
AD-A265 444

NAVAL POSTGRADUATE SCHOOLO
Monterey, California

DTIC
S ELECTE

JUN 0 4 1993 LD
THESIS

THE INSTRUMENTATION OF THE MULTIMODEL
AND MULTILINGUAL USER INTERFACE

by

Paul Alan Bourgeois

March 1993

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimitei.

93-125519 3 0 S 0 6 0- ll~llllill11k[I,,~il~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFMCATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION.AVAILABILITY OF REPORT

2b. DEC LASSIFICAT1ON/OWNGRADING SCEDULE Approved for public release:
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBERiS)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Computer Science Dept. lfapphcable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-500(0

8a- NAME OF FUNDING/SPONSORING I 8b, OFFICE SYMBOL 9, PROCUREMENT INSTRUMENT IDENTIFICATION'NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)
THE INSTRUMENTATION OF THE MULTIMODEL AND MULTILINGUAL USER INTERFACE (U)

12. PERSONAL AUTHOR(S)

Bourgeois, Paul A.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Master's Thesis FROM 04190 TO 03/93 r March 1993I 124
16- SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TEAMS (Continue on reverse if necessary and identify by block number)
FSData model, data language, multibackend database system. multilingualFIELD GROUP SUB-GROUP database system, multimodel database system, user interface design.

-9. A CContinue on reverse if necessary and identif y block number)
The traditional approach to database-management-system (DBMS) designs focuses upon the implementation of a

single data model and its corresponding data language in order to support applications for a given database task. Each
of these monomodel and monolingual database systems represents a homogeneous database system, since only one
data model-language can be supported on a single database system. The application diversity forces many organiza-
tions to operate several different homogenous database systems to support its operations. A different approach to da-
tabase-system de.-ign is the development of a DBMS which supports multiple data models and their data languages.
This approach is the focus of the multimodel and multilingual database system (MM&MLDS) as implemented on the
Multibackend Database Supercomputer (MDBS).

With the proliferation of new data model-languages in the database technology, the objective of MM&MLDS is
to incorporate these new data model-languages onto the same MDBS. The goal of this thesis is to develop procedures,
methods, and tools for the incorporation of new data model-languages into MM&MLDS as new interfaces. Three
areas of research are critical to achieving this goal. First, the development of a MDBS user's manual for familiar-
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

B UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

David K. Hsiao (408) 656-2253 CS/Hq
00 FORM 1473, S4 MAR 83 APRIIIyAPdogn mavbe used untii ;.,isted SECURITY CLASSIFICATION OF THIS PAGEer edions are obsolete

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19. Continued: ization as well as instruction for system users. Second, the specification of generic processing
algorithms used as a foundation for each module of the new model-language interface. Third, our software meth-
odology considerations for new data model-language interface implementation.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release: distribution is unlimited

THE INSTRUMENTATION OF THE MULTIMODEL
AND MULTILINGUAL USER INTERFACE

by
Paul Alan Bourgeois

Captain, United States Marine Corps
B.S. Economics, United Statev Naval Academy, 1987

Acce-ýion For,.

NTIS CRA&I 7
Submitted in partial fulfillment of the ".:! D]

requirements for the degree of .. .

MASTER OF COMPUTER SCIENCE By
D,: t*

Av~riiab:y '-cdc.s

from the Av .,3 or

NAVAL POSTGRADUATE SCHOOL Dist

March 1993 A"lI

Author: _ _ _ _ __ _ _ _

Paul AlIan Bourgeo(J

Approved By:ka A 9 (K 6 /~
David K. Hsiao, Thesis Advisor

\Thomas Wu, Second Reader

Gary 1jgge4Acti4~ Chairman,

Department of Computer Science

UW

ABSTRACT

The traditional approach to database-management-system (DBMS) designs focuses

upon the implementation of a single data model and its corresponding data language in

order to support applications for a given database task. Each of these monomodel and

monolingual database systems represents a homogeneous database system, since only one

data model-language can be supported on a single database system. The application

diversity forces many organizations to operate several different homogenous database

systems to support its operations. A different approach to database-system design is the

development of a DBMS which supports multiple data models and their data languages.

This approach is the focus of the multimodel and multilingual database system

(MM&MLDS) as implemented on the Multibackend Database Supercomputer (MDBS).

With the proliferation of new data model-languages in the database technology, the

objective of MM&MLDS is to incorporate these new data model-languages onto the same

MDBS. The goal of this thesis is to develop procedures, methods, and tools for the

incorporation of new data model-languages into MM&MLDS as new interfaces. Three

areas of research are critical to achieving this goal. First, the development of a MDBS

user's manual for familiarization as well as instruction for system users. Second, the

specification of generic processing algorithms used as a foundation for each module of the

new model-language interface. Third, our software methodology considerations for new

data model-language interface implementation.

iv

TABLE OF CONTENTS

I. IN T R O D U CTIO N ... 1
A . A N O V E R V IEW ... I
B. OUR MOTIVATION AND GOALS 3
C. THE ORGANIZATION OF THE THESIS ... 4

11. THE MULTIBACKEND DATABASE SUPERCOMPUTER (MDBS) 5
A . T H E D E SIG N .. 5
B. THE KERNEL DATA MODEL AND ITS KERNEL

DATA LANGUAGE ... 6
C. THE MULTIMODEL AND MULTILINGUAL DATABASE

SY ST E M ... 7
III. PROCEDURES TO INTRODUCE NEW MODEL-LANGUAGE

IN T E R F A C E S ... I I
A . JUSTIFICATION ... 11
B. THE CONTROLLER SOFTWARE ... 12
C. NEW MODEL-L A.NGUAGE INTERFACE REQUIREMENTS 14

1. Considerations for the Language Interface Software Module
D esign ... 14
a. The Language Interface Layer .. 14
b. The Kernel Mapping System ... 16
c. The Kernel Formatting System .. 18
d. The Kernel Controller ... 19

2. Communications Among Module .. 22
3. Data-structure Requirements .. 25
4. The Makefile Development .. 27

D. VERSION CONTROL AND MANAGEMENT 27
IV. GENERAL STEPS TO A NEW MODEL-LANGUAGE INTERFACE 29

A. THE MDBS USER INTERFACE .. 29
1. On the Interface Familiarization ... 29
2. The User's M anual .. 30

B. OUR SOFTWARE METHODOLOGY ... 32
1. Models With A Formal Data Language .. 33
2. Models With No Formal Data Language .. 34
3. Kernel Model-Language Mapping Strategies 35

V. THE CONCLUSION .. 37
A. RESULTS OF OUR RESEARCH EFFORT ... 37
B. FUTURE RESEARCH ... 38

APPENDIX A. MDBS USER'S MANUAL ... 39

V

APPENDIX B. MODEL-LANGUAGE INTERFACE GENERIC
FUNCTION MAPPING .. 106

APPENDIX C. MM&MLDS GENERIC MODEL-LANGUAGE
DATA STRUCTURE ... 110

APPENDIX D. GENERIC MAKEFILES FOR NEW MODEL-LANGUAGE
INTERFACES ... III

R E FE R E N C E S ... 113
INITIAL DISTRIBUTION .. 115

vi

LIST OF FIGURES

Figure 1: The Multi-Backend Database Supercomputer .. 6
Figure 2: The Multimodel and Multilingual Database System 8
Figure 3: The Model-Language Interfaces as Implemented on a Kernel

Database System , M D BS ... 9
Figure 4: The File Organization and Structure for Data Model-Language

Interfaces within the Front-End Controller ... 13
Figure 5: The Generic Algorithm for All Language Interface Layers 15
Figure 6: The Generic Algorithm for All Kernel Mapping Systems 17
Figure 7: The Generic Algorithm for All Kernel Formatting Systems 18
Figure 8: The Schematic Diagram of Processing Steps of the

Kernel Controller .. 21
Figure 9: The Generic Algorithm for All Kernel Controllers 22
Figure 10: The Module Communication Path for a Data-Definition Load 23
Figure 11: The Module Communication Path for Executing Transactions 24
Figure 12: The Userinfo Structure ... 25
Figure 13: The li_info Structure with the newmodelilanguageminfo

Included ... 26
Figure 14: The Relationship Between Model/Language Interfaces (ML/Is)

and the Test Interface .. 30
Figure 15: The Lex and Yacc Parsing Processes ... 34

vii

I. INTRODUCTION

A. AN OVERVIEW

Database systems have revolutionized the workplace by combining the advancements

in today's information technology with the information demands of large corporations and

governments. These organizations have come to rely heavily upon the efficiency of

database systems to increase their productivity. Though the rapid growth that has taken

place in the area of database research and development resulting in more efficient database

systems and increased productivities, it has also presented a problem due to the

proliferation of different database systems, i.e. heterogeneous database systems, that

cannot communicate with each other. In examining the factors and issues of the

proliferation of heterogeneous databases and systems, we must first review the

conventional design of a database system.

The design of a database system begins with the selection of a data model which

characterizes the needs of data in order for the processing to be accomplished by the

database system. Once an approriate data model (i.e relational, network, or hierarchical)

has been selected, a corresponding data language is chosen. Some examples of data models

and data languagc. iticlude SQL for the relational data model, DML for the network data

model, and DL/I for the hierarchical data model. Each database system can only support

one specific pair of data model and data language . These conventional database systems

are characterized as monomodel and monolingual. A user of such a databasc syse.,' must

have thorough understanding of the underlying data model and data language supported by

the system in order to use the system effectively. This restricts the user to the single data

model and data language supported by the system. Any experience with another data model

and data language will be useless, since the database system can not support that pair of

data model and languag.

A different approach to the database design is the incorporation of several data models

and data languages into one database system [DEMU 87]. -this more flexible database

design will result in a database system known as the multimodel and multlingual database

system (MM&MLDS). This approach to the database design provides several distinct

advantages not found in the conventional approach to the database design. The

consolidation of several data models and data languages on one system will defray the cost

spent on procurring several different rnonomodel and monolingual database systems. The

consolidation of resources will also reduce the number of support personnel required to

maintain the different database systems. Replacement costs will be reduced since any

system upgrade will only be necessary toa single database system instead of several. For

example, if one conventional database system is upgraded. the other conventional Iatabase

systems will not reap the benefits of the upgrade. With the MM&MLDS approach, all data

models and data languages will benefit from the upgrade of the single database system.

Re-training costs are also eliminated since a user is not required to learned a new data

models and data languages with MM&MLDS. Through cross-modeling access capability,

a user who is inexperienced in using a certain new data model-language can access a

heterogeneous database with a transaction written in the data model-language more

familiar to the user. For instance, a user who is experienced in working with relational

databases using the data language SQL could access hierarchical databases using SQL

transactions, not DL/I (hierarchical) transactions.

The MM&MLDS concept is currently implemented at the Naval Postgraduate

School's Laboratory for Database Systems Research on the Multi-Backend Database

Supercomputer (MDBS). MDBS is desig,,d to support MM&MLDS and together, to have

the characteristics associated with a federated database system. They include the

transparent access to heterogenous databases, local autonomy of each heterogeneous

database, and multimodel/multilingual capability. A in-depth look into the database design

approach to federated databases and systems can be found in [HSIA 921 and [HSIA 89].

B. OUR MG 'IVATION AND GOALS

The MDBS currently implemented at the Naval Postgraduate School's Laboratory for

Database Systems Research incorporates four data-model-and-data-language intertaces,

These are the attribute-based-data-model (ABDM)-and-attribute-based-data- language

(ABDL) interface, the relational-data-model-and-SQL-data-language interface, the

network-data-model-and-CODASYL-data-language interface, and the hierarchical-data-

model-and-DL/l-data-language interface. Four separate software modules are written for

each model/language interface. The process of incorporating a new data model and data

language into the current MDBS requires spending numerous man-hours deciphering the

data structures and internal logic of previous model-language interfaces.

The first goal of this thesis is. therefore. to provide a pedagogical aid to the

incorporation of a new model-language interface into MDBS. As new data models and their

new data languages are developed, we want to develop procedures that will ensure accurate

and efficient incorporation of their interfaces. We will examine the internal logic common

to all interfaces and highlight the necessary functions that a new interface must possess by

looking at the four software modules that comprise each interface. Procedures will be

presented which outline specific issues that must be addressed prior to any implemention

of a new data model-language interface.

The second goal of this thesis is to develop an instructional set or user's manual for

setting up MDBS. The manual is designed specifically as an introduction to MDBS for

first-time users, but will also function as a reference manual for any further research on

MDBS. Since no user's manual currently exists for MDBS, this user's manual will alleviate

the need for expert assistance for those who desire to work on MDBS. The MDBS user's

manual will address topics and methods such as starting MDBS, developing schemas and

request files, and accessing each data model- language interface. Sample databases will be

given to assist the user in the understanding of each data model and its data language.

3

C. THE ORGANIZATION OF THE THESIS

Since all research efforts in this thesis have been accomplished for MDBS. an outline

of NIDBS is necessary which is presented in Chapter 11. More specifically, in Chapter il.

we focus upon the system structure, the kernel data model and the kernel data language, and

the multimodel-mulitlingual database system design. In Chapter Ill. we outline the

procedures and methods for the introduction a new data model-language interface. Issues

such as program and data structure modifications, makefile development. as well as

functionality requirements for each module within the model-language interface. In

Chapter IV, we address the various interface management strategies when a new data

model-language interface is incorporated into MDBS. In Chapter V, we present our

concluding thoughts concerning the interface management in the multimodel and

multilingual database enviroment, design and implementation decisions for the

implemention of a new data model-language interface, and future work.

Appendix A is the first volume of MDBS User's Manual. This manual details those

areas concerning the front-end software of MDBS to include the execution of MDBS itself.

file development, and the utilization of the data model-language interfaces. Appendix B

provides the generic mapping of functions required by all data model-language interfaces

as well as specifications for the each software module of the language interface.

4

II. THE MULTIBACKEND DATABASE SUPERCOMPUTER (MDBS)

A. THE DESIGN

The heart of MDBS is the configuration of the database stores and database processors

known as database backends. MDBS relies upon these database backends to provide the

storage and processing functions. Each backend consists of a microprocessor and three data

disk drives; a smallet Winchester-type for paging and another smaller one for metadata and

a larger disk drive for base data. MDBS architecture allows these backends to be connected

in parallel via an ethernet LAN using point-to-point communication for one-to-one

communications between separate backends and broadcast communication from one

backcen to many. A front-end microcomputer known as the controller, which is separate

from the backends, controls the interface between the user and the backends and also

provides for backup and recovery. In Figure 1, we illustrate MDBS architecture I HSIA 911.

Each data ase backend contains a portion of a stored database through a process called

clustering. In clustering, the base data is spread across the backends in mutually exclusive

sets. The distribution of the database records through clustering permits parallel access to

the data and is integral to the high-performance of MDBS. When a transaction i,

broadcasted from the controller, each backerid can execute the transaction in parallel with

the other backends.

The MDBS architecture allows for increases in performance and capacity through the

addition of backends. Unlike the traditional database system which required an extensive

and costly modification or replacement to achieve a decrease in the response time or a

greater capacity without any degradation of the response time, MDBS requires only the

addition of one or more backends to achieve such decrease or capacity growth. These

performance gains achieved by MDBS through the addition of more backends are known

as the response-time reduction and the response-time invariance [HALL 891

MDBS provides greater flexibility, since no modification is required to the software

which runs on MDBS. The number of backends the system can support is not limited by

5

connection ports of either the controller or a backend. Therefore, little "down-time" is

required for the incorporation of a new backend to the MDBS configuration. At one time.

there can be eight backends configured in the Laboratory for Database System Research

Meta data disk
Base data disks

Tape Drive Paging disk

Base data disks

Controller

Paging disk

Meta data disk
Base data disks

Paging disk

Figure 1: The Multi-Backend Database Supercomputer

B. THE KERNEL DATA MODEL AND ITS KERNEL DATA LANGUAGE

One of the requirements of a federated database system is to support many data models

and their data languages on the same, single system. Such a system is known as being

multimodel and multilingual. MDBS is a database system which uses a mapping function

6

(I) to support its multimodel/multilingual capability and (2) to enhance data sharing

amongst different heterogeneous databases. The mavping function used by MDBS maps

the different data models and their data languages into a single data model and its data

language or kernel data model and its kernel data language. An in-depth discussion of data

sharing and mapping algorithms can be found in IHSIA 92],

This kernel data model and its kernel data language used by MDBS is the attribute-

based data model (ABDM) and attribute-based data language (ABDL). Several factors

have led to the selection of the ABDM; these include: the separate modeling of base data

and meta data,the clustering of base data into mutually exclusive sets for storage on the

backends, and the allowance of parallel accesses to the clustered base data. The semantic

richness of ABDL allows for the translation of other traditional data languages, such as

SQL, DL/I, and DML into ABDL for processing on MDBS.

Schema definitions and transaction requests developed for traditional data models and

their languages are either transformed or translated into equivalent schemas of the kernel

data model or equivalent transactions in the kernel data language for processing in the

kernel database system. Using the multiple- models/languages to the single-model-

language mapping function, MDBS requires only (n-1) schema transformers and (n-1)

transaction translators, were n represents the number of different heterogeneous databases

and their languages to be supported in MDBS.

C. THE MULTIMODEL AND MULTILINGUAL DATABASE SYSTEM

In Figure 2, we illustrate the general system structure of the multimodel and

multilingual database system (MM&MLDS). Transactionswritten in the user's data model

(UDM) and user's data language (UDL) are transformed and translated into the kernel data

model (KDM) and kernel data language (KDL) equivalent via the MDBS model/language

interface. Four software modules comprise the model/language interface. These are the

language interface layer (LIL), the kernel mapping system (KMS), the kernel formatting

system (KFS), and the kernel controller (KC).

7

The following paragraphs outline the general interaction between UDM and UDL

with the language interface as well as KDM and KDL .Each transaction issued in UDM!

UDL must first be processed by LIL. LIL forwards these transactions to KMS. Notice that

these transactions may either be database-definition transactions or query-request

transactions. Two major tasks are accomplished by KMS. First, when a new database is

created, KMS takes the database-definition (or database schema) of UDM and transforms

it into a database definition of KDM. This transformation process is called data-definition

transformation. Upon successful transformation of UDM-database definition, KMS sends

KDM-database definition to KC. KC passes KDM-database definition to the kernel

database system (KDS) where the new database is finally defined on MDBS. The KC is

notified by KDS when the database definition has successfully processed and KC in tur'n

notifies the user through LIL that the database definition has been loaded.

UD Kos

UDM User Data Model
UDL User Data Language
LIL Language Interface Layer
KMS: Kernel Mapping System
KFS Kernel Formatting System
KC Kernel Controller
M/Ll Model/Language Interface
KDS Kernel Database System
KDM: Kernel Data Model
KDL : Kernel Data Language

Figure 2 Thz Multimodel and Multilingual Database System

A

Secondly, KMS translates transactions written in UDL into equivalent KDL

transactions through a process known as the data-language translation. KMS forwards

these transactions to KC which passes them to KDS for execution. Upon completion of the

transaction execution, KDS sends the results to KC in KDM format. In order to display the

results of a transaction in the proper UDM format, KC passes the results from KDS to KFS.

KFS reformats KDM results from KDS into the correct UDM format. Through LIL, the

results of the queries are displayed to the user in UDM form.

Each data model-language interface supported by MDBS has its own lar'!,)ageP

interface. In other words, each language interface has its own set of LIL, KMS, KFS. and

KC. The functionality, integrity, and consistency of each data model-language must be

incorporated within the language interface modules. In, Figure 3, we represent the

implementation of the MM&MLDS structure in MDBS.

Figure 3 :The Model-Language Interfaces as [mplemented on a Kernel
Database System, MDBS

UD KM9

Using its capability to model different data models and to translate different

transactions languages on one system, MDBS affords the user the opportunity to

experiment with different data models and their different data language without

prolierating stand-alone database systems. Further, a user may choose the model-language

pair which is best suited for the user's needs. Most importantly, the MM&MLDS concept

incorporated into MDBS is an invaluable paradigm tor the understanding the various data

models and their data languages without having to use a separate database system for .atch

data model-language.

10

III. PROCEDURES TO INTRODUCE NEW MODEL-LANGUAGE
INTERFACES

A. JUSTIFICATION

As the database system continues to grow in use and size within government,

education, and industry, new data model-languages will be developed to support the

constantly changing requirements placed upon existing data model-language interfaces. At

the Naval Postgraduate School's Laboratory for Database Research, we would like to be

able to incorporate these new data model-languages into MDBS. The introduction of

additional data model-language interfaces into the MDBS is not a small task. First, the

design and programming teams must first become familiar with the idiosyncrasies of

MDBS through hands-on exposure to the current MDBS system. Since a primary focus of

designing a new user interface is to maintain consistency throughout each application (or

model-language interface in the case of MDBS) [SHNI 92], it is essential that designers and

programmers understand the design of previous data model-language interfaces.

Second, once these teams become familiar with the current version of MDBS, an

thorough understanding of the general architecture of MDBS is required. This requirement

is generally satisfied by reading various papers written on the MDBS. Topics such as

federated databases, database architecture, and multimodel/multilingual database design

should be covered.

Third, a review of previously designed and implemented data model-language

interfaces must be accomplished. Each data model-language interface consists of

approximately ten to twenty thousand lines of programming code written in C, and with

Lex and Yacc. Few students are familiar with the programming language C, let alone the

Unix tools Lex and Yacc. Now, they must learn these languages and tools in order to

understand the internal logic of these previously designed interfaces. This review

represents a majority of the work that must be accomplished prior to writing the first line

of C code for the new data model-language interface.

11

Previous research has been conducted in the development of traditional data model-

languages: however, no research has been done in the area of data model-language interface

management on MDBS. Too much time is spent on trying to complete the tasks previously

mentioned. The development of an effective tool is therefore necessary, so that the tools

will alleviate the burden placed upon designers and programmers and is integral for an

efficient and accurate data model-language incorporation. Currently, no such tool exists.

The scope of this data-model-language-interface management strategy is threefold.

First, a user manual must be developed that introduces first-time user to MDBS and is also

functional as a quick reference for experienced users. Second, for each software module of

the language interface contains procedures that are common to all data model-language

interfaces, an awareness of these features to designers and programmers is accomplished

by the introduction of generic software module algorithms. Third, gencr,, stcps must be

provided for incorporating new data model-language interfaces into MDBS. It is through

the fulfillment of this strategy that we are able to provide the paradigm for the

instrumentation of the multimodel and multilingual user interface.

B. THE CONTROLLER SOFTWARE

The MDBS configuration separates the controller software from the backend

software. All MDBS software is loaded under in a directory named after the most current

version of the MDBS software. Currently that version is VerE.6. Subdirectories under the

VerE.6 directory contain the software for each particular aspect of MDBS execution. The

CNTRL directory contains the software for the data model-language interfaces as well as

the software for the communications between the front-end controller and the backends.

Our research focus is placed upon the software which comprises the data model-language

interfaces. This software is located in the TI (for Test Interface) directory and subsequent

subdirectories of TI. Figure 4 illustrates the file organization of the test interface directory

and its relationship with the data model-language interface.

12

C
N
T
L

CONTROLLER TO
BACKEND
COMMUNICATION
SOFTWARE

CNTRL : Controller LI: Language Interface
TI: Test Interface DMLI: Data Model Language Interface

Figure 4: The File Organization and Structure for Data Model-Language
Interfaces within the Front-End Controller

Within the TI directory resides the program module which drives the user interface for

MDBS. This program, ti.c, determines the number of backends the system has currently

configured for execution, loads the schemas for existing database schemas, and displays the

MDBS system menu. Implementors of new data model-language interfaces must include

an option in the main (argc, argv) procedure of ti.c for the selection of the new data model-

language interface. This includes adding the appropriate case statement to allow continued

processing of the new model-language interface. Appendix B provides a detailed outline of

the test interface directory structure as it pertains to the MDBS user interface.

The TI directory also contains the procedures for executing the kernel data model-

language interface, i.e., attribute-based data model-language interface. The introduction of

a new model-language interface does not require any modification of the programs residing

in the test interface directory with the exception of ti.c as mentioned above.

In order to alleviate the burden of data passing among functions residing in different

software modules, MDBS relies upon global data structures to communicate between

software modules within the language interface. Within the TI directory, global data-

structures and variables are stored in a header file named licommdata.h. Part 4 of Section

13

C outlines the data structures required by all model-language interfaces and their

relationship to the licommdata.h file. Appendix C diagrams the generic data-structure

relationship required by all new model-language interfaces.

C. NEW MODEL-LANGUAGE INTERFACE REQUIREMENTS

1. Considerations for the Language Interface Software Module Design

As previously noted, the language interface consists of four software modules:

the language interface layer, kernel mapping system, kernel formatting system, and kernel

controller. Each new data model-language introduced into MDBS must include its own set

language interface modules; specifically, its own LIL, KMS, KFS, and KC. Even though

each data model-language interface implemented on MDBS has its own unique set of

language interface software modules, certain functions must exist in all model-language

interfaces. It is these required functions and corresponding internal logic that must be

addressed when designing and implementing a new data model-language interface on

MDBS. This is accomplished by examining the language interfaces of existing data model-

languages and identifying the commonality that is present in each module.

a. The Language Interface Layer

The language interface layer (LIL) of the MDBS functions as the bridge

between the user and the controlling software which drives MDBS. Regardless of the

model-language interface implemented on MDBS, all model-languages interfaces

communicate with the user via LIL. Communications with the kernel mapping system,

kernel controller, and kernel formatting system are also the responsibility of LIL.

Since all model-language interfaces interact with the user in LIL, there must

be some form of consistency among the different user interfaces. The goal of the user

interface design for MDBS is to develop a user interface that is common for each different

data model-language interface. Achieving this goal reduces the time required by the user to

familiarize the user with the functionality of a different user interface with each data model-

language present on MDBS. For instance, a user familiar with the relational/SQL user

14

interface does not have to learn a completely different user interface in order to use the

hierarchical/Di/l interface.

Each data model-language possesses a similar pattern of processing for the

LIL We require that LIL is to adhere to a generic algorithm for the interaction with the user

as well as KMS, KC, and KFS. Ncw model-language interfaces must incorporate this

generic algorithm into its own language interface layer. Figure 5 outlines the structure of

the generic LIL processing algorithm.

- Allocate and initialize memory for data-structures.
- Process new or old database?
- If new database...

- Enter and store database name into the database catalog.
- Load schema input from the terminal or file.
- Load the file into linked-list.
- Create template and descriptor files, index attributes
- Send schema (in linked-list data structure) to KMS for parsing.

- Display errors from KMS during parsing (if any).
- Prompt to continue to process as old database or exit.

- If old database...
- Check database name against the catalog. If not found check other

model-language catalogs (this is for use with cross-model accessing
only).

- if found in other data model-language, transform schema.
- Determine the mode of the input request.
- Store requests in a linked-list data structure.
- Display numbered queries to the user.
- Option to redisplay queries or process a request.
- Send the list of requests to KMS for parsing.
- Display errors from KMS (if any).
- Send the parsed request to KC for processing against a database in

KDS.
- Display results from KFS to user.
- De-allocate the dynamic memory.

- Exit to main menu and repeat above steps or exit system

Figure 5: The Generic Algorithm for All Language Interface Layers

15

Notice that this algorithm applies directly to any data model-language

interface implemented on MDBS. The language interface layer is by far the easiest layer to

develop from a programmers stand point. Much of the code already developed from

previous model-language interfaces can be modified to suit the requirements of the new

model-language interface. The application of the generic algorithm guarantees consistency

amongst the various model-language interfaces as well as the basic framework by which

the LIL functions.

b. The Kernel Mapping System

The kernel mapping system is responsible for the parsing of the model-

language based transactions for further processing in the kernel controller. This parsing

involving the transformation and translation of transactions written in the user's data

model-language into the data model-language of the kernel database system. Though

transformation and translation of UDM-L takes place in KMS, the user is unaware that this

transformation and translation is being conducted. This is known as the transparency and

is one of the requirements of a federated database system. Designers and programmers of

new model-language interfaces must ensure that KMS does not interface directly with the

user but instead interfaces with the user through LIL. Again, this is to maintain consistency

and transparency throughout the model-language interfaces.

A majority of KMS is comprised of mapping and formatting algorithms that

are specific to the model-language implemented. KMS must read input streams from LIL

containing either data-definition or request transactions. In order for the input streams to be

readable by KDS, KMS uses the grammar and semantics of UDM and UDL to transform

or translate the input stream into tokens recognizable by KDS. Functions written in KMS

must accommodate the semantics, syntax, and grammar of the model-language being

introduced. By analyzing the semantics, syntax, and grammar of UDM and UDL for

translation and transformation into KDM and KDL, the parser is not only capable

translation and transformation, but is also capable of detecting errors in the transaction

16

Even though the grammar and semantics of UDM and UDL dictate the

transformation and translation process, certain functions are required by KMS in all model-

language interfaces. A generic algorithm which outlines the basic functions required of

KMS for all model-languages is proposed. Implementation and strict adherence to this

algorithm will alleviate the buroen of determining what is required by KMS in relation to

the other modules of the new language interface.

Figure 5 outlines the generic KMS processing algorithm required in all

model-language interfaces on MDBS. Notice that this algorithm is independent of the

model-language interface on which it is implemented.

- KMS called by LIL to process transactions
- Begin parse of the input stream.
- If error found in parsing

- deallocate the memory allocated for the data-definition or request
input streams. This memory is generally the memory allocated by
the model-language kms-info data-structure.

- issue the error message.
- If no errors found

-if a data-definition transaction to load a database schema
- send transformed schema to KC to load onto KDS.
- send LIL the confirmation of schema load.

- if a request transaction for querying.
- send the translated UDM request to KC.
- display th- translated UDM request in KDM format via LIL

- End processing

Figure 6: The Generic Algorithm for All Kernel Mapping Systems

Because KMS represent over half the programming requirement for the

language interface, we suggest for a new model-language interface, tl'ree steps in the

design of the kernel mapping system. We also focus on the mapping and formatting

process. These steps function as a guideline for the design of KMS prior to programming.

1. Outline the grammar and semantics of the new model-language interface.

2. Determine the mapping algorithm to mapping grammar and semantics of UDM and
UDL into KDM and KDL.

17

3. Incorporate the mapping and formatting functions into the generic KMS algorithm.

c. The Kernel Formatting System

The primary function of the kernel formatting system (KFS) is to reformat
KDM-formatted transactions received from the kernel controller (KC) into the proper

LTDM format. Communications with KFS are only established after the successful

completion of a RETRIEVE or RETRIEVE-COMMON transaction in KC. Other

transactions issued to KC only require notification to the user of successful or unsuccessful

execution. However, the RETRIEVE and RETRIEVE-COMMON transaction display data

results to the user and therefore must be transformed into a format familiar to the user (i.e..

in UDM).

Each model language has a unique representation of an ABDL request in

regards to the syntax and structure of the data model. Therefore, KFS simply parses the

result data stream (or response) from KC in attribute-based form and displays it to the user

in the UDM form.

Of the four modules, KFS provides only one simple task to the MDBS

transaction execution process and thus comprises the least coding required to implement.

Though simple in coding, specific steps must be found in every KFS. This does not prevent

the new model-language designer from creating a complex display screen for data having

been output by MDBS. With this in mind, we propose a generic kernel controller algorithm

for the implementation in all KFS modules. Figure 7 illustrates the generic KC algorithm.I - Receive an output stream from KC.
- Correlate ABDL request data with UDM attributes.
-Display results to the user.

- Return to LIL

Figure 7: The Generic Algorithm for All Kernel Formatting
Systems

18

d. The Kernel Controller

The intersection of the language interface and the back-ends of MDBS meet

at the kernel controller (KC). Without a thorough understanding of KC 's internal logic

coupled with the utilization of a generic algorithm outlining the functional requirements ot

KC, the implementation of a new model-language interface would be virtually impossible.

Once a user's data definition or request transaction has been transformed or

translated by the kernel mapping system (KMS), the control is passed to the kernel

controller for the loading of this (or these) transaction(s) onto MDBS. KC relies upon KMS

to issue it the transactions that meet the following criteria:

1. of semantic correctness,

2. of sy,.kactic correctness,

3. in proper KDM format.

The operations performed by KC are based upon the operation flag within

the newmodelijanguage-info data structure. Two situations present themselves to the

kernel controller. First, the introduction of a new database into MDBS sets the operation

flag to CreateDB. This sends a signal to the kernel controller indicating that a data

definition has not been loaded for this particular database. Since KMS has transformed

UDM data definition into KDM form and LIL has created template and descriptor files for

the new database, KC must now load the template file onto MDBS backends. The database

template file is required by KDS in order to conduct the initial database load. In the

attribute-based data model-language, the template file represents the data definition used

by the supported data-model language to establish a new database on the system.

As previously mentioned, functions which comprise the attribute-based data

model-language reside in the Test Interface section of the controller software. The Test

Interface provides the communication link from the language interface to the backends via

the controller. Other modules with the controller aid in the communication of the backends

to the controller and vice versa.

19

KC must call the dbl_template() function in the program dbl.c in the Test

Interface. This function copies the template file into the UserFiles directory and then starts

the process of loading the template file onto the MDBS back-ends. Any errors encountered

during the load of the template file will be displayed to the user and all corresponding

dynamic memory will be de-allocated.

The second situation involves translated transactions from KMS awaiting

processing by KC. Each request transaction has an associated operation flag assigned upon

completion of KMS parsing function. It is this flag which determines what processing

functions must be performed by the kernel controller. Operation flags are model-language

specific, but must incorporate the five basic operations of the attribute-based data language

(ABDL). RETRIEVE, RETRIEVE-COMMON, DELETE, INSERT, and UPDATE.

Depending on the operation specified in the operation flag, the appropriate requesthandler

within KC will be called. If the request transaction required an ABDL translation of more

than one ABDL statement, a requesthandler function must be invoked to ensure

continuity between the multiple ABDL requests and the single UDM requests from which

they were parsed. This will prevent an incomplete execution or the original UDM request.

Aside from the this scenario, the request-handler will pass control to the

newmodel langauge_execute function.

The newmodel langaugeexecute function within KC makes the

necessary function calls with the Test Interface section for subsequent execution on the

MDBS processors. The translated UDM request is first modified into the proper ABDL

format for execution by changing all characters in the request to lower case with the

exception of the first character of the request. Upon completion, the modified request is

loaded to the MDBS for execution by calling the Tl_$$TrafUnitO function in the Test

Interface.

After loading the request, KC checks for responses from KDS which may

contain the results from previously loaded queries. This is accomplished by invoking the

nml_chkresponse-left () function within KC. Maintaining a count of the number of ABDL

20

requests needed for a single UDM request, the nml chk_responseIeft() function receives

messages (or responses) from KDS and ensures all ABDL results have been received from

KDS prior to sending the results to the kernel formatting system (KFS). Pending the

completion of all the requests or transactions, a file is maintained that appends the results

of each query as it finishes its execution. Errors in processing will be addressed to the user

through the TIErrResOutput() function. Successfully processed requests will be

forwarded to KFS for display to the user. Figure 8 shows a schematic diagram of the kernel

controller processing steps.

Snml kernol-ontrolilor

loadismplate iles requost handler

request pending nm-ch- , on- If

F I I I
Figure 8: The Schematic Diagram of Processing Steps of the Kernel

Controller

Data model-language specifics do not have a major impact upon the design

of the KC because model-language transactions reach KC have already been translated into

KDM form. Therefore, all KCs must have a similar algorithm which processes the

translated UDM transaction and extracts the results from KDS. We propose a generic KC

21

algorithm required in all model-language interfaces. This algorithm provides the basic

foundation by which all KCs should be developed. Figure 9 illustrates this algorithm.

- Receive the parsed transaction from KMS via LIL.
- Determine the subsequent action based on the operation flag.
- if operation-flag = CreateDB

- dbl templateO(/* in Test Interface to load template file.
- return to LIL.

- if operation-flag = a request transaction
- requesthandlerO(/* based on the operation-flag set in KMS.
- nml_executeO

- fixABDLreqO /* modify the ABDL request to proper format.
- TI_$$TrafUnitO(/* loads the ABDL request to MDBS.
- nmlchkresponsejleftO /* have all requests processed?
- TI_R$MessageO /* receive message from MDBS.
- TI_R$TypeO(/* is the message correct?
- switch (TIR$Type)

case correct response:
- TIR$ReqResO /* receive the results.
- checkjlast responseO /* are there results pending?
case RETRIEVE or RETRIEVE COMMON:

- if results pending, store results in the buffer and
loop till all request results are completed.

- KFSO(* forward results to KFS,
case INSERT or UPDATE or DELETE:

- print the query-completion notification.
- return to LIL

case Errors
- TI-R$ErrorMessageO I* finds the error type.
- TI.ErrRes_OutputO /* display the error to user.
- return to LIL.

Figure 9: The Generic Algorithm for All Kernel Controllers

2. Communications Among Modules

Figure 2 illustrated the basic relationship between the software modules

comprising the language interface. For the design and implementation of new model-

language interfaces, this figure must be expanded to provide a more in-depth view of the

22

communication paths that exist between modules. Additionally, the role of the Test

Interface must be included to show the relationship the Test Interface has with the

Language Interface for all data model-languages.

The path selection is based upon whether a user is loading a data-definition for a

new database or loading request transactions for processing against an existing database. If

a data-definition is to be loaded, the following intercommunication takes place between the

modules and the Test Interface. First, the user issues a command to load a new data-

definition via LIL; LIL then queries the user for the database name and uses the name to

request for the data-definition file. After receiving the data-definition file, LIL calls KMS

to parse the data-definition file into the KDM format (see step 1. in Figure 10). Once

completed, the control is returned to LIL (step 2.) which then makes a call to KC (step 3.)for

loading of the KDM data-definition to KDS. KC calls the Test Interface to perform the

actual loading of the data to KDS (steps 4. & 5.). After KDS has successfully loaded the

data-definition to MDBS and notified the Test Interface (steps 6. & 7.), KC returns the

control to LIL (step 8.). This completes the loading of the data-definition file. Figure 10

illustrates the aforementioned communication sequence with sequence numbers.

._• ~TEST '

KMS 4" INTEFRFACE_,

""-IKC F

Figure 10: The Module Communication Path for a Data-Definition Load.

Notice that KFS is not involved when loading a data-definition file. KFS is not

required in the communication process, since there are no (request) transactions to be

23

displayed to the user. The omission of KFS is the distinguishing feature of this

communication path.

Our second communication path involves the issuing of (request) transactions for

the execution in KDS. After the user has responded to the prompt by loading (request/

query) transactions via LIL, those transactions are sent to the KMS for parsing into the

KDM form (step 1. in Figure 11). KMS passes the parsed transaction(s) to KC (step 2.)

which in turn sends the transactions to the Test Interface (step 3.) for execution on KDS

(step 4.). After processing against the appropriate database on MDBS results are forwarded

to the Test Interface (step 5.) in order to further communicate the results to KC (step 6.).

KC forwards the results to KFS for display to the user in the UDM form (step 7.). Controls

are then finally returned to LIL (step 8.) where the process is repeated if more requests are

processed. Figure 11 illustrates the communication path for the execution of (request)

transactions in MDBS.

2.3 INTERFACE
6. 4. T5.

Figure 11: The Module Communication Path for Executing Transactions.

In both cases, errors resulted in any module will cause the control to be returned

to LIL. Error messages will be displayed to the user by the module where the error was

detected.

24

3. Data-structure Requirements

The data-structure design for the representation of a new data model-language

must incorporate features of both the model-language and MDBS. To accomplish this, we

propose a generic data-structure which satisfies the requirements of the language interface

and allows expansion for features of the new model-language interface. In order to

understand where the generic data-structure fits into MDBS, one must become familiar

with data-structure representation in the programming language C.

Any data-structure development on MDBS requires an understanding of derived

types in the programming language C. Two derived types, structure and union, are essential

in the data-structure design for MDBS. Structures aggregate data of different types (derived

types included) into a single data type. Unions allow alternative values to be stored in a

single shared portion of the memory. Integrated into complex data-structures, these derived

types are useful in representing the new data model-language. A detailed explanation of

these derived types, with examples, can be found in [KELL]

The structure userinfo, shown in Figure 12, is the building block of the data-

structure network which comprises each model-language interface. This structure contains

a variable of the type union, li_info, which stores the data structure of the model-language

interface selected for execution. The implementation of new model-language interfaces

into MDBS requires the modification of li_info to include a new structure for the new

model-language interface as shown in Figure 13. This new structure is our proposed generic

data-structure for new model-language interfaces.

struct user-info
{

char ui uid[UlDLength +1];
union liiinfo uiji type;
struct userinfo *uinext_user;

Figure 12: The Userinfo Structure

25

union Ii inic
{

struct sql info li-sql;
struct dliinfo li_dli;
struct dm1_info li_dml;
struct dapinfo li-dap;
struct newmodel languagepinfo 1i_nml:

Figure 13: The li_info Structure with the
newmodellanguage-info Included

The generic data-structure for new model-language interfaces is a C structure

called newmodellangauge info. This structure contains all the pertinent information

required by MDBS, including:

1. Unions for the new model-language KMS, KC, KFS, and LIL.
2. Operation flags to indicate user requests, operations, and errors.

3. Structures for storing filenames, transactions, and data-definitions.

Specifics of the new model-language should also be included in the

newmodel langauge info structure. The utions for KMS, KC, and KFS as well as the

structure types specific to the features of the selected model-language are stored therein.

Appendix C illustrates the generic data structure new model langaugejinfo and its

relationship to other data structures within MDBS.

All language-interface data-structures reside in the header file licommdata.h in the

Test Interface portion of MDBS. New model-languages must store their data-structures in

this file and use the C construct include in all programs of the new model-language

interface. Using a common file for the declaration of model-language data-structures is

especially useful when designing a cross-model access capability into a model-language

interface since each model-language has the access to the data-structures of the other

model-languages.

26

4. The Makefile Development

As with all programs written in the programming language C, a makefile is used

to compile several related programs in one step.The programs which comprise a new

model-language interface are no exception. Each module in the language interface of a new

model-language should contain its own makefile for separate modular compilation. In other

words, LIL, KMS, KFS. and KC should each have a separate makefile.

After the development of LIL, KMS, KC, and KFS, a single makefile should be

developed for the new model-language interface in order to compile all the modules at one

time. The makefile for the new model-language should include a makefile for each module

of the new model-language and indicate the appropriate directory to store all object code

resulting from the compilation process. After compiling the new model-language interface,

the Test Interface must also be recompiled due to changes made to the program ti.c. These

changes are a result of adding a new selection option for the new model-language interface

to the MDBS main menu. Appendix D illustrates a generic makefile for a new model-

language interface.

D. THE VERSION CONTROL AND CONFIGURATION MANAGEMENT

With the proliferation of new model-languages, the need of the version control will

present an area of concern to MDBS system managers. As new model-languages are

introduced to the MM&MLDS, new versions of the MM&MLDS software must be created

and managed. A strategy must be developed to ensure the proper documentation and

maintenance of its software when new versions of the MM&MLDS software is developed.

Coupled with Lhe version control is the configuration management which must also be

addressed.

The implementation of a new model-language interface results in the creation of a new

version of the MM&MLDS software. The latest version of the MM&MLDS software

should be the only version residing on the system after testing and evaluation is completed.

27

Utilizing the tape drive on the front-end controller, back-up copies of the old veision and

new version should be made in case of a catastrophic system failure.

The version control is not limited to changes or additions to the MM&MLDS

software. System upgrades may require the modification of the existing backend software.

Therefore, the following steps must be followed when a modification occurs to MDBS

software.

1. Back-up old and new versions to a tape. Ensure only new version is resident on the
system.

2. Properly label tapes and maintain a logbook indicating what modifications were made
and why.

3. Ensure all the MDBS systems receive the updated version of the new software.

Through the version control and configuration management, systems requiring only

specific data model-language interfaces can modify the new version of the MM&MLbS

software so that only those interfaces needed will be available for the selection. This can be

accomplished by deleting the satements and respective case statements for the unwanted

model-language interface in program tic of Test Interface. The system manager can then

recompile Test Interface and delete any references to the unwanted model-languages from

the makefile. This simple process allows system managers to offer only those model-

languages required at his specific site.

Any mismanagement of the MM&MLDS software can be costly. Slight modifications

(especially to Test Interface) can result in minor errors to a system failure. Following the

aforementioned version control and configuration management strategy, we will minimize

these problems.

28

IV. GENERAL STEPS TO A NEW MODEL-LANGUAGE

INTERFACE

A. THE MDBS USER INTERFACE

1. On the Interface Familiarization

The current version of the MM&MLDS software utilizes C shells and scrolling

menus for user interactions with MDBS. Prior to the design and development of a new

model-language interface, a period of fz"niliarization is needed to understand the

idiosyncrasies of the MDBS user interface. Without such experience, future model-

language interfaces will be constructed in their own unique fashion. An absence of

standardization among interfaces will exist on MDBS. This will force users to have to

understand and learn the processing steps of several different user interfaces, in addition to

the semantics, syntax, and grammar of the new data model-languages. It is because of this

problem, standardization of the user interface is a must.

After establishing a standard, the problem we encounter is adhering to that

standard and maintaining a level of consistency among the different model-language

interfaces. Our familiarization with previous model-language interfaces will provide the

designers of the new model-language interface with a guide for the user interface

development. Menus appearing to the user in one data model-languages must appear to the

user in the other model-language interfaces. Of course, some variation must be allowed for

the specifics of the model-language. For example, references to sets is appropriate for an

network/DML interface; however, this is not the case for an object-oriented interface. Our

focus is placed on the general framework of the model-language interface with the specifics

of the model-language incorporated into this framework. Maintaining a level of

consistency amongst the different model-language interfaces will reduce both errors and

the confusion on the part of the user when alternating between different model-language

interfaces. Unique model-language interfaces will detract from the concepts of multimodel

and multilingual interfaces instead of enhancing the users understanding of the overall

29

concept of MDBS. In Appendix D, we illustrate a basic framewuik for model-language

interface design.

When we discuss standardization of model-language interfaces, we exclude the

user interface associated with the attribute-based data model-language. The attribute-based

data model-language interface software resides outside the model/language interface

portion of MM&MLDS. Since all model-language interfaces are either transformed or

translated into the attribute-based data model-language, those functions specific to this

kernel data model-language should be separate from those model-language interfaces. The

attribute-based data model-language interface contains the functions that allow direct

communication with the backends unlike other model-language interfaces that

communicate with the backends via the attribute-based model-language interface. In Figure

14, we show the interface relationship between the model-language interfaces and the

attribute-based model-language interface in regards to backend communication.

Figure 14: The Relationship Between Model/Language
Interfaces (MLBs) and the Test Interface

2. The User's Manual

MDBS addressed the concept of federated databases and solutions to the

problems presented by heterogeneous databases. Therefore, in a classroom or research

30

environment, MDBS offers an excellent opportunity to (1) familiarize students with the

various data model-languages supported on MDBS and (2) allow researchers a vehicle by

which to further study the federated and heterogenous database concepts. Unfortunately, in

the past, potential users required the expert assistance in order to properly operate MDBS,

This placed a tremendous burden upon the user. The user had n) written documentation of

how to operate the system and therefore was forced to learn the system by trial and error.

This greatly diminished the learning objectives of MDBS, since the user was more focused

on figuring out how the system operated through trial and error. This lead to frustration and

confusion on the part of the user.

In order to alleviate these problems, we propose an instructional set or user's

manual which outlines every possible aspect of the user interaction with MDBS. Our

intentions were to design a manual that would be beneficial to both first-time users as well

as experienced users. Since MDBS is such a valuable resource for instructional purposes,

the user's manual is also designed as a teaching aide for advanced database topics.

Therefore, a practical vice theoretical lab would be possible, giving the students a more

dynamic indoctrination into advanced database topics in addition to lectures. At this time,

students in the advanced database course CS4312 are using the MDBS User's Manual to

further their knowledge of database concepts.

The introduction to the MDBS User's Manual, found in Appendix A, is the first

step in the design and implementation of a new model-language interface on MDBS. This

manual is an excellent tool for familiarizing oneself with the idiosyncrasies of MDBS that

is required in the design of new model-languages. Topics covered in the MDBS User's

Manual are:

1. Multimodel and multilingual capabilities.

2. System overview.

3. Starting the system

4. Data-definition and request file development.

5. Kernel data model-language interface

31

6. Execution of SQL, DML, and DL/I interfaces.

7. Execution of the cross-modeling access capabilities.

8. UNIX aliases and C shells.

9. Sample databases for the user familiarization.

As new model-languages and new functions to existing model-languages are
introduced to MDBS, additions and deletions to the user's manual must be made. This in

effect makes the MDBS User's Manual a living document that can be updated as the system

grows. Furthermore, as students use the manual as a part of their classroom instruction,

clarifications and modifications can be made to further enhance the learning process.

Through proper maintenance, the MDBS User's Manual is the most effective paradigm for

instructing MDBS users.

B. OUR SOFTWARE METHODOLOGY

The design and implementation of a new model-language interface involves several

software design decisions that must be made to ensure effective model-language interface

introduction into MDBS. These decisions are a result of developing the best possible

strategy needed ft r incorporating the idiosyncrasies of MM&MLDS with the grammar,

syntax, and semantics of the new model-language interface. Of the four modules

comprising the Model/Language Interface, the development of KMS involves the greatest

amount of planning and preparation since it is in this modules where the grammar, syntax,

and semantics of the new model-language interface must be addressed. The other three

modules rely upon the design of KMS as a building block for their own design. With this

in mind, we introduce our software methodology for the design of a new model-language

interface. In order to understand our methodology, three areas critical to the design of the

model-language interface software must be addressed. These are (1) designing a new

interface for data models with no formal data language, (2) designing a new interface for

data models with a formal data language, (3) mapping strategies using the kernel model-

language.

32

1. Models With A Formal Data Language

The introduction of standardized data model-languages into MM&MLDS

requires the development of an implementation strategy that encompasses all specified

constraints of the model-language. Since there is the documentation which specifies the

constraints of the model-language, the designers and programmers are not required to

develop the constraints for new model-language. Instead, they have the opportunity to avail

themselves a useful programming tools to parse the data model and its data language to

ensure complete coverage of all possible constraint violations.

These programming tools, Lex and Yacc, allow parsing of an input stream in the

new data model-language for future conversion into the kernel data model-language. Lex

and Yacc are useful, since their modules can be incorporated directly into the programming

language C and thus be included in the KMS portion of the Model/Language Interface. Lex

is a lexical analyzer which parses the input stream into recognizable tokens, these tokens

are then input into a compiler create by Yacc. Yacc, which stands for Yet Another

Compiler-Compiler, creates a compiler which accepts the tokens from Lex and processes

them in a finite-state automaton. Since the data model-language constructs are

standardized, all possible accepting states of a valid string are identified and thus can be

incorporated into the finite-state automaton generated by Yacc. Further explanation of the

implementation and design of Lex and Yacc can be found in [LESK I and [YACC I.

By utilizing Lex and Yacc, we may have a more complete description of the data

model-language that is to be introduced into MM&MLDS. If a model-language interface

becomes standardized since being implemented on MM&MLDS, the parser within KMS

should be converted from its existing parser written in C with a Lex and Yacc parser. This

would allow (1) the addition and modification of constraints not found in the original parser

and (2) produce a parser that covers the constraints of the standardized model-language. In

Figure 15 we illustrate the role of Lex and Yacc in the parsing process of KMS.

33

Lexical specifications in
regular expressions.

input stream n Lexical Analyzer

-•. LEX

parsed tokens SyntaticalspecificationsV in BNF

44 Fnite-State Automnaton.
< • ~based YACC -

acceptable states
with valid tokenizedstream of data.I

a of grammar and/or syntax
errors

Figure 15: The Lex and Yacc Parsing Processes.

2. Models With No Formal Data Language

With the proliferation of new data model-languages, the standardization of these

model-languages may become an involved process especially when no formally accepted

standard for the model-language has become available. Such is the case of the Object-

Oriented Data Model and Data Language. The object-oriented data model-language

concept has been addressed throughout the database community; however, no acceptable

standard has been declared. By standard, we mean a data model and its data language that

is universally accepted and implemented; e.g. relational and SQL are a standard data model

and a data language.

At the Laboratory for Database System Research, we intend to introduce new

model-languages into our system whether a data model and its data language have become

standardized or not. Without a standardized data model-language to incorporate into the

MDBS system, the designers and programmers must develop their own representation of a

proposed data model-language. It is this representation that must be developed prior to any

34

programming efforts to ensure compatibility between the model and its language. A

standardized data model and its data language generally evolve from extensive research and

testing to ensure all possible integrity constraints are addressed. In the case of data models

and their data languages that are not standardized, extensive testing has not yet been

conducted and thus the testing requirement falls upon the designers intending to implement

the new model-language interface on MDBS. The documentation of integrity violations in

standardized data model-languages is a tremendous aid in developing an accurate and

efficient parser to parse the data model and its language into the kernel data model-

language as addressed in the next section. This aid is rot available to the designers of a

model-language with no formal data model-language. Because of this, the development of

a parser for a model-language interface with no formal data model-language must be

written in a lower-level form without the benefit of higher-level, program-development

tools.

Another method of parser development is to design a KMS parser that uses the

programming language C to effectively parse the data-definitions and request of the new

model-language. Since much time will be spent developing the model-language

representation, this approach is much easier than using higher-level programming tools

such as Lex and Yacc [LESK 78] and [JOHN 78]. This affords the designers and

programmers the opportunity to incorporate the design of the new model-language data

structures into the KMS parsing process.

The third method is to write formal specifications for the new model-language.

More specifically, we write the regular expressions for its legitemate tokens. We also write

the BNF specifications for its syntatic structures and grammar. With these specifications,

we can use LEX and YACC to generate the parser for KMS readily. We recommend this

method for the development of KMS code.

35

3. Kernel Model-Language Mapping Strategies

In the case of a data model-language that has yet to be standardized, the

development of a language to incorporate with the data model can be an involved process.

We suggest the third method mentioned in the previous section. The overhead is of course

the effort and time devoted to developing the formal specifications, both regular

expressions and BNF specifications, for the new model-language.

By following our software methodology for the MM&MLDS, designers and

programmers will be able to properly address considerations that must be made prior to the

programming of the new model-language interface. Focusing on these issues prior to

programming will save the design and program teams valuable man-hours developing a

software methodology which in incompatible with MM&MLDS.

36

V. THE CONCLUSION

A. RESULTS OF OUR RESEARCH EFFORT

In this thesis, we have developed a paradigm for the introduction of new model-

language interfaces on MDBS. By detailing a three-step process to a new model-language

introduction into MDBS, a noticeable reduction in development time spent on new model-

language interface incorporation will be realized. This paradigm will result in a more

effective use of MDBS for both first-time user's and new model-language developers. It is

therefore important for us to summarize the efforts of our research.

As a pedagogical aid for the instruction on the multimodel and multilingual database

system, the MDBS User's Manual is the first step that designers must take in the process

of introducing a new model-language interface. This manual has also proven instrumental

in the educational environment as a supplement to the classroom lectures by providing

students a vehicle with which to operate MDBS and thus further their understanding of

advanced database topics.

The understanding of the procedures, methods, and tools required for introducing new

model-languages into MM&MLDS is vital for designers of a new model-language. From

our generic development algorithms for each software module of the Model/Language

Interface, designers will be provided with a framework and foundation from which new

model-languages will be implemented. The strict adherence to these algorithms will ensure

smooth introduction of the new model-language into MM&MLDS. Our development of the

generic data structure also provides the needed foundation from which the specifics of a

new model-language may be implemented on MM&MLDS. Our explanation and outline

of the relationship between the Test Interface and the Model/Language Interface sections

of MM&MLDS allows designers to focus upon the interaction which must take place

between the new model-language and the kernel database system. This is the heart of the

MM&MLDS process.

37

Our software methodology outlines considerations that must be made when designing

a new model-language interface for MDBS. Addressing key issues that will face designers

of new model-languages, our methodology provides options for more effective model-

interface design and incorporation.

We believe our paradigm is instrumental to the successful incorporation of new

model-language interfaces into MDBS. The problems associated with heterogeneous

databases are facing organizations world-wide and especially in the Department of

Defense. The multibackend, multimodel, and multilingual approach to the database system

design is an effective solution to these problems

B. FUTURE RESEARCH

The rapid growth of computer technology will have a tremendous impact upon

MDBS. Conversion of the current Laboratory of Database System Research to the Sun4

RISC architecture will soon be realized. Research in the area of the software portability and

backend configuration on this new architecture must be addressed.

With the successful incorporation of the Sun4 architecture, new tools such as X-

Windows will be available for users and programmers. These new tools will be

instrumental in the design of the new user interface for MDBS. Using a programming tool

such as TAE Plus, a new user interface could be designed for MDBS, since TAE Plus

generates code written in C and can thus be incorporated into MDBS software readily. The

author has developed a prototype user interface for MDBS written in TAE Plus. The

implementation of this interface would be an excellent research opportunity and allow

developers of new model-languages to focus more on the structure of the new model-

language by not having to develop a new interface.

38

APPENDIX A. MDBS USER'S MANUAL

LABORATORY FOR DATABASE
SYSTEM RESEARCH

Naval Postgraduate School
Monterey, California

The Multibackend Database System
(MDBS)

The Multimodel and Multilingual Database System User's Manual
Volume 1

by

Paul Alan Bourgeois

17 December 1992

MDBS Advisor: Dr. David K. Hsiao

Approved for public release; distribution is unlimited.

39

TABLE OF CONTENTS

1. INTRODUCTION .. 42
A. BACKGROUND ... 42
B . SC O PE ... 42

II. SYSTEM OVERVIEW ... 44
A. GENERAL ... 44
B. MULT[MODEL/MULTILINGUAL CAPABILITIES 44
C. MDBS LANGUAGE INTERFACE SOFTWARE MODULES 46

III. SCHEMA AND REQUEST FILES ... 48
A. OVERVIEW .. 48
B. SCHEMA FILES ... 48
C. REQUEST FILES ... 50

IV. GETTING STARTED AND RUNNING MDBS ... 53
A. MDBS PROCESSES .. 53
B. META-DISK MAINTENANCE .. 55
C. SETTING UP THE USER'S SCREEN ... 56

V. THE RELATIONAL/SQL INTERFACE ... 59
A. INTRODUCTION ... 59
B. LOADING A NEW DATABASE .. 60
C. PROCESSING AN EXISTING DATABASE ... 62
D. THE MASS LOAD FUNCTION ... 62
E. LOADING RECORDS USING SQL INSERT AND

PROCESSING OTHER TRANSACTIONS ... 63
VI. THE NETWORK/CODASYL INTERFACE .. 67

A. INTRODUCTION ... 67
B. LOADING A NEW DATABASE .. 67
C. PROCESSING AN EXISTING DATABASE ... 70
D. LOADING AND EXECUTING CODASYL

TRANSACTIONS VIA REQUEST FILES ... 71
VII. THE HIERARCHICAL/DL/I INTERFACE ... 73

A. INTRODUCTION .. 73
B. LOADING A NEW DATABASE .. 74
C. PROCESSING AN EXISTING DATABASE ... 76
D. REQUEST FILE ORGANIZATION FOR LOADING DL/I

TRANSACTIONS ... 77
VIII. THE CROSS-MODELING ACCESS CAPABILITY ... 80

A. OVERVIEW .. 80
B. SCHEMA TRANSFORMATION .. 80

40

C. EXECUTING THE HIERARCHICAL TO RELATIONAL
CROSS-MODELING CAPABILITY .. 81

IX. THE ATTRIBUTE-BASED DATA MODEL-LANGUAGE
IN TERFA CE ... 84
A . O V E R V IE W .. 84
B. DATABASE CONSTRUCTS .. 84
C. THE ATTRIBUTE-BASE DATA MODEL INTERFACE 85

1. The Template and Descriptor Files .. 85
2. The Mass Load File ... 87
3. Executing the ABDM interface ... 89

UM APPENDIX A: USEFUL UNIX AND MDBS COMMANDS 95
A. THE .alias FILE ... 95
B. C SHELLS .. 95

1. The zero C Shell .. 96
2. The stop.cmd C Shell ... 97
3. The run C Shell .. 98

C. THE README FILE .. 99
UM APPENDIX B: DEMO DATABASE EXECUTIONS ... 101

A . O V ERV IEW ... 101
B. THE RELATIONAL/SQL INTERFACE ... 101
C. THE NETWORK/CODASYL INTERFACE ... 102
D. THE HIERARCHICAL/DL/1 INTERFACE ... 103
E. THE CROSS MODEL CAPABILITY ... 104
F. THE ATTRIBUTE-BASED/ABDL INTERFACE 104

41

I. INTRODUCTION

A. BACKGROUND

The Multi-backend Datah•se Sywtem (MDBS) is the research database laboratory

at NPS. Under the direction of Professor David K. Hsiao, this system provides a research

testbed for solutions to the problems of heterogeneous databases and design concepts

required for the development of a federated database system. The multiple data model and

data language capability of MDBS allows the user to implement a wide variety of database

models and data languages on a single system. Through its cross-model access capability,

MDBS permits a user experienced in relational databases and the relational language SQL

to access a hierarchical database by transforming the hierarchical schema into a relational

schema and thus allowing transactions written in SQL to access the hierarchical database.

Though a transformation of schema takes place, this transformation is transparent to the

user.

B. SCOPE

The scope of this user's manual will be to explain all user interface aspects of the

MDBS. Sections will include how to load and run a relational, hierarchical, and network

database as well as how to use the cross-model capabilities of the system. Because the

system uses the data sharing method of multiple data model/language mapping to a single

(or kernel) data model/language, instructions are provided on the development and

execution of an Attribute Based Database (ABD) using the Attribute Based Data Model

(ABDM) and the Attribute Based Data Language (ABDL). Examples of certain data

models and data languages are provided throughout this user's manual as well as formats

used to construct the schema and request files necessary to build a database. A brief

overview of the system is discussed in Chapter Two to familiarize the user with the

hardware and software of MDBS. Appendix A provides a glossary of key terms and UNIX

functions necessary for database implementation are also provided. Appendix B is the step-

42

by-step instructions required to load, process, and execute the four user interfaces on the

MDBS.

43

IL SYSTEM OVERVIEW

A. GENERAL

The Multibackend Database System (MDBS) currently consists of six backend

computers and one controller computer. Each backend is a database processor with its own

micro-processor and database store. The backends are arranged in parallel in order to

maximize performance through scalability, response-time reduction, and response-time

invariance. Both paging and meta-data are stored are stored on separate 96 Megabyte

Winchester type disk drives while the base data is maintained on much larger 500

Megabyte moving-head standard-type drives. The backends communicate via an Ethernet

Local Area Network. The controller is different from the backends in that it does not require

access to the meta-data and base data. The controller's main function is to provide backup

and recovery of the backends. On the MDBS at the Naval Postgraduate School, DB8 (ISIV

8) with the front tape drive, is the controller. Figure 2-1 illustrates the relationship between

the forward controller and the backend processors as well as the structure and organization

of the MDBS. The number of backends the system can support is limited only by the

number of connection slots provided for the backend processors by the controller.

B. MULTIMODEL/MULTILINGUAL CAPABILITIES

In order to support its claim of being multi-model/multi-lingual, MDBS supports four

traditional data models and data languages as well as its own kernel data model and data

language. MDBS supports these data models and data languages on the same system

unlike traditional homogeneous database machines which support only one data model/

data language. The four data models/data languages supported by MDBS: relational/SQL,

network/CODASYL, hierarchical/DL/I, and functional/DAPLEX (Author's note: at the

time of this user's manual, the functional data model was in the process of being completed

on MDBS), are all mapped to a kernel data model/data language on the MDBS system. It

is this mapping process of the user's data model and data language into the kernel data

model and data language that represent the heart of the MDBS.

44

The kernel data model used for MDBS is the attribute-based data model (ABDM) with

its corresponding attribute-based data language (ABDL). The ABDM supports the five

primary database operations: RETRIEVE, RETRIEVE COMMON, INSERT. UPDATE.

and DELETE. Through clustering, the ABDM allows the base data to be partitioned into

mutually exclusive sets and these sets of clusters to be distributed to the backends

permitting parallel access to the base data.

Meta data disk
Base data disks

Tape Drive Paging disk

Meta data disk
: Base data disks

Cont rolle,

Paging disk

0 0
0 0
0 0 0
* 6 0

Meta data disk Base data disks

Paging disk

Figure 2-1
Structure and Organization of MDBS

45

C. MDBS LANGUAGE INTERFACE SOFTWARE MODULES

Each data model/data language supported by MDBS has four language interface

software modules that perform the translation of the data model and data language into the

kernel data model and data language. These four modules are the Language Interface Layer

(LIL), Kernel Mapping System (KMS), Kernel Formatting System (KFS), and Kernel

Controller (KC). A detailed description of each module as well as interface management

strategies for loading new databases to the MDBS system, and a prototype for a new

interface management system for MDBS can be found in [BOUR 931. Figure 2-2 shows

how each data model/data language is composed of the four software modules, with all data

models linked to the Kernel Database System (KDS) and eventually to the Kernel Data

Model (KDM) and Kernel Data Language (KDL).

4 4

Fiur 2-2
M ultpl daaaeinefcs lne osnl en dtbs

syste on KCDBS

3 36

A demonstration/class account cs4322 is set up to execute the MDBS from DB3. The

password can be obtained from Professor Hsiao. An in-depth description of the hardware

that comprises the MDBS system as well as MDBS performance studies and statistics can

be found in [H[SIA 911.

47

III. SCHEMA AND REQUEST FILES

A. OVERVIEW

Each of the databases developed on the MDBS system requires the use of a schema

file and the option to use a request file. All schema and request files MUST be resident in

the UserFiles directory in order to be used by MDBS since MDBS is hard - coded to check

that directory to verify if the schema file actually exists. Files can be resident in a

subdirectory of UserFiles but when the user is prompted by the system to input the schema

or request file, the user must include the path name starting with the subdirectory name

followed by a forward slash, and then the schema or request file name (Figure 3- I).

What is the name of the CREATE/QUERY file ---- > /DEMO/COURSEsqldb

Figure 3-1
Request for SQL schema file

B. SCHEMA FILES

The schema file outlines the schema of the user's desired database in its respective

query language, i.e. SQL, CODASYL, DLI, or ABDL. It is from the loading of this file

that the descriptor and template (the ".d and .t" files) are generated by the Language

Interface Layer.

For clarity, all schema files should be named in the following convention:

<database name><the acronym of the interface language (ie. sql, dm1, dli)>db

For example, if a relational database name is COURSE, then its schema filename

should be COURSEsqldb. There is no restriction to this rule, but once several databases

have been developed, finding the corresponding schema file when executing a database can

be lead to using the wrong schema file and having to start over. All schema files must have

a dollar sign "$" on the last line of the file to mark the end of file. Otherwise, the parser will

48

not find and EOF mark and not process the schema file. Sample schema files are shown

in Figure 3-2 through 3-4 and can also be found in the cs4322 account in the UserFiles/

DEMO directory.

create table employee: Iname (char(8)),
fname (char(8)),
ssn (char(9)),
sex (char(I))

create table job: essn (char(9)),
position (char(10))

create table pay: essn (char(9)),
salary (int(6))$

Figure 3-2
SQL schema file EMPRECsqldb

dbd name= sqd
segm name= co
field name= (sno, seq), bytes= 2
field name= sname, bytes= 2
segm name= maint, parent= co
field name= (mdn, seq), type= int, bytes= 2
field name= mname, type= char, bytes= 2
segm name= ops, parent= co
field name= (odn, seq, m), type= int, bytes= 2
field name= oname, type= char, bytes= 2
segm name= acft, parent= ops
field name= (ano, seq), type= int, bytes=2
field name= aname, type= char, bytes= 2$

Figure 3-3
DLI schema tile SQDdlidb

49

SCHEMA NAME IS NET1;
RECORD NAME IS Supp;

DUPLICATES ARE NOT ALLOWED FOR SNO;
SNO; CHARACTER 10.
SNAME; CHARACTER 10.
CITY; CHARACTER 10.

RECORD NAME IS Parts;
DUPLICATES ARE NOT ALLOWED FOR PNO;

PNO; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY; CHARACTER 10.

RECORD NAME IS Purch;
SNO; CHARACTER 10.
PNO; CHARACTER 10.
QTY; FIXED 4.

SET NAME IS SuppPurc;
OWNER IS Supp;
MEMBER IS Purch;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SNO IN Supp;

SET NAME IS PartPurc;
OWNER IS Parts;
MEMBER IS Purch;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF PNO IN Parts;

$
Figure 3-4

CODASYL schema file SQDdlidb

C. REQUEST FILES

The request file contains transactions the users wishes to process against a certain

database. These transactions are written in the appropriate data model language given the

data model of the database. The format for each request file is similar in that files which

contain multiple transactions must have an "@" sign in between each transaction. All files

must have an end of file marker (denoted by the dollar sign) on the last line of the file.

50

Sample request files are shown in Figures 3-5 through 3-7 and can also be found in the

cs4322 account in the UserFiles/DEMO directory.

select *
from employee

select *

from job

select *

from pay

select *

from employee
where sex ='M'

select ssn,lname
from employee
where sex = 'F'

$
Figure 3-5

Figure Portion of SQL request file EMPRECreq

MOVE Sup1 TO SNO IN Supp
MOVE DEC TO SNAME IN Supp
MOVE MONT TO CITY IN Supp
STORE Supp

MOVE Part@ TO PNO IN Parts
MOVE NUT TO PNAME IN Parts
MOVE MONT TO CITY IN Parts
STORE Parts

MOVE Supl TO SNO IN Supp
FIND ANY Supp USING SNO IN Supp
GET Supp
$

Figure 3-6
Portion of CODASYL/DML request file NETlreq

51

build (sno, sname):
('Al ', V2')

isrt co

build (mdn, infame) :(10,'pr')
isrt co (sno = 'Al')

maint

build (odn, oname) (55, 'tp')
isrt co (sno =A2'A)

Ops

gu Co

gu co (sno='A2')
Ops

gnp ops

Figure 3-7
Portion of DL1 request flile

SQDreq

52

IV. GETTING STARTED AND RUNNING MDBS

Once all schema files and optional request files have been constructed, the user can

now begin running the MDBS system. A user logging into the MDBS can use either the

mdbs or the cs4322 account. Both accounts will log into their respective default directory.

The mdbs account is used primarily for thesis research and therefore has numerous

directories from which the MDBS system may run from and options exists to predetermine

the number of backends that the user wishes to use while running a particular database

application. Due to constant manipulation and changes that occur from thesis research, our

focus will be placed on using the cs4322 account on the db3 terminal. Appendix A covers

key UNIX commands and C shells used to setup the MDBS.

Logging into db3 with the cs4322 account will take the user into the default directory

of db3/usr/work/cs4322. The subdirectory UserFiles (or a subdirectory of UserFiles)

should contain the schema and request file for the database to be processed. If this has not

been done, the user must transfer his schema and request files into the UserFiles

subdirectory (or a subdirectory of UserFiles).

Once all schema and request files are located in the proper directory, the user will

change directories from the default path to the subdirectory test. Within the test directory,

the following files exist: README, run*, stop.cmd*, zero*. The README file outlines

the limits for file name length, characters per attribute name as well as what the run*,

stop.cmd*, zero* commands do. A copy of the README file is provided in Appendix A

along with a listing of the run* stop.cmd* and zero* commands.

A. MDBS PROCESSES

Prior to executing the run command the user must verify that there are no processes

still running the MDBS system. The UNIX command ps ax will display all active

processes on your terminal whether you own those processes or not. Because an aborted

run of the MDBS system can leave MDBS processes still running, the ps ax command will

53

help locate these processes and by using the UNIX command kill, you can kill those

lingering processes. Look for any process like those highlighted in Figure 4-1:

PID TT STAT TIME COMMAND
26590 ? IW 0:00 - desktop -d console (/etc/getty)
26757 p0 I 0:02 rlogind
26758 p0 IW 0:02 -csh (/bin/csh)
26822 p0 IW 0:00 /bin/csh run
26827 p0 0:00 /usr/work/cs4322/VerE.6/CNTRL/scntgpcl.out
26828 pO 0:00 /usr/work/cs4322NerE.6/BE/sbegpcl.out
26829 pO 10:00 /usr/work/cs4322/VerE.6/CNTRL/scntppcl.out
26830 pO 10:00 /usr/work/cs4322/VerE.6/CNTRL/pp.out
26831 pO 10:00 /usr/work/cs4322/VerE.6/CNTRL/iig.out
26832 p0 0:00 /usr/work/cs4322/VerE.6/CNTRL/reqprep.out
26833 p0 0:00 /usr/work/cs4322/VerE.6/BE/dirman.out
26834 p0 10:00 /usr/work/cs4322/VerE.6/BE/cc.out
26835 p0 0:00 /usr/work/cs4322/VerE.6/BE/recproc.out
26836 p0 1W 0:00 /usr/work/cs4322/VerE.6/BE/dio.out
26837 p0 10:00 /usr/worklcs4322/VerE.6/BE/sbeppcl.out
26839 p0 10:01 /usr/work/cs4322/VerE.6/CNTRL/dblti.out
26844 pl S 0:00 rlogind
26845 pl S 0:00 -csh (/bin/csh)

Figure 4-1
Result of executing the ps ax command

By typing kill and the process number, you can terminate the extraneous processes. A

second method of kill the extraneous processes is to use the stop.cmd command. This

command; the shell file is listed in Appendix A, will find all the extraneous processes

running and kill them as shown in Figure 4-2. If the stop.cmd command is issued and no

MDBS processes are running on the system, the user will be notified that there are no

MDBS processes to kill as shown in Figure 4-3.

54

db3/usr/work/cs4322/test--38>stop.cmd
Stopping MBDS processes
killing 26827 26828 26829 26830 26831 26832 26833 26834 26835

26836 26839

Figure 4-2
Result of the stop.cmd command

db3/usr/work/cs4322/test--4> stop.cmd
Stopping MBDS processes
killing
kill: Too few arguments.

Figure 4-3
Executing the stop.cmd command
with no MDBS processes running

B. META-DISK MAINTENANCE

Upon verification that no extraneous processes are running, the user must ensure that

there is no existing database currently loaded to the system. This is accomplished by using

the alias pry, this command will check the disk to make sure there is no data on it. The

pry command will display what data is on the disk, if the line displays zeroes, as in Figure

4-4, then the data disk is clean and you are ready to execute the MDBS system.

0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
\0

Figure 4-4
Clean meta-disk

However, there may be an existing database stored on the disk, and the result of the

pry command will look similar to Figure 4-5.

55

000000 \0 \0003 E M P R E C \0 N0 N0 \0 \0 \0 \0
0000016 \0 \0 \0 \0 \ 0 \0 \O \0 NO \0 \0 \0 \0 N0 \0 \0

Figure 4-5
Meta-disk with existing data

The zero command will let the user clean the meta-disk of any existing data. Users

loading a new database to the system must ensure that the meta-disk is clean or the

execution of the database will crash. Figure 4-6 displays what the user will see after

executing the zero command.

Provided the user has either clean the meta-disk or plans to process an existing

database, the user is now ready to execute the MDBS system. From the test directory, the

user will type the command run to start the MDBS interface. Figure 4-7 illustrates what

takes place after the run command is entered. (Author's note: The execution of the MDBS

described in this manual is strictly for use with the class account cs4322. Execution of the

MDBS using the thesis research account mdbs is accomplished in various ways with options

to select the number of backends the user wishes to use. Since current thesis research is

being conducted in the area of user selection of backends, a future appendixes appear in the

next edition of the MDBS User's Manual, will outline the steps necessary to execute the

MDBS using the thesis research account mdbs.).

C. SETTING UP THE USER'S SCREEN

It is advisable that the user use two C shells while operating the MDBS system. One

shell will be used strictly for database execution while the other shell will be used for

checking the UserFiles directory for ensuring that all necessary database files exist and so

that the user can verify that all processes are running. When running the MDBS from the

class account, the user will have six backend (BE) processes running and six control

(CNTRL) processes running. These processes are highlighted in Figure 4-1. If the user does

not have all these processes running, then the user must exit the system using Control-c,

kill any extraneous processes with the stop.cmd command, double check to ensure no

56

extraneous processes are running using the ps ax command, ensure the data disk has been

zeroed, and then restart the MDBS system using the run command

db3/usr/work/cs43.L2/test--
39>zero
No match.
No match.
File to zero = /dev/sdlc
File size = 105638400
Bytes to zero = 8000000
Bytes written...

819200
1638400
2457600
3276800
4096000
4915200
5734400
6553600
7372800
8000000

Figure 4-6
Result of the zero command

As seen in Figure 4-7, The Multi-Lingual/Multi-Backend Database System Menu

offers an assortment of database models to choose. Since each interface has its own unique

idiosyncrasies, the next section four sections will examine the Relational, Network,

Hierarchical, and ABDM database models and respective user interfaces. Regardless of

the database the user desires to implement, the commands and steps used to prepare and

execute the MDBS pertain to all data models implemented on the MDBS system.

57

db3/usr/work/cs4322/test--42> run
[1] 29569
[2] 29570
[3] 29571
[4] 29572
[5] 29573
[6] 29574
(7] 29575
[8] 29576
[9] 29577
[101 29578
[11] 29579

The Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(x) - Exit to the operating system

Select->
Figure 4-7

Result of executing the run command

58

V. THE RELATIONAL/SQL INTERFACE

A. INTRODUCTION

The relational interface on the MDBS system uscs SQL as the data model language.

Hence, all request files developed in conjunction with the relational interface will use SQL

statements to manipulate the relational database. The schema file for the relational/SQL

interface will resemble Figure 3-2 using the basic SQL constructs to create the schema file.

The user must ensure the request and schema files are created prior to execution of the

MDBS system.

At this point, the user has entered the run command and is looking at the Multi-

Lingual/Multi-Backend Database System Menu as shown in Figure 4-7. Select r for the

relational/SQL interface and the system will prompt the user for the operation desired

(Figure 5-1). Select option(l) to load a new database, (p) to process a database currently

Enter type of operation desired
(I) -load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

Action --- >
Figure 5-1

System prompt to load a new or process an existing database

resident on the systems data disk, or (x) to return to the Multi-Lingual/Multi-Backend

Database System Menu. After selecting option (1) or (p) the user will be prompted for the

database name (Figure 5-2). If the user is loading a new database, the name of the database

should (for clarity) give an idea of what the database represents (i.e. a database of class

schedules could be called SCHEDULE). If the user desires to process an existing data-

base, it is imperative that the database exist or the system will endlessly loop asking for

the database name. If this situation presents itself, enter Control-c to abort the system and

59

start again as described in the Getting Started section. The database name may be written

in all capital letters or small case letters, there is no restriction.

Enter name of database >

Figure 5-2
Enter database name prompt

B. LOADING A NEW DATABASE

Loading a new database differs from processing an existing database in that the new

schema for the database has yet to be loaded to the system. After the user has entered the

database name, the user will be prompted as to the mode of input desired to load the schema

file (Figure 5-3). The user must either select option (f) and have a schema file already

developed (this is highly recommended) or select the option (t) of loading the schema from

the terminal. Option (x) will take the user back to the type of operation menu. Unscrewing

instructions are provided if the user selects option (t).

Enter mode of input desired
(f) - read in a group of creates from a file
(t) - read in creates from the terminal
(x) - return to the main menu

Action --- >
Figure 5-3

Loading of the schema file

After selecting option (f) the user will be prompted to enter the name of the schema

file. If the file resides in a subdirectory of UserFiles, the uscr must provide the path of the

directory that the file resides as shown in Figure 5-4. As covered in the Schema and Request

60

File section of this manual, the schema file will create the template and descriptor files

(the.t and .d files).

What is the name of the CREATE/QUERY file ---- > DEMO/EMPRECsqtdb

Figure 5-4
Enter schema file name prompt

The MDBS system will parse the schema file and transform the relational schema into

the kernel data model language, ABDL. The parse will determine what the relations of the

schema are and a screen will appear displaying the relations and a opportunity to index

attributes in the relation if so desired. Figure 5-5 illustrates this action.

The following are the Relations in the EMPREC Database:

EMPLOYEE
JOB
PAY

Beginning with the first Relation, we will present each
Attribute of the relation. You will be prompted as to whether
you wish to include that Attribute as an Indexing Attribute,
and, if so, whether it is to be indexed based on strict
EQUALITY, or based on a RANGE OF VALUES. If you do not want
to enter any indexes for your database, type an 'n' when
the Action -> prompt appears

Strike RETURN or 'n' when ready to continue.
Action - >

Figure 5-5
Relations from a relational schema file and attribute indexing

If the user desires to index attributes, onscreen instructions will direct the user how to

properly index the attributes. The user will traverse through all relations and every attribute

if indexing is desired. In most cases, the indexing is not used.

61

The user has now completed loading the new database schema onto the MDBS

system. Once the user has either finished indexing the appropriate attributes or desired not

to index attributes, the user will be prompted by Figure 5-1 and will select option (p) to

process an existing database

C. PROCESSING AN EXISTING DATABASE

In order to process an existing database, the user will select option (p) in Figure 5-1

and will be prompted to enter the database name as in Figure 5-2. Since the database

schema now exists on the MDW system, the user may now input records into the system.

After inputting the database name, the user will receive the screen display in Figure 5-6.

Options (f), (t), and (m) all provide a means to input records into the database. The first

two use SQL transactions to insert records into the database (as well as other transactions)

while the third option allows the user to input several records into the database from a file.

This option is the mass load function and it is only offered with the relational interface.

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file
(d) - display the current database schema
(x) - return to the previous menu

Action --- >
Figure 5-6

Record input menu

D. THE MASS LOAD FUNCTION

The mass load function is a unique method of loading records into each relation of the

database. Without having to write several INSERT transactions in SQL, the user can load

numerous records into the database using the mass load function. All mass load files

contain the suffix ".r" and should be prefaced by the database name for clarity. After

selecting the mass load option, the user will be prompted for the mass load file as in Figure

62

5-7. Figure 5-8 is an example of a mass load file. When developing a mass load file, the

space in between attribute values along a tuple must be separated by a TAB and not the

spacebar. The system will not read the space produce by the spacebar and assume one large

attribute value or crash the system. As with the schema and request files, the mass load

file must be maintained in the UserFiles directory or a subdirectory of UserFiles

Enter name of record file ---- > DEMO/EMPREC.r

Figure 5-7
Prompt to input mass load file

After indicating the mass load file name, a series of ABDL insert statements will

appear. If this does not happen then there has been an error in the mass load file and the

system will crash. A period of inactivity greater than 20 seconds indicates problems with

the mass load file and the necessity for the user to abort the system and restart. The mass

load option does not replace the traditional SQL INSERT command but merely offers a

faster method of initializing a database with base data. The traditional method of using SQL

INSERT command to load the database is still a viable option on MDBS.

E. LOADING RECORDS USING SQL INSERT AND PROCESSING OTHER

TRANSACTIONS

If the user desires to insert records into the relational database via the traditional

method of using SQL INSERT commands and/or wishes to process SQL transactions

against data currently residing on the database, option (f) will be chosen. The user must

maintain a file within the UserFiles directory (or a subdirectory of UserFiles) that contains

a list of the SQL transactions to be processed against the relational database. This file is

commonly known as the request file and the file name is always contains the suffix "req".

A prompt will appear after option (f) is selected requesting the user to input the name of

the request file (Figure 5-9). Figure 3-5 shows an example of a request file developed for

63

the EMPREC database. An explanation of request file format is covered in the Schema and

Request File section.

EMPREC

EMPLOYEE
SMITH JOHN 111111111 M
JONES BETTY 222222222 F
HART PETE 333333333 M
THOMAS TINA 444444444 F
JUDY KEWIN 555555555 M

JOB
111111111 MANAGER
222222222 MANAGER
333333333 ACCOUNTANT
444444444 SECRETARY

PAY
111111111 50000
222222222 60000
333333333 45000
444444444 30000$

Figure 5-8

Mass load file

What is the name of the CREATE/QUERY file ---- >EMPRECreq

Figure 5-9
Prompt for request file

After inputting the request file, MDBS will scan the request file and, in the case of

multiple transactions on one file, will number each transaction. If the display of the request

file is longer than the screen display, the -more- prompt will be displayed in the bottom-

left comer of the active window. Pressing the return key will display the remaining contents

of the file. For longer files, this process may be repeated several times before reaching the

64

end of file. Once the transactions in the request file have been displayed to the user, a menu

selection, as seen in Figure 5-10, will appear requesting the user to either execute a

transaction, redisplay the contents of the request file, or exit back to the previous menu.

Note that the first two options will execute and then return to the menu in Figure 5-10. If

the user decides to use another request file or must enter a transaction via the terminal,

entering option (x) will send the user to the menu in Figure 5-6

The user will process transactions against the database by simply entering the number

of the transaction after the Action prompt in Figure 5-10. The transaction will be checked

for semantic. and syntactic correctness and, if in error, an appropriate message will be

displayed. A serious error violating the conventions of the data language could result in a

catastrophic error causing a bus error (core dump) and the need to restart the system.

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action --- >

Figure 5.10
Transaction execution menu

If a transaction processes correctly, a display of the ABDL translation of the SQL

transaction will be given and, in the case of a RETRIEVE operation, the data resulting from

the query. This is illustrated in Figure 5-11.

Appendix B outlines the steps necessary to load and process the demonstration

relational database EMPREC on the MDBS

65

[RETRIEVE (TEMP = Employee)(LNAME, FNAME, SSN, SEX)]

LNAME IFNAME ISSN ISEXII
------------------------ -
SMITH tJOHN 1111111111 IM I
JONES IBETTY 1222222222 IF I
HART IPETE 1333333333 IM I
THOMAS ITINA 1444444444 IF I
JUDY IKEWIN 1555555555 IM

Figure 5-11
Result of a SQL retrieve operation with ABDL translation

66

VI. THE NETWORK/CODASYL INTERFACE

A. INTRODUCTION

The network interface on the MDBS system uses CODASYL as the data language for

all network data models. All schema and request files require CODASYL statements in

order to construct and manipulate the network databases on MDBS. The schema file for the

network/CODASYL interface will resemble Figure 3-4 using the basic CODASYL

constructs to create the schema file. The user must ensure that the request and schema files

are created prior to execution of the MDBS system.

At this point, the user has entered the run command and is looking at the Multi-

Lingual/Multi-Backend Database System Menu as shown in Figure 4-7. Select n for the

network/CODASYL interface and the system will prompt the user for the operation desired

(Figure 6-1). Select option (i) to load a new database, option (p) to process a database

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the operating system

Action --- >
Figure 6-1

System prompt to load a new or process an existing database

currently resident on the systems data disk, or option (x) to return to the Multi-Lingual!

Multi-Backend Database System Menu. After selecting option (I) or (p) the user will be

prompted for the database name (Figure 6-2). If the user is loading a new database, the

name of the database should (for clarity) give an idea of what the database represents (i.e.

a database of parts records could be called PARTS). If the user desires to process an exist-

ing database, it is imperative that the daabase exist or the system will endlessly loop ask-

ing for the database name. If this situation presents itself, enter Control-c to abort the

system and start again as described in the Getting Started section. The database name

67

may be written in all capital letters or small case letters, there is no restriction.

Enter name of database >

Figure 6-2
Enter database name prompt

B. LOADING A NEW DATABASE

Loading a new database differs from processing an existing database in that the new

schema for the database has yet to be loaded to the system. After the user has entered the

database name, the user will be prompted as to the mode of input desired to load the schema

file (Figure 6-3). Notice the difference between input options presented in the network

interface and the relational interface (Figure 6-3). The network interface does not provide

the option to input a schema from the terminal. Therefore it is imperative that the schema

file exists prior to executing the network interface since further processing will not be

possible without a schema file. Selecting option (x) will take the user back to the previous

menu (Figure 6-1).

Enter mode of input desired
(f) - read in database description from a file
(x) - return to the to main menu

Action --- >
Figure 6-3

Loading the schema file

After selecting option (f) the user will be prompted to enter the name of the schema

file. If the file resides in a subdirectory of UserFiles, the user must provide the path of the

directory that the file resides as shown in Figure 6-4. As covered in the Schema and

Request File section of this manual, the schema file will create the template and descriptor

68

What is the name of the DBD/REQUEST file ---- >DEMO/NET1dmldb

Figure 6-4
Prompt to enter network schema file name

The MDBS system will parse the schema file and transform the network schema in the

kernel data model, Attribute Based Data Model (ABDM), and kernel data language,

Attribute Based Data Language (ABDL). The parse will determine the records that

comprise the network database schema. The next screen will list the records of the network

database as a result of reading the network schema file (Figure 6-5). Also available is the

opportunity to index attributes for selected records in the database. If the user desires to

The following are the Records in the NETI Database:

SUPP
PARTS
PURCH

Beginning with the first Record, we will present each
Attribute of that Record. You will be prompted as to whether
you wish to include that Attribute as an Indexing Attribute,
and, if so, whether it is to be indexed based on strict
EQUALITY, or based on a RANGE OF VALUES. If you do not want
to enter any indexes for your database, type an 'n' when
the Action -> prompt appears

Strike RETURN or 'n' when ready to continue.
Action -- >

Figure 6-5
Records from a network schema and attribute indexing

index attributes, a prompt will appear for every attribute in every record as to whether

index values for that attribute are desired. In most cases, indexing of attributes is not used.

The user has now completed loading a new network database schema onto the MDBS

system. Once the user has either finished indexing the appropriate attributes or desired not

69

to index attributes, the user will be prompted by Figure 6-1 and will select option (p) to

process an existing database.

C. PROCESSING AN EXISTING DATABASE

In order to process an existing database, the user will select option (p) in Figure 6-1

and will be prompted to enter the database name as in Figure 6-2. Now that the network

database schema on the MDBS, the user may now execute CODASYL transactions against

the database. Since there are no records stored in the database at this time (unless the

schema had been loaded in a previous session and records were added during that session)

the user should make the first group of transactions in the request file MOVE and STORE

CODASYL transactions, in order to load the database with data prior to processing any

query transactions.

The record input menu, Figure 6-6, will appear after inputting the correct database

name. Options (f) and (t) provide the user the opportunity to either input transaction via a

request file or through the terminal respectively. If option (f) is chosen, the user must

unsure that the request file resides in the UserFiles directory or a subdirectory of UserFiles.

Enter mode of input desired
(f) - read in a group of CODASYL requests from a file
(t) - read in CODASYL requests from the terminal
(d) - display the current database schema
(x) - return to the previous menu

Action --- >
Figure 6-6

CODASYL record Input menu

The name of the request file should use the name of the database (i.e. PARTS) as a prefix

and "req" as a suffix, thus the name of the request file for the PARTS database would be

PARTSreq. Additional request files can have an additional numerical suffix after "req" to

identify how many request files exist for a database. Figure 3-6 illustrates a sample

CODASYL request file. An explanation of the format used for request files is found in the

70

Schema and Request File section of this manual.

D. LOADING AND EXECUTING CODASYL TRANSACTIONS VIA REQUEST

FILES

After select option (f), the user will be prompted to enter the CODASYL request file

name as in Figure 6-7. The user will enter the appropriate CODAS YL request file name and

a numbered list of transactions will appear on the screen. If the -more- message appears in

the bottom lefthand corner of the screen, simply press Return to review the rest of the

request file. After all transaction have been displayed, the user will be displayed a menu

selection as shown in Figure 6-8.

What is the name of the DBD/REQUEST file ... >

Figure 6-7
Prompt for CODASYL request file

Pick the number or letter of the action desired
(num) - execute one of the preceding CODASYL requests
(d) - redisplay the file of CODASYL requests
(x) - return to the previous menu

Action --- >

Figure 6-8
CODASYL transaction execution menu

The user may now begin executing CODASYL transactions against the database by

entering the number corresponding to the transaction desired at the Action ---> prompt in

Figure 6-8. If a CODASYL STORE transaction is executed, the system will display the

Attribute Based Data Language (ABDL) translation of the CODASYL request and then

return to Figure 6-8 for further processing. A CODASYL GET transaction will generate an

ABDL translation followed by the display of data from the query and then Figure 6-8 for

further processing. If the user executes a CODASYL ERASE or MODIFY transaction, the

71

system will only display the ABDL translation of the CODASYL request and will return to

Figure 6-8 upon completion. In order to ensure all STORE, ERASE, and MODIFY

transaction accomplished what was desired, the user should include transactions in the

request file that verify the correctness of these three transactions

Any errors that may result from violations of integrity constraints will be displayed to

the user Catastrophic errors violating the conventions of the data language may result in the

system crashing and restart of the system necessary. The user may simply follow the option

(x) up to the Multi-Lingual/Multi-Backend Database System menu when finished with the

CODASYL database. Appendix B provides a quick reference for executing the network/

CODASYL interface

72

VIl. THE HIERARCHICAL/DL/1 INTERFACE

A. INTRODUCTION

The hierarchical interface on the MDBS uses DL/1 as the data language for all

hierarchical data models. Schema and request files used in the hierarchical interface must

use DL/l statements in order to manipulate the hierarchical database on MDBS. Figure 3-

3 is an example of a DL/1 schema file. As in the case of the network database, the DL/1

schema file must be created prior to execution of the MDBS since schema creation is not

possible through terminal input.

The user has executed the run command from the UNIX prompt and should now have

the Multi-Lingual/Multi-Backend Database System Menu, as shown in Figure 4-7,

displayed. To begin the hierarchical/DL/1 interface, select option (h) and the desired

operations menu will appear (Figure 7-1). Option (x) will return the user back to the MDBS

menu. Whether the user selects option (I) or (p), the next prompt will request the user to

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the operating system

Action --- --.

Figure 7-1
System prompt to load a new or process an existing

database

input the database name as shown in Figure 7-2. If processing an existing database, the

user should check the metadisk with the pry command prior to running MDBS to ensure

that the database schema is resident on the system. If the user does not correctly input the

name of an existing database, Figure 7-2 will infinitely loop until the user inputs an exist-

ing database name. Control-c will exit the user from the infinite loop and also the MDBS

system. If this situation occurs, the user must kill all processes using the stop.cmd com-

73

mand and restart the system. There is no restriction as to the case of the letters comprising

the database name. it is strictly the users preference.

Enter name of database ---- >

Figure 7-2
MDBS prompt to enter database name

B. LOADING A NEW DATABASE

Loading a new database differs from processing an existing database in that the new

schema for the database has yet to be loaded to the system. After the user has entered the

database name, the user will be prompted as to the mode of input desired to load the schema

file (Figure 7-3). Notice the difference between input options presented in the hierarchical

interface and the relational interface (Figure 5-3). The network interface does not provide

the option to input a schema from the terminal. Therefore it is imperative that the schema

file exists prior to executing the network interface since further processing will not be

possible without a schema file. Selecting option (x) will take the user back to the previous

menu (Figure 7-1).

Enter mode of input desired
(f) - read in database description from a file
(x) - return to the to main menu

Action --- >
Figure 7-3

Loading the hiersrchical schema file

After selecting option (f) the user will be prompted to enter the name of the schema

file. ff the file resides in a subdirectory of UserFiles, the user must provide the path of the

directory that the file resides as shown in Figure 7-4. As covered in the Schema and

Request File section of this manual, the schema file will create the template and descriptor

files (the .t and .d files).

74

What is the name of the DBD/REQUEST file ---- >DEMO/SQDdlidb

Figure 7-4
Entering the hierarchical schema filename

The MDBS system will parse the schema file and transform the hierarchical schema

in the kernel data model, Attribi te Based Data Model (ABDM), and kernel data language,

Attribute Based Data Language (ABDL). The parse will determine the segments that

compose the hierarchical database schema. The next screen will list the records of the

hierarchical database as a result of reading the hierarchical schema file (Figure 7-5). As

described in Figure 7-5, the user is given the opportunity to index specific attributes of each

segment in the hierarchical database. Indexing is not a required function of MDBS and if

the user does opt to use attribute indexing, all attributes in every segment will be screened

for possible indexing.
The following are the Segments in the SOD Database:

Co
MAINT
OPS
ACFT

Beginning with the first Segment, we will present each
Field of that Segment. You will be prompted as to whether
you wish to include that Field as an Indexing Field,
and, if so, whether it is to be indexed based on strict
EQUALITY, or based on a RANGE OF VALUES. If you do not want
to enter any indexes for your database, type an 'n' when
the Action --> prompt appears

Strike RETURN or 'n' when ready to continue.
Action - >

Figure 7-5
Segments from a hierarchical schema and attribute indexing

After completing the action in Figure 7-5, the user has now successfully loaded the

hierarchical schema to the MDBS system and is ready to process DL/I transactions against

75

the database. The user will be prompted by Figure 7-1 and will select option (p) to process

an existing database. Figure 7-2 will appear prompting the user for the database name to

process. Enter the name of the database whose schema was just loaded.

C. PROCESSING AN EXISTING DATABASE

In order to process an existing database, the user must ensure that the schema file has

been loaded to the MDBS. If the schema file has not been loaded, select option (I) and load

the schema file as described in the previous section. When processing an existing

database, the user has the opportunity to load data into the database, execute queries, as well

as modify and delete existing records. If the schema file has just been loaded to the system,

the user should ensure the first group of transaction processed against the database are used

to load initial data into the appropriate segments.

As with the other data models, the user will have the option of executing DL/l

transactions using a request file with transactions or creating transactions at the terminal as

illustrated in Figure 7-6. If the user chooses option (f), the request file should be named in

the same convention as outlined in the other data mode sections (see Processing an Existing

Database section for Network interface). A DL/1 request file is listed in Figure 3-3. If the

user opts for terminal input of DL/l transactions, onscreen instructions will explain how to

properly enter and format the transactions.

Enter mode of input desired
(f) - read in a group of DL/I requests from a file
(t) - read in DLJI requests from the terminal
(x) - return to the previous menu

Action --- >
Figure 7-6

Mode of input for DL/1 transactions

D. REQUEST FILE ORGANIZATION FOR LOADING DL/I TRANSACTIONS

With the hierarchical database, any records loaded to the database must be done in a

hierarchical order with those records belonging to the root segment loaded first, children

76

segments second and so forth. When creating your request file, it is easier to put the DL/

I BUILD commands at the beginning of the file and ordered in a hierarchical fashion in

regards to the hierarchy of the segments.

After choosing option (f) or (t), the user will be given a numerical listing on the screen

of the DL/l transactions either entered via a request file or through direct terminal input. If

the -more- message appears in the bottom lefthand corner of the screen, simply press

Return to review the rest of the request file. Note, after selecting option (f) the user will

be prompt to input the request file name in the same manner as discussed on page 28 in the

Network/CODASYL interface section and illustrated in Figure 6-7.

Upon completion of the transaction list, the user will be ready to execute those

transactions from the menu in Figure 7-7. Unlike the relational and network interface, the

hierarchical interface has a currency pointer which starts at the root segment. Any

transaction that uses a DL/l BUILD command must begin at the root segment in order to

load data onto the database. Therefore, option (r) must precede the selection of option

(nutri) for every BUILD transaction issued so that the data in the transaction can follow the

Pick the number or letter of the action desired
(num) - execute one of the preceding DL/I requests
(d) - redisplay the file of DLI requests
(r) - reset the currency pointer to the root
(x) - return to the previous menu

Action --- >
Figure 7-7

DL/1 transaction execution menu

path down the hierarchy to the segment where the data is to be stored. Figure 7-8 shows a

sequence of resetting the currency pointer and executing a transaction. Note that a verifi-

cation message is given upon any BUILD, IRST, and REPL transaction and all queries

using GU, GHU, GNP will display the data requested and no message. All DL/l transac-

tions will have the equivalent ABDL translation displayed on screen after successful exe-

77

cution. The user can see from the ABDL translation how the transaction is traced through

the database hierarchy in order to reach its destination segment.

After executing a GU transaction (Get Unique), if the next transaction is a GNP (Get

Next Pointer) within the same segment, then the currency pointer does not need to be reset

Pick the number or letter of the action desired
(num) - execute one of the preceding DL/I requests
(d) - redisplay the file of DL/! requests
(r) - reset the currency pointer to the root
(x) - return to the previous menu

Action --- > r

Pick the number or letter of the action desired
(num) - execute one of the preceding DL/I requests
(d) - redisplay the file of DLII requests
(r) - reset the currency pointer to the root
(x) - return to the previous menu

Action --- > 8

[RETRIEVE ((TEMP = Co) and (SNO = A2)) (SNO) BY SNO]

[RETRIEVE ((TEMP = Ops) and (SNO = A2) and (ODN = 55))
(ODN) BY ODN I

INSERT (<TEMP, Acft>, <SNO, A2>, <ODN, 55>, <ANO, 07>,
<ANAME, Bd>)]

Insert accomplished
Figure 7-8

Sequence of selection when resetting currency pointer with
ABDL translation and verification message. Note ABDL state-
ments follow the hierarchy of the database in order to insert

the data in the proper segment.

If the currency pointer is reset and the GNP transaction is executed, the error message in

Figure 7-9 will be displayed. If an ISRT transaction is executed without resetting the cur-

rency pointer first, the user will be displayed the error message shown in Figure 7-10.

78

These examples are derived from the SQD hierarchical schema and request files found

in the DEMO subdirectory of UserFiles. A quick reference for executing the hierarchical

interface is provided in Appendix B. This quick reference will step the user through the

demonstration hierarchical database SQD.

Action --- > 12

Error in GN - You have specified no previous
DL/I Operations. First return to the root
or specify a comn 9ete-pa"J transaction number

Figure 7-9
Error resulting when resetting the currency pointer is not

required

Action --- >3
DL/1 transaction number

Error - an ISRT must occur from the root of the databaso

Figure 7-10
Failure to reset currency pointer for a DL/1 ISRT command

79

VIII. CROSS MODEL ACCESS CAPABILITY - RELATIONAL TO
HIERARCHICAL

A. OVERVIEW

The benefit of MDBS as a multi-model/multi-lingual system has been shown

throughout this manual. Large corporations using several separate homogeneous database

to form one large heterogeneous database can benefit from the single system design of

MDBS. With several different data models mapped to a kernel data modelldata language

on the same system, the sharing of data between two different data models is now possible

as well as the vast amount saved through the consolidation of these several resources into

one. MDBS offers the capability for a relational user to access a hierarchical database using

SQL transactions. This is possible through the use of schema transformation and

transaction translation. Instead of copying the existing hierarchical database into a

relational database (and thus having to maintain two different databases), schema

transformation permits the schema of the hierarchical database to be transformed into a

relational schema so that SQL transactions may be processed

B. SCHEMA TRANSFORMATION

Figure 8-1 illustrates the concept of schema transformation of the hierarchical schema

into a relational schema. The hierarchical database is transparent to the relational user who

can now access the hierarchical database using the relational interface. SQL SELECT

transactions map directly into the ABDL language and require no translations into the

hierarchical data language. However, SQL INSERT, SELECT, and DELETE transactions

require a translation into the hierarchical data language DL/1 in order to maintain the

parent/child relationships of the hierarchical database. Because the relational schema

cannot detect the parent/child relationships of the hierarchical schema, the SQL

transactions cannot guarantee the parent/child relationship between segments will be

violated. The transaction translator realizes that certain SQL transactions must be

translated into DL/1 in order to maintain the integrity of the hierarchical database. The

80

work of the transaction translator and schema transformer is all transparent to the relational

user who still can access the hierarchical database as though the database was strictly

relational.

Relational eData Model Hierarchical Data Model

SData Language

Schema P

MLI TransformerCAIT

SKernal Data Model

and
Data Language

Figure 8-1
Schema Transformation Process

C. EXECUTING THE HIERARCHICAL TO RELATIONAL CROSS

MODELING CAPABILITY

Now familiar with the concept behind the cross model capability of MDBS, the user

is ready to use this capability. The first step the user must take is to load a hierarchical

database 4s described in the Hierarchical/DLIl Interface section. Only the schema has to

be loaded to the hierarchical database. It is not necessary to load the hierarchical database

with data using DL/1 transactions. Once the schema is loaded, the user should back out to

81

the Multi-Lingual/Multi-Backend Database System Menu and select option (r) for the

relational/SQL interface The user will then request option (p) in Figure 8-2 and then enter

the name of the hierarchical database just loaded.

The user will now be requested to select the mode of transaction input as shown in

Figure 8-3. Even though the user is accessing and processing records against a hierarchical

database, the user is given the same prompts as if the database was strictly relational.

Transparency to the user is maintained at all times.

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

Action --- > p

Enter name of database ---- > sqd

Figure 8-2
Processing an existing hierarchical database

using the relational interface

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file

(d) - display the current database schema
(x) - return to the previous menu

Action --- >

Figure 8-3
Relational/SQL Interface mode of transaction

input screen

As with the other models, the user may choose a prepared file of SQL transactions for

input or type transactions from the terminal. The mass load function will not function with

82

the cross-model capability and thus should not be chosen. The remaining steps mirror those

covered in the Relational/SQL Interface section.

One important note; when the user is executing transactions within the relational/SQL

interface, there is no need to reset the currency pointer as required when using the

hierarchical/DL/l interface. The schema transformation and transaction translation

alleviates the relational user of having to maintain the currency pointer when executing

SQL transaction. Currency pointer manipulation is transparent to the relational user.

A quick referznce and an example of the execution of the cross-model access

capability is provided in Appendix B. This appendix will use the hierarchical database SQD

(also created in Appendix B) as the hierarchical database to be transformed into a relational

schema.

83

IX. THE ATTRIBUTE-BASED DATA MODEL-LANGUAGE
INTERFACE

A. OVERVIEW

The attribute-base data model (ABDM) is the kernel data model for the MDBS

system. Coupled with the attribute-based data language (ABDL), this data model/data

language is the key to the multiple data model/data language to single data model/data

language mapping that makes MDBS a federated database. The ABDM was chosen as the

kernel data model based because it stores the meta data and base data separately, introduces

equivalence relations which partitions the base data into mutually exclusive sets called

clusters, and allows these clusters to be distributed across the backends inducing parallel

access to the base data.

ABDL was chosen as the kernel data language because it is a semantically rich and

complete language such that transactions written in a traditional language like SQL, DL/l,

or CODASYL, can be translated into ABDL. It is this translation capability that makes the

MDBS mapping process a multiple data model/data language (i.e. rel itional/SQL, network/

CODASYL, hierarchical/DL/1) to a single data model/data language (i.e. ABDM/ABDL)

mapping. ABDL also supports the five basic database operations of RETRIEVE,

RETRIEVE COMMON, INSERT, MODIFY, and DELETE.

B. DATABASE CONSTRUCTS

Data in the ABDM is stored as an attribute-value pair. This attribute-value pair is the

simple building blocks of the kernel database. The attribute-value pair consist of the

attribute name and its corresponding value. When displayed, an attribute-value pair will be

enclosed by a pair of angled brackets with the attribute name first, followed by the value

for that attribute. An example would be <Vehicle, Car>, were Vehicle is the attribute name

and Car would be its corresponding value.

A set of attribute-value pairs constitutes a record. Within a record, no two attribute-

value pairs may have the same attribute-value name and at least one of the attributes in the

84

record is a key. These two rules ensure that each attribute-value pair is single valued and

that the record can be identified by one attribute which is a key. A record is enclosed by

parenthesis with attribute-value pairs within these parenthesis: (<Vehicle, Car>,

<Manufacturer, Ford>, <Model, Explorer>. <Year, 1992>, <VIN, 1234567890>, <Owner,

John Doe>).

A file is a collection of records that share unique set of attributes. If a record belongs

to a certain file, then the first attribute-value pair of the record will contain the attribute File

and the corresponding file name. All records belonging to the same file will have the same

first attribute-value pair. For example, (<File, RegisteredCars>, <Vehicle, Car>,

<Manufacturer, Ford>, <Model, Explorer>, <Year, 1992>, <VIN, 1234567890>, <Owner,

John Doe>), would indicate that the record belonged to the file RegisteredCars.

and [HSIA 91] contain a detailed description of the ABDM and ABDL and the user

is encourage to read these prior to executing the attributed-based interface.

C. THE ATTRIBUTE-BASE DATA MODEL INTERFACE

The user interface for the ABDM differs slightly from the three traditional data model

interfaces discussed earlier. The ABDM interface does not require the use of a schema file

or request file but instead uses template and descriptor files. In the three traditional data

models, the schema file (with or without indexing) was used to generate the template and

descriptor files necessary for mapping into the kernel data model/data language. In the

ABDM interface the user must create the template and descriptor file prior to execution. A

facility exists to generate a database but there are bugs in creating the descriptor file and

therefore it is recommended that the user use a text editor (i.e. emacs or vi) to create the

template and descriptor files.

1. The Template and Descriptor Files

The template and descriptor files (the .d and .t files) are used to describe the

structure of the attribute-based database. It is these files which tell the kernel database

system what the template names are and the attributes within a template. Furthermore, the

85

attribute type and any constraints on these attributes will be noted in these files. A template

can be thought of as a name of relation in a relational database.

The template file contains the name of the database, followed by the number

of templates within the database. After the number of templates, the next number is the

number of attributes in the following template. The template name is listed followed by the

attributes in that template and their respective type (i.e. string, integer, etc.). Once all

attributes for a template are listed, the number of attributes in the next template is listed,

followed by the next template's name. This process is repeated until all the templates and

attributes have been listed. Figure 9-1 is an example of a template file for the demonstration

database called SALES.

SALES
3
3
Item
TEMP s
PARTNO s
PARTNAME s
3
Customer
TEMPs
CUSTID s
CUSTNAME s
4
Order
TEMP s
CUSTID s
PARTNO s
PRICE i

Figure 9-1
Template File SALES.t

The descriptor file contains information with regards to constraints placed

upon the attributes within the template. In order to achieve the mutual exclusivity of the

MDBS, there are three descriptor types which an attribute may take on. Type a is an

attribute which has a disjointed range of values (i.e. scores >0 <= 100). Type b is an attribute

86

of distinct value (i.e. color = black). Type c is an attribute that has a dynamic range that is

determined at run time. In figure 9-2, attribute TEMP is a type b attribute whose distinct

values are the template names in the database. The attribute PARTNO is a type a attribute

whose value range is from P0001 to P9999. The attributes PARTNAME and CUSTNAME

are also type a attributes whose value range goes from the letter A to Z.

SALES
TEMP b s

Item
Customer
Order

PARTNO a s
P0001 P9999

PARTNAME a s
AF
GI
JP
QT
Uz

CUSTNAME a s
AF
GI
JP
QT
Uz

$

Figure 9-2
Descriptor File SALES.d

2. The Mass Load File

Like the relational/SQL interface, the ABDL interface also supports the

mass load option to load records to the database. The mass load file will be named after the

database name with a.r suffix. The mass load file format used in the ABDM interface is

87

exactly like the mass load file format used in the relational/SQL interface. In a sense, the

mass load file resembles a template file with data instead of attribute names underneath the

template name. The database name will appear at the top of the file followed by an @

symbol. After each template, an @ symbol must be used as a separator between templates.

End of file is marked by a $ symbol. An important note when creating a mass lead file, the

system looks for TABS between attribute values in a record (or tuple). If the spacebar is

used between attributes, the system will not read the space as the start of a new attribute

and will erroneously read the mass load file. Figure 9-3 illustrates the mass load file for the

demonse-ation database SALES.

SALES

Item
P8845 Widget
P3985 Bucket
P9002 Jack
P1233 Rake
P4501 Hammer
P4423 Ibeam
P7269 ViceP
Customer
C101 Bradley
C102 Andrews
C103 Kreed
C104 Ridley
C105 Zaxxon
C106 Gibson

Order
C102 P9002 29
C103 P4501 19
C 104 P8845 14
C106 P7269 79
C105 P4423 99$

Figure 9-3
Mass Load File SALES.r

88

Once these files have been created, the user is ready to begin execution of

the MDBS system using the ABDM interface. As with the previous data model interfaces.

the user must ensure that the meta-disk has been cleared and that no extraneous MDBS

processes are executing.

3. Executing the ABDM interface

After entering the run command from the test directory of the cs4 322

account, select option (a) from The Multi-Lingual/Multi-Backend Database System menu

like the one in Figure 4-7. The next menu to appear will look like Figure 9-4. Selecting

option (g) will take the user through the steps needed to create template and descriptor files.

Due to a bug in the option to create a descriptor file, this manual will only outline the steps

required to create a template file through the ABDL interface.

The attribute-based/ABDL interface:

(g) - Generate a database
(1) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select->

Figure 9-4
ABDM interface menu

If the user selects option (g), a menu will appear similar to Figure 9-5 with

a list of options in regards to file creation. Select option (t) - Generate record template.

The user will then be prompted for the name of the template file. Remember to use the same

name of the database and add the suffix.t. The user will then be prompted to enter the

database ID; which is bimply the database name. The ABDL interface is case sensitive tu

filenames similar to the manner in which UNIX is case sensitive. The user will then be lead

through a series of questions in regards to the number of templates in the database and the

89

number of attributes within each template. Figure 9-5 shows the sequence of steps the user

will have to go through using an example template file called TEST.t

Enter the template file name: TEST.t

ENTER DATABASE ID: TEST

ENTER THE NUMBER OF TEMPLATES FOR DATABASE TEST:
2

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #1: 2

ENTER THE NAME OF TEMPLATE #1: Templatel

ENTER ATTRIBUTE #1 FOR TEMPLATE Templatel: ATTI A

ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #2 FOR TEMPLATE Template1 : ATT2A

ENTER VALUE TYPE (s = string, i = integer): s

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #2:3

ENTER THE NAME OF TEMPLATE #2: Template2

ENTER ATTRIBUTE #1 FOR TEMPLATE Template2: ATT1 B

ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #2 FOR TEMPLATE Template2: ATT2B

ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #3 FOR TEMPLATE Template2: ATT3B

ENTER VALUE TYPE (s = string, i = integer): i

Figure 9-5
Sequence of steps In creating template file

90

Once the template file is completed exit the menu in Figure 9-4 and return

to the attribute-based/ABDL interface menu, Figure 9-3. The user should have already

created a descriptor file with the same name as the template file with a ".d" vice -.t" suffix.

refer to Section 2 of this chapter if this has not been done.

The user is now ready to load the database to the MDBS. Select option (1)

from Figure 9-3 and then choose option (u) from the next menu. A prompt will appear

requesting the name of the database. Enter the name of the database (don't forget case

sensitivity) and press return. The database template and descriptor files are now loaded to

the meta-disk of the MDBS anid the user is now ready to mass load data. Figure 9-6

illustrates this sequence of steps.

The attribute-based/ABDL interface:

(g) - Generate a database
(I) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select->
Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> u

Enter the name of the database: SALES

Figure 9-6
Sequence steps to use an attribute-based database

The next menu to appear is a select operation menu similar to the second

menu in Figure 9-6. Select option (r) - Mass load a file of records. A prompt will appear

requesting the name of the mass load file. The mass load file must reside within the

91

UserFiles subdirectory of the cs4322 class account. Since the mass load file is loading data

to the database, it may require a little more time to execute. A delay of up to 20 seconds is

normal. If the mass load file was successful, the user will return to the previous menu and

select option (x) to return to the attribute-based/ABDL interface menu. Figure 9-7 shows

the screen display for the sequence of steps outlined above.

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> r

Enter the record file name: SALES.r

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> x

The attribute-based/ABDL interface:

(g) - Generate a database
(I) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select->

Figure 9-7
Sieps in processing the mass load file

At the attribute-based/ABDL interface menu, select option (r) - Request

interface. The next menu to appear wili be the subsession menu that appears in Figure 9-

92

8. The beginning user should only be concerned with option (s), (n), and (d) of the

subsession menu. Option (p) is used primarily for setting the internal and external clock to

gauge system performance when increasing/decreasing the number of backends. Option

(r) allows the user to choose where the output from the ABDL transactions should be

routed. The choice of routes are printer, CRT (or monitor), both, or none. Options (im) and

(o) are self-explanatory with option (m) being a menu driven process of adding. modifying,

or removing traffic units from a file. Note: traffic units is the name given for ABDL

transactions. A list of traffic units is normally stored in a file similar to a request file in the

other three data model interfaces and is sometimes referred to as a traffic unit file.

Select a subsession:
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution
(n) NEW LIST: create a new list of traffic units
(d) NEW DATABASE: choose a new database
(p) * PERFORMANCE TESTING
(r) * REDIRECT OUTPUT: select output for answers
(m) * MODIFY: modify an existing list of traffic units
(o) * OLD LIST: execute all the traffic units in an

existing list
(x) EXIT: return to previous menu

Refer to the MLDS/MBDS user manual before choosing
subsessions marked with an asterisk (*)
Select-->

Figure 9-8
Subsession menu

Option (n) allows the user to create a new list (or file) of traffic units to

process against an existing database. This is also menu driven. Option (n) lets the user

switch to a new datbase (provided template and descriptor files exist). Option (s) is were

thc uscr may execute traffic units against the attribute-based database. Select option (s) and

93

a prompt will appear requesting the name of the traffic unit file to be processed. Note: the

traffic unit file must contain a W#' symbol before the traffic unit file version number. For

example, the database SALES has a first version traffic unit file called SALES#L. the

second version traffic unit file is SALES#2, and so forth. After the traffic unit file is

entered, the screen will display a numbered list of the traffic units to be processed. A menu

will appear, see Figure 9-9, prompting the user to execute a traffic unit. create a new traffic

unit, redisplay traffic units, or return to subsession menu.

Select Options:

(d) redisplay the traffic units in the list
(n) enter a new traffic unit to be executed
(num) execute the traffic unit at [num]

from the above list
(x) exit from this SELECT subsession

Option ->

Figure 9-9
Traffic unit processing menu

At the Option-> prompt, enter the number corresponding to the traffic unit

to be processed. After all traffic units have been processed the user may exit the MDBS,

build a new attribute-based database, or process a new traffic unit file against the original

database. Appendix B provides a step-by-step outline of executing the demonstration

attribute-based database SALES.

94

UM APPENDIX A: USEFUL UNIX AND MDBS COMMANDS

A. THE .ALIAS FILE (ABRIDGE)

TABLE 1: Common System Commands Used Prior to MDBS Execution

ALIAS UNIX COMMAND EXPLANATION

p ps x shows all running processes.

test cd -/test change directory to test.

x exit logs user out of db3.

user cd -/UserFiles change directory to UserFiles.

data cd -/UserFiles change directory to UserFiles.

disk cd -/RunData/Disks change directory to Disks. Base data
is stored here.

pry od -c /dev/sdl c octal display of the meta-disk. Zeroes
indicate meta-disk is clean.

burn -/test/stop.cmd stop all current MDBS processes.

These aliases are the most commonly used on the MDBS. In the file .alias in the

cs4322 default directory, a list of more aliases can be found. These aliases deal primarily

with accessing the directories which contain the code for the user interface as well as the

backend software.

B. C SHELLS

MDBS uses three C shells to ready the system for execution. The burden of

remembering several UNIX commands in a specific order is no longer placed upon the user

when the C shells are used. These C shells are found in the test directory of the cs4322

account and are zero*, stop.cmd, and run*. Figures A- I through A-3 list the three C shells

used by the MDBS software and a brief explanation of each C shell function is also

provided.

95

1. The zero C Shell

The zero C shell will clean the meta-disk of all previous data. After

executing the zero command, the user may be echoed with "No Match". This is a result of

the remove file command not finding the file it was supposed to remove. Most of these

UNIX awk commands are issued in case the previous execution of the MDBS resulted in

abnormal termination and these files were never removed from the system. The "cp /dev/

null -/RunData/Disks/disk0" line will copy null bytes into the file were the base data is

stored (the diskO file). The last line ,"iusr/work/cs4322/.z /dev/sdlc 8000000", will

specify the number of bytes that will be copied over. In Figure A-1, 8000000 bytes are to

be nulled.

Mile: /usrlwork/cs4322/test~zero
rm -f ~/test/.*cat
rm -f -/test/.sql.dbl
rm -f -~test/.hie.dbl
rm -f ~/UserFiles/.R*
rm -f ~/UserFites/*.iig.at
rm -f ~/UserFiles/*.cinbt
cp /dev/null -/RunDatalDisks/diskO
/usr/work/cs4322/.z /dev/sdl c 8000000

Figure A-1
The zero* C shell

96

2. The stop.cmd C Shell

The stop.cmd C shell, Figure A-2. kills any MDBS process running on the

system. The process numbers killed will be listed across the screen. The file .test.awk

contains the parameters by which the UNIX awk command will search. If any parameters

are found, they are copied to a file list2.stop. The list2.stop file contains the process

numbers of the jobs to be killed. After the jobs are killed, the list2.stop file is erased as well

as any data existing in the GCPCLC and G_G_BPCLB sockets of the RunData directory.

file: /usr/work/cs4322/test/stop.cmd
echo 'Stopping MBDS processes'
ps -x I awk -f .test.awk >! list2.stop

set noclob
set a='cat list2.stop'
echo killing $a

kill $a

rm list2.stop
rm -f /usr/work/cs4322/RunData/G_BPCLB
rm -f /usr/work/cs4322/RunData/GCPCLC
##rm -f *.tr core .b*

Figure A-2
The stop.cmd C shell

97

3. The run C Shell

The run C shell, Figure A-3, starts the MDBS system by calling all the

executable files that drive the backends and, controller. Tracer files can be used to track

places were the system failed during a particular session. The commented lines (those pre-

file: /usr/worklcs4322ltest/run

rm -f /usr/worklcs4322lRunDatalGBPCLB
rm -f Iusrlworklcs4322/RunData/GCPCLC

/usr/work'cs4322NVerE. 6/CNTRLJscntgpcl. out >&! /dev/null &
/usrfWorklcs4322NVerE.6/BElsbegpcl.out >&I Idevlnull &

/usr/work/cs4322N~erE.6/CNTRL/scntppcl out >&I /dev/nulI &
Iusr/worklcs4322NVerE.6/CNTRL~pp.out >&! !dev/null &
#/usr/work/cs4322/VerE.6/CNTRL/pp.out >&I Iusr/wo rklcs4322ltestlpp.tr &
/usr/work/cs4322NVerE.6/CNTRL/iig. out >&I /dev/nulI &
/usrfwork/cs4322NVerE .6/CNTRUreqprep.out >&! kIev/null &
#/usr/work/cs4322fVerE.6/CNTRL/reqprep.out >&! /u sr/worlv'cs4322/testlreqp.tr &

/usr/work/cs4322NVerE.6/BE/dirman.out Al /dev/nuul &
#/usr/work/cs4322/VerE.6/BE/dirman.out A&I /usr/worklcs4322/testldm.tr &
iusrlworkics4322NVerE.6lBElcc,out A&I /dev/null &
/usr/work/cs4322NVerE.6/BE/recproc.out A&I /dev/nulI &
#/usr/work/cs4322/VerE.6/BE'recproc.out >& I /usr/work'cs4322ltest/recp.tr &
/usr/work/cs4322NVerE.6/BE/dio.out AI /dev/null &

must NOT start until cntgpcl is listening
(sleep 10;\

/usr/work/cs4322NerE. 6/BElsbeppcl.out A&! /dev/nulI)&

/usr/work/cs4322NVerE.6ICNTRL~dblti.out 1

#chmod g+w *.tr
#rm *.tr core Vb

Figure A-3
The run C shell

98

ceded by a #) tha(are used in ca!ling an executable file. are Setup to Use tracer hhle>. It the

user desires to use tracer tiles, then the executable tiles set up with a tracer tile (iL #iusr/

wvork/cs4322/VerL,.6/CNTR L/pp.out >&! /usr/workics432 2/test/pp..r & iust .omment

out the matchiing line containing the same executable tile name which sends tracer intor-

mation to null (i.e. iusr/work/cs4322/VerF.6/i(NTRL/pp.out >&! /dev/nul &).

99

C. README FILE

The README file can be found in the test directory of the cs4322 account. As shown

in Figure A-4, the README file contains a list of system constraints place upon file size,

attribute length case sensitivity, etc. The user should always have a copy of the README

file when developing a new database in order to have a quick reference to the system

constraints.

LIMITS OF YOUR SINGLE USER SYSTEM

max length of unix file name for the template & descriptor file is
10 chars.

max retrieves per transact!on is 5

max chars for attribute name is 10

max chars for attribute value is 30

max # of attributes you can have per template is 50

max # of descriptors you can have is 150 per attribute

max # of clusters you can have is 100

max # of records per cluster is 200

max # of templates per db is 10

max # of traffic units per query file is 25

the largest integer value you can use to join on a retrieve
common is 2147483647.

Figure A-4
The README file

100

UM APPENDIX B: EXECUTION OF DEMONSTRATION
DATABASES

A. OVERVIEW

The purpose of this appendix is to provide the user with step-by-step reference to

executing the demo hierarchical, relational, network, and cross model databases that are

stored in the DEMO directory of ti-e UserFiles directory in the cs4322 class account.

These step-by-step instructions will aid the user in developing new databases on the MDBS

by familiarizing the user with the MDBS system and giving the user a hands-on opportunity

to work with the MDBS interface.

Prior to executing tae interfaces, the user must ensure that there are no extraneous

MDBS processes running (use the UNIX ps ax command to verify) and that the meta-disk

is clear (using the pry command). Note: the meta-disk must have data from the hierarchical

database in order to execute the :ross-model accessinig capability.

B. THE RELATIONAL/SQL INTERFACE

"* Type run from the mdb3/usr/work/cs4322/test directory.

"* From the MDBS menu select option (r) - Execute the relational/SQL interface.
"* Select option (I) - load new database from the type of operation menu.
"* Enter the database name EMPREC (caps not required).

"• Select option (f) - read in a group of creates from a file from the mode of input
desirec menu.

"* At the What is the name of the CREATE/QUERY file prompt, enter the schema file
name DEMO/EMPRECsqldb.

"* If prompted to use the existing descriptor file, EMPREC.d, enter n for no.
"• After the relations of the database are displayed, enter n for no indexing.

"* Select option (p) - process existing database for the mode of operation.
"* Enter the database name EMPREC (caps not required).
"• For mode of input desired, enter option (m) - mass load a file.

"* Enter DEMO/EMPREC.r at the name of record file---> prompt
"• After the records from the mass load have been displayed, select option (f) - read in

a group of queries from a file at the mode of input menu.

101

"• At the What is the name of the CREATE/QUERY file prompt, enter the request file
name DEMO/EMPRECreq.

"• The SQL transactions in the reques: file EMPRECreq will be displayed and
numbered. Hit the return key if the -more- prompt is displayed in the bottom right
hand corner in order to finish scrolling through the SQL transactions.

"• At the action prompt enter the number of the SQL transaction you wish to process.
Enter 1, let the transaction process and observe the results, then execute transaction 2
and so forth until all the transactions in the request file have been processed.

"* Once completed, enter option (x) - return to the previous menu at the Pick the
number or lettei of the action desired menu.

"* Keep selecting option (x) until you have exited the MDBS system.

"• Type zero from the mdb3/usr/work/cs4322/test to clean the meta-disk in order to
execute the next interface.

C. THE NETWORK/CODASYL INTERFACE

"• Type run from the mdb3/usr/work/cs4322/test directory.
"* From the MDBS menu select option (n) - Execute the network/CODASYL

interface.

"• Select option (I) - load new database from the type of operation menu.
"a Enter the database name NETI (caps not required).

"* Select option (f) - read in a group of creates from a file from the mode of input
desirec menu.

"• At the What is the name of the DBD/REQUEST file prompt, enter the schema file
name DEMO/NETIdmldb.

"* If prompted to use the existing descriptor file, NETI.d. enter n for no.
"* After the records of the database are displayed, enter n for no indexing.

"• Select option (p) - process existing database for the mode of operation.
"• Enter the database name NETI (caps not required).

"• Select option (f) - read in a group of queries from a file at the mode of input menu.

"• At the What is the name of the DBD/REQUEST file prompt, enter the request file
name DEMO/NETIreq

"* The CODASYL transactions in the request file NETlreq will be displayed and
numbered. Hit the return key if the -more- prompt is displayed in the bottom right
hand corner in order to finish scrolling through the CODASYL transactions.

"• At the action prompt enter the number of the CODASYL transaction you wish to
process. Enter 1, let the transaction process and observe the results, then execute
transaction 2 and so forth until all the transactions in the request file have been
processed.

102

" Once completed, enter option (x) - return to the previous menu at the Pick the
number or letter of the action desired menu.

"• Keep selecting option (x) until you have exited the MDBS system.
"* Type zero from the mdb3/usr/work/cs4322/test to clean the meta-disk in order to

execute the next interface.

D. THE HIERARCHICAL/DL/I INTERFACE

"* Type run from the mdb3/usr/work/cs4322/test directory.
"* From the MDBS menu select option (h) - Execute the hierarchical/DL/I interface.

"* Select option (I) - load new database from the type of operation menu.
"• Enter the database name SQD (caps not required).

"* Select option (f) - read in a group of creates from a file from the mode of input
desirec menu.

"* At the What is the name of the DBD/REQUEST file prompt, enter the schema file
name DEMO/SQDdlidb.

" If prompted to use the existing descriptor file, SQD.d, enter n for no.
"* After the segments of the database are displayed, enter n for no indexing.

"* Select option (p) - process existing database for the mode of operation.
"• Enter the database name SQD (caps not required).
"* Select option (f) - read in a group of queries from a file at the mode of input menu.
"• At the What is the name of the DBD/REQUEST file prompt, enter the request file

name DEMO/SQDreq

"* The DL/l transactions in the request file SQDreq will be displayed and numbered.
Hit the return key if the -more- prompt is displayed in the bottom right hand corner in
order to finish scrolling through the DL/I transactions.

"* In order to execute the first ten DL/I transactions, the user must first select
option(r) - reset the currency pointer to the root, then the transaction number.
Since the irst transactions that are being loaded to the hierarchical database must be in
a hierarchical order (i.e. data loaded to the root segment first, then children segments,
etc.), the root pointer must be reset after each transaction to ensure a complete path
from the root to the children segments.

"* Reset the currency pointer prior to transaction 11 but do not reset the currency pointer
for transaction 12. This is because the currency pointer is already at the seqment
from which the GET operation is being executed.

"* Reset the currency pointer prior to transaction 13 and then execute transaction 14
since the currency pointer does not need to be reset prior to the execution of
transaction i4.

"• The currency pointer must be reset prior to executing both transactions 15 and 16.

103

"• Once completed, enter option (x) - return to the previous menu at the Pick the

"* number or letter of the action desired menu.

"* Keep selecting option (x) till you reach The Multi-Lingual/Multi-Backend
Database System menu. Do not exit the MDBS system if you wish to use the cross
model capability of the MDBS. Go to Section E for the steps need to execute the
cross model interface.

E. THE CROSS MODEL CAPABILITY

"* Without exiting the MDBS system, the user should have the hierarchical database
SQD loaded to MDBS and be at The Multi-Lingual/Multi-Backend Database
System menu.

"* From the MDBS menu select option (r) - Execute the relational/SQL interface.

"* Select option (p) - process existing database for the mode of operation.

"* Enter the database name SQD (caps not required).

"• Select option (f) - read in a group of queries from a file at the mode of input menu.

"• At the What is the name of the CREATE/QUERY file prompt. enter the request file
name DEMO/SQDRTHreq. This file contains SQL transactions to be processed
against a hierarchical database already loaded to MDBS.

"* The SQL transactions in the request file SQDRTHreq will be displayed and
numbered. Hit the return key if the -more- prompt is displayed in the bottom right
hand comer in order to finish scrolling through the SQL transactions.

* At the action prompt enter the number of the SQL transaction you wish to process.
Enter 1, let the transaction process and observe the results, then execute transaction 2

and so forth until all the transactions in the request file have been processed. Notice
that there is no longer a need for a currency pointer as in the hierarchical database
interface.

Once completed, enter option (x) - return to the previous menu at the Pick the
number or letter of the action desired menu.

* Keep selecting option (x) until you have exited the MDBS system.

* Type zero from the mdb3/usr/worklcs4322/test directory to clean the meta-disk in
order to execute the next interface.

F. THE ATTRIBUTE-BASED/ABDL INTERFACE

"• From the MDBS menu select option (a) - Execute the attribute-based/ABDL
interface.

"* Select option (I) - Load a database from the attribute-based/ABDL interface menu..

"* Select option (u) - Use a database.

"* Enter SALES as the name of the database name of the database to be processed.

104

Remember that the ABDL interface is case sensitive. Also, there must be template and
descriptor files already created for the database to be processes. If not, exit and create
a new template file using option (g) - Generate a database. The descriptor file must
be created using a test editor like emacs or vi.

• After entering the database name, select option (m) - Mass load a file of records.
Enter SALES.r as the mass load file to be processed.

- Select option (x) to return to the attribute-based/ABDL interface menu.

• Select option (r) - Request interface.

4 From the subsession menu, select option (s) SELECT: select traffic units from an
existing list (or give new traffic units) for execution.

* Enter the filename SALES#1 as the traffic unit file to be processed.

- After entering the traffic unit filename, a numbered list of all traffic units in the traffic
unit file will be displayed. From the menu, select the number of the traffic unit to be
processed. There are only I I traffic units to be executed.

• After all traffic units have processed, exit the MDBS system by selecting option Ix)
at all menu that appear. Be sure to clean the meta-data disk after exitting the system
by using the zero command.

105

APPENDIX B. MODEL-LANGUAGE INTERFACE GENERIC FUNCTION
MAPPING

Language Interface Layer

tiwuce 1
nI l mnc-0 new model__/anguage__user()

2.

IF_ 7.
lil.c P To nmlkemelcontrollerO in nmikc.c

nm/ /anguageGinterfacelayer()
n_load new()

n_processold()

3. 4.

lilcommon.c 5.
"411. nmkdbd to KMS()

readrtnes.c
n readtransactiion file() nmlfrserequests()

n read fle() nmlreqtoKMS(6

nread_ erminal() lisLtnmfreqs()
morenm/reqs(fname)

n read file() find nm/req(num)

To nml..kernel.mapping aysten() in kmsgenerals.c

1. Establish now user by granting user id (for use with a mutt-user system).
2. Call to LIL to allow user access to new model-language interface.
3. Whether processing an existing or now database, determine mode of input (terminal or file).
4. Call is made to either load a new database to MDBS or process an existing database
5. Call to KMS to parse the schema file.
6. Call to KMS to parse a request transaction selected by the user.
7. Call to KC to execute a transaction or load a schema parsed by KMS onto MDBS.

106

Kernel Mapping System

- Loading a Schema File

From nmldbd to KMS () in Illcommon.c From nm/_loadnew() in III.C

Sk~msgeneralsC

nmlic 2. •" nmlkernel mapping_system(

nm l._parserO 'I• - free duplicates-list()

nmLyyparserO 4 nm(y
error(t) 3. YACCCODE
yy errorO ()5

LEXCODE

nm/-build-desc-fileO n" build ddl filesO
print record0 6. build nml tempiate-filesO

nml traverseO

1. Function call from LIL to KMS to load the schema 4. Control returned to kmsgenerals.c

file. 5. Build the template file.

2. KMS calls the parsing function. 6. Build the descriptor file.

3. Call LEX and YACC code to validate input stream

- Loading a Request File
From find nmlreq_toKMS () in Illcommon.c

nx 2. kmsgenerals.c

nmljparserO (dm1_kerne/mapping system()

nmlyyparseO - free.duplicates_/ist()

error(t) nml schema_cleanup()
nml/yy error(3. nml kms info cleanupO(

nmlreset variablesO

ToLEXa YACC code in nml.y and nml.I

Return control to LIL

1. Function call from LIL to KMS to load the request file.

2. KMS call the parsing function.

3. Call LEX and YACC code to validate request transaction.

4. Transaction execution complete, return to LIL.

107

Kernel Controller

From fil.c

nm oc Inml load tables c 2. jthxc

Reunt LLRfra t reut2nKS ISTa.ndbd rfn

2. Call cotholesIn nml load tableso dt dbd tempaatee

6a. 6b. Ec t nacion 3. MDBS.exec.c
4. Call teTsIefa ntl executeo

r 4.

Return to
LIL Reformat results in KFS T1 SS7rafUnit(dbid, trafunit)T/ TFnishO

Ila. If loading a new schema, calls the function to load template file.
Ib. If loading a request, call appropriate request handier based on transaction

type.

2. Call the Test Interrace to load the template file.3. Execute the transaction on MDBS.
4. Call the Test Interface to send transaction to KDS.
$a. Schema is loaded to MDBS, control returned to LIE.
5b. Transaction om pletes execution and must be reformatted by the KFS

Kernel Formatting System

From nmf kc.c

nikMso Return control to LIL with reformatted
result for display to the user.

1. Receive control from KC; reformat ABDL result into UDM format

108

APPENDIX C. MM&MLDS GENERIC MODEL-LANGUAGE DATA
STRUCTURE

Sz m~ C

b b t3 - v- c:I II r-t =I1- -- I~~~~ l- l-•ll - I

tw 00 mo t

-8 ig

",I,= I' "• I I:- I= ° " II° • I I=I ' 'I I = "

o 04

I I

0. 0.
o 0 I I I- --

I- ! r I . , '

- u!. - -- == . - _-

0 -- c • " M 1.C , ,; ••

.ga

ao9

0u a

109

-u c-

.J4 _

-0 2

20 202-

ItoI

I " 4) IJ
4I) I=- -,4)i•

,.• .4
o 0 i

2 E 2

Ito

APPENDIX D. GENERIC MAKEFILES FOR NEW MODEL-
LANGUAGE INTERFACES

##############..... ###### ########################## ###########
Title : Generic Makefile for a new model-language interface.
file: Makefile
path: db3 /usr/work/mdbs/NewVersion/CNTRL/fn/Lang[F/src/NML/Makefile
################ ####### ## ##################################

LIB= $(HOME)/lib/nml.a

HOME= /usr/work/mdbs/NewVersion/CNTRLfH/LanglF
LPR= lpr
LPRFLAGS= -p
AR= ar Replace NewVersion with the most current version

ARFLAGS= cr name of MDBS software. This is where the new version

RANLIB=ranlib of MDBS software will be stored.

$(LIB): objects
rm -f S(LIB)
S(AR) $(ARFLAGS) $@ */*.o
$(RANLIB) $@

quick:
rm -f $(LIB)
$(AR) $(ARFLAGS) $(LIB) */*.o
$(RANLIB) $(LIB)

objects:
cd Alloc; make
cd Kc; make
cd Kfs; make
cd Kms; make
cd Lil; make

clean:
cd Alloc; make clean
cd Kc; make clean
cd Kfs; make clean
cd Kms; make clean
cd Lil; make clean

print:
cd Alloc; make print
cd Kc; make print
cd Kfs; make print
cd Kms; make print
cd Lil; make print

1l1

####################• ### • #0;#################################•###

Title: Generic Makefile for comnpiling all model-language interlaces.
file: makefile
path: db3 /usr/work/mdbsiNewVersion/CNTRLMTI/LangIF/makefile
0#I##########-###################################•,######-#################################t

SRC = iusr/work/mdbs/NewVersion/CNTRL/TI/LangiF/src/

quick:
cd $(SRC)Com; make
cd S(SRC)Dli; make To compile specific model-language interfices, remove
cd $(SRC)Dml: make the # in front of the model-language to be compiled. To
cd $(SRC)Sql; make compile all model-language interfaces, remove the
cd (SRC)Dap; make rom all the commands under quick:.
cd $(SRC)Obj: make

cd $(SRC)NML; make

clean:
cd $(SRC)Com; make clean
cd $(SRC)Dli; make clean
cd $(SRC)Dml: make clean
cd $(SRC)Sql; make clean
cd $(SRC)Dap; make clean
cd $(SRC)Obj; make clean
cd $(SRC)NML: make clean; To delete all object files after compilation, remove the

in front of the model-language desired under the
print: clean:.. To print out the source code for a model-lan-
cd $(SRC)Com; make print guage, remove the # in front of the commands below
cd $(SRC)Dli; make print print:.
cd $(SRC)Dml; make print
cd $(SRC)Sql; make print
cd $(SRC)Dap; make print
cd S(SRC)Obj: make print
cd $(SRC)NML; make print

112

REFERENCES

[BENS 851 Benson, T. P., and Wentz, G. L., The Design and Implementation of a
Hierarchical Interface for the Multilinguci Database System. Master's
Thesis. Naval Postgraduate School, Monterey. California, June 1985.

[BROD 89] Brodie, J., and Plauger, P.J., Standard C: Programmer's Quick Refrtence
Series, Microsoft Press, 1989.

[DEMU 87] Demurjian, S. J., The Multi-Lingual Database System - A Paradigm and
Test-Bed for the Investigation of Data-Model Transformations, Data-
language Translations and Data-Model Semantics, Ph.D. Dissertation. The
Ohio State University, 1987. V

[EMDI 851 Edmi, B., The Implementation of a Network CODASYL - DML Interface for
the Multilingual Database System, Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1985.

[HALL 89] Hall, James E., Performance Evaluations of a Parallel and Expandable
Database Computer - The Multi-Backend Database Computer. Master's
Thesis, Naval Postgraduate School, Monterey. California, June 1989.

[HSIA 89] Htsaio, D. K., and Kamel. M. N., "Heterogeneous Databases: Proliferations.
Issues, and Solutions", IEEE Transactions on Knowledge and Data
Engineering, Vol. 1, No. 1, March 1989.

[HSIA 91] Hsiao, D. K., "A Parallel, Scalable, Microprocessor-Based Database
Computer for Performance Gains and Capacity Growtn", IEEE Micro,
December 1991.

[HSIA 921 Hsiao, D. K., "Federated Databases and Systems: Part I - A Tutorial on
Their Data Sharing", VLDB Journal. 1992.

[JOHN 781 Johnson, S. C., Yacc: Yet Another Compiler-Compiler, Bell Laboratories,
Murray Hills, New Jersey, July 1978.

[KELL 841 Kelly, A., and Pohl, I., A Book on C - An Introduction to Programming in C,
The Benjamin/Cummings Publishing Company, Inc., 1984.

[KLOE 851 Kloepping, G. R., and Mack, J. F., The Design and Implementation of a
Relational Interface for the Multilingual Database System, Master's Thesis,
Naval Postgraduate School, Monterey, California, June 1985.

ILESK 78] Lesk, H. E., and Schmidt, E., Lex - A Lexical Analyzer Generator, r3ell
Laboratories, Murray Hills, New Jersey, July 1978.

113

[SCNI 921 Shneiderma. , B., Devigning the User Interface: Strategies jbr Effective
Human-Computer Interaction, 2nd ed.. pp. 11. Addison-Wesley Publishing
Company, Inc., !992.

114

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, California 93943

Chairman, Code CS
Computer Science Deparm.:ent
Naval Postgraduate School
Monterey, California 93943

Director Training and Education
MCCDC Code C46
1019 Elliot Road
Quantico, Virginia 22134-5027

Professor David K. Hsiao 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Captain Paul A. Bourgeois, USMC
103 Adventure Trail
Cary, North Carolina 27513

115

