
AD-A265 472

RL-TR-92-345, Vol VI (of seven)
Final Technical Report
December 1992

SYSTEM ENGINEERING
CONCEPT DEMONSTRATION,
Trade Studies

Software Productivity Solutions, Inc. LE;CTE

Andres Rudmik, Edward Comer, Sharon Rohde JUN 0 9 1993

APPROVED FOR PUBLIC RELEASE" D/STRIBUTKON UNLIMITED.

93-12882

Copyriht 1.992 Soware ProductbqfvSolutins, /no.
This mater.a/maybe reprodued by or for 00e U.S. GoemmentIpuryuant b to the copyright icense

uncAlrc cuse at DEARS 252 227-701$ (Clober 1984).

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

93 C , ,.

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-345, Volume VI (of seven) has been reviewed and is approved for
publication.

APPROVED:

FRANK S. LAMONICA
Project Engineer

FOR THE COMMANDER: *-

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Oom 0o1-04eo
P~izk remor bu- fa " ancu d . ics an ma oww tasmaua i hOas ow rO aj& ve "u to fe'nev r~T.C~" ""a-v a wqax .

;advrv Wo -' cu. d"m ,W WES =a "~ "m' I I d rcia., an SWV =rxtwn regwdrvO~ Dva udi' rSM 1y w0 a, " .1

cokicj•. r ,Wwo ra u •q a o lu rfty r luawg lr b woV Mo aWm to MHOMOrAram-ts fti rvrer=mu Ofat-u rr'c •. "P;'2 .Peo-

Z'wa HKifwu. Sfta 1204. AztngW% VA ZZ=& wv tou em offm Mawugwvwt e 8ad tge Pow~ "a A6*AO'=*%Ptr Z 2ic
1. AGENCY USE ONLY ýLeav. Blankd Z2 REPORT DATE :3. REPORT TYPE AND DATES COVREU) D

fDecember 1992 !i nal Feb 1) - !jI i'2

4. TITLE AND SUSTMTE 15 FUNUflNGIJMBU3,S
SYSTE-M ENGINEERING CONCEPT DEMONSTRATION, C - .3,o2-,--, 21

Trade Studies PE - 527027
IPR - 55S1

& AUlTHOR($) TA - 1S

Andres Rudmik, Edward Comer, Sharon Rohde WTI - 54

7, PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8P 'ERFORMING ORGANIZATION
Software Productivity Solutions, Inc. REPORT NUMBER

122 4th Avenue

Indialantic FL 32903-1697 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

Rome Laboratory (C3CB) AGENCY REPORT NUMBER

525 Brooks Road RL-TR-92-345, Vol V!
Griffiss AFB NY 13441-4505 (of seven)

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Frank S. LaMonica/(315) 330-2054

1 2a DISTRIBUT)ONAVMI.ABIITY STATEMENT 12b, DISTRIBUFTION CODE

Approved for public release; distribution unlimited.

13a ABSTRACT("&
..

W..M.

This final technical report documents the objectives, activities, and results of Air

Force contract F30602-90-C-0021, entitled "System Engineering Concept Demonstration."
The effort, which was conducted by Software Productivity Solutions, Inc., with
McDonnell Douglas Corporation - Douglas Aircraft Company and MTM Engineering Inc. as

subcontractors, demonstrated and documented the concept of an advanced computer-based

environment which provides automation for Systems Engineering tasks and activities

within the Air Force computer-based systems life cycle. The report consists of seven

(7) volumes as follows: I) Effort Summary, II) Systems Engineering Needs, III) Process

Model, IV) Interface Standards Studies, V) Technology Assessments, VI) Trade Studies,

and VII) Security Study.

This Volume (Volume VI - Trade Studies), describes several studies that were performed
to 1) reduce technology risks by assessing emerging, enabling technologies that are
presumed to be mature enough for application in the 5-7 year time franie, 2) make the

system concept concrete and visible through realistic demonstrations using realistic

data, and 3) reduce technology transfer risks through evaluation of usability and the

degree to which the envisioned systems engineering automation addresses real nceds.

14. SU•JEcT TERMS is...... OF PAGES

System Engineering, System Life Cycle Tools, System Life Cycl.e 122

Environment i PF CODE

17. SECURITY CLAMFCAfN 1J isECuFvyCLAswICATnON 1g. SECURF"YCLASFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF Ti-I PAG0E OFT~JFlE

JUNCLASSTFIED UNICLAS SIFIED M IEDU
P,-orbod by ANSI SIC Z29,I
20&102

Table of Contents
List of Figures .. III

1. Introduction ... 1

2. Environmient Studies .. 2
2.1. Environm ent Fram eworks .. 2

2.1.1. ln;ormation Integration ... 5

2.1.1.1. Information Interchange ... 6

2.1.1.2. Database Integration .. 10

2.1.1.3. File System Integration ... 14

2.1.1.4. Data Communication Integration ... 15

2.1.1.5. Levels of Information Integration ... 17

2.1.2. Control Integration ... 19

2.1.2.1. Process Control ... 20

2.1.2.2. Transaction Control ... 22

2.1.2.3. Network Control ... 24

2.1.2.4. Distributed Control .. 27

2.1.2.5. Levels of Control Integration .. 28

2.1.3. User Interface Integration .. 29

2.1.3.1. Tool Integration ... 29
2.1.3.2. Levels of User Interface Integration .. 34

2.1.4. Method Integration .. 35

2.1.4.1. Configuration Management Integration .. 37

2.1.4.2. Levels of Method Integration .. 38

2.2. Factors Affecting Tool Integration ... 39

2.2.1. PCTE PACT Experience .. 39

2.2.2. Framework Architecture .. 42

2.2.3. Open Architecture .. 43

2.2.4 Conformance to Standards .. 43

2.2.5. Tools to Support Integration ... "

2.3. User Interface Technologies .. 44

2.3.1. Model-View-Controller Paradigm .. 45

2.3.2. Artist Paradigm ... 46

2.3.3. Access-Oriented Paradigm .. 47

2.3.4. Constraint-Oriented Paradigm ... 48

3. SECD Environm ent and Rationale .. 50
3.1. Model of an Environment ... 50

3.2. Catalyst Building Block Concept ... 54

3.3. Catalyst Environment Interfaces ... 56
3.4. Computer System Environment Requirements 58

3.5. Environment Focus .. 58

4. Technology Dem onstrations ... 60
4.1. Friendly, Integrated Environment for Learning and

Development (FIELD) .. 60

4.2. Versant .. 61
4.3. ArborText .. 64

4.4. Automated Access Experiment (AAE) .. 65

4.5. Reliable Specification Execution Tool (RSET) 66

4.6. InQuisiXTM ... 68

4.7. Momenta Pen-Based Com puter ... 70
4.8. Parametric Review of Information for Cost and

Evaluation (PRICE) .. 73

5. Prototypes ... 76
5.1. Requirements Flowdown ... 78

5.2. Tradeoff Scenario .. 81
5.3 Timeline Scenario .. 84

6. Risk Evaluation .. 88
6.1. Risk Identification ... 88

6.2. Risk Analysis and Abatement Strategies 89

REFERENCES 99

ii

List of Figures

Figure 2.1-1. Levels of framework integration ... 2

Figure 2.1.1-1. Framework information integration mechanisms 6

Figure 2.1.2-1. Control information integration mechanisms 20

Figure 2.2.1-1. PACT Architecture .. 41

Figure 2.3.1-1. Model-View-Controller User Interface Paradigm 45

Figure 2.3.3-1. Artist User Interface Paradigm ... 47

Figure 2.3.4-1. Constraint-Based User Interface from Coral 49

Figure 3.2-1. Building block concept for systems

engineering automation ... 56

Figure 4.6-1. Reuse Library Concept of Operations 69

Figure 5-1. Testbed Configuration for the Scenarios 78

Figure 5.3-1. Catalyst Automation Target .. 84

t-oeession froti i

ZTITS RA&I
DTIC TAB CQ

unawinur iced

A[vailabilty
Co3Oa

Dust |Spelal
ll aLi

1. Introduction

This document is Volume 6 of the Final Technical Report of the System
Engineering Concept Demonstration, contract F30602-90-C-0021 for the Air
Force Rome Laboratory (RL). The document is organized into five sections:

* Environment Studies

* SECD Environment and Rationale

* Technology Demonstrations

* Prototypes

* Risk Evaluation

Environment Studies discusses frameworks and their integration, factors
affecting tool integration, and user interface technologies. The SECD
Environment and Rationale discusses a model of an environment, Catalyst
building blocks and interfaces, computer system environment requirements
and environment focus. Technology Demonstrations documents the
identification, investigation and assessment of enabling technologies and
issues which were considered critical to establishing a system engineering
environment. The section, Prototypes, documents three scenarios developed
at SPS during the SECD effort that demonstrated the advanced capabilities
and enabling technologies of an automated system engineering environment.
Risk and Cost Analysis identifies the risks and strategies to reduce the risks,
and the estimated cost of the demonstration and validation of the CSCIs
required to automated a system engineering environment.

The goals of the environment studies, technology demonstrations and
prototypes were three fold: to reduce technology risks by assessing emerging,
enabling technologies that are presumed to be mature enough for application
in the 5-7 year time frame; to make the system concept concrete and visible
through realistic demonstrations using realistic data; and to reduce
technology transfer risks through evaluation of usability and the degree to
which the system addresses real needs.

Risk factors examined were performance, market acceptability, usability,
maintainability, evolvability, unit cost and feasibility of developing a system
with the projected maturity of technology within cost and schedule. The
technology demonstrations and the prototyping also helped to solidify the
operational concepts developed during the effort.

1

2. Environment Studies

Key architectural trade studies were conducted for two topics:

0 Environment frameworks

0 User interface architectures

The following subsections provide pertinent technical background
concerning these topics and outline key decisions.

2.1. Environment Frameworks

The role of an environment framework is to integrate software products and
engineering methods, as well as support organizational aspects of
development. Figure 2.1-1 shows that as the level of integration increases,
the ability to support the definition and enforcement of products, methods,
and roles also increases.

Increasing Increasing
Definitional Level of Project
Support Integration

Supports the Description Third Generation
of the Structure and
Behavior of Project Environments
Products, People and
M ethods
Supports the Description _eiond GPil000Uifl w E
the Structure of Product E~rfflft
People and Methods Ckl

Unstructured

U L I VMS First Generation
Environments

No Increasing Enforcement
Enforcement of Development Methods

Figure 2.1-1. Levels of framework integration

2

The level of framework integration is used as the basis for classifying
environments. Each higher level generation subsumes the lower level.

First generation environments provide the user with a simple file system and
tool set. Software engineering disciplines are applied manually. Product
structures or development methods are enforced through the use of tools and
manual administrative procedures. Unix and VAX/VMS are examples of
first generation environments.

First generation environments emphasize the availability of tools to support
the development and maintenance of products. These environments place
little emphasis on supporting the definition and enforcement of user roles,
product structures, and software engineering methods. The primary form of
integration in these environments occurs through tools which maintain and
enforce product structures and may partially support a software engineering
method. The disadvantage of such limited integration is that each tool must
have intimate knowledge about these structures. This limitation makes it
difficult to incorporate new tools, transport tools to different environments,
or change the products.

Second generation environments support the definition of the product
structures (objects and relationships) that represent real world objects more
naturally and enforce conformance to these structures during development.
A key aspect of second generation environments is that the product structure
rules are defined in the environment. These product definitions are then
enforced by the environment rather than through tools, thus eliminating
many of the disadvantages of first generation environments.

A common approach to providing second generation capabilities is to use a
database that keep, *-e descrlpfiun of the Lxetl-od and organizational
structures employed within a software engineering environment. The key
issue is that the environment supports the description of the relevant project
structures but relies on tools to define the semantics of those structures.

In addition to the capabilities supported by second generation environments,
third generation environments support the description of the semantics of a
project's data, methods, and organizational aspects. The framework is
responsible for enforcing these semantics. Tools are simply operations
defined for different objects. They become indistinguishable from the objects
themselves; new tool development is a specialization of existing objects. This
paradigm represents the convergence of major disciplines in computer
science and software engineering, including databases, programming

3

languages, knowledge representation, software engineering environment
frameworks, and software engineering methodologies.

Third generation environments provide a much higher degree of project
integration. Products, methods, and users are all part of a single conceptual
framework; thus, the framework can guide and control project work,
providing significant user productivity and product quality gains. For
example, ISTAR [LEH86] supports a contract model of software development
which includes a method model, a product model, and a user model.

Framework integration is a measure of the ability to insert tools into the
framework so that they share information, are controlled uniformly, provide
a consistent look and feel, and support the project methods. There are four
fundamental forms of integration:

1. Information Integration: The framework's ability to support the
sharing of data and the meaning of the data.

2. Control Integration: The framework's ability to manage the execution
of tools.

3. User Interface Integration: The framework's ability to provide a
common user interface across environment tools.

4. Method Integration: The framework's ability to control the usage of
tools to conform to a particvlar development method.

An increased awareness of the problems of tool integration has spawned
numerous efforts by governments and industry to define framework
integration standards. Framework interface standards are a major factor
affecting ones ability to integrate tools into a framework. Although standards
are important, there are a number of other factors that need to be considered
with today's frameworks given that the standards are not universally accepted
nor supported.

The following discussion of framework integration technologies and
approaches is illustrated with examples from existing commercial
frameworks. In some cases, examples are taken from framework
components, such as SUN Microsystems' NSE and Apollo's DSEE, that
provide a specific framework capability. The following systems are used to
illustrate framework technologies:

1. Apollo DSEE: (Domain Software Engineering Environment) A
powerful configuration management and product building facility that
provides a high degree of automation for software product
management in a computer network.

4

2. Atherton Software Backplane: A commercial environment
framework It',at provides project data management, advanced graphic
user inte.ý:' -,ce, work flow management, and configuration
mana,- ment.

3. CAIS-A: (Common APSE Interface Set): A proposed set of Ada
interfaces and interface semantics for the tool support layer, CAIS-A
provides a modified entity-relationship project database with multiple
inheritance, hierarchical transactions, mandatory security, and
naming flexibility. CAIS-A is a proposed DoD standard whose
prototype implementations are under development.

4. PCTE" (Portable Common Tool Environment) A software engineering
framework that provides a standard set of tool support layer interfaces.
The PCTE interfaces support entity-relationship project databases, user
interface services, and process and transaction management.

5. SLCSE: (Software Life Cycle Support Environment) A software
engineering environment that supports data and process integration.
The SLCSE framework provides an entity-relationship project
database; common, menu-based user interface; simple transaction
management; and user management.

6. SUN NSE: (Network Software Environment) NSE provides facilities
for configuration management, linking services for building
relationships among data managed by tools, and a user interface.

2.1.1. Information Integration

Information integration is critical to tool interoperability. Tool
interoperability is necessary to achieve a high degree of automation and
synergy among tools within the environment. Figure 2.1.1-1 illustrates
different mechanisms that can be employed to share information among
tools.

5

Logical Information

I 1:=xcag
Information Flow Informalion Flow

Framework
information Interchange

S~Database•.

File System

Communication

Export Information Import InformationV_ __ _Ak

- Physical data flow

S. Logical data flow

Figure 2.1.1-1. Framework information integration mechanisms

The logical need for tools to communicate and share information with each
other within an environment can be met by a framework through the
utilization of different mechanisms. Standard information exchange services
allow data to be interchanged between tools using standard data interchange
formats. A common framework database allows tools to share data by
utilizing common data access interfaces and employing a common
description of the data items. A file system allows data to be shared, but it
does not provide common descriptions of the data. Tools can exchange data
by communicating with each other.

2.1.1.1. Information Interchange

A framework should support standard information interchange formats for
all common data types employed by tools in the environment. This support

6

should include tramework utilities for converting from one format to
another, standard framework information interchange services interfaces,
and "clipboard" facilities. These clipboard facilities can be used as temporary
buffers to allow information presented by one tool to be transferred into
another tool using a simple cut and paste operation.

Frameworks must also support the interchange of information with tools in
other frameworks. Most of the issues arise from differences in the
environment frameworks. These differences can occur in tool interfaces, data
model and data management services, communication services, and
standards or lack of standards concerning the project data to be transferred
between environments.

Issues

1. Proliferation of Interchange Formats: In many areas, information
interchange standards do not exist. Different framework vendors
have chosen to make public an external form of interchange standards
to encourage the development of additional tools that can coexist with
the vendors' tools. This has resulted in several incompatible external
information ;nterchange formats.

2. Lack of Interchange Interface Standards: Besides needing standard,
external formats, the framework should provide interfaces that allow
tools to exchange information. For example, a clipboard provides a
temporary buffer for exchanging information between tools.

3. Information Loss: Information is lost if some of the data exported by
one tool is not received by the importing tool. There are three places
where information loss may occur:

a) The external format cannot encode the information to be
exported.

b) Data is lost in the transmission between tools.

c) The importing tool is incapable of decoding all the information in
the external exchange format.

4. Reduced Usability: The usability of the data by the importing tool is
largely determined by its ability to understand the data. Even if data is
received without information losq, the importing tool may be unable
to understand the data it has received. For data exchanged between
two tools to be usable by the importing tool, it is necessary to also
exchange descriptions of the data as well. An obvious, but not
completely satisfactory solution, is to exchange data at a higher level.
For example, Ada libraries could be exchanged as source libraries.

7

5. Lack of Automation: The ability to exchange project data between
tools is impractical unless the export and import functions are
automatable. Manual conversions are not only error-prone, but they
are also impractical given the effort involved. Consequently, the
framework services that support the export and import of project data
are critical.

Approaches

1. Interchange Format Standards: The use of standard interchange
formats allows data to be interchanged by having tools agree on the
format of a common, external representation for a particular type of
information. For example, the Programmer's Hierarchical Interface
Graphics System (PHIGS) supports the exporting and importing of
graphics. There are a number of defacto as well as emerging industry
and national standards for document exchange formats. External
forms for environment databases are available for exporting and
importing data among different instances of the same environment
type.

2. Interchange Format Conversion Utilities: As different framework
vendors provide public interchange formats, utilities will be needed to
convert information exported in one format to information in a
format that is compatible with the importing tool.

3. Interchange Services Framework Interfaces: A framework should
provide information interchange services through standard interfaces.
These interfaces would allow a tool to construct data that conforms to
the interchange standard. The interfaces would also allow data to be
imported and exported.

4. Interchange Clipboards Services: The Apple MacintoshTM illustrates
the power of a simple clipboard mechanism that supports standard
graphic and text data. Graphics and text can be cut from any
application and pasted into another.

A framework should provide both private and public clipboard
mechanisms. Private clipboards allow data to be cut and pasted under
the tool's control. Public clipboards allow data to be transferred
between two tools executing simultaneously.

5. Shared Data Dictionary: For the importing tool to understand the data
it has received, the data definitions that describe the data must be
imported as well. This problem is not limited to software engineering
environments and is fairly common in the information management
domain. A database and data model-independent data description

8

technology is emerging with the Information Resource Dictionary
System (IRDS) standards. If both the exporting and importing
environments conform to the IRDS standard, then they should be able
to share data descriptions even if their databases are different.

6. Exchange Deliverables: A common method for exchanging data
between environments is at the level of deliverable work products.
The exporting environment is responsible for assembling the
deliverable in the form of hard copy documents and magnetic media
containing the system source, tests, and binary load modules. The
receiving organization must unload the magnetic media and
manually place the data into their environment.

Assessment

The ability to import and export information between tools is an important
service that must be provided by an environment framework. The level of
success that can be achieved in this area varies greatly among frameworks and
the types of data being interchanged. The ability to exchange textual data is
maturing, while the ability to exchange other kinds of data, including
graphics, is often problematic.

There is a rapid evolution by software tool vendors to allow graphic
renderings produced by CASE tools to be exported into documents through
the use of defacto data interchange formats. The identification and
exportation of graphics is often done manually, thus making it difficult to
maintain consistency between continually evolving diagrams and
documentation of systems which includes these diagrams. Although
information interchange is useful, it does not address the problem of
maintaining consistency between data managed by different tools. Other
information interchange formats which have been considered have gained
little acceptance by tool vendors. For example, Descriptive Intermediate
Attributed Notation for Ada (DIANA) has yet to become a universal
interchange form for Ada programming tools.

The ability to exchange detailed data structures is limited to environments
that support identical data models and data description languages. As systems
like the Information Resource Dictionary System (IRDS) become widely
accepted standards, the ability to exchange data between environments that
employ different models will also become possible. The most common form
of data exchange between environments is the exchange of deliverable work
products.

9

2.1.1.2. Database Integration

Database integration implies that tools share data and a description of the
data. It also provides a uniform mechanism for managing and accessing the
data so that the data is readily available, correct, and protected from
intentional or unintentional access.

Issues

1. Data Model: A software engineering framework database must
support data models that are sufficiently expressive to represent the
complex data structures that occur in engineering projects. Both the
CAIS and PCTE employ variants of the entity-relationship-attribute
model. Other environments are experimenting with the object-
oriented data models. [WOL88] An evolution towards more powerful
data models will allow project data and project knowledge to be
maintained within the project database.

Increased power in the data model requires increased sophistication in
the database management system as well as increased computing
resources. The primary drawback to employing project databases based
on these higher level models is that they are emerging technologies
and will require several years to mature.

2. Data Redundancy: Storing duplicate data results in system
inefficiencies and inconsistencies when a single change needs to be
reflected in several places. Data duplication occurs in a software
engineering environment for many reasons. A user may want a copy
of some data with the intention of modifying the data. If the original
data item needs to be updated, it is possible that copies of the data may
also need to be updated. A framework should provide mechanisms
that support data redundancy.

3. Data Replication: Data replication maintains the logical appearance of
a single data item with an implementation that can make copies of the
data item to improve data availability and survivability. Data
replication requires that data locking be handled in a distributed
fashion to ensure consistency of data values when updates are made.
In addition, updates need to be propagated to all replicated instances of
a data item before one is permitted to access an updated value.
Supporting data replication reduces network performance and
increases system complexity.

4. Data Consistency: Data consistency implies that the data values within
the database conform to the rules about their values. Transaction

10

mechanisms are used to take a database from one globally consistent
state to another. In an engineering database, this definition of
consistency is not entirely appropriate. A typical engineering database
may not achieve a consistent state for weeks or months, and in some
cases may never reach a globally consistent state. The database should
allow the user to abort an incomplete transaction and undo or redo
completed ones as a way of backtracking under the user's control.

5. Data Integrity: Integrity specifications describe the rules under which a
data item value is well formed. Integrity checking includes
conformance to data typing or dynamic triggering of constraint
checking routines. Each of these mechanisms introduces a
performance overhead for making changes to framework data.

6. Security: Depending on the project requirements, the framework
security model may need to support user authentication, discretionary
and mandatory access control, and encryption. Security mechanisms
become increasingly more complicated as the data model becomes
richer. In addition, not all data within a project will require the same
level of access control. All of these mechanism impose an overhead.
However, if higher levels of security are required, then these
mechanism need to be considered. To date, most of these mechanisms
have yet to be applied to software development frameworks.

7. Distribution: Distribution is the ability of a network node to maintain
global knowledge of the total network in order to make local decisions.
The ability to maintain global knowledge requires has significant
network communication overhead and delay. Data distribution
includes the allocation of data to nodes in a network, location
transparent access to data, replication of data to improve availability
and survivability, decomposition of database queries into subqueries
that can be sent to different nodes, management of locks and names
on a network wide basis, check pointing, recovery, and initializing of
nodes after a failure. These mechanisms introduce complexity and
have significant performance implications.

8. Recovery: Recovery is the activity of ensuring that the framework can
restore itself to some previous consistent state after a failure. An
environment framework must provide tools and procedures to
automate system recovery after a failure. Manual recovery procedures
will be inadequate as the data complexity managed by the framework
increases.

9. Archiving/Restoring Data: Archiving and restoring data is a difficult
problem when the framework supports higher level data models. It
becomes more difficult to determine the set of objects and their

11

relationships that need to be saved. Furthermore, the restoration
process must insert both objects and relationships into an existing
structure. Both of these problems are not fully understood at this
time.

10. Concurrency Control: Concurrency control is the activity of
coordinating the actions of processes that concurrently access shared
data and could potentially interfere with each other. The simple
models of concurrency control employed in file based systems may
prove to be totally inadequate when higher level data models are
employed. When a large number of objects are accessed by an
operation, there can be a substantial performance overhead in
implementing concurrency control (especially in a distributed
environment) and knowing exactly what must be locked.

11. Database Migration: An environment framework must support
dynamic changes to the data definition describing the structure of
entities, relationships, and behavior of data without taking the system
off-line. A change to a data definition can entail changes in storage
allocation for entities, adjusting existing data values and generating
new ones, and restructuring relationships among objects within the
database. The data management facilities within the framework must
provide tools to support these activities and ensure that the data
migration activities result in a consistent database.

12. Engineering Data: Engineering applications require that the database
supports the manipulation of complex objects and the need to store
graphic, binary, and textual data of varying sizes. Most existing
commercial databases support a limited set of data types and do not
handle large and varying size data types.

13. Versioning: Engineering data evolves by successively refining
information about a system. The database must support versioning so
that different temporal states of an object can be referenced to recreated
an earlier state of the information about a system. One issue with
versioning involves deciding which versioning model is appropriate.
The strategy of immutable objects is gaining acceptance because it
eliminates some difficult problems of maintaining database
consistency. The notion of immutable objects is that once an object is
committed, its values are time invariant. The versioning model is
intimately related to the database concurrency control and transaction
mechanisms.

12

Approaches

1. Common Database Interface Set- A strategy for information
integration involves the use of a common set of data management
services interfaces. This approach is widely recognized as an effective
means for integrating tools within an environment. A critical factor
for the success of this approach is the adoption of a standard interface
set and its acceptance by software tool vendors. CAIS and the PCTE are
examples of frameworks that provide a set of interfaces for data
management services.

2. Common Data Dictionary and Multiple Databases: The level of data
integration can *e enhanced by using a common data dictionary to
provide a common understanding of the structure of the data, even
though the data itself may be stored in physically distinct databases. It
is common practice to develop data processing applications that access
multiple databases through the use of a common data dictionary. The
data dictionary becomes a single point of reference for all the project
data definitions. A good example of this approach is the Information
Resource Dictionary System (IRDS) being developed by the National
Institute of Science and Technology. The IRDS supports the design of
efficient programs and databases that share data. The IRDS uses a
meta-data representation based on the Entity-Relationship-Attribute
data model.

3. External Links Mechanism: Current environment framework
databases do not provide adequate performance for kinds of data
managed by CASE tools (e.g. intermediate forms). Consequently, most
CASE vendors use a highly optimized and proprietary, application-
specific data management system to support their tools. One problem
with integrating these tools with other tools is the inability to establish
traceability between information maintained by different systems.
One strategy for dealing with this problem is to provide an external
database that has a simple tool-independent interface for registering
data dependencies. The SUN NSE provides a linking service that
allows tools which conform to the link interface protocols to establish
relationships between data stored in their respective databases without
having to directly access each others' databases.

Assessment

Information integration is critical for providing effective automation within
an environment. Current framework standards efforts and emerging
commercial frameworks are addressing the issue of providing standard

13

database interfaces. The PCTE is the most advanced commercially available
framework that supports a distributed entity-relationship project database. At
the current level of PCTE funding and the high level of industry
participation, the PCTE will continue to evolve and mature rapidly. The
PCTE is commercially available on most of the common computer platforms.

The PCTE standard, used by vendors to design applications, comes in several
variations, PCTE 1.5, PCTE + and ECMA PCTE:

"* PCTE version 1.5 is partially implemented as a commercial
product called Emeraude.

"• PCTE + specifies the future features of PCTE. The current
thrust provides a "neutral" operating system and security
options. As of July 1991, two development teams are building
implementations of PCTE+, but no products are commercially
available.

"* The ECMA PCTE has made minor modifications to PCTE+.
Currently, its standards group is soliciting comments on the
modified standard. Digital and IBM are developing a
commercial products, but ECMA PCTE has no product
announcements as of July 1991.

2.1.1.3. File System Integration

Overview

Host operating systems files are still the least common denominator for
interchanging data between tools. For example, in the UNIX operating
system, tools communicate with each other through ASCII text files.

Issues

1. Meaning Embedded in Tools: A major disadvantage of using files as
the medium of integration is that the meaning (i.e., structure and
interpretation) of data is encoded in tools. This creates a critical
dependency on the specific, physical implementation details of the
data stored in the files.

2. Multiplicity of File Systems: Tools that use a host file system will
inevitably be dependent on how the host files are named and accessed.

14

Even though a good design and the use of a standard language such as
Ada will reduce the impact of porting tools, there are a number of
differences between file systems on different hosts that reduce the
effectiveness of using files as a vehicle for inter-tool communication.

3. Database: File systems, in general, do not address the issues identified
in the discussion concerning Data Base Integration.

Approaches

1. Hierarchical File System: Hierarchical files systems are the most
common means for managing data within current software
development environments.

2. Network File System (NFS): NFS provides a location transparent
facility for accessing files in a computer network. Tools that were
designed to utilize the local file system can run without change and
access files located at different computers within the network,
provided that the network is using NFS.

Assessment

Hierarchical file systems are still the dominant mechanism for sharing data
oetween tools. This is partly due to the absence of efficient engineering
databases that can be used to manage fine granularity data. As standards
become accepted by tool vendors, there will be a slow migration of tools
towards these standards.

2.1.1.4. Data Communication Integration

Data communication is a dominant means of integrating data processing
applications. In the data processing community, it is common practice to
have applications share databases across a network, communicate with
different terminal types, and share files across a network. This data
communication technology has not matured to the same level within
software engineering environment frameworks. Peer-to-peer
communication protocols, file transfers programs, data management systems,
electronic mail, and computer terminals emulation are examples of data
communication.

To achieve communication between entities in a computer network, these
entities must adhere to the same protocol. A protocol includes the syntax of
the information exchange; the semantics of addressing, routing, and
correcting the data; and the communication bandwidth and sequencing of
units of data interchanged.

15

Issues

1. Plethora of Communication Protocols: A large installed base of
computer hardware and software uses existing protocols. The data
processing community uses industry standards such as SNA and
DECNET. The DoD requires the use of TCP/IP. The international
community and the standards bodies are evolving OSI into a future
standard communications protocol.

2. Standards Still Evolving: The OSI ISO/ANSI standardization has
managed to define most of the lower five levels of the ISO protocol
stack. The remaining two upper layers are still under development.
Unfortunately, the upper layers will have the greatest impact on
environment frameworks.

Approaches

1. TCP/IP: A series of DoD military standards have been developed to
allow communication between dissimilar computer hosts supplied by
different computer vendors. These standards include Internet
Protocol (IP) MIL-STD-1777, Transmission Control Protocol (TCP) MIL-
STD-1778, File Transfer Protocol (FTP) MIL-STD-1780, Simple Mail
Transfer Protocol (SMTP) MIL-STD-1781, and TELNET Protocol MIL-
STD-1782. The DoD is committed to migrate from DoD protocol
standards to international standards. This process will be slow because
of the large installed computer and software base within the DoD.

2. OSI: The OSI reference model defines a seven-layer communication
architecture called the Open Systems Interconnection (OSI) model.
This architecture provides for a precise definition of the functionality
at the interface to each layer. Each higher layer hides details managed
by lower layers providing a suitable abstraction for communication at
that level. As OSI comes into widespread use, there will be an
increasing migration to efficient hardware/firmware implementation
of the OSI protocol stacks providing for highly reliable and efficient
inter-computer communications.

3. DECNET: DECNET, which is developed by Digital Equipment
Corporation, is closely tracking the OSI standard and modifying
DECNET to comply with OSI.

4. SNA: SNA is a public communication protocol developed by IBM
primarily for the data processing industry. Although SNA is a
dominant force in the data processing community, SNA does not play
a significant role in supporting software development environments,
except for terminal communication services.

16

S. Mailboxes: Mailboxes provide an asynchronous communication
vehicle among a number of processes by which one or more processes
can write to and read from a shared mailbox. Mailboxes tend to be less
efficient and are typically not used when high bandwidth
communications are required.

6. Sockets: A Socket is a named end point of communication between
processes on the same or different machines in a Unix host network.
A common use of sockets is to implement a server client model of
communication between applications within a workstation network.

7. Pipes: A pipe is a Unix facility for redirecting text I/O. Pipes support
tool composition, provided the tools operate on text files. It is the
user's responsibility to ensure that the specified composition is
meaningful.

Assessment

The major data communication protocols include IBM's SNA, DEC's
DECNET, and OSI, which is an ISO/ANSI standard. Several computer
vendors are moving towards the OSI standard. The major standard in
Europe, OSI is gaining more interest in the United States.

TCP/IP is the major standard employed by the U.S. government and is
supported by most computer vendors. TCP/IP will eventually be replaced by
OSI. But until then, TCP/IP will coexist with OSI and other communication
protocols. Consequently, an environment framework must support TCP/IP
as well as other major protocols used in a particular organization.

Data communication issues become more important with geographically
distributed development organizations. More advanced protocols will be
needed as we move away from file-based environments to database based
environments. In the latter case, file transfer is an inadequate means for
communicating between environments or remote hosts within a common
environment. More advanced protocols will be required to access remote
environment databases and to perform transactions that involve multiple
databases.

2.1.1.5. Levels of Information Integration

Information integration is the degree of interoperability that can be achieved
between tools within an environment. Interoperability is defined as the
ability of tools to exchange their data in a form usable by other tools without
conversion. In order to effectively use this data, tools must share an
understanding of both the structure and the meaning of the data. The

17

different levels of information integration that apply to both databases and
data communications as the enabling mechanisms are the following:

1. Framework maintains the structure and meaning of data

2. Framework maintains the structure of data and tools encode the
meaning

3. Tools encode the structure and meaning of data

The level of information integration supported by a framework is dependent
on its support for maintaining a description about the structure and meaning
of the data to be shared by tools. Conversely, the degree to which tools are
integratable into the framework depends on whether or not they use the
framework's descriptions of the data. Both of these issues are dependent on
standards for describing the structure and meaning of data and on interface
standards for accessing the data.

1. Framework maintains the structure and meaning of data: The highest
level of framework support for information integration is achieved
when the framework maintains a complete description of the
structure and meaning (behavior) of the data. Presently, there are no
commercial frameworks that provide this capability. The difficult
problem is the inability to maintain a description of the meaning of
the data. Object-oriented databases provide a facility for defining both
the structure and behavior of objects, which is necessary for providing
a complete application-independent description of the data.

2. Framework maintains the structure of data and tools encode the
meaning: The second level of framework support for information
integration is to share the responsibility for maintaining the
description of the data with tools. Using this approach, the framework
maintains a description of the data's structure while tools encode the
algorithms that define the data's behavior. Several advanced
environment frameworks, such as PCTE, Atherton Software
Backplane, and SLCSE, support this level of interface. A limitation of
this approach is that as the environment becomes more complex, it
becomes more difficult to manage the data's behavior since tools
define the behavior.

3. Tools encode the structure and meaning of data: At the lowest level,
the framework provides minimal support for information
integration. In this case, tools encode both the structure and meaning
of the data. This approach is the dominant one employed today in
frameworks where files are the primary data storage mechanisms.

18

The three approaches to information integration depict an evolution of
environment frameworks to support higher levels of information
integration. Tools become simpler as the framework becomes more
expressive. Consequently, tools will become easier to integrate.

2.1.2. Control Integration

Control integration allows the operation of tools to be controlled uniformly
from within the environment. Control implies the ability to initiate and
terminate the execution of processes and to synchronize their execution.

In recent years, information integration has been emphasized at the expense
of control integration within an environment. Recent work at Brown
University has demonstrated that control integration can rival information
integration in effectiveness measured by the degree of cooperation that can be
achieved between tools. [R1E881 Control integration will become a more
important consideration as more environment capabilities require the
computing resources of several computers. The Domain Software
Engineering Environment (OSEE) has already demonstrated a substantial
reduction in the time required to compile large Ada programs by distributing
the recompilation to workstations within the network. With high bandwidth
reliable network communications, it is becoming attractive to distribute the
computing load within the network.

19

Logical Process
iToo, Creation,

Destruction,
I ~Synchronizaion

Cr9-roi Flow Control Flow

.lil•i~i~i;ii •ii;i~iDi!i~i•l•l st rib uted C o n trol I!:iiiil!:~ l•!ll

Network Control

Transaction Con l

- mPhysical data flow

I Logical data flow

Figure 2.1.2-1.
Control information

integration
mechanisms

2.1.2.1
Process

Control

All operating systems provide a level of process management that allows one
to create, destroy, and synchronize processes. Different systems provide
process models that differ in what rights are inherited by child processes, the
semantics of performing I/O, and the mechanisms for interprocess
communication and synchronization.

Issues

1. Interaction with other Mechanisms: In considering framework
process models, the interaction of the process model with other
environment mechanisms such as secutity, transactions, naming,
distribution, and inter-process communications must be examined.

20

Several problems have arisen from the interaction of different
models. For example, the PCTE binds processes to transactions. Tools
designed in Ada that use tasks for independent subfunctions cannot
bind transactions to their natural unit of execution (i.e., task).
Consequently, the ability of tool developers to use Ada tasking in their
tools must be limited. This problem is being considered for future
revisions to the PCTE process model.

2. Adequacy of the Process Model: With networked and distributed
computing, tools can be decomposed into cooperating processes that
run on different platforms. In doing so, several process model
implications must be considered:

"* The context inherited by child processes includes visibility to
framework objects; access rights; the ability to suspend, resume,
and abuit the execution of other processes; setting the priority of
processes; and visibility into the parent process's status and state.

" Inter-process communication and synchronization mechanisms
should allow users to construct reliable and efficient networked
applications. A high degree of location transparency is desirable.

" I/O blocking causes problems when multiple Ada tasks are
timesliced within one process.

Lightweight processes allow tools to utilize a large number of
processes without incurring the large overhead for process context
switching.

Approaches

1. Traditional Process Control: Most common operating systems used
today support a simple process hierarchy in which child process
inherit the context of parent processes. There usually is a limit to the
number of processes that can be created. There is a more practical
performance limit on the number of processes that execute
concurrently. Both limitations are caused by context switching
overhead.

2. CAIS Process Control: CAIS processes are objects whose attributes
contain process status information and whose relationships establish
the context of the process relative to other processes and objects within
the environment. The existence of process nodes is independent of
whether they are running, suspended, or aborted.

3. PCTE Process Control: PCTE processes are not modeled as objects.
Consequently, the PCTE provides a separate set of interfaces to manage
processes. This approach is difficult when writing a generic tool to

21

uniformly access a wide variety of objects managed within the
framework. Another problem occurs when a process is terminated: all
information about the process is lost. PCTE+ has proposed a change to
the PCTE model to make processes first-class objects.

Assessment

Framework process models and capabilities will need to evolve considerably
from the time-sharing heritage of most current operating systems. These
limitations must be addressed to support multi-processor, paral'el computing
architectures of the future. The next generation of CASE tools will exploit
processes to provide a high degree of parallelism required for analysis-
intensive tools. An evaluation of environment frameworks should address
these needs to ensure that they are feasible through a natural migration path
of the framework.

Advanced frameworks model processes as objects that can be created, deleted,
and accessed as objects. The advantage to this approach is a significant
simplification of tools that manipulate processes. Another advantage is that
objects, like processes, can be distributed and replicated within the framework
to exploit multi-processor and parallel-processor architectures.

2.1.2.2. Transaction Control

Transaction control supports data integrity in the presence of hardware or
software failures. Transactions treat a sequence of operations as an atomic
operation such that they are all completed successfully. If any one of the
operations fails, then the effect is as though none of the transactions were
performed. Transactions are required to preserve integrity within
engineering databases.

Issues

1. Long Duration Transactions: Transactions may last for hours, days,
and weeks, or in some cases, they may never even be completed.
Engineering transaction mechanisms must provide considerable
flexibility to users and tools over their behavior.

2. Nested Transactions: Nested transactions are a natural consequence of
how engineering activities are structured. Nested transactions is a
new technology in which most engineers have very little experience.

3. Interaction of Versioning with Transactions: Versioning and
concurrency control interact strongly with transactions. Consequently,
most researchers now advocate the concept of immutable objects. An
object is said to be immutable if its state cannot be changed after its

22

values are committed. Approaches that allow object values to change
dynamically have problems with concurrency control and place
inconvenient restrictions on the user's ability to access objects.

4. Transaction Models: There are many transaction models that describe
how processes, operations, and objects are bound to a transaction.
More experience is needed to evaluate these models.

5. Convenience: The transaction mechanism should not hinder
development. For example, a user should not lose results as a result
of a mistake or failure in a particular tool. The environment
framework should checkpoint the database periodically. In addition,
the framework database should allow the user to abort incomplete
transactions and undo or redo completed transactions as a form of
backtracking under the user's control.

Approaches

1. Pessimistic Transaction Model: The pessimistic transaction model
assumes that multiple users needing to access a common object must
always lock the object before accessing it. Traditional data processing
databases employ the pessimistic transaction model. The pessimistic
model is inappropriate for engineering applications because of the
long duration of these transactions and the problems that may be
caused by locking all users from reading an object that is participating
in a transaction.

2. Optimistic Transaction Model: The optimistic transaction model
assumes that users seldom, if ever, need to access and update a
common object. Consequently, locks are not placed on the object
during the transaction. During the commit, conflicts are resolved
manually by users deciding which conflicting transactions need to be
aborted. Since these conflicts rarely happen, this is an insignificant
problem.

3. SLCSE Transaction Model: SLCSE provides two kinds of transaction
bindings. The first approach allows a user to request an exclusive lock
on a given entity or relationship type, after which all instances of the
object or relationship type participate in the transaction. The second
alternative is similar to the traditional, single level, pessimistic
transaction mechanism in which all instances that are touched during
the transaction participate in the transaction.

4. PCTE Transaction Model: PCTE (version 1.4) processes are initiated in
the context of an activity (i.e., transaction). Acquired resources and
locks held on these resources are associated with an activity. An
activity can be initiated internally to a single process or extended to

23

include several generations of processes. Consequently, the PCTE
model binds processes to activities. Ada tools that use tasking to
perform separate functions that should behave as transactions would
function improperly if the Ada run-time manages tasks within a PCTE
process.

Assessment

A framework must support transactions to ensure the integrity of the data.
This is becoming increasingly important as the complexity of the data that is
managed within development projects increases. Traditional transaction
mechanisms are too restrictive. Several transaction support functions should
be provided by an environment framework:

optimistic transaction model to impose the least amount of
restrictions during development

* pessimistic model for critical updates

* multi-level undo and redo and returning to baselines

* transaction binding model is compatible to tools that use Ada tasking

* nested transactions

* tool interfaces for transaction management

Transaction support becomes increasingly important as more tools are
integrated into an environment. The failure of any tool in a long automated
process can leave the database in a corrupted state. Consequently, it is
necessary to protect the data by being able to undo the effect of the execution
of these tools.

2.1.2.3. Network Control

Overview

Modem frameworks provide services that support a higher level of control
integration to integrate tools by directing their execution remotely. The
tramework supports this integration by maintaining a dictionary that
identifies the tools and their interface protocols. A designated tool is usually
in control and will direct the execution of other tools. The primary
distinction between this higher level control facility and lower level process
controls is that the framework maintains information essential to performing
the integration.

24

Issues

1. Lack of Control Standards: Network control mechanisms (e.g., remote
procedure calls) have been used for a number of years in experimental and
production systems. Until recently, there has not been much interest in
standardizing these control mechanisms.

2. Limitation of Current Development Languages & Tools: In order to
fully utilize the power of control capabilities, it is necessary to employ
languages and tools that support the control paradigm.

Approaches

1. Apollo Network Computing Architecture (NCA): The Apollo
Network Computing Architecture (NCA) employs a set of tools that
supports an object-oriented approach to developing distributed
applications. NCA is based on a model of clients, objects, and brokers
(or agents). A client requests a service from the network, and servers
provide these services. The role of the broker is to enable the
transaction between the client and server.

2. Remote Procedure Calls (RPC): The remote procedure call (RPC)
facility extends the local procedure call mechanism to a distributed
computing environment. With the RPC mechanism, application code
can be distributed among multiple processors in a highly transparent
manner. An RPC run-time library is used to route the messages that
implement the RPC. An RPC facility has several requirements:

"* The RPC facility must be portable to multiple hosts.

" NCA must be placed in the public domain and recommended for
standardization.

" The run-time facility should be implementable on top of the
common protocols.

" Automatic error checking and recovery should be provided by the
run-time system.

* The run-time library should minimize the message traffic.

"* Tools should be available to all the popular programming
languages to support the generation of both Client and Server
stubs.

" No new language constructs should be required by NCA
applications.

25

" The system must provide mechanisms for automatic data
translation between unlike machines.

" The architecture should support light-weight processes (processes
with minimal context switching overhead) for massively parallel
architectures.

Remote graphics, remote debuggers, network batch and queuing
services, and remote database servers are examples of network
computing applications.

3. Selective Message Broadcasting: In selective broadcasting, all tools talk
to a central message server, which then broadcasts messages to active
tools known to the message server. Tools communicate by sending
messages to the server and receiving those messages that match their
registration with the server. This simple facility can provide a high
level of integration between tools.

The Selective Message Broadcasting approach has been used in the FIELD
programming environment developed at Brown University. [REI881 This
approach allows existing tools to be integrated effectively with minimal effort.
This approach can easily be extended to incorporate new tools. In FIELD,
messages can be sent either asynchronously or synchronously. In addition,
messages can be used to coordinate and direct the execution of different tools
and shared information among tools. For example, if a user is working at an
intelligent editor and wants to set a breakpoint in the source, the editor must
be capable of sending a message to the debugger asking it to set the specified
break point. If the user wants to find all occurrences of a specific variable, the
editor can send a message to the cross-referencing utility. Finally, when the
user want to compile the source, the editor can send a message to the "make"
tool to compile and link the appropriate program components.

The selective message server approach allows tools to access different
databases by providing an active database server that can respond to requests
for information from other tools. This approach compartmentalizes the
environment data, simplifying both the design of data servers and tools that
use the data. A drawback of this approach is that it does not solve the
environment data integrity problem in which responsibility for project data
integrity is dispersed among different databases.

A tool is integrated by building a shell that communicates with the message
server around the tool. The effort to develop the shell is partially determined
by the nature of the tools' command interface. Tools that have a consistent
grammar for these commands would be easier to integrate than tools which
use an ad-hoc command notation. The problem of building these shells is

26

equivalent to being able to define command patterns and rules for
recognizing these patterns.

The FIELD message server uses the Unix TCP-domain sockets. These sockets
allow messages to be managed across the network, allowing tool operation to
be integrated across multiple machines in the network.

Assessment

Network Computing Architecture and Selective Message Broadcasting are
similar approaches that provide an object-oriented paradigm for integrating
environment functionality. NCA allows tool developers to build new
applications that better utilize network resources and support improved
communication and cooperation between tools on different host. Selective
Message Broadcasting provides a high degree of integration of tools that do
not share data directly. A principle advantage of this technique is that it can
be used to integrate existing tools that provide a reasonable, structured
command interface.

2.1.2.4. Distributed Control

Overview

The major distinction between network control and distributed control is
subtle, but fairly significant. Network control provides location transparency.
Distributed control provides location transparency as well as replicated
control functionality at nodes of the network where each node maintains
global control. The information at the global control level enable local
control decisions that are in the best interest of the network.

Issues

1. Technology Maturity: The distributed control technology is still a
research topic whose maturity is a number of years away.

2. Technology Complexity: Distributed control requires that each node
in the network makes decisions based on global knowledge of the
network. In order to maintain this global knowledge, the nodes must
continuously inform each other of changes and attempt to maintain a
high degree of consistency of this knowledge.

Approaches

At this time, distributed control is impractical for environment frameworks.
There is a significant performance overhead for maintaining consistent global
control information at each node. In addition, there are a number of

27

problems such as node re-initialization, network recovery, single node
recovery and continued operation after network failure. These are a sample
set of problems that add significant complexity to systems implementing
distributed control. Because of the significant increase in complexity and high
cost of development, distributed control is not supported within most current
frameworks.

Assessment

It is unclear if a distributed solution warrants increased complexity and cost.
With increasing network bandwidth, conventional logging and error
recovery techniques, and network computing, the required access to data and
overall system performance can be achieved without the expense and
complexity of distributed control.

2.1.2.5. Levels of Control Integration

Control integration deals with the ability to manage the execution of tools by
the framework so that tool functionality can be composed to define new and
more complex functions. Control integration includes the management of
the creation, destruction, and synchronization of processes within the
framework. The levels of control integration that can be provided by a
framework are the following:

1. Framework supports control and data flow description and execution

2. Framework supports control flow description and execution

3. No control integration

The level of control integration supported by a framework depends the
framework's ability to manage resources across the network, its ability to
register tools with the framework, and its ability to define a model of
dependencies between work products and tool executions. Control
integration is an enabling capability for automating software development.

1. Framework supports control and data flow description and execution:
Advanced frameworks can schedule the executions of tools to produce
the required software products. These frameworks support the
definition of tool mappings of input products to output products and
schedule the executions of tools as needed to generate required work
products. These frameworks ensure that generated products are
consistent with their dependent products and schedule the
regeneration of products either on demand or as background
processes. DSEE provides this capability for configuration
management and for building the deliverables.

28

2. Framework supports control flow description and execution: At this
level of control integration, the framework allows users to define a
sequence of tool executions that can be carried out automatically by the
framework. This form of control integration is supported by most
operating systems shells.

3. No control integration: A framework at this level provides limited, if
any, capabilities for control integration.

An important aspect of control integration is the ability to manage resources,
including the execution of processes within a computer network. In order to
support more advanced CASE technologies, the computing and information
resources of the entire network should be exploited. As network-based
frameworks become commonplace, the ability to effectively manage the
distribution of processes and data within the network will be critical to
making effective use of the network. Many aspects of managing a software
project on a single computer host become increasingly complex with
networked-based, distributed computing.

2.1.3. User Interface Integration

2.1.3.1 Tool Integration

In the last few years, there has been an increased emphasis on the
environment user interface. This emphasis results from advances in
workstation technology and improving price/performance ratios to where
increasing number of companies are acquiring workstations for software
development. Software developers are now aware of graphic, object-oriented
user interfaces and view products that do not provide such an interface as
antiquated and ineffective. Consequently, computer and software vendors
have emphasized the development of graphic user interfaces for their
products resulting in a proliferation of user interfaces. Consequently, each
computer system and tool has its own style of user interface. The use of
menus, mouse buttons, icons, scrollbars, and function keys varies greatly
between frameworks and tools.

Good user interfaces are difficult to design and implement. For example, the
Macintosh user interface represents a large effort involving human factors
experts, software designers, and people who had developed and used similar
user interfaces at Xerox Parc. The Macintosh has been successful in achieving
widespread acceptance of its interface as a point of comparison for other user
interfaces. The Macintosh user interface is successful for several reasons:

29

1. Standard software interfaces implemented in a highly optimized ROM
toolbox. Anyone bypassing the toolbox will encounter significant
development effort and performance penalties.

2. Apple has published standards for using the graphics toolbox and
seeded the market with programs that illustrated these standards.

3. The Macintosh user community is not tolerant of new products that
do not conform to the Macintosh user interface standards.

An increasingly important environment framework role is the support for
and enforcement of a uniform, well engineered user interface. Computer
vendors recognize this need and are starting to promote their own
proprietary solutions.

Issues

1. Lack of Commonality across Tools: It is common for different tools to
use mouse buttons, menus, and icons in ways which are incompatible
with each other.

2. Standards at Too Low a Level: Current user interface standards, such
as X-Windows, are at too low a level to influence the look and feel of
tools within an environment. Higher level standards are needed for
tool developers to ensure a consistent look and feel among tools.

3. Human Factors: Simply using graphics, menus, and icons does not
guarantee a good user interface. The most important ingredient is the
use of a sound model of human-machine interaction that is reflected
in the user interface implementation by tools. A number of tools are
extremely difficult to use even though they employ all of the accepted
user interface mechanisms. For example, one of the popular
document publishing systems available on most workstations has a
Macintosh-like interface. Unfortunately, simple operations, such as
cutting and pasting a piece of text, may require as many as 27 actions by
the user.
The design of good user interfaces requires a study of the work flow
patterns of system users. The design also requires a consistent model
of interaction so that the user can intuitively perform a new action
based on past experience using the tool.

4. Performance: Developing an efficient set of higher level user interface
libraries is a major undertaking. A number of graphics-based tools
available on high powered workstations suffer from poor performance
when manipulating complex graphics. There is a critical need for

30

higher level user interface libraries that have been engineered for

performance.

5. Complexity: Advanced user interface libraries are complex. T1nis
complexity arises from several factors:
"* support simultaneous update within multiple windows
"* intercept random user events in different contexts and dispatch

these events to the appropriate application event handlers
"* provide a generic architecture for doing, undoing, and redoing

user commands
"* allow arbitrary nesting of windows, panes, and subpanes; each

with its own coordinate space and associated controls

" provide the ability to perform common operations such as
moving and sizing a collection of complex objects

" provide uniforn support for color and shading for all user
defined objects

Approaches

1. Object-Oriented User Interface Libraries: Conventional programming
cannot cope with this complexity. New user interface paradigms based
on object-oriented programming show considerable promise in being
able to manage this complexity and supporting optimizations for
performance. Object-oriented user interface libraries are now
becoming available. Future frameworks should incorporate these
libraries for use by tool vendors.

2. Open Look: Open Look, announced in April 1988 by AT&T, will be
the standard user interface for Unix System V (version 4.0). Open
Look was designed for AT&T by Sun Microsystems and based on a
technology licensed from Xerox. It is designed to be independent of
the hardware and software that it runs on. Open Look was designed to
accommodate different keyboards, mice, and screen resolutions. In a
manner similar to the Macintosh toolbox, Open Look provides an
extensive set of higher level user interface toolkit routines for the
application developer. A goal of Open Look is to provide consistency
between applications so that users can easily switch between
applications. For example, throughout the system and across
applications, a given mouse button is used for only one function. The
first two Open Look toolkits will be available early in 1989. The
version from AT&T is called XT+, while Sun Microsystems's version
is called View2. Both of these toolkits will be implemented on top of

31

X-Windows. Sun is also planning to provide an Open Look toolkit
called the NeWS Development Environment (NDE), which is based
on the NeWS window system.

3. OSF/Motif: As part of a movement to establish standards for user
interfaces, the Open Software Foundation (OSF), in 1988, asked major
software developers to submit graphic user interface technologies for
consideration as part of a standard operating environment for UNIX.
To most people's surprise, the OSF chose pieces from three companies
- DEC, Hewlett-Packard, and Microsoft. OSF's product, Motif, looks
like Microsoft's Presentation Manager (PM), uses parts of the DEC and
Hewlett-Packard application program interface (as well as the three-
dimensional windows from Hewlett-Packard's NewWave), and is
based on the X Window System. OSF/Motif, OSF's first offering, is a
graphical user interface combining the following elements:

"* A toolkit

"* A presentation description language

"* A window manager

"* A style guide
Together, these four elements, the toolkit, the presentation description
language, the window manager, and the style guide, provide a
standard of user interface behavior for applications.
OSF/Motif runs on the workstations of Hewlett-Packard, Digital
Equipment Corporation, Sun Workstation, and Interactive. Like most
software products in their early stages, some bugs exist, and are being
uncovered by users. OSF/Motif is currently in Version 1.0; Version
1.0.3 was released with some fixes to bugs, with Version 1.1 soon to be
distributed.

Motif is fast becoming an industry de facto standard. Following the
announcement of Motif, many compari,-i ar'runced v•-,p...t for the
OSF standard and began tweaking their graphic user interface software
to be compatible. For example, as of April 1990, over 600 companies
have licensed OSF/Motif source code, representing 25 countries and
80% of worldwide computer suppliers. Endorsements include The
European Economic Community, '88 Open Consortium, General
Motors, American Airlines, and the Marriott Corporation. OSF/Motif
is more popular than Open Look, with 73% of software vendors
working in UNIX having elected to support OSF/Motif. Presently,
Motif runs on more than 100 hardware platforms and 38 operating
systems [WAG90].

32

The U.S. Government's response to OSF/Motif has been very positive
as indicated by the acceptance by the U.S. Air Force and U.S. Navy, and
OSF/Motif's references in U.S. Government RFPs.

4. DECwindows: DECwindows is DEC's user interface toolkit for
providing a common user interface across machines based on VMS,
Ultrix, and MS-DOS. DECwindows is implemented on top of X-
Windows, which should further promote the portability of the user
interface. DECwindows is supported by a toolkit called X User
Interface Toolkit, which provides a set of tools for application
development; a user interface style guide; and bindings for Ada, Pascal,
C, and FORTRAN.

5. SLCSE User Interface: A design goal of SLCSE was to provide a
consistent user interface across a range of terminal types and
workstations. The SLCSE user interface is data driven and linked via a
message handler to isolate the user interface from changes. For
example, the introduction of a new tool into SLCSE is handled by
specifying the tool name, its parameters, and the roles that are allowed
to use the tool. This approach provides an easy facility for integrating
a new tool into the SLCSE framework. SLCSE supports three levels of
tool integration with its user interface.

1. The user interface libraries can be compiled directly into a tool to
provide a SLCSE conforming look and feel to the tool. A number
of system tools, such as mail, dir, copy, delete, conform to the
SLCSE interface. A tool writer has the option of developing new
tools to adhere to the SLCSE interface.

2. SLCSE provides a surrogate user interface process that supports a
standard user interface protocol for SLCSE tools. Tools that use
this protocol are isolated from host and terminal dependencies.

3. Tools imported into the SLCSE environment are simply invoked
by the SLCSE user interface and will display their existing user
interface.

Assessment

Providing a consistent look and feel across tools within the environment is
becoming increasingly important as end users recognize the benefits of such
interfaces. It appears that industry pressure is reducing the number of
interfaces to a small set of competing solutions which includes DECwindows,
OSF/Motif and Open Look. Both of these systems are highly portable and
compatible with modern networked environments. There is probably room
for a small set of high level user interface standards. Existing environment

33

frameworks are expected to evolve to embrace at least one of the industry
standard interfaces. When evaluating a framework for its user interface
capabilities, several issues must be considered:

1. conformance to the look and feel of an industry standard.

2. conformance to industry standard lower level interfaces to support
tool portability

3. user interface toolkit that assists in achieving the standard look and
feel

4. user interface style guidelines to ensure that tools developed for the
framework conform to the required look and feel

5. libraries of user interface components that can be used to rapidly
assemble sophisticated user interfaces

6. generic user interface and tool architecture that can be used to rapidly
develop and integrate user interfaces into new tools; several object-
oriented tool architectures can be used for rapid development of
complex user interfaces

2.1.3.2. Levels of User Interface Integration

User interface integration is measured by how well an environment provides
a consistent look and feel across all tools within the environment. A high
degree of user interface integration has been hard to achieve in situations
were tools are developed independent of the environment framework.
There has recently been an increased emphasis on the need to standardize the
look and feel of the user interface within an environment. Open Look,
OSF/Motif, and DECwindows attempt to define a vendor-independent,
standard framework interface set as well as conventions for the look and feel
of tools built using that standard.

The following are levels of user interface integration:

1. User interface look and feel defined and enforced by framework.
2. Consistency due to adherence to standards

3. Each tool provides its own look and feel

User interface integration has been hard to achieve because of the lack of
standards or approach for user interface integration. Within the past few
years, the success of the Macintosh has been attributed to having mastered the
problem of user interface integration to the extent that the majority of
applications share a common look and feel. Similar efforts are now

34

underway to provide the same level of integration within environment
frameworks.

1. User interface look and feel defined and enforced by framework: The
framework defines a set of interfaces at sufficiently high level that
tools that use those interfaces will conform to a common look and
feel. Additional guidelines should dictate the appropriate application
of these standards.

2. Consistency due to adherence to guidelines: Some frameworks have
guidelines or a tradition of a certain kind of user interface. For
example, Unix tools tend to conform to the Unix style of single letter
command parameters.

3. Each tool provides its own look and feel: Since there are no standards
and guidelines, each tool is free to choose its own look and feel.
Unfortunately, this provides an inconsistent user interface that is
difficult to master.

To date, frameworks have failed to achieve a consistent look and feel. This
failure is partially due to the lack maturity of user interface technologies and
the emphasis on low level user interface standards like X-Windows. Effective
user interface integration will not occur until frameworks begin to provide
higher level user interface libraries and interfaces.

2.1.4 Method Integration

As defined earlier, a framework includes those services that are provided
ubiquitously within the environment. Method support capabilities typically
fall into this category. When evaluating a framework's support for methods,
it is necessary to examine tool integration capabilities and method tailorability
and extensibility.

A major problem with many of today's CASE tools is the inability to integrate
these tools into an organization's methods. One method tiat must be
considered is the software development life cycle, which has subordinate
methods for configuration management, quality management, project
management, and development. Each of these subordinate methods extends
across the entire life cycle and can encompass a large number of tools.

The degree of method tailorability supported by a framework is important to
the acceptability of a framework within an organization. Methods have
considerable variation among organizations. Different organizations employ
different tools to support their methods. The methods employed by an
organization will change over time as their business changes or, in some

35

cases, as the tools for doing business change. Several methodological issues
should be considered when selecting an environment framework.

A number of recent environments provide some level of support for
software engineering methods. SLCSE provides the ability to define roles
which determine the data objects that a user can access and the tools available.
ISTAR, developed by Imperial Sciences of England, supports a method based
on the "contract model." The contract model is a formal development
method that decomposes a large project into a hierarchy of subcontracts. The
ISTAR framework supports this model directly, but allows users to integrate
application-specific tools as required.

The field of method modeling has been receiving increasing publicity in the
last five years. In the plenary session of the 1987 Software Engineering
Conference, the speaker challenged the software engineering community to
place a greater emphasis on software engineering method modeling,
formalization, and automation. There has been a renewed interest in
method research, as illustrated by the number of prototype frameworks with
method support presently being developed.

Issues

1. Method Models: The technology f-- modeling and formalizing
methods is still a research topic, with some limited application in a
few environments such as ISTAR.

2. Roles: A number of environments have provided a limited form of
support for methods through the use of roles. Roles provide some
control over what different users can see and do within an
environment based on their responsibilities and authority. The
concept of role seems to incorporate dimensions of access control and
data view mechanisms.

3. Tool Integration: The environment framework must provide tools
and interfaces to support methods. Furthermore, development and
management tools must be integrated into the framework to become
integral parts of the method. This implies that the framework must
exercise control over the operation of tools.

Approaches

1. SLCSE: SLCSE supports DoD-STD-2167A by identifying all the data
that is required for each development phase. Tools populate the
database in the course of development. An automatic documentation
generation tool can be used to extract information from the database to

36

produce the required reports. The SLCSE roles restrict users to the data
and tools required for a particular DoD-STD-2167A activity.

2. Atherton Software Backplane: The Atherton Software Project
Softboard provides work flow management capabilities. For example,
the action management subsystem allows users to initiate, respond to,
and keep track of actions over the life of the project.

Assessment

Method modeling and support is still a research topic. A number of
frameworks provide limited method support, such as roles in SLCSE and
action tracking in the Atherton Software Backplane. Even these minimal
facilities can prove to be useful in tailoring the environment to better support
a particular software method. To date, these limited forms of method support
do not cause major issues with tool integration.

2.1.4.1 Configuration Management Integration

Overview

Configuration management, which also includes change management, is a
development activity that is performed across the life cycle. A configuration
management method must support problem tracking, configuration
identification and auditing, approval procedures, and tracking and generation
of all deliverables associated with a product.

Issues

1. Automation: Configuration management is a difficult and complex
task that requires automation to be used effectively. This automation
involves managing information about developing product
configurations, tracking problem reports, and generating deliverables.

2. Visibility: Most environment users must access development
products that are under configuration management. The framework
configuration management services should provide visibility to this
information.

3. Tool Integratability: A function of a configuration management
system is to generate the software products required in a delivery of a
system. These products include source, load modules, documents, test
data, and software development files. The ability to integrate tools
includes the capabilities to invoke and control the operation of tools,
handle failures, and distribute construction of a software system for
delivery.

37

4. Taiorability: The sequencing of steps employed in performing
configuration management and scheduling tools, as well as the kinds
of information maintained about configurations, should be tailored to
suit the organization.

5. Extensibility: The configuration management facilities provided by a
framework will require some customization which goes beyond the
tailoring just described. Extension is typically handled by modifying or
replacing parts of the system. Access to lower level interfaces and the
availability of details about the data definitions used by the
configuration management tools are two issues which should be
considered.

Approaches

1. Apollo DSEE: DSEE supports configuration threads and a powerful
make facility. DSEE takes advantage of the network and distributes a
number of configuration management functions within the network.

2. SUN NSE: NSE provides both revisioning and versioning to provide
a fine grained control over how changes are managed. Revisions are
made for major changes while versions are made for minor changes.
NSE provides a collection of tools to support the creation of new
revisions and versions. A "make file" facility is available for building
deliverables.

Assessment

Configuration management is a mature technology. Configuration
management products have evolved for the past twenty years and are now in
a state of high refinement.

Performing configuration management functions efficiently within a
network requires the ability to distribute these management functions within
the network. For example, configurations should not be kept on one node.
In larger developments, significant disk contention and network availability
problems may arise. For example, if anything goes wrong with the node that
has all the configuration data, then work on the project is impacted.
Frameworks should be able to distribute the d. *, and the major configuration
management functions within the network.

2.1.4.2. Levels of Method Integration

A method is the sequencing of activities that must be carried out in order to
produce a desired deliverable. The ability to define or tailor a method implies

38

that the framework can support the carrying out of activities as defined by the
method. In defining a method, the framework must support the registration
of tools that participate in the method, identification of work products that
are input to and produced by each activity, and people and their roles in the
activity. A few proprietary and commercial frameworks [LEH86] support the
definition and tailoring of methods. These frameworks have typically been
applied to developments with rigorous methodological constraints.

Method integration relies on all the forms of integration just discussed.
When defining a method, the work products and necessary tools must be
identified. In addition, users must be directed to follow a sequence of
activities defined by the method. Consequently, effective method support
cannot be performed until the other forms of integration are in place. The
two levels of method integration are the following:

1. Method Definition and Enforcement: The framework supports the
specification of a method and enforces the method during
development.

2. No Method Support: Most frameworks do not provide method
support.

There seems to be a spectrum of method support provided by environments.
However, most fall short of providing an effective and flexible level of
method integration. In order to achieve effective method integration, the
types of integration just described must be in place. Method modeling has
become a popular research topic in the last few years. Areas being
investigated include knowledge-based method modeling and method
programming. Method modeling technology is in its infancy and will need
several years of research and practical experience to mature.

2.2 Factors Affecting Tool Integration

This section briefly examines a number of orthogonal factors based on the
design and implementation of the framework rather than on the framework
technology itself. For example, the style of data management interfaces can
affect tool integration independent of the data model supported. Tools that
do not conform to the style of usage may be more difficult to integrate.

2.2.1 PCTE PACT Experience

There is now a growing body of experience by developers who have tried to
integrate tools into advanced frameworks. For example, the ESPRIT PACT
project, which built an integrated toolset on top of the PCTE interfaces, found
the need to develop a layer on top of the PCTE interfaces and use these new

39

services for developing tools. One of the problems the PACT developers
found when they started to develop tools using the PCTE was that the PCTE
interfaces were at too low a level. Consequently, the PACT project introduced
anothLr layer called the PACT Common Services layer. The Common
Services layer implemented some of the fundamental models that the PACT
project wanted to reflect through all of the tools used within the
environment. By factoring out this functionality and embedding it into a
Common Services layer, the tools became simpler and it became easier to
provide a single, consistent model of user interaction.

Figure 2.2.1-1 illustrates the PACT architecture. The innermost circle
represents an implementation of the PCTE interfaces. The next layer, the
Common Services layer, provides services common to a number of tools.
The Common Services layer eases the tool writer's task by reducing the
amount of code to be written. It also provides a higher degree of consistency
amongst tools. The PACT project found the Common Services layer to be an
important mechanism for tool integration support and recommended that
these services be used by all tools. This experience introduces an interesting
dilemma in that the level of tool portability is now the Common Services
layer and not the PCTE layer. In order to transport tools, it is also necessary to
transport the Common Services Layer. Furthermore, it is unclear if tools
built to the PCTE interfaces could be integrated

40

Bitmap

Tools DD Tools

lManagement

dmmnirctl pore Support
Tools PCTE DMCS Tools

\ Administration •,,,,,

Tooplaios/~ol

S Desktop

Figure 2.2.1 -1. PACT Architecture

with tools developed on top of the Common Services layer. The PACT
Common Services include the following:

1. Dialogue Management Common Services (DMCS): The DMCS
supports a higher level model of man-machine interaction than that
provided by the PCTE interfaces. Associated with the DMCS is a set of
guidelines for those aspects of the PACT user interface that are not
directly supported by the DMCS.

41

2. Data Query and Manipulation Common Service (DQMCS): The
DQMCS provides a high level query processing capability on top of the
PCTE primitive Object Management services. Clearly, tools that
employ these services will require the presence of the DQMCS on each
PCTE instance on which those tool run. The results of queries are
relationship tables. The PACT experience has shown that these
relationship tables provide a useful exchange format between tools.

3. Version Management Common Service (VMCS): The VMCS
provides basic facilities for the management of versions of single and
groups of related objects.

4. Document Structure Common Services (DSCS): The DSCS provides
facilities for tools that create, access, and manage documents in the
PCTE object base.

5. Tool Composition Common Services (TCCS): The TCCS provides
facilities for defining new tool functionality by composing primitive
tools.

The outermost circle represents the application specific tools that populate the
environment to support the project disciplines. The Desktop is the PACT
user interface that includes a graphics interface for data query and
manipulation.

2.2.2. Framework Architecture

The framework reference model defines a tool support layer that provides the
functionality and interfaces required for tool development. The architecture
must explicitly address the problems of integrating tools. Simply providing a
set of low level standard interfaces is insufficient. In general, tools interact at
a much higher level. For example, the PACT Common Services layer
provides a set of services that are more appropriate for the tool writer than
the PCTE standard interfaces. This experience points out that many of today's
thrusts of defining low level framework interfaces is an inadequate solution
to tool transportability and integratability.

It seems inevitable that tools will make some assumptions about higher level
services. An architecture that also defines interfaces for services at that level
will enhance the ability to effectively integrate tools. The argument for this is
that as the framework services increase in power, the environment tools
become simpler. Simple tools are typically easier to integrate than complex
tools. In addition, the more that tools rely on the framework services, the
easier it is to integrate these tools. The experience gained from PACT
confirms this premise.

42

2.2.3. Open Architecture

An open architecture includes both a published detailed description of all the
framework interfaces as well as a philosophy of openness. The latter is
perhaps the most critical in that it determines the nature of these interfaces.
The converse of this is also true for tool developers. Tool developers also
need to develop tools with a philosophy of openness to make it easier to
integrate tools into an environment.

Frameworks that embody the philosophy of openness should minimize the
need for tools to become dependent on particular framework services. For
example, if a framework provides configuration management services, its
interfaces should minimize the tool's dependence on the particular model of
configuralion management supported. A tool should be directed to perform
its function on framework designated objects rather than requiring the tool to
provide a configuration management model with specific information in
order to access the object.

The problems of tool integration will not be solved by low level interface
standards such as those defined by the CAIS-A and the PCTE. Instead, these
problems will be solved by having framework and tool vendors adopt a
philosophy of openness at higher levels of framework functionality. Areas
where this openness should be considered include configuration
management, user interface paradigms, documentation management, and
database querying.

2.2.4 Conformance to Standards

Conformance to national, international, DoD, and industry defacto standards
will aid in tool integration. Many of the current standards are at too low a
level. Although one can argue that low level standards provide the most
flexibility and are an aid to tool transportability, they really do not adequately
address problems of tool integration. Tools that are developed using higher
level framework services would no longer be portable unless those services
where also ported.

Most current framework standards are evolving around the entity-
relationship data model which some believe is too weak. Several prototype
environment efforts are experimenting with object-oriented environment
frameworks. [VIN88] [WOL88] Object-oriented frameworks will eventually
replace the current entity-relationship based models.

43

2.2.5. Tools to Support Integration

A measure of Framework maturity is the availability of tools to support tool
integration. There are some areas where tools would be advantageous.

Tool registration: Registering a tool into the environment includes defining
the type of tool and its parameters to the framework user interface to allow
the tool to be invoked. In addition, the tool registration should integrate the
tool into the methods supported by the environment.

Name Conflict Resolution: Tools are typically developed with an assumption
about the names of objects and object attributes. Tools that support the
definitions of new views or aliases for accessing framework-managed data
should allow new tools to be integrated without modification. The CAIS-A
interfaces include a mechanism for resolving name conflicts through a view
mechanism. The PCTE allows one to define subschemas to resolve conflicts.

Database Schema Editor and Migration: New tools may require additional
data types or additional attributes on existing data types. A framework tool
that supports extension of the schema, as well as migrating the existing
database to conform to the new scbhna, is needed when integrating new
tools. Database migration is a difficult problem when integrating new tools.
Most environment frameworks do not provide adequate support for database
migration. Consequently, the tool integrator may have to write utilities that
migrate the database from its current state to a new state that is compatible
with the new tool.

2.3. User Interface Technologies

The user interface is a critical component of an environment. To a large
extent, it determines the perceived value and effectiveness of the tool. The
existence of various technologies requires a user interface that employs a
separation of concerns between intermediate representation of information
and the presentation of that information. These technologies include:

* extensibility in the types of information presented to users

* incorporation of new display paradigms

* multiple views for editing

There must be a separation of device-dependent input and manipulation of
internal information. This will allow the user to tailor the input mechanism.
A good architecture will allow the functionality to evolve independently of
the user interface.

44

The following sections are a survey of different paradigms and architectures
for designing interactive user interfaces. All of these approaches are based on
the object-oriented paradigm.

2.3.1. Model-View-Controller Paradigm

The Smalltalk Model-View-Controller (MVC) paradigm [KRA88] evolved
from a desire to build interactive applications where one maximizes the
portability and reusaoility of the components that support the interactive
graphics. Figure 2.3.1-1 illustrates the three-way separation of concerns
supported by this paradigm.

Interactive Controller View

Figure 2.3.1 -1. Model-View-Cantroller User Interface Paradligm

The three main components of the MVC paradigm include the following:

1. A Model is the object that maintains application-specific state
information. The Model does not have knowledge about how it is
being displayed or how its inputs are being handled. A Model has
operations to access and change its state. Whenever a Model changes
its state, the Model sends messages to all of its dependents (associated
Views and Controllers) notifying them that the Model has changed.

2. A View is responsible for determining how to present the model. A
View will revise its rendering of the Model whenever it receives a
message indicating that the Model has changed state. In addition,
some of the user inputs may affect the View (e.g., scrolling), requiring
it to update its rendering of the Model. The View queries the Model to
determine the Model's state. I he View then adjusts its rendering of
the Model accordingly. In general, a Model can have multiple Views
associated with it.

45

3. Each Controller has an associated View. The Controller mediates
between input devices (e.g., mouse, keyboard, menus, scrollbar), the
Model, and its associated View. Whenever a significant event occurs
at an input device, the Controller logic determines whether the event
should just change its associated View (e.g., scroll the view), or if the
event is a directive to change the state of the Model. Messages are
sent to either the Model or View object as appropriate.

The separation ,f conc_.rns in this approach is that Models know that they
have Views and Controllers associated with them. However, Models do not
have explicit knowledge about the functions performed by these Views and
Controllers. This architecture has several advantages:

" The Model portion of the applications can be developed independent
of the input device and language. This capability makes the
application highly portable, which is a desirable attribute of Catalyst.

" The application is unaware of how may views are active at any given
time. Therefore, the architecture is extendable, allowing new views to
be added without modifying the application Model. This capability
allows Catalyst to be extended to provide new renderings of the
software being edited. It also allows new presentation styles so that the
quality indicators can be inserted.

* The architecture allows editing of one Model view while
automatically updating the other views whenever a change is made to
the Model. This capability satisfies the Catalyst requirement to support
multiple, editable views of the software being developed.

* The architecture allows tailoring of the user interface in a manner
which is independent of the model. Consequently, the style of
interaction can easily be changed without affecting the behavior of the
tool.

2.3.2. Artist Paradigm

The Arcadia-1 Software Engineering Environment project has adapted a user
interface called Chiron [YOU88, MYE83]. Chiron is based on the Artist
paradigm of structuring user interfaces, as shown in Figure 5-6. The Artist
paradigm is a variant of access-oriented programming, where each invocation
of an operation on a model has the side effect of invoking an operation to
update the view.

An artist adds new state information to keep track of the model's rendering.
The artist also attaches additional behavior to the existing operations, either
through specialization or through the use of triggers. With this approach,

46

neither the syntax nor the semantics of the operations on the model are
changed. Multiple artists can be defined by simply repeating this process. An
advantage of the artist approach is that it can be implemented using a
language like Ada to provide data abstraction capabilities.

2.3.3. Access-Oriented Paradigm

Another technique that supports the multi-view, simultaneous update
paradigm is access-oriented programming [STE86]. In access-oriented
programming, the fetching or storing of data can cause procedures to be
invoked. Access-oriented programming differs from object-oriented
programming in the area of actions and side-effects. In object-oriented
programming, when one object sends another object a message, the receiving
object may change state as a side-effect. In access-oriented programming,
when one object changes its state, a message may be sent as a side-effect. Of
course, one could employ a development paradigm that incorporates both
object-oriented and access-oriented programming.

SSe_ Cord

IGe _Coord 1
Triggers Associated with Operations,

Ais Abstract Data Types,

47pecialization

["zoom "-

Create Create

So Gor et Coord

Ge ord Got oor

Figure 2.3.3-1. Artist User Interface Paradigm

47

The Loops language [STE86] allows procedures to be dynamically associated
with data so that these procedures are invoked when data is fetched and
stored. An application of this approach is to attach gauges (e.g., Catalyst
quality indicators) to objects to monitor their state. For example, in Loops,
one can simply create an instance of the appropriate gauge and send a
message which will attach itself to the desired object property. Subsequent
changes in the value of that property will register orn the gauge as a side effect
of that change.

2.3.4. Constraint-Oriented Paradigm

The constraint-oriented paradigm employs a capability supported by some
object-oriented systems in the ability tc define property values of graphical
objects in terms of the property values of other graphical objects. For
example, the fact that two software packages have a dependency can be
described by a constraint that forces them to remain graphically connected,
even when one of the packages is moved. In this case, whenever the
properties of a graphical object change, the relevant constraints are
automatically enforced, and the affected graphical objects are automatically
redrawn. Examples of languages that support these constraints are Coral
[SZE88] and the Constraint Window System (CWS) [EPS88]. Constraints have
been used for other drawing programs, such as SketchPad [SUT63] and
ThingLab [DUI861. SketchPad's constraints allow lines to have specific
relationships to other lines. ThingLab extends SketchPad to provide a general
simulation environment.

Constraints can be expressed between data objects and graphic objects so that
whenever the value of the data object changes, the effects of those changes are
propagated to the property values of the graphic objects. These objects, in
turn, update themselves. There is a difference between constraint-oriented
and access-oriented paradigms. In constraint-oriented programming,
constraints are value expressions constraining the property value of one
object in terms of the property values in other objects. On the other hand,
access-oriented programming uses triggers to identify procedures that are
invoked whenever a specified property value changes. By incorporating
constraints as a language-supported mechanism, some clever optimizations
can be performed by compilers to provide efficient implementations of the
constraint mechanisms [SZE88, EPS88]. The architecture of Coral programs is
shown in Figure 2.3.4-1.

48

Inputs -4-

SApplica•tion

Display-o'- - Active Values

•)Graphical objects +

constraints

Figure 2.3.4-1. Constraint-Based User Interface from Coral

The graphical objects have defined constraints to ensure that the graphical
renderings of these objects conform to the constraints Whenever these
values change, the graphical renderings are updated accordingly. A,; active
value is a data value plus a list of objects and procedures that depend on that
value. When the state active value is changed, the graphic objects are
informed so that they can be redisplayed. Procedures are then invoked to
notify the application program of the change. In Coral, interactors handle the
information from input devices and update the active values accordingly.

An advantage of the constraint-oriented approach is that constraints are
declarative and enforced uniformly for all objects to which the constraints
apply. The concept of active values provides a clean way of separating input
and output portions of the user interface. The concept also separates the user
interface from the rest of the program.

49

3. SECD Environment and Rationale

Catalyst is a set of highly adaptable and configurable software "building
blocks" in the form of interactive software tools and environment
frameworks, that, when integrated with an installed computer system
(hardware plus system software) and other software in the users'
environment (tools and frameworks), will provide an automated support
system for systems engineering.

Catalyst is a software system. Catalyst cannot, by itself, be considered a systems
engineering environment because it depends on the existence of an
underlying computer system and certain additional software in order to be
operational.

The following subsections discuss the principal Catalyst concepts. We will
start by describing what an environment is, providing definitions for key
terms (e.g., environment, tool and framework) that will be used later and
providing a conceptual model of an automated environment for future use.
Next the concept of Catalyst consisting of "building blocks" is explained.

3.1 Model of an Environment

A environment consists of a computer system plus a set of software tools
which are designed to provide an encompassing breadth of support for some
human endeavor. In this case, the human endeavor to be supported is that
of systems engineering.

A computer system consists of a set of hardware and operating system
software for processing, data storage, user interface, communications and
resource management. Computer systems interact with users and
communicate with external computer systems.

User

-Computer External
-System Computer

50

The hardware and operating system forms the lowest level virtual machine
that interfaces to users and tools. It is called a virtual machine because the
partitioning between hardware and specific software is transparent. To the
users and tools, it is merely a collection of processing, data storage, user
interface, communications and resource management services.

In the diagram below, the communication with users and external computer
systems is shown as a "ribbon" to illustrate that such communication
involves both the system software and hardware.

User
I•S-ystem External

.Soft areComputer

wsystems

A tool is software which serves to automate some specific aspect of the
endeavor. Tools also use the services provided by the virtual machine to
accomplish their function. Tools utilize the virtual machine services to
communicate with the user and with external computer systems. Tools also
use the virtual machine services for inter-tool communication and for
information sharing amongst tools.

User

Tool External
.~mu= _________Computer

System ystemsSoftwre

A framework is an underlying infrastructure of an environment that,
through a set of common software services, enhances the commonality and
integration of tools, and thereby improves the collective use of these tools for
a specified endeavor.

51

A framework is, itself, a collection of software tools which provide common
services that are shared amongst other software tools. Frameworks extend
and enhance the services of the virtual machine, typically providing higher
level, more powerful services for users and tools. Frameworks typically
enhance the integration and/or commonality of tools through shared use of
these common services. A framework typically provides the following types
of services:

* Information management

- Higher level data model access

- Data interchange

- Configuration management

"* User interface

- Higher level user interface primitives

- User access to framework services

"* Communication

- Higher level protocols for external communication

- Inter-tool communication mechanisms

"* Resource management

- Tool execution and control

- User and tool access control

- Higher level computing resource management

The framework common services often work in concert with a tool in
accomplishing a particular tool function and is often not itself visible to the
user. This latter, more transparent view of a framework, is better described as
a layer or infrastructure beneath the tool. A layered model portrays
frameworks as being ubiquitous (i.e., being or seeming to be everywhere at
the same time; omnipresent).

A framework may consist of a layering of various other frameworks. This
layering serves to provide high and more powerful common services for
tools. It is important to note that in these cases, a single function of the tool
may involve support from many layers of frameworks beneath it.

52

Tools___ External
' o Computer

SystemSystemsSottwaro

Hardware

Tools typically have the following four components:

1) a user interface

2) a communications interface (to other tools)

3) a processing component (which provides the underlying
capabilities/ functionality

4) an information component (for retaining information between
invocations)

User

5 • Processing
~~External

Tools

The services of the virtual machine (hardware plus system software) and the
services of frameworks may facilitate the user interface, communications,
information management, and/or the processing components typically found
in other tools. While providing services, frameworks can also implement
protocols and support policies (e.g., UI frameworks promote look-n-feel
policies by implementing specific protocols).

53

o ExternalSFrameworks Cmue
__________ Computer

SystemSystems

*"/Hardware k

The processing component of a tool may, in fact, contain and/or utilize other
tools. Tools may contain other tools; some tools automate the use of lower
level tools. In addition, software tools can be manipulated as data. As a
result, tools may serve to generate, translate, or modify other tools.

3.2 Catalyst Building Block Concept

The systems engineering automation focuses on the development of high
payoff building blocks for a systems engineering environment, rather than
attempting to specify a complete and comprehensive automation of the
systems engineering process. These "building blocks" consist of highly
adaptable and configurable software tools and environment frameworks, that,
when integrated with an installed computer system (hardware plus system
software) and other software in the users' environment (tools and
frameworks), provide an automated environment for systems engineering.

A complete, monolithic systems engineering environment (i.e., all tools and

all required frameworks) is considered infeasible for a number of reasons:

" The systems engineering process, as practiced across the numerous
types of mission-critical systems, is too broad to practically automate in
a comprehensive fashion.

" There is a high degree of variability in the systems engineering process
across organizations that precludes a single environment solution.

" Each organization already has a number of tools, frameworks and
computing hardware that it has experience with and will want to
continue to use.

" A single monolithic environment is not considered commercially
viable; organizations prefer to pick and choose their tools from
multiple sources.

54

The building block approach seeks to identify a set of widely applicable and
highly adaptable tools and environment frameworks that can be integrated
with other COTS (Commercial-Off-The-Shelf) tools and frameworks, and
internally-developed tools and frameworks to form an organization's systems
engineering environment.

Following this concept, an organization's systems engineering environment
will resemble distributed, cooperating islands of automation that are
extensively adaptable. It is our hypothesis that automated tools transition
faster and more effectively if they are flexible enough to simply automate the
users' existing process, rather than requiring the users to change the way they
do business. As a result, the tools and building blocks that are specified will
be ultra-flexible, supporting adaptation along many dimensions, allowing
organization-specific definition of:

* Process and life cycle

* Organization structure and roles

* Methods and techniques

* Information and representations

• Work flows and work products

* Policies and procedures

Moreover, the tools and building blocks must be portable to a number of
computing platforms and support integration with the organization's
installed base of COTS and internal tools.

Each tool and framework building block should strive for power and
simplicity within a narrow scope, yet be highly interoperable with other tools
and framework building blocks. An integrated set of highly effective, single
purpose tools is better than a single, monolithic environment that attempts
to solve all problems. The integration mechanisms between these tools,
whenever possible, should be ubiquitous (using the framework building
blocks), rather than being a recognizable layer to the user.

55

COTS Software

Catalyst "Building`býnta Softwar

•St••ar•no & Industry

Organization-Specific Best Practice
Process and Methods Process and Methods

Systems Engineering Team

Figure 3.2-1. Building block concept for systems engineering automation

3.3 Catalyst Environment Interfaces

Catalyst has the following interfaces:

* User's host computer system, consisting of the computer hardware
and system software

* User's installed frameworks

* User's installed tools

* Users (employing the services of the user's host computer system
hardware, system software and possibly installed frameworks)

56

* External Systems (employing the services of the user's host computer
system hardware, system software and possibly installed frameworks)

Note that the latter two interfaces are layered on top of the user's computer
hardware, system software and frameworks. The program interfaces of the
Catalyst software involve only the system software, user frameworks and
user tools.

User TO ý01

CatalystExte rnal
Computer SFrameworks Systems

System__ Ss em
• .• i ,Software

Communication between Catalyst and the user may be accomplished through
direct use of system software services (e.g., terminal drivers) or through use of
user interface frameworks (e.g., X Windows, Motif), that in turn use the
underlying system software and hardware to communicate with the user.

Similarly, communication between Catalyst and external systems may be
accomplished through direct use of system software services (e.g., low level
communication protocols such as X.25 or Ethernet) or through use of
communication frameworks in the form of higher level communication
protocols (e.g., NFS, TCP/IP), that in turn use the underlying system software
and hardware to communicate with the external systems.

Catalyst may communicate with other tools, either directly (e.g., procedural
interfaces), through use of system software services (e.g., process-to-process
message services), or through frameworks (e.g., tool access protocols). The
underlying software services and frameworks will typically provide facilities
to communicate with tools that execute on distributed computer hardware in
the system.

57

: • External

S~Compute
S~Systems

ysytem Software •

3.4 Computer System Environment Requirements

Catalyst must be adaptable to support the systems process across a wide range
of computer system platforms and configurations, including the following:

* Standalone computer system with explicit communications to
external systems

* Host-workstation configuration

* Heterogeneous computing network

* Multiple heterogeneous computing networks with internetwork
communications

3.5 Environment Focus

The Catalyst automation focuses on high payoff systems engineering
automation, specifically in the areas of:

Modeling and specification meta-tools, a set of highly adaptable and
configurable tools that may be used for a variety of tasks and in a
number of different contexts, particularly those early life cycle
requirements and system design specification activities.

Concurrent engineering groupware, tools specifically designed to
promote and enhance multi-person, and particularly multi-
disciplinary, interactions and collective work flows.

Integration mechanisms, frameworks that increase the effectiveness of
multi-tool work flows and promote information sharing between the
systems engineer and the various specialty roles.

Environment administration support, tools assisting the installation,
adaptation and extension of the environment.

58

* Process automation, providing specialized support for defining,
planning, tracking, enforcing and improving the systems engineering
process.

The determination of the highest payoff area was determined by the market
survey, process modeling and field interview activities.

59

4. Technology Demonstrations

As defin_?d in the SECD SOW, the Technology Demonstrations identified
tools and enabling technologies which were considered critical to establishing
an automated system engineering environment. The following technologies
were demonstrated for the SECD Project Team:

* FIELD (Friendly, Integrated Environment for Learning and
Development), a system with message-based integration

* Versant, an object-oriented database product

* ArborText, an electronic document production product using SGML

* Automated Access Experiment (AAE), a SPS delivered system to RL
for distributed, heterogeneous computer systems

* InQuisiX, a SPS meta-tool

* InSight, a classification and search engine productized by SPS and
SAIC

* Momenta, a Pen-Based Computer

* PRICE (Parametric Review of Information for Cost and Evaluation), a
cost analysis tool

The following subsections describe each of these technology demonstrations.

4.1. Friendly, Integrated Environment for Learning and
Development (FIELD)

Message broadcasting is an integration technology that is the foundation of
FIELD (Friendly, Integrated Environment for Learning and Development)
developed by Steven P. Reiss, Brown University, Providence, Rhode Island
[REI90]. FIELD is an open collection of tools that uses selective broadcasting
and source annotations as an integration mechanism. FIELD emphasizes
visualization tools and standard workstation interfaces.

The requirements for the development of FIELD were extensible, simple
enough for novices, rich enough for research. FIELD needed to accommodate
multiple processes and machines, create an excellent student environment,
and be inexpensive to build and maintain. Integration required that the tools
must interact with each other directly; dynamic information must be shared;
all source action should be through a single view; and specialized
information must be available to all tools.

60

In the architecture of selective broadcasting, the central message server exists
for the clients to send/receive messages and command requests and
information. Clients can be added or removed. Messages between the server
and the client are strings and conventions for encoding are used (e.g., WHO
CMD system args, ID WHAT system information). In the operation of a
message, clients register patterns and tools send messages to the server. The
patterns can be a "scanf-based" pattern matching, exact normal text matches,
or argument matches. The tools can rebroadcast their messages selectively, or
use "printf" formatting for sending calls. Policies are declared for users, tools,
patterns, variable, and load requests. Additional policies can be expressed for
complex actions using path expressions.

Messages can be asynchronous (i.e., the sender continues immediately) or
synchronous (i.e., the sender can wait for the first non-null reply or he can
wait for all receivers). The messages are decoded by the server and the sender
receives the arguments and the identification of the reply. The server is
responsible for services for the tools and is central to the environment. The
server maintains a working directory for all tools, a check and a start for
services, and consistency within the environment.

FIELD offers cross referencing to create an interactive, fully relational
database. The user can define queries and FIELD retrieves the set of desired
entities. FIELD offers browsing capabilities using a class hierarchy, selective
inclusion and exclusion of entities, and local graphs for a node. Graphical
views of the class hierarchy show class relationships, member information,
member inheritance, and window information. Program execution can be
traced as messages are sent between client and server for communication.

FIELD is used extensively at Brown University for research and instruction.
In January 1991, Digital Equipment Corporation commercialized FIELD as
Fuse version 1.0 (i.e., Field using Motif). DEC Fuse version 1.1, subsequently
released in November 1991, runs on Ultrix and Sun OS. Fuse uses message
broadcasting technology, also known as the object request broker, and is the
basis for Softbench and Tooltalk, two COTS tools.

4.2. Versant

Versant is a COTS object-oriented database, developed by Versant, Menlo
Park, CA. Object-oriented technology is improving programmer productivity
by a factor of 10 and database performance by a factor of 100 [RUM91]. After
nearly forty years of refinements in software development, the capabilities of
software still lag far behind the power of hardware, and the gap continues to
widen every year. Versant's goal is to change this trend.

61

Historically, hardware has shown dramatic improvements because most
computers are now designed and assembled out of standard components such
as integrated circuits and printed circuit boards. With the advent of object
technology, software can also enjoy the benefits of construction by assembly.

Object technology can now supersede the monolithic, hand-crafted programs
of years past with collections of reusable software components. This goal will
allow programs to be assembled from existing components in a fraction of the
time and cost of traditional software development. It will also result in much
more robust, flexible software than we have today.

Using objects, methods, and classes, an object-oriented approach reuses classes
and builds models of how a system works. This model can then serve as a
framework upon which any number of applications can be constructed. And,
if the way an organization does business changes, the framework can be
modified without having to rewrite all the applications that depend upon it.
Building models increases the reusability of the classes developed while
making applications easier to modify.

Once a development team has built a solid foundation of reusable models
and frameworks, new applications should contain no more than 20% new
code. It is the construction of these frameworks that is the most significant
investment in object technology and the major source of benefit as well.
Versant enables the user to build these models and frameworks.

Object-oriented technology also offers important advantages in the
construction of databases and the large information systems of which they are
a part. One advantage of objects for information systems is that they are not
identified by their contents. Each object has a unique internal code called an
object identifier that is automatically assigned by the system. These object
identifiers have useful properties:

* Object identifiers provide a very efficient way of accessing objects.
They are almost as fast as the address pointers used in some languages
and early database management systems, but they are less vulnerable
to relocation than pointers.

* Each object has a unique identity throughout its life span, even if all of
its contents change. This is very convenient for information systems
because it eliminates the need to define and maintain unique keys
based on the contents of entries.

Composite objects actually "contain" other objects by storing object
identifiers in their variables. Containment by reference allows
individual objects to participate in any number of composite objects. It

62

also allows composite objects of any complexity to be retrieved very
quickly. At the same time, the structure of composite objects is easily
changed because the structure is defined in the objects themselves, not
in the database management system.

Object technology has made possible a new type of database that is rapidly
eclipsing the capabilities of previous database technologies. For example,
object databases can store any kind of information that can be digitized,
including pictures, diagrams, sound speech, and video images. Object
databases can handle information of any complexity, including multi-level
engineering drawings and compound documents, with live links among text,
spread sheets, and graphs. No matter how complex, anything stored in an
object database can be defined as a new class of object. As such, it can be
stored, retrieved and processed as a unitary entity.

Because objects contain methods as well as data, information stored in object
databases can manage its own access. This simplifies every application that
uses this information by eliminating all the redundant data-access functions.
The manner is which data is stored can be changed without having to modify,
recompile and redeploy every application that relies on that data.

The use of object identifiers to form the links within compound objects
allows these objects to be retrieved far faster than access based on foreign keys
and time-consuming joins. In fact, object databases have been shown to
outperform relational databases when dealing with compiex information.

Vendors of relational databases are attempting to match these advantages by
adding object-line extensions to their products. However, as long as they
maintain the basic relational model and its reliance on joins and foreign keys,
the performance of a true object database cannot be matched.

The future of information systems belongs to object technology. All the
major vendors, from IBM in hardware to Microsoft in software, have
announced plans to build their future products around object technology. A
major industry consortium, the Object Management Group, is working with
over a hundred membership companies to standardize the technology so that
objects from different vendors can be mixed and matched freely in the same
information system.

The scale of software systems today demands this kind of openness. No one
vendor can possibly supply every component of an enterprise-wide
information system. The common language of objects, and the disciplines
imposed by message-based interactions, will make it possible for companies to

63

The days of the monolithic application are numbered. Just as hardware made
the transition from closed, proprietary architectures to open systems, so too,
will software move to systems composed of objects from different vendors
collaborating to produce a unique solution. Object technology is the
breakthrough that makes this transition possible.

Versant carries an impressive customer lii•t that includes U.S. Navy, Wright-
Patterson Air Force Base, General Electric, Hewlett Packard, Hughes, IBM,
Martin Marietta, McDonnell Douglas, Nippon, and Toshiba Company.

4.3. ArborText

ADEPT, (Adaptable Electronic Publishing Technology), is a COTS tool sold by
ArborText Inc., Ann Arbor, MI, and Longwood, Fl. The ArborText ADEPT
Series is an adaptable, electronic documentation system for creating, editing
and publishing SGML documents. The software's capabilities conform to
CALS requirements by encoding the documents in SGML [SEY90].

The software includes SGML; the Publisher and SGML; an Editor, authoring
toc_ý3 for SGML documents; a Document; an Architect, a tool for writing and
validating DTDs; a portability package for graphics conversion, and a tool for
reading and writing MIL-M-1840A tapes.

ADEPT provides a structured documentation system with interchangeable
formats, document portability, system-wide consistency, and increased
productivity. ADEPT runs on the Sun, Hewlett-Packard and DEC
workstations. The software meets the requirements for an automated system
engineering. ADEPT supports the requirement for Work Product Display,
Output and Editing Support. ADEPT supports the editing of a complete work
product in a WYSIWYG view. ADEPT supports the output of formatted work
products to external document formatting, production and publishing
systems in compliance with CALS using SGML. ADEPT supports convenient
access of an external tool to edit information and provides an on-line
thesaurus and spell-checker.

ADEPT has a built-in interactive and continuous parser that helps the author
stay within the bounds established by the DTD and greatly reduces or
eliminates the need for correcting errors when a document is completed. A
document can be labeled an "active" and can be programmed to change,
without user intervention, based on changes to its environment. The
document is programmable through the software's command language, based
upon C and UNIX C shell syntax.

64

ADEPT is a proven SGML product with a wide DoD and commercial
customer base. For example, Computer Sciences Corporation (CSC) is a user
of ArborText products to form a large-scale information network to
streamline the process of building and maintaining weapons systems.
ADEPT is streamlining Mobil Exploration and Producing Services'
information exchange to ensure that basic engineering standards are applied
consistently throughout the organization. Hewlett-Packard Company uses
ADEPT to create documentation for their products, and ranks among the
largest single-time sales of licenses within the UNIX operating system-based
electronic publishing industry.

4.4. Automated Access Experiment (AAE)

Automated Access Experiment (AAE) developed for Rome Laboratory (RL),
was a set of network administration support tools that demonstrated access to
a heterogeneous multimedia database. These tools supported the definition
and maintenance of data structures (views) representing information
resources accessible via the network. The prototype system, developed in Ada
and Classic-Ada, demonstrated transparent read-only access to multimedia
databases used by Air Force intelligence agencies. The AAE used an Entity
Relationship network schema as the unifying model for data description. An
advantage of using the ER data model is the existence of well-defined rules
for transforming it to a hierarchical, network, or SQL model. SPS prototyped
a subset of the IRDS data dictionary systems to support the experiment. The
prototype was completed in September 1991, and continues as a building block
for future technology development at SPS.

AAE attacked one of the most important problems in computer information
technology in the 1990s - maintaining and using diverse data storage and
retrieval systems that support large organizations. The typical large
organization has a collection of heterogeneous and distributed computers that
store data in multi-media types and formats. The tasks identified in the AAE
effort were to design, implement and demonstrate tools to support
transparent access to network-resident data regardless of type, structure,
location or storage of media. The experiment was demonstrated in a well-
defined test bed.

SPS developed a system, Automated Transparent Object Management System
(ATOMS) to solve the problem of distributed, heterogeneous computers.
ATOMS was characterized by the following characteristics: provided
transparent access to distributed, heterogeneous, multimedia data; provided
powerful user-defined access to data through data views and queries;
supported data correlation and fusion, controlled user access to data and
identified classified data; provided a modern bit-mapped user interface;

65

demonstrated the concept of modeling heterogeneous, multimedia data using
the Entity-Relationship (ER) Model; and was scaleable and extensible without
extensive reconstruction of the existing software.

The ATOMS server architecture includes a data server, that is, each data
source is encapsulated by a TCP/IP network server process. Each data server is
responsible for translating between the native data manipulation language of
the data source and the ATOMS ER language. Each physical database and
service type residing on an ATOMS node is accessed through a network
server and runs in the background, waiting for service requests. The network
servers allow a user on one machine to retrieve data from databases located
on any ATOMS machine on the network, and further allows the user to log
onto any ATOMS machine on the network and access their own schema
views and correlations.

Attributes can be retrieved from a data source and can be of the type string,
float, integer, boolean, file (dialogic), file (tiff), file (xbm) and file (text).
Attributes tiff and xbm hold graphics which can be displayed in ATOMS. An
attribute dialogic is a message attribute which enables the user to listen via a
telephone.

ATOMS provides a correlation mechanism to support the intelligent
information correlation and fusion. A correlation allows an intelligence
analyst to mark a set of one or more entities and/or relationships as
correlated and then record a textual description of their ignificance.
Correlations are stored for later retrieval and modification.

The ATOMS solution to the problem of distributed access uses several levels
of ER schema information. Although not intended to be a secure system,
ATOMS does maintain and present DoD security classification information to
identify classified material (i.e., unclassified, confidential, secret, top secret).
ATOMS keeps a log file of all changes to the local schemas, network schemas,
network views correlation sets, users and access control lists.

ATOMS has a friendly, graphical, mouse-based and window-oriented user
interface. ATOMS uses features such as pull-down menus, pop-up dialog and
alert boxes, check boxes, option buttons and scrollable window panes.
ATOMS exists inside the X Window SystemTM. Windows allow the user to
manipulate schemas, subschemas, correlations and view definition.

4.5. Reliable Specification Execution Tool (RSET)

In this Phase I SBIR contract with NASA Langley, SPS developed a reliable
object-oriented specification technique that supports the formal incremental,

66

and humanly verifiable description of system behavior. SPS' specification
technique is based upon the proven Box Structures methodology, invented by
Dr. Harlan Mills. SPS has been awarded Phase II to develop and demonstrate
the technology with Dr. Mills as our consultant.

In the Phase II follow-on contract, SPS is developing tools to support
specification activities as well as the simulation of systems from their
specifications. SPS recommends the use of value, existence, and temporal
constraints to model a wide range of system behaviors, including
concurrency, timing dependencies, and real-time systems. SPS is using a
pragmatic approach to support a wide variety of constraint definitions
including linear and non-linear equations, equations defined by tables, and
equations incorporating functions.

For Phase III, SPS is planning development of the technology previously
sponsored by NASA Langely. The productization is directed towards an
extendable and tailorable engineering drawing and documentation tool, or a
meta-tool, called Insight. InSight is an advanced prototype meta-tool with
user tailorable graphics and graphic semantics. InSight's users can associate
information with graphic objects and tailor that information as well as the
presentation format and the generation of documents. The tailoring process
is easy to use and non-threatening. InSight supports concurrent engineering
by allowing team members to share work products in a highly cooperative
manner, and can integrate with existing office automation and engineering
tools. Consequently, Insight is adaptable to existing and new engineering
methods that an organization may employ.

InSight is based upon constraint technology and offers the following

advantages:

* Provides a natural expression of relationships between objects

* Is Highly suited to integrate with CAD and CASE applications.

* Has high object access performance using intelligent caching and
clustering, virtual memory, fast disk drives

• Has optimized performance for constraint evaluation

- Multiple re-evaluations and critical constraints

- Space and maintenance overhead of constraint-defined
dependencies

The initial build of InSight is demonstratable and future products are planned
to increase intelligence and enhance existing capabilities. SPS sees a meta-tool
as a critical component of an automated system engineering environment.

67

SPS is cultivating growth markets for continued development of InSight to
provide better value-added products for the automation of the system
engineering environment.

4.6. InQuisiXM

InQuisiXTM is a classification and search engine for software reuse developed,
jointly, by SPS and Science Applications International Corporation (SAIC)
under a Phase III SBIR program. InQuisiX is in its sixth year of research and
development, and initially started as a pair of Phase I and Phase II SBIRs
through NASA Langely Research Center and U.S. Army CECOM. SPS and
SAIC have formed a strategic partnership to facilitate software reuse, a
concept that offers the best near-term potential for lowering the cost and
improving the quality of software-intensive systems.

A software reuse library is a catalyst for integrating reuse into the
development process. A software library of assets is tangible and
understandable by managers and engineers alike. Collecting assets naturally
leads to defining reuse policies and procedures for developing, verifying,
managing, distributing, and reusing assets. Classifying assets naturally leads
to domain analysis activities which naturally leads to development of high
payoff assets. The reuse library serves as a focal point for promoting reuse in
an organization and for sharing reuse experiences and lessons learned.

InQuisiX is an ultra-flexible reuse library system that was designed to be
integrated into an organization's existing environment. The reuse library has
three major roles, the Librarian, the Software Development Subscribers and
the System Administrator as seen in Figure 4.6-1. The Librarian gathers
domain analysis studies, software components from other sources, designs a
classification scheme, and catalogues software components. The Software
Development Subscribers can browse, search and retrieve components. They
also develop software components internally and route to the Librarian as
well as route search, requests and responses to a Software Development
Environment.

68

Software Development Subscribers
* Browsing

A* Search

Software A- RetrievalSoftware \.
J

components Software
from other Software components
sources components Search extrated for

developed requests/ synthesis

internally responses into system

baselinei

Catalogued Software Development Environment
Librarian software I ... s t

Librarian components I I Ex!raction !
M Manag emeni AdaationTools Installation/* C lasz fiat hon Cnfi! gur allon CIaII = og In I• nt egra tin

* Cataloguing a dagereJ' Tools options
Clasfcaio Graplhic Design Domain Analysis

Domain A Scheme o-' - ._ J f;

analysis compiL e ILQI "ISIX Rome
studies ~ Systems oos ba yse

As-Is rAdministrator

Figure 4.6-1 Reuse Library Concept of Operations

The Software Development Environment is a collection of cooperative tools
that can include project management, configuration management, graphic
design, compilers, debuggers, test tools, extraction/adaptation tools, cataloging
tools, domain analysis tools, and InQuisiX itself. The Software Development
Environment can be any environment (e.g., SLCSE). The Software
Development Environment provides software components for the Software
Development Subscribers for synthesis into a system under development.
The System Administrator is responsible for installing and integrating the
Software Development Environment.

InQuisiX supports management of heterogeneous classes of assets. User-
defined component classes represent the finds of components that may be
catalogued, search for, examined, extracted and reused. Each component class
may require different information to be captured in the form of attributes. A
component class hierarchy can be annotated with the attributes defined at
each class level.

69

Because the effectiveness of a reuise library is enhanced by an integrated set of
facilities to support a wide variety of user-defined classifications, InQuisiX
supports the following different classification techniques at the same time:

* Faceted classifications (controlled vocabulary)

• Keyword indexing (uncontrolled vocabulary)

* Free text indexing information retrieval

* Characteristics-based attributes

* Metrics-based criteria (i.e., precision, recall)

* Organizational taxonomies (using search trees)

* Relationships between components

The classification process enhances the users' ability to organize, describe,
discriminate, browse, search, understand, evaluate, retrieve, extract, adapt,
and apply.

InQuisiX is equipped with a flexible set of cataloguing facilities designed to
minimize the effort associated with the entry of component information. For
example, attribute information can be entered with user-defined layouts of
forms; bulk text and graphic attributes remain externally stored and may be
indexed by the reuse library system; users may integrate custom tools for
automated derivation and cataloguing of components attributes; custom
migration tools may move component information from existing libraries
into InQuisiX; and components may be moved between libraries using the
import/export facility.

InQuisiX provides effective searching by offering an array of different search
facilities directed by the user. These search facilities include iterative
querying, free text associative query, Boolean query, form-based query with
user-defined layouts, wildcard text matching, and powerful browsing
facilities.

A product such as InQuisiX offers valuable potential as part of an automated
system engineering environment. As of June 1992, InQuisiX is nearing the
end of beta testing, and will be commercially available from SPS/SAIC before
the end of 1993.

4.7. Momenta Pen-Based Computer

Momenta Corporation is Silicon Valleys' newest glamour company.
Founded in September 1989 with $1 million in capital and ten initial

70

employees, it grew to 100 employees by August 1991. With 30 million dollars
in startup and an all-star management team, Momenta launched its product
in October 1991 IMAG91I. Momenta has 11 major investors located in the U.S.
Singapore, Taiwan and Japan. The company is headed by Silicon Valley
veteran Kamran Elahian, founder of Cirrus Logic and CAE Systems.

The Momenta Computer is controlled via a pen-like stylus which can be
used, like a mouse, to issue commands, draw graphics, and select text. The
pen can also be used to enter data. Momenta was designed to bridge the gap
between pen-only systems and keyboard-only desktop and laptop computers,
hence the term "pentop." Also, the machine can be trained to recognize
neatly-printed block letters. No portable machine can yet recognize hand-
writing. You can use the pen to write in cursive style, but the software won't
recognize the actual letters. It will, however, store handwritten notes for later
reference.

The machine is a 11 3/4-inch-by-10 1/2-inch unit which contains all the
electronics, including a 40 megabyte hard disk, 4 megabytes of RAM, and a
megabyte of ROM, plus the connectors and the screen. The unit is shaped like
a wedge, rising from about 1 1/4 inches at the front to 2 1/2 inches at the back.
The top surface is the screen, and the slope makes a nice angle for writing
with the pen. The screen is hinged along the front edge, and the screen can be
tilted up to a convenient viewing angle.

The screen itself is an 8-by-6-inch VGA (video grapbics array) reflective liquid
crystal display, with black characters on a yellowish background. One slider
switch on the right edge controls brightness; another controls the volume of a
small built-in speaker. The display is not illuminated, which gives the
advantage of portability - it will run for six to eight hours on 10 standard AA
batteries. Momenta promises a back-lit model in 1992 to improve the
readability of the screen in ambient light [SHA91I.

Unlike some other pen-based systems, the Momenta Computer comes with a
plug-in keyboard. The company is quick to admit that the keyboard is better
for entering large amounts of text. A recent update to the Momenta operating
system has enhanced and fine tuned the touch and efficiency of the pen
interface, however. In addition to the external keyboard, the Momenta Pen-
Based Computer is able to display an on-screen image of a keyboard. The
stylus can be used like fingers of your hands to "press" keys on this on-screen
or "soft keyboard" [OCO91].

The Momenta interface is simple, graphic, and customizable. The user can
arrange the screen icons to suit his way of working. The user can add new
icons to symbolize new applications. Default icons include a calendar,

71

notetaker, address book, memo, presenter, PenCell, In/Out, Mark-up,
handprinting trainer, quick handprinting editor, DOS to Momenta, paper
tray, and software catalog.

The machine is designed for executives, professionals, sales people,
journalists and other white-collar productivity workers who spend a great
deal of their time in meetings or on-the-move. Notebook and laptop
computers are fine for working in an office, but they are too obtrusive for
meetings. Keyboard sounds stop the flow in information in a meeting, and
laptop screens block part of the view. The Momenta is used as pen and paper.

Momenta has a built-in data modem for instant access to remote databases,
networks, or electronic mail systems, and FAX machines. Momenta
transmits and receives at 9,600 bits per second, and the modem operates at
2,400 bits per second and meets the new MNP 5 and V.42 communications
standards. The FAXing process is paperless with Momenta since the FAX
appears as an electronic image on the screen. Using a "mark-up" application,
the FAX can be edited by writing your comments directly on the screen.
When finished, the user can ship the revised FAX back to the sender or to
someone else, without the transfer of paper. Momenta will also create a
coversheet, using the address book to fill in the details. Prepared FAXes can
be stored in an electronic "in/out box" and then transmitted later. By
transmitting the FAX image to yourself to a nearby FAX machine, a hard copy
is available with the same quality as a laser printer.

Momenta can also go wireless if a phone line is not available, Momenta
hooks to a portable phone via a cellular connection cable. Momenta features
built-in support for the new SPCL protocol, which compresses data and saves
money on the transmission.

The Momenta runs on standard MS-DOS 5.0 and Windows 3.0 software on a
386X computer at 20Hz. Momenta has developed an interface that allows the
use of the pen to issue commands and enter data even on DOS programs not
designed for a pen. The pen can also be used in place of a mouse. Rather
than just serve as a pen-based machine for DOS software, Momenta has taken
great strides to develop its own "pencentric" operating environment called
the Momenta Software Environment (MSE). This environment which runs
on top of MS-DOS, provides a user interface especially designed for pen-based
programs [REI91].

Bundled programs with a Momenta machine include a basic word processor,
a spreadsheet, a charting program, a presentation graphics package, a calendar
and an address book. Unlike a traditional drawing package, the presentation
software, called Presentor, doesn't require pre-selection of the type of object

72

created. Instead, it automatically converts crude hand drawings into perfect
line, circles, rectangles or squares.

Programs designed specifically for the machine are written using the
Momenta Application Development Environment (MADE), a custom
implementation of Smalltalk's object-oriented programming environment.
Momenta's multitasking, object-oriented environment provides shared
objects such as printing, scrolling and text editing. This conserves memory
and disk space as well as software development time.

The Momenta Software Environment also offers a unique "pencentric"
interface, called Command Compass. Command Compass gives the user the
ability to manipulate or modify information by striking the pen in a specified
direction on the screen. The Command Compass, a circular menu of
command options, eliminates the hand and eye movements necessary when
using pull-down menus that might be located far from the object that the user
is trying to manipulate. Instead, the Command Compass is located on the
object being manipulated. To move an object, you move the pen to invoke
the move command and then move the object to the location where you
want it. The command and the action itself are part of the same pen
movement, reducing hand and eye movement.

At the moment, unfortunate problems concerning managerial and business
difficulties are shadowing the success of Momenta.

4.8. Parametric Review of Information for Cost and
Evaluation (PRICE)

Parametric Review of Information for Cost and Evaluation (PRICE) is a
family of fully supported parametric models that are applicable to cost and
schedule estimating requirements for hardware and software. Four models
in the PRICE family are available: PRICE HTM, PRICE HLTM, PRICE MTM, and
PRICE STM. PRICE H estimates costs and schedules for the development and
production of hardware products and systems. PRICE HL estimates
maintenance and support costs of hardware products and systems. PRICE M
estimates development and production costs and schedules of microcircuit
components (chips) and electronic assemblies (boards). PRICE S estimates
costs and schedules for the development and support of computer software.

PRICE models use a parametric approach to cost estimating. Parametric cost
modeling is based on cost estimating relationships (CERs) that make use of
product characteristics (such as hardware weight and software language) to
estimate costs and schedules. The CERs in the PRICE models have been
determined by statistically analyzing thousands of completed projects where

73

the product characteristics and project costs and schedules are known. These
projects encompass a wide range of products and companies, in the U.S. and
abroad. As a result, the PRICE models contain hundreds of CERs that work
together to compute the costs and schedules for developing hardware and
software products. Parametric techniques have wide business applications,
and are a proven method of providing fair and reasonable cost estimates.

The parametric models were designed to produce cost estimates for projects in
a fraction of the time required for a conventional estimate. Since the product
characteristics can be defined long before the material and labor requirements,
the PRICE models permit accurate estimates to be obtained early-on. Early
management and engineering decisions can be based on these realistic
estimates.

With PRICE, the time and labor required for cost estimating is reduced, and
pre-development cost and schedule can be estimated. PRICE users obtain
required cost estimates in one-tenth to one-twentieth of the time required for
a conventional estimate. Cost iteration for the same product can be obtained
in minutes using PRICE. Cost risks associated with uncertainties in the
project can be explored (i.e., "what-if" questions).

This early-on estimating capability makes PRICE an excellent tool for design
engineers, since much of a project cost is locked in by early engineering
decisions. PRICE can provide engineers with the cost information needed to
develop minimum-cost designs.

Other benefits of PRICE are found in day-to-day business operations and in
maintaining the competitive edge:

* Developing auditable, repeatable estimates

* Establishing cost targets

* Performing cost/scheduling tradeoff studies

* Establishing work center budgets

* Developing estimate-to-complete

* Supporting bid/no-bid decisions

* Supporting subcontractor/vendor negotiations

* Making teaming choices

"• Measuring new technology insertion costs

"* Analyzing competitor product costs

74

Use of PRICE parametric models benefits management, engineering,
manufacturing, and finance.

Since 1975, PRICE Systems has been the international standard for cost and
schedule estimating models and services, designed by professionals for use by
professionals. PRICE Systems maintains a technical operations staff at seven
U.S. and international locations dedicated to supporting the PRICE user. The
PRICE Systems Headquarters is located at Moorestown, NJ and is manned
twenty-four hours a day, every day. At any tirae, should a user need
assistance, a member of the technical operations staff will respond to the
requirement.

75

5. Prototypes

The motivation for developing prototypes was to demonstrate an automated
system engineering environment. The development of the prototypes
helped to reduce program risk, demonstrate environment synthesis from
building blocks, demonstrate multi-discipline concurrent engineering
support and experiment with key user interactions. Rather than attempting
to provide comprehensive coverage for automation of all system engineering
activities, the SECD Team chose to focus on automation of high payoff
activities.

The SECD Team chose three scenarios that most adequately represented
critical activities in the system engineering process:

* Requirements Flowdown Scenario

* Tradeoff Scenario

* Timeline Scenario

The test set for the Requirements Flowdown Scenario was an integration of
the Global Positioning System (GPS) for the upgrade of the A-1 Aircraft
provided by Frank LaMonica, RL. The Test set for the Tradeoff Scenario was
an architecture tradeoff for the Air Transport Theater/ Special Operation
Aircraft (ATT/SOA) provided by Alberto Ortiz, McDonnell Douglas, Douglas
Aircraft Corporation. The test set for the Timeline Scenario was the method
to define the sequence of an air /sea battle attack, allocation to systems and
subsystems, and define system loading provided by Hank Stuebing and Rich
Pariseau, Naval Air Warfare Center (NAWC).

These three scenarios automated the more generic systems engineering
functions and excluded activities that are specific to the type of application,
the level of system being engineered, and the organization of the methods
being applied.

The demonstration testbed for the prototype consisted of the following
hardware and software:

(2) Macintosh II fx, personal computers representing the desktop
systems engineering workstations, running System 7 Software to
provide the state-of-the-art operating systems for the Macintosh

One Pentop Notebook, Momenta 386SX, a pen-based computer, for use
in meetings, on travel, or for information

76

* One 386 PC, a personal computer networked to the Macintoshes and
the Momenta to demonstrate a heterogeneous environment

* (2) Voice Navigator II and Voice Record to demonstrate voice record
and voice commands with a desktop and a headset microphone

* MacFlow, MacFlow Symbol Sampler & MacFlow More Translator for
process modeling

* MacSchedule Plusl.0.4 for project scheduling

• MacDraw Pro for graphics

• MacProject II 2.5 for project planning

• MORE 3.0 for outlining

"* Microsoft Office 1.5, includes word processing and spreadsheet
facilities

"* MathCAD for the Macintosh for mathematical engineering
computations

• Meeting Maker for meeting scheduling

• Retrospect Remote for remote system backup

, MiniCad+ Software for engineering drawings

* Microsoft Mail for electronic mail

* FileMaker Pro for flat records of data

• Remember for personal calendars and reminders

"* Power Windows Software for layout of screens

"* UserLand Frontier vl.0 for scripting of scenarios

Figure 5-1 illustrates the configuration of the testbed for the prototype
scenarios.

77

Laser Printer

is I

Pen-NotebookS~PC 386 IBM

Compatible
Macintosh Personal Computers

Figure 5-1. Testbed Configuration for the Scenarios

The hardware and software selected provided support in the areas of
engineering, management, and communication as specified in the
operational concept and requirements of an automated system engineering
environment. Selection of the hardware and software was made by
researching the needs, analyzing the features, ease of use, availability, and cost
of each item purchased.

5.1. Requirements Flowdown

In performing a flowdown of requirements, the Sstems Engineer is faced
with managing complex information during iterative analysis, partitioning
and allocation of requirements. The Systems Engineer must derive the
system requirements from the mission requirements to develop a system
specification while maintaining consistency and completeness. The rationale
for this decision process may not be documented, and consequently, is lost for
future reference. Additionally, if a requirement must be changed, the impact
of that change on other requirements must be analyzed before a change
decision is made. The change must be documented and work products,
budgets and schedule must be revised. Automating this process in an
integrated development environment is critically needed to improve the
productivity and quality of system engineering of complex systems.

78

The following concepts were demonstrated in the Requirements Flowdown:

"* Tracing and tracking mission requirements to system requirements to
system design (partitioning) to subsystem requirements allocation

" Networking, communication, and data exchange in a heterogeneous,
distributed computing environment (Macintosh, Pen notebook
computer, and 386 PC)

" Cooperative integration of COTS tools with synthesis of information
from multiple sources

* Analysis of the impact of changes to a requirement

The development of the details of the scenario was driven by the following
Catalyst requirements:

* Partitioning, Allocation and Traceability Support, SYSREQ - 108

* Work Management Support, SYSREQ - 115

• Work Product Development Support, SYSREQ - 110

* Information Management Support, SYSREQ - 111

• Information Formalization Support, SYSREQ - 104

* Decision Making Support, SYSREQ - 107

* Impact Analysis Support, SYSREQ - 109

* Versioning and Baseline Support, SYSREQ - 112

* Information Dissemination and Communication Support, SYSREQ -
114

The activities of the Requirements Flowdown Scenario were divided into
Acts and Scenes. The players of the Requirements Flowdown Scenario were a
Systems Engineer, an Electrical Engineer, a Software Engineer and a Program
Manager. An overview of the storyline of the Requirements Flowdown
Scenario was as follows:

Act I, Scene I - The Systems Engineer on the Macintosh workstation

Initialize the process of deriving the mission requirements by parsing
the mission statement

* Act I, Scene 2 - The Systems Engineer on the Pen-Based Computer

Edit the mission statement and annotate, sketch the system
architecture and formalize thle System Block Diagram

* Act I, Scene 3 - The Systems Engineer on the Macintosh workstation

79

Download the System Block Diagram form the Pen-Based Computer
to the Macintosh workstation and place in the System Specification

"* Act 11 - The Systems Engineer's Workstation

Derive a set of specifications from a mission statement to develop a
System Specification, use multiple views of the data for his analysis

" Act III, Scene I - The Systems Engineer on the Macintosh workstation

Finalize his draft of the System Specification and routes to his team
members.

" Act III, Scene 2 - The Electrical Engineer's Workstation

Receives the communication and electronic document, makes his
suggested corrections, and forwards, with a message, to the Systems
Engineer

" Act III, Scene 3 - The Systems Engineer's Workstation

Monitor the progress of the comments to the System Specification,
view annotations by the Electrical Engineer, the Software Engineer,
and the Program Manager, and resolve the differences. The updated
System Specification is distributed to the Project Team.

" Act IV, Scene 1 - The Navigation Specialist's Workstation
Discovers a requirement that is not "do-able" by his mathematical
analysis using a COTS tool integrated into the environment, notifies
the Systems Engineer

Act IV, Scene 2 - The Systems Engineer's Workstation

Views the analysis of the Navigation Specialist, and earmarks the
requirements that must be changed. Engineering Change Proposal is
generated by the environment, and change is committed, all project
documents updated.

The following steps defined the activities in the requirements flowdown
scenario:

1. The scenario, background and data set were introduced.

2. A scanned image of the original mission requirements was viewed
and organized into specific requirements in the database.

3. Using an outliner, the systems engineer elaborated the mission
requirements and organized them into a set of system requirements
reflected in the database.

83

4. Conferring verbally with members of the systems engineering team,
the system engineer sketched the system architecture on a pen-
notebook computer and later downloaded this data to his desktop
workstation.

6. The database was updated with the system partitioning and the
systems engineer allocated the requirements to the various
subsystems.

7. Responding to a change in mission requirements, the systems
engineer uses the automated environment to identify the impacted
requirements and subsystems.

As evidenced from the demonstration of the Requirements Flowdown
Scenario, an environment to automate these activities supports consistency
and completeness to identify, partition and allocate requirements, analyze
impacts, as well as provide version control of documents and project
information after changes have been committed. Automating laborious, yet
critical activities of the requirements flowdown process, would help to
improve the quality of systems engineering in a concurrent environment.

5.2. Tradeoff Scenario

In performing a tradeoff, systems engineers and specialty engineers
concurrently analyze alternatives against specific criteria spanning multiple
engineering disciplines. After their analysis, the decisions, both technical and
programmatic, must be clearly communicated. Currently, this process may he
ad hoc, and capturing the history and rationale of the decisions is often lost
and difficult to recreate.

To address the issues and needs for automating the activities of a tradeoff, the
following concepts were demonstrated in the Tradeoff Scenario:

* Provide an automated tradeoff harness for alternative analysis

* Provide a standard framework for evaluating alternatives against
chosen criteria

* Integrate, link and streamline the activities of a tradeoff

* Support tasking of individuals for multi-disciplinary analysis

"* Provide an interface to external analysis tools and mathematical
solver tools and receive data from them

"* Synthesize and display analysis for various alternatives to support
decision making

81

Record the alternatives, results, decisions and rationale for later
reference

* Maintain traceability of decisions to the system definition

* Support reviewing and revisiting tradeoff results further down stream

* Use voice annotation (during tasking) and voice commanding (to
view analysis results), improving productivity and reducing labor
costs

The development of the details of the scenario was driven by the following
Catalyst requirements:

* Analysis Support, SYSREQ - 106

* Tasking Support, SYSREQ - 102

• Monitoring Support, SYSREQ - 103

* Decision Making Support, SYSREQ - 107

* Partitioning, Allocation, and Traceability Support, SYSREQ - 108

* Information Dissemination & Communication Support, SYSREQ -
114

* Electronic Meeting Support, SYSREQ - 116

* Planning and Tracking Support, SYSREQ - 101

* Information Formalization Support, SYSREQ - 104

* Work Management Support, SYSREQ - 115

The activities of the Tradeoff Scenario were divided into Acts and Scenes,
much like a play. The players of the Tradeoff Scenario were a Systems
Engineer and two Specialty Engineers, an Avionics Engineer and a Cost
Analyst. An overview,. of the storyline of the Tradeoff Scenario was as
follows:

* Act I, Scene 1 - Systems Engineer's Workstation

Define a new tradeoff, create a workspace, browse references, partition
tradeoff, assign tasks, communicate assignment

"* Act I, Scene 2 - Specialty Engineer's Workstation

Management of work priorities, analyze using specialty tools,
communicate task completed

"* Act II, Scene 1 - Systems Engineer's Workstation

82

Monitor work flow, browse interim work products, assign tasks,
communicate assignment

"* Act II, Scene 2 - Another Specialty Engineer's Workstation

Management of work priorities, browse interim work products,
analyze using specialty tools, communicate task completed

"* Act III - Systems Engineer's Workstation

Monitor work flow, communicate task completion, capture decision
and rationale, schedule review of decision

The following steps defined the development of specific activities in the
Tradeoff Scenario:

1. The tradeoff case, background, and data set was introduced.

2. Using various textual and graphic tools, the systems engineer
docume -ited the various alternatives to be considered.

3. Using a spreadsheet, the systems engineer defined the various
numeric criteria to be analyzed.

4. The systems engineer tasked various members of the systems
engineering team to derive specific data for the tradeoff.

5. Via electronic mail, the various members received their taskings,
supporting data with voice annotation from the systems engineer.

6. Each member of the team, utilizing existing tools and models, derived
their respective data.

7. The systems engineer electronically received the inputs and
synthesized them into the original spreadsheet of criteria.

8. The systems engineer viewed graphs and overlays of the data to make
a decision, commanding the computer by voice to show different
views.

9. The systems engineer made the decision, captured rationale by voice,
and distributed the decision electronically to the various team
members.

As evidenced from the demonstration of the Tradeoff Scenario, an
environment which automates these activities would have the following
benefits:

" Solidify operational concept and user interactions through
demonstration, reducing program risk

" Use of emerging technologies and standards

83

* Support for multi-discipline, concurrent engineering support

• Synthesis from environment building blocks

* Increased productivity and reduced cost through integration

5.3 Timeline Scenario

The prototype scenario demonstrates the operational concept of Catalyst in
performing a timeline analysis. Typically, systems engineers and specialty
engineers conduct timeline analyses using pencil and paper. However, the
following problems are encountered using manual methods:

* Methods for analysis are often informal or proprietary and the use of a
COTS tool is not feasible.

* Relationships of data and time constraints are difficult to track.

* Changes to data and time constraints are performed manually and are
laborious and error-prone.

* Implementation of the method is often a group activity over several
months.

* Methods often span enginering of multiple systems and subsystems.

The timeline scenario demonstrated that Catalyst is a solution to these
existing problems. As indicated by the three shaded areas in Figure 5.3-1,
there are general purpose tools to support informal methods and special
purpose tools to support formalized methods.

~~~ ... ... ... ., ....... ..... +

Levelat iiofi i.-*

supporttoahei

i Taret of Catalyst• :,:.>1- ut omatlon

skoetch. e 1.ws

Figure 5.3-1 Catalyst Automation Target

84



However, there is a large gap between these two categories of tools. Few tools
are available to support semi-formal methods (block diagrams, timelines and
hierarchies). This gap is the target area of Catalyst.

Catalyst has the following features to support solving the types of problems
listed above:

* Integrates into an existing environment

* Manages complex information and provides process guidance

* Provides a visual user interface to define models

* Presents unified views of information

* Uses meta-tool technology to provide implementations of many
methods (i.e.: the timeline is one of many possible implementions of
the meta-tool)

InSight, a meta-tool in development by SPS, was added to the existing
prototype testbed to demonstrate this scenario. The meta-tool was
customized to automate the method used at NAWC. Objects that make up
the method were shown, constraint language method rules that define the
method semantics were browsed, and the user interface was customized to
the user's method.

The development of the details of the scenario was also driven by the
following Catalyst requirements:

* Planning and Tracking Support, SYSREQ - 101

* Information Formalization Support, SYSREQ - 104

* Work Product Development Support, SYSREQ - 110

* Modeling Support, SYSREQ - 105

• Analysis Support, SYSREQ - 106

• Decision Making Support, SYSREQ - 107

* Partitioning, Allocation and Traceability Support, SYSREQ - 108

"* Information Management Support, SYSREQ - 111

"* Versioning and Baseline Support, SYSREQ - 112

The activities of the Timeline Scenario were divided into Acts and Scenes.
The players of the Timeline Scenario were a Systems Engineer, a Specialty

85



Engineer, and an Operational Analyst. An overview of the storyline of the
Timeline Scenario was as follows:

"* Act I - The Specialty Engineer's Workstation

Define the Air/Sea Battle Attack

"* Act II - The Systems Engineer's Workstation

Formulate Conceptual Design of Battle, identify functions and allocate
to subsystems

"* Act III - The Systems Engineer's Workstation

Define System Loading, visually execute timeline with selected
systems in a degraded mode

The following steps defined the development of specific activities in the
Timeline Scenario:

1. The scenario and the data set is introduced to show the basis for the
timeline analysis

2. Using the meta-tool, the Specialty Engineer instantiates existing
objects and creates new objects in a origin-based grid. Attributes and
constraints are added to objects with a intuitive, user-friendly user
interface.

3. Using the meta-tool, the Systems Engineer elaborates the functions
that must be accomplished within the timeline in the form of
functional flow diagrams.

4. The Systems Engineer electronically illustrates this functional analysis
to other members of the systems engineer team.

5. Using the meta-tool, the Systems Engineer derives a conceptual design
and allocates functions to the subsystems.

6. Using the meta-tool, the Systems Engineer leads a joint, distributed
development of loading snapshots as elaborations of the timeline,
functional flow and conceptual design.

As evidenced from the demonstration of the Timeline Scenario, an
environment to automate these activities has the following benefits:

"• Automated control of sequencing information within a concurrent
engineering environment

"* Knowledgeable environment for functional analysis and allocation of
requirements

86



* Maintenance of system subsystem details and requirements when
operating in a degraded mode

In summary, the feasibility, usability, and marketability of Catalyst has been
fortified by the various trade-off studies and analyses, and the prototype
concept and technology demonstrations that were performed.

87



6. Risk Evaluation

6.1 Risk Identification

We have identified the following risks for the Catalyst environment:

" Scope - Attempting to address a scope that is either too broad or too ill-
defined is a risk to the successful specification and later
implementation of the environment.

" Usability - The 1997 environment must be highly usable to insure
technology transfer and marketability. The two key factors that
contribute to usability are environment capabilities and user interface
desirability and performance.

* Performance - Performance is the key to the usability and acceptance of
the completed environment. However, performance requirements
which are too stringent will add significant risk to the development
project.

* Degree of adaptability - The environment must be sufficiently
adaptable to successfully automate an organizations' existing
processes. There is a high degree of variability in the roles, methods,
work products and work flows that must be accommodated.

"• Scalability - The environment must be able to automate the
development of systems involving hundreds or even thousand of
personnel. Current environments have had significant problems in
scaling up to support very large developments.

" Feasibility - Implementing the specified environment by 1997 is a risk
that should be tracked closely. It is a trade-off against incorporating
both "cutting edge" and state-of-the-art technology.

Maintainability - Our experience indicates that we must insure that
the system engineering environment is easy to maintain and will
suffer minimum impact by COTS component upgrades. For example,
one of the problems in marketing SLCSE is its maintainability. SLCSE
is tightly integrated with a host of COTS software products (e.g., VMS,
DECNET, SMARTSTAR, RDB/Sharebase). Any time one of the COTS
components is upgraded, many hours of maintenance may be required
to make SLCSE functional again.

88



6.2 Risk Analysis and Abatement Strategies

Prudent planning and management dictates that potential problems be
identified as early as possible and alternatives be enumerated to reduce the
related program risk. The following analysis was accomplished according to
the Air Force Systems Command and Air Force Logistics Command entitled,
"Acquisition Management Software Risk Abatement," AFSC/AFLCP 800-45.

This approach to risk analysis identifies four risk areas: 1) Performance, 2)
Support, 3) Cost, and 4) Schedule. The analysis process is targeted to software
development. Support risks were not analyzed since they largely depended
on a yet to be determined support concept and the capabilities of the
development contractor.

As described in AFSCP/AFLCP 800-45, there are several methods for
evaluating the risk of a given area. Risk can be determined by (1) taking the
average value (2) incorporating weighting factors or (3) taking the driver with
the highest probability of occurrence values and using that as the overall
value. For this risk analysis process, we shall use the last option, the highest
value. This value is then mapped into a summ-.ary risk assessment matrix
which indexes the probability of occurrence along with the impact to identify
an overall risk value of high, moderate, low, or none.

~89



Performance Risk Assessment Table

PERFORMANCE Impossible to Probable Frequent Value

DRIVERS Improbable (2) (3)
(0 or 1)

REQUIREMENTS

Complexity Simple or Moderate, can Significant or 3
easily be allocated difficult to

allocatable allocate

Size Small or Medium, or can Large, cannot be 2
easily broken be broken down broken down into

down into into work units work units
work units

Stability Little or no Some change in Rapidly
change to baseline changing or no

established expected baseline
baseline

PDSS Agreed to Roles and No support I
support missions issues concept or major
concept unresolved unresolved

issues

R&M Allocatable to Requirements Can only be
hardware and can be defined addressed at the

software total system
I components I!evel

90



PERFORMANCE Impoulble to Probable Frequent Value

DRIVERS Improbable (2) (3)
__ (0 or 1)

CONSTRAINTS

Computer Resources Mature, Available, New N/A
growth some growth development, no

capacity capacity growth
within design, capacity,

flexible inflexible

Personnel Available, in Available, but High turnover, N/A
place, not in place, little or no

experienced, sme experience, not
stable experience available

Standards Appro- Some tailoring, No tailoring, N/A
priately all not none applied to

tailored for reviewed for the contract
application applicability

GDE/GFP Meets May meet Incompatible N/A
requirements, requirements, with system

available uncertain requirements,
availability unavailable

Environment Little or no Some impact on Major impact on 2
impact on design design

design

Performance Envelopes Operation Occasional Continuous 2
well within operation at operation at
boundaries boundaries boundaries

91



PERFORMANCE Impossible to Probable Frequent Value

DRIVERS Improbable (2) (3)

TECHNOLOGY

Language Mature, Approved or Significant use
approved non-approved of assembly
HOL used HOL language

Hardware Mature, Some Totally new 1
available development or development

available

Tools Documented, Available, Unvalidated, N/A
validated, in validated, proprietary,

place some major
development development

Data Rights Fully Minor Incompatible
compatible incompat- with support

with support ibilities with and follow-on
and follow-on support and

follow-on

Experience Greater than 4 Less than 4 Little or none N/A
years years

DEVELOPMENT
APPROACH

Prototypes and Reuse Used, Some use and No use or 0
documented documentation documentation
sufficiently

for use

Documentation Correct and Some Non-existent 0
available deficiencies,

available

Environment In place, Minor Major N/A
validated, modifications, development
experience tools available effort
with use

Management Approach Existing Product and Weak or non- N/A
product and process controls existent

process need
controls enhancement

Integration Internal and Internal or Weak or non- N/A
external external existent

controls in controls not in
I place I place I

92

h



Cost Risk Assessment Table

COST DRIVERS Impossible to Probable Frequent Value
Improbable (2) (3)

_ (0 or 1)

REQUIREMENTS

Size Small, Medium, Large, highly 2
noncomplex, or moderate complex, or not

easily complexity, decomposable
decomposed decomposable

Resource Constraints Little or no Some Significant 2
hardware- hardware hardware-

imposed imposed imposed
constraints constraints constraints

Application Non-real- Embedded, Real-time, 2
time, little some system embedded,

system interdepen- strong
interdepen- dency interdependency

dency

Technology Mature, Existent, some New or new 2
existent, in- in-house application,

house experience little
experience experience.

Requirements Stability Little or no Some change in Rapidly
change to baseline changing or no

established expected baseline.
baseline 1

93

I



COST DRIVERS Impossible to Probable Frequent Value

Improbable (2) (3)

(0 or 1)

PERSONNEL

Availability In place, little Available, High turnover, N/A
turnover some turnover not available
expected expected

Mix Good mix of Some Some disciplines N/A
software disciplines not represented

disciplines inappropriatel
y represented

Experience High Average Low experience N/A
experience experience ratio

ratio ration

Management Environment Strong Good personnel Weak personnel N/A
personnel management management

management approach approach
approach I 1 _1

94

m



COST DRIVERS Impossible to Probable Frequent Value

Improbable (2) (3)

(0 or 1)

REUSABLE SOFTWARE

Availability Compatible Delivery dates Incompatible N/A
with need in question with need dates

dates

Modifications Little or no Some change Extensive N/A
change changes

Language Compatible Partial Incompatible 0
with system compatibility with system or

& PDSS with PDSS
requirements requirements requirements

Rights Compatible Partial Incompatible 1
with PDSS & compatibility with PDSS
competition with PDSS, concept,
requirements some noncompetitive

competition

Certification Verified Some Unverified, N/A
performance, application little test data
application compatible test available
compatible data

available.

TOOLS AND
ENVIRONMENT

Facilities Little or no Some Major N/A
modification modifications, modifications,

existent non-existent

Availability In place, Some Nonexistent, N/A
meets need compatibility does not meet

dates with need need dates
dates

Rights Compatible Partial Incompatible I
with PDSS & compatibility with PDSS &
development with PDSS & development

plans development plans
plans

Configuration Management Fully Some controls No controls N/A
controlled

95



Schedule Risk Assessment Table

SCHEDULE DRIVERS Impossible to Probable Frequent Value
Improbable (2) (3)

(0 or 1)
RESOURCES

Personnel Good discipline Some Questionable N/A
mix in place disciplines not mix and/or

available availability

Facilities Existent, little Existent, some Nonexistent, N/A
orno modification extensive

modification changes

Financial Sufficient Some Budget 3
budget questionable allocation in

allocated allocations doubt

NEED DATES

Threat Verified Some unstable Rapidly N/A
projections aspects changing

Economic Stable Some uncertain Unstable, 3
commitments commitments fluctuating

commitments

Political Little projected Some limited Extreme I
sensitivity sensitivity sensitivity

GFE/GFP Available, Certification or Unavailable N/A
certified delivery and/or

questions uncertified

Tools In place, Some Uncertain N/A
available deliveries in delivery dates

question

TECHNOLOGY

Availability In plane Some aspects Totally still in 2
still in development

development

Maturity Application Some No application 2
verified applications evidence

verified

Experience Extensive Some Little or none N/A
applications applications ,,

96



SCHEDULE DRIVERS Impossible to Probable Frequent Value

improbable (2) (3)

(0 or) 1)______

TOOLS 
AND

ENVIRONMENT

Definition Known, Baselined, Unknown, no N/A
baselined some unknowns baseline

Stability Little or no Controllable Rapid or N/A
change projected change uncontrollable

projected change

Complexity Compatible Some Incompatible 1
with existing dependency on with existing

I technology new technology technology

In summary, the risk weights as defined by AFSCP/AFLCP 800-45 have the
following values:

Risks Weight

Performance 13

Schedule 12

Cost 9

Drivers for performance risk are complex requirements and allocations, large
size environment, though with manageable subsystems, adaptability to the
users' environment significantly impacts the design, environment must
perform when stressed with large applications and many users. Drivers for
schedule risk are doubtful budget allocation and commitment, and
availability and stability of some technologies. Drivers of cost risk are the
large size of the environment, some hardware-imposed constraints, some
system dependencies, and some required emerging technologies.

Primary risks are the size and complexity of the environment, adaptability of
the environment, dependence on some emerging technologies, and
questionable sufficient and stable budgets.

Usability is also a risk. Catalyst must be highly usable to insure technology
transfer and marketability. Catalyst's primary users are only marginally

97



computer literate. New user interface paradigms and technologies are being

applied. Performance will greatly impact usability.

The following risk abatement strategies are recommended:
"* An object-oriented architecture will reduce size and allow adaptability

to be accommodated.
"* Prototyping and incremental development will address technology,

performance and usability risks.
"* Maximum use of commercial-off-the-shelf solutions will minimize

development budget requirements and focus attention on difficult
technical issues

" Building-block approach will allow development flexibility to
accommodate funding constraints.

98



REFERENCES
[ACL88] Acly, E. "Looking Beyond CASE." IEEE Software Mar. 1988: 39-43.

[AMS761 Amster, S., et al. "An Experiment in Automatic Qu-"ty Fvaluation of Software."
Proceedings of the Symposium on Computer Software Engineering 1976: 171-97.

[ARN82I Arnold, R.S. and D.A. Parker. "The Dimensions of Healthy Maintenance."
Proceedings of the 6th International Conference on Software Engineering 1982.

[BAH86] Bahlke, R. and G. Snelting. "The PSG System: From Formal Language Definitions
to Interactive Programming Environments." ACM Transactions on Programming
Languages Oct. 1986: 547-76.

[BAI81] Bailey, C. and W. Dingee. "A Software Study Using Halstead Metrics." ACM
SIGMetrics Performance Evaluation Review Spring 1981: 189-97.

[BAK79] Baker, A. and S. Zweben. "The Use of Software Science in Evaluating Modularity
Concepts." IEEE Transactions on Software Engineering Mar. 1979: 110-20.

[BAK80] Baker, A. and S. Zweben. "A Comparison of Measures of Control Flow Complexity."
IEEE Transactions on Software Engineering Nov. 1980: 506-11.1B00831 Booch G.,
Software Engineering with Ada, Benjamin Cummings, 1983.

[BAN81a] Bandyopadhyay, S. "A Study on Program Level Dependency of Implemented
Algorithms on Tts Potential Operands." ACM SIGPLAN Notices Feb. 1981: 18-25.

[BAN81b] Bandyopadhyay, S. "Theoretical Relationships Between Potential Operands and
Basic Measurable Properties of Algorithm Structure." ACM SIGPLAN Notices Feb.
1981: 26-34.

[BASS1] Basili, V. and T. Phillips. "Evaluating and Comparing Software Metrics in the
Software Engineering Laboratory." ACM SIGMETRICS Performance Evaluation
Review Spring 1981: 95-99.

[BER801 Berlinger, E. "An Information Theory Based Complexity Measure." Proceedings of
the National Computer Conference 1980: 773-79.

IBES82I Beser, N. "Foundations and Experiments in Software Science." ACM SIGMETRICS

Performance Evaluation Review Fall 1982: 48-72.

[BOE81] Boehm B.W. Software Engineering Economics, Prentice-Hall, Inc., 1981.

[BOH751 Bohrer, R. "Halstead's Criterion and Statistical Algorithms." Proceedings of the
8th Annual Computer Science/Statistics Interface Symposium 1975.

[BOO83] Booch G., Software Engineering with Ada, Benjamin Cummings, 1983.

[BOU881 Boudier G., Gallo F., Minot R., Thomas M.I., "An Overview of PCTE and PCTE+,"
Proceedings of the 3rd ACM Symposium on Software Development Environments,
Boston, Nov., 1988.

99



[BOW781 Bowen, J. "Are Current Approaches Sufficient for Measuring Software Quality?"
Proceedings of the Software Quality Assureance Workshop 1978: 148-55.

[BOW791 Bowen, J. "A Survey of Standards and Proposed Metrics for Software Quality
Testing." IEEE Computer Aug. 1979: 37-42.

[BRA851 Brady, J.T. "A Theory of Productivity in the Creative Process." Proceedings of the
Ist International Conference on Computer Workstations Nov. 1985: 70-9.

[BUL74] Bulgut, N. and M. Halstead. "Impurities Found in Algorithm Implementations."
ACM SIGPLAN Notices Mar. 1974.

[BUL851 Bull, et al. PCTE: A Basis for a Portable Common Tool Environment, (Functional
Specifcations) 2 vols., 3rd ed., 1985.

[BUX79] Buxton, J.N. Requirements for Ada Language Integrated Computer Environments:
Preliminary 'Stoneman' Department of Defense, Washington, D.C. Nov. 1979.

[BUX80] Buxton, J.N. Requirements for Ada Programming Support Environments: Stoneman
Department of Defense, Washington, D.C. Feb. 1980.

[CA1861 Common Ada Programming Support Environment (APSE) Interface Set (CAIS), DoD
Std 1838, Oct. 9, 1986.

[CA1881 Common Ada Programming Support Environment (APSE) Interface Set (CAIS),
Revision A, Proposed DoD Std. 1838A, May 20, 1988.

ICAN831 Cantone, G., A. Cimitile, and L. Sansome. "Complexity in Program Schemes: The
Characteristic Polynomial." ACM SIGPLAN Notices Mar. 1983: 2?-31.

ICHA851 Charette, B., H. Steubing, and M. Dynum. Panel 4: Software Engineering
Environment Standard Interfaces 16 Sept. 1985.

[CHA79] Chapin, N. "A Measure of Software Complexity." Proceedings of the National
Computer Conference 1979: 995-1002.

[CHA83J Chaudhary, B. and H. Sahasrabuddhe. 'Two Dimensions of Program Complexity."
International Journal of Man-Machine Studies 1983: 505-511.

[CHE78J Chen, E. "Program Complexity and Programmrr Productivity." IEEE Transactions
on Software Engineering May 1978: 187-94.

[CHI831 Childs, D., D. Whalen, and L. Keith. U.S. Army Intelligence Center and School
(USAICS) Software Analysis and Management System (USAMS) Evaluation of
SREM/REVS/RSL and PSL/PSA 1983: 89-98.

1CH1871 Chikofsky, E., ed. "The Information Resource Directory System: A Standard Bus to
Join the Segmented Environment Together." Proceedings of the First International
Workshop on Computer-Aided Software Engineering May 1987: 517-22.

[CHR81] Christensen, K., G. Fitsos, and C. Smith. "A Perspective on Software Science." IMB
Systems Journal 1981: 372-87.

100



[COO821 Cook, M. "Software Metrics: An Introduction and Annotated Bibliography." ACM
SIGSOFT Software Engineering Notes Apr. 1982: 41-60.

ICOU81] Coulter, N. "Applications of Psychology in Software Science." COMPSAC
Proceedings 1981: 50-1.

[COU83] Coulter, N. "Software Science and Cognitive Psychology." IEEE Transactions on
Software Engineering Mar. 1983: 166-71.

ICUR79a] Curtis, B. "In Search of Software Complexity." Proceedings of the Workshop on
Quantitative Models of Software Reliability, Complexity, and Cost i979: 95-106.

ICUR79b] Curtis, B., S. Sheppard, and P. Milliman. "Third Time Charm: Stronger Prediction
of Programmer Performance by Software Complexity Metrics." Proceedings of the
Fourth International Conference on Software Engineering 1979: 356-60.

[CUR79c] Curtis, B., et al. "Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe Metrics." IEEE Transactions on
Software Engineering Mar. 1979: 95-104.

[DEY791 DeYoung, G. and G. Kampen. "T -ogram Factors as Predictors of Program
Readability." COMPSAC Proceedings 1979: 668-73.

[DOL871 Dolk, D.R. and R.A. Kirsch II. "A Relational Information Resource Dictionary
System." Communications of the ACM Jan. 1987: 48-61.

[DON75I Donzeau-Gouge, V., et al. "A Structure-Oriented Progrm Editor." INRIA Technical
Report 1975.

[DOW87a] Dowson, M. "Integrated Project Support with IStar." IEEE Software Nov. 1987: 6-
15.

[DOW87bJ Dowson, M. "ISTAR and the Contractual Approach." Proceedings of the Ninth
International Conference on Software Engineering 1987: 287-88.

[DUI861 Duisberg, R.A. "Animated Graphical Interfaces Using Temporal Constraints."
CHI'86 Conference Proceedings Apr. 1986: 131 -36.

[DUN80] Dunsmore, H. and J. Gannon. "Analysis of the Effects of Programming Factors on
Programming Effort." Journal of Systems and Software 1980: 141-53.

[DYS87] Dyson, P.B. "Open Architecture for Computer-Aided Software Engineering (CASE)
Environments." Proceedings of the First International Workshop on Computer-
Aided Software Engineering May 1987: 26-8.

IE&V2-841 "Ada Programming Support Environment Evaluation and Validation."
AFWAL/AAAF Workshop Proceedings Aug. 1984.

JELL85] Ellis, J.T. One Approach for Evaluating The Distributed Computing Design System
(DCDS) 25 Sept. 1985.

[ELS761 Elshoff, J. "Measuring Commercial PL/I Programs Using Halstead's Criteria."
ACM SIGPLAN Notices May 1976: 38-46.

101



[ELS781 Elshoff, J. "An Investigation Into the Effects of the Counting Method Used on
Software Science Measurements." ACM SIGPLAN Notices Feb. 1978: 30-45.

[EPS881 Epstein, D. and W.R. LaLonde. "A Smalltalk Window System Based on
Constraints." OOPSLA Conference Proceedings Nov. 1988: 83-94.

[FITS80] Fitsos, G. "Vocabulary Effects in Software Science." COMPSAC Proceedings 1980:
751-56.

|FlTZ781 Fitzsimmons, A. and T. Lov" "A Review and Evaluation of Software Science."
ACM Computing Surveys Mar. 1978: 3-18.

[FUN76] Funami, Y. and M. Halstead. "A Software Physics Analysis of Akiyama's
Debugging Data." Proceedings of the Symposium on Computer Software Engineering,
1976: 133-38.

[GAFSOJ Gaffney, J. "Maximize Design Effort and Minimize Program Control Complexity -
To Maximize Software Development Productivity." COMPSAC Proceedings 1980.
225-28.

IGAL861 Gallo F., Minot R., Thomas M.I., "The Object Management System of PCTE as a
Software Engineering Database Management System," Proceedings of the Second
ACM Symposium on Practical Software Development Environments, ACM Sigplan
Notices, Jan. 1987.

[GAN86] Gannon, J.D., E.E. Katz, and V.R. Basili. "Metrics for Ada Packages: An Initial
Study." Communirations of the ACM July 1986: 616-23.

(GAR84] Garlan, D.B. and P.L. Miller. "GNOME: An Introductory Programming Environment
Based on a Family of Structure Editors." Proceedings of the ACM
SIGSOFT/SIGPLAN Software Symposium on Practical Software Develop"-ent
Environments Apr. 1984: 65-72.

[GIL751 Gilb, T. "Software Metrics - The Emerging Technology." Data Management July
1975: 34-7.

[GOL85] Goldfine, A. and P. Konig. A Technical Overview of the Information Resource
Dictionary System Apr. 1985.

(GOR76J Gordon, R. and M. Halstead. "An Experiment Comparing FORTRAN Programming
Times with Software Physics Hypothesis." Proceedings of the National Computer
Conference 1976: 935-?7.

[GOR791 Gordon, R. "Measuring Improvements in Program Clarity." IEEE Transactions on

Software Engineering Mar. 1979: 79-90.

[GRA77] Grace, A. "The Dimensions of Complexity." DATAMATION Sept. 1977: 315-18.

[GRE76] Green, T., et al. "Program Structures, Complexity, and Error Characteristics."
Proceedings of the Symposium on Computer Software Engineering 1976: 139-54.

fGRO82J Gross, D., et al. "Complexity Measurement of Electronic Switching System (ESS)
Software." ACM SIGMETRICS Performance Evaluation Review Fall 1982: 75-85.

102



[HAA83] Haas, M. and J. Hassell. "A Proposal for a Measure of Program Understanding."
ACM SIGCSE Bulletin Feb. 1983: 7-13.

[HAL72] Halstead, M. "Natural Laws Controlling Algorithm Structure?" ACM SIGPLAN

Notices Feb. 1972: 19-26.

1HAL771 Halstead, M.H. Elements of Software Science. Elsevier, New York, 1977.

IHAL87) Hall, A. "Tool Interfaces in Integrated Project Support Environments." Proceedings
of the Ninth International Conference on Software Engineering 1987: 289-90.

(HAM82I Hamer, P. and G. Frewin. "M.H. Halstead's Software Engineering Science - A
Critical Examination." Proceedings of the 6th International Conference on
Software Engineering 1982: 197-206.

(HAM85I Hammons, C. and P. Dobbs. "Coupling, Cohesion, and Package Unity in Ada." Ada
Letters May-June 1985: 49-59.

IHAN78] Hansen, W. "Measurement of Program Complexity by the Pair (Cydomatic
Ni,.nber, Operator Count)." ACM SIGPLAN Notices Mar. 1978: 29-33.

IHAR87] Harrison, W. "RPDE3: A Framework for Integrating Tool Fragments." IEEE
Software Nov. 1987: 46-56.

IHAR88] Harris, D., et al. The Knowledge-Based Requirements Assistant Final Technical
Report. Vol. 1, RADC, Feb. 1988.

[HAR81a] Harrison, W. and K. Magel. "A Complexity Measure Based on Nesting Level."
ACM SIGPLAN Notices Mar. 1981: 63-74.

[HAR81b] Harrison, W. and K. Magel. "A Topological Analysis of Computer Programs with
Less Than Three Binary Branches." ACM SIGPLAN Notices Apr. 1981: 51-63.

[HAR82] Harrison, W., et al. "Applying Software Complexity Metrics to Program
Maintenance." IEEE Computer Sept. 1982: 65-79.

[HAR82] Hartman, S. "A Counting Tool for RPG." ACM SIGMETRICS Performance
Evaluation Review Fall 1982: 86-100.

[HEI851 Heimbigner, D. and D. McLeod. "A Federated Architecture for Information
Management." ACM Transactions on Office Information Systems July 1985: 253-78.

IHEN71I Hensen, W. "Creation of Hierarchic Text with a Computer Display." Ph.D.
dissertation, Computer Science Dept., Stanford Univ. June 1971.

[HEN81a] Henry, S. and D. Kafura, "Software Structure Metrics Based on Information Flow."
IEEE Transactions on Software Engineering Sept. 1981: 510-18.

[HEN81b] Henry, S., D. Kafura, and K. Harris. "On the Relationships Among Three Software
Metrics." ACM SIGMETRICS Performance Evaluation Review Spring 1981: 81-8.

103



[MEN841 Henry, S. and D. Kafura. 'The Evaluation of Software Systems' Structure Using
Quantitative Software Metrics." Software Practice and Experience June 1984: 561-
73.

[HIEN87I Henderson, P.B. and Notkin, D. "Integrated Design and Programming
Environments." IEEE Computer Nov. 1987: 12-16.

[HU`M87J Humphrey, W.S. and W.L. Sweet. "A Method for Assessing the Software
Engineering Capability of Contractors." Technical Report, CMU/SEI-87-TR-23,
ESD-TR-87-186, Carnegie-Mellon University, PA. Sept. 1987.

[JEN82] Jensen, H. and K. Varian. "A Comparative Study of Software Metrics for Real Time
Software." COMPSAC Proceedings 1982: 96-9.

OJON781 Jones, T. "Measuring Programming Quality and Productivity." IBM Systems Journal
Vol. 17, No. 1 1978: 39-63.

[JOR80] Jorgensen, A. "A Methodology for Measuring the Readability and Modifiability of
Computer Programs." BIT, #20 1980: 394-405.

[KAF81] Kafura, D. and S. Henry. "Software Quality Metrics Based on Interconnectivity."
Journal of Systems and Software, #2 1981: 121-31.

[KAM86] Kamel, Z. and Rudmik, A. Project Data Portability Study, Developed for Naval
Air Development Center, Warminister, PA 18974-5000, GTE Communication
Systems Corp, June, 1986.

[KRA88J Krasner, E.G. and S.T. Pope. "A Cookbook for Using the Model-View Controller
User Interface Paradigm In Smalltalk-80." Journal of Object-Oriented Programming
August-Sept. 1988: 26-49.

[LAL71] LaLonde, W.R., E.S. Lee, and J.J. Horning. " An LALR(k) Parser Generator." IFIP
Congress 71 Proceedings 1971: 153-57.

[LAS79] Lassez, J.L. and D. Van der Knijff. "Evaluation of Length and Level for Simple
Program Schemes." COMPSAC Proceedings 1979: 688-94.

[LAS81] Lassez, J.L., et at. "A Critical Examination of Software Science." Journal of
Systems and Software, #2 1981: 105-12.

[LAU821 Laurmaa, T. and M. Syrjanen. "APL and Halstead's Theory: A Measuring Tool and
Some Experiments." ACM SIGMETRICS Performance Evaluation Review Fall
1982: 3247.

[LEB841 Leblang, D.B. and R.P. Chase, Jr. "Computer- Aided Software Engineering in a
Distributed Workstation Environment." ACM SIGSOrT Engineering
Notes/SIGPLAN Notices May 1984: 104.

[LEB87J Leblang, D.B. and R.P. Chase, Jr. "Parallel Software Configuration Management in
a Network Environment." IEEE Software Nov. 1987: 28-35.

104



[LEH86I Lehman, M.M. "Approach to a Disciplined Development Process - The ISTAR
Integrated Project Support Environment." ACM SIGSoft Software Engineering
Notes Aug. 1988: 28-33.

ILEH87] Lehman, M.M. and W.M. Turski "Essential Properties of IPSEs." ACM SIGSoft
Software Engineering Notes Jan. 1987: 52-5.

ILIP821 Lipow, M. "Number of Faults per Line of Code." IEEE Transactions on Software
Engineering July 1982: 437-39.

ILlS821 Lister, A., "Software Science - The Emperor's New Clothes?" Australian Computer
Journal May 1982: 66-70.

[LOV761 Love, T. and B. Bowman. "An Independent Test of the Theory of Software Physics."
ACM SIGPLAN Notices Nov. 1976: 42-9.

[LOV771 Love, T. "An Expeimental Investigation of the Effect of Program Structure on
Program Understanding." ACM SIGPLAN Notices Mar. 1977: 105-13.

fMAC881 Maclaren, R.H. Ada Run-Time and DAPSE: Experiences, Issues, and
Recommendations 18 Mar. 1988.

[MAG81] Magel, K. "Regular Expressions in a Program Complexity Metric." ACM SIGPLAN
Notices July 1981: 61-5.

IMAG82I Magel, K. "A Theory of Small Program Complexity." ACM SIGPLAN Notices
Mar. 1982: 37-45.

IMAG91] Lawrence J. Magid, "The Best of Both Worlds?" Bay Area Computer Currents.
October 22-November 4,1991. p. 28-34.

[MAR81] Markham, D., J. McCall, and G. Walters. "Software Metric Application
Techniques." COMPSAC Proceedings 1981: 38-45.

[MAR86J Marcus, M., et al. "DAPSE: A Distributed Ada Programming Support
Environment." Proceedings of the IEEE Computer Society Second International
Conference on Ada Applications and Environments 1986: 115-25.

[MCC76] McCabe, T.J. "A Complexity Measure." IEEE Transactions on Software Engineering
Dec. 1976: 308-20.

[MCC79] McCabe, T. "A Complexity Measure." IEEE Transactions on Software Engineering
Dec. 1979: 308-20.

[MCC78] McClure, C. "A Model for Program Complexity Analysis." Proceedings of the 3rd
Conference on Software Engineering 1978: 149-57.

[MCTSO0 McTap, J. "The Complexity of an Individual Program." Proceedings of the
National Computer Conference 1980: 767-71.

[MED81J Medina-Mora, R. and P. Feiler. "An Incremental Programming Environment." IEEE
Transactions on Software Engineering Sept. 1981: 472-82.

105



[MIC80] Michelson, M. and M.N. Wegman. "PDE1L: The PL1L Program Development
Environment: Principles of Operation." Res. Rep. RC8513, IBM T.J. Watson
Research Center, NY Nov. 1980.

[MOH79] Mohanty, S. "Models and Measurements for Quality Assessment of Software."
ACM Computing Surveys Sept. 1979: 251-76.

[MON871 Monarch, I. and J. Carbonell. "CoalSORT: A Knowledge-Based Interface," IEEE
Expert, 1987: 39-53.

tMYE751 Myers, G.J. Reliable Software Through Composite Design. Van Nostrand
Reinhold, New York, 1975.

IMYE77] Myers, G. "An Extension to the Cyclomatic Measure of Program Complexity." ACM
SIGPLAN Notices Oct. 1977: 61-4.

[MYE78] Myers, G.J. Composite/Structured Design. Van Nostrand Reinhold, New York,
1978.

[MYE83] Myers, B.A. "A System for Displaying Data Structures." Computer Graphics July
1983: 115-25.

INAG731 Nagasaka, K. "On Minimal-Program Complexity Measure." Proceedings of the 6th
International Conference on Systems Science 1973: 477-79.

[NA1821 Naib, F. "An Application of Software Science to the Quantitative Measurement of
Code Quality." ACM SIGMETRICS Performance Evaluation Review Fall 1982:
102-28.

[NAS851 Nash, S.H. and S.T. Redwine, Jr. IDA Paper P-1842: Information Interface Related
Standards, Guidelines, and Recommended Practices, (SEE-INFO-004) 1985.

[NAV82I Department of the Navy, Naval Material Command (NAVMAT). "A Software
Engineering Environment for the Navy." Report of the NAVMAT Software
Engineering Environment Working Group 31 Mar. 1982.

[NIE861 Nielsen, K.W. "Task Coupling and Cohesion in Ada." Ada Letters July-Aug. 1986:
44-52.

[NOR881 Norcio, A.F. and J. Stanley. Adaptive Human-Computer Interfaces. Naval
Research Laboratory, NRL Report 9148, Sept. 1988.

[OCO91] O'Connor, Rory J. "Pen Players Boost the Ante." Pentop. Volume 1, Number 1.
November/December 1991.

IOTT78] Ottenstein, L. "Further Evaluation of Ana Error Hypothesis." ACM Software
Engineering Notes Jan. 1978: 27-8.

(OT1791 Ottenstein, L. "Quantitative Estimates of Debugging Requirements." IEEE
Transactions on Software Engineering Sept. 1979: 504-14.

10TI7811 Ottenstein, L. "Predicting Numbers of Errors Using Software Science." ACM
SIGMETRICS Performance Evaluation Review Spring 1981: 157-65.

106



[OUL791 Oulsnam, G. "Cyclomatic Numbers Do Not Measure Complexity of Unstructured
Programs." Information Processing Letters Dec. 1979: 207-11.

[OVI801 Oviedo, E. "Control Flow, Data Flow, and Progrm-n Complexity." COMPSAC
Proceedings 1980: 146-52.

[PAY81] Payne, A. "A Basis for Software Physics?" ACM SIGPLAN Notices Aug. 1981: 27-
30.

IPAY86] Payton, T. Architectural Description of the SDC Common Software Environment
(SDC-CSE) Feb. 1986.

[PC-86] Bull, GEC, ICL, Nixdorf, Olivetti, Siemens, PCTE: A Basis for a Portable Common
Tool Environment, Functional Specifications, Fourth Edition, 1986.

[PCT88J GIE Erneraude, Selenia, Software Sciences Ltd., PCTE+ Ada and C Functional
Specifications, Issue 2, July 8, 1988.

[PEE81] Peercy, D. "A Software Maintainability Evaluation Methodology." IEEE
Transactions on Software Engineering July 1981: 343-51.

[PER86] Perkins, J.A., D.M. Lease, and S.E. Keller. "Experience Collecting and Analyzing
Automatable Software Quality Metrics for Ada." Proceedings of the 4th Annual
Conference on Ada Technology Mar. 1986.

[PER87] Perkins, J.A. and R.S. Gorzela. "Experience Using an Automated MEtrics
Framework to Improve the Quality of Ada Software." Proceedings of the 5th
Annual National Conference on Ada Technology, 4th Washington Ada Symposium
Mar. 1987.

[PIW821 Piwowarski, P. "A Nesting Level Complexity Measure." ACM SIGPLAN Notices
Sept. 1982: 44-50.

1POT82] Potier, D., et al. "Experiments with Computer Software Complexity and
Reliability." Proceedings of the 6th International Conference on Software
Engineering 1982: 94-103.

IPRC85] Planning Research Corporation, Government Information Systems. Architectural
Description of the Automated Product Control Environment (APCE) 23 Dec. 1985.

[PRO821 Proctor, C. "A Software Quality Metrics Study." COMPSAC Proceedings 1982:
187.

[RAM87] Ramanathan, J. and V. Venugopal. "Integration Paradigms in Software
Environments." Proceedings of the First International Workshop on Computer-
Aided Software Engineering May 1987: 245-47.

IREE87] Reed, K. "Practical Software Engineering Environments: Report on the ACM
SIGSoft/SIGPlan Software Engineering Symposium." ACM SIGSoft Software
Engineering Notes Jan. 1987: 56-62.

107



[REI851 Reiss, S. "PECAN: Program Development System that Supports Multiple Views."
IEEE Transactions on Software Engineering Mar. 1985: 276-84.

[REI881 Reiss S. "Integration Mechanism in the FIELD Environment." Brown University
Computer Science Department, Technical Report No. CS-88-18 Oct. 1988.

IREI90I Reiss, S. "Connecting tools using message passing in the FIELD program
development environment." IEEE Software 1990.

IRE1911 Rienhardt, Andy. "Momenta Points to the Future." Byte. November 1991. p. 4849.

[RID85] Riddle, W. E. and J. C. Wileden. Environment Extensibility Impact on the STARS
SEE Architecture (SEE-ARCH- 007) Apr. 1985.

[RID861 Riddle, W. E. and L. G. Williams. "Software Environments Workshop Report."
ACM SIGSoft Software Engineering Notes Jan. 1986: 73-102.

[RUD85] Rudmik, Andres and D.H. Vines. Software Development and Maintenance
Environment (SDME) Architecture Description 31 Oct. 1985.

[RUD86J Rudmik, A and D. Lubeck. Integrated Project Support in Third Generation
Environments, Proceedings of the Ninteenth Annual Hawii COnference on System
Sciences.

[RUM91] Rumbaugh, James. M. Blaha, W. Premerlani, F. Eddy, W. Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, Englewood Cliffs, NJ. 1991.

[SAL821 Salt, N. "Defining Software Science Counting Strategies." ACM SIGPLAN Notices
Mar. 1982: 58-67.

[SCH85J Schmiedekamp, C. The Impact of Multi-Lingual Support on Software Engineering
Environment Architecture 14 Nov. 1985.

[SCH81] Schneider, G., R. Sedlmeyer, and J. Kearney. "On the Complexity of Measuring
Software Complexity." Proceedings of the National Computer Conference 1981:
317-22.

[SCH821 Schnurer, K. "Product Assurance Program Analyzer (PAPA), A Tool for Program
Complexity Evaluation." ACM SIGMETRICS Performance Evaluation Review
Fall 1982: 73-4.

[SCH79] Schneidewind, N. "A Case Study of Software Complexity and Error Detection
Simulation." COMPSAC Proceedings 1979: 843-48.

[SCH78] Schneider, V. "Prediction of Software Effort and Project Duration." ACM
SIGPLAN Notices June 1978: 49-59.

[SCH81] Schwartz, W. "Software Science Measures Language Level Increase Provided by
IBM Series/I Assembler Structured Programming Facility." COMPSAC Proceedings
1981: 59-65.

[SEE84J Information Interfaces in a Software Environment, SEE- INFO-O01 27 May 1984.

108



[SEY90] Seybold Report of Publishing Systems. Volume 20. Number 7. December 24,1990.

ISHA911 Shapiro, Ezra. "A Peek at the New Momenta." Pentop. Volume 1, Number 1.
Novemberi December 1991.

[SHE791 Shen, V. "The Relationship Between Student Grades and Software Science
Parameters." COMPSAC Proceedings 1979: 783-87.

[SHE83I Shen, V., S.D. Conte, and H. Dunsmore. "Software Science Revisited: A Critical
Analysis of the Theory and Its Empirical Support." IEEE Transactions on Software
Engineering Mar. 1983: 155-65.

[SHN77] Shneiderman, B. "Measuring Computer Program Quality and Comprehension."
International Journal of Man-Machine Studies, #3 1977: 465-78.

[SIM871 Simmel, S. S. and P. J. Gagne. "Two Fundamental Abstractions for Software
Engineering Environments." Proceeding of the First International Workshop on
Computer-Aided Software Engineering May 1987: 258-60.

[SOF86] A Guidebook for Software Measurement Data Collection Software Technology for
Adaptable, Reliable Systems (STARS), May 1986.

[SPI87] Spilke, H. and R.P. Chase, Jr. "Toward Software Configuration Management in the
Heterogeneous Environment." Proceedings of the First International Workshop on
Computer-Aided Software Engineering May 1987: 802-6.

[STA82J Stankovic, J.A. "Good System Structure Features: Their Complexity and Execution
Time Cost." IEEE Transactions on Software Engineering July 1982: 306-18.

[STE86I Stefik, M.J., D.G. Bobrow, and K.M. Kahn. "Integrated Access-Oriented
Programming into a Multiparadigm Environment." IEEE Software Jan. 1986: 10-18.

[STE881 Stefanescu, C. M. and H.D. Rombach. A Development Methodology for Distributed
Ada Applications 14 April 1988.

[SUN81] Sunohara, T., et al. "Program Complexity Measure for Software Development
Management." Proceedings of the 5th International Conference on Software
Engineering 1981: 100-6.

[SUT631 Sutherland, I.E. "SketchPad: a Man-Machine Graphical Communication System."
AFIPS Spring Joint Computer Conference 1963: 329-46.

[SZE88J Szekely P.A. and B.A. Myers. "A User Interface Toolkit Based on Graphical
Objects and Constraints." OOPSLA Conference Proceedings Nov. 1988: 36-45.

[SZU81] Szulewski, P., et al. "The Measurement of Software Science Parameters in Software
Designs." ACM SIGMETRICS Performance Evaluation Review Spring 1981: 89-94.

[TAM83J Tamine, J. "On the Use of Tree-like Structures to Simplify Measures of
Complexity." ACM SIGPLAN Notices Sept. 1983: 62-9.

[TBE86J Teledyne Brown Engineering. Technology for the Automated Generation of Systems
(TAGS) Jan. 1986.

109



[TEI81] Teitelbaum, T. and T. Reps. 'The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment." Communications of the ACM Sept. 1981: 563-73.

ITEN88] Tenma, T., et al. "A System for Generating Language Oriented Editors." IEEE
Transactions on Software Engineering Aug. 1988: 1098-109.

[THA81] Thadhani, A.J., "Interactive User Productivity." IBM Systems Journal, Vol. 20, No.
4 1981, 407-423.

ITRO811 Troy, D. and S. Zweben. "Measuring the Quality of Structured Designs." Journal of
Systems and Software, #2 1981: 113-20.

ITRW87] TRW System Development Division, Defense Systems Group. Distributed
Computing Design System 18 June 1987.

(VAN78] Van der Kniiff, D. "Software Physics and Program Analysis." Australian
Computer Journal 1978.

[VIN90] Vines, D. and T. King. Gaia: An Object-Oriented Framework for an Ada
Environment. 1990.

[WAG90] Wagner, Mitch. "OSF To Add More PM Compatibility to Motif." UNIX Today!
1990: 14-18.

[WAL79] Walsh, T. "A Software Reliability Study Using A Complexity Measure."
Proceedings of the National Computer Conference 1979: 761-68.

[WAL87] Walker, J.H., et al. "The Symbolics Genera Programming Environment." IEEE
Software, Nov. 1987: 36-45.

[WE174J Weissman, L. "Psychological Complexity of Computer Programs." ACM SIGPLAN
Notices June 1974: 25-36.

[WEI861 Weiser, M. and B. Shneiderman. "Human Factors of Software Design and
Development." Handbook of Human Factors/Ergonomics, John Wiley & Sons Ltd.,
1986.

[WE1871 Weiderman N., Haberman N., et al. "Evaluation of Ada Environments." Technical
Report CMUISEI-87-TR-1; ESD-TR-87-101, March 1987.

1WHI81] Whitworth, M. and P. Szulewski. "The Measurement of Control and Data Flow
Complexity in Software Designs." COMPSAC Proceedings 1981: 735-43.

[WIL761 Wilcox, T.R., A.M. Davis, and M.H. Tindall. "The Design and Implementation of a
Table Driven, Interative Diagnostic Programming System." Communications of the
ACM Nov. 1976: 609-16.

[WOL881 P Graphite: An Experiment in Persistent Typed Object Management." Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, November 1988.

110



1WOO791 Woodward, M., M. Hennell, and D. Hedley. "A Measure of Control Flow
Complexity in Program Text." IEEE Transactions on Software Engineering Jan. 1979:
45-50.

[WOO79] Woodfield, S. "An Experiment on Unit Increase in Problem Complexity." IEEE
Transactions on Software Engineering Mar. 1979: 76-8.

[W00811 Woodfield, S., V. Shen, and H. Dunsmore. "A Study of Several Metrics for
Programming Effort." Journal of Systems and Software, #2 1981: 97-103.

(YAU80 Yau, S. and J. Collofello. "Some Stability Measures for Software Maintenance."
IEEE Transactions on Software Engineering Nov. 1980: 545-52.

[YOU881 Young M., et al. "Design Principles Behind Chiron: A UIMS for Software
Environments." Proceedings of the 10th International Conference on Software
Engineering, Apr. 1988: 367-76.

[ZOL77a] Zolnowski, J. and D. Simmons. "A Complexity Measure Applied to FORTRAN."
COMPSAC Proceedings 1977: 133-41.

[ZOL77b] Zolnowski, J. and D. Simmons. "Measuring Program Complexity." COMPCON
Proceedings 1977: 336-40.

IZOL80] Zolnowski, J. and D. Simmons. "Measuring Program Complexity in a COBOL
Environment." Proceedings of the National Computer Conference 1980: 757-66.

IZOL811 Zolnowski, J. and D. Simmons. "Taking the Measure of Program Complexity."
Proceedings of the National Computer Conference 1981: 329-36.

6U.S. GOVERNMENT PRINTING OFFICE 1993•-13,-0j -m -•&) 17

111



WMIS9ION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rom-*

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


