 -0.395 41.00

85H -0.486 38.54 -0.312 42.36

19U -0.508 37.96 -0.436 39.95

37U -0.520 37.66 -0.439 39.87

85U -0.549 36.85 -0.356 41.69

19PCT -0.298 42.11 -0.374 41.15

37PCT -0.342 41.42 -0.364 41.18

85PCT -0.631 33.63 -0.423 40.37

19/22DIF -0.547 36.89 -0.551 36.80

19/37DIF -0.306 42.00 -0.389 40.85

19/85DIF -0.029 44.10 -0.348 41.48

19NDP 0.120 43.80 0.178 43.74

37NDP 0.117 43.81 0.192 43.59

85NDP -0.136 43.70 -0.021 44.44
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temperatures. Both 19/22DIFM and 19/22DIFE have high correlation coefficients,

similar in magnitude to those of 1988.

The differences between 1987 and 1989 may be related to a shift in the diurnal

rainfall cycle based upon the following observations. A comparison of Tables 5.1 and 4.1

reveals that the difference between MW parameters during morning orbits is small.

However, the difference between the same parameters during the evening is much

larger. Because these correlations are between the means of parameter PDFs and weekly

rainfall totals, fluctuation in the correlation coefficients may be indicative of a shift in

the diurnal rainfall pattern.

Figure 5.2 illustrates how the RMCF based upon the optimal MW 1988 multi-

parameter model applied to 1987 data. As the the number of parameters increase, the

correlation coefficient does not always increase. This is, in part, due to the optimal 1988

parameters not being as robust during 1987. For example, all of the 1988 optimal multi-

parameter models are based upon 3 7UE since it has the highest individual correlation

coefficient of any MW parameter. However, in 1987, 3 7UE ranks 15 out of 38 MW

parameters. Since the optimal 1988 models are based upon 3 7UE, it is not surprising that

they do not perform as well in 1987.

To investigate which parameters might work best in a independent multi-

parameter model for 1987, a model was constructed using only as input the 1987 MW

measurements by the procedure in section 4.2.1. Figure 5.2 also shows the behavior of

the RMCF of the 1987 independent MW multi-parameter model. In the independent

1987 multi-parameter regression model, 85PCTM forms the basis of the model since,

individually it has the highest correlation with subdivisional rainfall. The second and

third parameters added are 37PCTM and 19/22DIFM, respectively (Table 5.2). Only

with the early inclusion of 19/22DIFM, do the 1987 and 1988 optimal multi-para-neter
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1987 RMCFs of Optimal 1988 and
Independent 1987 Models
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Figure 5.2: RMCFs of the Optimal 1988 microwave multi-parameter model
applied to 1987 data and the independent 1987 multi-parameter model.
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Table 5.2: Parameters used in independent 1987 regression
model along witn correlation coefficients.

Parameter R

85PCTM -0.630

37PCTM -0.695

19/22DIFM -0.764

37NDPE -0.780

85PCTE --0.789

19/22DIFE -0.800

37VE -0.813

37UM -0.815
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models share anything in common. In addition, the 1988 optimal model applied to 1987

and the independent model have a difference of 7.5% after eight parameters are entered

into the model. This occurs as the number of parameters increases, when the two

models contain many of the same class of parameters. Therefore, the key physical

radiative processes are accounted for in the 1987 independent model.

5.2 1989 Tests

Figures 5.3 illustrates the variation among individual MW parameters in terms of

correlation coefficients for morning and evening parameters. In 1989, like 1988, the

evening parameters have higher correlation coe." zie, ..S than their morning

counterparts. Table 5.3 lists the correlation coefficients an., ,• 'rrors of the 1989 data.

During 1989, 19VE and 3 7VE tied for the highest correlation coefficients (-0.545),

although 19 VE falls short of the results of 1988. However, based upon this, it appears

that ti';ese two parameters are able to detect time-area averaged rainfall over land in a

heavy rainfall regime. A number of parameters have correlations in excess of -0.5 and

include 37VE, 37HE, 19 UE, and 19/22DIFE; no morning parameters exceed a correlation

of -0.5. The RMS errors range from 34.32 to 40.91 millimeters and the average rainfall

during the year is 34.15 millimeters.

The RMCF decreases as the number of parameters in the model exceed three

when using the W085V regression model as seen in Figure 5.4. To gain insight on why

this happens, an independent multi-parameter regression model based upon 1989 data

is constructed. For this case, the RMCF increases as parameters are added to the model

as seen in Figure 5.4. The parameters chosen in the independent 1989 model (Table 5.4)

are different than those selected in 1988. In 1989, 3 7UE formed the basis of the
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Figure 5.3: Correlation coefficients of the mean of the 1989 morning and evening
PDFs.
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Table 5.3: Parameter correlation coefficients and RMS errors for 1989.

Parameter Morning Evening

Correlation RMSE Correlation RMSE

19V -0.465 36.06 -0.527 34.32

19H -0.394 37.63 -0.494 35.57

22V -0.389 37.61 -0.475 35.58

37V -0.445 36.50 -0.509 34.80

37H -0.406 37.41 -0.512 35.13

85H -0.209 40.04 -0.247 39.72

19U -0.456 36.39 -0.535 34.40

37U -0.456 36.38 -0.536 34.83

19PCT -0.308 38.94 -0.383 37.78

37PCT -0.296 39.05 -0.367 37.94

19/22DIF -0.469 36.14 -0.505 35.31

19/37DIF -0.363 38.15 -0.461 36.29
19NDP -0.036 40.91 0.038 40.91

37NDP -0.069 40.84 0.084 40.79
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1989 RMCFs of W085V 1988 and
Independent 1989 Models
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Figure 5.4: RMCFs of the W085V 1988 microwave multi-parameter model
applied to 1989 data and the independent 1989 multi-parameter model.
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Table 5.4: Parameters used in independent 1989 regression
model along with correlation coefficients.

Parameter R

3 7 UE -0.535

85HE -0.562

19PCTE -0.567

19PCTM -0.589

37VM -0.593

22 VM -0.596

37PCTM -0.597

85HM -0.598
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independent regression model, followed by 85 HE, 19PCTE, and 19PCTM. In 1988, 37UE

again formed the basis of the optimal regression model, but is followed by 22 VM, 19 VE,

and 8 5 HM. The parameters chosen in either year are based upon the parameter

correlations with subdivisional rainfall and inter-correlations among individual

parameters. In addition, the overlap process does occur as the number of parameters in

the model increases. The entry of 22VM or 19 VE into the models does not adversely

affect the correlation, however the addition of 85HM does. At this point, the RMCF

decreases to less than that of a single parameter model using 3 7 UE.

The 1989 independent model, based upon different parameters, does show a

steady rise in the correlation until reaching a limit of -0.605. This limit is significantly

below that of optimal 1988 (-0.802) and is most likely related to the lack of useful 85V

parameters which provides information concerning the amount of volume scattering

present. However, the key physical radiative processes are accounted for in the 1989

independent model.



CHAPTER 6

Rainfall Accumulation

6.1 Monsoon Features

To determine if basic monsoon featui-es are observable using the optimal model

applied to 1988 and 1987, and the W085V model applied to 1989, the measured and

model estimated rainfall and the difference between them were viewed in graphic

format. Figure 6.1 shows this graphic for 1988. The rectangles contain these data for

each subdivision on a weekly basis. The subdivisions were reordered by latitude (south

at the top and north at the bottom of the rectangle) so that the progression of the

monsoon could be easily observed. The time is plotted along the abscissa. The top

rectangle contains the measured subdivisional rainfall data, the middle contains the

model estimated rainfall data, and the bottom contains the difference between the

measured and the model estimated rainfall data. The rainfall totals are color coded in 25

mm increments with grey representing bad data.

The progression of the monsoon is visible in the measured rainfall data as seen

by the heavier rainfall totals propagating towards the north with time. A break period

starts in the south at week 7 and also propagates north with time. This cycle is repeated

until bad data is encountered which masks the behavior of the monsoon as represented

by the measured rainfall. The same sequence is evident in the model estimated rainfall.

In addition, the difference between the measured and estimated rainfall is less than 25

75
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mm for the majority of the subdivisions.

Figure 6.2 shows the results of the optimal model applied to the 1987 data set.

Again the active/break cycle is apparent in the measured data. In the model estimated

data the cycle appears after week 5. During week 5, rainfall is greatly underestimated

for all subdivisions and appears to be caused by bad data. With the exception of week 5,

the majority of the differences are less than 25 mm.

Figure 6.3 shows the results of the WO85V model applied to the 1987 data set.

The active/break cycle is less evident but observable by following the progression of the

heavier rainfall totals of the measured rainfall data. The model estimated rainfall

mimics the overall pattern but individual differences can be quite large as seen by the

preponderance of brighter colors in the lower rectangle of Figure 6.3.

6.2 Space and Time Averages

6.2.1 1988 accumulations. Figure 6.4 contains the measured and model estimated

continental weekly rainfall accumulations weighted by subc.., ision size for 1988. The

average error is 62.8% but ranges from 0% to 380%. The first week and the last three

weeks (weeks 1, 24, 25, and 26) exhibit the largest errors. These errors are most likely

due to satellite sampling limitations. If these four weeks are eliminated, the avera,-

error drops to 12.2%. Thus on a weekly basis, the total accumulation calculated from the

optimal model is in close agreement with the measured rainfall accumulations.

Figure 6.5 shows mEasured and model estimated subdivisional seascial rainfall

accumulations weighted by subdivision size. The average error is 20.28% and ranges

from 0% in Assam and Meghalaya (area 3) to 46.7% in Bihar Plateau (area 8). Figure 6.6
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Weighted Continental Weekly Rainfall
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Figure 6.4: 1988 continental weekly rainfall accumulation weighted by
subdivision size.
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Weighted Subdivision Seasonal Rainfall
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Figure 6.5: 1988 subdivisional seasonal rainfall accumulation weighted
by subdivision size.
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is a graphical representation of these data mapped to the appropriate Indian

subdivision. As can be seen, the difference between the measured and estimated

subdivisional seasonal rainfall accumulation is small.

6.2.2 1987 accumulations. Figure 6.7 contains the measured and model estimated

continental weekly rainfall accumulations weighted by subdivision size for 1987. The

average error is 34.79% but ranges from 0% to 125.6%. The fifth week exhibits the

largest error and is probably due to the presence of bad data. Excluding this week, it

appears that the model estimated continental weekly rainfall accumulation is a good

approximation to the measured accunlations.

Figure 6.8 shows measured and model estimated subdivisional seasonal rainfall

accumulations weighted by subdivision size. The average error is 34.93% and ranges 0%

in Bihar Plateau (area 8) and the Gujarat region, Daman, Dadra and Nagar Haveli (area

21). Figure 6.9 is a graphical representation of these data mapped to the appropriate

Indian subdivision. Again, the difference between the measured and estimated

subdivisional seasonal rainfall accumulation is small. This is a consequence of the high

correlation coefficient of the optimal model applied *o the 1987 data set.

6.2.3 1989 accumulations. Figure 6.10 contains the measured and model estimated

continental weekly rainfall accumulations weighted by subdivision size for 1989. The

average error is 30.8% but ranges from 3% to 84.6%. Although this is the smallest

average error of any of the three years, it is misleading because most of the individual

errors are very close to the average error. In 1987 and 1988, most of the error was

accounted for by a couple of events.
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Figure 6.7: 1987 continen.ta weekly rainfall accumulation weighted by
subdivision size.
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Weighted Subdivision Seasonal Rainfall
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Figure 6.8: 1987 subdivisional seasonal rainfall accumulation weighted
by subdivision size.
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Weighted Continental Weekly Rainfall
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Figure 6.10: 1989 continental weekly rainfall accumulation weighted by
subdivision size.
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Figure 6.11 shows measured and model estimated subdivisional seasonal rainfall

accumuiations weighted by subdivision size. The average error is 68.75% and ranges

1.6% in East Uttar Pradesh (area 10) and 600% in South Interior Karnataka (area 33).

These errors are related to the satellite sampling limitations and the limitations of the

WO85V model applied to the 1989 data set. Figure 6.12 is a graphical representation of

these data mapped to the appropriate Indian subdivision. During 1989, larger

differences are discernable between the measured and estimated model subdivisional

seasonal rainfall accumulations.
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Figure 6.11: 1989 subdivisional seasonal rainfall accumulation weighted
by subdivision size.
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CHAPTER 7

Summary and Conclusions

The retrieval of accurate rainfall measurements over land regions obtained

through passive MW techniques is challenging due to the general lack of contrast

between rainfall and the land background. Only when large ice particles are present

above the rain layers are high contrasts assured. Ice causes strong volume scattering

which is readily detectable at 37 and 85 GHz. Although the c.intrast between rain layers

and the land surface is generally small, the emitted radiances from these two sources

are caused by highly distinct radiative processes. Confronted with this situation,

previous investigators have tried to separate rainfall from the land background. Until

recently, investigators had to rely upon, low spatial resolution, low frequency

measurements (6.6, 10.7, 18, 19 and 37 GHz) available from the ESMR-5, ESMR-6, and

SMMR instruments. Beginning in 1987, a new class of instruments, the SSM/I, were

launched aboard DMSP satellites. This instrument carries a four frequency, dual

polarization (except 22 GHz), microwave sensor which represents the highest spatial

resolution and frequency (85 GH1z) ever flown on a satellite. The high spatial resolution

of the 85 GHz channel and it's sensitivity to volume scattering provides better contrast

between rain and the land surface.

91
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This study has been designed to determine how much contrast actually exists

between raining and non-raining pixels for each of a large set of passive MW

parameters. These parameters include, in addition to the seven channels of the SSM/I

instrument, 12 combinations of these channels designed to take into account the

frequency and polarization diversity. All of the parameters are composed of TBS which

have been deconvolved to the resolution of the 85 GHz channels. From the PDFs of

these parameters, two var .bles are extracted; the mean and standard deviation. In

addition, CDFs of the seven SSM/I channels are generated from the appropriate PDF by

obtaining the cumulative count of TBs within each TB bin of the PDF. From the CDFs,

two additional parameters are extracted; the slope and intercept factors. The slope

factor is determined by measuring the gradient of TB accumulation over the range of

T8 s within the CDF of a Indian subdivision. The intercept factor is the coldest TB

present within the CDF.

This study utilizes the high rainfall variability on temporal and spatial scales

available during the SW monsoon over India with which to evaluate the MW

parameters. By calculating the correlation between the time-area averaged MW

measurements in each Indian subdivision with it's weekly rainfall total, an evaluation of

the robustness of each parameter is determined. In addition, INSAT IR measurements

are utilized, to determine if their presence in an optimal multi-parameter regression

model significantly improves microwave-only multi-parameter regression models.

The results reveal that the mean of the MW parameter measurements obtained

during the evening have higher correlation coefficients than the same parameter

correlations from the morning during 1988 and 1989. The opposite result was reached

for the 1987 MW measurements. This difference may stem from the diurnal rainfall

cycle and its inter-annual variability caused by large scale influences on the monsoon.
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The MW parameters based upon the standard deviation, siope and intercept fa--tors all

have very low correlations with subdivisional rainfall and therefore cannot be

considered robust variables.

Individually, the means of the 3 7 UE, 19 UE, 19 VE, 19 /22DIFE, 3 7."E, 19HE, 22VE,

and 3 7HE PDFs are the most robust parameters in 1938 and 1989. During 1987, the most

robust set of parameters were significantly different from 1988 and 1989 and are

dominated by morning parameters. These parameters include the means of the
85 PCTM, 85VM, 19/22DIFE, 85 UM, 19/22DIFM, 37VM, 3 7UM, and 19V}1 rDFs. Oniy

19/22DIFM is common to all three years These differences may be due to the

differences in the rainfall characteristics of strong and weak monsoons. The mea-ns of

the 19NDP, 37NDP, and 85NDP PDFs show little correlation wich rainfall in any ot the

three years studied. The remainder of the parameters fall into an intermediate

robustness class.

The optimal 1988 MW multi-parame-ez regression model reveals that a

maximum correlation (-C.80) is reached after 8 parameters are added to the model. This

multi-parameter approach leads to th- conclusion that some individual parameters with

relatively low correlations with measured rainfall provide important informat..,t

concerning physical radiative processes when used in conjunction with other

parameters. However, the overall performance of the optimal multi-parameter model is

determined by the robustness of the first parameter in the model since it accrunts for

the majority of the explained variance.

The application of the optimal 1988 MW multi-parameter model on 198/ and the

W085V 1988 MW multi-parameter model on 1989 suggests that the m'agnitudes of the

Regression Model Correlation Functions (RMCF) arc smallez by 7.5% and 2u% :or 1987

and 1989 respectively than the independently deri• ed regression models. In addition,
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the behavior of the RMCFs derived from the independent year multi-parameter

regression models are also controlled by an 'overlap process'. The overlap process

occurs when a class of parameters used in the independent 1987 and 1989 models are

also contained in the optimal or W085V 1988 models, respectively. Therefore, the

implication of how parameters are selected for an optimal model is that key physical

radiative processes (surface and rain-layer emission, within cloud volume scattering,

water vapor variability, and polarization differences) must be accounted for. The

overlap or combinations of parameters ensure that the key physical radiative processes

are accounted for. This point must be qualified by the fact that 1989 lacked meaningful

volume scattering parameters because the 85 GHz channels were missing or unreliable.

The inclusion of INSAT ER measurements into a optimal multi-parameter

regression model does not substantially improve the performance obtained by pure

MW models, however, fewer parameters are required to reach optimal performance.

Individually, the mean of the morning IR PDFs are more robust than mean of any

microwave parameter PDFs. However, the mean of the evening ER PDFs are less robust

than the mean of morning IR PDFs and many MNW parameter PDFs. This is probably

caused by cirras cloud contamination of FOVs generated by the anvils of large

thunderstorms during the evening thunderstorm maximum in the diurnal cycle. The

cirrus clouds creates very cold temperatures within the FOV which are not related to

rainfall. In addition, a pronounced diurnal cycle is evident between the robustness and

the time of the satellite measurements.
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