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ABSTRACT

In this study, a large set of microwave and infrared parameters, derived
from the Special Sensor Microwave/Imager (SSM/I) and the Indian
Geosynchronous Satellite (INSAT), are examined to qualitatively determine how
much contrast exists between raining and non-raining conditions over land. The
precipitation regime of the Indian summer monsoon was chosen for the
evaluation testbed. Each of the microwave parameters contain measurements
which were enhanced, through a deconvolution technique, to match the spatial
resolution of the 85 GHz channel (15 x 13 km). The microwave and infrared
measurements are grouped into Probability Distribution Functions (PDFs) and
Cumulative Distribution Functions (CDFs) containing one week of
measurements for each parameter and time of satellite measurement within a
Indian subdivision. The mean and standard deviation of each PDF and the slope
and intercept factors of each CDF are tested for robustness against weekly
subdivisional raingage data.

The robustness of each of the parameter variables are determined by an
evaluation of their correlation coefficient obtained through a linear least squares
fit. Once the robustness of each parameter variable is quantified in terms of its
relationship to rainfall, a statistical rainfall estimation algorithm is generated on a

training data set from 1988. The algorithm is then validated on independent data




sets from two different years. The algorithm achieves correlation coefficients of

-0.75 and -0.80 in 1987 and 1988, respectively. The algorithm performance suffers

in 1989 due to the lack of useable measurements from parameters containing the

85V channel.
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CHAPTER 1

Introduction

1.1 Background

Since the advent of satellite technology, atmospheric scientists have sought to
monitor global weather conditions from space, including the distribution of rainfall.
Early satellite precipitation retrieval techniques relied on visible and infrared data
which related cloud parameters such as cloud-top-temperature, albedo, or fractional
cover to rainrate or volumetric rainfall. These techniques could only give an indirect
estimate of precipitation at best, and it was not until the introduction of microwave
sensors that direct estimates of rainfall from satellite platforms were possible.

Physically-based passive microwave rainfall retrieval methods fall into three
classes, emission-, scattering-, and inversion-based. Emission-based retrievals make use
of the low frequencies (e.g. 19 GHz) and are primarily useful over oceanic regions. At
microwave frequencies, even though water is a strong dielectric, the ocean appears cold
due to the low emissivity of its surface (~ 0.5) caused by only a portion of the wave
being transmitted across the relatively flat ocean-atmosphere interface with the
remainder reflected back into the ocean. In contrast, raindrops have a high emissivity,
due to the dimensions of the emitted waves being equal or exceeding that of the drops,
thus allowing the internally generated waves to pass through the drop surface.




Therefore rain appears warm against the radiometrically cool ocean background. Land
surfaces, on the other hand, have generally high microwave emissivities and thus
appear warm. This decreases the contrast between rain and the land. As a result,
emission methods do not work as well over continental regions.

Scattering-based retrievals utilize higher frequencies such as 37 or 85-90 GHz
which are quite sensitive to the amount of ice suspended within the atmosphere. A
depressed brightness temperature (Tg) arising from scattering by frozen hydrometers
can then be used to estimate the amount of predpitation falling out of a cloud because
of the inherent correlations between ice concentrations and rainrates. Inversion methods
attempt to determine the vertical hydrometer structure of the atmosphere using
forward radiative transfer (RTE) models to adjust initial guess hydrometeor profile
information until the calculated Tgs are in agreement with the measured Tgs. Once the
vertical rain water profile is known, a surface rainrate can be calculated. Of these three
physically-based retrievals, the emission- and scattering-based methods are useful in
evaluating the performance of the microwave parameters examined in this study. The
inversion method is not applicable because information concerning the vertical
hydrometeor structure, on the time and space scales used in the study, are not available.

Wilheit, et al. (1977) developed an emission-based retrieval scheme using a
successive order of scattering RTE model incorporating a Marshall-Palmer raindrop
distribution and fixed thermodynamic and cloud water parameters, to retrieve rainfall
over oceanic regions. Tests of the scheme utilizing Nimbus 5 Electrically Scanning
Microwave Radiometer (ESMR-5) 19 GHz data showed that satellite estimates could be
related to radar derived rainrates within a factor of two. Of major significance was that

the theoretical calculations revealed a strong non-linear relationship between rainrate




and 12 GHz Tgs emerging from the top-of-atmosphere (TOA). The non-linearity results

in two significantly different rainrates for the same Tg. Wilheit's paper demonstrated,

for the first time, that rainrates could be determined by microwave radiometry based
upon a physically-based model over oceanic regions. More recent emission-based
algorithms such as those of Smith and Mugnai (1988) and Hinton et al. (1992), have
simply refined various aspects of the Wilheit algorithm.

Microwave retrieval methods over land have been more difficult to formulate
due to the lack of contrast between the rainfall and the radiometrically 'hot' iand
background. The problem is compounded by the varying emissivities of different
components of the surface (i.e. vegetation, bare rock, sand, etc.), varying soil moisture,
and temperature within a radiometer field-of-view (FOV). Schmugge (1983) showed
that soil moisture has a strong inverse effect on land surface emissivity since it increases
the dielectric constant of the soil which in turn results in lower emissivity. Thus, for the
lower microwave frequencies in which the surface contributes to the TOA signal in the
presence of rain, varying soil moisture poses a difficult boundary condition problem.

Early theoretical work using both 19 and 37 GHz ESMR-5 and ESMR-6
measurements suggested that rainfall over land could be detected at 37 GHz but not at
19 GHz due to incomplete beam filling by either rain or land caused by the large FOVs
at 19 GHz (Savage and Weinman, 1975; Weinman and Guetter, 1977). In addition, they
suggested that discrimination between rainfall, and wet or dry land would be possible
by taking advantage of the degree of polarization at 37 GHz. At the intermediate
frequendies, rainfall and dry land are essentially unpolarized with land often having
higher Tgs than rain. On the other hand welced land surfaces can be significantly
polarized and thus present another type of signal contrast to rain. Variations in the

degree of polarization at 37 GHz can also be related to land surface characteristics and




their temporal variability (Choudhury, 1989). His study shows that polarization
decreases with increased vegetation and surface roughness, while polarization increases
with increasing soil moisture and FOVs contaminated by open water such as lakes or
rivers. Therefore, the degree of polarization can be used as a signature which
discriminates between rainfall and various characteristics of the underlying surface.

Observational work by Rodgers et al. (1977) concluded that rain detection over
dry land is difficult if the surface thermodynamic temperatures are less that 15° C. This
is because as the surface thermodynamic temperature decreases, the Ty of the surface
also decreases which in turn leads to a lack of contrast between rainfall and the land
surface. However, if surface temperatures exceed 15° C and dew is absent, synoptic
scale rainfall can be detected at 37 GHz. Spencer et al. (1983) reported that extremely
low 37 GHz Tgs over land are indicative of heavy rainfall associated with
thunderstorms, in which high concentrations of ice in the upper reaches of the
thunderstorms act as volume scatters to upwelling radiation.

Using the polarization and frequency diversity of the Nimbus 7 Scanning
Multichannel Microwave Radiometer (SMMR) and implementing statistical techniques,
several investigators developed rainfall retrieval algorithms for land surfaces which
were able to screen out wet land from rainfall (Rodgers and Siddalingaiah, 1983;
Spencer, 1984). Spencer and Santek (1985) improved this type of
multichannel/ polarization algorithm by isolating and removing the effects of variations
in thermometric surface temperature, soil moisture, and snow cover on the measured
microwave Tgs.

On June 19, 1987, the Department of Defense launched a Defense Meteorological
Satellite Program (DMSP) polar orbiting satellite which carried the first Spedial Sensor




Microwave/Imager (S5M/1). This instrument measures four frequendies (19.35, 22.235,
37, and 85.5 GHz), with dual polarization for three of the four (only vertical polarization
is measured at 22 GHz). The 85 GHz channels represent the highest frequency and
highest resolution microwave field-of-view ever flown on a satellite (see Table 1.1). The
85 GHz channels were expected to improve global precipitation monitoring capabilities,
especially over land. Preliminary attempts at utilizing SSM/I measurements have
provided encouraging results. The SSM/I 85 GHz channel is sensitive to volume
scattering by precipitation and ice within a cloud which results in low Tgs Bv making
use of the polarization diversity at 85 GHz to discriminate predpitation from the surface
background, a polarization corrected temperature (PCT) can be formulated which
isolates the precipitation (Spencer, et al, 1989). A PCT represents a hypothetical Ty that
a surface would emit solely due to the presence of an atmosphere. Therefore, the PCT
of a precipitating cloud is lower than that of a cloudy non-precipitating region because
of the strong volume scattering affects of precipitation. Spencer empirically found that
85 GHz PCTs less than 255 K generally denote precipitation areas. PCTs are useful for
both ocean and land background situations and in areas with land-water boundaries
since PCTs are a measure of volume scattering rather than of surface emissivity.

A problem with a sequence of frequencies on a microwave sensor is that their
instantaneous fields of view (IFOV) are not the same, as illustrated in Figure 1.1. To
ensure that the signal to noise ratio is large enough to compensate for the low energy
levels emitted by the earth and atmosphere, lower frequencies must have larger IFOVs.
Recently, this problem has been overcome by deconvolution procedures which can be
used to match the spatial resolution of the various frequencies (Olson, 1986; Farrar and
Smith, 1992; Robinson et al., 1991). Deconvolution procedures introduce noise 1nto the

data, but steps can be taken to insure that these effects are minimized (Farrar, 1991). By




TABLE 1.1: SSM/I Channel footprint dimensions.

Frequency Polarization Footprint (km)
(GHz) AT CT
19.35 Vertical 69 43
19.35 Horizontal 69 43
22.235 Vertical 50 40
37.0 Vertical 37 28
37.0 Horizontal 37 29
85.5 Vertical 15 13
85.5 Horizontal 15 13

A.T. is Along Track, C.T. is Cross Track




using deconvolution procedures, spatial resolutions at different frequendies can be
matched, facilitating direct comparisons between measurements at distinct frequencies.

Polar orbiting, sun-synchronous satellites such as the DMSP only pass over a
given location twice a day, so sampling problems arise due to the diurnal variability of
precipitation. Sampling errors over oceanic regions, based on two satellite samples per
day to obtain montnly rainfall, can be shown to have an error of about 10% (Bell, et al.
1990). In contrast, Seed and Austin (1990) showed that satellite sampling of precipitation
over Florida, if sampled only twice per day, would result in errors as large as 130% for
daily precipitation. If the same sampling is used to obtain a monthly areal average, the
error drops to 22%. For a weekly areal average, such as used in this study, satellite
sampling errors of rainfall in excess of 22% can be expected.

Another problem associated with satellite monitoring of precipitation at
microwave frequencies, is the beam filling error. This occurs when an FOV does not
contain homogeneous cloud optical properties. That is, it may be composed of varying
amounts of clear sky, cloud, and rain, thus leading to a measurement representing the
combined effect of the cloud, rain and surface background. Beam filling errors result in
rain rates that are necessarily underestimated in emission algorithms due to the
underlying non-linear relationship between brightness temperature and rainrate (Smith
and Kidder, 1978).

Up to now, all techniques which have been reviewed represent instantaneous
rainrate schemes. To understand how much rain falls in a week, a month, or some
extended time period over a given area, other techniques can be used. Shin et al. (1990)
developed an area-time averaged rainrate retrieval scheme to get monthly averages of

precipitation over 5° x 5° oceanic regions, using ESMR-5 19 GHz data obtained during

GATE, in which the raw Tpgs were first collected into histograms. The shapes of the




histograms suggested that they were composed of a normal distribution of
temperatures from the ocean background (the width of the distribution being partly
related to channel noise) and a skewed distribution of predipitation at higher Tgs. By
application of a statistical estimation scheme to identify the background distribution,
which can then be separated from the overall histogram, the rain distribution can be
isolated. Brightness temperatures of the rain-only distribution are converted to rainrates
based upon an exponential form of the brightness temperature - rainrate relationship,
developed by Wilheit (1977), a estimate of the freezing level, and the background
temperature represented by the peak of the histogram.

Durkee (1980) developed a histogram technique to estimate summer

precipitation frequency over the north central United States using ESMR-6 37 GHz data.
The shape of the Tg histogram was represented by a normal distribution of non-raining

pixels and a skewed distribution towards colder Tgs of raining pixels. The deviations

from the mean of the normal portion of the distribution reflect variations of the
contribution from the atmosphere and surface conditions. Any pixels greater than two
standard deviations from the mean of the normal portion of the histogram are identified
as rain. Although this study did not calculate rainrates, it did relate the Tg histograms
to precipitation frequency and correlated the results with observed raingage data,
which produced satisfactory results except in the northeast portion of the north central
United States.

A multichannel, area-time histogram oceanic precipitation retrieval scheme using
the 19 and 22 GHz frequencies of the SSM /I has recently been developed by Wilheit et
al. (1991) to estimate monthly rainfall. The method uses the two frequencies in a linear
combination to offset the effects of water vapor variability and to estimate rain layer

thickness based on simplified theoretical calculations of an idealized rain layer from the




Wilheit et al. (1977) study. The technique is based upon a lognormal representation of

the probability distribution function of rainfall intensity, which is used in a forward
RTE model to generate a predicted Tp histogram. The predicted histogram is compared

to the observed Tp histogram for a given oceanic region, and the lognormal parameters
(logarithmic mean rainrate, probability of non-zero rainrate, standard deviation of
logarithmic rainrate) adjusted until the predicted Tg histogram matches the observed

Tp histogram.

1.2 Motivation

Recent studies indicate that physically-based precipitation retrieval schemes can
detect instantaneous rainrates and area-time averaged rainfall. However, the major
successes are for oceanic retrievals stemming from the high contrast between
precipitating clouds and the ocean background and the fact that rain layers produce the
rain signal. Land-based retrievals have only had limited success because of the general
lack of contrast between the land background and precipitation except when large ice
particles are present. In that case rain estimates are only indirect. The main scientific
objective of this study is to methodically and quantitatively determine how much
contrast does exist between raining and non-raining conditions for each of a large set of
passive microwave parameters. Once the robustness of each of the parameters is
quantified in terms of its relationship to rainfall, a statistical rainfall estimation
algorithm is generated on a training data set from one partial year of data then
validated on independent data sets from two different years. The seven channel/four
frequency SSM/I microwave measurements along with Indian Geosynchronous

Satellite (INSAT) infrared measurements serve as a starting point for this study. In
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addition to the basic channel brightness temperatures, 12 additional parameters are
created based upon the individual microwave channels. These include three
unpolarized Tg quantities, three frequency dependent PCTs, three differential Tgs at
vertical polarization, and three frequency dependent normalized degree of polarization
quantities. Furthermore, the shapes of the histograms for the separate frequendies will
be investigated. All of these parameters are listed in Table 1.2 and will be discussed, in
depth, in section 4. The robustness of these parameters are tested against weekly
precipitation totals from the subdivisional states of India during the summer monsoons
of 1987, 1988, and 1989.

The precipitation regime of the Indian summer monsoon was chosen because of
it's diverse rainfall characteristics. Indian monsoon predpitation is highly organized on
a variety of time and space scales. In addition, the magnitude of rainfall accumulation
over a week, is highly variable between weeks and regions due to factors such as
topography, latitude, continentality, and the phase of the monsoon. The character of
precipitation across India also shows variability with showery predpitation in the north
to more constant rains in the south (Ramage, 1971). Strong intra-seasonal variability at
various time scales related to northward propagating low frequency modes, quasi-
periodic formation of monsoon depressions, and the qausi-periodic passage of synoptic-
scale waves are well known features of the monsoon. The most well known intra-
seasonal variation, is the monsoon burst-break sequence, which is likely induced by the
resonance of two distinct intra-seasonal modes. Significant inter-annual variability in
monsoon rainfall also occurs and is triggered by variation in the large scale drculation.
For example, the Indian monsoon season of 1987 is considered to be a year of deficent
rainfall (Das, et al., 1988), whereas the monsoon seasons of 1988 and 1989 provided the
highest and second highest rainfalls of the decade (Das. et al., 1989; Gupta, et al., 1990).




TABLE 1.2: Definition of microwave and IR parameters.

19V
19H
22V
37V
37H
85V
8 H

19U = (19V + 19H)/2
370 = (37V + 37H)/2
85U = (85V + 85H)/2

19 PCT = 2.4(19V) - 1.4(19H)
37 PCT =2.1(37V) - 1.1(37H
85 PCT = 1.82(85V) - 0.82(85H)

19/22DIF = 19V - 22V
19/37DIF = 19V - 37V
19/85DIF = 19V - 85V

19NDP = (19V - 19H)/19U
37NDP = (37V - 37 H)/37U
85NDP = (85V - 85 H)/85U

INSAT IR

11




CHAPTER 2

Methodology

2.1 Probability Distribution Function Formation

The 35 subdivisional states of India shown in Figure 2.1 extend over the region
being used to examine the robustness of microwave and infrared parameters for
detection of time-area averaged rainfall over land. In order to assemble the satellite
measurements into the proper subdivisional states, the boundaries of each subdivision
are first determined by latitude and longitude coordinates which are entered into a non-

uniform grid file. Since microwave Tgs exhibit significantly differen. signatures

depending upon whether the pixel is located over land or water, steps must be taken to
ensure that pixels contaminated by water along coastlines are eliminated. Therefore, Tg
data within 60 km of a coastline have been removed from the grid file. The Andaman
and Nicobar Island Chain (subdivision 1), and the Lanshadweep Island Group
(subdivision 35) were removed because pixels over these subdivisions at microwave
frequencies do not contain a significant number of land pixels devoid of oceanic

contamination.

12
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60°* 65° 70° 75° 80 85* 90° 95°
L T T {
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SRI LANKA
)
1 1 1 1
65°* 70° 75° 8o* 85 90* 95¢
Sub-Blvision Latitude Longitune Sub-Division Latitude Longi tude
1 Andaman and Nicobar Island Chaln 10 0 %3 0 18 Esst Rajasthan 26.0 730
2 Arunchal Prudegh 28 S 94 5 19 %est Madhya Pradesh 23 ¢ 80
3 Assam and Meghalaya 26.5 93.0n 20 East Madhys Pradesh 22.0 82 ©
4 Nagaland. Munipur., Mizorum and 2! Gujsrat Reglon. Damun, Dadra and
Tripurn 250 94 0 Nagar Havell 225 20
5 Sub-Himnlnvan West Hengal and 22 Savrashtra. Xutch and Dui 22 0 70 3
Stikkim 27 0 88.5 23 Konkan and Goa 18 0 78
6 Ganyrtic Weutl Bengal 22 0 T s 24  Madhya Maharashtra 19.0 748
7 Orissa 210 RS 0 25 Marathwada 12 0 70
8 Bihar Platenn 2358 85 .0 26 Vidarbhe 21 0 8.5
9 Bthar Piains 26 0 86 0 27 Coastal Andhra Pradesh 17 0 L3 I
10 Emst Uttur Pradesh 2f 3 82 0 20 Telanguna 18.0 8.8
11 P’ -ins of West Ultar Pradesh 28 s 79 0 29 Rayalnseens 14.35 0
12 Hilis of Wewl Uttur Pradesh 30 8 190 30 Tawmi{] Nadu and Pondicherry 10.% 78 8
13 Haryana. Chnndigarh and Delhi 29.5 16 5 31 Consta] Karpataks 14.0 45
14 PMunjab 3o 5.8 J2 Nnrth Interjor Karnatsks 16.0 76.0
15 Himacha! Pradrsh 320 778 33 South Interior Karnatnka 133 ka1
18 Jammy snd Kusheir 340 170 34 Xerale 10.0 7.0
17 West fajaathnn 27 ) 3.0 33 [lakshszdweep 1sland Group 10.8 73.0

Figure 2.1: Indian subdivisions used for weekly rainfall totals.
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Before the SSM/I measurements are mapped to the subdivisions, the
measurements are deconvolved to the spatial resolution of the 85 GHz channel. Once
the measurements are deconvolved and the subdivision grid file defined, the data are
mapped to the subdivisional states in a non-ambiguous way. Given the mapping,
histograms of brightness temperature are created by counting the number of times each
brightness temperature occurs in a given subdivision over a period of one week. The
histograms are then normalized by dividing the individual frequencies by the total
frequency within a complete histogram. This defines a probability distribution function
(PDF) of Tgs with the normalization allowing for straightforward PDF comparisons
between different sized subdivisions and different sample counts in the histograms.

Probability distribution functions have been produced by subdivision for each of
the seven SSM/I frequencies, and twelve frequency combinations on a 1-week basis,
treating morning and evening data separately for the Indian monsoon seasons of 1987
through 1989. In terms of nomenclature, the seven SSM/I frequencies and twelve
frequency combinations will be referred to as parameters, in which M and E subscripts
are attached to the parameters to designate morning and evening time periods,
respectively. In India, morning orbits range in time between 2200-0200 GMT (0330-0730
MST) and evening orbits range from 1100-1500 GMT (1630-2030 MST).

In addition to the SSM/I parameters, INSAT IR measurements have been
mapped to the subdivisional grid and subsequently formed into PDFs in the same
manner as the SSM /1 parameters. The main differences between the SSM/T and INSAT
data sets are that the IR measurements are available twice daily in 1987, eight times

daily in 1988, but not at all during 1989.
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2.2 Quality Control Procedures

Although steps were taken to remove ocean contamination from pixels along
coastlines, PDFs were also visually checked to ensure contamination did not occur due
to satellite navigation errors. Specifically, 19 GHz PDFs that contained secondary peaks
at low Tgs which did not fluctuate with time were deleted from the data set. These
secondary peaks are representative of pixels which contain ocean areas which appear
radiometrically cold when compared to land surfaces. Figure 2.2 and 2.3 help illustrate

" the ocean contamination problem. Figure 2.2 shows 20 weeks of 19Vg PDFs for the
Konkan and Goa region (subdivision 23). Secondary peaks at about 220 K are evident
throughout the 20 weeks and are most pronounced during the first 5 weeks (days 119-
153) when little to no rain fell in the region. In comparison, Figure 2.3 contains 20 weeks
of 19Vg PDFs for Madhya Maharashtra (subdivision 24) which is located inland and
adjacent to the Konkan and Goa region. None of these PDFs exhibit secondary peaks
associated with low emissivity ocean surfaces. This data elimination procedure resulted
in removing Gangetic West Bengal (subdivision 6), Saurashtra, Kutch, and Dui
(subdivision 22), Konkan and Goa (subdivision 23), Coastal Karnataka (subdivision 31),
and Kerala (subdivision 34), from the data set.

Mountain regions, sometimes covered by snow, also presented problems because
their PDFs are strikingly different from PDFs in the remaining subdivisions of India.
Snow varies in emissivity depending upon whether it is characterized as dry or moist.
Dry snow has low emissivity which approaches the emissivity of a water surface,
whereas moist snow has emissivities nearly equal to that of dry land (Wilheit, 1972).

These PDFs are characterized by a broad range of Tg, caused by combinations of dry

and moist snow mixed in with precipitation and other types of land surfaces, with a
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Figure 2.2: 19VE probability distribution functions for 20 weeks in 1988 for
Konkan and Goa. Low Tg peak represents pixels containing ocean

contamination.
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minor peak related to the land background at high Tg. Figure 2.4 contains 20 weeks of
37Vg PDFs for Jammu and Kashmir (subdivision 16) which has a bimodal distribution
which can be used to identify regions containing snow. The distribution of cold Tg has a
mean near 225 K and is composed of FOVs containing dry snow. As summer
approaches the cold Ty distribution shrinks and the mean of the entire PDF warms.
However, a significant number of pixels exhibit cold Tgs representative of FOVs
containing either moist snow on the surface or rain. In contrast, Figure 2.5 contains the
37V PDFs for East Rajasthan (subdivision 18) which is located in north central India
and shows the monomodal shape characteristic of 37 GHz PDFs. The peak of the
monomodal distribution in East Rajasthan is located near 275 K and can also be seen in
Jammu and Kashmir as a minor peak, which is representative of a snow-free land
surface. The subdivisions removed by this process include Arunchal Pradesh
(subdivision 2), Hills of West Uttar Pradesh (subdivision 12), Himachal Pradesh
(subdivision 15), and Jammu and Kashmir (subdivision 16). In total, 11 subdivisions
have been deleted from the data set, because of either ocean or snow contamination.

In addition to water-snow contamination quality checks, data quality checks
were made to eliminate weeks with significant bad data or insuffident satellite coverage
during 1988. Significant amounts of bad data can be detected by analyzing the mean of
the vertical polarization difference between 19V and 22V (19/22DIF). This parameter is
useful in detecting bad data because it has a narrow range of variation assodated with it
and so large deviations are readily discernable. This parameter revealed 3 weeks in
which the weekly subdivisional means were greater than 3 standard deviations from
the grand mean in every subdivision. Because this occurred in every subdivision for the
same 3 weeks regardless of rainfall, it is assumed that bit dropouts or pixel mislocation

errors had impacted those data.
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Figure 2.4: 37VE probability distribution functions for 20 weeks in 1988 for
Jammu and Kashmir illustrating affects of snow on 37 GHz probability
distribution functions.
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Finally, a check for insufficient satellite coverage was applied. If the largest
number of pixels in a given subdivision and week for the entire six month season
represents full satellite coverage, then any week which had less than 15% of full
coverage was eliminated. The above two final checks result in 4 weeks of eliminated
data for 1988.

2.3 Robustness of Individual Parameters

To determine the robustness of individual parameters, four variables based upon
each parameter are considered. The first two are defined from the means and standard
deviations of each microwave and infrared parameter PDF. The other two are defined
from cumulative distribution functions (CDF) created by assocdiating the number of
pixels at each Ty coordinate within a PDF with the cumulative count from the cold end.
From the CDF, slope and intercept factors are obtained. The slope factor is determined
by measuring the gradient of Tg accumulation over the range of Tgs within the CDF.

The intercept factor is defined as the coldest Tg present within a CDF.

In regards to nomenclature, the mean and standard deviation of a PDF and the
slope and intercept factors of a CDF will be referred to as variables. The four variables
are used to test the robustness of each microwave and infrared parameter against
measured subdivisional weekly rainfall.

For a one parameter least squares linear regression test of robustness, the
coefficient of determination (R?) is used to calculate the correlation coefficient (R). This

quantity is then is used as the criterion for evaluating microwave and infrared




parameter performance of a given variable (mean, slope factor, etc.). R? is calculated as:

2210001 - SSE
Re=10001 SST) (1)

where SSE is the error sum of squares, SST is the total sum of squares and the
correlation coefficient is found by taking the square root. All statistics calculations used

in this paper were obtained from the IMSL statistics library (IMSL, 1989).
2.4 Robustness of Multi-parameter Combinations

The coeffident of determination (R2?) increases as new parameters are added to a
regressior model, however a larger R? is not necessarily indicative of a better model. If
the error sum-of-squares in the new combination does not decrease by an amount equal
to the original combination mean square error (the sum of a multi-parameter squared
bias plus its variance), the new combination will have a larger mean square error due to
the loss of one degree of freedom for error, thus resulting in a worse regression. For this
reason, an adjusted coefficient of determination called RZ (defined below), is used to
calculate the correlation coefficient since it does nct necessarily increase as additional
parameters are introduced. The definition of RZis given by (Montgomery and Peck,
1982):

RE = 100(1 - (110 33k 2

where n is the number of observations, and p the number of regressors.




2.5 Testing of Single and Multi-parameter Models on Independent Data Sets

The results obtained during the 1988 monsoon season are validated on
independent data sets from the 1987 and 1989 monsoon seasons. To determine how
individual parameters compared to the 1988 training data set, an unadjusted R? is
calculated from the independent data sets, which in turn yields (R) the correlation
coefficient. Multi-parameter model validation is accomplished by applying the optimal
regression model from the 1988 satellite measurements to the 1987 and 1989
measurements, and then analyzing the differences in correlation coefficients against
those obtained from independent regression models from 1987 and 1989. For 1989, the
optimal regression model, referred to as WOB85V, is calculated without parameters
containing the 85V channel because this channel completely degraded after late 1988.
As a result, 85V, 85U, 85PCT, 19/85DIF, and 85NDP must be eliminated from the 1989
analysis. Thus, two regression models have been obtained from the 1988 data training
set, one for use with 1987 (the optimal model) and the other for 1989 (the WO85V
model).




CHAPTER 3

Data Sources

The data used in this study include Indian subdivisional weekly rainfall, passive
microwave measurements from the DMSP SSM/I instrument, and INSAT infrared

measurements.

3.1 Indian Subdivisional Rainfall

Indian subdivisional weekly rainfall data were obtained from the Indian
Meteorological Department’'s Weekly Rainfall Reports. [These were kindly provided by
the staff librarian at the National Center for Atmospheric Research.] The data consist of
weekly averages of rainfall recorded at raingages for each of India’s 35 subdivisions
(Figure 2.1) for the inclusive periods: Jul 9 - Oct 28, 1987 (16 weeks); Apr 28 - Oct 26,
1988 (26 weeks); and May 4 - 25, Oct 1989 (25 weeks). The dates for each week are listed
in Tables 3.1 for 1987, 1988, and 1989.
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Table 3.1: Weeks used in 1987, 1988, and 1989 for this study.

9 -15]Jul

16 - 22 Jul
23-29Jul

30 Jul -5 Aug
6 -12 Aug
13-19 Aug
20 -26 Aug
27 Aug - 2 Sep

28 - 4 May
5 -11 May
12 - 18 May
19 - 25 May
26 May -1 Jun
2 -8 Jun
9 -15 Jun
16-22 Jun
23-29 Jun
30 Jun - 6 Jul
7 - 13 Jul
14 -20 Jul
21-27 Jul

4 -10May
11 - 17 May
18 - 24 May
25 - 31 May
1 -7 Jun
8 -14Jun
15-21 Jun
22 - 28 Jun
29 Jun -5 Jul
6 -12]Jul
13-19 Jul
20-26 Jul
27 Jul -2 Aug

1987

1988

1989

3 - 9Sep
10 - 16 Sep
17 - 23 Sep
24 - 30 Sep
1 - 70ct
8 -140Oct
15 - 21 Oct
22 - 28 Oct

28Jul-3 Aug
4 -10 Aug
11-17 Aug
18 -24 Aug
25-31 Aug
1 - 7 Aug
8 -14 Sep
15-21 Sep
22 - 28 Sep
29 Sep - 5 Oct
6 -12 Oct
13-19 Oct
20 - 26 Oct

3 -9 Aug
10-16 Aug
17-23 Aug
24-30 Aug
31 Aug - 6 Sep
7 -13 Sep
14 - 20 Sep
21 - 27 Sep
28 Sep - 4 Oct
5 -110ct
12 - 18 Oct
19 - 25 Oct
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3.2 Passive Microwave SSM/I Measurements

The SSM/I measurements used in this project were obtained from antenna
temperature data tapes produced by Remote Sensing Systems (Wentz, 1991) and
provided by NASA. The basic SSM/I data set produced for this project consists of
brightness temperatures for each of the seven channels over the Indian subcontinent
ar.d surrounding waters. The brightness temperatures are all deconvolved to the spatial
resolution of 85 GHz channels (15 km x 13 km). Each PDF contains one week of data for
each of the parameters listed in Table 1.2 coinciding with the weekly rainfall reports of

the Indian Meteorology Agency.

3.3 INSAT Infrared Measurements

The INSAT infrared (IR) measurements used in this project were obtained from
the Indian Meteorological Department (IMD) through the U. S. National Science
Foundation under the auspices of the Indo-US Science and Technology Exchange
Program (Smith et al., 1988). The d. ta set consists of reduced resolution (22 km) IR
measurements corresponding to the dates of the available Lician subdivisional rainfall
reports as described in section 3.1 and bounded by the region described in section 3.2.
Normally IR measurements are available two times per day at 0600 and 1200 GMT for
1987 and eight times per day at 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 GMT
for 1988. Lamm et al. (1991), has provided a detailed description of the INSAT data,

including the calibration and navigation procedures.




CHAPTER 4

Analysis of Microwave and Infrared Variables

In this section, the properties of the microwave (MW) PDFs and CDFs and IR
PDFs will be examined in detail. This involves the means and standard deviations of the
MW PDFs, the means of the IR PDFs, and the slope and intercept factors of the MW
CDFs. Then, multi-parameter regression models will be built to evaluate how
individual MW and IR parameter variables behave in conjunction with other MW and

IR parameter variables.
4.1 Robustness Analysis of Individual Parameters

4.1.1 Properties of the microwave probability distribution functions. The mean
of each parameter PDF is used to estimate the measured area-averaged rainfall in each
subdivision during one week. The mean of a PDF of a particular parameter represents
the average value of the samples in the distribution. The units of the average brightness
temperatures, polarization corrected temperatures, or polarization difference
temperatures are in degrees Kelvin. For the frequency dependent normalized degree of
polarization parameters, the mean represents a non-dimensional quantity. Scatter

diagrams of the means of the PDFs of a given parameter versus measured subdivisional
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rainfall show that, in most cases (except 1I9NDP and 37NDP), rainfall increases as the
mean of the parameter decreases. However, the means tend to decrease slower as the
weekly rainfall amounts increase, particularly above 200 mm. The underlying behavior
of the scatter diagrams becomes difficult to interpret beyond 200 mm because there are
so few events at these higher totals, thus revealing the limited sampling capabilities of
polar-orbiting satellites. Additionally, at very low rain rates, the mean exhibits a
significant amount of scatter. Part of this is due to the wide variety of background
radiances emanating from the surface due to surface temperature, hydrologic and
orographic variability within and among subdivisions.

Figure 4.1 illustrates the variation of the parameter means in terms of the
correlation coefficient for the morning and evening MW parameters. Table 4.1 lists the
correlation coefficients and the root mean square (RMS) error of the PDF means for the
morning and evening parameters. From the results, it is evident that the evening MW
measurements exhibit a 20 percent stronger correlation with the observed rainfall than
do morning MW measurements, except for 85V, 85U, and 85PCT. No morning MW
parameter has a correlation greater than 0.60, however, evening MW parameters have a
few over this threshold (19V, 19U, 37U, 19/22DIF). In addition, the RMS errors
associated with all the parameters are large, ranging from 35.12 to 46.56 mm. The higher
rainfall totals contribute significantly to the size of these errors. In many of these cases
when using the associated regression equation to estimate total measured rainfall,
underestimates exceed 150 mm.

An analysis of the parameter means provides insight into how each behaves with
respect to measured subdivisional weekly rainfall. The 19 GHz channels have the

highest correlation for evening data of any MW frequency at that time. Figure 4.2a-d
shows the scatter diagrams for 19V, 19Hy,, 19Vg, and 19Hg. Figure 4.2b shows that the
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Table 4.1: Correlation coefficdents and RMS errors for the
mean of the 1988 microwave PDFs.

Parameter

19V

19H

22V

37V

37H

85V

35H

19U

37U

85U
19PCT
37PCT
85PCT
19/22DIF
19/37DIF
19/85DIF
19NDP
37NDP
85SNDP

Morning Orbits

R

-0.512
-0.482
-0.426
-0.510
-0.483
-0.546
-0.473
-0.538
-0.545
-0.527
-0.247
-0.294
-0.540
-0.527
-0.338
-0.149
+0.106
+0.103
-0.182

rms error

40.15
40.96
42.30
40.21
40.94
39.17
41.19
39.40
39.20
39.72
45.29
44.67
39.35
39.72
43.99
46.23
46.49
46.50
45.96

Evening Orbits
R rms error
-0.638 35.96
-0.593 37.60
-0.562 38.64
-0.563 37.17
-0.554 38.89
-0.551 40.13
-0.493 40.64
-0.651 35.46
-0.659 35.12
-0.514 40.07
-0.397 42.87
-0.390 43.01
-0.488 40.77
-0.632 36.17
-0.477 41.03
-0.446 41.81
+0.076 46.56
+0.156 46.13
-0.219 45.56
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scattering is most tightly grouped for 19Vg in comparison to the other 19 GHz
parameters. For all of the 19 GHz parameters, a clear decrease in the mean Tg occurs as
rainfall increases. The sensitivity between low and high rainfall situations is in excess of
20 K for all 19 GHz parameters. These parameters are sensitive to variations in surface
emissivity and relatively insensitive to surface temperature variations and since the
measurements have been deconvolved, the affects of beam filling have been
substantially reduced, thus leading to the relatively high correlation coefficients.

The lowest correlation of the first seven parameters (that is the individual

channel mean Tgs) is found for 22V),. The mean of 22V shows a stronger correlation
but appears to be due to variations in Tg caused by surface heating near zero rainfail

which shifts the intercept of the least squares fit to warmer Tg. The 22 GHz channel is

sensitive to variations in atmospheric water vapor and therefore by itself, not a reliable
parameter for detecting rainfall, because it responds similarly to precipitating and non-
precipitating clouds. The scatter diagrams (Figure 4.3a-b), show that the mean of the
22V PDFs approach a lower limit near 280 K across the range of rainfall. This represents
a loss of sensitivity due to the presence of water vapor when compared to the mean of
19 GHz channels.

Turning to 37 GHz channels scatter diagrams (Figure 4.4a-d), the decrease in the
mean of the PDF in the vertical polarization Tg with respect to rainfall, during the
morning and evening reveals a sensitivity of about 10-15 K. The mean of the PDF of the

horizontal channel has a slightly greater sensitivity of 15-25 K. The mean of the
parameter 37Vg ranks third among the first seven parameters, falling behind 19V and

19Hg. The mean of the parameters 37H),; and 37H exhibit significant scatter at mid-
range rainfall totals (100-200 mm) as compared to the 37V, and 37Vg. The amount of

scatter at the mid-range rainfall totals may be indicative of the rainrate at the time of
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measurement with higher Tg representing surface attenuation of the surface emission
by light rainfall and lower Tg representing scattering caused by ice during heavy
rainfall.

The 85 GHz channels are very sensitive to scattering caused by ice in the upper
regions of precipitating clouds and are therefore a less direct measurement of rainfall
for the case of cumulorimbus clouds. Oddly, the vertical and horizontal 85 GHz
channels for evening data exhibit the lowest correlation coefficients of the first seven
parameters (except for 22 GHz) but 85V exhibits the hughest correlation of the same
parameters during the morning. Unlike these seven parameters, the difference between
the morning and evening correlation coefficients is small. This suggests that the 85 GHz
channel is less sensitive to diurnal fluctuations in rainfall. Figure 4.5a-d contain the
scatter diagrams for the mean of the PDF for the 85 GHz parameters. The sensitivities of
the 85 GHz parameters are less than those of the 37 GHz parameters, averaging about
10K

Before an evaluation of the remaining 12 parameters is made, an explanation of
each is warranted. The first class of parameters (in terms of nomenclature, they are
referred to as 19U, 37U, and 85U) are unpolarized brightness temperatures. They
represent the average of the vertical and horizontal polarizations.

The mean of parameter 19Ug, has the second highest correlation coefficient

(-0.651) of any morning or evening parameter mean. The scatter diagram (Figure 4.6b),
shows a clear decrease in Tg with increasing area-averaged rainfall and a sensitivity of
at least 20 K. This is due to the intrinsic properties of MW radiation at 19 GHz. At this
frequency, for low rainrates, surface emission dominates the brightness temperature,

but as rainfall increases attenuation of the surface emission increases leading to colder

Tgs. The unpolarized parameters are desensitized to surface processes that induce
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polarization (soil moisture, vegetation cover, etc.). This can be seen by looking at the

variance of the means of the PDFs of 19V, 19H, and 19U. Both 19V and 19H have higher

Tp variance than does 19U. For evening data the variance is 67.3 and 74.4 for 19V and
19HE, respectively versus 59.7 for 19Ug.

The most robust parameter is 37U with a correlation coefficient of -0.659. This
intermediate frequency is affected by both emission and scattering depending upon the
intensity of rainfall. At low rainrates surface emission is the dominant radiative feature.
At higher rainrates, surface attenuation occurs and as the rainfall continues to increase,
scattering becomes the dominant radiative feature due to large ice concentrations above
the freezing level. Figure 4.6d shows that it has a sensitivity of more than 20 K.

The parameter 85U, although having a comparatively high correlation
coefficient, does not provide any new information that can not already be attained by
using the polarized 85 GHz channels separately (the correlation between 85U and 85V
or 85H exceeds 0.965).

The next class of parameters is the PCT, which was described in section 1.1. PCTs
are not robust parameters of area-time averaged rainfall over land. However, the
correlation coefficients generally increase with increasing frequency because PCTs are
primarily determined by volume scattering (in the presence of a scattering surface)
which is readily detected at the higher frequencies. The scatter diagrams of each
frequency dependent PCT parameter are shown in Figure 4.7a-f. From these diagrams,
it can be seen that 19PCT and 37PCT occasionally exhibit very high mean Tgs at low
rainfall totals. It may be possible that the coefficients for the vertical and horizontal
channels in the PCT formulation may not be optimal for use over India.

Differential Tgs at vertical polarization between 19 GHz and 22, 37 and 85 GHz

provides another class of parameter to test for robustness. For terminology in this
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paper, the difference between 19 GHz and the other three MW frequendies will be called
19/22DIF, 19/37DIF, and 19/85DIF. The scatter diagrams of these parameters are
contained in Figure 4.8a-f.

The parameter 19/22DIF, is sensitive to atmospheric water vapor which
attenuates emitted radiation from the surtace. In addition, 19/22DIF exhibits warming
between morning and evening at low rainrates due to surface heating, as did both 19
and 22 GHz. The parameter, 19/22DIF, has the 3rd highest correlation coefficient (-
0.632). The range of Tg for 19/22DIF is +7 to -14 , with a slow decrease in Ty as area-
time averaged rainfall increases. The sensitivity of this parameter is about 10 K.

The 19/37DIF parameter is a m.easure of the difference in surface emissivity and
rainfall attenuation of the surface at 19 GHz and the emission and scattering
characteristics at 37 GHz. For 19/37DIF, the mean of the PDF of 19 GHz is generally
greater than the mean of the PDF at 37 GHz, leading to a mean difference of about 3 K
and variance of 9.7 K2. Although the data are highly concentrated, they are oriented
along a horizontal lire. This explains the .ower correlation coefficients in Table 4.1 and
Figure 4.1.

The last parameter of this type, 19/°SDIF, is a measure of the surface emission
after the affects of scattering are removed. Based upon the correlation coefficients for
this parameter, it does not appear to be well suited as a reiiable estimator of
subdivisional weekly rainfall. In addition, the scatter diagram for 19/85DIF), (Figure
<.8e), shows significant and unorganized scatter thus confirming the parameter’s lack of
robusmess.

The last three parameters are frequency dependent nco-malized degree of

polarizations. These will be referred to as 19NDP, 37 NDP, and 85NDP. All three of
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these parameter means show very low correlation coefficients during both morning and
evening orbits and are not robust parameters of subdivisional weekly rainfall.

The standard deviation of the PDF might have a significant correlation with
measured weekly subdivisional rainfall based upon the assumption that as rainfall
increases, the variances of the Tg PDFs increase due to the presence of colder Tgs in
FOVs containing rain. A review of the correlation coefficients of the standard deviation
of each parameter regressed against weekly rainfall does not generally support this
assumption. Table 4.2 shows the results for each parameter for morning and evening
orbits during 1988. For most parameters, the correlation coefficients are small with large
RMS errors. However 85H,, and 85U, show correlation coefficients of 0.584 and 0.509,
respectively. This suggests that the strong scattering effects at 85 GHz can produce 2nd
moment correlation in a PDF. In general, morning orbits have larger correlation
coefficients than evening orbits. Also, as rainfall totals increase, the standard deviations
also increase, as seen by the generally positive sign of the correlation coefficients.

The next logical step is to investigate whether the addition of the standard
deviation to the mean to create a linear two-variable model for each parameter results in
a better estimate of the measured subdivisional rainfall. The linear two variable model

is given by equation 3.

y = ag + a1 » (mean) + aj » (standard deviation) (3)

where y is the estimated rainfall; ag is the model intercept and a; and a; are the
regression coefficients. Once the coefficients are calculated, the estimated rainfall totals
are calculated and corrected for negative rainfall. The resulting correlation coefficients

for morning and evening orbits are given in Figure 4.9. Correlation coeffidents using




Table 4.2: Correlation coefficients and RMS errors for the standard
deviation of the 1988 microwave PDFs.

Parameter

19V

19H

2V

37V

37H

85V

85H

19U

37U

85U
19PCT
37PCT
85PCT
19/22DIF
15/37DIF
19/85DIF
19NDP
37NDP
85NDP

Morning Orbits

R rms error

0.028
0.079
-0.194
0.040
0.079
0.287
0.584
0.085
0.094
0.509
-0.008
0.133
0.101
0.183
0.180
0.284
0.014
0.051
-0.126

46.73
46.60
45.86
46.71
46.60
44.78
37.96
46.58
46.54
40.24
46.74
46.33
46.51
45.96
45.99
44.83
46.74
46.69
46.37

Evening Orbits
R rms error
0.180 45.98
0.137 46.30
-0.042 46.71
0.075 46.62
0.148 46.24
0.147 46.24
0.236 45.43
0.206 45.75
0.242 45.36
0.229 45.50
0.129 46.36
0.067 46.64
0.028 46.73
0.264 45.09
0.149 46.23
0.264 45.09
0.033 46.72
0.194 45.86

-0.119 46.41
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the mean-standard deviation combination generally increase, especially for morning
orbits, over correlations using the mean only. In addition, the differences between
morning and evening orbits is significantly reduced for most parameters when using
the two variable model as compared to the one variable model as shown in Figure 4.10.
This is true except for 85H and 85U, which may be due to the large differences in the
standard deviations between morning and evening orbits of these parameters. It would
be speculative at best to physically explain why the difference between morning and

evening parameters decreases when the standard deviation is added to the model.

4.1.2 Properties of the infrared probability distribution functions. The mean of
the IR PDFs represent the time-area averaged cloud-top temperature, or under cloud-
free conditions, the surface skin temperature attenuated by the overlying atmosphere.
The means of the IR PDFs for 1988 are independently evaluated following the methods
in section 2.3. Rainfall retrieval algorithms based upon IR measurements, unlike MW
measurements, provide an indirect estimate of rainfall because these measurements are
only able to detect doud top temperatures and cannot penetrate through cloud layers.
In addition, different cloud types can have similar temperatures but far different surface
weather conditions. For example, high, dense cirrus may have the same cloud-top
temperature as a cumulonimbus, however, dry surface conditions prevail under the
drrus while heavy rainfall occurs under the cumulonimbus.

The results of the IR analysis are compiled in Table 4.3. Correlation coefficients of
the mean of the IR PDFs are high when compared against the mean of the PDFs of most
MW parameters. Only a few of the evening MW parameters have correlation
coefficients that approach those of the IR correlation coefficients. In addition, the IR

correlation coefficients appear to be out of phase with the MW correlation coeffidents.
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Table 4.3: Correlation coefficients and RMS errors for the mean of
the 1988 IR PDFs.

GMT MST Correlation RMS

Coefficient error
0000 0530 -0.7140 32.73
0300 0830 -0.7217 32.36
0600 1130 -0.6856 34.03
0900 1430 -0.6212 34.63
1200 1730 -0.5624 38.65
1500 2030 -0.5534 38.94
1800 2330 -0.6100 37.04

2100 0230 -0.6710 34.66




The mean of the morning IR PDFs have high correlation coefficients while the mean of
the morning MW PDFs have low correlations, and vice versa in the evening. Figure 4.11,
show that a pronounced diurnal cycle in the correlation exists using the mean of the IR
PDFs.

Studies have shown that the preferred period of thunderstorm occurrence, in
India, is during the night with maximum occurrence during the early and late evening
and a secondary maximum in the afternoon (Sivarmakrishnan, 1990). Thunderstorm
activity is at a minimum in the morning. It should be noted that significant departures
from the general diurnal cycle occurs near coastal regions and elevated topography.
Based upon this, it would seem that the high morning IR correlations are erroneous.
This can be 2xpizined by understanding that the IR measures only cloud top
temperatures and not rainfall. For example, when thunderstorm activity begins to
increase throughout the afternoon, cirrus anvil debris is generated, thus contaminating
the FOVs with non-raining clouds having low temperatures. In contrast, the mean of
MW parameter PDFs have gererally higher correlations than the mean of IR PDFs
during the evening because at MW frequencies, cirrus clouds are essentially
transparent. Thus only the raining cloud and the underlying surface affect the MW

measurements.

4.1.3 Properties of microwave cumulative distribution functions. The
properties of the MW CDFs investigated include the slope and intercept factors. The

slope factor represents behavior in the tail of the CDF under varying rain conditions.

For example, as rainfall increases, the slope should decrease due to colder Tg being

present within the CDF. The intercept factor as used here represents the coldest Tg

found within a subdivision for a given week and may not be representative of overall
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conditions during the week. Other definitions of the intercept factor are possible and
may return better results, however, they were not investigated in this study.

A linear least squares fit of the slope factor to measured rainfall is calculated in
the same manner as used for the PDF analysis. The correlation coefficients and RMS
error for the morning orbits and evening orbits are compiled in Table 4.4. An
examination of these figures reveals that the slope factor of the CDF is not a robust
variable to be used as an estimator of subdivisional rainfall. The highest correlation at
any frequency is -0.331 for 85Hy.

An analysis of the intercept factor of the CDF reveals that it is not a robust
variable. Table 4.5 list the correlation coefficients and the mean square errors for the

morning and evening orbits. The most effective frequency for subdivisional rainfall

detection is again 85H,), with a correlation coefficient of almost -0.382.

4.2 Multi-parameter Regression Analysis

Although a correlation coefficient of -0.659 using the mean of the 37Ug PDF is
respectable for estimating rainfall over land from MW measurements, improvements
are possible by using a multi-parameter regression model based upon the mean. All 38
MW parameters are entered into a multiple linear regression model which selects the
optimal regression model for each subset of parameters for use in 1987. The 85 GHz
vertical channel malfunctioned in 1989, therefore 28 parameters are used in a multiple
linear regression program to obtain the optimal model, WO85V, for use in 1989. A
Regression Model Correlation Function (RMCF) is generated to describe model
behavior by obtaining the correlation coefficient after new parameters are sequentially

added to the model.




Table 4.4:

Parameter

19V
19H
22V
37V
37H
85V
85H

51

Correlation coefficients for the slope factor of

the 1988 microwave CDFs.

Morning Orbits

R Ims error

-0.081 46.59
-0.184  45.95

0.240 45.38
-0.064  46.65
-0.103  46.50
-0.169  46.08
-0.331 44.11

Evening Orbits
R rms error
-0.060 46.66
-0.196 45.84
0.241 45.37
0.006 46.75
-0.083 46.58
-0.127 46.37
-0.187 4592

Table 4.5: Correlation coefficients for the intercept factor

Parameter

19V
19H
2V
37V
37H
85V
85H

of the 1988 microwave CDFs.

Morning Orbits

R rms error

-0.096  46.53
-0.03¢  46.72
0.124 46.39
-0.046  46.70
0.019 46.74
-0.121 46.40

-0.382  43.20

Evening Orbits
R rms error

-0.147 46.24
-0.055 46.67
0.026 46.73
0.003 46.75
-0.003 46.75
-0.082 46.59
-0.142 46.28




4.2.1 Model building with microwave parameters. The RMCF of the optimal
1988 multi-parameter regression model is shown in Figure 4.12. The correlation
coefficient reaches a limit near -0.80, beyond which the addition of MW parameters to
the optimal model yields little information with which to predict the measured
subdivisional rainfall. Table 4.6 lists the MW parameters used in the optimal regression
model up to 8 variables, along with correlation coefficients and RMS errors.

Interestingly, some of the parameters that appear in the optimal models are not

individually robust. For example, the two-parameter optimal model contains 37Ug and
19/85DIF)4. From Table 4.1, the correlation coefficient of 19/85DIF), has a correlation
coefficient of -0.149, but in the two-parameter model it is more important than any of
the remaining 36 parameters. It is difficult to say why 19/85DIF), entered the model at
this point, however, it is instructive to examine the top five optimal two-parameter
models. Four of the top five contained 37Ug and some form of a morning 85.GHz
parameter (19/85DIF,,, 85PCT,,, 85V),, and 85U),). Therefore, information concerning
the scattering measured during the morning at 85 GHz appears to be important and
should be inciuded in any regression model used to estimate area-time averaged rainfall
over land.

An optimal model containing three parameters adds, in addition to the terms
from the two-parameter model, 19/22DIF,, and increases the correlation coefficient to
0.736 and reduces the RMS error to 31.62 mm. This term provides information
concerning the attenuation by water vapor of the surface emission. Individually,
19/22D1F)y4 and 19/22DIFg have high correlations with rainfall of -0.525 and -0.623,
respectively. Based upon it's early entry into the regression model and its high
correlation with measured rainfall, it is clear that this is a robust parameter to use to

observe area-time averaged rainfall over land regions. In the optimal three-parameter
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RMCF of Optimal 1988 Microwave Model
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Figure 4.12: Regression Model Correlation Function (RMCF) for optimal multi-
parameter model based upon the mean of the 1988 PDFs.




Table 4.6: Parameters used in optimal regression model along
with correlation coefficients and RMS errors at each step.

Parameter R rmmserror
37Ug -0.659 35.12
19/85DIF), -0.704 33.18
19/22DIF, -0.736 31.62
85PCTg -0.749 30.97
19PCT)y -0.779 29.28
19PCTg -0.786 28.89
85Vg -0.791 28.60

85NDPy, -0.804 27.79
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model, another trend is noticeable in the top five parameter candidates for inclusion
into the model. Each of the candidate parameters is a form of the 19 GHz channel
(19DIF,4, 19/37DIF)y,, 19/22DIFg, 19NDP),, and 19H),). In addition, the top three are
differential Ty at vertical polarizations of the lower frequendies. Therefore, it appears
that the surface and rain-layer emission and degree of water vapor absorption
variability is taken into account with the addition of these parameters. Moreover, when
additional parameters are added to the optimal model, it appears that the key physical
radiative processes (surface and rain-layer emission, within cloud volume scattering,
water vapor absorption variability, and polarization differences) are accounted for.
When a combination of the mean and standard deviation are used in a multi-
parameter regression model, results similar to that of models using only the mean are
obtained. Figure 4.13 shows the RMCF of the optimal mean-standard deviation multi-
parameter regression models for the first 8 parameters. The combination mean-standard
deviation have slightly higher correlation coefficients than the mean-only models ,
however, the difference is insignificant. The primary difference between the two
approaches is the subset of parameters that are chosen in each optimal regression
model. Only three of the parameters are common to both approaches; 19/22DIF),,

85PCTp, and 19/85DIF,,. Table 4.7 lists the parameters used in the first 8 regression

subsets, along with correlation coeffidents and the RMS model errors.

4.2.2 Model building without 85V GHz parameters. Table 4.8 lists the best
parameters, without 85V parameters (WO85V), at each step through an 8 parameter

regression model. An interesting feature of this model is that with the exception of

37U, when fewer than five parameters are used, only SSM/1 frequendcies appear. Also,

the correlation coefficients of the WO85V model, are approximately 5 percent less than
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Table 4.7: Mean + standard deviation regression model
parameters with correlation coefficients and RMS errors.

Parameter R rmmserror
19Ug -0.676 3445
85H), -0.725 32.14
37U\ -0.740 3142
19/22DIF), -0.754 30.69
85PCTg -0.763 30.16
19V -0.794 28.40
85Hg -0.801 28.03

19/85DIFy 0.807 2794
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Table 4.8: WOB85V multi-parameter regression model parameters
correlation coefficients and RMS errors.

Parameter R
37Ug -0.659
22V -0.677
19Vg -0.706
85H), -0.739
37Hg -0.747
19NDPg -0.760
37PCTg -0.767

19PCTy -0.777
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the optimal 1988 model. The small difference is probably due to the high degree of
correlation between some parameters.

In the WOB85V two-parameter model, 22V, enters into the model following
37UE, however only a marginal increase in correlation occurs (0.018). Of interest, is that
in both this model and the full parameter models, a form of 22 GHz (19/22DIF) enters
into the regression very quickly. These parameters provide the model with information
concerning the average water vapor content of the atmosphere within a subdivision.

In the WOB85V three-parameter model, 19V enters the model, as a form of 19
GHz did in the models containing the 85V parameters. This and the fact that a form of
22 GHz appears in the optimal and WO85V regression models emphasis the importance
of these emission-based parameters. Until now, these parameters were of little use in
the detection of rainfall over land due to the size of the FOVs and associated beam-
filling errors. However, in this study the beam-filling errors have been reduced by
deconvolving the MW measurements to the higher spatial resolution of the 85 GHz
channels. Therefore, a higher degree of sensitivity to rainfall over land can be attained
by using deconvolved low frequency MW measurements. Again, as the number of
parameters in the WO85V model increases, the key physical radiative processes are
accounted for. However, the parameters accounting for volume scattering are based
upon 37 GHz instead of 85 GHz.

4.2.3 Model building with microwave and IR parameters. Before a mixed IR-
MW multi-parameter regression model is created, an IR-only multi-parameter model is
examined using all eight of the daily measurements that are available in 1988. As shown
in section 4.1.2, the 0300 GMT measurements have the highest correlation (-0.721) with
measured subdivisional rainfall than any other IR measurement times. However, a

multiple regression of the means of the IR PDFs for the eight times they are available
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shows that the highest correlation (-0.738) occurs after four parameters (0300, 0900,
1500, and 2100 GMT) are entered into the model and then decreases as more parameters
are added. Based upon this, it is apparent that only one IR parameter is needed in a
mixed IR-MW optimal regression model due to the high correlations between IR
measurements. This was verified by using all eight IR parameters plus the 38 MW
parameters in a multiple linear regression program to obtain the best mixed IR-MW
regression model.

Section 4.1.2 shows that some morning IR parameters have higher correlation
coefficients than any of the MW parameters. An optimal IR-MW multi-parameter
regression model was obtained which shows that a mixed model can be constructed
which uses fewer parameters to attain the same performance level of MW models. Also,
as the number of parameters increase, a limit is again approached nearly equal to that of
the MW-only models. Figure 4.14 shows the RMCF based upon 0600 GMT IR
measurements in combination with MW parameters.

The optimal IR-MW models containing either 0000, 0300, 0600, or 2100 GMT IR
measurements all contained the same additional MW parameters. In addition, these
parameters all entered into the model in the same order. Table 4.9 lists the first 8
parameters based upon a optimal 0600 GMT IR-MW model. Individually, the remaining
IR measurements have correlation coefficients less than some evening MW parameters
and therefore do not enter the optimal IR-MW model until the third parameter.

Of interest, are the type of MW parameters which enter the optimal IR-MW
regression model. The second parameter to enter is 19/22DIFg, albeit evening, it is the
same parameter which enters the optimal MW regression models. In addition, the next
two parameters are differential Tg at vertical polarizations (19/85DIFy and

19/85DIFy).
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Figure 4.14: RMCF of optimal IR-microwave model based upon the mean
of the 1988 PDFs.




Table 4.9: IR-microwave optimal regression mode] parameters
with the correlation coefficients and RMS errors.

Parameter

INSAT 06 GMT
19/22DIFg

19/85DIFy,
19V,
19/85DIFg
85NDP)
85NDPg
19/22DTF,,

R ms error

-0.685 34.03
-0.759 32.14
-0.789 3142
-0.800 30.69

-0.811 30.16

-0.812 28.40
-0.816 28.03
-0.818 27.94

62




CHAPTER 5

Validation Tests

Verification of the results obtained for the 1988 monsoon season is accomplished
by testing against results obtained from the monsoon seasons of 1987 and 1989.
Validation will be performed for the single and optimal (WO85V) 1988 multi-parameter
models using the mean of the 1987 (1989) MW PDFs.

5.1 1987 Tests

Figure 5.1 illustrates the variation between individual parameters in terms of
correlation coefficients for morning and evening orbits. Table 5.1 lists the individual
parameter correlation coefficients and RMS errors. An interesting result, is that during
1987 the mean of the morning MW parameters have higher correlation coefficients than

their evening counterparts. This is the opposite of the results obtained for the 1988 MW
parameters. In particular, during 1987, 85PCT, has the highest correlation coefficient (-

0.601); during 1988, 85PCT), has a correlation of -0.540 and was one of the few

parameters which had a higher correlation in the morning than it did in the evening.

This may be due to the evening 85PCTs being adversely affected by high surface
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Table 5.1: Parameter correlation coefficients and RMS errors for 1987.

Parameter

19V

19H

22V

37V

37H

85v

85H

19U

37U

85U
19PCT
37PCT
85PCT
19/22DIF
19/37DIF
19/85DIF
19NDP
37NDP
8SNDP

Morning

Correlaion RMSE

-0.512
-0.461
-0.398
-0.520
-0.470
-0.598
-0.486
-0.508
-0.520
-0.549
-0.298
-0.342
-0.631
-0.547
-0.306
-0.029

0.120

0.117
-0.136

36.06
39.16
40.44
3745
38.96
35.25
38.54
37.96
37.66
36.85
42.11
41.42
33.63
36.89
42.00
44.10
43.80
43.81
43.70

Evening

Correlaion RMSE

-0.468
-0.400
-0.374
-0.468
-0.403
-0.395
-0.312
-0.436
-0.439
-0.356
-0.374
-0.364
-0.423
-0.551
-0.389
-0.348

0.178

0.192
-0.021

34.32
40.66
41.31
39.22
40.60
41.00
42.36
39.95
39.87
41.69
41.15
41.18
40.37
36.80
40.85
41.48
43.74
43.59
44.44
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temperatures. Both 19/22DIF), and 19/22DIF; have high correlation coefficients,
similar in magnitude to those of 1988.

The differences between 1987 and 1989 may be related to a shift in the diurnal
rainfall cycle based upon the following observations. A comparison of Tables 5.1 and 4.1
reveals that the difference between MW parameters during morning orbits is small.
However, the difference between the same parameters during the evening is much
larger. Because these correlations are between the means of parameter PDFs and weekly
rainfall totals, fluctuation in the correlation coefficdients may be indicative of a shift in
the diurmal rainfall pattern.

Figure 5.2 illustrates how the RMCF based upon the optimal MW 1988 multi-
parameter model applied to 1987 data. As the the number of parameters increase, the
correlation coefficient does not always increase. This is, in part, due to the optimal 1988

parameters not being as robust during 1987. For example, all of the 1988 optimal multi-

parameter models are based upon 37Uy, since it has the highest individual correlation
coefficient of any MW parameter. However, in 1987, 37Ug ranks 15 out of 38 MW
parameters. Since the optimal 1988 models are based upon 37Uy, it is not surprising that
they do not perform as well in 1987.

To investigate which parameters might work best in a independent multi-
parameter model for 1987, a model was constructed using only as input the 1987 MW
measurements by the procedure in section 4.2.1. Figure 5.2 also shows the behavior of
the RMCF of the 1987 independent MW multi-parameter model. In the independent
1987 multi-parameter regression model, 85PCT), forms the basis of the model since,
individually it has the highest correlation with subdivisional rainfall. The second and
third parameters added are 37PCT)s and 19/22DIF),, respectively (Table 5.2). Only
with the early inclusion of 19/22DIF)4, do the 1987 and 1988 optimal multi-parameter
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Figure 5.2 RMCFs of the Optimal 1983 microwave multi-parameter model
applied to 1987 data and the independent 1987 multi-parameter model.




Table 5.2: Parameters used in independent 1987 regression
model along with correlation coefficients.

Parameter R
85PCT)y -0.630
37PCTyy -0.695
19/22DIF)4 -0.764
37NDPg -0.780
85PCTg -0.789
19/ 22DIF -0.800
37Vg -0.813
37U\ -0.815




models share anything in common. In addition, the 1988 optimal model applied to 1987
and the independent model have a difference of 7.5% after eight parameters are entered
into the model. This occurs as the number of parameters increases, when the two
models contain many of the same class of parameters. Therefore, the key physical

radiative processes are accounted for in the 1987 independent model.

5.2 1989 Tests

Figures 5.3 illustrates the variation among individual MW parameters in terms of
correlation coefficients for morning and evening parameters. In 1989, like 1988, the
evening parameters have higher correlation coei ciei.s than their morning

counterparts. Table 5.3 lists the correlation coefficients an.. R.v. . urrors of the 1989 data.
During 1989, 19V and 37V tied for the highest correlation coefficients (-0.545),

although 19V falls short of the results of 1988. However, based upon this, it appears
that th:ese two parameters are able to detect time-area averaged rainfall over land in a
heavy rainfall regime. A number of parameters have correlations in excess of -0.5 and
include 37V, 37Hg, 19U, and 19/22DIFg; no morning parameters exceed a correlation
of -0.5. The RMS errors range from 34.32 to 40.91 millimeters and the average rainfall
during the year is 34.15 millimeters.

The RMCEF decreases as the number of parameters in the model exceed three
when using the WO85V regression model as seen in Figure 5.4. To gain insight on why
this happens, an independent multi-parameter regression model based upon 1989 data
is constructed. For this case, the RMCF increases as parameters are added to the model

as seen in Figure 5.4. The parameters chosen in the independent 1989 model (Table 5.4)

are different than those selected in 1988. In 1989, 37U, formed the basis of the
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Table 5.3: Parameter correlation coefficients and RMS errors for 1989.

Parameter Morning Evening

Correlation RMSE Correlation RMSE
19V -0.465 36.06 -0.527 34.32
19H -0.394 37.63 -0.494 35.57
2V -0.389 37.61 -0.475 35.58
37V -0.445 36.50 -0.509 34.80
37H -0.406 3741 -0.512 35.13
85H -0.209 40.04 -0.247 39.72
19U -0.456 36.39 -0.535 34.40
370 -0.456 36.38 -0.536 34.83
19PCT -0.308 38.94 -0.383 37.78
37PCT -0.296 39.05 -0.367 37.94
19/22DIF -0.469 36.14 -0.505 35.31
19/37DIF -0.363 38.15 -0.461 36.29
19NDP -0.036 40.91 0.038 40.91

37NDP -0.069 40.84 0.084 40.79
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Table 5.4: Parameters used in independent 1989 regression
model along with correlation coefficients.

Parameter R
37Ug -0.535
85H¢ -0.562
19PCTyg -0.567
19PCT), -0.589
37V M -0.593
2V -0.5%6
37PCTy -0.597

85H,, -0.598
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independent regression model, followed by 85Hg, 19PCTg, and 19PCT). In 1988, 37Ug
again formed the basis of the optimal regression model, but is followed by 22V,,, 19Vg,
and 85H),. The parameters chosen in either year are based upon the parameter
correlations with subdivisional rainfall and inter-correlations among individual

parameters. In addition, the overlap process does occur as the number of parameters in

the model increases. The entry of 22V), or 19V into the models does not adversely
affect the correlation, however the addition of 85H,,; does. At this point, the RMCF

decreases to less than that of a single parameter model using 37U¢.

The 1989 independent model, based upon different parameters, does show a
steady rise in the correlation until reaching a limit of -0.605. This limit is significantly
below that of optimal 1988 (-0.802) and is most likely related to the lack of useful 85V
parameters which provides information concerning the amount of volume scattering
present. However, the key physical radiative processes are accounted for in the 1989

independent model.




CHAPTER 6

Rainfall Accumulation

6.1 Monsoon Features

To determine if basic monsoon features are observable using the optimal model
applied to 1988 and 1987, and the WO85V model applied to 1989, the measured and
model estimated rainfall and the difference between them were viewed in graphic
format. Figure 6.1 shows this graphic for 1988. The rectangles contain these data for
each subdivision on a weekly basis. The subdivisions were reordered by latitude (south
at the top and north at the bottom of the rectangle) so that the progression of the
monsoon could be easily observed. The time is plotted along the abscissa. The top
rectangle contains the measured subdivisional rainfall data, the middle contains the
model estimated rainfall data, and the bottom contains the difference between the
measured and the model estimated rainfall data. The rainfall totals are color coded in 25
mm increments with grey representing bad data.

The progression of the monsoon is visible in the measured rainfall data as seen
by the heavier rainfall totals propagating towards the north with time. A break period
starts in the south at week 7 and also propagates north with time. This cycle is repeated
until bad data is encountered which masks the behavior of the monsoon as represented
by the measured rainfall. The same sequence is evident in the model estimated rainfall.

In addition, the difference between the measured and estimated rainfall is less than 25
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mun for the majority of the subdivisions.

Figure 6.2 shows the results of the optimal model applied to the 1987 data set.
Again the active/break cycle is apparent in the measured data. In the model estimated
data the cycle appears after week 5. During week 5, rainfall is greatly underestimated
for all subdivisions and appears to be caused by bad data. With the exception of week 5,
the majority of the differences are less than 25 mm.

Figure 6.3 shows the results of the WO85V model applied to the 1987 data set.
The active/break cycle is less evident but observable by following the progression of the
heavier rainfall totals of the measured rainfall data. The model estimated rainfall
mimics the overall pattern but individual differences can be quite large as seen by the

preponderance of brighter colors in the lower rectangle of Figure 6.3.

6.2 Space and Time Averages

6.2.1 1988 accumulations. Figure 6.4 contains the measured and mode! estimated
continental weekly rainfall accumulations weighted by subc. sision size for 1988. The
average error is 62.8% but ranges from 0% to 380%. The first week and the last three
weeks (weeks 1, 24, 25, and 26) exhibit the largest errors. These errors are most likely
due to satellite sampling limitations. If these four weeks are eliminated, the average
error drops to 12.2%. Thus on a weekly basis, the total accumulation calculated from the
optimal model is in close agreement with the measured rainfall accumulations.

Figure 6.5 shows measured and model estimated subdivisional seasniial rainfall
accumulations weighted by subdivision size. The average error is 20.28% and ranges

from 0% in Assam and Meghalaya (area 3) to 46.7% in Bihar Plateau (area 8). Figure 6.6
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Weighted Continental Weekly Rainfall
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Figure 6.4: 1988 continental weekly rainfall accumulation weighted by
subdivision size.
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Weighted Subdivision Seasonal Rainfall
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Figure 6.5: 1988 subdivisional seasonal rainfall accumulation weighted
by subdivision size.
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is a graphical representation of these data mapped to the appropriate Indian
subdivision. As can be seen, the difference between the measured and estimated

subdivisional seasonal rainfall accumulation is small.

6.22 1987 accumulations. Figure 6.7 contains the measured and model estimated
continental weekly rainfall accumulations weighted by subdivision size for 1987. The
average error is 34.79% but ranges from 0% to 125.6%. The fifth week exhibits the
largest error and is probably due to the presence of bad data. Excluding this week, it
appears that the model estimated continental weekly rainfall accumulation is a good
approximation to the measured accumlations.

Figure 6.8 shows measured and model estimated subdivisional seasonal rainfall
accumulations weighted by subdivision size. The average error is 34.93% and ranges 0%
in Bihar Plateau (area 8) and the Gujarat region, Daman, Dadra and Nagar Haveli (area
21). Figure 6.9 is a graphical representation of these data mapped to the appropriate
Indian subdivision. Again, the difference between the measured and estimated
subdivisional seasonal rainfall accumulation is small. This is a consequence of the high

correlation coefficient of the optimal model applied :o the 1987 data set.

6.2.3 1989 accumulations. Figure 6.10 contains the measured and model estimated
continental weekly rainfall accumulations weighted by subdivision size for 1989. The
average error is 30.8% but ranges from 3% to 84.6%. Although this is the smallest
average error of any of the three years, it is misleading because most of the individual
errors are very close to the average error. In 1987 and 1988, most of the error was

accounted for by a couple of events.
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Figure 6.7: 1987 continerta! weekly rainfall accumulation weighted by

subdivision size.
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Weighted Continental Weekly Rainfall
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Figure 6.10: 1989 continental weekly rainfall accumulation weighted by
subdivision size.




Figure 6.11 shows measured and model estimated subdivisional seasonal rainfall
accumuiadons weighted by subdivision size. The average error is 68.75% and ranges
1.6% in East Uttar Pradesh (area 10) and 600% in South Interior Karnataka (area 33).
These errors are related to the satellite sampling limitations and the limitations of the
WOB85V model applied to the 1989 data set. Figure 6.12 is a graphical representation of
these data mapped to the appropriate Indian subdivision. During 1989, larger
differences are discernable between the measured and estimated model subdivisional

seasonal rainfall accumulations.
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Figure 6.11: 1989 subdivisional seasonal rainfall accumulation weighted
by subdivision size.
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CHAPTER 7

Summary and Conclusions

The retrieval of accurate rainfall measurements over land regions obtained
through passive MW techniques is challenging due to the general lack of contrast
between rainfall and the land background. Only when large ice particles are present
above the rain layers are high contrasts assured. Ice causes strong volume scattering
which is readily detectable at 37 and 85 GHz. Although the contrast between rain layers
and the land surface is generally small, the emitted radiances from these two sources
are caused by highly distinct radiative processes. Confronted with this situation,
previous investigators have tried to separate rainfall from the land background. Until
recently, investigators had to rely upon, low spatial resolution, low frequency
measurements (6.6, 10.7, 18, 19 and 37 GHz) available from the ESMR-5, ESMR-6, and
SMMR instruments. Beginning in 1987, a new class of instruments, the SSM/I, were
launched aboard DMSP satellites. This instrument carries a four frequency, dual
polarization (except 22 GHz), microwave sensor which represents the highest spatial
resolution and frequency (85 GHz) ever flown on a satellite. The high spatial resolution
of the 85 GHz channel and it’s sensitivity to volume scattering provides better contrast

between rain and the land surface.
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This study has been designed to determine how much contrast actually exists
between raining and non-raining pixels for each of a large set of passive MW
parameters. These parameters incliide, in addition to the seven channels of the SSM /I
instrument, 12 combinations of these channels designed to take into account the
frequency and polarization diversity. All of the parameters are composed of Tgs which
have been deconvolved to the resolution of the 85 GHz channels. From the PDFs of
these parameters, two vari .bles are extracted; the mean and standard deviation. In
addition, CDFs of the seven SSM/I channels are generated from the appropriate PDF by
obtaining the cumulative count of Tgs within each Tg bin of the PDF. From the CDFs,
two additional parameters are extracted; the slope and intercept factors. The slope
factor is determined by measuring the gradient of Tg accumulation over the range of
Tpgs within the CDF of a Indian subdivision. The intercept factor is the coldest Tg
- present within the CDF.

This study utilizes the high rainfall variability on temporal and spatial scales
available during the SW monsoon over India with which to evaluate the MW
parameters. By calculating the correlation between the time-area averaged MW
measurements in each Indian subdivision with it's weekly rainfall total, an evaluation of
the robustness of each parameter is determined. In addition, INSAT IR measurements
are utilized, to determine if their presence in an optimal multi-parameter regression
model significantly improves microwave-only multi-parameter regression models.

The results reveal that the mean of the MW parameter measurements obtained
during the evening have higher correlation coefficients than the same parameter
correlations from the morning during 1988 and 1989. The opposite resuli was reached
for the 1987 MW measurements. This difference may stem from the diurnal rainfall

cycle and its inter-annual variability caused by large scale influences on the monsoon.
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The MW parameters based upon the standard deviation, siope and intercept fators all
have very low correlations with subdivisiona! rainfall and therefore cannot be
considered robust variables.

Individually, the means of the 37U, 19Ug, 19V, 19/22DIF, 37Vg, 19Hg, 22V,
and 37Hg PDFs are the most robust parameters in 1988 and 1989. During 1987, the most
robust set of parameters were significantly different from 1988 and 1989 and are
dominated by morning parameters. These parameters include the means of the
85PCTyy, 85V)y, 19/22DIF, 85U, 19/22DIF),, 37V, 37Uy, and 19V,, rDFs. Oniy
19/22DIF), is common to all three years These differences may be due to the
differences in the rainfall characteristics of strcng and weak monsoons. The means of
the 1IS9NDP, 37NDP, and 85NDP PDFs show little correladon wich rainfall in any of the
three years studied. The remainder of the parameters fall into an intermediate
robustness class.

The optimal 1988 MW multi-parameie: regression model reveals that a
maximum correlation (-C.80) is reached after 8 paraineters are added to the model. This
multi-parameter approach leads to th:: conclusion that some individual parameters with
relatively low correlations with measured rainfall provide important informat.ua
concerning physical radiative processes when used in conjunction with other
parameters. However, the overall periormance of the optimal multi-parameter model is
determined by the robustness of the first parameter in the model since it accounts for
the majority of the explained variance.

The application of the optimal 1988 MW multi-parameter model on 198, and the
WOB85V 1988 MW multi-parameter model on 1989 suggests that the magnitudes of the
Regression Model Correlation Functions (RMCPF) are smaller by 7.5% and 2u% for 1987

and 1989 respectively than the independently derived regression models. In addition,




the behavior of the RMCFs derived from the independent year multi-parameter
regression models are also controlled by an ‘overlap process’. The overlap process
occurs when a class of parameters used in the independent 1987 and 1989 models are
also contained in the optimal or WO85V 1988 models, respectively. Therefore, the
implication of how parameters are selected for an optimal model is that key physical
radiative processes (surface and rain-layer emission, within cloud volume scattering,
water vapor variability, and polarization differences) must be accounted for. The
overlap or combinations of parameters ensure that the key physical radiative processes
are accounted for. This point must be qualified by the fact that 1989 lacked meaningful
volume scattering parameters because the 85 GHz channels were missing or unreliable.
The inclusion of INSAT IR measurements into a optimal multi-parameter
regression model does not substantially improve the performance obtained by pure
MW models, however, fewer parameters are required to reach optimal performance.
Individually, the mean of the morning IR PDFs are more robust than mean of any
microwave parameter PDFs. However, the mean of the evening IR PDFs are less robust
than the mean of morning IR PDFs and many MW parameter PDFs. This is probably
caused by cirras cloud contamination of FOVs generated by the anvils of large
thunderstorms during the evening thunderstorm maximum in the diurnal cycle. The
cirrus clouds creates very cold temperatures within the FOV which are not related to
rainfall. In addition, a pronounced diurnal cycle is evident between the robustness and

the time of the satellite measurements.
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