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ABSTRACT

In this paper we present numerical solutions to several optimal control problems for an

unsteady viscous flow. The main thrust of this work is devoted to simulation and control

of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating

the rotation rate as a control variable we formulate two optimal control problems and use

a central difference/pseudospectral transform method to numerically compute the op)timal

control rates. Several types of rotations are considered as potential controls and we show that

a proper synchronization of forcing frequency with the natural vortex shedding frequency

can greatly influence the flow. The results here indicate that using moving boundary controls

for such systems may provide a feasible mechanism for flow control.

'This work was supported in part by AFOSR under Grant F-49620-92-.1-0078, the National Science
Foundation under Grant INT-89-22490, and by the National Aeronautics and Space Administration under
Contract Nos. NAS1-18605 and NAS1-19480 while the author was a visiting scientist at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center. Hampton.
VA 23681-0001.

2This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-18605 and NASI-19480 while the author was in residence at the Institute for Comiputer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-
0001, and by AFOSR under Grant F-49620-92-J-0078.

iii



1. INTRODUCTION

The benefits received from applying control mechanisms in viscous flows has been long

realized since the pioneering work of Prandtl [301. Because of a growing interest in controlling

the behavior and structure of fluid flows, various topics in flow control have recently becomne

a subject of research focus [14, 1, 13, 34, 4, 15, 26, 35, 9, 16, 20, 27, 28, 29, 36]. A potentially

important application of flow control is the enhancement of the aerodynamic characteristics

of future advanced aircraft. Although recent research has produced a variety of methods

to achieve desired performance and design goals for maneuvering vehicles, it is now widely

recognized that further gains will most likely come from the application of various types

of flow control mechanisms [11, 12]. Consequently, the utility of flow control becomes a

critical issue in the design process which may provide real-time effect for many important

applications, such as highly instantaneous maneuvers for the super-maneuverable aircraft

[18], and the optimum design of aerodynamic configurations [21]. Considerable effort has

been devoted to the improvement of control mechanisms. However, the principal progress to-

date has been essentially accomplished by experimental investigations, while most analytical

and numerical approaches have remained in its infancy due to the complexity of the problems.

One of the most practical applications of control mechani-ms in flow systems has been

boundary-layer separation control. In this area of research, several methods have been de-

veloped experimentally to provide various control mechanisms, for example moving surfaces,

blowing, suction, injection of a different gas, etc [31, 32]. In particular, it has been demnon-

strated in a number of experiments by Modi et al. [25, 241 that moving surfaces can effectively

provide boundary-layer control. In their experiments, the boundary-layer flow is controlled

by an application of two rotating cylinders located at the leading and trailing edges of an

airfoil. It has been shown that this mechanism can prevent flow separation by retarding the

initial growth of the boundary layer, with the important consequences of lift enhancement

and stall delay. For instance, when the speed ratios (which represents the ratio of cylinder

surface speed to the freestream speed) of both cylinders were set at a constant value of 4, the



results indicated a 200% increase of the maximum lift coefficient compared with the reference

airfoil (in which no rotating cylinder is attached). In spite of the fact that considerable aero-

dynamic benefits were gained by changing the cylinder speed ratio, in their experiments the

speed of rotation was performed merely with constant values. However, it should be noted

that if the rotating cylinder mechanism is applied to a region of unsteady flow, a constant

rotation rate may not correspond to the optimal performance when an airfoil is undergoing a

rapid maneuver. This type of result provided the motivation for us to consider a fundamen-

tal problem regarding unsteady flow control by means of a time-dependent moving surface

mechanism. In order to keep the problem reasonable and yet practical, we selected a model

for the numerical study of controlling the temporal development of the flow field around a

rotating cylinder.

The most distinguishing feature of a rotating body traveling through a fluid is that it

experiences a transverse force acting in a direction perpendicular to that of flowing stream

[37]. In the past few decades, research on the problem of a uniform stream past a cylindrical

rotating body has been the subject of many experimental and numerical investigations. Sce

the papers by Taneda [391, Mo [231 and Tokumaru and Dimotakis [40] for a cylinder under-

going rotary oscillations, Prandtl [31], Taneda [38], Koromilas and Telionis [22], Coutanceau

and MN4nard [8], Badr and Dennis [3], Badr et al. [2] and Chen et al. [7] for a cylinder with

a constant speed of rotation. However, most of these results are primarily focused on the

study of formation and development of vortices in a cylinder wake, It appears that the effect

of the rotation rate on the cylinder forces exerted by the fluid has received far less attention,

despite the fact that it has many important practical engineering applications.

The main thrust of the current investigation is on simulation and control of an unsteady

flow generated by a circular cylinder undergoing a combined (steady or unsteady) rotary

and rectilinear motion, By treating the rotation rate as a control variable in this model,

we consider several problems concerning the temporal development of forces on a rotating

cylinder in response to a variety of time-dependent rotation rates. The computational results
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provide considerable insight into the problem of controlling such flows.

2. MATHEMATICAL AND NUMERICAL FORMULATIONS

In this section the governing equations and the particular numerical method used in this

work are described. We consider control problems for a two-dimensional viscous incompress-

ible flow generated by an impulsively started circular cylinder. The cylinder is translated

with a constant rectilinear speed U normal to its generator and is simultaneously rotated

with a time-dependent angular velocity !5(t) about its axis. Although there are various

formulations and numerical techniques for the solving of steady and unsteady flow past a

rotating cylinder [19, 3, 231, in this work the problem is investigated numerically by solving

a velocity/vorticity formulation of the Navier-Stokes equations with an implementation of

the Biot-Savart law. The numerical approach used in the present study is the one developed

by Chen [5] for the problem of a circular cylinder oscillating in a rectangular box. It is based

on an explicit finite-difference/pseudo-spectral technique to yield time accurate solutions

to the governing equations. This numerical algorithm was further modified to investigate

an unsteady flow around a rotating cylinder undergoing various constant rotational speeds

[7, 28], and time-dependent rotation rates [26, 27].

Several prominent features in the application of an integral representation for flow kine-

matics are emphasized in §2.2. This integral method proposed by Wu and Thompson [46]

provides the basic link between the velocity and vorticity fields throughout the numerical

procedure. The boundary vorticity at the solid surface can be easily calculated by the ap-

plication of this integral. Moreover, unlike other numerical approaches, the imposition of

the artificial far-field boundary condition for the velocity is not necessary once the vorticity

values are known everywhere in the domain of interest.

2.1 Governing Equations

In the velocity/vorticity formulation of the Navier-Stokes equations, the governing equa-

tions consist of the vorticity transport equation and the vector Poisson equation for the veloc-
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ity. Thus, for a two-dimensional unsteady viscous flow in incompressible fluid, the Cartesian

coordinate form of the gcverning equations for the vorticity and velocity can be expressed

in the dimensionless form as

±" + il" Vw = V (1)

and

V 2i = -v x (w., (2)

where il is the velocity field, w is the vorticity field, and e-. is the unit vector in the direction

of z-direction. All the variables are made dimensionless by means of the characteristic

quantities. The cylinder radius a is used as the length scale while a/U is used as the time

scale. The Reynolds number Re = 2Ua/v is based on the cylinder diameter 2a and the

magnitude U of the rectilinear velocity.

A non-rotating reference frame, translating with the cylinder is employed. In this frame

the dimensionless boundary conditions for the problem of a rotating cylinder (with a time-

dependent angular velocity £l(t)e) can be written as

S= -a(t)y + a(t)xe4 for (x, Y) E r (3)

and

for X2 + y 0+oo, (4)

where F denotes the impermeable solid boundary of the cylinder. The angular/rectilinear

speed ratio a(t) = f?(t)a/U is the primary control parameter throughout this work.

In many practical numerical simulations for the laminar motion of viscous incompressible

fluid, both the exterior and interior flow problems, the formulation based on velocity/vorticity

variables would provide some advantages over the primitive-variable formulation. This ve-

locity/vorticity formulation is especially well suited to treating initial development of the

flow generated by impulsively started bodies, in which a relatively small vortical viscous re-

gion is embedded in a much larger inviscid potential flow. Consequently, the computational

domain may be restricted to a smaller region where all vorticity contributions are contained.
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Furthermore, the decoupling of the overall problem into its kinematic and kinetic aspects of

the flow field gives an additional convenience. Throughout this work the vorticity transport

equation described above may be viewed as kinetic process of the flow field in which the

distribution of vorticity is interplayed by the process of convection. as well as the effect- of

viscous diffusion.

2.2 Integral Representation for Flow Kinematics

Having defined the governing equations for the rotating cylinder problhm described

above, we can now examine several advantages of an integral formulation used in this work.

In the formulation of exterior flow problems, it is well known that one of the main numerical

difficulties is related to the proper imposition of a prescribed limit value at the far-field for

the unbounded physical domain in which the flow takes place. It should be pointed out that

in any numerical simulation one has to restrict the exterior infinite domain to be finiLe with

an artificial boundary. However, the far-field boundary in (4) fails to represent the exact

characteristics at the outer perimeter of the finite computational domain. Therefore, in many

practical applications, instead of directly applying the far-field boundary condition (4) one

often tries to avoid the difficulty by utilizing various asymptotic boundary conditions at large

distance (e.g. the application of potential flow or Ossen expansion), while others introduce

a mapping of the infinite domain onto the finite one by means of a suitable coordinate

transformation.

The other difficulty encountered in the simulation of viscous flow is that of prescrib-

ing the appropriate non-velocity boundary conditions at the solid surface. In general, the

prescribed pressure at the solid boundary is needed in the application of primitive-variable

(pressure/velocity) formulation, while the boundary vorticity is required for the formulation

based on the velocity/vorticity (or stream-function/vorticity) variables. In order to over-

come these two difficulties, we pose the kinematic relation on the problem by introducing a

general Biot-Savart induced law described below.
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In the problem with a viscus fluid, if the velocity distribution of af are given, then tile

vorticity field (Z could be evaluated through the kinematic relation between i and ; described

by c5 = V x ti and V-. i! = 0. On the other hand, the vector Poisson equation

V 2i = -V x W, (5)

obtained from the continuity equation and the definition of vorticity, can be used to determine

the velocity field from a given vorticity field.

For a general viscous flow in a region D bounded by an inner boundary F and outer

boundary r', we can recast the kinematic part of the problem into an equivalert integral

formulation

w x V,0 V- f~o)
1 If ID I - - fd dA

1f [16 (V',t) . ii](f- ro) - [i40(g t) x il] x (V- f~o)
c r+r' IF- fold

where
41r, for d= 3

c= 2r., ford=2.

In the above integral representation, U-b is the boundary velocity, fi is the outward normal

unit vector and d is the spatial dimension. The subscript "0" denotes the field point where

the velocity field is evaluated.

By applying the no-penetration and no-slip conditions to the rotating cylinder problem

considered in this study, in two dimensions equation (6) can be written in terms of the

rectilinear velocity Ue-, and the angular velocity Q(t)eT of the solid body B which is known

as the generalized Biot-Savart law of induced velocity:

ii( ,t)(= ,7)JxD(r'-oI )u (ro, 0t) r )X F7O dA

1 2Q(r-, t) X (r - f) d

2 7r JIfB - I -7-01 ...dAO+U (8)

For detailed discussions of the integral representation for viscous flows the reader is referred

to [46, 45]. Equation (8) represents the kinematic relationship between the velocity and vor-

ticity fields of an infinite domain which is expressed as an integral form. The first integral
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represents the contribution of the vorticity field to the development of the velocity field over

the region D occupied by the visck,1us fluid, while the second integral gives the contribui-

tion from the rotation of th, - ,id body. Notice that both the no-penetration, the no-slip

boundary conditions on the solid surface and the far-field boundary conditions are implicitly

imposed within the integral (8). To be precise, if we let the calculated field point F0 go to

infinite in (8), the vorticity contribution will approach zero. Consequently, the boundary

condition at infinity is satisfied exactly in this integral representation of the kinematic rela-

tion. This indicates that the difficulty resulting from the imposition of far-field condition is

removed by an application of (8).

In numerical simulations, it has been reported that the imposed boundary conditions at a

large distance from the body will significantly influence the accuracy of the overall numeric(al

solution [10, 19]. It is therefore necessary to devise a technique to impose the appropriate

condition at the outer boundary of the computational domain. The integral approach in

(8) provides a useful method to accomplish this. To be precise, the integral representation

(8) permits us to determine the velocity (point-by-point) explicitly if all vorticity valulis are

known everywhere in the domain of interest. It will exhibit a more realistic behavior at the

outer perimeter of computational domain than those asymptotic techniques employed by

other formulations. Namely, if the computational domain is large enough to contain all of

vorticity generated around the solid boundary prior to a certain time, then at this instant

the velocity on the outer perimeter of computational domain can be evaluated directly by

the numerical integration of (8) with all the known vorticity field in the domain,

Additionally, if we apply equation (8) to the points of frb on the solid boundary, then the

integral formula becomes

1 f 20(F, t) x (f w - rr)

27rJB r- b1 dA+U. (9)

The boundary vorticity values are contained in this integral. Hence, by using the prscribed
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motions of body (i.e. U and 0(t)) and all of the known vorticitv field in tlhe (Ooniiii. thn"

determination of vorticity values at grid points on the solid boundary (-an be achifeve-d lbv !1e'

1iiuInrical integration of equation (9). However, many impl)ementatioins of flow siiit (ii,

nuake ust, of approximate formulae for the boundary vorticity, which may lead to excssiv.

error and thlerebv destroying the accuracy of the solutions.

When we solve the velocity field in an infinite domain we need only to take the :s;,couis

region (- X 0) into account, while contributions from the inviscid region vanishes ()

tteiice, an a pplication of this integral representation allows one to coin0 fiIC the O(' 1i I]nti,

to tie viscous region corresponding to the non-negligible vorticity po•rtion ,of the th w. iM

c(,nt r•st to employing domain methods (i.e. the finite-difference and finite-elnhmient r•it Ih is,)

in which both potential and viscous regions are needed in a simultaneous solution. This

nipliies the computational domain can be significantly reduced andl hence a snaIler numlber

of grid points are needed than those required by standard finite-difference and fiitil-'ieincit

hit hodts.

2.3 General Body-Fitted Coordinate

in order to accommodate problems with a time-dependent domain ii) the physical (x,')

space, the vorticity transport equation (1) and Poisson equation (2) can be rccaust. ili trls

of the time-varying generalized body-fitted coordinate systeri (ý, I) as

Wt = 'ýY - W'?YO ) - Y(W4X'7 - W71xý)

1+

2 2

RcJ2  Re

{ tý; - 2d ;i + T 'W:+ .I2(pu + (2u, 7W) =. Ji 1w, ')O-

where

f7 x1 + Y +y , f)=X'7 + Y017 -r, Yid, (12)
P = &,. + 12) Q 1 __ +l1=

8



Here J is the Jacobian of the coordinate mapping between the physical space (x, y) a::d the

computational space (ý, 71). All subscripts in (10)-(12) denote partial ditfer(ntiation. Also,

u and v denote as the velocity component in x- and y-direction, respectively. Notice that

this coordinate transformation will introduce two additional time-d(epenlent terms it and

Ye when a time-dependent flow domain in the physical space is considered. Ihowever. one

can calculate the solution in a fixed time-independent computational grid in this generalized

coordinate system because of the inclusion of xi and yj in the governing equations. Therefore.

even when a time-dependent domain is considered, the interpolation of boundary condlitf ins

and grid points employed in the physical space formulation is not necessary in this generalizeld

coordinate system. Moreover, it is also convenient to distribute the grid points within the

domain of interest if a complex flow geometry is encountered. In fact, such a distrii)ution of

grid points is particularly important for simulations in viscous flows, where the grid points

clustering near the surface is necessary to resolve the large gradients which appeare(d in a

thin region due to the viscous effec'

Because we wish to extend the results presented here to more general probleins withi

time-dependent domains, the computer code was written under this general body-fittedi

coordinate fcrmulation. However, in this work, the polar coordinate (r,0) is used for the

study of an unsteady flow around a rotating cylinder and the flow domain considered hrec

is time-independent since a reference frame translating with the cylinder is used. If a body

of arbitrary shape other than circular cylinder is considered (e.g. a rotating elliptic cylinder

or airfoil) then the domain of interest becomes a time-dependent feature even though the

reference frame is translating with the body. This occurs because of the rotat onal motion

of an asymmetric bodies with respect to a non-rotating reference frame.

2.4 Computational Procedure

The computational domain is discretized in the body-fitted coordinate system (,. 1/) hY

setting ý, = iAý, 7/j = jAr7 , and i = 1,-.., M, j = 1, ,N, where 11 and N denote the

number of grid points in the &- and rq-direction, respectively. The nunerical approxilnat ion of

9



the vorticity at the grid point (ýj, ri,) and time t" = nAt is denoted by w"7. = w"(i*A_ ,JA q).

The vorticity transport equation (10) is first discretized by a second order central differente in

the radial direction and a pseudospectral transform method in the circurnferential (Jirection

for all spatial derivatives. This semi-discretization form of equation (10), consisting of a

system of ordinary differential equations in time can be written as

dtbT'• =F c) (W2,2, - ,Af -1,N-I)r, (13)

for all the interior grid points. Therefore, the calculation procedure to advance the solution

for any given time increment can be summarized as follows:

Step 1: Internal vorticity over the fluid region at each interior field point is calcula tcd by

solving the discretized vorticity transport equation. An explicit second-order rational Runge-

Kutta marching scheme based on the work of [41] is used to advance in time for (13)

The discretization of (13) in time thus can be written as

, ; + 2 (14)
(43,g3)

with
t{ = F(c:)At

92 = F(,Dn + c4i)At (15)
g3 = (1 - b)41 - b42

where (, Z) denotes the scalar product. In order to ensure the stability of the above nonlinear

explicit scheme, the two constants b and c in (15) must satisfy be = -0.5. In particular,

b = -1 and c = 0.5 are used in our computations. Although this method is explicit in

nature, it may become unconditionally stable by the suitable choice of the constants in (15)

[17]. In addition, this particular scheme allows one to use a larger time-step than that of the

three-step Adams-Bash~orth scheme used by Chen [5]. This step consists of the kinetic pdrt

of the computational loop.

Step 2: Using known internal vorticity values at all the interior grid points from ste7p

1, the generalized Biot-Savart law of induced velocity (9) is used to update the boundary

vorticity values at all the surface nodes.

10



Step 3: At this stage, all the vorticity values in the computational domain arc known at

the new time level. Then, the velocity at points on the outer perimeter of the computational

domain is calculated by the integral kinematic constraint (8).

Notice that at each time step, the numerical integration of the first integral over the fluid

region in (8) is carried out by means of an isoparametric formulation which is used extensively

in the finite element method, while the second integral can be evaluated analytically over

the solid body B. The vorticity distribution over each distorted quadrilateral element in

the physical space are actually performed over a square in the isoparametric space. Further

details of the integration method can be found in Chen [5].

It is worthy of note that the evaluation of the integral (8) involves a problem associated

with the non-uniqueness of the solution. The principle of vorticity conservation imposed

by Wu [45] resolve such difficulty. For flows past single or multiple solid bodies, a more

immediate improvement to the principle of vorticity conservation is provided by Chen [5].

Step 4: The new internal velocity field can be established by solving the Poisson equations

(11) with prescribed solid boundary conditions and outer boundary conditions of the velocity

that have been determined from step 3.

The final form of the discretized Poisson equations can be written

Au = f( Av=(16)Av =f2,

where u and v are two vectors of unknown interior nodal values. Also, A is a 11-banded

matrix, while f, and f2 are vectors associated with the known forcing terms and boundary

conditions. The resulting 11-banded matrix equations are then solved by a preconditioned

biconjugate gradient routine [6]. This step completes the computational loop for each time

level.

One further important point to be noted in the integral approach is that the initial flow

field can be determined by the same solution procedure described above (from step 2 to

step 4). To be more precise, at time t = 0+ the unknown boundary vorticity values is

determined by solving integral (9) with zero vorticity values everywhere away from the solid

11



boundary surface. This is based on thle fact that the vorticity will concentrate on the body

surface in the form of a vortex sheet immediately after the body impulsively started. This

approach therefore reduces equation (9) to a boundary integral, indicate that the mnethod

can be viewed as the boundary element method utilized in the problem of the potential flow.

Once the boundary vorticity values are obtained, the initial velocity field can be determined

by solving equation (11) with the known velocity values at all points on the outer perimeter

of the computational domain which have been calculated by the integral (8). In contrast to

the special technique used by other methods, this integral approach enables the numerical

code to generate the initial velocity field simply by the implementation of one cycle of a

solution procedure rather than employing any additional treatments.

3. RESULTS AND DISCUSSIONS

In this section we apply the numerical scheme described above to simulate and control

the unsteady flow around a rotating cylinder that undergoes a variety of steady and unsteady

angular/rectilinear speed ratios at a Reynolds number of 200. The choice of this particular

Reynolds number is not due to the limitation of the numerical algorithm, it is mainly for

the purpose of comparing with the existing experiments of Coutanceau and M1nard in the

case of constant rotation for a rotating cylinder [8]. In this model, the rectilinear velocity is

fixed as a constant value while the angular velocity is treated as a control variable.

Although the choice of time-dependent rotation rates that may be used to control the

rotating cylinder are unlimited, the computational results presented here are restricted to

the following three types of rotation:

1. Constant speed of rotation: a(t) = constant.

2. Time-harmonic rotary oscillation: a(t) = A sin 7rFt.

3. Time-periodic rotation: a(t) = Al sin ir(F/2)t!.

Again, this choice was made because it allowed us to compare experimental and numerical

results and it matched the control experiments of Modi [25, 24]. All variables are normalized

12



to the nondimensional forms in the formulation. In a non-rotating frame attached to the

cylinder, the configurations for the different controls considered in the physical space are

sketched in Figure 1, together with the corresponding time evolution of tile angular vwlocitV.

Concerning the use of a time-harmonic rotary oscillation, it is common to define the

motion of angular rotation 0(t) as

0(t) = -Ocos27irft, (107

where 0 is the angular amplitude and f is the forcing frequency of the oscillation. Thus, the

associated time-dependent speed ratio is given by

a (t) = af(t) = AsinrrFt, (18)U

where F = 2af/U is the reduced forcing frequency and A = 7rFG is the normalized maximum

rotation rate of the forcing oscillation. In order to attain high lift and reduced drag, previous

work for constant rotation rates [7] lead us to consider one special type of time-periodic

rotation. That is, the cylinder under control is rotated in the counterclockwise direction

about its axis with a time-periodic speed ratio given by

a(t) = Alsinir(F/2)tl. (19)

Here, the reduced forcing frequency of this particular time-periodic rotation is F. This partic-

ular type of rotation is expected to provide a substantial lift enhancement and drag reduction

through a proper choice of both the angular amplitude (thus the normalized maxinuuni ro-

tation rate A) and forcing frequency (thus the reduced frequency F). This improvement can

be demonstrated by comparing its respective force performances against the time-harmonic

rotary oscillation.

The major goal of this paper is to study the effect of rotation rate control upon the

lift and drag on the cylinder surface. Hence, in the following discussion we concentrate o(

various issues concerning the development of temporal forces. In a viscous flow, it. is well

known that the total lift and drag forces are contributed by the pressure and skin friction (hie

13



to the viscous effects. An important consequence of using the vel(kcity/vorticity formulation

is that the forces can be directly evaluated from the known vorticity on the cylinder surface.

Hence, for known vorticity values on the cylinder surface, the lift and drag coefficients can

be calculated in the r-O coordinates by

CL(t) = CLP(t) + CLI(t) = weej ( Or r) CosdT + -jw(t)rcos0d9 7  (20)

and

CD(t) =C (t) +C2 j (t)) sinOdO-- 2 2w(t)rsinOdO, (21)

where the subscript r denotes quantities evaluated on the cylinder surface. The subscripts p

and f represent the contribution from pressure and skin friction, respectively. In particular,

we denote the positive values of CL in the negative y-direction (as noted in Figure 1).

To assess the accuracy of the numerical algorithm, computations were first performed

over a wide range of constant speed ratios up to 3.25 at a Reynolds number of 200. Several

particular speed ratio parameters were chosen to allow for the comparison against the ex-

perimental work of Coutanceau and M6nard [8]. Speed ratios greater than 2 are important

in the study of the possibility of suppressing vortex shedding by an application of higher

rotation rates. The details of the work using constant rotation rates were reported in [7],

where several numerical solutions were compared and demonstrated to be in good agreement

with experimental results.

In the computations below, a fixed flow domain is used and its extent is essentially

determined by the time-span under investigation. Namely, a larger computational domain

will be needed for a longer time of observation. Here, a circle of radius r = 24 and r = 36

are chosen for the time-span of 0 < t < 24 and 0 < t < 36, respectively. These long time

histories were necessary to demonstrate the periodicity of the flow pattern and evolution of

the forces. When a larger domain is considered, the mesh is increased in the radial direction

in order to properly discretize the domain. A uniformly spaced M = 128 in circumferential

direction is used for all computations, while N = 120 and N = 180 stretched grid lines
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in the radial direction axe used for the time-span under consideration. In the numerical

calculations, small initial time steps are taken in order to contain the inherent numerical

error caused by resolving of the infinitesimal vorticity layer at t = 0+. A detailed discussion

of the algorithm and the accuracy of the initial flow field can be found in [7].

3.1 Constant Speed of Rotation

Figures 2(a,b) show calculated instantaneous streamline plots for a constant value of

speed ratio of a = 2.07 at Re = 200 and compare these plots with the experimental work

of Coutanceau and M6naxd [8]. In the computation, the non-rotating reference frame is

translating with the cylinder while the camera in the experiment is moving with the cylinder

as well. Excellent agreement is obtained, despite the fact that a high velocity gradient is

induced in the near wake due to the cylinder rotation. Although not shown here, one partic-

ular interesting feature is the difference between the experimental work and our calculated

observation regarding the conclusion of suppressing of vortex shedding at high speed ratios.

In the computation using high speed ratios (at Re = 200, as reported in [7]), the calculated

equi-vorticity contours seem to imply that vortex shedding continues to occur even at high

rotation rates (a > 2.07). However, at these high a, the observed formation of the vortex

street behind a rotating cylinder seems to contradict the experimental conclusion described

in [8]. This difference is due to the fact that the experimental apparatus was such that only

10 dimensionless time units of data could be collected and in part by the flow visualization

techniques used in their experiments. On the other hand, it is important to note a recent

investigation by Badr et al. [2] regarding the issue of suppressing of vortex shedding. Their

tests were performed both experimentally and numerically at Reynolds numbers of Re = 101

and Re = 104. For a rotation rate of a = 3 at Re = 103, they show that no other eddy is

created after the shedding of two vortices. In addition, the temporal evolutions of the lift

and drag coefficients imply that a steady state is indeed approached.

Figure 3 shows plots of the time histories of lift, drag and lift/drag coefficients at various

values of speed ratios (0 < a < 3.25) and for time in the interval 0 < t < 24. As seen in Fig-
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ure 3(a), when the speed ratio is increased to 2.07, the lift increases tirnewise proportioially.

However, as the speed ratio further increases, lift appears to initially decreaýse theln inCra1ss

gradually at later times. Not surprisingly, the maximum value of CL that can be !e'iNv'.t Ly

rotation is also higher as the speed ratio grows. It is also observed that, at speed ratis lows r

than 2, the respective lift curves exhibit a well established periodic evolution. tlowe•ver, ill

the range of a > 2, it is not known whether the nature of this periodicity will colitimoe

if the time of investigation is expanded. Apparently, as can be seen from Figure 3(a), thle

cylinder rotation (as a boundary moving mechanism) does yield a substantial lift enhaiw'u.-

ment as indicated by the experimental work of Modi's group for airfoil/rotating cvlinudrs

configurations.

As illustrated by the drag curve in Figure 3(b), there is a substantial iricrease in drag

when the speed ratio is increased. In all cases considered here, these drag curves seeni to

converge after a certain time and then oscillate under different amplitudes and frequencies

thereafter. Detailed numerical results on the effect of the speed ratio to the resulting lift/drag

curve are shown in Figure 3(c). In the range 0 < a < 2.07, the lift/drag performance appears

to improve timewise (for 0 < t < 24) with an increase of a. If a comparison is made between

o = 2.07 and a = 0.05, a noticeable improvement of the lift/drag performance is observed.

Although a higher lift/drag ratio is achieved by increasing the rotation rate in this range, the

question arises whether any further increase of a will result in a continued improvement of

the lift/drag ratio. Intuitively, it is natural to expect a monotonical increase in the lift/drag

ratio as a increases to a = 3.25. However, this is not the case as a comparison is made

between a = 3.25 and a = 2.07. In fact, the lift/drag curves illustrate a gradually (decrease

in performance over certain time interval when the speed ratio increases beyond 2. Moreover,

this tendency toward lower lift/drag ratio becomes noticeable when a reaches the highest

value (a = 3.25) considered here. Nevertheless, for all a considered here, a significant

increase in the maximum value of CL/CD can be obtained by increasing (. H-owever, ';

found that it will reach its maximum value at a much later time for higher values of (k.
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3.2 Time-Periodic Rotation vs. Time-Harmonic Rotary Oscillation

The previous results only applied to constant rotation rates. In this section we consider

time-varying rotations. Although the maximum value of lift/drag ratio can be achieved at

a certain optimal constant rotation rate described above, this does not immediately imply

that the constant rotation will always yield a global maximum value of the lift/drag ratio

over a specific time interval. In fact, the general problem is to determine the optimal control

input among all time dependent rotation rates. As a first step towards solving this problern,

one needs to extend the computational calculations to the case of arbitrary tinie-dependent

rotation rates. Since we shall not attempt to solve the necessary conditions corresponding to

the optimal rotation rate problem and because the main goal of the paper is to gain insight

into the possible form of an optimal controller, we shall concentrate on two periodic inputs

and investigate the impact of each control on this problem. Hence, to keep) the paper of

reasonable length and the simulations simple we restrict our study to two periodic inputs.

It is well known that when a cylinder oscillates in a uniform flow, the associated forcing

oscillating frequency and amplitude can influence the vortex formulation and forces response

substantially [42, 44]. It has been experimentally shown that at Re = 200, the natural

Strouhal frequency of a non-rotating circular cylinder (a = 0) is approximately F,, = 0.185

[43]. It is of important to study the behavior of fluctuating forces at imposed forcing fre-

quencies which lie in the neighlorhood of the natural frequency. The temporal evolutions of

lift, drag and lift/drag are shown separately in Figures 4(a,b,c) for a time-periodic rotation

a(t) = I sin 0.25t1 and a time-harmonic rotary oscillation a(t) = sin 0.5t, respectively. In the

case of time-periodic rotation, the cylinder under control is rotated in the counterclockwise

direction about its axis with a time-periodic angular velocity. Notice that these two types

of rotation are employed by the same forcing frequency (i.e. F = 0.16) which lies in the

neighborhood of the natural frequency. The numerical results clearly confirm the expected

benefit of this time-periodic rotation for both lift and drag forces, as shown in Figure 4.

In comparing these two types of rotation, it should be noted that rotating in the same
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direction causes the lift curve '- be shifted upwards due to the nature of rotation, while the

drag curve is shifted downwards. In terms of performance, this corresponds to an increase of

the time-averaged lift force in the time-span of the investigation, while in the same time in-

terval, a substantial reduction of the time-averaged drag as well. The resulting improvement

of the lift/drag ratio is shown in Figure 4(c).

To demonstrate the influence of this time-periodic rotation on the temporal development

of these force coefficients, two additional values of the forcing frequency were tested. In

Figure 5, all the time histories of lift, drag and lift/drag coefficients are shown for a forcing

frequency (i.e. F = 0.08) which is 1/2 the frequency in Figure 4. As it can be seen from

Figure 5(a), except in an initial stage, lift is increased for the time-periodic rotation (a(t) =

I sin 0.125t1) when compared to the time-harmonic rotary oscillation (a(t) = sin 0.25t). Also

the drag is reduced as illustrated in Figure 5(b). However, the amount of drag reduction is

not significant over the time-span of the investigation. As would be expected, the resulting

lift/drag curves shown in Figure 5(c) exhibit almost the same behavior as those lift curves

illustrated in Figure 5(a).

Similar results are shown in Figure 6, where a higher rotation frequency (i.e. F = 0.32) is

imparted to the cylinder. As before, the time-periodic rotation at this frequency erlhances the

lift performance when compared to the time-harmonic rotary oscillation. However, notice

that the corresponding drag curves are oscillating about an "average value" in the time

interval under consideration, for both types of rotation. The improvement in the lift/drag

curve shown in Figure 6(c) is more noticeable when compared to the lift/drag curve in

Figure 4(c). Notice that none of the frequencies considered in Figures 5 and 6 are in the

neighborhood of the natural frequency.

In a detailed examination of all comparisons between two types of rotations mentioned

above, it is found that lift enhancement is not always timewise in the time interval under

investigation. The exact time at which the time-periodic rotation outperform the time-

harmonic rotary oscillation depends on the forcing frequency imparted to the cylinder. This
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occurs earlier for a higher value of forcing frequency. However, the drag curves have a signif-

icantly different character. The decrease or increase in drag depends on whether its forcing

frequency lies in the neighborhood of natural frequency or not. If the forcing frequency is in

the neighborhood of the natural frequency as the case in Figure 4(b), the drag curve exhibits

a substantial reduction. On the other hand, for the forcing frequencies which are not in the

neighborhood of the natural frequency as shown in Figures 5(b) and 6(b), the drag curves

changes only slightly. In addition, for these forcing frequencies, the respective lift/drag

curves are similar to the corresponding lift curves. This is due to the minor variations in the

drag curves.

3.3 Effects of Forcing Frequency and Angular Amplitude

Because of the above observations, it is worthwhile to investigate the effects of vari-

ous control parameters upon the force coefficients. A comparisons of force coefficients are

shown in Figure 7, corresponding to all three forcing frequencies described above. It can be

readily seen that these forcing frequencies have considerable influence on the amplitude and

frequency of the oscillatory forces.

In terms of performance, Figure 7(a) presents the evolution of lift coefficients ard shows

no clear advantage of changing the forcing frequency. However, as shown in Figures 7(a,b),

the rotation (a(t) = I sin 0.25t1) which lies in the neighborhood of the nature frequency

achieves a higher value of (CL)mat, and yields a slightly larger value of drag when compared

to the other two cases (namely, a(t) = Isin0.125tl and a(t) = Isin0.5tl). The lift/drag

curves shown in Figure 7(c) exhibit similar temporal evolutions.

It is also interesting to study the effect of angular amplitude on the temporal evolution

of forces while the forcing frequency is fixed as a constant. Figure 8 shows that resulting

forces on the cylinder can differ significantly at different angular amplitudes for a(t) =

Al sin 0.314t1. This rotation corresponds to a forcing Strouhal number of 0.2 which is in the

neighborhood of the natural Strouhal number of 0.185. The angular amplitudes considered

were A = 1.0, 2.07 and 3.25. Apparently, as can be seen from these figures, a larger angular
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amplitude definitely yields an incremental lift coefficient over the time-span of investigatiori

(0 < t < 36). However, initially the drag increases with an increase of A, then after a certain

time it oscillates with almost the same amplitude and frequency around an averaged value.

Consequently, this leads to a substantial improvement in lift/drag with increasing A, as

clearly shown in Figure 8(c). Nevertheless, the effect of angular amplitude is very noticeable

when compared to the effect of the forcing frequency shown in Figure 7.

3.4 Time-Averaged Value of Forces

Xve also examined the averaged values of the force coefficients over the time span of

investigation as various control parameters are altered. The time-harmonic rotary oscillation

(a(t) = sin 7rFt) described in §3.2 was considered with three different values of forcing

frequency. The forces were averaged with respect to the time (0 < t < 24). Figure 9(a)

shows the time-averaged values of lift, drag, lift/drag as the forcing frequency F is varied

between 0.08 and 0.32. This figure shows that the foicing frequency has a considerable

influence on the time-averaged values of the force coefficients. The local maximum values of

time-averaged lift, drag and lift/drag ratios correspond to the forcing frequency which lies

in the neighborhood of the natural frequency. This particular feature was also observed in

the numerical results of Mo [231 where it was shown that the drag peak occurs at the forcing

frequency equal to the natural frequency.

As for the cases of time-periodic rotation, variations of time-averaged forces coefficients

with respect to the forcing frequency are presented in Figure 9(b). As illustrated in the

figure, a forcing frequency in this range (i.e. 0.08 < F < 0.32) has little effect on the

time-averaged forces. Although the difference in time-averaged drag is minor, the forcing

frequency which lies in the neighborhood of the natural frequency (F = 0.185) corresponds

to a larger time-averaged drag and a smaller time-averaged lift.

The effect of angular amplitude on the time-averaged values of lift, drag and lift/drag

coefficients is shown in Figure 9(c), for a(t) = AlsinO.314t1 averaged over 0 < t < 36. For

A in the range, 1 < A < 3.25, all the time-averaged values are almost linearly proportional
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to the angular amplitude. Significant increases in lift coefficients with increasing angular

amplitude is particularly noticeable. This can be demonstrated by comparing the cs A =

3.25 with A = 1. It represents a 240% increment of lift performance. Hlowever, a sliglit

increment in the drag coefficients with increasing angular amplitude is also ob)serv,(t. A

moderate improvement of time-averaged lift/drag ratio is also seen.

In the case of a constant speed of rotation, it is also worthwhile to study the effect of

speed ratios on the time-averaged lift, drag and lift/drag coefficients. These results are

shown in Figure 10(a) for a in the range, 0 < a < 3.25, and in the time interval 0 < t < 24.

It illustrates that the time-averaged lift is almost linearly proportional to the speed ratio,

while the time-averaged drag remains as a constant value uI) to (k = 2, then imonotonicallv

increases with speed ratio thereafter. Most importantly, the time-averaged lift/drag is not

linearly proportional to the speed ratio. As shown in the figure, the highest value of the

speed ratio a = 3.25 considered here is not the optimal constant rotation rate corrcsponding

to the maximum value of time-averaged lift/drag. The maximum value occurs at a lower

speed ratio, approximately a = 2.38, and it represents a substantial increase of 440%/C over

the lower speed ratio a = 0.5. In Figure 10(b), the variation of the (total lift)/(total drwg)

force ratio with respect to the speed ratio is shown for a in the range 0 < (i < 3.25. Alt hough

a maximum is achieved at a value between a = 2.0 and aý = 2.38, it should be noted that

this optimal speed ratio is not necessarily the same optimal value as described in Figure

10(a).

The results presented in Figures 10(a,b) demonstrate an effective way of improving

lift/drag performance by changing the rotation rate and illustrate the important of select imef

a proper rotation rate in order to maximize performance. If one formulate this l)rol'hei ais

an op)timal control problem, then the time-averaged lift/drag ratio in Figure 10(a) rep)resents

the cost finction and the goal is to find an optimal control ae, among a set of restricted con-

trol parameters (constant values), that will provide the maximum value of the time-averaged
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performance functional
JT(,) = joLJ [cD(t,Q) at, (22)

where Tf is the final time. Similarly, the curve in Figure 10(b) represents the optimal control

problem defined by maxim "-ing the cost functional

ff" CL(t, a )dt (23)J2 (a) = fCnT ,odt

In theory, these optimal control problems can be solved by applying necessary conditions

for distributed parameter systems. However, computational methods for such necessary

conditions are complex and not yet fully developed. The results presented here may be used

to guide and test future computational schemes based on optimal control theory.

3.5 Synchronizations of Cylinder and Wake

The synchronization of cylinder and wake has long been known to be an important

component of vortex-induced oscillations [331. A detailed study of various types synchro-

nization for a body oscillating transversely in a uniform stream can be found in Williamson

and Roshko [441. For the case of time-periodic rotatior considered here, it is natural to ask

whether such synchronization can occur and how well the numerical results can predict the

occurrence of this important phenomenon. To the best of our knowledge, the current study

is the first work to investigate synchronization under the particular form of time-periodic

rotation described in previous sections.

An examination of the responses in Figure 4, shows that the combined system of cylinder

and wake will be "locked in" by an imposed forcing frequency. This synchronization of

the cylinder and wake is due to the fact that the forcing frequency of rotation (F = 0.16)

lies in the neighborhood of the natural frequency (F,, = 0.185). Notice that in the case

of time-periodic rotation shown in Figure 4, both lift and drag curves oscillate with the

forcing frequency (corresponding to a time period of T = 12.5), clearly exhibiting a periodic

response. However, in the case of time-harmonic rotary oscillation, the lift curve oscillates
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with the same forcing frequency (T = 12.5) while drag curve oscillates with the period of

T/2. Consequently, the lift/drag ratios oscillate at the same frequency (T = 12.5) for both

types of rotation.

For the case of time-periodic rotation a(t) = Al sin 0.314ti, we extend our observation to

a relatively longer time. For 0 < t < 36, an examination of these force curves for A = 1.0

in Figure 8 exhibits a periodic response with a frequency (F = 0.2) precisely equal to the

input forcing frequency (i.e. T = 10). Although this periodic behavior is not established for

A = 2.07 and 3.25, the corresponding curves are almost periodic in time. In order to confirm

this periodicity, a sequence of instantaneous streamlines are shown in Figure 11. In Figure

11, each plot is separated with an interval of one time period. These streamlines are plotted

in a frame fixed with the undisturbed fluid. The periodicity of the flow is clearly noticeable.

Two opposite-sign vortices are shed alternately on opposite sides of the cylinder at each cycle

of rotation. The vortex formation in the wake is similar to the case of a non-rotating cylinder

(a = 0). However, the midline of the vortex street has been displaced slightly upwards due

to the nature of rotation (in the counterclockwise direction).

In order to identify the range of frequency for this fundamental synchronization, we im-

pose a rotation rate a(t) = Isin 0.283t1 with a forcing frequency (F = 0.18) which is the

neighborhood of the natural frequency. The time histories of lift, drag and lift/drag coeffi-

cients shown in Figures 12(a,b,c) clearly demonstrate the periodic behavior of the response.

The corresponding streamline plots (at each instant) are presented in Figure 13. These results

show that there exists a range of forcing frequencies in which fundamental synchronization

will occur. However, the precise range of forcing frequencies leading to synchronization has

not yet been determined (computational time is the limiting factor).

In the case of time-harmonic rotary oscillation, the effects of the forcing frequency and

amplitude on a cylinder wake have been investigated experimentally by Tokumaru and Di-

motakis (401. Sevc;-al vortex formations were observed in the wake. Their experiments dealt

with a range of amplitudes and frequencies at a Reynolds number of Re = 1.5 x 10'. By fixing
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the reduced amplitude A in their experiments, four qualitatively different vortex shc(diw,1

modes were identified when the forcing frequency was increased. Although their experirivilt s

were conducted at a Reynolds number higher than the current study (Re = 200). we con-

ducted a similar investigation. Here, n. particular value of the rotation rate o(t) =2 sini 3.1t!

(corresponding to A = 2 and F = 1.0) was tested. Figure 14 shows the lift and drag historiens

up to t = 36. These curves are clearly periodic in nature. Under this 'orcing frequency, the.

lift curve oscillates with a period of T = 10, while the drag curve oscillates with a peorld

of T = 5. The instantaneous streamlines plots are presented in Figure 15, and they show

a time periodic flow pattern. Moreover, these results indicate that rotation may provide an

effective control of the cylinder wake.

4. CONCLUSIONS

An algorithm for computing the viscous flow past a rotating cylinder is presetnted and

applied to the problem of controlling cylinder forces by rotation. Several fundamental types of

rotation were considered. Using time-periodic rotations leads to a considerable improvement

in the force coefficients and was shown to be very effective, especially compared to time-

harmonic rotary oscillations. These results are significant because they show a proper choice

of the rotation rate can lead to improved flow fields. Very precise periodicity of the force

for certain cases was established, and this periodic behavior has considerable inipact oi

controlling the vortex formation in the cylinder wake. For the case of a constant speed of

rotation, two optimal control problems were considered and solved comlputationally.

These results demonstrate the feasibility of using boundary mechanisms for controlling

unsteady flows, and consequently can be applied to enhance the performance. Using such

mechanisms as a controller allows us to formulate a wide variety of optimal control Iprobl•'lfs

for fluid flow systems. Modifications of existing numerical algorithms needed for such cont rol

problems depend on performance and design constraints. For example, one may need the

niaxinnum (or minimum) lift to drag ratio in order to sustain a particular maneuver of a

supermaneuverable aircraft. Because of the complexity and importance of the relationshil)
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between vortex motion and cylinder forces, the first step in control design may be to seek a

specific type of rotation rate that will match all proposed goals.

A precise understanding of time-dependent moving surfaces in boundary layer control

may provide an effective way for lift enhancement and drag reduction. By treating the

rotation rate as a control variable in this model, we will eventually be interested in finding

the optimal control (i.e. a time history of the rotation rate) that maximizes (or ininimuln)

the lift-to-drag ratio over a fixed time interval. Although here the optimal control probllcm

associated with the constant rotation rate was solved by direct computations, it is still

important to explore the possible implementation of a computational algorithm to calculate

the optimal solution for the more general problems. The tools developed here can be used

to investigate fundamental questions regarding control of separated flows by using various

1)oundary control mechanisms. Future work needs to be done in the development of new

computational algorithms for solving complex optimal flow control problems.
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FIGURE 1: Schematic of the rotating cylinder with three types of rotation: (a) a(t)
aQ(t)/U = constant; (b) a(t) = A sin rFt; (c) a(t) = Al sin 7r(F/2)tl.
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(a)

FIGURE 2: Instantaneous streamlines plots for Re = 200,a = 2.07 at (a) t - 5.0, (b)

t = 9.0: computed (left); flow-visualization pictures (right).
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FIGURE 4: Comparison of temporal evolution of the lift (a), drag (b) and lift/drag (c)

coefficients for a time-periodic rotation a(t) -I sin O.25t (T = 12.5) with a time-harlonic

rotary oscillation a~t) = sin 0.5t (T = 12.5) at Re = 200 for 0 < t < 24.

34



(a)

S.-.--.- sinO.25t

IsinO. 125t I

C 0

-2 ""

-3

.,. . . .I , ... . .. ...

0 4 S 12 is 20 24

(b)

4. .. sinO.25t
IsinO. 12 5t 1

~ c)

o 4 a I2 1 20 24

S. ..sinO.25t

FIGURE 5: Comparison of temporal evolution of the lift (a), drag (b) and lift/drag (C)
coefficients for a time-periodic rotation a(t) = IsinO.125t1 with a time-harmonic rotary

oscillation (t) = sin 0.25t at Re = 200 for 0 <t < 24.

35



s~nt

IsinO.50

3

2

.2

-4
0 4 a 12 is 20 24

(b)

4 sint

IsinO.5tl

2

C

0 4 0 12 Is 20 24

(C)

...... sint
IsInO.5tl

CL/SO .
-- 1

.31

3 I I , I I I !

0 4 a 12 i0 20 24

FIGURE 6: Comparison of temporal evolution of the lift (a), drag (b) and lift//drag (c) co-

efficients for a time-periodic rotation a(t) = Isin 0.5t1 with a time-harmonic rotary oscillatiorn

a(t) = sint at Re = 200 for 0 < t < 24.
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FIGURE 7: Temporal evolution of the lift (a), drag (b) and lift/drag (c) coefficients for a
time-periodic rotation (k(t,) = sin rr(F/2)tI at Rle = 200 with various forcing freqtuenc~ies of
F = 0.08, 0.16 and 0.32 for 0 < t < 24.
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FIGURE 8: Temporal evolution of the lift (a), drag (b) and lift/drag (c) coefficients

for a time-periodic rotation a(t) = Al sinO.314tj at Re = 200 with various amplitudes of

A = 1.0, 2.07 and 3.25 for 0 < t < 36.
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FIGURE 9: VariationL of time-averaged forces coefficients with respect to the forcing

frequency and the angular amplitude: (a) a(t) = sin~rFt and 0.08 < F < 0.32; (b)

a(t) = I sin r(f/2)ti and 0.08 < F < 0.32; (c) a(t) = Al sin 0.314ti and 1 < A < 3.25.
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FIGURE 10: Effect of the speed ratio on time-averaged lift, drag and lift/drag coefficients

(a) and on total lift/total drag force ratio (b) for 0 < a < 3.25.
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(b)

(C)/

FIGURE 11: Instantaneous streamlines plots for Re =200, ak(t) = sin 0.314t1 (F =0.2),

viewed from a frame fixed with the undisturbed fluid. (a) t = 16, (b) t = 26, (c) t = 36.
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FIGURE 12: Temporal evolution of the lift (a), drag (b) and lift/drag (c) coefficients for

a time-periodic rotation c•(t) = Isin0.283t1 (F = 0.18) at Re = 200 for 0 < t < 36.
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FIGURE 13: Instantaneous streamlines plots for Re = 200, a(t) = I sin 0.283t1 (F = 0.18),
viewed from a frame fixed with the undisturbed fluid. (a) t = 14, (b) t = 25, (c) t = 36.
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FIGURE 14: Temporal evolution of the lift (a) and drag (b) coefficients for a time-harmonic

rotary oscillation a(t) = 2sin3.14t (F = 1.0 and A = 2) at Re = 200 for 0 < t < 36.
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FIGURE 15: Instantaneous streamlines plots for Re 200, a(t) =2sin3.14t (F = 1.0

awl A =2), viewed from a frame fixed with the undisturbed fluid. (a) t =16, (b) t =26,

(c) t = 36.
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