
TATtION PAGE
AD-A265 420

111111111 IN 1111 1111 ~ 11111111 Hi I DATE3. _ _POkT TIPC AN._ D _ATES Co_ (0__,

I •)~~j~X 'D ISSERTA'rTON
4. TITLE AND S081ITLE

One-Machine Generalized Precedence Constrained
Scheduling

6, AUTHIORS)

Erick D. Wi Kum, Captain

7. PERWWOF.:PNG ORGANIZATION NAME(S) AND ADDRE'S(ES) 8 PEWU (M,'." OcCANWAHON
REf P0 P, t7 h 10 1(Rr

AFIT Student Attending: Georgia Institute of Technology AFIT/CI/CIA-92-032D

9- sPotqsoT!,'PMONITORING AGENCY NAME(S) AND ADDRE~~~f 10j M ~~GrON1701fNGAFIT/CI I AGENCY rEnOOT NUMBELR

Wright-Patterson AFB OH 45433-6583 AGENC)IE I¢T UM6E

11. S'jr'PLE,%MENTARY NOTES

12-1. DI• TtJG N;AVAILABILITY STATEMENT 12b. DISTRIBSUTOt" CODE

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

13. AEISTPACT (Mdxrmum 200 words)

2- 93-12596

14. SUC;ECT TERMS 15 NU.NM ER Of PAGES

120
4, f :":.CE CODE

17. SECURITR CLAPSSIFICATION I1b SECURITY CLASSIFICf TION 19. SE CJI Y, ,CLASSI;I-ATiON 20 Ji;,'.TATION Of ABSTRfACT
OF 7 EPOfT" CE TEs, FAGE OF AEST!:f"

N'SN 74.Q-;*0

One-machine Generalized Precedence Constrained Scheduling

Erick D. Wikum

Directed by Dr. Donna C. Llewellyn and Dr. George L. Nemhauser

We investigate one-machine scheduling problems subject to generalized prece-

dence constraints. A precedence constraint specifies that the first of a pair of jobs

must be completed before the second can begin. Under our generalized notion, not

only must the first job be completed before the second can begin, but also, the dif-

ference between the start time of the second job and the completion time of the first

job must fall in a given pair-dependent interval. The left endpoint of this interval,

if greater than zero, specifies a minimum delay and the right endpoint, if finite,

specifies a maximum delay between the two jobs.

To our knowledge, this dissertation contains the first explicit identification of

generalized precedence constraints as we have defined them. As such, it represents

the first systematic treatment of generalized precedence constrained scheduling.

Our major emphases include drawing the line between easy and hard problems

with respect to precedence constraint type, precedence relation, and optimality cri-

terion and identifying suitable algorithms and finding effective heuristics for prob-

lems that are easy and hard, respectively. We consider minimizing makespan, total

completion time, or total weighted completion time subject to minimum delay prece-

dence nonstraints, maximum delay precedence constraints, or a combination of the

two for various precedence relations. We show that most of these problems are NP-

hard for all but the simplest of precedence relations. We then present a miscellany of

results including polynomially solvable special cases, heuristics, and bounds for two

minimum makespan problems subject to minimum delay precedence constraints.

Accesion For

NTIS CRAM
DTIC TAB

Unannounced J
Justific-tron

LDTI QUJALITY IN'SPECTEDLl 2 By
DistribUtion I

Availability Codes

BibliographyAva andor
Dist Special

[1] A.V. Aho, J.E. llopcroft, J.D. Ullman (1974). The Dcsign and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA.

[21 R. Andreu, A. Corominas (1989). SUCCCES92: A DSS for Scheduling the

Olympic Games (sic). Interfaces 19, 1-12.

[3] Baker (1974). Intr)duction to Sequencing and Scheduling. Wiley, New York.

[4] R.E. Bellman (1957). Dynamic Programming. Princeton University Press,

Princeton, NJ.

[5] J. Carlier (1982). The one-machine sequencing problem. Eur. Journal of OR

11, 42-47.

[6] P. Chretienne (1989). A polynomial algorithm to optimally schedule tasks on a

virtual distributed system under tree-like precedence constraints. Eur. Journal

of OR 43, 225-230.

[7] R.W. Conway, W.L. Maxwell and L.W. Miller (1967). Theory of Scheduling.

Addison-Wesley, Reading, MA.

[8] R. Duke (1987). Combinatorial Methods lecture notes. Georgia Institute of

Technology (unpublished).

[9] L.F. Escudero (1988). An inexact algorithm for the sequential ordering problem.

Eur. Journal of OR 37, 236-253.

[10] M.R. Gar-y, D.S. Johnson (1979). Computers and Intractability: A Guide to

the Theory of NP-completeness. W.H. Freeman and Company, New York.

[11] M.R. Carey, D.S. Johnson, R. Sethi (1976). The Complexity of Flowshop and

Jobshop Scheduling. Math of OR 1, 117-129.

[12] P. Hansen (1980). Bicriterion path problems. G. Fandel, T. Gal (eds.) Lecture

Notes in Economics and Mathematical Systems 177. Springer, Heidelberg, 109-

127.

[13] J.A. Hoogeveen, S.L. van de Velde (1990). Polynomial-thie algor;iIhI, nui

single-machine bicriteria scheduling. Report BS-R9008, Centre for Mvathematics

and Computer Science, Amsterdam, The Netherlands.

[14] D.S. Johnson (1983). The NP-completeness column: an ongoing guide. Journal

of Algorithms 4, 189-203.

[15] R.M. Karp (1972). Reducibility among combinatorial problems. R.E. Miller,

J.W. Thatcher (eds.) Complexity of Computer Computations. Plenum Press,

New York, 85-103.

[16] E.L. Lawler (1978). Sequencing Problems with Series Parallel Precedence Con-

straints. Unpublished manuscript.

[17] E.L. Lawler (1979). Fast Approximation Algorithms for Knapsack Problems.

Math of OR 4, 339-356.

[18] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (1989). Sequenc-

ing and Scheduling: Algorithms and Complexity. Report BS-R8909, Centre for

Mathematics and Computer Science, Amsterdam, The Netherlands.

[19] G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimization.

Wiley, New York.

[20] A.H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification,

Complexity and Computations. Nijhoff, The Hague.

[21] R. Shapiro (1980). Scheduling Coupled Tasks. Naval ties. Logist. Quart. 27,

489-498.

[221 L.E. Shirland (1983). Computerized dressage scheduling. Iuntkrfaces 13, 75-81.

[23] W.E. Smith (1956). Various optimizers for single-stage production. Naval lies.

Logist. Quart. 3, 59-66.

1241 C.A. Tovey (1992). private communication.

(25] L.N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling

problem. Eur. Journal of OR 4, 12-48.

One-machine Generalized Precedence Constrained Scheduling

by

Erick D. Wikum

Captain, USAF

1992

119 pages

Doctor of Philosophy in Industrial and Systems Engineering

Georgia Institute of Technology

ONE-MACHINE GENERALIZED
PRECEDENCE CONSTRAINED

SCHEDULING

A THESIS
Presented to

The Academic Faculty

by

Erick D. Wikum

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Industrial and Systems Engineering

Georgia Institute of Technology
October 20, 1992

To the glory of my

Father in heaven

ACKNOWLEDGMENTS

I am indebted to my advisors, Dr. Donna Llewellyn and Dr. George Nemhauser,

for the large part they had in bringing this dissertation to fruition. Dr. Llewellyn's

ability to understand immediately what had taken me a week or more to accomplish

and Dr. Nemhauser's ability to explain difficult concepts in a sentence or two never

failed to amaze me. Dr. Llewellyn was always just a phone call away, with not only

technical assistance, but also words of encouragement. Dr. Nemhauser helped me

to develop and refine my ability to think critically, to ask the appropriate questions,

and to answer those questions.

I am most appreciative for the help and support given to me by my fellow

students at Georgia Tech, who could always sympathize with me since they were

experiencing the same difficulties as I was. I especially want to thank Tina Barr,

Arlin Johnson, Mike Cue, aAld Ismnaei de Farias.

For the past eight years, I received a weekly phone call from my parents. My

words cannot express the debt of gratitude I owe them for their love, friendship,

advice, and emotional support.

When my doctoral program grew burdensome, God intervened. He sent me a

helper, my wife, Elizabeth. I could never have completed my degree without the

love, caring, laughter, and companionship she gave to me. Both she and her parents

were especially helpful in the final stages of my program.

I am indebted most of all to my heavenly Father. He carried me when I was

down, forgave me when I did wrong, provided for my every need, and loved me so

much that he gave to me his only Son, my Lord and Savior, Jesus Christ!

iv

CONTENTS

page

ACKNOWLEDGMENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

SUMMARY xi

1 INTRODUCTION 1

1.1 M otivation . 5

1.2 Related Literature 6

1.3 M ajor Emphases 8

2 1 / min and max delays, k n,,... ,nk-chains / C, ,o. 10

2.1 Min Delays Problems IV

2.1.1 1 / min delays, k 1-chains / C z... 13

2.1.2 1 / min delays, k 2, ... ,1-chains / C 15

2.1.3 1 / min delays, k 2-chains / Cin... 18

2.1.4 1 min delays, k n1 , ... ,1-chains / C 23

2.2 Max Delays Problems 26

2.2.1 1 / max delays, k 1-chains / C,,,.... 26

2.2.2 1 / max delays, k 2,1,..., 1-chains / C 28

2.2.3 1/ max delays, k nh, 1,..., 1-chains / CGin............ 31

v

2.3 Min and Max Delays Problems 34

2.3.1 1 / min or max delays, k 1-chains / C,, 35

2.3.2 1 / min and max delays, k 1-chains / Cm,,, 36

3 1 / min and max delays, k 1-chains / E Ci or F wjC) 40

3.1 Min Delays Problems 40

3.1.1 1 / min delays, k 1-chains / C 40

3.1.2 1 / min delays, k 1-chains / •wCi 5:3

3.2 Max Delays Problems 57

3.2.1 1 / max delays, k 1-chains / Ci 57

4 1 / min and max delays, 2 ni,n 2-chains / C,, 68

4.1 1 / min delays, 2 ni,n 2-chains C.,.................. .68
4.2 1 / max delays, 2 ni, n2-chains / Cma.. 76

5 SPECIAL CASES, HEURISTICS, AND BOUNDS 81

5.1 1 / min delays, k 2,1,..., 1-chains / C,,,m:... 81

5.1.1 Relative Ordering of Jobs J2,.-.,J , 81

5.1.2 Heuristic with Worst Case Performance Ratio 2 82

5.1.3 Pseudo-polynomial Algorithm for Special Case with 12 =- .-- =

1k=0 88

5.1.4 Heuristic with Worst Case Performance Ratio ý + A for NP-

hard Special Case 92

5.2 1 / min delays, 2 n1, n2-chains / Cm.,x 98

5.2.1 No Schedule Has Makespan Greater Than Twice Optimal. .. 98

5.2.2 Polynomially Solvable Special Cases 99

5.2.3 Disjunctive Graph Representation 101

5.2.4 Lower Bounds 105

5.2.5 Bicriterion Heuristic 108

vi

6 CONCLUSIONS 113

6.1 Sum m ary . 11:3

6.2 Suggestions for Future Research 115

BIBLIOGRAPHY 117

VITA 120

vii

LIST OF TABLES

Table page

1.1 Three-field a / • / y classification scheme 4

1.2 Precedence constraint terminology 4

2.1 Complexity classification of min delays, minimum makespan problems. 39

2.2 Complexity classification of max delays, minimum makespan problems. 39

2.3 Complexity classification of min and max delays, k 1-chains, mini-

mum makespan problems 39

3.1 Possible valh,-3 for 6•,(a), b,(a), bj3 (7T), and 6bj(7r) 51

3.2 Complexity classification of 1 / mrin and max delays, k 1-chains /

E Cj or E wjCj problems 67

5.1 Release dates, processing requirements, and tails 108

viii

LIST OF FIGURES

Figure page

1.1 The k n 1,. .. ,nk-chains precedence graph 3

2.1 Example Gantt chart 12

2.2 Instance of 1 / min delays, k 1-chains / C,, 13

2.3 Instance of 1 / min delays, k 2, 1,..., 1-chains / Cma• <y....... ... 17

2.4 Instance of 1 / min delays, k 2-chains / C,,,._ y 19

2.5 Instance of 1 / min delays, k n1 , ... ,1-chains / Cm• < y 24

2.6 Instance of 1/ max delays, k 1-chains / C,,,ý 27

2.7 Instance of 1 / max delays, k 2,1,..., 1-chains / Cmrx < p(J)..... 29

2.8 Feasible schedule for constructed instance of 1 / max delays, k 2,1,..., 1-

chains / C,,, _< p(J) 30

2.9 Instance of I / max delays, k n1 , 1,..., 1 -chains / Cmaz <_ p(J) 32

2.10 Feasible schedule for constructed instance of 1 / max delays, k n1, 1,..., 1-

chains / C,,,,z :_ p(J) 34

2.11 Optimal schedule for the 1 / min or max delays, k 1-chains / Cmaz

problem ... 36

3.1 Obtaining schedule v* from schedule a 43

3.2 Instance of I / min delays, k 1-chains / F C 48

3.3 Fea.sible schedule for constructed instance of 1 / min delays, k 1-

chains / E w1 Ci < Y 55

3.4 Schedule with sum of processing times of jobs from {J 1, ... , Jk 1 }
completed after job Jk less than I EjEA (S). 56

ix

3.5 Schedule with sum of processing times of jobs from {J ,...., Jk-1)

completed after job J1k greater than -2 EYEA s(j) 57

3.6 Feasible schedule for constructed instance of I / max delays, k 1-

chains / E Ci < Y 61

4.1 Strict ordering requirements imposed by 2 n1,n 2-chains70

4.2 Bins into which the 2-jobs are placed 70

4.3 Makespan contribution ft, t E {1,...,ni} and xt = 0 72

4.4 Makespan contribution ft, t E {1,... ,ni } xt E {1,.. - - st-1}. . 72

4.5 Makespan contribution fný+l, s,,, = n2 73

4.6 Makespan contribution f,,+,, s,, E {0, 1,... ,n 2 - 1) 73

4.7 Schedule defined by x1,... ,xt-1, and x, 78

4.8 Schedule defined by x1 ,.. ., x-,, and z-+l 78

5.1 Instance of 1 / min delays, k 2, 1,..., 1-chains / Cn,. 84

5.2 First relaxation of 1 / min delays, k 2, 1,..., 1-chains / Cm,= instance. 84

5.3 Second relaxation of 1 / min delays, k 2, 1,..., 1-chains / C... instance. 85

5.4 Weighted, directed graph corresponding to schedule &I 85

5.5 Weighted, directed graph corresponding to schedule &2 86

5.6 Obtaining schedule 7* from schedule a* 89

5.7 Four possible forms for any schedule with job J,, scheduled first... 91

5.8 Special case of 1 / min delays, k 2,1,..., 1-chains / C,,o........ ... 93

5.9 Bins into which the 2-jobs are placed 101

5.10 Instance of 1 / min delays, 2 ni,n 2 -chains / Cm 103

5.11 Graph H associated with instance of 1 / min delays, 2 n 1 ,n 2-chains

/ Cmax.. 103

5.12 Schedule generated using the preemptive version of the Schrage algo-

rithm 108

5.13 Bicriterion shortest path network 112

x

SUMMARY

We investigate one-machine scheduling problems subject to generalized prece-

dence constraints. A precedence constraint specifies that the first of a pair of jobs

must be completed before the second can begin. Under our generalized notion, not

only must the first job be completed before the second can begin, but also, the dif-

ference between the start time of the second job and the completion time of the first

job must fall in a given pair-dependent interval. The left endpoint of this interval,

if greater than zero, specifies a minimum delay and the right endpoint, if finite,

specifies a maximum delay between the two jobs.

Generalized precedence constraints can arise in scheduling athletic competitions.

An obvious requirement for scheduling of this kind is the inclusion of minimum delays

between certain pairs of events (jobs) to allow athletes time to rest.

Literature directly related to generalized precedence constrained scheduling is

seemingly scant, dealing mostly with special cases and related constraints. To our

knowledge, this dissertation contains the first explicit identification of generalized

precedence constraints as we have defined them and represents the first systematic

treatment of generalized precedence constrained scheduling.

Our major emphases include drawing the line between easy and hard problems

with respect to precedence constraint type, precedence relation, and optimality cri-

terion and identifying suitable algorithms and finding effective heuristics for prob-

lems that are easy and hard, respectively. We consider minimizing makespan, total

completion time, or total weighted completion time subject to minimum delay prece-

dence constraints, maximum delay precedence constraints, or a combination of the

xi

two for various precedence relations. We show that most of these problems are NP-

hard for all but the simplest of precedence relations. We then present a miscellany

of results including polynomially solvable special cases, heuristics, and bounds for

two minimum makespan problems subject to minimum delay precedence constraints

which are not known to be solvable in polynomial time.

xii

CHAPTER 1

INTRODUCTION

In this dissertation, we investigate one-machine scheduling problems subject to

generalized precedence constraints. Ordinarily, requiring that job Ji precedes job

Jj, (denoted by J1 --+ Ji,) means job J. must be completed before job Jj, can begin.

Under our generalized notion of precedence constraints, not only must job Ji be

completed before job Jig can begin, but also, the time between the end of job Jj

and the beginning of job J3 , must be at least lj,, but no more than ujj,, where

0 < 1,j, _< uji, and lni is finite. We adopt the convention uh, = 0o in the absence

of an upper bound and we assume lip is an integer and ujj, is an integer whenever

ujj, < 00.

In general, we assume that a finite set J of jobs is to be scheduled on a single

machine that can process no more than one job at a time and is continually available

from time zero onwards. Each job J3 E J has processing requirement pi, assumed

without loss of generality to be a nonnegative integer. Preemption is not allowed,

that is, each job Jj must remain on the machine without interruption for pj time

units. In order to be feasible, a schedule, a, which specifies a non-negative integer

start time a(j) (and completion time Cj(a) = a(j) + pi) for each job J2 E J, must

satisfy the generalized precedence constraints, given by

lii, _ ao(j')- C((a) 5 uip V < JjJ > E P,

where P C_ JxJ is the set of all precedence constrained job pairs. Notice that if

ljj, = 0 and u13 , = oo, then the generalized precedence constraint corresponding to

< Jj,Ji > E P is an ordinary precedence constraint. Problems for which lj, >

0 (ujj, < co) for some < J,, Jp > E P will be said to be subject to minimum

(maximum) delay precedence constraints.

Minimum delay precedence constraints bear a close resemblance to the con-

straints of the oft studied sequential ordering problem (see [91 for example). The

sequential ordering problem is to schedule jobs .,,. .., Jn on a single machine to min-

imize makespan, where setup time cii, E Z' (Z+ {0} U Z+ and Z+ = {1,2,..

must elapse between the end of job Jj and the beginning of job Jj, if and only if

job Jj immediately precedes job J,. The homologous minimum delay precedence

constraint,

a C _(aj t j, , <Ji, J,J >EP,

must be satisfied whether or not job Ji immediately precedes job Jp.

Our objective is to find a feasible schedule a which, among all feasible sched-

ules, minimizes a specified function of the job completion times. The particular

functions we are interested in include Cmz(a) = maxJEJ Ci(a), EJEJy Cj(a), and

Y.J,G.j wjCj(a), where wj E Z' for all dJ E J. These objective functions are com-

monly referred to as makespan, total completion time, and total weighted completion

time, respectively. A feasible schedule a which, among all feasible schedules, mini-

mizes the given objective function, is said to be optimal.

We restrict ourselves to job sets of the form

k

J= U f Ji.. {.},
i=1

where k > 2, ni E Z+ for i = 1,..., k, and, without loss of generality, n, > ... > ,nk.

We further restrict ourselves to precedence relations on J of the form

P = {< Jij,Jij+1 >, i = 1,...,k, j 1,. .. ,n - 1} U {< Jin,,, >, i = 1,...,k}.

For ease of notation, we refer to such a precedence relation P on J as k nI, ... , nk -

chains, or simply as k n1 -chains if n, = ... = nk (see Figure 1.1). Our usage of

2

Ak,

Jill J2,1

Figure 1.1: The k nl,..., nk-chains precedence graph.

"chains" differs from the customary definition of that term. We will frequently use

diagrams like the one in Figure 1.1 and will often find it useful to label job nodes

with processing requirements and precedence arcs with lower and upper bounds

on delays. If the precedence relation is k nt,... , nk-chains, then we will, without

loss of clarity, refer to lij, ,+l (ui', ij+1) simply as lij (uij) for i = 1, ... , k and

j = 1,..., ni-1 and to li,n,, . (ui,n,, .) simply as li,,, (ui,n,) for i = 1,..., k.

The reader can easily verify that the k nl,... ,nk-chains precedence graph is

"node" transitive series parallel (see Lawler [16]). Thus, any problem which is hard

for k nl,..., nk-chains is hard for the more general class of transitive series narallel

precedence graphs.

We use the three-field a / 3 / -y classification scheme of Lawler, Lenstra, Rin-

3

Table 1.1: Three-field a / 3 / -y classification scheme.

Field Description
a (Machine Environment) a = 1 for single machine
/3 (Job Characteristics) type of precedence constraints

precedence relation
-y (Optimality Criterion C,,,,z

to Minimize) E C,

_ _ _E w,C

Table 1.2: Precedence constraint terminology.

Conetr.oint Type Interpretation
min delays minimum delays only

(uji, = 00 V.< Jj, J > EP)
max delays maximum delays only

(_j__. = 0 V < Jj, J, > E P)

min or max delays either minimum or maximum delays
but not both
(l_, = 0 or ujj, = oo V < Jj, Jj, > E P)

min and max delays both minimum and maximum delays
allowed
(possible to have 4Ii, > 0 and ui, < 00)

nooy Kan, and Shmoys [18] in conjunction with special terminology to describe

constraint types and precedence relations. This classification scheme is described

briefly in Table 1.1. Our precedence constraint terminology is described in Table 1.2.

Our precedence relation terminology was defined in the previous paragraph. As an

example, 1 / min delays, k 1-chains / E Ci is the problem of minimizing the total

completion time of jobs J1 ,..., Jk, and *, where job Ji must precede job * by at

least li, time units for j = ... , k.

The primary topics of this dissertation are scheduling and computational complez.

ity theory. Additional information on scheduling is contained in Lawler, Lenstra,

4

Rinnooy Kan, and Shmoys [181, Baker [3], Conway, Maxwell and Miller [7], and

Rinnooy Kan [20]. Garey and Johnson [10] and Johnson's ongoing column in

The Journal of Algorithms [14] are excellent references on computational complexity

theory.

This chapter is organized as follows. In Section 1.1, we provide motivation

for generalized precedence constrained scheduling (hereafter referred to as GPCS).

Section 1.2 contains a review of existing literature related to GPCS. Finally, in Sec-

tion 1.3, we describe the major emphases of our research and outline the remainder

of this dissertation.

1.1 Motivation

The problem that gave rise to the present research is the scheduling of the

Olympic Games. An obvious requirement for scheduling of this kind is the inclusion

of minimum delays between certain pairs of events (jobs) to allow athletes time to

rest. Andreu and Corominas [2] presented a binary integer program for scheduling

the 1992 Barcelona Olympic Games in which they specified, for each precedence

constrained pair of jobs, one minimum delay between the beginning of the first job

and the beginning of the second job, and another minimum delay between the end of

the first job and the end of the second job. Equivalently, they might have specified

a single minimum delay between the end of the first job and the beginning of the

second job for each precedence constrained pair.

In modeling the Olympic scheduling problem, Andreu and Corominas introduced

0-1 variables xjt, where

11, if event j begins at time tXit = 0, otherwise.

Assuming that precedence constraints arise solely from the fact that a facility can

accommodate only one event at a time, then requiring i -- j implies event j can

start no earlier than time pi + li. Hence, xjo = j= ... = xj,p,,,•+ 1- = 0. Now,

5

if events 1,..., n must precede event j, then determining the earliest possible start

time for event j is a one-machine minimum makespan problem subject to minimum

delay precedence constraints. Solving such a problem for each event j allows us to

fix some of the variables xjt at zero. Operations such as these which allow us to

fix variables prior to solving a problem are known as preprocessing. The symmetric

problem of determining the latest start time for each event j also allows us to fix

some of the xit's at zero.

Suppose we solve the Olympic scheduling problem by branch-ar'd-bound as fol-

lows. For each problem in which the event order is not completely determined, we

select a pair of events j and j' such that event j is allowed to precede event j' and

vice-versa, and we consider two subproblems, one with event j preceding event j'

and the other with event j' preceding event j. Fixing the order of events j and j' is

the same as introducing an additional ordinary precedence constraint. Since each

subproblem has exactly one more ordinary or generalized precedence constraint than

its immediate predecessor, then it is possible to fix at least as many and likely more

xjt's at zero for a subproblem than for its immediate predecessor. Thus, it may be

worthwhile to preprocess by solving a sequence of GPCS problems at each node of

the branch and bound tree.

To summarize, generalized precedence constraints (minimum delay precedence

constraints in particular) can arise in the scheduling of athletic competitions. More-

over, GPCS problems arise naturally when solving such athletic scheduling problems

modeled using 0-1 variables xjt. Having provided motivation for GPCS, we now re-

view the literature related to GPCS.

1.2 Related Literature

Literature directly related to GPCS is seemingly scant. The subjects of papers

that do pertain to GPCS fall into two broad categories, namely, special cases and

related constraints. We now review papers belonging to each of these categories.

6

The problem of minimizing makespan on a single machine where each job J2 E J

has release time ri (i.e., the processing of job Jj cannot commence until time r3),

processing requirement pj, and tail qj (i.e., job J, must spend time qj in the system

after it has been processed) is a special case of 1 / min delays, k 2-chains / Cd,.

This release time and tail problem has been widely studied by Carlier [5] and others

in the context of job shop scheduling, where its solution provides lower bounds.

Another special case of GPCS is described by Shapiro [21]. Shapiro classifies the

problem of scheduling pairs of jobs separated by known, fixed time intervals on a

single machine to minimize makespan as a two-machine job shop problem in which

each job consists of three operations. The first and third operations, corresponding

to the pair of jobs, are processed on Machine 1, while the second operation, corre-

sponding to the separation interval, is processed on Machine 2. Although Machine 1

can process at most one operation at a time, Machine 2 has unlimited capacity. No

wait in processing is permitted, that is, once a job is begun, its operations O1, 02,

and 03 must be processed on the machines without delay between them. Shapiro's

problem is in fact a special case of 1 / min and max delays, k 2-chains / CGi,.

As evidenced by Carlier [5] and Shapiro [21], special cases of GPCS problems

are not new to the literature. Unfortunately, the treatment of such cases is rather

limited in scope. To our knowledge, no comprehensive or systematic study of GPCS

problems exists.

Let us now consider papers which detail related constraints. Generalized prece-

dence constraints appear elsewhere in the literature. Chretienne [61 considered a

problem related to parallel computer architectures wherein the number of proces-

sors is assumed to be infinite and minimum communication delays must occur be-

tween precedence constrained job pairs only if the two are processed by different

processors. Chretienne's "Generalized Precedence Constraints," which apply to the

multiple machine environment, are similar to but clearly not the same as our mini-

mum delay precedence constraints.

7

Several authors describe models which include what might be called generalized

disjunctive constraints. Disjunctive constraints specify for pairs of jobs Jj and J,,

that either job Ji must precede job Jj,, or vice-versa. Analagous to generalized

precedence constraints, generalized disjunctive constraints specify for pairs of jobs

Jj and Ji, not only that either job Jj must precede job .J1 or vice-versa, but also

that the time between the end of the first job to be completed and the beginning

of the other job must be at least lj, = 1,,, but no more than ujj0 = ujoj, where

0 < 1jj, : ui , and 1ji, is finite. Even more generally, we can assume the delays

depend on the actual job ordering, that is, Iii, : Ip,, and uji 0 uj j .

As mentioned earlier, fixing the order for a disjunctively constrained pair of jobs

is the same as introducing an additional ordinary precedence constraint. By the same

token, fixing the order for a generalized disjunctively constrained pair of jobs is the

same as introducing an additional generalized precedence constraint. Thus, general-

ized disjunctive constraints are in essence a generalization of generalized precedence

constraints.

Andreu and Corominas [21 specified not only minimum delay precedence con-

straints, but also minimum delay disjunctive constraints. In scheduling dressage

competitions, Shirland [221 specified an optimal interval of 40 minutes to four hours

between rides for the same competitor. Since Shirland imposes no precedence con-

straints on pairs of rides for the same competitor, then these requirements induce

minimum and maximum delay disjunctive constraints.

1.3 Major Emphases

Our research includes two major emphases. The first involves drawing the line

between easy and hard GPCS problems with respect to precedence con.Araint type,

precedence relation, and optimality criterion. The second involves identifying suit-

able algorithms and finding effective heuristics for GPCS problems that are easy

and hard, respectively.

8

The remainder of this dissertation is organized as follows. Chapters 2, 3, and 4

are devoted to the classification of GPCS problems with respect to computational

complexity. The GPCS problems we address in Chapter 2 are minimum makespan

problems for which the number of chains is a parameter, k. In Chapter 3, we

discuss total completion time and total weighted completion time problems with

precedence relation k 1-chains. The problems we address in Chapter 4 are minimum

makespan problems for which the number of chains is two. In Chapter 5, we present

a miscellany of results including heuristics, polynomially solvable special cases, and

bounds for two problems which are not known to be solvable in polynomial time, one

from Chapter 2 and the other from Chapter 4. Finally, ve summarize our research

and make suggestions for further research in Chapter 6.

9

CHAPTER 2

1 / min and max delays,
k nl,..., nk-chains / Cmax

In this chapter, we draw the line between easy and hard minimum makespan

problems for which the number of chains is a parameter, k, by considering increas-

ingly complex 'k chains' precedence relations. In Section 2.1, minimum delay prece-

dence constraints only are allowed, while in Section 2.2, maximum dclay precedence

constraints only are allowed. Minimum and maximum delay precedence constraints

are permitted in Section 2.3.

2.1 Min Delays Problems

In general, solutions to 1 / min delays, k nl,... ,nk-chains / C,,,, problems

include machine idle time. Consequently, sequences do not necessarily uniquely

correspond to schedules. A sequence of the jobs in J that satisfies the underlying

ordinary precedence constraints imposed by P is said to be feasible. We now show

that corresponding to each feasible sequence is a unique schedule in which each job,

and job * in particular, is scheduled as early as possible so as to respect the sequence

and to satisfy the machine capacity and the minimum delay precedence constraints.

The following discussion is adapted from Carlier [5].

Let n =1IJI -1 = Z•= ni. The sequence J-, J... , of the jobs in J is

feasible if and only if

10

1. 4.n+1 = * and

2. er = (i,j) and e, = (i,j+1) implies 1< r < s _< n, where i E {1,...,k} and
j E f,..ni -1Q.

We associate with each feasible sequence J,, -- * -- -- * a weighted, directed

graph G = (X,A). The node set X = {e 1,...,e,} U {*} and the arc set A =

A1 U A2 U A3 , where

A, ==1,...,n- 1},

A2 = =(e,

and

A3 ={(eei) : <J,, J,,S > E P}.

Each arc (ei, epi) E A3 is assigned a weight of p., +±4,, arc (e,, *) is assigned a weight

of p,,,, and each arc (ei,ej + 1) E At \ A3 is assigned a weight of p,,. The arcs in AI

and A2 represent the machine capacity constraints while the arcs in A3 represent

the minimum delay precedence constraints.

Consider the schedule, o, where a(e1) = 0, a(ej) is equal to the weight of the

maximum weight path in G from node el to node ej for j = 2,...,n, and a(*)

is equal to the weight of the maximum weight path in G from node el to node

*. By weight of a path, we mean the sum of the arc weights over all arcs in the

path. Due to the special linear structure of G, schedule a can be computed in time

0(1 A 1) = O(n). By construction, the weight of any path from node el to node

ej (node *), and the weight of the maximum weight path from node el to node ej

(node *) in particular, provides a lower bound for the start time of job J,, (job *)

in any schedule that respects the sequence Je, --+ " - Jn --+ * and satisfies both

the machine capacity and the minimum delay precedence constraints. Hence, in

schedule a, each job, and job • in particular, is scheduled as early as possible so as

to respect the sequence Je, --+ - - - J,, -- * and to satisfy the machine capacity

and the minimum delay precedence constraints.

11

0 Pc1 PC2 P43 Pon P.

Figure 2.1: Example Gantt chart.

We refer to a schedule computed in this manner as the active schedule associated

with the given sequence. Clearly, an optimal schedule is an active schedule. Thus, 1

/ min delays, k nl,..., nk-chains / C... is the problem of finding, among all feasible

sequences, a sequence that has associated active schedule with minimum makespan.

Hereafter, we drop the modifier 'active' unless required for clarity.

A convenient means of visually portraying a schedule is provided by the Gantt

chart (see Figure 2.1). The Gantt chart includes a rectangular box for each job. The

width of the box for a given job is proportional to that job's processing requirement.

Machine idle time is represented by a dashed box with width proportional to the

amount of idle time. The horizontal line at the bottom of the chart is a time axis,

with time zero on the left-hand side, from which job start and completion times can

be read.

In a manner synonymous with the computation of the active schedule associated

with the sequence J,, ,' " J -J -- * from the weighted, directed graph, we can

construct the Gantt chart for this active schedule. First, we draw the box for job

Je,. Next, for j = 2,...,n, we draw the box for job J,,, inserting between this

box and the box for job J.,.-, the smallest amount of idle time necessary to satisfy

the minimum delay precedence constraint corresponding to < -, Jr, >E P. Finally,

we draw the box for job *, inserting between this box and the box for job J, the

smallest amount of idle time necessary to satisfy the minimum delay precedence

constraints corresponding to < .,, >E P.

12

P*

Figure 2.2: Instance of 1 / min delays, k 1-chains / Cm,,.

2.1.1 1 / min delays, k 1-chains / C.,

We first consider the min delays problem with the simplest k chains precedence

relation, that is, k 1-chains. For ease of notation, assume J = {J 1,..., Jk} U {,}

(see Figure 2.2). Clearly, any feasible sequence has the form J,, --" d --- ,

The schedule, a, associated with the sequence J,, - .. 1. J,, - * has

= 0,

Et=* p., for j =2,..., k, and

(.) _- maxj=l,...,k{o(ej) + p,, + ,j,} = maxj=1,...,•1{C',(o) + 0-,.

Hence,

Cz(Oj = C.(o) = o(*) + p. = max {Cj(o) + 1j) + p..

For simplicity, we assume p. = 0 since the makespan of a schedule with p. = c > 0

differs from the makespan of the corresponding schedule with p. = 0 by precisely c.

We now give two proofs that 1 / min delays, k 1-chains / Cma is solved by

sequencing jobs J 1,..., J4 in order of nonincreasing precedence delay. The first

proof involves a straightforward pairwise interchange argument.

Proposition 2.1 The I / min delays, k 1-chains / C,,,, problem is solved by se-

quencing jobs J1 ,..., Jk in order of nonincreasing precedence delay.

13

Proof 1: Assume a is an optimal schedule in which jobs J k,.., Jk are not or-

dered by nonincreasing precedence delay. Then, there exist adjacent jobs J, and

Ji, such that Ji -- Ji, but lj < 1,. Let a' be the schedule obtained from sched-

ule or by interchanging jobs Ji and J.,. Let A = maxJ.EJ\{J,,J,,.){CT(a') + "}

maxJ.EJ\{J,,J,,,.}{JC(o`) + 41. Then

C,,-.ý(a') = max{A, Cj(a') + 1j, Ci,(a') + •A,

= max{A, a(j)+p, + pj, + ,(j)± pj,-+ l+,}
< max{A, a(j) +t pj +t pp, +t j, (T'j) +- pj, +t lj,, aif) -+ P. -+ pi, +rI,

= max{A, '(j) + pj + pj, + lA

= max{A, O(j) + pj + 1j, a(j) + pj + p, + l,}

= max{IA, Ci(u) + li, C0(o) + l1A

Repeating this argument, we see that schedule a can be transformed into a schedule

in which jobs J 1 ,... ,Jk are ordered by nonincreasing precedence delay without

increasing the makespan. 03

The second proof of Proposition 2.1 relies on the following lemma, which gives a

lower bound for the makespan of an optimal schedule for 1 / min delays, k 1-chains

/ Cnma.

Lemma 2.2 Let a* be an optimal schedule. Then

Cm.(.)h(S) Z pj + minl, VSC J\{}.
Jes Js-

Proof: Let S C J\ {*} and let Jm =-argmazJ,•s{~a(j)}. Then

Cm(a*) = a'(M) +pm > FZ PJ"
14 ES

14

It follows that

cmz(c) = c.(cr) > Cm(') +/ >m Ž + Pj + min 1,.
JES J, ES

We now present a second, more elegant proof that 1 / min delays, k 1-chains /

C,.,, is solved by sequencing jobs J 1,..., Jk in order of nonincreasing precedence

delay. Lemma 2.2 and the following proof are after the manner of Carlier [5].

Proof 2: Let o be the schedule associated with the sequence A, --+* ..- - -+ *

where 11 > ... > 1k. Let J, be a critical job, that is, a job such that

C'..a(O') = C.(o) = CG(G) + /C.

Let S = {1,... , c}. By assumption, minj,, Es 1 = I,. Since

c°() = O(c) + pc.= j J pi,
j=1 J, ES

then

-,,(0) = pi + min1i = h(S).
J,ES

The result follows from Lemma 2.2, since h(S) is a lower bound on the optimal

makespan. 0

The most time consuming step in solving the 1 / min delays, k 1-chains / C,-,,

problem is sorting the jobs by precedence delay. Therefore, 1 / min delays, k 1-

chains / C,,, can be solved in time O(k Ig k).

2.1.2 1 / mrin delays, k 2, 1,...,1-chains / Cmax

We now show that whereas 1 / min delays, k 1-chains / C,.,. is solvable in poly-

nomial time, the problem obtained from it by allowing one of the chains to include

15

two jobs is NP-hard. An optimization problem is said to be NP-hard if the decision

problem obtained from that problem by introducing an additional parameter, say

y, and asking the question, "is there a solution with value at most (or at least) y?"

is NP-complete. The decision problem version of 1 / min delays, k 2, ... ,1-chains

/ C•ax, which we refer to appropriately as 1 / min delays, k 2,1,..., 1-chains /
C,. < y, is defined as follows.

INSTANCE: Job set J = {J,,,J,} U {J 2,...,Ji,} U {*}, processing requirement

pi E Z+ V Jj E J, precedence relation P on J of the form P = { < J. 1, J•2 > }
U{< J' 2,* >} U {< J,,* >, j = 2,... ,k}, nonnegative integer minimum

delays , l•, and lj for j = 2,..., k, and a positive integer y (see Figure 2.3).

QUESTION: Is there a one-machine schedule for J (i.e., a function o,: J Z0+

with a(j) > o(j') implying o(j) > o(i') + pp,) that satisfies the minimum

delay precedence constraints (i.e., c'(j') - Cj(or) ,> 1i V < Ji, ,Ji >E P,

where C,(a) = 0o(j) + pi V Ji E J) and that meets the overall deadline (i.e.,

C.(y)?

The problem we use for the reduction is PARTITION, which is defined as follows.

INSTANCE: Index set A = {1,...,a} and size s(j) E Z+ VJ E A.

QUESTION: Is there a subset A' C A such that EjA1, 8(j) = EjEA\A, s(j)?

Karp [151 contains a proof that PARTITION is NP-complete.

We now prove that 1 / min delays, k 2,1,..., 1-chains / Cm,, is NP-hard by

showing that the corresponding decision problem is NP-complete.

Proposition 2.3 The I / min delays, k 2, 1,..., 1-chains / Ca: <_ •5 y problem is

NP-complete.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify that

the sequence is feasible and that the makespan of the associated schedule does not

16

P2 Pk

Figure 2.3: Instance of 1 / min delays, k 2, 1,..., 1-chains / C,, < y.

exceed the overall deadline. Hence, 1 / min dh,+ys, k 2, 1,..., 1-chains / C.. !_ y

is in NP.

Let A = {1,... ,a} and s(j) E Z+ for all j E A be any instance of PARTITION.

We construct a corresponding instance of 1 / min delays, k 2, 1,..., 1-chains /
C,...• y in polynomial time as follows:

k = a + 1;

PlX = PX2 = 1;

pi s(j - 1), 1 = 2,. .. , k;

1i = o, = 2 ,.. .-,k ;

p. = 0;

Y= EjA s(j) + 2.

17

Since p,, + Pz2 + Ej=2 Pi = y, a schedule can have makespan at most y if and

only if that schedule includes no machine idle time. In any feasible schedule without

machine idle time, the sum of the processing requirements of jobs from {J 2,... , JkI

scheduled between jobs JL, and J,2 (JV,2 and *) must be at least l, = 2 ZjEA s(j)

(-2 = 12jeA s(j)). Now Eý=2 Pi = F2e, 8(j), so in any feasible schedule without

machine idle time, the sum of the processing requirements of jobs from {J 2,. . ., Jk}

scheduled between jobs J,,, and J,, must equal 2 _jeA s(j), as must thc sum of the

processing requirements of jobs from {J 2,..., Jk} scheduled between jobs J, and

*. Thus, there exists a feasible schedule that meets the overall deadline if and only

if there exists a partition of {J 2 ,..., Jk} into two disjoint subsets such that the sum

of the processing requirements of the jobs in each subset equals I EjEA s(j). 0

Proposition 2.3 does not preclude a pseudo-polynomial time algorithm (i.e., an

algorithm with running time bounded by a polynomial in Max[l] and Length[I],

where, for each instance I, Max[I] is an integer corresponding to the largest number

in I and Length[I] is an integer corresponding to the number of symbols required

to describe I under some reasonable encoding scheme (see [10])) for I / min delays,

k 2, 1,... , 1-chains / Cmz. Whether or not such an algorithm exists is an open

question.

2.1.3 1 / min delays, k 2-chains / Cmax

Since 1 / min delays, k 2,1,..., 1-chains / C,,, is NP-hard, then so is 1 / min

delays, k 2-chains / C,,,.. We now prove that 1 / min delays, k 2-chains / C,,,..

is NP-hard in the strong sense. A decision problem 11 is said to be NP-complete

in the strong sense if 11 is NP-complete even if we permit unary or stroke encoding

of numbers (e.g., 4 is encoded as 1111). An optimization problem is said to be

NP-hard in the strong sense if the related decision problem is NP-complete in the

strong sense. The decision problem version of I / min delays, k 2-chains / C,,",

which we refer to as 1 / min delays, k 2-chains / C,,o _ y, is defined as follows.

18

112 122 k2

111 121 [IkI

Figure 2.4: Instance of 1 / min delays, k 2-chains / Cm,,ý: < y.

INSTANCE: Job set J = Ujf1 {JjI,Jj2} U {*}, processing requirement pi E

Z' V Jj E J, precedence relation P on J of the form P ={< J;1 , Jj2 >,

j = 1,...,k} U {< Jj2 ,* >, j = 1,...,k}, nonnegative integer minimum

delays lj, and Ij2 for j = 1,..., k, and a positive integer y (see Figure 2.4).

QUESTION: Is there a one-machine schedule for J (i.e., a function a : J --+ Z+,

with o,(j) > o(j') implying o(j) > o(j') + pj,) that satisfies the minimum

delay precedence constraints (i.e., o(j') - Cj(oa) 2! 1j V < Jj, Jjo >E P,

where Cj(cr) = a(j) + pi V Ji E J) and that meets the overall deadline (i.e.,

C.(a) < y)?

Our reduction is from SEQUENCING WITHIN INTERVALS, which is defined

as follows.

INSTANCE: TasksetT= {1,...,t} and, foreach taskj E T, alength l(j) E Z+,

a release time r(j) E Z+, and a deadline d(j) E Z+.

QUESTION: Is there a one-machine schedule for T (i.e., a function 4 : T -+ Z+

with 0(j) > 0(j') implying 0(j) > 0(j') + 1(j')) that satisfies the release time

19

constraints and meets all the deadlines (i.e., for all j E T, 0(j) > r(j) and
0(j) + l(j) <_ d(j))?

See Garey and Johnson [101 for a proof that SEQUENCING WITHIN INTERVALS

is NP-complete in the strong sense.

We now establish the computational complexity of 1 / min delays, k 2-chains /

Proposition 2.4 The I / min delays, k 2-chains / Cmax <_ y problem is NP-

complete in the strong sense.

Proof: We can show that a decision problem 11' is NP-complete in the strong

sense by proving

1. II' is in NP and

2. there exists a pseudo-polynomial transformation f from some known strongly

NP-complete problem II to I'.

Let Dn, Dn,, Yn, Yn,, Length, Length', Max, and Max' be the instance sets, 'yes'

sets, and specified length and max functions corresponding to problems II and I',

respectively. Garey and Johnson [10] define a pseudo-polynomial transformation

from H to H' as a function f : Du -- Dn, that satisfies

1. f can be computed in time polynomial in the two variables Length[I] and

Max[I],

2. there exists a polynomial q, such that, for all I E Dn,

q1 (Length[f (I)]) > Length Il,

3. there exists a polynomial q2 such that, for all I E Dn,

Max'[f (I)] < q2(Length[I], Max[I]), and

4. for all I E Dn, I E Yn if and only if f(I) E Yno.

20

The pseudo-polynomial transformation is to the class of strongly NP-complete

problems as the polynomial transformation is to the class of NP-complete prob-

lems. Since every NP-complete problem can be polynomially transformed to a

given NP-complete problem, then the existence of a polynomial algorithm for any

NP-complete problem implies the existence of a polynomial algorithm for every

NP-complete problem, whence P = NP. Since every strongly NP-complete problem

can be pseudo-polynomially transformed to a given strongly NP-complete problem,

then the existence of a pseudo-polynomial algorithm for any strongly NP-complete

problem implies the existence of a pseudo-polynomial algorithm for every strongly

NP-complete problem, whence P = NP.

Given any sequence of the jobs in J, we can, in polynomial time, verify that

the sequence is feasible and that the makespan of the associated schedule does not

exceed the overall deadline. Thus, 1 / min delays, k 2-chains / C,,,,_ < y is in NP.

Let task set T = {1,...,t} and, for each task j E T, length 1(j) E Z+, release

time r(j) E Z+, and deadline d(j) E Z+ be any instance of SEQUENCING WITHIN

INTERVALS. We construct a corresponding instance of 1 / min delays, k 2-chains

/ C.•5 _ y as follows:

k =t;

Pil 0 , pj2 = ~) ,.,k;

p. =0;

4 1 • r (j) , i - " i . . k ;

y = maxi= ... t d(j);

I1A = y - d(j), j = 1,...,k.

One can easily verify that this mapping from SEQUENCING WITHIN INTERVALS

to 1 / min delays, k 2-chains / C,,,., < y satisfies the computation time and instance

size requirements for a pseudo-polynomial transformation.

21

Suppose there exists a schedule a : J --* ZO+ that satisfies the minimum delay

precedence constraints and meets the overall deadline. Let us define schedule 0 :

T -- Z+ by ¢(j) = a(j2) for j = 1,...,t = k. Since lj, = r(j), then a(j2) >_ r(j)

for j = 1,..., k, which implies O(j) Ž r(j) for j = 1,..., t. Now

a(j2) + pj2 + 1j2 < a(*) < y for j =k,

which implies

a(j2) + pi2 <- y-(y-d(j)) =d(j) for j =k.

Hence, O(j) + 1(j) < d(j) for j = 1,..., t and schedule € is feasible for SEQUENC-

ING WITHIN INTERVALS.

Now, suppose there exists a schedule 0 : T --* Z+ such that, for all j E T, O(j) >

r(j) and 4(j) + 1(j) < d(j). Let us define schedule ao: J - Z+ by

a(jl) = 0 for j 1,...,k,

o!(j2) = O(j) for j =1,...,k = t, and

a',) - max,,=l,...,k {a(m2) + P.2 + 1,,2.

Schedule a satisfies the minimum delay precedence constraints corresponding to

< Jjj, Jj2 > for j = 1,..., k since

u(j2) - (a(jl) + pjl) = o!(j2) = O(j) > r(j).

By definition of a(*), schedule a satisfies the minimum delay precedence constraints

corresponding to < Jj2, * > for j = ... , k. Finally, schedule a meets the overall

deadline since

O(j) + 1(j) < d(j) for j =1.,t =ý. a(j2) + pj2 <_ d(j) for i =1.,k,

which implies

22

C.(, a(*)

= max,= ,...,k{o'(m2) + P.2 + 1 .2 1

< maxm.= ... {d(m) + 1,.2}

maxm=jl...,k{d(m) + y - d(m)}
=y.D

2.1.4 1 / min delays, k n,1,..., 1-chains / Cmaz

The 1 / min delays, k n,1,..., 1-chains / Cn,,,, problem is NP-hard, since, as

shown in Subsection 2.1.2, 1 / min delays, k 2, 1,..., 1-chains / C•,, is NP-hard.

In this subsection, we prove that 1 / min delays, k nj, 1,...,1-chains / Cmaýx is in

fact NP-hard in the strong sense.

The decision problem version of 1 / min delays, k ni, 1,..., 1-chains / Cmz,

which we refer to as 1 / min delays, k nj, 1,..., 1-chains / C,,,oz _ y, is defined as

follows.

INSTANCE: Job set J = {1J,,...,J d-n } U {J 2,..., Jk} U {*}, processing re-

quirement Pi E Z+ V J1 E J, precedence relation P on J of the form P =

{< J:,,Jzt+ > , j = 1,. .. , 1 -1) U {< Jz,,1 I* >} U {< J,.* >, j =

2,...,k}, nonnegative integer minimum delays L,, for j = 1,...,nl and 1.

for j = 2,..., k, and a positive integer y (see Figure 2.5).

QUESTION: Is there a one-machine schedule for J (i.e., a function a : J --* Z+,

with a(j) > a(j') implying a(j) >_ a(j') + pj,) that satisfies the minimum

delay precedence constraints (i.e., a(j') - Cj(a) > lj V < Jj, Jj, > E P, where

C (a) = o(j) + pi V Ji E J) and that meets the overall deadline (i.e., C.(a) :_
Y)?

The problem we use for the reduction is 3-PARTITION, which is defined as

follows.

INSTANCE: Index set T = .1,...,3t} and positive integers a,,... ,a 3f, and b,

with ai E (1b, 1b) V j E T and jeiTa, = tb.

23

"P2 Pk

Figure 2.5: Instance of 1 min delays, k nj, 1,..., 1-chains / Cm, < y.

24

QUESTION: Can T be partitioned into t disjoint subsets T1,...,Ti such that
E.,•T, aj = b for i = 1, ... ,I t?

Garey and Johnson [10] contains a proof that 3-PARTITION is NP-complete in the

strong sense.

We now prove that the decision problem version of 1 / min delays, k n1 , 1,..., 1-

chains / C,,,m is strongly NP-complete, and hence, the optimality version is NP-hard

in the strong sense.

Proposition 2.5 The 1 / min delays, k n, , 1,..., 1-chains / Cmax, < y problem is

NP-complete in the strong; sense.

Proof: The 1 / min delays, k ni, 1,..., i-chains / Cm,,.o < y problem is in NP

since, given any sequence of the jobs in J, we can, in polynomial time, verify that

the sequence is feasible and that the makespan of the associated schedule does not

exceed the overall deadline.

Let T = {1,...,3t} and positive integers a,,... ,a3t, and b, with a1 E (1b, 1b)

for all j E T and jET a = tb be any instance of 3-PARTITION. We construct a

corresponding instance of 1 / min delays, k n1, 1,. 1-chains / Cm, < y as follows:

k = 3t + 1, n, = t;

p., = 1, j = 1,...,ni;

,= b, j = 1,...,ni;

pi ai-1, j =2,.. ., k;

1, =0, j =2,...,k;

p. 0;

y =tb+t.

25

One can easily verify that this mapping from 3-PARTITION to 1 / min delays,

k n1, 1,..., 1-chains / Cmx, : y satisfies the computation time and instance size

requirements for a pseudo-polynomial transformation.

Since E" p., + Z=2 Pi = y, a schedule can have makespan at most y if and

only if that schedule includes no machine idle time. In any feasible schedule without

machine idle time, the sum of the processing requirements of jobs from { J 2 , . ., Jk}

scheduled between jobs J-,, and J,,+, (J.,,1 and *) must be at least 1,, = b for

j = 1,-.." - = t- 1 (1 = b). Since -=2Pi = tb, then in any feasible schedule

without machine idle time, the sum of the processing requirements of jobs from

{J2 ,..., Jk} scheduled between jobs J., and J.,+, must equal b for j = n,..., nl - 1

and the sum of the processing requirements of jobs from {J 2,... ,Jk} scheduled

between jobs J.,, and * must equal b. Thus, there exists a feasible schedule that

meets the overall deadline if and only if there exists a partition of {J 2 ,..., JA,} into

t disjoint subsets such that the sum of the processing requirements of the jobs in

each subset equals b. 0

2.2 Max Delays Problems

Without loss of generality, solutions to 1 / max delays, k n1,... ,nk-chains /
Cin, problems include no machine idle time, since removing machine idle time from

a schedule that satisfies the maximum delay precedence constraints results in a

feasible schedule with smaller makespan. Schedules without machine idle time are

necessarily minimum makespan schedules. Thus, 1 / max delays, k n1 ,..., nk-chains

/ C.,= is the problem of finding a schedule without machine idle time that satisfies

the maximum delay precedence constraints.

2.2.1 1 / max delays, k 1-chains / Cma,

We first consider the max delays problem with the simplest k chains precedence

relation, that is, k 1-chains. For ease of notation, assume J = {J 1 ,..., Jkj U {.} (see

26

p*

Figure 2.6: Instance of 1 / max delays, k 1-chains / Cm,.

Figure 2.6). In addition, let p(S) =EJEsP for all S 9 J. As before, we assume

p. = 0.

Suppose that for some S _ J \ {*}, ,uj < p(S \ {Ji}) for all Jj E S. Then, there

can be no feasible schedule since, in any schedule, the maximum delay precedence

constraint corresponding to the earliest scheduled job in S will be violated. We will

refer to a subset S 9 J \ {.} having the property ui < p(S \ {Ji}) for all Jj E S as

a blocking subset.

In any feasible schedule without machine idle time, job • starts at time p(J).

Thus, the completion time of job Jj in any feasible schedule without idle time must

be at least p(J) - ui for all j = 1,..., k. Equivalently, the start time of job Jj

in any feasible schedule without idle time must be at least p(J \ {Jj}) - u, for all

j = 1,...,k. Define release dates ri = p(J \{Jj}) - uj for allj= 1,..., k. We now

show that the 1 / max delays, k 1-chains / C,., problem is solved by sequencing

the jobs J1,. . . , Jk in order of nondecreasing release date.

Proposition 2.6 Assume r, <_ ... < rk. Then, either the instance of 1 / max

delays, k 1-chains / C,,,, is infeasible or the schedule without machine idle time

corresponding to the sequence J.- -" ..- JA: -+ * is optimal.

Proof: Let o, be the schedule without machine idle time corresponding to J, --

-J -- . Suppose there exists i E {l,...,k} such that a(i) < ri. Let

27

S = {JJ : a(j) Ž! a(i), j = 1,...,k}. Since r, : ... < rk,, then

rj > r, > a(i) = p(J \ S) V J, E S.

Thus,

P(J \ {J}) - ui r > p(J \ S) V J.1 ES,

which implies

uj < p(S\ {J}) V JE E S.

By definition, S is a blocking subset and the instance is infeasible.

On the other hand, suppose a(j) > ri for j = 1,..., k. Then, for each j =

0 > r - a()= p(J \ {J}) - - a(j) =a() - p - j -a(

which implies a(*) - Cj(a) 5 u, for each j = 1,..., k. Therefore, schedule a is

feasible and hence optimal. 0

Sorting the jobs according to release date is the most time consuming step in

solving 1 / max delays, k 1-chains / Cm,,. Thus, the 1 / max delays, k 1-chains /

C,,,• problem can be solved in time O(k Ig k).

2.2.2 1 / max delays, k 2, 1,...,1-chains / Cmaz

We proved in the previous subsection that I / max delays, k 1-chains / C,,•'

is solvable in polynomial time. We now show that the problem obtained from it

by allowing one of the chains to include two jobs is NP-hard. In other words, we

prove that determining whether or not there exists a schedule without machine idle

time that satisfies the maximum delay precedence constraints, where the precedence

relation is k 2, 1,..., 1-chains, is NP-complete. This decision problem, which we refer

to as 1 / max delays, k 2,1,..., 1-chains / Cm.. :5 p(J), is defined as follows.

INSTANCE: Job set J = {JXI,J22} U {J2,...,J,} U {*}, processing requirement

pj E Z+' V Ji E J, precedence relation P on J of the form P = {< Jt,, J. >}

28

P2 plc

Figure 2.7: Instance of 1/ max delays, k 2, 1,... 1-chains / ,,. <_ p(J).

U{< J 1 21, * >} U {<J, >, j 2,..., k}, maximum delays u_1 , u,,, and uj

for j = 2,..., k, where each maximum delay is either infinite or a nonnegative

integer (see Figure 2.7).

QUESTION: Is there a one-machine schedule for J (i.e., a function a: J --+ Z+,

with a(j) > u(j') implying o,(j) > o(j') + pp) that satisfies the maximum

delay precedence constraints (i.e., o(j') - Cj(u) <_ ui V < Ji, Jj, >E P,

where Cj(G) = o(j) + pi V Jj E J) and that meets the overall deadline (i.e.,

C.() < p(J))?

We now show that the decision problem version of 1 / max delays, k 2, 1,..., 1-

chains / Cma is NP-complete.

Proposition 2.7 The 1 / max delays, k 2,1,..., 1-chains / Cmli : p(J) problem

is NP-complete.

Proof: The 1 / max delays, k 2,1,.. .,1-chains / Gina _ p(J) problem is in NP

since, given any sequence of the jobs in J, we can, in polynomial time, verify that

29

Jobs in S in any order Ji2 Jobs in T in any order *

Figure 2.8: Feasible schedule for constructed instance of 1 / max delays, k 2, 1,..., 1-

chains / C,,• < p(J).

the sequence is feasible and that the associated schedule without machine idle time

satisfies the maximum delay precedence constraints.

Let A = {1,...,a} and s(j) E Z+' for all j E A be any instance of PARTITION

(see page 16). We construct a corresponding instance of 1 / max delays, k 2, 1,..., 1-

chains / Cm. _< p(J) in polynomial time as follows:

k = a + 1;

Pr1 = PXr = 1;

U 1 -- UX2 2 • EjEA S(U);

pi () j = 2,...-, k;

u = iA,i#j-l s(i) + 1, j = 2,..., k;

p. =0.

Suppose there exists a subset A' C A such that EEA' s(J) =FjEA\A, s(3)

2XjEAs(j). LetS={JJE{J2, .. ,Jk}:s(j-1) EA}andletT={J2, .. ,Jk}\

S. The schedule illustrated in Figure 2.8 satisfies the maximum delay precedence

constraints and meets the overall deadline.

On the other hand, suppose there exists no subset A' C A such that jEA, s() =

XjEA\A' s(j). Let a be a schedule that satisfies the maximum delay precedence

constraints and meets the overall deadline. Since ux, = UX2 = 2 E2 EA s(j) and by

30

our hypothesis concerning the nonexistence of a partition for A, the sum of the

processing requirements of jobs from .. J..., Jk} scheduled either between jobs J,,

and J_,2 or between jobs Jd2 and * must be less than EjEA s(j). Thus, some job

Ji E {J2 ,..., Jk} must precede job J, 1 in schedule a. Of all such jobs, let Jj, be the

job scheduled earliest. Now

(*)- Cj,(a) Ž p(J \ {JJ})= X s(i) + 2> uj,,
iEA,s#j'-.I

which contradicts our assumption that schedule a satisfies the maximum delay prece-

dence constraints. Hence, there exists a schedule that satisfies the maximum delay

precedence constraints and meets the overall deadline if and only if there exists a

subset A' C A such that EjEA' s(j) = EjGA\A' S(J). 3

Proposition 2.7 not withstanding, there might exist a pseudo-polynomial time

algorithm for 1 / max delays, k 2,1,..., 1-chains / Cm,,. Whether or not such an

algorithm exists is an open question. As a result of Proposition 2.7, the 1 / max

delays, k 2-chains / Cm0. problem is NP-hard. Whether or not 1 / max delays,

k 2-chains / Cm,, is NP-hard in the strong sense, as is 1 min delays, k 2-chains /

Cm.., is also an open question.

2.2.3 1 / max delays, k n1 , 1,...,1-chains / Cmaz

The 1 / max delays, k n1, 1,... , 1-chains / Cm= problem is NP-hard, since, as

shown in Subsection 2.2.2, 1 / max delays, k 2, 1,...,1-chains / Cm0 : is NP-hard.

In this subsection, we prove that I / max delays, k n1, 1,..., 1-chains / Cn,, is in

fact NP-hard in the strong sense. The decision problem version of 1 / max delays,

k n 1 ,..., 1-chains / Cm,, which we refer to as 1 / max delays, k n,1,..., l-chains

/ Cm: <_ p(J), is defined as follows.

INSTANCE: Job set J = {J1,I..., J-n,} I {J2,...,Jk} U {*}, processing re-

quirement pi E Z' V Ji E J, precedence relation P on J of the form P =

31

{< J,,J+,>J =1.. ,nl 1J2 { .,, . }{ J., >,A=2,.,

P2 Pk
uxuI l

Pt1 J.'

Figure 2.9: Instance of 1 / max delays, k nj, 1,.., 1 -chains /Cm... <5p(J).

maximum delays u', for j = 1,...,nl and ui for j = 2,... ,k, where each

maximum delay is either infinite or a nonnegative integer (see Figure 2.9).

QUESTION: Is there a one-machine schedule for J (i.e., a function a: J - Z+,

with a(j) > a(j') implying a(j) Ž a(j') + pp,) that satisfies the maximum

delay precedence constraints (i.e., a(j') - Cj(o) ! uj V < Jj,Ji, >E P,

where Cj(a) = 0(j) + pi V J, E J) and that meets the overall deadline (i.e.,

.(a) :p(J))?

We now establish the computational complexity of 1 / max delays, k ni, 1,..., I-

chains / C,,,,m < p(J).

32

Proposition 2.8 The 1 / max delays, k nI, 1,..., 1-chains / Cm,,a p(J) problem

is NP-complete in the strong sense.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify

that the sequence is feasible and that the associated schedule without machine idle

time satisfies the maximum delay precedence constraints. Thus, I / max delays,

k n,1,..., 1-chains / Gina:< p(J) is in NP.

Let index set Tl {1,...,3t} and positive integers a,,..., azt, and b, with aj E

Qb, 1b) Vj E T and EsEraj = tb be any instance of 3-PARTITION (see page 23).

We construct a corresponding instance of 1 / max delays, k n1 , 1,..., 1-chains /

CGa: •_ p(J) as follows:

k=3t+l, n, =t;

p•, = 1, j = 1,...,ni;

uxj = b, i = I,-., nz;

pj = a j-1, i = 2,..., k;

ui =• E'••T~i~j-I ai + t -- 1, j -- 2,..., k;

Ps = 0.

One can easily verify that this mapping from 3-PARTITION to 1 / max delays,

k n1 , 1,..., 1-chains / C,,, <_ p(J) satisfies the computation time and instance size

requirements for a pseudo-polynomial transformation.

Suppose that T can be partitioned into t disjoint subsets T1 ,..., Tt such that
EjeT, aj = b for i = I,-., t. Let Si = {JJ E {J2,..., Jk}: ai-I E Ti} for i= I,-., t.

The schedule illustrated in Figure 2.10 satisfies the maximum delay precedence

constraints and meets the overall deadline.

Suppose, on the other hand, that T cannot be partitioned into t disjoint subsets

TI,..., T, such that EjET, ai = b for i = 1,... ,t. Let a be a schedule that satisfies

33

Jobs inS 1 I " Jobsin S2 I Jobs in St *
in any order in any Iany order

Figure 2.10: Feasible schedule for constructed instance of 1 / max delays,

k n1 , 1,..., 1-chains / Cmax < p(J).

the maximum delay precedence constraints and meets the overall deadline. Since

uXj = b for j = 1, ... , ni and by our hypothesis concerning the nonexistence of a

partition for T, the sum of the processing requirements of jobs from {J 2,..., Jk}

scheduled either between jobs J.,, and Jd,÷ 1 for j = 1,..., n1 - 1 or beLween jobs

J.,, and * must be less than tb. Thus, some job Jj E {J 2,..., Jk} must precede job

J-, in schedule o. Of all such jobs, let J., be the job scheduled earliest. Now

Cj(,) (o,),(:)p(J\{j•,})= ai + t> u,,
iET,i•,- 1

which contradicts our assumption that schedule a satisfies the maximum delay prece-

dence constraints. Hence, there exists a schedule that satisfies the maximum delay

precedence constraints and meets the overall deadline if and only if there exists a par-

tition of T into t disjoint subsets T1,..., Tt such that Ej•.T• aj = b for i = 1,..., t. 0

2.3 Min and Max Delays Problems

The problems of Sections 2.1 and 2.2 arc zpecial cases of minimum makespan

problems subject to both minimum and maximum delay precedence constraints.

Thus, min and max delays problems with all but the simplest precedence relation

are NP-hard.

In this section, we establish the complexity of two problems subject to both

minimum and maximum delay precedence constraints with precedence relation k 1-

chains. The first, 1 / min or max delays, k 1-chains / C,.-, is solvable in polynomial

34

time. Recall that the 'or' of 'min or max delays' is an exclusive or so that 1, = 0 or

uj = co for all j = 1,...,k. The second problem, 1 / min and max delays, k 1-chains

/ Cm., is NP-hard in the strong sense. In fact, even for k 1-chains, the problem of

determining whether or not a feasible schedule exists is strongly NP-complete.

2.3.1 1 / min or max delays, k 1-chains / Cma,

For convenience, assume J = {Ji,...,Jk} U {*}. Let S C {J1 ,..., Jk} consist

of those jobs for which I, > 0, and let T = {J 1 ,..., Ji} \ S. Using the algorithm

below, we generate an optimal solution for the 1 / min or max delays, k 1-chains /

C,...m problem by combining the solution of the 1 / min delays, k 1-chains / C,,,,

problem on jobs in S U {*}, and the solution of the 1 / max delays, k 1-chains /

C,ma_ problem on jobs in T U {*}.

Proposition 2.9 The following algorithm solves the 1 / min or max delays, k 1-

chains / Cma problem.

1 / min or max delays, k 1-chains / Cmox Algorithm

Step 1: Solve the 1/ max delays, k 1-chains / C,,, problem on jobs in TU{*} (see

Subsection 2.2.1). If there is no feasible schedule for this max delays problem,

then STOP: The instance of the min or max delays problem is INFEASIBLE.

Step 2: Solve the 1 / min delays, k 1-chains / Cr, problem on jobs in S U {*}

(see Subsection 2.1.1). Let 0 be the optimal makespan.

Step 3: Combine the solutions from Steps 1 and 2 as in Figure 2.11. Gap [' -

p(J)]+ is the minimum amount of idle time which must be inserted between

jobs in S and jobs in T so as to satisfy the minimum delay precedence con-

straints corresponding to jobs in S.

Proof: In Step 1, we either determine a feasible optimal schedule for jobs in

T U {*}, or we find a blocking subset of T, whence the instance of the min or max

delays problem is infeasible.

35

[Jobs in S ordered as in Step 2 [iiiii]JbinTordered as in Se *

rc-P(J}]+

Figure 2.11: Optimal schedule for the 1 / min or max delays, k 1-chains / C,,Om

problem.

If [C - p(J)]+ = 0, the schedule obtained in Step 3 includes no machine idle

time and hence is optimal. On the other hand, if [r - p(J)]+ > 0, the schedule

obtained in Step 3 has makespan C, which, from Step 2, provides a lower bound on

the optimal makespan. 0

Sorting the jobs in T by release date and the jobs in S by precedence delay are

the algorithm's most time consuming tasks. Therefore, the 1 / min or max delays,

k 1-chains / Cma. problem can be solved in time O(k Ig k).

2.3.2 1 / min and max delays, k 1-chains / Cm,.

In the previous subsection, we proved that 1 / min or max delays, k 1-chains /

Cd. is solvable in polynomial time. In this subsection, we show that 1 / min and

max delays, k 1-chains / Cm,. is NP-hard in the strong sense. In fact, we prove the

stronger result that determining whether or not there exists a schedule that satisfies

the minimum and maximum delay precedence constraints, where the precedence

relation is k 1-chains, is strongly NP-complete. The min and max delays, k 1-chains

feasibility problem is formally defined as follows.

INSTANCE: Job set J = {.'1,... ,Jk} U {*}, processing requirement p1 E Z+ V

Ji E J, precedence relation P on J of the form P = {< Ji, * >, j = 1,..., k},

minimum delays I and maximum delays u1, where 0 _< j < uj, I is a nonneg-

ative integer, and u1 is either infinite or a nonnegative integer for j = 1,..., k.

36

QUESTION: Is there a one-machine schedule for J (i.e., a function a: J -- Z0,

with a(j) > a(j') implying a(j) Ž a(j') + pj,) th-1 satisfies the minimum and

maximum delay precedence constraints (i.e., lj < a(*) - C,(a) _< uj, where
Cj(a) = a(j) + p, V j = 1,... ,k)?

We now establish the computational complexity of the min and max delays,

k 1-chains feasibility problem.

Proposition 2.10 The min and max delays, k 1-chains feasibility problem is NP-

complete in the strong sense.

Proof: Given a schedule a : J --+ Z+, we can, in polynomial time, verify that a

satisfies the minimum and maximum delay precedence constraints. Thus, min and

max delays, k 1-chains feasibility is in NP.

Let T = {1,...,3t} and positive integers a,,...,a 3t, and b, with aj E (1b, 1b)

for all j E T and •,ET aj = tb be any instance of 3-PARTITION (see page 23). We

construct a corresponding instance of the min and max delays, k 1-chains feasibility

problem as follows:

k 4t;

pi aj, li = 0, uj = ZiET,i4j ai + t -- 1 for j = 1,...,3t;

pj=l, l4=uj=(4t+1-j)b+4t-jforj=3t+l,...,k;

p. =0.

One can easily verify that this mapping from 3-PARTITION to the min and max

delays, k 1-chains feasibility problem satisfies the computation time and instance

size requirements for a pseudo-polynomial transformation.

By definition of l and uj for j = 3t + 1,.... . , k, any feasible schedule a satisfies

a(J3,+l) < a(J3,+2) < ... < a(Jk) < a(*)

and

37

o(,+2) -=- Ctt+l(47) = - - = -

= a(Jk) - Ck-l(a) = o(*) - CA (a) = b.

No job Jj E {Ji,..., J3,} can precede job 313+1 in any feasible schedule since

P3t+i +/st+1.. = tb+ t > uj for j = 1,... ,3t.

Now, since E.L 1 pi = tb, then in any feasible schedule, the sum of the processing

requirements of jobs from {Ji,... , ,J3t} scheduled between jobs Jj and J.+, must

equal b for j = 3t + 1,... ,k - 1 and the sum of the processing requirements of

jobs from {J 1 ,..., J3t} scheduled between jobs Jk and * must equal b. Thus, there

exists a feasible schedule if and only if there exists a partition of {J1 ,..., J3t} into

t disjoint subsets such that the sum of the processing requirements of the jobs in

each subset equals b. 0

To conclude this chapter, we summarize the computational complexity results

obtained thus far. The complexities of min delays, max delays, and min and max

delays problems are given in Tables 2.1, 2.2, and 2.3, respectively.

38

Table 2.1: Complexity classification of min delays, minimum makespan problems.

Precedence Relation Complexity
k 1-chains O(kigk)
k 2, 1,..., i-chains NP-hard
k 2-chains NP-hard in the strong sense
k n,1,.I , 1-chains NP-hard in the strong sense

Table 2.2: Complexity classification of max delays, minimum makespan problems.

Precedence Relation Complexity
k 1-chains O(k lg k)
k 2, 1,..., 1-chains NP-hard

k 2-chains NP-hard
k ni, 1,..., 1-chains NP-hard in the strong sense

Table 2.3: Complexity classification of min and max delays, k 1-chains, minimum

makespan problems.

Type of Delays Complexity
min or max delays O(k lg k)
min and max delays NP-hard in the strong sense

39

CHAPTER 3

1 / min and max delays,
k 1-chains / , Cj or uwjCj

In this chapter, we draw the line between easy and hard total completion time

and total weighted completion time problems with precedence relation k 1-chains.

In Section 3.1, minimum delay precedence constraints only are allowed, while in

Section 3.2, maximum delay precedence constraints only are allowed.

3.1 Min Delays Problems

Recall from Chapter 2 that associated with each feasible sequence is an active

schedule that schedules not only job *, but also each job as early as possible so

as to respect the sequence and to satisfy the machine capacity and the minimum

delay precedence constraints. Thus, 1 / min delays, k 1-chains / E Ci (zI wjCj) is

the problem of finding, among all feasible sequences, a sequence that has associated

active schedule with minimum total (weighted) completion time.

3.1.1 1 / mrin delays, k 1-chains / E Cj

In this subsection, we show that 1 / min delays, k 1-chains / Cj can be

solved in time O(k3 lg k). For ease of notation, assume J = { J1 ,. . . , Jk I { *). Let

schedule MM be the schedule associated with the sequence obtained by ordering

jobs J1 ,..., Jk by nonincreasing precedence delay. As proved in Subsection 2.1.1,

schedule MM has minimum makespan (i.e., minimum completion time for job *)

40

among all feasible schedules. Let schedule SPT be the schedule associated with the

sequence obtained by ordering jobs JI,... , dA, using the shortest processing time rule

(i.e., ordering the jobs by nondecreasing processing requirement), with ties broken in

favor of the job with the largest precedence delay. As shown by Smith [231, schedule

SPT solves the problem of minimizing total completion time for jobs JI,..., JA;.

We now show that the makespans of the MM and SPT schedules bound the

optimal makespan for 1 / min delays, k 1-chains / • Cj.

Proposition 3.1 Let a* be an optimal schedule for I / min delays, k 1-chains /

Z, Ci. Then C.(MM) < C.(a*) <_ C.(SPT).

Proof: Schedule MM has minimum makespan among all feasible schedules, so

C.(MM) :_ C.(o*). Suppose C.(a*) > C.(SPT). Among all feasible schedules,

schedule SPT has minimum total completion time for jobs .11,..., Jk, which implies

= Cj(or) - I= Cj(SPT). Thus,

k k

E Ci(a) + C.(a*) > E Ci(SPT) + C.(SPT),
j=1 j=1

a contradiction of the fact that a* is an optimal schedule. n

Let J,, - --. - J " * be any feasible sequence. The schedule, a, associated

with this sequence has

o(e1) = 0,

a(ei)=1 p., for j = 2,..., k, and

a(*)= maxj=l,..., k{a7(e,) + P., + le,}.

Hence,

C.(a) =max {Cj(a) + lj} + p..

41

For simplicity, we assume p. = 0 since the total completion time of a schedule with

p. = c > 0 differs from the total completion time of the corresponding schedule with

p. = 0 by precisely c.

Let V E {C.(MM),C.(MM) + 1,...,C.(SPT)}. The following proposition

characterizes those schedules that have makespan at most r (see [24]).

Proposition 3.2 If r is any schedule, then C.(u) < -V if and only if a mrets the

individual job deadlines 3., = Z7 - l for all j = 1,..., k.

Proof: If C.(cr) = maxj=,,...,k{C,(a) + lj} < -C, then

CG(a) < --li = 9 for all j = I,.,k.

If Ci(a) < 3i = -U- i2 for allj = 1,... ,k, then

S = max {Ci(a) +l,} <V : . o

Proposition 3.2 implies that if we can solve 1 / 9j C,, the problem of minimiz-

ing the total completion time of jobs J1,..., J, subject to individual job deadlines,

then we can solve 1 / min delays, k 1-chains / F Cj by varying C from C.(MM) to

C.(SPT) (or from C.(SPT) down to C.(MM)).

We now present an algorithm for 1 / 3i / C first proposed by Smith [23].

Proposition 3.3 The following algorithm solves the I/ / C problem.

1 /j Fjfl C, Algorithm

Step 1: Number jobs J i....,Jk such that p, - > Pk. Sort jobs J1,...,JA in

order of nonincreasing deadline.

Step 2: U I- JI,..., Jk}; T -- = pi.

Step 3: V -- {Ji E U: d3 _ T}. If V = 0, STOP: The instance is INFEASIBLE.

42

Jt J

Figure 3.1: Obtaining schedule i* from schedule a.

Step 4: J, +- argmnax{pi : Ji E V}. Break ties in favor of the job with the

largest deadline.

Step5: C,,,(a) +--T(a(m)--T-p,,,); U+U\{Jm}; T-T-Tpm.

Step 6: If T > 0, then go to Step 3. Otherwise, STOP: Schedule a is OPTIMAL.

Proof: Thel / /j EjI Ci algorithm terminates with either V = 0 or T = 0.

In the former case, dj < T = EJEuPj for all J. E U. Hence, in any schedule, the

job in U scheduled latest exceeds its deadline and the instance is infeasible. In the

latter case, the output schedule is feasible since, at each iteration, we scheduled next

to last a job which, when so scheduled, met its deadline.

To complete the proof, we need to show that the schedule produced by the

algorithm is optimal. Let a be the schedule produced by the algorithm and let

J .1"' -' J,. be the corresponding sequence. Let a* be any optimal schedule for

1 I I / - Cj and let Je, -- ... J. be the corresponding sequence. Define

b = argmaxj=1,...,.k{j : Je 6 J4}. Assume such a b exists since, if not, then a = a*

and we are done. By definition of b, a'o(eb) < a*(eb,) (i.e., job J,, is scheduled earlier

in schedule a* than is job J,,). We now prove, through a series of three claims,

that the schedule a" obtained by interchanging jobs Je. and Je, in schedule a* (see

Figure 3.1) meets the individual job deadlines and has total completion time no

greater than the total completion time of schedule a*.

43

Claim 3.3.1 p,, Ž pe,.

Proof: By definition of b, job Je, was not scheduled in schedule a prior to the

iteration in which job Jb was scheduled. Now, Ceb(a7) equals T in the iteration in

which job J.b was scheduled in schedule a. Since C,.(a) = C,; (a*) and Ce;(a*) <

3,-, then de, is greater than or equal to T in the iteration in which job J,, was

scheduled in schedule oa. Thus, both jobs J,. and J,; must have been in V in the

iteration in which job Jeb was scheduled in schedule a. Job J,. was selected over job

Je;, which implies Pe > P•;" n

Claim 3.3.2 Schedule V is a feasible schedule.

Proof: We consider each deadline constraint in turn.

"1. CQb(U) = Ce,('*) = Clb(a) < db,..

2. cq,(a-*) < cq(o,,) __•;

3. The completion time of each job scheduled either before job J, or after job

d,- in schedule a* is unchanged from schedule o* to schedule -0. Hence, these

"initial" and "terminal" jobs meet their deadlines in schedule **.

4. For each job J,, scheduled between jobs Jb and J,; in schedule a*,

C.,(r") = C-,(a0) - Pb + p, .

Since, by Claim 3.3.1, -p,, + pe; < 0, then C,,(-*) < C,,(or'). Thus, these
"middle" jobs meet their deadlines in schedule a'. 0

44

Claim 3.3.3 C= C=

Proof: We consider each completion time in turn.

1. Ce&(a) + Ceq(W) = Ce;(a,') + CGe(c') - [Pb - p+ <_ C,(O) + C,-(,').

2. The completion time of each job scheduled either before job J,, or after job

J, in schedule a* is unchanged from schedule a* to schedule a-.

3. The completion time of each job scheduled between jobs J,, and J,- in schedule

a* is reduced by Pe& - Pe; >_ 0 from schedule a* to schedule B. -0

Claims 3.3.2 and 3.3.3 imply that T" is an optimal schedule. Starting with

optimal schedule a', we can repeat the process of identifying the largest index, if

any, in which the sequences corresponding to schedules a and DF differ. We can

then interchange a pair of jobs in schedule U" to obtain a new optimal schedule.

Continuing in this manner, we will eventually obtain an optimal schedule that does

not differ from schedule a. 0

We now show that the 1 / d9 i ~ Cj algorithm can be implemented in time

O(k Ig k) using a specialized data structure known as a 2-3 tree. A 2-3 tree is a tree

in which every vertex which is not a leaf has 2 or 3 children, and all leaves have the

same depth [1]. To our knowledge, the proof of the following widely cited complexity

result (see [13] and [25] for example) appears nowhere else.

Proposition 3.4 The 1/'dj / _ / . Cj algorithm requires time O(k Ig k).

Proof, Steps 1 and 2 require time O(k Ig k) and O(k), respectively. Steps 3-6

are repeated k times. Steps 5 and 6 require constant time per iteration. If V is

represented by a 2-3 tree by assigning the jobs to the leaves of the tree in increasing

number order from left to right, then Step 4, which consists of identifying the longest

(i.e., lowest numbered) job in V (and deleting that job from V) requires time O(lg k)

45

per iteration (see [1]). Step 3 consists of identifying the jobs in V and inserting each

job in V into the 2-3 tree. Observe that each job is inserted into V only once and

remains in V until the job is scheduled. Hence, inserting jobs into the 2-3 tree

requires time O(k Ig k) over all iterations (reference [1]). Notice also that jobs enter

V in order of nonincreasing deadline. The task of identifying the jobs in V can be

accomplished in linear time over all iterations using a pointer together with the list

of jobs sorted according to deadline from Step 1. Therefore, the 1 / 2i C/

algorithm can be implemented in time O(k Ig k). E

In Step 5 of the 1/ / diX C, algo:,hm, let slack[m] = T -dm. By definition

of V in Step 3, slack[j] >_ 0 for j = 1,..., k. Define s = minj= ...,k slack[j]. The

following proposition limits the number -f completion times for job * which must

be considered in solving the 1 / min delays, k 1-chains E • C, problem.

Proposition 3.5 The schedule that solves I/ / C also solves 1
I j=C l 1:=,Cj for all C E .U ,-s+1...., }.

Proof: For all C in the given interval, the order of job selection is unaffected by

changes in the individual job deadlines. E3

As a result of Proposition 3.5, the next completion time for job * to consider after

Uis •-s- 1.

We now present the main result of this subsection, a polynomial algorithm for 1

/ min delays, k 1-chains / C C,.

Proposition 3.6 The following algorithm solves the 1 / min delays, k 1 -chains /
Z C, problem.

1 / min delays, k 1-chains / T Ci Algorithm

Initialization: Compute C!4m and C:'T. If C~M = CSPT, then STOP: The SPT

schedule is OPTIMAL. Otherwise, + -- Cýr"; Incumbent +- nil. Compute

deadlines j = i - 1j for j =,4, k.

46

Step 1: Solve the 1 / Uj / ZCi problem on jobs J1,...,Jk. Compute s =

mini=1 ,..k slack[U] and let a(*) = U - s.

Step 2: If schedule a has total completion time 1ess than the total completion time

of the incumbent solution, then replace the incumbent solution with schedule

or.

Step 3: U •'C-s-1. If ý < C!'M, then STOP: The current incumbent solution

is OPTIMAL. Otherwise, 3i + -3 s - 1 for j = 1,..., k. Go to Step 1.

Proof. The correctness of the 1 / min delays, k 1-chains / Z C1 algorithm follows

immediately from Propositions 3.1, 3.3, and 3.5. We should point out that each 1

/ dj / • Ci instance encountered is feasible since schedule MM meets the deadlines

"dj = CM'M - 1i for j = 1,..., k, which implies schedule MM meets the deadlines

di = -ij for0j k and for anyC_> CMM. 3

Before analyzing the complexity of the 1 / min delays, k 1-chains / • Cj algo-

rithm, let us consider an example. For the instance shown in Figure 3.2,

C.(MM) = 111,

~= Cj(MM) = 151,

E C 1(MM) = 262,

C.(SPT) = 127,

,= Cj(SPT) = 123,

and

E2 Cj(SPT) = 250.

One optimal schedule, a*, corresponds to the sequence J1 ", JI -2 .J3 - .14 -- J6

A . *. For schedule oa,

47

0

1 3 6 10 15 18

Figure 3.2: Instance of 1 / mrin delays, k 1-chains / E Cj.

C.(*) 1 116,

•= Cj(a) = 126,

and

Cj(a*) = 242.

This example illustrates the tradeoff between minimizing = Ci and minimizing C.

in solving 1 / min delays, k 1-chains / F, Cj. An optimal schedule is not necessarily a

schedule that minimizes either = Cj or C., but instead is a schedule that balances

the two objectives.

A schedule a is Pareto optimal with respect to the objective functions k C

and C. if there exists no feasible schedule ir with

Ei=, Cj(w) < r=, C1(a) and C.(7r) _< C.(a),

where at least one of these two inequalities is strict. Clearly, the optimal schedule

for 1 / min delays, k 1-chains / E Ci is Pareto optimal. The remainder of this

subsection, which follows closely the exposition in Hoogeveen and van de Velde 1131,

consists of showing that the complexity of the 1 / min delays, k 1-chains / F Cj

algorithm is O(k3 lg k) by first proving that the schedules produced by the algorithm

are Pareto optimal and then showing that the number of Pareto optimal schedules

produced by the algorithm is O(k2).

48

Proposition 3.7 The 1 / min delays, k 1-chains/• Ci algorithm produces Pareto

optimal schedules with respect to C= 0 and C..

Proof: Let a* be airy schedule produced by the algorithm. We must show there

exists no feasible schedule r with

1. Sx C,('r)= C.(o') and C.(ir) < C.(a),

2. 1 C. (ir) < I Cj(a) and C.(,r) = C.(o-), or

E. =, Cj(ir) < , C3(a) and C.(r) < C.(a).

Schedule a (sans o(*)) solves 1 / =d V - l, / E Ci for some =C.(a) + s.

By Proposition 3.5, a (sans a(*)) also solves 1 / di = C.(a)- li / Now, by

Proposition 3.2, a schedule satisfies C. < C.(a) if and only if that schedule meets

the deadlines 2i = C.(or) - lj for j = 1,... ,k. Hence, there can exist no feasible

schedule 7r with

Ej=_ Cj(7r) < Cj(u) and C.(ir) :_ C.(a),

which establishes points 2 and 3 above.

Suppose there exists a schedule with

Eý=J Cj = E=, C,(() and C. < C.(a).

Among all such schedules, let a* be one with smallest C.. Let Je1 -- - Je, 'k

and J -,. -e * be the sequences corresponding to schedules a and a*,

respectively. Define b = argrnaxj=1,...,k{j : Je, - Je;}. As in Claim 3.3.1, p,, -- Pt.

Suppose P., > P," Then, as in Claims 3.3.2 and 3.3.3, we can show that the

schedule obtained by interchanging jobs Je, and J, in schedule 0* meets the dead-

lines 3i = C.(a) - I for each j 1, k and has C less than C =

3=1- Cj(a), a contradiction of the fact that schedule a solves 1 / = C.(cr) - Ij /

0 C-. Thus, pc, = p,.

49

By choice of job J,. over job J,; in the algorithm,

d~~~b - ; E- Ib > 11- 6'=, , < l"b.

Now, p, = plb and l,b _ le imply that the schedule obtained by interchanging jobs

Jeb and .: in schedule a* has ~ C, equal to Cj(o,() and has C. less than

or equal to C.(o,). By definition of schedule a*, this new schedule has C. equal to

Repeating this argument, we see that schedule a* can be transformed into sched-

ule o without increasing the total completion time for jobs J1 , • , Jk, a contradiction

of our assumption that C.(a*) < C.(a). Hence, there can exist no feasible schedule

•r with

= C,(7r)= E Cj(o) and C.(7r) < C,(o),

which establishes point 1 and completes the proof. 0

For each feasible schedule a and for each pair of jobs J1 3 Jj from {J 1,.. . , JkIx

{J 1 ,..., Jk}, let the indicator function bi5(a) be defined by

1, if Ci(a) < Cj(a) and pi > pj

ij (a) = 0 otherwise.

We refer to the interchange of jobs Ji and Ji in schedule a as a positive interchange

if the total completion time for jobs J1,.., J, of the resultant schedule is less than

ý.=, Cj(a). A positive interchange is synonymous with bij(a) = 1. The interchange

of jobs Ji and Jj in schedule a is neutral if the total completion time for jobs

J31 ,... Jk of the resultant schedule equals I Cj(a), which occurs if and only if

Pi = pi.

For each feasible schedule a, let A(a) =Eij bj(a). Note that 0 < A(cr) <

'k(k - 1) for all feasible schedules a. The following lemma relates the A functions

of two feasible schedules, one of which can be obtained from the other via a positive

interchange.

50

Table 3.1: Possible values for bia(a), bij (a), 6jt(ir), and 6j,(7r).

Relationship of p, and pi topi b5l(a) ,bj(a) bp(Ir) 65i(7r)

pt < pj < p.... ... 1 0 1 0

A = P) < A 1 0 0 0
P, < Pi < P, 1 1 0 0

P__ < Pi = Pi 0 1 0 0

Pi < Pi < P t 0 1 0 1

Lemma 3.8 If schedule r can be obtained from schedule a through a positive inter-

change, then A(7r) < A(a).

Proof: Suppose schedule r can be obtained from schedule a by interchanging

jobs J, and Jj, where pi > pi. The only b's which are or might be affected by thue

interchange are bij, bit, bli, bit, and 6,i, where job J1 is any job scheduled between

jobs Ji and Ji in schedule o.

The change in the A function from schedule a to schedule r is given by

bi,(r)- ,j(ir) + •[(Ei(,) + btj(a)) - (6j•,•r) + 40(r))].
.t

Clearly, bij(a) = 1 and bij(ir) = 0.

Table 3.1 shows that for all jobs J1,

6d(a) + ki(a) >_ b,'(lr) + ,u(7r),

which completes the proof. 0

The next proposition relates the A functions of two schedules produced by the

1 / min delays, k 1-chains / E Ci algorithm.

Proposition 3.9 If a and •r are any two schedules produced by the 1 / min de-

lays, k 1-chains / Z C, aigorithm, where, without loss of generality, F C, (a) <

Zj-I Cj(r), then A(o) < A(•r).

51

Proof: We show that schedule o, can be obtained from schedule 7r using only

positive and neutral interchanges. Let Je, -44 " J --- * and J,,.

J,, be the sequences corresponding to schedules a and xr, respectively. Define

b = argmaxj=, ...,k{j : Jh, # " }.

By definition of b, job J.,, was not scheduled in schedule a price to the iteration in

which job Je, was scheduled. Because a and 7r are Pareto optimal, then E=lk CI(a) <

J=I Cj(7r) implies C.(a) > C.(r). Now, T in the iteration in which job Je' was

scheduled in schedule 7r equals T in the iteration in which job Je, was scheduled in

schedule a. Since C.(wr) - le" is greaver than or equal to T in the iteration in which

job J,, was scheduled in schedule 7r and C.(lr) < C.(a), then C.(a) - l, is greater

than or equal to T in the iteration in which job J,. was scheduled in schedule a.

Thus, both jobs J,, and J.,, must have been in V in the iteration in which job Jeb

was scheduled in schedule a. By choice of job J,, over job J,, in the algorithm,

pe& > p,. Thus, the interchange of jobs J,, and J,' in schedule 7r is either positive

or neutral.

Repeating this process, we will eventually obtain schedule a. Since = C2(a) <

k Cj(ir), then at least one of the positive or neutral interchanges must have been

positive. The result now follows from Lemma 3.8. 03

We are finally prepared to establish the running time of the 1 / min delays,

k 1-chains / E Cj algorithm.

Proposition 3.10 The I / min delays, k 1-chains / _ Cj problem is solvable in

time O(k 3 lg k).

Piraf: Proposition 3.7 together with the fact that 0 < A(a) < !k(k - 1) for all

feasible schedules a implies the number of schedules produced by the algorithm is

0(k 2). The 1 / min delays, k I-chains / E Cj algorithm requires time 0(k 3 lg k)

overall, since, by Proposition 3.4, each iteration requires time O(k Ig k). 0

52

In [131, Hoogeveen and van de Velde actually considered a more general problem

than I / min delays, k 1-chains / E Cj. Let fj(C',) denote the cost of completing job

J. at time C, for j = 1,...= k. Assume f, is nondecreasing in C, for j = 1,...,k.

Define fmax = max,= ,....k f,(Cj) and p,,,,, = max,= ,....k p. Hoogeveen and van

de Velde proved that 1 / / F(l 1=, Cj,f,,) is solvable in time O(k' rnin{k, ig k +

lgp,,ma}) for any function F that is nondecreasing in I C

Curiously enough, 1 / min delays, k 1-chains / • Cj, a precedence constrained

scheduling problem, is a special case of 1 / / F(E=I C,,fm ,,), a problem not

involving preced,&.,ce constraints. Let f,(Ci) = C, + 1, for j = 1, ... , k and let
.1E=1 Cj, f,,..) -- Ek IC ..

Cj=4 C, + fmax' Then,

F(E=1 Cj,fm..) = = Ci + max,= 1k {C1 + 1i}

- C +C..

3.1.2 1 / min delays, k 1-chains / E wjCj

In the previous subsection, we showed that the total completion time problem I

Sain delays, k 1-chains / F Cj is solvable in polynomial time. In this subsection,

we show that the closely related total weighted completion time problem is NP-hard.

The decision problem version of 1 / min delays, k 1-chains / E wjCj, which we refer

to as 1 / min delays, k 1-chains / F wiCi 5 Y, is defined as follows.

INSTANCE: Job set J = {Jd,..., kJ} U {.}, processing requirement P, E Z+0

and weight wj E Z0 V dj E J, precedence relation P on J of the form

P = {< j,,* >, j = 1,...,k}, nonnegative integer minimum delays 1, for

j = 1,..., k, and a positive integer Y.

QUESTION: Is there a one-machine schedule for J (i.e., a function a : J --- Z0+,

with a(j) > a(j') implying a(j) >_ a(j') + ppg) that satisfies the minimum

delay precedence constraints (i.e., a(*) - Ci(u) > I, for j = 1,... k, where

Ci(a) = a(j) + p, V dj E J) and such that the sum, taken over all J, E J, of

wiCj(a) is Y or less?

53

We now prove that the decision problem version of 1 / min delays, k 1-chains /

, wjCi is NP-complete.

Proposition 3.11 The 1 / min delays, k 1-chains / wjC j < Y problem is NP-

complete.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify

that the associated schedule satisfies the minimum delay precedence constraints and

has total weighted completion time Y or less. Thus, 1 / min delays, k 1-chains /

YbC.., < Y is in NP.

Let index set A = {1,... ,a} and size s(j) E Z+ for all j E A be any instance

of PARTITION (see page 16). We construct a corresponding instance of 1 / min

delays, k 1-chains / • wjCj < Y in polynomial time as follows:

k= a+1;

pj =wj =s(j), j =0, j = I,...,k- 1;

Pk 1, Wkj2, lk 1k jAS)

p. 0, w. =1;

= E-I<j,5k< s(j)s(k) + 14 EiEA s(j) +2'

With respect to jobs J1, ... , Jk-1 , any nonpreemptive schedule without machine

idle time is optimal and has value Ei<pjk<< s(j)s(k). Inserting the unit-time job JA

in a schedule for jobs J1,..., Jk- 1 increases the contribution of jobs Jl,... , Jk- I by

the sum of the processing requirements of jobs from {J.,.. ., .k- 1 } completed after

job Jk.

Suppose there exists a subset A' C A such that EjEA, s(j) = -_-: EA\A' s(j) =

12EjEAs(j). Let S={JJj E{J1, - Jki} : iEA'} and T ={gJ,... Jk_1}\S. The

schedule illustrated in Figure 3.3 satisfies the minimum delay precedence constraints

and has total weighted completion time equal to Y.

54

Jobs in S in any order]dk Jobs in T in any order .

Figure 3.3: Feasible schedule for constructed instance of 1 / min delays, k 1-chains

/ E•wj3 < Y.

On the other hand, suppose there exists no subset A' C A such that EIEA, s(j) =

EjC3 A\A, s(j). Then, in any schedule that satisfies the minimum delay precedence

constraints, the sum of the processing requirements of jobs from { JI,. ., J•- } com-

pleted after job Jk is either strictly less than or strictly greater than -jEA s(j).

Suppose this sum of processing requirements is strictly less than 1 EpE, SO).

Figure 3.4 illustrates an arbitrary schedule that satisfies the minimum delay prece-

dence constraints and for which the sum of the processing requirements of jobs from

{J 1 ,. .. ,~Jk- completed after job Jk equals 2 E3eA s(j) - A for some A > U. The

contribution of jobs Jl,..., Jk-l to the value of this schedule is given by

E s(J)s(k) + I E SUj) - A
1<j<k<a jEA

The contributions of jobs Jk and * are given by
1 1

2 (• 2 1:(j) + A + 1)
jEA

and

1 Z S(j) + A + pk + 1k S(j) + A + 1,
jEA JEA

respectively. Summing these contributions, we see that this schedule has total

weighted completion time Y + !A > Y.

55

Figure 3.4: Schedule with sum of processing times of jobs from {IJ,..., J•-1) com-

pleted after job Jk less than 2 EijA s(j).

Now, suppose the sum of processing requirements of jobs from {I J,..., IJk-I }
completed after job Jk is strictly greater than 2 EjCA s(O). Figure 3.5 shows an

arbitrary schedule that satisfies the minimum delay precedence constraints and for

which the sum of the processing requirements of jobs from {J 1 ,..., J--1 } completed

after job Jk equals I EjEA s(j) + A for some A > 0. The contribution of jobs

Jl,..., Jk-. to the value of this schedule is given by

~1

l_<j~k<a iEA

The contributions of jobs Jk and • are given by

2 (• 2 s(j) -A+ 1)
jEA

and

A•A jEA

respectively. Summing these contributions, we see that this schedule also has total

weighted completion time equal to Y + !A > Y. Thus, there exists a schedule

that satisfies the minimum delay precedence constraints and has total weighted

completion time Y or less if and only if there exists a partition of {J 1 ,..., Jk.I}

56

7 ,jeA o(a)-a ½ ZJEA a)+A

Figure 3.5: Schedule with sum of processing times of jobs from {JJ,..-, J- 1 } com-

pleted after job Jk greater than 2 E

into two disjoint subsets such that the sum of the processing requirements of the

jobs in each subset equals I Ej2 A s(j). 0

Proposition 3.11 does not preclude a pseudo-polynomial time algorithm for 1 /
min delays, k 1-chains / • wiC. Whether or not such an algorithm exists is an

open question.

3.2 Max Delays Problems

Removing idle time from a schedule that satisfies the maximum delay precedence

constraints results in a feasible schedule with smaller total completion time and

no larger total weighted completion time. Thus, 1 / max delays, k 1-chains /
SCj (E wjCj) is the problem of finding, among all schedules without machine idle

time that satisfy the maximum delay precedence constraints, a schedule that has

minimum total (weighted) completion time.

3.2.1 1 / max delays, k 1-chains / 2Cj

In Subsection 3.1.1, we showed that 1 / min delays, k 1-chains / E Cj can be

solved in time O(k 3 Ig k). In this subsection, we show that the corresponding max

delays problem is NP-hard in the strong sense. The decision problem version of 1

/ max delays, k 1-chains / ECi, which we refer to as 1 / max delays, k 1-chains /
SC, < Y, is defined as follows.

57

INSTANCE: Job set J = {J,...,Jk} U {,}, processing rq(iiirvnit,. pj E Z4ý V

.J, E J, precedence relation P on J of the form P - {<" .,,. >, j . I,..., A',

maximum delays uI for j = 1,...,k, where eaclh i IILXiI1J1III1 d(,lay is vithor

infinite or a nonnegative integer, and a positive integer Y.

QUESTION: Is there a one-machine schedule for J (i.e., a functiol f7 : J -- Z0,1

with a(j) > ,(J') implying a(j) Ž_ a(j')+pj,) that satisfies the ILxiIMMUM delay

precedence constraints (i.e., a(*) - C@(a) < u,, where 6,(a) = a(j) + pi V j

I,.. ., k) and such that the sum, taken over all Ji E J, of ('j((7) is Y or less?

We now show that I / max delays, k i-chains / E C', < Y is strongly NI'-

complete. The proof is adapted from and follows closely the complexity proof for

F2 / / ECG, the problem of minimizing total completion time in a two-machine

flowshop, in Carey, Johnson, and Sethi [11].

Proposition 3.12 The I / max delays, k I -chains / !_C3 < Y problem i.s NP-

complete in the strong sense.

Proof: Given any sequence of the jobs in J, we can, in polynomial time, verify

that the associated schedule without machine idle time satisfies the maximum d(elay

precedence constraints and has total completion time Y or less. Thus, I / imax

delays, k 1-chains / E Ci < Y is in NP.

The problem we use for the reduction is 3-PARTITION (see page 23). We start

with t + I unit-length jobs. These jobs have associated maximum precedence delays

such that, if they are the only jobs to be scheduled, then they can be scheduled in

such a manner as to leave t identical slots. We add other jobs having maximumi

delays large enough so that the associated maximum delay precedence congtraimits

are always satisfied and exactly fill the slots with these jobs and ineet the target

total completion time if and only if the 3-PARTITION instance has a solution.

Let T' = {,...,3t) and positive integers a,,..., a:i, and b, with it, E (1b6, 1b)

for all j E 7' and E•CETaj = lb be any instance of 3-PAI'ITITION. We c:onstruct a

corresponding instance of I / max delays, k 1-chains / E C) as follows:

.58

z = 3tb+ 1;

v = z + 3tb + tz + tt-) z(b + 1);

c= zv+b+1;

x = 2(t + 2)c + v;

k=t + l +v+tz;

PS, =1, us, = (t- j)c+ xv, j t;

PX., = , UX, = e+ xv + 1, j =,.,V;

PV,,, =v, uvj = tc + xv + I, ti 1,., , -= 1,.,-3;

PW v + a, uw, =tc+xv+1, j 1,., 3 t;

p. = 0;

y = +•+ +tc+xv+ 1, where

E---o (jc + 1),

X = E;=I (tc + 1 + jx), and

Z 3tb + (j-- [Ev=, v+ ic+ 1)]

-3tb+ tz + £ • z(b+ 1) + (- v.

Bearing in mind that Y, the largest number produced under this mapping from 3-

PAIRT!,TTION tcl ! 1_ delays, k 1-chains / : C1 • Y, is bounded by a polynomial

in t and b, one can easily verify that the mapping satisfies the computation time

and instance size requirements for a pseudo-polynomial transformation.

59

We refer to jobs Js, for j = 0, 1,.., t as 'S' jobs. Similarly, we refer to jobs with

X, V, and W subscripts as 'X,' 'V,' and 'W' jobs, respectively. We refer to the V

and W jobs collectively as 'Z' jobs.

Suppose that T can be partitioned into I disjoint sublsets 7'I,. .. ,'IT such that

EjCT aj = b for i = 1,...,t. Assume 7, = {g(i, l),g(i,2),(i,)} for = ...

and consider the schedule, a, illustrated in Figure 3.6, wherein jobs are identilied

by their subscripts only.

We first show that schedule a satisfies the maximum delay pretcedence con-

straints. The sum of the processing requirements of the Z jobs scheduled between

jobs Js, an(d Js+, in schedule a is given by

(z - .3)v + (3v + b) = zv + b = r - 1.

for j = 0, 1,...,t - 1. Now,

a(*)- Cs,(a) = (t - j)Ac + xv = Us'

for j = 0, 1,..., t, so schedule a satisfies the maximum delay precedence constraints

corresponding to the S jobs. Any schedule without machine idle time satisfies the

maximum delay precedence constraints corresponding to the X and Z jobs since

tc + xv + 1 = p(J). Hence, schedule a satisfies the maximum delay precedence

constraints.

We now verify that schedule a has total completion time Y or less. One can

easily show that C-Gs,(a) = S, = Cx,(o) = X, and C.(a) = tc + xv+ 1. The

total completion time of the Z jobs in schedule or is given by

i-I a

Z=EZ [(iv + ic + 1) + 3ag(,+,,a) + 2aq(,+I, 2) + '~(19(4,3)],
i=0 j=i

which is less than
t-I £ 3M

E = Z[v + j Zc+ l)+3Eaj.
i=0 J= i=1

60

C C

ISo V IV Wq(1,1)W,~(I,2)W9 (i,3)ISI V _V Wg(2 ,1)IWg(2 ,2)lWg(2 .3)S2 F
(z-3) V jobs (z-3) V jobs

Figure 3.6: Feasible schedule for constructed instance of 1 / max delays, k 1-chains

/ECJ<_Y.

Therefore,

Z-.C7(A)=S +fX+-z+tc+xv+1 < Y

and schedule o is feasible for 1 / max delays, k 1-chains / Z Cj.

We now show, through a series of six claims, that if there exists a "good" sched-

ule, that is, a schedule that satisfies the maximum delay precedence constraints and

has total completion time Y or less, then there exists a partition of T into t disjoint

subsets T 1,..., Tt such that IjeT, aj = b for i = 1,..., t. The first and second claims

address the relative ordering of the S and X jobs.

Claim S If there exists a good schedule, then there exists a good schedule that

satisfies
a(S0) < o'(SI) <--.. < o'(St). (3.1)

Proof. Jobs J50 , Js,,..., Js, can be interchanged in any good schedule so that job

Js, precedes job Js,+, for j = 0, 1,... , t - 1 without affecting feasibility or value. 0

Claim Xl If there exists a good schedule, then there exists a good schedule that

satisfies
0'(X,) <-... < (,) (3.2)

Proof: Jobs Jx,,...., Jx. can be interchanged in any good schedule so that job

Jx, precedes job Jx,+, for j = 1,..., v - I without affecting feasibility or value. 0

61

The third claim gives a lower bound for the start time of the X jobs in some

good schedule that satisfies (3.1) and (3.2).

Claim X2 If there exists a good schedule that satisfies conditions (3.1) and (3.2),

then there exists a good schedule that satisfies these conditions that also satisfies

a(Xj) > tc+ I for j = ,...,v. (3.3)

Proof: Among all good schedules that satisfy (3.1) and (3.2), let schedule a be

one with minimum total completion time. Suppose that schedule o does not satisfy

(3.3), so that a(Xi) < tc+ i for some i. Since px, > tc+ 1 for eachj = 1,...,v and

since a satisfies (3.2), then i must be equal to 1.

We now show that the jobs scheduled after job Jx1 in schedule a can be re-

ordered without violating the maximum delay precedence constraints. Observe that

reordering affects neither the start time of job * nor the completion time of job Js,

for any job .Is, scheduled before job Jx, in schedule a. Since a satisfies (3.1), then

the sum of the processing requirements of jobs scheduled between jobs J5, and • in

the reordered schedule is at most
i

P(J) -Px - Ps. = tc + xv - x - j
M=O

for any job Js, scheduled after job Jx, in schedule a. Now,

us, - [tc+ xv-x-jIj = (t - j)c + xv - Jtc + xv - x-j]

= -je+ x +j

= -jc + 2(t + 2)c + v + J

= (2t + 4 -j)c+ v +j

Ž (t+4)c+v+j

>0.

Hence, the reordered schedule satisfies the maximum delay precedence constraints.

Since the jobs scheduled after job JX, can be reordered and since a is a minimum

total completion time schedule, then the jobs scheduled after job Jx, in schedule

62

a must be ordered by nondecreasing processing requirement. In particular, jobs

Jx2,... ,Jx. must be scheduled last before job * in schedule a. Since a(XI) >

Px1 = x, then

,Cx,(o) > X = x + Z(tc + 1 + jx) = X - tc- 1.
j=1 j=2

The start time of job * in schedule o is at least p(J) = tc + xv + 1. Thus

Cs,(a) > p(J) - us, = jc + 1

for each j = 0, 1,..., t - 1. Job Js, must be scheduled after job Jx, in schedule a

since, otherwise,

a(Xi) < tc + 1 =ý- a(Xl) <5 tc #-, Cs, (a) !5 tc =

a(*) - Cs,(a) >_ p(J) - tc = xv + 1 > us,,

a contradiction of the fact that a is a good schedule. Hence, Cs, (a) > p(X 1) = x

and

E=o Cs, (a) _> 3' + 1) +

= S-(tc+ 1)+x

= S+ c+ 4c + v -1

> S+tc+ 1 +v.

By treating the Z jobs as jobs each having processing requirement v scheduled

one after the other, we obtain the lower bound

"9z tz(tz + 1)

2

for the total completion time of the Z jobs in schedule a. Note that

= 3tb-tz-6- 2 z(b+ 1).

63

Thus,

F. (a) _ 3+X+'Z+tc+xv+1

> S+X+2+tc+xv+ 1+tc+ 1 +v-tc- 1 -3tb-tz - Lj1 z(b+ 1)2

= S + + 2+ tc+xv+ 1 +v -3tb-tz - z(b+ 1).

Now, v > 3tb + tz + ,t! . z(b+ 1), so E Ci(a) > Y, a contradiction of the fact that

a is a good schedule. Therefore, schedule a must satisfy (3.3). 0

The fourth claim specifies the start time of job Jx, in some good schedule that

satisfies (3.1)-(3.3).

Claim X3 If there exists a good schedule that satisfies conditions (3.I)-(3.3), then

there exists a good schedule that satisfies these conditions that also satisfies

a(XI) = tc + 1 and a(j) < tc + 1 for all S and Z jobs Jj. (3.4)

Proof: Among all good schedules that satisfy (3.1)-(3.3), let schedule a be one

with minimum total completion time. Suppose that a does not satisfy (3.4), so

that, since a satisfies (3.3), cr(XI) > tc + 1. Note that the processing requirements

of the S and Z jobs sum to tc + 1. Since o satisfies (3.2), then jobs Jx2 ,..., Jx,, are

scheduled after job Jx, in schedule a. Thus, a must include machine idle time prior

to time a(X1), a contradiction of the fact that a is a minimum total completion

time schedule. Therefore, a satisfies (3.4). 0

The fifth claim addresses the number of Z jobs preceding each S job in some

good schedule that satisfies the preceding four conditions.

Claim ZI If there exists a good schedule that satisfies conditions (3. 1)4(3.4), then

there exists a good schedule that satisfies these conditions that also satisfies

job Js, is preceded by exactly iz Z jobs for each i = 0, 1, ... I t. (3.5)

Proof: Among all good schedules that satisfy (3.1)-(3.4), let schedule a be one

with minimum total completion time. Suppose that schedule a does not satisfy

64

condition (3.5), so that in u, some job Js, is preceded by either fewer than or more

than iz Z jobs.

First, suppose that in schedule a, some job Js, is preceded by fewer than iz Z

jobs. Then, the sum of processing requirements of jobs preceding job Js, in schedule

a is no more than

i + (iz - 1)v + tb = i + izv - v + tb

= i(1 + zv + b) - v + tb - ib

= - v + tb - ib

< ic,

where the last inequality follows since v > 3tb > tb. By the definition of us, and

since o satisfies (3.1), then a(Si) > ic, so ao must include machine idle time prior to

time a(Si), a contradiction of the fact that a is a minimum total completion time

schedule.

On the other hand, suppose that in schedule ao, some job Js, is preceded by more

than iz Z jobs. Then, the sum of processing requirements of jobs preceding job Js,

in schedule ao is at least

i + (1z + 1)v = ic+ v- ib,

so a(Si) > ic + v - ib. Thus,

t t1 SOr >- E(jc + 1) + v -ib= + v- ib.
j=O j=O

Moreover, the total completion time of the X and Z jobs in schedule a is at least

E(tc+ 1 +jx) = f
j=1

and
'" ztb+-1),(jv=Z-3tb-tz-

2 z(b+ 1),
j=6 2

65

respectively. Hence,

+Ck(+)>+X+Zv++v-ib- 3tb--tz t(t- 1) z(b+).
2

Since v = z+(3tb+tz+!IL).z(b+l)) and z > ib, then Z Cj(a) > Y, a contradiction

of the fact that a is a good schedule. Therefore, a satisfies condition (3.5). 0

The sixth and final claim in the proof of Proposition 3.12 specifies start times

for the S jobs in some good schedule that satisfies (3.1)-(3.5).

Claim Z2 If there exists a good schedule that satisfies conditions (3.1)-3.5), then

there exists a good schedule that satisfies these conditions that also satisfies

a(Sj) = jc for each j = 0, 1, ... , t. (3.6)

Proof: Among all good schedules that satisfy (3.1)-(3.5), let schedule a be one

with minimum total completion time. Suppose that schedule a does not satisfy

(3.6), so that a(S 1) > ic for some i (since a(*) > p(J) = tc + xv + 1, then a(S,) >

p(J) - us, - ps, = ic). Since schedule a satisfies (3.4), then a(X 1) = tc + 1 and

hence 0 < i < t - 1. Since a satisfie3 (3.5), then the number of Z jobs scheduled

between jobs Js, and Js,4 , in schedule a is z. The total completion time of these z

jobs in schedule a is at least Z=,(ic + 2 + jv). The total completion time of the

Z jobs between jobs Js,, and Jsm+ in schedule a is at least E'=, (mc + I + jv) for

any m = 0, 1,..., t - 1. Thus, the total completion time of the Z jobs in schedule a

is at least
t--I

S(mc + v)+z = Z-3tb+ z + 1.
M=0

The totai completion time of the S and X jobs in schedule a is at least S + X. Now.

ZC(a+> +. + 2 + tc + x,,+ 2 = + 1.

a contradiction of the fact that a is a good schedule. Therefore, schedule a' satisfies

(3.6). 0

66

Table 3.2: Complexity classification of 1 / min and max delays, k 1-chains / _ CJ

or E wjCj problems.

Type of Delays Objective Function Complexity
min delays E Ci O(k3 lg k)
min delays E, wA NP-hard
max delays E Cj NP-hard in the strong sense

To complete the proof, suppose that there exists a good schedule. Then, by

Claims S, XI, X2, X3, Z1, and Z3, there exists a good schedule a that satisfies

conditions (3.1)-(3.6). Let Zi consist of those Z jobs scheduled between jobs Js,_,

and Js, in schedule a for i = 1,.., t. The preceding six claims imply

IZ l= z and JEZ, p, = C - 1 = zv + b

for each i =1,...,t.

Since every V job in Zi has processing requirement v, and every W job in Z, has

processing requirement between v + k and v + A, then Zi must contain exactly three

W jobs with processing requirements that sum to 3v + b. Thus, if we let

T = {j : or(S,_i-) < a (W) <a(Si), j = 1,...,3t}

for i = 1,...,t, then EET, ai = b for each i = 1,...,t. 0

In this chapter, we have investigated the computational complexity of total com-

pletion time and total weighted completion time problems with precedence relation

k 1-chains. The complexity results we have obtained are summarized in Table 3.2.

67

CHAPTER 4

1 / min and max delays,
2 n1 ,n 2-chains / Cmax

Chapter 2 addressed the computational complexity of minimum makespan prob-

lems for which the number of chains was a parameter, k. In this chapter, we fix

k = 2 and investigate the complexity of two resultant problems. These two prob-

lems, 1 / min delays, 2 n1 , n 2-chains / C,,,mz and 1 / max delays, 2 n 1 , n2-chains /

C,,.,, are the topics of Sections 4.1 and 4.2, respectively.

4.1 1 / min delays, 2 nl, n2-chains / Cmna

Recall from Chapter 2 that associated with each feasible sequence (i.e., with

each sequence that satisfies the ordinary precedence constraints underlying 2 ni, n 2-

chains) is an active schedule that schedules each job, and job * in particular, as early

as possible so as to respect the sequence and to satisfy the machine capacity and

the minimum delay precedence constraints. Thus, 1 / min delays, 2 n1, n 2-chains /

Cmax, is the problem of finding, among all feasible sequences, a sequence that has

associated active schedule with minimum makespan. In this section, we provide

a characterization of the feasible sequences. Starting from this characterization,

we develop a pseudo-polynomial time dynamic programming algorithm for 1 / min

delays, 2 n 1, n 2-chains / Cm0 .

The 2 ni, n 2-chains precedence relation imposes strict ordering requirements on

jobs Jdin,..., J1 ,,,, and J2,1,..., J2,,2. Consequently, we can equate with each feasible

68

sequence a string of ni-l's and n2-2's. The rth symbol in the string is a 1 (2) if the

first subscript of the rth job in the given sequence is a 1 (2) for r = 1,..., n, + n2 .

The number of ways to choose ni of n1 +n 2 symbols to be l's, and hence the number

of feasible sequences, is equal to

(ni+n2fn

(see [8]), which is not bounded by any polynomial in n1 and n2. Thus, 1 / min

delays, 2 n1 ,n 2-chains / C,,ma cannot be solved in polynomial time by explicitly

enumerating all feasible sequences.

In the following discussion, we refer to job * as J,,,+1 and we let J1,o (J2,o)
be a job with zero processing requirement which must precede job J1,1 (J 2,1) (see

Figure 4.1). We define 11,o = 0 and 12,0 = 0. We refer to jobs J1,0 , J1 ,1,.. . , J1,n,+ I as

the 1-jobs and to jobs J2,o, J.2,1, . , Jn as the 2-jobs.

Without loss of generality, J2,o is the first job and J1,0 is the second job in any

feasible sequence. Since Jl,,+, is necessarily the last job, then, in any feasible

sequence, the 2-jobs other than J 2,o are interspersed among the 1-jobs. Due to the

strict ordering requirements on the 2-jobs, each feasible sequence is characterized by

the number of 2-jobs (other than .12,0) between jobs Jl,i and Jl,i+l for i = 0, 1,..., ni.

We might imagine there are n, + 1 bins, one each between jobs Jli and Jl,i+l

for i = 0, 1,... ,ni, into which the 2-jobs are placed (see Figure 4.2). Suppose that,

having placed xi of the 2-jobs in bin j for j = 1,...,t - 1, so that st-1 - 1 x of

the 2-jobs are in bins 1,..., t - 1, we decide to place xt of the n 2 - st-I remaining

2-jobs in bin t. This decision corresponds to appending jobs J2,,,,+,,.. *i.o,_-+.,

and J1,t, in that order, to the end of the sequence

32,0 -"+ J .12,1 --+ -- " -- J2, - ,. - J 24.- +1 J2"'- J 2,.,+r 2 - J1,2

--* --+ JIJ-2 -- J2•,X+...+Z,_2+1 --* '"" --+ J2.,,_, J14-1 .

Let ft be the contribution of these additional jobs to the makespan of the active

schedule associated with the appended sequence. In other words, fj is equal to

69

J1,1
J2,1

J 2 ,0

JIO t

J1o)

Figure 4.1: Strict ordering requirements imposed by 2 nj, n2 -chains.

J2,0 J,o Binl I .Bin. 2 Bin n, Jlj, I Bin n, +I J,1t+

Figure 4.2: Bins into which the 2-jobs are placed.

70

the difference between the completion times of jobs J1,t and J,.t- 1 in the schedule

associated with the appended sequence. Then, for each solution xi,..., x,,•+ of

xl+"+xl+l ==n 2, xi E Z+ forj=1,...,n,+1,

the makespan of the schedule associated with the feasible sequence defined by

X1,...-, x,+1 is equal to "1+l ft. For reasons which will soon be apparent, we

define wt. 1 to be the difference between the start time of job J1,t-1 and the comple-

tion time of job J2,,,_1 in the schedule associated with the original sequence.

We now exhibit formulas for ft in terms of st-,, wt- 1, and xt for each t =

1,... ,n, + 1 and each feasible combination of xi,...,xt-, and xt. These formulas

depend on x1 ,..., xt1 only through the roles these variables play in determining

st-, and wt-i. Subsequently, we show that for t = 1,...,n, + 1, both st and wt

can be computed given only st-,, wt- 1 , and xt, so that we can treat 1 / min delays,

2 nt, n2-chains / C,,, as a discrete-time sequential decision process modeled as

n1+1

z = min E ft(Stsl,1W~t-,xt)X1 . r" " t' l t =" 1 {--

(st, Wt) = 'kt(st-l, wt-i, Xt) for t = 1,..n.,n + 1

(so, wo) given.

Then, we prove that the dynamic programming recursion that arises from this model

allows us to solve 1 / min delays, 2 n1 , n2-chains / Cmoz in pseudo-polynomial time.

In exhibiting formulas for ft, we consider four cases, the first and second with

t E {1,... ,n 1) and either xt = 0 or xt E 1,. .,n 2 - •t-1}, and the third and

fourth with t = n, + 1 and either s- = s, = n2 or s,• E {0,1,...,n 2 - 1).

From Figure 4.3, we see that for each t = 1,... ,nl and each feasible combination

of xi,.. ., Zt- 1 , and Xt with xt =-0,

ft = 114-1 + Pi't. (4.1)

71

J--I* J I ,t

Figure 4.3: Makespan contribution ft, t E {1, n } and xt = 0.

Wt-i g1 PLPs1_1 +jt_i +zt g2 pi's

Figure 4.4: Makespan contributiou, ft, t E {1,... ,nl} xt E {1,... ,In2 - t- I

Define

PLPm,m, = Y (P2,r + 12A,) +P,,', 1 < m < ml < n 2.

We see from Figure 4.4 that for each t = 1,...a, n1 and each feasible combination of

x,,..., I xt_1, and xt with xt E {1,... ,I 2 - st_,}, where st-1 = x,

ft = g, + PLP,,_,1 +1 ',, 1 +X, + g2 + pIt, (4.2)

where

g2 = [1t,,-_ - (g, + PLPot-1+,a,,,_+zt)]+ (4.3)

and

91 = {12.,,_, - (Wt,_ + Plt-_)}+. (4.4)

Examining Figure 4.5, we see that for each feasible combination of X1 ,... I,,n,

and Xn+i such that sn = j = n2,

f,+1= max{4l, ., , [12 ,, 2 - (wa, ±,+ p,)]+1 + p.. (4.5)

Finally, we see from Figure 4.6 that for each feasible combination of x1,...., Xn,, and

X,,,+i such that sni, = £;l= xi E {0,1,... n2 - 1),

f 9,+1 = g' + PLP.,,1 +.,,2 + g2 + p-, (4.6)

72

""2•{*,,1 ,[,2 _(-(.* +P*,.)]+} P.

Figure 4.5: Makespan contribution f,,+, s,,a = n2.

" " • ~~n +1 " " ,n

WnI 91 PLP~n ÷l,n2 92 p.

Figure 4.6: Makespan contribution f,,,+I, sa, E {0, 1,..., n2 - 1}.

where

92 = max{[II,n, - (g, + PLP1 ,,+ 1 ,. 2)]+,12 ,n,} (4.7)

and

91 = {12,.., - (W,, + pin,)}+. (4.8)

Equations (4.1)-(4.8) give formulas for ft in terms of st-,, wt_1, and it for each

t =i.... ,na + 1 and each feasible combination of xi,..., xt-1, and xt. These formu-

las depend on xl,..., xt-I only through the roles these variables play in determining

at-, and wt-1. We now show that, given st-,, wt-1, and it, we can compute both

st and wt for t = 1, ... n, + 1, so that the model on page 71 is of the correct form.

By definition,

st = st-, + it for t = ,.,ni + 1, st-I =_ 0, 1,.,n2, and it = 0, n,.,r2 - st-1,

where so = 0. Thus, given at-, and it, we can compute st for t = 1,... + 1.

For each t = 1,...,ni + 1 and each feasible combination of x11... ,xt-, and

Xt, Wt is defined to be the difference between the start time of job JI,t and the

completion time of job J 2,o, in the schedule associated with the sequence defined

by x?,.. .,xt-, and xt. From Figure 4.3 and equation (4.1), we see that for each

73

t = 1,...,n, and each feasible combination of xl,... ,xt-1, and xt with x, = 0,

Wt = Wt-. + Pit-i + 11,t-1. (4.9)

We see from Figure 4.4 and equations (4.2)-(4.4) that for each t = 1,...,n, and

each feasible combination of Xh...,Xt-., and xt with xt E { 1,.... n2 - st-1),

Wt= = [,t-1 - (g, + PLPo,_ +'8t_, ÷ ,)]+, (4.10)

where

g1 = {12,.,_1 - (w,-1 + Pl.,-,)}+. (4.11)

Equations (4.9)-(4.11) make sense only if wt =_ 0. Since there are only ni + I

decisions to be made, then w,, +1 is irrelevant. We adopt the convention w, +1 = 0

for each feasible combination of xl,... , ,,+,. Therefore, given st-,, wt-1, and xt,

we can compute both at and w, for t = 1,...,n, + 1.

A potential difficulty with the model on page 71 is in the large number of distinct

wt-1.'s that might be paired with a given st-,. The number of feasible sequences of

jobs J1,,..., J1,t- 1 and J2,1,..., J2,.,-, with job J1,t-1 last is equal to the number of

ways to choose t - 2 of t - 2 + st-i symbols to be l's. In other words, as many as

distinct wt-i's might be paired with at-, for each t = 2,..., n, and st- = 0, 1,..., n 2.

Since
nl n2

C = E(Pi + 1,,i) + E(pzJ + 12j) + p.
i=1 j=1

is an upper bound for the makespan of any schedule, then wti- < C". Thus, the

number of distinct wt-i's paired with at-, is at most Cu for each t = 2,..., n, and

st-1 = 0, 1,...,n 2 . (As always, we assume that the data are integral.) We now

prove that we can replace wt-1 by min{w._., [12,,_-, - pi,t-1]+1, so that the number

of distinct wt-.'s paired with at-, is at most 1+[12,,,-, -Pt.-ll+ for each t = 2,..., n,

and at-, = ,1,..., n 2.

74

Examining equations (4.2)-(4.8), we see that wi-.i > 12,,,_, - p14-i is a condition

under which each ft is in fact independent of wt- 1. We see from equations (4.10)

and (4.11) that wt-i. > 12,,,_, - pl,t-I is also a condition under which, for each t =

1,..., n1 and each feasible combination of xl,..., xt- 1 , and xt with xt E {1,..., n2 -

st-,}, wt is in fact independent of wt-1. From equation (4.9), we see that for each

t = 1,... ,,n1 and each feasible combination of z1 ,...,xt_1, and xt with xt = 0,

Wt-1 >_ 12,s,_, -- Pi't-i => Wt > 12,,,-l + l1,t-I = 12,., + ll,t-I >_ 12,., -- pI,t,

that is, wt-. 1 > 12,o,_1 - PI.t-I is a condition under which w, "' 12,., - Pi,t. Therefore,

we are justified in replacing wt_, by min{wt_1, [12,,,-, -Plt-i1+ } for each t = 2,... ,n

and st_1 = 0, 1,.•. , n2.

We now state the dynamic programming recursion that arises from the model

given on page 71. Let zo(so, WO) = zo(O, 0) = 0. For each m = 1,..., nj + 1 and each

pair (S,,,,Wm), let

z, (sM IWM,) = min Ef,(st_1,wtixt)

Zm(SWm WO mm O f(st-j, wt...1, xt)fotm

t--I

(So, wO) = (0,0).

Then, z = zn1+,,(n 2, 0). By the principle of dynamic programming optimality (see

[41 for example),

Zm(sm, Win) = min(fn(s-gm-., , wml, zx) + zm._ i(sm,,. _, wm..)) (4.12)

fR = {s,,_, wn,, and x.: I(s,,m,_,wm_,,xm) = (sm,,wm)}

for each m = 1,...,n1 + 1 and each pair (sm,,wm).

The following proposition gives the computational complexity of solving 1 / min

delays, 2 n1 , n2-chains / C,.-. using (4.12).

Proposition 4.1 The 1 / min delays, 2 n1 , n2-chains / Cm,,, problem can be solved

using the dynamic programming recursion (4.12) in time O(njn2(1 + [L2 - pll)),

where L2 = maxj-,_....,, 2 12j and p, = mini=2,...,. pi,i.

75

Proof: The bottleneck operations in computing Zm(Sm,WM) are calculating and

determining the minimum of at most s, + 1 quantities. The number of distinct wm's

paired with a given sm is at most 1 + [L2 - pl]+. Thus, for each m = 1,... ,hn + 1,

computing zm(sm,, Wi) for each am and w, requires time

n2

o((l + [L2 -)_1 (S,,, + 1)) = 0(n•(1 + [L2 - Pll+)), 0
Sm-------O

We have tried without success to classify 1 / min delays, 2 n 1, n2-chains / C,0 m

more precisely with respect to its computational complexity. Whether or not this

problem is solvable in polynomial time and whether or not this problem is NP-hard

are open questions.

4.2 1 / max delays, 2 n1, n2-chains / C,,ax

In Section 4.1, we presented a characterization of the feasible sequences, that is,

of the sequences that satisfy the ordinary precedence constraints underlying 2 nI, n 2 -

chains. In this section, we show that this characterization leads to a polynomial time

dynamic programming algorithm for I / max delays, 2 ni, n2-chains / C,'..

Without loss of generality, solutions to 1 / max delays, 2 ni, n2-chains / CmQ

include no machine idle time, since removing machine idle time from a schedule that

satisfies the maximum delay precedence constraints results in a feasible schedule with

smaller makespan. Schedules without machine idle time are necessarily minimum

makespan schedules. Thus, 1 / max delays, 2 nl,n 2-chains / C,,,, is the problem

of finding a schedule without machine idle time that satisfies the maximum delay

precedence constraints.

As in Section 4.1, we refer to job * as Jl,,,+1 and we let J1,0 (J2,o) be a job with

zero processing requirement which must precede job J.1,1 (J 2,1). We refer to jobs

JI,0, J1,..-, Ji., +l as the 1-jobs and to jobs J2o,0 J 2 ,. .. ,J2,,,2 as the 2-jobs. We

76

define 11,0 = oo and 12,0 = 0c so that, without loss of generality, J 2,o is the first job

and J1,0 is the second job in any feasible sequence. Then, each feasible sequence is

characterized by the number of 2-jobs (other than J2,0) between jobs Jli and Jl,i+l

for i = 0,1,... , ni.

We say that a schedule of the jobs in J is feasible if that schedule satisfies the

maximum delay precedence constraint corresponding to each < J, J,, > E P. In

the same vein, we say that a schedule of the jobs in J' C J is feasible if that

schedule satisfies the maximum delay precedence constraint corresponding to each

< J,, J, > E P such that J, E J' and J,, E J'.

Again as in Section 4.1, we might imagine there are n, + 1 bins, one each be-

tween jobs Jl,i and Jl,i+l for i = 0,1,... ,ni, into which the 2-jobs are placed (see

Figure 4.2). Suppose that, having placed zi of the 2-jobs in bin j for j = 1,..., t -1,

so that st-1 = E x;' x. of the 2-jobs are in bins 1,... ,t - 1, we decide to place xt of

the n2 - st- remaining 2-jobs in bin t. Let wt- 1 be the difference between the start

time of job J1 ,t- 1 and the completion time of job J2,,,-, in the schedule (without

machine idle time) defined by x1,..., zt1. Then, from Figure 4.7, we see that for

t = 1.... n4, the schedule defined by x1 ,..., xt-1, and xt is feasible if and only if

1. the schedule defined by x1,... , zt-1 is feasible and

2. if xt > 0, then wt-1 + pl,t-1 ! u 2,,,-, and

81-1 +Xt
,,P2,, <_ uiat-i.

Moreover, we see from Figure 4.8 that the schedule defined by x ,..., x,,,, and x,,+1

is feasible if and only if

1. the schedule defined by zl,... , xz, is feasible and

77

* * .J,.t.- * * J1,t-1 1 J2"a-l' ** J2,a.-l. , t JI, 1

Figure 4.7: Schedule defined by Tj,..., xt-., and xt.

JIjn J2,nj +1 J2Ii IZ]

Figure 4.8: Schedule defined by x1 ,..., x,,, and +.

2. if Xn+1 = 0, then w,,, + PI,n, < u2,n2 ; otherwise,

n2

- Pni +" 1

Thus, given that the schedule defined by xl,..., xt. 1 is feasible, we can easily de-

termine whether or not the schedule defined by x1 ,....xt-j, and xt is feasible for
t = 1,...,nl.

Let x",... , x' and x"I,..., 4X" be distinct solutions of

xi + " + xt =st, xiE Zo+ for j l..t

for some t E {2,...,nil and st E {1,...,n 2}. Assume that both o' and a",

the schedules defined by x,... ,x' and " , respectively, are feasible. We

say that x,..., x dominates x", ... , if the existence of x",..., +I with

r~n+l x!= n 2 - st such that the schedule defined by zx',...,x" is feasible implies

the existence of x't.,, I zn.. 1 with =9+2 3 = n 2 - st such that the schedule de-

78

fined by x',. ., x'+l+ is feasible. We now present a sufficient condition for x',..., xI,
/tIt

to dominate x",... , x'.

Proposition 4.2 If cr'(2, st) Ž_ a"(2, st), then x,.., x' domInates x",..., x'.

Proof: Suppose that the schedule, &", defined by x...... x", is feasible. We

verify that the schedule, &', defined by x,, .1, xt, ... I X/I is feasible. Since a'

is feasible, then 8 d satisfies the maximum delay precedence constraints corresponding

to < J,,Jr, > E P such that J, E J."' = {Jio, J,1,..., J.,} U {J2 ,o, J2,1,. .,J 2,8,}

and J,, E Jt'. Since &" is feasible, then &' satisfies the maximum delay precedence

constraints corresponding to < J,, Jr, >E P such that J, E J\jtP-, and Jr, E J\JI'°'.

Now, < Jr, Jr, > E P such that J, E P"" and J,, E J\ J",a, consists of < J1,t, Jl,t+l >

and, if st < n 2 , of < J 2,,t,J 2,,,+l >- Schedule a' satisfies the maximum delay

precedence constraint corresponding to < J1 ,t, JI,t+1 > since

&'(1,t) =

and

c,,,+i W") - &"(1, t) <ui,.,

Since

&'(2, st) = a'(2, st) < o"(2, st) = Y"(2, st),

c.,81+,() = c2,,.+,(Y"),

and

c2,,,+,(,&")- &"(2,st) < U2,,,,

then schedule &' satisfies the maximum delay precedence constraint corresponding

to < J 2,5 ,, 1 >]

Using Proposition 4.2, we can solve 1 / max delays, 2 ni,n2-chains / Cm, by

dynamic programming as follows. For t = 1,.. , ni and st = 0, 1.... n 2, we check

79

the feasibility of the schedule obtained by adding jobs J2+ , 2 ,, and dt,,

in that order, to the end of a feasible schedule (if any) of jobs J1,0, J1,1,..., Ji't-I

and J2,o, J2,1,...,d2.,,-, with job J1,t-. scheduled last for s, 1 = 0,1,... ,st and

we select from among the feasible schedules (if any) one with job J.2,, scheduled

latest. Then, for t = n, + 1, we check the feasibility of the schedule obtained by

adding jobs J2,.,,,+ 1,..., dJ2,,,, and *, in that order, to the end of a feasible schedule

(if any) of jobs 'h,0, J1 ~1,...,J 1 ,,•1 and J2 .0, d2,1,..,J 2,.., with job J1,,, last for

S,• = 0, 1,..., n 2 -. The time required to solve I / max delays, 2 ni, n2 -chains / C,,,

using this recursive procedure is

o(n (st + 1) + n 2 + =O(nin
Ag =0

In this chapter, we have investigated the computational complexity of minimum

makespan problems for which the number of chains is two. In particular, we showed

that 1 / min delays, 2 n1 ,n 2-chains / C,,, can be solved in pseudo-polynomial time

and that 1 / max delays, 2 ni,n 2-chains / C,.., can be solved in time 0(nn•).

80

CHAPTER 5

SPECIAL CASES,
HEURISTICS, AND BOUNDS

In this chapter, we present a miscellany of results including polynomially solvable

special cases, heuristics, and bounds for two problems which are not known to be

solvable in polynomial time. The first problem, 1 / min delays, k 2, 1,..., 1-chains

/ Cmci, was shown to be NP-hard in Chapter 2. The second problem, 1 / min

delays, 2 n1 , n 2-chains / Cm,,, was shown to be solvaLle in pseudo-polynomial time

in Chapter 4.

5.1 1 / min delays, k 2, 1,... , 1-chains / Cma

5.1.1 Relative Ordering of Jobs J2,..., Jk

In each feasible sequence for k 2,1,..., I-chains, each job from { J 2,..., JA } ap-

pears either before job J.,, between jobs J., and J.,, or between jobs J.2 and *. The

following prcoposition describes the relative ordering of the jobs from {J 2,..., JA}

which appear before job J,,, between jobs J,, and J,,, and between jobs J,, and •

in the sequence associated with some optimal schedule.

Proposition 5.1 There ezists an optimal schedule u* with associated sequence of

the form

J1 2 ' 'i-- Je, .J ', ... Je Jew. -4 Jz 3 J~, -r -l J" -

81

where 1 <i < m < k, such that

l> . > le,, 1,+ > > l,,, and l1,,,+, > . >1. (5.1)

Proof: Let a be any optimal schedule and suppose that the sequence associated

with schedule a does not satisfy condition (5.1). Then, there exist adjacent jobs

Jj and Jj,, both in {JJ,...,J}, such that Ji -" Jj, but 1 < lj,. Let a' be the

schedule obtained from schedule a by interchanging jobs Jj and Jj,. Let A =

maxJ7 EJ\{j,,J,,,} {CT((f') + =} - maxJ7 EJ\{J,,j,,,.) {CI(a) + 1, 4. Then

Cmai,(o7') = max{A, Cj(ao) + l1, C,(o') + I,)

= max{A, a(j) + p3 + pj, + I (j)+p + 1 j,}

< max{A, a(j) + pj + p l, + r(j) + pj, + ,(j) + p. + p,' +l•,}

= max{A, O'(j) + pj + Pj' + ',

= max{A, ,(7) + p, + 1t, ,(j) + pj + pj, + 1,A

= max{ZA, C,(a) + 4j, Cj,(0) + iA,

= C,,.(,().

Repeating this argument, we see that schedule a can be transtormed into a schedule

that satisfies (5.1) without affecting the makespan. D

The number of sequences of the form

Je2 -- - -- J 'i Jx1 J .+t - -. - ' J.g. -- Jz2 . ' --+ ...+ -. j,'. -.

that satisfy (5.1), where 1 < i < m < k, is equal to the number of ways to distribute

k - 1 labeled objects (i.e., jobs J 2,. .. , Jk) into three labeled bins, one before job

J., one between jobs Jz,, and J,,, and one between jobs J,ý and *, where bins are

allowed to be empty. By a straightforward combinatorial argument, we can show

that the number of such distributions is 3k-".

5.1.2 Heuristic with Worst Case Performance Ratio 2

The worst case performance ratio of a heuristic algorithm for a given minimiza-

tion (maximization) problem is defined to be the supremum (infimum) taken over

82

all problem instances of the ratio of the value of the heuristic solution to the op-

timal value. As a prelude to presenting a heuristic algorithm for 1 / min delays,

k 2, 1,..., 1-chains / Cm,, with a worst case performance ratio of 2, we describe two

relaxations which yield lower bounds for the optimal makespan. The first relaxation

of the instance of I / min delay, k 2, 1,..., 1-chains / C,,., shown in Figure 5.1 is

obtained simply by eliminating job Jr, (see Figure 5.2). The second relaxation is

obtained by eliminating job J,2 and imposing a minimum delay of 1,,, + p,ý + 1., be-

tween jobs J-, and * (see Figure 5.3). Clearly, if a' : J \ {J., } -, Z+ is an optimal

schedule for the instance of 1 / min delays, k 1-chains / C,, shown in Figure 5.2

and o" is an optimal schedule for the instance of 1 / min delays, k 2, 1,..., 1-chains

/ Cm,, shown in Figure 5.1, then

c.(,,') _<C(a)

Similarly, if r2 : J \ {J,) } -- Z+ is an optimal schedule for the instance of 1 / min

delays, k 1-chains / C,,,. shown in Figure 5.3, then

c.() < C.(o0).

From aI, we can obtain a schedule for I / min delays, k 2, 1,..., 1-chains / C,,

with a makespan that exceeds the makespan of schedule a' by at most ps, + ix,.

In Section 2.1.1, we proved that 1 / min delays, k 1-chains / Cm4: is solved by

sequencing jobs Jl,..., Jk in order of nonincreasing precedence delay. Thus, we

may assume that the sequence associated with schedule or has the form

Je 2 -- + - --- Je ,+ JX2 -4 i+ --+ Jej, _+*

where 1 <i<kand 10 > .-. >_: li >le,. , >_... > ilk-. Let &t' be the schedule

obtained from a' by scheduling job J., first, that is, &I is the schedule associated

with the sequence

J.aI, J. 2 . .. -+ J.., -+ Je 4 J .

83

P2 pk

Figure 5.1: Instance of 1 / min delays, k 2, 1,.,1-chains /Cmr,,z.

Figure 5.2: First relaxation of 1 / min delays, k 2. 1,..., 1-chains / C,,, instaince.

84

Pe

1XI + PX2 + 'X2 12 k

P., J'h P2 J2 .kP;;

Figure 5.3: Second relaxation of 1 / min delays, k 2, 1,...,1-chains / C,,, instance.

ei X2 e+

Figure 5.4: Weighted, directed graph corresponding to schedule &1.

From Figure 5.4, we see that

&(X2)-- a,(x 2) + P-, + [l., - Eit_2 P, I+

, 1 (X2) + P, +lz,

which implies

c.(o,) - C.(o') < p,, + l.,.

Similarly, from a2, we can obtain a schedule for 1 / min delays, k 2, 1,..., 1-

chains / C,,•,. with a makespan that exceeds the makespan of schedule a2 by at

most pX2 + 112. We may assume that the sequence associated with schedule a2 has

the form

J-2 Jem. L J emI J .. -

where I < m < k and le, ... l. ,, + P + 1,,2 - 1,,,+,>... >Ck. Let

85

1,2

Figure 5.5: Weighted, directed graph corresponding to schedule .2

&2 be the schedule obtained from a2 by inserting job Jd2 as soon after job J., as

possible so as to satisfy the minimum delay precedence constraint corresponding to

< J,, J,2 >, that is, I2 is the schedule associated with the sequence

Je 2 --+ "'" -- + 4,: --+ JZI -'+ J•,+: -'+ "'" "-+ Je, -+ J1 2 -Jer,+ý -+" -' Jej, -+ *,

where r = argmin{s = m + 1,..., k : E= P, - 4, }. If no such r exists, then

job J' 2 can be inserted into schedule a 2 before job * without affecting the makespan,

in which case C.(&2) = C.(a 2). On the other hand, if r exists, then, from Figure 5.5,

we see that
k

•2(,) = a2(*) + P:2 + [l - P1 Pe+.
t=r+,

Thus,

C.(52) _ C.(o2) < Pa2 + 41.

We now prove that the heuristic that involves selecting between &1 and &2 the

schedule with smaller makespan has a worst case performance ratio of 2.

Proposition 5.2 Let a = argmina=ai,2{C.(&)}. Then C.(a) :< 2C.(o").

Proof: We consider two cases, the first with p,,, + 1ý: < p:2 + I., and the other

with p,,, + 1,, > PN2 + -12- If p-1 + 1-1 _ P-2 + 4:2, then

C.(C') <C.(_)

C.(a*) - C.(a')

86

< C-&)
- C.(o")

< C.(o') + p,, + I.
C.(ol)

< C,(al) + P' +1-2
- C.(CrI)

< 20.(al)
-C.(al)
-- 2,

where the last inequality follows since C.(a') >p + 1,,. On the other hand, if

Px, + lZI > P12 + 112, then

c.(a) < c.(a2)
c.(o,-) - c.(O-*)

< c.(&,)
-c.(a2)

< C.(W) + PI2 + 1-2
- C.(a2)

< C.(W) + P", + ,
- C.(a2)

< 2C.-(,2)

where the last inequality follows since C.(a') >p,+ Ix.,3

This heuristic can be accomplished in time 0(k lg k), the time required to sequence

k jobs in order of nonincreasing precedence delay.

87

The proof of Proposition 5.2 is based on the inequalities

C.(&') - C.(aY) •< p,. + I.,

and

C.(O2) - C.(a2) _< p.. + '.,.

Proposition 5.2 gives the strongest possible result only in the seemingly unlikely

event that for some instance, both of these inequalities are tight. Conceivably, a

worst case performance ratio less than 2 could be established. As the following

series of examples shows, though, the heuristic's worst case performance ratio is

at least 2. Let k = 4, pi =p = p. = 1, p2 = p3 = s, P4 = S, lz = + 1,

.2 = S, 12 = 13 = 1, an' 14 = 0. Then &I, the schedule corresponding to sequence
J.1 -- J., "- J2 --+ J1 3 -'- J4 -' *, has makespan "3 + 4 and 2, the schedule

corresponding to sequence J,, --+ J2 --+ J3 --* J4 --+ * has makespan 3s + 3.

The optimal schedule, corresponding to sequence J.,1 --+ J2 J3 -* J- ,/4 -*

has makespan 2s + 4. Thus,
C.(a) ~ 3s+3 3

lim -= lir)im
*-.oeC.(o') s-.oo2s+4 2

Schedules P1 and &2 belong to the class of schedules associate-1 with sequences

obtained by first ordering jobs J2,..., J., by nonincreasing precedence delay and

then inserting jobs J,, and J.1,, with job J_1, before job J.,,. The number of such

insertions is 0(k 2). Since computing the makespan of the schedule associated with a

given sequence requires time O(k), then finding a schedule with minimum makespan

among these insertion schedules can be accomplished in time O(k lg k + k3).

5.1.3 Pseudo-polynomial Algorithm for Special Case with

12 = ... = 1 k = 0

In proving that 1 / min delays, k 211,..., 1-chains / C,.a, is NP-hard, we in

fact proved that the special case with 12 = ..- = = 0 is NP-hard. We now prove

88

Je................ j !9 .. Je1 NS I +

Figure 5.6: Obtaining schedule 3" from schedule o,*.

that this special case is not NP-hard in the strong sense by exhibiting a pseudo-

polynomial time algorithm.

The following lemma specifies the first job scheduled in some optimal schedule.

Lemma 5.3 There exists an optimal schedule for the special case of I / min delays,

k 2, 1,.. ., 1-chains / C,,., with 12 ... =l = 0 in which the first job scheduled is

Jr:
J. 1 .

Proof: Let a* be any optimal schedule. If the first job scheduled in a* is Jr,,

the proof is complete, so suppose that jobs J,,,... , J,, are scheduled before job J.1
and jobs J+,,..., Je axe scheduled between jobs J,, and J, 2 in schedule a*, where

I < i < m < k. From Figure 5.6, we see that the schedule, a', obtained from a* by

interchanging jobs J,, and J.,, has makespan A less than C.(ao), where

M m n m m

(ZP,., + P1, + E Pe, + lz"I, - p, (P) (p + E p,, + l : pe I+)
t=2 t=i+l t=i+1 t=2 t=2

= it.1 - E P.e]+ - [l., - E Po,+
t--i+l t=2

> 0. 0

As a result of Lemma 5.3, we can restrict our search for an optimal schedule to those

schedules with job J,, scheduled first.

Let a be any active schedule with job J,, scheduled first, let S C {J 2,..-, JA}

include those jobs scheduled between jobs J,, and J.2 in a, and let T = {J 2,., J1,}

89

S include those jobs scheduled between jobs J2, and * in a. Since 12 = . = 0,

then the order in which the jobs in S are scheduled in a is immaterial, as is the order

in which the jobs in T are scheduled in a. Now, either EjJ,es Pi < 1,,, in which case

schedule a includes idle time between jobs J., and J., or JES PJ Ž- i,, whence a

includes no idle time between jobs J_, and J 12. Similarly, either EJ ETPi < 1:,2 in

which case schedule a includes idle time between jobs J,, and *, or LJETPj >- 1r2,

whence a includes no idle time between jobs Jx, and *. In other words, schedule a

has one of the four forms shown in Figure 5.7.

Since

P'i + i'l + P + 1"' + p.

is a lower bound for the optimal makespan, then a "Form 1" schedule is necessarily

optimal. Moreover, since

E JJjEJ

is a lower bound for the optimal makespan, then a "Form 3" schedule is necessarily

optimal as well.

For each j = 2,..., k, define

1, job .1 is scheduled between jobs J,,, and J_-,
)i 0, job Ji is scheduled between jobs J,2 and *.

Recall that all data are assumed to be integral and let x1 2 be an optimal solution

for the problem given by

k kmax{l pjzj : Epjxj •: 1, - 1, x E B'-}. (5.2)
j=f2 j=2

Problem (5.2) is a special case of the 0-1 knapsack problem known as subset sum"

since, for each variable, the objective and constraint coefficients are the same. If

90

>0 >1,2 >0

-'I'l >0 >1,2

Form 3 J-' J. 2 *

Form 4 -. ,

>0

Figure 5.7: Four possible forms for any schedule with job Jr, scheduled first.

•1=2 p(1 x12) < 12, then the schedule, a1 2, defined by x12 is a Form 1 schedule.

Otherwise, 0,
12 is a Form 2 schedule with minimum idle time between jobs J, and

J-2 and hence with minimum makespan among Form 2 schedules.

Let x34 be an optimal solution to

k k

min{"•pix : .p3 j >_, x r B k-l}.
j=2 j=2

Equivalently, x34 is the 0-1 complement of an optimal solution for the subset sum

problem given by

k k A;

max{I pj-, : Ip.xi _< y2i - 1,1, z E Bk-'}. (5.3)
j=2 j=2

lf .=2 pj(l -- X) Ž I., then the schedule, oa3, defined by x34 is a Form 3 schedule.

Otherwise, a 4 is a Form 4 schedule with minimum idle time between jobs Jr, and

91

• and hence with minimum makespan among Form 4 schedules.

In order to solve the special case of I / min delays, k 2, 1,.. l-chains / Cmax

with l1 = .-. = lk = 0, we first solve the subset sum problems (5.2) and (5.3). If o 12

(o,4) is a Form 1 (3) schedule, then ,12 (o3) is optimal. Otherwise, the schedule

with minimum makespan between a 12 and a' is optimal. Problems (5.2) and (5.3)

can be solved b'y dynamic programming in time O(k. 1,2l) and O(k(EZ__ p, - 1.,)2),

respectively (see Nemhauser and Wolsey (19] for example). Thus, the NP-hard

special case with 12 = -. = lk = 0 can be solved in pseudo-polynomial time.

5.1.4 Heuristic with Worst Case Performance Ratio ý + A
for NP-hard Special Case

As an alternative, we could solve '5.2) and (5.3) using the fully polynomial

approximation scheme described in Lawler [171 for the subset sum problem. An

algorithm for a minimization (maximization) problem is said to be a fully polynomial

approximation scheme for that problem if, for any C E (0, 1) the algorithm satisfies

1. for any problem instance, the worst case performance ratio (see page 82) is at

most I + e (at least 1 - e) and

2. the running time of the algorithm is polynomial in the input length and in •.

We now show how to use Lawler's fully polynomial approximation scheme for the

subset sum problem in conjunction with a particular 0-1 knapsack heuristic to pro-

duce a heuristic algorithm with a worst case performance ratio of 1 + A for any

A a (0, 1) for an even more specific but still NP-hard special case of 1 / min delays,
k 2, 1,.,1-chains / C.,,.

This special case, with 12 = = = 0, P" = Al = p = 0, E=2p, divisible

by 2, and I =1Z2 = I=2p, is illustrated in Figure 5.8. The significance of

1, = 1t' = p E.,2 pj is that in any schedule, either the sum of the processing

requirements of the jobs from {J 2,... , A I scheduled between jobs J, and J,2 is lz•

or greater, or the sum of the processing requirements of the jobs from {J 2,..., Jk}

92

- j=2 00

P2 P
1 Ek

Figure 5.8: Special case of 1 / mrin delays, k 2, 1,..., 1-chains / Cmz.

scheduled between jobs J. 2 and * is 1X, or greater. Due to symmetry, we can assume,

without loss of generality, that the latter holds, which implies that the sum of the

processing requirements of the jobs from {J 2,..., Jk} scheduled between jobs J.,

and j- 2 is [,, or less. Hence, this special case reduces to solving the subset sum

problem given by

k k

max{f pjxj : "]pjxj < 1.l, z E B1l`, (5.4)
.- 2 j-=2

where, for j = 2,..., k,

1, job Jj is scheduled between jobs J,, and J42
- 0, job Ji is scheduled between jobs J,, and *.

We could, of course, solve problem (5.4) by dynamic programming in time O(k.

121). Instead, we will solve (5.4) using Lawler's fully polynomial approximation

scheme, with e determined as a function of the greedy heuristic solution of (5.4).

93

To solve problem (5.4) using the greedy heuristic, we proceed as follows.

Initialization: Sort jobs J2,..., Jk such that p,, > ... > p,,; b ,- 1x.

For j = 2,...,k do

If b > pe,, then x- = 1 and b - b - pe,; otherwise, x9 =0.

As a preliminary step, we prove that the greedy heuristic fills the knapsack defined

by (5.4) more than half full.

Proposition 5.4 The greedy heuristic solution, x', to problem (5.4) satisfies

k I I k

pijX > --l=.
j=2 2 j=2

Proof: We can, without loss of generality, assume that Pc2 < 4,,, since otherwise,

the solution x* defined by

x,={0, if j= 2
1, otherwise

is optimal for (5.4) and the corresponding schedule is optimal for the special case

illustrated in Figure 5.8. If P12 > 4 E)=2 Pi, then we are done, so suppose that

Pe2 < 4 EX= 2 pj. Let 6 be the smallest index such that

1 k

PN2 + + PeJ > F P2.

By definition of b,

1k

PeC +''" +Pe,- -- EPj.

94

Since Pc., - Pe2 < ! X 2 Pi, then

1k k 1k

4.j=2 j .=2 2j=2

Thus, the solution x' defined by

X = 1, if j=2,...,6
ej 0, otherwise

is feasible for (5.4). Consequently, xzl must equal 1 for j = 2, ... , 6 and

k kk

E PjXI >_ ZPjX= P-2 + + P-, > Pp •
j=2 j=2

We now present and establish the worst case performance ratio of a heuristic

algorithm for the special case of 1 / min delays, k 2, 1,..., I-chains / Ca, illustrated

in Figure 5.8.

Proposition 5.5 The following heuristic algorithm for the special case of I / min

delays, k 2, 1,..., 1-chains / Cmx with 12 = ... = l 0=O, P.1 = P 2 = p. =0 , and

-" = Ej=2 pi has a worst case performance ratio of 1 + A for any A E (0,)).

Heuristic Algorithm

Step 1: Solve problem (5.4) using the greedy heuristic. Select A E (0, 1) and let

- ~ 2 P-2Pj

4 .5jl2 Pi

95

Step 2: Solve problem (5.4) using Lawler's fully polynomial approximation scheme

with e from Step 1.

Proof: By Proposition 5.4,

4 k

_-Eý P9 > I A)4 = 4A > 0.2.•=2 Pjj 4

Thus, Step 2 can be accomplished. Let xe be the heuristic solution and let x" be

an optimal solution for (5.4). The makespans of the schedules corresponding to x'
a1 x* ar 1 Eý - •,rseciey

and x" are • •j=2 Pj + Ej=2 Pj (1 - xý) and 2 Pj + EZ"= 2 Pj(1 - x), respectively.

Now

-=2Pj + Pj) - -2 ;=2 Pj - Ej= 2 PjX,
:2 <p3 + j=22 p3 (1 - xP) =

.Ej=2 Pj-

2 J=2 Pj
2 Ej=2 Pj

3 (1-.-)P)2pPxX2,= pIL Pj

2

(1 E) (1j-(- Xj_

- 2 4
== P

3 (1 -(-())E=p

2 4

96

5
= -+A,

4

where the first inequality follows since x* is feasible for (5.4), the second inequality

follows since
,j=2z > (1 ->)

-j=2 PjZj'

and the third inequality follows since

k kZPi X!ŽZEPixR. o3

j=2 j=2

Solving problem (5.4) using the greedy heuristic requires time O(k lg k). Solving

(5.4) using Lawler's fully polynomial approximation scheme requires time O(k + r)

in general. Since - > 4A, then ~ < ' Thus, the heuristic requires time

O(k Ig k + ') overall.

The proof of Proposition 5.5 goes through with A = 0. Unfortunately, though,

the heuristic with worst case performance ratio 1 has running time O(k lg k + s-),
where e depends only on the problem data. As the following series of examples

shows, e can go to 0, at least for small values of k. Let k = 5, p2 = 3s + 2, and
= p4 = ps = 3s. Then, Z p 12=+p2a = p2 = 3s + 2. Thus,

li •2Pj 12 P s + 2. hs

lim "j,=2 Pj lim 12+2 = 4,
~i=, _0-.oi 3s + 2

which implies
lim lim 1 - 1()4= 0.
8ý-0 -*00 4

By selecting A > 0, we bound e away from 0 and thus establish control over the

heuristic's running time.

97

Proposition 5.5 can be generalized to the special case with 12 = .= k = 0,

P =, = pV2 = p. V 0, p= and I. = (1 - at) 2pj, where ot E [[1, is

such that both 1,, and 1.. are integers. For this special case, we execute the heuristic

algorithm twice with the same choice of A, first solving (5.4) and then solving

k k

max{Jpi(1 - x,): Zp,(I - xi) _ lxý,x E Bk-}. (5.5)
j=2 j=2

We can assume, without loss of generality, that the greedy heuristic solution of

problem (5.5) has value greater than zero (so that e is defined) since, otherwise,

xj = 0 for j = 2,..., k is optimal for (5.5). We select between the schedules

corresponding to the heuristic solutions of (5.4) and (5.5) the schedule with smaller

makespan. The ratio of the makespan of this schedule to the optimal makespan is

at most 1 + a + A. This heuristic can also be accomplished in time O(k Ig k + •-)

provided that the greedy heuristic fills the knapsack defined by (5.5) at least half

full.

5.2 1 / min delays, 2 nx, n2-chains / Cmaz,

5.2.1 No Schedule Has Makespan Greater Than Twice Op-
timal

Interestingly enough, every heuristic for 1 / min delays, 2 nj, n2-chains / Cmo,

has a worst case performance ratio of at most 2 since, as we now prove, no schedule

has makespan greater than twice the optimal makespan.

Proposition 5.6 Let or* be any optimal schedule and let a be an arbitrary schedule.

Then C.(o) <_ 2C.(c..).

Proof: Assuming that p. = 0, an upper bound for C.(o) is given by

ni n•2

C" = Z(pi,, + 11,i) + ,(P.j + 12,j)
i=1 j=l

98

and a lower bound for C.(a*) is given by

C' = maxf{r,(pi, + 11,i), F(P2j + 12,i)).
i=1 j-=1

Now, C.(o) CU C"
c.(,) < C. < - < 2.03
C.(ao) - C.(or) - C, -

5.2.2 Polynomially Solvable Special Cases

As mentioned in Chapter 4, the number of feasible sequences for 1 / min delays,

2 nj, n2-chains / Cm,, is

Suppose that n2 <5 c, where c is a fixed constant. Then

Since determining the schedule associated with a given sequence can be accomplished

in time O(n, + n2) = O(n, + c) = O(ni), then complete enumeration requires time

O(n'+l). Thus, the subset of instances of 1 / min delays, 2 n', n2-chains / Cm,

with n2 _< c can be solved in polynomial time.

Recall from Chapter 4 that 1 / min delays, 2 nj, n 2-chains / Cnoz can be solved by

dynamic programming in time O(njn2(1 + [L2 - P1J+)), where L2 = maxpj=i.... 2 12j

and pi = minj=2,...,,R1 P,i. As an immediate consequence, the subset of instances

with L2 - pi bounded by a polynomial in n, and n 2 can be solved in polynomial

time. Reversing the roles of the 1-jobs and the 2-jobs, we can solve 1 / min delays,

2 nj,n 2-chains / C.., in time O(n2n 2(1 + [LI - p2]+)), where L, = maxi=,... , i

and p2 = min%=2,..,2 p2,j. Thus, the subset of instances with L1 - P2 bounded by a

polynomial in nj and n2 can also be solved in polynomial time.

99

We now show that, assuming n, > n2, the subset of instances of 1 / min delays,

2 ni,n 2-chains / C...z with L2 < p, and L1 < p2 can be solved in time O(n, Ign1).

The significance of L2 5 P1 (LI 5 P2) is that if a 2-job (1-job) is sequenced immedi-

ately after a 1-job (2-job), then the corresponding active schedule includes no idle

time between the end of the 1-job (2-job) and the beginning of the 1-job (2-job).

As described in Chapter 4, we might imagine there are n, + 1 bins, one before

job J1,1, one between jobs J1 ,i and Jl,i+l for i = 1,... ,n, - 1, and one between

jobs J,,,1 and *, into which the 2-jobs are placed (see Figure 5.9). Let Ii, the size

of bin i, be the amount of idle time immediately preceding job J1 ,i in any schedule

corresponding to a sequence with bin i empty for i =1,..., ni. Let I.-,+I (I'+1+) be

the amount of idle time immediately preceding job * in any schedule corresponding

to a sequence with bin ni + 1 empty (not empty). Then

Il = 0,

Ii = l,i-1 for i = 2,... ni,

I+ 1 1,, and

n++l •" 12,n2"

Let o,1 be the schedule corresponding to the sequence with bin n, + 1 empty and

jobs J2a,. •., J2,n2 placed, one each, in the n2 largest of bins 1,... , n1 . Let a2 be the

schedule corresponding to the sequence with job J2 ,,,2 placed in bin n, + I and jobs

J2,1,... -J 2,,,2 - 1 placed, one each, in the n2 - 1 largest of bins 1,.. .,n 1 . We now

prove that this special case is solved by selecting between al and a 2 the schedule

with smaller makespan.

Proposition 5.7 Let * = argmin,=,Q.,2{C.(a)}. Then, schedule or* is optimal

for the special case of I / min delays, 2 nl, n2-chains / C,.,G with L2 < p, and

L, 5p2.

Proof: If bin n, + 1 is empty, then at least n, - n2 of bins 1,..., n, must also be

empty. Thus, the total idle time in any schedule corresponding to a sequence with

100

Bin I Jll , Bin2 J',, , Binn, I Ji, IBinn, + I

Figure 5.9: Bins into which the 2-jobs are placed.

bin n1 + 1 empty is at least I', where I' equals In,+, plus the sum of the n, n2

smallest of 1,..., In,. Since schedule a'1 has total idle time equal to I', then a' has

minimum makespan among schedules corresponding to sequences with bin n, + 1

empty.

On the other hand, if bin n, + 1 is not empty, then at least n, - (n2 - 1) =

n, - n2 + 1 of bins 1,...,n, must be empty. Thus, the total idle time in any

schedule corresponding to a sequence with bin n, + 1 not empty is at least I", where

I" equals In++ plus the sum of the n, - n2 + 1 smallest of I,.., ,I, •. Since schedule

a'2 has total idle time equal to I", then a'2 has minimum makespan among schedules

corresponding to sequences with bin nii + 1 not empty.

In the sequence associated with any schedule, bin n, + 1 is either empty or not

empty. Thus, if I' < I", then schedule a' is optimal and otherwise, schedule a'2 is

optimal. 0

Sorting I,..., I. in nondecreasing order and identifying the n2 largest of these

values requires time O(ni lg nl). Since computing the start time of each job in the

schedule corresponding to a given sequence can be accomplished in time O(n, + n2),

then this special case can be solved in time O(ni lg ni) overall.

5.2.3 Disjunctive Graph Representation

In this subsection, we present a technique for representing instances of 1 / min

delays, 2 nl, n2-chains / C,,ax which is adapted from the disjunctive graph of Roy

and Sussmann as described in [18]. We associate with each instance a weighted,

101

mixed graph H = (V, A, E). The vertex set V = V1 U V2, where

vi = {Vol u IV',,, i n , ,I U {v•.;, i = 11,... ,n•

and

V2 = uli= i,...,nil} U , =1V,.. .,n}.

Vertex v0 corresponds to a dummy initial job with zero processing requirement. The

remaining vertices in V1 correspond to jobs in J. The vertices in V2 correspond to

the minimum delays. We assign to each vertex a weight equal to the duration of the

corresponding job or delay. Arc set A = A1 U A2 U A3 U A4, where

A, = {< vo, vpI >, < vo,V, >1,

A2 = {< v',i,vli >, i= 1,...,n 1 } U {< vl~i,vf,i+l >, i-- 1,...,nr - 1),

A3 = {< v2,v 2,j>, j= ,...,n 2} U {< v P2'd 2,J+1 > , I j , n2 -

and

A4 = {< v,,,,,,*>,<v,,* >.

These arcs represent precedence constraints among jobs and minimum delays. The

edge set E is given by

{(v1i, vp), i= 1,...,n,, j = 1,...,n2}.

These edges represent machine capacity constraints. Figure 5.11 shows the weighted,

mixed graph H associated with the instance shown in Figure 5.10.

The edges in E join vertices corresponding to pairs of jobs, either one of which

is allowed to precede the other. By orienting an edge in one way or the other, we

specify the relative order of the pair of jobs corresponding to that edge's endpoints.

By orienting all edges such that the resultant directed graph, H, is acyclic, we specify

a feasible sequence. The completion time of job J, E J in the schedule associated

with this sequence is equal to the weight of the maximum weight path in H from

102

4 4

2 J1,3 J1 2 , 5

3 2

2

Figure 5. 10: Instance of 1 / min delays, 2 ni, n2-chains / C.,.

2 t3 vi4@ ,

Cmtiz.

0o 3

Figure 5.11: Graph H associated with instance of I m rin delays, 2 nj, n2-chains/

103

v0 to the vertex corresponding to J,. By weight of a path, we mean the sum of the

vertex weights over all vertices in the path. Thus, I / min delays, 2 nl,n2-chains /

C-,• can be thought of as the problem of finding an orientation of the edges in E

such that the resultant directed graph is acyclic with maximum weight path from

v0 to vertex * of minimum weight among all such acyclic directed graphs.

Using the weighted, mixed graph, we can solve 1 / min delays, 2 n , n2-chains /

Cmax by branch-and-bound as follows. For each problem in which not all edges of

the corresponding graph have been oriented, we select an unoriented edge (vP,i, vj)

for some i E { 1,...,ni} and j E {1,.-., n2} and we consider two subproblems, one
with (vP.,, vp,) oriented from v',- to v".- and the other with (vi',, vp,) oriented from

VP to vPi . For each subproblem, we compute a lower bound for the makespan of any

schedule which could be gotten by orienting the remaining edges of the corresponding

graph. We eliminate a subproblem from further consideration if this lower bound

exceeds a known upper bound for the optimal makespan. One such lower bound is

given by the weight of a maximum weight directed path from v0 to vertex * in the

partially oriented graph.

If we orient edge (vP , vP) from vP i to vP , then, in order to ensure that the graph
remains acyclic, we must orient edge (vt,, v,,, ,) from vf' to v form=j + 1,..., n 2.

Observe, though, that the weight of a maximum weight path from Vo to Vm which
includes edge (v',i,v•,,)and arcs < v2,j, v',j >,< vv >,< . 1 , < >

.< v2 v' n > is at least' " " • 2,m --l

M--1

E (P2,,r + 12,r)

more than the weight of a maximum weight path from vo to v2,m which includes

edge (v'v,,,,v,,). In other words, no maximum weight path from vo to v,,, and

hence no maximum weight path from v0 to vertex * includes (vp, vf). Thus,

having oriented edge (vP,i, vP,) from vP,i to vt,, we can eliminate edge (v"i,, V) for

104

r=j+1,..., n2. By the same token, if we orient edge (vi.,, v,) from2 to I',,

then we can eliminate edge (vp,,, vpj) for c = i + 1,..., n1 . By eliminating those

edges with orientations implied by transitivity, we ensure that the number of arcs

and oriented edges and hence the amount of time required to compute the weight

of a maximum weight path from v0 to vertex * is O(n, + n2).

The weighted, mixed graph can be generalized in an obvious manner to represent

I / min delays, k n,. . . , nk-chains / Cma,. Our success in using this graph to solve

1 / min delays, k nl,...,nk-chains / C,,z by branch-and-bound depends on our

ability to generate quality lower bounds for subproblem makespan and upper bounds

for the optimal makespan.

5.2.4 Lower Bounds

We now present three lower bounds for the optimal makespan of 1 / min delays,

2 ni, n 2-chains / Caz under the assumption p. = 0. Let a* be an optimal schedule.

Two obvious lower bounds for C,,.(a°) = C.(a*) are given by

ZPe
JeEJ

and
nl n2

max{E(pi,i + 11,i), '(P2J +/2,A).

i=1 j=l

We refer to these as the processing requirement and longest chain bounds, respec-

tively. The class we now describe includes lower bounds for C.(a*) which are as

large as either of these bounds. The following discussion is adapted from Carlier [5].

Obviously, job J1 ,i can start no earlier than time

i-I

= P + 1l.,)
t-I

105

for eachi = 1,.. n-. Moreover, at least

qli = lli, + j (pi + 11')

time units must elapse between the end of job Jl,, and the beginning of job * for

i = 1,... ,ni. We refer to rl,i and ql,, as the release date and tail, respectively, of

job Jli for i = 1,..., ni. In a similar manner, we can define r2,. and q2 , the release

date and tail of job J2,, for j = 1,...,n2. The following proposition defines a class

of lower bounds for C.(a') in terms of these release dates and tails.

Proposition 5.8 For all S C J \ {*},

h(S) = minr, + Z Pe + minqe < C.(a').
J.ES JSES . -ES

Proof: Let S J J \ {*}, J,, = argminj.Es{,*(e)}, and J,, = argmaxJGs{fa'(e)}.

Then
o"(m) >ý r,, > min r,,

--J.es

C.(a*) - a*(M) E Pc,
J.ES

and

C.(a*)- C,(a*) > q. > _minq,.
JeES

Summing these three inequalities gives the result. 03

Note that

h(J \ {*}) = Z p. + min{ql,.i, q2,n 2 }
JeEd

= p, + min{ll,,,!12,n,}
J. EJ

> EzPe.
J. EJ

106

Furthermore,

nn2

max{h({J1 ,I}), h({J 2.1})} = max{Z(Pii + l,1,), (p2,, + 12,J).
i=J j=l

Thus, the class of lower bounds for C.(a*) defined by Proposition 5.8 includes bounds

as large as either the processing requirement or the longest chain bound.

Determining the largest of the lower bounds defined by Proposition 5.8 seem-

ingly involves evaluating h(S) for each S C_ J \ {*}. As the following proposition

reveals, maxscj-{.l {h(S)} can in fact be determined with relative ease. The Schrage

algorithm involves scheduling next the available job with largest tail, with ties bro-

ken arbitrarily. The preemptive version of this algorithm also involves stopping the

processing of a job if another job with larger tail becomes available.

Proposition 5.9 The makespan of the schedule generated using the preemptive ver-

sion of the Schrage algorithm equals rnaxscj\{.}{h(S)}.

Proof: We only sketch the proof here. For complete details, see the proof of

Proposition 3 in Carlier [5].

Let V be the makespan of the schedule generated using the preemptive version of

the Schrage algorithm. That V > maxscj\{.}{h(S)} follows since, for all S _ J\f*},

h(S) is a lower bound for the makespan of any preemptive schedule. Showing

that V < maxscj\{f}{h(S)} involves exhibiting a subset So g. J \ {*} such that

h(So) = V. Such a subset So can be identified by applying the Schrage algorithm to

a modified problem instance obtained by replacing each job J.,i (J 2,j) by m,, (p2,j)

new jobs, each with a unit processing requirement, a release date of rl,, (r 2j), and a

tail of qJ'i (q2,J) for i = 1,... , n, (j = 1,..., n2) and then invoking the main theorem

of [5]. 0

We now demonstrate the three lower bounds described in this subsection using

the instance shown in Figure 5.10. The processing requirement and longest chain

107

Table 5.1: Release dates, processing requirements, and tails.

e re pe qe

1,1 0 1 14
1,2 3 3 9
1,3 9 2 4
2,1 0 1 11
2 3 5 4

7 13]-.-.-----------

0 1 2 3 6 11 13 17

Figure 5.12: Schedule generated using the preemptive version of the Schrage algo-

rithm.

bounds for this instance are 12 and 15, respectively. The schedule shown in Fig-

ure 5.12 is the result of applying the preemptive version of the Schrage algorithm

using the data given in Table 5.1. This schedule has a makespan of 17. Observe

that

h({J, 2,d J1 , J2 ,2}) = 3 + 10 + 4 = 17.

Observe also that, although in general, the schedule generated using the preemp-

tive version of the Schrage algorithm includes preemptions, the schedule shown in

Figure 5.12 is nonpreemptive, feasible, and hence optimal.

5.2.5 Bicriterion Heuristic

In Section 4.1, we defined ft for each t = 1,..., n1 + 1 and each feasible combina-

tion of x:,..., xt-1, and x, to be the difference between the completion times of jobs

JI,t and JI,,-1 in the schedule associated with the sequence obtained by appending

108

jobs J2,.,-, +,... , J 2,o,-1 +,,, and jl,, in that order, to the end of the sequence

J2,0 -4 1,O J2.1 , ** - " - J 2,z, -" Ji, 1 J2.,+i - - J2,zi+.z -4 Ji,2

where st-i = I4x- E {0,1,...,n 2} and Xt E {0,1,...,n 2 - }s-1. In this sub-

section, we give formulas for ft', a lower bound, and fl, an upper bound for f, in

terms of st-1 and xt for each t 1 I,...,ni + I and each feasible combination of

xi,... , xt-., and Xt. Thcse formulas depend on xl,...,xt-1 only through the role

these variables play in determining st-1. Using these lower and upper bounds, we

approximate 1 / min delays, 2 n1 , n2-chains / Cna* by a bicriterion problem.

In the event ft can be expressed in terms of only sti and zx, we can let ft, =

fl= ft. Thus, for each t = 1,...,n, and each feasible combination of zl,... ,t-1,

and zt with xt = 0, we can let

ft = f2 = 11,t-I + Pi,'t.

For each t = 1,...,ni and each feasible combination of £1,..., xt-, and xt with

xt E {1,...',n2 - st-il}, ft is nondecreasing in

91 = i:,,.,-2 - (W,_, + pi,,_t)}+

Since

0 < gi _ {:z.,, p.,t-l}+,

then, for this case, we can let

ft'= PLP,_+1,,_+Z, + [11,t-1 - PLP.,.,+io,._+=,1+ + PI•,t

and

f = {22,,, -/,.tI}+ + PLP,,_+i,8,,_,+-,

+ [ll,-_1 - 1- p-, }+ + PLP.,_,+i,-,..,+z,)]+ + P,,t.

109

By a similar argument, we can justify letting

f"I+t= l ,n + po

and

n,+,= max{lf 1,• [12,n 2 - pin,]+} + p.

for each feasible combination of XI,..., X,,, and XI + such that s,, = 1" x= n2

and letting

PLP., +in2 + max{f[,,- PLP..,+1 ,. 2]+,l 2,.•} + p.

and

f+2 = {l +I Pi,nI }+ + PLP.1 +IM,2

+ max{[l1 ,n, - ({12,.., - PI,n, }+ + PLPI, +1,n)1+,l 2,.n} + p.

for each feasible combination of xI,. .. ,x, and x m+1 such that sn,, = - x, E

{0,1,...,n2 - 1}.

Let xi,...,X +1 be any solution of

Xl + +X.1+1 = n 2, xi E Z+ for j 1,...,ni, (5.6)

let a' = 0, and let s' x'. for t = 1,..,nI. Then, E..24'fg(Sg-I,xt) is
a lower bound and 9t1 (st-1,x) is an upper bound for the makespan of the

schedule associated with the sequence defined by x', x This schedule likely

has small makespan if X, f•(s_,x) is small and En+, fx') is not too
large. A solution x,....., x'+l of (5.6) is Pareto optimal with respect to minimizing

both + ft and En1.+ f? if there exists no other solution x",.. .X,"+ of (5.6)

with
n'i+1 nl +1AI -1 1 ft (S' -, ,'t
t=1 t=1

and
n1+1 n1+1

4'2 (S-tt•-,1, I Xt A ,- I, X-- ff(3--,Xt)
t=1 t=1

110

where at least one of these inequalities is strict. Schedules with small makespans

are likely the schedules associated with feasible sequences defined by Pareto optimal

solutions of

711+171+
min { EZ (St_ 1 ,Xt), E f?(St_,Xg)1 (5.7)

• I .,,t= 1 ~ t=1

st = St.l+xtfort=l,...,ni+1, st- =, 1,...,2 and

Xt 01 1, 1 ... ,n2 - s91-1

So = 0.

One interpretation of problem (5.7) is as a bicriterion shortest path problem in a

certain network. The network has nodes (t, st) for t = 0 and so = 0, for t = 1,..., n,

and st = 0, 1,... ,n 2, and for t = ni + 1 and S,+i = n2. In addition, the network

has an arc from node (t- 1, it-,) to node (t, sg-I + Zt) with weights ft'(st-I, X) and

ft'(st-i'xt) for t = 1,...,n, + 1 and xt = 0, 1,..., n2 - .- This network is shown

in Figure 5.13. Solutions X1,... , X,,+1 of (5.7) correspond to pattLs from node (0, 0)

to node (n7 + 1,7n2) in the network.

Unfortunately, the number of Pareto optimal paths in a network can be expo-

nential in the number of nodes in the network (see Hansen [121). Thus, the problem

of identifying all Pareto optimal paths is in general intractable. In the absence of a

proof that the number of Pareto optimal paths for the network of Figure 5.13 with

costs ft' and ft2 is bounded by a polynomial in ni and n2, we suggest the following

alternatives. The first alternative is to use a surrogate criterion for min.t" 1 ft.

Note that every path from node (0,0) to node (ni + 1, n2) includes exactly n, + 1

arcs. Thus, instead of simultaneously minimizing E"' ft' and z.,=+I f'2, we could

minimize E, f and max=1,...,n +1 ft2. Hansen [12] presents a simple transfor-

mation from "MINSUM-MINMAX" to "MINSUM-MAXMIN" and an algorithm

for "MINSUM-MAXMIN," which, for the network of Figure 5.13, requires time

O(n2nn4 ig nin 2). A second, more appealing alternative is to use the fully polynomial

approximation scheme (see page 92) for "MINSUM-MINSUM" described in [12].

111

7110

Figure 5.13: Bicriterion shortest path network.

This scheme, which, for the network of Figure 5.13, requires time O(2-LA Ig 2-2-)

involves scaling the ft's and then generating approximate Pareto optimal paths.

The number of paths produced using the first (second) alternative is bounded

by a polynomial in n1 and n 2 (n1 , n2, and 1). Since evaluating the actual makespan

of the schedule associated with the feasible sequence defined by any path from

node (0,0) to node (n, + 1,n 2) can be accomplished in time O(n, + n2), then

producing a set of 'nearly' Pareto optimal paths using the first (second) alternative

and selecting from among these paths a path that has associated schedule with

minimum makespan can be accomplished in time bounded by a polynomial in nj

and n2 (nj, n2, and

112

CHAPTER 6

CONCLUSIONS

6.1 Summary

In this dissertation, we have investigated one-machine scheduling problems sub-

ject to generalized precedence constraints. These constraints and minimum delay

precedence constraints in particular can arise in the scheduling of athletic competi-

tions. The literature directly related to generalized precedence constrained schedul-

ing (GPCS) is seemingly scant, limited mostly to special cases and related con-

straints. To our knowledge, this dissertation contains the first explicit identification

of generalized precedence constraints as we have defined them and represents the

first systematic treatment of GPCS.

As we have seen, all but the simplest of GPCS problems are NP-hard. Among

problems for which the precedence relation is k 1-chains, several, including minimiz-

ing makespan subject to minimum delays, subject to maximum delays, or subject

to minimum or maximum delays but not both, and minimizing total completion

time subject to minimum delays, can be solved in polynomial time. Even among

these problems with the simplest of precedence relations, though, are hard prob-

lems, including minimizing makespan subject to minimum and maximum delays,

minimizing total weighted completion time subject to minimum delays, and min-

imizing total completion time subject to maximum delays, the first and third of

which are NP-hard in the strong sense.

113

The effect on minimum makespan problems of allowing even slightly more com-

plex precedence relations is to make hard those problems which were heretofore

solvable in polynomial time. In particular, both the problem subject to minimum

delays and the problem subject to maximum delays, and hence the problem subject

to minimum or maximum delays but not both, are NP-hard when we allow one of

the k chains to include two jobs. Each of these problems is NP-hard in the strong

sense when we allow one of the k chains to include any number of jobs. In addition,

the problem subject to minimum delays and hence the problem subject to minimum

or maximum delays but not both, is NP-hard in the strong sense when we allow each

of the k chains to include two jobs.

In contrast to k 1-chains, a "shallow" precedence relation, is 2 n1, n2-chains, a

"deep" precedence relation. Our results for minimum makespan problems for which

the precedence relation is 2 n1, n2-chains were somewhat inconclusive. The problem

subject to minimum delays can be solved in pseudo-polynomial time. We were

unable to further classify this problem with respect to computational complexity. On

the other hand, the problem subject to maximum delays can be solved in polynomial

time.

Just because a particular GPCS problem is NP-hard does not mean we cannot

solve that problem with some degree of success. For example, in the case of 1 / min

delays, k 2, 1,..., 1-chains / C,,,.,, we can easily identify a schedule with makespan

no more than twice the optimal makespan from the class of "insertion" schedules.

The special case of I / min delays, k 2, 1,...,1-chains / C,,,.. with 12 = ... = lk = 0

can be formulated as two subset sum problems. Consequently, this special case can

be solved in pseudo-polynomial time by dynamic programming. Using Lawler's fully

polynomial approximation scheme for subset sum, we can produce a schedule for

an even more special case with makespan at most 1 + A for any A E (0, 1) in time

bounded by a polynomial in the length of the problem instance and in I

While we do not know whether 1 / min delays, 2 ni, n2-chains / Cmx is NP-hard

or not, we do know that several special cases, including the one in which the differ-

114

ence between the largest minimum delay in one chain and the smallest processing

requirement in the other chain is bounded by a polynomial in n, and n2 , can be

solved in polynomial time. As we have seen, 1 / min delays, 2 n1, n 2-chains / C0 mc,

possesses the curious property that no schedule has makespan greater than twice the

optimal makespan. The optimal makespan is bounded from below by the processing

requirenent and the longest chain bounds as well as by the makespan of the schedule

generated using the preemptive version of the Schrage algorithm. We can solve I

/ min delays, 2 n1 , n2-chains / Gin.. by branch-and-bound in conjunction with the

disjunctive graph representation. Alternatively, we can generate an approximate

solution using the bicriterion heuristic. Unfortunately, the former option is likely to

be computationally intractable and the latter option provides solutions of unknown

quality.

6.2 Suggestions for Future Research

Our work falls short of suggesting a general methodology for dealing with gen-

eralized precedence constraints. Instead, our results point to the importance of

exploiting problem-specific structures, the likelihood that solving GPCS problems

will be, in general, computationally expensive, and the need for provably effective

heuristic solution techniques.

Our treatment of GPCS problems has been mostly combinatorial in nature.

Other approaches such as a polyhedral approach might well prove to be fruitful. As

an initial step in a polyhedral treatment of GPCS, we suggest finding the convex

hull of the active schedules for 1 / min delays, k 1-chains / Cm,..

Whether or not there exist pseudo-polynomial time algorithms for

1. 1 / min delays, k 2, 1,...,1-chains / C,•,,,

2. 1 / max delays, k 2, 1,..., 1-chains / C,,,,,

3. 1 / max delays, k 2-chains / C,, or

115

4. 1 / min delays, k 1-chains / E wiCi

all of which are NP-hard, are open questions. We showed in Section 5.1.3 that

the NP-hard special case of 1 / min delays, k 2, 1,..., I-chains / C,,m, with 12 =

.-. = lk = 0 is solvable in pseudo-polynomial time. We hypothesize that the general

problem is not solvable in pseudo-polynomial time.

For us, the most intriguing open question concerns the computational complex-

ity of 1 / min delays, 2 n1 ,n 2-chains / Cm,,_z. W, hypothesize that, due to the

sequence-specific nature of the active schedules, this problem cannot be solved in

polynomial time and is in fact NP-hard. As an initial step in proving or disproving

this hypothesis, we suggest considering the computational complexity of 1 / min

delays, k n,... , nk-chains / C,,: for k = 3.

116

BIBLIOGRAPHY

[11 A.V. Aho, J.E. Hopcroft, J.D. Ullman (1974). The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA.

[2] R. Andreu, A. Corominas (1989). SUCCCES92: A DSS for Scheduling the

Olympic Games (sic). Interfaces 19, 1-12.

[31 Baker (1974). Introduction to Sequencing and Scheduling. Wiley, New York.

[41 R.E. Bellman (1957). Dynamic Programming. Princeton University Press,

Princeton, NJ.

[5] J. Carlier (1982). The one-machine sequencing problem. Eur. Journal of OR

11, 42-47.

[6] P. Chretienne (1989). A polynomial algorithm to optimally schedule tasks on a

virtual distributed system under tree-like precedence constraints. Eur. Journal

of OR 43, 225-230.

[71 R.W. Conway, W.L. Maxwell and L.W. Miller (1967). Theory of Scheduling.

Addison-Wesley, Reading, MA.

[8] R. Duke (1987). Combinatorial Methods lecture notes. Georgia Institute of

Technology (unpublished).

[9] L.F. Escudero (1988). An inexact algorithm for the sequential ordering problem.

Eur. Journal of OR 37, 236-253.

[10] M.R. Garey, D.S. Johnson (1979). Computers and Intractability: A Guide to

the Theory of NP-completeness. W.H. Freeman and Company, New York.

117

[11] M.R. Garey, D.S. Johnson, R. Sethi (1976). The Complexity of Flowshop and

Jobshop Scheduling. Math of OR 1, 117-129.

[12] P. Hansen (1980). Bicriterion path problems. G. Fandel, T. Gal (eds.) Lecture

Notes in Economics and Mathematical Systems 177. Springer, Heidelberg, 109-

127.

[13] J.A. Hoogeveen, S.L. van de Velde (1990). Polynomial-time algorithms for

single-machine bicriteria scheduling. Report BS-R9008, Centre for Mathematics

and Computer Science, Amsterdam, The Netherlands.

[141 D.S. Johnson (1983). The NP-completeness column: an ongoing guide. Journal

of Algorithms 4, 189-203.

[15] R.M. Karp (1972). Reducibility among combinatorial problems. R.E. Miller,

J.W. Thatcher (eds.) Complexity of Computer Computations. Plenum Press,

New York, 85-103.

[16] E.L. Lawler (1978). Sequencing Problems with Series Parallel Precedence Con-

straints. Unpublished manuscript.

[17] E.L. Lawler (1979). Fast Approximation Algorithms for Knapsack Problems.

Math of OR 4, 339-356.

[181 E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (1989). Sequenc-

ing and Scheduling: Algorithms and Complexity. Report BS-R8909, Centre for

Mathematics and Computer Science, Amsterdam, The Netherlands.

[19] G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimization.

Wiley, New York.

[20] A.H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification,

Complexity and Computations. Nijhoff, The Hague.

118

[21] R. Shapiro (1980). Scheduling Coupled Tasks. Naval Res. Logist. Quart. 27,

489-498.

[22] L.E. Shirland (1983). Computerized dressage scheduling. Interfaces 13, 75-81.

[23) W.E. Smith (1956). Various optimizers for single-stage production. Naval Res.

Logist. Quart. 3, 59-66.

[241 C.A. Tovwý (1992). private communication.

[25] L N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling

problem. Eur. Journal of OR 4, 42-48.

119

VITA

Captain Erick Douglas Wikum was born September 16, 1965 in Edgerton, Wis-

consin. He spent his childhood together with his parents and three sisters in East

Grand Forks, Minnesota and Plymouth, Massachusetts, as well as in Menomonie,

Wisconsin, where he attended high school. Erick received his Bachelor's Degree in

Mathematics and Operations Research together with a commission as a 2nd Lieu-

tenant ;n the U.S. Air Force from the U.S. Air Force Academy in June of 1988.

He earned a Masters' Degree in Operations Research from the Georgia Institute of

Technology in December of 1989. On April 6, 1991, Erick married Joanne Elizabeth

Crane. Erick presently serves as an operations research analyst in the Air Force and

hopes to attead law school in the near future.

120

