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ABSTRACT

Over recent years, a variety of shock-capturing schemes have been developed for the
Euler equations of gas dynamics. During this period, It has emerged that one of the more
successful strategies is to follow Godunov's lead and utilize a nonlinear building block known
as a Riemann problem. Now, although Riemann solver technology is often thought of as
being mature, there are in fact several circumstances for which Godunov-type schemes are
found wanting. Indeed, one inherent deficiency is so severe that if left unaddressed, it could
preclude such schemes from being used to capture detonation fronts in simulations of complex
flow phenomena. In this paper, we highlight this particular deficiency along with some other
little known weaknesses of Godunov-type schemes, and we outline one strategy that we have
used to good effect in order to produce reliable high resolution simulations of both reactive
and nonreactive shock wave phenomena. In particular, we present results for simulations of
so-called galloping instabilities and detonation cell phenomena.
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1. Introduction

Following the rise of computational fluid dynamics, numerical simulations of shock wave
phenomena are now commonplace. Such simulations are attractive as replacements for ex-
periments which are either difficult, dangerous, or expensive, and can be done for problems
which are not amenable to analytical methods. However, because of the disparate scales
involved, simulations are all too often under-resolved and so are of limited use. Indeed,
despite the plethora of numerical schemes that have been developed, only the Godunov-type
methods have been shown to produce, genuinely, high fidelity simulations of complex shock
wave phenomena (Berger and Colella, 1989; Quirk, 1992 a). Consequently, following a survey
of the literature, Godunov-type methods are likely to be picked up by people who are not
algorithm developers as tools with which to simulate real problems. Unfortunately, despite
their undoubted strengths, Godunov-type schemes have certain inherent weaknesses that
can, occasionally, rcsuLt in simulations failing catastrophically. Amongst the cognoscenti,
such weaknesses, whilst not always fully understood, can be overcome. However, the non-
expert is severely disadvantaged by the fact that the various failings and their associated
fixes go largely unreported. Recently we have attempted to redress this unfortunate state of
affairs (Quirk, 1992 b), and here we present an abridged version of this work which is targeted
directly at people within the combustion community who would like to take advantage of
modern shock-capturing schemes for simulating detonation flows.

The rest of this paper is as follows. In Section 2 we present a brief outline of Godunov-
type schemes. This is followed by a section containing some specific examples of how different
schemes can fail. In Section 4 we describe the strategy that we use to improve the robustness
of our flow solvers, following which, we present results for simulations of galloping instabilities
and detonation cell phenomena. Finally, in Section 6 we present some conclusions that we
have drawn from this work.

2. Outline of Godunov-type Schemes

Many expositions of Godunov's method and its descendants appear in the literature
(Holt, 1984; Roe, 1986); here we simply want to present the general gist of such schemes in
order to orientate the reader for the material which follows in the remaining sections of this
paper.

With reference to Figure 1, a Godunov-type scheme may be viewed as follows. The
scheme works with a low-order projection of the flow solution; each mesh cell contains a
cell-averaged value for the true .:ohttion over the cell. Thus, the numerical representation
closely approximates the true solution near discontinuities, and regions of smooth flow are
reasonably well approximated by a series of step functions. This discrete system is inte-
grated by first reconstructing the flow solution within each cell. This step is effectively an
extrapolation process for finding the flow states at the edges of mesh cells given values at
the centres of cells. Note that, in general, the reconstructed solution whilst smoother than
the projected solution will still be discontinuous at cell interfaces. Next there comes an
evolution step. A Riemann problem is solved for each cell interface using the reconstructed
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C(ell-averaged projection of the
flow solution.

Piecewise-linear reconstruction
of tile flow solution.
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Typical Riemann solution
"i showing three centred waves.

Figure 1: A Godunov-type scheme consists of three basic steps: rcconzstru,'tionz--*crolution
-*projection.

states on either side of the interface as input data. Recall that the Riemann problem for
any set of conservation laws arises, if initial data are prescribed as two semi-infinite states
(W = W1, for x < 0, W = WR for x > 0). The solution to a Riemann problem consists of a
number of centred waves. For the one-dimensional Euler equations of gas dynamics there
are three waves. The inner wave is a contact discontinuity separating states at different
temperatures, and each of the two outer waves may be either a shock wave or an expansion
wave. Finally, the different solutions to the separate Riemann problems are averaged so as
to find a cell-centred projection of the flow solution at some new time level. If repeated,
the sequence reconstruction---evolution -*projcction results in an accurate and well-behaved
scheme for simulating the propagation of shock waves.

Whilst the overall strategy of a Godunov-type scheme is largely clear-cut', the same can-
not be said of its individual components. For example, more often than not, the Riemann
problem for a system of conservation laws does not have an analytic solution and is there-
fore expensive to compute. Consequently, many workers prefer to compute an approximate
•:cm;on to the Riemann problem which embodies the spirit of the exact solution but which
is cheaper to compute (Roe, 1986; Einfeldt, 1988; Toro, 1991). Indeed, the design of approx-
imate Riemann solvers has become something of an industry ;'i its own right, and there is
considerable debate concerning the relative merits of different solvers. Moreover, there are

'Here we have desrrii,4 te io cnilcd Mt'f ( . appr:a•.h f. 1u -- ,!ucing a high-ordtr (Godunov inethod.
An alternative methodology is followed by flux-limited schemes where the reconstruction step is replaced by
a procedure which post-processes the Riemann solution.
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many circumstances for which certain approximate solvers actually prowe to be more reliable
than thle exact solver. Therefore, in generdl, it is far from obvious which particular Hieinann
solvwr is best suited to a given application.

The reconstruction step is similarly open to different interpretation. Firstly, there is a
free choice as to which variables are reconstructed, aiid which quantities are derived from
the reconstructed variables. For example, although shock capturing schemes invariably work
with the conserved variables, experience shows, at least for the Euler equations, that better
results are obtained if the reconstruction is performed using primitive variables. Secondly.
there is also a choice as to the order of accuracy of the reconstruction. As is common practice,
we employ piecewise-linear slopes (Quirk,1992 a); however, ('olella and Woodlward (1984t)
use piecewise-parabolas to good effect in their PPM scheme, and more recently Harten •t
al. (1987) have introduced the idea of ENO schemes where the reconstruction step may be
carried out to some arbitrary order of accuracy.

It is worth noting, however, that to a large extent the quality of results produced will
depend on how well the flow solution is reconstructed near discontinuities and so the notional
order of accuracy for some reconstruction process is not necessarily a reliable indicator of its
actual performance. Typically, limiter functions (Roe, 1985) are employed so as to ensure
that the reconstruction process does not introduce unwanted overshoots near ext rema, and
it is the properties of the chosen limiter function that largely dictate the quality of the flow
solution. But a limiter function is only as good as the data upon which it acts. For example.
although we employ a piecewise-linear reconstruction which results in a scheme that is nom-
inally only second-order accurate, the slopes are derived from the Riemann solutions which
are computed using the cell-centred states as input data. For very high resolution simula-
tions which involve thousands of time steps, this strategy gives markedly better results for
weak discontinuities such as contact surfaces than does the third-order reconstruction pro-
cess proposed by Anderson et al.(i985) which does not utilize the same level of characteristic
information. While the differences are much less marked for problems that contain just a
few time steps, they are still appreciable (see Figure 2).

Everything considered, given the basic framework of a (Codunov-type scheme, it is possible
to construct many different variations on a theme., In fortunately, there is no "correct" way of
doing things, for the theory which underpins this class of scheme does not always discriminate
between the different options that are available. In practice, seemingly innocuous details of
the reconstruction process can have a large bearing on the quality of the results produced for
the sorts of very detailed simulations that will be necessary in order to unravel the dynamics
of detonation phenomena. Thankfully, the large scale flow features are normally insensitive
to such changes, and so one's faith in Glodunov-type schemes is not unduly undermined by
the uncertainties in the precise details of the method.

Before proceeding to the next section which exposes some of the failings of Riemann
sol vc;•, so as not to appear to paint an overly pessimistic view of the capabilities of Codunov-
type schemes, it is wovth~wI~ile hs!:wing what .aij b.e atbieved if due ,4aic is takca. Figure ;i
shows a snapshot taken from the simulation of a planar shock wave diffracting around a 900
corner (Quzirk, 1992 b). This picture is similar to a Schlieren image in that the dlifferent
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Figure 2: The internal energy profiles computed for Sod's problem using: (a) 2"' order
characteristic MUSCL (Quirk, 1992)., (b) 3 rd order non-characteristic MI 5(L (Anderson ct
al., 1985).

shades of grey depict the magnitude of the gradient of the density field (the darker the
shade, the larger the gradient), and it clearly shows all the salient flow features as identified
experimentally by Bazenhova et al, (1984).

Briefly, with reference to Figure 4, the diffraction of the incident shock wave (AC) aronud
the corner gives rise to an expansion fan which emanates from (0). The shape of this fan's
lead characteristic (AQO) indicates that the flow upstream of the incident shock is super-
sonic. The expansion fan interacts with the incident shock to form the disturbed shock front
(AI)MN). The incident shock is sufficiently strong that this disturbed front is kinked; a Macli
reflection at the wall gives rise to a triple point at (M). A contact surface (ALO) marks the
boundary between fluid that has been induced into motion by the incident shock and fluid
which has been processed by the disturbed shock front. Note that the flow is separated from
the wall at a point slightly downstream of the apex of the corner, and a slil)stream (OS)
separates the expanded flow from this region of almost stationary gas. T'he free end of this
slipstream rolls up into a vortex. A secondary shock wave (KTS) matches the pressure of the
flow accelerated by the expansion fan to that of the decelerated flow behind the disturbed
part of the incident wave. This secondary shock is kinked as a result of its interaction with
the slip stream (OS). A secondary contact surface (T1) begins at, the point of intersection
of the secondary shocrk wave with the weak shock (OT) which terminates the expansion
fan. Lastly, a shock wave (PB) is present so as to decelerate the reversed flow within the
separated region as it, approaches the point of diffraction.



wave diffracting around a 900 cornier.
Figure :3: A anumerical Schhleren-type image takeni from the simulation of a planar shock
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Figure 4: Schematic showing the maini flow features of the above Schlieren-type, im1age.
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3. Some Failings of Riemann Solvers

We nov• present some examp~les where certain Rieinann solvers are knowni to give unrelhi-
able results for the Euler equations of gas dynamics. Whilst our catalogue of failings is not
exhaustive, it should alert the readIer to the types of p~roblems that they might enc:ounter
when using Codunov-type methods. It is important to realise that no one failing afflicts
all Riemann solvers. Conversely, however, it would appear that no one Riemani. solver is
completely free of defects.

With reference to Figure 5, Example (a) shows how spurious post-shock oscillations can
occur whenever a shouck wave moves very slowly (luring the course of a simulation. here,
a one-dimensional shock wave is moving from left. to right (for a Courant number of one.
it takes approximately 50 time steps for the shock to traverse a single cell). As the shock
moves relative to the mesh, so the smeared numerical shock profile inevitably changes shape.
Unfortunately, for many Riemann solvers including the exact. solver, the points within the
smeared profile do not lie on the Hugoniot curve connecting the pre-shock state to the post-
shock state. Thus these two states cannot be connected by a single family of acoustic waves.
For such schemes, whenever the shock profile changes, so the supposedly passive wave fields
are activated (in this case, the u and u - a wave fields), thus giving rise to low frequency
oscillations. A thorough description of this particular failing has been given by Roberts
(1990). Note that these oscillations are not the same as the high-frequency, post-shock
oscillations that afflict finite-difference shock-capturing schemes.

Example (b) ia~ Figure 5 is taken from a simulation of double Mach reflection whic-h
was performed using Roe's scheme; here we show a snapshot of the pressure contours at
one instant in time. The Mach stein is inexplicably kinked giving rise to a spurious triple
point (S). It should be noted that this kinking is not related to the slight bulging that is
often observed experimentally for this type of shock reflection problem. Such bulging arises
because the contact discontinuity emanating from the primary triple point is deflected iy the
reflecting surface resulting in a strong wall jet which effectively pushes out the base of the
Mach stem. The mechanism behind this failing is not fully understood, but it would appear
to arise from the fact that the Mach stem is closely aligned with the computational grid.
Consequently, little or no dissipation is provided by Roe's scheme, in a direction parallel to
the stein, to control the kinking.

(;enerally speaking, the dissipation mechanism provided by many Riemann solvers proves
to be inadequate whenever a strong shock wave is aligned with the computational grid.
Example (c) shows the so-called carb~uncle p~henomnena. (Peery and Imlay, 1988) where some
schemes fail to produce a realistic bow shock for a blunt bodv placed in a high Mach number
flow (here we have plotted density contours). Note that along the stagnation line the bow
shock is more or less aligned with the body-fitted grid used for the calculation, and so very
little dissipation is added normal to the stagnation line in the vicinity of the bow shock: a
small amount of auxiliary dissipation alpplied in this region is generally suffc~ent to suppress
the carbuncle.

Example (d) in Figure ,5 shows a particularly insidious failing that can occur when a
strong shock is aligned with the gridl. Here we have plotted a single snapshot of the density
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Figure 5: Some Riemnann solver failings: (a) Slowly moving shoc7.ks., (b) Kinked Mach stems.,
(c) The Carbuncle phienomena., (d) Odd-Even decoupling.
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contours taken from the simulation of an initiallv planar shock wave which is propagating

down a duct, from left to right. A nominally uniform (Cartesian grid was used for the
calculation; the grid centre-line carried a small saw-tooth perturbation. This pert urbatl tn
acts like a forcing function which causes odd-even decoupling to occur, along the length oif

the shock, in both the density and pressure fields. Interestingly. withini the bodyv of thel
shock, the decoupling of the density field is out. of phase with that of the pressure field. An
attempt to explain this failing has been given by Quirk (1992 b), lint certain details of thhe
mechanism remain unclear. It is clear, however, that this numerical instabilitv only voccu rs
for strong shocks, and that it takes a long time to develop (here. the shock had propagated
approximately thirty channel widths before the instability first became apparent ). Moreover,
as will be shown in Section 5, this particular instability has quite grave consequences for the
simulation of two-dimensional detonation fronts; waves produced by the numerical instabilitv
can interfere with the genuine transverse waves associated with the propagation of the front.

For many problems, the nature of the flow solution is known a priori, and so it is fairly
obvious whenever a simulation gives anomalous results. But ofter' no such safety net exists, if)
which case it becomes very difficult to determine the fidelity of a numerical simulation. O(ne(
tactic that we routinely employ is to run a simulation two or more times, each time varying
the elements of the flow solver. For example, we may change our choice of Riemaniin solvers.
or we may change our choice of variables for the reconstruction process. Admittedly, the fact
that two such simulations give similar behaviour is no guarantee that the results are correct,
but it is useful for determining which features of the solution are likely to be numerical
artifacts. Lastly, it should b~e noted that many of the failings associated with Godiinov-type
methods could be circumvented if strong shocks were fitted rather than captured. Ht(wever.
given the complexity of a general purpose shock-fitting scheme. this option is not likely to
appeal to the worker who is merely using a Godunov-type scheme as a tool.

4. An Adaptive Riemann Solver

Having exposed irome of the weaknesses of Riemann solvers, we now present a simple
strategy, that we have found useful, for improving the all-round robustness of Godunov-type
schemes. In essence, we select the precise flavour of uj)winding to match the local flow data
such that a particular Riemann solver is only employed in those situations where it is known
to give reliable results. By recognizing the limitations of any one solver it is possible to reap
its advantages without suffering its attendant failings.

Our synergetic strategy has a number of attractions, not least of which is that some
favoured solver need not be jettisoned simply because it, occasionally, fails. However, it
(toes introduce the difficulty of how to decide when to use one Riemann solver in preference
to another. But it has been our experience that this added difficulty is not particularly
bothersome, for we tend to combine a single high resolution Rienann solver with just one
or two other solvers that prove more reliable under conditions which are fairly well-defined,
and so a set of ad hoc switching functions suffice. For example, some of the worst failings



of Rieniann solvt'rs occur in the vicinity of strong shock waves. TO overV'ome such faililli,.g

we use the HLLE scheme (Einfeldt. 1988). Now it makcs little sense to chop and chanige

the choice of Rieman n solver used along the lengtth of a shock wave. since to do so would

inevitably perturb a planar shock front. Hence. we apply this particular [Riemainn solver

throughout the immediate vicinity of a strong shock. Thus the ilLIK E switching fmuict ,0
need only locate the position of a shock wave. but such functions already exist in the guist
of mesh refinement, monitor functions.

A simple test that ideutifies those cell interfaces which are in the vicinity of a st rong.
shock is to check whether or not

JPr VII
"min(pI, pr )

where a is some threshold parameter which is problem dependent and p, and p, refer to

the pressures which act on the interface. If this condition is met, the two cells separated bh
the interface are flagged as lying within a strong shock. Then, %%hen it comes to computing
cell-interface fluxes, if the cells either side of an interface have both l)et: flagged as t\iilg
within a strong shock, the flux is computed using the HILLE solver. Note that since num,'rical

shocks are invariably smeared over several mesh cells, it is worth locating ,hocks using a
projection of the flow solution on a grid which is coarser than that used for the calculation.

On such a grid a shock will appear much less smeared, and so the left-hand side of the above
switching function will be a fair indication of its strength. Once a set of cells have been

flagged on this coarse mesh, the flags may be prolongated to the actual computational mesh

so as to find those cells which lie in the vicinity of a shock wave.

Figure 6 shows how the H LLE solver may be used to correct the tendency of Roe's scheme
to produce kinked Mach stems, c.f. Figure .5 (b). For this calculation the H LLE switching
function was tuned such that it would only be activated by the incident shock. and the
principal Mach stem; the threshold parameter a was simply set to half the strength of the
incident shock wave as given by the left-hand side of Equation I . Note that apart fronm the
region near the Mach stem, these new results are very similar to the old ones. This shows
that the HLLE scheme has had no adverse affect on the resolution of Roe's scheme.

Having presented the gist of our strategy, we see little point in trying to sell a particular
combination of solvers. Starting with some high resolution Riemann solver, whose c.'oice will
inevitably be a matter of personal taste, the correct combination of solvers will depend bot h
on that schemes weaknesses and on the specific application in hand. In turn, thl combinat ion
of Riemann solvers will dictate the choice of switching functions.
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(a) (b)

Figure 6: The HLLE scheme can be used to circumvent the tendency of Roe's method to
produce kinked Mach stems: (a) Pressure Contours, (b) HLLE switching function.

5. Galloping Instabilites and Detonation Cells

Almost all of our experience with Godunov-type schemes has been gained from calcula-
tions of nonreactive flows. However, as will be shown in this section, the basic lessons that
we have learnt remain important when it comes to performing simulations of detonation
phenomena. Thus far, for simplicity, we have utilized the so-called Reactive Euler equations
for our detonation simulations; a single reactant A is converted to a single product B Iby a
one-step irreversible chemical reaction which is governed by Arrhenius kinetics.

In one space dimension the reactive Euler equations may be written in non-dimensional
formn a's

9 Pu + pu 2 + p 0 (2)t• E + X (E + p),,i 0
pZ pu ) - 'pZ exp-- E+(T

Here ;), it, p, T, E, Z and E+ are the density. velocity, pressure, temperature, total energy
per unit volume, reactant mass fraction, and the activation energy, respectively. Note that A'
is a free parameter that simply sets the spatial and temporal scales. Typically, K is chosen
such that for a ZND wave the half-reaction length (the distance behind the detonation front
by which point half of the reactants have been consumed) is scaled to unit length. The
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following equations art, used to close the system (2)

E = pc+pqZ+ pu'.
p = (I- l)pe, (3)
T = p/p.

Here e is the specific internal energy, I is the ratio of specific heats and q is the heat relea-se
parameter for the chemical reaction A - B. ~f~

We integrate the above system of equations, which are of the form 2 + = s, using
the method of fractional steps

The source operator, £L, corresponds to integrating =s, which In this case reduces to

integrating the single ODE, dz = -KZexpE+/T. We assume that the temperature field is
frozen for this step, allowing us to use the nominally exact operator

Z+ = Z" exp(-K exp(-E+/7"')At),

where At is the time step going from time level n to time level n + 1. For the convective
operator, C,, which corresponds to integrating w + = 0, we employ Hancock's finite-
volume scheme (Quirk, 1992a) in coi~junction with the adaptive Riemann solver outlined
in this paper. Note that the convective operator uses a time step that is twice as large as
that used by the source operator. The generalization of this integration strategy to two
space dimensions simply consists of replacing the one-dimensional convective operator by its
two- di mensional counterpart.

To assess the capabilities of our scheme we have performed simulations of one-dimensional
pulsating detonations, or so-called galloping instabilities, for which bench-mark results ap-
pear in the literature (Fickett and Wood, 1966; Bourlioux et al., 1991). Here we limit
ourselves to presenting the case where the overdrive is 1.6 and the dimensionless parameters
that appear in equations (2) and (3) are given by: -f = 1.2, E+ = 50, q = 50 and K = 230.75.
We have run this problem using several different mesh resolutions in combination with sev-
eral different approaches for performing the reconstruction step of our Godunov-type scheme.
Figure 7 stiows the shock pressure history for the case where the computational grid pro-
vided 40 mesh cells per half-reaction length, and the reconstruction process operated on a
characteristic decomposition of the conserved variables. Qualitatively, this pressure trace
is identical in form to that presented by Bourlioux et al. (1991) which was found using a
scheme that fitted rather than captured the detonation front. Figure 8 shows a convergence
,study for the variation of the peak shock pressure with mesh spacing for two popular limiter
functions, namely ,Superbee and Minmod (Roe, 1985), in both cases the reconstruction pro-
cess operated on the conserved variables. Note that a relative mesh spacing of I corresponds
to having 10 cells per half-reaction length, and so 0.125 corresponds to having 80 cells per
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half-reaction length. Pleasingly, the grid-converged value, for the peak pressurre is indept-.1-
dent of the reconstruction process. Moreover, it is in c!ýJse agreement with the value gi veii
by Fickett and Wood (1966), and the ,alue1 found ky extrapolating the results )f Hiourlioux
ct al.(1991).
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Figure 7: Shock pressure history trace for a calculation with 40 mesh cells per half-reaction
length.
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Figure 8: Variation of peak pressure with mesh spacing.

Even for this relatively simple problem, some numerical artifacts can occur if one is not
careful. For example, at one stage in the cycle of the pulsating detonation, the profile for the
reactant mass fraction is considerably steeper than the profile for the steady ZN 1) detonation
wave upon which the mesh spacing is based. Consequently, as shown by Figure 9, a grid which
gives 10 mesh points for the half-reaction length of the ZND wave may at times give only half
the expected number of cells for the pulsating front. For a compressive limiter function such
as Superbee, if there are too few cells covering a steep but continuous profile, the profile will
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appear as a smeared discontinuity that needs steepening. Hence an under-resolved profile
is often artificially steepened by a compressive limiter. Here, such oversteepening causes
anomalies to appear in the shock pressure history, see Figure 10. Note that such anomalies
are not associated with the lead shock front. and so the question of whether the front is
fitted or captured is immaterial,

!
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Figure 9: The reaction profile for a pulsating detonation wave may at times be considerably
steeper than that for the initial steady ZND wave. (a) ZND wave. (b) Pulsating wave.
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Figure 10: Anomalies often arise when an under-resolved calculation employs a compressive
lmiter function.
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Following Bourlioux (1991) we have also conducted a two-diinen-sional test of our deto-
nation code, namely, the simulation of the transverse waves, or so-called cellular structure,
produced by a detonation wave travelling down a narrow channel. For this calculation the
overdrive is 1.2, the channel width is 10 half-reaction lengths, and the dimensionless param-
eters are 'y = 1.2, q = 50, E+ = 10 and K = :3.124. The calculation was started with the
solution for the ZND wave a-s initial data. This planar detonation front was perturbed 6r
simply allowing it to ingest a small region of fluid where the rate constant K was artificially
decreased by 20%. The calculation was then run until the ensuing transverse wave structure

was fully developed, at which point a series of Schlieren-type images were taken so that
we could compare our results with Bourlioux's. These Schlieren-type images are shown in

Figure 11. Note that the calculation applied periodic boundary conditions along the top
and the bottom of the channel and that here we have plotted four periods. Qualitatively, at
least', these results compare well with Bourlioux's results, and all the salient features of the
flow have been resolved (256 mesh cells covered the width of the channel). In particular, the
regularity of the repeated vortex patterns are the same for both sets of calculations.

At this juncture, it is worth showing the results that were produced when we employed
an exact Riemann solver rather than our adaptive Riemann solver, see Figure 12 (only one
period is shown). As might be expected from having seen Figure 5 (d), spurious transverse
waves are produced in the vicinity of the lead slock front. These spurious waves prevent
the correct transverse wave structure from developing, thus ruining the simulation. It is our
contention that most, if not all, of the Riemann solvers that are commonly employed would
be similarly unable to capture the lead detonation front for this test problem. Whilst some
may take this as reason enough why one should always fit the lead shock front, we have
shown that if some care is taken, when it comes to detonation simulations. shock-capturing

remains a viable alternative to shock-fitting.
In an attempt to unravel some of the dynamics of the detonation wave for this problemn,

we have rerun this test using a grid that was four times finer than before. In order to achieve
such high grid resolutions we employ a relatively sophisticated mesh adaption scheme the
details of which are too involved to give here (Quirk, 1991). Figure 13 p)resents a pair of
Sclhlieren-type images for the temperature field which show the local flow structure just
before, and just after, two triple points collide. It would appear that the collision gives rise
to the familiar "explosion within an explosion", which in this case, because of the local shock
structure, is highly anisotropic. This explosion causes slugs of hot fluid to be shot fore and
aft giving rise to vortical structures which are similar to those associated with Rayleigh-
Taylor instabilities. Note how the impact of the forward facing jet on the lead shock front
causes the front to bulge.

Obviously, given the complexity of the flow field for this test problem there is little chance
of validating every detail of the simulation. However, we feel that our computational method
has matured to the point where it mav be relied upon to provide simulations of sufficient
fidelity for fathoming the details of complicated flow mechanisms as is done here.

3 Owing to insufficient information, we are unable to perform a quantitative comparison.
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Figure. 12: Spurious waves are produced, if the lead shock front is captured using ani exact
Riematin solver.
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Figure 13: A pair of Schlieren-type images for the temperature field which show the sequence
of events when two triple points collide.

6. Conclusions

In this paper, we have shown that Godunov-type schemes do not always live up to their
reputation as being models of robustness. Specifically, the upwind dissipation provided by
almost all Riemann solvers is inadequate for capturing detonation fronts in complex, multi-
dimensional flows; a numerical instability can develop along the length of the detonation
front which interferes with the genuine transverse waves associated with the propagation of
the front. At the very least, we suggest that some artificial dissipation mechanism be used to
augment the inherent upwind dissipation so as to suppress this type of numerical instabilitv.
albeit at a cost of some loss in resolution. In general, however, to improve the all-round
robustness of a Godunov-type scheme without incurring any appreciable loss in resolution.
we advocate the use of an adaptive Riemann solver. The shortcomings of any one preferred
Riemann solver are circumvented by combining it with one or more complementary solvers.
such that an individual Riemann solver is only used in the sorts of situations for which it

is known to give reliable results. Admittedly this approach is not as straightforward to im-
plement as would be the addition of an auxiliary dissipation mechanism to one's favourite
Riemann solver, but it does prove to be an effective means for producing high fidelity sim-
ulations of detonation phenomena. As such, it provides an alternative means of simulating
detonation phenomena for workers who might otherwise feel compelled to fit the detonation
front solely in order to avoid the numerical difficulties associated with strong shocks.



- 17 -

References

Anderson, W.K., Thomas, I.L. and van Leer, B., 1985. "A COM, ariso,, Of fi,•iIn,,.v,,II,,,
flux-vector splittings for the JEidcr eqimt, ios,"AlAA paper 85-0122.

Bazhenova, T.V., C vozdcva, L.G. and Nettleton, M.(C., 1984. "Iiu.1t(. aly Hitr;iei•m,;. of

shock waves." 'rogrcss in Acrosp.Seti. Vol. 21, pp. 249 :331

Berger, M ..J. and Colella, P., 1989. "Local adtii yev mesh ref,,iin,- rut for si.mock ,li• io ,l)-
namnics,"J. (7omput. Phys. 82, pp. 64-84.

I3omrlioiix, A., 1991. "Numerical study of unstable (detonations,"
MPb.D. Thesis, Princeton University, Prinuceton, N.J.

Bourlioux, A., Majda, A.J. and ftoytbhud V., 1991. "Theoretical aid nmieriiai str,,iiiire
for unstable one-dimensional detonations,"S/AM .1. Appl. Aflah. 51, No.2, pp. 301-
342.

(Colella, P. and Woodward, P.R., 1984. "The piecewise lparab)olic metlhod (T11'NI) for gas-
dynamical simulations,"J. Compul. I'hys. 54, pp. 174 20[.

Einfeldt, B., 1988. "On (Godunov-type methods for gs dyimaics," SIAAI J. Nt'um-r. A/1n.
25, No.2, pp. 294-318.

1(ickett, W. and Wood, W.W., 1966. "Flow calculation for )Idsatirig one-d imenesionia dhlt-
onation,"IPhys. Fluid.s 9, Pp. 903-916.

1lartei,, A., FEn qu ist, B., Osher, S., aud (hakravarthy, S.R., 1987. "oUnifrormly n high order
accurate essentially non-oscillatory schemes, 1I1,",J. (opul. Phys. 71, pp). 231 303.

Holt, M., 1984. "Numerical methods in fluid dynamics,"Springer, Berlin, 273 pp. 2nd ed,

Peery, K.M. and inlay, S.T., 1988. "Blunt-hody flow simudations,"
AIAA paper 88-2904.

Quirk, J.1J.. 1991. "An adaptive grid algorithm for compiitational shock hydlodytan-
ics,"Ph.)D. Thesis, College of Aeronautics, Cranfield Institute of Technology, II.K.

Qtuirk, .J..J., 1992 a. "An alternative to umstruct,,red grids for compiting gas dynamir flows

around arbitrarily complex two-dimensional bodies," ICASE Report No. 92-7. In press,
(o*mputcrs &4 Fluids.

Quirk, .1..1., 1992 b. "A contribution to the great Ilieniamn i solver drbate,"lTA/.Sl' Rrport
No. 92-64. Submitted to hnt. .1. Num,,. Moth. Fluids.



- 18 -

Roberts, T.W., 1990. "The behaviour of flux difference splitting schemes near slowly movizing
shock waves,"J. Comput. Phys. 90, pp, 141-160.

Roe, P.L., 1985. "Some contributions to the modelling of discoutinuous flows." Lt(-tur-
Notes in Applied Mathematics. 22, Springer-Verlag, pp. 163-193.

Roe, P.L., 1986. "Characteristic-Based schemes for the Euler equations,"Ann. H(7v. Fluid
Mech. 18, pp. 337-365.

Toro, E.F., 1991. "A linearised Riemann solver for the time-depend-ent Euler equations of
gas dynamics,"Proc. Roy. Soc. London A 434, pp. 683-693.

*U.S. GOVERNMENT PRINTING OFFICE: 1993-728-150/60035



Form Approved

REPORT DOCUMENTATION PAGE OBo No 004 A 08o 8

I- AGENCY USE ONLY ULeave bJank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

April 1993 Contracto Report
4. TITLE AND SUBTITLE S FUNDING NUMBERS

GODUNOV-TYPE SCHEMES APPLIED TO DETONATION FLOWS C NASI-19480

WU 505-90-52-01
6. AUTHOR(S)

James J. Quirk

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8 PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 93-15
Hampton, VA 23681-0001

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORE SS(ES) 10. SPONSORING MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191447
Hampton, VA 23681-0001 ICASE Report No. 93-15

11. SUPPLEMENTARY NOTES To appear in the Proceedings of
Langley Technical Monitor: Michael F. Card the 2nd ICASE/NASA LaRC Combus-
Final Report tion Workshop, October 12-14,

1Za. DISTRIBUTION, AVAILABILITY STATEMENT '9 12b DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 02,64

13. ABSTRACT (Maximum 200 words)

Over recent years, a variety of shock-capturing schemes have been developed for the
Euler equations of gas dynamics. During this period, it has emerged that one of the
more successful strategies is to follow GodunoV's lead and utilize a nonlinear build-
ing block known as a Riemann problem. Now, although Riemann solver technology is
often thought of as being mature, there are in fact several circumstances for which
Godunov-type schemes are found wanting. Indeed, one inherent deficiency is so severe
that if left unaddressed, it could preclude such schemes from being used to capture
detonation fronts in simulations of complex flow phenomena. In this paper, we high-
light this particular deficiency along with some other little known weaknesses of
Godunov-type schemes, and we outline one strategy that we have used to good effect in
order to produce reliable high resolution simulations of both reactive and nonreac-
tive shock wave phenomena. In particular, we present results for simulations of
so-called galloping instabilities and detonation cell phenomena.

14. SUBJECT TERMS IS NUMBER Of PAGES

Godunov schemes, detonation flows 20
16 PRICE CODE

A03

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Slandard ;Orrn 298 (Rev 2 89)

t , ANS VI t3 '8


