
AD-A265 416I lil11111111 li iI lI ~~11111IIllllLiii III

Venari/ML Interfaces and Examples

Jeannette M. Wing Manuel Faehndrich Nick Haines
Karen Kietzke Darrell Kindred J. Gregory Morrisett

Scott Nettles

March 1993

CMU-CS-93-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

DTIC
S ELECTE

JUN07 1993 1

EU
i, C

•vdO pbi • lS 93-12624

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,

A!rý,,a::*, Systems Division (AFSC), I S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract

F33615-90-C-1465, ARPA Order No. 7597, and in part by National Science Foundation Fellowhiups for D. Kindred

and J. G. Morrisett..

The views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the U.S. government.

936_ ;35

-b

Venari/ML Interfaces and Examples

CMU-CS-93-123

Jeannette M. Wing, Manuel Faehndrich, Nick Haines, Karen Kietzke,
Darrell Kindred, J. Gregory Morrisett, Scott Nettles

March 1993

Transactions are a well-known and fundamental control abstraction that arose from the database
community. Application programmers can treat a sequence of operations as an atomic ("all-or-nothing")
unit and rely on the runtime environment to guarantee serializability of concurrent transactions and
persistence of effects of committed transactions. In this report, we pr-sc,: intcrfaces, cxpressed in
Standard ML, for creating and controlling transactions. Unlike other transaction-based high-level
programming languages such as Argus and Avalon, Venari/ML is the first to support multi-threaded
transactions, where each transaction may have multiple threads of control executing within its scope. We
present a set of simple examples that show how to use Venari/ML interfaces individually and also in
some useful combinations. We also present a larger example of searching a database of BibTEX entries.
This report is intended primarily for use by an SML programmer whose application requires transactional
properties.

Our work on transactions in the context of SML led to our invention of a new control abstraction, called a
skein, which is a group of threads that cooperate on a single task. SKeins take as parameters initialization
and completion functions; transactions are easily constructed as a special case of skeins.

The Venari/ML interfaces are cast in terms of SML's modules facility. Modules support a separation of
concerns, e.g., persistence from undoability, that are often tightly integrated in other transaction-based
programming languages. We make extensive use of closures in SML, allowing us at runtime to compose
different functions, each of which supports a different feature of transactions.

Keywords: TRANSACTIONS, THREADS, SKEINS, PERSISTENCE, RECOVERY, UNDoABILITY, SERIAUZABILITY. STANDARD

ML MODULES

(52 pages)

TECHNICAL REPORT 1993 COMPUTER SCIENCE CARNEGIE MELLON

Acce';'orl For

NTIS CRA&I
DTIC TAB
U;,announced El]
JoJ llhcatlln

B y

Avaiiability Codes

Avail a:;d I orDist I Special

Abstract

Transactions are a well-known and fundamental control abstraction tl'at arose from the database
community. Application programmers can treat a sequence of operations as an atomic ("aU-or-
nothing") unit and rely on the runtime environment to guarantee serializability of concurrent trans-
actions and persistence of effects of committed transactions. In this report, we present interfaces.
expressed in Standard ML, for creating and controlling transactions. Unlike other transaction-based
high-level programming languages such as Argus and Avalon, Venari/ML is the first to support
multi-threaded transactions, where each transaction may have multiple threads of control executing
within its scope. We present a set of simple examples that show how to use Venari/ML interfaces
individually and also in some useful combinations. We also presenm a larger exampie of searching
a database of BIBTEX entries. This report is intended primarily for use by an SML programmer
whose application requires transactional properties.

Our work on transactions in the context of SML led to our invention of a new control abstraction,
called a skein, which is a group of threads that cooperate on a single task. Skeins take as parame-
ters initialization and completion functions; transactions are easily constructed as a special case of
skeins.

The Venari/ML interfaces are cast in terms of SML's modules facility. Modules support a separation
of concerns, e.g., persistence from undoability, that are often tightly integrated in other transaction-
based programming languages. We make extensive use of closures in SML, allowing us at runtime
to compose different functions, each of which supports a different feature of transactions.

Contents

1 Introduction 3
1.1 Revisiting Transactions 3

1.1.1 Separation of concerns 3
1.1.2 Non-traditional applications 4
1.1.3 Why SML? 5
1.1.4 Related Venari/ML Documents 5
1.1.5 What is New about Venari/ML? 6

1.2 Keeping Threads and Transactions Separate 7
1.2.1 Application Programmer's Interface 7
1.2.2 Why separate threads and transactions? 8

1.3 A Bird's Eye View of the Venari/ML Interfaces aad Model 9

2 Venari/ML Interfaces 11
2.1 Top-Level Interface 11
2.2 Threads 12

2.2.1 Mutual Exclusion ... 13
2.2.2 Conditions 13
2.2.3 Per-Thread Values 13
2.2.4 Mutex Refs and Arrays 13

2.3 Skeins .. 14
2.3.1 Simple Skeins 1.5
2.3.2 Full Skeins 17
2.3.3 Skein IDs 18

2.4 Reader-Writer Locks 19
2.5 Safe State 21
2.6 Undoability 22
2.7 Persistence 23
2.8 Transactions 24

2.8.1 Transaction Guarantees 24
2.8.2 Hints at Using Transactions 25

3 Some Small Examples 27
3.1 Threads 27
3.2 Persistence 28
3.3 Undo 29
3.4 Transactions 30
3.5 Multi-Threaded Transactions 30

l1

3.6 Concurrent Multi-Threaded Transactions 34
3.7 Skeins 36
3.8 A Concurrent Iterator 37

4 A Larger Example 41
4.1 The Application 41
4.2 The BIBS Interface 41
4.3 Use of Venari Extensions in BIBS 43

4.3.1 Concurrency 43
4.3.2 Persistence 48
4.3.3 Safe State 48

5 For More Information 50

2

Chapter 1

Introduction

This report documents the current status of the Venari/ML interfaces. The main VENARI interface
provides a way for application programmers to create and manipulate concurrent multi-threaded
transactions. This interface is built up from others, each of which supports a separable feature of
transactions, e.g., persistence, undoability, and isolation. We give many small examples and one
larger one to show how programmers can use our interfaces. We implemented our interfaces for
Standard ML of New Jersey. This report is meant to serve as a user's guide; hence, it does not
elaborate on how we implemented the interfaces.

1.1 Revisiting Transactions

Transactions are a well-known and fundamental control abstraction that arose out of the database
community. They have three properties that distinguish them from normal sequential processes:
(1) A transaction is a sequence of operations that is performed atomically ("all-or-nothing"). If it
completes successfully, it commits; otherwise, it aborts; (2) concurrent transactions are serializable
(appear to occur one-at-a-time), supporting the principle of isolation; and (3) effects of committed
transactions are persistent (survive failures). Transactions can be nested. The persistence of a
child's effects is relative to the commit of its parent and aborting a child does not imply the abort
of its parent.

1.1.1 Separation of concerns

Systems like Tabs [15] and Camelot [6] demonstrate the viability of layering a general-purpose
transactional facility on top of an operating system. Languages such as Argus {91 and Avalon/C++
[4] go one step further by providing linguistic support for transactions in the context of a general-
purpose programming language. In principle programmers can now use transactions as a unit of
encapsulation to structure an application program without regard for how they are implemeilted
at the operating system level.

In practice, however, tiansactions have yet to be shown useful in general-purpose applications
programming. One problem is that state-of-the-art transactional facilities are so tightly integrated
that application builders must buy into a facility in toto, even if they need only one of its services.
For example, the Coda file system [14] was originally built on top of Camelot, which supports
distributed, concurrent, nested transactions. Coda needs transactions for storing "metadata' (e.g..
inodes) about files and directories. Coda is structured such that updates to metadata are guar-
anteed to occur by only one thread executing at a single-site within a single top-level transaction.

3

Hence Coda needs only single-site, single-threaded, non-nested transactions, but by using Camelot
was forced to pay the performance overhead for Camelot's other features.

The Venari Project at CMU is revisiting support for transactions by adopting a "pick-and-
choose" approach rather than a "kit-and-kaboodle" approach. Ideally, we want to provide separable
components to support transactional semantics for different settings, e.g in the absence or presence
of concurrency. Programmers are then free to compose those components supporting only those
features of transactions they need for their application. Our approach also enables programmers
to code some applications that cannot be done without an explicit separation of concerns.

1.1.2 Non-traditional applications

A second problem with existing transactional facilities is that they have been designed primarily
with applications like electronic banking, airline reservations, and relational databases in mind.
Non-traditional applications such as proof support environments, software development environ-
ments, and CAD/CAM systems want transactional features, most notably data persistence, but
have different performance characteristics. For example, these applications do not manipulate sim-
ple database records but rather complex data structures such as proof trees, abstract syntax trees.
symbol tables, car engine designs, or VLSI designs. Also, users interact with these data during
long-lived "sessions" rather than short-lived transactions; indeed we can view a "session" itself as
a sequence of transactions. For example, during a proof session a user might explore one path in a
proof tree transactionally; if the path begins looking like a dead-end the user may choose to abort.
backing al the way up to the first node in the path or perhaps to some intermediate node along the
way. Also, though multiple users may need to share these data, simultaneous access might be less
frequent. For example, proof developers might work on independent parts of a proof tree. perhaps
each proving auxiliary lemmas of the main theorem; software developers might modify different
modules of a large program. Finally, these non-traditional applications typically support different
update patterns. Whereas travel agents make frequent updates to airEne reservations databases,
we do not expect to make updates as frequently to proofs of theorems saved in proof libraries.

The Venari Project's application domain is software development environments. One specific
problem we are addressing is searching large libraries, e.g., specification and program libraries.
used in the development of software systems. We imagine the scenario in which a user searches
a large library for a program module that "satisfies" a particular specification. We might wish
to perform each query as a transaction, for example, to guarantee isolation from any concurrent
update transaction or to abort the query after the first n modules are returned. In Chapter 4 we
present a simplified version of this search problem, that of searching a database of bibliographic
entries such as those in .bib files.

Another problem in software development is version management. Many people working on a
large software project need to coordinate updates to different components of the software under
development. Systems like RCS [16] provide some configuration management help. The Venari
Project is currently implementing a configuration management facility similar to RCS; it uses the
Venari/ML transactional interfaces described in this document.

Our effort to support a "pick-and-choose" approach for transactions has the advantage of pro-
viding us with a way to take performance measurements on different combinations of our separable
modules. We have the potential to do different kinds of performance tuning for the non-traditional
applications we hope to support. As yet, however, the Venari Project has not done a careful or
extensive performance analysis of our implemented features.

In the remainder of this section we discuss why we chose SML as our target language, summarize

4

other related Venari/ML documents, and summarize the contributions of our work so far. We then
motivate in Section 1.2 the separation between threads and transactions and in Section 1.3 give a
high-level view of the most important Venari/ML interfaces and some of interesting combinations.
Chapter 2 describes each interface more fully. We give simple examples in Chapter 3 and an
extended example in Chapter 4, showing how to use our interfaces, especially to illustrate the
orthogonality of concepts we provide.

1.1.3 Why SML?

We cast our approach concretely in the context of programming languages. Instead of designing
a brand new language from scratch, we target an existing language as a basis for extension. For
technical and pragmatic reasons, we chose Standard ML as our base language. SML is a strongly-
typed, mostly functional, programming language. At its core, it supports functions as first-class
values, exceptions, and polymorphism. SML's modules facility supports information hiding, data
abstraction, and parameterized modules. Most notably, SML has a published formal semantics [111,
which means that any extension has the potential of being formally defined and can be objectively
evaluated in terms of how much it perturbs the existing semantics. One important pragmatic
reason for choosing SML as our base language is that a decent compiler and runtime were readily
available and relatively easy to extend. Another pragmatic reason is that SML has a growing
local (Carnegie Mellon) and international user community. Finally, we chose to target the New
Jersey implementation of SML because SML/NJ supports continuations1 and it runs on different
architectural and operating system platforms.

In the design and implementation of our own extensions, we gain additional leverage from SML's
high-level language features and SML/NJ's well-modularized design. SML makes a type distinction
between immutable and mutable values (refs); we rely on strong typing to let the runtime system
safely operate on addresses (without the programmer's knowledge). SML's support for first-class
functions (closures) allow us to make transactions first-class. We use signatures to separate interface
information from implementation and functors to compose parameterized modules. We exploit
SML/NJ's highly-phased compiler by riot modifying its front-end at all. We modify its back-end
with additions that fit into its garbage collection scheme and take advantage of its simple runtime
representation of data; we use the storage allocation algorithm unchanged.

Henceforth, we assume the reader has a reading knowledge of SML.

1.1.4 Related Venari/ML Documents

In a series of three ML workshop abstracts and papers, we incrementally reported on our design
and implementation of support for transactions:

e First, we designed, along with others (namely Eric Cooper, Bob Harper, and Peter Lee) at
Carnegie Mellon, a 'Threads interface for SML/NJ [3].. We reported on this work at the
Edinburgh 1990 ML Workshop.

* Second, we designed and implemented support for the simple case of single-site, single-
threaded, nested transactions. We separate persistence and undoability as orthogonal prop-
erties of transactions, and support each in a separate SML module. A third module is built in
terms of those two to create one that provides transactions. We reported on this work at the

'SML as defined in [11] does not feature continuations, but see [5] for a formal description.

5

Pittsburgh 1991 ML workshop; Nettles and Wing's HICSS paper provides implementation
details and preliminary benchmarks (12].

* Finally, we combined the above work to handle concurrency, which we address in two ways:
making an individual transaction multi-threaded and allowing multiple transactions to run
concurrently. A combination of these two lets us build concurrent multi-threaded transactions.
We reported on this work in the San Francisco 1992 ML workshop [18]. This document gives
the details of the interfaces mentioned in the workshop paper.

1.1.5 What is New about Venari/ML?

To the transaction and database community, our work is novel because it casts within a program-
ming language a model of computation that supports multi-threaded transactions. Other transac-
tional systems like Encina2 and Quicksilver [71 support multi-threading and transactions, but not
in the context of an advanced programming language like SML, and thus they cannot take advan-
tage of other advanced language features (e.g., strong typing). Other transactional programming
languages like Argus [9] and Avalon/C++ [4] support only single-threaded transactions.

To the programming language community, our work is among the few to extend the functional
programming paradigm to support a traditionally imperative feature. To the SML community, our
application of the modules facility and extensive use of closures should be of particular interest.

One novel technical contribution of Venari/ML is the invention of a new control abstraction.
which we call a skein. A skein is a group of threads that cooperate on a common task. We use
skeins to build multi-threaded transactions; however, skeins are more generally applicable than
for just building transactions. For example, with skeins we can build multi-threaded systems that
support undo but not persistence. Chapter 2 gives details.

Our design approach has been pragmatic and bottom-up; by prototyping individual features
(e.g., persistence, undoability, read/write locking, nesting, threads, skeins, and trausactions' in-
crementally and then combining them in various ways, we are able to explore a rich design space.
Our concern has primarily, been to provide reasonably efficient run-time mechanism to give sys-
tem builders flexibility in deciding policy. This flexibility comes at a price-safety. We do enforce
some safety guarantees (e.g., top-level transactions always obey the two-phase locking protocol thus
guaranteeing serializability), but not others (e.g., since threads may execute outside any transac-
tion they may violate the isolation principle). 3 To disciplined programmers, however, who always
manipulate only "safe state" (Sections 2.2.4 and 2.4), we guarantee complete safety.

We have not thought greatly about the "ideal" programming interface to provide the SML
end-user. We believe that we need to gain more experience using our current interface before
embarking on a more complete language design effort. We also have not given a formal semantics
of our extensions in the operational style followed in [11]; this work remains to be done. The multi-
threaded transactional model of computation that Venari supports is new and we are currently
working on a more formal semantic description of the model.

2 Encina is a software product of T1ransarc Corporation.

3One solution is never to have threads execute outside a transaction or to guarantee they never interfere with any
data accessed by a transaction.

6

1.2 Keeping Threads and Transactions Separate

(a) • Single-threaded
transaction

Concurrent
transactions

(c) Multi-threadedtransaction

Multi-threoded
(d) concurrent

transact ions

Figure 1.1: Threads and transactions are separate control abstractions.

In languages like Argus and Avalon, a single thread of control is associated with each transaction.
But threads and transactions are orthogonal control abstractions. So, we would like to relax the
restriction of identifying threads and transactions by allowi.,g multiple threads of control to execute
within, and on behalf of, a single transaction.

Figures l.la and 1.1b depict the traditional model, where we use a wavy line to denote a thread

and a thick-lined box to denote a transaction; time advances from left to right. Figure 1.la shows a
single thread executing, first entering a transaction and then leaving successfully (i.e., committing).
Figure l.lb shows two single-threaded transactions executing concurrently. Figure 1.1c depicts our
new model where multiple threads execute within a single transaction. And finally, Figure L.id
depicts concurrent multi-threaded transactions, the "composition" of Figures 1.lb and 1.lc. The
goal of Venari's version of SML is to support Figure 1.1d through module composition.

1.2.1 Application Programmer's Interface

If f is a function applied to some argument a, then to execute:

f a

in a transaction, we want programmers to be able to write:

(transact f) a

or more probably,

7

((transact f) a) handle Foo)> [some work]

where Foo is a user-defined exception. Here f might be multi-threaded. Informally, the meaning
of calling f with transact is the same as that of just calling f with the following additional side
effects: If f returns normally, then the transaction commits, and if it is a top-level transaction, its
effects are saved to persistent memory (i.e., written to disk). If f terminates by raising any uncaught
exception, e.g., Foo, then the transaction aborts and all of f's effects are undone. Through SM L's
exception-handling, in the case of an aborted transaction. the programmer has control of what to
do such as clean-up and/or retrying the transaction.

1.2.2 Why separate threads and transactions?

The most compelling argument for supporting multiple threads within a transaction is modularity.
Consider the following kinds of multi-threaded programis: (1) a search procedure that uses multiple
threads to find program modules satisfying a specification, returning when the first one is found:
(2) a procedure with benign side effects, e.g., rebalancing a B-tree or doing garbage collection.
that executes in the background of the main computation; (3) a netnews server that uses multiple
threads to minimize latency.

We would like to able to run such a multi-threaded program from within a transaction without
having to modify the source code. We would like to treat the program as a black box, reuse
it in its entirety, but have its effects be transactional (i.e., atomic, serializable, and persistent).
Without being able to simply "wrap" a transaction around the program, we are forced to recode
each separate thread as a concurrent subtransaction of a top-level transaction. This violates one
aspect of modularity since the entire program has to be recoded.

At the same time, concurrent transactions have to be serializable. Thus, by definition, we
can view transactions as happening one after another. On the other hand, threads are often
used for two-way communication through shared, mutable resources (e.g., refs). If we identify
each thread with a single transaction, then we can no longer do two-way communication between
threads. For instance, assuming we associate each thread uniquely with a single transaction.
then Figure 1.2a shows thread/transaction A and thread/transaction B executing concurrently.
Transaction semantics require that the effects of A and B executing concarrently are the same as
that of either A executing first followed by B (Figure 1.2b), or vice vc:sa. Suppose A sends a
message to B and B wants to acknowledge A; we cannot put A's execut;on before B (since A will
never get the acknowledgment) nor can we put B before A (since B will never get the message).
Thus if we want to support two-way communication between processes, we need to support multiple
threads independent of transactions.

Another argument for supporting both threads and transactions as orthogonal concepts is per-
formance. In existing transactional systems, the runtime cost of creating and managing a trans-
action is not the same as that for a thread ("lightweight" process). Transactions requi. e runtime
mechanism to support protocols for locking, logging, committing/zborting, and crash recovery.
There are cases when concurrency is desired ithout the performance overhead of transactions.
Again, even if we were to recode one of our example multi-threaded programs with transactions.
we probably do not want to incur the cost of making each thread a transaction.

In short, transactions provide features that threads do not: persistence, undoability, isolation
of effects, atomicity of a sequence of operations, and crash recovery. Threads provide functionalitv
(e.g., two-way communication), program structuring, and performance benefits that transactions
do not.

8

thread/transaction A

(a)

thread/transaction B

(b)

thread/transaction B

Figure 1.2: Transactions are serializable.

1.3 A Bird's Eye View of the Venari/ML Interfaces and Model

By teasing apart the usual atomicity, seriafizability, and persistence properties rolled into trans-
actions, and adding the ability for transactions to be multi-thieaded, we provide support for the
foUowing features, each as a separable component. (The name of the Venari/ML signature and
section that discusses it are given in parentheses.)

* Persistence (PEP.S, Section 2.7).

* Undoability (UNDO, Section 2.6).

* Reader-writer locks (RW.LOCK, Section 2.4).

* Threads (THREADS, Section 2.2).

• Skeins (SKEINS, FULL-SKEIN, Section 2.3).

Our basic idea is that we want the individual pieces to compose in a seamless way to givc
us transactions. Persistence ensures permanence of effects of top-level transactions. Undoability
allows us to handle aborted transactions. Reader-writer locks provide isolation of changes to the
store, and hence ensure transaction serializability of concurrent transactions. Skeins let us group
a collection of threads together, giving us multi-threaded transactions.

Here are some of the more interesting combinations of these pieces, each supporting a slightly
different model Gf compdtation.

* Multi-threaded persistence (threads + persistence = persistent skeins)

* Multi-threaded undo (threads + undo = undo skeins)

* Locking threads (threads + r/w locks = locking skeins)

9

* Concurrent persistence (threads + r/w locks + persistence = locking persistent skeins)

* Concurrent multi-threaded transactions
(persistence + undo + r/w locks + threads = transactional skeins)
The VENARI interface supports this particular combination directly.

All skeins can be nested, hence each combination above can be nested. Permanence of a nested
persistent skein's effects is relative to its parent. Thus, we commit (to disk) a nested persistent
skein's effects when its outermost persistent or undo skein completes. We need to guarantee this
behavior to make sene of the case when a persistent skein is nested within an undo skein: If we
write to disk upon exit from the persistent skein, then it would be difficult for us to undo changes
already made permanent to disk.

Ah mixes are possible. For example, a transaction can have an undo Akein or locking skein
within it, and vice versa. A skein can have nested within it concurrent skeins of different flavors.

Finally, the single-threaded case of any of these is just a special case in which a skein has just one

thread; Venari/ML does not explicitly provide interfaces for the single-threaded cases.

10

Chapter 2

Venari/ML Interfaces

2.1 Top-Level Interface

We have extended Standard ML by providing a multi-threaded transaction control abstraction. and
various related facilities. This chapter describes the user interface, which is an SML structure with
the following signature:

signature VENARI
sig

val transact : ('a -> '.b) -> 'a-> '-b

structure Threads : THREADS

structure Skeins SKEINS

structure RWLock : RW.LOCK
structure RW.Ref : RWREF
structure RWArray ; RWARRAY

structure Undo : UNDO
structure Pers : PEtS

end

Each element of this structure is described in a separate section below. Roughly speaking, a
transaction is a locking skein of threads whose effects are undone if the transaction aborts or wade
persistent if it terminates.

11

2.2 Threads

The Threads structure provides the essential functions of our SML/Threads interface, reviewed
briefly here and described fully in [3].1 It has the following signature:

signature THREADS
sig

val fork : (unit -> unit) - unit
val exit : unit -> unit

type mutex
val Mutex : unit -> Mutex
val with-mutex : mutex-> (unit -> 'a) -> 'a
val try.acquire : mutex -> bool
val acquire : mutex -> unit
val release : mutex -> unit

val owner : mutex -> bool

structure M.Ref MREF
structure M.Array MARRAY

type condition
val condition mutex -> condition

val with.condition : condition (unit 'a) -> 'a
val signal condition -> unit

val broadcast condition - unit
val await condition -> (unit -> bool) -> unit
val vwait condition-> (unit-> 'a option) -> 'a
val wait condition -> unit

exception Undefined
type 'a var
val var: unit -> '-a var
val get : 'a var -> 'a
val set : 'a var -> 'a -> unit

end

The function fork starts an invocation of its argument executing as an independent thread of
control. No value is returned; the child function is executed for effect. Results can be communicated
between threads via shared mutable objects. The function exit terminates the current thread, and
never returns. The two types mutex and condition and associated functions provide basic thread
synchronization primitives, as described in Sections 2.2.1 and 2.2.2. The type 'a var provides
per-thread mutable values, as described in Section 2.2.3. The two structures M.Ref and MArray,
which provide "safe refs" and "safe arrays" (refs and arrays protected by mutexes), are discussed
in Section 2.2.4.

1For hints on programming with the threads abstraction, see [2].

12

2.2.1 Mutual Exclusion

A mutex is a mutual-exclusion lock. The function mutex creates a new mutex value. The function
acquire attempts to lock a mutex and blocks the calling thread until it succeeds. At most one
thread may hold a given mutex at any time. Attempting to acquire a mutex already held by the
current thread causes an indefinite block. The function try-acquire is similar to acquire, except
that it will not block: if the mutex is already locked it returns false. The function release
unlocks a mutex, giving other threads a chance to acquire it. The function owner returns true if
and only if the mutex is currently held by the current thread. The evaluation of with-mutex a f
acquires the mutex n, applies the function f to unit, and then releases m. The mutex. m is released
even if an exception is raised in f, so use of with-mutex can substantially simplify the writing of
correct code.

The "mutex refs" and "mutex arrays" of Section 2.2.4 are protected by mutexes.

2.2.2 Conditions

A condition variable allows one thread to wait until another thread indicates that some event has
occurred. The event is typically a change to shared data, and requires some application-specific
test to detect. A mutex is used to prevent one thread from testing the shared data while another
is updating it; this mutex is specified at the time the condition variable is created.

The function condition creates a new condition value, to be used under the protection of the
specified mutex. The with-condition function is simply with-mutex applied to the condition's
mutex. The signal operation indicates that an event has occurred; if any threads are waiting on
the condition, at least one of them is woken; broadcast is similar but wakes all threads waiting
on the condition. Both signal and broadcast can be called without holding the mutex. The
function wait assumes and checks to see that the mutex is held when called; it atomically releases
the mutex and waits to be signaled (the mutex is reacquired before returning). Other threads may
execute between the signal and the return from wait, so the shared data should be checked in any
case, and this is the function of await and vva.t: await c f waits until f () evaluates to true
after a signal; vvait c f waits until f returns SOME v. The mutex is held while f is applied for
both await and vwait. Both await and vwait try their test before they first wait for the signal.

2.2.3 Per-Thread Values

The var type constructor provides per-thread state. A var is similar to a ref, but contents are not
shared between threads. A var defined in one thread may be undefined in another, so dereferencing
may raise the exception Undefined. Note the use of imperative type variables.

2.2.4 Mutex Aefs and Arrays

Mutex refs and mutex arrays provide a degree of safety beyond regular SML refs and arrays. Mutex
refs (M..REF) and mutex arrays (MARRAY) are protected by mutexes. A thread must hold the
mutex in order to read from or write to L,.ese objects. This property is enforced by a check at
runtime. The functions with-mnref and with-mnarray call with-mutex (Section 2.2.2) on the mutex
associated with their respective objects. The functions pmiref, pm-array, pm-arrayof list, and
pm.tabulate create private refs and arrays that can be used by only the thread that creates them.
X.Ref and M.Array parallel the pervasive Ref and Array structures.

13

signature X.REF
Big

type 'a -.ref
type mutex

exception NotOvner

val a.ref : 'a * mutex -> '-a maref
val p-.ref : '.a -> '-a m-ref
val -.get : 'a m.ref -) 'a
val 2.set : 'a m-ref -) 'a -> unit
val a.inc : int m.ref -> unit
val adc : int m.ref -> unit

val mutex-of : 'a m-ref -> mutex
val vitham-ref : 'a m-ref-) (unit-> 'b) -> 'b

end

signature M.ARRAY
sig

type 'a m..array
type mutex

exception MSize
exception M.Subscript

exception NotOwner

val m.-array int * 'a * mutex -> '$a m-array
val m.arrayoflist)'a list * mutex -> '-a m-.array
val m..tabulate int * (int-> '.a) * mutex -> '-a m..array
val pm..array int * '_a-> '_a m..array
val pm.arrayoflist '.-a list -> 'a m.array
val pm..tabulate : int * (int-) '-a) -> ')a m..array
val m.length : 'a M-array -> int
val m.-sub : 'a a-.array * int - 'a
val u..update : 'a a-.array * int * 'a -> unit

val mutex-of : 'a m-array -> mutex
val with.m.array : 'a m..array-> (unit -> 'b) -> 'b

end

2.3 Skeins

A skein is a new control abstraction that groups together a set of threads. Full skeins additionally
take as parameters initialization and completion fiinctions, multi-threaded transactions are thus
easily constructed as a special case of full skeins.

14

2.3.1 Simple Skeins

signature SKEINS
sig

structure Full-Skein : FULL-SKEIN
structure Skein.ID : SKEIN-ID

val skein : ('a- '.-.b) -> 'a -> '_b
val peer.skein Skein.ID.skein.id -> ('a -> unit) -> 'a -> unit
val top.skein : ('a -> unit) -> 'a -> unit

end

A skein is a group of one or more threads cooperating on some task. Within a skein some ML
function (the body of the skein) is executed. It may fork threads, but when it returns a value all
other extant threads within the skein will be killed; only one thread ever leaves a skein. All held
mutexes should be released before return. The function call skein f a creates a skein with body
f a. Figure 2.1 shows the main graphical language we use to describe skein-based systems. A
wavy horizontal line represents a thread. A vertical dashed line shows a forking of threads. A solid
vertical line denotes the termination of a thread by either completing the execution of its functional
argument or calling Threads. exit. A thin-lined rectangular box is a skein.

If any thread (including the body thread) running inside a skein raises an uncaught exception,
the skein ends. The exception is propagated to the outside and any extant forked threads are killed.
See Figure 2.2.

Skeins can contain child skeins. These are terminated when the parent skein finishes. See
Figure 2.3.

cc to:
skein t a• tb ea kiw

&Mad killed

Figure 2.1: A thread executing a function within a skein. The body forks two additional threads,
one of which forks again before calling exit() . At *, the body returns a value, so the remaining
threads are killed and the skein finishes.

15

r aise E

Figure 2.2: Two skeins end with uncaught exceptions. In the example on the left, the exception is
in the body thread. In the example on the right, the exception is in a sub-thread. In both cases
the exception is passed to the handler.

* p :p- - A - - - A - - - - - - - - - -_m p_ _ _ v v ._ _ v v . . .

kifod

diWed

I ' killed

Figure 2.3: A skein with several children. Note that one child is still active when the parent finishes,
and is terminated.

16

There are two functions that allow threads to start skeins which are not child (nested)skeins:
peor.skein and top-skein. The function peer-skein creates a sibling of the specified skein (see
Section 2.3.3 for a description of skein IDs) and runs the body in the newly created sibling. This
sibling skein behaves exactly as if the parent skein created it. 2 The function top-skoin, a special
case of peer.skein, creates a new skein at the top level.

Since the skeins created by peer-skein and top-skein do not run in the calling thread, they
are not killed when the calling thread terminates, and they do not necessarily share the calling
thread's undo state (see Section 2.6). These functions should be used with care to avoid unexpected
side effects.

2.3.2 Full Skeins

Although the skeins abstraction as described above is generally useful for work with threads (for
instance it deals gracefully with threads performing speculative computation), it is insufficient
for the purposes of implementing transactions. A transaction must execute certain code within a
skein, but after all threads within that skein have completed or died. (For example, this code might
commit persistent changes to disk or release reader-writer locks.) Allowing for such code within
skeins also turns out to be generally useful, so we provide the user with this abstraction:

signature FULL-SKEIN a

Big
datatype 'a result =

Result of 'a
I Exception of era

exception Abort

val full.skein
(unit -> unit) -> (, initializing function *)

('.b result - '.-b result) -> (* completing function *)
('a -> '_b) -> (, body *)
'a -> '.b

end

The body of a full skein is executed in a sub-thread within the skein, while a control thread waits
for it to complete. Two extra arguments are given to full-skein: first, an initializing function,
which is called in the control thread before the body thread is forked; and second, a completing
function which is called in the control thread after the body has returned and any extant threads
have been killed. The completing function is applied to the result of the body, and returns a value
which is in turn presented as the result of the call to full-skein.

Since the body may complete either by returning a value or by raising an exception, the result
is encapsulated with the datatype result before passing to the completing function. If the body is
successful and returns v, the completing function is applied to Result v. If the body fails with an
uncaught exception E, or if a sub-thread raises an uncaught exception E, the completing function
is applied to Exception E. See Figure 2.4.

2For example, it follows the same locking rules of Section 2.4 as any other skein that is a child of that parent.

17

If the body of a skein finishes while sub-skeins are still executing, the sub-skeins are terminated,
calling their completing functions with Exception Abort. The parent skein's completing function
is not called until all sub-skeins have completed. See Figure 2.5.

o ea~ul s wouIus for body threa to recum c (Reaah r)
can to

"-ulskein I I a" : bdydmM axeaeus 'faX... ?mIramf 'r;dre

:kiUs

o cow WeW aits for body 6reW t mmr c (Exc•oo E)

"_skeinlict i a
ex a ... sn " . lmd

* Skills

Figure 2.4: Full skeins. Note the initializing and completing functions. Extant threads are killed
before the completing function is called.

................................ 2
s I S

...........

Figure 2.5: A skein that completes while a child is still active. At 1, the body of the parent skein
returns some value v. At 2, the control thread signals the child skein to complete. At 3, the child
skein kills any remaining threads and calls its completing function with Exception Abort. At 4,
the parent control thread calls its own completing function with Result v.

If an exception is raised during the execution of the completing function, or if it returns a value
Exception e, that exception is reraised, propagating out to the caller of full-skein.

Simple skeins are in fact implemented by using full skeins:

val skein - FullSkein.full-skein (fn () => 0)
(fn r => r)

2.3.3 Skein IDs

Skeins have various attributes that can be read and in some cases written by the user. The structure
Skein..ID provides functions to access these attributes for the current skein and for its ancestors.

18

signature SKEIN.ID
Big

type skein-id

exception NoSkein
val skein-id unit -> skeinid

val set.name string -> unit
val skein-name : skein-id -> string
val skein-no : skein.id - int

val make.locking unit -> unit
val get.locking skein-id -> bool

exception Parent
val parent : skein.id -> skein-id

val skein.path : skein.id -> string list
end

Each skein has a value of type skein.id associated with it. The function skein-id returns this
value for the current skein, or raises HoSkein if called outside any skein. The other attributes are
readable given the skein-id, but cannot be written for any other than the current skein.

The first attribute is a name, which is simply a string, initially set to the empty string for every
new skein. The function set-.name a sets the name to a, while skein.name sid returns the name
of the skein with ID sid. The function skein-no returns an integer uniquely identifying a skein.
(It is useful for debugging purposes to avoid having to name each skein explicitly.)

The second attribute is a "locking" flag, initially set to false. This is connected with reader-
writer locks, and will be explained in Section 2.4. The function make.locking sets the flag to true,
while get.-locking returns the value of the flag. This flag cannot be set to false: to do so would
violate the desired properties of locks. The function make.locking is intended for use within the
initializing function of a full skein.

The third attribute is the skein.id of the parent skein. The function parent obtains this, or
raises Parent if the given skein is top-level (i.e., has no parent).

The function skein..path returns the list of skein names from the given skein up to the top
level. It is defined as follows:

fun skein.path sid a (skein-name sid)
(skein-path (parent sid) handle Parent > 0)

2.4 Reader-Writer Locks

We provide reader-writer locks to enable the user to enforce isolation and serializability of given
skeins. They are used primarily in transactions (see Section 2.8), which must be serializable, but
the user may find reader-writer locks valuable in other contexts. Analogously to using mutexes to
protect mutex refs and mutex arrays, we use reader-writer locks to protect the "reader-writer refs"
and "reader-writer arrays" of Section 2.5.

19

signature RW.LOCK a

Big
eqtype rw.lock

exception NotLocking
exception Read
exception Write

val create : unit -> rw-lock
val acquire.read : rv-lock -> unit

val acquire-write : rw.lock -> unit
val read : rw.lock-> ('a-) 'b) -> 'a-) 'b
val write : rw.lock-> ('a- 'b) => 'a-> 'b

end

Assume at first that all skeins have the "locking" flag set (see Section 2.3.3); we will describe
the general case later.

Locks are held on a per-skein basis. A lock is created by a call to create. It is acquired for
reading or writing by a call to acquire.read or acquire-write respectively. A (thread within a)
skein can perform reads and writes on the data protected by a lock, subject to the following simple
conditions:

"* A skein may read if it holds the lock in read or write mode, and all writers are ancestors of
the skein.

"* A skein may write if it holds the lock in write mode, and all readers and writers are ancestors
of the skein.

Here, "readers" and "writers" refer to the extant skeins that hold the lock in read or write
mode, respectively. The acquiring functions block until the corresponding condition is satisfied,
and when they return the calling skein holds the lock in the specified mode. The user should pay
close attention to the order in which locks are acquired, so as to avoid deadlock.

The read and write functions take a lock, a function, and its argument, and apply the function
to the argument with the guarantee that the corresponding condition will hold during the execution
of the function. In particular, no other thread may use the lock in read or write mode while the
function executes. If a skein calls read or write without holding the lock in the appropriate mode,
the exception Read or Write will be raised; otherwise, read and write will block until the condition
is satisfied.

When a skein completes successfully (i.e., with a value other than an exception), all currently-
held locks are handed off to the parent skein (or released if there is no parent). If the skein finishes
with an exception (i.e., if the completing function of the full skein either raises an exception or
returns Exception e), all currently-held locks are released. Note that these actions take place after
the completing function is executed. These "anti-inheritance" rules apply to all kinds of skeins.
including undo skeins (Section 2.6), persistent skeins (Section 2.7), and transactions (Section 2.8).

For the general case, in which some skeins do not have the "locking" flag set, the rules extend
simply by considering families of skeins, which consist of a single locking skein and its non-locking
descendants. Locks are held by a family (actually, by the locking skein at its root), and acquired
on behalf of the family. Locks are handed off to the enclosing family. This enables users to wrap

20

functions with skein for purposes of flow-control without confusing the locking behavior of their
programs.

All functions in this structure except for create must be called from within a locking family of
skeins; otherwise the exception NotLocking is raised.

2.5 Safe State

Two structures are provided to help the user manipulate state safely. Reader-writer refs (RW.REF)
and reader-writer arrays (RWARRAY) are protected by reader-writer locks; in order for a thread
to access these objects, its skein must hold the rw.lock (for reading or writing, as appropriate).
The accessing functions below will call RWLock. read or RW.Lock. write to ensure that the read or
write condition from Section 2.4 holds.

Because they provide an additional level of safety using reader-writer locks, reader-writer refs
and reader-writer arrays are "safer" than mutex refs and mutex arrays (Section 2.2.4).

signature RWREF
sig

type 'a rvref
type rw-lock

val rw-ref : '-a * rw-lock -> '-a rwvref
val rw-get : 'a rw-ref -> 'a
val rw.set : 'a rw-ref -> 'a -> unit
val rwvinc : int rwvref -) unit
val rv.dec : int rv.ref -, unit

val lock.of : 'a rw.ref -> rw-lock
end

signature RW.ARRAY -

Big

type 'a rw-array
type rwvlock

exception RWSize
exception RWSubscript

val rw-array : int * 'a * rv-lock -> '-a rv.array
val rv.arrayoflist : '-a list * rv-lock -> '.a rw.array
val rw.length : 'a rw.array -> int
val rv-sub : 'a rw.array * int -> 'a
val rv.tabulate : int * (int -> '_a) * rw.lock -> '-a rw.array
val rw.update : 'a rv-.array * int * 'a -> unit

val lock-of 'a r._array -> rvlock
end

21

RWRef and RW..Array parallel the pervasive Ref and Array structures. The lock-of functions return

the lock associated with an rv.xef or rw.array. If any of the accessing functions (rv.get. rwvset,

ri/nc, rv.dec, rv.sub, or rv.update) are called when the lock is not held in the appropriate
mode, the RWLock. Read or RW._Lock. Write exceptions will be raised.

2.6 Undoability

This structure allows users to make undoable changes to the store, an essential feature of transac-
tions. It does so by providing a specialized form of skein, an undo skein, created by providing par-
ticular irntializing and completing functions to (a partial application of) Full-Skein.full-skein.

signature UNDO -
Big

val undo-skein : ('a -> '_b) -> 'a-> '-b

exception Restore of exn

val exn2restore.skein : ('a- '.b) -> 'a -> '-b

val exn2restore : ('a-> 'b) -> 'a 1b
val restore2exn : ('a- 'b) -) 'a-> 'b

end

The expression undo-skein f a evaluates f a inside an undo skein. if the exception Restore E
is raised (and not caught) within f, the skein will end and all changes to the store made up to that
point will be undone. The exception Restore E will be propagated out to the caller of undo-skein.
Note that the changes undone include those done within any sub-skeins.

Undo skeins are just a special kind of full skein; they are easily implemented using full skeins
as follows:

val undo.skein - Full.Skein.full.skein init-undo (complete-undo false)

where init.undo does appropriate initialization (e.g., setting the "locking" flag). When the boolean

argument to complete-undo is false, the skein will only restore if the Restore exception is raised
from within it.

The functions exn2restore-skein, exn2restore, and restore2exn are used to manipulate
exceptions in the context of an undo skein. They are defined as follows:

val exn2restore.skein -
full-skein

(fn 0(>0)
(fn Exception exn => Exception (Restore exn)

I Result x -> Result x)

fun exn2restore f a - (f a) handle exn a> raise Restore exn
fun restore2exn f a = (f a) handle Restore exn => raise axn

and have their most obvious use in a piece of code like this:

fun restore.on.exn f a restore2exn (undo-skein (exn2restore.skein f))

22

which defines a function that will execute inside ar, undo skein and restore the state if any exceptions
are raised. The exn2restore function is similar to exn2restoreskein, except that an exception
raised in a subthread within f will not be converted to a Restore exception, and thus will abort
the undo skein without causing changes to be undone. For this reason, exn2restore-skein is the
correct choice in most circumstances.

Undo skeins have the "locking" flag set (Section 2.4). If the persistent store is initialized,
an undo skein that completes successfully and has no undo skeins or persistent skeins among its
ancestors will commit any changes to the persistent store (Section 2.7).

Note that the semantics of undo is defined only with respect to the store. In particular, it is not
defined with respect to I/O, for example, reading from a file or printing to the terminal. Hence,
programmers should take care when doing I/O within an undo skein.

2.7 Persistence

The other major feature of our work on transactions is the persistent value store. A persistent
value is one that outlives the computation that created it. Any first-class SML value can be made
persistent. A top-level persistent skein is a group of threads whose changes to the store are made
permanent.

signature PERS
Sig

except ion CommitFail ed
val pers.skein : ('a -> '_b) -> 'a-) '_b

exception PersInitFailed
val init : string * string * bool -> unit

type identifier
exception Unbound
val make.id : string -> identifier
val bind : identifier * 'a -> unit
val unbind : identifier -> unit
val retrieve : identifier -> 'a

end

The function init initializes a persistent store, and has the effect of obtaining a pointer, which
we call the persistent handle, to a persistent store. Persistence is implemented through the RVM
system[10], and the first two arguments are the names of the RVM log an! data files respectively:
from Venari/ML's viewpoint, these two files represent a persistent store. If the third (boolean)
argument is true, the handle points to a new, empty persistent store; otherwise, the handle points
to a previously saved one.

The expression pers.skein f a evaluates f a in a skein. If the persistent store is initialized and
the skein has no undoable or persistent ancestors, then when it completes changes are committed
to disk. The "locking" flag is set (Section 2.4).

Both init and pers-skein may raise an exception because of I/0 problems like file access
errors or other rare events encountered by RVM.

The other functions deal with identifiers. The persistent store is a map from identifiers (which
the user creates from strings) to values. make.id creates an identifier, bind adds a binding to the

23

map, unbind removes a binding, and retrieve returns the bound value. The function retrieve
raises the exception Unbound if the given identifier is not bound in the persistent store. Notice here
a need for dynamic types, which SML does not currently support. SML cannot statically determine
whether the type of the value returned by a retrieve of some identifier is the same as the type of
the value when it was initially bound through a bind.

2.8 Transactions

The previous parts of the VENARI interface expose functions which are necessary for implementing
transactions, and which have other more general uses. The various features are all used in VENARI's
main function:

val transact : ('a -> '_b) -> 'a -> '1b

This function evaluates its argument within a skein, known as a transaction. The "locking- flag
is -.-t (Section 2.4) so the transaction holds its own locks. Within the transaction, further calls to
transact will create nested transactions just as with skeins.

Note how we can succinctly implement the function transact using full skeins:

fun init.transact - (Pers.initpers ();
Undo.init-undo ())

val complete-transact = Undo.complete-undo true

val transact - FullSkein.full.skein init-transact complete-transact;

where setting Undo.complete.undo's boolean argument to true signifies that the transaction will
always restore when it fails tn complete successfully, regardless of whether the Restore exception
is raised from within it.'

2.8.1 Transaction Guarantees

If the body thread or any sub-thread raises an uncaught exception, the transaction aborts. If the
body evaluates successfully, the transaction commits.

When a transaction aborts,

* all changes to the persistent iand volatile stores made by the transaction and its descendants
are undone; and

9 all reader-writer locks held by the transaction and its descendants are released.

When a transaction commits,

"* if this is a top-level transaction (i.e., no ancestor skein is persistent. undoable, or a transac-
tion), and the persistent store is initialized, any changes to the persistent store are committed
to disk: and

"* all reader-writer locks are handed to the nearest locking ancestor skein.

31n contrast to the implementation of undo-skein in Section 2.6.

24

If the functions executed within transactions have no effects except through the use of the safe
state described in Section 2.5, then we can make certain guarantees regarding the interaction of
those transactions. Let T be a transaction, and let S and S' be any locking skeins (thus S and
S' may be transactions as well). (T, S, and S' are all different from one another.) The following
guarantees hold:

"* If neither S nor T is a descendant of the other, then

- if T aborts, S observes no effects of T or T's descendants;

- the effects of T and its descendants appear atomic to S (i.e., S sees either all of their
effects or none of their effects); and

- the effects of S and T are serializable from the viewpoint of any other locking skein S'.

"* If T is a descendar* of S, then

- the effects of T and its descendants appear atomic to S; and

- the state which T observes will reflect a "snapshot" of S's effects (taken at the instant
after T acquires its last reader-writer lock); and

- if S's effects before and after the "snapshot" point are denoted E"CsP? and E'Sr, and
the effects of T and its decendants are denoted ET, then these effects wiln appear to S'
to take place in the order (Ets , ET, Et Ce).

"* The image of the persistent store on disk will always be consistent (partial effects of a trans-
action will never appear on disk).

One should consider a transaction T'2 which is a child of transaction T, to be doing work "on
behalf of" T1 . Note that the guarantees above hold even if non-transactional skeins or threads aTe
invoked within the transactions involved.

2.8.2 Hints at Using Transactions

Programmers must take care to avoid deadlock situations. Deadlock will arise when, for example.
transaction A acquires lock LI, transaction B acquires lock L2, then A attempts to acquire L2 and
B attempts to acquire L1. Programmers can prevent deadlocks by obeying strict lock-acquisition
ordering, by using coarser-grain locking, or by some combination of the two.

By specifying the lock-acquisition sequence precisely, we can avoid these deadlocks entirely.
If for every pair of locks (L1, L2), we decide that one will always be acquired before the other.
then deadlocks of the type described above cannot occur. A related deadlock type involves lock-
promotion (upgrading ownership of a lock from read mode to write mode). If several transactions
acquire a lock in read mode, and then try to acquire it in write mode, all will block. It is best to
avoid this by always acquiring a lock in write mode directly if it will eventually be needed in write
mode, or by ensuring that only one transaction will attempt to acquire the lock in write mode.
Unfortunately, these lock-ordering methods can complicate and restrict programs significantly.

Coarse-grain locking (using a single lock to protect large amounts of data) can make deadlocks
less likely by reducing the number of locks a transaction must acquire to accomplish a task. For
example, if two rv-refs, ri and r2, are nearly always accessed together, then we can make them
share a single rv.lock to prevent possible deadlocks from transactions acquiring ri's and r2's
locks in different orders. The disadvantage of coarse-grain locking is that it restricts the potential

25

concurrency; if one transaction needs to access only ri and another needs to access only r2, they

cannot proceed concurrently unless ri and r2 have distinct locks.

Another factor to consider in determining the granularity of locking is speed. In our current

implementation, the repeated lock creation and manipulation required with a fine locking granu-

larity carries a heavy performance penalty. So even though we have increased the potential level

of concurrency by allowing locking at a fine level, the observed latency of user requests may be

greater.
Finally, as for undo, the semantics of transactional abort with respect to I/O is not defined.

Hence, programmers should take care when doing I/O from within a transaction.

26

Chapter 3

Some Small Examples

In this chapter, we consider some small examples to show individual and combined uses of the
Venari/ML intei laces.

3.1 Threads

A multi-threaded application might use a logical clock to establish an order of events. A signature
for a logical clock is shown in Figure 3.1. The function get-time increments the clock and return
a new, unique time.

signature CLOCK -

Big
val get.time : unit -> int

end

Figure 3.1: Signature for a Logical Clock

structure SimpleClock : CLOCK f
struct

structure T = Venari.Threads
structure M z T.MRef

val time - M.m-ref (0, T.mutex())

fun get-time () -
M.with.m-ref time (fn 0 > (N.m.inc time; M.m.get time))

end

Figure 3.2: A Simple Logical Clock

The clock might be implemented as shown in Figure 3.2. The logical time is stored in a mxef.
time. Time must be protected by a mutex to avoid the following incorrect sequence of events in
which two threads would be given the same time:

27

Thread A Thread B
inc time

nc time
!time

!time

Our use of a mutex nef (see Section 2.2.4) gives us this protection. To ensure that each caller is
given a unique time, the function get-time wraps a vithma.xef around the calls to increment and
read time.

3.2 Persistence

Suppose we want to keep the clock in Figure 3.2 in the persistent store. Since the times provided
by the clock are unique as well as ordered, it could be used as a source of unique identifiers, which
would be particularly useful in a persistent environment.

A persistent implementation of the clock is shown in Figure 3.3. To do this, we store the logical
time in the m-ref time.

structure PersClock CLOCK
struct

structure T = Venari.Threads
structure P = Venari.Pers
structure M = T.MRef

val time : int M.m.ref =

let val time-id - P.make.id "*TIME*"
in

P.retrieve time-id
handle P.Unbound ->

let val t = M.maref (0, T.mutexo)
in

P.pers.skein P.bind (time.id, t);
t

end
end

fun get.time 0
P.pers.skein (N.vith..mref time)
(fn 0 => (H.m.inc time; M.m.get time))

end

Figure 3.3: A Persistent Logical Clock

We need to initialize time with its previous value, if there is one. To do this, we attempt
to retrieve the value and watch for the exception Unbound, which will be raised by retrieve if
this value is not in the persistent store. We handle the exception by initializing the value in the

28

persistent store.
We also wrap a persistent skein (pers-skein) around the call to with-m.ref in the function

get-time. We use the persistent skein to ensure that the new value for time is properly recorded
before we return it. Top-level persistent skeins write out any changes to the persistent store before
exiting.

3.3 Undo

Undoability can be very useful for backtracking. Suppose we have an unordered list of side-effecting
functions and we want to find a valid ordering for them if such an ordering exists. This situation
could arise if several people were cooperating in the creation of a database, for example. One
person might be responsible for creating the initial entries; others would be responsible for filling
in various fields, some of which might require someone else's fields to be filled in already. It would
be nice if we could just let everyone add their functions to a list which would be executed later in
an acceptable order.

The function valid-ordering, shown in Figure 3.4 takes a list of functions and tries to find
a valid ordering for them. The functions should raise an exception if something goes wrong:
otherwise, it will be assumed that everything is ok. If a valid ordering is found, the side effects
remain; otherwise they are undone.

structure U a Venari.Undo
exception NotValid

fun valid.ordering function-list
let fun try result 0 D rev result

I try result retry 0 = raise U.Restore NotValid
I try result retry (f::rest) =

U.undo.skein (fn =) *> (U.exn2restore.skein f 0;
try (f::result) [0 (retryfrest))) 0)

handle U.Restore = a> try result (f::retry) rest
in

U.undo.skein (try 1 0 0) function.list
handle U.Restore NotValid => raise NotValid

end

Figure 3.4: Find a valid ordering of function calls.

The function valid-ordering defines a function, try which does most of the work. Try takes
three arguments. The first argument, the result list, is the list of functions executed so far, in reverse
order. The second argument, the retry list, is the list of functions that have been unsuccessfully
attempted. The third list, the function list, is the list of functions that have not been tried yet.

If both the retry and function lists are empty, a valid ordering has been found. We return the
result list, calling rev first to return the list in its proper order. If the function list is empty but
the retry list is not, we have run out of combinations to try. In this case, there is no valid ordering
starting with the current result list. We raise restore to undo the effects of the function most
recently added to the result list.

29

If the function list is not empty, we first try to execute the first function on the list, and then
try to execute the rest of the list after putting the retry list back on the function list. If either
of these fails, we put the function on the retry list and try again with the next function on the
function list.

3.4 Transactions

Suppose we want to transfer money from one bank account to another. This would involve with-
drawing money from one account and depositing it in the other. We need to make sure that either
both the withdrawal and the deposit succeed, or that neither of them occur. If only the withdrawal
happened, the money would be lost, and we would be very unhappy. If only the deposit happened,
the money would be "duplicated," and the bank would be very unhappy.

structure U = Venari.Undo;

fun transfer (account.1, account_2, amount) =

let fun do.transfer 0)
(withdraw (account.1. amount);
deposit (account.2, amount))

in
Venari.transact do-transfer 0

end

Figure 3.5: Transfer money between bank accounts.

The function transfer, shown in Figure 3.5, transfers money from account-1 to account.2
with the guarantee that a partial transfer will not occur. The transfer itself occurs in the function
do.transf or, which withdraws the money from account-1 and deposits it into account-2. The
functions withdraw and deposit are expected to raise an exception if something goes wrong, e.g.,
if account_1 has insufficient funds or the bank's computer goes down.

We wrap a transaction around the call to do-transf er so that if anything goes wrong, the
whole transfer will be aborted. If the transfer is aborted, we reraise the exception that caused the
abort.

We could make the transfer transaction multi-threaded by having one thread do the withdrawal
while another does the deposit. All we would need to do is to replace the two-line definition of
do-tranufer with:

(fork (fn 0) > withdraw (account.1, amount));
deposit (account-2, amount))

3.5 Multi-Threaded Transactions

For a more complicated example of multi-threaded transactions, suppose we wanted to tally a list
of votes where each vote may be for one of a number of candidates running for a particular office.
We could do this as follows:

30

1. Number the candidates.

2. Create an array of integers, with each element initialized to 0. Each element corresponds to
one of the candidates.

3. Walk through the list of votes, incrementing the appropriate element of the array for each
vote.

4. The value of each element is the number of votes for the corresponding candidate.

The signature in Figure 3.6 shows an interface that supports this method of vote-counting. The
function voting-array creates a new, properly-initialized array. The function add-vote takes a
candidate number and increments the vote count for the corresponding candidate. The function
how-many takes a candidate number and returns the number of votes for the corresponding candi-
date. The Subscript exception is raised if a candidate number is out of bounds. The numbering
of candidates is assumed to be consecutive starting at 0.

signature VOTING-ARRAY
Big

exception Subscript
type voting-array

val voting-array : int -> voting-array
val add-vote : voting.array - int -> unit
val how-many voting-array-> int -> int

end

Figure 3.6: Signature for a Voting Array

Figure 3.7 shows an implementation of this interface. Each element of the array is a mutex
ref which will hold the vote count for the corresponding candidate. The functions add-vote and
ho.-many use with. m.ref to coordinate access to each candidate's vote count. This allows multiple
threads to update the array at the same time without interfering with each other.

Figure 3.8 shows a function, tally-votes which takes a voting array and a list of votes, and
records all the votes in the voting array. Tally-votes uses multiple threads to speed up the handling
of long vote lists. It defines some local variables and functions to assist in this task. Thread-count
contains the number of threads started. This value will be compared with done-count to determine
when all the threads have finished. The condition done-cond is signaled whenever a thread finishes

processing its list.
The function process-votes processes a vote list, indicating that it has finished by incrementing

done-count and signaling done-cond. The function launch-threads breaks off pieces of the vote
list and starts threads to handle them until the whole list has been handled. The unhandled part
of the vote list is stored in unprocessed-votes. The function first-n removes the first n elements
from unprocessed-votes and returns them.

The function wait waits for done-count to match thread-count. This is done to ensure that
all the threads are finished updating the voting array before we return.

The body of the function tally-votes executes launch-threads and wait inside a skein.
Normally, exceptions raised in a thread are not passed outside the thread. The skein will trap any

31

structure Voting-Array : VOTING-ARRAY a

struct
structure A a Array
structure T = Venari.Threads

structure M a T.3_Ref

exception Subscript a A.Subscript

type voting.array = int M.m.ref array

fun voting-array size a
A.tabulate (size, (fn . => M.m.ref (0, T.mutexo)))

fun add.vote vote-array candidate a
let val count s A.sub (vote-array, candidate)
in

M.with.m.ref count (in ()) M.m-inc count)
end

fun how.many vote-array candidate
let val count a A.sub (vote.array, candidate)
in

M. ith.m.ref count (fn 0) -> M.m.get count)
end

end

Figure 3.7: A Voting Array

32

structure T = Venari.Threads; structure M a T.MRef;

structure S = Venari.Skeins;

fun tally.votes voting.array vote.list

let val thread.count - M.m.ref (0, T.mutexO)

val done-count = M.u.ref (0, M.mutex-of thread-count)

val donetcond a T.condition (M.mutex.of threadcount)

fun proces.svotes vl =
(app (Voting.Array.add.vote voting-array) vi;

T.with.condition done.cond (fn 0) -> X.m.inc done.count);

T.signal done-cond)

fun launch-threads 0 =
let val unprocessed-votes = M.pm.ref(vote.list)

fun first-n n =
let fua f-n 0 res = res

I f.n n res =

if null (M.m-get unprocessed-votes) then res
else let val (h::t) - M.m.get unprocessed.votes

in
K.m.set unprocessed-votes t;

f.n (n-1) (h::res)
end

in
f.n n 0

end
in

while not (null (M.m-get unprocessed.votes))
do let val first.10 = first-n 10

in
T.fork Cfn 0) => process.votes first.10);
K.with.m.ref thread-count (fn () =>

M.m-inc thread-count)

end

end

fun wait 0) =
T. with-condition done.cond

(fn () => T.await done.cond (fn () => (M.mrget done-count) =

(N.m.get thread-count)))

in
S.skein (fn () a> (launch.threads 0; waito))) ()

end

Figure 3.8: Tally votes using a voting array.

33

such exceptions and reraise them. This allows the caller to know that something went wrong and

prevents the wait function from waiting forever for any thread that dies prematurely.
If an exception is raised inside one of the threads, the results are invalid. We can prevent

partial results from being added to a voting array by wrapping a transaction around the call to

tally-votes:

Venari.transact (tally.votes vote-array) vote.list
handle - -> print "tally.votes failed!\n'

3.6 Concurrent Multi-Threaded Transacdions

Now suppose we wanted to count votes for more than one office. We could do this with an array

of voting arrays, where each voting array contains the votes for one office. Figure 3.9 shows the
implementation of a function, tally-off ices, which uses such an array to count votes on a number

of offices. Tally-offices takes two arguments: office-array and votes..list.
Off ice-array is an array of pairs of reader-writer locks and voting arrays where the subscript

corresponds to the office number. Reader-writer locks provide isolation between transactions. If
two transactions were to update the same voting array at the same time, the results would not

be serializable, and we would have problems if we needed to abort one of the transactions. Thus,
each voting array in off ice-array has its own reader-writer lock to ensure that the transactions
updating them are serializable.

"Votes..list is a list of pairs of office numbers and vote lists. There is no restriction on the

number of times an office may appear in the list; voting in several cities could generate several vote
lists for a particular office.

The function tally-offices is similar to the function tally.votes, described in Section 3.5.

The primary difference is in the function process-off ice. Process-off ice calls tally-votes on
the vote list and voting array associated with a particular office. We do this inside a transaction to
allow a single vote count to fail and be redone later without requiring a full recount. We acquire the
write lock before calling tally-votes to ensure that multiple transactions do not update the same
voting array at the same time. For simplicity, we handle aborts by printing a warning message; in

real life, we would want to save the failed office and vote list somewhere for later consideration.

34

structure A a Array; structure L - Venari.RWLock;
structure S a Venari.Skeins; structure T a Venari.Threads;
structure N a T.N-Ref; structure U = Venari.Undo;
structure VA - Voting.Array;

fun tally.offices office-array votes-list =
let val thread-count = X.m-ref (0, T.mutex())

val done.count M N.m.ref (0, M.mutex-of thread-count)
val donecond T.condition (M.mutex-of thread-count)

fun process.office (office, vote-list) a
let val (lock, voting-array) = A.sub (office-array, office)
in

(Venari.transact
(fn vl a> (L.acquire.write lock;

L.vrite lock (tally-votes voting-array) vl))
vote-list)

handle - ->
print ("WARNING: vote count on office

(makestring office)'" failed!!!\n")
end

fun process-offices vl =

(app process-office vl;
T.with-condition donecond (fn () -> M.m-inc done-count);
T. signal done.cond)

fun launch-.threads 0) =
let val unprocessed-votes a M.pm.ref (votes-list)

fun first-n n = (defined exactly as in tally.votes}
in

while not (null (N.m.get unprocessed-votes))
do let val first.10 a first.n 10

in
T.fork (fn C) => process.offices first-1O);
M.with-m-ref thread.count (in) =>

H.m.inc thread-count)
end

end

fun wait (- {defined exactly as in tally-votes)
in

S.skein (fn) => (launch-threads (); waito)) 0)
end

Figure 3.9: The definition of tally-off ices.

35

3.7 Skeins

In addition to their use in providing transactions, undoability, and persistence, skeins are useful in
situations where threads need to guarantee that they will clean up after themselves. The function
run in.xterm, shown in Figure 3.10, is an example of this situation. It executes a function in
a separate thread inside an xterm window. The xpipe structure, defined elsewhere, handles the
details of the actual interface with the xterm.

We could just start a thread that would create the xterm, execute f, and then destroy the
xterm, but such an implementation would leave the xterm orphaned if the thread were to exit
prematurely. We avoid this problem by using the full-skein interface.

In addition to the normal skein arguments, a full-skein takes an init function and a
complete function. The init function, which in our case sets up a new xterm, is executed before
the body of the full-skein. The complete function, which we use to close down the xterm, is
executed immediately after the body returns. We ignore the xpipe.xpipeIo exception, which will
be raised if the user closes the xterm (by typing Control-D, for example) before the complete
function is executed.

structure T a Venari.Threads
structure FS , Venari.Skeins.Full.Skein

fun run-in.xterm (f xpipe.id -> unit) name a

let val the-pipe ref (xpipo.empty-id)

fun init _ a (the-pipe := xpipe.create ("");

xpipe.set.name (!the.pipe) name;
xpipe.clear.screen (!the.pipe) M)

fun cleanup _ = (xpipe.close (!the.pipe));
the-pipe :- xpipe.empty.id;
FS.Result 0) handle xpipe.xpipeIo (s) => FS.Result C)

fun run 0) f C!the.pipe) handle xpipe.xpipeIo - => C)
in

T.fork (FS.full.skein init cleanup run)
end

Figure 3.10: Run a function in an xterm.

The function hello-world, shown below, uses run.in-xtezm to print "Hello World!" in an
xterm named "hello". It waits for the user to press return, indicating that it is ok to return and
remove the window.

fun hello-world C) f
let fun hw xp i (xpipe.prline xp "Hello World!"; xpipe.read xp 0); 0)
in

run.in.xterm hi "hello"
end

36

3.8 A Concurrent Iterator

In this section, we consider the implementation of a concurrent iterator. We want to allow a group
of threads to walk through a list, with each element being handled exactly once. If the "next"
element is locked, another thread may be handling it and we want to move on instead of waiting
for the lock. We do not assume that all threads are alike; some threads may not be able to hand!e
some elements. If a thread is unable to find 4nything that it cart handle, but was unable to see
some elements because they were 1cz:,a, it will wait for a lock to be released and try again. Each
thread signals a waiting thread when it is done looking a' the list.

The signature for our copzurrent iterator is shown in Figure 3.11. The function -.terator takes
a list of objects and creates an iterator containing those objects. The function next-item takes an
iterator and an "ok" fuaction and either returns an acceptable (as defined by the -ok" function)
object or raises the exception Empty if no such object exists.

signature CONCURRENTITERATOR
sig

exception Empty
type 'a iterator
val iterator 'a list -> 'a iterator
val next-item 'a iterator -> ('a -> bool) -> 'a

end

Figure 3.11: Signature for a Concurrent Iterator

The iterator type, shown in Figure 3.12, consists of a list of elements, elt.list, a logical
clock, last-unlock, which is incremented whenever.a thread finishes its current pass through the
element list and has released its locks, and a condition, unlock, which is signaled when the logical
clock is incremented. Each element is protected by a mutex and is accompanied by a "done" flag
to indicate whether it has been handled yet.

The function next-item, shown in Figure 3.13, attempts to find an object in the iterator that
the calling thread can handle. It defines a few local variables and functions to assist in this task.
Unlock, last-.unlock, and elt-list contain the corresponding parts of the iterator, iter, and
the current logical time is stored in startl._oop.time. The function signal-waiters increments
the logical clock, last_,mlock, and signals any threads that are waiting on the condition unlock.
The clock is incremented inside a top.skein to ensure that any later undoing will not generate an
inconsistent value for the clock.

Most of the work is done by the function get-item. The first argument to get-item is true
if a locked item has been skipped, false otherwise. The remaining argument is the part of the
element list that we haven't seen yet.

If the element list is empty, we signal one of the waiting threads, if any. If we had not skipped
any locked items, we just raise the Empty exception. If we had to skip some items because they
were locked, we wait for someone else to release their locks and then try again. We determine
whether or not someone else has released their locks by looking at the logical clock. We saved the
"time" in the ref start-loop-time before starting our pass through the list, and we increment the
clock ourselves before signaling any waiting threads. Thus, if no other threads have finished going
through the list since we started, the value of the logical clock should be start.loop-, ime + 1. If

37

structure ConcurrentIterator : CONCURRENTITERATOR
struct

structure T a Venari.Threads
structure S - Venari.Skeins

exception Empty

type 'a element f {elt 'a,
lock T.mutex,
done bool ref}

type 'a iterator - {unlock : T.condition,
last-unlock : int ref,
eltlist : 'a element list}

fun iterator 1 I
let val m T.mutex()
in

(unlock - T.condition m,
last-unlock = ref(O),
eltilist =
map (fn e => {elt=e, lock=T.mutexo, done=ref(false)}) 1}

end

Figure 3.12: The first part of the ConcurrentIterator structure.

38

fun next-item (iter : 'a iterator) (ok : 'a -> bool)
let val] {unlock, last.unlock, elt.list} - iter

val start.'loop.time U

ref (T.with-condition unlock (f (n) => !last-unlock))

fun signal-waiters ()
S.top-skein (fn C) =>

(T.vith-condition unlock (fn 0) =>
inc last-unlock);

T.usignal unlock))

fun get-item false 0 =
(signalvaiterso; raise Empty)

I get-item true 0 -

(signal.waiterso;
T. with.condition unlock
(fn () =>

(T.await unlock (fn () =>
(Ostart-loop-time + 1) <
Ulast.unlock);

start-loop-time := Ulast-unlock));
get.item false elt.list)

I get-item found.locked ({eltlock,done}::rest) =
let val got-lock = T.try.acquire lock

val got.one
got-lock andalso (not (Odone)) andalso (ok elt)

in
if got-one then done :- true else 0;
if got.lock then T.release lock else 0;
if got-one then (signalvwaiters(; elt)
else

get-item (found-locked orelse not got-lock) rest
end

in
get-item false elt.list

end
end

Figure 3.13: The rest of the ConcurrentIterator structure.

39

the value is greater than start..loop- time + 1, some other thread must have finished going through
the element list, so we may see some previously locked elements if we try again.

If the element list is not empty, we try to find out if the current thread can handle the first item
on the list. If we can get the lock, the element has not already been handled by another thread, and
this thread can handle it, then we can return the element. We signal any waiting threads before
returning.

If the current thread cannot handle the first item on the list for some reason, we call get-item
on the rest of the list. If we cannot get the lock, we set get-item's first argument to true to remind
us that we had to skip an item.

A sample use of a concurrent iterator is shown below. Suppose we have an unordered list of
changes to a database and two threads attempting to make those changes. Thread 1 can only
handle simple operations, while thread 2 can handle anything. We assume that the functions
make-simple.change, make.change and is.simple are defined elsewhere.

Thread 1 will go through the list looking for and handling simple changes. Thread 2 will go
through the list, handling anything it finds. We do not have to worry about thread 2 reaching
the end of the list and exiting while thread 1 is looking at a change that it cannot handle. The
iterator will force thread 2 to wait until thread 1 is finished before declaring that the iterator is
really empty; if thread 1 cannot handle the last change, it will be given to thread 2.

structure T i Venari.Threads;
structure CI - ConcurrentIterator;

val change.iter = CI.iterator change-list;

fun thread-(0
(while true do make-simple-change (CI.next.item change.iter is.simple))
handle CI.Empty => 0;

fun thread_2 () =
(while true do make.change (CI.next-item change-iter (fn - => true)))
handle CI.Empty => 0;

T.fork thread-1;
T.fork thread.2;

40

Chapter 4

A Larger Example

We now turn to a more substantial application of the Venari extensions. The application makes
extensive use of nested, multi-threaded transactions, and is intended to demonstrate the practical
use of our extensions. For brevity, we will always assume the declaration "structure V = Venari"
in this section.

4.1 The Application

Recording and managing bibliographic information is a task which few enjoy. Many users of the
IITEX [8] and Scribe [171 document preparation systems use BIBTEX [13] to facilitate bibliography-
building. BiBTEX derives bibliographic information from entries in .bib files, so most users enter
this information by hand and maintain one or more personal . bib files containing frequently used
references.

We want to provide a convenient way for BIBTEX users to collect their bibliographic entries,
share entries with others, and quickly locate desired entries.

4.2 The BIBS Interface

The BIBS application builds on the "set" abstraction, which is a mutable collection of bibliographic
entries. These sets may be registered by name, to allow access in a later session or by other
users. A single BIBS server provides operations on sets to multiple clients. In a more advanced
implementation, the clients and server might run in different SML processes, on different achines,
but at present the server and all clients live in a single SML process.

A BiBTEX bibliographic entry (Figure 4.1) has a type (e.g., book, article, manual), a key
used to refer to it in documents (e.g., seuss88), and a set of field names (author, title) with
associated values.

The signature for a BIBS client appears in Figure 4.2. It provides functions to create and
manipulate sets, along with the run function, which invokes an interactive BIBS interface. The
interactive interface provides the same functionality, but with a more concise and convenient com-
mand language.

The search function takes an existing set (of .bib entries), a field specification, and a value
to match. It returns a new set that contains all entries in the original set for which the indicated
field(s) contain a word matching the matchval. The matchval, Exact s, matches only the word
u, while Prefix a matches any word beginning with a (case is always ignored). So, for example.

41

Obook{seuss88,
author = "Dr. Souse",
title a "Green Eggs and Ham",
publisher a "Beginner Books", year - 1960,
series = "I Can Read It All By Myself",

Figure 4.1: A sample BIBTEX entry.

signature BIBS.CLIENT
sig

eqtype set

datatype field a Allfields I Author I Title

datatype matchval * Exact of string I Prefix of string

val search : set -> field -> matchval -> set

val union : set -) set -> unit
val intersection set - set - unit

val difference set -> set -> unit

val copy : set -> set

val load-file string -> set

val save-file : set -> string -> unit

val print.set set unit

val size set -> int

exception Retrieve no such named set *)
val register : set -> string -> unit
val retrieve : string -> set

val destroy : string -> unit

val run : string -> unit
end

Figure 4.2: The BIBS client signature.

42

fun run display-name ,
let

val win - open.window display.name
fun init 0 ()
fun complete result - (close-window win; result)

in
V.Threads.fork
(fn) ->

V.Skeins.FullSkein.full-skein init complete cmd-loop win)
end

Figure 4.3: The run function.

search s Allfields (Exact "eggs")

will produce a set containing all members of s that contain the word "eggs" in any field.
The union, intersection, and difference functions take two sets and perform the corre-

sponding set operations, modifying their first argument. A "new" copy set may be produced with
copy.

The load-.file and save..file functions convert sets to and from .bib files, and print-set
displays a set in BiBTEX format. The size function simply returns the number of entries in a set.

Sharing and long-term storage of BIBS sets is accomplished with register, retrieve, and
destroy. These functions assign a name to a set, retrieve a set by its name, and destroy a named
set, respectively.

4.3 Use of Venari Extensions in BIBS

We make use of the Venari extensions in the BIBS application for several purposes. They provide us
with mechanisms for expressing concurrency inherent in the application, for ensuring the persistence
and consistency of our registered sets of entries, and for protecting concurrent tasks from one
another.

4.3.1 Concurrency

To allow several users to access BIBS sets simultaneously, we can take advantage of Venari's support
for concurrency. Each client runs in a separate skein; clients can perform operations concurrently.
Unfortunately, it is not yet possible to create multiple threads each running the SML top-level loop,

so each user must run the interactive interface, which sends output to and receives input from each
user through a separate X Window Systemi window. The run function takes an X display name
and forks a thread in which the interactive interface is run (Figure 4.3). The cmd.loop is run in a
skein in order to ensure that all threads that it creates are destroyed before the window is closed.
and that all uncaught exceptions propagate back to the top level. The completion function includes
close-window so that the window is closed whether the skein completes successfully or with an
exception. We could use V.transact instead of full.skein, but as we will see later, this would

'X Window System is a trademark of MIT.

43

restrain the concurrency more than we want. Of course, we want to ensure that the clients do not

interfere with each other in "undesirable" ways; we will address this later.
The other significant use of concurrency in BIBS is for implementing parallel algorithms within

the application. Associated with each BIBS set is one or more indices that allow quick searches for
entries containing a given word or words. The operations which maintain these indices allow some
parallelism.

To index an entry based on all its words in parallel, we would like to write something like this:

fun index-entry idx entry
let

val words a list-vords entry
in

par-app (fn v -> insert idx (w,entry)) words
end

where par.app, like List. app, applies its first argument to each element in its second argument.
but in parallel. The par.app function proves useful in many circumstances, so we build it, and
its companion, par-map (like List .map). We can use these functions whenever the order in which
the applications occur is unimportant. The par-map function (Figure 4.4) forks a thread for each
element. Each of these threads computes the value of the function applied to one of the arguments.
stores the result, and signals the original thread if all threads are done. Note that Lhe decrementing
and checking of the to-go counter is done under protection of the mutex associated with the done
condition. The entire operation is enclosed in a skein, so if any thread raises an exception, all
threads are killed and the exception is propagated out to the caller.

The indices themselves are tries 11l. A trie is a tree in which each edge is labeled with a letter,
and each node corresponds to the word spelled along the path to that node from the root. Each
node in the trie will contain

e *a list of the entries in the set which contain its corresponding word, and

' a list of (letter, trie) pairs representing the node's children.

See the example trie in Figure 4.5.
Given this kind of index, we can retrieve all records containing a given word easily, in time

proportional to the length of the word. Inserting an entry under a given word is equally fast.
We can index an entire entry in parallel simply by forking threads to insert each word in the
entry. When we use union to merge one set into another, we must merge their indices as well, and
this operation has a straightforward parallel implementation (Figure 4.6). This function makes a
recursive call for each child of the merged node, and the fork in merge-kids causes the calls for
each of the children to proceed in parallel.

Another use for threads which BIBS does not yet take advantage of is "background computa-
tion." If there is some low-priority work to be done, such as tree-balancing, trimming unnecessary
data, or making backups, then a thread that runs constantly in the background could handle this
work. Since there is no provision for priority in scheduling threads, however, such a background
thread would have to be careful to avoid depriving more important tasks of processing cycles.

44

fun par-map func args =
let

val v - Vector.vector args
val len - Vector.length v
val results - Array.array (len,NONE)
val to.go a ref len
val done * T.condition (T.mutex 0)
fun do.item i

let
val result a func (Vector.sub (v,i))

in
Array.update(results, i, SOME(result));
T.with.condition done
(fn () U> (dec to-go;

if !to.go - 0 then T.signal done
else 0))

end

(* apply func to args i..len-I s)
fun do-all i a

if i<len then
(T.fork (fn(-> do.item i);
do.all (i+l))

else ()

(* build a list from results i..len-1 *)
fun collect-results i

if i<len then
case Array.sub(resultsi) of

SOME x => x :: (collect-results (i+l))
I NONE => raise Bug "map: missing result"

else 0
in

V.Skeins.skein
(fn ()=> (do.all 0;

T.with.condition done
(fn 0 => T.await done (fn()=>(!to-go = 0)));
collect-results 0))

()

end

Figure 4.4: The par.map function, a parallel version of List.map.

45

B C

A

R. R T

H

Figure 4.5: A sample trie. Record RI contains the word "cat," record R2 contains "car" and
"catch," and record R3 contains "bar" and "cat."

46

(oA trio (children are always sorted) *

datatype ''a trio a TRIE~entries "'a list,
children (string *trio) list)

fun merge (ThIEentriesaentl, children-chl})
CTRIE~entriesuent2, children-ch2})

let
va). new-.entries = append-.no-.duplicates(entl,ent2)

fun pair-.kids kidsl 0 - map (fni (c,t) -> (c,[t])) kidsl

I pair-.kids 0 kids2 - map (fn (c,t) => (c,[t])) kids2
Ipair-.kids (kidsl as ((cl,tl)::tl1))

(kids2 as ((c2,t2)::t12))
it (clac2) then

(cl, rtl,t2))::(pair..kids(tll,tl2))
else if (cl<c2) then

(ci, Eti))::(pair..kids(tll,kids2))
else

(c2, Ct2J)::(pair-.kids(kidsi,t12))

fun merge-.pair (c,[tl,t2)) a (c,merge ti t2)
I merge-.pair (c,(t1)) - (c,ti)
I merge-.pair - a raise Bug

fun merge-.kids kids 1 0 = kids 1
Imerge..kids 0] kids2 akids2
Imerge-.kids kidsl kids2
let val pairs - pair-.kids kids 1 kids2
in

par-.map merge-pair pairs
end

in
TRIE~entries~new..entries, childrenusort..kids (merge-.kids chl ch2)1

end

Figure 4.6: The merge function on tries.

47

4.3.2 Persistence

The primary purposes of persistence in BIBS are to preserve named sets from one invocation of
the system to the next and to make those sets reliable in the presence of failures2 . Thus, we can
put our named sets in the persistent store.

When the BIBS server is started, it must initialize the persistent store and retrieve the stored
sets.

V.Pers.init ("Bibs.log","Bibs.data" ,false);
val bib-sets : set V.RWRef.rv-ref safe-hashtable

w V.Pers.retrieve (V.Pers.make-id "BIBS:bib.sets");

We can register, retrieve, and destroy sets by accessing the bib-sets hash table, using the set
name as the key. The buckets in this hash table are protected by rv.locks. By using a hash table
rather than, for example, a list, we allow updates to a set in one bucket to proceed concurrently
with reads or updates to sets in other buckets. (For another example of manipulating the persistent
environment in a similar way, see [12].)

Now, to ensure that the persistent store is kept consistent and up-to-date, we should perform
every operation that modifies sets within a persistent skein (V .Pars .pers.skein or V. transact).
The set must be left in a consistent state when the outermost persistent skein completes as well,
or we will commit the inconsistent state to disk. We can satisfy both of these requirements by
enclosing the body of each top-level client function in a V. transact.

4.3.3 Safe State

Finally, we must impose some restrictions on the interactions between different clients using BIBS
simultaneously, and make some guarant-es regarding the correctness of our parallel algorithms.
For these purposes we use transactions and "safe" mutable objects.

Users will certainly want some degree of isolation from each other's activities, but probably
not full isolation. (If one user adds new entries to a shared set, others will want access to those
new entries at some point.) We would like incomplete modifications to be undone in the event of
a failure (loss of connection, user interrupt, etc.) or mistake on the user's part. If we assume that
sets are composed of safe mutable objects, then we can accomplish all of this by enclosing the body
of each top-level client function in a V. transact, as mentioned above. This will have the effect
that changes to a set are made visible to other clients as soon as the top-level function making the
changes completes. A user may "bundle" several operations by introducing an outer transaction.
For example, if soso-books is a subset of bad-books and disjoint from good-books, then

V.transact (fn 0) => (union good-books soso-books;
difference bad-books soso-books))

0)

will move the entries in soso-books from bad-books to good-books, with the guarantee that no
other client will find the same entry in good-books and bad-books within a single transaction.
Furthermore, if any exception is raised during this transaction, the entire operation will be undone.

A set consists of a mutable list of entries and several mutable indices on those entries. We can
use the Vr.ari.RWRef structure to provide safe, mutable entry lists and safe, mutable indices.

2Ideafly, clients would rely on the persistent store as they would the file system.

48

(* A safe, mutable trie *)
datatype ''a safetrie " ''a trio V.RWRef.rw-ref
val safe-merge-mutex a V.Threads.mutexO;

(* merge second trio into the first *)

fun safe-merge (m-trial, m-trie2)
let

val - a V.Threads.with.mutex safe-merge-mutex

(fn 0)->
V.RWLock.acquire.write (V.RWRef.lock-of m-triel)
V.RW.Lock.acquire.read (V.RW.Ref. lock-of m-trie2))

val ti - V.RWRef.rv.get m-triel
val t2 a V.RWRef.rv.get m-trie2

in
V.RWLock.rw-set m-triel (merge ti t2)

end

Figure 4.7: The merge function on "safe" mutable tries.

Figure 4.7 demonstrates how tries can be made safe by protecting each trie with an rw-ref. thereby

providing the isolation guarantees we need. As mentioned in Section 2.8.2, care needs to be taken
to avoid deadlock situations. For instance, in Figure 4.7, if we removed the safe-merge-rmutex.

then a deadlock could arise if two transactions called safe-merge with the same arguments, in

reverse order, since both could complete the acquire.write successfully and then block on the
acquire.read.

49

Chapter 5

For More Information

All source code is available in the directory /afs/cs/project/venari/projects/newxact, which con-
tains subdirectories of the current and past versions. Send e-mail to kygcs.cmu.edu for further
information about source code. We welcome bug reports and suggestions for improvements to these
interfaces. Send e-mail to wing~cs.cmu.edu about the Venari Project in general.

50

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms, pages 163-169. Addison-
Wesley, 1983.

[2] Andrew Birrell. An introduction to programming with threads. Technical Report Research
Report 35, DEC/Systems Research Center, January 1989.

[3] E.C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML. Technical Report
CMU-CS-90-186, Carnegie Mellon School of Computer Science, December 1990.

[4] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery
properties in Avalon/C++. IEEE Computer, pages 57-69, December 1988.

[5] Bruce F. Duba, Robert Harper, and David B. MacQueen. Typing first-class continuations in
ML. In Proc. of POPL, 1991.

[6] J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Transaction
Facility. Morgan Kaufmann Publishers, Inc., 1991.

[7) R. Haskin, Y. Malachi, W. Sawdon, and G. Chan. Recovery Management in QuickSilver.
ACM Transactions on Computer Systems, 6(1):82-108, February 1988.

[8] Leslie Lamport. LNTEX: A Document Preparation System. Addison-Wesley, 1986.

[9] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed
programs. ACM Transactions on Programming Language and Systems, 5(3):382-404, July
1983.

[10] Hank Mashburn and M. Satyanarayanan. RVM: Recoverable virtual memory. Note in progress.
March 1991.

[11] R. Milner, M. Tofte. and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

[12] Scott M. Nettles and J.M. Wing. Persistence + Undoability = Transactions. In Proc. of
HICSS-25, January 1992. Also CMU-CS-91-!73, August 1991.

[13] Oren Patashnik. BIBTEXing. Documentation for general BiBTEX users, 8 February 1988.

[14] M. Satyanarayanan et al. Coda: A highly available file system for a distributed workstation
environment. IEEE Trans. Computers, 39(4):447-459, April 1990.

'.Z. Spector et al. Support for distributed transactions in the TABS prototype. IEEE Trans-
actions on Software Engineering, 11(6):520-530, June 1985.

51

[16] W.F. Tichy. Design, implementation, and evaluation of a revision control system. In Proc. of
the 6th International Conf. on Software Engineering, September 1982.

[17] Unilogic, Ltd., Pittsburgh. Scribe Document Production System User Manual, April 1984.

[18] J.M. Wing, M. Faehndrich, J.G. Morrisett, and S.M. Nettles. Extensions to Standard ML to
support transactions. In ACM SIGPLAN Workshop on ML and its Applications. June 1992.
Also CMU-CS-92-132, April 1992.

52

