
AD-A265 445

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
,I t ELECTE

JUN 4 '"I93

C

THESIS

ON THE USE OF CHAOTIC DYNAMICAL
SYSTEMS TO GENERATE PSEUDORANDOM

BITSTREAMS

by

James E. Heyman

March 1993

Thesis Advisor: Jeffery J. Leader

Approved for public release; distribution is unlimited.

93-12542
,,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTtONIAVAILABILITY OF REPORT

SApproved for public release; distribution is unlimited.
2b, DECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (if applicable) Naval Postgraduate School

31

c. ADDRESS (City, State, andZIP Code) 7b. ADDRESS (City, State, andZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Program leflement No ProKct NO tail, NO *Ork Unit Ac(rw.o'

1 . TITLE (Include Security Classfication)

ON THE USE OF CHAOTIC DYNAMICAL SYST! MS TO GENERATE PSEUDORANDOM BITSTREA MS

12. PERSONAL AUTHOR(S) Heyman,James E.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To Marcb 1993 102

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Chaotic dynamical systems and pseudorandom bitstream generators

19. ABSTRACT (continue on reverse if necessary and identify by block number)

There exist a variety of coding applications that require the generation of pseudorandom bitstreams. Such sequences must meet the conflicting
requirements that they be reliably repeatable as well as unpredictable. That is, neither knowledge of a small sub-sequence nor an imperfect
knowledge of the initial conditions (i.e. the key) will be sufficient to recover the entire sequence.

In this thesis we exploit the inherent unpredictability of a chaotic discrete dynamical system. Specifically, we develop a mapping of the Henon
horseshoe attractor into the binary domain {0,I} and demonstrate that the sequences produced meet specified criteria of pseudorandomness.

5

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

-aUNCLASSIIDUNLIMIT 13SAME AS REPORT13DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Jeffery J. Leader (408) 656-2335 MA/IA

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

On the Use of Chaotic Dynamical
Systems to Generate Pseudorandom

Bitstreams

by

James E. Heyman
Lieutenant, United States Navy
B.A., Macalester College, 1982

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
March 1993

Author: -• K "
,6- James E. Heyman

Approved by: (2
' ¥j~ J. der, Thesis Advisor

Mark Stamp, Second Reader

zaa

Richard Franks, Chairman
Department of Mathematics

ii

ABSTRACT

There exist a variety of coding applications that

require the generation of pseudorandom bitstreams. Such

sequences must meet the conflictinq requirements that they

t be reliably repeatable as well as unpredictable. That is,

neither knowledge of a small sub-sequence nor an imperfect

knowledge of the initial conditions (i.e. the key) will be

sufficient to recover the entire sequence.

In this thesis we exploit the inherent unpredictability

of a chaotic discrete dynamical system. Specifically, we

develop a mapping of the Hinon horseshoe attractor into the

binary domain {0,l} and demonstrate that the sequences

produced meet specified criteria of pseudorandomness.

IDTIC 13A~7

Accesion For

K FI CRAMI
DTIC TAB
IUncnno-;nced Q
JuStfhcdt~on

By
Dstribution !

Availability Codes

I Avaij andlor
Dist Sg•ecia

iii

TABLE OF CONTENTS

I. INTRODUCTION .*... 1

A. APPLICATIONS OF PSEUDORANDOM BITSTREAMS . . . 1

B. HOW RANDOM IS ADMORN? 4

C. GENERATORS VS. SEQUENCES 6

D. TESTS FOR PSEUDORANDOMNESS 8

II. COIN FLIP SEQUENCE (THE GOOD) 10

A. METHODOLOGY 10

B. BALANCE 10

C. AUTOCORRELATION 12

D. RUNS 14

E. LINEAR COMPLEXITY 19

III. STACKED SINE WAVE SEQUENCE (THE BAD) 22

A. METHODOLOGY 22

B. BALANCE 23

C. AUTOCORRELATION 24

D. RUNS 25

E. LINEAR COMPLEXITY 30

IV. HtNON GENERATED BITSTREAM (THE CHAOTIC) 32

A. METHODOLOGY 32

B. BALANCE 43

C. AUTOCORRELATION 50

D. RUNS 53

E. LINEAR COMPLEXITY 64

V. CONCLUSIONS 66

iv

APPENDIX A . 70

APPENDIX B . 73

APPENDIX C . 77

RUNBAL.M 77

AUTOCORR.M 78

RUNS.M . 79

LINCOMP.N . 80

HENREAL.M . 81

HENON.M . 82

INIT.M . 83

MEDBATCH.CPP 84

SENSITIV.M 85

PERIOD.FOR 86

BALTEST.M 87

APPENDIX D 88

APPENDIX E 89

REFERENCES 90

INITIAL DISTRIBUTION LIST 91

Av

FIGURES

Figure 1: Coin flip balance 11

Figure 2: Coin flip autocorrelation 14

Figure 3: Coin flip runs of length 2 16

Figure 4: Coin flip runs of length 3 16

Figure 5: Coin flip runs of length 4 17

Figure 6: Coin flip runs of length 5 17

Figure 7: Coin flip runs of length 6 18

Figure 8: Coin flip runs of length 7 18

Figure 9: Coin flip runs of length 8 19

Figure 10: Coin flip linear complexity 20

Figure 11: Bad sequence balance 23

Figure 12: Bad sequence autocorrelation 24

Figure 13: Bad sequence runs of length 2 25

Figure 14: Bad sequence runs of length 3 26

Figure 15: Bad sequence runs of length 4 26

Figure 16: Bad sequence runs of length 5 27

Figure 17: Bad sequence runs of length 6 27

Figure 18: Bad sequence runs of length 7 28

Figure 19: Bad sequence runs of length 8 28

Figure 20: Bad sequence linear complexity 30

Figure 21: Hfnon attractor #1 33

Figure 22: H6non attractor #2 33

Figure 23: Sensitivity to initial conditions I . . . 34

Figure 24: Sensitivity to initial conditions II . . . 35

Figure 25: Distribution of initial points 37

vi

Figure 26: Determination of H~non median value 38

Figure 27: Balance over 100-length sequences 44

Figure 28: Balance over 500-length sequences 45

Figure 29: Balance over 1000-length sequences 45

Figure 30: Balance over 2000-length sequences 46

Figure 31: Balance over 5000-length sequences 46

Figure 32: Balance over 10000-length sequences 47

Figure 33: Summary of balance test 48

Figure 34: Balance of short sequences 49

Figure 35: Typical H~non autocorrelation 50

Figure 36: Average H~non autocorrelation 52

Figure 37: Typical long Hfnon autocorrelation 53

Figure 38: H~non sequence runs of length 2 54

Figure 39: H~non sequence runs of length 3 54

Figure 40: H~non sequence runs of length 4 55

Figure 41: H6non sequence runs of length 5 55

Figure 42: H~non sequence runs of length 6 56

Figure 43: H~non sequence runs of length 7 56

Figure 44: H6non sequence runs of length 8 57

Figure 45: Tick-tock behavior of H~non sequence . 59

Figure 46: H~non vs. 01...01 (8192 points) 60

Figure 47: H6non vs. 01.. .01 (1024 points) 61

Figure 48: H6non vs. 01...01 (64 points) 61

Figure 49: H~non vs. random sequence (8192 points) 62

Figure 50: H~non vs. random sequence (1024 points) 63

Figure 51: H~non vs. random sequence (64 points) . . . 63

vii

Figure 52: H~non linear complexity 65

viii

ACKNOWLEDGEMENT

This thesis is dedicated to my brother Tony,

the most chaotic person I know.

ix

I. INTRODUCTION

A. "FPLICATIONS OF PSEUDORANDOM BITSTREAMS

There are many applications in a variety of fields that

require the use, and hence the generation, of pseudorandom

binary sequences (PRBS). A familiarity with these is not

central to this thesis but some will be used as examples

and, as such, will be reviewed here. The first, dnd most

commonly cited use, is in the field of cryptography where

PRBS are used to encrypt and decipher communications. In

the following example the ASCII representation of the letter

"J" is encrypted and deciphered using a segment of a, for

now mysteriously produced, pseudorandom sequence. The

method used is to add the plaintext to the encrypting

sequence bitwise modulo 2.1 The ciphertext would then be

transmitted and at the other end would be deciphered by

adding the deciphering sequence again using mod 2

arithmetic.

1001000 plaintext "J"
+ 0110010 encrypting sequence

1111010 transmitted ciphertext "z"
+ 0110010 deciphering sequence

1001000 plaintext "J"

It should be clear that the encrypting/deciphering

sequence must be held by both the party sending the message

and the receiving party. This however, as the masseuse

would say, is the rub since there are only two basic ways to

do this. The first is to distribute the actual key to all

See Appendix A for a quick lesson in mod2 math.

1

parties involved. This is essentially the one time pad

method and while it is provably a cryptographically strong

approach (Shannon, 1949, pp 656-715) it has some obvious

physical security and logistical disadvantages. The second

is to distribute a sequence generating algorithm either in

software or hardware and then pass the algorithm input that

was used to encrypt the message, i.e. the key, along with

the message or distribute a list of keys every couple of

weeks or months (for example). Since the key itself isn't

necessarily secure, the integrity of the system is dependent

on the generator's inherent resistance to attack.

Another example of using pseudorandom bitstreams is in

an account/password scheme. Without implying that this is

how it is done consider the common bank ATM which reads an

account number off a card and then combines it with an

individual's Personal Identification Number (PIN) to either

grant or deny access to the account. If the account number

and PIN represent two initial conditions for a generating

scheme then a conceivable procedure would be to run off

several thousand bits and then compare the next, say, 50

bits to the 50-length string that is stored in the bank's

records. This can be easily done by adding the two 50 bit

strings together bitwise mod2 so that if they match the sum

is zero whereas an unsuccessful combination would give a

non-zero sum. The strength of this scheme is dependent on

the generated bitstream having a high sensitivity to initial

2

conditions so that a guessed PIN that differs from the

correct PIN by just a little results in a different 50 bit

sequence. The potential effectiveness comes from the

enormity of the task of guessing which of the 2 =

1,125,899,906,842,624 combinations is the right one. Of

course, this is a somewhat contrived example since in

reality the account number is fixed and all variability must

come from the four to six digit PIN which is why the

preferred method of hacking into an account is to find out

someone's account number and then exhaust the 104 to 106

possible PINs.

Still another example of an application where

pseudorandom bitstreams are used is spreading codes (NSA

1981 Ch. 3). These are used in two very different ways.

The first is a communication scheme that repeats a given bit

in the plaintext n times and then adds a bit from a

pseudorandom bitstream to each of them. Although this

reduces the effective transmission rate by a factor of the

"chip rate" it also reduces the signal to noise ratio to the

point that the signal actually looks like noise. Thus

security is gained not so much by enciphering the message

but rather by hiding the existence of the message itself.

The other use of spreading codes is to al~ow multiple

signals to be carried over a single frequency simultaneously
which is a basic description of how the Global Positioning

System (GPS) receiver, operating at a chip rate of 10 Mhz,

3

can sort out the signals for all the satellites in view even

though they are broadcasting on the same frequency. Note

that this highlights the need for strong autocorrelation

properties which will keep the channels from overlapping.

B. HOW RANDOM IS ADMORN?

That the fourth word of this section's title is an

anagram of the second word is pretty obvious. While it is

tempting to say that "admorn" is "random" mixed up randomly,

the permutation was determined by the roll of a die. So on

one hand, before the mix-up there was no hint of which of

the 6! possible spellings would occur and thus the spelling

is unpredictable and therefore random. But on the other

hand, the procedure was well defined and didn't depend on

any processes tha%- aren't covered by known physical laws so

it would seem that it isn't random. One thing is for

certain however, and that is that it cannot be both.

Combined with the earlier discussion on applications this

leads us to the somewhat fundamental question of what is

meant by the term pseudorandom as a descriptor of a

bitstream. A good starting point is the common intuitive

notion of randomness which perhaps is best embodied in the

common coin flip. Before we let a humble quarter decide

such earth shattering events as which team shall choose

whether to receive the kickoff we make some implicit, albeit

basic, assumptions. Among these are that no matter who the

flipper is heads are as likely as tails and that, no matter

4

how the flip has come up before, the next one is independent

of the previous events. On the surface of it this would

seem to fulfill the requirements that a random process be

neither predictable nor repeatable. But it is here that we

must make an important distinction as to what is meant by

predictable (and also repeatable). Although it may seem

haphazard a coin flip is, in fact, controlled by physical

laws. The thumbnail is a certain distance from the coin

centroid, the coin has a particular mass, the air a specific

density and so on. As such, it is a deterministic process

and thus not really random after all. But if true

randomness requires a non-deterministic process can there

ever be a truly random event? Without getting into the

theology of a god who plays dice with the universe (a

questionable example since the die toss is itself

deterministic) we can limit our statement to say that the

predictability of the coin flip may be beyond the ability of

us mere mortals but we must differentiate between what we

can predict and what is in fact predictable (Stewart, 1991,

p. 286). This gives us the first clue as to what

constitutes a pseudorandom process: not easily predictable

but still repeatable. Which is quite similar to our basic

working definition of chaos which describes a process as

chaotic if it is "random" (i.e. non-predictable) and

deterministic (i.e. repeatable). Granted that when viewed

in the context of chaos the term "non-predictable" refers

5

more to a sensitivity to initial conditions, which will be

discussed as part of the individual generating schemes, but

for now we will proceed with this suggestive parallel

between pseudorandomness and chaos.

C. GENERATORS VS. SEQUENCES

At this point it is important to distinguish between a

sequence generator and the sequence generated. An ideal

generator will be extremely sensitive to initial conditions,

computationally simple, and will give rise to sequences that

have long periods. As discussed earlier, the first of these

requirements is tied to the unpredictability of the system.

The second, whether the system is implemented in hardware or

software, is necessary to achieve the high bit rates that

some applications such as spreading codes require. The

third criterion comes from two sources. The obvious one is

that a coding scheme that is periodic within a single

application is very weak. A slightly more subtle advantage

comes from eliminating an inherent disadvantage of using

linear or non-linear shift registers. Shift registers, by

their nature, have a fixed period and the only way to get a

longer period is to build a bigger shift register. But if a

simple scheme were to have sufficiently long period then any

practical length requirement could be met just by letting

the generator run longer. The potential advantage of

constructing a generator in this manner is to exploit the

6

central tenet of chaos: simple systems can produce

complicated results.

Our proposed method of generating bitstreams is to use

a discrete dynamical system that behaves in a chaotic manner

and is at least thought to possess a strange attractor. We

then map the orbit into the binary domain which results in a

bitstream whose pseudorandomness can then be investigated

via a series of tests. An obvious concern at this point is

whether computing the orbit on a finite precision machine

causes us to lose the chaoticity on which this entire scheme

is dependent. Fortunately, by the shadowing lemma, this is

not a problem since the overall effect of the finite

precision is to push the orbits into a chaotic realm of

their own (Peitgen, Jirgens, Saupe, 1992, ch. 10.8). The

simplest way of explaining this is that the use of floating

point numbers and the associated arithmetic induces a small

error but this error will be picked up by the system's

sensitivity to initial conditions. No problem. Granted the

orbits will be different than if calculated with infinite

precision but all of the chaoticity will be preserved.

Whether or not the bitstream is chaotic is a question that

can be answered, in short, in the affirmative. The proof of

this is not terribly difficult but it is a tad irrelevant as

it is enough to show, for coding purposes, that the sequence

is pseudorandom in some sense. This distinction goes to the

core of our work which is to show that the output of a

7

chaotic dynamical system can be mapped from the floating

point domain to the binary domain in such a way that the

resulting binary stream will be pseudorandom.

In the end we decided to use the H~non horseshoe map

because it is thought to be chaotic and, equally important,

it is easy to calculate. This attractor will be described

fully in chapter IV.

D. TESTS FOR PSEUDORANDONNESS

In evaluating the pseudorandomness of binary sequences

there are several criteria that need to be met. Some of

these, such as sensitivity to initial conditions and period

length, deal with the characteristics of the generation

scheme itself. Others are concerned with the concept of how

"random" the actual sequence is. For this latter group we

will follow the approach used by R. Forr6 (1990) and base

the discussion on the basic randomness postulates: runs,

balance, and autocorrelation (Golomb, 1982, pp25-27). In

addition we will also consider the linear complexity profile

measure proposed by Reuppel (1986, ch. 4).

Although all of these tests are explicitly defined,

what constitutes a passing grade is either not delineated or

is described so closely that it is applicable only in

theory. This is not as big a problem as it may seem since

the entire question of how random is random enough is

application dependent and a given application may have

different requirements. A password/account scheme needs to

8

have a high sensitivity to initial conditions, a

cryptographic sequence might require a high level of linear

complexity while a spreadfspectrum application depends on a

good autocorrelation profile to maintain channel separation.

Rather than get bogged down in trying to enumerate the

technical requirements of specific uses we will use a two-

pronged approach of describing a general but practical

requirement. The first is to examine what these statistical

tests result in when applied to a process that is reasonably

assumed to be random (or at least non-repeatable). The

second is to develop an understanding of the impact of each

statistical consideration from the standpoint of someone

trying to predict/guess the entire sequence based on the

knowledge of only a portion of it. Rather than define these

concepts abstractly we will describe them with two examples

of bitstreams, one of which shows good pseudorandom

properties while the other does not.

9

II. COIN FLIP SEQUENCE (THE GOOD)

A. METHODOLOGY

As an example of "randomness" we generated a binary

sequence by flipping a coin 1000 times and assigning a 1 for

heads and a 0 for tails.2 The previous discussion of the

deterministic nature of a coin flip is relevant to a point,

in that if the height of the flip is limited to 4-6 inches

then the process takes on the characteristics more of

juggling in that the coin will spin a particular number of

times. In that regime we found that heads could be made to

come up almost 70% of the time. Above that height, however,

it takes on the look of baton twirling in that it goes up

spinning but how it comes down is for all practical purposes

unpredictable and unrepeatable. Thus this limited range

could be considered to be the "linear" regime of the process

whereas a flip that goes above 6" will be said to enter the

"non-linear" zone. Be that as it may, we believe that most

people would accept, since we used the non-linear zone, that

this represents a reasonably "random" process.

B. BALANCE

The first and most obvious consideration is balance.

Golomb's first postulate says that, given a proposed

pseudorandom sequence, the difference between the number of

l's and O's should be no more than one (Golomb, 1982, p.25).

Even he acknowledges that this is a little on the strict

2 See Appendix D for the coin flip binary sequence.

10

side and refines this to say that the number should be

"nearly equal". The value of this is obvious since if we

consider a guess-the-sequence situation and the sequence was

not balanced then we could simply guess all l's or all O's

and make great headway. This concept also appeals to the

intuitive sense that in flipping a coin there should be an

equal probability of heads or tails.

The following figure displays the running mean of the

coin flip sequence 3 . The graph depicts the expected central

tendency pull and the final fraction that is heads is .486.

rumning bolonce of 1000 cobm fl;ps
0.7,, ,

0.6 -

• 0.5

S0.3

S012

0.1

0 100 200 300 400 500 600 700 800 900 1000

Figure 1: Coin flip balance

3 See Appendix C for runbal.m program listing.

11

This still leaves open the question of how close to .5

the balance has to be. While different users will have

different needs we will adopt a 95% confidence interval on

the mean of a 1000 point random binary sequence. This

results in a calculated mean, and thus the balance, between

.47 and .53 being judged good enough. This is also

consistent with the range of acceptability given by H.

Fredrickson of the Naval Postgraduate School. 4

C. AUTOCORRELATION

The next consideration is a sequence's autocorrelation.

This is i measure of how well the sequence correlates to

shifts of itself and so we shall start with a small

digression into what is meant by correlation. For an

individual correlation of two distinct sequences, we use the

measure of the absolute value of agreements minus

disagreements divided by the number of agreements plus

disagreements (aka the total number of bits). The "obvious"

way of measuring this might seem to be to take the number of

agreements and divide by the total. The following example

will serve to compare the two measures.

0101101100 original sequence
1111010110 guessed sequence

x x x x agreements

There are four agreements and six disagreements which

results in an "obvious" correlation of .4, but using our

4 Classnotes from Fall 1992 MA4570 Cryptography class.

12

method the correlation is .2. Both of these methods share

the property that if two sequences are similar then the

correlation will be near one while if they are dissimilar

they will be near zero. The benefit of the non-obvious (and

correct) way is that, considering the prospect of guessing

the sequence, there is a penalty for wrong guesses.

Consider the example of trying to guess at a perfectly

balanced sequence by guessing all l's. Under the "obvious"

measure these two sequences would have a correlation of .5,

but there hasn't really been any progre3s in learning about

the sequence. By using agreements minus disagreements the

score would be zero and this reflects a discounting of lucky

guesses. It's somewhat akin to playing billiards where

uncalled shots do not count.

Back to autocorrelation. The autocorrelation is the

correlation of every shift of a sequence with the sequence

itself.5 Ideally, when applied to an infinite length

aperiodic sequence, this function should be two-valued and

equal to one if the sequence is not shifted and zero

otherwise (Golomb, 1982, p. 26). For the finite length

sequences that we will work with the latter expectation is

revised to "something small". In the following graph, the

zeroth, or unshifted, lag is moved to the center. As

exhibited, for a sequence with good autocorrelation property

5 See Appendix C for autocorr.m program listing

13

we would expect to see a spike in the middle with the curve

tapering off rapidly in each direction.

outocorrelotion of 1000 coin flips

0.8

0.6-S0

0.4

0 100 200 300 400 500 600 700 800 900 1000

Figure 2: Coin flip autocorrelation

The exact shape and size of the sidelobes for a passing

grade is once again dependent on the specific application

but for general discussion we have adopted the standard that

the sidelobes should be below a value of .1 when the spike

at the zeroth lag is normalized to one.

D. RUNS

The runs property is one that is best described

intuitively. The idea is that in a given sequence there

should be no sub-sequences of length n that show up any more

frequently than any other sequence of the same length. For

14

example, there are only four possible sub-sequences of

length two (00, 01, 10, 11), corresponding to the decimal

numbers (0, 1, 2, 3), and each should show up one fourth of

the time. Precisely it is that in a sequence, 1/(2-i) of

the runs should have length i. Once again this is a bit

strict in practice since only full-length shift registers

(FLSRs), of all (general) linear feedback shift registers,

are guaranteed to have this property (Golomb 1982 p. 44).

If one is not dealing with FLSRs then we suggest that

passing this test perfectly would indicate that the sequence

has a degree of regularity that is perhaps too high. Rather

along the lines of having an event that happens, on average,

52 times a year actually occurring exactly once per week.

We will examine the value of this test later in a guessing

context but for now we state that a graph of runs that does

not display any obvious peaks or valleys will be considered

well balanced n-tupely speaking. 6 The following seven

graphs indicate how performance on this test degrades as

longer length runs are considered.

6 See Appendix C for runs.m program listing.

15

2-tuples from 1000 coin flips

300

250

200

150

100-

50

0 2 3

docil'oI equlvolsnt of 2-tuolto

Figure 3: Coin flip runs of length 2

3-tuplas from 1000 coin flips
140

120

100

V• 80

60

40

20

0
0 1 2 3 4 5 7

decimal equivolent of 3-tupiss

Figure 4: Coin flip runs of length 3

16

4
-- tuples from 1000 coin fliou

80 •

70

60 - --]_

50-

40-

30-

20

.0
"0 *- -- -!'

0 2 4 6 8 10 12 14

decimal equivalent of 4-tuples

Figure 5: Coin flip runs of length 4

5-tuples from 1000 coin flip$
45

40-

35-

30 -

i, 252 -
C 20

15 -
15

10

0 5 10 15 20 25 30

decimal equivalent of 5-tuples

Figure 6: Coin flip runs of length 5

17

6-tuples from !000 coin flips

25

20-

15-

10.

5-

0
0 10 20 30 40 50 60

decimal equivalent of 6-tuples

Figure 7: Coin flip runs of length 6

7-tuples from 1000 coin flips
16

14

12

10

6

2-

0 20 40 60 s0 100 120

decimal equivalent of 7-tuples

Figure 8: Coin flip runs of length 7

18

08-tupls from 1000 coin Moios

t0 11 1 1 ,n

0
0 50 100 150 200 250

decimol oquivolert of 6-tuplle

Figure 9: Coin flip runs of length 8

E. LINEAR COMPLEXITY

The final test is the linear complexity of the

sequence, which is the minimum length linear feedback shift

register7 that could have produced the sequence. 8 The

Berlekamp-Massey algorithm is based on the fact that, for an

n stage shift register, the n+lst bit is determined by the

ist through nth bits. Likewise the n+2nd bit is determined

by the 2nd through n+lst bits and so on. Doing this n times

results in a solvable system of n equations in n unknowns

which, when solved, gives the shift register function.

SSee Appendix B for a quick lesson on shift registers.

S See Appendix C for lincomp.m program listing.

19

Since no more than 2m bits are required to determine a shift

register generated sequence of length 2'-1, in a

pseudorandom sequence the first n bits should have a

complexity of n/2 (Rueppel, 1986, p. 33). This ideal

results in the profile roughly tracing the n/2 line as can

be seen in the figure below (here we have used an algorithm

which approximates the linear complexity). Note that there

are several areas where the profile temporarily deviates

from the ideal curve.

limeor complexity of 1000 coin flips
Soo

400-

S300-

200

100

00

0 100 200 .300 400 500 800 700 800 900 1000

Figure 10: Coin flip linear complexity

20

This serves as an example of how in a truly random

sequence there will be regions in which statistical clumping

occurs. In these areas there are sub-sequences that can be

produced by a shorter shift register. Eventually, however,

the curve will return to the n/2 line in accordance with

central tendency theory.

The process of calculating the linear complexity is

actually based on finding the generating function and

tracking how the degree of this function changes. However,

it should be recognized that what is really found is a

function that could have generated the sequence and thus

serves more to simulate the actual generation process.

21

IlI. STACKED SINE WAVE SEQUENCE (THE BAD)

A. METHODOLOGY

By way of contrast we constructed another series by

adding three scaled sine curves together, throwing in a

small periodic sub-sequence, and then repeating most of the

sequence to make it almost periodic. To convert the

sequence from the rational domain to binary we set a split

point and assigned a 1 to any number greater than that point

and 0 to the rest. 9 Obviously we do not advocate this as a

generation scheme (we are professionals, please don't try

this at home) but the sequence created is instructive when

tested in the same way as the coin flip sequence.

9 See Appendix E for bad binary sequence.

22

B. BALANCE

The following figure displays the running mean of the

bad sequence. Although the graph exhibits the desired, and

anticipated, settling down to a mean value it turns out that

the actual value is .545 which is outside of our acceptable

range. This points out the need to look not only for

convergence but also at the sequence's sample mean.

runneing Lalonce of 1000 Point bad lequence0.7

0.6

S0.5

0.1

0 100 200 300 400 500 600 700 800 900 1000

Figure UI: Bad sequence balance

23

C. AUTOCORRELATION

The autocorrelation test of this sequence gives a graph

that is a fine example of what the graph looks like when the

test is failed.

autocarrelotion of 1000 point baod sequence

0-8-

0.6

L 0.4

0.2

0
0 100 200 300 400 500 600 700 800 900 1000

Figure 12: Bad sequence autocorrelation

There are two points of interest in the above graph.

The first one is the large spike that goes over the .6

level. This is indicative of a sequence that is close to

being periodic (which would result in a second spike of unit

height). Slightly more subtle is that the general level of

the sidelobes can be seen to be about .2 which signifies

that, in general, this sequence looks similar to most shifts

of itself.

24

D. RUNS

As mentioned earlier, besides differentiating between

full length and non-full length shift registers, the

principal rationale for using the runs tests is an intuitive

feeling that there should be no potentially exploitable bias

in the occurrence of arbitrary length sub-sequences.

The following bar charts depict the run incidence up to

8-tuples. Note that although none are as flat as the coin

flip case the severe degradation into sharp peaks and

valleys does not occur until the 5-tuple case.

2-tuples from 1000 point bad sequ*emce
300

250

200

S150

100-

50

01
0 2

deCImoI equivalent of 2-tuples

Figure 13: Bad sequence runs of length 2

25

3-tuples from 1000 point bad sequence
200

150

.•100-

50

0 1 2 3 4 5 6 7

decimal equivalent of 3-tuole$

Figure 14: Bad sequence runs of length 3

4-tuple$ from 1000 point bad sequence
120

100-Oo

60-

40

20

0 2 4 6 8 10 12 14

decimol equivalent of 4-tuplie

Figure 15: Bad sequence runs of length 4

26

5-tuples from 1000 point bad sequence
100

80

) 0 --

20 -'

0 5 10 15 20 25 30

decimal equivalent of 5-tuple$

Figure 16: Bad sequence runs of length 5

6-tuples from 1000 point bad sequence
60

50,

40-

30,

20-

10 11. 1 - 1 h n1 I . '10

0 10 20 30 40 50 60

decimal equivolent of --tuples

Figure 17: Bad sequence runs of length 6

27

7-tuples from 1000 point bad Sqiuence
60'

50.

40.

30.

20-

10

0 20 80 100 120

decimal equivolent of 7-tuples

Figure 18: Bad sequence runs of length 7

8-tuples from 1000 point bad sequence
50

40

30I

20

10-

0 50 1 O0 150 200 250

dlecimol equivolent of 8-tuples

Figure 19: Bad sequence runs of length 8

28

The results of the runs tests can best be understood by

summarizing which runs show up most frequently in the longer

tests.

Table 1: Most frequent n-tuples in decreasing order

5-tuples 6-tuples 7-tuples 8-tuples

01110 110001 1110001 01110001

11011 011100 0111000 00111000

11000 111000 0011100 00011100

11100 001110 0001110 11100011

10001 000111 1100011 11000111

By examining the above table it would seem that the

most common sub-sequences are 000 and 111. For a slightly

different slant on the same tests one could look at those

sequences that do not show up at all. There are two 5-

tuples, fourteen 6-tuples, 56 7-tuples, and 161 8-tuples

that do not occur. A quick look at the earlier bar charts

reveal that in many of these there are longer strings of all

O's and all l's. Admittedly the point of this paper is not

how to attack an enciphering scheme but it seems somewhat

obvious that guessing 1l1000111000... (or a shift thereof)

might prove fruitful. In fact, the correlation of the

actual sequence to the periodic sequence just described is

.09. Although this is below the level of the sidelobes of

29

the coin flip autocorrelation and much below the sidelobes

of the bad sequence autocorrelation it is not as innocuous

as it might seem. By way of anecdotal evidence, a typical

cross correlation of two 1000 long binary sequences

generated by the MATLAB random number generator is about

.035. We will put stricter bounds on acceptable sequence

cross correlations in Chapter IV but for now will suggest

that .09 is high enough to conclude that progress has been

made in guessing the original sequence.

E. LINEAR COMPLEXITY

As opposed to the linear complexity of the earlier case

the following graph indicates a number of problems.

linear complexity of 1000 point boa sequence
500

400

300

S200

100]

0
0 100 200 300 400 500 0oo 700 800 900 1000

Figure 20: Bad sequence linear complexity

30

The first are the flattened portions for n between

100 and 200. This indicates the possible presence of a

periodic sub-sequence and, as such, the linear complexity

ceases to increase with the overall sequence length. Once

the sub-sequence passes the curve returns to the n/2 line.

The other conspicuous troublespot occurs at n=800. The

sudden and permanent flattening of the linear complexity

curve signifies that the entire sequence has been simulated

before all 1,000 datapoints have been used.

31

IV. HtNON GENERATED BITSTREAM (THE CHAOTIC)

A. METHODOLOGY

Our proposed method for generating pseudorandom

bitstreams is built on one characterization of chaos,

namely, that simple systems can produce complicated results.

Specifically, it is based on the H~non horseshoe mapping,

described mathematically as:

Xi÷1 = Yi + 1 - 1.4X•
Y1.1 = "3x,

This system of equations has properties that make it

particularly applicable in light of the coding requirements

described earlier (Peitgen, Jdrgens, Saupe, 1992, p. 671).

The first of these is that it has an attractor and thus the

orbits form a pattern no,- unlike how iron filings follow the

"lines of force" of a magnet. This permits the discussion

of the ensemble of orbits as having common and specific

mean, median, and other statistical properties. By way of

example, the following two graphs highlight this fact by

showing that, although the orbits come from two different

initial conditions and thus follow different paths, they end

up looking the same after very few iterations. 1

10 See Appendix C for henreal.m program listing.

32

2500 points with initiOt condition of (-1.1,-,3)
0.4

0.3 -Z--

0.2 *. ..% .,•,

0.1N

0

-0.2-

-0.3-

-0.2

-1.5 -1 -0.5 0 0.5 1 ,5

Figure 21: H6non attractor #1

2500 points with initiol condition of (1.2.1)
0.4

0.3-

0.2-
*t

0.1 - NN,

0-

-0.1-

-0.23

-0.3-.,

-1.5 -1 -0.5 00.5 ¶ 1.5

Figure 22: H6non attractor #2

33

The second is that the system is chaotic and thus highly

unpredictable. This sensitivity to initial conditions can

be seen in the following picture which shows that even when

they differ by as little as .00001 the subsequent orbits

diverge significantly after a small number of iterations.

51t itercton from two initict conditions
0.4

0.3 1C -(0.00001)

0.2

0.1

0U IC (0,0)

-0.1

-0.2

-0.3

--0.4 ..

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 23: Sensitivity to initial conditions I

Another way of viewing this is to calculate the

difference between the abscissas of the two orbits used

above. It should be noted that the ordinates behave

similarly.

34

The following graph shows that although the orbits start

near each other they quickly separate.

differemeo in x-value of fifty He.on iterations

2.5

2

1 .5

x 0.5-

0

-0.5

-I

-1.5

-2'
0 5 10 15 20 25 30 35 40 45 50

Figure 24: sensitivity to initial conditions II

A third property is that the H6non attractor is thought

to be strange. This strangeness, if it is present, is not

very important because the geometry of the actual attractor

is not as significant as the actual dynamics on the

attractor. It does result in the attractor having a fractal

dimension, which is not essential for our purposes (thus the

name of this paper), but, as will be seen, its effect on the

period of a computed orbit is the cherry on the whipped

cream.

35

Our approach will be to determine the median value of

the abscissas of the orbits on the H6non attractor and then

use that value as a split point for subsequent iterations,

assigning a 1 for x-values above that point and a 0 for

those below." Note that this is not the same as the

geometric median value of the attractor itself but rather

relies on the orbits always following some distribution

along the attractor.

One of the drawbacks of working with non-linear systems

is that they are very hard to analyze. That being the case

we continue our graphical approach towards describing and

evaluating these generating functions. The statistical

properties of the sequences themselves will be measured

using the tools developed earlier.

The first task was to determine if the orbits on the

attractor have a single median to speak of and if so what

its value is. The method used was to generate 100,000-point

sequences based on 20,000 initial conditions. In Hfnon's

original paper he shows that the quadrilateral with corners

(-1.33,.42), (1.32, .133), (1.245,,-.14), (-1.06,-.5)

constitutes a trapping region (H6non, 1976). The initial

points were chosen using the MATLAB random number function

and tested for inclusion in the quadrilateral.' 2 Rather

"11 See Appendix C for henon.m program listing.

12 See Appendix C for init.m program listing.

36

than accepting these initial conditions on face value the

following graph indicates their uniform distribution.

20000 initial points for henon attractor

0.4-

0.2

0-0.-0.2-

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 25: Distribution of initial points

To determine the median of each of these orbits, for

the sake of computational time, we had to go outside of

MATLAB and feed these initial conditions into a C++ program

which iterated the orbit and calculated the median.13

13 See Appendix C for medbatch.cpp program listing.

37

The following bar chart summarizes the distribution of the

20,000 medians.

hlitogrom of 20000 median volues
7000

6000

5000

4000I

3000

2000-

1000

0.4 0.402 0.404 0.406 0.408 0.41 0.412 0.414 0.416 0.418

Figure 26: Determination of H6non median value

To ten digit precision the mean value of the medians is

.4097889545 while the standard deviation is .0017937950.

Assuming that the median should be good to four decimal

places the error analysis with these numbers and a sample

size of 20,000 results in z = 3.94. In plain terms, for a

given orbit, we are in excess of 99% confident that the

calculated median rounded to four decimal places will be

.4098. Based on this, from here on, we will state that this

is the median value of the distribution on the attractor

itself. It should be noted that this value differs from the

38

one calculated by Forr6 (1990) who came up with a median of

.39912. This can perhaps be attributed to differences in

experimental procedure but, beyond that, is not much of an

issue since the correlation between two 1,000 point

sequences that differ only by these split points is .99.

The second requirement of the generator is that it have

a high sensitivity to initial conditions. This is, in some

respects, a crossover point between the generator and the

binary sequence as what we are truly concerned about is that

the latter be sufficiently different given a small change in

the initial conditions. The process was to generate 100

sequences of length 10,000. For each of these sequences the

initial conditions were perturbed by increasing intervals

(V2x10-1 , V2x10-2 , ...) and the correlation between the new

sequence and the original sequence was calculated at

selected lengths. 14 The results are summarized in Table 2.

Table 2: Small perturbation cross correlations

A I.C. 100 500 1000 2000 5000 10000

V2 x

10-1 .0460 .0072 .0075 .0006 .0000 .0010

10-2 .0810 .0135 .0066 .0014 .0006 .0014

10-1 .1720 .0255 .0119 .0101 .0002 .0008

14 See Appendix C for sensitiv.m program listing.

39

Table 2 (cont.)

A I.C. 100 500 1000 2000 5000 10000

%12 x

104 .1958 .0443 .0298 .0144 .0054 .0027

10-1 .2520 .0528 .0292 .0196 .0067 .0029

10- .3022 .0598 .0302 .0179 .0089 .0049

10-7 .3672 .0722 .0359 .0185 .0071 .0045

10-8 .4312 .0863 .0482 .0245 .0118 .0066

10.9 .4612 .0905 .0459 .0206 .0088 .0045

10"10 .5130 .0940 .0508 .0238 .0086 .0044

10.11 .5906 .1181 .0610 .0298 .0115 .0056

10"12 .6388 .1206 .0553 .0300 .0108 .0055

10"13 .6866 .1400 .0692 .0339 .0137 .0061

1014 .7528 .1408 .0730 .0389 .0115 .0041

10"15 .8128 .1765 .0953 .0477 .0262 .0177

10.16 .8884 .4298 .3706 .3417 .3226 .3166

i0"17 .9784 .9004 .8898 .8851 .3814 .8807

i0-18 .9966 .9836 .9817 .9809 .9807 .9803

40

Two rules come out of this chart; the first is that the

minimum spacing between allowable initial conditions should

be 0-15. The second being that in a coding application we

should throw away at least the first two thousand points to

assure that the correlation of two sequences with initial

conditions differing by the minimum separation remains below

.05 which we adopt as a general level of satisfactory

correlation. Neither of these pose a practical problem

since even in MATLAB that number of points takes less than

four seconds to generate on a 486/33 personal computer and

the restricted spacing still allows for a keyspace of

l.5xlO different initial pairs inside the trapping

quadrilateral.

The final requirement of the generator is that it have

sufficiently long period. This too is an area in which the

use of a strange attractor comes in handy. By its very

nature, if calculated with infinite precision, there will be

uncountably many non-periodic orbits and countably many

periodic orbits. Not only are the vast majority of orbits

non-periodic but the probability of landing on a periodic

orbit is actually zero! Which is fine but leaves open the

question of what happens when the iterations are done on a

finite precision machine. In this case we defined

periodicity by a subsequent point coming within a certain

tolerance of a particular earlier point. Our methodology

was to iterate an initial point 1,000 times, store the next

41

iteration and then check subsequent iterations against this

stored point. This continues until the two points are

within a given tolerance of each other. This procedure can

be pictured by drawing a circle with a radius of the

tolerance around the stored point and going until another

point falls within that circle. Before turning the computer

loose on this problem it is instructive to try to anticipate

the effect of varying the tolerance. As the order of

distribution of points on the attractor is haphazard in the

plane one might expect that tightening the tolerance by a

factor of 10 would decrease the size of the circle by a

factor of 100 and thus increase the period by a similar

factor. On the other hand, even though the H~non attractor

has been stretched and folded to lie in the plane it is

still essentially a linear map in the following sense. The

graph can be viewed as a continuous curve and as such, the

effect of decreasing the interval by a factor of 10 should

increase the period linearly by a similar amount. Actually,

the answer is between these two and reflects the fact that

the dimension of the horseshoe attractor is neither 1 nor 2

but has been estimated numerically to be 1.28 (Peitgen,

Jirgens, Saupe, 1992, p. 670).

Our attempts to numerically test for the period length

followed the above procedure with the exception that instead

of using a circle (euclidean norm) we used a square

42

(infinity or max norm) to speed up the computations.15

Alas, this was not enough to avoid running into the wall of

inadequate computer power. Tests were run on a variety of

machines but none were fast enough or capable of running

non-stop long enough to complete runs with tolerances beyond

109. In the tests to that point however it became evident

that the period could be approximated by the formula

1/tolerance. Based on this we extrapolate that the period

of an orbit, and thus the underlying binary sequence,

calculated using our minimum spacing of 10-15 will be long

enough for any practical use. In terms of previously

discussed applications this is approximately the period of a

full length linear shift register of length 50 and is

sufficient to keep the GPS generation rate requirement of

10Mhz satisfied for a little over three years (the actual

GPS period is about 225 days). Having demonstrated that our

proposed generator meets the basic requirements we now move

onto validating the generator by testing the binary sequence

by the now familiar means.

B. BALANCE

As usual we begin our conversation on balance. It

should be obvious that since the split point was set equal

to the calculated median the balance test should be easy to

pass. However, since the actual initial conditions used in

15 See Appendix C for period.for program listing.

43

the test were different than those to calculate the median

this also gives a good double check as to the validity of

the claim on the median value. The following histograms

detail the distribution of the balance statistic over 1,000

sequences of lengths 100, 500, 1000, 2000, 5000, and 10000,

and clearly show that the majority of the sequences, whether

long or short, fall within the range of acceptable balances

of .47 to .53.16

baolance distribution over 1000 100-1ength sequences
300 ,,

250

200

150-

100-

50

0 I

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

balance

Figure 27: Balance over 100-length sequences

16 See Appendix C for baltest.m program listing.

44

bolonce distribution over 1000 500-length sequences

500

400-

300

200

100-

0.42 0.4 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

bolonce

Figure 28: Balance over 500-length sequences

balonce distribution over 1000 1000-length SequenCeS
700 ,,__

600,

500

OU 400-

300-

200-

100-

0
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.58 0.58 0.6

bolonce

Figure 29: Balance over 1000-length sequences

45

balance distribution over 1000 2000-length sequenceu

900

800

700

600

500-

400

300-

200

100-r
0
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

balance

Figure 30: Balance over 2000-length sequences

balance distribution over 1000 5000-length sequences

1000

800

600

400

200

0 [- -U- - .
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

balance

Figure 31: Balance over 5000-length sequences

46

boocse distribution over 1000 1 0000-4egth sequences

1000

800

600

400

200

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

balance

Figure 32: Balance over 10000-length sequences

By way of summary, the following graph combines the

minimum, maximum, and mean values of the balance statistic

over each of the sub-sequences mentioned earlier.

47

bolonct COmrOrifSOn of 1000 seQuenees

0.6

0.58

0.56

0.54

S0.52

0.5 •

0.46

0.44-

0.42 ,, ,,,,,
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

length of tested sub-sequence

Figure 33: Summary of balance test

Although the above graph indicates that this generation

scheme does produce bitstreams with good balance

characteristics, the incidence of minimum and maximum

balances occurring in the shorter sequences that are outside

of the acceptable range raise the question of whether this

is a function of being in the early part of a generated

sequence or if it is part of a normal distribution of

balances that should be expected. To test this anecdotally,

we generated a sequence of length 100,000 and then

calculated the balance of the 1,000 non-overlapping sub-

sequences of length 100. The following graph summarizes the

results and shows that approximately two-thirds of the

48

balances fall inside the acceptable range. This is a little

below the expected value of 80% that is indicated by the

mean of .4937 and standard deviation of .0238 but as this

was a "quick and dirty" check this finding is by no means

out of bounds.

histogram of sub-sequences of length 100
180

160-

140

120-

U 100o

.• 80-

60-

20-

0.44 0.46 0.O4 0.5 0.52 0.54 0.56

balance

Figure 34: Balance of short sequences

From the above discussion, it is clear that longer

sequences have better balance than shorter sequences. This,

however, is in line with central tendency and, perhaps more

importantly, is consistent with what we consider to be the

normal intuitive view of how a flipped coin's balance would

vary with the number of flips considered. As such, the

overall conclusion is that this generation scheme passes the

balance test.

49

C. AUTOCORRELATION

As mentioned at the outset, our procedure to determine

whether a generator passes a particular test is to compare

the results from the generator with the results from the

coin flip and the stacked sine wave example. The basic idea

is that the graph of a successful test will bear a striking

resemblance to the former and will not look at all like the

latter.

This first graph displays a typical (based on our

experience) autocorrelation profile of a 1,000 point

bitstream generated by the H~non scheme.

typical Sequence autoco"elotion of ength 1000

0.8

0.4-

0.2

0 100 200 300 400 500 600 700 800 goo 1000

Figure 35: Typical H6non autocorrelation

50

It should be readily apparent that this looks quite

similar to the autocorrelation graph of the coin flip17 and

not at all like the respective stacked sine wave picture."S

Including more graphs of single sequences will add little

since they really do all look alike. An inability to prove

this is, alas, one of the drawbacks of this graphic

statistical approach but be that as it may the following

graph shows the numerical average of five autocorrelation

curves which are based on five sequences with initial

conditions determined by the roll of a ten sided die. By

rights, the concept of an averaged autocorrelation isn't

overly meaningful but in this case, since the averaged graph

looks]ike the earlicr individual graph, it helps to

highlight that Figure 35 is truly typical.

17 See Figure 2.

18 See Figure 12.

51

overoge outoc,-alotion of 5 sequences of length 1000

0.8

S06

, 0.4

0.2

0
0 100 200 300 400 500 600 700 800 900 1000

Figure 36: Average H~non autocorrelation

Not much should be made of the fact that the sidelobes

have shrunk a bit below the .1 level as this is indicative

of some statistical skewing due to averaging over the small

sample size.

For completeness, the final graph in this section shows

that the good autocorrelation properties continue to hold

for relatively long sequences.

52

typical sequence outacorelotion of length 5000

0.8

0.8

0.2

0 JkJI'L•'~' L~d LhL '•. h L'ja '&. -" ~ ""'" • IL•...L t ,Lj~M ia ir.L~. 61
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 37: Typical long H6non autocorrelation

D. RUNS

The following series of graphs represent the results of

the runs test when applied to a typical binary sequence

generated by the H6non scheme. It is noteworthy that these

profiles, particularly those for the longer n-tuples, are

qualitatively invariant over all the sequences tested.

53

2-twuple from 1000 point hemno sequence
350

300

250

200

150

100-
5o0
so

0-
0 1 2 3

decrmol equivalent of 2-tuples

Figure 38: Hfnon sequence runs of length 2

3-tuples from 1000 point heson sequence
300 ,,,

250

200

150-

100

50

0 1 2 3 4 5 6 7

decimol equivalent of 3-tuplem

Figure 39: H~non sequence runs of length 3

54

4-tuples from 1000 point henon sequence

250

200

150

100

50

0 2 4 6 8 10 12 14

decimal equivalent of 4-tuplem

Figure 40: H6non sequence runs of length 4

5-tuples from 1000 point henon sequence
200[,

150

100
U,.5

50

0 5 10 15 20 25 30

decimal equivalent of 5-tuples

Figure 41: H6non sequence runs of length 5

55

6-tuploes from• 1000 point henon sequence

160

140

120

100
4,

80o

60

20

0 10 20 30 40 50 60

decimol equivalent of 6-tuples

Figure 42: H~non sequence runs of length 6

7-tuple$ from 1000 point heman sequence
140

120

100

0 60.S 60

40-

20

0 20 40 60 80 100 120

decimal equivalent of 7-tuples

Figure 43: H6non sequence runs of length 7

56

8-turlo$ from 1000 point henon sequence
90 1'

ý

80

70

60

50-

. 40

30-

20

10

0
0 50 100 150 200 250

decimal equivalent of 8-tuples

Figure 44: H6non sequence runs of length 8

Although at first glance these results do not lock too

promising we will proceed with our usual analysis which

concentrates on exploiting an apparent bias to make headway

on guessing the sequence. In this case, as opposed to the

coin flip, the bias is clear even in the first three graphs

where the frequent decimal occurrences correspond to binary

sequences with alternating O's and l's. The following table

summarizes.

57

Table 3: Most frequent n-tuples in decreasing order

5-tuples 6-tuples 7-tuples 8-tuples

01010 101010 0101010 10101010

10101 010101 1010101 01010101

10100 101001 1010100 01010100

01001 010100 0101001 10101001

11010 111010 0010101 00101010

It is somewhat apparent that guessing the sequence

0101...01 should be a good start since the orbit, along the

x-axis, tends to tick-tock except for when it doesn't in

which case it tends to tock-tick. This is highlighted by

the fact that the first two rows are precisely those n-

tuples identified with such a tick-tock motion and comprise

34, 27, 21, and 16 percent of the respective total number of

possible n-tuples. The following graph shows a sample of

the orbit's trace which highlights this back and forth

effect.

58

2500 points with 50 troce 11mes
0.4

0.2

0.1 ,

0-

-0,1

-0.3

--0.4 -. ____,_ ___ ____,

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 45: Tick-tock behavior of H~non sequence

This underlying behavior, combined with the actual runs

listed in Table 3, does not portend great things. However,

as will be seen, the actual impact is far less than what

might reasonably be expected at this point.

In order to make a valid statement about the generator

it doesn't make sense to measure this guess against a

single, albeit typical, sequence. In lieu of that approach

we generated 1,000 sequences and checked the correlation of

each against the 01... sequence."9 This was done for

sequences of length 8192, 1024, and 64. The resulting

19 See Appendix C for isOlbad.m program listing.

59

correlations are summarized in the following graphs. (Note

the changing scales for comparisons between cases.)

correlotion between hmvono equence oan 0101.01 (8192 pnts)
350

300-
mlr M 0
mox - .0662
rMI af - .148

250- It M .01

4 200-

150-

100-

50-
0o ---- ---

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

correlotion

Figure 46: H~non vs. 01... 01 (8192 points)

60

correlation between henon sequence and 0101...01 (1024 onts)
300

250- min = 0
mox - -1992
mean - .041g
9td - .0317

200-

150-

100-

50.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

correlation

Figure 47: H6non vs. 01...01 (1024 points)

correlation between henon sequence and 0101...01 (64 pnts)
350

300 " rn 0
max , .7813
mean ,m .1711
std - .1320

250

S200

,_ 150-

100-

50 - -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

correlation

Figure 48: H6non vs. 01...01 (64 points)

61

While it is clear that the alternating sequence doesn't

make much progress on the longer sequences the mean value of

.17 in the 64 point case is a little worrisome. By way of

comparison we ran a similar experiment by guessing binary

vectors produced using the MATLAB "rand" function which

generates numbers using the standard linear congruential

method. 20 The same length sequences were tested and the

results are as follows.

correlation between henon and randorm sequence (8192 mnts)
350

300- m• = 0
-.ax -0457meaon . .0088

std .0067
250-

U 200-
C

150-

100"

50-

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

correlation

Figure 49: H~non vs. random sequence (8192 points)

20 See Appendix C for guess.m program listing.

62

correlation between henon Ond random sequence (1024 pnts)
250

mm• I 0
Smax i .0898

200 ' mean - .0252
std I .0185

150•

S100

50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

correlation

Figure 50: H6non vs. random sequence (1024 points)

correlation between henan and randorm sequence (64 Pnts)
300

250 - Imin I 0
mean i .1
std i .0761

200 -

150-

100-

50-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

correlation

Figure 51: H~non vs. random sequence (64 points)

63

The upshot of all this is that guessing the 0101...01

sequence is about 66% more effective than guessing at

random. (Stamp has suggested a more sophisticated follow-on

attack. 21) When viewed in context of the applications

discussed in the beginning of this paper this becomes a

little less of a problem since a typical use, such as the

bank ATM example given in Chapter 1, of a short sequence

would result in a binary go/no-go decision which means that

if the iterated sequence doesn't match the stored sequence

perfectly then it doesn't matter much how far off it is.

This is as opposed to the typical coding use of a longer

sequence in which incremental knowledge is useful but which

would appear not to be forthcoming from this guessing

strategy as indicated in Figure 47.

Combining the above considerations we conclude that, in

general, the runs test comes up neutral but that it's use

for any specific application would have to be contingent on

a closer look at this criterion.

E. LINEAR COMPLEXITY

In light of the mixed results of the runs property, the

linear complexity takes on a special importance. This is

due to the fact that if the generator really does produce a

preponderance of 010101... sub-sequences then this could

show up in a linear complexity that does not follow the

optimal n/2 line. As can be seen from the following graph

21 Private communication December 1992.

64

of a typical linear complexity profile of a 1,000 point

sequence, this eventuality does not manifest itself.

lineor complexity of 1000 point henon seQuence
500

400

"300
C.
E

200

100

0 100 200 300 400 500 600 700 800 900 1000

n

Figure 52: H~non linear complexity

That the H~non generation scheme passes this test with

flying colors is hardly surprising. After all, the use of

the Berlekamp-Massey algorithm in this case essentially

represents a linear attack on a non-linear system. The

question now becomes one of determining if there is a non-

linear shift register that could duplicate the generator.

This must remain an open question as, currently, there is no

open source algorithm for determining quadratic or higher

complexities.

65

V. CONCLUSIONS

First and foremost we believe that the proposed

generating scheme based on the H~non attractor is a sound

and effective method for generating pseudorandom bitstreams.

We base this conclusion on the fact that the algorithm

displays a high degree of sensitivity to initial conditions,

is simple so as to facilitate high bit rates, and produces

bitstreams that fulfill the principal requirements for

pseudorandomness. In this respect, we differ with Forr@'s

(1990) conclusion that the resultant sequences display too

much regularity in terms of the runs property to be of

practical use. Our disagreement stems from, what we

believe, is a common but excessive importance ascribed to

the Golomb postulates for pseudorandomness per s6 rather

than an interpretation of what passing or failing a specific

test actually means. It is for this reason that we have

emphasized what information is gleaned about a sequence that

"fails" a particular test rather than accepting the test

results at face value as the final arbiter.

This is a critical difference because any deterministic

system is going to have some type of regularity in its

output and having a test that only says as much is not

really adding anything to the discussion. The standard

suite of tests were originally based on - and thus carry an

implicit benchmark of - linear feedback shift registers.

Reuppel recognized this shortcoming and advocated the use of

66

linear complexity as a measure of a sequence's

unpredictability. Which is fine except there are sequences

that fail the standard tests, have high linear complexity

but are still cryptographically weak. The sequence

000...0001 is an example of such a beast. Fortunately, it

is possible to identify such sequences by using Rueppel's

linear complexity profile or the k-complexity proposed by

Stamp (1992). So on one hand the bad news is that this

sequence fails the standard tests. On the other hand, the

good news is that it has high linear complexity. But on the

third hand (the third hand?) it has bad k-complexity. Where

does this end? It doesn't. It doesn't end because none of

these tests have an inherent primacy. As such, the

strongest statement that can be made is, as in our case,

that the generator performs better than a shift register in

some ways (e.g. long period) but not as well in others (e.g.

runs) and consideration must be given to the practical

advantages and disadvantages of one scheme over the other.

In general though, we object to this blanket linking of a

sequence's unpredictability and it's relation to a feedback

shift register. As we have demonstrated by our

construction, even though the sequence shares some

characteristics of a FLSR generated sequence it was not

produced in that manner. By extension, without denigrating

the use of linear complexity analysis as a starting point,

when analyzing a bitstream there is no reason to assume that

67

a shift register was used in the first place. We willingly

stipulate that there is nothing special about the use of the

H~non map in that the resultant pseudorandomness of the

bitstream is simply a byproduct of the chaoticity of the

original system. As such, we suggest that for an arbitrary

chaotic discrete dynamical system there exists a mapping

into the binary domain such that the resulting sequence is

pseudorandom. We leave as open questions both the analysis

of the bitstream via symbolic dynamics and the determination

of the exact relation between a system's chaoticity and a

generated bitstream's pseudorandomness.

The ultimate measure of a sequence's pseudorandomness

is whether having knowledge of some of the sequence allows

the accurate prediction of bits yet to come in the absence

of knowledge concerning the specific generator being used.

This can also be viewed as how much effort does it take to

describe the entire sequence. For example, the sequence 2,

4, 6, 8... is quite long but it can be fully described as

"the even integers". By contrast, a truly random sequence

can only be described by listing all the elements. Good

pseudorandomness combines these two qualities by dictating

that the sequence be based on simple rules but that it

appear to the uninitiated to require a description

approaching a complete list. Having covered the principal

linear approaches in this paper, the next open question is

to determine if there is a systematic way to determine if a

68

more complicated, perhaps non-linear, regularity exists

beyond the isual scope of balance, autocorrelation, runs,

and linear complexity. In as much as these systems cannot

currently be analyzed directly and algorithms for

complexities for orders higher than linear are not known we

suggest that an alternate approach would be to utilize some

form of non-algorithmic methodology such as neural nets.

This is not to suggest that a single non-linear attack would

be effective against all non-linear systems but based on

preliminary unpublished work with neural nets we believe

that there are methods to exploit the regularity present in

non-linear deterministic systems.

69

APPENDIX A

This appendix is a brief review/lesson in Z2 and its

associated mod2 arithmetic. Note that it is not meant to

cover all the intricacies of Galois and extension fields but

simply to lay down some basic rules that will give the

reader some Z2 survival skills. For a complete treatment of

this subject see Bloch's textbook on abstract algebra

(1991).

Rule #1: Z2 consists only of the numbers 0 and 1.

The first step in dealing with mod2 math is to

understand that mapping any integer to Z2 comes down to

dividing the number by 2 and taking the remainder to be the

answer. It seems obvious that the result must fall in the

set {0,1} (which we denote as the "binary domain") but if

not, a few moments of pondering should do the trick. For

example:

7 = 3*2 + 1 8 = 4*2 + 0

.. 7 = 1 mod2 8 = 0 mod 2

Which leads to the next two rules:

Rule #2: Any odd integer is equal to I mod2.

Rule #3: Any even integer is equal to 0 mod2.

70

Now that we are firmly in 22 the next question is how

to do arithmetic. The following are the addition,

multiplication, and subtraction tables for Z2.

+ 0 1 * 0 1 - 0 1

0 0 1 0 0 0 0 0 1

0 1 0 1 1 0

Rule #4: Anything added to itself is 0.

Rule #S: Subtraction is the same as addition.

In a nutshell, that is all there is to the world of Z2.

As a bridge to shift registers it is also necessary to

understand how polynomials work in Z2. by and large, it is

the same as with real numbers except that the coefficients

can only be 0 or 1. This leads to some interesting results.

For example, over the real numbers, the equation x2 + 1 = 0

doesn't have a solution. But, in Z2, x=l is a solution as

follows.

x2 + 1 = 0

for x=l 12 + 1 =0

1 + 1 =0

By Rule #4 0 0

71

Another way of looking at this is that if "limited" to

the real numbers the above function is prime but when we

move to Z2 it is factorable as

x, + 1 = (x+1)*(x+1)

since

(x+l)*(x+1) =x2 + 2x + 1

SX2 + Ox + 1 by Rule #3

2 + 1

Combining the above ideas there is a particular

convenience unique to working with Z2 polynomials as

demonstrated below.

x3 + x + 1 = 0

x = -x - 1

x3 =x + 1 by Rule #5

Rule #6: in dealing with equations, feel free to put the

"=" sign anywhere that is convenient.

72

APPENDIX B

This appendix serves as a short lesson in linear

feedback shift registers, how they work, and the terminology

involved with them. For a complete treatment the reader is

directed to Golomb (1982) which is considered to be the

seminal work on the subject.

A linear feedback shift register is a simple digital

circuit which, on command, goes from one state to another.

Their use in sequence generation is probably best shown by

example.

Consider the 22 function f(x) = x3 + x + 1 and set it

equal to 0,22

X, + x + 1 =

This can be written

x =x+l

This equation can be used to describe the design and

feedback of the shift register shown in Figure BI. Note

that there is a box, actually called a "stage", for every

power of x less than the polynomial degree. The real use of

the polynomial designation is that it fully describes how

the stages labeled "I" and "x" are added together and fed

back along the line marked x3 into the "x 2,, stage.

22 See Appendix A for a quick lesson in mod2 math.

13

In words, at every turn of the crank, three things

occur:

- the contents of the two rightmost stages are Ohifted left

- the contents of the two leftmost stages are added together

(mod2) and put into the rightmost stage

- the contents of the leftmost stage is output as the next

bit in the sequence

X ,

initial fill 1 0 0
0 0 1
0 1 0
1 0 1
0 1 1
1 1 1
1 1 0 period 7
1 0 0

Figure B1

This process results in a bitstream of 10010111. In

addition, however, there are some other tidbits to consider.

The first of these is that all seven possible 3-tuples show

up and then start to repeat. The second is that the period

(7) is equal to 2"-1 where n is the number of stages in the

shift register and is also the degree of the generating

polynomial. Finally, f(x) is prime. In general, factoring

74

a polynomial in Z2 is as big a headache as factoring a

"regular" polynomial but in this case primeness is easy to

determine if we consider the following. If f(x) is

factorable then, being of degree 3, it must factor either

into a monic polynomial and a quadratic or into three monic

polynomials. In any event, there must be a monic

polynomial. But as there are only two monic polynomials,

namely (x) and (x+l), then either 0 or 1 is a root of f(x)

and this can be tested by seeing if f(x) = 0 in either case:

f(0) =0 + 0 + 1 f(1) 1 + I +

=0 + 0 + 1 =1 + 1 +1

=1 =1

Hence f(x) is prime. This is not a coincidence and, in

fact, a subset of prime polynomials called primitive

polynomials gives rise to Full Length Shift Registers

(FLSR). These, in turn, generate sequences with maximal

period 2-1 (assuming a non-zero initial fill) which are

known as m-sequences (Koblitz, 1987, p. 36).

75

To better appreciate the benefits of primitive

polynomials consider f(x) = X3 + X2 + x + 1 and the

associated shift register and sequences.

xs

1x xl

initial fill 1 0 0
0 0 1
0 1 1
1 1 0 period 4
1 0 0

initial fill 1 0 1
0 1 0 period 2
1 0 1

initial fill 1 1 1 period 1
1 1 1

Note that, as opposed to the earlier case, the above

shift register has the following traits:

- no single initial fill generates all seven 3-tuples

- the period is always less than 2a-1

- the associated polynomial is not prime, and hence not

primitive, since

x, + x, + x + 1 = (x+l) 3

76

APPENDIX C

PROGRAM LISTINGS

RUNBAL.M

function rundown = runbal(x)
%function rundown = runbal(x)
%program to calculate the running balance of vector x.%
%inputs:
% x = vector to be analyzed

%outputs:
% rundown = output vector of running balances

len = length(x);
rundown = zeros(len,1);

for i = l:len
rundown(i) = mean(x(l:i));

end

77

AUTOCORR.

function acorr = autocorr(x)
%function acorr = autocorr(x)
%uses fft to calculate the autocorrelation of vector x
%note that this method is equivalent to the traditional
%slide, rotate, calc (agree-disagree)/total but is much
%faster. the cost of this speed is that the sign of the
%correlation is lost. sequences of length 2-n are handled
%particularly quickly.

fx = fft(x-mean(x));
fxconj =(fx).';
acorr = abs(ifft(fx .* fxconj));
acorr = fftshift(acorr);
acorr = acorr / max(acorr);

78

RUNS.M

%this program takes as input an n-long binary vector x.
%it then steps through calculating the number of n-tuples
%(n=1,...8) that occur. these are calculated and stored by
%converting the n-tuples to their decimal equivalent, the
%output decveci contains the count for i-tuples. results
%are best viewed using a bar-graph output. note that this
%program is not written as a function due to the large
%number of output vectors, for ease of programming, note
%that for n=1:7, this program doesn't check the last (8-n)
%n-tuples.

%input:
% x = binary vector

%output:
% decveci for i=2:8 = incidence of the 2i-1 i-tuples
%

decvec! = zeros(4,1);
decvec) = zeros(8,1);
decvec4 = zeros(16,1);
decvec5 = zeros(32,1);
decvec6 = zeros(64,1);
decvec7 = zeros(128,1);
decvec8 = zeros(256,1);
n = length(x);

for i = 1:(n-7)
decimal = [2 1] * x(i:i+l);
decvec2(decimal+l) = decvec2(decimal+l) + 1;

decimal = [4 2 1] * x(i:i+2);
decvec3(decimal+l) = decvec3(decimal+l) + 1;

decimal = [8 4 2 1] * x(i:i+3);
decvec4(decimal+l) = decvec4(decimal+l) + 1;

decimal = [16 8 4 2 1] * x(i:i+4);
decvec5(decimal+l) = decvec5(decimal+l) + 1;

decimal = [32 16 8 4 2 1] * x(i:i+5);
decvec6(decimal+l) = decvec6(decimal+l) + 1;

decimal = [64 32 16 8 4 2 1] * x(i:i+6);
decvec7(decimal+l) = decvec7(decimal+l) + 1;

decimal = [128 64 32 16 8 4 2 1] * x(i:i+7);
decvec8(decimal+l) = decvecS(decimal+l) + 1;

end

79

LINCOMP.M

function profile = lincomp(x)
%function profile = lincomp(x)
%generates linear complexity profile of vector x using
%an approximation to the Berlekamp-Massey algorithm.

%input: x = binary vector

%output: profile = linear complexity such that each element
profile(n) is the approximate shift
register length required for the first n
bits of x.

profile = zeros(length(x),l);
sigma = [1];
tau = (0 1];
n = 0;
for j = O:length(x)-i
%calculate a

a = 0;
for i = 1:length(sigma)
a = a + sigma(i)*x(j+2-i);
end
a = rem(a,2);
sigmaold=sigma;

%calculate sigmanew = sigmaold + a*tau (only if a -= 0)
if a == 1

lens = length(sigma);
lent = length(tau);

%even up lengths of sigma and tau so they can be added
if lens < lent

sigma = [sigma zeros(l,lent-lens)];
else

tau = [tau zeros(l,lens-lent)];
end
sigma = sigma + tau;
tau = tau(l:lent);
sigma = rem(sigma,2);

end
%strip trailing zeros off of sigma

sigma = sigma(l:max(find(sigma)));
%calculate new tau and n

if (a==O I n<O)
tau = (0 tau];
n = n + 1;

else
tau = [0 sigmaold];
n = -n;

end
profile(j+l) = max(length(sigma),max(profile));
end

80

HENREAL.M

function [x,y] = henreal(n,xO,yO)
%function [x,y] = henreal(n,xO,yO)

%program to generate n-length real sequences based on the
%H6non horseshoe attractor. initial points fit into the
%trapping quadrilateral described in H~non (1976).

%inputs:
% n = length of desired sequence
% xO = initial x value
% yO = initial y value

%outputs:
% x = n by 1 real vector
% y = n by 1 real vector

x = zeros(n,l);
y = zeros(n,l);
x(1) = xO;
y(l) = yo;

%routine to check if initial points are valid
A=[3.4074 1;-.1083 -1; -3.64 1; -. 1562 1];
B=[-4.1119 -. 2760 -4.6718 -. 3344]';
if min((A*[xO;yO]) > B) == 0

disp('initial point outside trapping region')
return

end

%recursive generation of points
for i = 1:n-1;

x(i+l) = y(i) + 1 - 1.4*x(i)^2;
y(i+l) = .3 * x(i);

end

81

HENON.M

function x = henon(n,xo,yO)
%function x = henon(n,xO,yO)

%program to generate n-length binary sequences based on the
%H~non horseshoe attractor. initial points are checked
%against the quadrilateral of convergence. (H6non 1976)

%inputs:
% n = length of desired sequence
% xO = initial x value
% yO = initial y value

%outputs:
% x = n by 1 binary vector

x(1) = xO;
y(1) = yo;
split = .4098; %median x-value of henon attractor

%routine to check if initial points are valid
A=[3.4074 1;-.1083 -1; -3.64 1; -. 1562 1);
B=(-4.1119 -. 2760 -4.6718 -. 3344]';
if min((A*[xO;yO]) > B) == 0

disp('initial point outside convergence zone')
return

end

x(2:n) = zeros(n-1,l); %vectors are preallocated here to
%save time

y(2:n) = zeros(n-l,1); %in case initial point is outside
%of zone

%recursive generation of points
for i = 1:n;

x(i+l) = y(i) + 1 - 1.4*x(i)^2;
y(i+l) = .3 * x(i);

%convert previous point to binary
if x(i) <= split

x(i) = 0;
else

x(i) = 1;
end

end

%minor housekeeping to dump the last term
x = x(l:n);

82

INIT.M

function (x,y] = init(n,seed)
%function [x,y] = init(n,seed)
%generates vectors of n initial points for henon horseshoe
%function where seed initializes the built-in random
%number generator.

rand('uniform')
rand('seed', seed)

x = zeros(n,1);
y = zeros(n,1);
a = [3.4074 1; -. 1083 -1; -3.64 1; -. 1562 1];
b = [-4.1119; -. 2760; -4.6718; -. 3344);

for j = l:n
xx = 5; %dummy values to get into while loop
yy = 5;

while min((a * [xx;yy)) > b) == 0
xx = 2.66*rand -1.33;
yy = rand - .5;

end

x(j) = xx; y(j) = yy;
end

83

MEDBATCH.CPP

/* program to find the x-median value of the H~non
horseshoe attractor. input is read in from "starts",
100,000 points are calculated and the output sent to the
file "medians". program call uses the DOS redirection
and is "balbatch <starts >medians". no error checking
is done on input. */

#include <iostream.h>
#include <stdlib.h>
#include "thesis.h"

double xold, xnew, yold, ynew;
float huge xvalues[100001];
int main()

{
while (cin >> xold >> yold) //read in initial points

{
xvalues[0] = xold;

for (long i=1; i<100000; i++) //calculate attractor
{
xnew = yold + 1 - 1.4*xold*xold;
ynew = .3 * xold;
xold = xvalues[i] = xnew;
yold = ynew;
}

//sort xvalues
heapsort(100000,xvalues);

//output median value
cout << (xvalues[49999]+xvalues[50000])/2 << endl;
}

return 0;
}

84

SENSITIV *M

function corrmat = sensitiv(seed)
%function corrinat = sensitiv(seed)
%test for sensitivity to initial conditions. averages over
%100 sequences. both x&y are perturbed to make sure new
%initial points are inside domain.

rand('uniform')
rand('seed', seed)
corrmat =zeros(18,6);

corrtemp =zeros(18,6);

m=(100, 500, 1000, 2000, 5000, 10000);

for i = 1:100
xbase = zeros(100,1);
i
while max(xbase(2:l00)) == 0

xO = 2.66*rand - 1.33;
yO = rand -.5;
xbase = henon(10000,xO,yO);

end

for j = -18:-i
xoffset=

henon(10000,x0-sign(x0)*10^j,y0-sign(yO)*1o'j);
for k = m

corrtemp(--j,find(k==m)) = (-1) .'xbase(1:k)'
(-1).A xoffset(1:k) / k;

end
end
corrmat = corrmat + corrtemp;

end
corrmat = abs(corrmat/100);

85

PERIOD.FOR

c Note that with minor modifications this program can be
c run in batch or autolog mode.

double precision period, xold, xnew, x0, yold, ynew, yO
double precision tolerance, distance

call excms ('filedef 5 disk period2 initial')
write (6,*) 'enter tolerance'
read (5,*) tolerance
write (6,*) 'enter initial x-point'
read (5,*) xO
write (6,*) 'enter initial y-point'
read (5,*) yO

xold = x0
yold = yO
period = 0.0
distance = 5.0

do 10 i = 1,1000
xnew = yold + 1.0 - 1.4*xold*xold
ynew = .3 * xold
xold = xnew
yold = ynew10 continue

x0 = xold
yO = yold

do while (tolerance .It. distance)
period = period + 1.0
xnew = yold + 1.0 - 1.4*xold*xold
ynew = .3 * xold
xold = xnew
yold = ynewdistance = max(abs(xnew-x0), abs(ynew-yO))

end do

write (6,*) 'final distance is ', distance
write (6,*) 'the period is ', period
end

86

BALTEST.M

function [statmat,balmat) = baltest(m,seed)
%function [statmat,balmatj = baltest(m,seed)
%program to calculate the balance property of bitstreams
%generated with the henon scheme. tests sequences of length
%10000 and five sub-sequences for percentage of is present.
%will test m different sequences and store the results in
%balmat who's rows are then analyzed with min, max, and mean
%which are then written into statmat.

%inputs:
% m = number of sequences to test
% seed = seed to generate the m initial conditions
%

%outputs:
% balmat = m by 6 matrix where the columns are the balance
% statistic for the first 100, 500, 1000, 2000,
% 5000, and 10000 points respectively

rand('uniform')
rand('seed', seed)
balmat = zeros(m,6);
statmat = zeros(3,6);
a = [3.4070 1; -. 1083 -1; -3.64 1; -. 1562 1];
b = [-4.1119; -. 2760; -4.6718; -. 3344];

for j = l:m
xO = 2.66*rand - 1.33;
yO = rand - .5;
while min((a * [xO;yO]) > b) == 0

xO = 2.66*rand - 1.33;
yO = rand - .5;

end

x = henon(10000,xO,yO);
balmat(j,1) = norm(x(l:100))A2/100;
balmat(j,2) = norm(x(1:500))^2/500;
balmat(j,3) = norm(x(1:l000))^2/1000;
balmat(j,4) = norm(x(1:2000))A2/2000;
balmat(j,5) = norm(x(1:5000))^2/5000;
balmat(j,6) = norm(x(l:l0000))^2/10000;

end

%calculate statistics on balances
if I>1

statmat(l,:) = min(balmat);
statmat(2,:) = max(balmat);
statmat(3,:) = mean(balmat);

else
clear statmat

end

87

APPENDIX D

The following sequence is the result of the coin flip
experiment. The l's represent heads while the O's are
tails.

010010110101011110110101011110
000010010100011011110101111010
101000001111110000000111010011
000011111011101101101101111011
101011110010001010110110010011
001001000001010001001001101101
101010111010110011000010101110
000110101000001001010000011010
000100001000111110111010001111
000101111110011011101001001001
00101010000 1001 100100010100100
001111010101100100000110110100
110111100011100100101010000 i 00
110111100111101100001001101000
010001100000001110010100111001
110101000110001100001101110111
100011111001111111001100010000
100000100101111101100000101100
100011000100110011011110000100
000010100011001011110100000101
001100001110011010010010100111
100000111111100100101001010000
100000100001101001001000011010
000011110010011110100100000000
100001101110010101111100011011
000011011111010001011010110110
010101111010100001000111100111
00001011011001 1000 111011110110
101010101001001110011000000001
000001101100011100010010101101
101001110110101110111001000111
111111110001110111101100110011
000011100110110100011111100100
1011110110

88

APPENDIX E

The following sequence is the result of the stacked
sine wave generation scheme.

011001101111000101110110011010
101001001101110110000011100011
10001110001110001110001110003 11
100011 100011100011100011100011
100011100011100011100011100010
110011011100 101 010101100110011
011000101011101 100 110011011010
101011101100110111001010101011
001100110111001010111011001101
110110101010111011001101110110
101110111011001101110010101110
110011011101101010101110110011
011101001011101110110001010110
001001101101100110111100010111
011001101010100100110111011000
001110001110001110001110001110
001110001110001110001110001110
001110001110001110001110001110
001110001011001101110010101010
110011001101100010101110110011
001101101010101110110011011100
101010101100110011011100101011
101100110111011010101011101100
110111011010111011101100110111
001010111011001101110110101010
111011001101110100101110111011
000101011000100110110110011011
11000 1011101100110101010010011
011101100000111000111000111000
111000111000111000111000111000
111000111000111000111000111000
111000111000111000101100110111
001010101011001100110110001010
1110110011

89

REFERENCES

Bloch, Norman J., Abstract Algebra with Applications,
Prentice-Hall, Inc, 1987.

Forr6, R6jane, "The H~non Attractor as a Keystream
Generator", preprint, 1990.

Golomb, Solomon W., Shift Register Sequences, Aegean Park
Press, 1982.

H~non, Michel, "A two-dimensional mapping with a strange
attractor", Communications in Mathematical Physics, 50:69-
77, 1976.

Koblitz, Neal, A Course in Number Theory and Cryptography,
Springer-Verlag, 1987.

National Security Agency, Spread Spectrum Signals and
Techniques Handbook, 1981.

Peitgen, Heinz-Otto, Hartmut Jirgens, and Dietmar Saupe,
Chaos and Fractals: New Frontiers of Science, Springer-
Verlag, 1992.

Reuppel, Rainier A., Analysis and Design of Stream Ciphers,
Springer-Verlag, 1986.

Shannon, Claude E., "Communication theory of secrecy
systems", Bell Systems Technical Journal, 28:656-715, 1949.

Stamp, Mark, A Generalized Linear Complexity, Ph.D.
Dissertation, Texas Tech University, Lubbock, TX, 1992.

Stewart, Ian, Does God Play Dice? The Mathematics of Chaos,
Blackwell, 1991.

90

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code MA/Fe
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor J. Leader, Code MA/Le 3
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor M. Stamp 1
Mathematical Sciences
Worcester Polytechnic Institute
100 Institute Rd.
Worcester, MA 01609-2280

6. Fontana, Tony
1290 5th St. #1
Monterey, CA 93940

7. Heyman, James 5
585 Laine St. #5
Monterey, CA 93940

91

