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ABSTRACT

A comprehensive study of multiresolution signal processing techniques is conducted.

Background material in functional analysis and Quadrature Mirror Filter (QMF) banks is

presented. The development of Mallat's algorithm for multiresolution decomposition and

reconstruction is outlined and demonstrated to be equivalent to QMF banks. The Laplacian

pyramid and the a trous algorithm are described and demonstrated. General multiresolution

structures are constructed from cascades of QMF and pseudo-QMF banks and are demonstrated

for applications in signal decomposition and reconstruction and signal detection and

identification. Accesion For
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I. INTRODUCTION

A. MOTIVATION FOR STUDY

In recent years a novel approach to the field of digital signal processing has received

significant attention. This new approach., the wavelet transform, has displayed the potential for

applications in the fields of speech and image processing, in particular. Techniques based on the

wavelet transform have beer praised for, among other things, their efficiency of computation.

Unfortunately for the electrical engineer specializing in the field of digital signal

processing, the concepts on which the wavelet transform have been based have been somewhat

elusive. Pioneers of the field have been specialized in such diverse fields as geophysics,

mathematical physics, and a branch of applied mathematics known as functional analysis. Not

completely unrelated to the familiar Fourier transform methods, wavelet transforms extend the

concept of signal decomposition through basis function expansion to a more general and abstract

realm. Such abstract mathematical disciplines as set theory are invoked within the context of

embedded vector spaces and their relationships to each other.

Included among the purposes of this present study is an attempt to bridge the gap

between the mathematician and engineer. It is intended to prov;de a rudimentary enough

understanding of some of the concepts of functional analysis to facilitate a more in depth

understanding. Additionally, a strong tie is demonstrated between wavelet-based methods of

decomposition and areas within the field of electrical engineering which may be more familiar



Finally, an additional purpose of the present study is to evaluate wavelet transform

methods for detection and identification applications. Wavelet processing methods will be

applied to familiar signal processing problems such as the detection of signals in noise and the

resolving of dispaiate frequency components of which a signal is composed.

B. OUTLINE OF STUDY

Chapter II will introduce concepts from functional analysis which commonly appear in

the literature on wavelet transforms. Not intended to provide an in depth introduction into the

field of functional analysis, the chapter provides a few basic tools to support further study. In

Chapter III, the basics of multirate system theory will be explored. In particular, the Quadrature

Mirror Filtei (QMF) bank for two and more channels will be demonstrated. Chapter IV will

introduce the theory of multiresolution analysis. From the definitions introduced, Mallat's

algorithm for the discrete wavelet transform will be introduced and shown to be equivalent to the

QMF bank. Two earlier multiresolution decompositions--the Laplacian pyramid and the 'a trous

algorithm for the wavelet transform--will then be reviewed prior to extending the concepts of

multiresolution analysis to general structures constructed from cascaded QMF banks. In the

Chapter V, the basis functions of the wavelet transform and filters for QMF banks will be

considered in greater depth. The chapter will include a discussion of two-scale difference

equations and some basic filter design methods for QMF banks. Chapter VI will demonstrate tfbr

detection and identification applications the application of some multiresolution structures

introduced in Chapter VI. Multiresolution structures will be compared with the periodogram



decomposition from the perspective of computational efficiency, robustness with respect to

noise, and the ability to resolve proximate spectral components.



11. RESULTS FROM FUNCTIONAL ANALYSIS

A. INTRODUCTION

In essence, wavelet transformation represents a recent development in the field of

fiinctional analysis. Consequently, a brief study of this branch of mathematics provides an

appropriate starting point for a study of Wavelet Tiansform (WT) analysis.

In mathematical terminology, afinctional is defined as [1] "a function that h.,s a domain

whose elements are functions, sets, or the like and that assumes [scalar] numerical values."

Fourier transformation--an operation familiar to electrical engineers working in the field of

signal processing--is an example of a functional analysis technique. The Fourier transform

inteural

f(Wo)= cJ{f(x)}(wo) =j f(x)e-J" dx !" 1

is a functional which, through projection on a set of basis functions "e"',." maps a continuous

function to a specific value for a given value of "W." Similarly, the Discrete Fourier Transform

(DFT) is an example of a discrete functional. For a discrete sequence xT=[x[O] x[1] ... x[M-]],

the DFT

where [WWM,,, = W =I'= e".jn•kM maps the vector x to a discrete set of points X[k].

B. NORMS AND NORMED SPACES 121

Linear transformations generally involve the mapping of a fur. tion (or vector) fiom one

vector space to another. The study of these transformations requires the capacity to quantify

4



distances within these spaces. Measures for functional spaces possess analogies in

geometry--such as length of a vector, distance between the points defined by two vectors, and

the scalar product of two vectors. These measures, or norms, provide the ability to transform

each element u in a vector space V into a real number. For a linear vector space V over the real

number field R, the norm Ilull for every element U E V satisfies the following conditions:

Ilull Ž 0, and Ihull = 0 if and only if u = 0. (positivity)

ila'ujl = jal[I[ull for ot r R. (homogeneity) (2.3)

dlu + VII - iull + l1vII (triangular inequality).

Examples of norms which sometimes arise within the context of functional analysis

follow. The most common norm is the L2-norm. Pythagorean theorem represents a special case

of the L2-norm. For a function "x(t)" defined in the closed interval C[O, T], the

L2-norm--denoted by jlxj11--is defined as

lIx112 -[f Ix(t)I2 dt]U2  (2,4)

Another norm is the sup-norm or supremum norm. The supremum of a function or

functional is defined as the least upper bound of a function. The concept of supremum is similar

to the concept of maximum, however a function does not necessarily ever assume the value of

the supremum. For example, consider a function f(x)=x2 . If the domain of f(x) includes the

closed interval [0, 1], then the extremum (and, incidentally, the supremum) of f(x) occurs for

f(x)=l. If however, the domain of f(x) is restricted to the open interval (0, 1), then the function

f(x) has no extremma. At its limit, f(x) approaches unity, however it can never assume that

5



value. In this case, however, f(x) does possess a supremum, since f(x) is bounded above by

unity.

To applying the concept of supremum to define a sup-norm, consider the vector space

V=C[O, to], the set of all real-valued, once-differentiable, continuous functions of t in the closed

interval [0, to]. The sup-norm of x, Hjxf[.. is defined as the supremum of the function "x(t)" on its

domain, or

IlxL* = sup{ jx(t)I: 0 < t _ to }. (2.5)

The Lebesgue norm represents another norm which is related to the L2-norm. For a real

number p r [0, ,,) n R, the Lebesgue norm for the function u(t) defined on the interval [0, TJ is

defined as

JHuill 0 [J 1u(t)IP dt] lip < 00. (2.6)

If a norm can be defined in a given space, then that space can be characterized by that

norm. for instance, if the Lebesgue norm is defined for a space of interest, than that space can

be classified as a Lebesguespace. Furthermore, the space by which a norm is characterized is

indicated in the subscript of the norm operator symbol. In some cases, such as for Lebesgue

spaces, the subscript indicates the metric of the space. In others, such as sup-norm spaces,

subscripts less indicative of the norm operation appear. In general, for some arbitrary,

unspecified space U, the norm operator for that space is denoted by

1" ILV
This notation will be used throughout the remainder of this section to indicate general normed

spaces.

6



Inner product spaces are of significant interest to signal processing. An inner product

space is defined to be a linear vector space on which an inner product can be defined. The

concept of inner product is related to the definition of the norm of a space. For instance, the

--Inner product (u,v), is evaluated as

(u,v) 2  f u(x). v*(x) dx (2.7)

for two vectors u, v r L(2). Unless otherwise indicated, throughout the remainder of this

paper, inner products will be assumed to be L2 inner products and the corresponding

distinguishing operator subscripts will be suppressed. Additionally, inner product operations

possess the following properties:

1. (u, v)- (v, u) Symmetry

2. (cXu, v)=oa(u, v) Homogeneity

3. (ui+u,, v)(uI, v) + (u,, v) Additivity (2.8

4. (u, u) > 0, and (u, u) = 0 if and only if u = 0. Positive Definite.

5. 1 (u, v) I < ](u, u) (v, v) = h1ull UlvIl Cauchy-Schwartz inequality.

Given an inner product space V, the concept of orthogonality is also important for

characterizing the space. Two vectors u, v E V are said to be orthogonal if(u, v) = 0.

Furthermore, it is possible to partition an inner product space into orthogonally complementary

subspaces. For instance, consider the inner product space Vk. If Vk-. is a subset of Vk (denoted

in mathematical symbology by Vk.1 c V,), then the orthogonal complement W,,, ofVk4 is

defined as

7



Wkl =Vk % {uE Vk: (u, v)=O V v E VAk.} 2.91

Additionally, the union of two orthgonally complementary subspaces V. and W. to obtain a

third is denoted V k-] 3 wk.i - Vk. The concept of an orthogonally complementary subspaces

proves critical when defining a muhiresolution analysis,

The Hilbert Space represents perhaps the most important inner product space for signal

processing applications. An abstract Hilbert space is an inner product space which possesses the

following characteristics [3]:

1. Linearity--The operations of addition and of multiplication by real or complex numbers

are defined for its elements:

2. The metric of an Hilbert space is derived from its inner product. Consequently, for any

tvwo elements u and v, there is an associated real or complex number.

3. Completenes--If a sequence of elements {u,1} satisfies the condition u11 - u,, -_4

m, n -* 00, then there exists an element, u, such that I u,, - u;' --- 0 V n -- eo.

C. LINEAR OPERATORS AND TRANSFORMATIONS 121

Many signal processing applications of interest involve linear transformations from one

linear vector space U to another linear vector space V. If for some vector u in inner product

space U, there is a corresponding vector v in image space V, then the operation T, by which u

and v are related, constitutes the corresponding transformation. Mathematically, a mapping by T

from space U to space V is denoted by T: U .* V.

8



With respect to some arbitrary linear transformation T: U -- V, the following properties

apply:

1. Ttoau,+Pu, I = aTo{u,} + 1T{u, Linearini

2. 1 T{u, ý - Tju,f }11,-5 M 11u, - u,11, for some arbitrary M>0 Continuity

3. flT{u}Hjv < M HuH1. for some M > 0 Boundednessfrom Above (2.10)

4. I[T{u})IIv - C liull 1 for some C > 0 Boundednessfrom Below

Two important consequences for linear operators result from the properties of (2.10). The first

states that for some invertible, linear operator T: U --* V which is bounded from below,

lT"'{v}l - t llvlK,/C. (2.11)

Equation (2.11), proven in [2], expresses the Bounded Inverse Theorem. In other words, the

inverse of a linear operation bounded from below is bounded from above.

The second significant result stems from the linear property. Given T: U -4 V, for

finite-dimensional vector spaces U and V, constituent vectors u and v, respectively, and bases

{01, 02 ...- O} for U and {JW, •2 ..... ,} for V, then u and v can be represented as
n

U Z ak Ok

k=M (2.12)
V = £ 1Pk V

k=1

Now, writing down the form of the transformation, T: U -- V, the terms in (2.12) are related by

m n
v= Y- Pjj 1 = - 0XkT{(k} =T{u}. (2.13)

j=l k=1

Since Ok e U and W, r V, the mapping of {0J .-* {j} can be expressed as
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T{0Ok = Y_- t)ýk 14i (2.14)
j-I

In vector-matrix notation, {ox}, {•3} and {tk} are related by

F iF t 1 .2 ... t
1

~ iF 1
[ t 2.1  t 22  t2.n (215)

PM JLtm. tM.2 tm'n nXD

Equation (2.15) represents a linear transformation of the projections onto the bases of U and V.

In signal processing, and other sciences involving representation in terms of linear

transformations, mappings which are one-to-one are of significant interest. Given T: U -, V, if

for each u E U there exist.. a unique v E V, then the transformation T is defined to be

isomorphic. Furthermore, for T{u} = v, given an isomorphic operator T, there exists a unique.

inverse operator TV such that u=T1 {v} [4]. Isormorphic operators are particularly useful

because they can be inverted. With respect to signal processing, if a signal is decomposed by an

inVertible operator, then it can be reconstructed to recover the original signal or process.

Before the final concept can be defined, elaboration on the definition of a functional is

necessary. Linear functionals consist of a subset of linear transformations T: U -- V in which

the transform space V represents a scalar field [5]. In the case of functionals, the transform

space V represents the dual or conjugate space of U. The dual space of U is assigned a special

notation U. The notion of a dual space differs from that of a biorthogonal, or Riesz space

which shall be addressed in a later section.
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Finally, the concept of adjoint operators occasionally plays a role in functional

representation of sequences. Given a bounded, linear operator T: U -* V for normed. linear

spaces U and V. a linear functional o can be defined such that 0( v tT=o'T) u ,-)=(Yu). The resultant

functional ?--for u--is linear since 0 and T are linear. It is possible, therefore, to define an

Udioint ope-rwor T', such that !(u)=!(T v N)=O(\'). The functional ý, by definition, lies in UC.

Additionall-y. omitting the argument vectors, the transform T" can be expressed as i=T'O In the

case of Hilbert spaces, an operator and its adjoint are related by inner products. Specifically, for

u. v , 2•, a Hilbert space,

(T u}, v) =(u. T'{v}). 2,16)

D. REPRESENTATION IN INNER PRODUCT SPACES

Representation theory consists of the theory of representing sequences or sets in terms of

projections upon sets of vectors. The Ries: Representation Theorem provides the foundation for

representation theory for functionals. If, represents a bounded linear operator in an Hiubert

space Z•, the Riesz representation theorem [2] states that there exists a unique vector v,, E • such

that

This vector v,, is called the representation for operator f.

The Foirier Series Theorem [2] provides concepts fundamental to representation of a functiOn in

a Hilbert space. For a countably infinite. orthonormal vector set {u, K=_, e 2•. then a series of the
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form X u, converges if and only if I II- < ,. In this case, the series X ,, u, converges

to the same eement x irregardless of the ordering of the terms. Furthermore, the element x. the

orthogonal set Iu,,} and the weighting factors I, are related by

= (X, U,,) (2. t 7a)

and
x= t u, -2. 17b

By linearity, Parsevals Equality follows directly from (2.17):

Finally, if x = y, another relationship is obvious:

x =(x, X)= • (x, u.)t (2.19)
a 0

At this point, consideration of additional concepts is justified. The concept of closure

arises in representation theory [2]. A subset S of a normed space is said to be closed if it

contains all its limit points. If S is a closed set, and if a sequence converges, then the limit to

which the sequences converges is contained in S. The concept of denseness is related to closure.

If S is an open set (not closed), the snt of all additional points necessary to obtain a closed set

including S is denoted by S. Consequently, the union of the sets S u S results in a closed set. A

space S is said to be dense if for any vector v in S, there is an element in S which is arbitrarily

close to v. Practically speaking, within a dense space S, it is, therefore, possible to define a

representation with arbitrary precision if enough basis vectors are employed.

Finally, in representation theory, the concept of conipleteness of an urnhonormal set

represents an important concept. Orthonormality, in the usual sense, refers to a set of vectors
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(u. }>- such that (u., ur) = 8,,." where 5,n, represents Kronecker's delta function. If an

orthonormal basis {un} 0 i E X is complete, then the only vector v e X, such that (v, u., = 0 V

integer n E [1, NI is a vector such that "lvl = 0.

In representation by summing projections on a set of orthonormal basis functions U, one

of three cases can exist (6]:

1. The set of basis functions is incomplete.

2. The set of basis functions is complete.

3. Some subset U, of the basis functions constitutes a complete set where the

complementary subset U7 # 0.

In case 1, it is not possible to obtain a complete representation from U, In other words,

(2.17) does not hold. Since U is incomplete, for the set of basis functions {u, , there is

some non-zero vector v such that (v, u.) = 0 for any integer n on [1, N]. The set of Rademacher

functions [7] represents one such example.

In case 2, a complete representation is obtainable and (2.17) does hold. Classical Fourier

expansion represents an example for case 2.

The third case is less common but does arise occasionally. In the third case, some

arbitrary basis vector un may lie in the closed linear span of all others in the set:

un = Y OLk Uk. (2.20)
kzn

Such an occurrence is referred to as a fr'ame. In the case of a frame, (2.17) does not hold. Due

to (2.20), evaluation of (2.17b) would result in a representation of vector x containing redundant

information, Representation by Fourier expansion with overlapping subdomain basis functions
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exemplifies the use of a frame. Specifically, representation by expansion on integer translates of

polynomial splines is employed for some signal processing applications [9].

The concept of a frame originates from a theorem outlined by Riesz and Sz.-Nagy

addressing biorthogonal systems [3]. The present term, however, was introduced by Duffin and

Schaeffer in work related to nonharmonic Fourier analysis [8]. In contrast to expansion by sets

of complete orthonormal bases, expansions by frames do not converge to a specific vector.

Instead, such expansions converge to a specified range:

A IxI!2 -1 (Ok, x)12 5 BllxII 2 V ke Z (2.21)
k

wh.-.e Z represents the set of all integers. The constant factors A, B E R are called the frame

bounds. In order the operation to be invertible (or even, possibly, nontrivial), the requirement

exists that A > 0 and B < -,. Daubechies [61 presents detailed descriptions of the procedures for

calculating frame bounds for various situations.

Employing concepts from linear operator theory, the projection operation, T, of some

vector, x onto a set of basis functions {0m} V m E Z is characterized as a mapping from a

Hilbert space Y to the sequence of all square summable sequences tP(Z):

T: X --- "(Z).

Specifically, the projection operation T, defined ,o be the frame operator, is defined as

(T{x}X) = (k, x). (2.22a)

The adjoint firame operator, T', results in the expansion on the basis set {QJ

Tt{c} =-Ckk. (2.22b)
k
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Combining (2.22a) and (2.22b), (2.21) can be expressed in its most abstract form as

Al <T*T < BI

where 1 denotes the identity operator.

A decomposition by frames can be reconstructed exactly if a biorthogonal system, also

occasionally referred to as a Riesz basis [9], is constructed. The form of such a reconstruction

appears as

x =1(0k, X)ýk =T(ýk, x)Ok. (2.23)
k k

In (2.23), the vector set {Ik} is referred to the biorthogonal basis of {Jk}. The basis function for

the biorthogonal set is related to the fundamental set by

Ok = (T" T)-' 4k (2.24)

Occasionally, in literature, the Riesz basis will be referred to as the dualframe. This term

should not be confused with the concept of dual or conjugate space previously discussed.

Daubechies [6] describes and proves three generalities regarding biorthogonal systems. These

include:

1. The family {fk}Vk with Pk = (T" T)-' Ok constitutes a frame with bounds B" and A".

2. The frame operator T associated with tOk is given by T = T(T' T)-I and satisfies

T T = (T" T)-'

and (2.25)

T =T'T ,

or, equivalently

(T")' : T.

3. And finally,

"TT' =T (T'T)-' T" =TTt (2.26)
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III. A SURVEY OF MULTIRATE SYSTEM THEORY

A. INTRODUCTION

Multiresolution analysis implementations frequently reduce to structures composed of

multirate system building blocks. Consequently, prior to addressing the construction of

multiresolution structures, multirate system theory will be briefly reviewed. Section B will

address basic multirate system operations and reptesentations. The simplest multirate

system--the two-channel Quadrature Mirror Filter (QMF) bank--will be discussed in Section C.

In Section D, the results from the preceding sections will be extended to an arbitrary number of

channels.

B. BASIC MULTIRATE SYSTEM OPERATIONS

Multirate systems are comprised of three fundamental operators [I 0]--decimators.

expanders, and linear (usually Finite Impulse Response (FIR)), digital filters. In this section,

time- and Fourier-domain consequences of decimation and expansion will be demonstrated.

Decimation consists of subsampling a discrete sequence, retaining only samples at

integer intervals. Figure 3.1 presents the block diagram symbol for a decimator. In

mathematical

Figure 3.]--Block diagram for M-fold decimator

notation, decimation of a discrete sequence by a factor of "M" is denoted by

x,,1(n)=x(M-n).
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To illustrate the consequences of decimation, consider the bandpass, transient sequence

plotted below in Figure 3.2. Figure 3.2 displays a lineplot of a 128-point sequence constructed

from the real part of an exponentially-modulated, Kaiser windowed, sinc (sine-over-argument)

pulse:

sm rTa8 ! j I0 'K.4  R ee2 3}.(3 2

Re{s(n)}= ,Ree"'.(3.2

0. 15

0.1

.- 05

-c.n

-0.85

-65 -45 -25 -5 15 35

Sample sequence number, n

Figure 3.2--Time plot of discrete sequence described by equation (3.2).

0.12

9.1
w 0.06i

8.02

.n -8. 22

-0.04 "

-35 -25 -15 -5 5 15 25

Sample sequence number, n

Figure 3.3--Plot of sequence obtained from decimation by a factor of two of sequence (3.2).
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Decimation by a factor of two, s.( n), of the sequence in Figure 3.2, produces sequence

plotted in Figure 3.3. The length of sequence s,,(n) is one half the length of sequence s(n).

Furthermore, the sequences are related by

s,,(n)=s( 2"n). (3.3)

To consider the Fourier-domain consequences of the decimation operation, the Z-transform of

the decimated sequence must first be evaluated. For the decimated sequence,

S j.2(z) = Zs(2n)z'"- 2  
(3.4)=Y_ s(n) z-12

even Ii

Evaluation of the second summation in (3.4a) requires the definition of a sequence Tl,(n) whose

values are unity for even elements and zero for odd elements [II]:

Tl2(n) = (t + (-1)"](2 (3.5)

Inserting (3.5) into (3.4) produces

S1 2 (z) = 5 s(n)z-'2
even n

' I ~n)I+ (I~n _W2(3.6)
2~~
I [S(ZV"+Se-z1"2)]

The effect of decimation on the spectral content of the sequence s(n) is obtained from evaluation

of S,2(z) on the unit circle:

S-2(el') = [SejU'2)+S(-eJ a2(3.71
1 [--[S(eO")+

Decimation, therefore, causes the frequency spectrum of a frequency to become spread become

by a factor of two. Additionally, the location of a spectral peak or any other distinguishable
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feature will be translated by a factor of two with respect to its original spectral location. The

Fourier transform indicated by (3.7) is a 4.ir-periodic member of L2([0, 4.1r]).

-- riginal ýanlpass sequence
-QecIMated tandpass sequence

0.2

a0511.5 2 2.5 3 3.5

Digital frequency (multiple of it)

Figure 3.4--Plots of magnitudes of S(eJ (a) and S..2(el i

Figure 3.4 compares the Fourier transforms of a sequence S(dt) and its decimated

version SJ(e'). The plots in Figure 3.4 illustrate the test sequence power distribution relative

to its sampling frequency. The changes to sequence power distribution which occur from

decimation are a consequence of a change in the equivalent sampling frequency. In discarding

each separate sample, as is done in the decimation operation, the resultant sequence is equivalent

to sampling the original sequence at a sample frequency of f,12 = 0=.f,'

As predicted by (3.7), decimation causes a spreading of a bandpass about its center

frequency. Furthermore, distance between the center frequency f, of the decimated sequence

and o,=O has been doubled with respect to that of the original sequence. In the example

illustrated, the original sequence s(n) was constructed to be an analytic, bandpass process whose
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center frequency f, was related to its sampling frequency f, by f, = f,!6 and whose bandwidth

B=0. 125-f,. The decimation operation shifts the center frequency f•.2 = fj3 and enlarges the

bandwidth to B,2 = .25 f, or by a factor of two. The spreading and shifting effects occur because

of the subsampling nature of the decimation operation: Decimation results in a change in the

sampling frequency. The sequence s.,(n) is equivalent to s(n) sampled at one half of its original

sampling frequency. The peak magnitude of S,.(el') is one half the magnitude of S(e") because

of the factor of one half introduced by the sifting sequence (3.5).

Figure 3.5--Block diagram of an expansion operator.

0.14

0.12

0.08

- ~ 0.04

Ga 0.82

0

•n~ -8.82

-0.84

-65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 M 65

Sample sequence number, n

Figure 3.6--Discrete plot of expanded version of s,:(n).

The operation of expansion (or upsampling) represents, in a sense, the inversion of the

decimation operation. Figure 3.5 presents the signal processing block diagram symbol for an

expander. Th, mathematical notation for a two-fold expansion operation is given by:
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{ s(n12) V even 'n'

sT2(n) = 0 V odd Wn' (3.8)

(- I + (-1).) s(n/2)

Consequently, expansion entails the insertion of a zero between each sample in a sequence.

Figure 3.6 presents a discrete line plot of the expansion of the sequence sj2(n). Expansion

restores the length of the decimated sequence to that of the original sequence. However, all

odd-number elements of the sequence s,._,(n) are zero.

Considering the Z-transform and Fourier transform of the expanded sequence provides

further insight into the relationship between the expansion and decimation operations. The

Z-transform of st,(n) is evaluated as:

St(z) X =

- X1+( 12ns(n) z-2nn (~(3." 9)
Z •s(n) Z-2 n
n

- S(Z2)

Consequently, in the Z-domain, expansion of the decimated sequence s.,(n) produces

ES121T,2(Z) ' E-S(z) + S(-z)]. (3.10Oa)

In other words, expansion of a decimated sequence reproduces the original sequence plus an

additional term. This term is referred to as the aliasing term [12]. Evaluating (3.1Oa) on the

unit circle yields:
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[zr(ejw) = [S'eJ')+S(-e')W(.IbES121T 2 1 *(3. 10b)
-S[(eIw)+S~eJI(O¼)1

-Decimated sequence
-- Expanded, decimated sequence

0.5 - --------

C__ 0.4 I
cI 'I

E

08.2 ttr

8 - •i . . , . i . .
9 .1i 0.2 9.3 9.4 9.5 0.6 9.7 .8. 9.9

Multiple of sampLing frequency, f

Figure 3.7--Magnitude plots tf S1,e n) and [SIJT],(eJw).

The aliasing term, therefore, consists of the original term shifted by it radians. The magnitude

plots of S.J(ej) and [Sj],.(ej') presented in Figure 3.7 illustrate this occurrence. The left side

of the plot illustrates the restoration of the decimated sequence to its original center frequency

and bandwidth while the right side of the plot demonstrates the generation of an aliasing term.

The aliasing term illustrated in Figure 3.7 can be reduced through the use of a linear, lowpass

filter. Such a filter is often referred to as an interpolation filter.

Figure 3.8 illustrates the time-domain results of applying an interpolation filter to the

sequence plotted in Figure 3.6. The sequence in Figure 3.8 differs from the original sequence by

a normalized mean-squared error of -11.52 dB wherz the normalized mean-square error is

defined as
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I Swll--(n)! " s-ý0i (n)'S n))

s. s2mn)

n-O

The interpolation filter whose response is shown in Figure 3.9 was constructed using a procedure

outlined by Vaidyanathan [12]. A zero-phase, half-band, FIR filter was constructed using the

McClellan-Parks algorithm and its characteristic polynomial factored. The minimum-phase

zeros of the original polynomial were expanded to form an new characteristic polynomial for the

filter whose frequency response appears in Figure 3.9.

..--Original Sequence
-o-Interpolated, expanded, decimated

Cj -e.25

-64 -48 -32 -16 9 16 32 48 64

Discrete time, n

Figure 3.8--Superimposed plots of original sequence Re { s(n)} and of real part of interpolated, expanded.
decimated sequence, Re { lh0¶sj 2]J(n) } where hl(n) represents the impulse response of the interpolation

filter.

The source of the error between the original sequence and its interpolated versions is

readily apparent in Figure 3.9. The spectral content of the interpolated sequence almost exactly

coincides with that of the original sequence in the region below the Nyquist frequency.

However, since the interpolation filter consisted strictly of real coefficients, its frequency

response included an image in the half of the spectrum above the Nyquist frequency. The
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location of the image coincided with the location of the aliasing term generated by expansion

As a result of partial transmission of the aliasing component, the interpolated sequence whose

spectrum is plotted in Figure 3.9 is no longer an analytical sequence. This accounts for the loss

of symmetry evident in the plot of the interpolated sequence presented in Figure 3.8.

-5 1

* I

*~-25

-35 \A p It ui~n seQuerE-
-Interpctiated se-,,ence

Z I rterociatcr fItr e2r~esý-
-45

a 0.1 2 0.3 2.4 0.5 2.6 0.7 2A, 2.,

Diqital frequency, (mutti:e of f

Figure 3.9--Superimposed plots of spectral content of original sequence mad interpolated sequence and of
interpolator frequency response.

C. TWO-CHANNEL QUADRATURE MIRROR FILTER BANKS

The primary objective of the present section is to introduce the Quadrature Mirror Filter

(QMF) bank. QMF bank theory is a well-developed aica wititn •he fCiid ,,eiectrical

engineering and can be understood with a grasp of basic linear systems theory. The purpose for

the study of QMF banks in this chapter is to prepare for the construction of multiresolution

structures in the next chapter. In Chapter IV, Mallat's algorithm for the discrete wa%,elet

transform will be shown to be exactly equivalent to the QMF bank. Thereafter, multiresolution

analysis structures will be constructed from QMF banks of various numbers of channels.
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x (n) v (n) u (n)
A

S H Z) 0, 2 A2 F (z) xo(n)
0

x(n)
S< > Analysis Bank < > < > Synthesis Bank < >

xin)

__ H (z) - 2 !A 2  No F (z)
x1(n)

x (n) v (n) u (n)

Figure 3.10--Block diagram of two-chamiel. Quadrature Mirror Filter (QMIh bank. (After [12])

Having considered the basic building blocks of a linear, multireate system, attention in

this section will be directed towards assembling those components into a basic system.

Two-channel, quadrature mirror filter (QMF) banks represent the most basic structures for

transmultiplexers, sub-band coders, and discrete wavelet transforms. Figure 3. 10 presents a

block diagram of a basic, two-channel QMF bank. The vertical, dotted line in Figure 3.10

divides the system into analysis and synthesis banks. Each of the filters in the structure is a

half-band filter. The analysis section divides the signal, by frequency, into two channels. The

synthesis bank then recombines the channels and generates an approximation i(n) of the original

signal. In general, i(n) will differ from the original sequence because of three sources of error

[131: aliasing, amp!itude distortion, and phase distortion. The Z-transform analysis presented in

the previous section permits precise characterization of these errors.

If a filter bank is designed such that each of these errors is exactly cancelled, then the

structure is called aperfect reconstruction filter bank. More specifically, the perfect

reconstruction criterion is expressed mathematically as

i(n) = c x(n -no) (3.12)
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for some non-zero constant c and positive integer n.. In other words, for a perfect reconstruction

filter bank, the reconstructed sequence will differ from the original sequence only by a constant

factor and a delay.

Beginning Z-transform analysis of the structure illustrated in Figure 3.11 [12], the output

of the synthesis filter for channel k (k = 0, 1) is expressed as

Xk(z)=Hk(z)X(z). (3.13)

By (3.6), the decimator output is described by

Vk(Z) 2 k(ZI z+Xk (- Z I ) ~ (3.14)
= 2[Hk(Z 1,2) X(z l') + Hk(-ZVU2) X(-z-V 2)

Applying (3.9) and (3.10),

Uk(z) = Vk(z 2)
= "}[Hk(z)X(z)+Hk(-z)X(-z)] (3.15)

describes the decimator output. Finally, the reconstruction component for channel k is given bv

Xk(Z) = Fk(z)Uk(z) (3.16)
= 7' Fk(z)[Hk(z) X(z) + Hk(-z) X(-z)]

Since the reconstructed signal is simply the sum of the synthesis filter bank channels, the overall

transfer function for the filter bank, in matrix form, becomes

X(z) X(z) X(-z) H(Z) H(z) F,(z) 1(31)
1 Ho(-z) Hl1(-z FL F1(z)

Now, (3.17) can be expanded and expressed as

X(z)=± Fo(z)Ho(z)+Fl(z)Hl(z) X(z)++ Fo(z)Ho(-z)+Fl(z)Hi(-z) X(-z).
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When written in this manner, two categories of components are evident: the desired

reconstructed components composed of X(z) and its factor, and an aliasing term consisting of

X(-z) and its factor. Evaluated on the unit circle, the spectrum of the aliasing terms consist of a

replica of the spectrum of the original sequence only shifted by it.

In order to separately represent the components in the QMF bank output in terms of the

reconstructed signal component and an undesired aliasing component, it is possible to represent

(3. 17) as a double-input, single output transfer function:

L T(z) =1•. Ho(z) HI(z))[ Fo(z) ] I [ Fo(z)Ho(z)+F,(z)H1(z) 1
A(z) j 2 LHo(-z) H 1(-z) F1(z) 2 Fo(z) Ho(-z) + F1 (z) H1 (-z) (3.18)

To satisfy the perfect reconstruction criteria, it is necessary that

A(eJw)=O V co (3.19a)

and

T(eJ)) = e-eano I T(e6)) =c'e-I'o"° (3.19b)

where c constitutes a positive constant and nO is a positive integer.

Vaidyanathan [12] points out that, given a filter Ho(z) = Y- ho(n)z-", the remaining
n-0O

filters required to construct a two-channel, perfect reconstruction QMF bank are obtained from

H I(z) -- z-" Ho*(-l/z*)

Fo(z) = z-' H(Iz) 3.20

and
F1 (z) = z-* H (l/z*)

coupled with the constraint that

Hoe)') 24- Ho(eJ,") 12 =c (3.20b,
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for some positive constant c (not-necessarily the same constant as in (3.19b)) satisfy the perfect

reconstruction criterion. A set of filters characterized by (3.20b) is said to be power

complementary. Given (3.20), the problem of designing a two-channel, perfect reconstruction

QMF filter bank reduces to the problem of selecting a valid analysis filter h0(n). Some of the

details of selecting good filters for these applications will be addressed in Chapter V.

At this juncture, it is appropriate to introduce some additional concepts. The matrix

H(z) HO(z) H (z) ] (3.21)H0(-z) Hll(-z)

constitutes the alias compensation matrix. If

HH(eJi) H(eJl) = dT, (3.22)

where the superscript H denotes the transpose-conjugate of a matrix, I represents an identity

matrix, and d is a positive constant, then the matrix H(e) s said to be unitary. By definition,

unitary operators are operators which, when applied to their inverses, produce an identity

operation. Within the context of linear algebra, a matrix is unitary if each of its columns is

linearly independent from all of the other columns in the matrix. Consequently, for a QMF bank

with an alias compensation matrix which is unitary, the aliasing component of the output is

linearly independent of the reconstructed component and the two components are, therefore,

separable.

Using the tilde notation introduced by Vaidyanathan [12] where H4(z)-)HH(l/z'), and

where each element of H(z) is stable, if

H(z) H(z) = dl (3.23)
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then H(z) is said to satisfy the paraunitary property and the system characterized by H(z) can be

described as a paraunitarY system.. A paraunitary Z-transform matrix will be unitary when

evaluated on the unit circle. Furthermore, if the coefficients of H(z) are all real, then H(z) is

lossless bounded real. Additionally, Vaidyanathan lists three important properties for

paraunitary systems:

I. The determinant of a square, FIR, paraunitary system produces an allpass polynomial.

That is,

det{H(z)} az-, K_> 0, a ( 0.. 3.2 2

2. Paraunitary systems are power complementary. If h(e"') = [Ho(eJ'") H,(ej -)]T

IHo(ejw)12 + IHI(eC) 12 = h(eJ")h(ei') =c V w (3.25)

3. The submatrices of H(z) are paraunitary.

Another concept which becomes useful in multirate system theory is the polyphase

representation. This representation will be introduced for a two-channel system here and

extended in the next section to a structure entailing an arbitrary number of channels. It is

possible to express the Z-transform of a sequence hk(n) as

Hk(Z) = Zhk(n)z'"nI -2 (3.24)
= Ihk(2n)z-2 " + z-I Xhk(2n+ l)z 2 " (

n n

If subsets of the sequence hk(n) are defined as

eko(n) = hk(2n) (3.25)

ek.l(n) = hk(2n+l)
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then it is possible to represent the two-channel, multirate system described in this channel in an

additional manner. A z-dependent column vector h(z) can defined such that

h(z)= Ho(z) ]=[ Eo.o(z 2) Eo.0 (z 2 ) [ 1z I (3.26a)
HI(z) E ,) (z 2) El. J (Z2) z-

where

E(z2)1[ Eo.o(Z2) Eo., (Z2)E I.o(ZW) E 1 1(z2)"

Furthermore, upon comparing (3.26a) and (3.21), the following relationship arises:

HT(z)[ h(z) h(-z)]. (3.26b)

Therefore, in terms of the polyphase matrix E(z 2) of (3.26a), (3.26b) becomes

[h(z) h(-z) ]I I[ --, 1 0 1 1 jE(z)-

Consequently, a simple relationship between H(z) and E(z2 ) exists:

HT(z) = E(z 2 ) 0 ](3.27)

Obviously, the right-most matrix on the right-hand side of (3.27) is simply the transformation

W, matrix for a two-point DFT. The middle matrix is simply a diagonal matrix of delays and

can be expressed as

D2(z): 0 z-'

Finally, it is not difficult to demonstrate that if the alias compensation matrix is

paraunitary, then so is the polyphase matrix:
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H(z) H(z) = E((z - 2)")D 2 (I/z)W2 W2 D 2 (z) ET(z 2 )

= E'((z- 2)')ET(z2 ) (3.28a)

= dI

or equivalently,

E(z2 ) E(z 2) = dL (3.28b)

Equation (3.28a) follows since W, W2 = I and D,(z)D2 (1/z) = I. Equation (3.28b) follows

from (3.28a) by making the substitution • = z" followed by evaluating the complex conjugate of

each side of the equation.

Vaidyanathan delineates four important properties of paraunitary filter banks satisfying

(3.20a) [12]:

1. Where N represents the order of the filters from which the structure is constructed, filter

banks satisfying (3.20a) result in perfect reconstruction with

x(n) = 0.5 x(n -N); (3.29a)

2. The analysis filters are power complementary and satisfy the condition

H.Ho ,(eJ"(0-n))I (3.29b)

3. The synthesis filters are also complementary and, furthermore, they also satisfy

IFk(ej ) I= I HI(e') 1; (3.29c)

4. and, all filters have order N=2J+I for integer J. This condition ensures even filter

lengths.

To demonstrate the operation of a two-channel, QMF bank, a simple, 256-point sequence

was constructed. The sequence was comprised of two sinusoids windowed by a complicated,
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Figure 3. 11--Time-domain plot of 256-point test sequence generated using (3.30).
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"• -29

4-0-Z -34

.S -59

-79
9 9.1 9.2 9.3 6.4 9.5 9.6 9.7 9.9 9.9

Multiple of sampling frequency, f

Figure 3.12--Plot of normalized power spectral density of 256-point test sequence generated using (3.30).

exponential window:

s~n) -R'&$e--ri94v02 1 e2m75 .sin.7-n )+Icos 17-~n (.0
(0)4 (20 (330

A time plot of the 256-point test sequence (3.30) is presented in Figure 3.11 and the power

spectral density of the test sequence appears in figure 3.12. The test sequence contains harmonic
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components at digital frequencies of 7.7r!20 (= 0.175-f,) and 17.ir/20 (- 0.425-f). The

components were selected such that one appears in each half of the frequency spectum.

.4 -- Lo-frequerncy analysis filter, h (ni)
-.... ....... .--- - .......... -H igh-frequency analysis filter, h (n ............

2 .2 -..----- . . . . .......... • . . . . . . . ........ ! ...... ................ ....... ........... .... ; ....... ............... . . . .,,

08I _ ... ....1 !...•........:............:................ .. • .............. t -- i.- '

S" : ......... .. ....... ...... ! .. ........ ......... ".... ,
co --. 2 ;

-0 .2 ..................... i ...... ............. :....................... :...................... i.. .............. . ..; . .. .-

-- .3 - --- ---- ---- .. ...... . ... .... .... .... . . ... . .... . . .... . . ... .. . .------

8 10 29 38 49

Sample sequence number, n

Figure 3.13--hnpulse responses for 57'"-order FIR filters used in two-channel QMF analysis bank.

Figures 3.13, 3.14 and 3.15 characterize the filter bank to which test sequence (3.30) was

applied. The impulse response of the analysis filters for each channel are plotted in Figures

3.13a and 3.13b. The low-frequency channel analysis filter, Ho(z), a 57d-order FIR filter, is a

minimum-phase spectral factor of a zero-phase, lowpass, half-band filter designed using the

McClellan-Parks technique. From Ho(z), the low-frequency channel synthesis filter Fo(z) and

both nigh-frequency channel filters were designed using (3.20a).

The equivalent transfer function, t(n), whose Z-transform was defined in (3.18), is

plotted in Figure 3.14. It has been asserted in (3.12) and (3.19b) that, for perfect reconstruction,

t(n) will be of the form

t(n)=5(n-N), (3.31
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where N is the order of the filters from which the QMF bank was constructed. Superimposed

with a dashed-line plot, is a plot of the sequence t(n)-S(n-N). The axis for the superimposed plot

is graduated on the right-hand side of the plot. From the superimposed plot, it is evident that the

sequence t(n) approaches the form of (3.31) with a maximum error of less than 2x 10.

-Equiv [ipulse resp: t(nl)
8. ............ A � .................. ............. ........... BE-005

8.6 .. ............ .......... ............................. .. .. 6E- 5

0.4 . ..4 ...... .................................... I .......... ......... ......... ......... 4E-885 -

0.2 . ............... .......... .................... ................. ................... .................. 2E-005
8 1 1" :'_?, . _ ... . .* -.. : ,_, . :~ .. .. . * *

-8.2 -2E-85
8 28 48 68 88 t8g

Sample sequence number, n

Figure 3.14--Superimposed plots of equivalent impulse response for QMF bank, t(n) (defined as in (3.18)), and of
t(n)-a(n-N),.

80 82 .882e8- H 28@
;He : , 2

48 "" (Ir" 1H (el-) 2) , dB 0 9.9I

" - -.. . . .------- .-.- *.7. ... ......a .. .* .e.....a.....'V

-- . -8/ -@,e -

-48 -8.801

-.. . VVV'V'VVVV'

-129 -8.@03
a 9.95 9.1 9.15 6.2 9.25 9.3 0.35 9.4 9.45 9.5

Frequency (multiple of f I

Figure 3.15--Superimposed plots of frequency responses (in dB) of low- and high-frequency filters for QMF bank.
Also superimposed is a plot of IH0(eI•)+jH,(e"njI,
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Figure 3.16-Time-domain plot of low- frequency chiannelI decimator output for 2 56-poinit teit sequenice.
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Figure 3.17--Tirne-domnain plot of high-frequency channiel decimator output for 256-poinlt test sequenlce generated
by (3.30).

The frequency responses of the filters ar-e plotted in Figure 3.15. Only two fr-equency

responses are shown because of the condition described in (3.29c). Also superimposed on

Figure 3,15 is a plot of IH0(&')I 2+IHd~e")i 2. This last plot demonstrates the degree to wvhich the

Filter bank satisfies the power complementary property, (3.20b).
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Time plots of the low- and high-frequency channel decimator outputs are presented in

Figures 3.16 and 3.17. As a consequence of the decimation-induced translation of the spectral

peaks for each component, the plots appear to reflect harmonics whose frequencies are quite

close together. Additionally, due to the shape of the filter, the flat segment in the trailing edge

of the sequence plotted in Figure 3.16 converges sharply to zero. The flat segment in Figure

3.17 is on the leading edge of the sequence. Since the synthesis filter for channel is the time

reversal of the analysis filter, the relative locations of the flat regions will be reversed, resulting

in a flat segment on either side. This represents the source of the delay. The difference occurs

since, by (3.20a), the low-frequency and high-frequency channel analysis filters are modulated

time-reversals of each other. Also worth notice, the relative magnitudes of the low-frequency

and high-frequency channel decimator outputs have maintained the proportions established in

(3.30). As expected, the decimator output of the low-frequency in figure 3.16 channel maintains

a peak amplitude greater, by a factor of four, than the peak if the envelope for the

high-frequency channel in figure 3.17.

Figure 3.18 presents superimposed, normalized power spectral density plots for the

decimator outputs and the original sequence. As discussed previously, decimation changes the

sampling frequency. The sampling frequency f., for a decimated sequence is related to the

sampling frequency f, for the original frequency by

fs12 = f/2.
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As expected from (3.7), the peak at 7n/20 (= 0.175 f) has been translated to 71r/10 (= 0.35 fsý ).

The peak which was originally at 171r/20 (= 0.425 Q was shifted to 171r/10. Due to aliasing, the

spectral peak located at 17n/10 appears at 20ir/10 - l7ir/10 = 31t/10 (= 0.15 f112). Additionally,

each of the peaks has been widened.

L20 -Original sequence
12 -- Low-frequency channel decimator
0 -- Hiqh-frequency channel decimator
8

-50

":z -19
• -• -28 . "

z

M i -39 s / f SE L /
-t• -48

a.:

S-59 7

S-*10

-82
9 8.1 0.2 0.3 9.4 0.5 .G 8.17 9.8 8.9

Multiple of sampling frequency, f

Figure 3.18--Superimposed plots of normalized power spectral densities of the high- and low-frequency chaeeael
decimator outputs and the original sequence.

S--Original sequence
3 -Low-frequency channel expander

S--High-frequency channel expandera.:t
-/

C~r -28# '

8 8.1 8.2 9.3 9.4 8.5 8.• 8.7 8.8 8.9
Multiple of sampling frequency, f

Figure 3.19--Superimposed power spectral density plots of the original 256-point test sequence generated by
(3.30) and the high-frequency and low-frequency channel expander outputs.
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Figure 3.19 includes spectral density plots of the original sequence and the output of each

of the expanders. As indicated by (3. lOb), the expander reintroduces the original sampling

frequency at the expense of creation of aliasing terms. For the low-frequency channel, spectral

peaks occur at the original location, 7nri20 (= 0.175 f,), and at 33r/20 which, because of aliasing,

appears as 131r/20 (= 0.325 f). Similarly, for the high-frequency channel, in addition to the

peak at its original position of 171t/20 (= 0.425 f,), an aliased peak is also present at 3rC/20 (=

0.075 f,). Although, at the expander output, the width of each peak has been restored to that of

the input, each peak is six decibels below the original since the signal energy has been divided

between the original term and an aliasing term.

28 -Original sequence
E -Lo--frequency channel synthesis filter--m• -2@ •. •(.L - Htgh-f reqdien cy. channel synthesizs filIt erA "".

aJ -20

.t -40

-• -6. 9•

-190 :, A I
E :II • 'Al

0 1
zf

a 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.9 9.9

Multiple of sampling frequency, f

Figure 3.20--Superimposed plots of power spectral densities of original sequence S(el') and of low-frequency

QMF channel component and high-frequency QMF channel component.

Superimposed plots of the power spectral densities of the original 256-point test sequence, and

of the sequences at the outputs of the low- and high-frequency channel synthesis filters are

exhibited in Figure 3.20. For each channel, the effects of the synthesis filters are evident. The

aliasing terms have not been completely eliminated, but the spectral peaks of the aliasing terms
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have been reduced in magnitude by approximately 95 dB. The restored spectral peaks, still 3 dB

below the original, track quite closely within the passbands of their respective filters. The

time-domain of the reconstructed sequence, n =;(n) + -s(n), is plotted in Figure 3.21.

75

-200

a 32 4 96 ia G ,2 24 256 28.ý 2 _S

'Disr-rete time,P

Ftg~tre 3.21--Plot of reconistructed version of 256-pohit test sequence applied to QMF bank input

In this plot, the resemblance of the reconstructed signal to the original is evident. The

reconstructed sequence lags the original sequence by 57, the order of the filters fr'om w~hich the-

QMIF bank w,,as constructed. Furthermore, if the normalized, mean-squared er-ror is defined as

then for the sequences plotted in Figure 3.2 1, idJ3 -168.2 dB.

D. MJ-CHANNEL FILTER BANKS

Having, in the previous section, discussed and demonstrated the implementation of a

two-channel, quadrature min'ror filter bank structure, it remains to extend the results to structure•ý

consisting of" an arbitrary number of channels. With some simple modifications to relationships

fom sections B and Co M-channel filter banks can be shown to be largely analogous to QMF

structures. Finally, it is worth observing that in literature [oe], M-channel filter banks are

QNF an ascosrute.Futhror, fth nralzemen-qard rorisdfieda



extensively referred to as M-Channel Quadrature Mirror Filter Banks. The use of the term

quadrature represents, in this case, a misnomer. Nevertheless, the terminology has continued to

be applied to these more complex systems.

The structure for an M-channel filter bank is illustrated in Figure 3.22. The structure is

entirely analogous to the two-channel case. Each channel contains a factor-of-M decimator and

an expander which, respectively, subsamples by a factor of M and inserts M-I zeros between

each sample. The filters are all M'-band filters with, for the ideal case, frequency responses of

I Hk(elo) = (3.33)
0 otherwise

Furthermore, the concepts of perfect reconstruction and power symmetry also apply.

A
x0(n) V0(n) u0(n) xO(n)

HO J) V f M . .()~-- m --- 1
x,(n) v1(n) ul(n) Ax nx(n) __lH, (z) • _.• _lF z - -.Ax(n)

x¢ n)VMIn) tht~n)..(n)

Figure 3.22--Structure of M-channel filter bank. After (I I]-
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Beginning Z-transform analysis, transformation of a decimated sequence requires the

construction of a "sifting" function equivalent to that defined in (3.5). For M channels this

function is defined as [12]

I M-I wn

Ti\I(n) = .'ff Y_ (3.34)

where WN1 = eO2'MN Employing 3.34 produces s.,(n) = s(M~n)1.lM(M~n), thereby ensuring
that s�(n) is zero for non-integer values of n. For any integer n which is an integer multiple of

m, W.4=-l. Otherwise, the series term in (3.34) becomes a summation around the unit circle in

the complex plane which is evaluated as zero. Evaluating the Z-transform of the factor-of-NI

decimated sequence s(n) produces

Sjk(z) = -s(M -n) -ilM(M • n) • z-a
SM-1.'4i 5Z fsl) (WMzI .• (3.35)

Z -t

M-) (

Furthermore, the Z-transform of the decimated sequence sjM(n) after expansion by a

factor of M is evaluated as

[SIM1TM(z) = lSIM(nM)Z3"
Itt M • t" ,,,, ) 0 ,36)

I S(WM Z)

Evaluating 3.35 on the unit circle produces

-9)*
-- Sm = Vtm e) •°a(33:SJ'M~J•°) ?,IM--=0

Conseque.•yty, decimation spreads, by a factor of M, the power spectral density of a sequence.

Furthermore, the M-fold decimator produces, from a sequence with a 2.it-periodic frequency
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response, a sequence with a 2-M.i-periodic sequence. Similarly, on the unit circle, (3.36)

becomes

[MtMeJ() = S~j 1n~
, M-) (3.38,
-- ' S/ e }•'nmM.

By (3.38), it is apparent that expansion of a decimated sequence produces M-1 aliased terms in

even intervals across the spectrum. Additionally, the frequency response of the sequence has

been restored to its 2.i-periodocity.

Applying (3.35) and (3.36) to the M-channel structure in Figure 3.22 produces the

following matrix formulation for the system output X(z) [12]:

Ho(z) HI(z) .- H%-1 (z)

ý() X(Z) X(WM Z) X(WM{'Z) ] H(~z 1 Wz MlWz
I MI '.4-1

Fo(z)
FI(z)

, FM%1(z) j

(3.39)

The matrix H(z) is (3.39) is the M-channel analogy to the alias cancellation matrix. The column

vector containing the synthesis filter characteristic polynomials can be represented as

f(z)=[ Fo(z) F,(z) ... FM.,(z)]. For alias cancellation, it is necessary that
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(z) = H(z) f(z). (3.40)
0

Furthermore, analogous to (3.24), it is possible to define a polyphase representation of

the characteristic polynomial Hk(Z):

Hk(Z) = Fhk(n)z-'
13

= lhk(Mn)z-Mn + z-'IZhk(Mn+ 1)ZMO+ ..... + z-M÷)Ihk(Mfn+M- I)z-Mn
n n a

- Z DIhk(M n + rn)zMn (3.41)

M-1
= z z- Eka,(ZM)

ni=O

where Ekm(Z) <-- ek.m(n)--hk(Mn+m). From the definition of the polyphase representation,

the polyphase representation follows that[Ho(z) 1 [ o.o (z ) Eo.i(zM) .. Eo~-i (zM) i
h(z) HI(z) = EI.o(Z M) EI.I(z M ) EI.MI(Z M ) Z-1

.. , (3.42)

Hk(Z) EM-I.O(zM) EM-,I(ZM) "" EMI.M-t(z M ) ZHM- ) (3.42)
- E(zM)e(z)

where

E o.o (z) Eo0 , (zM) "-. E.. E -(zM)
E(zM)= El,o(zM) E .I (zl') ... E 1,.m-1(z")

EM I.(Z ) M-.(Z-') .. j-EM_..M_(ZM

and e(z) [I Z . z.MI].

Finally, the alias compensation matrix H(z) and the polyphase matrix E(z'4 ) are linked by

a relationship analogous to (3.27). First,
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H(z) = h(z) h(Wmz) h(W'z)

-[E(z-') e(z) E((Wmz)Ni e(Wmz) E((W'-Iz)-mj~(~ ]- (3.43)

Now, since, for any integer k, (e= ei2'k) =eJZ'k = ,(3.43) becomes:

The block matrix on the right-hand side of (3.44) is equivalent to

H 0 o *... 0 1[w wM ... W14 1
[ e(z) e(W M z) ... e(W ' z)] 0 Z1  03 W •4 )

0 0 ... z-<.•-, Wo wM-1 _w•t

Combining (3.44) and (3.45), therefore, produces a general relationship between the alias

cancellation and polyphase matrices:

I(z) = W , DM(z) ET(zM) (3.46)

where,
S1 0 ... 0

Dm(z) 6 0 z-1 ... 0

0 0 ... z- -I

Obviously, from (3.46), if H(z) is paraunitary, then E(zM) is also paraunitary. Additionally, the

properties expressed by (3.24), (3.25), and (3.29) are equally valid for the M-channel filter bank

systems.
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Figure 3.23--Time plot of 256-point test sequence generated using (3.47).
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Figure 3.24--Power spectral density of 256-point test sequence generated using (3.47).

To demonstrate the operation of a three-channel filter bank system conforming to the

structure of Figure 3.22, a 256-point test sequence similar to that of (3.30) was generated:

s(n)=(l CeL64 -nos+..27. cn) +cos(--2-S55 n)+ Icos( -- 113 n)]. (3.47)
264 256 4 256 nj . 7

Equation (3.47) employs the saiae envelope as (3.30) applied to the sum of three harmonic

components. Spectral peaks in (3.47) are located at digital frequencies of 2Ir.27/256 (=0.0271fl),
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2-ir-55/256 (=0.215-f,) and 2.i- 113/256 (=0.44"f,). Consequently, spectral peaks occur within

each third of the frequency spectrum below the Nyquist frequency. A time plot of the test

sequence is displayed in Figure 3.23 while Figure 3.24 presents the power spectral density of the

test sequence.

:6 .I-o-LF Analysis Filter, h (n)0.6 ............... ..... . . - MF Analysis Filter, 9h(n) ...... ............ ......

0.5 ............. .................... -.- HF Analysis Filter, h'(n) .................. )

0.4 ................ I .............. ...... ....... ............
0 .3 i ............. .-: ........ - I - ...... ..... ; .......... ..... ...x ............... I ......... I....... •............... ..

T j- ý ý~~~... " / ............

:- •.2 - ~ ~ ............. . .. .. . ......... ý...- , . ........... . . ............. :..................
S0 1 .. ................ .. .... . . -. . . . . ................. : ........ .........

........ II .-... . . . . . . .. .... . . . . . .. . . .. . .. . . . . . . . .. . . . . ...- - . . . . . . . .. . . . . .. .

-e .3 --------------- ... .. ..... .. : ............... N ../ ................ : ............... . ... ............. !........... .......
-0.4 I I

0 2 4 6 a 10 12 14

Sample sequence number, n

Figure 3.25--Superimposed plots of impulse responses of filters used to implement three-channel filter bank.
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Figure 3.26--Equivalent impulse response for three-chiannei filter bank structure whose filter impulse responses
are plotted in Figure 3.25.
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The filter bank employed for the signal decomposition and reconstruction was

implemented using 14-point third-band filters whose coefficients are tabulated in [I11. The filter

impulse responses are plotted in Figure 3.25. Satisfying (3.34) for the M-channel case is

significantly more difficult than for the two-channel case. Consequently, as illustrated in Figure

3.26, the deviation of the equivalent system impulse response deviates from the ideal case of

(3.31) by an order of magnitude more than was observed for the two-channel structure

demonstrated in Section C. For the two-channel structure, the root-mean-square deviation from

(3.31) was 5.16 x 106. For the three-channel system whose equivalent response is plotted in

Figure 3.26, the root-mean-square deviation from (3.31) is 7.42 10-. Furthermore, the peak

amplitude distortion is also greater. The peak amplitude distortion is approximately 4 x 10"3 dB

from the power complementary case. This represents a noteworthy increase over the 1 x 10-'

dB peak distortion for the two-channel structure demonstrated in Section C.

4 _ H 2 •- .84

"- H',
2 1 2

:,H (e)-) 2) de V 6.120

_ . ",, ,...
_. / ~ . --.t • •.. - -. @@2 -•-

-20 -.... 0.. . 0, ". 'I . . '\ .. -.. 2
".4 .i ,., \ *1. -q• ,T - "

:= • • / " ,".•" • 'I • f", / '• '

-6 , .- -0.06
a 9.85 9.1 9.15 0.2 9.25 8.3 0.33 0.4 9.45 0.5

Frequency (multiple of F

Figure 3.27--Superimposed plots of frequency responses for filters whose impulse responses are plotted in Figure
3.25 (right-hand axis) and amplitude distortion from three-charnel filter bank constructed from filters of Figure

(3.25) (left-hand axis).
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Insight is obtained from considering the decimation operation from both the time and

frequency domains. Time-domain plots for the output of each of the decimators appear in

Figures 3.28a, b, and c. The power spectral densities of the decimator outputs are superimposed

in a plot presented in Figure 3.29. As discussed previously, the decimation operator, in the case

of a factor-of-three decimation, retains only one sample out of every three. Therefore, the length

of the decimated sequences is one third of the length of the original sequence. Furthermore, the

effective sampling frequency f.11 3 for the sequence decimated by a factor of three is related to the

sampling frequency f by

fs3 =-- f/3.

Additionally, decimation produces aliasing terms. However, these terms are of no consequence

since the lie outside of the region [0, 2.tr]. Figure 3.29 displays the power spectral density of the

content of each filter bank channel with respect to its-post-decimation sampling frequency f,,.3-

29

15

UU

-28 ..

Sample sequence number, n

Figure 3.28a--Low-frequency channel decimator output for 256-point test sequence generated by t3,47) applied
three-channel filter ba4k of Figure 3.25.
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Figure 3.28b--Meditun-frequency chaiuiel decimator output for 256-point test sequence generated by (3.47)
applied to three-channel filter bank of Figure 3.25.
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Figure 3 28c--High-frequency channel decimator output for 256-point test sequence generated by (3.47) applied to
three-channel filter bank of Figure 3.25.

In the case of the low-frequency channel, the analysis filter transmits only that portion of

the power spectral density of the test sequence which lies in the region [0, n/3]. As discussed

during the development of (3.36) and (3.37), because of decimation, the content of the region

[0, ir/3] will be linearly redistributed over the region [0, xt]. The spectral peak passed through

the low-frequency channel is, as a result, translated from its original location at 2.rTr27.'256
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0. 105-) to an apparent, post-decimation location of 2-t.81/256 (= 0.316f.f. 3). Similarly, the

spectral peak contained in the medium-frequency channel is translated from its original location

at 2.t.55/256 (= 0.215-f) to an apparent, post-decimation location of 2.ti 165/256 (= 0.645-fs, 3).

This expectation is confirmed in Figure 3.29 in which the spectral peak of the test-sequence

component contained medium-frequency channel appears at the predicted location with an image

appearing at 0.355.fsi 3. Finally, the test-sequence component passed through the high-frequency

channel, originally appearing at a location of 2.ir. 113/256 (= 0.414.f), after decimation, assumes

an apparent position of 2"n-339/256 (= 1.324-fs13). Because of aliasing, this component, in

Figure 3.29, is indicated at 2.t.339/256 - 2.n-256/256 = 2.t.83/256 (- 0.324.f 1.13).

-Original Sequence
S1I - LF channel decimator

.- AF channel decimator
a, -- HF channel decimiator

Cr -31

"• i/\ ."o

C

-98
a 0.1 2.2 9.3 9.4 9.5 2.6 9.7 9.9 9.9

Digital Frequency (fraction of sample rate)

Figure 3.29--Superimposed plots of the power spectral densities of the original sequence and the outputs of each
decimiator for the 256-point test sequence of (3,47) applied to the three-channel filter bank of Figure 3.-25.

In Figures 3.28a, b and c, the zero-crossings of the sequences appear to occur at similar

fr-equencies. This observation is confirmed by plots of the decimator output spectral densities

superimposed in Figure 3.29. In fact, for the case under consideration, the spectral peaks of the
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decimator outputs are separated by a maximum of 0.5f,. This example provides insight into the

nature of the decimation operator. In general, decimation transforms a narrowband process such

that the result "fills" the spectrum below the Nyquist frequency of the channel.

-Original Sequence

S:2 - LM nnel expander
--HF .,annel expander

7F -59

2.1 9.2 9.3 2.4 5 2.6 9.7 9.8 2. 1

Digital Frequency (fraction of sampte rate)

Figure 3.30--Superimposed plots of the power spectral densities of the original sequence and the expander outputs
for each channel of the three-channel filter bank of Figure 3 25.

The power spectral densities for the expander outputs for each channel of the filter bank

represented by Figure 3.25 are plotted in Figure 3.30 above. As predicted by (3.38), application

of the expansion operator to a decimated sequence imposes two consequences. First, the

effective sampling frequency of a decimated sequence is related to the sampling frequency of the

original sequence by

=f_1T 3-fsI 3 = l

in the case of expansion by a factor of three. Secondly, the aliasing terms generated by

decimation, which are originally outside of the region [0, 2-irI, are translated to within the region

[0, 2-ir).
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In the case of the test sequence generated by (3.74), two aliasing components in addition

to the desired component have appeared in each channel. For each channel, the aliasing

components appear at integer translates of 2ir,/3 with respect to the restored component of the

original sequence. Because the spectral peaks of the original signal were separated from each

other by roughly it/3, each aliasing term generated for each component coincides fairly closely

with one of the other components. This occurrence is reflected in Figure 3.30.

In the low-frequency channel, the location of the peak of the spectral component has

been restored to its original location of 2"r-27/256=2"ict81/768. However it is accompanied by

aliasing terms at 2.ir.337/768 (-0.438.f,) and 2.7r.593/768 (=0.772.f) whose image appears at

2.ir - 2.i.593/768 = 2.ift 175/768. The restored medium-frequency-channel component, which

reappears at 2-i.55/256=2.i. 1-65/768, is accompanied by aliasing terms at 2.n-421/768

(=-0.548.f) whose image is present at 2-it.347/768 (=0.452-f') and at 2-n.677/768 (-0.882.f)

which has an image at 2.ir.91/768 (-0.1185.f,). Finally, to the restored component for the

high-frequency channel which is located at 2n- 1 13/256=2"rt-339/768, are added aliasing terms at

2.ir.595/768 (-0.775-f,) for which an image appears at 2.tn 173/768 (=0.225-f,) and at 2.n-83/768

(=0. 1098'f').

Figures 3.31a superimposes plots of the outputs of the synthesis filters for each channel

of the filter bank of Figure 3.25. Each plot indicates the spectral content of the corresponding

channel. The results of the recombination of the channels are plotted in Figure 3.3 1 b. In Figure
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3.3 1a, it is apparent that the aliasing components of the cxpander outputs have not been

completely blocked by the synthesis filters. In the worst case, for the spectral region containing

the medium-frequency channel, residual energy from an aliasing component is only

approximately 20 dB below the desired spectral peak for that channel. However, upon

examination of Figure 3.3 ib, it becomes apparent that alias cancellation does occur. The power

spectral density of the reconstructed sequence very closely coincides with that of the original

sequence.

S 40 -Original Seq~uence
F3 - LF channel synthesis filter

"M3 20-MF cannel synthesis filter
, 97 -- HF channel synthesis filter

.0
t -22

,"o -48
• "., I .. it . _ rits

- -8 .r , i ' ~ ,, * ,' ",' ~ *~' t.-

. / /

-122
a .) m .2 0.3 9.4 .5s 9., .7 ale.8 8.9

Oigital Frequency (fraction of 5aniple rate)

Figure 3.31a--Superiinposed plots of the power spectral densities of the original sequence and of the expander
outputs for each channel of the tlhree-channel filter bank of Figure 3.25.

Figure 3.32 presents a time plot of the reconstructed sequence. Again, the reconstructed

sequence appears to be an approximate delay of the original sequence. In fact, when the signals

are synchronized, the normalized mean-square error (3.32) of the reconstructed signal is -66.94

dB. The the reconstruction error exceeds that of the two-channel demonstration of Section C

because of the poorer quality of the filters with which the three-channel filter bank of Section D

has been implemented. As indicated by Figure 3.26, the equivalent impulse response of the
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three-channel filter bank deviates from a pure delay by a margin three orders of magnitude

greater than the deviation for the two-channel filter bank.

a I -.-Origir'aL Secuence

M -38

"-48
E -5

0 0.! 2.2 0.3 2.4 0.5 @.6 2.7 2.8 .9

Digital Frequency (fraction of sampte rate)

Figure 3.31b--Superimposed plots of power spectral densities of original sequence generated by (3.47) and of
sequence reconstructed by thee-channel filter bank of Figure 3.25.
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Figure 3.32--Time plot of reconstructed version of 256-point test sequence applied to three-channel filter bank of
Figure 3.25.
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IV. THE THEORY OF MULTIRESOLUTION SIGNAL PROCESSING

A. INTRODUCTION

Having. in the preceding two chapters. laid the necessary ground%,.ork. the theory of

multiresolution signal processing will next be considered. In this chapter, Section B, presents

the concept of multiresolution analysis. In Section C, Mallat's multiresolution algorithm will be

developed from a projection operator perspective and the equivalence of multiresolution

mathematical operations and two-channel QMF banks will be demonstrated. Section D wilil

outline the development of the Laplacian pyramid and the A Trous algorithm, two of the earliest

multiresolution decomposition techniques. In Section E, multiresolution structures comprised of

cascades of filter banks will be constructed and demonstrated.

Signal processing techniques commonly entail decomposing a signal by representimng t in

terms of its projection on a vector space. The most common method, the Fourier T..ans.lOi.

defined in Chapter I1:

f(co) = (;9{f(t)} =f f(t)e-4 •L dt . 4.l

In analyzing a time-varying signal, however, (4.1) presents an obvious disadvantage: Only one

representation vector is used for all time. Consequently, time-varying aspects of fut) are

averaged over all time and lost. To address this shortcoming, the concept of the Short- Tin,,

Fourier Transfoirm (STFT) was developed [14]:

F(,Rw, )=f f(t) w(t - ,) e-J() dt. 42



Equation (4.2), through the introduction of a window function w~t), improves on (4.1).

Typically, the window a function is either strictly time-limited or possesses a rate of decay such

that its value outside of a limited, contiguous region is negligible. Additionally, equation (4.2)

can be interpreted as the projection of the signal of interest on modulations and translations of a

vector w(t). Employing concepts from Chapter II, (4.2) can be interpreted as a mapping from a

one-dimensional space of real numbers to a two-dimensional space of real numbers, or,

F: R--- R".

Additionally, the representation vector r(co, -c) for the projection operator F, the operation of

(4.2) is

r( ., r) = w(t - z) e-'j'' (4.3)

In the branch of mathematics known as group theory, the operation (4.2) belongs to a

particular class of operators known is. the Wel-Heisenberg Group [15]. A group is a set of

transformations satisfying the properties of closure, associativity, identity and invertibility [16,

17]. The Weyl-Heisenberg Group consists of a family of transform operators characterized by

modulation and translation of a single representation vector [ 18].

Although it is commonly employed, two shortcomings of the STFT have been asserted.

The representation vectors for (4.2) represent a frame in the sense described in Chapter 11 [6].

Therefore, if it is necessary invert the transform in order to reconstruct a signal from its STFT

decomposition, a dual operator must be constructed. Secondly, a sampled, discretized STFT

operator partitions an analyzed function's two-dimensional conjugate space into uniform.

rectangular partitions [19]. In the conjugate space, the spectral bin partition dimensions are
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inflexibly dependent upon the window function w(t) and to not vary with either translation or

modulation. Many processes (for example, biological processes) can be characterized by

components whose bandwidths increase with frequency. Consequently, (4.2) provides

representation which is less than optimum processes comprised of spectral components of

varying bandwidths [20].

For the reasons described above, alternative methods of signal decomposition have been

suggested. Instead of a representation vector of the form (4.3), employment of a representation

based on a family of functions [21 ]

WIa.b(t) = Iat-' 2 W b (4.4)

produces a transformation 'W: R -4 R2 such that

Wft)I= W(a, b) = lall'2 f- f(t) WO(.Lt.b) dt. )

Similar to the STFT, transformations of the form of (4.5) also comprise a distinct class in the

field of group theory. Transformations based on scaling and translation of a common

representation vector comprise the affine group [ 18].

If, as in the case of digital signal processing, it is desired to restrict the transform to a

lattice of discrete points, the representation vector becomes

Wm,n(t) = ao-' 2 (aom t -tn bo). (4.6"

The representation (4.6) results in a transformation 'W: R -) Z2, where Z is the set of all

integers, such that

f(t) w(m, n) = aoI 2 f f(t) xV* (a' t-nbo) dt. (4.7)
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Additionally, (4.6) constitutes a version of,(4 4) sampled at a = a. for a > I and at b

n'b-ao' for b,. * 0. To conform to the conventions of octave-band filtering, ak is typically

selected as an=2. The selection of b0 determines whether {',m.n, Z constitutes an incomplete

set, a complete orthogonal set, or a frame. The representations of greatest interest to

multiresolution signal processing are chosen such that bo = 1, providing unit translations with

respect to sampled data.

The time-frequency properties of the representation vector Wm,, address some of the

shortcomings sometimes ascribed to the STFT representation. As the scaling integer m

increases, the representation w, r, becomes more and more spread in the time domain, and,

consequently, more concentrated in the frequency domain. Consequently, projection on a highly

dilated vector function will provide poor time resolution but sharp frequency resolution.

Decreasing m causes the reverse effect: Concentration in time and spreading , the frequency

domain. In the case of a highly contracted representation vector, the transform operator provides

sharp temporal resolution but poorer spectral resolution. Furthermore, the spreading effect of

the representation W'. occurs in a logarithmic manner. The bandwidth of the representation

"Wm,. will be proportional to its center frequency.
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Figure 4 1-Vean diagrmn illustration of concept of embedded vector spaces. AfIer [24]

B. THEORY OF MULTIRESOLUTION ANALYSIS

In order to characterize the vector spaces consisting of the span of 1W.,,,.,,J., it is First

necessary to consider another set of basis functions {10, n},neZ which spans another set of vector

spaces {VmIneZ r L2(R). The operator A,,.- is defined as the projection of some function fit) on

V:

A ~"- I ft
A~n-t~~tl} = f,¢ .O m.n )0 . (t). i-.

To be a multitesolution analysis, the set of operators IAn} must satisfy six properties [22,231:

1. An,• is a linear operator which uniquely and completely approximates f(t) at a resolution

of 2'. Consequently, the approximation

A ln-, A ,,., I f(t) } =, ,,{fl t) .i,9

In words, An.I f(t) contains all of the information about f(t) which can be obtained at a

resolution 2'. Repeated projection upon Vn does not add or subtract any information to

Am, { f(t) .
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2. Of all possible functions which exist at a resolution of 2tm, Am.{(f(t)}ý is the function

which most closely resembles f(t):

V g(t) e Vm, 1Ig(t) - f(t)II Ž lIA.-lif(t)} - f(t)fJ. (4.10)

3. Approximation of some signal f(t) at one resolution 2m contains all information

necessary to approximate it at the next resolution 2m". This concept suggests a family of

embedded, closed subspaces:

Vm.,CVmG L"(R) V m e Z. (4.11)

-Spectral content of vector space V
--Spectral content of vector space V

a. 4

0.2 -
Z " S.

a 0.05 0..1 .15 0.2 0.25 0.3 0.35 0.4 0.45 2.5

Oiqital Frequency (fraction of sample rate)

Figure 4.2--Spectral illustration of concept of embedded vector spaces. The vector spaces represented are
based on Daubechies' orthonormal scaling function on [0, 11]. After [25].

Illustration of the concept of embedded spaces can be accomplished by either of two

methods. The first illustration is via Venn diagram. In Figure 4. 1, the embedded ellipses

illustrate two related vector spaces. The outer ellipse represents the span of the vector space Vm

and the inner ellipse the span of vector space VM.,. As indicated by the diagram, the information

which can be extracted from projection on vector space V,., is less than what can be extracted
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from projection on vector space V". The two spaces differ by the information lost when some

function f(t) is approximated at 2"' instead of at 2'. The vector space V. possesses a greater

density than the vector space V". 1 . Consequently, the approximation at 2' will contain a greater

quantity of information about the original function than the approximation at 2".

Figure 4.2 provides an illustration of the concept of embedded subspaces from the

perspective of partitioning of the frequency spectrum. The lower half-band represents ti>• vector

space V. while the lower fourth-band represents VmI. Approximation Am.If(t)} at resolution

2m, therefore, entails an approximation based on the spectral components of f(t) contained in the

lower half of the frequency spectrum below the Nyquist frequency. Similarly, approximation at

a resolution 2"' entails a representation based on the lower fourth of the frequency spectrum

below the Nyquist frequency. Consequently, an approximation of f(t) based on Figure 4.2 at

resolution 2 ' contains only the spectral content of f(t) in the range [0, nt/2]. An approximation

of f(t) at resolution 2"' contains the only the spectral content of f(t) in the range [0, Ir,"4].

4. The approximation operation is similar at all resolutions. The spaces of approximated

functions can, therefore, be derived from one another by scaling each approximated

function:

V m e Z, f(t)eVm t* f(2-t)E Vm,. (4.12)

5. The approximation A,-,{f(t)} of a signal can be characterized by 2' samples per unit

interval. When f(t) is translated by an amount proportional to 2', A,.,{ f(t) } is translated
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by the same amount and is characterized by translations of the vector space projections.

More simply,

V n r Z. f(t) e Vm 4* f(t-2 mn) e V,. (4.13)

Equations (4.12) and (4.13) suggest a family of basis functions m..,(t) similar to that

characterized by (4.6):

Om,.(t)=2-'T"2-0(2-' t-n) 'v m, n• e . (4.14)

The vector space {0.m,}nE z e V. consists of integer translates of er.i" (The t-dependence has

been suppressed for compactness of notation.) The approximation operator A,. 1 {f(t) is simply

a projection of f(t) in the space of the vectors - Additionally, (4.12) reinforces the concept

illustrated in Figure 4.2. Equation (3.7) indicates that a time-domain contraction of a signal

causes a dilation--or spreading--of that signal's frequency spectrum. The frequency spectrum of

Vm.., therefore, occupies half of the bandwidth of the frequency spectrum of Vm. Furthermore,

if the space spanned by Vm coincides with a lowpass region of the frequency spectrum, Vm.I

will also coincide with a lowpass region.

Finally, one additional property remains to complete the definition of a multiresolution

analysis:

6. A continuous function f(t) can be initially considered to be represented with infinite

resolution. Regardless of the scale, all information regarding f(t) is originally assumed to

be known. Applying the approximation Am{f(t) I results in some loss of information.
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Increasing the degree of coarseness of A,, increases the amount of lost information.

Consequently,

lir Vm = U Vk =L-2(R) (4.15a)

and

lim VM= n Vk=t 0. (4.15b)

Equations (4.15a) and (4.15b) follow, by induction, directly as consequences of (4.11).

Equation (4.15a) states that, because of(4. 11), the manner in whicn {Vmr}mE z are related to

each other, limr Vm consists of the union of the spans of all { Vm} mE z" By induction from

(4.11), all vector spaces {Vm}m. z are subsets of lim_ Vm. Using the notation of set theory,

the concept behind (4.15a) is expressed as

IVmlo lira VM.

Consequently, adding to (4.15a) the concept expressed by (4.12), as the resolution of an

approximation Arni, the projection on vector space Vm, becomes infinite, it is possible to

represent f(t) with arbitrary precision, Furthermore, employing a concept from Chapter H1.

lim_ Vm is dense in L-2(R). In other words, given any vector 0m.,, it is possible to find another

vector Om,Ikn which is arbitrarily close to 0.,.. Contained within the union of all definable vector

spaces {V,J is all the information which is known about a function.

The indication of equation (4.15b) exactly opposite of that of (4.15a). By induction

from (4.11), lir Vm constitutes the least coimmon subset of all of the vector spaces

{ Vn } me z-Consequently, as the coarseness of the approximation A•..(t) } becomes infinite, all
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information about f(t) is lost. From the perspective of Figure 4.2, the portion of the frequency

spectrum spanned by lira Vm is contained in the closed interval 0, lim - .

Consequently, at the limit, the approximation of f(t) is characterized by only its DC component,

or equivalently, lim Am{f(t)} becomes a constant-valued function.

Regarding multiresolution analyses, Mallat [22] proved a theorem which provides the

theoretical foundation for all further development. The theorem states that, given a

multiresolution approximation of L2(R) by projection on vector space V., there exists a unique

function O(x)e L2(R), called a scalingfinction, such that {Imn(x)}"z as defined by (4.14)

constitutes an orthonormal basis of Vm. That is,

(Om.f,•OmAk 5k.n V n,kEZ. (4.16)

Furthermore, Vm consists of the closed, linear span of {m,.}neZ'

1.6

2.4 e u

1.2

C , '

-.- .6

Cn -. 4

~.2 2

I I

"• -e.2 , ,

62 4 6 6 1

Scaling function domain, t

Figure 4.3--Superinposed plots of Daubechies' orthononnal scaling function o. 0(t) supported on [0, 11] and
of 0,P(t).
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To characterize the relationshi) between the scaling function spaces {V V , it is useful to

examine the projections of their vectors onto each other. From (4.11), (4.12) and (4.13), it is

evident that

Om.i.n(t) 1 V,,. €:* Om.Ln(t)m VM (4.17)

or equivalently, Om-I.n lies within the span of ýOm.n,. Figure 4.3 provides an illustration of a

scaling function at two adjacent scales. The example presented is based on Daubechies'

orthonormal scaling function supported on [0, 11]. 0.1.0(t) is obviously a contracted version of

0 o),(t) with its amplitude increased by a factor of F2J. Because of(4.17), the Fourier series

theorem (2.17) can be applied to obtain

,mq.n(t) Om4I.,, m.k(t). (4.18)

Substituting (4.14), the definition of m., into the inner product term of the summation (4. 18)

and applying a change of variables to evaluate the resulting integral produces [22]

(0.1t,, 0, • mk '2 ( 1,0, O0,k-2 n •1 .9

Equation (4.19) clearly indicates that the coefficients of the series (4.18) are independent of

scale m. The summation (4.18), therefore, becomes

k = ' X(io, L O.k-2n) " Om.k(t). (4.20)

Next, substituting (4.14) for the appropriate terms on each side of (4.20) results in

' -2•0.o (O.k_2fl).O(2-t-k). (4.21)2 -M + 1 ) ,2 -, , ( 2 - + 1 t - n ) = " 2 ( 0 , , 0 , - - 2 -I ) .( .

Applying the change of variables ua=2-m. t-2. n and the translation of indices k=k'-2-n to (4.21)
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finally yields

O)(u) = 1Z().,), 01), k-.1- 0 q(2 u -k). (4.22)

For later convenience, (4.22) can be rewritten as

1_ A1I(

T0(T)=Y h(k)O(u-k) where h(k)=T 0 , :•(4.23)
k 

- )(010 01.k( .3

Selecting this normalization for h(k) forces Z h(k) = 1. As a result,
k

2h(k) ej° = H(ej-) =1
k 1o=1)o=

Furthermore, since 0(u) is real, {h(k)}k,, Z is real. And finally, if O(u) is compactly supported,

then the filter h(k) is a FIR filter. This occurs since, for compactly supported 0, in the inner

product term of (4.23), there will be only a finite number of translations which will be evaluated

as non-zero. The details of the development of (4.19) - (4.23) are presented in Appendix A.

Equations of the form (4.23) comprise in literature a class of equations referred to as

two-scale difference equations [26] or as dilation equations [27]. This class of equations will be

considered in greater detail in Chapter V within the context of basis functions for multiresolution

analyses. From the preceding development it may be concluded that the functions 0 which

satisfy the properties for a multiresolution analysis consist of solutions to two-scale difference

eqtiations.

To obtain a multiresolution transform it is necessary to combine (4.20) with (4.23) to

obtain
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, , = 2 1h(k -2n) ,,)n.k(t). (4.244

k

Applying Parseval's equality (2. 18) to (4.24) results in a relationship between the projections of

some function f(t) onto V, and V,, [22]:

(f, h = ( k - 2 n) (f Oin.k. (4.2

By (4.25.), given A•. 1' f}, the determination of the coefficient ( f, 0,,, ) for each term of the

series for A,{f}, requires filtering and decimation of the sequence {(f, Or.,)}•z' The block

diagram for the operation (4.25) is depicted in Figure 4.4. The similarity between Figure 4.4

and a channel of a QMF analysis bank is evident.

{() n. --- h(n) 2, m_1.,f, Om, n) ... AJ 1 1M .1

Figure 4.4--Block diagram of multiresolution transfonn characterized by 4 25).

Now, to complete the development of the concept of multiresolution analysis it is first

necessary to consider some of the consequences of the preceding development. First. consider

the concept of embedded subspaces characterized by (4.11). Let Wm be the orthogonal

complement of Vm such that

Vill Wfl 0 (3 4.26a

and

VeMWm=Vill (4.26b

From (2.26b), by induction, any scaling function vector space V, can be decomposed as [23]

VI= •W~n. 4.'7
I= J+1
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And finally, the direct sum of all definable {W,,},,rz is dense in L2( R) [211:

SWm =L2 (R). (4.28)

Figure 4.5 presents a two-scale example of (4.26b) from the perspective of spectral

contents of Vm and Wm. The complementary subspace Wm is defined such that it is closed and is

spanned by a set of vectors {Wmn.} Z. Members of the set of vectors {Wm., are related to each

other in a manner similar to (4.14):

Ym.n(t) = 2-` 2 (2- t-n) V m, n Z2 (4.29)

Overlap exists between the spectral regions characterizing Vm-1 and WM-,1. This overlap occurs

since the plots consist of frequency plots of FIR filters. However the FIR filters represented are

related to orthogonal basis function and consequently, the filters for Vm. and Wm-In are

themselves orthogonal to each other in the time domain.

-Spectral content of vector space v
"a N• • -Spectral content of vector space Vw"

*....Spectral content afvco oce -1
.,., @.8 of vectoXr so~ e --

E 0.6

. •9 .o.,0.2.

a 0.95 9.1 3.15 9.2 9.25 9.3 9.35 9.4 0.45 a.5
Oigital frequency, (multiple of F' )

Figure 4.5--Spectral content of example of concept of orthogonally complementary, embedded subspaces The
example is based upon Daubechies' wavelet and scaling function on [0, 111]. The lowpass processes are

. and , and the bandpass process is W,,.,
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The set of vectors { zm.},,z constitutes the set of waveletfunctions for the

multiresolution analvyis. From the relationships between the spaces Wm of wavelet vectors

and the spaces Vm of scaling function vectors 0,, . a number of relationships between the sets of

vectors 0o n and Wm . may be deduced. Between the scaling and wavelet function vectors,

follows from (4.26a), the relationship exists:

(0 ... 0. (4.3 0)

Within a common scale, therefore, wavelets and scaling functions are orthogonal to each other-

Furthermore, as a consequence of (4.11) and (4.26b),

(Wm,.,, Vj. J = (j,,4.31)

In words, unlike scaling functions which are only orthogonal to each other with respect to

translation within a common vector space V., wavelets are orthogonal to each other with respect

to translation and scale. Wavelets not contained within the same vector space Wm are by

definition orthogonal to each other. Finally, because W... E WM c V'.,,

(.Wk.J) * 0, V k_<m- .

More generally, if the wavelet Wk,,j is supported on the interval [0, L] e R, then,

(0.,,Wk.)*) 0' V k<_m-1, Inj <L. n 43<

Wavelet vectors lie within the span of higher resolution spaces of scaling functions.
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The projection of some signal f(t) on the wavelet space W, constitutes the detail signal

[22] and contains the difference of the information contained in Am-[ { f} and that in Ar f . [he

detail signal at resolution m is denoted by

DiM-, Itf~t)}-a =1 f, Y". m ,n M -C•n~) (4. 33)

k ~

Equation (4.26b) implies that [21]

Dmoll} = A.,,m.{f} - A,,,{f}, t4.34a)

or equivalentiy,

X (Wim+1.n9 f>4Jmi.Ln =Y ( Omn f rnYa 0(jM.n f)mi. (4.34b)

Substituting (4.24) into (4.34b) and expanding the result produces a time-domain form for the

wavelet decomposition:

Y_(W".' )4f.1 Y_ FM., f -n2 1h(k-2 n) (o - 2 n

f)0mI~ n[~mn j. kh(j-2n) f )Or.ij

Obviously, except for simple cases such as the Haar basis (demonstrated in [21]), (4.35) is not

easily separable. In order to obtain a relationship between scaling and wavelet functions it

therefore becomes necessary to examine their Fourier-domain properties.

Equation (4.22) represents the starting point for considering the frequency-domain

properties of the scaling function 0. If the Fourier transform of 0 is defined as in (4.1)

0(w) 0(t)e-Iw' dt,

evaluating the Fourier transform of each side of (4.23) produces [23]

Q(2 w)= H(eJ ")Q() 14.36b)
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where the Fourier series H(eý') of h(k) is defined as

H(e )• h(k) eJ•.(4,37
k

Next, Poisson's summation can be employed to present an alternative expression for the

orthogonality of 0 with respect to translation [23]. This development begins with the complex

Fourier series expansion for a train of Dirac impulse functions 8((o) [28]:

6(co - 2trk) = leJk•'. (4.38)
k k

Poisson's summation involves convolving a function with each side of (4.38). Convolving theS I'
expression O(oW) "with the right-hand side of (4.38) produces

22
,(F) *S.(W-2nk) = 1 2 i-tk) (4,39)

k k

Furthermore, convolving 1 $(() 2 with the right-hand side of (4.38) results in the expression

k k k , f O (Ud -4 .4 0 )

Y _ e J 0fJ *(uB•(v)eeji- dudv e-: d-
k

Applying the change of variables of integration w = v - u and regrouping the terms contained in

the second line of (4.40) produces

2 *l) * j =eJkI=eik jJ k (u) O(u+w) f eJ(--k) 4 d4dudw. (4.41)1so) k k

Now, since

Sei (w-k) d4 = 2n8(w-k),

by the integral sifting property of the Dirac delta function 5(w), (4.41) becomes

2 *) I:*eJke = 2nX ejkO OJ(u) O(u+w)du8(w-k)dw1k k 44 "

= 2tnY e)• k O(u)0(u+k) du
k
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Finally, by (4.16), the integral in the final line of (4.42) is simply (0 0 Oo, 80A where 8... is

Kronecker's delta function. Consequently, the series in the final line of (4.42) contains only one

non-zero term: when the index k = 0. Therefore,

c(wj) ) *ZeIkl =2 T. (4.43)

Substitution of (4.39) and (4.43) back into (4.38) produces

I I ((o-2-,ck) 24 
,44)

k

Applying the results of (4.44) to (4.36) yields

$(c-27k I =~e kl1 ( -nk (4.45)

The right-hand side of (4.45) can be expressed as

H(eJ("-'-2•) (21 ((o-2kir) 2 H(eji1- 2k+')) V ( -(2k+ l)it) Ikk

(4.46)

Since, as a consequence of its definition, H(ej') is periodic with respect to 2.i:, the terms of

I 1(e)Jw-2itki) I2 and H(ej(' 2"'k')") 2 can be factored out of the series on the left-hand side of

(4.46) producing

SH(eo(o)t ý( I -2k,•Ir + I Hcoe,(-•, I•zkl(w - (2k+ l)it)2= . 4.47)

The remaining two sums in (4.47) are identical to (4.44) and are evaluated as unity. Therefore,

(4.47) becomes

IH(ej)12 +1 H(e ) 2 (4.48)
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Comparing (4.48) with (3.20b) reveals that the frequency response H(e&) for the

approximation filter defined by (4.23) is power-complementary with a version of itself shifted in

the frequency domain by it. Therefore, H(e" ") either is constant or possesses a half-band

frequency response. Furthermore, if the scaling function o is normalized such that

0(0) " = lthen, as a consequence of 4.36b),

I H(e")

C. MALLAT'S ALGORITHM FOR MULTIRESOLUTION ANALYSIS

It remains to characterize the wavelet functions. This can be accomplished by

completing the development of the multiresolution decomposition begun in the previous section.

The first true multiresolution algorithm was developed by Mallat [22]. Two other techniques

will be considered in the next section which were not directly derived from the mathematical

definition of a multiresolution analysis (4.8)-(4.13).

The multiresolution decomposition process begins with the projection of a function flt)

on the scaling function space of finest resolution {0I.,IZ [21 ]. The functional expansion

appears as

f(t) = A-. {f(t)} = 1 c,,. (t-n) where C, 0

Generally, the decomposition is performed on a sampled data sequence and the scale of the

initial approximation is defined such that the first equality in (4.50) holds. Since the basis
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vectors 0d.° e V0, the original approximation (4.50) is also clearly contained within the span of

Vo.

The next step in the multiresolution decomposition requires the division of the scaling function

space V) into orthogonally complementary subspaces V, ( W, = VO. Re-arranging (4 .34a) leads

to

A_ {f(t)} AO{f(t)} + Do{f(t)}.

Consistent with the definition (4.8) of the approximation transform A. and the definition (4.33)

for the detail transform DM,

Ao{f} -z ICIk01.k

k

and

Do{f} IbI,kAWI.k

k

where cl.k = (f, 0,.j and b.k =(f, j,. A relationship between qi1,k and 0o, was presented in

(4.23). Furthermore, (4.32) showed that WIk lies within the span of Vo. Consequently,

following development analogous to that for (4.23), the Fourier series expression for wavelet

function becomes,

_ LI(2-) =T~g(k)O(u-k) where g(k)~~(i o (4.5 I a)

since

vm+Ln., cm.k = ('"- .0, 0O.k-2n). (4.5 1b)V12

Since, if y.. is real, the filter coefficients {g(k))k, , are strictly real. Additionally, Founier
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transformation of (4.5 1 a) produces a relationship analogous to (4.36):

'j(2 co) = G(eW) ;(w). (4 .5 1c)

Finally, the form of (4.24) for the wavelet function appears as

Win~i = .nM g(k -2 n) Om.k(t). (4.52)
k

Applying Parseval's equality (2.18) to (4.24) and (4.52) in order to calculate c,.. and b in terms

of c1. produces

C1.n = '2 - h(k-2n)cO.k
k

and

b i., = ý2", Ig(k - 2n) coA
k

The approximation based on the expansion of the terms {c1 .W0,',,} constitutes a "blurred" version

of the expansion of the terms {C 040 }. The detail which is lost in the approximation A,.? f is

contained in an expansion of the terms {b1.,i 1,}. This process can be repeated as many times

as desired. The resultant general expression becomes

cm+i,, = - I -h(k-2n)cm,k
k

and (4.53)

b.+,,. = F-Xg(k-2n)cm.k
k

where each successive iteration generates in an approximation of f(t) containing half the

resolution of the previous approximation. At each iteration, the approximation and detail of the

signal are related to the previous approximation by

A.,({f} = A.,{f} + Dm{f}. (4.54)
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Furthermore, the operations described by (4.53) closely resemble the analysis bank for the QMF

bank structure investigated in the previous chapter. The approximation and detail operations at

each resolution consist of filtering a common sequence with two different filters. The output of

each filter is then decimated. The resemblance of QMF structure to the operation characterized

by (4.53) cannot yet be asserted to be exact since the appropriate relationship between the filters

whose impulse responses are h(k) and g(k) yet to be established.

To reconstruct a signal from its decomposition, the definition (4.8) of the approximation

operator is employed. The expansion coefficient cm.k is, by definition,

Cm, k = (Am.-{f}, Im.,k) = (A.({f}, 0m.,) + (Di{f}, 0.,k) (4.55)

Substituting into (4.55) the expressions for the series Am and D. produces

cm.n "IICm+I. k 4mat~ Om.N.k) + Ibm+1k yOm.nt 'Vm~l.k) (4.56)
k (0k

The inner product terms in (4.56) are precisely those encountered in (4.19) and in (4.5 1b) except

that the positions of the translation indices n and k have been reversed. Consequently, (4.56) is

equivalent to

cm.= - l>h(n-2k)cmIk + .. g(n-2k)b,[,+ k (4.57)
42 k v2 k

The operation in (4.57) entails expansion of the detail and approximation series coefficients

followed by the application of filters whose impulse responses are the time reversals of those

used in (4.53) for signal decomposition. Again, a resemblance to the QMF bank synthesis

structure is noteworthy.

Examining the decomposition operation in the frequency domain provides further insight
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into the nature of the wavelet functions [231. First the Fourier transform , 0 (w) of the

approximation

A.I(t)=A_1 { f(t) I=f(t) is expressed by

A.Y(o) = fco J - o..(t)e -Ja' dt
El

= co,feo Jewn f P(t)e-jt dt (458)
n

where Cm(eJo)-jcm,•ke-""k. Applying similar analysis, Ao(cO) and Do(w), the Fourier
k

transforms of the approximation Ao(t)=A){ f(t)} and Do(t)=Do{ f(t)}, respectively, appear as

)(0)) = ZCIk L0 1. (Ptk(t) e-jw' dt
k

S 7- C-C1. k Jf. 2t(--k) e'-)(' dt
J 2 k (4.59a)

= •2 f-cIkeiJo{0 f". 4(u)e-ji du
k

A A

A0 (co) = F2 C1(eJ'o))0(2o))

and

Do(co) = F2 B1(eJ 2i(0)•(2o) • (4.59b)

where Bm(eJ {)=_Y.b m. k e-i. By (4.54) therefore, it follows that,
k

A._I(C))= A0 (C(O) + Do0 (O),

or equivalently

f(wo) = Co(ei"()(o-(w) = F2 CI(e12 '01) (2 w)+ F2 B,(eJ2 •) j(2 wi). (4.60)

Substitution of (4.36) and (4.5 1c) into (4.60) produces

Co (eJo) ^((ut))= F2 C 1(e j 2 )) H(eJ (0) )(co,) + F2 B I(ej 2 w) G~e, w)(•o)

or, after dropping the common factor of $(o)),

C (ej0') = F2 C1 (e j 2() H(eJ•) + F2 B1 (e j 27) G(e) (4.61a)

77



From their definitions, Co(ej') E L2([O, 2--i]) and is periodic with respect to 2.1 while

C1 (eý 2o), BI(ej',) E L2([0, ic]) and are periodic with respect to 1r. Therefore, it follows from

(4.6 1a) that

[ .C)(e .) 3 -2 H(eJ)) G(eJ ) CB (eJ2 e) .4.61b)

From (4.61b), define

H(eJ (0)__ H( ej) G(ej")))

H(eJO) G( e 3
Now, if the H(e&") is unitary in the sense described in Chapter III, then multiplication of each

side of (4.61) with its Hermitian transpose yields

C o(e" ())1 + I C,)(ej 1" 2 2[1 C (e 2 ) j 2 1+1 B1 (e' 2 ") 1 2] (4,.62)

Integrating (4.62) over the interval [0, it] produces

f1Co 0() 2 .c(eo,",') 1(2 d=2fo C1(e 2  I) 12 + iB(ej2() da,

which is equivalent to

, Co(e,)a d.=2J [ Ci(e,0) j:dco+2f I B,(eJ2 ) dco. (4.63)

Equation (4.63) is an expression of the orthogonality of the decomposition: The energy in the

approximation A0{f(t)} is simply equal to the sum of the energies in the approximation A, j t)i

and the detail D, { f(t)}. No energy is present in terms comprised of the cross-product

I C,(e'2'•), -I B,( ejW) . Furthermore, the specification of H(ej') as unitary is exactly

equivalent to the specification that the alias compensation matrix for the two-channel QMF bank
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is exactly equivalent to the specification that the alias compensation matrix for the two-channel

QMF bank be paraunitary. Consequently. a single-stage decomposition followed by a

single-stage reconstruction employing Mallat's algorithm is exactly equivalent to a QMF bank.

Moreover, the paraunitary nature of Me" ' implies

H(e'l) j2+ IG(eJ ) I (46-
H(eO)Gte-10) + H0ei•)G(eJ'') =0

One solution for G(eJ ") as constrained by (4.64) is given by

G(ei 0) = e(j ., L H(e '- { 4 65

where L represents the length of the FIR filter h n). Selection of (4.65) dictates that the filter

whose impulse response is g(n) will be a FIR filter of length L and that, bv (4.5 Ic), the wavelet

function '41(t) will have exactly the region of support of the scaling function Ot).

D. EARLY MI• LTIRESOLUTION ALGORITHMS

Fioure 4 6--Block diagram of process by which detail is extracted from signal through the use of the Laplacimn
pyrunid algoritlun. After [29].

In this section, two early multiresolution techniques--the Laplacian pyramid and the a

trous algorithm--will be considered. The first, the Laplacian pyramid, represents an algorithm

developed in the early 1980's for the purposes of image coding. Conceptually, the Laplican

pyramid very closely resembles Mallat's multiresolution algorithm presented in the previous

79



section. In fact, Daubechies credits the Laplacian pyramid with providing Mallat with

significant for the development of his own multiresolution algorithm [21].

The Laplacian pyramid, as with Mallat's multiresolution algorithm, entails iterative

filtering of a sequence to progressively smooth out the rapidly varying componeuts [29]. At any

stage, the next coarser approximation is obtained from

fk,1 (n) = Z-w(2 n -n) fk(m). (4.66)
m

Unlike Mallat's algorithm, however, where the detail is extracted through filtering, the Laplacian

pyramid extracts the detail through re-expanding and filtering the approximation and subtracting

the result from the previous approximation. This process is illustrated in Figure 4.6.

Mathematically, extraction of the detail lost Ak.,(n) when fk(n) is approximated as f, 1(n) is

expressed as

Ak+l (n) = fk(n) - 2 1 w(n - 2 m) fk+I (m). ( 4.67)
m

The series expression on the right-hand side of (4.67) is recognizable as the same form of

equation as appeared in (4.57). The form represents expansion of a sequence followed by FIK

filtering. The factor of two is introduced to cancel the factor of 1/2 introduced by the

decimation operation as indicated by (3.6). As with Mallat's algorithm, iteratively repeating,

results in the cascaded tree structure of Figure 4.7a. Reconstruction of a decomposed signal is
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foin AP)7

I i t-(n)

Figure 4. 7a--Block diagram illustrating three-stage decomposition by Laplacian pyramid.

A1(n)+

64~n) Ifi(n)T
f (n) + 4 n) T2

Figure 4.7b--Block diagram of structure for reconstructing sequence decomposed by three-level decomposition
depicted by block diagram of Figure 4.7.

f2  0

-2 - wi-2) (-I)wi) (2

-4 -3- l0 1 2 3 4

Figure 4.8--Lattice illustrating concept behind generation of kernel w(n) used for Laplacian pyramid
decomposition and reconstruction. After [30].
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accomplished by simply reversing (4.67) and reintroducing to fk.,(n) the detail •k.i(n) removed

during decomposition:

fk(n) = Ak+•(n) + 2 w(n - 2. m) fk+l (m). (4.68)

Figure 4.7b illustrates the process by which a sequence decomposed by Figure 4.7a is

reconstructed.

Figure 4.8 provides a graphical illustration of the averaging process employed in the

Laplacian pyramid. The Laplacian pyramid decomposition involves the approximation of some

sequence fo(n) by an averaged version f,(n). The technique developed by Burt and Adelson

[30], in calculating the values of the nodes in f,(n), endeavors to consider each node in fo(n) with

an equal weight. In the case of a five-point weighting sequence w(n), each node in f,(n) is

calculated from an average of its five nearest neighbors in fo(n). For example, the value of node

f)(n) in Figure 4.18 is evaluated as

fi(0) = w(-2)fo(-2) + w(-l)fo(-l) + w(0)-fo(0) + w(l).fo(1) + w(2).fo(2).

Additionally, obtaining f1(- 1) and f1(1), requires evaluation of

f,(-l) w(-2)-fo(-4) + w(-l).fo(-3) + w(0)-fo(-2) + w(1).fo(-I) + w(2).fo(0)

and

f1(l) = w(-2).fo(0) + w(- ).fo(l) + w(0)-fo(2) + w(l).fo(3) + w(2).fo(4).

Now fo(0), an even-numbered node, contributes to the computation of three nodes in f1(n): to

f,(0), to which it is directly adjacent across scale, and to f,(-l) and f1(1). However, fO( I ), an
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odd-numbered node, only contributes to the contribution of two-nodes in f1 ( n): to f,(O) and to

fl(1).

As stated previously, the objective is to define w(nI} such that the total weighted

contribution by each node in f,(n) to the computation of nodes in f,(n) is equal. Therefore., the

requirement that the total weighting factor for all contributions by f 0.O) to equals the total

weighting factor for all contributions by f0( 1) implies that

w(-l.) + w(1) = w(O) + 2"w(2). (4.69a)

The left-hand side of (4.69a) represents the sum of the weighting factors for all contributions by

fo(1) to all nodes to which it contributes in f,(n). Similarly, the right-hand side of (4.69a)

indicates the sum of the weighting factors for all contributions by fo(O) to all nodes to which it

contributes in fi(n). Inductively, for a five-point weighting sequence the sum of the weights for

all contributions by any even-numbered node in f,(n) will equal the right-hand side of (4.69a)

while the sum of the weights for all contributions by any odd-numbered node in fo(n) will equal

the left-hand side of (4.69a).

An additional constraint was imposed on the selection of the weighting sequence wv n):

2
I w(k) = 1. (4.69b)

k -- 2

Thy constraint imposed by (4.69b) ensures that, for any node in ft(n), the sum of the weights by

all contributing nodes in fo(n) will be unity. Consequently, the average energy in fo(n) is

preserved by the approximation f,(n).
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To satisfy (4.69a) and (4.69b), Burt and Adelson selected

a = 4 4 4 ( .

Each odd-numbered node contributes twice, each time with a weighting of 1 4. The

even-numbered nodes contribute with a weighting of "a" when directly adjacent across scale

,while contributing twice with a weighting of 1'4 - a.2 when separated by scale and translation.

Consequently, each node contributes with a total weight of 1:2.

Considering the top branch of the structure in Figure 4.6 from a two-sided Z-transform

perspective provides insight into the frequency-domain character of the Laplacian pyramid. The

transform of the weighting sequence can be expressed as

W(z) = I- (z2 +z-2) +I(z+z-)+a. (4:71)

Applying (3.6), decimating (4.71) produces

1,2 (Z) = 'L[W(z 12)+ W(_ 1 2)]
S=

which after expansion becomes

WZ2 + Z-2)+ a. (4.721)

The effective transfer function T(z) of the top branch of the structure in Figure 4.6 can be

expressed as

T(z) = 2' [W,2]T.(z)'W(z). .7

Through trial and error, Burt and Adelson observed that for the choice of a = 3/10, repeated

applications of the transfer function (4.73) produced an impulse response with approximately the
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same shape with each iteration and which ultimately, approached a Gaussian shape. For this

choice of "a". the system transfer function becomes

Z' Z' ' +- - -÷ g-z 3_-L-• --- - '-Z --

T(z)= -" :• -

Furthermore, from Figure 4.6, by inspection, the expression for the detail sequence _.,(n is. in

terms of fk(n) and t(n),

Ak+i (n) = I t(n - k) fk(k) - fk(n).
k

Equivalently, if the transfer function for the entire structure of Figure 4.6 is defined such that its

impulse response is d(n), then d(n) = t(n) - 5(n) where 8(n) is Kronecker's delta function.

Consequently, the transfer function D(z) becomes
I1 ý Ij ?+ . 6, I 5- 34; + ,L 3 2 I. '+

D(z) = -, Z÷

From this analysis follows a conceptually clearer but computationally less efficient structural

equivalent for Figure 4.6. This equivalent structure is indicated in Figure 4.9.

Ak+i(n)
f (n) D(z)

+(n)

Figure 4.9--Equivalent structure to that shown in Figure 4 6

As a method of time-frequency decomposition, the Laplacian pyramid provides

performance for processes containing high-frequency components which inferior to that which

shall later be observed for Mallat's algorithm. Figure 4. 10 illustrates the partitioning of the
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frequency spectrum which occurs when a signal is decomposed by the Laplacian pyramid. The

spectral bins which are formed do not follow the pattern of an even division of the frequency

- '! / \ I

"n I, / \ •

= / • .... Channei

0.2 , * S"

D 8ig ,^renquenc', (mult"i' e oF, F

Figure 4.10--Partioning of frequency spectrum performed by three-stage Laplacian pyramid of Figure 41.7

spectrum at each stage as would be anticipated by operations involving factor-of-two decimation

and expansion. In fact, approximately three fifths of the frequency spectrum below the Nyquist

frequency is contained within the highest frequencybin. Consequently, for classification

applications, a Laplacian pyramid-based analyzer would provide poor localization of frequencies

above approximately 0.2 f,. However, for an over-sampled sequence comprised primarily of

lower frequency components, a Laplacian pyramid detector would likely provide slightly better

spectral resolution than would be afforded by a multiresolution detector which divides the

spectrum evenly at each stage. For a three-stage, even-division multiresolution scheme, the

region in the frequency domain from 0 to 0. 125.f, would be divided into two spectral bins. For

the scheme of Figure 4.10, the region in the frequency domain from 0 to approximately 0. 1 5-f, is

divided into three spectral bins.
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"T'2 -•2 VV z T-- 12 --2 wt,'zt-- T 2 2-'zt-)

i 'en)

Figure 4.11--Block diagram for full expansion by channel approach for reconstruction of a sequence decomposed
by the Laplacian pyramid. Structure is equivalent to that of Figure 4,7b.

In general, multiresolution decomposition schemes which involve factor-of-two

decimation generate lattices which resemble Figure 4.8. At each stage, the approximation

density is reduced by a factor of two. For information transmission systems, this represent the

primary advantage of such systems. However, for display of time-scale decompositions

involving mesh or contour plots, most computer graphical routines require the insertion of zeros

in order to create a lattice of points of constant density. For mesh plots, such as those provided

by Matlab, a lattice of the form of Figure 4.8 will appear as rows of fin-like structures of

varying density. Because of the rapid transition to zero at each lattice nodes, contour plots

essentially provide binary indications of a sequence's time-scale content: Indication of the

presence of energy at a aode is given, without indication of the relative magnitude of the

sequence at that node.

Figure 4.11 provides a block diagram of a full expansion by channel scheme for

preparing the lattice similar to that of Figure 4.8 for plotting. The structure of Ficnre 4.11
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represents the result of separating each branch of Figure 4.7b at its summation points. The

consequence of implementing a structure like that in Figure 4. 11 is that sparse rows in a lattice

like that in Figure 4.8 will be interpolated resulting in a uniform density of lattice nodes.

2*

-, 30

S 20~

3 A
10

CI -20

0 32 64 96 :28 169 1.9 Z2425

Discrete time, n

Figure 4.12--Time plot of 256-point test sequence generated by (4.74a) for demonstration of Laplacian Pyramid

-• -20

- -25

L -30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.

Diqital frequency, (multiple of fs)

Figure 4.13--Plot of power spectral density of 256-point test sequence generated by (4.74a.

Furthermore, the reconstructed sequence from the structure in Figure 4.7b is

accomplished by

o(n) (n)
m
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In other words, the reconstructed sequence ',)(n) consists of the sum of the content of all the

channels f m'(n) obtained from Figure 411.

To demonstrate the operation of the Laplacian pyramid, two test sequences were

employed. The first sequence was constructed from low-frequency cumponents:

SLF(nl) = -e-• .e"- 2' e" F2 cos(2. r. n)+ sin(2 nt ,n)+Tcos( 2 n ý, n)

71 1L 41-1~)J

(4,74a)

A time plot of the sequence is presented in Figure 4.12 and a power spectral density plot appears

in Figure 4.13. The test sequence was chosen such that the spectral content wojuld lie

predominantly in the lower portions of the frequency spectrum. Test sequence (4.74a) contained

one spectral component, which completes only one complete oscillation during the duration of

the sequence, at nr/128 (= 0.004.f). Additional components are present at 9r'1256 (= 0.018.f,)

and at 31-7c/256 (= 0.06-'f).

The second sequence, identical to (3.47) employed in Chapter III, Section C is repeated

here for convenience:

SHF(n)=( -•L > e-i4)''-• - eD"/5 [cos(2 - n - n)+ 1 cos(2 it . n) + cos(2 n n)

(41. 4b)

A time plot of (4.74b) is presented in Figure 3.23 and its power spectral density is plotted in

Figure 3.24. Test sequence (4.74b) contains spectral components at 2.t27,1256 (- 0.105-f,),

2.ic.55.it/256 (- 0.215.f) and at 2.i.1 13.r1/256 (- 0.44f).
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Figure 4.14a presents a surface plot depicting the eight-scale, fu'l expansion bv channel

of the Laplacian pyramid decomposition of the test sequence generated by (4.7.4a). Despite the

fact that the spectral components of the lowpass test sequence (4.74a) are quite close together.

the Nevertheless, the Laplacian pyramid is able to distinguish between the three separate

components. One peak is evident at around sample 32 at a scale of five to six, a series of

approximately four peaks are evident at a scale of three to four from samples 10 to 60 and a

series of peaks corresponding to the high-frequency components are apparent at scales one to

two from samples 20 to 120.

12 - - - ' -...
1.• . ....... • ....... ?" : ~ . ... . . ..... . . .... ............... .. .... ".......

""2 " . . .• .. ... ... ..." : " ... ..... ...' 1

8 ....... .. .... ." .. . . . ...7 .... ?..... ". . . ... . . . . .. -...

9 ~ ~~ ..... ..... ....- . . . .
S'. ....~~~.. ....... ...- . .. . .

4 ." .......

Figure 4.14a--Surface plot of full expansion by channel of Laplacian pyramid decomposition of 256-point.

lowpass test sequence generated by (4.74a).

Figure 4.14b illustrates the Laplacian pyramid decomposition of the highpass 256-point

test sequence (4.74b). As discussed within the context of the frequency partition diagram,
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Figure 4.10, the Laplaciar pyramid produces significantly poorer resolutiun for sequences

comprised of high-frequency components. In fact, for the highpass test sequence (4.74b), the

two spectral components with the highest frequencies fall within a single spectral bin.

Consequently, as Figure 4.14b indicates, it is very difficult using the Laplacian pyramid to

resolve spectral components residing in the upper two thirds of the frequency spectrum below

the Nyquist frequency.

:5 7 "" • i......... ..... i. .. ... -- " "
i . ...... ..... ... . ..

- ; ... ........ .!...... .

Figure 4.14b--Surface plot of full expansion by channel of Laplacian pyramid decomposition of 256-pomt.

highpass test sequence generated by (4.74b).

The reconstruction error for the Laplacian pyramid operation on the test sequence was

consistently outstanding. The mean square reconstruction error as defined by i3.32) is plotted in

Figure 4.15. As indicated by Figure 4.15, the reconstruction error never rose above -317 dB.

91



This accuracy roughly corresponds to the numerical precision of Maltab which was used for this

demonstration.

-h 7.5

"-318

Sj' -318.5

-3115-

CU

-329.5
2 3 4 5 6 7 8

Number of Oec onosi tion Staces

Figure 4.15--Trend of mean square reconstruction error for Laplacian pyramid operating on 256-point lowpass
test sequence of (4.74a).

The i trous algorithm represents the first multiresolution analysis techrique explicitly

based on an affine-type representation vector. This technique consists of evaluating a

discretized approximation of the continuous wavelet transform. Specifically, the srarting point

for the i trous method is the discrete wavelet series [31]:

w(m, n) = 2-112 L W(2-m k-n) s(k).
k

Essentially, the discrete wavelet series consists of the discrete correlation between some

sequence s(n) and translations of a sampled wavelet function 2, x(2mk - n) at scale m.

Evaluating (4.75) for w(l, n) produces

w(1, n)= T. xV"' ( - n) s(k). (4.76)

In (4.76), it is obvious that W(1 - n) = " Consequently, (4.76) becomes

2,2 k
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Now. if y(k) is known for integer-valued arguments. its values at half-integer :-guments

can be approximated through interpolation. If fRk represents the impulse response for an

interpolation filter, then y•k) at ha1 f-integers is approximately

r k

where the conjugation and time-reversal cOthe filter and the factor of 42 have been introduced

for later convenience. The form of the summation term on the right-hand side of (4.77) is

recognizable as cypansion of a sequence 'y. k) followed bv convolution with a filter who-e

impulse response is f(-k).

To obtain the best approximation, special conditions are imposed on the filter represented

by f(k). Shensa (31] applies the term d trous filter and employs the notation

f(2 k)= 50A,

where 6,, k is Kronecker's delta function. Perhaps a slightly more illuminating manner in wkvhich

to express this concept is to use the notation

f, 2(k)= " 08O .k ..

In other words, the decimated impulse response f(k) is non-zero only for k = 0. Equivalently,

the only non-zero, even-numbered coeffecient for the filter f(k) corresponds to k = 0. The

condition (4.78) is necessary in order to ensure that known values for the int'rpolated sequence

y(k) are unaffected b, the interpolation process. When evaluating f(2 k - n) t(k), if n is an

even integer, an argui.-ent for which to(ni2) is known, 2 k - n will also be an even integer. and
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the series (4.77) will contain only one non-zero term, for n 2k. Consequently, A4.7T• ,, be

evaluated as

Hence, the factor of I &2 in (4.8 On the other hand, ifn is an odd inteiger, an argument

\alue for which the interpolation must be calculated, the series 4.77) will be _valuated as a

weighted sum of the function values for x(ni2) for suiTounding even values of n. The a 1rous

condition (4.78) assumes a position of importance in the theory of FIR filters. The condition

(4.78) is equivalent to the half-band condition. A haIf-bandJfilter is a symmetric, FIR digital

filter whose impulse response satisfies (4.78). Mitzner [32] showed that filters satisfying (4.78,.

of necessity, also satisfy

F(eJi)+1(eiW-'Z))=2f(O) where F(eJ')=Zf(k)eJ"k, 49
k

Consequently, the interpolation filter whose impulse response is f(k) is also a half-band filter

Furthermore, Shensa showed that the filters for Daubechies' orthonormal scalingz functions

belong to a special class of filters satisfying (4.78) known as Lagrangian intejpolatifonhfilter,.

Specifically, ifc(n) is the impulse response for the filter producing one of Daubechies'

orthonormal scaling functions, the corresponding Lagrangian interpolation filter is obtained from

f(n) =- c(k) c(k - n).
,2 k

Continuing the development of the d trous algorithm, substitution of 4.77) into i'4.76)

produces

w(, n)= f(2j+ n - k) W'4j) s(k .
Jk
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Now, if a filter g(n) is defined such that

g(n) = y'(-n), 4.81

and a change of indices m- j + n is applied to (480), it follows that

A,(l1, n) = Yg(n -m) 2:f(2"m -k) s(k). (4.82)
k

Equation (4.82) simply describes decimation of s(k) followed by filtering with a FIR filter

whose impulse response is f(k). The result is then further filtered by an additional FIR filter

whose impulse response is g(n). Furthermore, the second FIR filter is the conjugated

time-reversal of the sampled wavelet function. Therefore, filtering with g(n) is equivalent to

-valuating the correlation with 'y(n).

s()---n--) G(z)] 7 w (n)

L F(z) 2 n

Figure 4.16--Block diagram of one-stage decomposition by a trous algorithm.

Now, the operation of decimation and then filtering s(n) resembles the portion of Mallat's

algorithm, (4.53), where successively coarser approximations of s(n) were obtained by

decimating and filtering each preceding approximation. For the signal detail is extracted merely

by filtering the upper half of the spectrum below the Nyquist frequency. If the notation s"(n) is

adopted for the i'"-level approximation of s(n) and wV'1(n) for w(i, n), by induction, from (4.82) it

follows that

slI*t)(n) = f* sii)(n) (4.83)

w,,)(n) = g * s(')(n)
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The block diagram for (4.83) is shown in Figure 4.16

Earlier wavelet transform techniques resemble Gabor transforms in which sequences

were decomposed by projection on representation vectors consisting of modulated Gaussian

windows. Consequently, the wavelet function used by Shensa in his study of 'A avelets %ý\as a

modulated Gaussian, also known as a Aforler window:

Ytt) = vel ::22,S

Fourier transformation of (4.84a) produces

i4 (w) = g '~~~3 4.84b}

In order to specify a wavelet function, it is, therefore, necessary to specify its center frequency v

and its window rolloff factor P3.

Furthermore, in order to increase resolution in the Fourier domain it is possible to

employ a wavelet function consisting of superimposed Gaussian envelopes modulated at

different frequencies. In this case, the wavelet V(it) and its Fourier transform become

M - 1 _-2. (, ý. 2- ! • eý jvE() e 1; .:4 e
M-1 " - z-L ( •• - •W(o) v '2x e -k-~)

Multiple frequency-domain translations of the Gaussian window are referred to as voices

Through the use of voices, the upper half of the frequency spectrum below the Nyquist

frequency is partitioned into multiple spectral bins. Shensa listed a series of guidelines for

designing a wavelet function with multiple voices:
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The center frequency must lie in the upper half of the frequency spectrum below the

Nyquist frequency. Consequently,

S/2 < v. (4.86)

2. In order for xj(t) to be an analytic function,

R-< " 4.87I

Obviously, (4.84b) has an infinite :egion of support. However, if, for (4.87), the equalityw

is selected,

ý(0) = ý_i e--2: 6.71 x 10-9.

Consequently, the spectral content in regions of negative frequency will be negligible.

3. To exclude aliasing,

V !ý n- , 13.(4.88)

The quantity F 53 is equal to one half of the Gaussian window where, at the edge of the

passband, the frequency response of the filter is less than its maximum by a factor of e*'

Condition (4.88) ensures that the high-frequency edge of the passband is located below

the Nyquist frequency.

4. The fourth condition for designing wavelets employs the concept of relative bandwidth.

The relative bandwidth BR of the window is defined to be the ratio of the window

bandwidth to its center frequency, or

BR=2

Since, from (4.86) and (4.88), nt/2 < v _ ir, it follows that

.c P••BR :52P . (4,89)
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This condition is essentially a combination of previous conditions.

5. Furthermore, if multiple voices are desired, it follows that the number of voices M

required to completely cover the upper half of the spectrum is

NI= -,•

As a result, an approximate choice for j3 is

P :- (4,90,

6. To construct the separate voices, the mother wavelet M(t) is scaled by various factors 2"

where M indicates the number voices. Specifically, the kV voice vk(t) for k = 0, ... , M%-,

is given by

Vk(t) = (4.91a)

from which it follows by the scaling property of the Fourier transform,

Vk(O)) = . 2 "CM 2 ei--2L-v)2 (4.91 b)

This scaling produces the combined affects of increasing the Gaussian window decay

factor by a multiple of 2 2," and of translating the location of the window's maximum

value to o = 2"2' = v. Selection of this scheme also maintains the affine nature of the

transform.

7. Then, to select the filter length, it is appropriate to consider the decay of the Gaussian

window in the time domain. The filter will consist of a discretely sampled version of the

continuous wavelet function. The DFT of the wavelet is, by definition,

Vk(Z°) = I Vk(k) e-)"'.
m
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Due to the rapid decay of the windlow function Y~t), the series can be truncated for 'ýahuz-

of the summation index k such that v,~ i(k . the ' oice wvith the slowest time-domain rate

of decay. will be nevligible. If a ne~lI,_ibIlItv, threshold T,, Is specifie-d. then a filter

half-lenuth K must be selected such that

\I K) •T,,

Inverting the envelope portion of 4ý9la) produces for the filter half-length K

K> ' 2 ln(T,). 9

Consequently, the analyzing wavelet filter g~n) from .4.8 1) is defined to be

,g~n w'-n "v'n = -K, ... , K .

0Wn otherwise 49a

and the filter ga,(n) corresponding tthkb Voic vJ) becomes

W*I(-n,'2k\) V n =-K, ... , K
9k(fl){-,'

0 otherwise

20N\7~\

I \/ i\A\\

V

0 0.05 0.1 0.15 0.2 a. 25 0.3 0.35 OA4 2.45 2.5
Digital fre-Lency c f F

S

Fignrie 4. 17--Spectral partitioninig performed by three-sta~e decomiposition by atrousinethiod usmnc -fc'ur-ý.oice
Niorlet window as analyzing wavelet. The interpolation filter, plotted as the lowpass filter represents a

Lagrangian filter calculated from Daubechies' orthonorinal scaling ftwiction on [0, 31
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To illustrate the spectral behavior of the i trous method. Figure -4. 17 plots the frequenc,

decomposition performed by a three-stage structure emploving a four-voice Mo-let window.

The spectral bin density increases in a logarithmic manner as digital frequency approaches zero

and the width of each bin decreases similarly. The relatively large bandwidth of the lowest

frequency bin occurs because of the relatively small number of stages. Additional stages would

result in the continued trend of logarithmically increasing spectral bin density and bin kvidth.

The logarithmic trend must, however, be ultimately broken by the final spectral bin w,.hich ill

be defined by a half-band, lowpass filter.

Figures 4.18a and 4.18b demonstrate the performance of the a trous algorithm for

identification of the spectral components comprising a sequence. Figure 4,18a presents the

decomposition of the lowpass test sequence (4.74a). Examining Figure 4.1Ia. the three

harmonic components can be observed. At a scale of approximately 2.5 to 3. the band

corresponding to the highest frequency component is evident. The middle frequency corm ponent

is apparent in the range from three to four. The lowest frequency constituent is indicated b,, the

sparce gruup of fins at scales of five to seven. The shape of the envelope is evident from the

relative heights of the peaks of the two components possessing higher frequencies. However the

lower frequency component appears relatively constant across the entire range of samples. This

occurs because the integration time of the final scale extends the duration of the sequence.

The d trous decomposition of the highpass test sequence (4.74b) is plotted in Figure

4.18b. Unlike the Laplacian pyramid, the d trous method displays no difficulty in resolving the

spectral components of (4.74b). Figure 4.18 provides an opportunity to understand the
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relationship between the location of spectral components in the time-scale plane and their

location in the frequency spectrum. The regtions contained within each spectral bin are, again.

indicated in Figure 4. 1 7. The spectral component of the test sequence at 0 44 fl Falls into the

rii ht-most spectral bi i of Figure 4. 17. This component i s indicated ý% ith 1 n Ficure .4. 1 Sb at a

scale of zero from approximately samples zero to 160. The location of the spectral 'ýrnponent 1-,

0.21'f, approximately coincides with the location of the boundary of the fifth and six spectral

bins from the right-hand side of Figure 4. 17. Since the analyzing wa,,elet contains four %oices
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Figune 4.18b-wSorface plot ofh trous %vavelet trans ignl deconpositfion of 2d56-pointa haghpiss .Sst seqciefal
renerated bi (4.74b). Plot represents eiht-stage decomd position using four-voice Morlet adiafizult. aTh d

Lagrangim interpolation filter calculated fron filter for Daubechies' orthiononnal scaling, ftiction supported in0[0, 3].
(therefore there are four spectral bins per scale), the fifth and sixth spectral bins coincide wvith

scales of 1.0 and 1.25, respectively. These scales coincide wvith an indication on 4. 1 b f•rom

samples zero to 96. Finally, the spectral component at 0. 105-fS is located in the 10'11 spectral bin

of Figure 4.17. This bin coincides with a scale of 2.25. Therefore, this final component,

possessing the greatest power, provides an indication in Figure 4.18b throughout the entire range

of samples.

In working %vith the d. trous algorithm, one significant disadvantage arises. Specifically.

reconstruction of a sequence decomposed by the d trous method is extremely difficult. The
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wavelet basis functions used in the a trous decomposition comprise frames in the sense described

in Chapter I1. Consequently, in order to reconstruct a sequence decomposed by the a trous

method, it is necessary to construct biorthogonal set of bases. Daubechies outlined the details of

construction the dual of a specified basis in [6].

Apart from the difficult of inversion, the A trous algorithm. as implemented b% Shensa.

suffers from the disadvantage of long filter lengths. In the example under consideration, in ci4-Jr

to satisfy a negligibility threshold (4.92) of 5 × 10'-, a filter length of 81 was necessary. Each of

the four voices was implemented with a filter of equal length. Furthermore, the wavelet filter

coefficients are complex. Complex filter coefficients increase the computational burden.

Furthermore, from Figure 4. 17 it is evident that the spectral decomposition resulting from the Ai

trous method is anything but power complementary. Partitiu,,,.:g in a manner similar to that of

Figure 4.17 results in exaggeration of spectral content near the peaks of the voices and subdued

indications between the peaks. In favor of the A trous algorithm, however, is the attainability or

arbitrarily high resolution with smooth, regular filters. (It will be observed in the next section

that filters sometimes suffer from lack of regularity.)

E. MULTIRESOLUTION ALGORITHMS FROM CASCADED FILTER BANKS

Section C of this chapter outlined the equivalence between Mallat's multiresolution

analysis and a structure constructed from cascaded, two-channel, perfect reconstruction QNIF

banks. This section explores, in a more general manner, implementation of multiresolution

analysis structures constructed from cascades of filter banks of arbitrary numbers of channels

For each method, the issues of division of the frequency spectrum and invertibility will be
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considered. Spectral properties of the structures are of interest to obtain an understanding of the

frequency resolution attainable with techniques under consideration. Invertibility is important

because, in general, one good test of a decomposition technique is the accuracy of its

reconstruction.

a0n HM 1 bl(n)

%(z) -2 a3(n)

Figure 4.19--B'ock diagram of three-stage, two-chanmel multiresolution structure constructed from cascaded QMF

analysis banks. Algorithm represented is equivalent to Mallat's algonthm ,4.53).

A block diagram of the most basic multiresolution algorithm is depicted in Figure 4.19.

The process of Figure 4.19 is exactly equivalent to that of (4.53), Mallat's multiresolution

decomposition. At each stage, the approximation sequence ak(n) is filtered with high-pass and

low-pass half-band filters. The output of each filter is then dilated. The low-frequency channel

decimator output--or the approximation channel, conforming to the terminology of

multiresolution theory is then applied to another stage, The high-frequency, or detail, channel is

employed for transmission, in the case of a communication system, or is applied to a detector in

one possible case of a digital signal processing application.
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If, hypothetically, the filter for each channel in the structure depicted in Figure 4.9 is an

ideal filter, the DFT filter output sequence for the approximation sequence bandlimited to

L2([-ir/2,i2]), applying concepts from Chapter III. The DFT of the detail sequence is likewise

bandlimited to L2([ir/2, 3-n/2]). Decimation of each sequence dilates its spectrum so that the

approximation and detail sequence spectra are members of L2([-It, it]) and L2([,, 2-n]),

respectively. Consequently, the time-domain decimation and resultant frequency-domain

dilation result, at each stage, in the examination of a smaller segment of the frequency spectrum.

"• 0.8

In~

0.4

"0.2

0 001 5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Oigital frequency (multiple of F' )
S

Figure 4-20--Partitioning of the frequency spectrum resulting from five-stage decomposition structure of Figure
4.19 Structure was implemented using, for the approximation and detail channels, the filters corresponding to

Daubechies' orthonormal scaling function and wavelet, respectively, supported on [0, 13].

Figure 4.20 plots the spectral partitions resulting from a five-stage decomposition

structured as in Figure 4.19. The spectral divisions indicated represent those obtained using the

filters for Daubechies' orthonormal scaling function and wavelet on [0, 13]. The logarithmic

contraction of succeeding spectral bins constitute the multiresolution analysis. The spectral

partitioning of Figure 4.20 compares favorably to that obtained by the Laplacian pyramid in
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Figure 4. 10. However, the localization provided by the partitioning of the frequency spectrum

plotted in Figure 4.17 obtained by the d trous is obviously vastly superior to that of 4.20. For

some applications, the resolution of Figure 4,20 may be inadequate while the computational

burden necessary to obtain the results of Figture 4.17 is excessive.

Brooks [33], in experimentation with signal processing techniques for ultra-wideband

radar systems, observed that a dichotomous spectral decomposition, as is performed by the

structure of Figure 4.19, provided poorer results than the A trous algorithm. One possible reason

for the disparity between the performance of the two techniques considered was the inadequacy

of the spectral resolution provided by Mallat's algorithm. Consequently, consideration of a way

in which to improve the spectral resolution of multiresolution techniques without incurring the

disadvantages of the i trous algorithm is justified.

t-d,2

1061

%(-Z•~ -$2_j- (n)

Figure 4-21--Multiresolution structure obtained by cascading detail channel of Figure 4.20 with a thu'ee-channel
QMF-ty, p filter bank.

Figure 4.21 represents one possible approach to improving the results of Figure 4.20,

Applying, at each stage, the detail channel to the input of the analysis bank of another filter bank

produces a signal decomposition method capable of obtaining arbitrary precision. The study of
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filter bank design is an advanced field and techniques for the design of perfect reconstruction

filter banks of an arbitrary number of cLann-els are available employing lattice structures [I1 or

through cosine modulation of a properly designed prototype filter [34].

Figure 4.21 presents one example of a single stage of a structure using subchannel

decomposition of the detail channel at each stage. In Figui, 4.21, at each stage, the spectral bin

corresponding to the detail sequence is further subdivided ir.,o three subchannels. Figure 4.22

illustrates the spectral partitioning which results from a four-stage structure constructed from

stages indicated by Figure 4.21. The improvement in spectral resolution is obvious. The density

of groups of subchannels increases as digital frequency approaches ?ero. However, the overall

structure does not provide the logarithmic spacing of spectral bins observed for the a trous

decomposition as indicated in Figure 4.17.

3 .8- V

""0.4

S0.2

0
0 0.05 0.1 0,15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Digital frequency (multiple of f

Figure 4.22--Partitioning of frequency spectrum resulting from four-stage multiresolution structure constructed
from stages appearing in Figure 4.22. Structure was implemented using, for the approximation and detail
channels, the filters corresponding to Daubechies' orthonormal scaling function and wavelet. respecti'el,,

supported on [0. 13]. Subchannel filter banks were implemented with three-channel filter bank coefficients are
presented m [I I].

107



Subchannel decomposition can be performed using either perfect reconstruction QMF

banks or pseudo-QMF banks--filter banks which do not strictly satisfy the perfect reconstruction

criteria. Similarly, to the extent in which the pseudo-QMF bank deviates from the power

complementary property, accurate representation in scale will be forfeited.

d (2(n)

ak, (nn')

131

Figure 4.23--Structure constructed from cascade of three-channel filter banks.

An additional method to improve spectral resolution of multiresolution techniques was

suggested by Gopinath and Burrus [35]. Employing the term multiplicityM 'wavelet rran.sflrn.

Gopinath and Barrus suggested the concept illustrated in Figure 4.23 as a generalization of the

dichotomous structure proposed by Mallat. In the frequency domain, spectral resolution

increases as a base three logarithm instead of the base two logarithmic contraction observed in

frequency spectra resulting from Mallat-type structures, Furthermore, structures similar to those

of Figure 4.3 can be cascaded from filter banks of any number of channels.
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Figure 4.24--Spectral partitioning resulting from four-stage decomposition constructed of structures as in Figure

4.23. The filters indicated are 14 point pseudo-QMF filters designed in [11].

Figure 4.24 illustrates the partitioning of the frequency spectrum which results from a

a)

b)

Figure 4.25--Illustration of equivalence of two-stage decomposition-reconstruction structure with one-stage
st;-uctu-e with delays in each channel.

In reconstructing sequences decomposed by cascaded filter banks, the issue of delay must

be addressed. As was discussed within the context of multirate system theory in Chapter II. a

perfect reconstruction filter bank possesses an equivalent system transfer function which is equal

to a delay. In decomposition-reconstruction structure "a" of Figure 4,25, the detail channel

contains a delay L, representing, for example, a reconstruction filter bank used, as in Figure
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4.21, to decompose the detail sequence into subchannels. The lower branch, the approximation

channel, contains a two-channel bank corresponding to the next stage of decomposition. In the

equivalent structure in structure "b" of Figure 4.25, the follow-on stage filter bank has been

converted to the delay LK with which it is equivalent if it is a perfect reconstruction filter bank.

Obviously, the delay in each channel must be equal. Otherwise, the approximation and detail

sequences will be shifted with respect to each other and accurate reconstruction will not occur.

Consequently, although a subchannel decomposition filter bank is not indicated in the detail

channel of the final decomposition stage in Figure 4.25, if one were installed, an artificial delay

in the approximation channel would be necessary.

a)

b)

Figure 4.26--Ilustation of equivalent structures resulting from transmission of delay occurring in approximation
and detail channels of a filter bank mulstiresolution structure.

Figure 4.26 illustrates the total equivalent delay of a QMF decomposition-reconstructure

containing a delay in each channel. In each channel a delay L, (equal to the order of the filters
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used for decomposition into subchannels) is indicated which could include combinations of

delays of subchannel decomposition-recon struction structures, delays from subsequent

decomposition-reconstruction stages and artificial delays introduced to resynchronize channel

sequences. Since, by (3.9), [z Ls]. z~ L, the total effective delay after the expander in each

channel will be twice the delay of the channel prior to the expander. This equivalence is

indicated by the transition from structure "a" of Figure 4.26 to structure "b." Furthermore, since

the application of FIR filter and application of a delay represent linear operations, the two

operations are also commutative. Consequently, as indicated in structure "c" of Figure 4.26b,

the total, effective delay of the channel after the decimator can be moved beyond the summation

point. Since a sequence reconstructed by a perfect reconstruction QMF bank is simply a delayed

version of the original sequence, the total equivalent delay of structure "a" in Figure 4.26 is

simply the sum of L, (the order of the filters used for decomposition into primary channelsi, the

delay of the decomposition-reconstruction QMF bank structure itself, and 2.L, the contribution

from all of the delays introduced into the decomposed channels.

To obtain a characterization of the total delay introduced into each channel of a

multiresolution analysis constructed from cascaded filter banks, consider aprain structure "a" in

Figure 4.25 as it would be implemented to reconstruct a sequence decomposed by M stages of

the structure depicted in Figure 4.21. First, if a delay of Lp, resulting from a subchannel

decomposition-reconstruction structure, is introduced into the detail channel at stage M, of the

final stage of decomposition, then an artificial delay of L, must be introduced into the

approximation channel of the same stage to resynchronize the detail and approximation channel
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sequences. Consequently, the total delay introduced into the detail and approximation stages

consists of the sum of two contributions. The first source includes the delay L, resulting from

decomposition-reconstruction structure corresponding to the decomposition of the detail

sequence into subchannels and its corresponding equal delay in the approximation channel.

Secondly, .. delay LC corresponding to the primary channel decomposition-reconstructure at

stage M must be considered.

Continuing to the next stage, recomlbining the approximation and detail sequences from

stage M- I to form the stage M-2 approximation sequence adds a delay of LC to the doubled

equivalent delay present into the approximation sequence of stage M- 1. As a result, the total

delay present in the approximation sequence at stage M - 2 is equal to 4L, -- 2.L- + LC* It is

therefore necessary to introduce a delay of 4-L, + L4 + L,. to the detail sequence of stage NI - 2

to resynchronize that stages approximation and detail sequences.

aM~n) A

A

Figure 4.27--Block diagram ýndicating structure necessary to obtain full expansion by channel from a sequence
decomposed by M stages of the structure depicted in Figure 4.23. Thie values for L1 and L, are defined in 14_94aý

and (4.94b). respectively.
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To obtain the structure required to obtain a full expansion by channel of the decomposed

sequence by M stages of the structure presented in Figure 4.2 1, inductively the line of reasoning

begun in Figures 4.25 and 4.26 must be pursued. The consequences of this induction appear in

Figure 4.27. First, some arbitrary stage m, the subchannel sequence dmk(n) must first be

expanded and then filtered by the synthesis filter I1(z) corresponding to its subchannel.

Artificial delays from two sources must then be introduced in order to re-synchronize the

resultant stage m detail sequence component with its corresponding approximation sequence.

The first delay L, compensates for the artificial delay of L, introduced into the approximation

sequence at stage M and is evaluated as

L, = (2 M'-M l)'L,. (4.94a)

The second artificial delay contribution results from the primary approximation channel

decomposition-reconstruction performed at all subsequent stages m+l through ,I and is

represented by a geometric series:

M-M-I

L2 =L•, Z 2P. (4.94bp•,O

Next, the detail sequence component must be expanded and passed once through the

primary detail channel synthesis filter. To complete the re-expansion, the sequence is subjected

to m-I iterations of expansion followed by filtering with the primary approximation channel

synthesis filter. The final stage approximation sequence is fully expanded--as indicated by the

second structure of Figure 4.27--by M iterations of expansion followed by filtering with the

primary approximation channel synthesis filter. Application of the steps described by Figure
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4.27 provides for a decomposed sequence a representation analogous to that depicted in Figure

4.11 for the Laplacian pyramid. The reconstructed sequence is simply the sum of all of the

expanded channels or, if applicable, subchannels.

,... 0 "
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ON@ 0-.Four cmar.-.e •, zero s€ocharnei
C @.- Three channel, zero subcnanne1

o Tw cvaneel, four suDcinanrel
- .a cnannel, three .charnre

Oh g. rTio channel, two subchdanneL
.. T~c channel, zero subchannel

-250 .: .

-30

2 3 4 5 6 7 8

Number of Staqes of Oecompositicn

Figure 4.28a--Plots of reconstruction error versus nunber of decomposition stages for various decomposition

stages applied to 256-point, lowpass test sequence produced by (4.74a).

The accuracy of sequence reconrtruction is dependent on the number of stages of

decomposition performed and on the quality of the filter bank. For severil stages of

decomposition, small errors resulting from filter imperfections, such as roundoff error,

accumulate and corrupt the reconstruction process. To obtain optimum results, filter banks

which strictly satisfy the perfect reconstruction criteria should be used. In using pseudo-QMF

filter banks which do not satisfy the perfect reconstruction, poorer results will be obtained.

These concepts are illustrated by Figures 4.28a and 4.28b. Figure 4.28a indicates reconstruction

errors for multiresolution structures applied to the test sequence generated using (4.74a).

The lowpass test sequence from (4.74a) was constructed from low-frequency harmo'nics.

From the spectral partition diagrams presented for the various multiresolution structures
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considered, the spectral resolution of the multiresolution structures was greatest in the lower

regions of the frequency spectrum. In Figure 4.28b, the reconstruction error for the highpass test

sequence (4.74b) is presented. Illustrating results for the test sequence generated by (4-.74b),

Figure 4.28b illustrates multiresolution technique performance for signals constructed from

frequency components located in the upper half of the frequency spectrum below the Nyquist

frequency.

"-5 ...* .... . . .... -..

M o-Four channel, zero sunc,•annei

-100 aThree channel, zero suDchanrel
o-Tw channel, four Suchbnnel
-. Twm channel, three suochannel

C3 v--,-T,, channel, two sutchannei
-158.-Tio channel, zero suocnannel

LO -2W

C

,a• . .... . . . . . . . ... . . . . . . . . .Oj ..........

-250
1 2 3 4 5 7 9

Number of Stages of Oecornposition

Figure 4.28b--Plots of reconstruction error versus nunber of decomposition stages for various decomposition

stages applied to 256-point test sequence produced by (4.74b).

In the case of both test sequences, the lowest reconstruction errors resulted from

multiresolution structures comprised strictly of perfect reconstruction filter banks. In

two-channel, zero-subchannel and two-channel, two-subchannel structures, the filters used were

all obtained from Daubechies' orthonormal wavelet and scaling function supported on [0, 13].

Consequently, the multiresolution analyses obtained were equivalent to true, orthogonal

decompositions.
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For the two-channel, three-subchannel, the two-channel, four-subchannel and the

three-channel, zero-subchannel cases, the structures all entailed the use of pseudo-QMF banks

which did not strictly satisfy the perfect reconstruction critena. The structures constructed using

the three-channel filter banks employed the set of filters designed by Vaidyanathan in [I 1]. The

four-channel filter bank used a set of 30-point, fourth-band filters designed by spectral

factorization of filters obtained by the McClellan Parks algorithm. The design process for the

four-channel filter bank will be outlined in Chapter V. Because of failure to satisfy the perfect

reconstruction property, structures using these methods consistently produced greater

reconstruction error.
TABLE 4.1--PARTITION OF SPECTRUM RESULTING FROM EIGHT-STAGE, TWO-CHANNEL,.

ZERO-SUBCHANNEL MULTIRESOLUTION DECOMPOSITION.

Spectral bin Spectral bin
Decomposition stage Scale lower bound Upper bound

Stage 1 Detail 0 2-f, 2".fs

Stage 2 Detail I 23-f, 2_ -f,
Stage 3 Detail 2 2.f 23 f -

Stage 4 Detail 3 2-.fs 2_-4._f,

Stage 5 Detail 4 2-6f, 2f,

Stage 6 Detail 5 2' f, 2_f,___

Stage 7 Detail 6 28.f,. 27 -f,

Stage 8 Detail 7 2 94f 2-8._f_

Stage 8 Approximation 8 1 0 2"-4f, ,

Inductively extending the results of the spectral partition diagram (4.20) corresponding to

this structure provides insight into the relationship between scale and frequency. The first

spectral bin, which coincides with scale zero in Figure 4.29a, constrains the region of the

frequency spectrum from 0.5-f, to 0.25-f,. A scale of unity coincides with the region of the
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frequency spectrum from 0.25-f, to 0.125-f, the region corresponding to the signal detail

extracted during the first stage of decomposition.. Inductively, therefore, a scale of m,

corresponding to the signal detail extracted at the m~h stage of decomposition, coincides with the

spectral bin partitioning the region from 2-' 'f, to 2 - '-ff. This subdivision is tabulated in

Table 4.1.

"2 0 .... ... . . . . . ...""' -'....

15 ... ...... .......... .......
1 0 ....- ." ....... ... .... . . .. :

a• 5 ...... ."...:"-

--" }5 • ....... ....

-25!..: .i.-- :
<• .-- :': -- ""••_.-25

Figure 4.29a--Surface plot of decomposition of lowpass test sequence (4.74a) using eight-stage, two-channel,
zero-subchannel multiresolution structure constructed ftom cascaded QMF banks. The filters were obtained from

Daubechies' orthononnal wavelet and scaling function supported on [0, 13].

Figures 4.29a and 4.29b demonstrate the full expansion by channel of decomposition of

sequences (4.74a) and (4.74b), respectively. In Figure 4.29a, the depiction of the lowpass

sequence (4.74a), the resolution of scale of the decomposition at low-frequencies is apparent.

The component of sequence (4.74a) located at digital frequency 2-in9/512 (= 0.018.f) fal!s in
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the range of 2 5.f. to 2"6 .f, which corresponds to a scale of four. In Figure 4.29a, a series of

circular contours centered on the scale axis for m = 4 can be observed from approximately

samples 32 to 216. Similarly, the spectral component located at digital frequency 2,1Z.3 1!512

(= 0.06-fs) lies in the region 2- 5.f, to 2 "f, corresponding to a scale of m = 3. As a non-integer

power of two, the location 0.06-f, = 2.4,05 which is very near the boundary between adjacent

scales two and three. Consequently, much of the component's energy appears spread between

scales two and three. The component at digital frequency iv256 (=0.002-f) exists at the

boundary between scales six and seven. The indication of this component, which completes

only a single oscillation during the duration of the test sequence, appears spread between the two

scales.

Figure 4.29b presents the two-channel, zero-subchannel decomposition of highpass test

sequence (4.74b). The relative coarseness of the multiresolution decomposition in the higher

regions of the frequency spectrum becomes apparent in Figure 4.29b. Because of the rapid

variations with respect to time, the contour plot in Figure 4.29b is difficult to read. However,

information can be gained from examining the surface plot. Again, comparing the plot with the

spectral partition diagram, the spectral component of (4.74b) which lies at a digital frequency of

2-i•-27/512 (= 0.105-f) falls within the region of 2- 3 to 2 4 corresponding to a scale of m = 2 as

plotted in Figure 4.29b. The scale of m = 2 corresponds to the range of peaks with highest

amplitude. The spectral component located at 2-.c.55/256 (= 0.215-fQ) is contained within the

region 2 2 to 2" 3 which corresponds to a scale of m = I as plotted in Figure 4.29b. The
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indication of this component is recognizable in the second range of peaks between the highest at

m = 2 and the range that runs along the edge of the surface plot. Finally, the spectral component

at digital frequency 2ir 113/256 (= 0G44.f) lies within the region of 2- to 2.2 and is indicated in

the range of peaks at scale m = 0 which runs along the edge of the surface plot. For the highpass

test sequence, each of the harmonic components can be resolved. However, in the case of the

highest frequency components, the spectral separation is approximately 0.2f. Furthermore,

each of the three spectral components fell within adjacent spectral bins. Consequently, the

example demonstrates the maximum resolution for a two-channel, zero-subchannel

multiresolution structure.

Si.... .... ...... ..... .2
25 2 0 ---- ..... .. ..... l

1 0.. .... ..... . . .... .

W" -5 .....

- 0 .. . ...... :. -. ~ 5

-25 ::::i .- ' : 20

Figure 4,29b--Surface plot of decomposition of highpass test sequence (4.74b) using eight-stage. two-chanlel.
zero-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from

Daubechies' orthonormal wavelet and scaling function supported on [0. 13].
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<,

Figure 4,30a--Surface plot of decomposition of lowpass test sequence (4 .74a) using eight-stage, two-channel,
three-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthonormal wavelet and scaling function supported on [0, 13]. The subchannel decomposition was

performed with pseudo-QMF filters designed in [ 1i].

Figures 4.30a and 4.30b provide two-channel, three-channel decompositions of the

lowpass test sequence (4 .74a) and the highpass test sequence (4.74b), respectively. From the

spectral partition diagram for this structure, Figure 4.22, each spectral region 2 "im-2) to "' _

is further subdivided into three subregions. For the general case, a multiresolution structure

constructed to divide, at each stage, the detail sequence into M subchannels, at the m-' stage of

decomposition, the k subchannel corresponds to the region of spectrum contained in the interval

R 4+2 +.-l . (2-(m+) -2--(+2)) f,(2-(-2) + -~.(2--'-+' - 2 -m+2~))f]

Because of the increase in the density of spectral subdivision afforded by decomposition

of the lowpass test sequence into subchannels, the time-scale localization presented in Figure
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4 .30a provides time-scale localization which is improved over results presented in Figure 4.29a.

In particular. the component at digital frequency 2.rt3 1.,'512 clearly localized at a scale of three

instead of being partially spread over adjacent scales as occurred in Figure 4.29a. Similarly, the

component at digital frequency 2ir-9/'5 12, which roughly corresponds to a dig;tal frequency of,

2's.tf, can be recognized to exist primarily between scales of four and five. The component

characterized by the lowest frequency is still recognizable in the vicinity of scales six and seven.

However, an indication appears between scales of five and six which cannot be accounted for

based on the components known to exist in the test sequence. This unaccounted for component

may have appeared as a result of spreading from the component at scale six.

212

5 ... .. ..... ..
... .. .. .. f5.. . . .. . . . .

50 .. ... . ... .... ". . .. . . .

-10I ... : ...... . ; ..
5 " ........" .. "....

Figure 4.30b..Surface plot of decomposition of highpass test sequence (4-74b) using eight-stage, two-chatinet,
thlree-subchannei multiresolution -,tructure constructed from cascaded QMIF banks. The filters were obtained from
Daubechies' orhononnal wavelet and scaling function supported on [0, 13]. The subcharuiel decompositon was

performed with pseudo-QMF filters designed in [I I].
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In the case of two-channel, three-subchannel decomposition, the spectral components of

the highpass test sequence (4.74b) have also become more distinct. In the plot of Figure 4.30b,

because the spectral content of the test sequence has been localized in specific subchannels and

excluded from others, resulting in an indication of three separate components. Consequently, the

irdication provided by the contour plot constitutes a more useful display than the contour plot

for Figure 4.29a.

15
.. . .. ... '

0 .. ... .... i ': :i . . . . .!. . . ..
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Figure 4.3la--Surface plot of decomposition of lowpass test sequence (4.7.4a) using eight-stage. two-channel.
four-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthonorrnal wavelet and scaling function supported on [0, 13]. The subchannel decomposition %has
oerformed with pseudo-QMF filters obtained from spectral factorization of fourth-band filters designed by the

McClellan-Parks method.

Examining Figure 4.3 la, a plot of a two-channel, four-subchannel decomposition of

lowpass test sequence (4.74a), increasing structural complexity from three to four subchannels

provides sorne improvement in localization for the test sequence presented. The component of
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digital frequency 2.tt-9/512 appearing between scales four and five have become distinct from

the indication unaccounted for between scales five and six. Consequently, it is likely that the

false indication resulted from spillover of energy from the component at 2,2 512. Between

scales five and six, the resoution of the decomposition using four subchannels becomes

0.25. 2 -"-f, (=f 1 5 12). Beneath those scales the resolution continues to increase logarithrrmically in

base two. It appears, therefore, as though the four-subchannel decomposition may provide

excessive resolution for the test sequence demonstrated. In general, the principal benefits of

decomposing sequence into subchannels occurs in the higher regions of the frequency spectrum.

2 5 . .- - - ........ .......... • •

2 . . .. . . ...... .... .. .. .... ! . .: .-
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Figure 4.31b--Surface plot of decomposition of highpass test sequence (4.74b) using eight-stage, twvo-channel.
four-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained ftrm
Daubechies' orthonormal wavelet and scaling function supported on [0. 13]_ The subchannel decomposition was

performed with pseudo-QMF filters obtained from spectral factonzation of fourth-band filters designed by the
McClellan-Parks method.
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Figure 4.3 l b further illustrates the principal afforded by subchannel decomposition.

Specifically, in Figure 4.3 1b, an improvement in the resolution of the upper regions of the

frequency spectrum is evident. In Figurc 4.3 lb, a plot of the two-channel, four-subchannel

decomposition of highpass test sequence (4.74b), the sequence component at digital frequency

2.ir. 113256 has been localized as distinct from scale zero. Furthermore, as compared with the

two-channel, three-subchannel plot of figure 4.30b, the test sequence component at digital

frequency 2-ir27/256 exhibits improved localization.

TABLE 4.2--PARTITION OF SPECTRUM RESULTING FROM FIVE-STAGE, THREE-CHANN-EL.
ZERO-SUBCHANNEL MULTIRESOLUTION DECOMPOSITION.

Decomposition Multiresolution Spectral bin Spectral bin
stage scale lower bound upper bound

Stage I Scale 0.0 3 f2

Scale 0.5 f/6 f,

Stage 2 Scale 1.0 fy9 fs. 6

Scale 1.5 f_/18 f' :9
Stage 3 Scale 2.0 f,/27 f, l18

Scale 2.5 f,/54 f,/27

Stage 4 Scale 3.0 f /81 fsi54S

Scale 3.5 f1162 f,'81

Stage 5 Scale 4.0 fi243 f3/162

Scale 4.5 f./486 f3/243

Scale 5.0 0 fs/486

As indicated previously, decomposition into three primary channels provides base three

logarithmic partition of the frequency spectrum. Specifically, the first stage of decomposition

divides the frequency spectrum into spectral bins covering the regions fS/ 6 to 2.f1 '6 and 2f, 6 to

3.f/6. During the second stage of decomposition, the lower third of the fiequency spectrum is
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partitioned along intervals fs.'18 to 2f; 18 and firom 2-f'.18 to 3.fi/18. At stage m, the signal

detail extracted will occupy the spectral regions ý (2.3m) to 2-f,.'(2.3m) and from 2-f,(2.3m) to

3.fsQ'2.3m). Table 4.2 presents tabulated information regarding the spectral subdivision

occurring from a three-channel, zero-subchannel multiresolution decomposition.

noo
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Figure 4.32a--Surface plot of decomposition of sequence (4.74a) using five-stage, three-channel, zero-subcharnnel
multiresolution structure constructed from cascaded QMF banks. The decomposition was performed %& ith

pseudo-QMF filters designed in [ 1].

Finally, Figures 4.32a and 4.32b present the results of three-channel, zero-subchannel

decomposition of the lowpass test sequence (4.74a) and highpass test sequence (4.74b),

respectively. Because of the base three logarithmic partitioning of the frequency spectrum,

localization of sequence spectral components in the lower portion of the frequency spectrum will

be improved over the localization resulting from a two-channel decomposition. Specifically, for
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sequence (4.74a), component at digital frequency 2-t.2.'512 is located, according to Table 4.2, in

the vicinity of the boundary between scales 4.0 and 4.5. In fact, mcst of the energy of this

component appears in the channel corresponding to scale 4.0. Similarly, the component at

2,rt-9/512 is located in the vicinity of the boundary between scales 2.5 and 3. The energy of the

appears mostly at scale 2.5. Finally, the energy of the component at digital frequency

2.;,-31/512 is indicated at scale 1.5. An unexplainable indication appears at a scale of 0.5

between samples zero and 32 and also at approximately sample 96. From Figure 4.24, the filters

from which the three-channel filter bank was constructed produced greater stopband error than

the two-channel filter bank. Consequently, energy from the sequence appears to leak, producing

less precise localization of components of the test sequence.

With regard to Figure 4.32b which presents the three-channel, zero-subchannel of the

highpass test sequence (4.74b), the structure appears to localize sequence components

approximately as well as the two-channel, zero subchannel. Comparing the two-channel,

zero-subchannel frequency partition diagram Figure 4.20 with the corresponding diagram Figure

4.24 for the three-channel, zero-subchannel structure, the two methods provide very similar

resolution in the upper regions of the frequency spectrum. Specifically, the three-channel

structure divides the spectral region between f12 and f16 into two channels while the

two-channel structure divides the region between f12 and fJ4 into two channels. This similarity

is reflected in the Figure 4.32b. The component at digital frequency 2.irt27'256 appears as the

largest range of peaks at a scale of two. The component at digital frequency 2.rx. 113/256 is
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indicated at a scale of zero along the edge of the surface. The indication of the component at

2.i,55/256, however, is less well localized. Indications of this final component appear to be

present at scales of 0.5 and 1.0.
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Figure 4.32b--Surface plot of decomposition of highpass test sequence (4.74b) using five-stage. three-chaimel,
zero-subchannel multiresolution structure constructed from cascaded QMF banks. The decomposition %&as

performed with pseudo-QMF filters designed in [l1].

Finally, the three-channel structure demonstrated in Figure 4.32a presents a noteworthy

phenomenon. The surface in the higher scale (lower frequency) regions possesses a jagged

texture. When the surface resulting from expansion by a filter is characterized by rapid

variations such as are shown in Figure 4.32a, the filter is said to lack regularity. The appearance

of this jagged quality is noteworthy because it occurs in the high-scale channels containing the

slowly varying components. For the the two-channel structures, the surfaces in the regions of
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higher scales presented relatively smooth appearances. The non-regular surface observed in

Figure 4.32a increases the difficult in reading of the surface plot. The issue of regularity will be

addressed again in Chapter V.

To provide an overall assessment of the three-channel structure, it affords greater

resolution at higher scales (lower frequencies) without incurring the increase in structure

complexity involved in performing decomposition into subchannels. Compared to the

two-channel, zero-subchannel structure, the structure provided somewhat improved resolution.

However, the performance in the high-frequency regions is not as great. Consequently, included

among the issues in deciding whether to employ three channels or two-channels with

subchannels is whether resolution at higher frequencies is critical.
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V. BASIS FUNCTIONS AND FILTERS FOR MULTIRESOLUTION

DECOMPOSITION

A. INTRODUCTION

Chapter IV developed the theory of multiresolution decomposition and demonstrated its

equivalence to the cascading of QMF bank structures described in Chapter IllI. In Chapter IV,

the wavelets and scaling functions used for multiresolution signal decomposition were addressed

only the most abstract sense. In the present chapter the nature of these functions will be

addressed in greater detail. Section B outlines some of the basic concepts of the theory of

two-scale difference equations, the class of equations from which wavelets and scaling functions

were, in Chapter IV, shown to be derived. In Section C, some of the properties of Daubechies'

orthonormal wavelets and scaling functions will be considered. Finally, Section D will return to

a filter bank perspective for the study of multiresolution decompositions. Some basics of the

theory of perfect reconstruction and pseudo-QMF bank filters will be addressed.

It must be noted that a number of approaches exist for the construction of wavelets and

scaling functions which will not be addressed in the present study. One of the earliest methoCS

which has subsequently become relatively well-developed is to construct wavelet and scaling

function filters from polynomial splines [36, 37]. In the construction of wavelets from splines. a

polynomial spline is used for the scaling function. Since polynomial splines of non-zero order

are not orthogonal with respect to integer translation, the scaling function family constitutes a

frame in the sense described in Chapter 2. The biorthogonal basis functions which complement

the polynomial splines to complete the frame can be constructed from, among other methods,
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using recursive (IIR) filtering techniques. Finally, the design of wavelets has been approached

from an optimization theory perspective, as well [38].

B. TWO-SCALE DIFFERENCE EQUATIONS

In equation (4.23) (repeated here for convenience), it was shown that scalingz functions

represent the solutions to two-scale difference equations:

0(-L = K) - k (u - k).

Before attempting to solve (5.1), it is first useful to consider some of its properties. The

development which follows makes the assumption that 0 is a real function. However, the results

can easily be generalized to complex functions as well. First, integrating each side of(5.1) over

its region of support produces [27]

7-.'f(.) du= Zh(k) JfO(u-k) du. 521
"k

Applying the changes of variables v = w'2 and w = u -k to the appropriate sides of 5.2) results in

J 4(v) dv = Z h(k). -jO(w) dw. 5.3,

k

Now, each side of (5.3) contains a common factor off O(u) du, which, if it is non-zero, can be

cancelled on both sides of the equation resulting in

7- h(k) = 1. (5.4)
k

Two properties have now been specified for the families of scaling functions which

represent solutions to two-scale equations. The first is (5.4) which indicates that the filter whose
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impulse response is h(k) possess a DC gain of unity- The second, which was necessary to obtain

(5.4) requires that

fOtu)duO. 550

In fact, if the objective is to construct orthonormal basis functions, it is desirable to specify that

J o(u) du -- 1.

If the condition is imposed that the family 'O(u - k }k constitutes an orthonormal

basis, then another interesting property for h(k) can be obtained. First, the change of variables t

= 2u is made for (5.1) resulting in

o(t) = 2 .- h~k). -0 2 .t - k), (5.6}
k

Now, if is orthonormal with respect to integer translation, then f O¢t -k) Q(t -j) dt = 8j k where

6 is Kronecker's delta function. Furthermore, f 0(2-t -k) O(-2.t -j) dt = 0 ý. 2 also holds.

Consequently, evaluation of the projection of integer translates of o onto each other yields

f'O(t -m) O(t -n) dt =4.-Y-Y-h(k).-h(').- f (2.-(t -m)- )p(2.- t -n) -k) dt. 57
k j 

)

Applying the change of variables u = 2.(t - m) to (5.7) produces

f 0(t-m). O(t-n) dt=2.Y- h(k). hj).J" 0(2. u-j). 0(u+2. (m-n)-k) dr. •5 8
k I

Next, applying the consequences of the assumption of orthonormality to both sides of (5.8).

results in

8M.n = 2. -I h(k).- h(j). -6.k-2 (m-n) • 59
k j

Finally, by the summation sifting property of the Kronecker delta function,
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5mn., = 2. 1 h(k)- h(k-2- (mr-n)). (510)

Equation (5. 10) provides the basis for at least two conclusions. First, for the case when

mr=n,

S~ (5.11)Y_ h 2(k ) = --
k

In other words, if the two-scale difference equation solution Q is orthonormal with respect to

integer translation, then the sum of the squares of the coefficients of the corresponding

generating filter is one half.

A second interpretation, made by Vetterli [25], state that the impulse response h(k) of the

generating filter is orthogonal respect to even translates of itself. This is equivalent to another

interpretation. Define the sequence g(n) from the convolution of h(n) with its own time

reversal h(n):

g(n)=2. 2 h(k) h(n-k). 5. 12)
k

If g(n) is defined in this manner, then (5.10) is equivalent to the expression

gj 2(n) = g(2"n) = S,. (5.13)

Now, (5.13) is equivalent to (4.78). Therefore, the filter g(n) is an . trous filter in the sense

described by Shensa [31] or a half-band filter in the sense described by Mintzer [32].

Furthermore, (5.13) requires that the length of h(k) be an even integer [25]. If the length of h

were an odd integer L, then g(L - 1) = 2.h(0).h(L-l) # 0. and (5.13) would not hold. Finally, the

evaluating the Z-transform of (5.12) results in

G(z) = H(z) -I(z) = H(z). H(l/z). (5.14)
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By (5.14), H(z) is simply a spectral factor of a half-band filter. This concept will be employed

later in Section D of this chapter within the context of designing filters for QMF banks.

Solving for scaling equations given an appropriate filter can be performed in either the

time domain or in the Fourier domain. The Fourier-domain solution begins with Fourier

transformation of(5.1), which was shown in (4.36b) to produce an expression equivalent to

Q())) = H.e'7). (5.15)

By induction, (5.15) produces [27]

003o) = 0(0). - ' H(eJ"k) (5.16a)
k-I

Now, if the family of scaling functions ¢ is orthonormal, then f O(u) du = I which is equivalent

to 9(0) = 1. Therefore, (5.16a) becomes

(CO)= F1 H(eJ 02'). (5.16b)
k=1

The Fourier transform of the scaling function ¢ is simply the infinite product of progressively

more dilated versions of the Discrete Fourier Transform (DFT) of the generating filter h k .

Moreover, as the product index k tends towards infinity, the DFT term H(eJ'2k) on the

right-hand side of(5.16b) becomes infinitely spread out in the Fourier domain. The Fourier

transform of 4, therefore, has an infinite region of support which indicates the possibility of

finite support in the time domain. Compact support of the scaling function 4 is highly desirable

since, because of how h(k) was defined in equation (4.23), only a compactly supported scaling

function will produce a finite impulse response filter.
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To solve the scaling function in the time domain, it is first convenient to absorb the

factor of two on the right hand side of(5.6) into the filter coefficients by defining h(,)(k) =

2-h(k). Consequently, an equivalent form for (5.6) becomes

0(t) = I h,:,(k) • Q(2 t - k). (5.17a)
k

The time-domain solution of (5.17) begins by solving for values of the function 0 at integer

points in its domain [39]. Consequently, the equation to be solved becomes

O(n) = I h(,,(k) • 0(2 n - k). (5.17b)
k

Now, if the scaling function O is strictly supported on the region [0, 21 - 1] and its generating

filter h(k) is of length 2.L - I for some inter L, then (5.17b) can be expressed in matrix form as

0(0) h( 2)(0) 0 0 ... 0 0(0)
h(2)(2) h(2)(1) h(2)(0) .0001) = QM.01

0 h(2)(2 L- I) h(2)(2 L-2) h(2)(2.L-3)(2. - 1)p(2. L - 1)0 0 0 h(2)(2 L- 1)

(5.18)

It is obvious that (5.18) is simply an eigenvalue problem. The vector containing the values of

the scaling function 0 for integer arguments is simply the eigenvector of a unit eigenvalue for the

double-right-shift matrix of filter coefficients in (5.18).

Now that the value of the scaling function 4 has been solved for integer arguments. the

next step is to rewrite (5.17b) in a form that will yield half-integer values.

0(2) = Zh (2)(k) • O(n - k). (5.18)
2 k
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Equation (5.18) is obviously a simple convolution, nevertheless, insight is gained from

expressing it in matrix form:

0(0) 0 0

0(1) 0 0

0( ]) 0(2) 0(0) h,.,() |
2( )•" "' tl0) (5.19)

0(2-L-1) 0(2•L-3) 0(0)
p(.----) J0 0(2-L-2) .. Q(l) h(2)(2L-1)

0 0 ... 0(2 L-L 1)

From (5.19), a pattern begins to emerge. Extended (5.18) to the general dyadic case produces

(5.20)"2 k M

Finally, adopting the vector notation

O M 0 2 - 42 .1 2 . 1 ) ) T

*(m) =( 2m 2" 2) )

h h= (h2)(0) ht2)(1) .. h(2)(2"-L -l) "

and

2m 0 ... 0

0m-) 0 ... 0

P( ..

0

•(l2m 2m

I-n, I- -0 -) .• 0

~(M) 2=

(2"L-11.2m ( 'L-2)'2=

(2121-I )2I

0( ~2 2=,, .).. M

0 0 ... ( 2L-I)'2"
213
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equation (5.20) can be expressed in a more compact form:

(rnIml = O•m) h. (5.21a)

Similarly, if the vector 1it(m' for the wavelet function y(t) is defined in a manner analogous to

S(in I for the scaling function 0(t) and the wavelet generating filter g in in a manner analogous to

the scaling function generating filter h, then, as a consequence of (4.51 c), the values of Y(t) can

be obtained at dyadic points from

•m•-)- ,(5.21 b)

.9.

• 9.6

"9.2

aj

> -0.2

-9.4 919 57

Sample sequence number, n

Figure 5. la--Function generated by four-stage dyadic expansion of a 20-point lowpass filter with cutoff frequency

of 0.375.f,. The fimction represents an example of a function which lacks regularity.

The recursive operations described by (5.2 1 a) and (5.2 1 b) represent dyadic expansions of

the functions 0(t) and W(t). At each iteration the discrete sequences characterized by the vectors

in)• and *"'" are expanded by a factor of two and then convolved with filters h(n) and g(n),

respectively, whose coefficients are contained in h and g. After m iterations, the values of the
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of the scaling function 0(t) and wavelet y(t) will be known at all points t, in region of support

such that t n = n2

A final issue which must be addressed within the scope of two-scale difference equations

is the topic of regularity. Regulariry is defined to be the degree to which a recursielv expanded

function, such as a two-scale difference equation, converges to a continuous smooth function

[26]. The conditions under which the regularity of a function can be guaranteed of themselves

constitute grounds for an extensive study. However, one apparent example of a requirement for

regularity was observed during experimentation performed during the course of the present

study. For regularity, it is necessary that, for the filter to be expanded, the DFT exist primarily

within the lower half of the frequency spectrum below the Nyquist frequency. Figures 5.la and

5. 1 b show two examples of the dyadic expansion of two candidate filters for the generation of a

scaling function. Both filters were designed by performing spectral factorization of lowpass

filters designed using the window method [ 12]. For the first filter the cutoff frequency was

selected as 0.375-f, and the second filter was assigned a cutoff frequency of 0.25.f,. As can be

seen in Figure 5. la, the function possesses an erratic appearance. As the bandwidth of the

candidate function generating filter increases, the generated function becomes less smooth and

more and more erratic.

On the other hand, Figure 5. lb shows a function generated through dyadic expansion of a

filter designed with exactly the same specifications except that the cutoff frequency was

specified as 0.25f,. The plot of the function generated by the second filter displays significantly
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greater smoothness. Figure 5. lb represents an example of a function which, as far as can be

determined from the plot, possesses the quality of regularity.

� 2.2

e.2

-2.4

-2.6
2 5 5a2

Samp!e . equece , ,

Figure 5. lb--Ftnction generated by four-stage dyadic expaision of a 20-point lowpass filter with cutoff frequency
of 0.51, The function represents an example of a fuiction which possesses regularity

C. DAUBECHIES' FAMILY OF ORTHONORMAL WAVELETS

Ingrid Daubechies of Bell Laboratories made a landmark contribution to the field of

multiresolution analysis when, in 1988, she published a mathematical paper on orthonormal

wavelets [21]. Aside from providing a general overview of the progress which during recent

years had occurred within the field of wavelets, Daubechies' paper described the construction of

a class of functions which possessed many of the most desirable aspects of wavelet functions.

The functions were specified in terms of their generating filters. Even-length filters from length

four to 20 were tabulated in the paper. Each of the filters satisfied (5.4) and (5.11).

Furthermore, they each maximized the number of zeros on the unit circle at z = -1, a condition

which ensures maximum regularity [261. In this section plots of two wavelet-scaling function
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pairs will be presented, and one will be examined more thoroughly from the perspective of

implementation of the multiresolution structures from Chapter IV.

:.5

-- avelet, 4

//

0..
- 1 i . . . •, '

a 9.5 1 1.5 2 2.5 3

Time, t

Figure 5.2a--Superimposed plots of Daubechies' orthonormal wavelet and scaling function on (0, 3]. Plots were

generated by four-stage dyadic expansion of corresponding filter listed in (21].

0.40.2
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-1.

Figure 5.2b--Polar plot of zero locations for generating filter for Daubechies' orthonormal wavelet and scaling
function supported on [0, 31.
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-2
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Figure 5.3--Two-channel, two-subchammel multiresolution decomposition of 256-point 1owpass test sequence
(4.74a). Decomposition was performed using generating filter for Daubechies' orthonormal basis function

supported on [0, 31.

Perhaps the most famous of Daubechies' orthonormal scaling function-wavelet pair is

plotted in Figure 5.2a. The functions are generated from a four-point filter and are supported on

[0, 31. As can be inferred from viewing the plots, the smoothness of these functions is marginal.

Figure 5.2b provides a polar plot of the zeros of the generating filter. Of its three poles, two fall

on the unit circle. Finally, as indicated in Chapter IV, the wavelet transform, which essentially

consists of the detail function (4.33), is comprised of a plot of weighted, shifted versions of the

wavelet. Consequently, it is expected that the texture of a surface plot of a wavelet

decomposition should reflect the shape of the wavelet from which it is constructed. Figure 5.3

supports this expectation. In particular, the peaks in the which appear at higher scales reflect the

shape of the wavelet function plotted in Figure 5.2.
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Figure 5.4--Superimposed plots of Daubechies' orthononnal wavelet and scaling function on (0. 13] Plots were
generated by four-stage dyadic expansion of corresponding filter listed in [21]
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Figure 5.5--Polar plot of zero locations for generating filter for Daubechies' orthonormal wavelet and scahng
function supported on (0, 13].

Figure 5.4 presents superimposed plots of Daubechies' orthonormal basis function and

scaling function supported on [0, 13]. This pair was used extensively throughout Section IV.E

to illustrate the performance of multiresolution decomposition techniques. The zeros of the
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generating filter are plotted in Figure 5.5. Of the 13 zeros of the generating filter's

characteristic polynomial, seven occur at the location z = -1.

1. 4E-012

-2 V 1p "G .. t(n)-(- 2 E-012

0.2 2E-013

-'.2 * -2E-213

"-6.4 V -4E-013

-0.6 ".E--13
Sto 5 2 25

Satple sequence number, n

Figure 5. 6--Time-domain demonstration of performance of QMF bank constructed from generating filter for
Daubechies' orthonormal wavelet and scaling function on [0, 13]. Left-hand axis indicates equivalent impulse

response while right-hand axis indicates deviation t(n) - 5(n - N, from ideal perfect reconstruction
performance.

In Section IV.E, multiresolution decomposition techniques were addressed from the filter

bank perspective. In Chapter III, the degree to which specific examples of filter banks satisfied

the perfect reconstruction criterion and the power complementary property was demonstrated.

The question, therefore, arises as to the degree to which the generating filters for Daubechies'

orthonormal wavelets and scaling functions satisfy the perfect reconstruction and power

complementary properties. Figures 5.6 and 5.7 illustrate the performance of these functions

employing the same plots used in Chapter III. Figure 5.6 presents a plot analogous to Figure

3.14. Upon comparing Figure 5.7 with Figure 3.14, it is apparent that Daubechies' generating

function provides vastly superior performance for filter bank applications. The filter bank

demonstrated in Figure 3.14 deviated from the ideal response of a perfect delay by 2x 10'
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Daubechies' 14-point generating filter deviates from an perfect delay by 1.4x 10"'1. This

represents six orders of magnitude in performance improvement over the time-domain

performance of the QMF bank considered in Section II+C.

Figure 5.7 indicates similar results for the frequency-domain performance of a QMF

bank constructed from Daubechies' 14-point generating filter. The desirability of a

power-complementary pair of analysis and synthesis filters was addressed in Chapter III. The

QMF bank of Figure 3.15 deviates from being a perfectly power complementary pair by 10"3 dB.

A QMF bank constructed from Daubechies' 14-point generating function deviates from being a

perfect power complementary pair by 1.2x 10."1 dB. This represents eight orders of magnitude in

improvement. Consequently, Daubechies' generating function for wavelets and scaling functions

supported on [0, 14] provide for outstanding QMF bank performance conforming very closely to

the power complimentary and perfect reconstruction properties.

48 . * p .E-1Z

-9GE -. _

-r- -8 ." . -6E2-912 ~ -'.

, -9 . -1 .2E-01 I

/ -

-16 . -2.4E-01I
aB .93 9.1 9.15 0.2 9.25 9.3 0.-5 9.4 0.45 , .5

Frequency (multiple cf F )
S

Figure .7--Demonstration of the degree to which generating filter for Daubechies' orthonorrr al wavelet and
scaling function on [0, 13] produces a power complementary pair for QMF bank purposes. The left-bar. ! axis

indicates the frequency responses for the filter and its modulated complement. The right-hand axis indicates the
degree to which the filter pair fonrs a power complementary set.
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D. DESIGN OF FILTERS FOR QMF BANKS

In the final Section of this chapter, procedures for the design of filters for filter bank

applications will be examined. The steps for the design of a filter set for a two-channel QMF

bank will be outlined. After that, the process uf a filter design for a four-channel pseudo-QIF

bank--a filter bank which only approximately satisfies the perfect reconstruction and power

complementary properties--will be outlined. Procedures for the design of perfect reconstruction

banks of an arbitrary number of channels exist [ 11, 34., but will not be addressed in the present

study.

To construct a two-channel filter bank with real-coefficient filters which possesses the

perfect reconstruction property, it is necessary, as was shown by (3.20a). that the Z-transforms

of the synthesis and analysis filters, both of order N, for a given channel k be related by [13j

Fk(z) z" 1 -Hk'( I/z').

Equation (5.22) is equivalent to the notion that impulse response of the synthesis filter is equal

to the time reversal of the impulse response for the analysis filter. Additionally, from (3 19). the

equivalent transfer response T(z) of the filter bank structure must, to satisfy the perfect

reconstruction criterion, be of the form

T(z) =-L.[Fo(z).Ho(z) + F,(z).H,(z)] = (523

For convenience, an equivalent transfer response Gk(z) for the branch of the filter bank

corresponding to each channel can be defined:

Gk(z) = + Hk(z) Fk(z). (5.24)

144



Now, assume that Gk(z) represents the transfer function for a half-band filter. If Gk(z)

satisfies the half-band filter property in the sense described by Mintzer [321, then the impulse

response gk(n) corresponding to Gk(z) satisfies [1 3]

(gk),,(n) = N. n (5,25

where N represents the orders of the filters hk(n) and f,(n). Therefore, by (5.25), the only

non-zero, even-numbered element of the impulse response of g,(n) is the sample g,(N).

Continuing, the objective is to satisfy (5.23), or equivalently,

T(z) = G0(z) + GI(z) =Z (5.26)

One way to satisfy (5.26) is to specify that the odd-numbered elements of g1(n) each be of the

opposite sign, or

g,(2.n + 1) = -go(2n + 1). (5.27a)

Because of (5.25), (5.27a) is equivalent to

g,(n) = (-1)"'go(n). (5.27b)

But, (5.27b) is equivalent to

G1 (z) = Go(-z). (5.27c)

From the preceding development, it may be inferred that Hk(z) and Fk(z) are

equal-ordered spectral factors of a halt'band filter Gk(z). Furthermore, g,(n) is simply a

modulated version of go(n). Therefore, the frequency response G,(e& ') consists simply of the

frequency response of Go(e ý) shifted in the frequency domain by x. Finally, since Gk(z) is a
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polynomial with two equal-ordered spectral factors which are simply the reversals of each other,

certain constraints on the locations of the zeros of Gk(z) arise. First, for each zero z, of Gk(Z) on

the real axis corresponding to Hk(z), there must be a reciprocal zero l/Zq on the real axis

corresponding to Fk(z). Secondly, since it has been specified that the filter impulse responses

hk(n) and fk(n) be strictly real, the zeros of Gk(z) must occur in complex-conjugate pairs.

Furthermore, for every zero zq located inside the unit circle corresponding to Hk(z), there must

be a corresponding reciprocal zero l/zq corresponding to Fk(z) located outside the unit circle.

Consequently, all zeros not on the unit circle or the real axis must occur in complex conjugate

quadruples. Finally, in order for Hk(z) and Fk(z) to be of equal order, for each

complex-conjugate pair of zeros zp and zq located on the unit circle corresponding to Hk(z), an

identical set corresponding to Fk(z) must occur in the exact same location. In other words, the

zeros on the unit circle for Gk(z) must occur as double zeros. Consequently, G,(z) must be a

filter with a strictly real, non-zero, symmetric, zero-phase filter.

The requirements for the locations of the zeros for Gk(z) suggest a design technique for

filters for perfect reconstruction filter banks. The first step is to design a zero-phase, symmetric

half-band, lowpass filter Go(z). This may be accomplished by any standard method such as the

McClellan-Parks routine or by the window methcd [12]. Such a filter will be symmetric and

will satisfy the half-band filter criterion (5.25). In order for Go(z) to be strictly non-zero, the

maximum stopband ripple eR must next be measured. If this ripple eR is added to the central
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element of the filter impulse response go(n), the result will be an impulse response of a modified

filter

goR(n) = g,)(n) + ER' 8 (n - N) (5.28a)

with a corresponding transfer function

GOR(Z) = G0(z) + ER' (5.28b)

Because of the addition of the term e. the frequency response of GOR(z) will be strictly non-zero.

0.5 Q

0.4

0.3 d

0.2

-0.2

-0.3

0 5 tL 15 20 25 -2

Discrete time, n

Figure 5.8--Impulse response of 30-point, lowpass filter designed for QMF bank.

The next step requires the rooting of GOR(Z). The zeros of GOR(Z) must be grouped into

three subsets: zeros located inside of the unit circle, zeros located on the unit circle, and zeros

located outside of the unit circle. The zeros inside of the unit circle belong strictly to H0(z) and

the zeros outside of the unit circle belong strictly to Fo(z). The zeros on the unit circle should all

be double zeros occurring in sets of complex conjugate pairs. One set of each double complex

conjugate pairs belongs to Ho(z) while the other belongs to Fo(z). If the zeros corresponding to

147



Ho(z) are re-expanded into a polynomial, the coefficients of the result should be strictly real and

belong to ho(n).

As an example, a 30-point QMF filter was designed whose impulse response is plotted in

Figure 5.8. The halfband filter was generated from applying a Kaiser window to a 59-point sinc

function

go(n) = ,(_ n)

After adding the peak stopband error ER to impulse response element go(30), the corresponding

polynomial was rooted and zeros grouped as was described above, resulting in a polynomial

whose coefficients represent the impulse response ho(n) of a QMF-bank lowpass analysis filter.
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Figure 5,9--Time-domain demonstration of performance of QMF bank constructed from the 30-point lowpass
filter designed by spectral factorization of a half-band filter produced by the window method. Left-hand axis
indicates equivalent impulse response while right-hand axis indicates deviation t(n) - 5(n - N.,) from ideal

perfect reconstruction performance.
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Figure 5.10--Demonstration of the degree to which 30-point lowpass filter designed by spectral factonzation of a
half-band filter produced by the window method produces a power complementary pair for QMF bank purposes.
The left-hand axis indicates the frequency responses for the filter and its modulated complement. The right-hand

axis indicates the degree to which the filter pair deviates from a power complementary set.

Figures 5.9 and 5.10 indicate the results of application to the filter the analysis methods

demonstrated in Chapter III for filter banks. Figure 5.9 plots the equivalent transfer response of

a filter bank constructed from ho(n), and its deviation from the ideal response of an ideal delay.

As can be seen from Figure 5.9, this method works quite effectively. The peak deviation from

an ideal delay was less than 3x 10" . This result compares favorably with the response for the

generating filter for Daubechies' wavelets examined earlier. The power complementary

properties are demonstrated in Figure 5.10. This filter did not quite perform as well as the

Daubechies' wavelet generating filter performed. The peak deviation from a response for a

power complementary pair was approximately 6x l0"9 compared with 1.2 x 10-" for the

Daubechies filter. This result is also slightly inferior to the performance of Daubechies' wavelet

generating function by roughly two orders of magnitude, but still significantly superior to the

QMF bank filters considered in Chapter 1II.
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Finally, within the context of a study addressing wavelet transforms the question arises as

to the use of perfect reconstruction QMF filters for generating wavelets. First of all, the filter

impulse response h0(n) does not strictly satisfy (5.11). Specifically,

Zh2(k-) - I-;+ 7.5 x 10-".
k 2

Consequently, any scaling functions or wavelets generated by h0(n) would not be orthonormal.

Additionally, if a two-scale difference equation for ho(n) is set up in the form of(5.18), the

nearest eigenvalue to unity for the double-right-shift matrix of coefficients of h0(n) is 1.0052.

As a result, only an approximate system of a two-scale difference equation can be constructed

from h0(n). Based on the preceding two measures it may be concluded that although, as was
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Figure 5. 1 1--Plots of "pseudo-:caling function" and "pseudo-wavelet" generated from four-stage dyadic expansion

of 30-point tOter designed fromn spectral factorization of a half-band filter.

shown in Chapter IV, wavclet decompositions are exactly equivalent to structures of cascaded,

perfect reconstruction QM4F banks, the converse is not true. In fact, in the present example, the

perfect reconstruction filter bank only approximately satisfies the properties described for
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orthonormal wavelet decompositions. Nevertheless, if these issues are ignored and a dyadic

expansion of h0( n) is performed, the resultant functions, after four iterations, appear as plotted in

5.11. The functions possess obvious smoothness and present appearances similar to those of

Daubechies' wavelets.

To generate a filter bank for a four-subchannel multiresolution decomposition, a

pseudo-QMF bank was designed using a spectral factorization technique similar to that used for

the preceding example. The strategy was to approximate the power complementary property.

Using the McClellan-Parks algorithm, two filters h0(n) and h1(n) were designed whose

passbands covered the regions [0, n/"4] and [irl4, irI2], respectively. The upper half of the

frequency spectrum below the Nyquist frequency was covered by modulating the first two

filters:

h2(n) = (-t)n -h,(n)

and

h3(n) = (_1)n ho(n).

The design of the first two filters involved an iterative process in which, at each stage, the

closeness of the filter set to the power complementary process was checked. At each step. the

sum of the frequency responses was adjusted by modifying the boundaries to the passband and

stopband for each filter. Tables 5.1a-c document the iterations. Each column of Tables 5. Ia and

5.1b indicates the fr.quency at which the desired gain in the top row is to be met for the filter to

be factorized spectrally. Table 5. lc indicates, at each iteration, the peak deviation in the

transition bands between each filter. Based on the deviation in the transition bands between
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h0(n) and h,(n) and between h2(n) and h,(n), the filter indicated by h,(n) was not modified after

the third iteration. 2ight iterations were necessary to obtain acceptable results for the transition

band between h,(n) and h.(r).

TABLE 5. IA--RECORD OF ITLRATIVE ADJUSTMENTS TO PASSBAND AND STOPBAND FREQUENCY
BOUNDARIES IN DESIGN OF FIRST FILTER H.,(.N FOR FOUR-CHANNEL, PSEUDO- MF BANK

Target Gain 1 1 10"8 10"1

Frequency .. ... .
Iteration 1 0 X/8 5-1n,16 ir

Iteration2 0 3.it/16 5-rn/16 it

Iteration 3 0 21.7/128 5ir 16 j t

TABLE 5. IB-RECORD OF ITERATIVE ADJUSTMENTS TO PASSBAND AND STOPBAND FREQUENCY
BOUNDARIES IN DESIGN OF SECOND FILTER H,(N) FOR FOUR-CHANNEL. PSEUDO-QMF BANK.

Target Gain 10"9 I 1 10"8 10-

Frequency

Iteration 1 0 3-n/16 5.ri/16 7. w 16 9.ir/16 j i

Iteration 2 0 5.n/32 5.n/16 7. i/16 19-1032 i

Iteration 3 0 19.ir/128 21 -ir64 27.it'64 19.-,r32 "r

Iteration 4 0 39.x/256 41- W/128 26.n/64 37-rt!64 11 C-

Iteration 5 0 39.r/256 83.n/256 53.it/128 75-nr/128 4t

Iteration 6 0 39.rI256 83.n/256 .105./256 151.nr/256 It

Iteration 7 0 39.rt256 83irt/256 52ir/128 151-ir/256 It

Iteration 8 0 39,rJ256 83-it/256 103-it/256 151-t1256 yj

Upon review of Table 5.l c and of Figures 5.13 and 5.14 it becomes obvious that the

performance obtained from the four-channel filter bank is nowhere near what was obtained by

any filterbank considered at any other time during this study. The peak delay of the equivalent

impulse response for the filter bank was of the order of magnitude 5 x 10•3 . Furthermore, the
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peak deviation from the power complementary standard could only be reduced to tenths of

decibels.

TABLE 5. IC--TRANSITION BAND DEVIATION FROM POWER COMPLEMENTARY, BY ITERATION.
FOR DESIGN OF FOUR-CHANNEL PSEUDO-QMF FILTER BANK.

Peak deviation in transition
bands between h0(n) and h,(n) Peak deviation in transition
and between h,(n) and h,(n) band between h[(n) and h,(n)

Iteration I ExcessiveI Excessive

Iteration 2 0,22 0.38

Iteration 3 0.07 0.23

Iteration 4 0.08 0.2

Iteration 5 0.02 0.2

Iteration 6 0.02 0.08

Iteration 7 0.02 0.06

Iteration 8 0.02 0.03

a ,-a -h (n i

0 . "
0.2

D r te n

* -0.,,* ,

-' • I " 0--0'
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Figure 5.12--Impulse responses h0(n) and h (n) of filters designed by spectral factorization of fourth-band filters
designed using McClellan-Parks algorithm
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Figure 5.13--Time-domain demonstration of performance of four-ciannel QMF bank constructed from filters
designed from spectral factonzation of fourth-band McClellan-Parks filters. Left-hand axis indicates equivalent

impulse response while right-hand axis indicates deviation t(n) - S(n - N,,t•) from ideal perfect reconstruction

performance.
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Figure 5.14--De-ionstration of the degree to which four-channel, pseudo-QM.F bank designed by spectral
factorization of a McClellan-Parks fourth-band filters produces a power complementary pair for QMF bank

purposes. The left-hand axis indicates the frequency responses for the filter ard its modulated complement The
right-hand axis indicates the degree to which the filter pair deviates from a power complementary set.
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VI. EVALUATION OF MULTIRESOLUTION TECHNIQUES FOR

DETECTION APPLICATIONS

A. INTRODUCTION

In this chapter, additional performance characteristics of the multiresolution structures

developed in Chapter IV will be examined within the context of evaluation of suitability for

detection applications. In Section B, the computational efficiency of multiresolution structures

will be considered. In the Section C, receiver operating characteristics will be plotted for

various multiresolution structures applied to the test sequences generated by (4.74b) and (4.74a).

Finally, Section D will demonstrate resolution of scale within the context of steady-state

harmonics and chirped signals.

The basis for evaluation of multiresolution performance will be the spectrogram, one of

the most commonly used techniques for detection and spectral estimation. Figures 6. I a and

6. lb present the spectrogram decomposition of the two 256-point test sequences generated by

(4.74a) and (4.74b), respectively. The plots were generated by plotting the frequency spectrum

below the Nyquist fr-quency for a sequence windowed with a 128-point Hanning window

shifted in increments of two samples. This representation was selected because of its frequency

resolution and because it presents a similar number of points compared to the multiresolution

decompositions presented in Chapter IV.

In Figure 6. la, the lack of frequency resolution in the extreme lower range of the

frequency spectrum is apparent. For lowpass test sequence (4.74a), the spectral components at
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digital frequencies 2-nt2/512 and 2"mc9/512 are not clearly resolved. The component at

2.n-2/5 12, which appears at spectral bin location 0.5, because of its relatively greater power,

spreads into adjacent spectral bins. Consequently the component at 2.r.9/5 12, which coincides

with spectrogram bin 2.25, is partially masked by leakage from the component at 2-r2/512. The

only indication of the component at 2-it.9/512 is evident on the leading edge of the surface plot.

................. ............... ........
." .... ... .. . ....... .

5 3 .-1... ... . ...... .

.4. .... .. ... ..-. ...... i"• . . : - ... . ..... :
_ • . . . .. . .. : .. ..:.. . . .. . . ..... ..... . . ....

3 ...... ..... ......--

"-3 ........ • :. .. .-:,.. .. .. • ,

Figure 6. Ja--Spectograin representation of Iowpass test sequence (4.74a). The plot was generated using a
128-point Hanning window shifted in increments of two samples. Only the half of the frequency spectrum below

the Nyquist frequency is plotted.

On the other hand, Figure 6. lb provides an obvious indication of the advantages of

constant spectral bin density: The three harmonics of (4.74a) are quite easily resolved. The

plots have the additional advantage of a smoother presentation. Spectrogram decompositions
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smooth out the phase information while multiresolution presentations indicate individual

oscillation cycles of the sequences decomposed.

2 1 :: : .. :: . ... .. ... ........ .... ... --..-

: . . ... .. ........ .. .. . 4
Ba.•c.. ... ...i ,: ......;,,• ..

Figure 6. lb--Spectogram representation of highpass test sequence (4.74b). The plot was generated using, a
128-point Hanming window shifted in increments of two sanples. Only the half of the frequency spectrum belo,•

the Nyquist frequency is plotted.

B. COMPUTATIONAL EFFICIENCY OF SIGNAL .NALYSIS TECHNIQUES

Computational efficiency comprises one of the principal advantages ascribed to Fast

Fourier Transform (FFT) methods of digital signal processing. The required number of

multiplications provides a common number for evaluating digital processing techniques. In the

case of FFT decomposition of a sequence of length M, the required number of complex

multiplications N. is expressed by

= M log2(Mvl). i6.1 I)
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Furthermore, application of the window sequence to each segment of a sequence of length L

requires M multiplications. Finally, if the window is shifted in increments of k, then the FFT

will be applied to ' + I sequences. Therefore, the total number of multiplications necessary

to generate a windowed FFT decomposition is

N× = (-- + 1IM2 log,(M). (6.2a)

In general, the multiplications performed in FFT decomposition represent complex

multiplications. Evaluation of a complex multiplication requires four real multiplications and

two additions. Consequently, assuming that real data and window sequences are used, the

number of multiplications for the FFT decomposition is actually

N× = 2 ( Lk"+ 1) M' 10g2(M). (6.2b)

For each of the decompositions plotted in Figures 6.1a and 6.lb, the sequence length L = 256,

and the window length M = 128. Furthermore, the Window was shifted in increments ofk = 2

samples. Consequently, using (6.2b), the number of real multiplications N. required to perform

the decomposition was N, = 14,909,0440.

For the multiresolution decompositions of Chapter IV, Section E, FFT-type radix-2

algorithms are not available. Consequently, each stage of decomposition requires the

convolution of two real sequences. Therefore, for decomposition of sequences of length L.,

using filters of length M, for decomposition into two primary channels, the required number of

real multiplications for the first stage is

N, = 2-MC'Lo.
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After convolution by the analysis filters of each stage, the approximation and detail sequences

are both decimated, providing sequences of length

Ll- 2

By induction, the length L of the approximation and detail sequences at stage p is given by the

gzeometric series

LP= -. (M,- 1) -Y-L"2P q=l 2

= .* -+ (MC - l) (1 -(I ) -L6.3)

-- (L 0 -(M - I)) + (Me - I)

Since, at each stage, each of two sequences is convolved with a filter of length M,, the total

number of multiplications N, necessary to perform a K-stage multiresolution decomposition into

primary channels

K-I
NC=2-Me I LPp=O

Substitution of (6.3) into (6.4) produces

NC=2-K.(M,-1)+2.M*- Lo-(M,-i) I I )6.5)

Finally, evaluating the geometric series in (6.5) produces

N=2 K- (M -1) +4M- (Lo-(M (c-1) (1- ). (6.6)

Equation (6.6) covers all of the multiplications necessary to perform the decomposition into

primary channels in accordance with block diagram 4.19.
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If the primary detail channels are each to be decomposed into J subchannels using a

subchannel filter bank constructed from filter of length M5, additional computation is necessary.

First, if a sequence of length LP is convolved with a filter of length M, and subsequently

decimated by a factor of J, the length Lr'1P of the resultant sequence will be

Lr= P -(LP +M, - 1).

The number of multiplications Nr' to perform this signal reduction at stage p is expressed by

N-p'= M,'L,

which by substitution of (6.3) becomes

Nr~ = M, -~ (U) - (MC ) M - 1))

If there are a total of J subchannels per stage and a total of K stages, then the total number of

multiplications Nr required to perform all subchannel decomposition operations is evaluated as

K ip)
Nr = J. I ,r

p-l

= J.K.M,-(M,-l)4J-JM,.(L,,-(M C-l)>1(l6.7

If the decomposed sequence of length L'P is expanded by a factor of J and subsequently

convolved with a filter of length Me, the length L of the resultant sequence is expressed by

LetP)= J.Lrp'+ Ms- I LP + 21(ML - 1).

The number of multiplications Ne.p) necessary to perform this operation for J subchannels at

decomposition stage p is therefore
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Ne'p)= J-M,LeP)= J'Ms-(LP + 2-(M- I)).

Furthermore, the total number of multiplications necessary to expand all subchannel

decompositions is expressed as

K (F) K
N=J.M E ,L =JM =I • L,2P -(M•-))+(M -1)' (68)

Substituting (6.3) into (6.8) and evaluating the series produces

Ne = J.Ms'- - L0-(M -1))+(Mc-t)+2.(M 5 -l)

= J.K.M,-.((Mc-1)+2. (M,-l))+ J Nb (L, (M,:- 1)>X~ 1 (6.9)

= J*K*M,- ((M,- )+2.(M,-I 1)+JN1,. (L.).iMcl)) (I -L-)

To calculate the number of multiplications necessary to re-expand a detail component

sequence reconstructed from decomposition into subchannels, the notation Lq1 ) will be

employed to indicate the length of the sequence at a stage of interest. The superscript 'P

indicates the number of the stage of decomposition at which the detail component sequence was

extracted. The subscript q denotes the stage of reconstruction. The stages of reconstruction are

labeled in decreasing order from p-I to 0 for a component extracted at the pd, stage of

decomposition. At stage p, the length of the detail sequence, after reconstruction from

subchannel decomposition, is given by Le(P) = LP'"P. Now, upon expanding the detail sequence of

length LP'P' and convolving it with the channel synthesis filter of length MC, at stage p- 1, the

expanded sequence which is obtained has length

LP.I(P=2"LP(P) +Mc- I =2 "LP+4'(Ms- 1)+MC- 1. (6.10)
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Inductively, after q stages of decimation followed by convolution with the appropriate channel's

synthesis filters, (6.10) becomes

p-q = 2q. LP+2.(M,-I) +(MC-l)- 1 2'

2 q LP+2.(Ms-l) +(Mc-l).(2q-1) (6.11)

= 2 q- LP+2-W(Ms- 1)+(M,-l))-(M,-1)

Now, substituting LP from (6.3) into (6.11) produces

Lp-.q -- q- 1)

(6.12)

Consequently, the total number of multiplications required for a full expansion by channel of a

decomposed sequence can be evaluated by summing up the contributions from each convolution

performed in each channel. It stands to reason, that the number of multiplications Np-t'

involved in expansion of J detail component sequences (one detail component sequence for each

of J subchannels) of length Lp P), at stage p, to obtain a sequence of length L,- tp),at stage p - 1, is

indicated by

NP.p (P)= J.M .LP-l P).

Inductively, therefore, the total number of multiplications Nop) necessary to completely

expand the J decomposed sequences in channel p is obtained from

N (P) P (P)
o =J. M " . Lpq . (6.13)

q=1
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Therefore, to obtain Np), it is necessary to substitute (6.12) into (6.13) and evaluate the s, :ies,

which produces

NO" J M,[-&ILo L-(M,-&)+2ý(M,--)+2,(M,-1)] 'P1(2 1) -p J M, (M, -I)

-• J.M ." Lo-(M-I)+2. (NI%-1)+2 (M,-I)] (2P-I)-p J MI-l)

2 2 .J.-M c .- Lo - 3. (M , - 1)-2 .-(M ,- I1) + 2 J-J .M c.2 (M , - 1)+ 2 .(M ,- 1) 2

-2.J.Mc. Lo-(M:-l) -- p J Mc (M, - 1)

(6.14)

And lastly, to obtain No, the total number of multiplications to compute the full

expansion by channel, it is necessary to sum the contributions No"' from each channel. This

sum appears as

No = 2.J.K.M,* (Lo-3.(M,.-I)-2-(M 3-1))

-2.J.Mc. Lo -(M -I) z I

K
-J. MC .(Me- 1). 2 p

The first series in (6.15) are simply the geometric series evaluated previously in this

development. The last series can be solved using Bernoulli polynomials [40] which produce

K2
Sp---(.K2+K).

Substituting each of the evaluated series into (6.15) and collecting similar terms produces, for

No,
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No = 2.K.J-Mr.(Lo-3-(M -I)2.(Ms-1))

+4. J" M ,' (2. (M , - 1)+2 .( , - 1)). (2K -(6.16)

-2. J. Mc-(L,)- (M -1))(1-2-)2K

I-7.J-, M, .(M, -I,.-(K2 +K)

Equation (6.16) applies whether or not subchannel decomposition is performed. If

subchannel is not performed, then the detail sequence at each stage is decomposed into J = I

subchannels and the filter go(n) used for subchannel decomposition possesses as its impulse

response go(n) = 80. n where 80. n is Kronecker's delta function. Consequently, because of how

go(n) is defined, M,=l and, in (6.16), each of the terms in involving M, - I become zero.

TABLE 6.1--COMPARISON OF NUMBER OF MULTIPLICATIONS NECESSARY FOR MULTIRESOLUTION
AND SPECTROGP AkM SIGNAL REPRESENTATIONS,

Primary Primary
Channel Channel Subchannel Subchannel

Decomposition Re-expansion Decomposition Re-expansion Total

Two-Channel, 13,762 406,558 0 0 420,321
Zero-Subchannel I
Two-Channel, 13,762 1,544,028 9,689 15,513 1,582,902;
Two-Subchannel

Two-Channel, 13,762 2,400,378 15,572 25,62 2,455,274
Three-Subchannel

Two-Channel, 13,762 4,887,224 41,526 97,206 5,039,6344
Four-Subchannel

Spectrogram - .. .... 14.909.4401

Summarizing, there are four contributors which must be evaluated to calculate the

number of multiplications No necessary for a full channel by expansion of a decomposed

sequence. The basic decomposition, Nc, is provided by (6.6). The decomposition into
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subchannels, N, is calculated using (6.7). To re-expand subchannel decompositions. the number

of multiplications is indicated by (6.9). And finally, for the full expansion by channel, the

number of calculations is provided by (6.15). For some of the multiresolution structures

demonstrated in Section IV.E, the number of multiplications is tabulated in Table 6. 1.

In considering Table 6. 1, it must be noted that the decompositions listed do not represent

the optimum representation. In the case of the multiresolution decompositions, the essential

information about the decomposed signal is contained in the primary channel and subchannel.

The re-expansion by channel merely provides a manner of displaying the information which is

more convenient than plotting coefficients in a non-uniform lattice of the type of Figure 4.8.

I[. the case of the spectrogram, shifting a 128-point window by increments of two

samples provides what is likely excessive overlap. This degree of overlap was used in an

attempt to capture, to the greatest extent possible, the time-varying features of the test sequences

on which decomposition was performed. If, for instance, the 128-point window was shifted in

increments of 64 samples to provide for a 50% overlap, the number of multiplications N. would

be N..=688,128. This overlap, however, would provide poorer indication of the non-stationary

features of the sequences for which decomposition was performed. A 50% overlap with a

window lcngth of 128 used to decompose a sequence of length 256 would provide for three time

shifts.

With regard to the multiresolution decompositions, excluding the calculation used to

re-expand the components of deomposition, a significant advantage in computational efficiency
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is evident. Because of the factor-of-two decimation performed at each stage of decomposition,

the sequence length at each stage is one half the length of the sequence of the previous staize.

Consequently, the number of calculations necessary to perform the calculation is related to a

geometric series in one half.

C. PERFORMANCE OF DECOMPOSITIONS IN THE PRESENCE OF NOISE

Many signal processing techniques are employed with the intent of extractinu a signal

from noise in which it is embedded. The spectrogram, one of the most commonly used signal

processing tools, represents an attempt to localize spectral cumponents of a signal. If the noise

in which the signal is imbedded can be characterized as "white," possessing a flat power spectral

density, a signal which can be localized in a spectral sense will be detectable in greater noise

intensity than a signal which is not spectrally localized. Consequently, when attempting to

detect a signal by means of spectral localization, the effective signal-noise ratio can be reduced

to the ratio of signal power to the power of only the noise contained within the spectral region Ot

interest.

To detect a time-varying process, the detection process becomes a two-dimensional

problem, requiring localization in both frequency and time. Within the context of

time-frequency localization, multiresolution techniques present the potential for an alternative

method of detection. Many of the advantages of multiresolution transforms which lend those

decompositions to signal decomposition also provide the basis for extraction of embedded

signals from noise. Multiresolution transforms provide good time resolution at high frequencies

and frequency resolution at lower frequencies. Furthermore, if it is sought to detect a class of
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processes for which bandwidth is proportional to the center frequency of the process,

multiresolution techniques may provide the optimum detection technique.

If a sequence s(n) is embedded in additive, white. Gaussian noise rIln), the resultant

sequence

x(n) = s(n) -- 1(n) 16-1

will also be a Gaussian random variable. If the noise process has fl(n) a mean of zero then the

mean of the signal plus noise x(n) is indicated by

x(n) = s(n)- 6.18

Furthermore, the variance of x(n) equals the variance of 'l(n):

(6.19)

In Chapter IV it was demonstrated that decomposition of a sequence by multiresoluucn

structures constructed from cascaded perfect reconstruction quadrature mirror filter banks is

equivalent to projection of the sequence to be decomposed upon a space of orthonormal \ ectors.

Decomposition by perfect reconstruction filter banks into subchannels, furthermore. can be

interpreted as subdivision of the detail vector space W,,v using the notation from Chapter IV.

into another set of complementary set of subspaces {fWm'k)}k. If, however, the filter banks do

not satisfy the perfect reconstruction criteria, orthonormality of the equivalent projection

operation is not guaranteed.

The the wavelet coefficients {bn,. n , n Z obtained from decomposing a sequence x n)

were defined in Section IV.C as
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bm.n =(x, YImf, ). (6.20)

Now, if x(n) is a Gaussian random variable, then bin. r, will also be a Gaussian random variable.

Furthermore, if the set of basis functions { Yin. n} is orthonormal, then the wavelet coefficients

bin. n will be linearly independent. To obtain the expected value ofbm. n, substitution of (6.17)

into (6.20) produces

bi, n = (,Sn. n) + (T1in, ),(621

Assuming the Tj has a mean of zero, then the mean of the wavelet coefficient bmn, n for a signal

s(n) embedded in noise is simply the value of the wavelet coefficient evaluated in the absence of

noise.

To obtain the variance of bi,. ,, the squared mcan is first
&{bm.n}= (s, J2m.nY +'{(rl, 14. )2} 622j

The expectation on the right-hand side of (6.22) is evaluated as

E{(rl 'm.n) 2 } = el{J rl(u)rl(v)tWm.o(u) .pm.n(v) dudvi. 6.23)

The expectation operator on the right-hand side of (6.23) can be passed through the double

integral to operate on the terms nl(u).ri(v) producing

•&{T(u)'rl(v)} I = a 2'8(u - v) (6.24)

where 6(t) denotes the Dirac delta function. By the integral sifting property of the Dirac delta

function, (6.24) reduces to

N{(O, WVm.) 2 } a: T'i.(Vm.n, Wim. J = atn'. (6.25)
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The wavelet coefficients, therefore, simply comprise Gaussian random variables whose mean is

(s, Wm. ) with a variance of an-

If detection of a known sequence in the presence of noise is required, one way to generate

a decision statistic is to sum the squared magnitudes of all of the nodes in the transform space

whose powers exceed a specified threshold. In performing multiresolution decomposition of a

sequence, the essential information about a signal is contained in a linearly independent array

DJ.k of non-uniform density such as that in figure 4.8. In detecting a known sequence in the

presence of noise, it is conveniently possible to consider only the decomposition nodes in which

a significant portion of the signal energy is represented. Mathematically, given a multiresolution

decomposition represented by a lattice of points Dj k, the decision statistic can, equivalently, be

constructed which excludes nodes contained in D,, k which are negligible in value. The subset of

Di. k of which the decision statistic is comprised can be limited to those nodes whose addresses

are indicated by r

- Ž_p.max[ Djk 121. 6.26)
j. k

Figures 6.2a, 6.2b, 6.3a and 6.3b present the results for statistics constructed from all

nodes defined by (6.26) where p = 1/100. Table 6.2 indicates the mean square reconstruction

error (3.32) which results from the value selected for p. The information in Table 6.2 is

intended as an indication of the consequences incurred from considering only the nodes in D
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where c is defined by (6.26). The decision statistics for the periodogram were generated in the

same manner as for the multiresolution decompositions.

TABLE 6.2--NORMALIZED MEAN-SQUARE RECONSTRUCTION ERROR RESULTING FROM
TRUNCATED DECOMPOSITION. RECONSTRUCTION PERFORMED FROM SUBLATTICE DEFINED BY
(6.26) WITH p = 11100. EIGHT DECOMPOSITION STAGES WERE PERFORIMED IN THE TWO-CHANNEL
CASES WHILE FIVE-STAGE DECOMPOSITIONS ARE INDICATED FOR THE THREE-CHANNEL CASES

Test sequence (4.74a) Test Sequence (4.74b)

Two-channel, 0.0065 0.0121
zero-subchannel
Two-channel, 0.0121 0.0244i
two-subchannel

Two-channel, 0.0046 0.02091
three-subchannel

Two-channel, 0.0288 0.1578
four-subchannel

Three-channel, 0.01 0.01
zero-subchannel

Per iadaqr am
9 0. "" 0 Two-cmannel, four-subchannel

C) * Two-channel, three-subchannel
>* & Two-channel, two-subchannel

0.4 - To-channel, zero-suctchannel
.- Three-channel, zero-subchannel

0.2 v
CL.

a 9.1 9.2 0.3 9.4 9.5 0.6 0.7 I.S 9.9

Prcbtabititv of False Alarm

Figure 6.2a--Receiver operating characteristics for spectrogram and for various multiresolution decompositons of
low-frequency transient (4.74a) embedded in noise with a -3 dB signal-noise ratio. Characteristics generated from

500-realizations of 256-point random noise vector.

For each technique indicated, 500 realizations of a 256-point, Gaussian random vector

were generated. For each multiresolution technique reflected in Figures 6.2a and 6.2b, pnior
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generating the receiver operating characteristics, decision statistics were generated for separate

noise realizations alone. The receiver operator characteristics for noise alone consisted of

unity-slope straight lines. The decompositions were then performed for the test sequences

(4.74a) and (4.74b) with additive noise and then for the noise vector alone. The decision

statistics for the receiver operator characteristics consisted of all nodes in the composition whose

magnitudes were greater than the one-percent threshold described above.

CU

S9.8

"aj o.6 a-Tko-channel, four-subchannel
.-Tic-channel, three-suacma&nel

ý '.- Tw-channel, two-suichannel

0.4• -Toa-chanel, zero-suhchannel.• , --Three-channel, zero-subchannel

0.2

a 9.1 0,2 2.3 9.4 0.5 0.1& 2.7 0.8 a 2
Probability of Faise Alarm

Figure 6.2b--Receiver operating characteristics for spectrogram and for various multiresolution decompositions of
high-frequency transient (4.74b) embedded in noise with a -3 dB signal-noise ratio. Characteristics generated

from 500-realizations of 256-point random noise vector.

The receiver operating characteristics were, therefore, constructed from central and

non-central chi-square distributions. The sum of the squares or the selected nodes of the noise

decomposition, since they were generated from zero-mean noise, constitutes a chi-square

distribution. Summing the selected nodes of the decomposition of signal plus noise produces a

non-central chi-square distribution.

In both Figures 6.2a and 6.2b, the spectrogram provided greater robustness than the

multiresolution techniques. With the exception of the three-channel, zero-subchannel
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decomposition applied to highpass test sequence (4.74b) in -3 dB signal-noise ratio, the

differences were not, however, dramatic. Moreover, for test sequence (4.74b), the

multiresolution curves were, with the named exception, closer to the performance of the

spectrogram than for lowpass test sequence (4.74a). The greater disparity in the case of highpass

test sequence (4.74b) may be attributable to the difference in resolution between the

multiresolution and spectrogram techniques in the high-frequency regions of the spectrum.

It is interesting to observe that, in Figure 6.2a, the best results among the multiresolution

decompositions were obtained from the two-channel, zero-subchannel and two-channel,

two-subchannel algorithms. Those two algorithms were constructed strictly from

perfect-reconstruction filter banks and, therefore, produced the lowest reconstruction error.

Additionally, in the case of highpass test sequence (4.74b), the best performance was obtained

from the two-channel, three-subchannel decomposition. The two-channel, four-subchannel

decomposition provided, by a small margin, the worst of all results.

0.8

. Periodograsn
aj 0.6 a"• T -T,-channel, four-subchannel

,Two-channel, three-subchannelt• ,."':••F• '/Two-chalnnel, twe-subchannel

8.4 ]-Two-channe, zero-sutchannel

o 0.2
L.

a 6 9.1 9.2 0.3 0.4 0.5 9.6 0.7 0.8 0.9 1

Probability of False Alarm

Figure 6.3a--Receiver operating characteristics for spectrogram and for various multiresolution decompositions of
low-frequency transient (4.74b) embedded in noise with a -6 dB signal-noise ratio. Characteristics generated from

500-realizations of 256-point random noise vector.
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Figure 6. 3b--Receiver operating characteristics for spectrogram anid for various multiresolution decompositions of
high-frequency transient (4.74a) embedded in noise with a -6 dB signal-noise ratio Characteristics generated

from 500-realizations of 256-point random noise vector.

Results for a signal-noise ratio of-6 dB are presented in Figures 6.3a and 6.3b. In the

case of the lower signal-noise ratio, all of the multiresolution methods outperformed the

spectrogram by a small measure. In the case of lowpass test sequence (4.74a) the best results

were provided, as with the -3 dB signal-noise ratio test, by the two-channel, two-subchannel and

the two-channel, zero-subchannel, respectively. This trend may be related to the superior

reconstruction error provided by these techniques. In the case of highpass test signal (4.74b), on

the other hand, the best results came from the four-subchannel and three-subchannel

decompositions. This may have occurred as a result of the resolution of the decompositions.

For the low-frequency transient, (4.74a), the three-subchannel and four-subchannel may have

over-resolved the signal. For the high-frequency transient, (4.74b), the two-subchannel and

zero-subchannel decompositions may have under-resolved the signal. Consequently, in the first

case, the signal energy, for the higher resolution decompositions, may have been distributed over

a greater-than-optimum number of time-scale bins. In the second case, the lower resolutior,
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decomposition may not have sufficiently localized the signal to isolate it from the effects of the

noise.

D. DECOMPOSITION OF STEADY-STATE HARMONICS AND FM CHIRPS

- 0.5

- 0.4 -. •-

S0.3 .

.0.2

- 2.1 ..-

S.J ~~~~--Ztaoysat:: a ••

a 32 64 %a:29 2a 32 224 2

OiGcrete tiMr2, ,n

Figure 6.4a--Time-frequency plot of evolution of constituents of first 256-point test signal constructed from one
steady-state harmonic and a quadratically chirped component.
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Figure 6.4b--Time-frequency plot of evolution of constituents of second 256-point test signal constructed from

one steady-state hannonic and a quadratically chirped component.

The time-scale resolutions of multiresolution decomposition techniques were somewhat

addressed in Section V.E. However, in order to better understand the performance of these

methods, a more controlled demonstration is desirable. In this section, results will be
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demonstrated for a frequency-modulated, quadratic chirp converging to a steady-state harmonic

component. The performance if the spectrogram method will first be illustrated. Then the

results will be considered for two multiresolution techniques--the two-channel, four-subchannel

and the two-channel, three-subchannel decompositions.

Two test signals were generated for this demonstration. To illustrate the variations of

resolution of scale provided by multiresolution decompositions in different regions of the

frequency spectrum, it was desired to demonstrate the case in which the quadratic FM chirp

converges from above to a steady-state harmonic in the lower half of the frequency spectrum and

the case in which the FM chirp converges from below to a steady-state harmonic in the upper

half of the frequency spectrum. Based on the experience of Chapter IV, it is expected that, for

the first case, better resolution will be provided by the multiresolution techniques.

The form for dynamic component of the test sequences is given by

s(t)=cos(2 it .n Rft) dt)+cos(2 t. ff n) (62"

where the instantaneous frequency f(t) possesses the form of a parabola whose vertex is. in the

time-frequency plane, located at (to ff), the coordinates of the final time and frequency in the test

region. The time-frequency parabola satisfying this criterion assumes the form of

f(t) = cc.(t - ti) 2 ,+ ff. (6.28)

Evaluating the integral in the argument of the first cosine term on the right-hand side of (6-26)

produces for the phase of the chirped component

F(n)=T-. (n-t,)3-tl +ff-n. (6.29)
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To uniquely define f(t), it is necessary to specify the location of (tf, ff), the vertex of the

parabola, and the location of some other point on the curve in the time-frequency plane. If the

time to = 0 and frequency fo of the chirp at the beginning of the test sequence are specified, the

coefficient ot from (6.28) becomes
f 1-ff

c•= -w- 6.30!

Since 256-point test sequences are to be used, the final time t, = 256. It therefore remains to

specify beginning and ending frequencies.

For the first test sequence, a chirp which converges from below to a steady-state

harmonic in the upper half of the frequency spectrum below the Nyquist frequency. The

beginning and ending frequencies selected for the chirp were

-o I -f

128

and (6,3 1a)

f16

For the second test sequence in which the quadratic chirp converged from above to a steady-state

harmonic in the lower half of the frequency spectrum, the frequencies selected were

fo = - fs

and (6.3 lbi

256

The ideal, time-frequency evolution of the two test signals are plotted in Figures 4.6a and 4.6b.

respectively.

The spectrogram decompositions of the two test signals are plotted in Figures 6.5a and

6.5b for two purposes. The first reason is to verify that the desired affects were obtained in
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construction of the test sequences. The second reason for the periodograms is to provide a

standard with which the performance of the multiresolution decompositions can be compared.

The spectrogram plots were generated in a manner identical to that used in Section A of the

present chapter. The data sequences were windowed by a 128-point Hanning window which

was shifted in two-sample increments. Only the half of the frequency spectrum below the

Nyquist frequency was plotted.

, 6 ... . ...... • . . . I

S0 .02 .... . ------ 7:1 1

...... .W..-. : • • .

.00

Figure 6.5a--Spectrogram decomposition of first 256-point test sequence constructed from a steady -state
hiarmonic component and a frequency-modulated quadratic chirp. The decom position was obtained by %ki iido" iI)g

thle data sequence with a 128-point Hanniiig window shifted in increments of two samples. Only thle half of the
frequency spectrum below the Nyquist frequency is plotted.

Examining Figures 6.5a and 6.5b, the two components of each test sequence can be seen

to converge as expected. The steady-state harmonic produces a much better resolved indication

than the chirped component. This occurs because of the smearing of the chirp which results
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from the frequency shift occurring during the integration tin,, of each FFT. Both

decompositions represent the data with uniform resolution throughout the frequ,:ncy spectrum.

Consequently, the time, for both sequences, at which the components cannot be resolved is the

same for both sequences at approximately the 230L sample. Consequently tfmrn (6.28), the

spectral resolution of the spectrogram decomposition is approximately 0.0043-f.. No attempt

was made to optimize the window length with respect to resolution of the test signal

components. The 128-point window provides good frequency resolution, however because of

the long integration time, the frequency of the chirped component has shifted significantly

during each transform.

0 . g...... .. ............ ....... ...... ..

S• • 4 • ~ ~~~~.... .. ........ - . ".-.---. . ..-.. " ". .. :

HirC : : " : ' ... . .... .. .

, 0 4 ...... ......

Figure 6.5b--Spectrogram decomposition of second 256-point test sequence constructed from a steady-state
harmonic component a'id a frequency-modulated quadratic chirp. The decomposition was obtained by imdoýkin

the data sequence with a 128-point Hainning window shifted in increments of two samples. Only the half of the
frequency spectrwun below the Nyquist frequency is plotted.
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Figure 6. 6a--Two-channel. three-subchannel multiresolution decomposition of first 256-point test sequence
constructed from steady-state harmonic component and quadratic chirp. Primary channel filters were based on

Daubechies' orthonormal wavelet and scaling fimction on [G. 131. Subcharnel decomposition was perfonned vith
pseudo-QMF filter bank designed in [I I].

Examining Figures 6.5a and 6.5b, the two components of each test sequence can be seen

to converge as expected. The steady-state harmonic produces a much better resolved indication

than the chirped component. This occurs because of the smearing of the chirp which results

from the frequency shift occurring during the integration time of each FFT. Both

decompositions represent the data with uniform resolution throughout the frequency spectrum.

Consequently, the time, for both sequences, at which the components cannot be resolved is the

same for both sequences at approximately the 230h sample. Consequently, from (6.28). the

spectral resolution of the spectrogram decomposition is approximately 0.0043.f,. No attempt

was made to optimize the window length with respect to resolution of the test signal
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components. The 128-point window provides good frequency resolution, however, because of

the long integration time, the frequency of the chirped component has shifted sign ficantly

during each transform.

1 . ...... . ...

-. 5 ... ..... ,-

-2"

Figure 6. 6b--Two-channel, three-subchannel multiresolution decomposition of second 256-point test sequence
constructed from steady-state harmonic component and quadratic chirp. Primary channel filters were based on

Daubechies' orthononnal wavelet and scaling function on (0, 13]. Subchannel decomposition was performed Aith
pseudo-QMF filter bank designed in [11].

The two-channel, three-subchannel decomposition of the second test sequence is plotted

in Figure 6.6b. In the case of this plot, the chirp becomes unresolvable from the steady-state

harmonic at approximately the 230th sample. By (6.28), therefore, the frequency resolution is

approximately 0.0043.fs. This number is quite close to the figure for the spectrogram

decomposition. Furthermore, the two test sequence components become unresolvable around a

scale of four which coincides detail subchannels obtained from the fourth stage of
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decomposition. If the final frequency ft had occurted at a lower frequency, the convergence

point between the two components would have occurred in the detail subchannels of a later

decomposition stage resulting in even greater resolution.

4 .... ......... .

2 . .... .... . ... " " " 2 "

t ... . ....-. 
... . . ... "

-2 . ...... ........!- , ' Z D

Figure 6. 7a--Two-channel, four-subchannel multiresolution decomposition of first 256-point test sequence
constructed from steady-state harmonic component and quadratic chirp. Primary channel filters were based on

Daubechies' orthonormal wavelet and scaling function on [0, 13]. Subchannel decomposition was perforned with
pseudo-QMF filter designed in Chapter V.

Figures 6.6a and 6.6b present results of three-channel, four-subchannel multiresolution

decomposition of the two test sequences. In Section MyE, within the context of considering the

decomposition of transients constructed from components of varying frequencies, the

performance of the three-channel decomposition proved quite similar to that of the four-channel

decomposition. This similarity appears in the case of decomposition of the present set of test

sequences. In Figure 6.7a, the chirp and the harmonic become indistinguishable at
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approximately sample number 108. This represents a slight improvement over the

three-subchannel decomposition. In the case of Figure 6.7a, again using (6,28), the frequency

resolution appears to be approximately 0. 140-f, This represents a subtle improvement over the

performance of the three-channel decomposition. Nevertheless, in this region of the frequency

spectrum, the spectrogram continues to provide performance which is superior by a significant

margin.

-.. ...... e....... .........

§ -.2 ...... "... . ...... . .. - .
~~.. . ... • . . . .. .2". .

.b hecipan .h.hroi conerg. a aproiatl th aelcto. Thi reuti

LA -0 . .. ... .: "" • . . . "
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Figure 6. 7b--Two.-channel, four-subchannel multiresolution decomposition of second 256-point test sequence
constructed from steady-state harmnonic component and quadratic chirp. Primary channel filters were based on

Daubechies' orthonormal wavelet and scaling function on [0, 13]. Subchannel decomposition was performed " At
pseudo-QMF filter designed in Chapter V.

Finally, the performance decomposition of the second test sequence is ý'Ogtted in Figure

6.7b. The chirp and the harmonic converge at approximately the same location. This result Is

also consistent the observations of Section IV.E. When decomposing transient test signals, it
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was observed that increasing from three to four subchannels does not dramatically improve

resolution of scale at large scales. The primary from the increase is realized in the smaller

scale--or hizher frequency--regions.
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VII. CONCLUSION

A. SUMMARY OF RESULTS

When compared with conventional periodogram techniques, the multiresolution techniques

considered provided mixed results. In resolving signals at the extreme low end of the frequency

spectrum below the Nyquist frequency, the muitireýolution structures achieved their best results.

In higher frequency regions, the multiresolution proved to be on par with or inferior to the

periodogram. Overall, wavelet-like methods should be optimum for proportional bandwidth

processes. The test signals employed performed marginally at demonstrating this strength in the

upper regions of the frequency spectrum.

With respect to other performance measures, the multiresolution techniques achieved, even when

expanding fully by channel, decomposition of the test sequences with fewer calculations than the

periodogram decomposition. In fairness to the latter method, the implementation demonstrated

did not reflect any attempts to optimize the technique for the applications shown. However. in

determining the number of calculations, the computational burden necessary to convert the

resulting complex decomposition into a real tepresentation was not considered either.

The most interesting results were perhaps obtained from generation of the receiver operating

characteristics. In the relatively high (-3 dB) signal-noise ratio demonstration the periodogram

outperformed the multiresolution decomposition techniques by a small margin. However wý hen

the signal-noise ratio was decreased (-6 dB), the multiresolution decomposition achieved
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superior results. Among the multiresolution structures, the results varied with the number of

subchannels implemented and the region of the spectrum considered.

Finally, in examining the application of multiresolution decomposition to dynamic signals, the

results were entirely dependent on the region of the frequency spectrum in which the process

being detected occurred, In the higher regions of the spectrum, the ability of the multiresoluticm

techniques to resolve proximate narrowband components was poor at best. In the lower end of

the spectrum, however, good results were achieved.

B. RECOMMENDATIONS FOR FURTHER STUDY

The most obvious direction in which to continue the study of multiresolution decomposition

techniques i's to improve the quality of the filter banks used for subchannel decomposition. In

the structures implemented, decomposition into more than two subchannels was accomplished

with pseudo-QMF banks. As indicated, methods for the design of perfect reconstruction filter

banks of an arbitrary number of channels exist. The question arises as to whether results might

not improve through the use of perfect reconstruction filter banks for decomposition into

subchannels.

Further study directed toward the determination of the optimum decomposition structure may,

also be warranted. In section 6.C, within the context of generation of comparing receie'er

operator characteristics for different structures, it was suggested that structures involving the

decomposition of detail sequences into multiple subchannels may result in excessive resolution

at low frequencies. As an alternative to decomposing the detail sequence into subchannels at

each stage, limiting the performance of subchannel decomposition to the first two to three stages
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may improve results. Alternatively, varying at each stage the number of subchannels into which

the detail sequence is decomposed may also provide an option. For instance, a possible scheme

would involve decomposition of the first stage detail sequence into three subchannels, the second

stage detail sequence into two subchannels and performing no subchannel decomposition for the

detail sequence at all subsequent stages.

Additionally, the performance of multiresolution techniques for detecting dynamic signals in the

presence of noise was not addressed. The periodogram decompositions of the quadratically

chirped signals produced, through a spreading over multiple spectral bins, a significant reduction

in the level of signal indication for the dynamic signal component. The steady-state harmonic

component of the test sequence remained confined to one or two spectral bins while the dynamic

component appeared spread over 12-16 spectral bins. Consequently, the signal levels of

equal-power dynamic and steady-state components of the signal varied by several decibels. This

did not occur in the case of the multiresolution decomposition. Since, for the multiresolutior,

decomposition the dynamic signal and the steady-state components remained equally well

localized, the peaks of the dynamic signal component maintained the same approximate height

as the steady-state component. It stands to reason, therefore, that the multiresolution detector

may be less susceptible to noise when applied to the problem of a dynamic signal.

Finally, further work is merited in the determination of the optimum manner in which to present

multireiolution decompositions. For, a given signal, the essential information provided by

multiresolution techniques is contained in a non-uniform lattice of nodes representing signal

components spread, in varying degrees, over time. The method demonstrated in the present
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work was to decompose the channel into channels and subchannels and then re-expand each

channel individually in such a manner that the sum of the contents of each channel provides the

reconstructed signal. This process of presentation introduces a significant computational burden.

As was indicated in the section 6.B, the number of multiplications necessary to re-expand the

signal always exceeded the number of computations for the actual decomposition by a

significant margin. Brooks [33), on the other had presented only the coefficients of expansion in

a surface plot with varying numbers of zeros inserted between nodes of information at different

scales. This approach resulted in plots such as were presented in the present study for the a trous

algorithm. Not only does this approach provide plots from which information is relatively

difficult to extract, but as addressed in chapter 4, the issue of delays which are disparate among

channels arises. Further consideration regarding the best manner in which to present the results

of multiresolution decomposition is, therefore, merited.
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APPENDIX A DETAILS OF DEVELOPMENT OF MALLAT'S
ALGORITHM

In chapter 4, it wý,as demonstrated that, since the scaling function vector 0 m-,, n lies within the

span of the set of scaling function vectors, {f O,,, ,n ,E z any vector ,m,,. n can be represented as a

Fourier series expansion in Om. ,:

Om+l.n(t) =- "(0m*1.n' 0 r ek) m 'k(t). A .lI

Now the series coefficient, the inner product term contained in the summation (A. 1), equals, by

definition

(0m+L.n, Om.k) 1= oPm,.n(t) *m.k(t) dt. (A.2)

Substituting (4.14) into the right-hand side of (A.2) produces

f mi..n(t) 'Qr.k(t) dt = 1 2-(" 2 1 -2 f 0(2--ill t - n) 0(2-m, t - k) dt
I -) - ( -m +') - t -l ) o 2 t - k

V "- - I. A.

"'- 2-m 0( 2 2 n0(2-. t-k) dt
,12

Now, (A. 1) will become much simpler if the series coefficients can be expressed independent of

the scale index m. Application of the change of variable of integration u = 2-m-t - 2n to the

final line of (A.3) produces this result:

J Oml..(t)'om~k(t) dt -4,2) f 0 t -- k5t-

=(- f()• 0((u+2.n)-k) du IA.4)
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Since, therefor,. by A4 Om.,,(t)- 0("-7n• t - n). A.4) becomes

-k#- Jo(. )0u-(k- 2n) du -=- du j,.,u)-OJK~tluIdu

Consequently, i4.19) is proved. From (A.5- and (4.19), i420) tIloks:

S= _-._ v

Developing (4.23) from (420) involves, first, substitution of the definition (4 l -):

22 m- 2 o(-` L-1 t- -YJ n) k-2n o2' t -k) \6

Now, contained on each side of ( A.6) are factors of 2 ," and 2" , Cancellation of those

common factors produces

o,2-1 t-n) =k,,. t - k). A
k

Next, again introducing the change of variables u = 2mt - 2.n results in

Finally, translation of the index of summation k = k'- 2.n in (A.8) yields

0L')= Y (Q"' 00A~~ Q(u -k). A»
2) k I

To generate the FIR filter defined in (4.23), it must first be specified that the scaling functions o

are compactly supported. Then, integrating both sides of (A.9) over their domains results in

f du Zdu= 01.,,0,, QO fO (u-k) du. A.10)
"k 9
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Application of the changes in variables of integration u 2 and w s-u - k to A.!' produce-s

2 oiv dxv Oi , o~id% ;A,;
K

If he common ftctors of %O- vI.dv are remox ed .Fom each side ofA I I the resuit bec.rnes

_2-'r 0. ,OK' A '- -"

I1 h.k = . , 0 ) then

1. hck) = 1.
k

190



APPENDIX B .1IATLAB SOURCE CODE

The source Jwtrlih code for primary algorithms employed during this stud% are provided in this

appendix.

A. LAPLACIAN PYRAMID

"This MATLAB function performs FUlL L-CHANNEL DECOMPOSITION
"OF A SEQUENCE IN ACCORDANCE WITH THE LAPLACIAN PYRAMID
The Laplacian Pyramid algorithm is described in Michael
Unser, "An improved least squares Laplacian pyramid...

Signal Processing 27 (1992) 187-203.
I-

% The function syntax is:
P=Iappmd(s, N)

where: "s" is a vector containing the sequence
to be decomposed.

"N" is an inM*ger indicating the number
of levels of decomposition to be
performed.

"% "P' is an array whose rows contain the
sequence component corresponding
to that channel.

"The anray "P" is computed such that summing along each
column produces the reconstructed sequence.

function P=lappmd(s, N)
0/

", The decomposition kernel is defined as "w."
0I

4,

w=['4-.2 14 .4 1U4 1/4-.21;
4)*

"0", The input sequence "s" is reshaped as a row vector.

s=reshape! s, ,length(s));
d)/

The content is "s" is assigned to vector "pkl." The anray
'¼ "D" is initialized as a zero vector.
-4)

pk I =s;

Decomposition of the sequence is performed.
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0/

for k=1:N

. "pk" is reinitialized for next iteration,

pk=pk l
"The sequence is reduced using user-detined function REDUCE.

pkl =reducei pk,w\:

% "pkl" is symmetrically windowtJ to one-half the length of "pk."
0

pkl=pkl(2:lengthcpkl)-1);

% The sequence "pk1" is exp-."ded and the result assigned to "dk."
0/

dk=expand pk 1,2*w),
0

S "dk" is symmetricaliy windowed to the length of "pk."

dk=dk(3: length(dk)-2);

% The sequence "dk" is assigned to the kth row of array "D." The
¾ length of "dk" is stored in the kth element of "L."

L( k)=min( len gth(dk),length( pk));
D(k, 1:L(k))=pk( 1:L(k))-dk( 1:L(k));

end
I/)

1% The final approximation is assigned to the "k+±'th" row
%K of "D."
)/0tO

L( length(L)--I )=length(pkl);
D( length L), 1 L(length(L)))=pk1;

% The full-channel expansion is calculated from the
rows of array "D" and the results assigned to the rows

N of "P." The first row of "P" is equal to the first row
AI of "D."

0/
'0P( 1,:)=D( 1,:1);

for k=2:N+l
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i The detail from channel "k` is assigned to vector "dk."
O0

dk=D( k. 1: L( k}))

"The channel content is expanded.

for j= 2: k
dk=expand( dk,2*w),
dk=dk(3: length(dk)-2):

end

The expanded channel content is assigned to row "k" of
array "P."

tL,"

P( k, 1: length( dk))=dk;

end

B. A TROUS ALGORITHM

% This MATLAB function calculates an approximation of the

% DISCRETE WAVELET TRANSFORM of a function
% using SHENSA'S ATROUS ALGORITHM discribed in "The
0 Discrete Wavelet Transform: Wedding the A Trous and
i% Mallat Algorithms," IEEE Transactions on Signal
0 Processing, Vol. 40, No. 10, Oct. 1992.

0/

% The function syntax is:
%o W=shendwt(s, M, Pi, P_f)

%~ where: "s" represents a vector of data to be transformed
,!; I"M" is an integer indicating the number of "voices"

tu be used to cover the frequency spectrum

"W" is an array containing the coefficients of
"I, the magnitude-squared wavelet transform
0 of 'S."

4, "PI" represents the first wavelet transform scale
to be calculated

If /"P_P' represents the final wavelet transform scale

% The transform is calculated using a madulated Gaussian
% window as an analyzing wavelet. If multiple voices are
% specified, the projection of "s" on each voice will be
% represented separately. The Lagrange, a trous interpolation
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% filter used is obtained from convolving a four-point
<1 Daubechies scaling filter with itself.

function W=shendwvt( s, M, P_i, P_f)
0

% First, the argument vector "s" is conditioned. If "s" is
"0i, defined as a column vector, it is converted to a row vector

"Secondly, "s" is zeropadded to the next integer power of"2'

(rows,cols]=size( s);

if cols =

end
clear rows;clear cols;

s=zeropad(s, 1,2"ceil( log( length(s)), log( 2)));
%

% Default values are imposed for starting and ending scales if
% none are specified.

if exist('P_i') == 0
P_i1l;

end
if exist('P_f) == 0

P_f=floor log( length( s))/log(2));
end

¼% If the number of voices is not specified, a default value of
0/0 M=2 is imposed.

if exist('M') == 0
M=2;

end

0/0 Next the analyzing wavelet must be calculated. The starting
0<1 point of this process is to specify the Gaussian window rolloff

% factor "beta" in accordance with the specified number of
% voices. (Shensa (6.31)). If M= 1, the value of "beta" is defined
% as "pi/(4*sqrt(2))."

0/0if M== I

'0

beta=pi/(4*sqrt( 2));
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else

beta=1 (2*M):
I)

end

* The location of the center frequency "nu" is assigned in accordance
with Shensa (6.27).

nu=pi-sqrt( 2) *beta;
O,

o The voice scaling factor "a" is calculated using Shensa 16.32).
0/
/'0

a=2^( 1/M);
0

% The region of support for the analyzing wavelet filter "g" is
% approximated as the region for which the Gaussian window
% is greater than 10-3. Consequently, the filter impulse
% response domain is [-aA(M-1)*sqrt( 14)/beta, a"(M-l)*sqrt( 14)/beta].
% The length of "g" is represented by an odd integer.

n=-ceil(a^(M- 1 )* sqrt( 14)/beta):ceil( a^( M- 1 )*sqrt( 14)ibeta);

% The analyzing wavelet is calculated for each voice in accordance
% with Shensa (6.32). It is then normalized such that its peak
% passband frequency response is unity.
0/

for k=1:M
(0/

g(k,:)=expfj*nu*(rt(aA(k- 1)))).*exp(-(betaA2*(n/a^(k- 1)).^2)/2),

end
clear n;

%"o A variable "G" indicating the half-length of filter "g" is

%V defined.

G=ceil(length(g)/2);
l0

1% Next, the Lagrange interpolation filter is calculated. The filter
%0 is obtained from "auto-convolution" of a Daubechie four-point
V/ DWT filter.

f=[1+sqrt(3) 3+sqrt(3) 3-sqrt(3) I-sqrt(3)]/(4*sqrt(2));
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0

f--conv( f, fliplr( fi):
f=ftsqrt(2):

, % A variable "FP indicating the half-length of T' is defined.

F=ceil lengtht C) 2):

% The recursion is next executed according tc Shensa (2.12a & b).
% The sequence is filtered and decimated the first "Pi" times.
0/1

for k= I:P_i- 1

s=conv(s,f);
4/o

0

s=s(F:2:length(s)-F),

end
0/

% The output matrix "W" is initialized as a zero vector of
% dimensions identical to those of "s."
0,/
/
W'zeros( s);
U

for k=P i:P f
44/o

1 The data vector "s" is first filtered with each voice of "g."

% The squared magnitude of the result is assigned to the appropriate
% column of "W."

for n=(k-P_i)*M+1:(k-Pi+l)*M

% The row of "W" to be evaluated is initialized as zero.
11)

W(n,:)=zeros(W( 1,:));
04/

% The squared magnitude of the filter output is calculated
%• and assigned to "Wk."

Wk=sqrt(abs(conv(s,g(n-(k-P_i)*M,: ))).^2);

% The elements of Wk" are assigned to the corresponding
% columns of the row of "W" being calculated.
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W(n,2"(k-P_i):2( k-Pi): length(W) )=Wk( G: length( Vk)-G-,- I);

end
"(1

"s" is filtered with the lagrange interpolation filter and then
', decimated.
0

s=con%' s,t);
S0:

s=s( F:2:length( s)-F);
(10

end

C. MULTIRESOLUTION DECOMPOSITIONS FROM1 CASCADES OF FILTER
BANKS
(IN

% This MATLAB function performs WAVELET-LIKE DECOMPOSITION
% of a sequence using CASCADES OF QMF-TYPE FILTER BANKS
% and then performs FULL EXPANSION BY CHANNEL
/%o for each channel of decomposition. At each stage, the
1 sequence is decomposed into an approximation channel and
*% one or more detail channels. The detail channels can then
% be further decomposed into subchannels.
o The function syntax is:

% D=wavebank(s,h,N,g)
, where: "s" is a vector representing the sequence to

be decomposed
"h" is an array whose rows contain the filter

coefficients for the primary analysis filter
(X bank in order of increasing center frequency.

' "N" is an integer indicating the number of stages
of decomposition to perform.

g"g" is an array whose rows contain the filter
coefficients for the analysis filter for the
subchannel decomposition in order of

'¼ increasing center frequency. (OPTIONAL)
"/o If "g" is not specified, the function, by default, does not
¼ decompose the detail channel into subchannels.

1
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function D=wavebank(s,h,N,g)

% The dimensions of "h" and "g" (if defined) are stored in
% variables Rc, Cc, Rs, Cs, indicating the array dimensions for
0 channel and subchannel decompositions, respectively. The number

"of rows will be uwed as the decimation and expansion factors.
"Then, the analysis filter banks are defined and stored in
"F' for the primary channels and "I" for the subchannels.
"Because of the effects of decimation, the synthesis filters

.!; must be scaled by a the decimation factor.
4 )/

[Rc,Cc]-sizei h):
f=Rc*tliplr(h):
Lc=length( h)- 1:

Ls=O;
Rs= I;
if exist('g) =

[Rs, Cs]=size(g);
i=Rs*fliplr(g);
Ls=length(g)- 1;

end %if

% The sequence "s" is reshaped as a row vector.

s=reshape(s, 1 ,length(s));
t)!

% The sequence is decomposed. At each stage, the
% approximation of"s" is stored in a vector "sk."
% The next stage of decomposition is stored in "skI."

'0AsIl(Rc,:)=s;

for k=0:N- 1
SI(4

% Sequence vector s is reinitialized for next iteration.

sk=skl;
0/

% The sequence "s" is decomposed into primary channels by
%/ the function REDUCE and the result is assigned to "ski."
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for p=1:Rc
0/

0

dp=reduce sk( Rc,: ),h( Rc-p-,- 1,: ),Rc),
sk lIp, 1: length(dp))=dp;

end %p
* U1

% "ski" is truncated to its proper post-"REDUCE" length.

skl=sk( :, 1: length(dp));

% If "g" is defined, the sequence "dk I" is reduced into Rc
% subchannels. The lengths of the subchannel sequences for
% each channel are stored in a vector "L."

for p=1:Rc-I
if existCg') 1

for q=1:Rs

dq=reduce(sk l(p,:),g(Rs-q+ I,:),Rs):

L(k+l)=length(dq);
D((Rc- 1)*Rs*k+Rs*(p- I), I:L(k+ 1))=dq;

end %q
0/

else
0/'

L(k+ 1)=length(dp);
D((Rc- l)*k+p, 1 :L(k+l))=sklI(p,:);

end %/,if
end %p

end %k

keyboard

% The sequence is reconstructed using full expansion by channel.

for k=1:N

% If "g" is defined, the detail "d" for each subchannel is
% extracted from the corresponding row of "D."
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if exist('g) V =
0

for p=1 :Rc-I
for q=1:Rs

d=D( Rs*( Rc- )*(k- 1)-Rs*( p-1 )+q, I :L(k))

0 The detail is expanded with the corresponding subchannel

synthesis filter.
I 0

d=expand d,i( Rs-q-,1,: ),Rs);
'4;

% The subchannel component is expanded with the primary detail
% channel synthesis filter "f(@,:)" and then by the approximation
%X' channel synthesis filter "f( 1,:)" the number of times
o/%0 appropriate for the number of stages of decomposition performed.

d=expand(d,f(Rc+ 1 -p,:),Rc);

for m=1:k-I

d=expand(df( 1,:),Rc);

end %m
0/

% The total delay resulting from transmission through
% the system is calculated and assigned to "delay." It
% is then removed and the expanded sequence "d" is
% reintroduced to the corresponding row of array "D."
0/0

delay=sum((Rc). [0:k- I ])LcRck *Ls;
d=d(delay+ 1 :delay+length(s));
M( k)=length(d);
D( Rs*(Rc- )*(k- 1)+Rs*(p- 1)+q, I:M(k))-d;

0/

end %q
end %p

') If '"g" is not defined, the subchannel reconstruction steps
Y are bypassed. Reconstruction of the primary detail channel
% is performed.

else
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(I O

for p=1:Rc-I
d=DU Rc- t)*(k-l )+p, 1: L(k));

0'

0 The detail sequence is expanded by the primary detail channel
/ synthesis filter "f(Rc+l-p,:)" and then by the approximation

* channel synthesis filter "f(l,:)" as many times as
% appropriate for the number of stages of decomposition performed.

I)

d=expand(d,f( Rc+I-p,:),R);
.),'

for m=l:k-I
0,'
.0

d=expand(d,f( 1,:),Rc),

end %m

% The total delay resulting from transmission through
% the system is calculated and assigned to "delay." It
V0/ is then removed and the expanded sequence "d" is

% reintroduced to the corresponding row of array "D."

delay=sum((Rc).^[O:k- 1 ])*Lc;
d=d(delay+-1 :delay+length(s));
M(k)=length(d);
D((Rc- 1 )*( k- 1 )+p, 1:M( k))=d;

0/0
e%
end %p

end %if

10

'% The final approximation sequence is selected as the final
C), row of "ski."
0/

skl=skl(Rc,:);

% The final approximation signal is expanded with primary
% approximation channel synthesis filter according to the
', number of decomposition stages.

for m=l:N
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skl=expand(sk l,f( l,:),Rc):

end %m

% i The expanded approximation sequence is added as the final row
% of arta-"D.r

0% The total delay resulting from transmission through
"",, the system is calculated and assigned to "delay." It

", is then compensated and the expanded sequence "ski" is
% reintroduced to the final row of array "D."
4i/

delay=sum((Rc).A[0:N- 1 ])*Lc;
sk I =sk 1( delay-- I :delay-length( s)):
M( length( M)* I )=length(sk I):
D( Rs*( Re- 1) *N+ 1,1: M(length( M)))=sk I ;

D. PERIODOGRAM DECOMPOSITION

% This MATLAB function calculates the PERIODOGRAM SPECTRAL ESTIMATE
% for a specified input data vector. The function syntax is

S=pgram(s,w, N);

% where: "s" is the data vector to be analyzed.
"w" represents a window with which data will be windowed
"N" is an integer indicating the number of steps to

0/ shift the window for each step
(default = length(w)/2)

"S" is a periodogram-type output matrix.
4/
J0

% The argument data vector is subdivided with 50% overlap. Each
% row of the output array represents the transform of a subdivision
% of the original data vector.

function S=pgram(s,w,N);

% Check to see if "w" is defined. If "w" is not defined,
% a rectangular window of length "length(s)" is imposed as
% a default.

if exist('w') == 0
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v=ones( s);
4 .)

end

'o A default vale is imposed tfor "N"

if exist N) == 0

N=lengtht wxv 2:

end

% Convert column vector data vector arguments to row vector
% format.
0'"0

s=reshape(slength s), 1);
xv=reshape w,length(w), 1):
.0/

% "s" is zeropadded to an integer number of window lengths.

for k= 1 :( length(s)-length( w)),N+ I

r-fft( w.*s((k- 1 )*N-- 1:( k- 1)*N+length( w)));

S(:,k)=r( 1:length(w). 2).

end

4( In accordance with the definition of the periodogram, the

% periodogram magnitude is divided by the window length.

S=S length(wj;

E. DYADIC EXPANSION OF TWO-SCALE DIFFERENCE EQUATIONS
4)

0/ This function expands a two-scale, difference equation of
%'o the form
0/4, phi(x)=sum(c.k*phi(2*x-k)).
% The function syntax is
% [phi, psi]=twoscale(c,P,eigtol)

where the function arguements are:
Sc" is a coefficient vector [c_0 cI ... cN-1]

"P" is the number of dyadic points evakuatcd between
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0 each integer in the dom'1in.
"eigtol" is indicates the maximum deviation from unity

which will be tolerated in calculating the eigenvalue
corresponding to the eigenvector containing the
values of "phi" for integer arguments.
"(DEFAULT = IE-3)

"The output \ ariables are
"phi" represents the scaling function satist'ying the

0, difference equation
!, "psi" is the corresponding wavelet.

0/

function [phi,psi]=twoscale(c,P, eigtol)
1/~0
"o/,o0 If "eigtol" is not defined, a default vale is imposed.

if exist('eigtol') - 1
eigtoIl; e-3;

end
% The argument vector "c" is reshaped as a column vector.

c=reshape(c,length(c), 1);

% The condition that the sum of the elements of "c" equals "2"
is imposed.

I)

c=2*c,'sum(c) .
"I/

First the scale function is evaluated for integer points
on its domain. A zero-padded version c_n" of the coefficent
vector "c" is created.

01/)

c n=[zeros( 1: length(c)- 1)'; c; zeros( 1: length( c)- I )'];

A matrix "C" containing values of the coefficient vector
"c" is generated.

for k=l'length(c)

C(k,: )=flipud(c-n(2*k- 1:2*(k- l)+length( c)))';
0

end
O/

% The matrix "C" is truncated to eliminate rows corresponding

% to the trivial solutions corresponding to non-unity
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1% 1"c_0" and "c_N- I".

itc(l) ~= 1
fC

C=C(2:length(C),2:length(C) ):

end

ifeclength(c) -= I

C=C( 1: length(C)-1,1:length(C)- :
'4/

end
0q/
'0

The resulting matrix is checked to ensure that it contains
at least one eigenvalue of unity. If one unity eigenvalue
is present, the function continues. Otherwise, it terminates
in an error message.

I) /
/0

% The eigenvectors and eigenvalues of "C" are calculated.
% The diagonal matrix containing the eigenvalues is converted to
%Y a column vector of eigenvalues.

[E,D]=eig(C);
D=diag( D);
04/1

if min(abs(D-ones(D))} <= eigtol
44

0 The address of the unit eigenvalue is determine. The
eigene'tor corresponding to that address is defined as "phi."
Values of "zero" are imposed on the endpoints for non-unity
"c_0" or "cN- i".

'4/
. )

K=find(abs(D-ones(D)) == min(abs(D-ones(D))));
K=K(I);
phi=E(:,K);

ifc(l)~- I

phi=[0:.phi];

end

if c(length(c)) -~
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phi=[phi;O],
o/o

end
0'i

l-
04

"The values of the scaling function are caluclated recursively
for dyadic values of "phi." The values of "phi" at half-integer

% domain points is merely the convolution of "phi" and "c."
,!I)

N=length(c)- 1I
for k=O:max(O,P-1)

A circulant, convolution matrix 'M" is created.

'0

% The matrix "M" is cleared fr'om memory for the next iteration.

clear NI

for m=O:N
%0

M(:,m+ 1 )=[zeros(m*2"k, 1 );phi;zeros((N-m)*2"k, 1)];
%

end

0 'size(M)
% The convolution is evaluated.

phi=M*c;

end
0/
b0 The corresponding wavelet is calculatea.

n=O:length(c)- 1;
c=flipud(c). *((- 1 ).^n');
psi=M'c;

b,:%

Vo An er-ror message is displayed in the event no

.,, eigenvalues of unity are present.

else
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'Filter string produces no unity-value eigenvalues.'

end

H. GENERATION OF RECEIVER OPERATING CHARACTERISTICS

%This AJA4TLAB script file generates receiver operating characteristics
for various multiresolution decompositions, save h eut

0%( to files, andxiwhen complete, terminates .XIATL4B.

0/ Geeatoc curve for two-channel, foutr-subchannel,
% SNR =-3 dB, high-fr-equency transient

load sif
load pqmfb4
g4=h;
load wavebank
D=wbdec('s,h,8,g4);
K=find(D.A2 >= max(max(D^2'))/1O0);
rand('normal');
sig~sqrt(mean( s./'2));

'two-channel, four-subchannel'
for k=1: 500

fl4*sig*rafd( s);

D~wbdeci n,h,8,g4);
HO(k)=sum( sun( D(K).A2));
D~wbdec( n+s,h,8,g4);
HI(k)=sum( sumn(D(K).A2));

end

0/

I0/

clear

% Generate roc curve for two-channel, three-subchannel,
% SNR =-3 dB, high-frequency transient

0/)
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load slf
load wavebank
Dxvbdec( sh.h8,g):

rand( normal')-
Si,;sqrt(meanh S.

two-channel, three-subchannel'
tor k=1: 500

n=4*sig*rand( s);,
D~wbdec( n,h,8,g),
HO(k)=sum(sum(D(K). "2)),
D~wbdec( ni-sh,8,g)-;

end
0ý/I

[PFA23If,PD23lfl=roci HO, HI, 50);
save roc23lf PFA231f PD231f

clear

%Generate roc curve for two-channel, two-subchannel,
4% SNR-3 dB, high-frequency transient
0/0

load slf
load wavebank
D'~vbdec( s,h,8,h);
K=find(D.A2 >= max(max(D.^2))/IOO);
rand('normal');
slg~sqrt( mean(s.5A2));
I,/0
'two-channel, two-subchannel'
for k=1:500

n=4*sig*rand(s);
D~wbdec(n,h,8,h);
HO(k)=sum(sum( D(K). 2));
D=wbdec(n4-s,h,8,h);
hI l(k)=sum(sum(D(K).A2));

end

(PFA2d2IC,PD2Zlf]=roc( HO, HI, 50);
save roc22lf PFA22If PD22If
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clear

Generate roc curve for two-channel, zero-subchannel,
SNR =-3 dB, high-frequency tranient

load sif
load wavebank
D=wbdec( s,h,8),
K=f ind(D.A2 >= max(max(D',^2)).; 100),
rand('norrnal');

'two-channel, zero-subchannel'
for k=1:500

nz=4*sig*rand( s);
D~wbdec( n,h,8);,
HO(k)=sum( sum(D( K).A2));
D~wbdec( n4s,h,g);
H 1('k)=sum(sum(D(K).Al));

end

[PFA2OlfPD2Olfjroc( HO, HI, 50);
save roc2"Olf PFA2O1f PD2O1f

clear

0/

~¼ Generate roe curve for three-channel, zero- subchann el,
% SNR =-3 dB, high-frequency transient

load slf
load wavebank
D=kvbdec(s,g,8);
K=ftnd(D.A2 >= max(max(D.A2))/100);
rand( 'normal');
sig~sqrt( mean(s.A2));

'three-channel, zero-subchannel'
for k=1:500

n=4*sig *rand(s)-
D~wbdec(.n,g,8);
HO(k)=sum(sum( D( K).A2));
D>wbdec(nw s,g,8);

209



H I (k)=sum(sum(D(K). ^2)).
end
0,0

[PFA3Olf,PD3OI tjhroc( HO, H1I,50);
save roc'Olf PFA3'Olf PD3Olf

cilear

clear

'o Generate roc curve for two-channel, four-subchannel,
% SNR =-3 dB, high-frequency transient

load shf
load pqmfb4

load .;wavebank
D~wbdec(s,h,8 ,g4);
K=find(D.A2 >= max (max(D. ^2))/100);
rand('normal');
sig=sqrt(mean(.s.^2));

'two-channel, four- subc hannel'
for k=1:500

n=4*sig*rand(s);
D~wbdec( n,h,8,g4);
HO(k)=sum(sum( D( K).'2));
D=wbdec(n+s,h,8,g4);
H I (k)=sum(sum( D(K). "2));

end

[PFA23hf,PD23hfl~roc(HO, HI, 5O);
save roc23hf PFA23hf PD23hf
0ý/U

clear
%!/ Generate roc curve for two-channel, two-subchannel,
%0 SNR =-3 dB, high-frequency transient

load shf
load wavebank
D=wbdec(,s,h,8,h);
K~find(D.A2 >= max(max(D.A2))/lOO);
rand( 'normal');

210



sigsqrt(mean~s.A2)

ltwo-channel, two-subchannelP
for k=1: 500

n=4*sig*rand( s);
D=wbdec( n,h.8,h).
HO( k )sum( sum(D1(K)f"2)):.
D=wbdec( n--s..h,8,h);,
H I (k )sum( sum(D[NK). 2));

end

[PFA_22hf,PD22htfh=roc(HO, HI, 50);
save roc22hf PFA22hf PD22hf
0/0

clear

%Gener-ate roc curve for two-channel, zero-subchannel,
% SNR -3 dB, high-frequency transient

load shf
load wavebank
D=wbdec(s,h,8);
K=find(D.A'2 >= max (max( D.A'2))/ 100);
rand( 'normal');
sig=~sqit( mean(s.A2));

two-channel, zero- subc hannel'
for k=1:500

n=4*sig*rand(s;
D=wbdec( n,h,8);
HO(k)=sum( sum(D(K).A2));
D=wbdec( n+s,h,8);
H I (Ik) =sum(sum(D(K).A2));

end

[PFA20hf,PD2OhtJ-roc(HO, HI, 50);
save roc20hf PFA2Ohf PD2Ohf

quit
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G. GENERAL-PURPOSE ROUTINES CALLED BY OTHER ROUTINES

% This function zero-pads an argument matrix forming

a new matrix of the specified size. The original matrix
. ,,.will be in the upper !eft-hand corner the new matrix.

j The function syntax is;
"0

"0) X=zeropad(x,N I,N2)

w.here:
x "x is the initial argument matrix

"N1" is the total number of rows for the new matrix
"0,"N2, is the total number of columns for the new matrix

function X=zeropad(x,N 1,N2)

[M l,M2]=size(x);

X=[x zeros(Ml ,N2-M2)];
0/'0
X=[X; zeros(NI-M1,N2)];

% This MATLAB function reduceS A SEQUENCE IN THE SENSE OF
% THE EXPAND OPERATION EMPLOYED IN LAPLACIAN PYRAMID

DECOMPOSITION. The operation entails FIR filtering
":o followed by decimation in time.

00/

The function syntax is
% fkl=reduce(fk, h, M)

"where: tk is a vector containing the sequence to be expanded
h is a vector containing the FIR filter coefficients

""9) M is an integer indicating the decimation
0/ factor (default == 2)

% Regardless of the shape of the input vectors, output vectors
% are returned as row vectors.

function fkl=reduce(fk, h, M);

% A default value of two is imposed on "M."
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if existCM') ~=
M-,.

end

The sequences "fk" and "h" are reshaped as row vectors.
4)"

tfk=reshape( fk, ! ,lengtht k));
h=reshape(h, I,length(h)):

C"

% The sequence "fk" is filtered with "h" and the result is
.. assigned to "tk 1."

fkl=conv(fk,h);
10%0
% The sequence "fkl" is decimated by a factor of "M."
0/0

fkl=fkl( l:M:length(fkl));

I0

% This MATLAB function EXPANDS A SEQUENCE IN THE SENSE OF
% THE EXPAND OPERATION EMPLOYED IN LAPLACIAN PYRAMID
%/ DECOMPOSITION. The operation entails FIR filtering

followed by decimation in time.

% The function syntax is
% fkl=expand(fk, h, M)

where: fk is a vector containing the sequence to be expanded
h is a vector containing the FIR filter coefficients

% M is an integer indicating the decimation
factor (default == 2)

"/ Regardless of the shape of the input vectors, output vectors
are returned as row vectors.

function fkl=expand(fk, h, M);

0 A default value of two is imposed on "M."
0/1

if exist('M') - I
M=2;

end

% The sequences "fk" and "h" are reshaped as row vectors.
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fk=reshape( fk, 1 ,length(ftc));
h=reshape h, 1 ,length( h));
"00/,0/
% Zero-insertion is performed on the input sequence "fk."
% The result is assigned to "fk L."

fk I=zeros( l,.N1*length( fk)- 1);

The sequence "fk" is filtered with "h" and the result is

assigned to "fk ."

fkl=conv(fkl ,h):

% This function performs numerical integration of a
% vector in accordance with Simpson's Rule. The function
% arguments are:

% 'x--the domain of the argument function
% "x"--the range of the argument function.

% The function's syn'ax is:

% Y=simpson(x.y)
%0

% A regular partition is assumed.

function Y=simpson(x,y)

% Vectors are checked for row- or column-vector format. Column

% vectors are converted to row vectors.
0/

dimens=size(x);
N=max(dimens);
if dimens(l) == N,

x=X';

end

(Y The partition width is determined and the argument range vector
is multiplied by the partition width.

y=y*((2max(x)-min(x))/max(size(x)));
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% The integral is evaluated.

Y( 1 )=v( 1):

for k=2:N
Y{ k I=-N,{ 1.k)*ones(y( l:k)');

end

% Given two, equal-length vectors, this MATLAB function
% GENERATES HISTOGRAMS AND CONVERTS THEM TO RECEIVER
% OPERATING CHARACTERISTICS.

% The function syntax is:
% [PFA, PD]=roc(HO, H I)
% where: "HO" is a vector containing "hypothesis false"
% realizations of a random process.
% "HI" is a vector containing "hypothesis true"
% realizations of a random process.
% "PFA" is a vector representing the probability
% of false alarm

" "PD" is a vector representing the probability
¾ of detection.
,0

function [PFA, PD1=roc(HO, Hl, Nobins)
10

% The minimum and maximum bin locations are identified.

Bmin=min(min([HO;H I ]));
Bmax=max(max([HO;H I));
0/00

% A vector is created representing the bin locations.

if exist('Nobins') == 0

Nobins=length(HO)/25;
%

end
J, B=Bmin:( Bmax-Bmin)/Nobins:Bmax;

W
0 The MATLAB function "HIST" is invoked to produce histograms

% of the realization vectors.
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[pfa,X]=histv HO.B):
[pd,X]=histi H 1,B).

0

"The histograms are integrated using function "SIMPSON."

PFA=simpson X.pfa):
PD=simpson( Xpd),

0

"The integrals are normalized for maximum values of unity.
4)

PFA=PFAmax( PFA),
PD=PD,"max( PD);

O The actual probability detect, probability false-alarm
% plots are the complements of the probability distribution
% functions.
0/

S0

PFA=I-PFA;
PD= I-PD;
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