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1. Introduction

Many electrical (and for that matter nonelectricil) devices, including mi-
crowave sources [1], lasers (2]. solid-state microwave oscillators, and elec-
tronic circuits [3], exhibit chaos when pushed to high power levels. The
presence of chaos in these devices can limit their efficiency and usefulness.

Recently, several experimental groups have demonstrated that it is possible
to control chaos in physical devices [21 with tiny perturbations using con-
trol methods that a-e based on the fundamental technique proposed by Ott,
Grebogi, and Yorke 141. A recent Army Research Laboratory (ARL) techni-
cal report 151 discusses the use of tiny-perturbation control for the transmris-
sion of information using chaotic dynamics. The information is embedded
in the symbolic dynamics of the controlled chaotic trajectory. (The original
idea for controlling chaos using tiny perturbations involved the stabilization
of the periodic orbits that are embedded in the attractor of a chaotic dy-
namical system.)

In this report I develop a technique for controlling the symbolic dynamics
[61 of chaos for the synthesis of time-limited waveforms (pulses) and for
the synthesis of power spectra with dcisired p'operties. This technique is in-
tended for the formation of pulses in high-power devices using tiny micro-
electronic control circuitry, so the power generation device is extremely
simple and efficient, while the control device is compact, low-powered, and
fast.

The technique for forming pulses. like the technique for information trans-
mission, relies on the concept of controlling the symbolic dynamics of a
chaotic system. (One can view the control of periodic orbits as control of
orbits with cyclic symbolic dynamics, the transmission of information as
control of orbits with aperiodic and stationary symbolic dynamics, and
pulse formation as control of orbits with transient symbolic dynamics.)

In this report the concept of spectral shaping in a chaotic dynamical system
is also introduced. The obtainable spectrum is constrained by the dynamics
of the system (the tiny-perturbation control does not alter the basic topo-
logical structure of the attractor), and is related to pulse formation. It is pos-
sible to alter the spectrum of a chaotic system with ergodic and stationary
dynamics, but in this report I limit the discussion of spectral shaping to
pulse waveforms. Both ideas introduced here therefore concern the use of
chaos to generate a signal class that has not been addressed previously in
the context of chaos cortrol: the transient time-limited signal. In addition to
the time sequence pulses, and the spectra, I also include graphs of sinusoi-
dal waveforms that have an amplitude modulation described by a linearly
interpolated continuous-time version of the pulse waveforms. These graphs
are intended to illustrate the appearance of intensity (amplitude) modulation
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chaos and controlled chaotic pulses cf intensity modulation. Microwave
sources and lasers, among other devices, are known to exhibit this type of
chaos. (The band-limited chaos that appears in these devices is more likelyto be oodil phase and arpitd modlaton.

Because different dynamical systems have attractors with different topo-
logical structures in state space, the exact description of a chaotic system
depends strongly on the specific system under study. Useful descriptions of
chaotic dynamical systems for control almost without exception rely on the
extraction from measured daa of a simple return map (a discrete-time de-
scription of the dynamics) for a Poincari surface of section in state space. I
therefore limit the discussion here to a specific discrete-zime dynamical sys-
temr--the shift map [7]. (The relationship between a symbolic shift and a
physical system has already been addressed, and an experiment is planned
to demonstrate inform'ition transmission using this relationship [5). This re-
port therefore concentrates on the symbolic description. The shift map itself
approximately describes the Loren. [8] three-dimensionai continuous-time
dynamical system for the commonly used parameter values, and its basic
properties appear in many other systems.)

The so-called double-scroll electrical oscillator that we have constructed in
our laboratory, aithough a nonhyperbolic system of two collided Rossler
attractors, can be described by one-dimensional mapping that is similar to
the shift in the ways that are important for this discussion. More complex
systems require the derivation of a symbolic system description from meas-
urements; again, this technique has already been addressed (5]. More corn-
plex systems, including the double-scroll system, should provide even more

flexibility in waveform synthesis.
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2. Background

The shift map dynamical system [7] is described by the equation x,, = 2x.
mod 1. It can theriore be described as follows in terms of a binary sym-
bolic dynamics. If the current state of the map is x = O.blb 2b3... in a binary
fraction decimal representation,* then the shift is alternatively described by
a shift-and-truncate operation on the binary fraction representation of the
state point. To obtain x,,., simply shift the bits in the binary fraction for x.
to the left by one place, and discard tue bit that ends up to the left of the
decimal point. Thus, x,.4 = 0. bzb,.b. . The equation x, = 2x. mod I can
thus te replaced by the alternative model of a simple bit shift operating on
an infinite binary string. (The relation between a symbolic dynamical sys-
tem and a physical electrical oscillator dynamical system has been demon-
strated in the context of information transmission [5], so I concentrate on
the symbolic system here.)

This alternative symbolic description is appealing both from an intuitive
and an analytical standpoint: It is easy Lo visualize and easy tocoastruct ini-
tial points that yield a desired dynamics. If the system state poihlt falls in tha
interval [0,1/2), the system is sail to generate a binary symbol 0, and if the
state point falls in [1/2,1], the system is said to generate a 1. Now the first
bit 4n the binary fraction for the state point detenaines which of these inter-
vals the state point falls in, and t'-e action of the shift is to move all the bits
to the left one space for each iteration of the map. The symbol sequencc
generated by this map, in binary fraction notation, is therefore precisely the
same as the binary fraction repr.sentation of the system state point. Thus,
denoting the system symbolic state by r, the symbolic state is related to the
state space state by the identity function r(x) = x. One can therefore specify
the symbolic dynamics by simply setting the bits in the binary fraction for

the initial point to the desired symbolic dynamics.

In other systems, however, the system state and the symbolic state will be
related by a function other than the identity. (In the Lorenz system, for ex-
ample, r(x) is practically continuous and monotonic, but is not the identity.
It can, however, be transformed into the identity using a continuous mono-
tonic coordinate change.) The problem of specifying a time-limited wave-
form is now reduced to the task of specifying the bits in the binary fraction
for the initial point x0. This conceptual abstraction is justified in view of the
fact that with tiny controls the symbol sequence that evolves from the sys-
tem can be viewed as emerging from the bits that are altered below the
threshold of observability.

*Briefly, if the is'place behind the decimal poin is given by the binary digit (bit) b, then .he stare point of the map
is x = i= 2' ib . Each real number is thus identified with an infinite binary string, and vice versa.
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First, for completeness and comp -'ison, I briefly describe the natural dy-
namics and spectrum of the shift map. The natural invariant probability

density for the shift [7) is simply the unifc"m density on the interval. The
corrlation function for the shift map signal is computed using the formula

C(M) Y fOW dX -C ) dx -

where f'(x) is the m'n iterate of the map, and E[x]2 = 114 is the squaied
mean value of the signal. The correlation fEnction is computed to be C(m)
(1/12)2". (The correlation function evaluated for m = 0 is equal to 1/12,
the variance of a uniformly distributed random variable on the unit inter-
val.) The unnormalized power spectral density is the Fourier transform of
the autocorrelation function,

S(o))= iC~me-•'.

The unnormalized power spectral density is given by S(w) =
(1/4)/(5 - 4 cos w). This power spectral density, because it is for a discrete-
time signal (a sequence of numbers), is periodic with period 2M Note that
the power density for this signal, because it is not delta correlated, is more
band limited than that of a uniform random variable, which has a flat spec-
trum because it is delta correlated. Figure l(a) shows a time sequence of
100 points generated by the natural dynamics of the shift. The power spec-
tral density, normalized so that the integrated spectral power is unity, is
shown in figure 1 (b). A waveform with amplitude modulation described by
this time sequence with a direct linear interpolation between sequence
points is shown in figure I(c).

The waveform in figure 1(c) is described byx 1 (t) = x(r) sin (10 x), so that
the frequency of the modulated waveform is five times the sample fre-
quency. The baseband time waveform, x(r), is obtained using a linear inter-
polation between sample points. The use of waveforms such as sinc
functions or Nyquist pulses has been avoided because these bases derive
from linear signal theory [9]. In general, the best basis to use to reconstruct
a time-sampled chaotic trajectory is precisely the curve that projects the tra-
jectory from the current sample point to the next one on the surface of sec-
tion. In this case, the system does not refer to a continuous time system, so
the choice of basis is arbitrary, and I have used a particularly simple one.

8
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3. Forming a Pulse

Because we can describe any al!o e ;N ynarnucal moton of this system by
specifying the bits in the binary fr:. c for an initial point (and thus the
symbolic future of the system), I con-: :z: n!is•s of the following form. As-
sume that the system is first in the of :: or approximately so, That is.
the initial point isx., 0.000 ... O00b ,5,.., .., a long string of zeros fol-
lowed by a bit sequerce to be specied. If .e :.n;ual string of zeros is long
enough, then the system can be considered ,r, 5e locked to the off state by
an extremely tiny control that simply kicks he sy;Lzrn back toward zero as
the shift dynamics tries to move it away. This would ccxTr'spond, Ja a physi-
cal system or device, to locking the system in a sauc but unstable equilib-
rium state, called an unstable fixed point. I also cons),er that the system
eventually is returned, after emission of the pulse. to ",e off state Thus, the
most general form for a pulse of this type is specified by Lhe in:tiil point (or
symbol sequence) x0 = 0. O" pr", where 0"' denote,, a precurwtr string of
zeros of length N, 0- represents an, infinite tail string of zeros, and P" is an
arbitrary string of ones and zeros of integcr length T rep eentig the pulse
bits. I assume that the precursor string 06 is arbitrarily long for computa-
tional purposes, so that the system is very close to the off s~ate before the
pulse is initiated.

The problem now is simply to specify the pulse string P'. T7e simplest
pulse that can exist occurs when Pr = 1; that is, the pulse string is one bit
long and is given by the binary digit 1. 1 will call this the unit puLse, for ob-
vious reasons, but it should not be confused with the unit amplitude imrpulse
in linear signal theory [9] This unit pulse, as will be shown, is a growing
exponential. It is straightforward to describe the pulse amplitude as a func-
tion of tirne (in this case the integer* index t): Because the single pulse bit is
at first deep in the number x., the system state is initially off (practically).
As the long string of zeros in the precursor, with the one bit deep inside, get
shifted out (to the left), the system state begins to move away from off.
Equivalently, the signal amplitude builds from zero and grows exponen-
tially. The shifting of this one bit from deep inside the number to succes-
sively higher significant bit slots means that the pulse signal as a function of
time is given by x, = 1/2 2', tS 0; andx, = 0, t > 0.

If I define the step function s, to be unity for t •0, and zero for t > 0, the unit
pulse can be w-ritter, ,4 u, = 2'-'.,, The pulse amplitude thus builds up expo-
nentially with time, and then cuts off abruptly at : = 0. This dynitsi;i, is
portrayed graphically in figure 2. which shows the graph of the shift map

*1 will use the variable t to represent the discrete-time index, instead of a commoniy used integer vanable Ike n. I will
also use the terminology waveform when referring to the sequence generated by the shýO map. Both of these uncon-
ventional usages were chosen to avoid referring to the sequence genera.,ed by the shift as a signal, which ha• the con-
notation of information transmission and signal processing. This note deals with pulse generation. possibly for trant•-
mission from a high-power.d microwave source or laser, but not i-itended for information transmitssion
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The spectrum of this pulse is ea.sily- cornputed:

U(W) =C,'

so that

and tzgthe closed form expression for the power series; v:lds U' (
142 -c'. The pow'er spectrum is thus given by, :U(w12 

= 1 (5 - o i
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llfiures 3('0 and 0A.rseciev Notte that the power spect-,rum t:i
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ary ergodic signal produced by the natural dynamics of the s-.,;,m. This
equivalence providcs a good exanple that tw o signalýs need not be ":e same
to yield the same power ,pectrum, and shows a deeper mathcmatical con-
nection between the natural dynamucs and the unit pulse. (A natural tra:ec-
tory of the system can be described as a random superposition of unit
pulses: thus the power spectra can be shown to be the same.) An amplitude
modulation waveform generated by this pulse is shown in figure 3(c), gi',en
by u,,(t) = u(t) sin (10 't), where u(r) is the linearly interpolated unit pulse.
More complex pulses can be formed similarly by specifying the pulse string

p' Some pulses of length T with different pulse stings are equivalent. This

occurs because any zeros at the beginning or end of the pulse string do
nothing but shift the time of tie pulse. an inconsequential detail in view of
the fact that the precursor string is arbitrarily long. Therefore, I adopt the
convention that all pulse strings must begin and end in a one. All bits be-
tween the first and last one are then arbitrary, and the number of unique
pulses of length T is given by NT = 2'ý. Some of these are symbolic time-
reversed copies of another, but the state point dynamics differ because of
the different numerical significance of the bit positions.
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4. Spectral Shaping

More complex pulses can be described in the context of spectral shaping,
(There are other ways to differentiate between the characteristics of the
pulses, but power spectra have become entirnched as a central concept in
linear signal theory.) The power spectrum also has the appeal of telling
what spectral bandwidth i• needed foi transmission of a given amount of
pulse energy. It is obvious, at least, that the symbolic d-scription is too de-
Wiled for differentiating global properties of pulses. For a long pulse length,
T, there are many pulses that are nearly the same in the sense that they ap-
pear quasirandom within the pulsewidth.

During the buildup phase of a pulse, the amplitude grows exponentially.
Because the pulse string is sequentially amplified by a factor of two, if I let
tht i-al number A0 = 0 .PT, then the pulse amplitude as a function of time,
during the buildup phase, is given by A(t)=A"2',t<O. At t=O, the
leftmost bit of the pulse string is in the most significant bit (msb) slot of the
binary fraction (the 1/2 place). For t > 0. the truncation caused by the
modulo operation causes the pulse amplitude to change in a chaotic fashion
(at least for most pulse strings) until the last bit (required to be a 1) is in the
msb slot. Then, the pulse amplitude is 1/2, and after the next iteration, the
system again returns abruptly to the off state.

Now let P =..0 aku, , where u, = 2 tkl Stk is a unit pulse that
reaches its maximum value of 1/2 at r = k, and a, is either zero or one de-
pending on the corresponding bit in the desired pulse string. Following this
procedure, any of the 2r-" possible pulses can be constructed from the unit
pulses, in a manner roughly analogous to the formation of arbitrary pulses
in linear signal theory from the unit impulse.* In this case, however, it is
important to remember that the superposition is occurring bitwise in the bi-
nary fraction symbolic description of the system state, and that the line,"
superposition always adds bits that are never both ones. Thus, in the lan-
guage of arithmetic, no carries ever happen. If one tries to use superposition
of two pulses that cause a carry, the linear superposition breaks down.

The possibility of using linear superposition like this helps immensely for
the problem of spectral shaping. Because all complex pulses are formed
from unit pulses, the spectrum of an arbitrary pulse can be computed easily.

"It is interesting that the unit impulse from ctnssical signal theory is obtained in the limrt of a large symbol alphabet
from the consept iniroduc.-d here of linear superposition of symbol strings. Ifa symbol sequence a1 a 'la, .._ from
a symbol alphabet of cardinalry Mis represented in its M-ary fraction re')resentation, then the ms~b slot containing
ml is M times more stknificant than the next most signfiicant slot containing m2. Thus. as Af becomes wry large. ,he
anplitude of the shýft. which is given by 0 mlm2m3... remains very close to zero 4fmI = 0. and is close to one if ml =
M - i. The signal amplitude is thus largely determined by the msb slot of the shift, and the unit pulse for the1 M-ary
alphabet is a sharply rising exponential that becomes the classical unit impulse as M -- •.

14



Thus

p, _pe a, u-'-['ý-kr- \ ,

Using the expression for the unit pulse, and exchanging the order of th.
sum yields

P(w) =

The sum over time is just the Fourier transform of the unit pulse phase-
shifted because the peak does not occur at r = 0. Thus the spectrum becomes

k -. r - , a e -'
P(CO) =,e

The expression for the power spectrum can be computed by noting that the
squared magnitude of the amplitude spectrum is equivalent to the matrix
expression

5-4cos(o)

where D = [0] FF' is the matrix of products of phase terms , =

e-*'*'-, F = [i' is a column vector of phase termsf* = e-1, and a = •]j is the
column vector of unit pulse coefficients.

This expression for the power spectrum yields an ":legant solution to the
problem of spectral shaping. Because any of the ak can be set to zero or one
as desired, the spectrum can be varied over a large range of possible spec-
tra. Noting that the terms in the numerator of fP(w)l are the components in
a Fourier synthesis of a function, then the problem reduces to the determi-
nation of the Fourier coefficients that will yield a spectrum close to the one
desired. Recall that even the coefficients that are variable can only be zero
or one, so this is not exactly like a classical problem of undetermined coef-
ficients.

Instead of solving the problem in detail (which would obscure the basic
idea), I will give some specific solutions that alter the spectrum from the
one occurring with the natural dynamics. A simple pulse waveform con-
structed from the unit pulse is given by P =I 1111111111, which is a pulse
of 10 unit pulses in a row. This pulse waveform, along with its power spec-
trum and corresponding amplitude-modulated waveform, is shown in figure
4. The power density has now become concentrated near co = 0. The pulse
therefore requires much less spectral bandwidth for transmission than either
the unit pulse or the signal produced by the natural dynamics.

15
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Other pulse waveforms can be constructed similarly. Figure 5 shows the
pulse given by P 9 = 1010101010, along with its power specrm and ampli-
tude modulation wavefonrn. (This is a T = 9 pulse because the last bit is
zero.) Note that the power spectrum of the pulse now has significant power
density near co = ±ir, This is caused by the presence of the frequency com-
ponent near ,i period two orbit of the map. Finally, figure 6 shows the pulse
P'0 = 1100110011, along with its power spectrum and amplitude modula-
tion waveform. This pulse comes close to a period four orbit, and the spec-
trum is enhanced near co = 'r2. The bit patterns indicated by these pulses,
if continued indefinitely, would cause the system to become loc.ked in a pe-
riodic orbit, period two and four, respectively. With very long pulses, the
corresponding Fourier component would become prominent, and would ap-
proach a delta function in the frequency domain. The laige lobe at co = 0
visible in all the pulse spectra in this report would also approach a delta
function. This lobe, representing the positive offset component of all the
pulses, would correspond to the dc component of the signal for long pulses.
Thus, one can think of the other spectral lines as representing the amplitude
modulation on the dc component of the signal.
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