
4

AD-A265 433NTATION PAGE I N
ho W04 fopno hX0t u dvfl r411W for '*vWwq ig WlfticJ. I.*tchrWg 01*bfl data W0086 901"VI ald M&#*&nrg tr dM1I111 oi 1111111 1 Mll. flbwds " I*s or any otnei aspedo 04s V n CldV V0'fmat1Q% lctue SQ M4 to, 0rsdVteb o

t. , -. X ," 15 Jene.mon Davs H~'tay. Sue. 1204. Arb#ion. VA 22202-4302• &W; ,1 0 1 O•, .. 04 AMPago,, 'af s Aftn ON"c a
Manlagement ariBudget Wasnmglon, DC 20603

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

I Final: 5 Aug 92

4 TITLE AND SUBT•TLE 5 FUNDING NUMBERS

Validation Summary Report: DDC-I, Inc., DACS Sun SPARC/SunOS Native Ada
Compiler System, Version 4.6.1, SPARCStation 2 (host & target), 920805S1 .11265

6 AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA i •ELECTE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES J UN 3 19 8 PERFORMING ORGANIZATION
National Institute of Standards and Technology IREPORT NUMBER

National Computer Systems Laboratory % I NIST92DDI510_3_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING.MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION*AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release: distribution unlimited.

13. ABSTRACT (Maximum 200 words)

DDC-I, Inc., DACS Sun SPARC/SunOS Native Ada Compiler System, Version 4.6.1, SPARCStation 2 (under SunOS,
Version 4.1.1) (host & target), ACVC 1.11

93-12470

14 SUBJECT TERMS 1P. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
'apability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
W REPORT OF ABSTRACT
IOLASSIFIED UNCLASSIFED UNCLASSIFIED

Standard Form 298, (Rev 2-89)
Presc'it,,d by ANSI Std. 239-128

AVF Control Number: NIST92DDI5l03_1.11
DATE COMPLETED

BEFORE ON-SITE: 92-07-24
AFTER ON-SITE: 92-10-06
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920805S1.11265
DDC-I, Inc.

DACS Sun SPARC/SunOS Native Ada Compiler System, Version 4.6.1
SPARCStation 2 => SPARCStation 2

Prepared By:
Software Standards Validation Group

National Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

StTIS CRA&I

14 0

AcSt"io +bgrn

Ai,,tidbli~ly Codes

j Avift .fjdor
Ds t Soectal

LII A

AVF Control Number: NIST92DDI510O3 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on August 05, 1992.

Compiler Name and Version: DACS Sun SPARC/SunOS Native Ada
Compiler System, Version 4.6.1

Host Computer System: SPARCStation 2 under SunOS, Version
4.1.1

Target Computer System: SPARCStation 2 under SunOS, Version
4.1.1

See section 3.1 for any additional information about the testing
environment.

As a result of this valldation effort, Validation Certificate
920805S1.11265 is awarded to DDC-I, Inc.. This certificate expires
2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

- AN

A a Ada Validatidn Facility
Dr. David K. e s Mr. L. Arnold Johnson
Chief, Information Syttems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada Va) idaLýibt1Organization '-'Ada Joint Program Office
• Direc tor,v •omputer & Software Dr. John Solomond

Engineeringk..ivision Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

NIST92DDI5103_1.11

DECLARATION OF CONFOR14ANCE

The following declaration of conformance was supplied by the
customer.

Customer: DDC-I, Inc.

Certificate Awardee: DDC-I, Inc.

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/SunOS Native Ada
Compiler System, Version 4.6.1

Host Computer System: SPARCStation 2 under SunOS, Version
4.1.1

Target Computer System: SPARCStation 2 under SunOS, Version

4.1.1

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer'Signature
Company DDC-I, Inc.
Tit": President

Certificate Awardee Signature ,ate
Company DDC-I, Inc.
Title: President

TABLE OF CONTENTS

CHAPTER 1 i-i
INTRODUCTION i-i

1.1 USE OF THIS VALIDATION SUMMARY REPORT . . . i-I
1.2 REFERENCES i-i
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-i
MACRO PARAMETERS A-I

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS. B-I
LINKER OPTIONS B-2

APPENDIX C C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

[Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, 0, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process %,r service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration (Pro90].

1-4

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C3570,B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1BO2B BDIB06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONG_INTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C 852004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as

2-2

allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

BAI001B, BDBOOlA, BD8003A, BD8004A..B (2 tests), and AD8011A use
machine code insertions! this implementation provides no package
MACHINE CODE.

The tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for the given
combina'ion of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT IO
CE2102J CREATE OUT ?ILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL_10
CE21020 RESET IN FILE SEQUENTIAL_IO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUTFILE DIRECT IO
CE2102W RESET OUT FILE DIRECT 10
CE3102F RESET Any Mode TEXT _1
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUTFILE TEXTIO

The tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIALIO
CE2105B CREATE IN FILE DIRECT IO
CE3109A CREATE IN-FILE TEXT IO

2-3

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

EE2401D uses an instantiation of DIRECT 10 with an unconstrained
array type; for this implerentation, the maximum element size of
the array type exceeds the implementation limit of 32Kbytes and so
USEERROR is raised.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was
written to the other, which is assumed to be immediately available;
this implementation buffers output. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 69 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B3800A.
B38009B B55AOIA B61001C B61001F B61OOIH B61001I B61001M
B6100IR B61001W B67001H B83A07A B83AO7B B83A07C S8D3C
B83EOID B83EOlE B85001D B85008D B91001A B91002A EI0B
B91002C B91002D B91002E B91002F B91002G B91002H ED=1PI
B91002J B91002K B91002L B95030A B95061A B95061F B9506G
B95077A B97103E B97104G BA1OO1A BA11OIB BCI1O9A BM109C
BCI1O9D BC1202A BC1202F BC1202G BE2210A BE2413A

CA2009C and CA2009F were graded inapplicable by Evaluation

2-4

Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight
designated objects are allocated, with a combined length of 30
characters. Because of this implementation's heap-management
strategy and alignment requirements, the collection size at line 22
had to be increased to 812.

CE3111B and CE3115A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests assume that output
from one internal file is unbuffered and may be immediately read by
another file that shares the same external file. This
implementation raises END-ERROR on the attempts to read at lines 87
and 101, respectively.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Johan 0. Nielsen
DDC International A/S
Gl. Lundtoftevej 1B

DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For sales information about this Ada implementation, contact:

Jennifer Collins
DDC-I, Inc.

410 North 44th Street, Suite 320
Phoenix, AZ 85008

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the

implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3785

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 290
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 290 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system. The results were captured on the host/target
computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. The options invoked explicitly for validation
testing during this test were:

All default options were invoked for the Ada compiler. However,
the list option was invoked for B-Tests, E-Tests, modified tests,
and supporting packages:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 126 -- Value of V

$BIGIDi (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (1..V-l-V/2 => 'A')

SBIGID4 (l..V/2 => 'A') & '4' & (l..V-l-V/2 => 'A')

SBIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI '" & (l..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (l..V-l-V/2 => 'A') & '1' & '"'

$BLANKS (I..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLEN REALBASED LITERAL
-- -- 16:" & (I..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL "' & (l..V-2 => 'A') & '"'

A-i

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE :32
ALIGNMENT :4
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 2048*1024-
DEFAULT STOR UNIT : 8
DEFAULT SYS NAME : DACS SPARC
DELTA DOC : 2#l.0#E-31
ENTRY ADDRESS : SYSTEM."-"(16#080008B8#)
ENTRY_-ADDRESS1 : SYSTEM."-"(16#08000898#)
ENTRY ADDRESS2 : SYSTEM."-"(16#08000878#)
FIELD LAST : 35
FILE TERMINATOR : I
FIXED NAME : NO SUCH TYPE
FLOAT NAME : NOSUCHTYPE
FORM STRING gi""
FORMSTRING2

"CANNOTRESTRICTFILECAPACITY"

GREATER THAN DURATION : 100000.0
GREATER THANDURATION BASE LAST : 200000.0
GREATER THAN FLOAT BASE LAST : 16#1.0#E+32
GREATER-THAN-FLOAT-SAFE-LARGE : 16#5.FFFF FO#E+31
GREATER-THAN-SHORT-FLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAME1 : /NODIRECTORYI/FILENAME1
ILLEGAL EXTERNAL FILE NAME2 : /NODIRECTORY2/FILENAME2
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGE LENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")

INCLUDEPRAGMA2
PRAGMA INCLUDE ("B28006E1.TST")

INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGER LAST PLUS 1 : 2147483648
INTERFACE LANGUAGE : AS
LESS THAN DURATION : -75000.0
LESS THAN DURATION BASEFIRST : -131073.0
LINE TERMINATOR -- I
LOW PRIORITY :0
MACHINE CODE STATEMENT : NULL;
MACHINE CODE TYPE : NOSUCHTYPE

A-2

MANTISSA DOC : 31
MAX DIGITS : 15
MAX INT :2147483647
MAX INT_-PLUS_1 :2147483648
MIN INT : -2147483648
NAME : NO SUCH TYPE AVAILABLE
NAMELIST : DACS SPjRC
NAMESPECIFICATIONi

/usry/ada/DACS_Sparc_461_validation/work/X2120A
NAMESPECIFICATION2

/usry/ada/DACS_Sparc_461_validation/work/X2120B
NAMESPECIFICATION3

/usry/ada/DACS_Sparc_461_validation/work/X3119A
NEG BASED INT : 16#FOOOOOOE#
NEW MEN SIZE : 2097152
NEW STOR UNIT :8a
NEW SYS NAME : DACSSPARC
PAGETERM4INATOR :
RECORD DEFINITION : NEW INTEGER
RECORD NAME : MACHINE-INSTRUCTION
TASKSIZE : 32
TASK -STORAGE-SIZE : 1024
TICK : 2#1.0#E-14
VARIABLE -ADDRESS : SYSTEN."-"1(16#08000918#)
VARIABLE ADDRESS1 : SYSTEM."-11(16#080009F8#)
VARIABLE ADDRESS2 : SYSTEM."-" (16#080008D8#)
YOUR PRA7GmA : N A --test withdrawn

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

-S

5 ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
generated objects into the current program library. Compiler options art provided to allow the
user control of optimization, run-time checks, and compiler input and output options such as list
files, configuration files, and the program library used.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

Output consists of an object placed in the program library, diagnostic messages. and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

If any diagnostic messages are produced during the compilation, they are output in the diagnostic
file and on the current output file. The diagnostic file and the diagnostic message format are
described in Section 5.3.2.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invocation Command

Invoke the Ada compiler with the following command:

ada (<option>} <source-file-name> (<source-file-name>}

39

.1 nonpi er

5.1.1 Summary of Options

This section presents a summary of options supported by the compiler.

OPTIONS DESCRIPTION REFERENCE

-auto inline Smal local subprograms are automatically 5.1.2
inline expanded.

-nocheck <keyword>{,<keyword>) Suppress generation of run-time constraint checks. 5.1.3

-configuration <file-name> Specifies the file used b) the compiler. 5.1.4

-debug Specifies that information for the DDC-I 5.1.5
Symbolic Ada Debugger is to be generated.

-library <file-name> Specifies the program library to be used. 5.1.6

-list Creates a source list file. 5.1.7

-machine code Generates a machine code dump for the compilation. 5.1.8

-optimize <keyword>{,<keyword>} Specifies compiler optimizations. 5.1.9

-profile Specifies that code for profiling is to be generated. 5.1.10

-progress Displays compiler progress. 5.1.11

-nosavesource The source is not saved in the program library. 5.1.12

-warnings Suppress warnings from the compiler. 5.1.13

-xref Creates a cross reference listing. 5.1.14

Example:

$ ada -list testprog

This example compiles the source file testprog and generates a list file with the name testprog.lis.

Example:

$ ada -lib mylibrary test

This example compiles the source file test into the library my-library.

Default values exist for options as indicated in the following sections. Option names may be
abbreviated (characters omitted from the right) as long as no ambiguity arises.

40

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide... - •Ada Compiler

5.1.2 AUTO INLINE

Syntax:

-auto-line

This option specifies whether local subprograms should be inline expanded. The inline expansion
only occurs if the subprogram contains no more than 3 object declarations (and no other
declarations), no more than 5 statements and nio exception handler and if the subprogram fulfills
the requirements defined for pragma inline. A warning is issued when automatic inline expansion
is performed.

5.1.3 NOCHECK

Syntax:

-nocheck <keyword>{,<keyword>)

By default, all run-time checks listed below will be generated by the compiler. The following
explicit checks can be suppressed:

ALL Suppress all checks.

INDEX Index check.

ACCESS Check for access values being non NULL.

DISCRIMINANT Checks for discriminated fields.

LENGTH Array length check.

RANGE Checks for values being in range.

OVERFLOW Explicit overflow checks.

ELABORATION Checks for subprograms being elaborated.

STORAGE Checks for sufficient storage available.

Note that the Divisioncheck suppression mentioned in ARM i1.7 is not implemented.

5.1A CONFIGURATION FILE

Syntax:

-configuration <file-name>

This option specifies the configuration file to be used by the compiler. The configuration file

41

Adia Conpiler

allows the user to format compiler listings, set error limits, etc. If the option is omitted the
configuration file designated by the name "config" is used by default. Section 5.2.2 contains a
description of the configuration file.

5.1.5 DEBUG

Syntax:

-debug

This option specifies that information for the DDC-I Symbolic Ada Debugger is to be generated.
Please note that no extra information is included in the code or data generated.

S.1.6 LIBRARY

Syntax:

-library <library-name>

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environment variable name
ADA -LIBRARY is used as the current sublibrary. Section 5.4 describes how the Ada compiler
uses the library.

5.1.7 LIST

Syntax:

-list

-list specifies that a source listing will be produced. The source listing is written on the list file,
which has the name of the source file with the extension ".lis". Section 5.3.1.1 contains a
description of the Fcdrce listing.

S.1.8 MACHINE CODE

Syntax:

-machine code

Dump a machine code list of the compiled code at standard output. The instructions are dumped
symbolically, but addresses are not Calls are described by a "patch", which consists of a unit

42

.7.

DACS Sun SPARCISunOS Native Ada Compiler System. User's Guide
Ada Compiler

nuinber and an entry number. The unit number is a unique number defining the libr.,y unit and
the entry number is the number of the subprogram within that unit.

5.1.9 OPTIMIZE

Syntax;

-optimize <keyword>{,<keyword>}

This option specifies which optimizations will be performed during code generation. Default is
no optimizations.

Selection of optimizations can be done in two basic ways.

1) Selecting individual optimizations.

2) Selecting predefined classes of optimizations.

[NO]LOOPREGISTERS[=<nurnber-of-iterations>1
Controls the extent to which registers are allocated to variables in loops,
particularly inner loops.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOICOMMONSUBEXPRESSION_ELIMINATION[=<number-of-iterations>]
Specify to which extent common subexpression elimination should be
performed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be perfon-ned.

(NOICOPY_'PROPAGATION(=<number-of-iterations>]
Specify to which extent copy propagation should be performed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOICONSTANT_FOLDING
Controls whether arithmetic expressions which have become static due to
other optimizations are calculated at compile time and foldcd into the code.

[NOILOOP_UNROLLING
Performs unrolling of static loops into sequential code. The algorithm for
deciding whether a loop is a candidate for unrolling is given in the
Reference Manual.

43

Ada Compiler

[NOILOOPINVARIANT-CODE MOTION
Controls the movement of invariant code outside of loops.

[NO }DEADCODEREMOVAL[-<number-of-iterations>]
Controls whether dead code should be removed or not. Dead code can
occur when conditions become static or when a variable is not used
anymore. Please note that this optimization can be a very time consuming

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

The following options select a predefined level of optimizations:

LOW - Selects a predefined set of optimizations equal to the following list:

LOOPREGISTERS, COMMONSUBEXPR,
COPYPROPAGATION, CONSTANTFOLDING,
NODEAD CODEREMOVAL, LOOPUNROLLING,
LOOPINVARIANTCODEMOTION

MEDIUM Selects a predefined set of optimizations equal to the following list:

LOOPREGISTERS=25, COMMONSUBEXPR=25,
COPY_PROPAGATION=25, CONSTANTFOLDING,
DEAD CODEREMOVAL, LOOPUNROLLING,
LOOPINVARIANTCODEMOTION

HIGH Selects a predefined set of optimizations equal to the following list:

LOOPREGISTERS= 1000, COMMONSUBEXPR= 1000,
COPY_PROPAGATION= 1000, CONSTANT_FOLDING,
DEADCODEREMOVAL= 1000, LOOPJUNROLLING,
LOOPINVARIANTCODEMOTION

ALL Equivalent to HIGH

Example:

$ ada -optimize all example 1

Both of these commands compile the program with all the optimizations active at their highest
levels.

$ ada -opt low,loop reg=lOOO,noloop unroll) example_2

This command compile the program with low optimizations,but no loop-unrolling is wanted and
registers should be used to the greatest extent possible in loops.

44

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
- ,Ada Compiler

5.1.10 PROFILE

Syntax:

-profile

This option specifies that code for profiling shall be generated. This option in conjunction with
the profile linker option enables profiling of an executable program.

5.1.11 PROGRESS

Syntax:

-progress

When this option is given, the compiler will output data about which pass the compiler is
currently running.

5.1.12 NOSAVE SOURCE

Syntax:

-nosave source

When -nosave is specified, source code will not be retained in the program library, this save some
space in the sublibrary. The default is to save a copy of the compiled source code in the program
library. Hereby the user is always certain of what version of the source code compiled. The source
code may be displayed from the sublibrary with the PLU Type command.

5.1.13 WARNINGS

Syntax:

-warnings

Suppress warnings from the compiler in the diagnostics file. All diagnostics will always come on
standard output, only the contents of the diagnostics file is affected by the warnings option. If a
compilation only generates warnings and the warnings option is specifies no diagnostics file is
created.

45

Adj Compiler

5.1.14 XREF

Syntax:

-xref

A cross-reference listing can be requested by the user by means of the option -ref in conjunction
with option list. If the xref option is given and no severe or fatal errors am found during the
compilation, the cross-reference listing is written to the list fide. The cross-reference listing is
described in Section 5.3.1.3.

5.1.15 Source File Parameter

<source-file-name> (<source-file-name>)

This parameter specifies the text file containing the source text to be compiled. If the file type
is omitted in the source file specification, the file type ".ada" is assumed by default. More than
one file name can be specified, each <source-file-name> can be a file name with wildcards as
defined by the shell.

The compilation starts with the leftmost file name in the file name list, and ends with the
rightmost. If the list of file names includes a file name with wildcards, the files matching the
wildcard name are compiled in alphabetical order. If any file name occures several times in the
list of file names, the file is compiled several times, i.e. one file is compiled as many times as
its name occurs in the list of file names.

The allowed format of the source text is described in Section 5.2.1.

5.2 Compiler Input

Input to the compiler consists of the command line options, a list of source text files and,
optionally, a configuration file.

5.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage retum, VT means vertical
tabulation, LF means line feed, and FF means form feed):

1) A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT. LF, or FF.

2) Any of the characters VT, LF. or FF, immediately preceded and followed by a sequence

46

-J DACS Sun SPARC/SunOS Native Ada Compiler System. User's Guide

"Ada Compiler

of zero or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

1) The horizontal tabulation (HT) character may be used as a separator between lexical units.

2) LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see Section 5.1.4). The control characters CR, VT, IF, and FF are not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2.2 Configuration File

Certain processing characteristics of the compile'r, such as format of input and output, and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SunOS text file. The contents of the configuration file
must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file "config" is not accepted by the compiler in the following cases:

1) The syntax does not conform with the syntax for positional Ada aggregates.

2) A value is outside the ranges specified.

3) A value is not specified as a literal.

4) LINES_PERPAGE is not greater than TOPMARGIN + BOT'rOMMARGIN.

5) The .aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

type CONFIGURATIONRECORD is
record

IN FORMAT : INFORMATTING;
OUT FORMAT : OUTFORMATTING;
ERROR LIMIT : INTEGER;

end record;

type INPUT FORMATS is (ASCII);

47

- - ,-,,• r'il" /unU, ,~N. AliC ., Ltompl "er ysvtcm, ,jicr s uuluL

Ada Compiler

type INFORMATTING is
record

INPUTFORMAT INPUT FORMATS:
INPUT LINELENGTH INTEGER range 70..250;

end record?"

type OUTFORMATTING is
record

LINES PERPAGE INTEGER range 30..100;
TOPMARGIN INTEGER range 4.. 90;
BOTTOMMARGIN INTEGER range 0.. 90;
OUTLINELENGTH INTEGER range 80..132;
SUPPRESS_ERRORNO BOOLEAN;

end record;

The outformatting parameters have the following meaning:

1) LINESPERPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOPMARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTrOM_MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER_PAGE - TOP._MARGIN - BOTTOM-MARGIN.

4) OUT_LINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUTLINELENGTH are separated into two lines.

5) SUPPRESS.ERRORNO: specifies the format of error messages (see Section 5.3.2.3).

The name of a user-supplied configuration file can be passed to the compiler through the -c
option. DDC-l supplies a default configuration file (config) with the following content:

((ASCII, 132), (48,5,3,100,FALSE), 200)

48

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Compiler

Top T
margin

Lines
per
page

Bottom T
margin

Out linelength

Figure 5-1 Page Layout

5.3 Compiler Output

The compiler may produce output in the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The updating of the program library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written on the list file.
if the option -L is active.

2) A compilation summary is written on the list file, if -L is active.

3) A cross-reference listing is written on the list file, if -x is active and no severe or fatal
errors have been detected during the compilation.

4) If there are any diagnostic messages. a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings are written on the current output file.

49

Ada Compier -

5.3.1 List File

The name of the list file is identical to the name of the source file except that it has the file type
".lis". The file is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -L or -x, a new list file is created.

The list file may include one or more of the foUowing parts: a source listing, a cross-reference
listing, and a compilation summary.

The pans of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Sectior 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

1) Parts of the listing can be suppressed by the use of the LIST pragma.

2) A line containing a construct that caused a diagnostic message to be produced is printed
even if it occurs at a point where the listing has been suppressed by a LIST pragma.

In a source listing a diagnostic message is placed immediately after the source line causing the
message.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output in the list file, if the
option -L is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.2).

3) Which options were active.

50

"DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Compiler

4) The full name of the source file.

5) The full name of the current sublibrary.

6) The number of source text lines.

7) The size of the code produced (specified in bytes).

8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the
compilation or "Compilation of next unit initiated" otherwise.

5.3.13 Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators, and character
literals of a compilation unit. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generic unit are included in the
cross-reference listing as declared immediately after the instantiation. The visible declarations are
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following are not included in the cross reference listing:

1) Pragma identifiers and pragma argument identifiers.

2) Numeric literals.

3) Record component identifiers and discriminant identifiers. For a selected name whose
selector denotes a record component or a discriminant, only the prefix generates
cross-reference information.

4) A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

1) The identifier with, at most, 15 characters. If the identifier exceeds 15 characters, a bar
("I") is written in the 16th position and the rest of the characters are not printed.

2) The place of the definition, i.e., a line number if the entity is declared in the current
compilation unit, otherwise the name of the compilation unit in which the entity is

51

"Ada Compiler

declared and the line number of the declaration.

3) The numbers of the lines in which the entity is used. An asterisk ("*") after a line
number indicates an assignment to a variable, initialization of a constant, assignments to
functions, or user-defined operators by means of RETURN statements.

An example of a cross reference listing can be found in Appendix B.

5.3.2 Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
fie type ".err". It is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. There
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erroneous source text

An example of a diagnostic file can be found in Appendix B.

5.32.1 Placement of Messages

The Ada compiler issues diagnostic messages in the diagnostic file. Diagnostics other than
warnings also appear on the standard output. If a source text lisdng is required, the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line are placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
erroneous line. The lines are ordered by increasing source line numbers. Line number 0 is
assigned to messages not related to any particular line. On the current output file the messages
appear in the order in which they are generated by the compiler.

5.3.2.2 Classes of Messages

The diagnostic messages are classified according to their severity and the compiler action taken:

Warning: Reports a questionable construct or an error that does not influence the
meaning of the program. Warnings do not hinder the generation of object
code.

Example: A warning will be issued for constructs for which the compiler
detects will raise CONSTRAINTLERROR at run time.

52

D-'" ,

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Compiler

Error. Reports an illegal construct in the source program. Compilation continues, but
no object code will be generated.

Examples: Most syntax errors; most static semantic errors.

Severe: Reports an error which causes the compilation to be terminated immediately.
No object code is generated.

Example: A severe error message will be issued if a library unit
mentioned by a WITH clause is not present in the current
program library.

Fatal: Reports an error in the compiler system itself. Compilation is terminated
immediately and no object code is produced. The user may be able to
circumvent a fatal error by correcting the program or by replacing program
constructs with alternatives. Please inform DDC-I about the occurrence of
fatal errors.

The detection of more errors than allowed by the number specified by the
ERROR-LIMIT parameter of the configuration file (see section 5.2.2) is considered a severe error.

5.32.3 Format and Content of Messages

For certain syntacticafly incorrect constructs, the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal
character.

The text line contains the following information:

1) The diagnostic message identification "***"

2) The message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X, uniquely identifies the
compiler location that generated the diagnostic message; Z is of importance mainly

53

Ada Compiler

to the compiler maintenance team -- it does not contain information of interest to the
compiler user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESSERRORNO in the configuration file has the value TRUE (see
section 5.2.2).

3) The message text; the text may include one context dependent field that contains the
name of the offending symbol; if the name of the offending symbol is longer than 16
characters only the first 16 characters are shown.

5.32.4 Examples of Diagnostic Messages:

18W-3: Warning: Exception CONSTRAINLTERROR will be raised here

* 320E-2: Name OBJ does not denote a type

* 535E-0: Expression in return statement missing

1508S-0: Specification for this package body not present in the library

5.3.3 Return Codes

The compiler sets the return code to the following values:

Error code: Description:

0 Success, warnings
1 Fatal error
2 Fatal error
3 Severe error during argument interpretation
4 Errors during parameter interpretation
5 Fatal error detected during compilation
6 Severe error detected during compilation
7 Error detected during compilation

5.4 Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library, the user is referred to Chapter 3.

The compiler is allowed to read from all sublibraries constituting the current program library, but
only the current sublibrary may be changed.

54

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide

Ada Compiler

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.:

I)When there is no library unit of that name

2) When there is an invalid declaration unit of that name

3)When there is a package declaration, generic package declaration, an instantiated package,
or subprogram of that name

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. A new
subunit is inserted.

5.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

55

A a Compuler

5.5 instantiation of Generic Units

This section describes the order of compilation for generic units and situations in which errors
will be generated deriving instantiation of a generic unit.

5.5.1 Order of Compilation

When instantiating a generic unit, it is required that the entire unit, including body and possible
subunits, be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (1).

5.5-2 Generic Formal Private Types

This section describes the treatment of a generic unit with a generic formal private type, where
there is some construct in the generic unit that requires that the corresponding actual type must
be constrained if it is an array type or a type with discriminants, and there exists instantiations
with such an unconstrained type (see ARM, Section 12.3.2(4)). This is considered an illegal
combination. In some cases the error is detected when the instantiation is compiled, in other
cases when a constraint-requiring construct of the generic unit is compiled:

I)If the instantiation appears in a later compilation unit than the first constraint-requiring
construct of the generic unit, the error is associated with the instaniation which is rejected
by the compiler.

2)If the instantiation appears in the same compilation unit as the first constraint--equiring
construction of the generic unit, there are two possibilities:

a) If there is a constraint-requiring construction of the generic unit after the instant "tion, an
error message appears with the insantiation.

b) If the instantiation appears after all constraint requiring constructs of the generic unit in
that compilation unit, an error message appears with the constraint-requiring construct, but
will refer to the illegal instantiation.

3)The instantiation appears in an earlier compilation unit than the first constraint-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond to the generic
declaration only, and not include the body. Nevertheless, if the generic unit and the
instantiation are located in the same sublibrary, then the compiler will consider it an error.
An error message will be issued with the constraint-requiring construct and will refer to the
illegal instantiation. The unit containing the instantiatiun is not changed, however, and will
not be marked as invalid.

56

DACS Sun SPARC/SunOS Native Ada Compiler System. User's Guide
* ,Ada Compiler

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Related Reference Topics

* The following topics related to the compiler are described in detail in the Compiler System
Reference Manual:

1) Memory Organization
2) Data Representation
3) Storage Layout
4) Interprocedure Protocol
5) Exception Handling

57

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 ADA LINKER

The DACS linker must be executed to create an executable program. Linking is a two stage
process that includes an Ada link using the compilation units in the Ada program library, and a
target link to integrate the application code, run-time code, and any additional configuration code
developed by the user. The linker performs these two stages with a single command, providing
options for controlling both the Ada and target link processes. The executable file produced by
the linker is directly executable.

6.1 Linker Features

The DACS Sun SPARC/SunOS Native Linker provides many features that improve the
performance and usability of the entire Compiler System. These are summarized below:

Selective Linking - Eliminating unused subprograms in the executable program.

Flexible Linking - Managing the information generated by the Ada linker and the
execution of the target link is completely controlled by the user.

RTS Configuration - Many aspects of the Run-Time System can be configured via
options to the Linker.

6.2 The Linking Process

The linking process can be viewed as two consecutive phases. Both are automatically carried out
when issuing the link command al.

ThT first phase constitutes the Ada link phase and the second constitutes the target link phase.

The Ada link phase:

1) Retrieves the required Ada object modules from the program library.

2) Determines an elaboration order for all Ada units.

3) Creates a module containing the User-Configurable Data (UCD) front the specified
configuration options to the linker.

4) Instantiates the shell script template command file that carries out the native link
process to create an A.OUT module. If the keep option (section 6.3.3.4) is NOT
specified (default), the above shell script is executed. Otherwise the linking process is
halted at this point.

59

,i'.... 3)U11 3rAKL.7zuUflZS~~ AGJ L.Orpiler VSM11fl, U-scr " Uu~]
Ada Linker

When option keep (section 6.3.3.4) is specified, all temporary files are retrieved for inspection
or modification. The target linker is invoked by executing the shell scripL

*** NOTE ***

Several simultaneous links of the same program
should not be performed in the same directory.

The link process is controlled by a variety of parameters, options, and environment variable. The
following diagram illustrates the linking process:

60

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
"'•7 Ada Linker

Main Program Name
* Ada Library

Linker Options
Linker Logical Names
Ada Linker Options
Target Linker Options
RTS Configuration Options

Shell Script Templace

SAda Linker I

Ada Library
Log File

Shell Script
UCD Module in A.OUT Format
1 Object Module in A.OUT Format

RTS Object Library
Users Object Libraries

11Native Linker

An executable A.OUT Module

Figure 6-1
The Linking Process

6.3 Invocation Command

Enter the Woowing command to invoke the linker

al {<option>) <unit-name>

The options and parameters supported by the linker ame described in the folowing sections.

61

I \ .\

Ada Linker

6.3.1 Parameter

<unit-name>

This parameter is required and indicates the main program. The <unit_name> must be a library
unit in the current program library, but not necessarily of the current sublibrary.

Note, that a main program must be a procedure without parameters. and that <unit-name> is the
identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

6.3.2 Summary of Options

This section briefly describes all options supported by the Ada linker.

Option DESCRIPTION REFERENCE

-debug Specifies that the executable file is 6.3.3.1
to be used by the DDC-l Symbolic Ada
Debugger.

-noexceptions No spellings of user exceptions will be 6.3.3.2
included in the executable file.

-executable <file-name> Specifies the name of the executable file. 6.3.3.3

-keep Performs Ada link only, and keeps 6.3.3.4
object files.

-library <library-name> Specifies the library to be used in 6.3.3.5
the link.

-log <file-name> Specifies creation of a log file. 6.3.3.6

-mainstack-size <natural> Default stack size for main program. 6.3.3.7

-period <duration> Timer resolution. 6.3.3.8

-priority <positive> Default task priority. 6.3.3.9

-profile Enable profiling of the executable program. 6.3.3.10

-selective Enables selective linking. 6.3.3.11

-statistics Display statistics. 6.3.3.12

-target-options <string> Specifies a string which is passed to 6.3.3.13
the template without interpretation.

62

7- 7.-...

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

-task stack size <nat,,ral> Default stack size for all tasks. 6.3.3.14

-tasks <natural> Maximum number of tasks. 6.3.3.15

-template-file <template-name> Specifies template file for the target link. 6.3.3.16

-notimer Disable timer setup in the executable program. 6.3.3.17

-time-slice <duration> Task time slicing enabled and time slice value. 6.3.3.18

-traceback mode <keyword> Enables traceback when a program has 6.3.3.19
an unhandled exception.

-usr library <file-name> Libraries or object modules to include in link. 6.3.3.20

-warnings Specifies that warnings are displayed. 6.3.3.21

All options must be entered in lowercase, and may be abbreviated to the minimal unique substring

(e.g. "-d" is sufficient to denote "-debug").

6.3.3 Ada Link Options

This section describes in detail all Ada link options, including default settings.

6.3.3.1 DEBUG

Syntax:

-debug

This option specifies that information for the DDC-I Symbolic Ada Debugger is to be generated.
Please note that no extra information is included in the code or data generated.

6.3.32 NOEXCEPTION TABLES

Syntax:

-noexceptions

This option specifies that no table containing the spellings of user-defined exceptions should be
incLied in the executable file. Without spellings for user-defined exceptions a stack trace for an
unhandled user-defined exception will appear with a reference to the unit number in which the

"* exception is defined and an exception number within the unit.

63

*~I\'~d.)iU a ?iTve AcUJ Corpiicr SyS[Cfll. uiser -N iuak
Ada Linker

6.3.3.3 EXECUTABLE FILENAME

Syntax:

-executable <file-name>

Specifies the name of the output module. Default is the name of the main program.

Examples:

Sal p

Links the subprogram P and stores the executable program in the file p

$ al -exec my e.xe._dir/main p

Links the subprogram P and stores the executable program in the file main in the directory
myexedir.

6.3.3.4 KEEP

Syntax:

-keep

This option controls whether or not the native link phase is executed, i.e., whether or not control
is passed to the flexible linker template file, and the intermediate link files are preserved. The
option specifies to stop linking before the native link and keep the intermediate link files.

6.3.3.5 LIBRARY

Syntax:

-library <library-name>

This option defines the program library that contains the <unit-name>. If <library-name> is not
specified, the default library specified by the environment variable ADA-LIBRARY will be
selected.

6.3.3.6 LOG

Syntax:

-log <file-name>

The option specifies if a log file will be produced from the front end linker. As default, no log
file is produced. The log file contains extensive information on the results of the link. The file

64

• :n -"r lZ.ron .-" . z,"

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

includes:

1) An elaboration order list with an entry for each unit included, showing the order in which
the units will be elaborated.

2) All options and their actual values.

3) The full name of the program library (the current sublibrary and its ancestor sublibraries).

6.3.3.7 MAIN STACK SIZE

Syntax:

-main_stack size <natural> (Default is 4096)

The main stack size option specifies the main program stack size N in 32 bit words. The rangeof this parameter is limited by physical memory size. The range of main stack size is from 0 to
2,147,483,647

Configurable Data

The Ada linker generates the following data structures:

UCD$MPStackSize N

UCD$MPStack Lowest addr
of MP stack

UCD$MPStackStart f Highest addr
of MP stack

Example:

$ al -main 1024 p

Link the program p with a stack of 4096 bytes.

65

Ada Linker

6.3.3.8 PERIOD

Syntax:

-period <decimal-number> (Default is 0.05)

The period option specifies the resolution of calls to the Run-Time System routine RTSSTIMER.
The number specifies the number of seconds between two successive calls to RTS$TIMER. The
number must be within the range duration'small to 2.0

Configurable Data

The Ada Linker generates the following 32 bit integer:

UCD$Timer absolute integer

6.3.3.9 PRIORITY

Syntax:

-priority <integer> (Default is 16)

The priority option specifies the default priority N for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from I to 32.

Configurable Data

The Ada Linker generates the following constant data:

UCD$Priority

Example:

$ al -priority 8 p

- Link the subprogram P which has the main program and tasks running at default priority
8.

66

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

6.3.3.10 PROFILE

Syntax:

-profile

This option specifies that the executable program shall allocate memory for profiling information
and be linked with a profiling library. The option is used together with the DDC-I Profiler.

6.3.3.11 SELECTIVE LINKING

Syntax:

-selective

Specifies that only those subprograms from each compilation which are refered to from other
subprograms i.e. only those subprograms which actually are in the program are linked within the
program, and thereby minimizing the size of the executable program.

6.33.12 STATISTICS

Syntax:

-statistics

Specifies that short statistics shall be displayed about how many compilation units included in the
program and how many dependencies they have.

6.3.3.13 TARGET OPTIONS

Syntax:

-target-options <string>

This option allows the user to specify target options which is passed to the native linker (SunOS:
ld) without interpretation. It therefore allows the user to specify other options than those mentioned
in this section.

Example:

$ al -target "-L/usr/local/lib" p

Links the subprogram P and substitutes the macro template %target-options% by the string
"-L/usr/local/lib".

This option allows any string to be propagated to the resulting command file via the macro
template %TARGETOPTIONS%.

67

Ada Linr

6-3.3.14 TASK STACK SIZE

Syntax:

-task stack size <natural> (Default is 1024)

This option sets the default storage size N in 32 bit words for stacks of all tasks. This value can
be overridden with a representation clause.

Configurable Data

The Ada Linker generates the following data structure:

UCD$TaskStackSize N

6.3.3.15 TASKS

Syntax:

-tasks <natural> (default is 128)

This option specifies the maximum number of tasks allowed by the RTS. If specified, N must
be greater than or equal to zero.

Configurable Data

For the tasks option, the linker generates the following configurable data:

UCD$MaxTasks N

UCO$TCBs N Task
Control
Blocks

(TCBS)

Example:

$ al -tasks 3 p

Link the program p. which has at most 3 tasks, including the main program.

68

:-.)) DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

6.3.3.16 TEMPLATE

Syntax:

-template file <file-name>

This option specifies a template file to use for the native link. The default is to use the file
named Adajtemplate.txt placed in the same directory as the Ada linker. See section 6.5 for an
explanation of the template fie and the flexible linker.

6.3.3.17 NOTIMER

Syntax:

-notimer

This option disables timer setup in the executable program. Specifies that the Ada timer is not set
up. This causes that delays waits forever, and that -timeslice will not function. This option is
usefull when debugging programs using dbx, and kernel calls are not interrupted. The option is
also usefull when using the -profile option, because the profile timer has a higher resolution than
the Ada timer, which gives a more detailed profiling information.

6.3.3.18 TIME SLICE

Syntax:

-time slice <decimal-nuumber>

The time slice option specifies the time slicing period for tasks.

If specified, it is a decimal number of seconds representing the default time slice to be used. If
not specified, there will be no time slicing. The number must be in the range Duration'Small..2.0
and must be' greater than or equal to the distance between two successive calls to RTS$TIMER.

Time slicing only applies to tasks running at equal priority. Because the RTS is a preemptive
priority scheduler, the highest priority task will always run before any lower priority task. Only
when two or more tasks are running at the same priority is time slicing applied to each task.

Time slicing is not applicable unless tasking is being used. This means that the tasks option must
be set to at least 2 for time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

69

Ad "Linkcr

UCD$TimeSlice absolute integer

= 0 -> No time slicing
1= 0 -> The length of a time slice

The number of Jimerticks (USD$Time_.Slice) constituting a timeslice is computed as

rTimeSlice/Periodl

Example:

$ al -time 0.125 p

- Specifies tasks of equal priority to be time sliced each eighth of a second.

6.3.3.19 TRACEBACK MODE

Syntax:

-traceback mode (NEVER I MAIN I ALWAYS) (default is MAIN)

This option instructs the exception handler to produce a stack trace when a program terminates
because of an unhandled exception. Disabling traceback (with NEVER) exclude trackback tables
from the executable program. If NEVER is specified. the RTS variable UCDSTRACE will be set
to 0 and no trace will be produced if the program terminates with an unhandled exception. If
MAIN is specified a trace will be produced if the main program terminates with an unhandled
exception. The RTS variable UCD$TRACE will be set to 1. If the ALWAYS is specified the RTS
variable UCDSTRACE will be set to 2 and a trace will be produce"4 if either the main program
or a task terminate with an unhandled exception.

Configurable Data

UCD$Trace labsolute integer

= 0 -> Trace disabled
= I -> Trace enabled for main program
= 2 -> Trace enabled for main program and tasks

70

DDZn r<

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

6.3.3.20 USER LIBRARY

Syntax:

-usr library <file-name>

The user library option is intended for the specification of libraries or object files which sho,,d
*: contain the users own object code.

The user library optien is also intended to specify libraries of routines referenced from the Ada
program via pragrna INTERFACE.

6.3.3.21 WARNINGS

Syntax:

-warnings

This option specifies that warnings are displayed if detected by the linker, otherwise they are
suppressed. Warnings can be generated when conflicts betvween target program attributes and the
specified options are found and when a package has an inconsistent body.

6.4 Linker Output

This chapter describes the results of the linking process.

6.4.1 Executable File

Using the default options and the template provided with the system the linking process will result
in an executable file which is ready for execution. This file is named after the main program:

<mainprogramname>

6.41 Diagnostic Messages

Diagnostic messages from the Ada Linker are output to the current output file. The messages
are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

6.42.1 Warnings

A warning reports something which does net prevent a successful linking, but which might be an

71

Ada Linker

error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit. e.g. if the body unit is invalid or if there is no object
code container for the body unit.

6.4.2.2 Severe Errors

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.4.23 Return Codes

The linker set the return code to the following values:

Error code Description

0 Success, warnings
I Errors
2 Fatal Error

6.5 Flexible Linker

The DACS Ada Linker is referred to as a flexible linker because it has been designed to be very
flexible in the way it interfaces to target tools such as assemblers, librarians, and linkers. The
flexible linker can produce a target link in any manner that the user desires, i.e, the linker adapts
to each user's needs in a simple and straightforward manner.

The user control of the invocation of the native linker (ld) is obtained by means of a shell script
template. The template contains the commands necessary to execute the native link and is
parameterized by means of macros which are expanded by the Flexible Linker prior to execution.
The user is allowed to modify the template to fit special purposes regarding invocation of the
native linker and any desired postprocessing.

6.5.1 Intermediate Link Files

The object modules for the user-configurable data and for the elaboration calling code are
generated directly by the linker, i.e., no assembler is needed. Also, the linker template file is
instantiated and executed to control the native link. The intermediate files generated as a result of
the Ada link are shown below:

<mainprogram>_link The expanded template file. This is normally a shell script which

72

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

invokes the target linker.

<main._program>_ucd.o The object code generated for RTS configuration.

<main-program>.o The A.OUT Ada object module which has been extracted and
merged from the program library.

6.5.2 Template File

The template file will usually contain shell statments that can be executed to perform some action
as the result of an Ada link, usually a native link. The template file is input to the linker, which
expands predefined macros in the template file. The macro expansions are simply literal
substitutions of file names and other information (compilation unit numbers. target link options,
etc.) generated or otherwise obtained by the linker.

The linker copies the template file to a new file and expands the macros in the new file. This
new file is referred to as the expanded template. The expanded template will usually contain shell
statements and a native link invocation in the format and syntax required by the user, which can
then be executed to complete the native link. However, the template need not be a shell script;
it can be of any format desired by the users.

A template file does not specify in any way WHAT information the linker generates; it only
specifies what and where names are placed in the sheU script. Directives to the linker about
what to generate and how to generate it (e.g. use tasking, object module format. etc.) are always
specified exclusively by options on the command line, or are otherwise hardcoded in the linker
(e.g., names and content of elaboration and UCD object files).

The linker in no way verifies or validates the contents of the input template file. This is because
the template file is completely the user's responsibility, i.e., it may in fact be something else
than a shell script.

6.5.2.1 Macro Delimiters

The macros contained in the template file are delimited by the special character "%'. This
character has been chosen because it does not conflict with SunOS wildcard characters, shell script
comments oi allowable file name characters.

The string and special characters surrounding each macro will be replaced by the appropriate
strings generated by the linker. For example, if the main program name was TEST, then
%MAINPROGRAM% would be replaced by TEST.

6.5.2.2 Macro Restrictions

In general, there are no restrictions regarding the placement of macros, i.e., multiple macros can
occur on the same line, however,

1) Blocks cannot be nested.

2 Block start and block end macros must be paired correctly.

73

3) Text that appears on the same line as a block delimiting macro will be ignored (removed).

The macros that are supported are described in the next section. For each macro, the syntax,
semantics, and error conditions are described.

6.5.2.3 Expanding the Macros

The linker template file is just that, a template. As such, the template file itself always remains
unchanged by the linker. The linker will create a copy of the template in the current directory
and expand the macros into the copied file. This copied file becomes the expanded template.

Due to the temporary nature of the expanded file (since it is normally created, executed, and
deleted), the file is named by the linker. However, the user does have control over the naming
and execution of the expanded template.

The default templates delivered with the compiler system reside in the DACS directory, but users
can create other templates and use option -N (see section 6.3.3.16) to address the appropriate
template file.

6.5.2A Executing the Native Link

The native link is performed by executing the expanded template shell script. The default case
is for the linker to automatically execute this file after it has made all the macro expansions and
then to delete the file.

The keep option (see section 6.3.3.4) can be used to stop the link process short of performing a
target link. This will cause the template to be expanded and left in the default directory, but not
executed.

6.51.5 Errors in the Template File

Macros that will cause an error condition to occur are indicated in the section describing each
macro. Also, the presence of some macros are simply ignored and no error is generated. These
are also described in the subsequent sections on macros.

6.5.2.6 Unrecognized Macros

Unrecognized macros will be flagged as errors. Unrecognized macros, of course, include
misspellings and the inclusion of any additional characters within the macro delimiters of an
otherwise acceptable macro.

74

.. : . 7 r.' ion ,

"'b DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Ada Linker

6.5.2.7 Macro Blocks

Some macros will cause an error to occur because one component of a macro pair is mrssing.
For example, the repeat macros come in pairs to indicate the beginning and end of a repeat block.
Other macros are undefined unless they appear within one of the macro pairs, which will cause
an error.

6.5.3 Template File Macros

This section describes each of the template file macros supported by the linker.

MACRO REFERENCE

%COMPILERDIR% 6.5.3.1

%MAINJPROGRAMNAME% 6.5.3.3

%OBJECT_FILE% 6.5.3.2

%OUTFILE% 6.5.3.14

%NATIVELIBRARY% 6.5.3.7

%PID% 6.5.3.15

%RTSLIBRARY% 6.5.3.8

%REPEATFORALL_SEARCHLIBS% 6.5.3.9

%SEARCHL1B% 6.5.3.10

%ENDREPEATFORALLSEARCHLIBS% 6.5.3.11

%STARTUP% 6.5.3.12

%REPEATFORALLUNITS% 6.5.3.4

%UNITNUMBER% 6.5.3.5

%ENDREPEAT_FOR_ALLIUNITS% 6.5.3.6

%TARGETOPTIONS% 6.5.3.13

75

Adi Linker

6.5.3.1 Compiler Installation Directory

Syntax: %COMPILER-DIR%

Semantics:

This macro string will be replaced with the full pathname of the directory where the DACS
compiler is installed. The name is generated by DDC-I Ada Linker. The macro can be used to
generate complete pathnames for additional files to be included as part of the link.

Errors: None

6.5.3.2 Object File Name

Syntax: %OBJECTFILE%

Semantics:

This macro string will be replaced with the name of the object module containing the'object code
of the Ada programs. The name is generated by DDC-I Ada Linker. The name includes file
name and extension only, i.e. no directory path. Furthermore, the name of the file is linker-
defined and is guaranteed to be unique within the Ada program library.

Errors: None

6.5.3.3 Main Program Name

Syntax: %MAINPROGRAMNAME%

Semantics:

This string will be replaced by the Ada name of the main program. This macro can be used as
one component in the name of the relocatable link object file.

Errors: None

6.5.3.4 Start Repeat Unit Block

Syntax: C/cREPEATLFORALLUNITS%

Semantics:

This macro informs the linker that all text encouitered from the next statement until the
ENDREPEAT_FOR_ALLUNITS macro will be duplicated for all program units that make up
the program. See the UNIT-OBJECT and UNIT_NUMBER macros.

The text within the repeat block will be duplicated exactly as specified, except for any macro

76

-) DACS Sun SPARC/SunOS Native Ada Compiler System. User's Guide
"Ada Linker

expansions within the repeat block. The line that contains this macro will be removed from the

file.

Errors:

If there is not a one-to-one correspondence between this macro and an
ENDREPEAT-FORALL-UNITS macro.

6.5.3.5 Unit Number

Syntax: %UNITNUMBER%

Semantics:

Each compilation unit is assigned a unit number by the compiler. This macro can be used to
obtain the unit numbers of all units that make up the program.

This macro should be used in conjunction with the REPEAT_FOR_ALL_UNITS macro described
earlier. When used within a repeat block, each iteration of the loop will cause the unit number
of the next program unit that makes up the program to be output to the expanded template.

Errors:

If this macro appears outside a REPEATFORALLUNITS block.

6.5-3.6 End Repeat Unit Block

Syntax: %ENDREPEATFORALLUNITS%

Semantics:

This macro signals the end of a repeat block started by the REPEATFOR-ALLUNITS macro.
The entire line containing this macro will be removed, therefore, the macro string itself should
appear on a line by itself within the template file.

Errors:

This macro does not appear after a REPEATFOR.ALLUNYIS macro somewhere within the
template file.

If there is not a one-to-one correspondence between this macro and a REPEAT_FOR_ALL_UNITS
macro.

77

Ada Linker

6.5.3.7 Native Library Name

Syntax: %NATIVELIBRARY%

Semantics:

This macro string will be replaced with the name of the native system service library specified
indirectly via the linker option profile. C

Errors: None

6.5.3.8 RTS Library Name

Syntax: %RTSLIBRARY%

Semantics:

This macro string will be replaced with the name of the run-time system library specified
indirectly via the linker options notimer and profile.

Errors: None

6.53.9 Start Repeat Search Libs Block

Syntax: %REPEATFOR_ALL_SEARCHLIBS%

Semantics:

This macro informs the linker that all text from the next statement until the
END_REPEAT FORALLSEARCHLIBS macro is encountered will be duplicated for all libraries
(or object files) specified as alternate search libraries on the linker command line. The order in
which the libraries are processed is identical to that specified on the command line. See the
SEARCHLIB macro for more information.

The text within the repeat block will be duplicated exactly as specified, except for any macro
expansions within the repeat block. The macro string itself will be removed from the file.

If the usr._library option (see section 6.3.3.20) is not used on the command line, this macro and
the block which it encloses is ignored, i.e., no error will be generated and no statements within
the repeat block will be copied to the expanded template file.

Errors:

If there is not a one-to-one correspondence between this macro and a
ENDREPEAT_FORALL_SEARCHLIBS macro.

78

DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide

Ada Linker

6.5.3.10 Search Libraries

Syntax: %SEARCHLIB%

Semantics:

This macro should be used in conjunction with the REPEAT_FORALLSEARCHLIBS macro
described earlier. When used within a repeat block, each iteration of the loop will cause the
search library name of the next search library from the linker command line to be output to the
expanded template (see option usr-library section 6.3.3.20).

Errors:

If this macro occurs outside a searchlib repeat block.

6.5.3.11 End Repeat Search Libs Block

Syntax: %END._REPEAT_FOR.ALLSEARCHLIBS%

Semantics:

This macro signals the end of a repeat block started by the REPEATFORALLSEARCHLIBS
macro. The entire line containing this macro will be removed, therefore, the macro should appear
on a line by itself within the template file. If the usrJibrary option (3ee section 6.3.3.20) is not
used on the command line, the entire searchlib repeat block will be removed with no action and
no error will be generated.

Errors:

If this macro does not appear after a REPEAT_FORALLSEARCHLIBS macro somewhere
within the template file and it is not being ignored for reasons cited above.

If there is not a one-to-one correspondence between this macro and a
REPEATFOR_ALL_SEARCHLIBS macro.

6.5.3.12 Start-up Module Name

Syntax: %START-UP%

Semantics:

This macro string will be replaced with the name of the native start-up module specified indirectly
via the linker option profie.

Errors: None

79

Ada Linker

6.5.3.13 Target Options

Syntax: %TARGETOPTIONS%

Semantics:

This macro will be replaced literally with the target option string specified on the command line.
If double quotes are used to bracket the option string on the command line, they will be removed
from the string before it is placed in the expanded template. If no options are specified, this
macro is ignored, it will be removed with no action, and no error is generated.

Errors: None

6.5.3.14 Outfile

Syntax: %OUTFILE%

Semantics:

This macro will be replaced literally with the executable option string specified on the command
line. If double quotes are used to bracket the option string on the command line, they will be
removed from the string before it is placed in the expanded template. If no options are specified,
this macro is replaced with the name of the main unit (from the command line).

Errors: None

6.5.3.15 Process Identification

Syntax: %PID%

Semantics:

This macro will be replaced with the process identification of the linking process. This can be
used to create unique file names.

Eirors: None

6.5.4 Example Input Template File

This section illustrates a sample input, template to the Flexible Linker for DACS Sun
SPARC/SunOS. DDC-I supplies a default template in its standard compiler distribution system.
The user can choose to use the default template unaltered, modify it. or write his own as
necessary. The file shown here is the default template file Ada-template.txt:

ld%TARGETOPTIONS%
-dc
-dp

80

" ."" -h DACS Sun SPARC/SunOS Native Ada Compiler System, User's GuideI "Ada Linker

-Bstatic
-e start

I %START UP%
%OBJECT FILE%
%CONFIGDATA OBJECT%'

%REPEAT FOR ALL SEARCHLIBS%

%SEARFCHLIB%
4 SEND REPEAT_FORALLSEARCHLIBS%
* -L/usr/lib

-L%COMPILER DIR%'
-I%RTS LIBRARY%'
-l%NA'IIVELIBPARY'S
'%OUTFILE%

* # Macro symbols not used in example template:

MAINPROGRAMNAME %1MAINPROGRAMNAME%
%REPEAT-FORALL-UNITS#
UNITNUMBER - %UNITNUMBER%
'%END REPEAT FOR ALL UNITS%
PID -%PIDD%

/bin/rm %OBJECT FILE%
* /bin/rm %CONFIGDATAOBJECT%
* /bin/rm $0

6.5.5 Example Expanded Template File

This section illustrates how the sample input template of the previous section would look after it
was expanded by the Flexible Linker.

The linker command line to create this expanded template was:

$ alp

The flexible linker will then expand the template and the resulting command file will be:

* ld
* -dc

-dp
-Bstatic
-e start
/usr/lib/crt0.o
example_2.o
example_2 ucd.o
-L/usr/libi
-L/usr/dacs
-irts
-lic
-o example_2

Macro symbols not used in example template:

MAIN PROGRAM NAME EXAMPLE_2

81

DACS Sun SPARC/SunOS Native Ada Compiler System. User's Guide
Ada Linker

UNIT NUMBER 00000
UNIT NUMBER 04098
UNITNUMBER 04099
PID 5946

/bin/rm example 2 . o
/bin/rm exaimple_2ucd. o
/binlrm $0

6.6 Related Reference Topics

The following topics related to the linker are described in detail in the Compiler System Reference

Manual:

1) Code and Table Layout
2) Memory Organization

82

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed impiementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range-16#0.FFFFFFFFFFFF_F8#E256 .. 16#0.FFFFFFFFFFFF_F8#E256;

type DURATION is delta 2#1.0#E-14 range -131 072.0 131_071.0;

end STANDARD;

C-1

APP. F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS Sun
SPARC/SunOS as required in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that would be an invalid Ada subprogram identifier. This pragma must be used in conjunction
with pragma INTERFACE, i.e., pragma INTERFACE must be specified for the non-Ada
subprogram name prior to using pragma INTERFACESPELLING.

F.1.1.1 Format

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragrna INTERFACE and the
string literal is the exact spelling of the interfaced subprogram in its native language. This
pragma is only required when the subprogram name contains invalid chadacters for Ada identifiers.

F.1.I.2 Example

function ASSEMBLY MODULENAME return INTEGER;

pragma INTERFACE (AS, rSSEMBLYMODULENAME);
pragma INTERFACESPELLING (ASSEMBLYMODULENAME,

"IllegalSAdaName");

F.1.2 Pragma EXTERNALNAME

This pragma allows an Ada program to expert the name of an Ada subprogram so that it can be
called from a non-Ada component.

123

lmplcrinhtition Ucpctdcrlil ChracrcLcnscs

F.A.1A Format

The pragma has the format:

pragma EXTERNAL_NAME (subprogram name, string literal)

where subprogram name is the Ada name of the subprograms to be exported and string literal is
the name used in the non-Ada component calling the Ada subprogram.

F.1-2-2 Example

The current version of the compiler system does not support interrupt handling using address
specifications. It is possible to do it using the pragma External Name though. This example shows
how to export the name of an Ada subprogram to be called from the trap handler of the TJCC.

Please note that the preferred way of invoking Ada code from the interrupt handler is via a fast
interrupt handler, see Chapter F.10.3 (Fast Interrupt Handler).

Please also note that for the example to work, the body of that Ada procedure may xiot call any
tasking construct (delay, entry call or task creation). Also, the subprogram must be declared at the
library level, i.e. it cannot be enclosed in another subprogram, task or package.

This is the Ada procedure to be called:

procedure interrupt is

pragma externalname (interrupt, "Ada$Interrupt");

beg in
intdata.count:= intdata.count + 1; -- Update global variable

end interrupt;

and this is how to call it from the trap handler of the UCC. The call is inserted just after the call
to RTS$Timer routine:

call RTS$Timer
nop

.extern TK$CurrentTask

.extern Ada$Interrupt

mov r16,r6 // Save context pointer
mov r2,r7 // Save stack pointer

ld.l ctxt r2(r16),r2
ld.l TK$CurrentTask,r4
and 0xFFFFFFFO,r2,r2

124

I-I I C nn, .C.

":1- DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

call Ada$Interrupt
nop

mov r6,r16 // Restore context pointer
mov r7,r2 // Restore stack pointer

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The package SYSTEM is described in ARM 13.4.

package SYSTEM is

type ADDRESS is new INTEGER;
type NAME is (DACSSPARC);

SYSTEMNAME : constant NAME : DACS SPARC;
STORAGEUNIT constant :- 8;
MEMORYSIZE : constant : 2048 * 1024;
MININT : constant :- -2_147_483_648;
MAXINT : constant : 2_147_483_647;
MAXDIGITS : constant : 15
MAXMANTISSA : constant : 31
FINEDELTA : constant : 2#1.0#E-31;
TICK : constant : 2#1.0#E-14;

subtype PRIORITY is INTEGER range 1..31;

type INTERFACELANGUAGE is (C, AS); -- inrq:lementation dependent

-- Compiler system dependent types:

subtype Integer_16 is shortinteger;
subtype 14atural 16 is Integer_16 range 0..Integer_16'last;
subtype Positive_16 is Integer_16 range l..Integer_16'last;

subtype Integer_32 is integer;
subtype Natural 32 is Integer 32 range 0..Integer 32'last;
subtype Positive_32 is Integer_32 range 0..Integer_32'last;

end SYSTEM;

F.4 Representation Clauses

The representation clauses that are accepted are described below. Note that representation
specifications can be given on derived types as well.

125

Implementation ekpendcni Charactenstics

F.4.1 Length Clause

Four kinds of length clauses are accepted.

Size specifications:

The size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater than or equal to the number
of bits needed to represent a value of the type, and less than or equal to 32. Note that
when the number of bits needed to hold any value of the type is calculated, the r~nme is
extended to include 0 if necessar/, i.e. the range 3..4 cannot be represented in 1 bit, but
needs 3 bits.

- If T is a fixed point type. then the specified size must be greater than or equal to the
smallest number of bits needed to hold any value of the fixed point type, and less than
32 bits. Note that the Reference Manual permits a representation, where the lower bound
and the upper bound is not representable in the t .pe. Thus the type

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number of bits needed for a fixed
point type is calculated using the range of the fixed point type possibly extended to
include 0.0.

- If T is a floating point type, an access type or a task type the specified size must be equal
to the number of bits used to represent values of the type per default (floating points: 32
or 64, access types : 32 bits and task types : 32 bits).

- If T is a record type the specified size must be greater or equal to the minimal number
of bits used to represent values of the type per default.

- If T is an array type the size of the array must be static, i.e. known at compile time and
the specified size must be equal to the minimal number of bits used to represent values
of the type per default.

The size given in the length clause will be used when allocating space for values of the type in
all contexts e.g. as part of an array or record. For declared objects the size will be rounded to the
nearest number of bytes before the object is allocated.

Collection size specifications:

Using the STORAGESIZE attribute on an access type will set an upper limit on the total size
of objects allocated in the collection allocated for the access type. If further allocation is
attempted, the exception STORAGE-ERROR is raised. The specified storage size must be less
than or equal to INTEGER'LAST

126

- -' DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide

Implementation Dependent Characteristics

Task storage size

When the STORAGESIZE attribute is given on a task type, the task stack area will be of the
specified size. The specified storage size must be less than or equal to INTEGER'LAST.

Small specifications

Any value of the SMALL attribute less than the specified delta for the fixed point type can be
given.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of
SHORTINTEGER'FIRST.. SHORT INTEGER'LAST. An enumeration representation clause may
be combined with a length clause. If an enumeration representation clause has been given for a
type the representational values are considered when the number of bits needed to hold any value
of the type is evaluated. Thus the type

type ENUM is (A,B,C);
for ENUM use (1,2,3);

needs 3 bits to represent any value of the type.

F.4.3 Record Representation Clauses

When component clauses are applied to a record type. the following should be noted:

- Components ca, start at any bit boundary. Placing e.g. non packed arrays on odd bit
boundaries will cause costly implicit conversion to be generated, however.

* All values of the component type must be representable within the specified number of
bits in the component clause.

- If the component type is either a discrete type or a fixed point type, then the component
is packed into the specified number of bits (see however the restriction in the paragraph
above).

- If the component type is not one of the types specified in the paragraph above, the default
size calculated by the compiler must be given as the bit width, i.e. the component must
be specified as

component at N range X..X + component type'SIZE - 1

where N specifies the relative storage unit number (0,1,...) from the beginning of the
record, and X is any bit number.

- The maximum bit width for components of describe or fixed point types is 32,

127

Implementation Dependent Charactenstics

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the highest offset specified by a component
clause. Holes created because of component clauses are not otherwise utilized by the compiler.

When the compiler determines the size of a record component the following is taken into account
in the specified order:

a component clause
a length clause ('SIZE) on the component type
a possible pragma PACK on the record type
the default size of the component type

F.4.3.1 Alignment Clauses

Alignment clauses for records are supported with the following restrictions:

- The specified alignment boundary must be 1,2,4,8 or 16.

- The specified alignment must not conflict with the alignment requirement for the record
components, i.e. an alignment boundary of 4 is not accepted if the record has a component
of an array type with size 100 bytes (such arrays should be aligned on a 16 byte
boundary).

F.5 Names for Implementation-Dependent Components

None defined by the compiler.

F.6 Address Clauses

Address clauses are supported for scalar and for composite objects whose size can be determined
at compile time. Address clauses are not supported for subprograms, packages, tasks or task
entries.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar
type has different sizes (packed and unpacked), unchecked conversion between such a type and
another type is accepted if either the packed or the unpacked size fits the other type.

128

DC• :-; rn•tionz' A

DACS Sun SPARCJSunOS Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

F.8 Input/Output Packages

The implementation supports all requirements of the Ada language and the POSIX standard
described in document P1003.5 Draft 4.0[WG15-N45. It is an effective interface to the SunOS file
system, and in the case of text I/O, it is also an effective interface to the SunOS standard input,
standard output, and standard error streams.

This section describes the functional aspects of the interface to the SunOS file system, including
the methods of using the interface to take advantage of the file control facilities provided.

The Ada input-output concept as defined in Chapter 14 of the ARM does not constitute a
complete functional specification of the input-output packages. Some aspects of the I/O system are
not described at all, with others intentionally left open for implementation. This section describes
those sections not covered in the ARM. Please notice that the POSIX standard puts restrictions
on some of the aspects not described in Chapter 14 of the ARM.

The SunOS operating system considers all files to be sequences of bytes. Files can either be
accessed sequentially or randomly. Files are not structured into records, but an access routine can
treat a file as a sequence of records if it arranges the record level input-output.

Note that for sequential or text files (Ada files not SunOS external files) RESET on a file in
mode OUTFILE will empty the file. Also, a sequential or text file opened as an OUTFILE will
be emptied.

F.8.1 External Files

An external file is either a SunOS disk file, a SunOS FIFO (named pipe), a SunOS pipe, or any
device defined in the SunOS directory. The use of devices such as a tape drive or communication
line may require special access permissions or have restrictions. If an inappropriate operation is
attempted on a device, the USEERROR exception is raised.

External files created within the SunOS file system shall exist after the termination of the program
that created it, and will be accessible from other Ada programs. However, pipes and temporary
files will not exist after program termination.

Creation of a file with the same name as an existing external file will cause the existing file to
be overwritten.

Creation of files with mode IN-FILE will cause USEERROR to be raised.

The name parameter to the input-output routines must be a valid SunOS file name. If the name
parameter is empty, then a temporary file is created in the /usr/tmp directory. Temporary files are
automatically deleted when they are closed

F.8.2 File Management

This section provides useful information for performing file management functions within an Ada
program.

129

S-.. . ý-'•" -. .) .• ,\,lI'." .•d.- %J1 -011 C 1 \ Y.LCl. • ..• i ui •-

Implementation Dcpendcni Characteristics

The only restrictions in performing Sequential and Direct I/O are:

- The maximum size of an object of ELEMENTTYPE is 2_147_483_647 bits.

- If the size of an object of ELEMENTTYPE is variable, the maximum size must be
determinable at the point of instantiation from the value of the SIZE attribute.

The NAME parameter

The NAME parameter must be a valid SunOS pathname (unless it is the empty string). If any
directory in the pathname is inaccessible, a USEERROR or a NAME_ERROR is raised.

The SunOS names "stdin", "stdout", and "stderr' can be used with TEXT_IO.OPEN. No physical
opening of the external file is performed and the internal Ada file will be associated with the
already open external file. These names have no significance for other I/O packages.

Temporary files (NAME = null string) are created using tmpname(3) and are deleted when
CLOSED. Abnormal program termination may leave temporary files in existence. The name
function will return the full name of a temporary file when it exists.

The FORM parameter

The Form rarameter, as described below, is applicable to DIRECT_10. SEQUENTIAL_1O and
TEX'T_IO operations. The value of the Form parameter for Ada I/O shall be a character string.
The value of the character string shall be a series of fields separated by commas. Each field shall
consist of optional separators, followed by a field name identifier, followed by optional
separators, followed by "=>", followed by optional separators, followed by a field value, followed
by optional separators. The allowed values for the field names and the corresponding field
values are described below. All field names and field values are case-insensitive.

The following BNF describes the syntax of the FORM parameter.

form [field (, field)*]

fields rights I append I blocking I
terminal-input I fifo I
posix tiledescriptor

rights OWNER I GROUP I WORLD =>
access {,access-underscor}

access READ f WRITE I EXECUTE I NONE

access-underscor _READ I WRITE I _EXECUTE I NONE

append APPEND => YES I NO

blocking BLOCKING => TASKS I PROGRAM

130

CC mierno•r .,

"DACS Sun SPARC/SunOS Native Ada Compiler System, User's Guide

Implementation Dependent Characteristics

terminal-input TERMINALINPUT => LINES I CHARACTERS

fifo ::=FIFO => YES I NO

posix-file descriptor ::= POSIX-FILE-DESCRIPTOR => 2

The FORM parameter is used to control the following:

- File ownership:

Access rights to a file is controlled by the following field names "OWNER", "GROUP"
and "WORLD". The field values are "READ", "WRITE", "EXECUTE" and "NONE"
or any combination of the previously listed values separated by underscores. The access
rights field names are applicable to TEXTJO, DIRECT_1O and SEQUENTIALIO. The
default value is OWNER => READ-WRITE, GROUP => READWRITE and WORLD
=> READWRITE. The actual access rights on a created file will be the default value
subtracted the value of the environment variable umask.

Example

To make a file readable and writable by the owner only, the Form parameter should look
something like this:

"Owner =>readwrite, World=> none, Group=>none"

If one or more of the field names are missing the default value is used. The permission
field is evaluated in left-to-right order. An ambiguity may arise with a Form parameter
of the following:

"Owner=>ReadExecuteNone_WriteRead"

In this instance, using the left-to-right evaluation order, the "None" fiele will essentially
reset the permissions to none and this example would have the access rights WRITE and
READ.

- Appending to a file:

Appending to a file is achieved by using the field name "APPEND" and one of the two
field values "YES" or "NO". The default value is "NO". "Append" is allowed with
both TEXT_1O and SEQUENTIAL 1O. The effect of appending to a file is that all
output to that file is written to the end of the named external file. This field may only
be used with the "OPEN" operation, using the field name "APPEND" in connection with
a "CREATE" operation shall raise USEERROR. Furthermore, a USEERROR is raised
if the specified file is a terminal device or another device.

131

..... ' " A,, . \I '\ .. SUi) N,..N .'\dl .. Alld'i liC0 Z1 \ CIII. 3 •C1 N

Implementation Dependent Characteristics

Example

To append to a file, one would write:

"Append => Yes"

- Blocking vs. non-blocking I/O:

The blocking field name is "Blocking" and the field values are "TASKS" and
"PROGRAM". The default value is "PROGRAM". "Blocking=>Tasks" causes the
calling task, but no others, to wait for the completion of an' I/O operation.
"Blocking=>prograrn" causes the all tasks within the program to wait for the completion
of the I/O operation. The blocking mechanism is applicable to TEXT_IO, DIRECT_1O
and SEQUENTIALIO. UNIX does not allow the support of "BLOCKING=>TASKS"
currently.

- How characters are read from the keyboard:

The field name is "TERMINAL_INPUT" and the field value is either "LINES" or
"CHARACTERS". The effect of the field value "Termninal-input => Characters" is that
characters are read in a noncanonical fashion with Minimum count=l, meaning one
character at a time and Time=O.O corresponding to that the read operation is not satisfied
until Minimum_Count characters are received. If the field value "LINES" is used the
characters are read one line at a time in canonical mode. The default value is Lines.
"TERMINALJINPUT" has no effect if the specified file is not already open or if the file
is not open on a terminal It is permitted for the same terminal device to be opened for
input in both modes as separate Ada file objects. In this case, no user input characters
shall be read from the input device without an explicit input operation on one of the file
objects. The "TERMINALJINPUT" mechanism is only applicable to TEXT.JO.

- Creation of FIFO files:

The field name is "Fifo" and the field value is either "YES" or "NO". "FIFO => YES"
means that the file shall be a named FIFO file. The default value is "No".

For use with TEXT I/O, the "Fifo" field is only allowed with the Create operation. If
used in connection with an open operation an USE.ERROR is raised.

For SEQUENTIAL_10, the FIFO mechanism is applicable for both the Create and Open
operation.

In connection with SEQUENTIAL-tO, an additional field name "ONDELAY" is used.
The field values allowed for "ONDELAY" are "YES" and "NO". Default is "NO".
The "ONDELAY" field name is provided to allow waiting or immediate return. If. for
example, the following form parameter is given:

"Fifo=>Yes, O-Ndelay=>Yes"

132

0D0 Internatonct AS

- -,) DACS Sun SPARC/SunOS Native Ada Compiler System. User's Guide
Implementation Dependent Characteristics

then waiting is performed until completion of the operation. The "ONdelay" field name

only has meaning in connection with the FIFO facility and is otherwise ignored.

Access to Open POSIX files:

The field name is "POSIXFileDescriptor". The field value is the character string "2"
which denotes the stderr file. Any other field value will result in USEERROR being
raised. The Name parameter provides the value which wiLl be returned by subsequent
usage of the Name function. The operation does not change the state of the file.
During the period that the Ada file is open, the result of any file operations on the file
descriptor are undefined. Note that this is a method to make stderr accessible from an
Ada program.

File Access

The following guidelines should be observed when performing file 1/0 operations:

- At a given instant, any number of files in an Ada program can be associated with
corresponding external files.

- When sharing files between programs, it is the responsibility of the programmer to determine
the effects of sharing files.

- The RESET and OPEN operations to files with mode OUT_FILE will empty the contents of
the file in SEQUENTIAL_10 and TEXTJO.

Files can be interchanged between SEQUENTIALIO and DIRECTJO without any special
operations if the files are of the same object type.

F.8.3 Buffering

The Ada I/O system provides buffering in addition to the buffering provided by SunOS. The Ada
TEXT-IO packages will flush all output to the operating system under the following
circumstances:

1. The device is a terminal device and an end of line, end of page, or end of file has
occurred.

2. The device is a terminal device and the same Ada program makes an Ada TEXT-1O
input request or another file object representing the same device.

Please refer to Appendix E (Root Library Support) for the full specifications of all 1/0 packages.

F.9 Machine Code Insertions

Currently machine code insertions are not supported.

133

