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Final Technical Report on the Research based on the proposal AFOSR-
91-0352 for the period September 1, 1991 through December 31, 1992,

The original proposal was to support two months of Greenberg's
research efforts on Lattice Gases and Transport Processes while he
was on sabbatical leave in Europe from the period January 1, 1992
through December 31, 1992. Before leaving for Europe,Greenberg
contacted his program officer, Dr. Arje Nachman, and requested a
change in the scope of the project. Greenberg proposed to work
instead on problems in Plastic Flow and Oscillatory Flows in Molten
Polymers. Dr. Nachman approved this request.

During the period June 1, 1992 through September 30, 1992
Greenberg was resident at the University of Nice and worked with
Yves Demay and Anne Nouri on the revised research program. Two
papers resulted from this effort:

(1) with Anne Nouri, Antiplane Shearing Motions
of a Visco-Plastic Solid; to appear in SIAM
J. Math. Analysis

(2) with Y. Demay, A Simple Model of Melt Fracture, to
appear in European Journal of Applied Mathematics.

The latter paper nicely compliments work of Greg Forest, also
supported in Dr. Nachman's program, and gives an excellent
explanation of the unpleasant shark-skinning observed in certain
polymer extrusion processes. This work has been brought to the
attention of researchers at Corning and Hoechst Celanese and
Greenberg and Demay will work this summer with members of the
Materials Sciences Center at the Ecole Nationale Superieure des
Mines de Paris led by J. F. Agassant. One goal of this work is to
see if the same oscillatory phenomena is present when one replaces
the slip boundary condition by a no slip one and looks instead at
materials whose shear stress - strain rate constitutive equation
has a spinodal type nonlinearity. A difficult question alsc worth
pursuing is whether now understanding the nature of the flow
instability - a switch from a slip to a no slip boundary condition
at the wall of the capillary tube - if it is possible to control
the inlet flow to the capillary in the unstable regime in such a
way as to reduce the oscillations and shark skinning of the final
product.
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1. Model Development

A classical measure of viscosity of a molten polymer is obtained by studying the re-
lationship between the flow rate and pressure drop when the polymer is flowing in a
capillary tube of radius R and length L. For a linearly viscous polymer with viscosity
m this relationship takes the form:

R AP

(1.1) w = g-r}: I

where AP is the pressure drop across the capillary from z = 0 to 2 = L and @ is the
mean velocity taken over a cross-section perpendicular to the flow direction. For such
a flow, the wall shear is given by

RAP
2L

*This research was partially supported by the U.S. National Science Foundation, the U.S. Depart-
ment of Energy and U.S. Air Force Office of Scientific Research.

(1.2) Tw = —




o

reservoir
z=0 r
capillary
z= 1L
z
Figure 1.

and thus (1.1) is equivalent to the following relationship between @ and 7,:

R
(13) w= —-HTw.
These relationships follow from the local equilibrium equations for a linearly viscous
fluid subjected to a constant pressure gradient and a no slip boundary condition at the
capillary wall. The underlying flow in this case is Poiseuille. If the no slip boundary

condition is replaced by the slip boundary condition

R(4F - 1) 1
. = -—————— > .

(14) w(B) =~ —n, F23,
then the relation (1.2) still obtains but (1.1) is replaced by

_ R*FAP
(15) w = —'——2';7—1'1——
or equivalently

_ RF
(1.6) W= ——Ty.

m

1These relations are derived later in this section; for details see (1.27)-(1.32).
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For molten polymers one typically observes two distinctly different stable steady
flow regimes (see Figure 2). For mean velocities w < w; one operates on the curve
S, whereas for mean velocities w > w; one operates on the curve S;. Experimental
evidence indicates that the pressure drop D; associated with the velocity w, is larger
than the drop [, associated with ;. In general one finds no stable steady flows with
velocities between w, and 1,; rather one observes oscillatory flows with mean velocities
in the range (w;,w;) and pressure drops in the range (D2, D;). One normally interprets
such data as follows: on the curve S the polymer satisfies a no slip boundary condition
at the capillary wall whereas on the curve S, slipping at the wall is taking place. In
general, the curves S; and S; are nonlinear which indicates that the polymer is not a
simple linearly viscous fluid and that the slip boundary condition is really modeled by
a nonlinear relationship between w(R) and 7,,. These details will not concern us here.
Our goal is a simple model which explains the gross features of the transition from
steady to oscillatory flows.

Motivated by (1.3) and (1.6) we assume that @ and 7, are related by

(1.7) W= ——Ty

L5
where 7, is the viscosity of the polymer, R is the radius of the capillary, and F is a
dimensionless parameter which ranges between 1/4 and F, > 1/4. Bearing in mind the
relationship (1.2), we assume the existence of a switch curve (scaled as shown)

DR o <« BD1
2L W < ol
-y _ ) D4R | R Dy-D — _ RID, RD, o - o~ RED,
(1.8) S(@) = oL T 3L (R’F D _ R%D, W="38nL/)* SmL Sws 2mi
Imi  8mi 2
D> R R*F D, < W

2L L




which determines the stability of the curves S; and S;; specifically we assume that F'
switches from 1/4 to F;, via the transition rule

dF (R~ F; |r| > S(w) = S(F|r))

(1.9) To—r = {% —F;  rl < S(@) = S(Flrul)

where T is a fixed relaxation time (see Figure 3).

mw
=— [>1/4
/‘{m;& 2 /
) D3R

7wl

%
Si»

41]1‘(1_)
ITWI = R 2L
— — w
- R:D - R*R D
— 1 —_ 2472
U,] - 87)1L w2 - 21}1L
Figure 3.

Equation (1.7)—(1.9) are constitutive equations relating w, F', and =, and these hold
at each point z along the capillary. To these we must adjoin variants of the continuity
and balance of momentum equations together with an equation of state relating the
density to the pressure in the polymer. Again, the geometry of our system is shown
in Figure 1 and our model accounts for what happens in the capillary tube, not the
reservoir.

We assume the flow in the capillary is axisymmetric and that all quantities depend
only on r, z, and t. We let p denote the polymer density, p denote the pressure, and
assume that the velocity field u and Cauchy stress tensor o are of the form:

{(1.10) u = ue, + wey
and
(111) g = —P(Qr De, +eDestes ®§3) + o:r-gr De,+ 030;;9 D e

+ohe;Bes+T(esDe, + Des)t

2¢, = (cos8,sin,0), e, = (—sin §, cos b, 0), and for any vectors g = (ay, a2, az) and b = (b, ba, b3)
atg
welet a®b=aTh where a7 = | a
ay




(of,.,08,0%, ) are the nonzero components of the viscous stress tensor and are assumed
related to u and w by

o7 = Mlzgr(ru) + 32) + 2m3
oo = (3o (ru) + 52) + 2m 2
1.12 46 13 5 ’
o oty = (22 ) Y 202
=%+ %)

We do not make the Stokean hypothesis 3X; 4+ 27, = 0 but we do assume that A, =
O(m ). The governing equations are the continuity equation and balance of momentum
in the directions e, 5, and e;. These take the form

, dp 10 0 _
© a1 T o5 (reu) + 5-(pw) =0,
_2 -l__a_ 2 _ ?_._p aarr (O‘:,. 000) aT -
(MT) at(p )+ rar(rpu )+ a (puw) a + ar r + 82 - 07
10p
(My) e i 0,
and
d 10 d, ,, Op 090y 10 _
(M) ‘a';(Pw) + ;B;(Tpuw) + 5;(/’"1 ) — 1% * ;*37(7'7’) = pg.
At the boundary, r = R, we assume that
(BC) u(R,z,t) =0 and w(R,z2,t) = ——{5—(41’ — Dry(2, 1),
1

where F' > 1/4 is a dimensionless quantity depending on z and ¢ and 7,,{z,t) = 7(R, z,1)
is the wall shear. In order that the stresses o,, o§;, and o3, be finite at r = 0, we also
require that the radial component of the flow, u, vanishes faster than r as r tends to
zero. To close the system we assume that the polymer is slightly compressible and that
the following equation of state holds between the density and pressure:

(EOS) o= po (1 + f-‘i’) .
Po

Here, po and po are reference values of the density and pressure and 0 < ¢ € 1 is a
dimensionless small parameter.

To assess which terms in this system are important and which may be neglected we
cast the system in dimensionless form. We let

2¢ym L?

(113) T‘=RT1, Z=LZ1, and t = p0R2

4




and

R? R
P = Popr, W= E,flTwu u= %?'Z}'uh P = 2pop1,
— pgRr? - R\? — RY? 1
(1.14) =B g =po (—) a:m, Ohe = Do (2’) Tho)s
2
oY = Po (%) o33, and 7, Pﬂ—r

Then it is a relatively easy calculation to show that (1.12) transforms to

(2 (rw) + 42) + 232

7'1"1 =¥ Jzy dry
Uao #(:“5‘;‘ (riw )‘*‘M)‘*‘?%"
(1.15) 11 F2) Sw; atﬂ
oh = (k) + 35 + 2
Tl = (Z_WL tea g:,)
where \ R
(1.16) p=22=0(1) and == <1
M L
and the equation of state becomes
(1.17) = (14 2ep).
The continuity equation transforms to
(1.18) 56—15‘{;‘ " —or x("'lplul)'*'-a—;(mwl) 0
and (1.18), when combined with (1.17), yields
(9p1 1 6(7‘1111) 3w1 1 B(riplul) a(plwl)
1.1 — 2¢; | — =0.
( 9) 6t1 ry 67'1 + 32 + ™ 67‘1 62‘1
Finally the three balance laws (M,), (My), and (M3) take the form
4 4
€3e3 0(pr1uy) | €lez O 2 d(pruwy)
(1.20) 2¢, Ot ry Ory 3, () + s 9z,
1 1 1
3 (Urer - 0'99) aarlr; 267’ = __a_p_l_
+62 ( T + 67‘1 ) + K 821 267'1 ’
1 d;m
(1.21) ;——é—é- =0,
and
ees3 O(prwn) 1 O(ripyurwr)  9(pw?)
.22 e e - !
(1 2 ) 261 atl €23 1 67‘1 t 321
dal, dpp  10(nit)
2 _ — 920t _
+€2 21 64(1 + 251P1) 821 ™ 31‘1




where ¢, is the small parameter in (EOS), ¢; = ’f « 1 and

2 R
(1.23) e po;t:’oz and €& = pogL.
i

Our principal simplification comes from assuming that 5%:—’ and ¢4 are small and from
neglecting all terms with ¢’s in (1.19)-(1.22). This leads us to the following reduced
system

om + _]_-_a(rlul) 4 Oow,

(1.24) Bt, " r or 0z =9
om _ op _
(1.25) 5;': =50 = 0,
and L 8(r) 5
7T ) _ 40P
(1.26) T T 26;:1'

Equation (1.25) implies that p; = p1(21,%1) and thus (1.26) yields

Op
1.27 Ve,
( ) T T Bzt
From the last relation we see that the scaled wall shear, 7} = (1, 21, ¢1), is given by
op
1.2 = 2
(1.28) b=

The constitutive equation for 7! when €; = 0*:

TN = —
31‘1

together with the scaled form of (BC),:

(1.29)

-1
(1.30) wy(l,20,1) = —L‘f%ir;
implies that
2
(1.31) wl(rl,zl,tl) = (—':11" b F + %) Tt:’ 0 <r< l,
and that

w

1
(132) tf)l(zl,tl) = 2/ wl(rl,zl,tl)rl d‘l"l = ——F'rl.
0




If we multiply (1.24) by r,, integrate the resulting equation from r, = 0 to r; = 1,
and exploit the fact that rju; vanishes at r; = 0 and r; = 1 we obtain the following
equation for py(z,t,) and w(zy,t;):

on , 90,

(1-33) _a_t: + 6zl = 0.
From this last identity and (1.24) we also obtain
1 J a9, _
(134) ;‘é—'r'l-(f'lui) = 5;’1-(11)1 - wl)

where w; and w, are given by (1.31) and (1.32). Equation (1.34) may be integrated by
quadrature yielding

(135) ul(r‘,zl,t1)= a ("L/{;rl(lf)](z;,tl)—-w\(S,Zl,tl))Sds) .

52, 1

The above equation guarantees that as r; — 0%, 1‘-'13’;“—‘—31 converges to ;%(w,(zl Jh)—
w(0, z1,1)), a finite limit. The existence of such a limit was required in order that the
stresses 67, 04y, and o}, were finite at the center line of the capillary. We also note that
Jo(@(z1,t1) = wi(s, 21,t1))sds = 0 and thus, as defined, u; does meet the boundary
condition lim, - uy(ry, 21, ¢;) = 0.

To summarize, our remaining equations for p; and w; are (1.28), (1.32), and (1.33).
To these, we adjoin the scaled versions of (1.8) and (1.9) for the evolution of F. We

write the constants D, and ), of (1.8) as
(136) D] = PoC1 and D2 = PoC2

and observe that (1.8) and (1.9) transform to

dF [ R~ F; |ri] > S(iy)
(1.37) Vit ‘{%,-F; iri] < S(a)
where
C1, wl < C1/4
(1.38) S(n) =1 o1 + Eazto (3, — 0)/4), ¢ < < Fo
C2, F2C2 < 1in
and .2
: A= R
(1.39) -

and again Tj is the fixed relaxation time appearing in (1.9). These equations may be




|To| = 4

&

c1'/4 F. 2'02

Figure 4.

combined to yield the following system for p; and F

dp o op1\ _
(D) dt, 0z ( 321> =0
and ) 5
F-F -&>§(-Fin
(F) WF { 12 ou >$ gz,)
at, 1-F, -B<s(-F)

where again S is given by (1.38). This latter system is solved in 0 < 2z; < 1, the
normalized region of the center line of the capillary, subject to the following boundary
conditions:

(BC) - FO.6) 2P 0,0) = 4> 0 and pi(Lt) =1

4
The condition at z; = 0 corresponds to the fact that the input of material from the

reservoir to the pipe is done at a constant rate and the latter condition expresses the
fact that at the pipe exit the material is at atmospheric pressure.

2. Analysis of (D), (F), and (BC)
Our interest here is in the analysis of the system

dp 0 dp\ _
(D) at—“é;(paz)—o,0<z<l

oF [F-F -2>5(-F%)
" R F
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where again

Cy, w < 61/4
(S) S(w) = cl+ﬁ§-';'§—fc’,—§4—,(w—%), a/t<w < facp .
C2, F2C2 < u
These equations are solved subject to the boundary and initial conditions
dp
(BC) —F(O,t)z)—:((),t)=q>0 and p(l,t) =1
and

(IC) p(z,01) = po(z) >0 and F(z,0%) = Fo(z) € (1/4,F2), 0 <z < 1.

In this section we drop the subscript 1 for normalized dimensionless quantities.

It is not particularly difficult to demonstrate, either analytically or computationally,
that if the parameter g in (BC) satisfies ¢ < ¢;/4, then solution of (D), (F), (BC), and
(IC) converges to the stable equilibrium

(2.1) Po(z) =14+4¢(l —2) and Fyo(z)=1/4, 0 <z <1,

whereas if ¢ satisfies ¢ > F,c,, then p converges to 1 + ¢(1 — z)/F; and F to F;. Thus
we shall confine our attention to the situation where q € (¢;/4, Ficz) for it is in this
range that we see the oscillatory flows.

We use an operator splitting technique to integrate the system (D), (F), (BC), and
(IC). If § is our time step, we assume we have an approximate solution (p", F™)(z)
defired at ¢, = nd, n = 0,1,.... During the first half step we advance p keeping F
{ixed; that is, we solve

o0 9 (.0p\ _ oF _
(22) §~82(F§)—Oand /\E—0,0gt56

subject to the boundary condition (BC) and the initial condition
(2.3) (p, F){(z,0) = (p", F"}{2), 0 € z < 1.

We denote the solution to (2.2), (BC), and (2.3) at t = § by (p'/?, F'/?)(z) and of
course F'/%(z) = F™(z). During the second half step we solve

Z F—F, ~255(-F2
(2.4) op =0 and )\?E _ gz ( g’)
ot ot 1_F -2<5(-Fg)

subject to the initial condition

(2.5) (p, F)(z,0) = (p"*, F")(z), 0<z< 1.




11

The solution to this latter problem at ¢t = § is the new approximate solution at time
(rn+1)6.

In solving (2.2) and (2.4) we let n be an integer, h = 5;13;1—, and evaluate p and F
at the respective grid points z} = 3—’52—‘—111 and 2} = (k- 1k; 1 < k < (n+1). We use
a fully implicit first order method on both (2.2) and (2.4). This allows us to choose 6
and h independently and have a stable integration scheme.

We have run a number of simulations on this system with a variety of parameter
values (F3, go,c2,¢1,A) and shall report on a few of these at the end of this section.
Before doing this though, we report on one finding which surprised us. We observed
that once regular oscillations had been established (and transients had died out) that
the pressure field was approximately linear at each instant of time; that is the p profile
was approximately given by

(26) P pin ® po(t) + (1 = po(t))z.
This observation suggested that a simplified model of the oscillatory flows should be
possible. Below we present such a model which exploits (2.6).

If we integrate (D) from z = 0 to 2 = 1 and exploit the fact that the solution to
(D) is approx.mately given by (2.6), we find that po must satisfy

1d
(2.7) 5 = (F(LH) = F0,0)(1 = ().
e ap aphn . . .
He.e, we are exploiting 3, i~ 5. = (1 — po). A consistent interpretation of the
boundary condition 5
(BC) — F(0,035(0,8) = ¢
8z
is that
(2.8) — F(0,6(1 - po(t)) = ¢
and thus (2.7) reduces to
1dpo
(2.9) 573 =9~ F(L8)(po(t) — 1).

The equation for F(1,t) is obtained from equation (F); we merely replace u-g—p-(l, t) by
z

6;::“(1,0 = (po(t) — 1) and obtain

dF [ F=F(LY), (polt) 1) > S(F(L,t)(poft) ~ 1))
(2.10) *‘3?“*”‘{5-17(1,0, (polt) = 1) < S(F(1,8)(polt) = 1)).
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The system (2.9) and (2.10) is the simplified model used to describe the oscilla-
tory flows. For each ¢ € (&,c;F3), the solutions of (2.9) and (2.10) converge to a
unique orbitally stable limit cycle whose particular character depends on the choice of
parameters (A, ¢, F3, ¢, ¢;). Below we show two figures. Both were run with

(2.11) (A1, Fayc1,¢2) = (.5,.5,1.95,1.85)
In Figure 5

(2.12) qg=.7

and in Figure 6

(2.13) q=.6.

In the top portrait of each Figure the horizontal axis represents the exit flow velocity,
Wexit(t), which is computed by

(2.14) Dexin(t) = F(1,)(po(t) — 1)

and the vertical axis represents the pressure drop across the tube, po(t) — 1. The closed
curve in each figure is the stable limit cycle for the indicated parameter values and
these demonstrate the sensitivity of the oscillations to the incoming value of the flow,
q. The bottom graphs of each Figure show the time histories of the pressure drop and
exit velocity.

Figure 7 represents a simulation of the full system (D), (F), (BC), and (IC) run with
the same parameter values used to generate Figure 6. In these simulations n = 100
{and thus dz ~ .01) and dt = .005. In the top portrait of Figure 7 we have shown (1)
the limit cycle for the reduced system with the parameter values used for Figure 6, (2) a
graph of the pressure drop (p(0, t)—1) versus the exit velocity w(1,t) = ~F(1, t)%f(l, t),
and (3) a graph of minus the exit pressure gradient, -—g’;’(l, t), versus the exit velocity
w(l,t) = —F(l,t)g::(l,t). The pressure drop curve is the narrower of these two. The
second set of pictures in Figure 7 shows time histories of these quantities. In the graph
labeled “pressure drop vs time” the time history of »—gf(l,t) is the curve with the
largest oscillations.

Figures 8-39 show snapshots of relevant flow variables at the time indicated in each
figure. The data shown in Figure 8 was also used to generate Figure 7. The only pictures
requiring some explanation are the ones labeled “shear vs velocity™. Recalling that the

normalized wall shear, 7, < 0, satisfies |7,| = —-gf—(z, t) and that the normalized mean
velocity, w(z,t), is given by w(z,t) = —F(z,t)gg(z,t), we obtain the graphs under

discussion by plotting the curves z — (-—F(z,t)gf(z,t),—-g-s(z,t)), 0 <z<1,at the
times indicated. The points labeled x are the images of z = 1 and those labeled o are
the images of z = 0 at the indicated times.
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3. Conclusions

We have produced a robust model which is capable of producing relaxation oscillations
which are qualitatively similar to those observed in polymer extrusion experiments.
The heart of the model is the switch rule (1.8) and (1.9) which allows us to go from the
slip to the no slip boundary condition at the capillary wall. Though we have not done
it here, we believe it is possible to go from the linear constitutive equations employed
here to more realistic ones for a molten polymer and to modify the linear slip boundary
condition to one employing a nonlinear relation between the velocity at the wall and
the the wall shear which is scaled by a dimensionless factor £ which obeys a transition
mechauism similar to (1.8) and (1.9). Our colleagues at the Ecole Nationale Superieure
des Mines de Paris are currently pursuing this work.
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ANTIPLANE SHEARING MOTIONS
OF A VISCO-PLASTIC SOLID"

J. M. GREENBERG! aAND ANNE NOURI?

Abstract. The authors consider antiplane shearing motions of an incompressible isotropic
visco-plastic solid. The flow rule employed is a properly invariant generalzation of Coulomb sliding
friction and assumes a constant yield stress or threshold above which plastic low occurs. In this
model stresses above yield are possible; but when this condition obtains, the plastic low rule forces
the plastic strain to change so as to lower the stress levels in the material and dissipate energy. On
the yield surface, the flow rule looks like the classical one for a rate independent elastic-perfectly
plastic material when the velocity gradients are small enough but differs from the classical model for
large gradients.

Key words. plastic waves, visco-plasticity. timne-dependent prablems
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1. Introduction. In this note we consider antiplane shearing motions of an in-
compressible isotropic visco-plastic solid. This work generalizes and complinients
earlier work of Greenberg [1], [2], where he considered simple shearing flows for such
materials. The flow rule we employ is a properly invariant generalization of Coulomb
sliding friction and assumes a constant vield stress or threshold above which plastic
flow occurs. As with most such theories, we assume a multiplicative decomposition of
the deformation gradient into an elastic and plastic part, and we assume further that
the deviatoric part of the Cauchy Stress tensor depends only on the elastic portion of
the deformation gradient. For antiplane shearing motions this decomnposition presents
no precedence problems; i.e., does the elastic deformation precede the plastic or vice
versa? One key feature of this model is that stresses above yield are possible. When
this condition obtains, the plastic flow rule forces the plastic strain to change so as
to lower the stress levels in the material and dissipate energy. The principal difficulty
in formulating this model occurs when the stress is at yield. Motivated by results of
Setdman (3], Utkin [4], and Filippov [3] on sliding modes induced by discontinuous
vector fields. we are led to the flow rule advanced in (2.38). On the yield surface. this
flow rule looks like the classical one for a rate independent elastic-perfectly plastic
material when the velocity gradients are small enough but differs from the classical
model for large gradients. This rule differentiates between loading and unloading and
generates an energy identity which guarantees that uniqueness obtains for initial and
initial-boundary value problems.

The organization of this paper is as follows. In §2 we develop the appropriate
equations describing antiplane shearing flows in visco-plastic solids. Section 3 focuses
on the uniqueness issue. Our basic estimate is that the energy associated with the
difference between two solutions generated by the same data is nonincreasing. This
estimate relies in an essential way on the definition of the plastic How rule. [n §4 we
examine a one-diniensional signalling problem and discuss (1) the structure of this

* Received by the editors March 17, 1992; accepterl for publication (in revised foriu) September
2, 1992,
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2 J. M. GREENBERG AND A. NOURI

solution, and (2) a procedure to analytically obtain an approximate solution. We
also compare this solution with what obtains for the more studied model of a rate
independent elastic-perfectly plastic material where uniqueness fails. Section 3 deals
with a numerical experiment for a two-dimensional signalling problem in the corner
domain » > 0 and 7/2 < # < 27. Here the stresses are singular as one approaches the
corner and care must be taken in the implementation of the boundary conditions.

We note that in the last several years there have been a number of other efforts
aimed at capturing the essence of plastic flows. Antman and Szymczak (6], [7] have
advanced a finite deformation theory of such materials which is similar in spirit to ours
but differs in a number of essential ways. Their model is formally rate independent
where ours is not but their model also requires a history dependent strain hardening
mechanism. The predictions of the two theories are often qualitatively different; these
differences arise since in their model the impaosition of large loads tends to elevate the
yield stress and create a temporally constant permanent plastic deformation, whereas
in our model such loading would generate a constant plastic deformation rate and thus
a plastic deformation which varies linearly in time. This may be seen by examining
the solution constructed in §4. Other efforts on elasto-plastic modelling may be found
in Coleman and Owen [8], Buhite and Owen [9], Coleman and Hodgdon {10}, and
Owen [11].

2. Model development. We say that a body is undergoing antiplane shear if
material points £ = &;e; + Srez + S$3e3 move to X = 21e; + Trez + Izey with

(2.1) ry =&, r2=¢&, andz3z=2E&+¢(&,6t)

under the action of a Cauchy stress tensor of the form

T=-n(e;®@e; +e28ez2+e3RQe3)
(2.2)! +(S11e1 ® e + Szrez ® ez + Szze; ® e3)
+531(e1 ey +e3Rey) + Saalez ®es +e3®ez).

Here, = is the hydrostatic pressure and $ is the deviatoric stress tensor and satisfies
(2.3) trace{(S) = Sy1 + S22 + S33 = 0.

Relative to the above basis, the matrix representation of the Cauchy stress is given
by

1 00 Siu 0 Sy
(2.4) J=-o{ 0 1 0 |+ 0  Saa 53
0 0 1 S31 Saz Sa3

and relative to the same basis the deformation gradient is given by

1 0 0
(2.3) F={ 0o 1 o},
F31 F32 1

0 0
! ey} = ( ), eg = ( 1 ). and e3 = ( 0 ) are the standard basis elements for R? and
0 1

e 2 ej = eje;’ are the standard basis elements for linear operators from R> to R3.

4O O~




ANTIPLANE SHEARING MOTIONS OF A VISCO-PLASTIC SOLID 3

where
8¢ do
2.6 F3; = =— d F33 = —.
(2.6) n=g- and Fu=gm
Noting that matrices
aet 1 0 0
.7'.(“'5) Ié 0 l 0
a b 1
satisfy the commutation relation
(2.7) Flarb)F(aab) = FaaparFlar o) = Flar+aa,bisbap

we feel justified in decomposing the deformation gradient F into its elastic and plastic
patts £ and P by

wef L 00 wf P 00
(2.8) =1 0 1o and P=Z| 0 1 0],
€3 ez 1 pa1 paz 1
where
1 0 0
(2.9) F=EP=PE= 0 1 0

ez1 +p3r es2+p3z 1

For such antiplane shear flows one need not make any assumption about the prece-
dence of the elastic and plastic parts of the flow.

Our basic constitutive assumption is that under a change of reference frame F
transforms in the same way as F' and that the deviatoric stress S is an isotropic, frame
indifferent, trace free function of the elastic deformation gradient £.2 The constraint
that S is an isotropic, frame indifferent function of E implies that S must have the
functional form

(2.10) S=al+BEET +9€77€7
or
(2.11)3
1 0 0V 1 g €31 H’C%i €31€32 —€3]
S=afl 0 1 0 }+3 0 1 e32 +7 e31€32 l+€§2 —£€32
0 01 esr ear l4e3,+eds —-e31  —e32 1

where «. 3. and v are functions of the invariants of ££7, in this case the scalar "~
e3, + e3,. Equation (2.4) implies that S»; = 8)» = 0 and this, in turn, implies that

4 = 0 while the condition that traceS = 0 implies that a = —3(1 + ((e3, + €32)/3)).
Combining these identities with {2.11) yields

_%(eg‘ +e§2) 0 . €3y
(212) S = /3 0 —-%(Cgl “+ 632) "832
€31 €32 %(6’51 +e32)

2 E is the tensor whose matrix representation relative to the basis elements e e is given by

(2.8)1.
3 For details see Gurtin [12].
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In the sequel we shall assume that 3 is a pesitive constant. Equation (2.12) implies
that we may regard the elements Sa; and S3y as basic descriptors of our system. In
terms of these S and £ take the form

—%(5:'321 +55,) 0 531
(2.13) S= 0 -3-15(.5'31 + 532) Saz
Sa1 Sa2 :2{7%1 + 532)
and -7
l 0 0
(2.14) £= ;52'»_1_ é; 0
g B

‘We now turn to the equations of motion. Equation {2.1) implies that the Eulerian
velocity field u is of the form

(2.15) u = u(z, 2,11 )es,
where
o}
(2.16) u(zy, 22, 81) = Td‘?(zhzth);
1
and (2.16), when combined with (2.6}, implies that
- 0F31  Ou _
(2.17) £ 3z, = 0
and
v 8F32 du -
(2.18) S oo = 0.
Additionally, (2.9) and (2.14) imply that
S:
(2.19) F3 = —%1' + pa1
and
Saa
(220) F3 = ;- + P3z2.
Balance of momentum in the e; and ea directions implies that
y - 4 (53 +53)) _ @ (53 +53)\ _
(221) a—;:(ﬂ"‘l' ;d _('3::3 T+ 33 =0
or equivalently that
(2.22) 7= moles,t) = BAFIR) o
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whereas balance of momentum in the ey direction yields

(2‘23) du 6531 3532 = Bﬂ'

Here, pg is the constant mass density of the material. Since d7y/0z3 depends on z3
and ¢, whereas all quantities on the left,thand side of (2.23) depend only on =, 1,
and ¢, we conclude that for antiplane shearing flows d=y/dz3 is independent of rj3.
In what follows we shall assume this quantity is zero.

We now turn our attention to “vield condition” and the fiow rule for the plastic
strain tensor P of (2.83)a. We assume that yield is determined by whether the scalar
531 + 53, exceeds a threshold 57 or not. This assumption relies on the special form
of § (see (2.13)) and is equivalent to a yield criteria determined by the norm of S
where

. 9 def -2 " 2 . 2 12
(2.24) ISI® ¥ 8,585 = 253, ;?)“*373?(‘53* + 53.)
or one based on the maximum shear stress
(2.25) 52 & Jhax, [ISe - (Se-e)e||*.

In the sequel we let H denote the Heaviside function

g . et | O, z<0
(2.26) H(z):= { 1. >0

and define ¥; and ¢ by
(SJI+SJZ)
(2.27) ¥ = 7/ H(z ~ S})dz
2 )

and
V3L +5h
Wy = /

(3]

(2.28) H(z - $,)dz.

where 5, > 0 is the “yield stress.”
We shall confine our attention to the Coulomb type sliding law

6p3| i 81/)1 531 - -
2.29 = e e = e (S5, + 530 — S
( ) 6!; ITo 353, 3Ts (531 + 33 l)

and

(2.30) 31-1. = ;“T;m = ET—-—H(SM + 532 )

though much of what we say applies equally well to the flow rule

apﬁl -S'v a’//" 3‘7 531 ] ~ -
(2.31) =z L = L H{\/82, +5, -5
' ot OTodSm  BTov/S53, + 5% 3T
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and

dpas _ 85, Oun 5,530 ( - -
23 R =Eote —SEELH (/S 55 - 5, ).
( ) oty ITo 3532 3T% \/‘55)1 + 53, 31 32 y

The constant ;3 is the shear modulus in {2.12}, S, is the yield stiess. and Tp > 0 is
a fixed relaxation time. The flow rule is defined for 53, + 53, # 53 and the problem
remains to define it on the yield surface.

We first note that if 53, + 53, # S3. we can combine (2.17)-(2.20) and (2.29) and
(2.30) to obtain the following system tor S3;. S32, and u:

(2.33) 1053  du S H(S3 + 52, - )
2.3: 3 oty dz, T '
9 9. 1 8834 Ju - —53:’]-{(53‘ + 5:';-’2 _93)
. 39t 9z2 3Ty ,
and

2.35 Ou 6531 3532 _

o poatl T 8z, Oz, =0

2
3t,

3 - . 0 . 0
(831 + S32) =28 (-531 a*f‘ + S )
(2.36) !
+

2 " ~7 -9
"'770(551 + S32)H(53,
and (2.36), together with the results of {3]. {4]. [3], motivates our extension of the flow

rule on the yield surface S3) + 53, = 5. We extend (2.29) and (2.30) to the yield
surface 53, + 53, = 57 by

2 Opa1 _ aSy dp32 _ aS32
(2.37) 5, - 3T, and 5, = 9T,
where
(2.38)
( 9 a9 -2 ~ 2] S?
I ifS3, +53 =5 and Sy F + Say d:ﬁ > J’I{o .

- - du 2 -9
JTo(bsxa— + ba'za:)/ S, 53 +55 =95, and
o= 4 A
0<S + 5 Ju < 5
31(91 ‘30.1'3—.‘37.0 /7\
on du
22 _ o2 . .
0 if53 +53 =5, and -53151.—l+b32'5‘72<0t

* The relations {2.37) and (2.38) transform in a frame indifferent fashion.
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In the sequel we shall confine our attention to the extended flow rule (2.29), (2.30),
(2.37) and (2.38). The relevant equations are

6531 Bu 053;

1
2.39 105  Ou _ _oSa
(2.39) g dty Or, 3T

2.4 X e =
(2.40) 3 ot dza 3T

(2.41) poom = L 232 g

where now
(2.42)
(1 if S}, +53 > S? &
~9 ﬂT Jdu du
1 ifS3, +5%, = , and by (bmd +bgzd >>1 ,7\
ﬂTg . Hu “~ 6u . 2 2 2
3z (Satazl + ba:a;;) if 53, + 53, =5, and
a =<
BTQ ( Ju Bu)
<
0< —= 531d +5'32d <1 /7\
ﬂTo - 8!1 Ju >
= §2 P20 [ G o 4 Spp e
0 if 531 + b32 S and Sg (531 5z, + 323:2 <0 ﬁ"\
0 if ‘531 + “g ;'),

\

and these are solved together with appropriate initial and boundary conditions. Hav-
ing solved the above system for Sa;, S32, and u we recover the deformation gradients
F31 and F33 by solving

9 A% dFy, Ou _ 0F3 Ou _
(2.43) 3. oz, =0 and 3.~ 5zs =0

together with appropriate initial conditions. The plastic strains py; and pj; are then
given by

Sa

3

5
(2.44) par = Fy - —;—1- and p3 = F32 —

These equations should be contrasted with what obtains in the more commonly stud-
ied theory of rate independent elastic-perfectly plastic matertals. In that theory (2.37),
(2.39)-(2.41), (2.43) and (2.44) still hold but « is given by

By
~ D \J;\
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(2.45)
( 3To - Jdu . 2 '3 2
. : Yo fSx 4—5‘ =5 d
52 (bsld + 53’612) if 53, + 53, y an
3T [ .
0< == Sa _d_u_ + S32 _<2}5_)
b; d:1 d.tg
=
R -2 - . 0O
0 lf.5§l+b§2=by2 and b (Sgld l-t-b-u»du)<0.
L 0 if Sgl + S;';’,_, < 5;

The unboundedness of a on the yield surface S}, + S3; = S] presents difficulties
not encountered in our model. In particular, across nounstationary shocks where Fy,.
F39, u, S31, and 532 experience jump discontinuities, we must admit jumps in the
plastic strains p3; and p32. The reason for this is that in the classical rate indepen-
dent theory—c as in (2.45)~—we must allow “dirac” type singularities in the terms
aS31/87y and aS32/3Ty and therefore, we cannot conclude that

.2.46) cny[pa1] = enalpa] = 0.

Here, ¢ is the normal velocity of the shock wave and n=(ny, nq) is the unit normal to
the shock. In our model « is bounded, no “dirac” type singularities arise in the terms
aS31/3T, and «S32/087;, and thus (2.46) holds. This implies that with our mode} all
nonstationary shocks satisfy ¢ = 1; that is, they propagate with the speed of elastic
signals. With our model, the only surfaces across which the plastic strains can jump
are stationary, i.e. ¢ = 0. Such jumrs are also allowed in the classical theory.

We conclude this section by wriiing down a dimensionless version (2.39)-(2.44).

We let

Po IL Po z2 e
= i1 =
V 8 T

Po S31 S32 Sy
v=,/—urmy = — my=—, and 7, =
Var T T g T8

and observe that (2.39)-(2.42) transform to

(2.47)

(2.48) 9;_% - g;_’ = —dm,
. Or2  Ov .
(2.49) ot "5y -aT32,
. av ('91'31 6732 -
(200) '5?_—3‘;———5;;‘—0v
where

(2.51)

’.’ Eory
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. 2 \
(1 i+ > A A
’ 1 dv Ov
1 ifrd+7rh =7 and — {1y =——+ T > 1.
Nn+tTR=Ty 7 S + 257

1 dv v e s u o
T + if g, + 3, =77 and
Tf ( 313 d 323 d a1 32 v

0
il

1 dv du
0< ;y? (7'315;:4-7'326:2) <l

. 2 2 ] 1 dv db
0 ifry; +r33=7, and -;i-<r3-d-—+ 3zdz><0,

| 0 ifr§1+r§2<f;".

The transformed versions of (2.43) and (2.44) are

o g anl dv - aF32 av
(2.52) E 32 0 and 3t " oy =0
and

(2.53) ps1=Fa1— 7 and p3z = F3p — 7.

3. Uniqueness results. Our task in this section is to establish the following

THEOREM 3.1. Let Q be an open domain in R? with smooth boundary 8Q. Then,
there is at most one piecewise smooth,® L2 () solution (731, 732, v) to (2.48)-(2.51)
satisfying

(31) ‘Ergl"_(r.')l » T32, U)(l’, v t) = (Tglr ng’ vo)('r’ y)'
(3.2) (,,y)engff,’y)_am("‘f‘“ + n2ra)(z, ¥, t) = filz, v t),
(33) lim v(z,y,t) = falz, 3, 0).

(z,9)€0i(x 9)—30

Here 0Q = 0Q U 02, 92 NOQ, is at worst a fintte collection of points, n=(ny, n,)
is the unil ezterior normal to 30y, and the (functwns f./\arc smooth funclions in a\ 3
Llc:)c(dQ X [0 Oo)) —

Proof. We first note that if (73, 72,,v%) and (78,78, v®) are two solutions to
(2.48)-(2.51), then their differences satisfy

a a a a g ~3 4
(3.4) ‘a't"("gx -T3) - 5;(”6 -v) = "("b"::x - a"rgy),
- 3 a 9 a A 43
(3.5) ‘3}'(7';32 - T3a) = %(Vb —v?) = —(a’ndy ~ 4 ),
and
a a a a a a
(3.6) B‘t‘(vb -v?) - ‘5;(1'§1 - T3) - b?(fgz —13) =0

% This formulation admits shocks which propagate with normal velocity ¢ satisfying ¢ = 1.
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Here, &* and a°® represent the bounded function & defined in (2.31) evaluated at
(r3,, 73, %) and (7§, 7§, v), respectively. The last three identities imply that

19
20t

- a ] & 5 a d b a b a
(3.7) 3z {(7'31 - )V’ —-v )] - ‘a“; [(Tsz - 73) (v —v )]

b N 5 bob s
= — (3, = T (@’ — &%rg)) + (13, — T)(@ g, - atrsy)] -

(= )% + (= ) + (o' = v°)F]

We now claim that
def , » 2b_d - b ~b b ~a._
(3-8) p:= (13 — T (& 13 = &%73y) + (130 — (&3, — @ ryy)

is nonnegative. In verifying this assertion there is no loss in generality in assuming
that

(3.9) 0<a*<at<l.
We first note that p may be rewritten as
(3-10) p=6"[(m5 ~ )" + (5, ~ 52)7]
+(@ = &%) [(71)° — i + (132)" — T3]
If & = 0, then (7§)? + (r§,)? < 72 and 7§78, + &8, < 7 /(73,)7 + (73,)7 and,
therefore, (3.10) implies that

(3.11) P2 db\/(f:gl)z +(132)? (\/(Tgx)z +(73;)? - "v) :

If &® = 0, then (3.10) implies that p = 0, whereas if 0 < &® < 1, (2.51) implies
that \/(1'351)2 + (7'352)2 2> 71y, and (3.11) then yields p > 0. We now turn to the case
where 0 < a® < &® < 1. If @ = &%, the nonnegativity of p follows from (3.10),
and thus to complete the verification that p > 0 it suffices to consider the case where
0 < &* < &® < 1. Here we know that (§,)2+(r)* = 73 and (7§,)2+(r$,)? > 2. The

former identity, along with (3.10) and 78,78, + r§7d, < ry\/(rgl)z + (73,)%, implies
that

p2a° [(7':?1 ~5) + (3, - 732)°]
+(& = a/(2)2 + ()2 () + () ~ ),
and (3.12), 0 < &* < & < 1, and ()% + (4)* 2 72 complete the proof of the

assertion that p is nonnegative.
For any (zo,y0) € R®, 1 >0, T >0,and 0 < ¢ < T welet

(3.12)

(3.13)  Clzo, 50,70, {(z, )z = 20)? (¥ —w0)* < (ro+ T = 1)?}.

The identity (3.7) implies that if (7§, 73, v*) and (7§, 7%, v®) are two solutions
of (2.48)-(2.51) taking on the same data (3.1)~(3.3), then

1
(3.14) 3/ (3 = 78 + (13 = )2 + (v* = v*)))dz dy
C(ta,yq,ro,T)ﬂn
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T
+/ (/ . ple,y t)de dy) dt
] C(:o.yo,ro.?)ﬁﬂ

T / =
1 2
+/ (/ ';(-:E((fgl =)+ (=) + (v - U“)') —
0 BC(ro.w.ra’.”IJ‘,\)nn \¢ -

(b _ e (:-:0)(7';1—11'3‘1) (¥ = vo)(r3, — 755) ~.
(v ")( ro+T=1)  (ro+T-1 ))d’)d‘

= 0.
Here,
(3.15) - 8C(z0,¥0.70.8) = {(z, l(z — o) + (y = w0)? = (ro + T — 1)*}.

The vector ((z — z¢)/(ro + T = t).(y — wo)/(ro + T — t)) is the unit exterior normal
to 8C(zq, Yo, "o, t), and ds is arc length along 8C(zg, yo,70,t). Since

oy [ =20)(r3 = 7§1) (¥~ )13 — 755)
—(vb—v )( (7‘0+7:‘n—t)3‘ + (7‘0-{-;2—‘)3 )

-~

(3.16) > vt~ "af\ﬁ"fl - )2 + (3 = 7$H)? -

1 o 2y T
2 =3k =+ (h = (P =P T

and since p > 0, we see that all three integrals in (3.15) are nonnegative and their
sum is zero. From this we obtain

(3.17) / ((7'::1 - rgl)"’ + (1';2 - 1':;'.‘,)2 + (v° - v“)z)dzdy =0,
c(lo,yo,ra,T)nﬂ

which is the desired uniqueness result.

4. A signalling problem. In this section we consider an elementary one-dimen-
sional signalling problem for the normalized system (2.48}~(2.33). The solution is of
the form

(4.1) (131, a2, v) = (r{z.t).0, v(z, 1)), 0<r< a0,

where 7 and v satisfy

(4.2) %:-—g—:)—::—dr, 0<zr<oo,
dv 7
(4.3) 5;—5-;—0. 0<z< o0,
and
1 ifri>r2 D
! ifr?=17’ and {33—:>1.
(4.4) Q= ;%%—:—. if * =1} and 05;’-’;%51,
0 ifr?=7 and FPE <0,
0 ifr? < rd

~
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t=J(z)

(z,z4)

Fic. 1.

and the initial and boundary conditions

(4.5) {(r,v)(z,0) = (0,0), 0<z<eo
and
(4.6) v(0,t) = -7y, where 75 > 7.

We note that the results of the previous section guarantee there is at most one solution
to the above problem.

In the region 0 <t < z, we have (7,v) = (0,0). Moreover, T 4 v is continuous
across the curve ¢ = z and thus satisfies 7_(¢,t) + v_(¢,t) = 0. The difficult part of
the problem is to show there is a curve t = J(z),0< z < o4, with -1 < dJ/dz <0,
such that in the region £ < t < J(z) with 0 < £ < z4, r and v satisfy

(4.7) >,

or v dv  dr
(4.8) Frialr i and 5—{—5-;—0,

the boundary condition (4.6) and 7_(¢t,t) + v_(¢t,t) = 0. On the curve t = J(z)
we have lim,_g+ {2z, J(z) — €) = 7, and 9(x) % lim, o+ v(z, J(z) — €) satisfies
0 £ di/dz < 7y. In the region J(z) <t and 0 < z < ry we have r(z,t) = r, and
v(z,t) = 9(z), whereas in z4 < z < t, r =7, and v(z,t) = v(z4) = —7y (see Fig. 1).

The existence of a curve ¢t = J(x) with the desired properties may be established
by converting the system (4.6), (4.8), and 7_(¢,¢) + v.(¢,¢) = 0 to integral equations
for r and v in z < ¢, verifying that for 0 < ¢t — z < | the stress satisfies 7 > 7,
and finally by obtaining qualitative information on the level line ¢ = J(z) defined by
lim,o+ 7(z,J(z) —€) = 7.
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Rather than perusing that approach we shall show how to obtain simple approx-
imate solutions satisfying (4.6)-(4.3) and 7_(¢,¢) + v_ (¢, t) = 0 as well as approxima-
tions to the level line t = J{r).

We note that for each integer N > 1 the system (4.8) has solutions

N

(4.9) UN = =To+ D Ageyit)z !
k=1

and .
N 2k
/\o(t) +Zi‘:l "(k}‘”i’“‘

(4.10)° TV =¥2L’_ :

where the coeflicients satisfy N

(4.11) Jo + o = Ar, e

(4.12) e+ A =262k + DAegr,  1<kSN -1,

and

(4.13) Ay + )y =0.

These solutions satisfy the boundary condition vy(0*.t) = —79 and have 2.V 4| free

parameters which are determined by insisting that the equation
(4.14) it t) +on(t,t) =0

is satisfied to O(t?V) as t — 0t. The approximate curve t = Jn(z) is subsequently
determined by solving 7y (z, Jn(2)) = 7y. An easy calculation shows that Jy(z) =
O((70 — 7y)/70) and dJx/dz < 0 which guarantees that the number r} defined by
.’]N(J:‘;’) = r;' is O{(mo—7y)/ 7o), and thus on the boundary r = t, Tn(t,t)+un(t. 1) is
at worst O((ro — 7,)/70)*¥*! for 0 < t < zif. We continue the approximate solutions
to the rest of the region described by Fig. [ via the extensions procedure used for the
exact solution; that is, for 0 < ¢t < z,

(4.15) {(rwv,oy) =(0,0) N

for Jv(z)<tand 0<z < J:Q{

(4.16) un(z.t) = on(z, In(z)) and rv(z.t) =17,
and for £ < z < ¢,

(4.17) ovy(z.t) = vnv(zg, In(zg)) and 7n(zt) =7,

We are then guaranteed that the error made in failing to meet the boundary condition
T (8 +un(t t) = 0is at worst O((o — 7y }/70)*¥*! for all ¢t > 0. We shall present
the details of this procedure for the case NV = 1.

In this case,

(418) vy = ~Tg + (/\1‘0 + /\l,le"‘):r:

% Here - denotes differentiation with respect to t.
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and
Ajqe~tz?
(4.19) n o= (/\1_o+z\1_1tc-‘ + Ag.1e”f) — """"'72'-"""—',
and the insistence that r(¢,¢) + vy(¢,t) = O(¢3) as t — 0 implies that

Mo+ Yoy =T
(4.20) Mo=—A1+2A,=0
Ao 1= 3A1 =0

and hence that

2=t
(4.21) S (-1+—————(3+';e )z)
and
-2
(4.22) = ;—" <3+te" +5e7t - S 2" )

The approximate curve t = J;(z) is obtained by solving ry(z, Ji(z)) = 7, or equiva-
lently the equation

2.~
(4.23) 3+ Jre= T g 5e=Ti JF 1) 8Ty
2 To

The fact that 0 < 7,/7 < 1 guarantees the umique solvability of this equation for
0 £ z <1 and that J;(0) = O(2({rs — 7y)/70)). A quick calculation also shows that

djl —21.'

T S Bresicey <

(4.24)

The number z;, where .71(.7:;) = Iie satisfies

: L (zh)%e T BT
4.9 : 1 -= Se~Tw — # - ¥
(4.25) (3 +rye® £ 5e" e — gl

and for 0 < 75 ~ 7, small enough we are guaranteed that .z:;, = O((mo - 7y)/70). This
estimate, when combined with (4.24), implies that ~1 < dJ,/dz for 0 < ¢ < .r;.
Our final task is to show that the function

3 4 5e=Ti(2)
(4.26) h(z) € (—1 + (””8 )’)
satisfies
S Lol dﬁl 1
(4.27) OS?—;(I)STy, 0<z<zy.

The defining relation (4.26) implies that

. dd 3+5e= T\ FryeTulD)
(4.28) E}(;):ro( 2 - = 37— =Ji(2),
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and this relationship, when combined with (4.23) and (4.24), implies that

diy roe~Ti (22 = 2T1)(8 + 21 — z2?) + 20z¢)
" iy .
(4:29) az = 16(8 + 27, — =7)

The fact that Ji(z) > z; for0<z < :::g = O((mo — 7y)/70) implies that the second
term in (4.29) is negative and this provides the desired upper bound for d¢,/dr. The
desired lower bound is an immediate consequence of (4.2%) and the bounds for d./; /dz.
We conclude this section by contrasting the above solution with what obtains if
we replace our flow rule—a given by (4.4)—with the one generated by (2.31) and
(2.32) and also by the flow rule associated with a rate independent elastic-perfectly
plastic material. [n the former case, (4.2) is replaced by
gr  Ov

(4.30) 3 3z = —ary,
and (4.4) is unchanged.
In the region 0 < ¢t < = we have (r,v) = (0,0), and 7 + v is continuous across

z=¢t For0<z <t <2m~1y)/7y we have

i,

(4.31) v= =10 + L= and r=rn-

2

for 0 < £ < 2(rp ~1y)/7y and t > 2(my — 7))/ 7, we have

(4.32) v=—Tp + QT: and T=r1y,

and finally for 2(ry — 1,)/7y < z < t we have
(4.33) v=—~7, and r=r1,.

With this flow rule the curve ¢ = J(-) is the constant function J(z) = 2(r —
)/ 1y, 0 < z < 2(ro—7y)/7y. Equations (2.52) and (2.53), the initial conditions
(F31,p31)(£,0) = (0,0) for £ > 0, and (4.31)-(4.33) allow us to determine (F3;,p3 ).
The tesult is

(0,0), 0<t<z,

(o+n(4=2hnlt=2), 0<z<t< i,

(4.38)(Fap,pat) = ¢ (o + n(§—z) i -1y + Ty(% -z)), 3-‘-3%:'-1 <t and

0<zr< ——————1—2("’," )
- ¥

(ry,0), 2= <z <t
It is worth noting that the above solution is unique. This can be established using
the arguments of §3 directly on the system (4.30) and (4.3)~(4.6).

We now examine the signaling problem for a rate independent elastic-perfectly

plastic material. Equations (4.1)-(4.3) and (4.5) and (4.6) still hold, except now & is
given by

0 if r? < -r'y2
(435) a= 0 if r? = 1'!;" and ;';.% <0,

r 9y : 2 2 r
e i v ifre=r and 0< -t .
ry or v - 3r
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We also have
aF- dv a3 .

and these satisfy the initial conditions

(4.36)

(4.37) (F31,p31)(2,0) = (0,0),z > 0.

We seek solutions with structure siniilar to that obtained for the previous two modeis.
Specifically, a shock curve t = t(x) such that in the region 0 < t < ¢(z),

(4.38) (F31,p31, 7, v} = (0,0,0,0),
and in the region t > (z) the shear stress 7 is at yield, i.e.,
(4.39) (z.t) =7y, Hz) <t

We interpret (4.3) and (4.3(:_‘»_),_35 conservation laws, aud this, togother with (4.38) and
(4.39), implies that on ¢ = ¢(z),

(4.40) v (z, i) + 7y ;—1:? =0
and

- s dE
(4.41) Fi(z, t(z)) +v (z,t(z))‘—i;- =0.

Here, (v™, F5;)(z,(2)) = lim,_o+(v, F51)(z —¢,i(z)). The identity (4.39) also implies
that in ¢ > t(x) the velocity v is a function of ¢ only. Near z = 0 we choose

(4.42) v(z,t) = —19 + Az, A > 0.

With this choice we obtain

(4.43) pa1 = Mt — {(2)) + p-(2)
and
(4.44) Fa1 = 7y + Mt = £(z)) + p-(2).

Equation (4.40), together with £(0) = 0, then yields

73 = (1o = Az)?

(4.45) i(z) =

2Ar, '
and (4.41),(4.44), and (4.45) imply that 4
"
(4.46) p-(z) = gﬁ—jglﬁ
We now let
(4.47) = 2

|-l\-‘/
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and note that

(4.48) p-(z) >0, 0<z<zy,
(4.49) p-(z4) =0,
and
dt
(450) E(l’#) =1

In the region (7§ — (0 — Az)?)/2Ary < t and 0 < £ < zg = (70 — 7y)/) our solution
is given by

. _ 72 ~ (10 — Az)?
(4.51) Fyy=7 + A (t + Ty ,
2 2
¢ _ Ty — (r0 — Az)
(4.52) p3t= A (t + 2/\1_” ) )
(4.53) v=—1p + Az,
(4.54) T=Ty.

The shock curve is continued to z > z4 by

(- 257)

and in the region ((7§ — 77)/2A7y) + (2 = ((ro = 7y)/N)) < tand (o —7y) /A = z4 < z,

T —Ty

A

-

390

(4.35)

(4.56)

andr = Ty.

Fai=m, pa=0, v=-7,

The line z = z4 = (70 — 7y)/A is a stationary contact discontinuity and across it p3;
jumps while the other fields are continuous. The interesting fact about the signaling Fh
problem for this model is the lack of unicity of solutions; we have a compatible solution
for every A > 0. This observation points out one of the weaknesses of the classical
model. ‘ )

I S .

5. Computational experiments. In this section we present the results of a vt
computational experiment performed on the normalized system (2.48)-(2.52) when oy
vy

the pressure gradient is zero. The results reported deal with a two-dimensional gen-
eralization of the signalling problem of the previous section.
The experiment deals with the system (2.48)—(2.51) solved in the region r > 0

and 7/2 < 8 < 27, where r = \/z22 + y2. At time ¢t = 0 we assume that
(5’1) (T311f32|v) = (0,0,0)
for r > 0 and /2 < § < 27, and for ¢t > 0 we assume that

T+

v (r,-—

(5.2) -

) =u(r, 277} =1, r>0,
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(z,9)

Fic. 2.

where 79 > 7, and again 7, > 0 is the yield stress.
The elastic version of this problem, namely, the system

(91"31 Bv _
(5.3) B 32" 0,
61’32 ov _
(5.4) el 3 = 0,
(5.5) ‘ 9v _Om Oz _

together with (5.1) and (5.2), was considered by Keller and Blank [13]. They obtained
exact solutions to this and a number of other problems with self similar structure.
Relevant to us here is the singular nature of 73, + 73, as 7 — 0%. Their results
demonstrate that

t\*?
(5.6) ‘r;;"l + T:;"Q =0 (;) , r— 0t

This singuiar behavior also obtains for the plastic flow problem and forces us to
treat the boundary conditions in our numerical simulation carefully. Our integration
scheme for (2.48)-(2.51) is based on a symmetrized operator splitting algorithm for
the governing differential equations. At time ¢t = nh, n = 0,1,2, ..., our approximate
solution consists of lattice data

@k=1), (2"’2' D, nh) .

(5.7) (31, 732, ¥){k,m) = (731, 732, V) ( 5

For the problem under consideration the boundaries are not part of the computational
lattice but are offset from it by a distance of h/2. The computational lattice is

(58) S={(kym)|k<0and m=0,%1,%2,.. }JU{(k,m)|k>1and m < 0}.

To update the data (5.7) we successively solve

dryy  Ov _ Otz _ dv Oty _ .
(5.9) Em ~az—0, 5 =0, and 5{—--'3—:——-0, 0 <t <A,




ANTIPLANE SHEARING MOTIONS OF A VISCO-PLASTIC SOLID 19

d’fnzo‘ 0732 dv_o and .CE_?—TEZ:O, 0<t<h,

(5.10) ot ot dy 3 oy

and

J . J . 3
(5.11) "g'ts'l‘ = —afTsy, -51.3—2' = —ar32, and Etz =0, 0<t<h,

where of course & is defined in (2.51). For (5.9) we use the approximate solution
defined by (5.7) as initial data and let (73;. 75, v!)k m) denote the value of this
solution at t = h on the lattice S. We then solve (5.10) using the (7d, 74, v" )k m)
as initial data and let (3, 73,. v*)(x.m, denote value of the solution at ¢t = h on S.
Finally, we solve (5.11) with {75, 73,. vz)(k,m) as initial data and let (73;. 73,. 03)“‘_,,,,
denote the value of this solution at t = h on S.
We then repeat the process solving (5.10) first with the data (5.7), and, we let
(1'31,7'3'),') )(k.m) denote the lattice upda.t;e at t = h. We then solve (5.9} using
(731, 732 v*)(k.m) as initial data and let ('31,7'32, v )(k m) denote the lattice update.
Finally we solve (5.11) with data (73, 73;, v*)(k.m) and let (7§}, 755, v®)(x m) denote
the lattice update at t = h. The desired approximate solution {73, 732, v)E:fml)) is then F
obtained by averaging (73, 7, v*)(¢.m) and (7§}, 755, v%)(k,m); that is, /MSK’S het |
e /

‘1,‘.‘ Chk: J /

/

R 1
(512) (T31,T32,v)(k+ ) = %(731 +7'31,T32+ J‘,U +v6)(k'm).

Of course, all of the intermediate updates are solved subject to the boundary con-
ditions of the original problem. Here these boundary conditions manifest them- -
selves as reflection conditions at those lattice points that are a distance h/2 away
form the actual boundary. Formal accuracy could be maintained if we used either
(731, 732, v*)(k.m) OF (51, 73, ¥®)(x m) for the updated approximate solution but either
of these updates alone would, over time, tend to introduce asymmetries into the ap-
proximates not present in the actual solution. These asymmetries are removed with
the algorithm employed.
The results of our experiment are shown in Figs. 3-7. Each snapshot shows two
different representations of the velocity field and the total shear stress, namely the
quantity \/73, + 75,. This simulation was run with A = i/50, , = I. and 70 = 1.3. 7
The contours on the velocity plots are spaced 0.1 apart and run fromv =0Qtov = l 3
The stress contours run from 1 to 3.2 in increments of 0.2. In these snapshotsiixe )
nof see ¢ any of the plane wave solutions of the previous section but also the effect of
the corner singularity which are confined to theregion 0 < r<tand 7/2<f < 2x. \
/ For comparison we have run the elastic version of this problem with the same
P boundary conditions and same values of h, 7,, and 75. These results are shown in | . F
Jeke Figs. 8-12. el
It should be noted that for both problems the velocity fields satisfy the additional
condition

. T ) +
(5.13) ;;_x_x}%(:,e,t) =0, Z<d<2m =

and that our numerical solutions meet this consistency condition automatically.
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