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ABSTRACT
A comprehensive study of muitiresolution signal processing techniques is conducted.
Background material in functionai analysis and Quadrature Mirror Filter (QMF) banks is
presented. The development of Mallat's algorithm for multiresolution decomposition and
reconstruction is outlined and demonstrated to be equivalent to QMF banks. The Laplacian
pyvramid and the a trous algorithm are described and demonstrated. General multiresolution
structures are constructed from cascades of QMF and pseudo-QMF banks and are demonstrated

for applications in signal decomposition and reconstruction and signal detection and
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I. INTRODUCTION

Al MOTIVATION FOR STUDY

In recent years a novel approach to the field of digital signal processing has received
significant attention. This new approach, the wavelet transform, has dispiayed the potential for
applications in the fields of speech and image processing, in particular. Techniques based on the

wavelet transform have beer praised for, amonyg other things, their efficiency of computation.

Unfortunately for the electrical engineer specializing in the field of digital signal
processing, the concepts on which the wavelet transform have been based have been somewhat
clusive. Pioneers of the field have been specialized in such diverse fields as geophysics,
mathematical physics, and a branch of applied mathematics known as functional analysis. Not
completely unrelated to the familiar Fourier transform methods, wavelet transforms extend the
concept of signal decomposition through basis function expansion to a more general and abstract
realm. Such abstract mathematical disciplines as set theory are invoked within the context of

embedded vector spaces and their relationships to each other.

Included among the purposes of this present study is an attempt to bridge the gap
between the mathematician and engineer. It is intended to provide a rudimentary enough
understanding of some of the concepts of functional analysis to facilitate a more in depth
understanding. Additionally, a strong tie 1s demonstrated between wavelet-based methods of

decomposition and areas within the field of electrical engineering which may be more familiar




Finally, an additional purpose of the present study is to evaluate wavelet transtorm
methods for detection and identification applications. Wavelet processing methods will be
applied to familiar signal processing problems such as the detection of signals in noise and the

resolving of disparate frequency components of which a signal is composed.

B. OUTLINE OF STUDY

Chapter II will introduce concepts from functional analysis which commonly appear in
the literature on wavelet transforms. Not intended to provide an in depth introduction into the
fieid of functional analysis, the chapter provides a few basic tools to support further study. In
Chapter I1I, the basics of multirate system theory will be explored. In particular, the Quadrature
Mirror Filter (QMF) bank for two and more channels will be demonstrated. Chapter [V will
introduce the theory of multiresolution analysis. From the definitions introduced, Mallat's
algorithm for the discrete wavelet transform will be introduced and shown 1o be equivalent to the
QMF bank. Two earlier multiresolution decompositions--the Laplacian pyramid and the a trous
algorithm for the wavelet transform--will then be reviewed prior to extending the concepts of
multiresolution analysis to general structures constructed from cascaded QMF banks. In the
Chapter V, the basis functions of the wavelet transform and filters for QMF banks will be
considered in greater depth. The chapter will include a discussion of two-scale difference
equations and some basic filter design methods for QMF banks. Chapter VI will demonstrate for
detection and identification applications the application of some multiresolution structures

introduced in Chapter VI. Multiresolution structures will be compared with the periodogram

[ 3]




decomposition from the perspective of computational efficiency, robustness with respect to

noise, and the ability to resolve proximate spectral components.




II. RESULTS FROM FUNCTIONAL ANALYSIS
A, INTRODUCTION

In essence, wavelet transformation represents a recent development in the field of
Sfunctional analysis. Consequently, a brief study of this branch of mathematics provides an

appropriate starting point for a study of Wavelet Tiansform (WT) analysis.

In mathematical terminology, a firnctional is defined as [1] "a function that kus a domain
whose elements are functions, sets, or the like and that assumes [scalar] numerical values.”
Fourier transformation--an operation familiar to electrical engineers working in the field of
signal processing--is an example of a functional analysis technique. The Fourier transform
integral

flw)= <7 {fx) Hw) =]~ fix)e*> dx (21

o
—ca
"o mHON

1s a functional which, through projection on a set of basis functions "e™*." maps a continuous

function to a specific value for a given value of "®." Similarly, the Discrete Fourier Transform

(DFT) is an example of a discrete functional. For a discrete sequence x"=[x[0] x[1] ... x[M-1]],

the DFT

ta
t

X=W,_rx, (2.

’ C ) . : . \
where [W, ], = W " =¢" mkom M

e maps the vector x to a discrete set of points X[k].

B. NORMS AND NORMED SPACES |2}

Linear transformations generally involve the mapping of a fur.tion (or vector) from one

vector space to another. The study of these transformations requires the capacity to quanufy




distances within these spaces. Measures for functional spaces possess analogies in
geometry--such as length of a vector, distance between the points defined by two vectors, and
the scalar product of two vectors. These measures, or norms, provide the ability to transform
each element u in a vector space V into a real number. For a linear vector space V over the real

number field R, the norm |u|| for every element u € V satisfies the following conditions:

fulf 2 0, and |jujl = 0 if and only if u = 0. (positivity)
ilocul| = jo-ljul| fora e R. (homogeneity) (2.3)
[la + v|| < half + |jvil : (triangular inequality).

Examples of norms which sometimes arise within the context of functional analysis
follow. The most common norm is the L*-norm. Pythagorean theorem represents a special case

of the L-norm. For a function "x(t)" defined in the closed interval C [0, T], the

LZ;norm--denoted by {Ix]|,--is defined as

Ity =17 Ixewl? ae]*. (2.4)

Another norm is the sup-norm or supremum norm. The supremum of a function or

functional is defined as the least upper bound of a function. The concept of supremum is similar
to the concept of maximum, however a function does not necessarily ever assume the value of
the supremum. For example, consider a function f(x)=x. If the domain of f(x) includes the
closed interval [0, 1], then the extremum (and, incidentally, the supremum) of f(x) occurs for
f(x)=1. If however, the domain of f(x) is restricted to the open interval (0, 1), then the function

f(x) has no extremma. At its limit, f(x) approaches unity, however it can never assume that




value. In this case, however, f(x) does possess a supremum, since f(x) is bounded above by

unity.

To applying the concept of supremum to define a sup-norm, consider the vector space
V=C[0, t,], the set of all real-valued, once-differentiable, continuous functions of t in the closed
interval [0, t,]. The sup-norm of x, ||x||_ is defined as the supremum of the function "x(t)" on its
domain, or
x|l = sup{ Ix(t): 0<t<t,}. (2.5)
The Lebesgue norm represents another norm which is related to the L*-norm. For a real
number p € [0, <) N R, the Lebesgue norm for the function u(t) defined on the interval [0, T] is
defined as
lull, = [f7 Tule dt]™ < o. (2.6)
If a norm can be defined in a given space, then that space can be characterized by that
norm. for instance, if the Lebesgue norm is defined for a space of interest, than that space can
be classified as a Lebesgue space. Furthermore, the space by which a norm is characterized is
indicated in the subscript of the norm operator symbol. In some cases, such as for Lebesgue
spaces, the subscript indicates the metric of the space. In others, such as sup-norm spaces,
subscripts less indicative of the norm operation appear. In general, for some arbitrary,
unspecified space U, the norm operator for that space is denoted by
” ¢ ”L‘ .
This notation will be used throughout the remainder of this section to indicate general normed

spaces.




Inner product spaces are of significant interest to signal processing. An inner product
space is defined to be a linear vector space on which an inner product can be defined. The
concept of inner product is related to the definition of the norm of a space. For instance, the
1*-inner product (u,v), is evaluated as

(w, )2 = [ u0) - v(x) dx (27)
for two vectors u, v e L*(). Unless otherwise indicated, throughout the remainder of this

paper, inner products will be assumed to be L’ inner products and the corresponding
distinguishing operator subscripts will be suppressed. Additionally, inner product operations

possess the following properties:

1. (4, vi=(v, u) Symmetry

2. (o, v)=o(u, v) Homogeneity

3. (u,+u,, v)=(u,, v) +(u,, v) _ Additivity (2.84
4. (u,u) >0, and (u,u) =0 ifand only if u = 0. Positive Definite.

5. l(w,v)] S S u (v, v) = ull vl Cauchy-Schwartz inequalitv.

Given an inner product space V, the concept of orthogonality is also important for
characterizing the space. Two vectors u, v € V are said to be orthogonal if (u, v) = 0.
Furthermore, it is possible to partition an inner product space into orthogonally complementary
subspaces. For instance, consider the inner product space V,. If V,, is a subset of V, (denoted
in mathematical symbology by V, | © V,), then the orthogonal complement W, of V, , is

defined as




Wk_]=\’k,,*= {ue Vii(uv)=0 ¥V ve Vk.‘}_ (2.0,

Additionally, the union of two orthgonally complementary subspaces V| | and W, to obtain a

third is denoted V', , @ W, = V. The concept of an orthogonally complementary subspaces

proves critical when defining a multiresolution analysis.

The Hilberr Space represents perhaps the most important inner product space for signal

processing applications. An abstract Hilbert space is an inner product space which possesses the

following characteristics [3]:

I

o

(W

Linearity--The operations of addition and of multiplication by real or complex numbers

are defined for its elements;

The metric of an Hilbert space is derived from its inner product. Consequently, for any

two elements u and v, there is an associated real or complex number.

Completenes--If a sequence of elements {u,} satisfies the condition "u, -u ‘=0 ¥

n’

m, n — o, then there exists an element, u, such thatjju, - uij = 0V n > oo,

LINEAR OPERATORS AND TRANSFORMATIONS (2]

Many signal processing applications of interest involve linear transformations from one

linear vector space U to another linear vector space V. If for some vector u in inner product

space U, there is a corresponding vector v in image space V, then the operation T, by which u

and v are related. constitutes the corresponding transformation. Mathematically. a mapping by T

from space U to space Visdenoted by T: U — V.




With respect to some arbitrary linear transformation T: U — V, the following properties

apply:

1. T{ou,+Pu,} = oT{u,} + BT{u,} Lineariry

2. UT{u,} - T{w by €M Hul - u,}},. for some arbitrary M>0 Continuiry

3. T{u}lly €M ||ul], for some M >0 Boundedness from Above  (2.10)
4. T {u}ly =2 C |jull, for some C >0 Boundedness from Below

Two important consequences for linear operators result from the properties of (2.10). The first

states that for some invertible, linear operator T: U — V which is bounded from below,

IT vl < Ivil/C. (2.11)
Equation (2.11), proven in [2], expresses the Bounded Inverse Theorem. In other words, the

inverse of a linear operation bounded from below is bounded from above.

The second significant result stems from the linear property. Given T: U — V, for
finite-dimensionat vector spaces U and V, constituent vectors u and v, respectively, and bases

{0,, 0. ..., 0,} for Uand {y, ., ...y} for V, then u and v can be represented as

u= X oy Pk
k=1 . (2.12)
v= Y k Wk

k=1

g™

Now, writing down the form of the transformation, T: U — V, the terms in (2.12) are related by

V=

13

Bw = £ o T{ox} = T{u). (2.13)

[

Since ¢, € U and y, € V, the mapping of {¢,} — {y} can be expressed as




T{¢k}=j§ltj.k\4’j~ (2.14)

In vector-matrix notation, {a }, {B} and {t ,} are related by

B, iy b2 o Y o
S o (215)
Bm tm.l [m.Z Tt tm.n . 2

Equation (2.15) represents a linear transformation of the projections onto the bases of U and V.

In signal processing, and other sciences involving representation in terms of linear
transformations, mappings which are one-to-one are of significant interest. GivenT: U - V, if
for each u € U there exist. a unique v € V, then the transformation T is defined to be
isomorphic. Furthermore, for T{u} = v, given an isomorphic operator T, there exists a unique
inverse operator T"' such that u=T"'{v} [4]. Isormorphic operators are particularly useful

because they can be inverted. With respect to signal processing, if a signal is decomposed by an

invertible operator, then it can be reconstructed to recover the original signal or process.

Before the final concept can be defined, elaboration on the definition of a functional is
necessary. Linear functionals consist of a subset of linear transformations T: U - V in which
the transform space V represents a scalar field [5]. In the case of functionals, the transform
space V represents the dual or conjugate space of U. The dual space of U is assigned a special
notation U". The notion of a dual space differs from that of a biorthogonal, or Riesz space

which shall be addressed in a later section.
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Finally. the concept of adjoint operators occasionally plays a role in functional
representation of sequences. Given a bounded, linear operator T: U — V for normed. linear
spaces U and V. a linear functional ¢ can be defined such that o(v)=0(T,ut)=ui. The resultant
functional f--for u--is linear since 0 and T are linear. [t 1s possible, therefore, to define an
adjoint operaror T', such that {u)=l(T"{v})=0(v). The functional £, by definition, lies in U™,
Additionally. omitting the argument vectors, the transform T’ can be expressed as '=T'0 In the
case of Hilbert spaces. an operator and its adjoint are related by inner products. Specifically, for

u. v e ¥, a Hilbert space,

(T{u}, v) ={u. T'{v}). (216

D. REPRESENTATION IN INNER PRODUCT SPACES

Representation theory consists of the theory of representing sequences or sets in terms of
projections upon sets of vectors. The Riesz Repreventation Theorem provides the foundation for
representation theory for functionals. If+ represents a bounded linear operator in an Hilbert
space 7, the Riesz representation theorem {2] states that there exists a unique vector v, € # such
that

w)=(v,w) ¥ we X
This vector v, is called the representation for operator L.

The Fourier Series Theorem [2] provides concepts fundamental to representation of a tunction

a Hilbert space. For a countably infinite, orthonormal vector set {u, }o,, € %, then a series of the
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form I &, u, converges if and only if I 1£,1? < o In this case, the series T %, u, converges
) 6=

n=s a=t)

to the same element x irregardless of the oriering of the terms. Furthermore, the element x. the

orthogonal set {u,} and the weighting factors {& } are related by

& = (X, u,) (2.17a)
and

x=X & u,. t2.17b)
n=0

By linearity, Parsevals Equality follows directly from (2.17):

(y,x)= f(x,un)(y,un). (2.18)
n=0

Finally, if x =y, another relationship is obvious:

| *

At this point, consideration of additional concepts is justified. The concept of closure

-
“

=(x, Xx)= ¥ [(x, ua)|?. (2,193
n=0)

arises in representation theory [2]. A subset S of a normed space is said to be closed if it
contains all its limit points. If S is a closed set, and if a sequence converges, then the limit to
which the sequences converges is contained in S. The concept of denseness is related to closure.

If S is an open set (not closed), the sat of all additional points necessary to obtain a closed set

including S is denoted by S. Consequently, the union of the sets SUS results in a closed set. A
space S is said to be dense if for any vector v in S, there is an element in S which is arbitrarily

close to v. Practically speaking, within a dense space S, it is, therefore, possible to define a

representation with arbitrary precision if enough basis vectors are employed.

Finally, in representation theory, the concept of conipleteness of an vrthonormal set

represents an important concept. Orthonormality, in the usual sense, refers to a set of vectors
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{ua}.., such that (u, u,) =3 _, where §_, represents Kronecker's delta function. If an

orthonormal basis {un};';‘l € X 1s complete, then the only vector v € ¥ such that (v,u =0 V¥

integer n € [1, N} is a vector such that v = 0.

In representation by summing projections on a set of orthonormal basis functions U, one

of three cases can exist [6]:

1. The set of basis functions is incomplete.

to

The set of basis functions is complete.
3. Some subset U, of the basis functions constitutes a complete set where the
complementary subset U, = &.

In case 1, it is not possible to obtain a complete representation from U. In other words,

N
o=}

(2.17) does not hold. Since U is incomplete; for the set of basis functions {u,} there is
some non-zero vector v such that (v, u ) = 0 for any integer non [1, N]. The set of Rademacher

functions [7] represents one such example.

In case 2, a complete representation is obtainable and (2.17) does hold. Classical Fourier

expansion represents an example for case 2.

The third case is less common but does arise occasionally. In the third case, some

arbitrary basis vector u, may lie in the closed linear span of all others in the set:

U, = Zak Ug. {2.201
ken
Such an occurrence is referred to as a frame. In the case of a frame, (2.17) does not hold. Due

10 (2.20), evaluation of (2.17b) would result in a representation of vector x containing redundant

information. Representation by Fourier expansion with overlapping subdomain basis functions
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exemplifies the use of a frame. Specifically, representation by expansion on integer translates of

polynomial splines is employed for some signal processing applications [9].

The concept of a frame originates from a theorem outlined by Riesz and Sz.-Nagy
addressing biorthogonal systems [3]. The present term, however, was introduced by Duffin and
Schaeffer in work related to nonharmonic Fourier analysis {8]. In contrast to expansion by sets
of complete orthonormal bases, expansions by frames do not converge to a specific vector.

Instead, such expansions converge to a specified range:

Auxu2sy(m,x)qzsanxn? Vke Z (2.21)
whe.e Z represents the set of all integers. The constant factors A, B € R are called the frame
bounds. In order the operation to be invertible (or even, possibly, nontrivial), the requirement
exists that A > 0 and B <. Daubechies [6] presents detailed descriptions of the procedures for
calcuiating frame bounds for various situations.

Employing concepts from linear operator theory, the projection operation, T, of some
vector, x onto a set of basis functions {¢_} ¥V me Z is characterized as a mapping from a
Hilbert space X to the sequence of all square summable sequences [¥(Z):

T ¥—- K2).
Specifically, the projection operation T, defined o0 be the frame operator, is defined as
(T{x}), = (9, x). (2.223)

The adjoint frame operator, T', results in the expansion on the basis set {¢, }

T"{c} =§ck Ok . (2.22b)
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Combining (2.22a) and (2.22b), {2.21) can be expressed in its most abstract form as
Al<TT<BI

where 1 denotes the identity operator.

A decomposition by frames can be reconstructed exactly if a biorthogonal system, also
occasionally referred to as a Riesz basis [9], is constructed. The form of such a reconstruction

appears as
X=}E(¢k,x)4~>x=§(6k, X) 0x. (2.23)

In (2.23), the vector set {0y} is referred to the biorthogonal basis of {¢,}. The basis function for

the biorthogonal set is related to the fundamental set by

O =(T"T)" o« (2.24)

Occasionally, in literature, the Riesz basis will be referred to as the dual frame. This term

should not be confused with the concept of dual or conjugate space previously discussed.

Daubechies [6] describes and proves three generalities regarding biorthogonal systems. These

include:

L. The family {§x }vi With ¢y = (T* T)™! ¢ constitutes a frame with bounds B and A™".

~

The frame operator T associated with @ is given by T = T(T* T)~! and satisfies

T T=(T'T)"
and (2.25)
T T=T'T=1,
or, equivalently
(T =T.
3. And finally,
TT =TT T T =TT". (2.26)
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III. A SURVEY OF MULTIRATE SYSTEM THEORY
Al INTRODUCTION

Muluresolution analysis implementations frequently reduce to structures composed of
multirate system building blocks. Consequently, prior to addressing the construction of
multiresolution structures, multirate system theory will be briefly reviewed. Section B will
address basic multirate system operations and repiesentations. The simplest multirate
system--the two-channel Quadrature Mirror Filter (QMF) bank--will be discussed in Section C.
In Section D, the results from the preceding sections will be extended to an arbitrary number of
channels.

B. BASIC MULTIRATE SYSTEM OPERATIONS

Multirate systems are comprised of three fundamental operators [10]--decimators.

expanders, and linear (usually Finite Irﬁpulse Response (FIR)), digital filters. In this section,

time- and Fourier-domain consequences of decimation and expansion will be demonstrated.

Decimation consists of subsampling a discrete sequence, retaining only samples at
integer intervals. Figure 3.1 presents the block diagram symbol for a decimator. In

mathematical

—{ M}

Figure 3.1--Block diagram for M-fold decimator.

nctation, decimation of a discrete sequence by a factor of "M" is denoted by

X q(n=x(M-n).
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To illustrate the consequences of decimation, consider the bandpass, transient sequence
plotted below in Figure 3.2, Figure 3.2 displays a lineplot of a 128-point sequence constructed

from the real part of an exponentially-modulated, Kaiser windowed, sinc (sine-over-argument)

pulse:
.77
. \ > { n
smir’.nS] IQ'.R ‘]—(j;} }
Re{s(n)} = —57 — Re{e/™?}. (3.2)
lo( n? ‘
L
9.13 —
o
1 -
w o
3 =
= 2.85 [—
> o
@ C
= o F o e
) -
w -
a
4.8 -
o
-2.1 . - .
-85 -45 -23 -5 15 35 5
Sample sequence number, n
Figure 3.2--Time plot of discrete sequence described by equation (3.2).
2.12
- 8.1
(=
- 8.28
& 9.8
K 2.84
>
W 8.22
E;L a o, A
]
N -2.82
8.4 l
-3.96 . : . ‘ . : ‘
-35 -25 -15 -5 5 15 25 3

Sample sequence number, n
Figure 3.3--Plot of sequence obtained from decimation by a factor of two of sequence (3.2).
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Decimation by a factor of two, s ,(n), of the sequence in Figure 3.2, produces sequence
plotted in Figure 3.3. The length of sequence s;,(n) is one half the length of sequence s(n).

Furthermore, the sequences are related by
s,»(n)=s(2'n). (3.3)
To consider the Fourier-domain consequences of the decimation operation, the Z-transform of

the decimated sequence must first be evaluated. For the decimated sequence,

Si;(z) = );_'s(Z n)z™"

T s(n)z*?

evenn

(3.4

Evaluation of the second summation in (3.4a) requires the definition of a sequence n,(n) whose

values are unity for even elements and zero for odd elements [11]:

ny(n) = {1+ 1)")2 (3.5)
Inserting (3.5) into (3.4) produces
Si2(z) = X s(n)z™?
= %%s(n)(l-&-(—l)")z‘“’z . (3.6)

+(S(z'?) +8(-z'%)]
The effect of decimation on the spectral content of the sequence s(n) is obtained from evaluation
of §,,(z) on the unit circle:

Siz(ejm)

i

S(e’9?) + S(~e92)]

. , . (3.7
S(ejﬂ)"'z) + S(eun)-d N):Z)]

Decimation, therefore, causes the frequency spectrum of a frequency to become spread become

by a factor of two. Additionally, the location of a spectral peak or any other distinguishable
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feature will be translated by a factor of two with respect to its original spectral location. The

Fourier transform indicated by (3.7) is a 4-n-periodic member of L¥([0, 4-x}).

Y=, - )
- ——0riginal bandpass sequence
@ - —Decinated bandpass sequence
'g 8.8 -
e L
= C
é 8.6 [~
E : - = /F - \‘
» \
N
e - : \ ! |
= 2.2 — ! \ ! \
=z o
- ” 1 " \
- \
a \, c " N i -
a 2.5 1 1.5 2 2.5 3 3.5 ¢

Cigital frequency (multiple of m)
Figure 3.4--Plots of magnitudes of S(e®) and Su(e’ 9.

Figure 3.4 compares the Fourier transforms of a sequence S(&’'®) and its decimated

version S,,(¢/“). The plots in Figure 3.4 illustrate the test sequence power distribution relative

to its sampling frequency. The changes to sequence power distribution which occur from
decimation are a consequence of a change in the equivalent sampling frequency. In discarding

each separate sample, as is done in the decimation operation, the resultant sequence is equivalent

to sampling the original sequence at a sample frequency of f |, = 0.5-f,.

As predicted by (3.7), decimation causes a spreading of a bandpass about its center
frequency. Furthermore, distance between the center frequency f,,, of the decimated sequence
and w=0 has been doubled with respect to that of the original sequence. In the example

illustrated, the original sequence s(n) was constructed to be an analytic, bandpass process whose
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center frequency f, was related to its sampling frequency f, by f, = /6 and whose bandwidth
B=0.125-f. The decimation operation shifts the center frequency f, , = f/3 and enlarges the
bandwidth to B, = .25 f, or by a factor of two. The spreading and shifting effects occur because
of the subsampling nature of the decimation operation: Decimation results in a change in the
sampling frequency. The sequence s,,(n) is equivalent to s(n) sampled at one half of its original

sampling frequency. The peak magnitude of S,(€®) is one half the magnitude of S(e*) because

of the factor of one half introduced by the sifting sequence (3.5).

— ™M }—

Figure 3.5--Block diagram of an expansion operator.

B.14
8.12

a.3
e.28
8.%
8.84
8.82

Sample value s(n)

-8.82
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£

|l|l]l”l|llll H"ln’"plll]ll"]ll”]"lllll"l

-1 -5 5 15 p-i k] 4 5 55
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'
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[%:]
1
oo
w
(]
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Figure 3.6--Discrete plot of expanded version of s,(n}.

The operation of expansion (or upsampling) represents, in a sense, the inversion of the
decimation operation. Figure 3.5 presents the signal processing block diagram symbol for an

expander. Th: mathematical notation for a two-fold expansion operation is given by:
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sty(n) = { s(n/2) V even 'n

0V odd'n’ ) (38)
Y1+ 0 )sm2)

Consequently, expansion entails the insertion of a zero between each sample in a sequence.
Figure 3.6 presents a discrete line plot of the expansion of the sequence s;,(n). Expansion
restores the length of the decimated sequence to that of the original sequence. However, all

odd-number elements of the sequence s,(n) are zero.

Considering the Z-transform and Fourier transform of the expanded sequence provides

further insight into the relationship between the expansion and decimation operations. The

Z-transform of sp,(n) is evaluated as:

Stalz) = '21',, (l +(—-1)“’) s(-;-)z“‘
= —i-z(l+(—1)2")s(n)z-2" |
ol : (3.9)
= Zs(n) z72®
)
Consequently, in the Z-domain, expansion of the decimated sequence s;,(n) produces
[St2]1,(2) = 3[S(2) +S(-2)]. (3.10a)

In other words, expansion of a decimated sequence reproduces the original sequence plus an
additional term. This term is referred to as the aliasing rerm [12]. Evaluating (3.10a) on the

unit circle yields:
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1 ) j @
[S:2ds(e%) = 4[St)+5(-e)]
AN gl . (3.10b)
1
= S[(e'®) + S(erem)]
0.6 B —~Oecimated sequence

@ o -—Expanded, decimated sequence
) C
3 8.5 porm————— .
— .
E o '[ \
S R i .
€ - i '
T 83 ‘ !
~ C i \
Téj 8.2 — | {
. _:_ ; |
2 e fF i \

- ' / ‘

a LS o ' A i n il e * by -
) 8.1 8.2 8.3 0.4 a.5 9.6 2.7 2.8 8.9 1

Multiple of sampling frequency, f

Figure 3.7--Magnitude plots of S ,(¢'®) and [S,].(e¢'™).

The aliasing term, therefore, consists of the original term shifted by n radians. The magnitude

plots of S ,(¢'®) and [S u],z(ej “) presented in Figure 3.7 illustrate this occurrence. The left side
of the plot illustrates the restoration of the decimated sequence to its original center frcquenéy'
and bandwidth while the right side of the plot demonstrates the generation of an aliasing term.
The aliasing term illustrated in Figure 3.7 can be reduced through the use of a linear, lowpass

filter. Such a filter is often referred to as an interpolation filter.

Figure 3.8 illustrates the time-domain results of applying an interpolation filter to the
sequence plotted in Figure 3.6. The sequence in Figure 3.8 differs from the original sequence by

a normalized mean-squared error of -11.52 dB wher: the normalized mean-square error is

defined as




N-1 .

——— stni-s(n) |
é.\ |stni~sny!~ “,,,( )

(3.11

N N-1
isin}] T st

The interpolation filter whose response is shown in Figure 3.9 was constructed using a procedure
outlined by Vaidyanathan [12]. A zero-phase, half-band, FIR filter was constructed using the
McClellan-Parks algorithm and its characteristic polynomial factored. The minimum-phase
zeros of the original polynomial were expanded to form an new characteristic polynomial for the

filter whose frequency response appears in Figure 3.9,

8.2 .
--0r1ginal Sequence

ais - Interpolated, expanded, decimated

R

Sequence value, s {n)

Discrete time, n

Figure 3.8--Superimposed plots of original sequence Re{s(n)} and of real part of interpolated, expanded,

decimated sequence, Re{ho‘[s u]n(u)} where hy(n) represents the impulse response of the interpolation
filter.

The source of the error between the original sequence and its interpolated versions is
readily apparent in Figure 3.9. The spectral content of the interpolated sequence almost exactly
coincides with that of the original sequence in the region below the Nyquist frequency.
However, since the interpolation filter consisted strictly of real coefficients, its frequency

response included an image in the half of the spectrum above the Nyquist frequency. The
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location of the image coincided with the location of the aliasing term generated by expansion.
As a result of partial transmission of the aliasing component, the interpolated sequence whose
spectrum is plotted in Figure 3.9 is no longer an analytical sequence. This accounts for the loss

of symmetry evident in the plot of the interpolated sequence presented in Figure 3.8.

s
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= by < [nterpoiateor filter restonce
-45 ‘ . . ;

2 2.1 @2 2.3 8.4 2.5 0.5 2.7 2.3 a.%

Digital frequency, (multiple of 7))

Figure 3.9--Superimposed plots of spectral content of original sequence and interpolated sequence and of
interpolator frequency response.

C. TWO-CHANNEL QUADRATURE MIRROR FILTER BANKS

The primary objective of the present section is to introduce the Quadrature Mirror Filter
(QMF} bank. QMF bank theory is a well-developed aica witiiin the fieid of eicctrical
engineering and can be understood with a grasp of basic linear systems theory. The purpose for
the study of QMF banks in this chapter is to prepare for the construction of multiresolution
structures in the next chapter. In Chapter [V, Mallat's algorithm for the discrete wavelet
transform will be shown to be exactly equivalent to the QMF bank. Thereafter, multiresolution

analysis structures will be constructed from QMF banks of various numbers of channels.




x (n) v (n) u (n)

‘ A ' Xo(n)
. Ho(z) ___'vz M2 > Fo(z) o0
x(n)
< > Analysis Bank < > < > Syothesis Bank < > 7—’ ;
— ‘ : A xin} !
v %
X,(n)

xl(n) v’(n) Ul(“)

Figure 3.10--Block diagram of two-channel, Quadrature Mirror Filter (QMF) bank. (After {12])

Having considered the basic building blocks of a linear, multireate system, attention in

this section will be directed towards assembling those components into a basic system.

Two-channel, quadrature mirror filter (QMF) banks represent the most basic structures for
transmultiplexers, sub-band coders, and discrete wavelet transforms. Figure 3.10 presents a
block diagram of a basic, two-channel QMF bank. The vertical, dotted line in Figure 3.10
divides the system into analysis and synthesis banks. Each of the filters in the structure is a
half-band filter. The analysis section divides the signal, by frequency, into two channels. The

synthesis bank then recombines the channels and generates an approximation x(n) of the original

signal. In general, x(n) will differ from the original sequence because of three sources of error
[13]): aliasing, amplitude distortion, and phase distortion. The Z-transform analysis presented in

the previous section permits precise characterization of these errors.

If a filter bank is designed such that each of these errors is exactly cancelled, then the
structure is called a perfect reconstruction filter bank. More specifically, the perfect
reconstruction criterion 1s expressed mathematically as

X(n) =c- x(n-nop) (3.12)
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for some non-zero constant ¢ and positive integer n,. In other words, for a perfect reconstruction
filter bank, the reconstructed sequence will differ from the original sequence only by a constant

factor and a delay.

Beginning Z-transform analysis of the structure illustrated in Figure 3.11 [12], the output
of the synthesis filter for channel k (k =0, 1) is expressed as
X (z2)=H,(2)X(2). (3.13)

By (3.6), the decimator output is described by

Vilz) = [ Xi(z"?)+Xu(-2'%)] 514
= (H@'" ) X@')+H(-z") X(=2"')] '
Applying (3.9) and (3.10),
Ui(z) = Vi(z?) (315)

$[H(@ X(2)+ Hi(=2) X(=2)]

describes the decimator output. Finally, the reconstruction component for channel k is given by

Xi(z) = Fi(z)Uk(2)

. (3.16)
1 Fu(2)[He(2) X(2) + Hy(-2) X(-2) ] ’

fl

Since the reconstructed signal is simply the sum of the synthesis filter bank channels. the overall

transfer function for the filter bank, in matrix form, becomes

: Ho(z2) Hi(2) Fu(z) —_—
X(z)=1+ - ) ‘ 1
(2) 2[ X(z) X(-2) ]{ Ho(-2) H,(=2) M Fl(2) } (3.17)

Now, (3.17) can be expanded and expressed as

-

X(z) = ”;* (FO(Z) Ho(z)+F(2) HI(Z)) X(z) + ‘;' (FO(Z) Ho(=2)+F:(z) H, (*Z)) X{~z).
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When written in this manner, two categories of components are evident: the desired
reconstructed components composed of X(z) and its factor, and an aliasing term consisting of

X(-z) and its factor. Evaluated on the unit circle, the spectrum of the aliasing terms consist of a

replica of the spectrum of the original sequence only shifted by =.

In order to separately represent the components in the QMF bank output in terms of the
reconstructed signal component and an undesired aliasing component, it is possible to represent

(3.17) as a double-input, single output transfer function:

T(z) |_i| Ho(@ Hi(z) Fo(z) |_1| Fo(@Ho(@)+Fi(2)Hi(2) (3.18)
A(z) | ?| Ho(~2) Hi(-2) || Fi(2) | ?| Fo@Ho(-2)+Fi(@Hi(-2) |
To satisfy the perfect reconstruction criteria, it is necessary that
AE)=0 V o (3.19a)
and
T(e1®) =e79% | T(e19) |=c 9™ (3.19b)

where ¢ constitutes a positive constant and n,, is a positive integer.

N
Vaidyanathan [12] points out that, given a filter Ho(z) = iho(n)z‘“, the remaining

filters required to construct a two-channel, perfect reconstruction QMF bank are obtained from

Hi(z)y = -zMHj(-l/z")
= NH(1/z*
Fot2) 2 Rz (3.20a)
and
Fitzy = 2z Hj(l/z")
coupled with the constraint that
Ha(e'®) : + ] Ho{e) ™) : =c {3.20b)




for some positive constant ¢ (not-necessarily the same constant as in (3.19b)) satisfy the perfect
reconstruction criterion. A set of filters characterized by (3.20b) is said to be power
complementary. Given (3.20), the problem of designing a two-channel, perfect reconstruction
QMEF filter bank reduces to the problem of selecting a valid analysis filter hy(n). Some of the

details of selecting good filters for these applications will be addressed in Chapter V.

At this juncture, it is appropriate to introduce some additional concepts. The matrix

Ho(z) Hy(2)
H(z) = (3.21)
[ Ho(-z) Hi(-2z) :l
constitutes the alias compensation matrix. 1f
HE(e/®) H(e/®) =dI, (3.22)

where the superscript ' denotes the transpose-conjugate of a matrix, I represents an identity
matrix, and d is a positive constant, then the matrix H(e"; is said to be unitarv. By definition,
unitary operators are operators which, when applied to their inverses, produce an identity
operation. Within the context of linear algebra, a matrix is unitary if each of its columns is
linearly independent from all of the other columns in the matrix. Consequently, for a QMF bank
with an alias compensation matrix which is unitary, the aliasing component of the output is
linearly independent of the reconstructed component and the two components are, therefore,
separable.

Using the ni/de notation introduced by Vaidyanathan [12] where fl(z)é}l”( 1/2*), and
where each element of H(z) is stable, if

H(z)H(z) = d1 (3.23)
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then H(z) is said 1o satisfy the paraunitary property and the system characterized by H(z) can be
described as a paraunitary systeni.. A paraunitary Z-transform matrix will be unitary when
evaluated on the unit circle. Furthermore, if the coefficients of H(z) are all real, then H(z) 1s
lossless bounded real. Additionally, Vaidyanathan lists three important properties for

paraunitary systems:

1. The determinant of a square, FIR, paraunitary system produces an allpass polynomial.
That is,

det{H(z)} =az¥, K 20,a=0.. (3.24)
2. Paraunitary systems are power complementary. If h(e'®) = [Hy(e/*) H,(e®)]"
[Hy( @) + [H,(e®)] = h(ei*)h(el®) =¢ V w (3.25)

3. The submatrices of H(z) are paraunitary.

Another concept which becomes useful in multirate system theory is the polyvphase
representation. This representation will be introduced for a two-channel system here and
extended in the next section to a structure entailing an arbitrary number of channels. Itis

possible to express the Z-transform of a sequence h,(n) as

Hi(2) = Zh(n)z™
° . (3.24)
= )l.‘",hk(Zn)z’“ +z! Zhe(2n+ 1Dz
If subsets of the sequence h,(n) are defined as
eko(n) = hy(2n) ’ (3.25)
exi(n) = h(2Zn+1)
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then it is possible to represent the two-channel, multirate system described in this channel in an

additional manner. A z-dependent column vector h(z) can defined such that
Ho(2) Eoo(z?) Egi(z%) 1 1
h(z) = = , N =E(z? (3.26a)
[ Hi(z) } [ En(z7) Eni(z7) z™! ) z! }
where

E(zz)i[ Eoo(z%) Eou(2?) }

Eio(z2?) E.1(2%)
Furthermore, upon comparing (3.26a) and (3.21), the following relationship arises:

H'@) = h(z) h(-2) ]. (3.26b)

Therefore, in terms of the polyphase matrix E(zz) of (3.26a), (3.26b) becomes

11 1o J[1 1
[ h@ h-2) ]={ S g }E(zz)'—-[ - M - }E(zz).

Consequently, a simple relationship between H(z) and E(Z’) exists:

Ty o] 10 11 .
H'(z) E(z)[Oz_l Hl—l] (3.

Obviously, the right-most matrix on the right-hand side of (3.27) is simply the transformation

(o)
[§S)
~J

W, matrix for a two-point DFT. The middle matrix is simply a diagonal matrix of delays and

1 0
Dz(z)—{ 0 2 ]

Finally, it is not difficult to demonstrate that if the alias compensation matrix is

can be expressed as

paraunitary, then so is the polyphase matrix:
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or equivalently,

H(z)H(z) = E(z7)")D2(1/2)W, W Dy(z) ET(2?)
= E‘'(zH")ET(zY) ) (3.28a)
= dI
E(z3)E(z}) =d1. (3.28b)

Equation (3.28a) follows since W, WZH =1 and D,(z) D,(1/z) = I. Equation (3.28b) follows

from (3.28a) by making the substitution { = 2’ ! followed by evaluating the complex conjugate of

each side of the equation.

Vaidyanathan delineates four important properties of paraunitary filter banks satisfying

(3.20a) [12]:

'Ix)

L

Where N represents the order of the filters from which the structure is constructed, filter

banks satisfying (3.20a) result in perfect reconstruction with
x(n) =0.5x(n-N); (3.29a)
The analysis filters are power complementary and satisfy the condition
| Hi(e) | =| Hoteiem) |; (3.29b)
The synthesis filters are also complementary and, furthermore, they also satisfy
| Fu(e®) |=| Hee®) |; (3.29¢)

and, all filters have order N=2J+1 for integer J. This condition ensures even filter

lengths.

To demonstrate the operation of a two-channel, QMF bank, a simple, 256-point sequence

was constructed. The sequence was comprised of two sinusoids windowed by a complicated,
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Figure 3.11--Time-domain plot of 256-point test sequence generated using (3.30).
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Figure 3.]2--Plot of normalized power spectral density of 256-point test sequence generated using (3.30).

exponential window:
s(n) = (1 —e‘”"‘) L@ 2L Q2075 gin (%n) + 5 Cos ('—gain) (3.30)

A time plot of the 256-point test sequence (3.30) is presented in Figure 3.11 and the power

spectral density of the test sequence appears in figure 3.12. The test sequence contains harmonic
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components at digital frequencies of 7-x/20 (= 0.175-f) and 17-1/20 (= 0.425-f). The

components were selected such that one appears in each half of the frequency spectum.

2.4 . -
= : ——Law-frequency analysis filter, h (n) :
@3 Fofey b —High-frequency analysis filter, h®(n) |- o L

a7 Br b . ...................... P P RO P T n

Sample Value

Sample sequence number, n

Figure 3.13--Impulse responses for 57*"-order FIR filters used in two-channel QMF analysis bank.

Figures 3.13, 3.14 and 3.15 characterize the filter bank to which test sequence (3.30) was
applied. The impulse response of the analysis filters for each channel are plotted in Figures
3.13a and 3.13b. The low-frequency channel analysig filter, Hy(z), a S7*-order FIR filter, is a
minimum-phase spectral factor of a zero-phase, lowpass, half-band filter designed using the
McClellan-Parks technique. From H(z), the low-frequency channel synthesis filter F (z) and

both high-frequency channel filters were designed using (3.20a).

The equivalent transfer function, t(n), whose Z-transform was defined in (3.18), is
plotted in Figure 3.14. It has been asserted in (3.12) and (3.19b) that, for perfect reconstruction,
t(n) will be of the form

t(n)=8(n-N), (3.3
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where N is the order of the filters from which the QMF bank was constructed. Superimposed
with a dashed-line plot, is a plot of the sequence t(n)-3(n-N). The axis for the superimposed plot
is graduated on the right-hand side of the plot. From the superimposed plot, it is evident that the

sequence t(n) approaches the form of (3.31) with a maximum error of less than 2x10™.
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Figure 3.14--Superimposed plots of equivalent impulse response for QMF bank, t(n) (defined as in (3.18)), and of

t(n)-8(n-N_,,).
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Figure 3.15--Superimposed plots of frequency responses (in dB) of low- and high-frequency filters for GMF bank.
Also superimposed is a plot of [Hy(e“)[+{H (&)
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Figure 3.16--Time-domain plot of low-frequency channel decumator output for 256-powut test sequence.
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Figure 3.17--Time-domain plot of high-frequency channel decimator output for 256-point test sequence generated
by (3.30).

The frequency responses of the filters are plotted in Figure 3.15. Ohly two frequency
responses are shown because of the condition described in (3.29¢). Also superimposed on
Figure 3.15 is a plot of lHo(e"“’)|3+lH;(e“”)|3. This last plot demonstrates the degree to which the

filter bank satisfies the power complementary property, (3.20b).
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Time plots of the low- and high-frequency channel decimator outputs are presented in
Figures 3.16 and 3.17. As a consequence of the decimation-induced translation of the spectral
peaks for each component, the plots appear to reflect harmonics whose frequencies are quite
close together. Additionally, due to the shape of the filter, the flat segment in the trailing edge
of the sequence plotted in Figure 3.16 converges sharply to zero. The flat segment in Figure
3.17 is on the leading edge of the sequence. Since the synthesis filter for channel is the time
reversal of the analysis filter, the relative locations of the flat regions will be reversed, resulting
in a flat segment on either side. This represents the source of the delay. The differsnce occurs
since, by (3.20a), the low-frequency and high-frequency channel analysis filters are modulated
time-reversals of each other. Also worth notice, the relative magnitudes of the low-frequency
and high-frequency channel decimator outputs have maintained the proportions established in
{3.30). As expected, the decimator output of the low-frequency in figure 3.16 channel maintains
a peak amplitude greater, by a factor of four, than the peak if the envelope for the

high-frequency channel in figure 3.17.

Figure 3.18 presents superimposed, normalized power spectral density plots for the
decimator outputs and the original sequence. As discussed previously, decimation changes the
sampling frequency. The sampling frequency f, |, for a decimated sequence is related to the
sampling frequency f; for the original frequency by

f,i, = £/2.
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As expected from (3.7), the peak at 71/20 (= 0.175 £) has been translated to 7n/10 (= 0.35 f o)

The peak which was originally at 17n/20 (= 0.425 f) was shifted to 17n/10. Due to aliasing, the

spectral peak located at 171/10 appears at 20%/10 - 177/10 = 3n/10 (= 0.15 f,). Additionally,

each of the peaks has been widened.

Normalized magnitude (dB)

—0riginal sequence
—Low-frequency channel decimator
-—High-frequency channel decimator

~
- \’\\r‘ . . 7
\

i L A il I I " i

8.1 0.2 8.3 8.4 6.5 8.6 8.7 0.8 2.9 t
Multiple of sampling frequency, FS

Figure 3.18--Superimposed plots of normalized power spectral densities of the high- and low-frequency channel

Normalized magnitude (dB)

decimator outputs and the original sequence.

—0Original sequence
—Low-frequency channel expander
-—High-frequency channel expander
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Figure 3.19--Superimposed power spectral density plots of the original 256-point test sequence generated by

{3.30) and the high-frequency and low-frequency channel expander outputs.
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Figure 3.19 includes spectral density plots of the original sequence and the output of each
of the expanders. As indicated by (3.10b), the expander reintroduces the original sampling

frequency at the expense of creation of aliasing terms. For the low-frequency channel, spectral

peaks occur at the original location, 7r/20 (= 0.175 f,), and at 33#/20 which, because of aliasing,
appears as 137/20 (= 0.325 f). Similarly, for the high-frequency channel, in addition to the

peak at its original position of 17/20 (= 0.425 f,), an aliased peak is also present at 3%/20 (=

0.075 f}. Although, at the expander output, the width of each peak has been restored to that of
the input, each peak is six decibels below the original since the signal energy has been divided

between the original term and an aliasing term.

2 —0Original sequence
o 9 ~Low-frequency channel synthesis filter
Z -—High-frequency channel synthesis filter
%’ -28 1
=3
> -48
<
= -0
[ 3
= -90
~
= -1ee
ot}
£ -1z0
E i " FARSN

‘ i 1 " by i " \I' N
8.1 0.2 2.3 8.4 .5 8.6 8.7 8.8 @.9

Multiple of sampling frequency, fs

~148
2

Figure 3.20--Superimposed plots of power spectral densities of original sequence S(e’®) and of low-frequency
QMF channel component and high-frequency QMF channel component .

Superimposed plots of the power spectral densities of the original 256-point test sequence, and
of the sequences at the outputs of the low- and high-frequency channel synthesis filters are
exhibited in Figure 3.20. For each channel, the effects of the synthesis filters are evident. The

aliasing terms have not been completely eliminated, but the spectral peaks of the aliasing terms
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have been reduced in magnitude by approximately 95 dB. The restored spectral peaks, sull 3 dB

below the original, track quite closely within the passbands of their respective filters. The

time-domain of the reconstructed sequence, $in) = 3u(n)+5(n), is plotted in Figure 3.21.
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Figure 3.21--Plot of reconstructed version of 236-point test sequence appited to QMF bank input

In this plot, the resemblance of the reconstructed signal to the original is evident. The
-econstructed sequence lags the original sequence by 57, the order of the filters from which the
QMF bank was constructed. Furthermore, if the normalized, mean-squared error is defined as

N-d s s
A b st=stn) P b2 { stni=stn) |
Ao . nstot ’
£= = (

52 (11} R
i Z s3(n)
n=0

V)
[
[P

then for the sequences plotted in Figure 3.21, €45 = —168.2dB.

D. M-CHANNEL FILTER BANKS

Having, in the previous section, discussed and demonstrated the implementation of a
two-channel. quadrature mirror filter bank structure, it remains to extend the results to structures
consisting of an arbitrary number of channels. With some simple modifications to relationships
from sections B and C, M-channel filter banks can be shown to be largely analogous to QMF

structures. Finally, it is worth observing that in literature [13], M-channel filter banks are




extensively referred to as M-Channel Quadrature Mirror Filter Banks. The use of the term
quadrature represents, in this case, a misnomer. Nevertheless, the terminology has continued to

be applied to these more complex systems.

The structure for an M-channel filter bank is illustrated in Figure 3.22. The structure is
entirely analogous to the two-channel case. Each channel contains a factor-of-M decimator and
an expander which, respectively, subsamples by a factor of M and inserts M-1 zeros between

each sample. The filters are all M™-band filters with, for the ideal case, frequency responses of

\f 1 v %-kSmS%(k-&-lj

| Hueo) |= (3.33)

0 otherwise

Furthermore, the concepts of perfect reconstruction and power symmetry also apply.

Xo(n) V,(n) uy(n) />\(0(n)
[ H, (@)} M M][F, ()]
x,(n) vi(n) wuyn) Ql(ﬂi A
x0)|-[H, (z) MM [F (2) | x)

———

S E@)
x_(n) Y, (n) Y.(n) X_(n)

Figure 3.22--Structure of M-channel filter bank. After {11].
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Beginning Z-transform analysis, transformation of a decimated sequence requires the
construction of a "sifting” function equivalent to that defined in (3.5). For M channels this

function is defined as [12]
! Mot -nk
T]M(n)=\—1kz Wiy (3.34)
M5
where Wy =¢/2®™_ Employing 3.34 produces s, ,(n} = s(Mn) M (M), thereby ensuring
that s, (n) is zero for non-integer values of n. For any integer n which is an integer multiple of

M, W, "=1. Otherwise, the series term in (3.34) becomes a summation around the unit circle in
the complex plane which is evaluated as zero. Evaluating the Z-transform of the factor-of-M

decimated sequence s(n) produces

Sim(z) = Zs(M-n)-ny(M-n)- z™

Zn".s(n)(WQ z”“) , (3.35)

Furthermore, the Z-transform of the decimated sequence s;,,(n) after expansion by a

factor of M is evaluated as

[Siulru(@ = EsiumM)z™
| M o . (3.36)
= Z3(wae)
Evaluating 3.35 on the unit circle produces
i@ LM LizrmM M 337
Sim(e1?) = LT §letmMeoM ) (3.37)
om=U

Consequeat'y, decimation spreads, by a factor of M, the power spectral density of a sequence.

Furthermore, the M-fold decimator produces, from a sequence with a 2'r-periodic frequency
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response, a sequence with a 2-M-r-periodic sequence. Similarly, on the unit circle, (3.36)

becomes

_ M=l [

S (e"“) =3 S(e""e’“‘““)
[ lM]TM M =)
LMils(ej(mzumm)
M )

(3.38;

By (3.38), it is apparent that expansion of a decimated sequence produces M-1 aliased terms in

even intervals across the spectrum. Additionally, the frequency response of the sequence has

been restored to its 2-x-periodocity.

Applying (3.35) and (3.36) to the M-channel structure in Figure 3.22 produces the

following matrix formulation for the system output X(z) (12}

Ho(2) Hi(zy - Huy(@ 7}

)“((z)=r‘4.[ X@z) X(Wyz) - X(Wj:,‘,"‘z)] Ho(V:VMz) H\(“:,MZ) HM-l(?NMZ) f
. Lﬂoqﬁﬂ"z) H,(wg" 2) HM—:(Wﬂ"z)j

g— Fo(z) Wj

F,_(z) |

P FM-;l(z) _JI

{3.39)

The matrix H(z) is (3.39) is the M-channel analogy to the alias cancellation matrix. The column

vector containing the synthesis filter characteristic polynomials can be represented as

f(z)=[ Foz) Fi(z) FM_,(z)]. For alias cancellation, it is necessary that
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t(z)

t(z) = O =H(z)1(2). (3.40)

0
Furthermore, analogous to (3.24), it is possible to define a polyphase representation of
the characteristic polynomial H,(z):

Hy(z)

it

§hk(n) z™°
);,hk(Mn)z‘M“ + z“%hk(Mn+ Dz Moy 4 z‘(M*"§bk(Mn+M— [yz Mo

I

(3.41)

fl

M=
T z™ ITh(Mn+m)z ™"
m=0 n

T g Exm(z*)
m=0
where Exn(z) © ek_m(n)éhk(Mn +m). From the definition of the polyphase representation,

the polyphase representation follows that

Ho(2) Eoo(z™)  Eoi(z™) - Eom-1(2™) 1
_ | Hi@ | _ | EwE@™  Eun@E™ - Eima(@W) z"!
ne = Lo : S : L], 3.42)
Hy(2) EM_l_o(ZM) EM_H(ZM) EM—LM—I(ZM) Z=M=1)
= E(zM)e(z)
where
Eoo(z™)  Eou(zM) -+ Eomar(2™)
E(zM)é Eio(z™)  Eni(z™M) - Ejua(z™)
Evo10z™) Encn(2M) -+ Enmcima(z™)
ande(z)=[1 z' -+ zZ™M"".

Finally, the alias compensation matrix H(z) and the polyphase matrix E(z") are linked by

a relationship analogous to (3.27). First,

43



H(z) = [ h(z) h(Wyz) - h(WY! Z)]
Mot el . (3.43)
= | E@zM)e(z) E((wMz)M)e(WMz) E:((WjM z)"‘)e(Wj“ z)
M » M
Now, since, for any integer k, (W‘{J = (c’z’”““) =e/2™ = |  (3.43) becomes:
H'(2) =E2)| e2) eWyz) - e(Wi'2) |. (3.44)
The block matrix on the right-hand side of (3.44) is equivalent to
Ty o0 - 0 Who WY WY ]
- woowy oW
[e(Z) e(Wyuz) - e(W;\‘I"z)] -0 ° Mo S XL
: . . . R : T . |
0 0 oz o M Wﬁ"”:J

Combining (3.44) and (3.45), therefore, produces a general relationship between the alias

cancellation and polyphase matrices:

H(z) = W] Du(z2) ET(z4) (3.46)
where,
1 0 0
pu@d ° % 0
6 O » Z-M-1)

Obviously, from (3.46), if H(z) is paraunitary, then E(z") is also paraunitary. Additionally, the
properties expressed by (3.24), (3.25), and (3.29) are equally valid for the M-channel filter bank

systems,
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Figure 3.23--Time plot of 256-point test sequence generated using (3.47).
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Figure 3.24--Power spectral density of 256-point test sequence generated using (3.47).
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structure of Figure 3.22, a 256-point test sequence similar to that of (3.30) was generated:

s(n) = (1 —en6 ) em(IN2N L @2nTS [cos(g’-_% 27-n)+ +cos(3= S5 )+ +cos(35 113 n)]. (3.47)

256 256

Equation (3.47) employs the saiac envelope as (3.30) applied to the sum of three harmonic

components. Spectral peaks in (3.47) are iocated at digital frequencies of 2-n:27/256 (=0.027-f ),




2:7:55/256 (=0.215-f) and 2-7-113/256 (=0.44-f). Consequently, spectral peaks occur within

each third of the frequency spectrum below the Nyquist frequency. A time plot of the test
sequence is displayed in Figure 3.23 while Figure 3.24 presents the power spectral density of the

test sequence.

-o-LF Analysis Filter, h (n)
: ; —MF Analysis Filter, h%m)
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©
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Figure 3.25--Superimposed plots of impulse responses of filters used to implement three-channel filier bank.
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Figure 3.26--Equivalent impulse response for three-channel filter bank structure whose filter impulse responses
are plotted in Figure 3.25.
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The filter bank employed for the signal decomposition and reconstruction was

implemented using 14-point third-band filters whose coefficients are tabulated in [11]. The filter

impulse responses are plotted in Figure 3.25. Satisfying (3.34) for the M-channel case is

significantly more difficult than for the two-channel case. Consequently, as illustrated in Figure

3.26, the deviation of the equivalent system impulse response deviates from the ideal case of

(3.31) by an order of magnitude more than was observed for the two-channel} structure

demonstrated in Section C. For the two-channel structure, the root-mean-square deviation from

(3.31) was 5.16 x 10°°. For the three-channel system whose equivalent response is plotted in

Figure 3.26, the root-mean-square deviation from (3.31) is 7.42 10°. Furthermore, the peak

amplitude distortion is also greater. The peak amplitude distortion is approximately 4 x 10* dB

from the power complementary case. This represents a noteworthy increase over the 1 x 107

dB peak distortion for the two-channel structure demonstrated in Section C.

PO oy .. 18.884
- -— 1 H9:2 . ]
[ — H!? ¢, ]
20} «« (Z2H (@) 1), dB . ~{ 8.802
3] 5 bk . s 4
< F ]
T~ 8 [~ L
K] C ]
&~ o -
= B E =~ -8.8@2
A i 3
= - .
= [ 3
~-48 — -1 -2.284
8 L . X . : ; ; : . J -9.006
2 @.85 @l 2.15 @2 925 @3 2.3 8.4 84 A5

Frequency (multiple cf f‘)

, dB

T
4

¥
t

Figure 3.27--Superimposed plots of frequency responses for filters whose impulse responses are plotted in Figure
3.25 (right-hand axis) and amplitude distortion from three-channel filter bank constructed from filters of Figure

(3.25) (left-hand axis).
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Insight is obtained from considering the decimation operation from both the time and
frequency domains. Time-domain plots for the output of each of the decimators appear in
Figures 3.28a, b, and c. The power spectral densities of the decimator outputs are superimposed
in a plot presented in Figure 3.29. As discussed previously, the decimation operator, in the case
of a factor-of-three decimation, retains only one sample out of every three. Therefore, the length

of the decimated sequences is one third of the length of the original sequence. Furthermore, the
effective sampling frequency f,, for the sequence decimated by a factor of three is related to the
sampling frequency f_ by

£, =1/3.
Additionally, decimation produces aliasing terms. However, these terms are of no consequence

since the lie outside of the region [0, 2'wt]. Figure 3.29 displays the power spectral density of the

content of each filter bank channel with respect to its-post-decimation sampling frequency f ..
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Figure 3.28a--Low-frequency channel decimator output for 256-point test sequence generated by (3.47) applied
three-channel filter bank of Figure 3.25.
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Figure 3.28b--Mediumn-frequency channel decimator output for 256-point test sequence generated by (3.47)
applied to three-channel filter bank of Figure 3.25.
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Figure 3 28c--High-frequency channel decimator output for 256-point test sequence generated by (3.47) applied to
three-channel filter bank of Figure 3.25.
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In the case of the low-frequency channel, the analysis filter transmits only that portion of
the power spectral density of the test sequence which lies in the region [0, /3], As discussed
during the development of (3.36) and (3.37), because of decimation, the content of the region
[0, /3] will be linearly redistributed over the region [0, x]. The spectral peak passed through

the low-frequency channel is, as a result, translated from its original location at 2-1:27°236
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(= 0.105-f) to an apparent, post-decimation location of 2-n-81/236 (= 0.316-f,,). Similarly, the
spectral peak contained in the medium-frequency channel is translated from its original location
at 2'1:55/256 (= 0.215-f) to an apparent, post-decimation location of 2-n-165/256 (= 0.645-f ;).

This expectation is confirmed in Figure 3.29 in which the spectral peak of the test-sequence
component contained medium-frequency channel appears at the predicted location with an image
appearing at 0.355-f ;,. Finally, the test-sequence component passed through the high-frequency
channel, originally appearing at a iocation of 2:7-113/256 (= 0.414-f ), after decimation, assumes
an apparent position of 2-7-339/256 (= 1.324-f;,). Because of aliasing, this component, in

Figure 3.29, is indicated at 2-x-339/256 - 2:1-256/256 = 2-%-83/256 (= 0.324f, ;).
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Figure 3.29--Superimposed plots of the power spectral densities of the original sequence and the outputs of each
decimator for the 256-point test sequence of (3.47) applied to the three-channel filter bank of Figure 3.25.

In Figures 3.28a, b and c, the zero-crossings of the sequences appear to occur at similar
frequencies. This observation is confirmed by plots of the decimator output spectral densities

superimposed in Figure 3.29. In fact, for the case under consideration, the spectral peaks of the
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decimator outputs are separated by a maximum of 0.5-f. This example provides insight into the
nature of the decimation operator. In general, decimation transforms a narrowband process such

that the result "fills" the spectrum below the Nyquist frequency of the channel.
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Figure 3.30--Superimposed plots of the power spectral densities of the original sequence and the expander outputs
for each chanael of the three-channel fiiter bank of Figure 3.25.

The power spectral densities for the expander outputs for each channel of the filter bank
represented by Figure 3.25 are plotted in Figure 3.30 above. As predicted by (3.38), application
of the expansion operator to a decimated sequence imposes two consequences. First, the
effective sampling frequency of a decimated sequence is related to the sampling frequency of the
original sequence by

faalt =316, =1
in the case of expansion by a factor of three. Secondly, the aliasing terms generated by

decimation, which are originally outside of the region [0, 2w}, are translated to within the region

[0, 2-1t).




In the case of the test sequence generated by (3.74), two aliasing components in addition

to the desired component have appeared in each channel. For each channel, the aliasing
components appear at integer translates of 2-x/3 with respect to the restored component of the
original sequence. Because the spectral peaks of the original signal were separated from each
other by roughly n/3, each aliasing term generated for each component coincides fairly closely

with one of the other components. This occurrence is reflected in Figure 3.30.

In the low-frequency channel, the location of the peak of the spectral component has
been restored to its original location of 2:1:27/256=2-%-81/768. However it is accompanied by
aliasing terms at 2-%-337/768 (=0.438-f) and 2-#-593/768 (=0.772-f) whose image appears at
2w —2-1:593/768 = 2-n:175/768. The restored medium-frequency-channel component, which
reappears at 2-%:55/256=2-%-165/768, is accompanied by aliasing terms at 2:7:421/768
(=0.548-f) whose image is present at 2-1-347/768 (=0.452-f) and at 2-7-677/768 (=0.882f )
which has an image at 2-7:91/768 (=0.1185-f). Finally, to the restored component for the
high-frequency channel which is located at 2-n-113/256=2-1:339/768, are added aliasing terms at
2'7-595/768 (=0.775:f) for which an image appears at 2:7-173/768 (=0.225-f) and at 2-71-83/768
(=0.1098:f,).

Figures 3.31a superimposes plots of the outputs of the synthesis filters for each channel

of the filter bank of Figure 3.25. Each plot indicates the spectral content of the corresponding

channel. The results of the recombination of the channels are plotted in Figure 3.31t. In Figure
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3.31a, it is apparent that the aliasing components of the cxpander outputs have not been
completely blocked by the synthesis filters. [n the worst case, for the spectral region containing
the medium-frequency channel, residual energy from an aliasing component is only
approximately 20 dB below the desired spectral peak for that channel. However, upon
examination of Figure 3.31b, it becomes apparent that alias cancellation does occur. The power

spectral density of the reconstructed sequence very closely coincides with that of the original

sequence.
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Figure 3.31a--Superimposed plots of the power spectral deunsities of the original sequence and of the expander
outputs for each channel of the three-channel filter bank of Figure 3.25.

Figure 3.32 presents a time plot of the reconstructed sequence. Again, the reconstructed
sequence appears to be an approximate delay of the original sequence. In fact, when the signals
are synchronized, the normalized mean-square error (3.32) of the reconstructed signal is -66.94
dB. The the reconstruction error exceeds that of the two-channel demonstration of Section C
because of the poorer quality of the filters with which the three-channel filter bank of Section D

has been implemented. As indicated by Figure 3.26, the equivalent impulse response of the
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three-channel filter bank deviates from a pure delay by a margin three orders of magnitude

greater than the deviation for the two-channel filter bank.
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Figure 3.31b--Superimposed plots of power spectral densities of original sequence generated by (3.47) and of
sequence reconstructed by thee-channel filter bank of Figure 3.25.
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Figure 3.32--Time plot of reconstructed version of 256-point test sequence applied to three-channel filter bank of
Figure 3.25.
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IV. THE THEORY OF MULTIRESOLUTION SIGNAL PROCESSING
A INTRODUCTION

Having. in the preceding two chapters. laid the necessary uroundwork, the theory of
multiresolution signal processing will next be considered. In this chapter, Section B, presents
the concept of multiresolution analysis. In Section C, Mallat's multiresolution algorithm will be
developed from a projection operator perspective and the equivalence of multiresolution
mathematical operations and two-channel QMF banks will be demonstrated. Section D wiil
outline the development of the Laplacian pyramid and the A Trous algorithm, two of the earliest
multiresolution decomposition techniques. In Section E, multiresolution structures comprised of

cascades of filter banks will be constructed and demonstrated.

Signal processing techniques commonly entail decomposing a signal by representing 1t in
terms of its projection on a vector space. The most common method, the Fourter Transtorm.
defined in Chapter [

flw) = F{ED} =" fyer® dt . (31
{n analyzing a time-varying signal, however, (4.1) presents an obvious disadvantage: Onlyv one
representation vector is used for all time. Consequently, time-varying aspects of tit) are
averaged over all time and lost. To address this shortcoming, the concept of the Short-Tine
Fourier Transforni (STFT) was developed [14]:

F(w, D=]7 ) wit=t)e7ot dt. (42
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Equation (4.2), through the introduction of a window function w(t), improves on (4.1).
Typically, the window a function is either strictly time-limited or possesses a rate of decay such
that its value outside of a limited, contiguous region is negligible. Additionally, equation (4.2)
can be interpreted as the projection of the signal of interest on modulations and translations of a
vector w(t). Employing concepts from Chapter II, (4.2) can be interpreted as a mapping from a
one-dimensional space of real numbers to a two-dimensional space of real numbers, or,
F. R - R.

Additionally, the representation vector r(w, T) for the projection operator F, the operation of
(4.2) 1s

rw. 7)=w(t-1)e’e (4.3)

In the branch of mathematics known as group theory, the operation (4.2) belongs to a

particular class of operators known is the Weyl-Heisenberg Group [15]. A group is a set of
transformations satisfying the properties of closure, associativity, identity and invertibility [16,
17]. The Weyl-Heisenberg Group consists of a family of transform operators characterized by

modulation and translation of a single representation vector [18].

Although it is commonly employed, two shortcomings of the STFT have been asserted.
The representation vectors for (4.2) represent a frame in the sense described in Chapter 11 [6].
Therefore, if it is necessary invert the transform in order to reconstruct a signal from its STFT
decomposition, a dual operator must be constructed. Secondly, a sampled, discretized STFT
operator partitions an analyzed function's two-dimensional conjugate space into uniform,

rectangular partitions [19]. In the conjugate space, the spectral bin partition dimensions are
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inflexibly dependent upon the window function w(t) and to not vary with either translation or
modulation. Many processes (for example, biological processes) can be characterized by
components whose bandwidths increase with frequency. Consequently, (4.2) provides
representation which is less than optimum processes comprised of spectral components of
varying bandwidths [20].

For the reasons described above, alternative methods of signal decomposition have been
suggested. Instead of a representation vector of the form (4.3), employment of a representation

based on a family of functions [21]
Was(® = fal 2y 52 ) 4.4)
produces a transformation #: R — R? such that
Wi} = Wa, b) = lal-12 [~ fm\y-(%) dt. 45)

Similar to the STFT, transformations of the form of (4.5) also comprise a distinct class in the
field of group theory. Transformations based on scaling and translation of a common

representation vector comprise the affine group [18].

[f, as in the case of digital signal processing, it is desired to restrict the transform to a
lattice of discrete points, the representation vector becomes
Wma(t) = 2;™ y(a;" t=nbo). (4.6)
The representation (4.6) results in a transformation W: R — Z?, where Z is the set of all
integers, such that

W{f(t)} = w(m, n) =a;™ [7_ f(t)y*(a;™ t—nby) dt. (4.7
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Additionally, (4.6) constitutes a version of (< 4) sampled ata =a," fora,> l and atb =

n'bya,"™ for b, # 0. To conform to the conventions of octave-band filtering, a, is typically

selected as a,=2. The selection of b, determines whether {wm}“€ 2 constitutes an incomplete

set, a complete orthogonal set, or a frame. The representations of greatest interest to
multiresolution signal processing are chosen such that b, = 1, providing unit translations with

respect to sampled data.

The time-frequency properties of the representation vector vy,  address some of the
shortcomings sometimes ascribed to the STFT representation. As the scaling integer m
increases, the representation y,  becomes more and more spread in the time domain, and,

consequently, more concentrated in the frequency domain. Consequently, projection on a higk;ly
dilated vector function will provide poor time resolution but sharp frequency resolution.
Decreasing m causes the reverse effect: Concentration in time and spreading : ~ the frequency
domain. In the case of a highly contracted representation vector, the transform operator provides

sharp temporal resolution but poorer spectral resolution. Furthermore, the spreading effect of

the representation . . occurs in a logarithmic manner. The bandwidth of the representation

W, Will be proportional to its center frequency.
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Figure 4 1--Vern diagram illustration of concept of embedded vector spaces. After {24]

B. THEORY OF MULTIRESOLUTION ANALYSIS

In order to characterize the vector spaces consisting of the span of {y,__} it is first

m ong g’

necessary to consider another set of basis functions {Qm_,,}nez which spans another set of vector

spaces {V_}.., € L*(R). The operator A, , is defined as the projection of some function fit) on

‘/m:
s
At (T} 22 (£, 9ma | Omalt) 45
To be a multiresolution analysis, the set of operators { A, } must satisty six properties [22,23]:
1. A, is a linear operator which uniquely and completely approximates f(t) at a resolution

of 2™ Consequently, the approximation
Am-l{Am-l{f(t)}}=‘Am‘l{f(t)}' (4,9\
In words, A, {f(t)} contains all of the information about f{t) which can be obtained at a

resolution 2™, Repeated projection upon V_ does not add or subtract any information to

A}

A
O




3

which can be extracted from projection on vector space V,

Of all possible functions which exist at a resolution of 2™, A__ {f(t)} is the function

which most closely resembles f(t):

veme V., llgt-fo] z]A, {fn} - ). (4.10)

Approximation of some signal f(t) at one resolution 2™ contains all information
necessary to approximate it at the next resolution 2™"'. This concept suggests a family of

embedded, closed subspaces:

3
ViucV,e L'(R) VmeZ (4.11
1
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Figure 4.2--Spectral illustration of concept of embedded vector spaces. The vector spaces represented are
based on Daubechies' orthonormal scaling function on {0, 11]. After [25].

[llustration of the concept of embedded spaces can be accomplished by either of two

methods. The first illustration is via Venn diagram. In Figure 4.1, the embedded ellipses
illustrate two related vector spaces. The outer ellipse represents the span of the vector space V

and the inner ellipse the span of vector space V_.,. As indicated by the diagram, the information

is less than what can be extracted

m+1
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from projection on vector space V. The two spaces differ by the information lost when some
function f(t) is approximated at 2™ instead of at 2™. The vector space V_ possesses a greater
density than the vector space V,_.,. Consequently, the approximation at 2™ will contain a greater

quantity of information about the original function than the approximation at 2™,

Figure 4.2 provides an illustration of the concept of embedded subspaces from the
perspective of partitioning of the frequency spectrum. The lower half-band represents 1.2 vector
space V_ while the lower fourth-band represents V.. Approximation A_,{f(t)} at resolution
2™, therefore, entails an approximation based on the spectral components of f(t) contained in the
lower haif of the frequency spectrum below the Nyquist frequency. Similarly, approximation at
a resolution 2™ entails a representation based on the lower fourth of the frequency spectrum
below the Nyquist frequency. Consequently, an approximation of f(t) based on Figure 4.2 at

resolution 2™ contains only the spectral content of f(t) in the range [0, #/2]. An approximation

of f(t) at resolution 2™ contains the only the spectral content of f(t) in the range [0, m/4].

4. The approximation operation is similar at all resolutions. The spaces of approximated
functions can, therefore, be derived from one another by scaling each approximated
function:

VmelZ fHheV, & f2yeV,_,. (4.12)

5. The approximation A_,{f(t)} of a signal can be characterized by 2" samples per unit

interval. When f(t) is translated by an amount proportional to 2™, A, {f(t)} is translated
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by the same amount and is characterized by translations of the vector space projections.
More simply,
Vne Z. ftheV, & f(t-2™)e V. (4.13)
Equations (4.12) and (4.13) suggest a family of basis functions ¢, (t) similar to that
characterized by (4.6):
Oma() =2"2¢(2™t-n) V m, neZ. (4.13)
The vector space {0, .},.z € V. consists of integer translates of ¢,,. (The t-dependence has

been suppressed for compactness of notation.) The approximation operator A__ {f(t)} is simply
a projection of f(t) in the space of the vectors {¢_,}. Additionally, (4.12) reinforces the concept
illustrated in Figure 4.2. Equation (3.7) indicates that a time-domain contraction of a signal
causes a dilation--or spreading--of that signal's frequency spectrum. The frequency spectrum of
V_.., therefore, occupies half of the bandwidth of the frequency spectrum of V_. Furthermore,
if the space spanned by V_ coincides with a lowpass region of the frequency spectrum, V__,

will also coincide with a lowpass region.

Finally, one additional property remains to complete the definition of a multiresolution

analysis:

6. A continuous function f(t) can be initially considered to be represented with infinite
resolution. Regardless of the scale, all information regarding f(t) is originally assumed to

be known. Applying the approximation A_{f(t)} results in some loss of information.
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Increasing the degree of coarseness of A increases the amount of lost information.

Consequently,
dim V= U Vi=LA(R) (4.15a)
and
lim Vo= A Vi={ 0 }. (4.15b)

k= oo

Equations (4.15a) and (4.15b) follow, by induction, directly as consequences of (4.11).
Equation (4.15a) states that, because of (4.11), the manner in which {V,_}__, are related to

each other, lim Vn consists of the union of the spans of all {Vatme z- By induction from

(4.11), all vector spaces {Vm}m < z are subsets of ml_i,rgnvm. Using the notation of set theory,
the concept behind (4.15a) is expressed as

{vm}me Z = ml_‘:,r?_ Vm'
Consequently, adding to {4.15a) the concept expreséed by (4.12), as the resolution of an

approximation A _ |, the projection on vector space V_, becomes infinite, it is possible to

m-1?

represent f(t) with arbitrary precision. Furthermore, employing a concept from Chapter II,

lim Vq is dense in L*(R). In other words, given any vector ¢, it is possible to find another

m——o

vector ¢

Ym,kan

which is arbitrarily close to ¢,,. Contained within the union of all definable vector

spaces {V_} is all the information which is known about a function.

The indication of equation (4.15b) exactly opposite of that of (4.15a). By induction

from (4.11), rrl‘n_r'n Va constitutes the least common subset of all of the vector spaces

{ Vm} me z-COnsequently, as the coarseness of the approximation A (t)} becomes infinite, all
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information about f(t) is lost. From the perspective of Figure 4.2, the portion of the frequency

Jim 5o

spectrum spanned by lim Vi is contained in the closed interval [ 0, lim &% ]

Consequently, at the limit, the approximation of f(t) is characterized by only its DC component,

or equivalently,nlii_r)nﬂ Am{f(t)} becomes a constant-valued function.

Regarding multiresolution analyses, Mallat {22] proved a theorem which provides the
theoretical foundation for all further development. The theorem states that, given a
multiresolution approximation of L*(R) by projection on vector space V_, there exists a unique
function ¢(x)e L*(R), called a scaling function, such that {cbm(x)}nez as defined by (4.14)

constitutes an orthonormal basis of V. That is,

(‘I’m,n, ¢m.k)=5k.n Y nkeZ. (4.16)

Furthermore, V_ consists of the closed, linear span of {¢m.n}neZ'

()

e, 8
-0 . (t)

Scaling function value

Scaling function domain, t

Figure 4.3--Superimposed plots of Daubechies' orthonormal scaling function ¢, ,(t) supported on [0, 11] and
of &, (1)
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To characterize the relationshi ) between the scaling function spaces {V_}, it is useful to

examine the projections of their vectors onto each other. From (4.11), (4.12) and (4.13), it is
evident that

0

m-l.a

= 0

Ym~l.na

e V (tye V_ (3.17)

m~t

or equivalently, ¢ lies within the span of {0 }. Figure 4.3 provides an illustration of a

m-1.n
scaling function at two adjacent scales. The example presented is based on Daubechies’
orthonormal scaling function supported on [0, 11]. ¢, ((t) is obviously a contracted version of

O, ,(t) with its amplitude increased by a factor of J2 . Because of (4. 17), the Fourier series

theorem (2.17) can be applied to obtain
Ometol) = Z (Gt Ot ) Omic(t). (4.18)

Substituting (4.14), the definition of ¢_ _, into the inner product term of the summation (4.18)

m,n?

and applying a change of variables to evaluate the resulting integral produces [22]

(‘i’mﬂ,m‘bm.k) = ';3 (¢|.o, ¢o.k-zn)- (4.19)

Equation (4.19) clearly indicates that the coefficients of the series (4.18) are independent of

scale m. The summation (4.18), therefore, becomes

Omel.alt) = —= k(‘bl.o, ¢0.k—2n)'¢m.k(t)- (4.20)

£}
v

Next, substituting (4.14) for the appropriate terms on each side of (4.20) results in

27meD2 g ~mel) g ) = L p-m2 E(m,o, mo.k-zn) 02 t-k). (4.21)
k

.2
¥ -

Applying the change of variables u=2"". t—2-n and the translation of indices k=k'-2'n to (4.21)
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finally yields
0w = Z (010, Q020 | 02u=K). (4.22)

For later convenience, (4.22) can be rewritten as

~§-¢(%)=§h(k)¢(u—k) where h(k)é%(mo, oo.k). (4.23)

Selecting this normalization for h(k) forces % h(k)=1. As aresult,

‘ Thk) ei®

=| H(ei®) }M:l.

w=
Furthermore, since ¢(u) is real, {h(k)}, _, is real. And finally, if ¢(u) is compactly supported,
then the filter h(k) is a FIR filter. This occurs since, for compactly supported ¢, in the inner

product term of (4.23), there will be only a finite number of translations which will be evaluated

as non-zero. The details of the develdpment of (4.19) - (4.23) are presented in Appendix A.

Equations of the form (4.23) comprise in literature a class of equations referred to as
two-scale difference equations [26] or as dilation equations [27]. This class of equations will be

considered in greater detail in Chapter V within the context of basis functions for multiresolution
analyses. From the preceding development it may be concluded that the functions ¢ which
satisfy the properties for a multiresolution analysis consist of solutions to two-scale difference
equations.

To obtain a multiresolution transform it is necessary to combine (4.20) with (4.23) to

obtain
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Ourt () = 2 %h(k—Zmom.k(t). (4.24

Applying Parseval's equality (2.18) to (4.24) results in a relationship between the projections of
some function f(t) onto V_and V_ [22]:

(fs 0m+1.n) = vl——— ‘fh(k-—Zn) (f, Om.k}- (4.25)
By (4.25), given A, ! f}, the determination of the coefficient (f, 0,,., ,) for each term of the

series for A, {f}, requires filtering und decimation of the sequence {(f 9. u)}ngz. The block
diagram for the operation (4.25) is depicted in Figure 4.4. The similarity between Figure 3.4

and a channel of a QMF analysis bank is evident.

{( f’q)m,n) neZ_' h(n) — Z\L [ {( f’ (Dm*l.n)}nez

Figure 4.4--Block diagram of multiresolution transform characterezed by (4.231.

Now, to complete the development of the concept of multiresolution analysis it is first
necessary to consider some of the consequences of the preceding development. First, consider

the concept of embedded subspaces characterized by (4.11). Let W _ be the orthogonal

complement of V_ such that

V.NnW =0 (4.26a)
and
V.aw =V . (4.26b)

From (2.26b), by induction, any scaling function vector space V, can be decomposed as [23]

V= & Wa. (427

m=J+|
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And finally, the direct sum of all definable {Wm}mez is dense in L*(R) {21]:
®_ W, =LYR). (4.28)
Figure 4.5 presents a two-scale example of (4.26b) from the perspective of spectral
contents of V__and W_. The complementary subspace W is defined such that it is clesed and is

spanned by a set of vectors {y,, .}..,. Members of the set of vectors {_ } are related to each
other in a manner similar to (4.14):

Uma() =2™2y(2™t-n) V m,neZ’ (4.29)
Overlap exists between the spectral regions characterizing V__, and W__ . This overlap occurs
since the plots consist of frequency plots of FIR filters. However the FIR filters represented are

related to orthogonal basis function and consequently, the filters for V__, and W__, are

themselves orthogonal to each other in the time domain.

1 B

o N . —Spectral cantent of vecicr space v
a - N —Spectral content of vector space v+i*
= 2.8 — _— -Spectral content of vectar space L+l
I - V
c o I
g 8.6 -
= o A
E = \
N ¢4 \
= C \
] -
& C \
‘g 4.2 — \

N\
3 L . A N e ; ; ,
] 8.3 e.1 a.15 2.2 9.75 0.3 6.3 8.4 3.45 3.5

Oigital frequency, (multiple of f)

Figure 4.5--Spectral content of example of concept of orthogonally complementary, embedded subspaces. The
example is based upon Daubechies' wavslet and scaling function on [0, 11]. The lowpass processes are
.., and ¢_., , and the bandpass process is y_., ,
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The set of vectors {y .}..z constitutes the set of waveler functions for the
multiresolution analysis. From the relationships between the spaces W of wavelet vectors .,

and the spaces V_ of scaling function vectors ¢, , @ number of relationships between the sets of

m.n
vectors O , and vy, . may be deduced. Between the scaling and wavelet function vectors,
follows from (4.26a), the relationship exists:

(O 0 Vi) =0. (4.30)
Within a common scale, therefore, wavelets and scaling functions are orthogonal to each other.

Furthermore, as a consequence of (4.11) and (4.26b),

(Voo Vi) = 8,08, (4.31)
In words, unlike scaling functions which are only orthogonal to each other with respect to
translation within a common vector space V_, wavelets are orthogonal to each other with respect

to translation and scale. Wavelets not contained within the same vector space W are by

definition orthogonal to each other. Finally, because y_, € W_cV_,,
(‘Dm.u’ Wk.n) =0, Y ksm- 1
More generally, if the wavelet y,  is supported on the interval [0, L] € R, then,

(0o w,)20, ¥ k<mel, In-jl <L (232

Wavelet vectors lie within the span of higher resolution spaces of scaling functions.
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The projection of some signal f(t) on the wavelet space W _ constitutes the detail signal
[22] and contains the difference of the information contained in A {f} and thatin A_it}. The

detail signal at resolution m is denoted by

Dt (FO1E (£, Wi | Wit 4.33)
Equation (4.26b) implies that [21]
Dttt = AL {f} - ALif} (4.342)
or equivalentiy,
2 (Wi £ Wetn =5 (O ) Oma = Z (Omas €] O (4.34b)

Substituting (4.24) into (4.34b) and expanding the result produces a time-domain form for the

wavelet decomposition:
% (Wrm—l.n, f) Wrm»l.n = Z[(Qm.na f) ¢m.n - 2 z;-(h(k— 2 n) hU - 2 n) (ka- f) Qm.;-J] . &4’25)
n )

Obviously, except for simple cases such as the Haar basis (demonstrated in [21]), (4.35) is not
casily separable. In order to obtain a relationship between scaling and wavelet functions it

therefore becomes necessary to examine their Fourter-domain properties.
Equation (4.22) represents the starting point for considering the frequency-domain
properties of the scaling function ¢. If the Founer transform of ¢ is defined as in (4.1)
o(w) = [~ o(t)eTet dt,
evaluating the Fourier transform of each side of (4.23) produces (23]

o(2w) = H(e'®) d(w) (4.36b)
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where the Fourier series H(e¢'®) of h(k) is defined as

H(e"")-i-}k: h(k) e ok, (4.37)

Next, Poisson’s summation can be employed to present an alternative expression for the
orthogonality of ¢ with respect to translation [23]. This development begins with the complex
Fourier series expansion for a train of Dirac impulse functions 8(w) [28]:

I8(w-2rk) = 3 Teke. (4.38)

Poisson's summation involves convolving a function with each side of (4.38). Convolving the

expression l o(w) ]~ with the right-hand side of (4.38) produces

[6(03) 2*§5(w—2rﬁk)=2;.l o(w-27k) g (4.39)

Furthermore, convolving l &y(m) |~ with the right-hand side of (4.38) results in the expression

i

Z*Ec““” %I l &)(&) |2ejk(u>-§) de

%e“‘“’ [l o(uw) o(v) el % dudv e7%5 d5

I ) {440

Applying the change of variables of integration w = v - u and regrouping the terms contained in

the second line of (4.40) produces
| b | oo =T ek [ ou)o(u-+w) [ % dE dudw. (4.41)

Now, since
j @i dE =2n8(w-k),

by the integral sifting property of the Dirac delta function &(w), (4.41) becomes

#

| o(®) [2*§elkm 2n2klel“‘° I 0(u)d(u+w) du d(w-k) dw

21:% &% [ d(u)dp(u+k)du

(4.42)

7}
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Finally, by (4.16), the integral in the final line of (4.42) is simply (0, ,, &, ) = §,, where §_ _is

Kronecker's delta function. Consequently, the series in the final line of (4.42) contains only one

non-zero term: when the index k = 0. Therefore,

,
xTeike=2qg,
x

‘ olw)
Substitution of (4.39) and (4.43) back into (4.38) produces

2

=1.

% l &0~ 27k)

Applying the results of (4.44) to (4.36) yields

%l &)(2(0—27!1() 42:{:1 Hei @)y Izl (i)(&)-?tk) ‘Zzl.

The right-hand side of (4.45) can be expressed as

(4.43)

(4.44)

(4.45)

%{ H(e}(@=2km) izl o(w - 2kn) {2+§[ H(el(0-2kehmly l’! o -@k+Dm | =1.

(4.46)

Since, as a consequence of its definition, H(¢'®) is periodic with respect to 2-x, the terms of
p P

i H(e @k I % and | H(eite-2r-trmy I * can be factored out of the series on the left-hand side of

(4.46) producing

0y 1721 e - "+ oy 13 G -2 T2l a4
| Hee ) | {-i 0w 2kn)‘ |H(e ) | Z | 9w -(2k+Dm) TR

The remaining two sums in (4.47) are identical to (4.44) and are evaluated as unity. Therefore,

(4.47) becomes

| He ) |*+] Heremy |P=1.
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Comparing (4.48) with (3.20b) reveals that the trequency response H(e*“) for the

approximation filter defined by (4.23) is power-complementary with a version of itself shifted in
the frequency domain by nt. Therefore, H(¢'“) either is constant or possesses a half-band

frequency response. Furthermore, if the scaling tunction 0 is normalized such that

R

" =1, then, as a consequence of (4.36b),

| o)

| He"y | =1 (4,45,

C. MALLAT'S ALGORITHM FOR MULTIRESOLUTION ANALYSIS

[t remains to characterize the wavelet functions. This can be accomplished by
completing the development of the multiresolution decomposition begun in the previous section.
The first true multiresolution algorithm was developed by Mallat [22]. Two other techniques. '
will be considered in the next section which were not directly derived from the mathematical
definition of a multiresolution analysis (4.8)-(3.13).

The multiresolution decomposition process begins with the projection ot a funcuon fir)
on the scaling function space of finest resolution {0, "}"ez [21]. The functional expansion
appears as

fy=A_{f(y} = %Ic.,_n Oo(t—n) where Cn_“é(\f, O n } (+.30

Generally, the decomposition is performed on a sampled data sequence and the scale of the

-

initial approximation is defined such that the first equality in {(4.50) holds. Since the basis
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vectors ¢, , € V. the original approximation (4.50) is also clearly contained within the span of

Vv

o
The next step in the multiresolution decomposition requires the division of the scaling function
space V, into orthogonally complementary subspaces V, @ W, = V. Re-arranging (4.34a) leads
to

A {f(t)} = A{f(t)} + Dy{fir)}.
Consistent with the definition (4.8) of the approximation transform A _ and the definition (4.33)

for the detail transform D,

Aof{f} = %cl.k 1k

and
Do{f} = %bl.k Wik

wherec, , =(f, ¢, ) andb, = (f, v, J. A relationship between ¢, , and ¢, , was presented in

(4.23). Furthermore, (4.32) showed that v, , lies within the span of V,. Consequently,
following development analogous to that for (4.23), the Fourier series expression for wavelet

function becomes,
Ly =Zgh0u-K) where g(0=L (1o, 00 ) (451a)
since

(et Oma ) = L (Wi0, G020 ) (431b)

Since, if y,_, , is real, the filter coefficients {gk)}, . z are strictly real. Additionally, Fourier
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transformation of (4.51a) produces a relationship analogous to (4.36):
V(2 0) = Gle'*) b(w). (4.51¢c)
Finally, the form of (4.24) for the wavelet function appears as

Wanetn(t) = ﬁ%g(k-zm%.k(r). (4.52)

Applying Parseval's equality (2.18) to (4.24) and (4.52) in order to calculate ¢, , and b, _ in terms

of ¢, , produces

Cin = ﬁ'%h(k“zn)C()_k
and
bia = ﬁ'~§g(k-2n)Co.k .

The approximation based on the expansion of the terms {c, ‘0, ,} constitutes a "blurred” version
of the expansion of the terms {c, ‘0, ,}. The detail which is lost in the approximation A,{ f} is
contained in an expansion of the terms {b, -y, .}. This process can be repeated as many times

as desired. The resultant general expression becomes

Costa = ﬁ-)k:h(k—zn)cm.k
and , (4.53)
bmetn = ﬁ'{-g(k_zn)cm.k

where each successive iteration generates in an approximation of f(t) containing half the
resolution of the previous approximation. At each iteration, the approximation and detail of the

signal are related to the previous approximation by

AL = AL{f} + D, if} (4.54)
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Furthermore, the operations described by (4.53) closely resemble the analysis bank for the QMF
bank structure investigated in the previous chapter. The approximation and detail operations at
each resolution consist of filtering a common sequence with two different filters. The output of
each filter is then decimated. The resemblance of QMF structure to the operation characterized
by (4.53) cannot yet be asserted to be exact since the appropriate relationship bewween the filters

whose impulse responses are h(k) and g(k) yet to be established.

To reconstruct a signal from its decomposition, the definition (4.8) of the approximation
operator is employed. The expansion coefficient ¢, is, by definition,

Cox = (A {fh 0, ) =(ALE) 0,0 + (DL{f} 0,0 (4.55)

Substituting into (4.55) the expressions for the series A, and D, produces
Cm.n =§Cm+l.k (‘Dmn, ¢m+l.k) + %bmﬂ.k ’\q)m.nr \Vmﬂ.k) . (4.56)

The inner product terms in (4.56) are precise]y those encountered in (4.19) and in (4.51b) except
that the positions of the translation indices n and k have been reversed. Consequently, (4.56) is
equivalent to

cmvn=5127-2k:h(n—2k)cm*1,k +%' %g(n—zk)bmﬂ.k (4.57)

v

The operation in (4.57) entails expansion of the detail and approximation series coefficients
followed by the application of filters whose impulse responses are the time reversals of those
used in (4.53) for signal decomposition. Again, a resemblance to the QMF bank synthesis

structure is noteworthy.

Examining the decomposition operation in the frequency domain provides further insight
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into the nature of the wavelet functions [23]. First the Fourier transform 13\0(0)) of the

approximation

A ()=A_, {f(t)}=f(1) is expressed by

A

Al(w) = %‘-C‘)An j:, do.a(t) e dt
= Zcppe’® [7_ o(yeetdt (4.38)
= Co(e!®) d(w)

-1k

where Cm(ej“’)é%cm‘k e . Applying similar analysis, Ao(w) and f)r)((.!.)), the Fourier
transforms of the approximation A (t)=A,{f(t)} and Dy(t)=D,{f(t)}, respectively, appear as

Ao()

]

{-cl.k [T bty ed9tdt

%Ecl.k 2. 05 -k el dt
ff{lc“ e 129k [T g(u) g9 duy
J2 C1(e129) 62 )

and

(4.59a)

Ao((ﬁ)

Do(@) = VZ Bi(e?9){(20w) - (4.55b)
where Bm(ej“’)QEbm,k e 9k By (4.54) therefore, it follows that,
A1 (@) = Ag(®) + Do(w),
or equivalently
f(w) = Co(ei®) (@) = V2 C1(29) (2 w) + V2 By(e)29) (2 w). (4.60)
Substitution of (4.36) and (4.51¢) into (4.60) produces

Co(e1®) (w) = J2Z C(ei29) H(eI®) d(w) + 42 Bi(e129) G(e!®) §(w),

or, after dropping the common factor of 43(0)),

Co(e1®) = J2 C (e 2°) H(el®) + /2 B,(e12?) G(el®). (4.61a)
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From their definitions, C,(¢/“) € L*([0, 2'x]) and is periodic with respect to 2w while
C,(&39), B(&**) e L*([0, x]) and are periodic with respect to 7. Therefore, it follows from

{4.61a) that

e 1. 5[ He® e ][ cuem |
{ C‘>(ej“°*"’) }—‘/r[ H(e”“""m) G(ej(wﬂt)) :l[ Bl(cjzw) } (461b)

From (4.61b), define

H(el“’)i{ H(ej“’) G(e}w) jI

H(C”‘”’”") G(C”“’*’”)

Now, if the H(¢’®) is unitary in the sense described in Chapter III, then multiplication of each

side of (4.61) with its Hermitian transpose yields
. 2 . 2 _ 2 . 2 )
| coe®) [+] coree) [P =2[] cuero) |+ Bieo) | | (4.62)
Integrating (4.62) over the interval [0, nt] produces

4] coteiemy |Tdw=2 " | e |"+| Bie2®) | do

5 Cote®)
which is equivalent to
| Cotei®) |2 do=2f] | Cy(es20) Iz do+2 7 | Bies29) '2 do.  (4.63)
Equation (4.63) is an expression of the orthogonality of the decomposition: The energy in the

approximation A, {f(t}} is simply equal to the sum of the energies in the approximation A ! (1)}

and the detail D, {f(t)}. No energy is present in terms comprised of the cross-product
l C(e?®) || B,(e/2%) | . Furthermore, the specification of H(¢'®) as unitary is exactly

equivalent to the specification that the alias compensation matrix for the two-channel QMF bank
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15 exactly equivalent to the specification that the alias compensation matrix for the two-channel
QMF bank be paraunitary. Consequently. a single-stage decomposition followed by a
single-stage reconstruction employing Mallat's algorithm is exactly equivalent to a QMF bank.

Moreover, the paraunitary nature of Hie') implies

e o] g [
H(e'2)Gre??)+ Hien ™) Ge™ ") =0
One solution for G(&’ ©) as constrained by (4.64) is given by
Gy =e @b g o) (463

where L represents the length of the FIR filter hin). Selection of (4.63) dictates that the tilter

whose impulse response is g(n) will be a FIR filter of length L and that, bv (4 31¢), the wavelet

function y(t) will have exactly the region of support of the scaling function o(t).

D. EARLY MULTIRESOLUTION ALGORITHMS

f(
MWy I 2 T2l =W N

Figure 4 6--Block diagram of process by which detail is extracted from signal through the use of the Laplacian
pyramid algorithm. After {29].

In this section, two early multiresolution techniques--the Laplacian pyramid and the a
trous algorithm--will be considered. The first, the Laplacian pyramid, represents an algorithm
developed in the carly 1980's for the purposes of image coding. Conceptually, the Laplican

pyramid very closely resembles Mallat's multiresolution algorithm presented in the previous
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section. In fact, Daubechies credits the Laplacian pyramid with providing Mallat with

significant for the development of his own multiresolution algorithm [21].

The Laplacian pyramid, as with Mallat's multiresolution algorithm, entails iterative
filtering of a sequence to progressively smooth out the rapidly varying componeuts [29]. Atany

stage, the next coarser approximation is obtained from

fk+;(n)=§w(2n-m)fk(m). (4.66)
Unlike Mallat's algorithm, however, where the detail is extracted through filtering, the Laplacian
pyramid extracts the detail through re-expanding and filtering the approximation and subtracting

the result from the previous approximation. This process is illustrated in Figure 4.6.

Mathematically, extraction of the detail lost A,,,(n) when f (n) is approximated as f,.,(n) is

expressed as

A1 (n) = fi(n) = 2F w(n = 2m) fiees (m). (4.67)
The series expression on the right-hand side of (4.67) is recognizable as the same form of
equation as appeared in (4.57). The form represents expansion of a sequence tollowed by FIR
filtering. The factor of two is introduced to cancel the factor of 1/2 introduced by the
decimation operation as indicated by (3.6). As with Mallat's algorithm, iteraiively repeating,

results in the cascaded tree structure of Figure 4.7a. Reconstruction of a decomposed signal is
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Figure 4.7a--Block diagram illustrating three-stage decomposition by Laplacian pyramid.
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Figure 4.7b--Block diagram of structure for reconstructing sequence decomposed by three-level decomposition
depicted by block diagram of Figure 4.7.
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accomplished by simply reversing (4.67) and reintroducing to f,_,(n) the derail A, _,(n) removed
during decomposition:

fk(n)=AkH(n)+2-)m:w(n-—2-m)fk+1(m). (4.68)
Figure 4.7b illustrates the process by which a sequence decomposed by Figure 4. 7a is
reconstructed.

Figure 4.8 provides a graphical illustration of the averaging process employed in the
Laplacian pyramid. The Laplacian pyramid decomposition involves the approximation of some
sequence f,(n) by an averaged version f (n). The technique developed by Burt and Adelson
[30], in calculating the values of the nodes in f)(n), endeavors to consider each node in f(n) with
an equal weight. In the case of a five-point weighting sequence w(n), each node in f(n) is
calculated from an average of its five nearest neighbors in f(n). For example, the value of node
f,(n) in Figure 4.18 is evaluated as

£,(0) = w(-2)f(-2) + w(-1)-f5(-1) + w(0)-£,(0) + w(1)}-f5(1) + w(2)-£(2).
Additionally, obtaining f|(-1) and f,(1), requires evaluation of

f,(-1) = w(-2)£,(-4) + w(-1)£,(-3) + w(0)- (-2} + w(1)-f(-1) + w(2)-f,(0)
and

£,(1) = w(=2)f5(0) + w(-1)-fo(1) + w(0)-£,(2) + w(1)-f,(3) + w(2)-f(4).
Now f(0), an even-numbered node, contributes to the computation of three nodes in f,(n): to

£,(0), to which it is directly adjacent across scale, and to f,(-1) and f,(1). However, f(1), an
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odd-numbered node, only contributes to the contribution of two-nodes in fitn): o f(0)and 1o

£,

As stated previously, the objective is to define {w(n)}_ such that the total weighted
contribution by each node in f,(n) to the computation of nodes in f,(n)1s equal. Therefore. the
requirement that the total weighting factor for all contributions by (0} to equals the total
weighting factor for all contributions by f(1) implies that

wi-1) + w{1) = w(0) + 2-w(2). (4.69a)

The left-hand side of (4.69a) represents the sum of the weighting factors for all contributions by
fo(1) to all nodes to which it contributes in f,(n). Similarly, the right-hand side of (4.6%a)
indicates the sum of the weighting factors for all contributions by f,(0) to all nodes to which it
contributes in fi(n). Inductively, for a five-point weighting sequence the sum of the weights for
all contributions by any even-numbered node in f(n) will equal the right-hand side of (4.69a)
while the sum of the weights for all contributions by any odd-numbered rode in f(n) will equal

the left-hand side of (4.69a).

An additional constraint was imposed on the selection of the weighting sequence win):

£ wik)=1. (4.69b)
k=-2
The constraint imposed by (4.69b) ensures that, for any node in f(n), the sum of the weights by

all contributing nodes in fy(n) will be unity. Consequently, the average energy in fy(n) is

preserved by the approximation f,(n).
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To satisfy (4.69a) and (4.69b), Burt and Adelson selected

T
N O T S R T SO -
W—[ T 3 a 3 R . (4.701

4 4 J
Each odd-numbered node contributes twice, each time with a weighting of 1 4. The
even-numbered nodes contribute with a weighting of "a” when directly adjacent across scale
while contributing twice with a weighting of 1’4 - a2 when separated by scale and translation.

Consequently, each node contributes with a total weight of 1.2.

Considering the top branch of the structure in Figure 4.6 from a two-sided Z-transform
perspective provides insight into the frequency-domain character of the Laplacian pyramid. The

transform of the weighting sequence can be expressed as

W(z)=(-’-—%)(zz+z‘2)+]'-(z+z"')+a. (4.7

3
Applying (3.6), decimating (4.71) produces
Wi (z) = $[WE'H)+W(-z')]

(-4'——%)(24-2")4- a

which after expansion becomes
[wu]n(z)=(§--§-)(z2 +27%)+a. (4.72)
The effective transfer function T(z) of the top branch of the structure in Figure 4.6 can be
expressed as
T(z) = 2 [W . ]1.(2) W(2). (4.73)
Through trial and error, Burt and Adelson observed that for the choice of a = 3/10, repeated

applications of the transfer function (4.73) produced an impulse response with approximately the
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same shape with each iteration and which ultimately, approached a Gaussian shape. For this

choice of "a", the system transfer function becomes

LI ST UL L SIS B £ R LA I I AP
ml":nl*:(l‘<l’(.;l*«l’_‘5z MY Z"(‘_,
T(z)=-

,-\

Furthermore, from Figure 4.6, by inspection. the expression for the detail sequence A, (niis. in

terms of f,(n) and t(n),

Akq(ﬂ) = 1:; t(n — k) fk(k) - fk(n) .
Equivalently, if the transfer function for the entire structure of Figure 4.6 is defined such that its
impulse response is d(n), then d(n) = t(n) - 8(n) where 8(n) is Kronecker's delta function.

Consequently, the transfer function D(z) becomes

etz loged
) s

b 1
Losal el

D(Z) = 39 20 5

[ $ 3% 4 1.3

1
reT oGyt

2*

From this analysis follows a conceptually clearer but computationally less efficient structural

equivalent for Figure 4.6. This equivalent structure is indicated in Figure 4.9.

Ap.(0)

D(z)

L)
W(z)—2 —%‘

Figure 4.9--Equivalent structure to that shown in Figure 4.6.

f(n)

As a method of time-frequency decomposition, the Laplacian pyramid provides
performance for processes containing high-frequency components which inferior to that which

shall later be observed for Mallat's algorithm. Figure 4.10 illustrates the partitioning of the
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frequency spectrum which occurs when a signal is decomposed by the Laplacian pyrarmd. The

spectral bins which are formed do not follow the pattern of an even division of the frequency
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Figure 4.10--Partioning of frequency spectrum perfonned by three-stage Laplacian pyramid of Figure 4.7

spectrum at each stage as would be anticipated by operations involving factor-of-two decimation

and expansion. In fact, approximately three fifths of the frequency spectrum below the Nvquist

frequency is contained within the highest frequency bin. Consequently, for classification

applications, a Laplacian pyramid-based analyzer would provide poor localization of frequencies

above approximately 0.2 f. However, for an over-sampled sequence comprised primarily of

lower frequency components, a Laplacian pyramid detector would likely provide slightly better

spectral resolution than would be afforded by a multiresolution detector which divides the

spectrum evenly at each stage. For a three-stage, even-division multiresolution scheme, the

region in the

frequency domain from 0 to 0.125-f, would be divided into two spectral bins. For

the scheme of Figure 4.10, the region in the frequency domain from 0 to approximately 0.15-f 1s

divided into three spectral bins.

86




A {n)

1 f un>
A, 1
: 3 T2 War—
f'tn)
AL S . ‘ ?
: —3 T2 Wiz T2 =0 Wiz
Y
l'}(‘n,) t{n)
: 1 i eee X Lo : ; L
4 T2r=2 Wiz Tzr—zz-w(zr——ﬂ T2 wz>

')

Figure 4.11--Block diagram for full expansion by channel approach for reconstruction of a sequence decompesed
by the Laplacian pyramid. Structure 1s equivalent to that of Figure 4.7b.

[n general, multiresolution decomposition schemes which involve factor-of-two
decimation generate lattices which resemble Figure 4.8. At each stage, the approximation
density is reduced by a factor of two. For information transmission systems, this represent the
primary advantage of such systems. However, for display of time-scale decompositions
involving mesh or contour plots, most computer graphical routines require the insertion of zeros
in order to create a lattice of points of constant density. For mesh plots, such as those provided
by Matlab, a lattice of the form of Figure 4.8 will appear as rows of fin-like structures of
varying density. Because of the rapid transition to zero at each lattice nodes, contour plots
essentially provide binary indications of a sequence's time-scale content: I[ndication of the
presence of energy at a aode is given, without indication of the relative magnitude of the

sequence at that node.

Figure 4.11 provides a block diagram of a full expansion by channel scheme for

preparing the lattice similar to that of Figure 4.8 for plotting. The structure of Fioure 4.11
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represents the result of separating each branch of Figure 4.7b at its summation points. The

consequence of implementing a structure like that in Figure 4.11 is that <parse rows in a lattice

like that in Figure 4.8 will be interpolated resulting in a uniform density of lattice nodes.
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Figure 4.12--Time plot of 256-point test sequence generated by (4.74a) for demonstration of Laplacian Pyramid
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Figure 4.1 3--Plot of power spectral density of 256-point test sequence generated by (4.74a)

Furthermore, the reconstructed sequence from the structure in Figure 4.7b is
accomplished by

fo(n) = Zf™(n).
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In other words, the reconstructed sequence ﬁ,(n) consists of the sum of the content of all the
channels '™ (n) obtained from Figure 4.11.

To demonstrate the operation of the Laplacian pyramid, two test sequences were

emploved. The first sequence was constructed from low-frequency cumponents:

sip(n) = (l -e““"‘) NNl EUR-SL [2 cos(2-~w ?f-;n)+ sinf2 =« ;“:-l-n)-r% cos(2 =x ~‘—}~n)]
(4. 73a)
A time plot of the sequence is presented in Figure 4.12 and a power spectral density plot appears
in Figure 4.13. The test sequence was chosen such that the spectral content would lie

predominantly in the lower portions of the frequency spectrum. Test sequence (4.74a) contained

one spectral component, which completes only one complete oscillation during the duration of

the sequence, at /128 (= 0.004-f)). Additional components are present at 9256 (= 0.018:f)

and at 31-7/256 (= 0.06-f)).

The second sequence, identical to (3.47) employed in Chapter LI, Section C is repeated

here for convenience:

=] ] =™ | a< 9421 Q205 o2 L = B L LIRS
sm(n)—(l e ) e e [cos(z oSy m+ g CoS(2 m- 3o nj+ g cos(2 Mo n)]

(4.74b)
A time plot of (4.74b) is presented in Figure 3.23 and its power spectral density is plotted in

Figure 3.24. Test sequence (4.74b) contains spectral components at 2:1-27/256 (= 0.105-f).

2:n-55-1/256 (= 0.215-f) and at 2-%-113-7/256 (= 0.44-f).
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Figure 4.14a presents a surface plot depicting the eight-scale, fuil expansion by channel
of the Laplacian pyramid decomposition of the test sequence generated by (4.74a). Despite the
fact that the spectral components of the lowpass test sequence (4.74a) are quite close together,
the Nevertheless, the Laplacian pyramid is able to distinguish between the three separate
components. One peak is evident at around sample 32 at a scale of five to six, a series of
approximately four peaks are evident at a scale of three to four from samples 10 to 60 and a
series of peaks corresponding to the high-frequency components are apparent at scales one to

two from samples 20 to 120.

(ana 13usey)

Chamne] | ove)

Figure 4.14a--Surface plot of full expansion by channel of Laplacian pyramid decomposition of 236-point.
lowpass test sequence generated by (4.74a).

Figure 4.14b illustrates the Laplacian pyramid decomposition of the highpass 236-point

test sequence (4.74b). As discussed within the context of the frequency partition diagram,
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Figure 4.1G, the Laplacian pyramid produces significantly poorer resolution for sequences
comprised of high-frequency components. [n fact, for the highpass test sequence (4.74b), the
two spectral components with the highest frequencies fall within a single spectral bin.
Consequently, as Figure 4.14b indicates, it is very difficult using the Laplacian pyramid to

resolve spectral components residing in the upper two thirds of the frequency spectrum below

the Nyquist frequency.

{9AY [auUry]

Channe] | g vl

Figure 4.14b--Surface plot of full expansion by channel of Laplacian pyramid decomposition of 236-pont,
highpass test sequence generated by (4.74b).

The reconstruction error for the Laplacian pyramid operation on the test sequence was
consistently outstanding. The mean square reconstruction error as defined by (3.32) 1s plotted in

Figure 4.15. As indicated by Figure 4.15, the reconstruction error never rose above -317 dB.
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This accuracy roughly corresponds to the numerical precision of Marlab which was used for this

demonstration.
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Figure 4.13--Trend of mean square reconstruction error for Laplacian pyramid operating on 256-point lowpass
test sequence of (4.74a).

The a trous algorithin represents the first multiresolution anaiysis techr.ique explicitly

based on an affine-type representation vector. This technique consists of evaluating a
discretized approximation of the continuous wavelet transtorm. Specifically, the s:arting point
for the a trous method is the discrete wavelet series [31]:

w(m, n)=2‘“"2%\u‘(2'“‘k-n)s(k). (4.73)
Essentially, the discrete wavelet series consists of the discrete correlation between some
sequence s(n) and translations of a sampled wavelet function 2™ y(2™k - n) at scale m.
Evaluating (4.75) for w(1, n) produces

w(l,n)=—'-f-z.—§w‘(-'z‘——-n)s(k). (4.76)

In (4.76), it is obvious that y(% - n) = y(X2%). Consequently, (4.76) becomes

wil, n) ===y (%) s(k).

v
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Now. if w(k) is known for integer-valued arguments. its values at half-integer z-guments
can be approximated through interpolation. If fik) represents the impulse response for an
interpolation filter, then wik) at ha'f-integers 1s approximately

Wi =2 L2k -nuk), (4.77)
where the conjugation and time-reversal ¢f the filter and the factor of 2 have been introduced

-

for later convenience. The form of the summation term on the right-hand side of (4.77) is
recognizable as cxnansion of a sequence yik) followed by convolution with a filter who.e

impulse response is f(-k).

To obtain the best approximation, special conditions are imposed on the filter represented
by f(k). Shensa {31] applies the term g rrous filter and employs the notation

f2-k) =<8,

where 8, | is Kronecker's delta function. Perhaps a slightly more illuminating manner in which

to express this concept is to use the notation

f,

3
-

(k)=%50,k. (4.78)
[n other words, the decimated impulse response f(k) is non-zero only for k = 0. Equivalently,
the only non-zero, even-numbered coeffecient for the filter f(k) correspondsto k = 0. The
condition (4.78) is necessary in order to ensure that known values for the intempolated sequence

wik) are unaffected by the interpolation process. When evaluating f(2k - mwyk), if nis an

even integer, an arguisent for which y(n/2) is known, 2k - n will also be an even integer. and
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the series (4.77) will contain only one non-zero term, forn = 2k. Consequently, (4.771 wiil ke

evaluated as

Hence. the factor of 1 2 in(3.78). On the other hand. tf n is an odd integer. an argument

value for which the interpolation must be calculated. the series (4.77) will be evaluated as a
weighted sum of the function values for y(n;2) for surrounding even values of n. The 2 wous
condition (4.78) assumes a position of importance in the theory of FIR filters. The condition
(4.78) is equivalent to the half-band condition. A half-band filter is a symmetric, FIR digital
filter whose impulse response satisfies (4.78). Mitzner [32] showed that filters satisfying (4.781.
of necessity, also satisfy

F(e/w)+ (et ™)y =2 f(0) where F(el®)= Zf(k eIk, 370
Consequently, the interpolation filter whose impulse response is f(k) is also a half-band filter.
Furthermore, Shensa showed that the filters for Daubechies’ orthonormal scaling functions
belony to a special class of filters satisfying (4.78) known as Lagrangian interpolution tilters.
Specifically, if ¢(n) is the impulse response for the filter producing one of Daubechies’

orthonormal scaling functions, the corresponding Lagrangian interpolation filter is obtained from

f(n) = —= Zc(k)c(k—n).

Continuing the developmment of the a trous algorithm, substitution of {4.77) into (476}

produces

w(l, M) =ZLf2j+2n-k)w"(j)stk). (4830
jk
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Now, if a filter g{n) 1s defined such that
g(n) = y'(-n), (4.81)

and a change of indices m = j + n is applied to (4.80), it follows that

w(l,n):?&g(n—m)%f{lm——k)s(k). {4.82)
Equation (4.82) simply describes decimation of s(k) followed by filtering with a FIR filter
whose impulse response is f(k). The result is then further filtered by an additional FIR fiiter
whose impulse response is g(n). Furthermore, the second FIR filter is the conjugated
time-reversal of the sampled wavelet function. Therefore, filtering with g(n) is equivalent to

>valuating the correlation with y(n).

s'(n) E(—Z) —>w'(n)

F(2) 42 ¢,

Figure 4.16--Block diagram of one-stage decomposition by a trous algonthm.

Now, the operation of decimation and then filtering s(n) resembles the portion of Mallat's
algorithm, (4.53), where successively coarser approximations of s(n) were obtained by
decimating and filtering each preceding approximation. For the signal detail is extracted merely
by filtering the upper half of the spectrum below the Nyquist frequency. If the notation s"'(n) is
adopted for the i"-level approximation of s(n) and w*’(n) for w(i, n), by induction, from (4.82) it

follows that

S(“'”(n) =f= S(i)(n)

‘ . (4.83)
w“’(n) =g * s"’(n)
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The block diagram for (4.83) is shown in Figure 4.16.

Earlier wavelet transtorm techniques resemble Gabor transforms in which sequences
were decomposed by projection on representation vectors consisting of modulated Gaussian
windows. Consequently, the wavelet tunction used by Shensa in his study of wavelets was a

modulated Gaussian, also known as a Morler window:

-

w(t)=e*”e‘3": “ (484,

A
E
[

Fourier transformation of (4.84a) produces

- 3 2 Al
W(w) = é— J2m et I8 (3.84b)
[n order to specify a wavelet function, it is, therefore, necessary to specify its center frequency v
and its window rolloff factor B.
Furthermore, in order to increase resolution in the Fourier domain it is possible to

employ a wavelet function consisting of superimposed Gaussian envelopes modulated at

different frequencies. In this case, the wavelet y(t) and its Fourier transform become

M-l LBV
yit)=X e * {:LM} PR
k=) 485
M-l ok oeh 2yl
132 WM

V() =5 J2r IE}jb_‘e
Multiple frequency-domain translations of the Gaussian window are referred to as voices.
Through the use of voices, the upper half of the frequency spectrum below the Nyquist
frequency is partitioned into multiple spectral bins. Shensa listed a series of guidelines for

designing a wavelet function with multiple voices:
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The center frequency must lie in the upper half of the frequency spectrum below the

Nyquist frequency. Consequently,
n/2<v. (4.86)

In order for y(t) to be an analytic function,

v
52_.1‘ (3.87)

Obviously, (4.84b) has an infinite region of support. However, if, for (4.87), the equality

is selected,
W(0)= /21 e =6.71x107°.

Consequently, the spectral content in regions of negative frequency will be negligible.

To exclude aliasing,

v<r-J2ZB. (4.88)
The quantity /2 B is equal to one half of the Gaussian window where, at the edge of the

passband, the frequency response of the filter is less than its maximum by a factor of el
Condition (4.88) ensures that the high-frequency edge of the passband is located below

the Nyquist frequency.

The fourth condition for designing wavelets employs the concept of relative bandwidth.
The relative bandwidth B, of the window is defined to be the ratio of the window

bandwidth to its center frequency, or

o}

2
BR= - ﬁ.

<

Since, from (4.86) and (4.88), /2 < v < x, it follows that

42

22 B=BsSBrs2p= 1. (4.89)
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This condition is essentially a combination of previous conditions.

Furthermore, if multiple voices are desired, it follows that the number of voices M

required to completely cover the upper half of the spectrum is

M=o b

AR RN

#

1]

v

As a result, an approximate choice for 3 is

B:...L. (3.90)

M

To construct the separate voices, the mother wavelet y(t) is scaled by various factors 2* ¥

where M indicates the number voices. Specifically, the k* voice v (1) fork = 0, ..., M-1

is given by

Vk(t)=W(2:M) <4.9{a)
from which it follows by the scaling property of the Fourier transform,
V(@) =52 2w et ol 2B (491b)
This scaling produces the combined affects of increasing the Gaussian window decay

22‘k/M

factor by a multiple of and of translating the location of the window's maximum

Z'ZW

value to @ = v. Selection of this scheme also maintains the affine nature of the

transform.

Then, to select the filter length, it is appropriate to consider the decay of the Gaussian

window in the time domain. The filter will consist of a discretely sampled version of the

continuous wavelet function. The DFT of the wavelet is, by definition,

Vk(:lm) = E Vk(k) e jum
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Due to the rapid decay of the window function wit), the series can be truncated for values
of the summation index k such that v, (ki the voice with the slowest time-domain rate
of decay. will be negligible. f a newliwibtlity threshold T is specified. then a filter
half-length K must be selected such that

K sT

[nvertinyg the envelope portion of (4.912) produces for the filter halt-length K
K2z52™M0M J-2n(T,) 492,

Consequently, the analyzing wavelet filter yin) from (4. 81) is defined to be

| y(-n) ¥ a=-K, ..
g(n) = v n=-K , K i493a)
0 otherwise
and the filter g,(n) corresponding to the k™ voice v (t) becomes
‘(-n2*M) ¥ n=-K, ..., K -
ge(n) = v ) _ 19%h
0 otherwise
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Figure 4.17--Spectral partitioning perforimed by three-stage decomposition by a trous method usig four-ioice
Morlet window as analyzing wavelet. The interpolation filter, plotted as the lowpass filter represents a
Lagrangian filter calculated from Daubechies’ orthononmal scaling function on [0, 3}
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To illustrate the spectral behavior of the 3 trous method. Figure 4.17 plots the frequency
Jecomposition performed by a three-stage structure emploving a four-voice Morlet window.
The spectral bin density increases in a logarithmic manner as digital frequency approaches zero
and the width ot 2ach bin decreases similarly. The relatively large bandwidth of the lowest
frequency bin occurs because of the relatively small number of stages. Additional stages would
result in the continued trend of logarithmically increasing spectral bin density and bin width.
The logarithmic trend must, however, be ultimately broken by the final spectral bin which wili

be defined by a half-band, lowpass filter.

Figures 4.18a and 4.18b demonstrate the performance of the a trous algorithm for
identification of the spectral components comprising a sequence. Figure 4.18a presents the
decomposition of the lowpass test sequence {4.74a). Examining Figure 4.18a. the three
harmonic components can be observed. At a scale of approximately 2.5 to 3. the band
corresponding to the highest frequency component is evident. The middle frequency component
is apparent in the range from three to four. The lowest frequency constituent is indicated by the
sparce group of fins at scales of five to seven. The shape of the envelope is evident from the
relative heights of the peaks of the two components possessing higher frequencies. However the
lower frequency component appears relatively constant across the entire range of samples. This

occurs because the integration time of the final scale extends the duration of the sequence.

The a trous decomposition of the highpass test sequence (4.74b) is plotted in [gure
4.18b. Unlike the Laplacian pyramid, the a trous method displays no difficuity in resolving the

spactral components of (4.74b). Figure 4.18 provides an opportunity to understand the
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relationship between the location of spectral components in the time-scale plane and therr
location in the frequency spectrum. The regions contained within each spectral bin are, apain,
indicated in Figure 4.17. The spectral component of the test sequence at 0. 44 £ falls into the
right-most spectral bin ot Figure 4.17. This component is indicated with in Figure 4. 18b ata
scale of zero from approximately samples zero to 160. The location of the spectral component &
0.21f, approximately coincides with the location of the boundary of the fifth and six spectral

bins from the richt-hand side of Figure 4.17. Since the analyzing wavelet contains four voices

6
3
12

N (j‘\

Magn 1 tudde

apm wbew

Figure 4.18a--Surface plot of a trous wavelet transtorin decomposition of 236-point. lowpass test sequence
venerated by (4.74a). Plot represents eight-stage decomposition ustng four-voice Morlet analvzing wavelet and
Lagrangian nterpolation filter calculated from filter for Daubechies’ orthononnal scaling function supported on

(0. 3].
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Figure 4. {8b--Surface plot of a trous wavelet transform decomposition of 236-point. highpass test sequence

generated by (4.74b). Plot represents eight-stage decomposition using four-voice Moriet analyvzing wavelet and
Lagrangian interpolation filter calculated from tiiter for Daubechies’ orthonormal scaling function supported in
(0, 31.

(therefore there are four spectral bins per scale), the fifth and sixth spectral bins ccincide with

scales of 1.0 and 1.25, respectively. These scales coincide with an indication on 4.18b trom

samples zero to 96. Finally, the spectral component at 0.105-f, is located in the 10" spectral bin
of Figure 4.17. This bin coincides with a scale of 2.25. Therefore, this final component,

possessing the greatest power, provides an indication in Figure 4.18b throughout the entire range
of samples.
In working with the a trous algorithm, one significant disadvantage arises. Specifically.

reconstruction of a sequence decomposed by the a trous method is extremely difficult. The
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wavelet basts functions used in the a trous decomposition comprise frames in the sense described
in Chapter II. Consequently, in order to reconstruct a sequence decomposed by the a trous
method. it is necessary to construct biorthogonal set of bases. Daubechies outlined the details of

construction the dual of a specitied basis in [6].

Apart from the difficult of inversion, the a trous algorithm. as implemented by Shensa.
suffers from the disadvantage of long filter lengths. [n the example under consideration. in order
1o satisfy a negligibility threshold (4.92) of 5 x 10 a filter length of 81 was necessary. Each of
the four voices was implemented with a filter of equal length. Furthermore, the wavelet filter
coefficients are complex. Complex filter coefficients increase the computational burden.
Furthermore, from Figure 4.17 it is evident that the spectral decomposition resulting from the a
trous method is anything but power complementary. Partitiv...:g in a manner similar to that of
Figure 4.17 results in exaggeration of spectral content near the peaks of the voices and subdued
indications between the peaks. In favor of the & trous algorithm, however, is the atainability of
arbitrarily high resolution with smooth, regular filters. (It will be observed in the next section
that filters sometimes suffer from lack of regularity.)

E. MULTIRESOLUTION ALGORITHMS FROM CASCADED FILTER BANKS

Section C of this chapter outlined the equivalence between Mallat's multiresolution

analysis and a structure constructed from cascaded, two-channel, perfect reconstruction QMF
banks. This section explores, in a more general manner, implementation of multiresolution
analysis structures constructed from cascades of filter banks of arbitrary numbers of channels.

For each method, the issues of division of the frequency spectrum and invertibility will be
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considered. Spectral properties of the structures are of interest to obtain an understanding of the
frequency resolution attainable with techniques under consideration. Invertibility is important
because, in general, one good test of a decomposition technique is the accuracy of its

raconstruction.

a,(n)

H(2)F4. 2> bi(n)

2L A (2] 2> b.m)

Ho (@] -{L 212N H @1 2k byn)
Hy@ -l 2k>a n)

Figure 4.19--B'ock diagram of three-stage, two-channel multiresolution structure constructed from cascaded QMF
analysis banks. Algorithm represented is equivalent to Mallat's algonthm (4.53).

A block diagram of the most basic multiresolution algorithm is depicted in Figure 4.19.
The process of Figure 4.19 is exactly equivalent to that of (4.53), Mallat's multiresolution
decomposition. At each stage, the approximation sequence a,(n) is filtered with high-pass and
low-pass half-band filters. The output of each filter is then dilated. The low-frequency channel
decimator output--or the approximation channel, conforming to the terminology of
multiresolution theory is then applied to another stage. The high-frequency, or detail, channel is
employed for transmission, in the case of a communication system, or is applied to a detector in

one possible case of a digital signal processing application.
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If, hypothetically, the filter for each channel in the structure depicted in Figure 4.9 is an

ideal filter, the DFT filter output sequence for the approximation sequence bandlimited to
L*([-n/2,%:2]), applying concepts from Chapter [Il. The DFT of the detail sequence is likewise
bandlimited to L*([7/2, 3-7/2]). Decimation of each sequence dilates its spectrum so that the

approximation and detail sequence spectra are members of L*([-r, x]) and L*([x, 27)),

respectively. Consequently, the time-domain decimation and resultant frequency-domain

dilation result, at each stage, in the examination of a smaller segment of the frequency spectrum.
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Figure 4-20--Partitioning of the frequency spectrum resulting from five-stage decomposition structure of Figure
4.19. Structure was implemented using, for the approximation and detail channels, the filters corresponding to
Daubechies' orthonormal scaling function and wavelet, respectively, supported on [0, 13].

Figure 4.20 plots the spectral partitions resulting from a five-stage decomposition
structured as in Figure 4.19. The spectral divisions indicated represent those obtained using the
filters for Daubechies’ orthonormal scaling function and wavelet on [0, 13]. The logarithmic
contraction of succeeding spectral bins constitute the multiresolution analysis. The spectral

partitioning of Figure 4.20 compares favorably to that obtained by the Laplacian pyramid in
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Figure 4.10. However, the localization provided by the partitioning of the frequency spectrum
plotted in Figure 4.17 obtained by the a trous is obviously vastly superior to that of 4.20. For
some applications, the resolution of Figure 4.20 may be inadequate while the computational

burden necessary to obtain the results of Figurre 4.17 is excessive.

Brooks [33], in experimentation with signal processing techniques for ultra-wideband
radar systems, observed that a dichotomous spectral decomposition, as is performed by the
structure of Figure 4.19, provided poorer results than the a trous algorithm. One possible reason
for the disparity between the performance of the two techniques considered was the inadequacy
of the spectral resolution provided by Mallat's a’lgorithm. Consequently, consideration of a way
in which to improve the spectral resolution of multiresolution techniques without incurring the

disadvantages of the a trous algorithm is justified.

qm(n);:——sz(Z)ﬁ‘ $3—d3m

—H (z)—=l2 ;——%—aGl(Z)!—a 13— d(n)

a (n)—, . o(@D—13—d%m)
—Hy(2} =22 , ()

Figure 4.21--Multiresolution structure obtained by cascading detail channel of Figure 4.20 with a three-channel
QMF-type filter bank.

Figure 4.21 represents one possible approach to improving the results of Figure 4.20.
Applying, at each stage, the detail channel to the input of the analysis bank of another filter bank

produces a signal decomposition method capable of obtaining arbitrary precision. The study of
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filter bank design is an advanced field and techniques for the design of perfect reconstruction
filter banks of an arbitrary number of chLannels are available employing lattice structures [11] or

through cosine modulation of a properly designed prototype filter [34].

Figure 4.21 presents one example of a single stage of a structure using subchannel
decomposition of the detail channel at each stage. In Figui. 4.21, at each stage, the spectral bin
corresponding to the detail sequence is further suodivided ir.o three subchannels. Figure 4.22
illustrates the spectral partitioning which results from a four-stage structure constructed from
stages indicated by Figure 4.21. The improvement in spectral resolution is obvious. The density
of groups of subchannels increases as digital frequency approaches zero. However, the overall
structure does not provide the logarithmic spacing of spectral bins observed for the 2 trous
decomposition as indicated in Figure 4.17.
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Figure 4.22--Partitioning of frequency spectrum resulting from four-stage multiresolution structure constructed
from stages appearing in Figure 4 22.  Structure was implemented using, for the approximation and detail
channels, the filters corresponding to Daubechies' orthonormal scaling function and wavelet, respectively,

supported on {0. 13]. Subchannel filter banks were implemented with three-channel filter bank coefticients are

presented wn [11].
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Subchannel decomposition can be performed using either perfect reconstruction QMF
banks or pseudo-QMF banks--filter banks which do not strictly satisfy the perfect reconstruction
criteria. Similarly, to the extent in which the pseudo-QMF bank deviates from the power

complementary property, accurate representation in scale will be forfeited.
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Figure 4.23--Structure constructed from cascade of three-channel filter banks.

An additional method to improve spectral resolution of multiresolution techniques was
suggested by Gopinath and Burrus [35]. Employing the term multiplicity M wavelet transtorm.
Gopinath and Barrus suggested the concept illustrated in Figure 4.23 as a generalization of the
dichotomous structure proposed by Mallat. In the frequency domain, spectral resolution
increases as a base three logarithm instead of the base two logarithmic contraction observed in
frequency spectra resulting from Mallat-type structures. Furthermore, structures similar to those

of Figure 4.3 can be cascaded from filter banks of any number of channels.
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Figure 4.24--Spectral partitioning resulting from four-stage decomposition constructed of structures as in Figure
4.23. The filters indicated are 14 pownt pseudo-QMF filters designed in {11}

Figure 4.24 illustrates the partitioning of the frequency spectrum which results from a

a)

b)

H (2} 12 zte

Figure 4.25--1llustration of equivalence of two-stage decomposition-reconstruction structure with one-stage
stiuctuie with delays in each channel.

[n reconstructing sequences decomposed by cascaded filter banks, the issue of delay must
be addressed. As was discussed within the context of multirate system theory in Chapter 11, a
perfect reconstruction filter bank possesses an equivalent system transfer function which is equal
to a delay. In decomposition-reconstruction structure "a" of Figure 4.25, the detail channel

contains a delay L_ representing, for example, a reconstruction filter bank used, as in Figure
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4.21, to decompose the detail sequence into subchannels. The lower branch, the approximation
channel, contains a two-channel bank corresponding to the next stage of decomposition. In the
equivalent structure in structure "b" of Figure 4.25, the follow-on stage filter bank has been
converted to the delay L. with which it is equivalent if it is a perfect reconstruction filter bank.
Obviously, the delay in each channel must be equal. Otherwise, the approximation and detail
sequences will be shifted with respect to each other and accurate reconstruction will not occur.
Consequently, although a subchannel decomposition filter bank is not indicated in the detail
channel of the final decomposition stage in Figure 4.25, if one were installed, an artificial delay

in the approximation channel would be necessary.

H[(Z 2 Z'LS
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Figure 4.26--Tlustration of equivalent structures resulting from transmission of delay occurnng in approximation
and detail channels of a filter bank mulstiresolution structure.

Figure 4.26 illustrates the total equivalent delay of a QMF decomposition-reconstructure

containing a delay in each channel. In each channel a delay L_(equal to the order of the filters
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used for decomposition into subchannels) is indicated which could include combinations of
delays of subchannel decomposition-reconstruction structures, delays from subsequent

decomposition-reconstruction stages and artificial delays introduced to resynchronize channel

sequences. Since, by (3.9), [z~ L‘]T3 =z *b the total effective delay after the expander in each
channel will be twice the delay of the channel prior to the expander. This equivalence is
indicated by the transition from structure "a" of Figure 4.26 to structure "b." Furthermore, since
the application of FIR filter and application of a delay represent linear operations, the two
operations are also commutative. Consequently, as indicated in structure "¢" of Figure 4.26b,
the total, effective delay of the channel after the decimator can be moved beyond the summation
point. Since a sequence reconstructed by a perfect reconstruction QMF bank is simply a delayed
version of the original sequence, the total equivalent delay of structure "a" in Figure 4.26 is

simply the sum of L_ (the order of the filters used for decomposition into primary channels), the

delay of the decomposition-reconstruction QMF bank structure itself, and 2-L, the contribution

from all of the delays introduced into the decomposed channels.

To obtain a characterization of the total delay introduced into each channel of a

multiresolution analysis constructed from cascaded filter banks, consider again structure "a" in

Figure 4.25 as it would be implemented to reconstruct a sequence decomposed by M stages of

the structure depicted in Figure 4.21.  First, if a delay of L, resulting from a subchannel

decomposition-reconstruction structure, is introduced into the detail channel at stage M, of the
final stage of decomposition, then an artificial delay of L must be introduced into the

approximation channel of the same stage to resynchronize the detail and approximation channel
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sequences. Consequently, the total delay introduced into the detail and approximation stages
consists of the sum of two contributions. The first source includes the delay L, resulting from

decomposition-reconstruction structure corresponding to the decomposition of the detail

sequence into subchannels and its corresponding equal delay in the approximation channel.
Secondly, .. delay L_ corresponding to the primary channel decomposition-reconstructure at
stage M must be considered.

Continuing to the next stage, recombining the approximation and detail sequences from
stage M-1 to form the stage M-2 approximation sequence adds a delay of L_ to the doubled
equivalent delay present into the approximation sequence of stage M-1. As a result, the total
delay present in the approximation sequence at stage M - 2 isequalto 4-L_+2-L_+L_. Itis
therefore necessary to introduce a delay of 4L+ L_+L_. to the detail sequence of stage M - 2

to resynchronize that stages approximation and detail sequences.
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Figure 4.27--Block diagram .ndicating structure necessary to obtain full expansion by channel from a sequence
decomposed by M stages of the structure depicted in Figure 4.23. The values for L, and L, are defined m (4.942)
and (4.94b), respectively.
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To obtain the structure required to obtain a full expansion by channel of the decomposed
sequence by M stages of the structure presented in Figure 4.21, inductively the line of reasoning

begun in Figures 4.25 and 4.26 must be pursued. The consequences of this induction appear in

Figure 4.27. First, some arbitrary stage m, the subchannel sequence dm‘k'(n) must first be

expanded and then filtered by the synthesis filter [(z) corresponding to its subchannel.
Artificial delays from two sources must then be introduced in order to re-synchronize the

resultant stage m detail sequence component with its corresponding approximation sequence.

The first delay L, compensates for the artificial delay of L_ introduced into the approximation

sequence at stage M and is evaluated as
M-m o
L,=(27""- 1)L, (4.94a)

The second artificial delay contribution results from the primary approximation channel
decomposition-reconstruction performed at all subsequent stages m+1 through M and is
represented by a geometric series:

M-m~1

L,=L. I 2°. {1.94b)

p=0
Next, the detail sequence component must be expanded and passed once through the
primary detail channel synthesis filter. To complete the re-expansion, the sequence is subjectad
to m-1 iterations of expansion followed by filtering with the primary approximation channel
synthesis filter. The final stage approximation sequence is fully expanded--as indicated by the
second structure of Figure 4.27--by M iterations of expansion followed by filtering with the

primary approximation channel synthesis filter. Application of the steps described by Figure
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4.27 provides for a decomposed sequence 2 representation analogous to that depicted in Figure
4.11 for the Laplacian pyramid. The reconstructed sequence is simply the sum of all of the

expanded channels or, if applicable, subchannels.
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Figure 4.28a--Plots of recoustruction error versus number of decomposition stages for various decomposition
stages applied to 256-point, lowpass test sequence produced by (4.74a).

The accuracy of sequence reconstruction is dependent on the number of stages of
decomposition performed and on the quality of the filter bank. For several stages ot
decomposition, small eirors resulting from filter imperfections, such as roundoff ervor,
accumulate and corrupt the reconstruction process. To obtain optimum results, filter banks
which strictly satisfy the perfect reconstruction criteria should be used. In using pseudo-QMF
filter banks which do not satisfy the perfect reconstruction, poorer results will be obtained.
These concepts are illustrated by Figures 4.28a and 4.28b. Figure 4.28a indicates reconstruction

errors for multiresolution structures applied to the test sequence generated using (4.74a).

The lowpass test sequence from (4.74a) was constructed from low-frequency harmonics.

From the spectral partition diagrams presented for the various multiresolution structures
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considered, the spectral resolution of the multiresolution structures was greatest in the lower
regions of the frequency spectrum. In Figure 4.28b, the reconstruction error for the highpass test
sequence (4.74b) is presented. Illustrating results for the test sequence generated by (4.74b),
Figure 4.28b illustrates multiresolution technique performance for signals constructed from
frequency components located in the upper half of the frequency spectrum below the Nyquist

frequency.

-Four channel, zerg subchannel
-Three channel, zero subchannel
-Twg channel, four subchannel
-Two channel, three subchannel
w-Two channel, twa subchannel
-Two channel, zers sutchannel

Mean Square Reconstruction
Error (dB)

5 5 7 8
Number of Stages of Oecomposition

Figure 4.28b--Plots of reconstruction error versus nwnber of decomposition stages for various decomposition
stages applied to 256-point test sequence produced by (4.74b).

In the case of both test sequences, the lowest reconstruction errors resulted from
multiresolution structures comprised strictly of perfect reconstruction filter banks. In
two-channel, zero-subchannel and two-channel, two-subchannel structures, the filters used were
all obtained from Daubechies' orthonormal wavelet and scaling function supported on [0, 13].
Consequently, the multiresolution analyses obtained were equivalent to true, orthogonal

decompositions.
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For the two-channel, three-subchannel, the two-channel, four-subchannel and the
three-channel, zero-subchannel cases, the structures all entailed the use of pseudo-QMF banks
which did not strictly satisfy the perfect reconstruction criteria. The structures constructed using
the three-channel filter banks employed the set of filters designed by Vaidyanathan in {11]. The
four-channel filter bank used a set of 30-point, fourth-band filters designed by spectral
factorization of filters obtained by the McClellan Parks algonithm. The design process for the
four-channel filter bank will be outlined in Chapter V. Because of failure to satisfy the perfect
reconstruction property, structures using these methods consistently produced greater

reconstruction error.

TABLE 4.1--PARTITION OF SPECTRUM RESULTING FROM EIGHT-STAGE, TWO-CHANNEL,
___ZERO-SUBCHANNEL MULTIRESOLUTION DECOMPOSITION.

Spectral bin  Spectral bin
Decomposition stage Scale lower bound Upper bound
Stage 1 Detail 0 2%f, 2hf !
Stage 2 Detail 1 201, 2%,
Stage 3 Detail 2 2, 27,
Stage 4 Detail 3 25, 2,
Stage 5 Detail 4 251, 25f
Stage 6 Detail 5 27, 2%f, !
Stage 7 Detail 6 2% 27,
Stage 8 Detail 7 271, 2%,
Stage 8 Approximation 8 0 2°f, |

Inductively extending the results of the spectral partition diagram (4.20) corresponding to
this structure provides insight into the relationship between scale and frequency. The first

spectral bin, which coincides with scale zero in Figure 4.29a, constrains the region of the

frequency spectrum from 0.5-f, to 0.25-f. A scale of unity coincides with the region of the
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frequency spectrum from 0.25 f, to 0.125-f, the region corresponding to the signal detail
extracted during the first stage of decomposition.. Inductively, therefore, a scale of m,

corresponding to the signal detail extracted at the m" stage of decomposition, coincides with the

spectral bin partitioning the region from 2°'™"'f, to 2"“""*"f_ This subdivision is tabulated in

Table 4.1.
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Figure 4.29a--Surface plot of decomposition of lowpass test sequence (4.74a) using eight-stage, two-channel,
zero-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthononnal wavelet and scaling function supported on [0, 13].

Figures 4.29a and 4.29b demonstrate the full expansion by channel of decomposition of
sequences (4.74a) and (4.74b), respectively. In Figure 4.29a, the depiction of the lowpass

sequence (4.74a), the resolution of scale of the decomposition at low-frequencies is apparent.

The component of sequence (4.74a) located at digital frequency 2:1-9/512 (= 0.018-f)) falls in
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the range of 2° 5-fS to 2" *f, which corresponds to a scale of four. In Figure 4.29a, a series of
circular contours centered on the scale axis for m = 4 can be observed from approximately
samples 32 to 216. Similarly, the spectral component located at digital frequency 23:-31.512

(= 0.06-f) lies in the region 2 5~fS to 2 4-fs corresponding to a scale of m = 3. As a non-integer

2-4.05

power of two, the location 0.06-f, = which is very near the boundary between adjacent

scales two and three. Consequently, much of the component's energy appears spread between
scales two and three. The component at digital frequency ®/256 (=0.002-f) exists at the

boundary between scales six and seven. The indication of this component, which completes
only a single oscillation during the duration of the test sequence, appears spread between the two

scales.

Figure 4.29b presents the two-channel, zero-subchannel decomposition of highpass test
sequence (4.74b). The relative coarseness of the multiresolution decomposition in the higher
regions of the frequency spectrum becomes apparent in Figure 4.26b. Because of the rapid
variations with respect to time, the contour plot in Figure 4.29b is difficult to read. However,
information can be gained from examining the surface plot. Again, comparing the plot with the
spectral partition diagram, the spectral component of (4.74b) which lies at a digital frequency of
2:®-27/512 (= 0.105-f) falls within the region of 272 to 27* corresponding to a scale of m = 2 as

plotted in Figure 4.29b. The scale of m = 2 corresponds to the range of peaks with highest

amplitude. The spectral component located at 2-1:55/256 (= 0.215:f) is contained within the

region 2% to 2°* which corresponds to a scale of m = | as plotted in Figure 4.29b. The
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indication of this component is recognizable in the second range of peaks between the highest at

m = 2 and the range that runs along the edge of the surface plot. Finally, the spectral component
at digital frequency 2-w-113/256 (= 0.44-f) lies within the region of 2 ' to 2" % and is indicated in

the range of peaks at scale m = 0 which runs along the edge of the surface plot. For the highpass

test sequence, each of the harmonic components can be resolved. However, in the case of the

highest frequency components, the spectral separation 1s approximately 0.2-f,. Furthermore,
each of the three spectral components fell within adjacent spectral bins. Consequently, the

example demonstrates the maximum resolution for a two-channel, zero-subchannel

muitiresolution structure.
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Figure 4.29b--Surface plot of decomposition of highpass test sequence (4.74b) using eight-stage, two-channel,
zero-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthonormal wavelet and scaling function supported on [0, 13].
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Figure 4.30a--Surface plot of decomposition of lowpass test sequence (4.74a} using eight-stage, two-channel,
three-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthonormal wavelet and scaling function supported on [0, 13]. The subchannel decomposition was
performed with pseudo-QMF filters designed in [11].

Figures 4.30a and 4.30b provide two-channel, three-channel decompositions of the

lowpass test sequence (4.74a) and the highpass test sequence (4.74b), respectively. From the

spectral partition diagram for this structure, Figure 4.22, each spectral region 27" ' t0 27"V

is further subdivided into three subregions. For the general case, a multiresolution structure

constructed to divide, at each stage, the detail sequence into M subchannels, at the m™ stage of

decomposition, the k" subchannel corresponds to the region of spectrum contained in the interval
[(2—(m+2) + k_;-il_ (2D - 2-(m+2))) f,, (z—mm + .:s‘. (2 2-<m+z))) : fs]'

Because of the increase in the density of spectral subdivision afforded by decomposition

of the lowpass test sequence into subchannels, the time-scale localization presented in Figure
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4.30a provides time-scale localization which is improved over results presented in Figure 4.2%a.
In particular. the component at digital frequency 2:x-:31/512 clearly localized at a scale of three
instead of being partially spread over adjacent scales as occurred in Figure 4.29a. Similarly, the
component at digital frequency 2-7-9/512, which roughly corresponds to a digital frequency of,
Z’S'S-fs, can be recognized to exist primarily between scales of four and five. The component
characterized by the lowest frequency is still recognizable in the vicinity of scales six and seven.
However, an indication appears between scales of five and six which cannot be accounted for
based on the components known to exist in the test sequence. This unaccounted for component

may have appeared as a result of spreading from the component at scale six.

apny tubey
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Figure 4.30b--Surface plot of decomposition of highpass test sequence (4.74b) using eight-stage, two-channel.
three-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthononmal wavelet and scaling function supported oo [0, 13]. The subchanuel decomposition was
performed with pseudo-QMF filters designed in {11}.
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In the casc of two-channel, three-subchannel decomposition, the spectral components of
the highpass test sequence (4.74b) have also become more distinct. In the plot of Figure 4.30b,
because the spectral content of the test sequence has been localized in specific subchannels and
excluded from others, resulting in an indication of three separate components. Consequently, the

irdication provided by the contour plot constitutes a more useful display than the contour plot

for Figure 4.29a.
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Figure 4.31a--Surface plot of decomposition of lowpass test sequence (4.74a) using eight-stage, two-channel.
four-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained trom
Daubechies’ orthonormal wavelet and scaling function supported on [0, 13]. The subchannel deconiposition was

verformed with pseudo-QMF filters obtained from spectral factorization of fourth-band filters designed by the

McClellan-Parks method.

Examining Figure 4.31a, a plot of a two-channel, four-subchannel decomposition of
lowpass test sequence (4.74a), increasing structural complexity from three to four subchannels

provides sorae improvement in localization for the test sequence presented. The component of
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digital frequency 2-7-9/512 appearing between scales four and five have become distinct from
the indication unaccounted for between scales tive and six. Consequently, it is likely that the
false indication resulted from spillover of energy from the component at 2-x:2. 512, Between
scales tive and six, the resoiution of the decomposition using tour subchannels becomes
0.25-2°f, (=f,/512). Beneath those scales the resolution continues to increase logarithmically in
base two. It appears, therefore, as though the four-subchannel decomposition may provide

excessive resolution for the test sequence demonstrated. In general, the principal benefits of

decomposing sequence into subchannels occurs in the higher regions of the frequency spectrum.
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Figure 4.31b--Surface plot of decomposition of highpass test sequence (4.74b) using eight-stage, two-channel.
four-subchannel multiresolution structure constructed from cascaded QMF banks. The filters were obtained from
Daubechies' orthonormal wavelet and scaling function supported on [0, 13]. The subchannel decomposition was

performed with pseudo-QMF filters obtained from spectral factonzation of fourth-band filters designed by the

McCleilan-Parks method.

123




Figure 4.31b further illustrates the principal afforded by subchannel decomposition.
Specifically, in Figure 4.31b, an improvement in the resolution of the upper regions of the
frequency spectrum is evident. In Figurc 4.31b, a plot of the two-channel, four-subchannel
decomposition of highpass test sequence (4.74b), the sequence component at digital frequency
2:1-113/256 has been localized as distinct from scale zero. Furthermore, as compared with the
two-channel, three-subchannel plot of figure 4.30b, the test sequence component at digital

frequency 2-%-27/256 exhibits improved localization.

TABLE 4.2--PARTITION OF SPECTRUM RESULTING FROM FIVE-STAGE, THREE-CHANNEL.
ZERO-SUBCHANNEL MULTIRESOLUTION DECOMPOSITION.
m

m Multiresolution Spectral bin Spectral bin
stage scale lower bound  upper bound
Stage 1 Scale 0.0 £/3 f,2
Scale 0.5 £/6 f
Stage 2 Scale 1.0 £/9 6
Scale 1.5 -~ f/18 .9
Stage 3 Scale 2.0 £/27 £/18
Scale 2.5 f/54 /27
Stage 4 Scale 3.0 /81 f./S4
Scale 3.5 f/162 f/81
Stage S Scale 4.0 £/243 f/162
Scale 4.5 f/486 f/243
Scale 5.0 0 f./486

As indicated previously, decomposition into three primary channels provides base three

logarithmic partition of the frequency spectrum. Specifically, the first stage of decomposition
divides the frequency spectrum into spectral bins covering the regions f /6 to 2-f/6 and 2-f 6 to

3-f/6. During the second stage of decomposition, the lower third of the fiequency spectrum is
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partitioned along intervals f,/18 to 2:f,/18 and from 2-f/18 to 3-f/18. At stage m, the signal
detail extracted will occupy the spectral regions £/(2-3™) to 2-f/(2:3™) and from 2-€(2:3™) 1o

3-£12:3™. Table 4.2 presents tabulated information regarding the spectral subdivision

occurring from a three-channel, zero-subchannel multiresolution decomposition.
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Figure 4.32a--Surface plot of decomposition of sequence (4.74a) using five-stage. three-channel, zero-subchannel
multiresolution structure constructed from cascaded QMF banks. The decomposition was performed with
pseudo-QMF filters designed in [11].

Finally, Figures 4.32a and 4.32b present the results of three-channel, zero-subchannel
decomposition of the lowpass test sequence (4.74a) and highpass test sequence (4.74b),
respectively. Because of the base three logarithmic partitioning of the frequency spectrum,
localization of sequence spectral components in the lower portion of the frequency spectrum will

be improved over the localization resulting from a two-channel decomposition. Specifically, for
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sequence (4.74a), component at digital frequency 2-m-2'512 is located, according to Table 4.2, in
the vicinity of the boundary between scales 4.0 and 4.5. In fact, mest of the znergy of this
component appears in the channel corresponding to scale 4.0. Similarly, the component at
2:w9/512 is located in the vicinity of the boundary between scales 2.5 and 3. The energy of the
appears mostly at scale 2.5. Finally, the energy of the component at digital frequency
2:1-31/512 is indicated at scale 1.5. An unexplainable indication appears at a scale of 0.5

between samples zero and 32 and also at approximately sample 96. From Figure 4.24, the filters
from which the three-channel filter bank was constructed produced greater stopband error than
the two-channel filter bank. Consequently, energy from the sequence appears to leak, producing

less precise localization of components of the test sequence.

With regard to Figure 4.32b which presents the three-channel, zero-subchannel of the
highpass test sequence (4.74b), the structure appears to localize sequence components
approximately as well as the two-channel, zero subchannel. Comparing the two-channel,
zero-subchannel frequency partition diagram Figure 4.20 with the corresponding diagram Figure
4.24 for the three-channel, zero-subchannel structure, the two methods provide very similar

resolution in the upper regions of the frequency spectrum. Specifically, the three-channel
structure divides the spectral region between f/2 and f/6 into two channels while the

two-channel structure divides the region between /2 and f/4 into two channels. This similarity
is reflected in the Figure 4.32b. The component at digital frequency 2-n-:27/256 appears as the

largest range of peaks at a scale of two. The component at digital frequency 2-%-113/256 is
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indicated at a scale of zero along the edge of the surface. The indication of the component at
2:%-55/256, however, is less well localized. Tndications of this final component appear to be

present at scales of 0.5 and 1.0.
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Figure 4.32b--Surface plot of decomposition of highpass test sequence (4.74b) using five-stage. three-channel,
zero-subchannel multiresolution structure constructed from cascaded QMF banks. The decomposition was
performed with pseudo-QMF filters designed in [11].

Finally, the three-channel structure demonstrated in Figure 4.32a presents a noteworthy
phenomenon. The surface in the higher scale (lower frequency) regions possesses a jagged
texture. When the surface resulting from expansion by a filter is characterized by rapid
variations such as are shown in Figure 4.32a, the filter is said to lack regularity. The appearance
of this jagged quality is noteworthy because it occurs in the high-scale channels containing the

slowly varying components. For the the two-channel structures, the surfaces in the regions of
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higher scales presented relatively smooth appearances. The non-regular surface observed in
Figure 4.32a increases the difficult in reading of the surface plot. The issue of regularity will be

addressed again in Chapter V.

To provide an overall assessment of the three-channel structure, it affords greater
resolution at higher scales (lower frequencies) without incurring the increase in structure
complexity involved in performing decomposition into subchannels. Compared to the
two-channel, zero-subchannel structure, the structure provided somewhat improved resolution.
However, the performance in the high-frequency regions is not as great. Consequently, included
among the issues in deciding whether to employ three channels or two-channels with

subchannels is whether resolution at higher frequencies is critical.
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V. BASIS FUNCTIONS AND FILTERS FOR MULTIRESOLUTION
DECOMPOSITION

Al INTRODUCTION

Chapter [V developed the theory of multiresolution decomposition and demonstrated its
equivalence to the cascading of QMF bank structures described in Chapter [II. In Chapter IV,
the wavelets and scaling functions used for multiresolution signal decomposition were addressed
only the most abstract sense. In the present chapter the nature of these functions will be
addressed in greater detail. Section B outlines some of the basic concepts of the theory of
two-scale difference equations, the class of equations from which wavelets and scaling functions
were, in Chapter IV, shown to be derived. In Section C, some of the properties of Daubechies'
orthonormal wavelets and scaling functions will be considered. Finally, Section D will return to
a filter bank perspective for the study of multiresolution decompositions. Some basics of the

theory of perfect reconstruction and pseudo-QMF bank filters will be addressed.

[t must be noted that a number of approaches exist for the construction of wavelets and
scaling functions which will not be addressed in the present study. One of the earliest methods
which has subsequently become relatively well-developed is to construct wavelet and scaliny
function filters from polynomial splines {36, 37]. In the construction of wavelets from splines. a
polynomial spline is used for the scaling function. Since polynomial splines of non-zevo order
are not orthogonal with respect to integer translation, the scaling function family constitutes a
frame in the sense described in Chapter 2. The biorthogonal basis functions which complement

the polynomial splines to complete the frame can be constructed from, among other methods,



using recursive (IIR) filtering techniques. Finally, the design of wavelets has been approached

from an optimization theory perspective, as well [38].

B. TWO-SCALE DIFFERENCE EQUATIONS

In equation (4.23) (repeated here for 