
AD-A265 434ENTATION PAGE For N74-088ig thi bids *51"6 Of11 "11 01hN "POO dl 1hi ''-' "" on o-" f -oi "in "koV O-0 W " Vt ="d-, 0*6nb- w PS b, q,• po•rte o, Awig t(. upme to' tSmnW € un1• o't tioma ,rgc S mul'I •a ,o :UsWS 9 •V m S! ,~l,•

216 Johamon O.v.- H#Wsy, SLAG 1204, Aizbl0o, VA -2O2.4 w2u o I" S e Omm;o o1 mf t i aD w Aft" t 01M at

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3 PORT TYP AND DATES COVERED

I Final: 18 Sep 92

4. TITLE AND SUBTITLE 5 FUNDING NUMBERS

Validation Summary Report: U.S. NAVY, Ada/M, Version 4.5 (/OPTIMIZE), VAX
8550/8600/8650 (Cluster) (host) => VHSIC Processor Module (VPM) AN/AYK-14
(Bare Board) (target), 920918S1.11273

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST92USN500_4_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRES,.ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114 ELECTE
Washington, D .C. 20301-3081 WI 0a

1...SUPP•LEM ENTARY NOTES ... Dv.A ..

12a. DISTRIBUTION•AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

U.S. NAVY, Ada/M, Version 4.5 (/OPTIMIZE), VAX 8550/8600/8650 (Cluster), (running VAX/VMS Version 5,3) (host) to
VHSIC Processor Module (VPM) AN/AYK-14 (Bare Board) (target), ACVC 1.11

93-12477

14. SUBJECT TERMS 1ý. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE COE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORTI I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED I UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-80)
Prescribed by ANSI Sid. 239-128

AVF Control Number: NIST92USN500_4_1.11
DATE COMPLETED

BEFORE ON-SITE: 1992-08-21
AFTER ON-SITE: 1992-09-18
REVISIONS: 1992-10-27

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920918S1.11273
U.S. NAVY

Ada/M, Version 4.5 (/OPTIMIZE)
VAX 8550/8600/8650 (Cluster) => VHSIC Processor Module (VPM)

AN/AYK-14 (Bare Board)

Prepared By:
Software Standards Validation Group

National Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

Accesion For

NTiS CiA&t
DTIC TH F1
U.-r n- oiced a

5

S •13••''tmi't"Dlt, t'!ic~toa

.... ~.d
Dts t Sr:. •;,I

AVF Control Number: NIST92USN500_4_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on September 18, 1992.

Compiler Name and Version: Ada/M, Version 4.5 (/OPTIMIZE)

Host Computer System: VAX 8550/8600/8650 (Cluster),
running VAX/VMS Version 5.3

Target Computer System: VHSIC Processor Module (VPM) AN/AYK-
14 (Bare Board)

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation eff-,rt, Validation Certificate
920918S1.11273 is awarded to U.S. NAVY. This certificate expires
on 2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validatio4ja ty Ada' aia o Facility
Dr. David K. f n Mr. L. Ar d Johnson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CLS)

National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

Ada Va • t'on Organization da Joint Program Office
Direc or, ~mputer & Software Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMACZ

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certificate Awardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology

Corruter Systems !aboratory (cSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.111

Ada Implementation:

Compiler Name and Version: Ada/M, Version 4.5 (/OPTIMIZE)

Host Computer System: VAX 8550/8600/8650 (Cluster),
running VAX/VMS Version 5.3

Target Computer System: VHSIC Processor Module (VPM) AN/AYK-

14 (Bare Board)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STDoll5A ISO
3652-1987 n the i lementation listed above.

Customer Signatute Date
Company U.S. Navy
Title44 /& 4 /4

ceorilicate Ata de Signature Date
company U.S. NavyTitle <,,jr

TABLE OF CONTENTS

CHAPTER 1 1-1
INTRODUCTION 1-i

1.1 USE OF THIS VALIDATION SUMMARY REPORT i-i
1.2 REFERENCES i-i
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-i

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-i
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 3-i
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-i
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-I
MACRO PARAMETERS A-I

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS. B-i
LINKER OPTIONS B-2

APPENDIX C ... C-1
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro9o]. A detailed description
of the ACVC may be found in the current ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada ProgramminQ Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by

1-2

the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)
Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D 883026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIBO2B BD1BO6A ADiB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued 'y ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 327 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113C..Y (23 tests) C35705C..Y (23 tests)
C35706C..Y (23 tests) C35707C..Y (23 tests)
C35708C..Y (23 tests) C35802C..Z (24 tests)

2-1

C452.1C..Y (23 tests) C45321C..Y (23 tests)
C,-j421C..Y (23 tests) C45521C..Z (24 tests)
C45524C..Z (24 tests) C45621C..Z (24 tests)
C45641C..Y (23 tests) C46012C..Z (24 tests)

The following 21 tests check for the predefined type SHORT_INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORT-FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

D64005F uses 10 levels of recursive procedure calls nesting; this
level of nesting for procedure calls exceeds the capacity of the
compiler.

D64005G uses 17 levels of recursive procedure calls nesting; this
test exceeds the linkable size of 128KBytes.

B86001Y uses the name of a predefined fixed-point type other than
DURATION; for this implementation, there is no such type.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

2-2

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

AE2101C uses instantiations of package SEQUENTIAL 10 with
unconstrained array types and record types with discFriminants
without defaults; these instantiations are rejected by this
compiler.

AE211H uses instantiations of package DIRECT 10 with unconstrained
array types and record types with discriminai-nts without defaults;
these instantiations are rejected by this compiler.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE21O5A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE212OA..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CF2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE31O8A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 44 tests.

2-3

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B24005A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B373011
B38003A B38003B B38009A B38009B B44001A B44004A
B54AO1L B55AOlA B61005A B85008G B85008H B95063A
B97103E BB1006B BC1102A BC1109A BC1109B BCl109C
BC11O9D BCI2OIF BC12OlG BC1201H BC1201I BC12OIJ
BC12OL BC3O13A BE2210A BE2413A

C830-9C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages, calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

C34005P and C34005S were graded passed by Test Modification as
directed by the AVO. These tests contain expressions of the form
"I - X'FIRST + Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST' is a loop invariant and so evaluates this part
of the expression separately, which raises NUMERIC ERROR. These
tests were modified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
first) at lines 187 and 262/263, respectively; those modified lines
are:

[C34005P, line 1873

IF NOT EQUAL (X (I), Y ((I - X'FIRST) + Y'FIRST)) THEN

[C34005S, lines 261..4 (only 262 & 263 were modified)]

IF NOT EQUAL (X (I, J),
Y ((I - X'FIRST) + Y'FIRST,

(J - X'FIRST(2)) +
Y'FIRST(2))) THEN

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity

Code 81, Room 301D
200 Catalina Blvd.

San Diego, California 92147
619-553-9447

For a point of contact for sales information about this Ada

implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed

3-1

in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3428

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 647
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 647 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system and
executed on the target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

/SUMMARY /OPTIMIZE /SOURCE /OUT=<filename>

The options invoked by default for validation testing during this
test were:

NOMACHINE CODE NO ATTRIBUTE NO CROSS REFERENCE
NO DIAGNOSTICS NO NOTES PRIVATE LIST CONTAINER GENERATION
CODE ON WARNING NO MEASURE DEBUG CHECKS NOEXECUTIVE
NORTEONLY TRACEBACK

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89]. The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is I the value for SMAX IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAXINLEN 120

$BIGID1 (1. .V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (l..V-1-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (l..V-l-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGi '"' & (I..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-l-V/2 => 'A') & '1' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"-"2:" & (l..V-5 1> '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (i..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL "' & (l..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

$ACC-SI ZE 16

$ALIGNMENT 4

$COUNTLAST 32767

SDEFAULTHEMSIZE 65_536

SDEFAULTSTORUNIT 16

$DEFAULTSYSNAME ANAYK14

$DELTADOC 210.0000_0000_0000_0000_0000 0
000_0000_001#

$ENTRYADDRESS 16#0800i

$ENTRYADDRESS1 16118001

SENTRYADDRESS2 1612800#

$FIELDLAST 32767

$FILETERMINATOR

$FIXEDNAME NOSUCHTYPE

SFLOATNAME 1NOSUCHTYPE

$FORMSTRING"i

$ FORM STRING2 "CANNOT RESTRICTFILECAPACITY"I

$GREATERTHANDURATION 131071.5

$GREATERTHANDURTION-BASE-LAST 131073.0

$GREATERTHANFLOATBASELAST 7.5E+75

SGREATERTHANFLOATSAFELARGE 7.5E+75

$GREATERTHANSHORTFLOATSAFELARGE 0.OEO

SHIGHPRIORITY 15

A-2

SILLEGALEXTERNALFILENAME1 13AD-CHARS-I.%!X@*(O*&'-%$#@!@

S$ILLEGALEXTERNALFILENAME2
ANOTHER BAD-CHARSAif.%!X@*()*&^%S#@!@

$INAPPROPRIATELINELENGTH -1

SINAPPROPRIATEPAGELENGTH -1

$INCLUDEPRAGMAl PRAGMA INCLUDE (#'A28006D1 TST"l)

SINCLUDEPRAGKA2 PRAGMA INCLUDE ("B28006F1.TST-)

SINTEGERFIRST -32768

SINTEGERLAST 32767

$INTEGERLASTPLUS_1 32_768

SINTERFACELANGUAGE MACRONORMAL

SLESSTHANDURATION -131071.5

$LESSTHANDURATIONBASEFIRST -131073.0

SLINETERMINATOR ASCII.LF

SLOWPRIORITY 0

SMACHINECODESTATEMENT instr'(lr, ro,rO)

$MACHINECODE TYPE instr

$MANTISSADOC 31

SMAXDIGITS 6

$MAXINT 2147483647

SMAXINTPLUS_1 2147483648

SMININT -2147483648

$NAME NO SUCHINTEGERTYPE

SNAMELIST ANUYK44,ANAYK14

$NAMESPECIFICATIONI X2120A

$NAME-SPECIFICATION2 X2 120OB

A-3

SNAMESPECIFICATION3 X3119A

SNEGBASEDINT 16IFFFFFFFE#

$NEW_-MEM _SIZE 65_536

SNEWSTORUNIT 16

$NEWSYSNAME ANUYK44

SPAGETERMINATOR ASCII.FF

SRECORDDEFINITION RECORD value : signed_byte; END
RECORD;

$RECORDNAME signed-byte value

STASKSIZE 32

STASKSTORAGE SIZE 2048

$TICK 0.00003125

$VARIABLEADDRESS 1610020#

$VARIABLEADDRESS1 1600021#

$VARIABLEADDRESS2 16#0023#

$YOURPRAGMA EXECUTIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

B-1

Version 3.5 Ada/M PSE Handbook
29 March 1991

+--+
I Option Function I

--------------------------------- -------------------------- +

EXECUTIVE Enables pragma EXECUTIVE and allows
visibility to units which have been
compiled with the RTE ONLY option.
Default: NOEXECUTIVE--

MEASURE Generates code to monitor execution
frequency at the subprogram level for
the current unit. Default: NOMEASURE

NO CHECKS NOCHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.
Default: CHECKS

NO CODE ON WARNING
NO CODE ON WARNING means no code is
generated when there is a diagnostic
of severity WARNING or higher.
CODE ON WARNING generates code
only-if-there are no diagnostics
of a severity higher than WARNING.
Default: CODE ON WARNING

NO CONTAINER GENERATION
NO CONTAINER GENERATION means that no
container is -produced even if there
are no diagnostics.
CONTAINER GENERATION produces a
container-if diagnostic serverity
permits.
Default: CONTAINERGENERATION

4---+

Table F-4a - Special Processing Options

F-56 F.14 Compiler Options

Ada/M PSE Handbook Version 3.5
29 March 1991

--- +

I Option Function I
4-- 7 -------------------------------- +

NO DEBUG If NO DEBUG is specified, only that
-- information needed to link, export

and execute the current unit is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic information are
stored in the container.
Default: DEBUG

NO TRACEBACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE BACK

OPTIMIZE Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.
When NO OPTIMIZE is in effect, no
global optimizations are performed,
regardless of the pragmas specified.
Default: NOOPTIMIZE

RTEONLY Restricts visibility of this unit
only to those units compiled with
the EXECUTIVE option.
Default: NORTEONLY

--- +

Table F-Sb - Special Processing Options (Continued)

F.14 Compiler Options F-57

Version 3.5 Ada/M PSE Handbook
29 March 1991

+--- +--------------
I Option Function I
+--+

ATTRIBUTE Produces a Symbol Attribute Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS REFERENCE are specified.)
Default: NOATTRIBUTE.

CROSSREFERENCE Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS REFERENCE are specified.)
Default: NOCROSSREFERENCE.

DIAGNOSTICS Produces a Diagnostic Summary Listing.
Default: NO DIAGNOSTICS.

MACHINE CODE Produces a Machine Code Listing if
code is generated. Code is generated
when CONTAINER GENERATION option is
in effect and Ti) there are no
diagnostics of severity ERROR, SYSTEM,
or FATAL, and/or (2) NO CODE ON WARNING
option is in effect and there are no I
diagnostics of severity higher than
NOTE. A diagnostic of severity NOTE
is reported when a Machine Code
Listing is requested and no code is
generated. OCTAL is an additional
option that may be used with
MACHINE CODE to output ocatal values
on the listing instead of hex values.
Default: NOMACHINE CODE.

NOTES Includes diagnostics of NOTE severity
level in the Source Listing.
Default: NO NOTES.

SOURCE Produces listing of Ada source
statements. Default: NOSOURCE.

SUMMARY Produces a Summary Listing; always
produced when there are errors in the
compilation. Default: NO SUMMARY.

+--

Table F-6 - Ada/M Listing Control Options

F-58 F.14 Compiler Options

Ada/M PSE Handbook Version 3.529 March 1991

+---+

I Option Function I
+---+

MSG Sends error messages and the
Diagnostic Summary Listing to the
file specified. The default is to
send error messages and the Diagnostic
Summary Listing to Message Output
(usually the terminal).

OUT Sends all selected listings to a
single file specified. The default
is to send listings to Standard
Output (ususally the terminal).

+---+

Table F-7 - Control_Part (Redirection) Options

F.14 Compiler Options F-59

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation
and not to this report.

B-2

Version 3.5 Ada/M PSE Handbook

2? March 1991

F.16 Linker Options

+---+

I Option Function I
+--+

DEBUG Produces a linked container to be
debugged. Default: NODEBUG.

LOAD Deferred.

MEASURE Produces a linked container to be
analyzed. Default: NOMEASURE.

NO_10_SUBSYSTEM Does not automatically pull in Ada/M
predefined 10 subsystem phases
SYSTEM 101 and SYSTEMIO 2.
Default: 10_SUBSYSTEM.

PARTIAL Produces an incomplete linked
container with unresolved
references. Default: NOPARTIAL.

RTL SELECTIVE Similar to the SELECTIVE option
except that it only refers to RTLIB I
units. This option is not supported I
during phase links.
Default: NO RTLSELECTIVE.

SEARCH Explicitly searches for the units to
be included in the linked container.
Default: SEARCH for final links;
NOSEARCH for phase links.

SELECTIVE Maps into the program only the
subprograms called by the main
subprogram. Default: SELECTIVE for
final links; NO-SELECTIVE for phase
links.

--

Table F-10 - Ada/M Linker Special Processing Options

F-62 F.16 Linker Options

Ada/M PSE Handbook Version 3.529 March 1991

I Option Function I
- - - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - -I ÷

No option Linker summary listing always
produced.

DEBUGMAP Deferred.

ELABLIST Generates an elaboration order
I listing. Default: NOELABLIST.

LOADMAP Generates a loadmap listing.
Default: NOLOADMAP.

LOCAL SYMBOLS Generates a symbols listing with
all internal as well as external
definitions in the program.
LOCAL SYMBOLS is to be used in
conjunction with the SYMBOLS
option. If LOCALSYMBOLS is
specified with NO SYMBOLS, a
WARNING is produced and the SYMBOLS
option is activated.
Default: NOLOCAL SYMBOLS

SYMBOLS Produces a Linker symbols listing.
Default: NOSYMBOLS.

UNITS Produces a Linker units listing.
Default: NO UNITS.

--

Table F-1i - Linker Listings Options

F.16 Linker Options F-63

Version 3.5 Ada/M PSE Handbook
29 March 1991

+--+
I Option Function I

--------------------------------- --------------------------- +

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

OUT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

+---+

Table F-12 - ControlPart (Redirection) Options

F-64 F.16 Linker Options

Ada/M PSE Handbook Version 3.529 March 1991

F.17 Exporter Options

---.-

I Option Function I
+--+

No option Exporter summary listing always
produced.

DEBUG Permits the generation of a load
module with all debugging facilities
available. When NO DEBUG is
specified or is in iffect by default,
no debugging facilities are made
available. Export the program for
debugging with either the Run-Time
Debugger (RTD) or the Embedded Target
Debugger (ETD).
Default: NODEBUG.

DYNAMIC Deferred.

LOAD Deferred.

MEASURE Permits the generation of a load
module with all performance
measurement facilities available.
When NO MEASURE is specified or is in
effect By default, no performance
measurement facilities are made
available. Default: NO MEASURE

.4---+

Table F-13 - Ada/M Special Processing Options

F.17 Exporter Options F-65

Version 3.5 Ada/M PSE Handbook
29 March 1991

+--
I Option Function

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

OUT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

--

Table F-14 - Control-Part (Redirection) Options

F-66 F.17 Exporter Options

Ada/M PSE Handbook Version 3.5
29 March 1991

--+

I Option Function I
+---4I I

DEBUGMAP Deferred

LOADMAP Produces an Exporter Loadmap
Listing. This listing shows the
location of each program section for
each phase. Default: NOLOADMAP.

LOCAL-SYMBOLS Includes names local to library
package bodies in the Exporter
Symbol Definition Listing, if
produced. This option has no effect
if NO SYMBOLS is in effect.
Default: NO LOCAL SYMBOLS
(include only names
which are externally visible).

RTEXEC Produces executive listings instead
of user application listings. It can
only be used with the /LOADMAP
option, i.e., /LOADMAP/RTEXEC.
Default: NO RTEXEC.

SYMBOLS Produces an Exporter Symbol
Definition Listing. This listing
shows the virtual and physical
locations of the symbols in memory
for each virtual memory phase.
Default: NO SYMBOLS.

UNITS Produces an Exporter Units Listing.
Default: NOUNITS.

+--4

Table F-15 - Ada/M Exporter Listing Options

F.17 Exporter Options F-67

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32_768 .. 32 767;
type LONG INTEGER is range -2_147_483_647 .. 2_147_483_647;

type FLOAT is digits 6 range
-(16#0.FFFFF8#E63) .. (16#0.FF_FFF8#E63);

type DURATION is delta 2.0 ** (-14) range
-131_071.0 .. 131_071.0;

end STANDARD;

C-1

Ada/M PSE Handbook Version 4.0
30 December 1991

Appendix F

The Ada Language for the AN/UYK-44 and AN/AYK-14 Targets

The source language accepted by the compiler is Ada, as
described in the Military Standard, Ada Programming Language.,
ANSI/MIL-STD-1815A-1983, 17 February 1983 ("Ada Language
Reference Manual").

The Ada definition permits certain implementation
dependencies. Each Ada implementation is required to supply a
complete description of its dependencies, to be thought of as
Appendix F to the Ada Language Reference Manual. This section is
that description for the AN/UYK-44 and AN/AYK-14 targets.

F.1 Options

There are several compiler options provided by all ALS/N
compilers that directly affect the pragmas defined in the Ada
Language Reference Manual. These compiler options currently
include the CHECKS and OPTIMIZE options which affect the SUPPRESS
and OPTIMIZE pragmas, respectively. A complete list of ALS/N
compiler options can be found in Section 9.

The CHECKS option enables all run-time error checking for the
source file being compiled, which can contain one or more
compilation units. This allows the SUPPRESS pragma to be used in
suppressing the run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragma(s) must be
applied to each compilation unit. The NO CHECKS option disables
all run-time error checking for all compiTation units within the
source file and is equivalent to SUPPRESSing all run-time checks
within every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, but note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE pragma is not present,
the ALS/N compiler's Global Optimizer tends to optimize for TIME
over SPACE. The NO OPTIMIZE option disables all compile-time
optimizations for aTl compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

F.1 Options F-01

Version 4.0 Ada/M PSE Handbook
30 December 1991

In addition to those compiler options normally provided by
the ALS/N Common Ada Baseline compilers, the Ada/M compiler also
implements the EXECUTIVE, DEBUG, and MEASURE options.

The EXECUTIVE compiler option enables processing of PRAGMA
EXECUTIVE and allows WITH of units compiled with the RTE ONLY
option. IF NO EXECUTIVE is specified on the command line, the
pragma will be-ignored and will have no effect on the generated
code.

The DEBUG compiler option enables processing of PRAGMA DEBUG
to provide debugging support. If NO DEBUG is specified, the
DEBUG pragmas shall have no effect. Program units containing
DEBUG pragmas and compiled with the DEBUG compiler option may be
linked with program units containing DEBUG pragmas and compiled
with the NO DEBUG option; only those program units compiled with
the DEBUG option shall have additional DEBUG support.

The MEASURE compiler option enables run-time calls to
Run-Time Performance Measurement Aids (RTAids) to record the
entrance into all subprograms whose bodies are in the
compilation. Program units compiled with the MEASURE option may
be linked with program units not compiled with the MEASURE
option; at run-time, only those subprograms in program units
compiled with the MEASURE option shall have this additional
MEASURE support.

F-02 F.1 Options

Ada/M PSE Handbook Version 4.0
30 December 1991

F.2 Pragmas

Both implementation-defined and Ada language-defined pragmas
are provided by all ALS/N compilers. These paragraphs describe
the pragmas recognized and processed by the Ada/M compiler. The
syntax defined in Section 2.8 of the Ada Language Reference
Manual allows pragmas as the only element in a compilation,
before a compilation unit, at defined places within a compilation
unit, or following a compilation unit. Ada/M associates pragmas
with compilation units as follows:

a. If a pragma appears before any compilation unit in a
compilation, it will affect all following compilation units,
as specified below and in Section 10.1 of the Ada Language
Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
associated with that compilation unit, and with the listings
associated with that compilation unit, as described in the
Ada Language Reference Manual, or below.

c. If a pragma follows a compilation unit, it will be associated
with the preceding compilation unit, and effects of the
pragma will be found in the container of that compilation
unit and in the listings associated with that container.

The pragmas MEMORY SIZE, STORAGE UNIT, and SYSTEM NAME are
described in Section 11.7 of the Ada-Language Reference Manual.
They may appear only at the start of the first compilation when
creating a program library. In the ALS/N, however, since program
libraries are created by the Program Library Manager and not by
the compiler, the use of these pragmas is obviated. If they
appear anywhere, a diagnostic of severity level WARNING is
generated.

F.2 Pragmas F-03

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.2.1 Language-Defined Pragmas

The following notes specify implementation-specific changes
to those pragmas described in Appendix B of the Ada Language
Reference Manual. Unmentioned pragmas are implemented as defined
in the Ada Language Reference Manual.

pragma INLINE (arg {,arg));

The arguments designate subprograms. There are three
instances in which the INLINE pragma is ignored. Each
of these cases produces a warning message which states
that the INLINE did not occur.

a. If the compilation unit containing the INLINEd
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

b. If the INLINEd subprogram's compilation unit
depends on the compilation unit of its caller (a
routine call is made instead).

c. If an immediately recursive subprogram call is made
within the body of the INLINEd subprogram, the
recursive call is not inlined.

pragma INTERFACE (languagename, subprogramname);

The language name specifies the language and type of
interface to be used in calls used to the externally
supplied subprogram specified by subprogram name. The
only value allowed for the first argument (Tanguage
name) is MACRO NORMAL. MACRO NORMAL indicates that
parameters will be passed on The stack and the calling
conventions used for normal Ada subprogram calls will
apply.

You must ensure that an assembly-language body
container will exist in the program library before
linking.

F-04 F.2.1 Language-Defined Pragmas

Ada/M PSE Handbook Version 4.030 December 1991

pragma MEMORYSIZE;

This pragma is ignored and a WARNING diagnostic is
issued.

pragma OPTIMIZE (arg);

The argument is either TIME or SPACE. If TIME is
specified, the optimizer concentrates on optimizing
code execution time. If SPACE is specified, the
optimizer concentrates on optimizing code size. The
default is SPACE. 'f the OPTIMIZE option is enabled
and pragma OPTIMIZE is not present, global optimization
is still performed with the default argument, SPACE.
Program units containing OPTIMIZE pragmas and compiled
with the OPTIMIZE option may be linked with program
units containing OPTIMIZE pragmas and compiled with the
NO OPTIMIZE option; but only those program units
compiled with the OPTIMIZE option will have global
optimization support.

pragma PRIORITY (arg);

The argument is an integer static expression in the
range 0..15, where 0 is the lowest user-specifiable
task priority and 15 is the highest. If the value of
the argument is out of range, the pragma will have no
effect other than to generate a WARNING diagnostic. A
value of zero will be used if priority is not defined.
The pragma will have no effect when not specified in a
task (type) specification or the outermost declarative
part of a subprogram. If the pragma appears in the
declarative part of a subprogram, it will have no
effect unless that subprogram is designated as the main
subprogram at link time.

F.2.1 Language-Defined Pragmas F-05

Version 4.0 Ada/M PSE Handbook
30 December 1991

I pragma STORAGE-SIZE;

I This pragma is ignored and a WARNING diagnostic is
I issued.

pragma SUPPRESS (arg (,argl);

This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW CHECK applies only to integer
operations; and PRAGMA SUPPRESS has effect only within
the compilation unit in which it appears, except that
suppression of ELABORTION CHECK applied at the
declaration of a subprogram or task unit applies to all
calls or activations.

pr~gma SYSTEMNAME;

I This pragma is ignored and a WARNING diagnostic is
I issued.

F-06 F.2.1 Language-Defined Pragmas

Ada/M PSE Handbook Version 4.030 December 1991

F.2.2 Implementation-Defined Pragmas

This paragraph describes the use and meaning of those pragmas
recognized by Ada/M which are not specified in Appendix B of the
Ada Language Reference Manual.

pragma DEBUG;

This pragma enables the inclusion of full symbolic
information and support for the Embedded Target
Debugger. The DEBUG PRAGMA is enabled by the DEBUG
command line option and has no effect if this option is
not provided. This pragma must appear within a
compilation unit, before the first declaration or
statement.

pragma EXECUTIVE [(arg)];

This pragma allows you to specify that a compilation
unit is to run in the executive state of the machine
and/or utilize privileged instructions. The pragma has
no effect if the compiler option NO EXECUTIVE is
enabled, either explicitly or by default.

If PRAGMA EXECUTIVE is specified without an argument,
executive state is in effect for the compilation unit
and the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (INHERIT) is specified, a subprogram in the
compilation unit inherits the state of its caller and
the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (PRIVILEGED) is specified, the executive
state is in effect and the code generator may generate
privileged instructions for the compilation unit. In
the absence of PRAGMA EXECUTIVE, the compilation unit
executes in task state and the code generator does not
generate privileged instructions.

PRAGMA EXECUTIVE is applied once per compilation unit,
so its scope is the entire compilation unit. PRAGMA
EXECUTIVE may appear between the context clause and the
outermost unit. If there is no context clause, PRAGMA
EXECUTIVE must appear within that unit before the first
declaration or statement. The placement of the pragma
before the context clause has no effect on any or all
following compilation units. If PRAGMA EXECUTIVE
appears in the specification of a compilation unit, it
must also appear in the body of that unit, and vice
versa. If the pragma appears in a specification but is
absent from the body, you are warned and the pragma is
effective. If the pragma appears in the body of a
compilation unit, but is absent from the corresponding

F.2.2 Implementation-Defined Pragmas F-07

Version 4.0 Ada/M PSE Handbook
30 December 1991

specification, you are warned and the pragma has no
effect. PRAGMA EXECUTIVE does not propagate to
subunits. If a subunit is compiled without PRAGMA
EXECUTIVE and the parent of the subunit is compiled
with PRAGMA EXECUTIVE, you are warned and PRAGMA
EXECUTIVE has no effect on the subunit.

pragma FASTINTERRUPTENTRY (entry_name, IMMEDIATE);

This pragma provides for situations of high interrupt
rates with simple processing per interrupt, (such as
adding data to a buffer), and where complex processing
occurs only after large numbers of these interrupts,
(such as when the buffer is full). This allows for
lower overhead and faster response capability by
restricting you to disciplines that are commensurate
with limitations normally found in machine level
interrupt service routine processing.

pragiTa MEASURE (extractionset, [arg (,arg)]);

This pragma enables one or more performance measurement
features. Pragma MEASURE specifies a user-defined
extraction set for the Run-Time Performance Measurement
Aids and Embedded Target Profiler. The user-defined
extraction set consists of all occurences pragma
MEASURE throughout the program. Extraction set is a
numeric literal, which is an index into a user-supplied
table. Arg is a variable or a list of variables whose
values are reported at this point in the execution.
These values describe the nature (TYPE) of the values
collected to an independent data reduction program.
Pragma MEASURE is enabled by the MEASURE command line
option and has no effect if this option is not
provided. This pragma should be applied to a package
body rather than a package specification.

pragma STATIC (INTERRUPTHANDLERTASK);

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate
interrupt entry. The argument is
INTERRUPT HANDLER TASK. The effect of this pragma will
be to all~w generation of nonreentrant and nonrecursive
code in a compilation unit, and to allow static
allocation of all data in a compilation unit. This
pragma shall be used to allow for procedures within
immediate (fast) interrupt entries. The effect will be
for the compiler to generate nonreentrant code for the
affected procedure bodies. If a STATIC procedure is
called recursively, the program is erroneous.

F-08 F.2.2 Implementation-Defined Pragmas

Ada/M PSE Handbook Version 4.030 December 1991

pragma TICK (arg);

This is a system configuration pragma. It takes a
single argument of type universal real, which specifies
the value of the named number SYSTEM.TICK. This pragma
may appear only at the start of the first compilation
when creating a program library. If this pragma
appears elsewhere, a diagnostic of severity WARNING is
generated.

pragma TITLE (arg);

This is a listing control pragma. It takes a single
argument of type string. The string specified will
appear on the second line of each page of the source
listing produced for the compilation unit within which
it appears. The pragma should be the first lexical
unit to appear within a compilation unit (excluding
comments). If it is not, a warning message is issued.

pragma TRIVIAL ENTRY (NAME: entrysimple name);

This pragma is only allowed within a task specification
after an entry declaration and identifies a
Trivial-Entry to the system. A trivial entry
represents a synchronization point, contained in a
normal Ada task, for rendezvous with a fast interrupt
entry body. The body of a trivial entry must be null.

pragma UNMAPPED (arg {,arg));

The effect of this pragma is for unmapped (i.e., not
consistently mapped within the virtual space)
allocation of data in a compilation unit. The
arguments of this pragma are access types to be
unmapped. If a program tries to allocate more UNMAPPED
space than is available in the physical configuration,
STORAGE ERROR will be raised at run-time. PRAGMA
UNMAPPED must appear in the same declarative region as
the type and after the type declaration.

F.2.2 Implementation-Defined Pragmas F-09

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.2.3 Scope of Pragmas

The scope for each pragma previously described as differing
from the Ada Language Reference Manual is given below.

DEBUG Applies to the compilation unit in which the pragma
appears.

EXECUTIVE Applies to the compilation unit in which the pragma
appears, i.e., to all subprograms and tasks within
the unit. Elaboration code is not affected. The
pragma is not propagated from specifications to
bodies, or from bodies to subunits. The pragma
must appear consistently in the specification,
body, and subunits associated with a library unit.

FASTINTERRUPT ENTRY
-pplies to the compilation unit in which the pragma
appears.

INLINE Applies only to subprograms named in its
arguments. If the argument is an overloaded
subprogram name, the INLINE pragma applies to
all definitions of that subprogram name which
appear in the same declarative part as the
INLINE pragma,

INTERFACE Applies to all invocations of the named
imported subprogram.

MEASURE No scope, but a WARNING diagnostic is
generated.

MEMORYSIZE No scope, but a WARNING diagnostic is
generated.

OPTIMIZE Applies to the entire compilation unit in
which the pragma appears.

PRIORITX Applies to the task specification in which it
appears, or to the environment task if it
appears in the main subprogram.

STATIC Applies to the compilation unit in which the pragma
appears.

STORAGE SIZE No scope, but a WARNING diagnostic is
generated.

SUPPRESS Applies to the block or body that contains
the declarative part in which the pragma
appears.

F-10 F.2.3 Scope of Pragmas

Ada/M PSE Handbook Version 4.030 December 1991

SYSTEM NAME No scope, but a WARNING diagnostic is
generated.

TICK Applies to the entire program library in
which the pragma appears.

TITLE The compilation unit within which the pragma
occurs,

TRIVIAL ENTRY Applies to the compilation unit in which the pragma
appears.

UNMAPPED Applies to all objects of the access type
naraed as arguments.

F.2.3 Scope of Pragmas F-11

Version 4.0 Ada/M PSE Handbook
30 December 1991

P.3 Attributes

The following notes augment the language-required definitions
of the predefined attributes found in Appendix A of the Ada
Language Reference Manual.

T'MACHINEEMAX is 63.

T'MACHINE EMIN is -64.

T'MACHINE MANTISSA is 6.

T'MACHINE OVERFLOWS is TRUE.

T'MACHINERADIX is 16.

T'MACHINE ROUNDS is FALSE.

F-12 F.3 Attributes

Ada/M PSE Handbook Version 4.030 December 1991

F.4 Predefined Language Environment

The predefined Ada language environment consists of the
packages STANDARD and SYSTEM, which are described below.

F.4.1 Package STANDARD

The package STANDARD contains the following definitions in
addition to those specified in Appendix C of the Ada Language
Reference Manual.

TYPE boolean IS (false, true);
FOR boolean'SIZE USE 1;

TYPE integer IS RANGE -32768 .. 32 767;
TYPE long_integer IS RANGE -2_147 493_648 .. 2147483_647;

TYPE float IS DIGITS 6 RANGE

-(16#0.FFFFF8#E63) .. (16#0.FFFFF8#E63);

-- Additions to predefined subtypes:

SUBTYPE longnatural IS long_integer RANGE 0..integer'LAST;
SUBTYPE long-positive IS longinteger RANGE l..integer'LAST;

FOR character'SIZE USE 8;
TYPE string IS ARRAY (positive RANGE <>) OF character;
PRAGMA PACK(string);

TYPE duration IS DELTA 2.0 ** (-14)

RANGE -131071.0 .. 131_071.0;

-- The predefined exceptions:

constraint error : exception;
numeric error : exception;
program-error : exception;
storageerror : exception;
-taskingerror : exception;

F.4.1 Package STANDARD F-13

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.4.2 Package SYSTEM

The SYSTEM packages for Ada/M are as follows:

F.4.2.1 AN/UYK-44 SYSTEM

The package SYSTEM for the AN/UYK_44 is:

TYPE name IS (anuyk44, anaykl4);
system name : CONSTANT system.name := system.anuyk44;
storage unit : CONSTANT : 16;
memory size : CONSTANT :m 65 536;
TYPE address IS RANGE 0..system.memorysize - 1;
FOR address'SIZE USE 16;

-- System Dependent Named Numbers

min int : CONSTANT :-(2"31);
max int : CONSTANT := (2**31)-1;
max-digits : CONSTANT := 6;
max mantissa : CONSTANT := 31;
fini delta : CONSTANT :

2#0.0000_0000 0000 0000 0000 0000 0000_001#;
tick : CONSTANT :=- 3.125e-05;

-- 1/32000 seconds is the basic clock period.

-- Other System Dependent Declarations

SUBTYPE priority IS integer RANGE 0..15;
TYPE entry kind IS (normal, immediate);

physical memory size : CONSTANT := 2**22;
TYPE physical_address IS

RANGE 0..system.physicalmemorysize - 1;

TYPE external interrupt.word IS RANGE 0 .. 65_536;

-- Address clause (interrupt) address codes for the
-- •ANUYK-44

ClassIUnhandled address : CONSTANT
address : 16#0800#;

ClassIIUnhandled address : CONSTANT
address : 16#1800#;

Class III Unhandled address : CONSTANT
address : 16#2800#;

P-14 F.4.2.1 AN/UYK-44 SYSTEM

Ada/M PSE Handbook Version 4.030 December 1991

------------ Class I interrupts --------------------
CPMemory_Resumeaddress : CONSTANT

address : 16#1000#;
CPMemory_Parity_addr:ss : CONSTANT

address := 16#1400#;
IOC MemoryParityaddress : CONSTANT

address : 16#1700#;
IOCMemoryResumeaddress : CONSTANT

address := 16#1A00#;
Power Fault address : CONSTANT

address :z 16#1F00#;

--------------------- Class II interrupts-------------------
CPlInstructionFault address : CONSTANT

address : 16#2200#;
Executive ModeFault address : CONSTANT

address : 16#2300#;
IOC InstructionFault address : CONSTANT

address := 16#2400#;
IOC ProtectFault address : CONSTANT

address := 16#2500#;
CPProtect Fault address : CONSTANT

address := 16#2900#;

once_only ti : CONSTANT duration := 0.0;
-- Usedto indicate that a PTI is not to be periodic.

SUBTYPE pti address IS address RANGE 16#2F01#..16#2FlF#;
TYPE pti state IS (active,inactive,unregistered);

--------------------- Class III (I/O) interrupts------------
MMIODiscrete Interrupt address : CONSTANT

-- address := 16#3C00#;
14MIOExternalInterrupt address : CONSTANT

address : 16#3D00#;
14MIOOutput_DataReady address : CONSTANT

address : 16#3E00#;
MMIOInputData Readyaddress : CONSTANT

address := l6#3F00O;
IOCIntercomputerTimeoutaddress : CONSTANT
a address :l 16#3C00#;
IOC External Int Discrete address : CONSTANT

address := 16#3D00#;
IOC OutputChainInterrupt address : CONSTANT

address := 16#3E00#;
IOCInputChainInterruptaddress : CONSTANT

address := 16#3F00#;

F.4.2.1 AN/UYK-44 SYSTEM F-15

Version 4.0 Ada/M PSE Handbook
30 December 1991

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implicit
-- checks suppressed (i.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception raised when required, and then the exception is
-- either handled or the Ada program terminates.

access check : EXCEPTION;
discriminant check : EXCEPTION;
index check : EXCEPTION;
lengtH._check : EXCEPTION;
range check : EXCEPTION;
division check : EXCEPTION;
overflow-check : EXCEPTION;
elaboratTon check : EXCEPTION;
storage_check : EXCEPTION;

-- implementation-defined exceptions.
unresolved reference : EXCEPTION;
system error : EXCEPTION;
capacityerror : EXCEPTION;

F-16 F.4.2.1 AN/UYK-44 SYSTEM

Ada/M PSE Handbook Version 4.0
30 December 1991

F.4.2.2 AN/AYK-14 SYSTEM

The package SYSTEM for the AN/AYK-14 is:

TYPE name IS (anuyk44, anaykl4);
system name : CONSTANT system.name := system.anaykl4;
storage unit : CONSTANT :m 16;
memory size : CONSTANT : 65 536;
TYPE address IS RANGE 0..systim.memory size - 1;
FOR address'SIZE USE 16;

-- System Dependent Named Numbers

mm int : CONSTANT : -(2**31);
max--t : CONSTANT := (2**31)-1;
max digits : CONSTANT := 6;
max mantissa : CONSTANT : 31;
fine delta : CONSTANT :

2#0.0000_0000 0000 0000_0000 0000 0000 001#;
tick : CONSTANT := 3.125e-65;

-- 1/32000 seconds is the basic clock period.

-- Other System Dependent Declarations

-SUBTYPE priority IS integer RANGE 0..15;
TYPE entrykind IS (normal, immediate);

physical memory size : CONSTANT := 2**22;
TYPE physica1_address IS

RANGE 0..system.physical memory_size - 1;

TYPE externalinterrupt.word IS RANGE 0 .. 65536;

-- Address clause (interrupt) address codes for the
ANAYK-14

ClassI Unhandled address : CONSTANT
address := 16#0800#;

Class II Unhandled address : CONSTANT
6 address : 16#1800#;

Class III Unhandled address : CONSTANT
address := 16#2800#;

F.4.2.2 AN/AYK-14 SYSTEM F-17

Version 4.0 Ada/M PSE Handbook
30 December 1991

--------------------- Class I interrupts--------------------
Memory Resumeaddress : CONSTANT

address := 16#1000#;
MemoryParity address : CONSTANT

address := 16#1400#;
ThermalOverload address : CONSTANT

address := 16#1900#;
10_Failure address : CONSTANT

address := 16#lBOO#;
HardwareBITFault address : CONSTANT

address := 16#1C00#;
HardwareFaultWarning address : CONSTANT

address := 16#1D00#;
Power Fault address : CONSTANT

address := 16#1F00;#

--------------------- Class II interrupts-------------------
CPInstructionFault address : CONSTANT

address := 16#2200#;
ExecutiveModeInstruction Fault address :

CONSTANT
address := 16#2300#;

10 Instruction Fault address : CONSTANT
address := 16#2400#;

SystemReset address : CONSTANT
address := 16#2500#;

Overtemp_address : CONSTANT
address : 16#2700#;

Memory ProtectFault address : CONSTANT
address := 16#2900#;

ExternalInterrupt_2_address : CONSTANT
address := 16#2C00#;

ExternalInterrupt_3 address : CONSTANT
address := 16#2D00#;

ExternalInterrupt_4_address : CONSTANT
address := 16#2E00#;

once onlypti : CONSTANT duration := 0.0;
-- Usedto indicate that a PTI is not to be periodic.

SUBTYPE pti address IS address RANGE 16#2F01#..16#2FIF#;
TYPE ptistate IS (active,inactive,unregistered);

--------------------- Class III (I/O) interrupts------------
10 Channel Abnormal address : CONSTANT

address := 16#3C00#;
ExternalInterrupt address : CONSTANT

address : 16#3D00#;
Output ChainInterrupt address : CONSTANT

address := 16#3E00#;
InputChainInterrupt address : CONSTANT

address : 16#3F00#;

F-18 F.4.2.2 AN/AYK-14 SYSTEM

Ada/M PSE Handbook Version 4.030 December 1991

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implicit
-- checks suppressed (i.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception -aised when required, and then the exception is
-- either handled or the Ada program terminates.

access check : EXCEPTION;
discriminant check : EXCEPTION;
index check : EXCEPTION;
length_check : EXCEPTION;
range check : EXCEPTION;
division check : EXCEPTION;
overflow-check : EXCEPTION;
elaboration check : EXCEPTION;
storagecheck : EXCEPTION;

-- implementation-defined exceptions.
unresolved reference : EXCEPTION;
system_error : EXCEPTION;
capacity error : EXCEPTION;

F.4.2.2 AN/AYK-14 SYSTEM F-19

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.5 Character Set

Ada compilations may be expressed using the following
characters in addition to the basic character set:

lower case letters:

abc d e f g hi j k 1m n no pq r st u v w x y z

special characters:

I $? @

The following transliterations are permitted:

a. Exclamation point for vertical bar,

b. Colon for sharp, and

c. Percent for double-quote.

F-20 F.5 Character Set

Ada/M PSE Handbook Version 4.030 December 1991

F.6 Declaration and Representation Restrictions

Declarations are described in Section 3 of the Ada Language
Reference Manual, and representation specifications are described
in Section 13 of the Ada Language Reference Manual and discussed
here.

In the following specifications, the capitalized word SIZE
indicates the number of bits used to represent an object of the
type under discussion. The upper case symbols D, L, R,
correspond to those discussed in Section 3.5.9 of the Ada
Language Reference Manual.

F.6.1 Integer Types

Integer types are specified with constraints of the form:

RANGE L..R

where:

R <= SYSTEM.MAXINT & L >= SYSTEM.MININT

For a prefix "t" denoting an integer type, length specifications
of the form:

FOR t'SIZE USE n ;

may specify integer values n such that n in 2..16,

R <= 2**(n-l)-l & L >= -(2**(n-l))

or else such that

R <= (2**n)-l & L >= 0

and I < n <= 15.

For & stand-alone object of integer type, a default SIZE of 16 is
used when:

R <= 2**15-1 & L >= -2**15

Otherwise, a SIZE of 32 is used.

For components of integer types within packed composite
objects, the smaller of the default stand-alone SIZE or the SIZE
from a length specification is used.

F.6.1 Integer Types F-21

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.6.2 Floating Types

Floating types are specified with constraints of the form:

DIGITS D

where D is an integer in the range 1 through 6.

For a prefix "t" denoting a floating point type, length
specifications of the form:

FOR t'SIZE USE n;

may specify integer values n = 32 when D <= 6. All floating
point values have SIZE = 32.

F.6.3 Fixed Types

Fixed types are specified with constraints of the form:

DELTA D RANGE L..R

where:

MAX (ABS(R), ABS(L))
--------------------- <= 2"'31-1.

actual-delta

The actual delta defaults to the largest integral power of 2 less
than or equal to the specified delta D. (This implies that fixed
values are stored right-aligned.)

For fixed point types, length specifications of the form:

for T'SIZE use N;

are permitted only when N in 1 .. 32, if:

R - actual delta <= 2**(N-1)-l * actual delta, and
L + actual-delta >= -2**(n-l) * actual delta

or

R - actual-delta <= 2**(N)-l * actual-delta, and
L >= 0

F-22 F.6.3 Fixed Types

Ada/M PSE Handbook Version 4.030 December 1991

For stand-alone objects of fixed point type, a default size of 32 1
is used. For components of fixed point types within packed
composite objects, the size from the length specification will be
used. I

For specifications of the form:

FOR t'SMALL USE n;

The 'SMALL value of a fixed point type may be set to any value
less than D, are permitted for any value of X, such that X <= D. I
X must be specified either as a base 2 value or as a base 10 I
value. If X is a power of 2, then X will be used for the actual I
delta; if X is a power of 10, then an actual delta will be chosen I
which is one eighth (1/8) of the largest integral power of 2 less I
than or equal to X; otherwise, the largest integral power of two I
less than X will be used as the actual delta. All stand-alone
fixed point objects have a size of 32. If a 'SIZE specification I
is given, fixed point components of packed composites will have I
the size specified.

F.6.4 Enumeration Types

In the absence of a representation specification for an
enumeration type "t," the internal representation of t'FIRST is
0. The default size for a stand-alone object of enumeration type
"It" is 16, so the internal representations of t'FIRST and t'LAST
both fall within the range

-2**15 .. 2"*15 - i.

For enumeration types, length specifications of the form:

FOR t'SIZE USE n;

and/or enumeration representations of the form:

FOR t USE <aggregate>;

are permitted for n in 2..16, provided the representations and
the SIZE conform to the relationship specified above.

Or else for n in 1..16, is supported for enumeration types

and provides an internal representation of:

t'FIRST >= 0 .. t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE and the SIZE
from a length specification is used.

F.6.4 Enumeration Types F-23

Version 4.0 Ada/M PSE Handbook
30 December 1991

Enumeration representations for types derived from the
predefined type STANDARD.BOOLEAN will not be accepted, but length
specifications will be accepted.

F-24 F.6.4 Enumeration Types

Ada/M PSE Handbook Version 4.030 December 1991

F.6.5 Access Types

For access type, "t," length specifications of the form:

FOR t'SIZE USE n;

will not affect the runtime implementation of "t," therefore n a
16 is the only value permitted for SIZE, which is the value
returned by the attribite.

For collection size specification of the form:

FOR t'STORAGE SIZE USE n;

for any value of 'n" is permitted for STORAGE SIZE (and that
value will be returned by the attribute call). The collection
size specification will affect the implementation of "t" and its
collection at runtime by limiting the number of objects for type
"t" that can be allocated.

The value of t'STORAGE SIZE for an access type "t" specifies
the maximum number of storage units used for all objects in the
collection for type "t." This includes all space used by the
allocated objects, plus any additional storage required to
maintain the collection.

F.6.6 Arrays and Records

For arrays and records, a length specification of the form:

FOR t'size USE n;

may cause arrays and records to be packed, if required, to
accommodate the length specification. If the size specified is
not large enough to contain any value of the type, a diagnostic
message of severity ERROR is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space
requirements are minimized at the possible expense of data access
time and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..15 from the right. 16 starts at the right of the
next higher numbered word. Each location specification must
allow at least n bits of range, where n is large enough to hold
any value of the subtype of the component being allocated.
Otherwise, a diagnostic message of severity ERROR is generated.
Components that are arrays, records, tasks, or access variables
may not be allocated to specified locations. If a specification

F.6.6 Arrays and Records F-25

Version 4.0 Ada/M PSE Handbook
30 December 1991

of this form is entered, a diagnostic message of severity ERROR

is generated.

For records, an alignment clause of the form:

AT MOD n

specify alignments of 1 word (word alignment) or 2 words
(doubleword alignment).

If it is determinable at compile time that the SIZE of a
record or array type or subtype is outside the range of
STANDARD.LONG INTEGER, a diagnostic of severity WARNING is
generated. Declaration of such a type or subtype would raise
NUMERICERROR when elaborated.

F.6.7 Other Length Specifications

Length Specifications are described in Section 13.2 of the

Ada Language Reference Manual.

A length specification for a task type "t" of the form:

FOR t'STORAGE SIZE use n;

specifies the number of SYSTEM.STORAGE UNITS that are allocated
for the execution of each task object of type "t." This includes
the runtime stack for the task object but does not include
objects allocated at runtime by the task object. If a
t'STORAGE SIZE is not specified for a task type "t," the default
value is 8K (words).

A length specification for a task type "t" of the form:

FOR t'SIZE USE n;

is allowable only for n = 32.

F-26 F.6.7 Other Length Specifications

Ada/M PSE Handbook Version 4.0
30 December 1991

F.7 System Generated Names

Refer to Section 13.7 of the Ada Language Reference Manual
and the section above on the Predefined Language Environment for
a discussion of package SYSTEM.

The system name is chosen based on the target(s) supported,
but it cannot be changed. In the case of Ada/M, the system name
is ANUYK44 or ANAYK14.

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a description of address clauses. All rules and restrictions
described there apply. In addition, the following restrictions
apply.

An address ciause may designate a single task entry. Such an
address clause is allowed only within a task specification. The
meaningful values of the simple expression are the allowable
interrupt entry addresses as defined in Table F-1. The use of
other values will result in the raising of a PROGRAM ERROR
exception upon creation of the task.

If more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry
registration permanently overrides any previous registrations.

At most one address clause is allowed for a single task
entry. Specification of more than one interrupt address for a
task entry is erroneous.

Address clauses for objects and code other tha task entries
are allowed by the Ada/M target, but they have no effect beyond
changing the value returned by the 'ADDRESS attribute call.

F.8 Address Clauses F-27

Version 4.0 Ada/M PSE Handbook
30 December 1991

--

I AN/UYK-44 Interrupt Summary

I Class 0 interrupts (with interrupt entry address) include: I

4.--+

I I
o Class I Unhandled Interrupt 16#0800#I I

+--+
I Class I interrupts (with interrupt entry address) include: I
+--

o Class II Unhandled 16#1800#
o CP Memoxy Resume 16#1000#
o CP Memory Parity 16#1400#
o IOC Memory Parity 16#1700#
o IOC Memory Resume 16#lAOO#
o Power Fault 16#1FOO#

--- +

I Class II interrupts (with interrupt entry address) include: I
--- +

o Class III Unhandled 16#2800#
o Floating Point Over/Underflow 16#2100# UNDEFINABLE
o CP Instruction Fault 16#2200#
o Executive Mode Fault 16#2300#
o IOC Instruction Fault 16#2400#
o IOC Protect Fault 16#2500#
o Executive Return 16#2600# UNDEFINABLE
o Overtemp address 16#2700#
o CP Protect Fault 16#2900#
o Real-Time Clock 16#2E00# UNDEFINABLE
o Monitor Clock 16#2F00# UNDEFINABLE

4.--+

Table F-la - Interrupt Entry Addresses

F-28 F.8 Address Clauses

Ada/M PSE Handbook Version 4.030 December 1991

+---

I AN/UYK-44 Interrupt Summary

--- +

I Class III interrupts (with interrupt entry address) include: I
--- +

o 14MIO Discrete Interrupt 16#3C00#
o MMIO External Interrupt 16#3D00#
o 14MIO Output Data Ready 16#3E00#
o MMIO Input Data Ready 16#3F00#
o IOC Intercomputer Timeout 16#3C00#
o IOC External Interrupt/Discrete 16#3D00#
o IOC Output Chain Interrupt 16#3E00#
o IOC Input Chain Interrupt 16#3F00#

For all class III interrupts, the following interpretations
apply:

IC => IOC, CHANNEL pair, 16#00#..16#OF# indicates IOC 0
16#!0#..16#lF# indicates TOC 1
16#20#..16#2F# indicates IOC 2
16#30#..16#3F# indicates IOC 3

CC => CHANNEL number, 16#00#..16#3F# indicates channel 0..63

--- +

Table F-lb - Interrupt Entry Addresses (Continued)

F.6 Address Clauses F-29

Version 4.0 Ada/M PSE Handbook
30 December 1991

--

I AN/AYK-14 Interrupt Summary I
4---+
I Class 0 interrupts (with interrupt entry address) include: I

-- +
I I
I o Class I Unhandled Interrupt 16#0800# II I

-- +
I Class I interrupts (with interrupt entry address) include: I
+---+

o Class II Unhandled 16#1800#
o CP Memory Resume 16#1000#
o CP Memory Parity 16#1400#
o Thermal Overload 16#1900#
o 10 Failure 16#1BOO#
o Hardware BIT Fault 16#lCOO#
o Hardware Fault Warning 16#lDOO#
o Power Fault 16#1FOO#

+---+
I Class II interrupts (with interrupt entry address) include: I
+---+

o Class III Unhandled 16#2800#
o Floating Point Over/Underflow 16#2100# UNDEFINABLE
o CP Instruction Fault 16#2200#
o Executive Mode Fault 16#2300#
o IOC Instruction Fault 16#2400#
o System Reset 16#2500#
o Executive Return 16#2600# UNDEFINABLE
o Overtemp address 16#2700#
o CP Protect Fault 16#2900#
o Real-Time Clock 16#2E00# UNDEFINABLE
o Monitor Clock 16#2F00# UNDEFINABLE

--------------------------------------- -------------------------- a-------------+

Table F-ic - Interrupt Ent:y Addresses (Continued)

F-30 F.8 Address Clauses

Ada/M PSE Handbook Version 4.030 December 1991

--- +I I
AN/AYK-14 Interrupt Summary1 I

4---+

I Class III interrupts (with interrupt entry address) include: I
4---+

o 10 Channel Abnormal 16#3C00#
o External Interrupt 16#3D00#
o Output Chain Interrupt 16#3E00#
o Input Chain Interrupt 16#3F00#

For all class III interrupts, the following interpretations
apply:

IC => IOC, CHANNEL pair, 16#00#..16#OF# indicates IOC 0
16#10#..16#1F# indicates IOC 1
16#20#..16#2F# indicates IOC 2
16#30#..16#3F# indicates IOC 3

CC => CHANNEL number, 16#00#..16#3F# indicates channel 0..63

--- +

Table F-ld - Interrupt Entry Addresses (Continued)

F.8 Address Clauses F-31

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.9 Unchecked Conversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
for a description of UNCHECKED CONVERSION. It is erroneous if
your Ada program performs UNCHECKED CONVERSION when the source
and target objects have different sizes.

F.10 Restrictions on the Main Subprogram

Refer to Section 10.1 (8) of the Ada Language Reference
Manual for a description of the main subprogram. The subprogram
designated as the main subprogram cannot have parameters. The
designation as the main subprogram of a subprogram whose
specification contains a formalpart results in a diagnostic of
severity ERROR at link time.

The main subprogram can be a function, but the return value
will not be available upon completion of the main subprogram's
execution. The main subprogram may not be an import unit.

F-32 F.10 Restrictions on the Main Subprogram

Ada/M PSE Handbook Version 4.0
30 December 1991

F.11 Input/Output

Refer to Section 14 of the Ada Language Reference Manual for
a discussion of Ada Input/Output and to Section 12 of the Ada/M
Run Time Environment Handbo. k for more specifics on the Ada/M
input/output subsystem.

The Ada/M Input/Output subsystem provides the following
packages: TEXT 10, SEQUENTIAL_IO, DIRECT 10, and LOW LEVEL IO.
These packages execute in the context of-the user-written Ada
program task making the I/O request. Consequently, all of the
code that processes an I/O request on behalf of the user-written
Ada program executes sequentially. The package 10 EXCEPTIONS
defines all of the exceptions needed by the packages
SEQUENTIAL 10, DIRECT 10, and TEXT 10. The specification of this
package is given in Section 14.5 of the Ada Language Reference
Manual. This package is visible to all of the constituent
packages of the Ada/M I/O subsystem so that appropriate exception
handlers can be inserted.

I/O in Ada/M is performed solely on external files. No
allowance is provided in the I/O subsystem for memory resident
files (i.e., files which do not reside on a peripheral device).
This is truc even in the case of temporary files. With the
external files residing on the peripheral devices, Ada/M makes
the further restriction on the number of files that may be open
on an individual peripheral device.

Section 14.1 of the Ada Language Reference Manual states that
all I/O operations are expressed as operations on objects of some
file type, rather than in terms of an external file. File
objects are implemented in Ada/M as access objects which point to
a data structure called the File Control Block. This File
Control Block is defined internally to each of the high-level I/O
packages; its purpose is to represent an external file. The File
Control Block contains all of the I/O-specific information about
an external file needed by the high-level I/O packages to
accomplish requested I/O operations.

F.11.1 Naming External Files

The naming conventions for external files in Ada/M are of
particular importance. All of the system-dependent information
needed by the I/O subsystem about an external file is contained
in the file name. External files may be named using one of three
file naming conventions: standard, temporary, and user-derived.

F.11.1 Naming External Files F-33

Version 4.0 Ada/K PSE Handbook
30 December 1991

F.11.1.1 Standard File Names

The staniard external file naming convention used in Ada/M
identifies the specific location of the external file in terms of
the physical device on which it is stored. For this reason, you
should be aware of the configuration of the peripheral devices on
the AN/UYK-44 or AN/AYK-14 at your particular site.

Standard file names consist of a six character prefix and a
file name of up to fourteen characters. The six character prefix
has a predefined format. The first and second characters must be
either "CT," "MT," or "TT," designating an AN/USH-26 Signal Data
Recorder/Reproducer Set, the RD-358 Magnetic Tape Subsystem, or
the AN/USQ-69 Data Terminal Set, respectively. These characters
must be in upper case.

The third and fourth characters specify the channel on which
the peripheral device is connected. Since there are sixty-four
channels on the Ada/M system, the values for the third and fourth
positions must lie in the range '"00" to 1663."

The range of values for the fifth position in the external
file nane's prefix (the unit number) depends upon the device
specified by the characters in the first and second positions of
the external file name. If the specified-peripheral device is
the AN/USH-26 magnetic tape drive, the character in the fifth
position must be one of the characters "0," "l," "42,1" or
"3." This value determines which of the four tape cartridge
units available on the AN/USH-26 is to be accessed. if the
specified peripheral device is the RD-358 magnetic tape drive,
the character in the fifth position must be one of the characters
"00,"1 "i,"1 "2,"1 or "3." This value determines which of the four
tape units available on the RD-358 is to be accessed. If the
specified peripheral device is the AN/USQ-69 militarized display
terminal, the character in the fifth position must be a "0." The
AN/USQ-69 has only one unit on a channel.

The colon (:j is the only character allowed in the sixth
position. If any character other than the colon is in this
position, the file name will be considered non-standard and the
file will reside on the default device defined during the
elaboration of CONFIGURE IO.

Positions seven through twenty are optional to your Ada
program and may be used as desired. These positions may contain
any printable character you choose in order to make the file name
more intelligible. Embedded blanks, however, are not allowed.

F-34 F.11.1.1 Standard File Names

Ada/M4 PSE Handbook Version 4.0
30 December 1991

The location of an external file on a peripheral device is
thus a function of the first six characters of the file name
regardless of the characters that might follow. For example, if
the external file "CT000:Old Data" has been created and not
subsequently closed, an attempt to create the external file
"CTOOO:New Data" will cause the exception DEVICE ERROR (rather
than NAME ERROR or USE ERROR) to be raised because the peripheral
device on-channel "00"-and cartridge "0" is already in use.

You are advised that any file name beginning with "xxxxx:"
(where x denotes any printable character) is assumed to be a
standard external file name. If this external file name does not
conform to the Ada/M standard file naming conventions, the
exception NAMEERROR will be raised.

F.11.1.2 Temporary File Names

Section 14.2.1 of the Ada Language Reference Manual defines a
temporary file to be an external file that is not accessible
after completion of the main subprogram. If the null string is
supplied for the external file name, the external file is
considered temporary. In this case, the high level I/O packages
internally create an external file name to be used by the lower
level I/O packages. The internal naming scheme used by the I/O
subsystem is a function of the type of file to be created (text,
direct or sequential), the temporary nature of the external file,
and the number of requests made thus far for creating temporary
external files of the given type. This scheme is consistent with
the requirement specified in the Ada Language Reference Manual
that all externz.l file names be unique.

The first three characters of the file name are "TEX," "DIR,"
or "SEQ." The next six characters are " TEMP ." The remaining
characters are the image of an integer which 3enotes the number
of temporary files of the given type successfully created. There
are two types of temporary files; one is used by SEQUENTIAL 10
and DIRECT 10, and the other is used by TEXT IO. For instance,
the temporary external file name "TEX TEMP 10" would be the name
of the tenth temporary external file succeisfully created by your
Ada program through calls to TEXTIO.

F.11.1.2 Temporary File Names F-35

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.11.1.3 User-Derived File Names

A random string containing a sequence of characters of length
one to twenty may also be used to name an external file.
External files with names of this nature are considered to be
permanent external files. You are cautioned from using names
which conform to the scheme used by the I/O subsystem to name
temporary external files (see list item "b").

It is not possible to associate two or more internal files
with the same external file. The exception USE ERROR will be
raised if this restriction is violated.

F.11.2 The FORM Specification for External Files

Section 14.2.1 of the Ada Language Reference Manual defines a
string argument called the FORM, which supplies system-dependent
information that is sometimes required to correctly process a
request to create or open a file. In Ada/M, the string argument
supplied to the FORM parameter on calls to CREATE and OPEN is
retained while the file is open, so that calls to the function
FORM can return the string to your Ada program. Form options
specified on calls to CREATE have the effects stated below. Form
options specified on calls to OPEN have no effect.

The REWIND and APPEND options are mutually exclusive; an
attempt to specify both options on a call to CREATE will raise
the exception USEERROR.

The NOHEAD option may be specified in combination with either
the REWIND or the APPEND option.

If one form option is specified, the FORM string should
contain only the option, without any extraneous characters. If
two form options are specified, the FORM string should contain
the first form option followed by a comma followed by the second
form option. The form options may be specified in any
combination of upper and lower case.

If the supplied FORM string is longer than the maximum
allowed FORM string (13 characters), CREATE and OPEN will raise
the exception USEERROR.

If the procedure CREATE does not recognize the options
specified in the FORM string, it raises the exception USE ERROR.
The procedure OPEN does not validate the contents of the supplied
FORM string.

F-36 F.11.2 The FORM Specification for External Files

Ada/M PSE Handbook Version 4.0
30 December 1991

Positioning arguments allow control of tape before its use.
The following positioning arguments are available:

a. REWIND - specifies that a rewind will be performed prior to

the requested operation.

b. NOREWIND - specifies that the tape remains positioned as is.

c. APPEND - specifies that the tape be positioned at the logical
end of tape (LEOT) prior to the requested operation. The
LEOT is denoted by two consecutive tapemarks.

Note that, to ensure a tape file created by a previous
program is available for use by a new program, you must have
knowledge of the tape being used and must use the APPEND form
option when creating new files.

The formatting argument specifies information about tape
format. If a formatting argument is not supplied, the file is
assumed to contain a format header record determined by the ALS/N
I/O system. The following formatting argument is available:

a. NOHEAD - specifies that the designated file has no header
record. This argument allows the reading and writing of
tapes used on computer systems using different header
formats. Note that files created with the NOHEAD option
cannot be opened by the Ada/M I/O subsystem.

F.11.3 File Processing

Processing allowed on Ada/M files is influenced by the
characteristics of the underlying device. The following
restrictions apply:

a. Only one file may be open on an individual AN/USH-26 tape
cartridge at a time.

b. Only one input and one output file may simultaneously be open
on an AN/USQ-69 terminal at one time.

c. An Ada program is erroneous if it does not close or delete
all files it creates or opens.

d. The attempt to CREATE a file with the mode IN FILE is not
supported since there will be no data in the 'ile to read.

F.11.3 File Processing F-37

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.1i.4 Text Input/Output

TEXT 10 is invoked by your Ada program to perform sequential
access I7o operations on text files (i.e, files whose content is
in human-readable form). TEXT 10 is not a generic package and,
thus, its subprograms may be invoked directly from your program,
using objects with base type or parent typc in the
language-defined type character. TEXT 10 also provides the
generic packages INTEGER 10, FLOAT IO,-FIXED 10, and
ENUMERATION 10 for the riading and-writing ol numeric values and
enumeration values. The generic packages within TEXT 10 require
an instantiation for a given element type before any of their
subprograms are invokrkd. The specification of this package is
given in Section 14.3.10 of the Ada Language Reference Manual.

The implementation-defined type COUNT that appears in Section
14.3.10 of the Ada Language Reference Manual is defined as
follows:

type COUNT is range 0..INTEGER'LAST;

The implementation-defined subtype FIELD that appears in Section
14.3.10 of the Ada Language Reference Manual is defined as
follows:

subtype FIELD is INTEGER range 0..INTEGER'LAST;

At the beginning of program execution, the STANDARD INPUT
file and the STANDARD OUTPUT file are open, and associated with
the files specified by you at export time. Additionally, if a
program terminates before an open file is closed (except for
STANDARD INPUT and STANDARD OUTPUT), the last line added to the
file may be lost; if the file is on magnetic tape, the file
structure on the tape may be inconsistent.

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. The semantics of text layout as specified in the
Ada Language Reference Manual, Section 14.3.2, (especially the
concepts of current column number and current line) cannot be
guaranteed when GET operations are interweaved with PUT
operations. A program which relies on the semantics of text
layout under those circumstances is erroneous.

For TEXTIO processing, the line length can be no longer than
532 characters. An attempt to set the line length through
SET LINE LENGTH to a length greater than 532 will result in
USE-ERROR.

F-38 F.1i.4 Text Input/Output

Ada/M PSE Handbook Version 4.030 December 1991

F.11.5 Sequential Input/Output

SEQUENTIAL 10 is invoked by your Ada program to perform I/O
on the records of a file in sequential order. The SEQUENTIAL 10
package also requires a generic instantiation for a given eleient
type before any of its subprograms may be invoked. Once the
package SEQUENTIAL 10 is made visible, it will perform any
service defined by-the subprograms declared in its specification.
The specification of this package is given in Section 14.2.3 of
the Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package SEQUENTIALIO:

a. SEQUENTIAL 10 cannot be instantiated with an unconstrained
array type.

b. SEQUENTIAL 10 cannot be instantiated with a record type with
discriminants with no default values.

c. Ada/M does not raise DATA ERROR on a read operation if the
data input from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.2).

F.11.6 Direct Input/Output

Calls to the subprograms of an instantiation of DIRECT 10
have one of three possible outcomes. The exception USE ERROR is
raised if an attempt is made to CREATE and/or OPEN a file since
direct access I/O operations are not supported in Ada/M. The
exception STATUS ERROR is raised on calls to subprograms other
than CREATE, OPEN, and IS OPEN. The function ISOPEN always
returns the value FALSE.

The implementation-defined type COUNT that appears in Section
14.2.5 of the Ada Language Reference Manual is defined as
follows:

type COUNT is range 0..LONGINTEGER'LAST.

The following restrictions are imposed on the use of the
package DIRECT_10:

a. DIRECT 10 cannot be instantiated with an unconstrained array
type.

b. DIRECT 10 cannot be instantiated with a record type with
discriminants with no default values.

F.11.6 Direct Input/Output F-39

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.11.7 Low Level Input/Output

LOW LEVEL 10 is invoked by your Ada program to initiate
physical operations on peripheral devices, and thus executes as
part of a program task. Requests made to LOW LEVEL 10 from your
program are passed through the RTEXEC GATEWAY-to the channel
programs in CHANNEL 10. Any status check or result information
is the responsibility of the invoking subprogram and can be
obtained from the subprogram RECEIVECONTROL within LOWLEVEL_10.

The package LOW LEVEL 10 allows your program to send I/O
commands to the I/O-devices (using SEND CONTROL) and to receive
status information from the I/O devices-(using RECEIVE CONTROL).
A program is erroneous if it uses LOW LEVEL 10 to access a device
that is also accessed by high-level 170 packages such as
SEQUENTIAL 10 and TEXT_10. The following is excerpted from the
package LOWLEVELIO.

-- 10 CHANNEL RANGE is the type for the parameter DEVICE
-- foF both SEND CONTROL and RECEIVE CONTROL. DEVICE
-- identifies whrch device to perform the operation for,
-- and the channel number is a convenient means for
-- identifying a device.
SUBTYPE io channel range IS integer RANGE 0..63;

-- Range of values allowed for channel
-- number.

SUBTYPE buffer address IS system.physical address;
-- Type of Variables used to specify
-- address of buffer for the I/O
-- operation.

SUBTYPE commandword IS long_integer RANGE 0..65535;

SUBTYPE operation IS INTEGER;

TYPE send control block IS
-- data passed-to SENDCONTROL for operations on
-- ALL devices. •
RECORD

operation : low level io.operation;
-- Indicates what Find of operation is requested
-- of LOW LEVEL 10: read data, write data,
-- control, or 'nitialize.

command : low level io.command word;
-- This is the command to sind to the device

data length : integer range 0..integer'last;
-- Indicates number of words of data in the
-- buffer.

F-40 F.11.7 Low Level Input/Output

Ada/M PSE Handbook Version 4.030 Decemoer 1991

buffer addr : low level io.buffer address;
-- physical address of data buTfer.

iochannel : io channel range := 0;
-- The I/O channel being communicated with.

unit : integer range 0..10 := 0;
-- The unit number on the channel.

END RECORD;

-- Data structures used in communication with the AN/USH-26.

ush26yprograms : CONSTANT := 3;
-- This is the number of channel programs in
-- CHANNEL IO for AN/USH-26 devices.

SUBTYPE ush26 operation IS operation;
-- Used to-indicate to CHANNEL IO which channel
-- program to use.

ush26 reset channel : CONSTANT ush26_operation := 0;
ush26 read Uata : CONSTANT ush26_operation := 1;
ush26 -write data : CONSTANT ush26.operation : 2;
ush26_control : CONSTANT ush26_operation := 3;

SUBTYPE ush26 data IS send control block;
-- data passed to SEND CONTROL 'or operations on
-- AN/USH-26 devices.

-- Data structures used in communication with the AN/USQ-69.

usq69_programs : CONSTANT := 4;
-- This is the number of channel programs in
-- CHANNEL IO for AN/USQ-69 devices.

SUBTYPE usq69 operation IS operation;
-- Used to indicate to CHANNEL IO which channel
-- program to use.

a

usq69_reset channel : CONSTANT usq69_operation : 0;
usq69.header : CONSTANT usq69_operation := 1;
usq69 read data : CONSTANT usq69_operation := 2;
usq69 write data : CONSTANT usq69_operation : 3;
usq69_eot : CONSTANT usq69_operation := 4;

SUBTYPE usq69 data IS send control block;
-- information needed tE do I/O-to a AN/USQ-69 device.

rd358_programs : CONSTANT := 3;
-- This is the number of channel programs in
-- CHANNELIO for RD-358 devices.

F.11.7 Low Level Input/Output F-41

Version 4.0 Ada/M PSE Handbook
30 December 1991

SUBTYPE rd358 operation IS operation;
-- Used to-indicate to CHANNELIO which channel
-- program to use.

rd358 reset channel : CONSTANT rd358 operation : 0;
rd358-read aata : CONSTANT rd358 -operation : 1;
rd358-write data : CONSTANT rd358 -operation : 2;
rd358 contr~l : CONSTANT rd358 operation : 3;

SUBTYPE rd358 data IS send control block;

-- information needed to do I/O-to an RD-358 device.

-- Below are the types used for intercomputer I/O operations.

icprograms : CONSTANT := 10;
-- This is the number of channel programs in
-- CHANNEL 10 for AN/USH-26 devices.

SUBTYPE intercomputer operation IS operation;
-- Used to indicate to CHANNEL IO which channel
-- program to use.

ic reset channel : CONSTANT intercomputer operation := 0;
ic-read 'ata : CONSTANT intercomputer operation := 1;
ic--write data : CONSTANT intercomputer-operation := 2;
ic-control : CONSTANT intercomputer-operation := 3;

SUBTYPE intercomputer data IS send control block;
-- information needed to do I/O-to an
-- intercomputer channel

-- Data type identifiers for RECEIVECONTROL.

TYPE io status word IS NEW long integer RANGE 0..65535;
-- Used to pass I/O status word to
-- RECEIVE CONTROL.

SUBTYPE external interruptword IS
system.external interrupt word;

-- SEND CONTROL is an overloaded Ada procedure which passes I/O
-- control information to a procedure in CHANNEL 10 in order to
-- carry out a read, write, or control operation: In Ada/M,
-- there are two overloaded subprograms for SEND CONTROL, one
-- to be used when the physical channel number is already
-- known, and one to be used when only a logical device name is
-- available.

F-42 F.11.7 Low Level Input/Output

Ada/M PSE Handbook Version 4.0
30 December 1991

-- If the version which uses a logical device name is used, it
-- will return the channel and unit numbers in the data record
-- for use in subsequent calls to LOW LEVEL 10.

-- It is recommended that for speed purposes, the logical name
-- be used only on the first request (usually the RESET
-- request). The actual channel and unit numbers will be
-- returned by this request and can be used in subsequent
-- requests.

-- SEND CONTROL for all devices when the channel number
-- (the device) is already known.
PROCEDURE SENDCONTROL (

device : IN low level io.io channel range;
-- Channel number of the-peripheral device.

data : IN OUT low level io.send control block
-- I/O control inforiation for ALL devices.

-- SEND CONTROL for all devices when using a
-- logical device name.
PROCEDURE SENDCONTROL {

device : IN STRING := ";

-- The logical device name of the
-- device to communicate with.

data : IN OUT low level io.send control block
-- I/O controf information 'or ALL 3evices.

-- RECEIVE CONTROL is a procedure which passes I/O control
-- informaTion to a procedure in CHANNEL 10 in order to obtain
-- the value of the status word for the specified channel.

PROCEDURE RECEIVECONTROL

device : IN low level io.io channel range;
-- Specifies-device type-for which status is requested.

data : IN OUT lo. level io.io status word
-- Returns the-statug word-for
-- the channel specified.

-- RECEIVE CONTROL for getting the external interrupt

F.11.7 Low Level Input/Output F-43

Version 4.0 Ada/M PSE Handbook
30 December 1991

-- data for the specified channel.
PROCEDURE RECEIVE CONTROL (

device : IN low level io.io channelrange;
-- Channel nimber Ff the-peripheral device.

data : IN OUT low level io.external interrupt word
-- External interrupt word for cEannel specified.

-- RECEIVE CONTROL for getting input transfer count
-- for the-specified channel.
PROCEDURE RECEIVE CONTROL (

device : IN low level io.io channel range;
-- Channel nUmber Ff the-peripheral device.

data : IN OUT integer
-- Input count for channel specified.

F.12 System-Defined Exceptions

In addition to the exceptions defined in the Ada Language
Reference Manual, this implementation pre-defines the exceptions
shown in Table F-2 below.

F-44 F.12 System-Defined Exceptions

Ada/M PSE Handbook Version 4.0
30 December 1991

-- +

I Name Significance I
-- +

ACCESS CHECK The ACCESS CHECK exception has been
raised explicitly within the program.

CAPACITYERROR Raised by the Run-Time Executive when
Pre-Runtime specified resource limits
are exceeded.

DISCRIMINANTCHECK
DISCRIMINANT CHECK exception has been
raised expliEitly within the program.

DIVISIONCHECK The DIVISION CHECK exception has been
raised expliEitly within the program.

ELABORATION CHECK
The ELABORATION CHECK exception has
been raised expTicitly within the
program.

INDEXCHECK The INDEXCHECK exception has been
raised explicitly within the program.

LENGTH CHECK The LENGTH CHECK exception has been
- raised explicitly within the program.

OVERFLOWCHECK The OVERFLOW CHECK exception has been
raised expliEitly within the program.

RANGECHECK The RANGECHECK exception has been
raised explicitly within the program.

SYSTEMERROR Serious error detected in underlying
AN/UYK-43 operating system.

UNRESOLVED REFERENCE
* Attempted call to a subprogram whose

body is not linked into the executable
program image.

I---I

Table F-2 - System Defined Exceptions

F.12 System-Defined Exceptions F-45

Version 4.0 Ada/M PSE Handbook
30 December 1991

F.13 Machine Code Insertions

The Ada language permits machine code insertions as defined
in Section 13.8 of the Ada Language Reference Manual. This
section describes the specific details for writing machine code
insertions as provided by the predefined package MACHINECODE.

You may, if desired, include AN/UYK-44 or AN/AYK-14
instructions within an Ada program. This is done by including a
procedure in the program which contains only record aggregates
defining machine instructions. The package MACHINECODE,
included in the system program library, contains type, record,
and constant declarations which are used to form the
instructions. Each field of the aggregate contains a field of
the resulting machine instruction. These fields are specified in
the order in which they appear in the actual instruction.

A procedure containing machine-code insertions looks similar
to this:

with machine code; use machine code;
procedure machine_samples is
begin

instr'(OPCODE,A,M,Y); -- first instruction
instr'(OPCODE,A,M,Y); -- second instruction

instr'(OPCODE,A,M,Y); -- last instruction
end;

OPCODE, A, M, and Y in all these examples are replaced by the
actual opcode, A register, M register, and Y field desired for
each AN/UYK-44 or AN/AYK-14 instruction. Whenever possible,
MACRO/M mnemonics are used to specify the opcode field. The A
and M register fields are specified as RO, Rl, ... R15. The Y
field may be specified by any static expression which will fit in
a 16-bit integer. For certain instructions such as unary
arithmetic operations, the opcode and either the A or M register
determine which instruction is executed. The specification of
these instructions and certain others is somewhat more
complicated and is explained in detail below.- Here are some
examples of possible MACRO/M instructions and the Ada/M record
aggregates that correspond to them:

MACRO/M Ada/M

spt A,Y,M instr'(spt,A,M,Y);
lr AM instr'(lr,A,M);
I A,Y,M instr'(l,A,M,Y);
mi A,M instr'(mi,A,M);
ork A,Y,M instr'(ork,A,M,Y);

F-46 F.13 Machine Code Insertions

Ada/M PSE Handbook Version 4.030 December 1991

In some cases, A or M register fields do not appear in the
MACRO/M instruction because the field is always zero in the
machine instruction. RO must be used in that field of the record
aggregate in Ada/M, however, since no missing fields are allowed.
Here are some examples where that occurs:

MACRO/M Ada/M

lpi M instr'(lpi,rO,M);
lp YM instr'(ip,rO,M,Y);
sfsc M instr'(sfsc,rO,M);

Some MACRO/M mnemonics are ambiguous and are assembled into
one of two or more opcodes based on the operands specified in the
instruction. Ada/M opcode mnemonics must be unambiguous, so
either the letter K (indicating an RK format instruction) or the
letter X (indicating an RX format instruction) has been added to
the end of otherwise ambiguous mnemonics. Some examples of this
are as follows:

MACRO/M Ada/M

jz A,Y,N instr'(jzk,A,M,Y);
jp A,*Y,M instr'(jpx,A,M,Y);

For those MACRO/M mnemonics which determine both the opcode
and either the A or M register, the MACRO/M mnemonic
(disambiguated as above if necessary) is used for the A or M
field and an opcode mnemonic is invented. Some examples of this
are as follows:

MACRO/M Ada/M

pr A instr'(ua_opeode,A,pr);
drtr A instr'(ua-opcode,A,drtr);

sqr A instr'(us opcode,A,sqr);
jne Y,M instr'(cjk.opcodejnek,M,Y);
hcr instr (ec-opcode,hcr,rO);

F.13 Machine Code Insertions F-47

Version 4.0 Ada/M PSE Handbook
30 December 1991

You must be able to include data as well as instructions in
machine code. The MACHINE CODE package defines record types
which allow you to create Trndirect words, signed bytes, unsigned
bytes, words, double words, and floating point numbers. The
format for including data is as follows:

Data Ada/M

indirect word (iw J,Y,X) indirect word'(J,X,Y);
unsigned byte (0 .. 255) unsigned-byte value'(VALUE);
word (16-bit value) word value'(VAtLUE);
double word (32-bit value) double word value'(VALUE);
float value (32-bit value) float value'(VALUE);

Table F-3 contains a list of MACRO/M instructions and their
Ada/M machine code equivalents, sorted by MACRO/M mnemonic.

F-48 F.13 Machine Code Insertions

Ada/M PSE Handbook Version 4.0
30 December 1991

-- +
I MACRO/14 Ada/M
--+Ia A,Y,M. instr'(a,A,I4,Y);
Iacos A instr' (mf opcode,A,acos);
Iacr m instr"(lp-arfrO,M);
Iad AY,M instr'(ad,A,M,Y);
Iadi A,M instrl(adiA,M);
Iadr A,M instr'(adr,A,t4);
Iai A,M instrl(ai,A,14);
Iak A,Y,M instr'(ak,A,M,Y);
Iaid A,Y,M instr'(ald,A,M,Y)-
Ialdr A,M instr'(aldrvA,M);'
Ialog A instr'(mf opcode,A,alog);Ials A,Y,M instr'(a)g,A,M,Y);I
Iaisr A,M instrl(alsr,A,M);
Iand A,Y,M instr'(arid,A,M,Y);
Iandi A,M instr'(andi,A,td);
Iandk AY,M instrl(andk,A,M,Y);
Iandr A,M instr'(andr,A,M);
Iar A,M irnsti(ar,A,M);
Iard AY,M instr'(ard,A,M,Y);I
Iardr AM instrl(ardr,A,M);
Iars A,Y,t4 instr'(ars,A,M,Y);
Iarsr A,M instr'(arsr,A,M);
Iasin A instr'(mf opcode,A,asin);
Iatan A instrl(mf-opcode,A,atan);I
Iba A,Y,M iristrl(ba-,A,M,Y);I
Ibc A,Y,M instrl(bc,A,M,Y);
Ibci A,M instrl(bci,A,M);
Ibcx A,Y,M instr'(bcx,A,M,Y);
Ibcxj A,M instr6 (bcxi,A,M);
Ibf YM instrl(bf,rO,14,Y);
Ibfi M instr'(bfi,rO,M);
bi AfY,M iristr'(bl,A,M,Y);
bli A,M instr'(bli,A,M);

Ibix A,Y,M instr'(blx,A,M,Y);
Ibixi A,M instrl(blxi,A,M);
Ibs A,Y,M instr'(bs,A,M,Y);
Ibsi A,M instr'(bsi,A,M); I
Ibsu A,Y,M instr'(bsu,A,M,Y);
Ibsx A,Y,M instr'(bsx,A,MFY);I
Ibsxi A,14 iflstr'(bsxi,A,M);
Ibuilt-in test - dec instr'(bit opcode~dec);I
Ibuilt-in test - eec instrl(bit-opcode,eec);

Table F-3a -Machine Code Instructions

F.13 Machine Code Insertions F-49

Version 4.0 Ada/M PSE Handbook
30 December 1991

--- 4-

I M4ACRO/M Ada/M I
+---+

I built-in test - icp ins'trl(bit opcodevicp);I
I built-in test - ids instr'(bit~opcode,ids);I
I built-in test - imp instr' (bit opcoderimp);I
I built-in test - irm instr'(bit opcode,lrm);I
I built-in test - rscs instr'(bit opcode,rscs);I
I built-in test - sel instr'(bit~opcode,sel);I
I built-in test - srm instr'(bit-opcode,srm);I
I c A,YM instr'(c,AM,Y);
I cbr A,M instr'(cbr,A,M);I
I ccr A,M instr'(lpar,A,M);I
I cd AY,M instr'(cd,A,M,Y);I

cdi AM instr'(cdi,A,M);
I cdr A,M instr'(cdr,A,M);
I ci A,M instr'(ci,A,M);I
I ck AY,M instr'(ck,A,M,Y);I
I ci A,Y,M int'(lAI,)
I cld AY,M instrl(cld,A,M,Y);
I cldr A,M instr'(cldr,A,M);
I cli AM instr'(cli,A,M);I
I cik A,Y,M instr'(clk.,A,M,Y);
I dr A,M instr'(clr,A,M);I
I cis A,Y,M instr'(cls,A,M,Y);
I clsr A,M instr'(clsr,A,M);
cm A,Y,M instr'(cm,A,M,Y);

I cmi A,M instr'(cmi,A,M);
cmk AY,M iristr'(cmk,A,M,Y);

I cmr A,M instr'(cmr,A,M);
I cnt A iristr'(us-opcode,A,cnt); I
I cos A instr'(mf-opcode,A,cos);I
I cr A,M instr'(crA,t4);I
d AY,M instr'(d,A,MY);

I data - double word double-word value'(VALUE); I
I data - float float value'T (VALUE);I
I data - signed byte signeU-byte-value'(VALUE); I
I data - unsigned byte unsigned byte vaiue'(VALtIE);I
I data - word word value'(VALUE);
I dcir inst'F'(uc-opcode,rO,dcir); I
I dcr instr (uc opcode,rO,dcr);
dd A,Y,M instr'(dd-,A,M,Y);

I ddi AMK instr'(ddi,A,14);
I ddr A,M instr'(ddr,A,14);
I di A,M instr'(di,A,M);
I dk A,Y,M instr'(dk,A,M,Y);

.4---+

Table F-3b - Machine Code Instructions (Continued)

F- 50 P.13 Machine Code Insertions

Ada/H PSE Handbook Version 4.0
30 Dlecember 1991

+---+

I MACRO/H Ada/H I
.--------------------------------------- --------------------------------

I dm instr'(uc opcode,rO,dm);
I dr A,M instr'(dr-,A,M);
I dror A instr'(ua-opcode,A~dror);
I drtr A instr'(ua-opcode,A,drtr);
I ecir instr'(uc opcode,rO,ecir);
I ecr instr'(uc~opcode,rO,ecr);
I er A instr'(uc-opcode,A,er);
exp A instr'(mf opcode,A,exp);
fa AY,M instr'(fa-,A,M,Y);

I fai A,M instr'(fai,A,M);
I far A,H jnstr'(far,A,M);I
I fc A,Y instr'(mp opcode,A,fc);

wora value'(Y);
I fd A,Y,M instr'(fd,A;,m,Y);
I fdi A,M instr'(fdi,A,M);
I fdr A,M instr'(fdr,A,M);
I fic A instr'(mp~opcode,A,flc);
I flcd A instr'(np~opcode,A,flcd); I
I fm A,Y,M instr'(frn,A,M,Y);
I fmi A,M instr'(frni,A,M);
I frt'r A,H instr'(fmr,AM);
I fsu A,Y,M instri(fsu,A,M,Y);
I fsui A,H instr'(fsui,A,M);
I fsur A,M instr'(fsur,A,M);
I fxc A instr'(mp~opcode,A,fxc); I
I fxcd A instr'{np~opcode,A,fxcd);
I ib A instr'(us_opcode,A,ib);
I ick A,Y instr'(e6_opcode,A,ick,Y); I
I ioc AY,M instr'(iocr,A,M);

word value' (Y);
I iocr instr'(iocr-,rO,rO);
I iror A instr'(ua~opcode,A~iror);
I irtr A instr'(ua_opcode,A,irtr);
I is A instr (us-opcode,A,is',;
I iw YY,X indirect- word'(J,X,Y);
I j *Y,m instr'(cx~opcode,jx,M);
i Y,M instr'{cjk-opcode,jk,M); I
I jb *Y,H instr'(cjx~opcode,jbx,M);
I jb Y,H instr'(cjk~opcode,jbk,H);

I jbr M instr'icjr~opcode,jbr,H);
I jc *Y,M instr'(cjx~opcode,jcx,H);
I jC Y,M, instr'(cjk opcode,jck,M); I
I jcr II instr'(cjr-opcode,jcr,M); I
I je *Y,H instr'(jx-opcode~jex,M); I
I je Y,M instr'(cjk~opcode,jek,M); I

+---+

Table F-3c - Machine Code Instructions (Continued)

.F.13 Machine Code Insertions F- 51

Version 4.0 Ada/K PSE Handbook
30 December 1991

+---+

I MACRO/K Ada/14
--------------------------- ~---+

I jer 14 instr'(cjr~opcode,jerM); I
I jge *Y,M instr'(cjx opcode,jgex,M);
I jge Y,M instr'(cjk~opcode,jgek,M);, I
I jger 14 instr'(cjr opcode,jger,M);
I jks i,*YM instr'(cjx-opcodetjksxl,M); I
I jks 1,YM instr'(cjk-opcode,jkskl,M); I
I jks 2,*Y,14 instr (cjx-opcode,jksx2,M); I
I jks 2,YfM instr'(cjk-opcode,jksk2,M); I
I jksr 1,M4 instr'(cjr-opcode,jksrl,M);
I jksr 2,M4 instr'(cjr-opcode,jksr2,M); I
I jim *Y,14 iristr'(jlmx,rO,M,Y);
I jim Y,M instr'(jl~mk,rO,141 Y);I jir A,*Y,M instr'(jlrx,A,M,Y);
I jir A,Y,M instr'(jlrkA,M,Y);
I jlrr A,M instrh(31rr,AM);
I jis *Y,14 instr'(cjx-opcode,jlsx,M);
I jis Y,M iristr'(cjk opcode,jlsk,M); I
I jlsr M instr'(cjr-opcode,jisr,M); I
I in A,*Y,M instr'(jnx-,A,14,Y);
I in A,Y,M instr'(jnk,A,M,Y);
I jne *Y,14 instr'(cjx~opcode,jnex,M);
I jne Y,M instr'(cjk opcode,jnek,M); I
I ner m instr'(cjr opcode,jner,M);
I jnr A,M instr'(jnr,A,M);
i nz A,*Y,M instr'(jnzx,A,M#Y);
1 jnz AJ,YM instr'(jnzk,A,M,Y);
I jnzr A,M instr'(jnzr,A,M);I
ijo *Y,14 irstr'(cjx opcode,jox,M);
I jo Y,M instr'(cjk-opcode,jok,M);
I jor m4 instr'(cjr~opcode,jor,M); I
Ijp A,*Y,M instr'(jpx,A,M,Y);I
Ijp A,YM instr'(jpk,A,M,Y);I
I jpr A,M iristr' (jpr ,A,M) ;
I jpt *Y,14 instr'(cjx-opcode,jptx,M);
I jpt Y,M instr'(cjk~opcode,jptk.,M); I
I jptr M4 instr"(cjr-opcode,jptr,M); I
I*jr M4 iflstr'(cjr-opcode,jr,M); I
I is *y,14 iristr'(cjx~opcode,jsx,M);

I js Y,M instr'(cjk-opcode,jsk,M);
I jsr 14 instr'(cjr~opcode,jsr,M);
I jz AF*Y,M instr'(Jzx,A,M,Y);
I jz A,Y,M instr'(jzk,A,M,Y);
I jzr A,14 iristr'(jzrA,M);I
-- +

Table F-3d - Machine Code Instructions (Continued)

F- 52 F.13 Machine Code Insertions

Ada/H PSE Handbook Version 4.0
30 December 1991

--- ~--------+

I MACRO/M Ada/H4
--- ---- ~ --------------------------- +

I 1 A,Y,M instr'(1,A,M,Y);
I la A,M instr'(1aA,14);
I lad A,M instr'(lad,A,M);
I laid A,H instr'(lald,A,M);I
I lals A,M instr'(lals,A,M);I
I lard A,M instr'(lard,A,14);
I lari A,M instr'(lari,A,M);I
I larm A,Y,M instr'(larzn,A,14,Y);I
I larr A,M instr'(larr,A,M);I
I lars A,M instr'(lars,A,M);I

lbxi A,YM instr'(lbxi,A,M,Y);
l c A,M instr'(1c,A,M);I

ilcep A instr'(us opcode,A,lcep);
I cic A,M instr'(lcifc,A,M);I
I cid A,t1 instr*(lclc,AtM);I
I cr A instrl(uc-opcode,A,lcr);
I lcrd A instr'(uc opcode,A,lcrd);
I d A,Y,M isr(ldA,Y,M);
I di A,M instr'(ldi,A,M);I
I)div Ad.! instr'(ldiv,A,M');
I ldx AY,M instr'(ldx,A,M,Y);I
I ldxi A,H instr'(ldxi,A,14);
I lem A instr'(u~copcode,A~lem);
l i A,M instr'(liA,M);

I hr A,M instr'(lir#A,M);I
I j D instr'(lJ,D);
I je D instr'(lje,D);
I ljge D instr'(ljge,D);
l ji D instr'(lji,D);

I ljlm D instr'(ljlrn,D);I
ijis D instr'(ljlsD);

I ljne D iaistr'(1jne,D);
I k AY,M instr'(lk,A,M,Y);
11i A,M instr'(l1,A,M);

Ilhid A,M. instr'(llrd,A,M);
I lims AM instr'(llrs,A,M);
l m A,Y,M instr'(1m,A,M,Y);I

Iimap AY,M instr'(lmap,A,M,Y);
l mr A,Y,M instr'(lmr,A,M,Y);

I mul A,1 iflstr'(linul,A,M);
I p Y,M instr'(lp,rO,14,Y);
I pa A,Y,M instr'(lpa,A,MY);I
I lpai A,M. instr'(ipai,A,M);I

--- +

Table F-3e - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-5 3

Version 4.0 Ada/M PSE Handbook
30 December 1991

+---+

I MACRO/M Ada/M I
+---+

l pak A,YLFM instr'(lpak,A,14,Y);
I par A,M instr'(lpar,A,M);
l pi 14 instr'(lpi,rO,M);

I pi A,Y,M instr'(lpl,A,M,Y);
I pli A,M instr'(lpli,A,M);
I pr A instr'(uc -opcode,A,lpr); I

lrA,M instr (1r,A,M);
ldA,Y,M instr'(lrd,A,M,Y);

l rdr A,M jnstr'(irdr,A,M);
I rs AY,M instr'(lrs,A,M,Y);
I lrsr AM instr'(lrsr,A,M);
I isor A instr'(uc-opcode,A,lsor); I
Ilstr A instr (uc opcode,A,lstr);
I lsu A,M instr'(lsU,A,M);I
l sud A,M instr'(lsud,A,M);

I lx A,Y,M instr'(lx,A,M,Y);I
I lxi A,M instr'(lxi,A,M);I
I m A,Y,M instr'(m,A,14,Y);I
I mb AM instr'(mb,A,M);I
I mdi A,M instr"(mdi,A,M);I
I mdm A,Y,M instr'(mdm,A,M,Y);I
I mdr A,M instri(mdr,A,M);
mi A,M nt(mM)

I mk A,Y,M instr'(mk,A,M,Y);
I mr AM instr'(mr,A,M);
I ms A,Y,M instr'(ms,A,M,Y);
I msi AM instr'(ms3i,A,M);
I msk A,Y,M instr'(msk,A,M,Y);
I msr A,M instr'(msrA,M);I
S ft A instr'(mp~opcode,A,nf);
I nr A instr (ua-opcode,A,nr);
I ock AY instr :(e6_opcode,A,ock,Y); I
I ocr A instr (ua opcode,A,ocr); I
I or AY,M instr'(or-,A,M,Y);
I oni A,M instr'(ori,A,M);
I ork A,Y,M instr'(ork,A,M,Y);I
I*orr A,M instr'(orr,A,M);
I pr A instr'(ua-opcode,A,pr);I
I al A,Y instrl(mp opcode,A,qal);

I ~word value' (Y);I
I qar A,Y instr'(mp~opcode,A,qar);

word value'(Y);I
I qgt A,YM instr'(qgt,A,M,Y);
1 qpb A,Y,M instr'(qpb,A,M,Y);

-- +

Table F-3f - Machine Code Instructions (Continued)

F- 54 F.13 Machine Code Insertions

Ada/M PSE Handbook Version 4.0
30 December 1992.

+---+

I MACRO/M Ada/MI
+---+

I qpt A,Y,14 instr'(qpt,A,M,Y);I
I rex Y,14 instr'(rex,rO,14,Y);
I rf A instr'(mp opcode,A,rf);
I rfp A instr'(mp~opcode,Atrtp);
I rh A instr'(mp-opcode,A,rh);
I rhp A instrl(mp--opcode,A,rhp);
I rim A,Y,M instr'(smap,A,M,Y);
1 rr A instr'(ua opcode,A,rr);
1 rvr A instrl(us-opcode,A~rvr);
I s A,Y,M instr'(s,A,M,Y);
I sari A,4 instr'fsari,A,M);
I sarm A,Y,M instr'(sarm,A,M,Y);
I sarr A,M instr'(sarr,A,M);
I sbr A,M instr' (sbr,A,M);
I sbxi A,Y,M instr'(sbxi,A,M,Y);
I scr A instri(uc opcode,A,scr);
I scrd A instr'(uc-opcode,A,scrd); I
I sd A,Y,M instr'(sd-,A,M,Y);
I sdi A,M instr'(sdi,A,M);
I sdx AYM instr'(sdx,A,M,Y);
I sdxi A,M instr'(sdxi,A,M);
I sedr A,M instr'(sedr,A,M);
I ser A,M instr'(ser,A,M);
I sfr A instr'(us~opcode,A,sfr);
I sgt A,Y,M instr'(sgt,A,M,Y);
I si A,M instr'(si,A,M);I
I sin A instr' (mf opcode,A,sin);
I sir A,M instr'(sir,A,M);
I sm A,YPM instr'(sm,A,M,Y);
I smap A,Y,M instr'(smap,A,M,Y);
I smc A instr'(us opcode,A~smc);
I smr A,Y,M instr'(smr,A,M,Y);
I spJ. A,Y,M instr'(spl,AM,Y);
I spli A,M instr'(spli,A,14);

spt A,Y,M instrl(spt,A,M,Y);
I sqr A instr" (us opcode,A,sqr); I
I sqrt A instr'(us~opcode,A,sqrt);
I ssor A instr'(uc-opcode,A,ssor);
I sstr A instr'(uc-opcode,A,sstr); I
I su A,YIM instr'(suA,M.Y);
I sud A,Y,M iristr'(sud,A,M,Y);
I sudi A,M instr'(sudi,A,4);
I sudr A,M instr'(sudr,A,M);

-- +

Table F-3g - Machine Code Instructions (Conti~nued)

F.13 Machine Code Insertions F-55

Version 4.0 Ada/M PSE Handbook
30 December .1991

+---+

I M.ACRO/M Ada/M I
+-- --------------------------- +

I sui AM instr'(sui,A,M);
I suk A,Y,M instr'(suk,A,MtY);
I sur A,M instr'(sur,A,M);I
I sx A,Y,M instr'(sx,A,M,Y);
I sxi A,M instrl(sxi,A,M);
I sz Y,m instr'(sz,rO,M#Y);I
I szi m instr'(szi,rO,M);I
I tan A instr'(mf opcode,A,tan);
I tcdr A instr'(ua-opcode,A,tcdr); I
I tcr A instr'(ua-opcode,A,tcr); I
I vf A instr'(mp~opcode,A,vf);I
I vfp A instr'(mp opcode,A,vfp);
I vh A instr'(mp-opcodeArvh);
I vhp A instr'(mp-opcode,A,vhp); I

I wcm A,YM instr'(lma~p,A,M,Y);
I wcmk AM,y instr'(e6_opcode,A,M,Y);
I wim A,Y,M instr'(lm-ap,A-,!,Y);I
I wimk AY,M instr'(e6 opcode,A,M,Y); I
I xj A,*Y,M instr (xjx,A,M,Y);
I xj AAPY,M instr'(xJk,A,M,Y);
I xjr A,M instr'(xjr,A,M);I
I xor A,Y,M instr'(xor,A,M,Y);
I xori A,M instr'(xori,A,M);
I xork AY,M instr'(xork,A,M,Y);
xorr A,M instr*(xorr,A,M);

I xsdi A,M instr'(xsdi,AM);I
I xsi A,M instr'(xsi,A,M);
I zbr A,M instr'(zbr,A,M);

+---+

Table F-3h - Machine Code Instructions (Continued)

F-56 F.13 Machine Code insertions

