
"AD- A2 6 5 408 D TICll~lllllllllllllllI~lllilS ELECTE 1
JUN 7 1993D

C

The Priority Inversion Problem and Real-Time
Symbolic Model Checking

Sergio V. Campos

April 23, 1993
CMU-CS-93-125

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Priority inversion is a serious problem that can make real-time systems unpredictable in
subtle ways. This makes it more difficult to implement and debug such systems. Our work
discusses this problem and presents one possible solution. The solution is formalized and
verified using temporal logic model checking techniques. In order to perform the verification.
the BDD-based symbolic model checking algorithm given in [4, 111 was extended to handle
real-time properties using the bounded until operator [9]. We believe that this algorithm.
which is based on discrete time, is able to handle many real-time properties that arise in
practical prcblems.

This research was sponsored in part by the National Science Foundation under grant no. CCH-87226;:3.
by the Semiconductor Research Corporation under contract 92-DJ-294, and by The Defense Advanced
Resprth Projects Agency, Information Science and Technology Office, under the title "Research on Parallel
Computing", ARPA Order No. 7330, issued by DARPA/CMO under Contract MDA9,2-90-C-O035.

The views and conclusions contained in this document are those of the author and shoild not he inter-
preted as representing the official policies, either expressed or implied, of NSF, SRC, or the IU.S. government

:DM W4W3 4*ý STA7TrLMa A
Appmoee to puliw reioael



�wq

:4

� -a
.4 -

Keywords: Symbolic Model Checking, Real-time Systems. Priority Inversion



* The Priority Inversion Problem and Real-Time Symbolic Model Checking

CMU-CS-93-125

Sergio V. Campos

April 1993

Priority inversion is a serious problem that can make real-time systems unpredictable in subtle ways. This
makes it more difficult to implement and debug such systems. Our work discusses this problem and
presents one possible solution. The solution is formalized and verified using temporal logic model
checking techniques. In order to perform the verification, the BDD-based symbolic model checking
algorithm given in McMillan~s Symbolic model checking - an approach to the state explosion problem
was extended to handle real-time properties using the bounded until operator. We believe that this
algorithm, which is based on discrete time, is able to handle many real-time properties that arise in
practical problems.

Keywords: SYMBOLIC MODEL CHECKING, REAL-TIME SYSTEMS. PRIORITY INVERSION

(22 pages)

NTIS CRA&I
DTIC TA8
Unanrnownced

Ji AtafI arl for
DiOstribution I

Avail~ability Codes
Si's? Avail and / or

|I Sl~ecjajSacI
DTIC Q• Mp I aPCED It

*- 93-12625

TECHNICAL REPORT 1993 COiWUAR SCIENCE CARNEGIE MELLON



1 Introduction

Most real-time systems rely on priorities to maintain predictability. The fact that higher
", priority tasks must be executed before lower priority tasks is essential for the correctness of

such systems. However, low priority processes can block high priority processes indefinitely,
because of indirect priority constraints. This situation is called priority inversion. It is de-
scribed in detail this paper, and one solution, priority inheritance, is presented and formally
verified using temporal logic model checking techniques.

To make this possible we extend the SMV model checking algorithm [4, 11] to handle real-
time properties. The original model checking algorithm represents properties as formulas
in the temporal logic CTL. This logic allows us to state properties such as "event p will
happen sometime in the future", but not "event p will happen in at most x units of time".
In real-time systems properties of the latter type appear frequently, because we must bound
the execution time in order to make the system predictable.

We augment CTL so that it is possible to express real-time properties using the bounded
until operator [91, and show how to check formulas involving operators of this type using
BDD-based symbolic model checking techniques. We argue that this is a useful extension to
the model checker and that in spite of the limitation to discrete time, our model Lhecker is
powerful enough to handle most properties that occur in practice.

This paper is organized as follows: Section 2 briefly describes the logic used for expressing
program properties. In Section 3 we explain the symbolic model checking algorithm used as
the basis for this work. The extension to CTL that allows real-time properties to be expressed
is described in Section 4. Some simple examples are presented in Section 5 to demonstrate
how the new technique works. Section 6 describes the priority inversion problem, and how
model checking can be used to verify a solution to this problem. The paper ends in Section 7
with a discussion of the results and some directions for future research.

2 Computation Tree Logic
Our model checking algorithm is based on a propositional, branching-time temporal logic

called CTL. This logic is discussed in detail in (6]. The formal syntax for CTL is:

* Every atomic proposition p is a CTL formula.

9 If f and g are CTL formulas, then so are -,f, f A g, AXf, EXf, A[fUg] and E[fUq].

The semantics of CTL formulas are defined with respect to a labeled state-transition
graph, which is a 5-tuple M = (P, S, L, N, SO), where P is a set of atomic propositions. S
is a finite set of states. L iq a furnI ion !he!iirg ea,:c sýa'- -ith a beL ot atomic propositions.
N C S x S is a transition relation, and So is the set of initial states. A path is an infinite
sequence of states soSlS2..., such that N(si, si+i) is true for every i.

The symbols -, and A have their usual meanings, X is the nexttime operator; the formula
AXf (EXf) intuitively means that f holds in every (in some) immediate successor of the
current state. U is the until operator; the formula A[fUg] (E[fUg]) intuitively means that,
for every computation path (for some computation path) there exists an initial prefix of the



path such that g holds at the last state of the prefix and f holds at all other states along
the prefix.

If f is true in a states of structure M, we write M, s j f. We write M • f if A4, s k f
for all states s in So. The satisfaction relation is defined inductively as follows (Given the
model M, we abbreviate M, s • € by s 1= 0):

1. If 4 is the atomic proposition v E P, then s • 4 if and only if v E L(s).

2. sk -,0 iffitisnot the case that s k4. s H AViff s ands .

3. s = AXO iff for all paths ir = s0sis 2... starting at s = so, s, € 4.

4. s h EXO iff there exists a path 7r = sosls2.., starting at s = so, such that s, 1 '.

5. s • E[OUO] iff there exists a path ir = SoSIS 2... starting at s = so and some i > 0
such that si ý= i and for all j < i, sj 4).

6. s • A[OU4] iff for all paths 7r = s0s1s2... starting at s = so and some i > 0 such that
si ¢sj • for all j <i.

The following abbreviatons are used in CTL formulas:

AF(f) = A[trueUf] intuitively means that f holds some time in the future along every
path from the current state.

EF(f) - E[trueUfl means that there is some path from the current state to a state at
which f holds.

EG(f) =_ -AF(-"f) means that there is some path from the current state on which f holds
at every state.

AG(f) = -'EF(-,f) means that f holds at every state on every path from the current state.

Some examples of CTL formulas are:

"* AG(req --- AF ack): It is always the case that if the signal req is high, then eventually
ack will also be high.

"* EF(started A -'ready):. It is possible to get to a state where started holds but ready
does not hold.

"* AGI(send --, A(sendUrecv)): It is always the case that if send occurs, then eventually
recv is true, and lintil that time, .4erd must -crnain true.

3 The Model Checking Algorithm

The model checking algorithm used here is described in [3, 6, 7]. This algorithm works on
pure CTL formulas. We extend the model checker to handle the real-time operators discussed
in [9].

2



BDD's

In this algorithm, boolean formulas are represented by Binary Decision Diagrams (BDD) [2].
BDD's are often substantially more compact than the traditional normal forms for represent-
"ing boolean formulas, such as conjunctive normal form and disjunctive normal form.

Given BDD representations for formulas 0 and V), there are efficient algorithms for com-
puting the BDD representations of --0 and 4A A [2), quantification over boolean variables and
substitution of variable names [3]. These algorithms are the only ones needed to implement
the algorithm that follows.

The fact that BDD manipulation is very efficient and it usually takes less space to rep-
resent boolean formulas allows the model checker algorithm to be used in a wider range of
applications. This is because problems that are intractable using other representations can
still be tractable using BDDs.

Representing the Model

The idea of model checking is to represent a reactive system as a model for some temporal
logic, and to determine, using the data structure that encodes this model, if some assertion
about the system is true or not.

A model of the system in our algorithm is a labeled state-transition graph A4, and
assertions about the system are expressed as CTL formulas. The key to the efficiency of the
algorithm is to use BDD's to represent the labeled state-transition graph and to verify if the
formula is true or not.

We want to represent the transition relation as a BDD. Assume that system behaviour is
determined by the boolean variables V = {vo,..., v,- 1 }. Let V' {v,.,v'} be a second

copy of these variables. A transition (Sl, 82) in N can be expressed as a conjunction of the
state variables in V and V' and their negations. For example, if V = {p., q} we may have in
si :p, " and in 82 :p, q. Then the transition i = (sl, s2 ) can be expressed as

ti = pA 4 A p' A q'

Notice that we are representing states by the values of the atomic propositions in those
states. In order to guarantee that we can identify, states uniquely, we must make the assump-
tion that different states have different labeling of propositions. More formally, we assume
that for any two states 51 and 82 in S, if L(s8) = L(5 2 ) then s, = s 2 . This assumption does
not, however, reduce the generality of the process, since extra atomic propositions can be
added in order to make L(sl) # L(s 2 ) for distinct states s, and 82 [3].

By writing formulas ti that represent each transition i in the model we can represent the
transition relation of the system as a disjunction of the form:

N(V, V') V t

Model Checking

Given a CTL formula f and a model M represented as described above, we want to verify
if f is satisfied in the initial states of MI. The model checking algorithm is defined by a,

.3



procedure CHECK, that takes f as an argument (and M as an implicit argument), recurses
over the structure of f and returns a BDD that has one boolean variable for every atomic
proposition in V. The BDD CHECK(f) is true in a given state if and only if the formula f is
true in that state.

The procedure CHECK works in a bottom up fashion, starting from the atomic proposi-
tions in the formula, following the rules:

"* CHECK(f), where f is an atomic proposition p, is the BDD that is true if and only if p
is true.

"* CHECK(--f) and CHECK(f A g) are handled by the standard BDD algorithms for com-
puting boolean connectives.

"* CHECK(EXf) = CHECKEX(CHECK(f)).

"* CHECK(E[fUg]) = CHECKEU(CHECK(J), CHECK(g)).

The procedures CHECKEX and CHECKEU will be explained shortly. Notice that AXf and
A[fUg] can be rewritten using the above operators, so this definition of CHECK covers all
CTL formulas.

CHECKEX(f) must verify if the formula f is true in a successor state of the current state.
EX(f) is true in a state t if and only if there exists a state a such that f is true in state s,
and there exists a transition from t to s:

t j EX(f) iff 3s(f(s) A N(t,s))

here f(s) means the value of formula f in state s. To compute this value we substitute the
free variables in f by their values in state s using the substitution algorithm given in [3].
The relational product 3s(f(s) A N(t,s)) can be computed using the basic operations on
BDDs, as described in [3]. However, this operation occurs frequently, so it is important to
compute it in an efficient manner. Algorithms for this purpose are discussed in [5].

The formula E[fUg] is true at state s, if there exists a path beginning in S such that g is
true in a future state t on the path, and f is true in all states between s and t. This means
that either g is true, or f is true and there exists a successor state where E[f Ug] is true.
Consequently, the BDD that represents the states where E[fUg] is true can be computed by
finding the least fixed point of:

E[fUg] = g V (f A EXE[fUg])

The procedure CHECKEU computes the fixed point by iteration. It starts with z = false
and computes a new value for z using the formula:

z = g V (f A checkEX(z))

The algorithm terminates when z does not change from one iteration to the next. Because
the number of states is finite, we must eventually reach a fixed point.

4



4 Real-Time Logics

The logic CTL described previously can be used to specify many properties of finite state sys-
tems. However, there is an important class of properties that cannot be adequately handled
using this logic. This class consists of the properties that involve quantitative constraints,
that is, the class of properties which place some bound on response time. In CTL it is possible
"to express the property that some event will happen in the future, but not that some event
will happen at most x time units in the future. In this section we will discuss one way of
augmenting CTL to permit representation of such properties.

In order to represent bounded properties, we add time intervals to the existing temporal
operators, as described in [9]. The basic temporal operator that we use in our real-time logic
is the bounded until operator which has the form: U[a,b], where [a, b] defines the time interval
in which our property must be true. We say that fU[a,b]g is true of some path if g holds in
some future state s on the path, f is true in all states between the beginning of the path
and s, and the distance from this state to s is between a and b. Other temporal operators
are defined in terms of the bounded until.

More formally, we extend our CTL semantics to include the bounded until by adding the
following clauses to the fcrmal semantics given in section 2:

7. s • E[0U[a,b]0j iff there exists a path ir = sosis2... starting at s = so and some i such
that a <i < b and si ý= iL and for all j <i, sj ý= q.

8. s = A[0Ufa,bl]4] iff for all paths 7r = oS0S12.., starting at s = so and some i such that
si 7P,a < i < b, andsj 0 for allj <i.

As an example of the use of the bounded until consider the property "It is always true
that p may be followed by q within 3 time units". this property can be expressed as AG(p -
EFlo,3]q). The bounded F operator is derived from the bounded until just as in the unbounded
case, i.e. EF[t,blf = E[trueU(t,blf].

In order to implement this operator, we will use a procedure that is similar to the one
described in section 3. It is easy to see that the formula E[fUfAB]g] can be explessed in the
form:

if a > 0 and b > 0: E[fU[,,bjg] = f A EXE[fU(~i,,--I-g]
if b > 0: E[fU[o,blg] = g V (f A EXE[fU[o,b-1 1g])
and E[fU[o,o]g] = g

Consider the first of these cases. We compute the sets of states where f is true for
a steps. During this computation, a fixed point may be reached before a iterations have
passed. When this happens, we can skip to the second case. By using this optimization, the
number of required iterations may be reduced when the time interval is large, but a fixed
point is reached quickly. The same optimization can also applied in the second case. If a
fixed point is reached before (B - A) iterations we can immediately proceed to the third
case.

5



5 Examples

In our implementation of the model checking algorithm we have two different languages.
CTL is used to express properties of the model, and another language (the SMV language)
is used to define the model. Although, this language was originally developed to represent
digital circuits, it proved sufficient for representing real-time programs.

The fact that CTL is a discrete time logic raised some questions concerning the specifi-
cation of practical real-time problems. We argue that discrete time is adequate to express
most of the important properties we are interested in.

5.1 SMV syntax and semantics

This section briefly describes the SMV language in order to make it easier to understand the
examples. One simple example expressed in this language is:

1 MODULE main
2 VAR
3 request : boolean;
4 state : {ready,busy};
5 ASSIGN
6 init(request) := 0;
7 init(state) := ready;
8 next(request) : case
9 state m ready: {0, 1};
10 1: 0;
11 esac;
12 next(state) :s case
13 state = ready & request : busy;
14 1 : {ready,busy};
15 esac;
16 SPEC
17 AG(request -> AF state = busy)

The VAR statement declares the boolean variables request and state (state is a scalar
type, but is implemented as a boolean). The ASSIGN statement is used to specify the
transition relation for the model. We define the initial value for the variables (using init )).
and the value for variables after a transition of the system (using next()). The SPEC
statement allows the program to be annotated by CTL formulas, and these formulas are
checked during the verification procedure.

In this example, when a transition occurs, the state will become busy if it was ready
before, and request was true. Otherwise, the value for state will be chosen noideterminis-
tically among the values in the set {ready, busy} . In other words, if state is ready, aiid
request is true then state will be busy. If those conditions arc not satisfied, the guard
in the last case statement option will be true and state will become either ready or busy
nondeterministically.

6



The SMV compiler constructs a model for the program. The compiler assumes a syn-
chronous semantics for the language, that is, all variables of a module transition at the same
time. More than one module can be defined, but all of them transition at the same time by
default. Nonsynchronized modules can also be defined using the process keyword. Process

"a modules use an interleaving semantics, in which only one process transitions at each step.
SMV chooses which process to transition nondeterministically. The FAIRNESS statement can
"be used to guarantee that the process will transition infinitely often. Arbitrary CTL formulas
can be used as fairness constraints. A path is fair if each fairness constraint holds infinitely
often in the path. The model checking algorithm only considers fair paths in determining
whether a formula is true or not.

5.2 Bounded Producer Consumer

The first example is a bounded producer-consumer module. The producer produces only

one item in any time interval of length x. The consumer takes at most y time units to
consume an item from the moment it is produced. If x > y the the producer will never
overflow the buffer, and the consumer will never try to consume from an empty buffer.

1 -- producer will insert the next produced element position buffer[p],
2 -- and consumer will read the next element from position buffer c].

3
4 MODULE producer(p, c)
5 VAR
6 pstate: {pwait, preparel, prepare2, produce};
7 ASSIGN
8 init(pstate) := pwait;
9 next(pstate) := case
10 pstate = pwait: {pwait, preparel};
11 pstate = preparel: prepare2;

12 pstate = prepare2: produce;
13 pstate = produce: pwait;
14 1: pstate;
15 esac;
16 next(p) : case
17 (pstate - produce): (p + 1) mod 2;
18 1: p;
19 esac;
20
21 MODULE consumer(p, c)
22 VAR
23 cstate: {cwait, consume};

24 ASSIGN
25 init(cstate) : cwait;
26 next(cstate) := case

7



27 -- There are i.tems to consume, Proceed.

28 (cstate - cwait) & !(p w c): consume;
29 cstate = consume: cwait;
30 1: cstate;
31 esac;
32 next(c) := case
33 (cstate - consume): (c + 1) mod 2;

34 1: c;
35 esac;
36
37 MODULE main
38 VAR
39 p: {0, 1};
40 c: {0, 1};
41 prod: producer(p, c);
42 cons: consumer(p, c);
43
44 ASSIGN
45 init(p) : 0;
46 init(c) : 0;
47
48 -- Consumer will not try to get an item from an empty buffer.
49 SPEC
50 AG !((p- c) & (cons.cstate -consume))
51
52 -- Producer will not try to put an item into a full buffer.
53 SPEC
54 AG !((p = ((c - 1) mod 2)) & (prod.pstate = produce))

55
56 -- Anything produced must be consumed in two states.
57 SPEC
58 AG ((prod.pstate = produce) -> (ABG 2..2 (cons.cstate = consume)))
59

The producer can generate an item whenever it is idle; it does not check if the buffer
is full. If pstate = pwait, the producer is idle. It can then continue waiting, or start
producing, nondeterministically. We control the rate at which the producer generates data.
We require that it takes three steps to -oduce an item (the producer goes through states
preparel and prepare2 before produce).

The consumer, on the other hand, is fast, and consumes an item as soon as it is produced.
Items are consumed two states after they are produced. For this reason, no overrun on the
buffer occurs. The variables p and c point to the place in the buffer where a a new item
should be inserted, or removfd.



Although very simple, this example shows an important restriction on the definition
of real-time models in SMV. Different modules in a system must be synchronous. This
guarantees that each module advances one step at each transition of the system. If modules
are not synchronized, there is no way of specifying when a module will make a transition in
SMV, and therefore we cannot bound its execution time. In most SMV applications there is
no need to bound the execution time, and starvation is avoided through a special fairness
"constraint that guarantees that unsynchronized modules are executed "infinitely often".
Because of this constraint, our representation was not a realistic one since in "real" systems
modules are not synchronized. Later we will show how to achieve the effect we desire using
synchronous processes.

5.3 Mutual Exclusion

The second example implements a mutual exclusion module. It illustrates another problem
associated with using synchronized m-dules, and one way to solve it. The problem is that.
since all modules step together, they cannot write to the same variable (SMV forbids the
possibility of two or more processes writing to the same variable at the same time). However.
processes must share information, and therefore shared variables are essential if we want tc
use the program in real systems.

Notice that this mutex implementation works only for two processes. The extension for
more processes is simple, but it will not be explored in this work. The example is:

1 MODULE mutex(statel, state2, owner)
2 VAR
3 last: {1, 2};
4 ASSIGN
5 init(last) 1;
6 init(owner) 0;
7 next(owner)
8 case
9 (statel=unlocked) & (state2=unlocked): 0;
10 (statel=try-lock) & (state2=unlocked): 1;
11 (statel=unlocked) & (state2=try-lock): 2;
12 -- If both are trying to lock, we must wait until owner = 0,
13 otherwise race conditions may occur, because there is one
14 -- state between (owner := i) and (state-i = locked).
15 (statel=try-lock) & (state2=try-lock) & (last=l) & (owner=O): 2;
16 (stateltry-lock) & (state2=try-lock) & (last=2) & (owner=O): 1:
17 1: owner;
18 esac;
19 next(last) := case
20 (owner = 1): 1;
21 (owner = 2): 2;
22 1: last;
23 esac;

9



24
25 MODULE proc(id, state, owner)
26 VAR
27 lock-time: 0..2;
28 ASSIGN
29 init(state) :- unlocked;
30 init(lock.time) :- 0;
31 next(state) :-
32 case
33 state - unlocked: {unlocked, try-lock};
34 (stateutry-lock) & !(owner-id): try_lock;
35 (state-try.lock) & (owner-id): locked;
36 (state-locked) & !(locktime=2): {locked, unlocked};
37 (state-locked) & (lock-time=2): unlocked;
38 esac;
39 next(lnck.time) :- case
40 !(state - locked): 0;

41 1: (locktime + 1) mod 3;
42 esac;
43
44 MODULE main
45 VAR
46 statel: {unlocked, trylock, locked};
47 state2: {unlocked, trylock, locked};
48 owner: {0, 1, 2};
49 pl: proc(l, statel, owner);
50 p2: proc(2, state2, owner);
51 m: mutex(statel, state2, owner);
52
53 -- Mutual exclusion is guaranteed.
54 SPEC
55 !EF (kstatel = locked) & (state2 = locked))
56
57 -- There is no unbounded wait for a critical section.
58 SPEC
59 AG (((statel = try-lock) -> AF (statel = locked)) &
60 ((state2 - try-lock) -> AF (state2 = locked)))
61
62 -- There is no deadlock.

63 SPEC
64 AG EF (statel = locked)
65 SPEC
66 AG EF (state2 = locked)
67

10



68 -- Critical section doesn't last more than 3 states.
69 SPEC
70 AG ((statel a locked) -> ABF 0..3 (statel - unlocked))

Processes can be unlocked, try-lock or locked meaning that they don't want to enter
the critical section, they do want to enter the critical section and that they are inside the
critical section, respectively. The life of a process is simple, when it is unlocked, it can decide
to try to lock at any time. When it is trying, it waits until it is allowed to lock, keeps it
locked for a finite amount of time and goes back to unlocked.

Again, we have synchronized processes, but now we need to share one variable, which
controls the mutual exclusion, the variable owner. Both processes change the value of owner.
but they cannot write directly to the variable. The solution is to create another module.
mutex, which writes to owner, and accepts requests for values.

Each process sends mutex its state. mutex knows that when a process is trying to lock
the variable it wants to write its number on owner (this means that this process is allowed to
lock). It then receives states from all processes, and decides which value to write on owner.

Inside the mutex module we model the arbitration that goes on in a real system whenever
shared variables axe accessed. This means that, although not as simple as just writing to a
shared variable, this technique does not introduce more work to be done, it just makes it
more explicit.

However, support from the definition language in defining and using shared variables
would be very useful. The language could generate the control modules for each variable
declared shared, and simplify the exchange of information. This has not yet been done.

6 Priority Inversion

Priorities are essential in real-time systems. The correct ordering of task execution is a
fundamental problem that must be solved if the system is to be predictable. Many scheduling
policies have been developed to define what constitutes a correct ordering and to enforce
this ordering during the execution of the system. If a scheduling policy requires that higher
priority tasks execute before lower priority tasks, it is possible for a low priority process to be
executing while a higher priority one is blocked. This situation is called priority Inversion.
Unbounded priority inversions occur when high priority processes are blocked indefinitely
by low priority processes. When this happens, the system may become unpredictable. The
correct ordering of task execution will be compromised, and the system may fail to satisfy
its specification.

In order to present the problem in a more concrete framework, we will introduce a hypo-
thetical air-traffic control system. We will concentrate our analysis in two of the processes in
the system. The first, called sensor, reads airplane position data from radars, sets alarms oil
catastrophic conditions (conditions that cannot wait for a detailed analysis), and puts the
data into shared memory. The other process is the reporter, that reads the data collected by
the sensor, and updates the traffic controller screens. The sensor is a high priority process.
because it processes urgent events, and must not be blocked by other processes. The reportccr

11



on the other hand, is a low priority process. Since it doesn't process urgent events, it may
be delayed by other more important tasks.

The sensor and the reporter processes share data. To access this data appropriately.
synchronization is necessary. In our system, the synchronization is implemented by a mutex
variable which guarantees mutual exclusion among the processes accessing the data. The
mutex variable is locked every time shared data is accessed. However, this may result in
priority inversion. Suppose reporter is inside the critical section, and sensor tries to insert
new data into the buffer area. The sensor can't access the data and blocks, waiting for
reporter to unlock the mutex. Now a high priority process is waiting for a low priority
process, and priority inversion occurs.

This priority inversion scenario is bounded. The reporter will delay the sensor only while
it is inside the critical section. After the reporter releases the lock, the sensor will start
executing, and the priority inversion will disappear. We can calculate the maximum duration
of the priority inversion as the time to execute the largest critical section, and incorporate
it in our calculations for the execution times. The system will still be predictable, although
there may be a little loss in accuracy in execution time predictions. Consequently, if the
system is well designed, and the critical sections are small, bounded priority inversions can
be tolerated, without loosing predictability.

In certain cases, it is possible to have unbounded priority inversions that cannot be
solved by this simple method. Suppose a third process, called the analyzer is added to the
system. This process reads data generated by other components of the air-traffic controller
and processes it. The analyzer is less important than the sensor and has a lower priority. But
it is more important than the reporter, since urgent conditions may arise as the result of the
analysis and handling them is more important than updating the screen. Consider now the
same scenario as above, with the reporter inside the critical section, and the sensor waiting
on the mutex. At this point, the analyzer starts executing. It will block the reporter. since
it has higher priority. However, the sensor is waiting for the reporter (and therefore also for
the analyzer). Since the analyzer doesn't know the relation between the reporter and the
sensor, it may execute for an unbounded amount of time and delay the sensor indefinitely. If
a catastrophic event occurs, it will go unnoticed, because the sensor is blocked. As a result,
the behaviour of the system becomes unpredictable.

Priority inheritance protocols are one way of preventing unbounded priority inversions.
A typical protocol might work in the following manner. As soon as a high priority process is
blocked by a low priority one, the low priority process is temporarily given the priority of the
blocked process. While inside the critical section the sensor is trying to access, the reporter
will execute at high priority. When the reporter exits the critical section, it will be restored
to its original priority. In this way, the analyzer will not be able to interrupt the reporter.
when the sensor is waiting. We will show that this protocol avoids the unbounded priority
inversion problem (except possibly for deadlocks in accessing synchronization variables).
This allows the designer of the system to predict the maximum priority inversion time, as
in the bounded case.

Priority inversion occurred in this example because the analyzer preempted the reporter.
Another cause of priority inversion is queueing. Communication protocols may experience
priority inversion for this reason. For example, packets to be sent to the network may have

12



priorities. Low priority packets may be enqueued ahead of high priority ones in some protocol
queue. In a prioritized network a high priority packet may have to wait for a low priority
one to be sent. If medium priority packets start arriving in another processor's queue. they
"may monopolize the network, preventing high priority packets from being sent. Again, we
have unbounded priority inversion. This type of priority inversion could also happen in our
system, if the different components were distributed over a network. For example, sensor
"packets could be queued after some low priority packets in a queue, while analyzer packets
were being trasmitted.

The inheritance mechanism that we have described to avoid unbounded inversions is
called basic priority inheritance protocol. There are other priority inheritance protocols.
Some protocols are designed to avoid deadlocks caused when critical sections are accessed in
the wrong order. Other protocols are designed to handle chained bounded priority inversions.
A chained inversion occurs when a high priority process wants to lock n mutexes that are
already locked by low priority processes. In this case, the high priority process has to wait for
all low priority processes to finish their critical sections. While this wait is bounded. it may
be too expensive to wait for the duration of all critical sections. One possible solution to this
problem is to assign priorities to critical sections, based on the priorities of the processes
that may access it. A process is allowed to access a critical section only if its priority is
higher than the priority of all critical sections currently being accessed. A more complete
study of these various algorithms and their characteristics can be found in [8, 12].

The example coded below is slightly different from the one explained above. There is no
scheduler choosing which process runs next, so all processes run concurrently. However, the
mutex control module chooses which process will lock the variable next, and when there is
contention, high priority processes are chosen first. In this case the queueing of processes
in the mutex control module cause the priority inversion. In the example we have the same
three processes as above, the sensor, the analyzer and the reporter, with high, medium and
low priorities, respectively. Therc are also two mutex variables, ml and m2, controlling two
critical sections. The sensor wants the critical section controlled by ml, the analyzer wants
the one controlled by m2, and the reporter locks both variables, first ml and then rn2. in 1
controls access to the area shared by the sensor and the reporter as explained above. 7n2
controls a shared area where the analyzer puts its results. These results will in turn be read
by the reporter to be printed on the screen. The sequence of events below leads to priority
inversion:

1. The reporter locks ml.

2. The analyzer locks m2.

3. The sensor wants to lock ml, but it is already locked, so the sensor waits.

4. The reporter wants to :ock m2, but it is locked, so the reporter waits.

5. The analyzer is continuously generating data, and after unlocking rn2. it locks the
mutex again to insert new data into the buffer. Notice that the reportcr never locks
m2, since it has lower priority than the analyzer.

1:3



6. The sensor is waiting for the reporter, and the reporter is waiting indefinitely for the
analyzer. Therefore, the sensor is blocked by the analyzer indefinitely.

The solution works as follows. Since the sensor is waiting for the reporter, and the sensor
has high priority, the task being executed by the reporter becomes a high priority task. WVe
then make the reporter a high priority process temporarily, so it will release the lock the
sensor wants faster. The analyzer eventually notices that the reporter has become a high
priority process. At this point it will yield m2 to the reporter. After unlocking ml, the
reporter will have its old priority restored.

The SMV code that implements this example is:

1 MODULE rt-mutex(statel, state2, owner, minherit)
2 VAR
3 stut: 0..10; -- stuttering variable.
4 ASSIGN
5 init(owner) : 0;
6 init(stut) : 0;
7
8 next(owner) :
9 case
10 (statel=unlocked) & (state2=unlocked): 0;
11 (statel-try-lock) & (state2-unlocked) & !(stut=0): {0, 1};
12 (statel-try.lock) & (state2=unlocked) & (stut=0): 1;
13 (statel-unlocked) & (state2-try-lock) & !(stut-0): {0, 21;
14 (statel-unlocked) & (state2=try-lock) & (stutO0): 2;
15 (statelitry-lock) & (state2=try-lock) & (owner=0) & !minherit: 1;
16 (statel-try-lock) & (state2-try-lock) & (owner=0) & minherit: 2;
17 1: owner;
18 esac;
19 next(stut) := (stut + 1) mod 10;
20

The module rt-mutex is the real-time version of the mutex control module. It implements
priorities among the processes. The basic difference between the two modules is that when
both processes try to lock at the same time, in rt-mutex process 1 has precedence over
process 2. In the mutex module of the previous example resources are granted in a first-come-
first-served fashion. rt-mutex implements priority inheritance using a variable minherit.
When minherit is false, operation is normal, and process I has precedence. However, when
minherit is true, process 2 has precedence over process 1. Intuitively, minherit means that
process 2 is in a high priority state, and therefore should not be placed in a queue.

The variable stut also plays an important part in this module. Priority inversion depends
on a pathological ordering of events in the system. In SMV this ordering is usually avoided
by the synchronization of modules, because there are implicit dependences caused by the
fact that all modules step at the same time. However, in a real implementation these
dependencies would not exist, and we must find a way of repiosenting the correct behaviour

14



of such a system. This is accomplished by using a technique that causes a transition to take
an undetermined number of steps to occur. This technique is called Stuttering.

The variable stut is used to delay the entrance into the critical section for a nondeter-
ministic number of steps, allowing other events to happen in the mean time. When a process
wants the critical section, entering it can take from 1 to 10 steps, because of the ! (stut=0)
clause. The (stut-0) clause guarantees that the delay is finite.

We now describe the processes that use this mutex control module. As in the previous ex-
ample, the processes' parameters include the process id, the mutex state, and the owner vari-
ables. However, some additional information is necessary. The sensor writes to m2inl-erit.
telling the mutex control module when it is necessary to activate priority inheritance in the
mutex m2. The decision is made based of information provided by mireporterstate. This
variable tells the sensor the state of the reporter with respect to the mutex variable ml. If
the low priority process locked ml and the high priority process also wants to lock ml, then
the sensor activates the priority inheritance mechanism (by setting m2inherit), because
the reporter is now in a high priority state.

21 --

22 -- Sensor process.
23 --

24 -- The sensor process gathers data from radars while in state 0.
25 -- Then it locks ml, and puts data into shared buffer, while in
26 -- state 3. Finally, the sensor unlocks ml and returns to state 0.
27 --

28 MODULE sensor(idl, mistate, owner1, m2inherit, mireporterstate)
29 VAR
30 state: 0..10;
31 ASSIGN
32 init(state) :- 0;
33 init(mlstate) := unlocked;
34 init(m2inherit) := FALSE;
35
36 next(state) :=
37 case
38 ---- > state = 0, ml unlocked, reading data from radars.
39 state = 0 : (0, l};
40 ---- > state = 1, try to lock ml.
41 state = 1 : 2;
42 (state = 2) & (mlstate = try_lock): 2;
43 (state = 2) & (mlstate = locked) : 3;
44 ---- > state = 3, ml locked, put data into shared buffer.
45 state = 3 : 4;
46 state = 4 0; -- unlock ml.
47 1: state;
48 esac;
49

15



Notice that state works as a program counter. The current state of the system defines
the next task to be executed. For example, state 0 is the starting state of the program.
state 1 signals that the process wants to lock ml. In state 2 we wait until m, is locked, and
state 3 corresponds to the code in the critical section, Finally, state 4 means that ml should
be unlocked.

50 next(mlstate)
51 case
52 (mistate = unlocked) & (state = 1) : unlocked;
53 (mlstate = unlocked) & (state = 2) try-lock;
54 (mlstate = try-lock) & !(ownerl=idl): try-lock;
55 (mlstate = try-lock) & (ownerl=idl): locked;
56 (mistate = locked) & (state = 3) : locked;
57 (mistate = locked) & (state = 4) : unlocked;
58 1: mistate;
59 esac;
60

Based on what each state number means, we set mistate accordingly. mistate and
state are coordinated so that state changes depend on both states. This separation of
process state and mutex state improves the modularity of the system and makes it simpler
to write and modify programs. The same coordination between process state and mutex
state is also used in the other processes.

61 -- If the sensor wants to lock ml, but reporter locked it, then make
62 -- sure the reporter inherits sensor's priority while accessing m2.
63 next(m2inherit)
64 case
65 (mlstate = try_lock) & (mlreporterstate = locked): TRUE;
66 1: FALSE;
67 esac;
68
69 --

70 -- Analyzer process.
71 --

72 -- While in state 0, analyzer collects and analyzes data.
73 -- It proceeds to lock m2, and, in state 3, sends the results to
74 -- the reporter process. Then the analyzer unlocks m2, and repeats.
75 --

76 MODULE analyzer(id2, m2state, owner2, mlinherit)
77 VAR
78 state: 0..10;
79 ASSIGN
80 init(state) := O;
81 init(m2state) := unlocked;

16



82 init(mlinherit) := FALSE;
83
84 next(state) :=

85 case
86 ---- > state - 0, m2 unlocked, read data and analyze it.

87 state M 0: {0, 1};
"88 ---- > state = 1, try to lock m2.

89 (state - 1): 2;
90 (state - 2) & (m2state - try-lock): 2;
91 (state = 2) & (m2state = locked) : 3;
92 ---- > state = 3, m2 locked, send data to reporter.

93 state = 3: 4;
94 state - 4: 0; -- unlock m2.

95 1: state;
96 esac;
97
98 next(m2state) :
99 case
100 (m2state = unlocked) & (state = 1) : unlocked;
101 (m2state = unlocked) & (state = 2) : try-lock;

102 (m2state = try-lock) & !(owner2=id2): trylock;
103 (m2state = trylock) & (owner2=id2): locked;
104 (m2state = locked) & (state = 3) : locked;
105 (m2state = locked) & (state = 4) : unlocked;
106 1: m2state;
107 esac;
108
109 next(mlinherit) := FALSE; -- We don't worry about analyzer's

110 -- starvation in this example.

111

The reporter is the most complicated process. We must double the number of process
states, because now we want to lock both mutex variables. The order in which these variables
are locked is determined by the order in which the state changes. The reporter starts in
state 0, and may decide at any time to lock ml by going to state 1. After ml is locked, the
reporter jumps to state 5, and will try to lock m2. When m2 is also locked, the reporter
goes to state 8 and thereby unlocks m2. Finally, the reporter goes to state 4 and unlocks ml.
These state changes simulate the code:

lock(ml);
lock(m2);

unlock(m2);

unlock(ml);

17



112--
113 -- Reporter process.
114 --

115 -- While in state 0, the reporter updates the screens, and does
116 -- non critical work. Then it locks ml to get data from the
117 -- sensor (state 3), and locks m2 to get data from the analyzer
118 -- (state 7). Notice that we assume that some property about the
119 -- data from the sensor and the analyzer must be preserved by
120 -- getting analyzer data while ml is locked.
121 --

122 MODULE reporter(idl, id2, mistate, m2state, owneri, owner2)
123 VAR
124 state: 0.'10;
125 ASSIGN
126 init(state) := 0;
127 init(mlstate) : unlocked;
128 init(m2state) : unlocked;
129
130 -- states: 0: choose when to lock
131 -- 1: unlocked for ml
132 -- 2: try-lock for ml
133 -- 3: locked for ml
134 -- 4: unlocked ml
135 -- 5: unlocked for m2
136 -- 6: try-lock for m2
137 -- 7: locked for m2

138 -- 8: unlocked m2
139 next(state) : case
140 ---- > state 0, ml unlocked, update screens.
141 state = 0: {0, 1};
142 ---- > state = I, try to lock ml.
143 state 1: 2;
144 (state 2) & (mlstate = try-lock): 2;
145 (state = 2) & (mistate = locked) : 3;
146 ---- > state 3, ml locked, get data from sensor.
147 state = 3: 5;
148 state = 4: 0; -- unlock ml.
149 ..-. > state = 5, try to lock m2.
150 state = 5: 6;
151 (state = 6) & (m2state = try-lock): 6;
152 (state 6) & (m2state = locked) : 7;
153 ---- > state = 7, m2 locked, get data from analyzer.
154 (state = 7): 8;

18



155 (state - 8): 4; -- unlock m2.
156 1: state;
157 esac;
158
159 next(mlstate) :

160 case
161 (mlstate = unlocked) & (state = 1) : unlocked;

162 (mlstate = unlocked) & (state = 2) : try-lock;

163 (mlstate = try-lock) & !(ownerl=idl): try-lock;

164 (mlstate - try-lock) & (ownerl-idl): locked;

165 (mlstate = locked) & (state = 3) : locked;

166 (mlstate = locked) & (state = 4) unlocked;

167 1: mistate;
168 esac;
169
170 next(m2state) :=

171 case
172 (m2state - unlocked) & (state = 5) unlocked;
173 (m2state - unlocked) & (state - 6) try-lock;
174 (m2state - try-lock) & !(owner2=id2): try-lock;
175 (m2state = try-lock) & (owner2=id2): locked;
176 (m2state = locked) & (state = 7) : locked;
177 (m2state = locked) & (state = 8) : unlocked;
178 1: m2state;
179 esac;
180
181 MODULE main
182 VAR
183 mlstatel: {unlocked, try-lock, locked};

184 mlstate2: {unlocked, try-lock, locked};
185 mlinherit: boolean;
186 m2statel: {unlocked, trylock, locked};
187 m2state2: {unlocked, try..lcck, locked};
188 m2inherit: boolean;
189
190 owneri: {0, 1, 2};
191 owner2: {0, 1, 21;

192 psensor : sensor(1, mistatel, owneri, m2inherit, mlstate2);
193 panalyzer: analyzer(1, m2statel, owner2, mlinherit);

194 preporter: reporter(2, 2, mlstate2, m2state2, owneri, owner2);
195 ml: rt-mutex(mlstatel, mlstate2, owneri, mlinherit);
196 m2: rt.mutex(m2statel, m2state2, owner2, m2inherit);
197
198 -- Sensor process cannot starve.

19



199 --

200 -- We can bound the time sensor has to wait for ml. We know
201 -- that in at most 32 states after deciding to lock, the sensor
202 -- will succeed.
203 SPEC
204 AG ((psensor.state = 2) -> .BF 0..32 (psensor.state = 3))
205
206 -- Notice that this is not true for everyone.
207 -- For example, the reporter can even starve.
208 SPEC
209 EF EG (preporter.state - 2)
210

From these examples we have been able to draw two main conclusions. Although we
work with discrete time and synchronized modules, most systems that occur in practice can
be modelled. Stuttering can be used to introduce asynchronous behaviour, and to achieve
a finer granularity of time. This flexibility makes it possible to specify systems in SMV that
would be difficult to express otherwise and overcomes many of the limitations that arise
because of synchronization and the discrete model of time that is used. However, the use
of stuttering states may increase the size of the model. This may prove to be a problem in
large systems.

In the course of writing these programs, we have observed a number of ways that the SMV
language could be improved. The fact that we need to introduce stuttering states explicitly
makes it more complicated to specify the model. Support for. stuttering could be built
into the language for describing state transition systems. For example, "stuttering next"'
might be defined as in stut-next (a, 10) : b. This construct would mean that the next
state of variable a is b and it may take from I to 10 states for the value to change. Another
possible improvement comes from the fact that the SMV language was designed for specifying
circuits. Different approaches are used for specifying circuits and writing programs. Writing
a program in the SMV language is more complex than defining a circuit. A language with a
syntax closer to that of a general programming language could increase the efficiency of the
verification of programs.

7 Conclusions

In this paper we have discussed the priority inversion problem. We formalized a solution for
a particular instance of this problem and verified that it was correct using temporal logic
model checking techniques. The solution that we implemented, basic priority inheritance,
solves the unbounded priority inversion problem in general. The changes to our basic model
that are necessary to represent more general versions of the problem are simple, since no
particular restriction was imposed on the model.

This work also demonstrates that non-trivial properties of real-time systems can be
proven using symbolic model checking techniques. The time to construct the model and
verify both properties of the example described in section 6 was less than three minntes on

20



a i486-based workstation. Approximately 90K BDD nodes were allocated. The transition
relation itself required about 18K nodes.

We extended the original CTL model checker to handle properties that are bounded in
time. The bounded until operator was implemented to allow the expression of such properties.
"During the construction of the models used in this work, however, some other problems had
to be solved to make the new n. 3del checker more useful. The main problem we faced was
"that all modules had to be synchronized. This introduced a severe constraint on the systems
that could be directly verified by SMV. The use of stuttering states, however, alleviated this
problem. We believe that the same idea can be used to obtain representations for many
other practical examples as well. In spite of using synchronized modules and discrete time it
appears possible to handle most systems that arise in practice without the added complexity
caused by the use of continuous time.

Nevertheless, additional research is needed. Stuttering states can increase the size of
the model and make it more complicated to define the model. Thus, special techniques for
handling stuttering states could help decrease the size of the model and reduce the possibility
of state explosion. Finally, research is needed to define a better model definition language
that can hide some of the aspects of stuttering.

Acknowledgments

I would like to thank Edmund Clarke for many of the ideas in the paper, and suggestions
on how to improve it.

References

[1] Alur, R. and Henzinger, T.A. Logics and models of real-time: a survey. In: Lecture
Notes in Computer Science, Real Time: Theory in Practice. Springer-Verlag, 1992.

[2] Bryant, R.E. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., C-35(8), 1986.

[3] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L. Sequential circuit verification
using symbolic model checking. In 27th ACM/IEEE Design Automation Conference.
1990.

[4] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J. Symbolic model
checking: 102' states and beyond. In LICS, 1990.

[5] Burch, J.R., Clarke, E.M., Long, D.E. Symbolic model checking with partitioned tran-
sition relations. VLSI 91, Edinburgh, Scotland, 1991.

[6] Clarke, E.M., Emerson, E.A., Sistla, A.P. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. on Prog. Lang and Syst..
april 1986, pp. 244-263.

21



[7] Clarke, E.M., Burch, J.R., Grumberg, 0., Long, D.E., McMillan, K.L. Automatic veri-
fication of sequential circuit designs. Royal Society of London, Oct. 1991.

[8] Davari, S., Sha, L. Sources of unbounded priority inversion in real-time systems and a
comparative study of possible solutions. ACM Operating Systems Review, april 1992.
pp. 110-120.

[9] Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J. Quantitative temporal reasoning.
In: Lecture Notes in Computer Science, Computer-Aided Verification. Springer-Verlag.
1990.

[10] Emerson, E.A. Temporal and modal logic. In: Handbook of Theoretical Computer Sci-
ence. Elsevier Science Publishers, B.V., 1990.

[11) McMillan, K.L. Symbolic model checking - an approach to the state explosion problem.
PhD thesis, SCS, Carnegie Mellon University, 1992.

(12] Rajkumar, R. Task synchronization in real-time systems. PhD thesis, ECE. Carnegie
Mellon University, 1989.

22


