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ABSTRACT

In this paper we investigate the effectiveness of a pattern classifying fault detection system

that is designeld to cope with the variability of fault signatures inherent in helicopter gearboxes.
For detection, the measurements are monitored on-line and flagged upon the detection of ab-
normalities, so that they can be attributed to a faulty or normal case. As such, the detection
system is comlposed of two components, a quantization matrix to flag the measurements, and
a mutli-valucd influence matrix (MVIM) that represents the behavior of measurements during

normal operation and at fault instances. Both the quantization matrix and influence n-atrix are
tuned during a training session so as to minimize the error in detection. To demonstrate the
effectiveness of this detection system, it was applied to vibration nicaurements collected from a

helicopter gearbox during normal operation and at various fault instances. The results indicate

that the MVIM method provides excellent results when the full range of faults effects on the

measurements are included in the training set.
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1 INTRODUCTION

Helicopter drive trains are significant contributors to both maint•i,.•,:(e c:,u-t and flight safety

incidents. Drive trains comprise almost 30% of maintenance costs and 16% of mechanically

related malfunctions that often result in the loss of aircraft (Chin and l)anai, 1991). Future

helicopters like the COMANCHE and fixed wing aircraft like the ATF require increased levis

of mission capability that simply cannot be met without advancing the state of the art in

detection, particularly in critical components like the power trains. These detection systems

should be reliable so as to avoid unnecessary emergency landings due to false alarms, and should

be fast to be applicable on-line.

For fault detection of helicopter power trains, either debris sensors (chip detectors) are

used to detect the presence of residues caused by component failures (Collier-March, 1985), or

vibration analysis is employed to identify the presence of any abnormalities that may have been

resulted from a fault (e.g., Braun, 1986; Kaufman, 1975). Although chip detectors are effective

in detecting failures which produce debris, due to their insensitivity to wear-related faults, are

not completely reliable. Vibration analysis, on the other hai,d, is believed to provide a more

generic basis for fault detection (e.g., Cempel, 1988; Astridge, 1986). As such, considerable

effort has been directed toward the identification of features of vibration that are affected by

specific faults (e.g., Pratt, 1986; Mertaugh, 1986), and the development of signal processing

techniques that can quantify such features through the parameters they estimate. For example.

the crest factor of vibration, which represents the peak-to- rms ratio of vibration, has been shown

to increase with localized faults such as tooth cracks (Braun, 1986). For detection purposes.

the parameter values (measurements) obtained through signal processing are analyzed for any

abnormalities, and flagged once such abnormality is observed. The simplcst and most common

method of flagging is threshohtding the residuals between individual parameters and their normal-

mode values (Chow and Willsky, 1984).

The fundamental problem with the current method of fault detection is that it is at the



mercy of the flagging operation. Flags can b)o posted du e to n(,iso. cn•j, ing fal•, aki,,'. o0 Oh,

effect of faults may not l)e identified through flagging, so faults miiav remain ii i~d~i . ', :,',

false alarms nor u tndetected faults are acceptable for helicopter fault detectio'n. as f ;l,' ;darn,

will result in unnecessary emergency landings, and undetectd fault.s could caunese ;i•, roIhI,

failures.

In order to cope with the uncertainty of flagged measurements. pattern clas.•IficatI,, t, h-

niques have been employed (Pau, 1977). Among the various pattern classifiers used for 11,', P1.

artificial neural nets are the most notable due to their nonparametric nature (indepcnd,,nce of

the probabilistic structure of the system), and their ability to generate complex decision rtig()11

However, neural nets generally require extensive training to develop the decision regions (de-

tection model). In cases such as helicopter power trains, where adequate data is usually not

available for training, artificial neural nets are known to also produce false alarms or leave faults

undetected.

The purpose of this paper is to investigate the apl)licability of the M\VIM method (1)anai and

Chin, 1991) in helicopter power train fault detection. This method uses nonparametric pattern

classification to estimate its detection model, so like artificial neural nets it is independent of the

probabilistic structure of the system. Furthermore, since this method benefits from an efficient

learning algorithm based on detection error feedback, it can estimate its detection model based

on a small number of measurement-fault data. This method utilizes a two-column multi-mbahcd

influence matrix (MVIM) as its detection model to represent no-fault and iault signatures,. and

relies on a simple detection strategy which makes it suitable for on-line detection. The MVIM

method can also assess the significance of individual paramcters in detection based on their

influence on the speed of training of the system.

To train and test the MVIM, vibrmtion data reflecting the effect of various helicopter main

rotor transmission faults were obtained from NASA. This vibration data was then processed

through a 1iicroComm0imter customized for vibration signal processing. so thlit the obfeinc•l na-
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raineters cian be u tilized to trai n tile %I V IN method and t.•t its perfi ramian -,c. 1),tctc !o resiu Its

Indicate that the IVI method produces perfect detectlion •wien trained ,vith the full range

of fault effects on the parameters, and that it produces better overall dotection than a tnural

net using error back-propagation learning algorithin trained and tested with the same data svts.

The NIVI NI method is also utilized to rank the parameters for their significan ce in dolsectilO.

It is shown that through this ranking procedure the optimal subset of parameters for detecLionl

can be selected, which is particularly important in reducing processing time for on-line detection

purposes.

2 EXPERIMENTAL

Vibration data was collected at NASA LeA is Research (,enter as part of a joint NASA/Navy/Army

Advanced Lubricants Program to reflect the effect of various faults in an 01-58A main rotor

transmission (Lewicki et al., 19A92). The configuration of the transmission which was tested in

the NASA 500-hp Helicopter Transmission Test Stand is shown in Fig. 1. The vibration signals

were measured by eight piezoelectric accelerometers (frequency range of up to 10 KhIz), and an

FM tape recorder was used to record the signals periodically once every hour, for about one to

two minutes per recording (at the tape speed of 30 in/sec, providing a bandwidth of 20 KlIz).

Two chip detectors were also mounted inside the transmission to detect the residues caused by

component failures. The location and orientation of the accelerometers are shown in Fig. 2, and

the schematic of the vibration recording/monitoring system is shown in Fig. 3.

In these experiments, failures occurred naturally. The transmission was run under a constant

load and was disassembled/checked periodically or when one of tile chip detectors indicated a

failure. A total of five tests were performed, where each test was run between nine to fifteen

days for approximately four to eight hours a day. Among the eight failures occurred durini,,

thiese tests (see Table i), therp w,,r,, th ;'oe, nf l:• bt.iin'• f:.ii rc, t-ree cases o" -"m



Planet Bearing Mast Ball Bearing

Planet Gear

Ring Gear Spiral Bevel Gear

Cpiral Bevel Pinion

Sun Gear Triplex Bearing

Gear Roller Bearing

Mast Roller Bearing Pinion Roller Bearing

Duplex Bearing

Figure 1 .- Configuration of the OH-58A main rotor transmission.

gear failure, two cases of top housing cover crack, and one case each of spiral bevel pinion, mast

bearing, and planet gear failure. Insofar as fault detection during these tests, the chip detectors

were reliable in detecting failures in which a significant amount of debris was generated, such

as the planet bearing failures and one sun gear failure. The remaining failures were detected

during routine disassembly and inspection. Vibration monitoring during testing was not used

as a diagnostic tool.

3 SIGNAL PROCESSING

In order to identify the effect of faults on the vibration data, the vibration signals obtained

from the five tests were digitized and processed by a commercially available diagnostic ana-
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#1, 2, 3 attached to block on right trunnion mount
#4. 6, 7, 8 studded Vi housing through steel inserts

#5 attached to block on input housing

Left trunnion mount

0A

0 Transverse

0 .4 e Longitudinal

Right trunnion mount

Transmission output

St Vertical

Transmission input w. Longitudinal

Figure 2.-LocatIon of the accelerometers on the test stand.
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Output
Accelerometers

Input

OH-58A Transmission Charge Amplifiers Attenuators VU Scopes

FM Tape Recorder

Figure 3.-Schematic of vibration recording/monitoring.

lyzer (Stewart Hughes Limited, 1986). Three processing modules of the analyzer were used:

1) Statistical Analy.sis (S'At7. 2) B!ascband Power Spectrum Analysis (BBPS), and 3) TBcaring

Analysis (BRGA). For analysis purposes, only one data record per day was used for each test.

These data records were taken at the beginning of the day unless a fault was reported. which in

that case, the record taken right before the fault incident was selected to ensure that the data

record reflected the fault. Also, in order to reduce estimation errors, each data record was parti-

tioned into sixteen segments and parameters were estimated for each segment and averaged over

these segments. The data records as well as the parameters obtained from the above processing

modules were then transferred to a personal computer for further analysis. The schematic of

the data acquisition apparatus and the parameters obtained from each module of the diagnos-

tic analyzer are illustrated in Fig. 4. Note that the objective of this paper is to demonstrate

the MVIM pattern classification scheme, not to develop/verify individual diagnostic algorithmis.

The algorithms descrilbod in the next subsections were used to determine inputs to the MVIM

method, but may not be optimnized for transmission health i monitoring.



'l~rest # N7umiber of I)y jaiu ri-s
1f T 9 Sun gear tooth piit

S pi ral 1)ev(l plinion- scornit u g/ ha% v 'N
9 None

Plaiiet beariig #2 inner race sp:ll i

Micropitting Oilmsn tail

4 1.5 Planet bearing #3 in ner race spal I i
Sun gear tooth pit______

5 11 Suin gear teeth spalls

Planet gear tooth spail

________________________Top housing cover crack

Table 1: Faults occurred (luring the exp~erimlents.

3.1 Statistical Analysis

It is general-ly believed tha.ý th- probability density, fun ction (p).d 4.) of the vib ration amnplituide

is near Gaussian when iniachinerv is heal thy, and that Its shape chang-es when a dlefect appearsý.

The Statistical Analysis Modulc of the (liagnostic analyzer estimates p~aramueters that would

characterize such change. A mong die Jparaiiieters available from this mod ule, the skewness.

kurtosis, crest factor, and peak-to-peak value of vibration data are reported to be gpod indicators

of localized dlefects in rotating mnachinery (e.g,. set- Dyer andl Stewart. 1978). A brief descriptionl

of these p~aramieters is as follows:

"* Skewness Coefficient. The skewness coefficienlt T.jreprsents thlt SVnInI)TrV Ofpraily

densi tv, function of the vibration ampli1tu de. Siince the skewness cudfit cirt of a (.a st aisiM

distri hut ioa is zero, any deviations of the skewness coefli1cient from zero Canl be duiie to

"* Kurtosis Value. The, kutrtosi.s, value. which repre-sents the concentration of heights arounld

the mean linoi of thie p robabhility dlensity fuintction, is equiial to 31 for a C aussian (list ri butiOnl

As such, k iiirtosis ValueS lAr'ger tt alt 3 are reportedl to be ind (icat ors Of luca hi17041 defects ( D.) tr



and Stewart. 1978).

"* Crest Factor. Similar to the kurtosis value, the rest factor is u=ed th dswnhe, the

'peakness' of tew t rolaabilkty density funmtion (Braun, 190( ). llowever. urnlike the, kurt,,

value, the crest factor is only a relative, nweasure. .Moreover., sinir the c rest fa to r i• fwr,;

likely to be a~fected by a single outlier, it is generadly not as robust as thli kurtt e• .l w

"* Peak-to-Peak Value. When failures occur, the amplitude of the vibration ten td to

increase in both upward and downward directions and thus the peak-to-peak valu,, is

expected to increase.

The above statistical paramrrt, rs were obtained for the five tests. The results indicate that

ione of the parameters provide' a good ir~idictiin of all the faults 1-or example, the aver;,oged

kurtosis values (if the vibration signals fromu the eight accelerometers are shown in Fig. 5 for the

five tests. The results indicate that the kurtisis value reflect: only the fault incident at the end

of Test #5, and that it is not sensitive to the other six fault incidents in the L ther tUots (tarked

by asterisks). The significant increase in the kurtosis value at the enm of Test #5 is perhaps

caused by the severity of faults in this tst (i.e., sun gear teeth spall. planet tooth spall. and top

housing crack).



OH-58A

Main Rotor Transmission

Vibration Signals

FM
Tape Recorder

Digitization/Processing

STAT BSPS BRGA

(1) Skewness (5) RMS (16) BE
(2) Kurtosis (6) WHT (17) BKV
(3) Crest Factor (7) RFR (18) EB
(4) Peak-to-Peak (8) TEO-G (19) ET

(9) TEO-P
(10) TM1-G
(11) TMI-P
(12) CEP(1911)
(13) CEP(572)
(14) TON(1911)
(15) TON(572)

Figure 4.-Schematic of the data acqutsitloir a'.paratus.
as well as the parameters obtained froer the diagnostic
analyzer.



4.0 -I-I, ,
Test 01 Test #2 Test #3 Test #4 rest #5

3.8

._ 3.4
0

S3.2

3 3.0

2.8

2.6

0 10 20 30 40 50 60
Sample Data Points, N

Figure 5.-Averaged kurtosis values for the five tests from the
Statistical Analysis Module. Faults are indicated by asterisks.

3.2 Baseband Power Spectrum Analysis

Spectrumn analysis (or frequency domain analysis) is perhaps the most widely used technique

in vibration signal processing, as failures such as unbalance, misalignment, wear, and roller

bearing spadling produce a clear change in the spectrum (e.g., see Dewell and Mitchell, 1984;

Randall, 1982; Taylor, 19S0: Lees and Pandev, 19801, However, in complex machinery whore

the background noise masks the basic distress signal, changes in the spectra cannot be easily

distinguished (Pratt, 1986). The lBas cband Power Sprctlrurn Analysis Module provides sever-d

parameters that can be ai>,ociated with the frequencies generated iw individual components of

the transmission. The parameters obtained from this module are:

I I)



* Root-Mean-Sq u a re. The root-uiatn-.,quare ( UiMS) value of the vibration am plitli Ii

represents the overall energy level of vibrations. As such, the It NS val,,e can b, i,-,,Id to

detect major changes in the vibration level.

SWXhite Spectrum. The white spectrum (WHT) represents the rins level of the sign;d

minus its strong tones. Therefore, it denotes the energy level in the base of the spectrum.

Since certain failures, like wear, do not seeni to increase the strong tones created by shaft

rotation and gear mesh, the energy in the base of the spectrum could potentially be a

powerful detection paraineter for wear-related failures.

* Rice Frequency. The rice frequency (RFR) denotes the position of the 'center of gravity'

of the spectrum. Therefore, it can reflect any major changes in the shape of the spectrum

'hat may have been caused by faults.

* Comparison Analysis. Failures in rotating machinery tend to increase spectral lev-

els. The Coinparison Analysis Function provides several statistical parameters about the

spectral ratio between the current spectrum and a baseline spectrum. The baseline spec-

trum could either be the spectrum of vibration at the beginning of the test (TEO) or the

spectrumn of vibration from the previous record (TMI). Among the statistical parameters

obtained from this function, TEO-G and TEe-P, which denote the energy level (rms)

and the mean value, respectively, of the spectral ratio with respect to the first spectrum,

and T=M 1-( and T"IM I- , which represent the energy level ( rms) and the mean value, re-

spctively, of the spectral ratio with respect to the preceding spectrum. are particularly

effective in representing differences between the current and the baseline spectrum.

* Metr- -pstral Analysis. The Mc1acepstrurn Analysis Function is used to detect the

periodic featriies of the vibration signal (Lyon and Ordubadi, 1982; (hil(ders et al.. 1977).

The piaraint,ters obtained fromi t1 is funiction are measures of the energy level at a given

freqluency and it• harmnonics. The two frequencies selected for this analysis were the

Il



toothlnes It1g frequency of the spiral bevelI mnesh (1911 l1z) anld the toJotlIlleI'sIlIlIg f 1 ie4 I II"I(v

of the planetary inesh 5'72 liz). The parameters calculated for thes*e two fresqueon'Ois a4,

represented as CEP(1911) and CEP(572).

e Tone Analysis. The energy level associated with a particular tonel within a spjtrum

is also a good indicator of faults. Various faults like uibalance and iuisalign9Tinet tnid

to increase the tone energy. The two parameters ToN(o1911) and TON(572) obtained for

this analysis represent the tone energies at 1911 Hz and 572 liz, respectively.

The above parameters from the Bascband Powcr Spectrum A nalysis Module were computed

for the five tests. The results indicate that although some of these parameters are good indicators

of specific faults, they are also prone to false alarms. For example, the averaged TM 1-G values

of the vibration signals, from the eight accelerometers, obtained for the five tests are shown in

Fig. 6. The results indicate that while this parameter is sensitive to one of the faults in Test #3

(i.e., the first fault caused by planet bearing inner race spall), it also contains a spike on day 5

of Test #1 which could result in a false alarm.

3.3 Bearing Analysis

The vibration energy of bearing elements is usually lower than those produced by gears, shafts.

and sometimes noise. As such, bearing faults cannot be readily detected through abnormalities

in the bearing tone. However, since bearing faults such as spalling produce time domain impulses

which modulate the bearing shaft frequency over a wide range of frequencies, there are features

of high frequency vibration that would reflect such bearing faults (Mathew and Alfredson. 19,,4:

Braun and Datner, 1979). The 11caring Analysis Module is designed to extract such features.

This module uses a hotcrodyncr to demodulate the vibration signals and obtain an amplitude

envelope (e.g., see Courrech ,lnd Gaudet, 1985), and then calculates the power spectrum of this

envelope (i.e., spectral envelope) so that its various features (parameters) can be estimated for

12



Test #1 Test #2 Test 03 Test #4 Test #5
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1.4

4)
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~1.0
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Figure 6.-Averaged TMI-G valuea for the five tests obtained from the
Base-band Power Spectrum Analysis Module. Faults are indicated
by asterisks.

bearing fault detection (Dyer and Stewart, 1978; Yhliand and Johansson, 1970). The parameters

obtained from this module are:

"• Envelope Band Energy. The band energy (BE), which is calculated as the sum of the

mean and standard deviation of the full bandwidth envelope, represents the overall energy

level of the envelope. This parameter is expected to be sensitive to most bearing faults

which increase the level of vibration.

"* Envelope Kurtosis Value. The kurtosis value of the envelope (BKV) is estimated to

reflect imni)ulsive behavior of vibrations produced by localized bearing faults.

"* Envelope Base Energy. The envelope base energy (EB) represents the base energy of

the spectrum after all tones have been removed. This parameter is expected to reflect

13



heavy bearing dlamage.

e Envelope Tone Energy. The tone energy (ET) represents the total energy winus the

base energy. This parameter is expected to reflect localized bearing faults.

The above parameters from the Bearing Analysis Module were computed for the five tests.

The results indicate that most of the parameters are not very sensitive to the faults occurred

during the tests. For example, the averaged values of the kurtosis value of the envelope (BKV)

are shown in Fig. 7. The results indicate that while the BKV is relatively sensitive to the faults

in Tests #I and #3, it exhibits a spike in Test #3 which could potentially result in a false alarm.

5.5
Test #1 Test #2 Test #3 Test 94 Test #5

5.0

> 4.5-InI
W1

Oil

CO
• 4.0-

3.6-
30'

0 10 20 30 40 50 60
Sample Data Points, N

Figure 7.-Averaged BKV values of the envelope kurtosls values for
five tests. Faults are Indicated by asterisks.
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4 THE MVIM METHOD

The MVIM method is based on a multi-valucd in•lucnc, matrix (NIVIM) which represoiits the

uncertain relationship between various faults and ineasureinents (Danai and Chin, 1991). Mea-

surements in this method are monitored in-process and converted to binary nunbers through

flagging (see Fig. 8), which are posted in a vector of 'flagged measurements'. Flagging in this

method is performed by a quantization matrix, and detection is performed by matching this vec-

tor of flagged measurements against the individual columns of the influence matrix (influence

vectors). Influence vectors which represent the no-fault signature and the fault signature are

continuously updated by a learning algorithm to improve detection.

Estimated
Sensory Processed Binary Fault
Data Measurements Measurements Vector

Processing Flagging MVIM

Figure 8.-4etection strategy In the MVIM method.

4.1 Detection Model

The multi-valued influence matrix A representing the no-fault signature and fault signaturc is

defined as

Y(t) A X(t)(1

to relate the flagged mcasuremrent vcctor Y(t):

Y(t) {y,(t), Y2(t), ... , y,,(t)}T (2)

15



to the fault vector X(t):

X(t) = {XI(t), }r(1 )T

where 7n is the number of measurements. In the above equations, the vectors Y and X arc

binary vectors; i.e., the yi (individual flagged measurements) and xi (the no-fault variablel x,

and the fault variable X2) can only be equal to 0 or 1, representing the status of the particular

measurement and fault at the time, respectively. Note that the the components of the (in x 2)

influence matrix A in Eq. (1), which represents a functional mapping between Y and X, are

between 0 and 1 defining the causal relationship between individual flagged measurements yi

and the no-fault and fault cases. For example, an a 12 = 0.8 implies that the possibility of the

1st measurement being flagged at the instance of fault is 0.8, or an a31 = 0.2 indicates that a

0.2 possibility exists that the 3rd measurement is flagged for a no-fault case.

4.2 Detection

Detection in the MVIM method is based on matching the vector of flagged measurements against

the individual influence vectors. The closeness of vectors in the MVIM method is based on their

orientation. Accordingly, the possibility of occurrence (diagnostic certainty measure) of the no-

fault or fault case is defined as the cosine of the angle between the corresponding influence vector

and the vector of flagged measurements. The geometric representation of this reasoning, for a

three dimninsional measurement vector (n = 3), is illustrated in Fig. 9. Vectors V1 and V2 in this

figure represent the influence vectors associated with the no-fault and fault case, respectively,

and vector Y denotes the vector of flagged measurements.

In the MVIM method, the vector of diagnostic certainty measures which ranks the variables

x, and x2 for their possibility of occurrence is defined as

= VT= cosS= (4)
Z2 ~ COSQ a2 2

where at and (k.2 denote the angles between the influence vectors V 1 and V 2 , respectively, and

16



Y(t)

Figure 9.--Geometrc representation of diagnostic
reasoning In the MVIM method for a three
dimensional case.

the flagged measurement vector Y, and Vj (j = 1,2) and Y are the normalized forms of vectors

Vj and Y, respectively, defined as

V =v {-- -}(5)

an (1

Yi = II - --,

Detection in the MVITN method is based on obtaining the vector of diagnostic certainty mea-sures

X. To obtain X, however, the normalized form of the influence mnatrix, A,

A=V 1 V2 ]

is requiiired. Since this matrix is not known a priori, it will have to be estimated.

17



4.3 Estimation of A

One of the main features of the MVIM method is its capability to use the detoction ,error as

feedback in estimating/updating A. Based on this learning strategy, individual colu nin of tOe

influence matrix are adjusted recursively after the occurrence of fault, or when a flag is posted

in a no-fault case, to minimize the sum of the squared detection error. The estimation algorithm

of A which is based on recursive least-squares estimation (Ljung, 1987) is given in (I)anai an(d

Chin, 1991), where its performance is demonstrated in simulation.

4.4 Flagging

In the MVIM detection system, flagging of measurements is performed by a quantization matrix.

For flagging, the measurements P are multiplied by the weights of the quantization matrir Q

Q [W1  ... w, ... W"J , (7)

and hard-limited as

f1 when pTW; > 0.5
Yi= 0 otherwise (8)

to produce the binary vector of flagged measurements Y (see Fig. 10). This vector is used for

both detection, as well as estimating/updating the MVIM. The vectors Wi in Eqs. (7) and (8)

represent the columns of the quantization matrix associated with individual measurements.

The vectors of the MVIM are trained based on the flagged measurements y, (see Eq. (8)).

Therefore, they are directly influenced by the flagging operation. In order to improve the flagging

operation, the quantization matrix is adapted during a training session. Ideally, we would like

the magnitude of all flagged measurements yi to be equal to 0 for no-fault cases and I at fault

instances. Therefore, the components of the quantization matrix are adjusted to produce such

ideal flagged measurement vectors (see Fig. 10).

The proposed quantization matrix uses a sample set of measurement-fault vectors to tune

18



Flagging

S yeEstimated
Sensory Prdcessed Bihary Fault
Data M~asurements Measurements Vector

SSignal P Quantization L-" -- X---

1 Processing Matrix |MVIM

S Limiter: Y

* l V
Target

Sx

Figure 1O.-Schematic diagram of adaptation In the MVIM method.

its parameters iteratively. For this purpose, it uses recursive last-squares adaptation to min-

imize the sum of square errors between the individual flagged measurements produced by the

quantization mutrix and their ideal values. This learning algorithm has the form

w~ij(iz,) = w~j(fi - 1) + 1I(PI - 1) [(•)-PT(,4)'w,(tt - 1)] (9)

where the wjj denote the components of the quaritization matrix, ýL is the iteration step, ýi

represent the ideal value of flagged measurements (i.e., yi = 1 for fault cases, and ýi = 0 for

no-fault cases), and the lj denote the comlponents of the adaptation gain vector L, updated

according to the relationship (Ljung, 1987)

R(+ i - 1 )PT'(JL) (10)
I + P(ji)R(P( - 1)PT( 1p)

where matrix R denotes the covariance matrix in least-squares estimation computed as

R(tp) = R(It - 1) - L(9)P(i)R(p - I

19



5 DETECTION RESULTS

The averaged values of the nineteen parameters obtained from the diagnostic analyzer were used

as the components of the measurement vector P to train and test the MVIM (see Figs. .4 and

10). For scaling purposes, each parameter value was normalized with respect to the value of the

parameter on the first dlay of each test.

As explained in the previous section, the MVIM method requires a set of measurements

during normal operation and at fault incidents to estimate the no-fault and fault signatures.

Since in the experiments the exact time of fault was not known, the time of fault occurrence

was conservatively set on the last day, or right before failure was verified through disasselubly.

Similarly, no-fault cases were assumed only for the first day of each test, and after faulty coin-

ponents were replaced. The specification of vibration data as fault and no-fault on various days

of each test are listed in Table 2. For Tests #1 and #5, only the data from the last day (day 9

and day 11, respectively) was associated with a fault case, since faults in these tests were only

found on the last day during routine disassembly. For Test #2, the data from all of the nine

days were marked as no-fault, since no faults were detected during inspection at the end of the

ninth days. For Test #3, the data from days 1, 5, and 10 were associated with a no-fault case,

because they were obtained directly after faulty components were replaced on days 4, 9, and

13. For Test #4, data from days 1-8 was attributed to a no-fault case, since no faults were

detected upon inspection at the end of the eighth day. For this test, the data from days 12

and 15, which were collected before faulty conlponents were replaced, were associated with fault

incidents. Note that the data from (lay 13, obtained directly after the replacement of the faulty

component, is also associated with a no-fault case.

The effectiveness of the MVIIM detectionl method was evaluated with different training sets.
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Fault Status

Day Test # I Test #2 flst #3 Test #4 'Wt #5
I no-fault no-fault no-fault no-fault no-fault

2 - no-fault no-fault
3 - no-fault no-fault
4 - no-fault fault no-fault
5 no-fault Ino-fault no-fault

6 - no-fault no-fault
7 - no-fault no-fault

8 - no-fault no-fault
9 fault no-fault fault no-fault

10 no-fault
11 I fault
12 fault
13 fault no-fault
14
15 fault

Table 2: Association of data from each day of the 5 tests with fault and no-fault cases.
The mark '-' denotes that data from that day cannot be specified.

For this purpose, training sets were formed based on parameters from various combinations of

five tests (see Table 3). For each training case, the initial values of the MVIM (19x2) and the

quantization matrix (19x 19) were set to 0 and I, respectively, and training was continued until

perfect detection was achieved in the training set (i.e., no false alarm or undetected fault was

found in the training set). The MVIM was then tested on all the data from all of the five tests.

Performance of the NIVIM was represented by the total number of false alarms and undetected

faults it produced during testing (denoted as Total Test Errors in Table 3). The detection results

produced by the NIVIM for 30 different cases of training are shown in Table 3.

For comparison purposes, the results obtained from the NIVINI are contrasted against the

results obtained from a multi-layer neural net (e.g., see Hertz et al., 1991; Rumelhart et aL..

1988) which was trained and tested under the same conditions. The neural net was trained

with the back-lpropagation learning algorithim and contained 40 hidden units. This number of

hidden units was selected within a range of 30 to 50 hidden units to optimize its generalization
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ab~ili ty. For tt~in~i iig the not, the learninig rate and~ momcien tum i cooli cient were, ,vt at 0.2 ani

0.8, respectively. The above paramefters were selected within a range of 0.2 to U.S through trial

and error so as to op~timhize the convergence speed of the net.

The results in Tab)le :3 indicate that the INI VIM was able to provide perfect detection when

faults were fully represented by the tra~ininigsets (i.e., Cases #18, #21. #24, #25, #28, #29. and

#30), and that it produced better results th mn the neural net in most of the cases. SpecificallY.

the INIVIM produced better results in nineteen of the test cases, produced identical resulits InI

ten cases, anl wvas outperformied in only one case. Upon a casual inspection of the training et s

that enabled MNVIM to perform perfect (detection, it can be observed that Tests #3 and] #1I are

includIed in all of them. This implies that the MVIMN needs the parameters from1 these two tests

to establish an effective pair of signatures for no-fault and fault cases. Note that without Test

#3, the MVIM p~rodulces one undletectedl fault andl one false alarm (Case #27). and( without le~st

#4 it produces one undetected fault (Case #28). Note that the multi-layer neural net cou'd niot

provide perfect detection even when trainedl with all of the five tests (Case #30).
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]'I) Li .l I i

2 3 Neural Net 1 0 4
IVIM 1 "2

3 - N, araN Net[1 3 1
VIN I' '\12 13

4 Neural Net 1 6
MVIM 3 2

5 1,2 Neural Not 4 0t
MNVIM I2 12 -4

6 1.3 Neural Net 1 2 3
MVIM 2 0 _2

1,4 Neural Net 1 1 2
MVIM 1 1 2

8 1.5 Neural Net 1 2 3

MVIM 1 2 3
9 2,3 Neural Net 1 1 2

IMVIM I 1 2
i 1 2.4 Neural Net , 2 3

N'I\"IN ;3 I 1 ,

11 2,5 Noural Net 3 "2 5

_NIVII 3 2 5
12 3.4 Neua a Net 2 2 .

M\I.\ 0 0 0
1, r Neural Net 0 3 3

_______M\VIN 1 0 ~ 1

1.1 4. Neural Net 3 3

MVIM 1 1 '2
15 1,2,3 Neural Net 1 2 3

MVIM 2 0 2
16 1,2,4 Neural Net 2 1 3

__MVIINI 2 IF _ 3
17 1,2,5 Neural Net 1 2 3

MVIM 1_ 2 3
i IS 1,3.11 Neural Net1 0 1

MVIIM 0 0 0
P0 1,3,. N(eural Net 0 T I 3

1 V I \I - 2 () 2
201,1, (' rd Net 1 1 '2

IVI.I __1 2
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fJCase # Frainling I Diagnostic unidetected i- Fal ze
Ij ________I Dta sets %lethlod ( Faults Alarmls 'st EFrror:-,

21 2,3.4 - Neural Net 2 02
%MVIIM 0 0 0

22 2.3,5 Neural Net 1 2 :3

____INI __ _ __ _ VI % 1 0 __- 4

2:3 2.-4,5 Neural Net :3 1 -1
%VI vI% 1 1 2 -,

24 3:14.5 Neural Net 2 02
______ VI'% 0 0 0

25 1.2,3.4 Neural Net 2 0 2
MIN M () %1 0 0

26 1,2.3,5 Neural Net 2 1 :3

27 1,2,4,5 Neural Net 1 1 2 1

28 1,3,4,ý5 Neur~ai -et 1I

29 2,3,4,5 Neural Net 2 0 - 2

30 1.2,3,4.5 Neural Net 1 0 1

Table 3: Detection results obtained from NI\VIMI and] a multi-layer neural net w.hen
trained with dlifferent dlata set~s.

6 MEASUREMENT SELECTION

The %I VIM method cani also assess the significance of individual parameters in detection. It

is generally assum~led that the parameters whiichi reflect the faults more effectively facilitate

training, p~articullarly wh~en the success of training is based upon detection capability within the

training s,-t. Threw(fore, whol en udi viduial parameters are d1iscarded , their influence on overall

(letectabl~jity must be reflected in the t.rainmming timie for that set. Thiis means that when anr

'imp~ortant' parameter (measurement) is dliscarded from thle training Set, for the faults are to be

cliarac te rized by thle romiram ining paramiieters ( meas ure men ts ), the tralinin ig will be more difficuli t

aLn(I, thus, umore timue-consli iiiirig.
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Ili II rdel I t t,-. the d)(we I l i, I I a ;1111111 't W l p1 1 k. I ' perf ct d-tect i ni r IIttl

wais selected. A\mmi thit, varimi, triitilmig " •twt in Table 3 satisfviyra this, condi tiota (';'.- 12

"w hichI Col tai ned the si II'l lest num i ber of data set (i.e., Tests g 3 and #4) " as sol Iected. In d(ivid u ;l

parameters were tlen (1ti.cardod mric at a tOine from this trraining s.ct ti fortm new reducid s-,ts

for training the M\"I M The number of training epochs' required for each reduced set is shown

in Table .1, with the discarded l)araineters imposing higher than 9 epochs (obtained for the full

set) marked by a plus sign.

[ _ Case # 12 (Test # 3 and #4)

fiPara'eter j ,Number of Undetected False
D~iscarde Training Epochs Faults Alarms

None 9 0 0
I #i 1 9 0 0

#2 9 0 0

3+ 25 00
#_ 9 0 0

_ 5 9 0 0
#__ 9 0 0

I #7 _0 0
9 0 0

#9 9 o T -o
#10 9 0 0

# I I+ 10 0 0...{
#12- 100" 0 5
#13+ 11 0 0
#1,1+ 0 0 0

# 15+ 37 0 0
#l1+ 10 0 0
#17+ "22 0 2

# is8 00
# 99 1 0 0

Table -1: The elfect of diPa rded paramneters on training tirae aind test results. The

particullar sets that required a longer training time than the full set are
zitarked by '+'. The '*' denotes that fulIl detection within the training set
WaS nlever acthieved.

ilasss through the train ing set
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Based on the results in Tahle 4, the elimiiiination of Parameters #3 (crt f;t, tor). #' 1 (I M1I

P), #12 (CEP(1911)), #1:3 (CEP(:S72)), #1.1 (TON(1911)), #1 V) (TONV!>72)), # 16 (111), ;-,id

#17 (1BKV) from the training set adversely affected training. This (-u'd imply that th,-,, ,it

parameters are particularly important in characterizing the signaturs for the no fault and fult

case, and that Parameter #12, whose elimination jeopardized training, is critical. liv thie sa1m,1

analogy, the results in Table 4 indicate that discarding Parameters #7 and # IS may bIe ven

beneficial to training of MVIM.

In order to validate the above findings. various combinations of parameters from ',ests #3

and #4 were grouped into training subsets. Training started with th, smallest poi1 l,' sul,,t

which included only two parameters. As the MVIM did not converge with this subset, tOw

subset was expanded further until successful training was obtained for the M\VINI. The first

subset that resulted in perfect training for the NIVIM was one with twelve parameters, of which

eight parameters were those that were identified as 'important' before (i.e., Parameters #3, #1 11.

#12, #13, #14, #15, #16, and #17). In fact, through further analysis it was ascertained that

the smallest subset of parameters that would provide perfect training for the INIVIMI consikts of

these eight parameters, and +hat discarding or replacing any of these eight parameters results in

a non-trainable situation. Addition of more parameters Lo this subset did not make a difference.

The same type of analysis performed with the NIVIM method could potentially be performed

with a neural net. However, neural nets provide different detection results with different number

of hidden units. As such, for each number of inputs (parameters) the optimal number of hidden

units need to be selected, which would then affect the number of epochs required for training.

This will complicate the criteria for measurement selection of the type descril)ed above. The

advantage of the NIVINI method over a neural net is that its structure is fixed based on the num-

ber of its inputs, and thus the number of training epochs would directly reflect the significance

of individual measurements.
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7 CONCLUSION

Fault detection of helicopter power transmissions through pattern classification is deinonstrated.

For this purpose, the M VIM detection method is used to construct no-fauilt and fault signaturem

based on vibration data reflecting the effect of various faults in an 01-58A main rotor trans-

mission. Implementation results indicate that the MVIM can provide perfect detection when

the full range of fault effects are extracted through appropriate signal processing. The M\VIM

method can also assess the significance of individual measurements. Based on this assessment,

it is shown that an optimal subset of measurements can be selected so as to reduce processing

time for in-flight implementation purposes.
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