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Executive Summary

This report surveys recent progress in research on modeling and inference for
transient tracers on oceanic flows. The survey covers in some detail the con-
tents of five technical reports on various aspects of this research, including a
Markov process for mass transport and estimation functions for estimating
flow coefficients, dissipation rates, and birth rates from chronicles of tran-
sient tracers. The details include theoretical results of independent interest
that support applications to inference from tracer data.

A) Modeling Mass Transport. Our approach considers stochastic descrip-
tions of mass transport by fluid flows. Tht particular model is one of birth
and death on a Brownian flow, describing the injection, transport, and dis-
sipation of tracer elements on a turbulent fluid. As treated by Ginlar and
Kao, the mean behavior of this particle system is governed by an advection-
dispersion equation of some interest to scientists studying transient-tracer
problems. We show in Phelan [3] that this system induces a Feller Markov
process on the space of counting measures and we calculate its generator on
a subdomain.

B) Dynamics of Mass Transport. The dynamics of mass transport here refers
to the martingale dynamics of the particle process tracking the system of par-
ticles on the flow. In Phelan [1] and [41, we build on the treatment in Qinlar
and Kao and calculate a set of characteristics that inform our treatment of a
stochastic integral on the particle process and of a martingale problem. The
stochastic integral and the well-posedness of the martingale problem play a
key role in our treatment of estimation from transient tracers on flows.

C) Statistical Inference. The martingale dynamics of mass transport are
essential to our approach to estimation for birth and death on flows. They
inform a class of estimation functions on the particle process including in-
ference from chronicles on transient tracers in Phelan [1] and inference from
integral data on the same in Phelan [2]. A related issue in Phelan [5] con-
cerns the specification of a density process as needed for maximum-likehhood
estimation. In this case, we get a class of optimal estimators for drift rates of
the flow, injection rates of new mass, and dissipation rates of the old. This
is the subject of our current working paper.
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D) Continuing Research. Our continuing research moves in three broad direc-
tions. We are now in a position to further develop methodology for inference
for models of mass transport on fluids, including parameter estimation, sam-
pling issues, and state estimation as well. This in turn motivates a serious
look at the computational issues arising from application of the methods to
data drawn from fields experiments. Finally. we remain interested in otidi-
of equilibrium-particle systems as well as in extensions that include chemical
interactions.

Technical Reports in Support of this Research
Submitted for Publication

I. Phelan, M.J. (1992a) Estimation Functions on a Particle Process, Uni-
versity of Pennsylvania Technical Report, Philadelphia, PA.

2. Phelan, M.J. (1992b) A Quasi Likelihood for Integral Data on Birth and
Death on Flows, University of Pennsylvania Technical Report, Philadel-
phia, PA.

3. Phelan, M.J. (1993a) On the Transition Semigroup of a Birth and
Death on a Flow, University of Pennsylvania Technical Report, Philadel-
phia, PA.

4. Phelan, M.J. (1993b) A Markov Process and A Martingale Problem,
University of Pennsylvania Technical Report, Philadelphia, PA.

5. Phelan M.J. (1993c) A Density Process on a Particle Process, Univer-
sity of Pennsylvania Technical Report, Philadelphia, PA.
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1. INTRODUCTION
We consider a particle system of birth and death on a Brownian flow.

This refers to Qinlar and Kao's 1992 model of mass transport by a fluid
flow. They imagine tracer elements on a turbulent fluid. A Brownian Flow
describes the fluid-flow map of this fluid over its domain. A Poisson Process
regulates the birth of particles that live and die there. Like tracer elements,
their motion yields to the motion of the flow. And they dissipate in response
to position-dependent killing or decay. Eventually, they die and leave the
flow.

This particle system induces a particle process. At each time, this process
tells the configuration of existing particles on the domain of the flow. It is a
Markov process on the space of point measures on the same.

(inlar and Kao (1992a&b) study the particle process in sundry ways.
They analyze its limiting behavior as time approaches infinity. And they
give its martingale dynamics and distributional descriptors. The latter in-
clude partial differential equations for the mean, covariance, and Laplace
transform.

We survey some work in Phelan (1992,1993). In particular, we identify
a set of local characteristics for the particle process. These provide a basis
for writing a stochastic integral. We treat the transition semigroup of the
process, showing that it is a Feller sermigroup and exhibiting its generator
explicitly on a subset of functionals in its domain. This provides the basis
of a martingale problem having the particle process as its unique solution.
Along the way, we discuss the utility of these results in problems of statistical
inference.

2. A MARKOV PROCESS
We describe a birth and death on a stochastic flow. Our description

begins with a Brownian flow on Euclidean space and then introduces the
particle system. The probability space (fl, /', F) supports all of the random
variables appearing below.

Stochastic Flows
The set E denotes Euclidean space of dimension d. A Stochastic Flow

F = (F!t), 0 < s < t < oo on E is a family of transformations of E satisfying:

(1) F,.=I and Ft,,oFst= F.,, 0 <s < t<u.
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As usual, I denotes the identity transformation and o denotes the compo-
sition. For x in E, s > 0, and w in fl, let us visualize a particle sitting at
position x at time s. If its position in E at time t is F,x, then the mapping
t --+ F5-x is the particle's trajectory on the flow. This motion is a one-point
flow on F.

We assume that F is a Brownian Flow. Brownian Flows may arise as
solutions to stochastic differential equations. For example, let W be a Weiner
process on m-dimensional Euclidean space. Also, let -y be a mapping from E
to the space of d x m matrices, and let b be a mapping from E to E. The
coefficients b and I' satisfy the global Lypschitz condition:

(2) Ib(x) - b(y)l + Itv(x) - -y(y)II - Kjx - Yl,

and the linear growth condition,

(3) Ib(x)l + j1y(x)lJ < K(1 + ixJ'>

for some constant K.
We assume that t & F5 x is the solution of It6's differential equation:

(4) dXt = b(Xt)dt + -y(Xt)W(dt), X, = x,

for every t > s and x E E. This obtains a unique Brownian flow of homeo-
morphisms. We refer to Kunita(1990) for details.

In our case, the one-point motions are diffusions having infinitesimal mean
b and infinitesimal covariance c satisfying: c(x, y) = _y(x)yT(y), for x, y E E
I the T for transpose. Thus, the Markov generator A of one-point motion
satisfies the equation:

d _f 1 d d c92f
(5) Af(x) = bi,(a)- (xW + -( E E cx(x,X) W),

S 2-I i=1 5=1 axiax

for every function having two continuous derivatives. In general, it takes
two-point motions to determine a Brownian flow, since it takes two to deter-
mine the infinitesimal parameters b and c.

Birth and Death on Flows
The particle system is a countable collections of particles that enter, live,

and die on the stochastic flow. A point process heralds the entry of these
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particles, giving each an initial allowance of time on the flow. As this time
expires, they die and leave the flow.

The generic particle enters the flow at random time S and random posi-
tion X. It leaves the flow at time T, a positive time strictly after S. If the
particle is alive at time t, S < t < T, then its position is FstX. This motion
stops when the particle dies and leaves the flow.

The cause of death lies in the cumulative effect of killing. This effect
exhausts the particle's initial allowance U of time on the flow. The killing
rate k is a positive Borel function on E. The time of death T then satisfies:

(6) T = inf{t >5: S drk o FsrX > U}.

This specifies the birth, life, and death of particles on the flow.
We label the system of particles in some way. The particle of label p

inherits the endowment (S., Xv, Up) at birth; the time Tp comes with death.
The endowments form the atoms of a point process, the life process L of
%Qinlar and Kao (1992). The life process regulates birth and death on the
flow, which itself regulates motion. The assumption below is that L is a
Poisson Random Measure enjoying independence from the flow.

We track the configuration of live particles on the flow with the particle
process. This is the measure-valued process t -.- Mt on the space of point
measures on E. For each t and Borel subset B of E, Mt(B) satisfies the
equation:
(7) Mt(B) = •"1B(FSitXp)1(Sp < t < Tp),

p

thus counting the number of live particles in B at time t. The atoms of Mt
then determine the configuration of living particles.

The hypotheses are as follows. The life-flow pair (L, F) drives the particle
system. The flow F is a Brownian Flow having infinitesimal mean b and
infinitesimal covariance c. The life process L is a Poisson Random Measure
that is independent of the flow. Its mean measure A satisfies:

(8) A(ds, dx, du) = bo(s)yo(dx)dueu + (1 - bo(s))dsr(dx)dueu,

for every s > 0, x E E, u > 0, where bo is the Dirac measure at zero and yo
and 7r are finite measures on E. These hypotheses make a Markov process
of the particle process.
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3. CHARACTERISTICS
The particle process is a Markov process on the space of point measures

on E. In this section, we calculate its characteristics. In this direction, we
start with a result from Ginlar and Kao (1992a).

A Semimartingale
The stochastic basis is (Q,", H, F). The filtration H = (Ht), t > 0,

satisfies:

(9) 7-t = a(L([0, s] x B), B E E 0 R+, F,,, 0 < s < r < t),

where E( 9 Q, denotes the Borel subsets of E x f?+.

The birth process N is the restriction of L to (0, xo) x E, so its atoms are
the (Sp, Xp) among those particles born after time zero. The atoms of the
killing field K, in contrast, are the time and place of death, (Tp, FSPTrXp), of
all particles. Finally, the notation Mtf denotes the integral of the function
f relative to Mt. The function belongs to the space fVK of continuous func-
tions having compact support in E or its subspace Q of twice continuously
differentiable functions.

I Proposition. For each f in iVK2, the processt -+ Mtf is a semimartingale
satisfying the stochastic differential equation:

m

dMtf = N(dt, f) - K(dt, f) + Mt(Af)dt + Yj Mt(((Vrf)-)j)Wj(dt),
j=1

where A satisfies Equation 5 and Vr - (8/Oxa,.. .,O/Oxd). Also, N(dt, f)
is the integral of N(dt, dx)f(x) over x in E, with K(dt, f) the same of K
and f.3

Cinlar and Kao (1992a) prove this proposition in their Lemma 3.2. They
use the fact that the particle motions are themselves semimartingales and
an application of Mt6's formula. We use it to write the characteristics of the
particle process.

Characteristics
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The characteristics of the particle process are analogues of the triplet
of local characteristics of ordinary semimartingales. They extend the natu-
ral ideas of trend, quadratic variation, and compensation of jumps to this
measure-valued process.

First, we prepare notation. A Radon measure on E is a measure on (E. F)
that is finite on all bounded sets in E. A signed-Radon measure on E is the
difference between two Radon measures on E. The spaces (Mb, Mb) and
(M, M) denote the respective spaces of bounded, counting measures and
signed-Radon measures on E with their Bore! sigma algebra relative to the
vague topology. The former is the state space of the particle process.

For f in M, let ff be the integral of the measurable function f relative to
f. In contrast, let ff be the signed Radon measure having density f relative
to f. In this way, the integral of the measurable function g relative to f•
may appear as (ff)g or ý(fg).

Let A again be the Markov generator of one-point motion on the flow,
satisfying Equation 5 . Let D be the differential operator satisfying the
equation:

d d , h(10) Dh(x ) E E y)(,Y)5x
i=1 j=1 8xqy(

for every function on E x E having two continuous derivatives. Its domain
includes the teL.:.z product fy g, namely (xy) f(x)g(y), for every pair
of functions in 4,'K2. Next, let # denote the mapping (m, f) --* rf - (km)f +
m(Af) on Mb x c'VK. Let q denote the mapping (m, f, g) -- (m x m)(D(f ®g))
on Mi x IVK2 x 47K2, where m x m is the product measure of m with itself.
Finally, let r denote a transition kernel from (Mb, M b) into (M, M). For
each m, it charges only the signed-Dirac measures on E and -atisf2c- thc
equation:

(11) ic(m; dq) = r o b-'(di)11+}(tq1) + (kin) o

for every signed-Dirac measure n in M, where b is the mapping from E to
the space of Dirac measures on E.

The characteristics of the particle process refer to a triplet (B, C, v) on
the stochastic basis (SI, H", H, P). For each f and g in VK2, it satisfies:

dBt(f) = dtO(Mt_;f)
(12) dCt(f®g) = dtq(Mt-;f,9)

v(dt,di,) = dt,,(Mt_;d77),
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where MAt- is the vague limit of M, as s increases to t. This next proposition
motivates characteristics as this triplet's name.

2 Proposition. For each f in (PK2, let Tf denote the mapping (t., r1)
(t, ilf) on the product space R+ x M. The triplet (B(f), C(f S f), v o TT')
then assembles the local characteristics of the semimartingale t -4 AMtf.

For this same semimartingale, C(f ( g) is its second characteristic of
quadratic covariation with the semimartingale t --+ Mtg, for every g in j' ..

This proposition is an easy consequence of Propostion 1 and classical
theory of semimartingales and stochastic integration. Phelan (1992a) treats
this result in detail. We use the characteristics next to develop a stochastic
integral on the particle process and below to exhibit the generator of the
particle process on a subset of its domain.

Stochastic Integral
We introduce a stochastic integral on the particle process here. The

integral is a special one covering our construction of estimation functions in
Phelan (1992a). It6 (1984) studies stochastic integrals for processes on the
space of distributions. We adopt his framework and view the particle process
in this way.

The space V is the space of infinitely differentiable functions having rom-
pact support in E. The space D' denotes the dual to V or the space of
distributions on E. We endow VY with the Schwartz topology, which is the
usual topology for this space; cf. Conway(1985)[p120].

We introduce a stochastic differential equation for the particle process as
a process on 1Y. In particular, the particle process admits the decomposition
given by the following equation:

A = Mo+Bt+Xt

(13)

Bt = ds[(ir + kM,_ + A*MS,_], t > 0,

implicitly defining the measure-valued martingale t --+ Xt, where A' denotes
the adjoint of A as an operator on distrubutions. We further decompose the
martingale part below.

We identify a stochastic integral on the martingale part of the particle
process here, beginning as usual with simple integrands. A simple integdand
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is a process t -+ Ht of the form: t --* Yl(,,,l(t), where s > r and Y is a linear
functional on Dy. Moreover, for each distribution T in 1Y, the action YT of
Y on T is lGTe where G is a measurable set in 1Hr and 0 is a function in D.
The stochastic integral H • X of H with respect to X then satisfies:

(14) H-Xt = Y[X^t - Xr^t, = lG[X^At¢ - X^At¢], t > 0.

This integral defines a martingale on the particle process. We extend it in a
natural way to a modest class of integrands.

Our class of integrands meets threo criteria. First, we assume that an
integrand t -- Ht is a predictable mapping where the predictable sigma
algebra is that induced by the predictable rectangles {(s, t] x A x B; s <
t, A E F, B E H,} relative to the filtration H = (*H), t > 0 of Equation 9.
Second, we assume it take values in the space of linear functionals on 1' by
indentification with the predictable mapping t -- ht of functions in D. That
is, for each t, the functional Ht is the mapping T * Tht on Ey. Third, we
impose the following integrability condition:

(15) E dsq(M,_;h., h.) + E IJ v (ds, d)(ilh.)2 < oc, t > 0.

The operator q and the random measure v belong to the characteristics of
the particle process at Equation 12.

These criteria introduce a vector space TI of predictable mappings. For
each t > 0, let pt denote the seminorm on T1 satisfying the equation:

(16) pt(H)= {E tdsq(M,_;h,,h,)+Efot/w(ds,dY7)(77hS)21},

for every H in T. The family {pt, t > 0} of seminorms induces a topology T,
making (T, T) a topological vector space. If the family is separating, then
('i, T) is uniformly isomorphic to a dense subset of a complete topological
vector space ('I,T). We suppose that this is so and refer to the completed
space as our class of X-integrable processes.

3 Proposition. We suppose that the family {pt,t >_ 0} of seminor-ms on T
satisfies the equation: flt>0 {H : p t(H) = 0} = {0}. The mapping H -* H-X
for H among the simple integrands then extends, using the same notatation,
to a mapping H --+ H • X for H among the integrands in our class of X-
integrable processes. The resulting integral process t -+ H -Xt gives a locally
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square-integrable martingale on the particle process. Its quadratic character-
istic t -* (H -X)t satisfies the equation:

(H- X)t = Jdsq(M,-; h, h,) + J J v(ds, dq)(qh.) 2 .

We apply this integral in Phelan (1992a) in defining estimation functions
on the particle process. In doing so, we separate an integral on the - discrete
part' of X from one on its 'continuous part.' That is, the discrete part belongs
of course to the compensated-point process p - v. The particle process then
satisfies the representation of the following equation:

(17) MA Mo + + X + 1f( V)(ds.d d)7 t > 0,

implicitly defining the continuous part t -- X'. fhe terms in XC and in
p - v determine respectively the continuous-martingale part and the discrete-
martingale part of the the particle process.

Now, for suitable integrand H and random field Z, we may introduce
the integral processes t --- H- Xc and t -- Z * (pu - u)t on these two parts.
The former is in accord with the arguments of Proposition 3, the latter in
accord with standard theory of stochastic integration over point processes;
cf. Definition 11.1.27 [p72] of Jacod and Shiryaev (1987). This Z need not
come from an H as in Proposition 3, but when it does come so the sum of
these two integrals agrees with the integral of H with respect to M - B.

Corollary. Let H and H' be X-integrable processes in T. And let Z and
Z' be (p - v)-integrable random fields in the class Gloc(u) of Definition
11.1.27 of Jacod and Shiryaev (1987). Finally, in accord with the same defi-
nition and Propostion 3, let Y and Y' denote the respective integral processes
t -+ H - X + Z * (y - L)t and t -+ H'. Xt + Z'* (p - u)t.

These processes are locally square-integrable martingales. Their quadratic
covariation t -+ (Y, Y'), satisfies the equation:

(Y, Y') = jt dsq(M.-;h.,h:) + J J v(ds, di')Z(sqi)Z'(s,i1),

where t -+ ht and t -+ h' are the respective V-valued processes belonging to
H and H'. 0
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Finally, we can develop such an integral on the particle process itself. In
particular, let H be an element of T with supporting process t -+ h,. Let
Z denote the random field (t, 77) -+ nht on R+ x M and let t -- Tt denote
the mapping t -* r + kMt + A*Mt. In this case, there is an integral process
t -+ H - Mt satisfying the equation:

(18) H- Mt = duTuh,, + Z * (,a - P)t + Ej(LkM.)(hu )Wk(du),
J0 ~ k=i

yielding a semimartingale of the particle process.

4. A TRANSITION SEMIGROUP AND ITS GENERATOR
We discuss the transition semigroup belonging to the particle process.

Our aim is to establish that the transition semigroup is a Feller semigroup.
We then exhibit the actioi. of its generator on a subclass of functionals ex-
plicitly in terms of the characteristics. The latter informs the basis of our
martingale problem.

Transition Semigroup
The particle process takes values in the space Mb of bounded, counting

measures on E. We endow this space with the Borel sigma algebra Mb

relative to the topology of vague convergence. The space Co(Mb) denotes the
subspace of bounded, vaguely continuous functionals on Mb that vanish at
infinity. It is a Banach space in the topology of uniform convergence. We let
11 l[0 denote the corresponding norm.

The state space is a locally compact Hausdorff space whose topology has a
countable base. That is, let fk be a sequence of functions in (VK that increase
to 1 on E. For each bounded, counting measure mo and positive b, the set
nfl{m : mfk < mofk + 6} contains m0 and is relatively compact in Mb with
respect to the vague topology by virtue of A.15.7.5 of Kallenberg (1986).
The vague toplogy has a countable bpse by virtue of A.15.7.7 of Kallenberg
(1986) and Proposition 7.6 of Royden (1968).

We introduce the Markov transition semigroup (Pt), t > 0 belonging to
the particle process. This next proposition shows that it is a Feller semigroup.

4 Proposition. We suppose that the system parameter (b, c, 7r, k) satisfies
the regularity conditions of Secton 2. We suppose that the killing rate k is
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globally Lypschitz continuous and bounded on E. The transition semigroup
(Pt), t > 0 is then a strongly continuous, contraction semigroup on Co(M6).

The idea of the proof is to show that Pt maps Co(Mb) into itself for every
t in iR+ and to show that Ptpp converges pointwise to V as t descends to zero
for every ýo in Co(Mb). That (Pt), t > 0 is a Feller semigroup then comes
of the argument of Exercise 9.27 in Sharpe (1988). The details appear in
Phelan (1993a).

Generator
The generator G of the particle process is an operator on the bounded.

continuous functionals on counting measures. We exhibit it here explicitly
on a subclass of such functionals in its domain VG. We do so in terms of the
characteristics of Equation 12.

5 Proposition. Fiz I > 1. The functions f1,... ,f belong to qK. The
function g is a twice continuously differentiable function having compact sup-
port in F'. Let 'p denote the functional m --+ g(mf 1 ,... ,rmf) on Mb. The
functional Wp then belongs to V0 and GWp satisfies:

Gp(m) = [_,8(m; f1 )8jg(y) + ý E -q(m;.fi,fy)Otg(y)hv( .  m.,)
i=1 i= _~

+ IM K(m; dvj)('P(m + q) - (M)).

The symbols ai and 8,9 denote differentiation and partial differentiation with
respect to the indicated coordinates.

This result is a consequence of the martingale dynamics of the parti-
cle proces and fruitful application of It6's transformation formula for semi-
martingales. The details of the proof appear in Phelan (1993a).

5. A MARTINGALE PROBLEM
We define a martingale problem on the restriction of the generator of

the particle process to the functionals in Proposition 4. The particle process
clearly solves this problem. We show that it does so uniquely.

The Problem

14



The state space is the space (Mb, M b) of bounded counting measures on
E with its Borel sigma algebra relative to the vague topology. The space
of sample paths is the Skorokhod space D(Mb) of vaguely right-continuous
functions from 1R+ to Mb having vague limits from the left. The coordinate
mappings on this space generate a filtration F = (.Ft), t > 0 and the filtered
space (JD(Mb),.F, F). This is the canonical setting.

We recall the linear operator A of Equation 5. Let VA denote its domain
in the space of bounded, continuous functions on E. For each positive inte-
ger 1, let (,(1R) denote the space of infinitely, continuously differentiable
functions with compact support in R1. We then introduce the set Do,

(19) Do = {m -4 g(mfl,...,mf,): f,,...,fj E VA,g E q(R'),l> 11,

of bounded, continuous functionals that vanish at infinity on Mb. This then
is a subset of the Banach space Co(Mb).

Proposition 4 implies that the domain VG of the generator G contains
DO. The restriction of G to the latter then defines a linear operator Go, for
example, and a subset {(wp, G) : 0 E Vo} in Co(MA) x Co(Mb). We define
our martingale problem on this set.

In particular, let Po be a probability measure on (Mb, Mb). And let P be
a probability measure on (D(Mb), F). Finally, let X denote the canonical
process on (.D(Mb), r, F, P). We say that X is a solution process or that P is
a solution measure to the martingale problem on the pair (Go, Po) whenever
the law of X0 is P0 and the process t --+ Xt,

(20) = (P(Xt) - O(XD) - dsGow(X,),

is a well-defined martingale for every ý in Do.
This then is a martingale problem of the kind in Ethier and Kurtz (1986).

There is also one here of the kind in Jacod and Shiryaev (1987). One defines
the latter with respect to the triplet of would-be characteristics at Equa-
tion 12.

Uniqueness
The particle process of Section 2 solves our martingale problem. We

show here that it solves the problem uniquely among solution processes with
sample paths in JD(Mb). That the latter requirement is no restriction follows
from the next lemma.
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6 Lemma. Any solution to the martingale problem on (Go, P0 ) has a mod-
ifi cation with sample paths in ID(Mb).

The next propostion then states our main result. The martingale problem
is well-posed, the particle process its unique solution. The details of the proof
appear in Phelan (1993b).

7 Proposition. Let t -- MA denote the particle process of Section 2. Let P
denote the law of the particle process on the canonical setting (ID(Mb), .F, F)
and let Po denote the law of Mo on (Mb, Mb). We suppose that the system
parameter (b, c, -r, k) satisfies the regularity conditions of Section 2 and that
k is bounded on E. The probability measure P is then the unique solution to
the martigale problem on (Go, Po).

This is a useful result from a statistical point of view. It implies that there
is an explicit representation for a Girsanov transformation between absolutely
continuous particle systems, a most useful result for likelihood inference. In
which case the estimation equations in Phelan (1992a) reduce nicely to the
score function itself. Nevertheless, partial observational schemes such as in
Phelan (1992b) still demand a more liberal class of estimation functions.
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