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Final Technical Report on the Research based on the proposal AFOSR-
91-0352 for the period September 1, 1991 through December 31, 1992.

The original proposal was to support two months of Greenberg's
research efforts on Lattice Gases and Transport Processes while he
was on sabbatical leave in Europe from the period January 1, 1992
through December 31, 1992. Before leaving for Europe,Greenberg
contacted his program officer, Dr. Arje Nachman, and requested a
change in the scope of the project. Greenberg proposed to work
instead on problems in Plastic Flow and Oscillatory Flows in Molten
Polymers. Dr. Nachman approved this request.

During the period June 1, 1992 through September 30, 1992
Greenberg was resident at the University of Nice and worked with
Yves Demay and Anne Nouri on the revised research program. Two
papers resulted from this effort:

(1) with Anne Nouri, Antiplane Shearing Motions
of a Visco-Plastic Solid; to appear in SIAM
J. Math. Analysis

(2) with Y. Demay, A Simple Model of Melt Fracture, to
appear in European Journal of Applied Mathematics.

The latter paper nicely compliments work of Greg Forest, also
supported in Dr. Nachman's program, and gives an excellent
explanation of the unpleasant shark-skinning observed in certain
polymer extrusion processes. This work has been brought to the
attention of researchers at Corning and Hoechst Celanese and
Greenberg and Demay will work this summer with members of the
Materials Sciences Center at the Ecole Nationale Superieure des
Mines de Paris led by J. F. Agassant. One goal of this work is to
see if the same oscillatory phenomena is present when one replaces
the slip boundary condition by a no slip one and looks instead at
materials whose shear stress - strain rate constitutive equation
has a spinodal type nonlinearity. A difficult question also worth
pursuing is whether now understanding the nature of the flow
instability - a switch from a slip to a no slip boundary condition
at the wall of the capillary tube - if it is possible to control
the inlet flow to the capillary in the unstable regime in such a
way as to reduce the oscillations and shark skinning of the final
product.
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1. Model Development

A classical measure of viscosity of a molten polymer is obtained by studying the re-
lationship between the flow rate and pressure drop when the polymer is flowing in a
capillary tube of radius R and length L. For a linearly viscous polymer with viscosity
77 this relationship takes the form:

R 2 AP(I.I =# - -
8ti L

where AP is the pressure drop across the capillary from z = 0 to z = L and Z is the
mean velocity taken over a cross-section perpendicular to the flow direction. For such
a flow, the wall shear is given by

_ RAP
(1.2) rW = A2L

*This research was partially supported by the US. National Science Foundation, the U.S. Depart-
ment of Energy and U.S. Air Force Office of Scientific Research.
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Figure 1.

and thus (1.1) is equivalent to the following relationship between fi and r-,:
R

(1.3) fV =- ,T.

These relationships follow from the local equilibrium equations for a linearly viscous
fluid subjected to a constant pressure gradient and a no slip boundary condition at the
capillary wall. The underlying flow in this case is Poiseuille. If the no slip boundary
condition is replaced by the slip boundary condition

R(4F- 1) 1
(1.4) w(R)4 r 7, F> 4'

then the relation (1.2) still obtains but (1.1) is replaced by

R2FAP

or equivalently RF

(1.6) w = -R17.1
rd1

'These relations are derived later in this section; for details see (1.27)-(1.32).
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For molten polymers one typically observes two distinctly different stable steady
flow regimes (see Figure 2). For mean velocities ti' < w-1 one operates on the curve
S1 whereas for mean velocities ii3 > W- one operates on the curve S2 . Experimental
evidence indicates that the pressure drop D1 associated with the velocity ti,1 is larger
than the drop D2 associated with w'2. In general one finds no stable steady flows with
velocities between zi'j and tV2 ; rather one observes oscillatory flows with mean velocities
in the range (ti 1 , t7V2 ) and pressure drops in the range (D 2, DI). One normally interprets
such data as follows: on the curve S the polymer satisfies a no slip boundary condition
at the capillary wall whereas on the curve S 2 slipping at the wall is taking place. In
general, the curves S and S 2 are nonlinear which indicates that the polymer is not a
simple linearly viscous fluid and that the slip boundary condition is really modeled by
a nonlinear relationship between w(R) and Tr. These details will not concern us here.
Our goal is a simple model which explains the gross features of the transition from
steady to oscillatory flows.

Motivated by (1.3) and (1.6) we assume that z-v and r, are related by
RF

(1.7) C, -
771

where ir is the viscosity of the polymer, R is the radius of the capillary, and F is a
dimensionless parameter which ranges between 1/4 and F2 > 1/4. Bearing in mind the
relationship (1.2), we assume the existence of a switch curve (scaled as shown)

DR C,- R2 D,
2L ' 817, L

)DiR R D2 -D I j-V RID,1 R2 D, < < R 2D(18 _•tb f•- + I ___L -- --V m
. 22l L 8,71 L 8qlL g - - 271 L

D2 R R 2FD LI. 2L 1 '7
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which determines the stability of the curves S, and S2; specifically we assume that F
switches from 1/4 to F2 via the transition rule

dF f F2 - F; 1r.1 > S(f,) = S(FI'rlI)
(9) 7T -F; Ir,•l < S(70) = S(FIrI)

where T0 is a fixed relaxation time (see Figure 3).

2L rt
=--'F2 > 1/4

"8n 8•L 2771L

Figure 3.

Equation (1.7)-(1.9) are constitutive equations relating i,, F, and •, and these hold
at each point z along the capillary. To these we must adjoin variants of the continuity
and balance of momentum equations together with an equation of state relating the
density to the pressure in the polymer. Again, the geometry of our system is shown
in Figure 1 and our model accounts for what happens in the capillary tube, not the
reservoir.

We assume the flow in the capillary is axisyrnmetric and that all quantities depend
only on r, z, and t. We let p denote the polymer density, p denote the pressure, and
assume that the velocity field u and Cauchy stress tensor a are of the form:

(1.10) u= ue, + we3

and
(1.11) ED - r +_= fEO + e E -) + 0" 99 _

+ "33 ED -e-3 + 7"(ee3 (D fer + f.r &e_3).2

2 e,. = (cos 0, sin O, 0),e, = (- sin 0, cos 0, 0), and for any vectors a = (al, a2, a3) and b = (bl, b2 , b3 )
T = ( a, )

we let a b =aTb where a= a 2

a3
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(arr, O, a, , r) are the nonzero components of the viscous stress tensor and are assumed
related to u and w by

= A O\(1 8 (ru)+j
(1.12) kj = . r - 8-0 ,_ I(.!r (u ) + aL') + 2•,•

r- (;• + a)-

We do not make the Stokean hypothesis 3A, + 217 = 0 but we do assume that A, =
O(rih). The governing equations are the continuity equation and balance of momentum
in the directions _e,, f, and f3. These take the form

p 1 0 0
(C) + -- (rpu) + -(pw) = 0,

at r

O 1 0 0 Op Oa, (a'r -ae) Ori
(Mr) -(pu) + -- (rpu') + (puw) - -P + --1r + r + - = 0,

Yt r Tr jz- Or Or r O
10p

(Me) 
1 0 ,

and 0 10 0 2 Op Oc•3 10Orr
(M3 ) -(pw) + (rpuw) + -z(pw ) - OP + -z + 1-(rr) = pg.

-r ýr 0Z 5Z -r r-
At the boundary, r = R, we assume that

R(BC) u(R, z, t) = 0 and w(R, z, t) = - -(4F -1)r.(z, t),

where F > 1/4 is a dimensionless quantity depending on z and t and r,,,(z, t) = r(R, z, t)
is the wall shear. In order that the stresses ao', oro, and ao' be finite at r = 0, we also
require that the radial component of the flow, u, vanishes faster than r as r tends to
zero. To close the system we assume that the polymer is slightly compressible and that
the following equation of state holds between the density and pressure:

(EOS) p = Po 1 + fp.
PO

Here, po and po are reference values of the density and pressure and 0 < C <« 1 is a
dimensionless small parameter.

To assess which terms in this system are important and which may be neglected we
cast the system in dimensionless form. We let

(1.13) r=Rrl, z=Lzl, and t-= 2OR2Lt
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and
P= POP1, W =_ EL_-Wl,7L , u = ,R--u,, p= 2pop,,

n L 2 71 2T

(1.14) f = 0" , = Po C. = Po ao,

a{z=po(Q) a3 3 , and -r= L '.

Then it is a relatively easy calculation to show that (1.12) transforms to
"01 -Li a'r (irjul) +r Oz '9-1

[oI = 9 ( r•uO(r-U1) + 9" ) + 21

(1.15) jOe P~(ii+t 2
33 G 3r (7 -rjuj) + 2--L) + 2aI

+1 C.2 a.,)
i•r + z)

where

(1.16) P A=0O(1) and R2 = <

and the equation of state becomes

(1.17) pi = (1 + 2 eip,).

The continuity equation transforms to

k1.18) 1 -+ 1 a (ripur) + -(pa w) = 0
2c, Oth r, Or, az1

and (1.18), when combined with (1.17), yields
(119 pi 1 O(riu,) Ow1  (1x O~r1pi O-'piwi)'

(1.19) O + 2e, 1 o(rlul) + +(_O 0.
at, r, Or, az1  k r, Or1  az1

Finally the three balance laws (M.), (Me), and (M3 ) take the form

f4C3 a(PIUI) C4263 09 a (plUIw1)
(1.20 - (r, ipu 2) + f4 f3 z

+ct, r a r, 1r + 2 =z

(1.21) -, 0w

and

231 9(P-""-- 9(rplulw2) +• a•4wd2

(1.22) E Op2 1)+E 3 ( ~i~ii ~~~'
2e 0t, r, •r , O ,z1

+C 2 4(l +2 ,-p) = 20P . -a(r,1 )
z 0z r1 Or,)
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where f is the small parameter in (EOS), c = < 1 and

(1.23) 3 de popoR2 and 4 pogL
'li PO

Our principal simplification comes from assuming that • and c4 are small and from

neglecting all terms with e's in (1.19)-(1.22). This leads us to the following reduced

system
1p, I a(riul) L9w,

(1.24) + -- + =
8t, ri 0r,

(1.25) 0P, 0oa-r=o- = 0

and

(1.26) 1 O(a) 8p,
r - _21 .

Equation (1.25) implies that pi = pi(z1 , ti) and thus (1.26) yields

(1.27) T Op,
"&Iz.

From the last relation we see that the scaled wall shear, r,' = ri(1, zi, ti), is given by

(1 .2 8 ) 
p _ 

8 , "

The constitutive equation for ri when f 2 = 0+:

(1.29) 7'9 w-
ar1

together with the scaled form of (BC) 2:

(4F - 1)
(1.30) w 1(1,z,,ti) = F-

implies that

(1.31) w1(ri,z,,t,) = - F + r., 0 < r, < ,

and that

(1.32) tih (zi, t 1) = 2 w,(ri,,zi, t,)r dr, =Fr 1 ..
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If we multiply (1.24) by rl, integrate the resulting equation from r, = 0 to ri = 1,
and exploit the fact that r1 u, vanishes at r, = 0 and r, = 1 we obtain the following
equation for p1(z, ti) and iD(zl, t1 ):

(1.33) ap+ t9v1o9t- I Oz
From this last identity and (1.24) we also obtain
(1.34) 19 19

(1.34)(riul)= -7(zzv1 - w1 )
ri 5- z ,

where w, and ti', are given by (1.31) and (1.32). Equation (1.34) may be integrated by
quadrature yielding

(1.35) U,,(riz,t,)= t, (ui,(z,,ti) -w,(s,z,,t,))sd .49Z o ,-, t)

The above equation guarantees that as ri - 0+, __(+,,.-.ti) converges to b-(tvi (zi, tI)-r*1

w(0, z1 , t)), a finite limit. The existence of such a limit was required in order that the
stresses a'r,, a', and a' were finite at the center line of the capillary. We also note that
fo(f(zl,,ti) - wi(s,zi,ti))sds = 0 and thus, as defined, ul does meet the boundary
condition limrn -I,.- uI(r 1 , z1 , ti) = 0.

To summarize, our remaining equations for p, and zbl are (1.28), (1.32), and (1.33).
To these, we adjoin the scaled versions of (1.8) and (1.9) for the evolution of F. We
write the constants D1 and D2 of (1.8) as

(1.36) Di = poci and D2 = poc 2

and observe that (1.8) and (1.9) transform to

(1.37) idF F2 - F; Ir• > S(E,,)
(1-37 A- -F; Jj<~i,

where
I c ZbI' < c1 /4

(1.38) S(tI'I) = c, + (Fdc2-c 1 /4) E 4 z~ - < F2c2

c2, F2c2 < tD'

and

(1.39) A = ToR 2p
ct liL2

and again To is the fixed relaxation time appearing in (1.9). These equations may be
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combined to yield the following system for p, and F

(D) apt 9 az l0
at, azi ( azj =

and
(F) A =F I F2 - F, -2P' > S(-F2)

aF aZ1  Zatl 1 -F, _2_a• < S(-F-aE)

where again S is given by (1.38). This latter system is solved in 0 < z, < 1, the

normalized region of the center line of the capillary, subject to the following boundary

conditions: apa

(BC) -F(O,t ) -Z (0,ti)=q>O and p,(1,tI)=I.

The condition at z1 = 0 corresponds to the fact that the input of material from the

reservoir to the pipe is done at a constant rate and the latter condition expresses the

fact that at the pipe exit the material is at atmospheric pressure.

2. Analysis of (D), (F), and (BC)

Our interest here is in the analysis of the system

OP
(D) at 0- Fa =0, O<z<l

()OF A F2 -F, -0 > S (-Fr)

(F) t -F, - 2 < s (-F•)
4 - F 9-
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where again
ci, Z < cJ/4

(s) = C, +(F ) (til C c,/4 < tv < F2 C2( )(F2C2-c1/4) 4- -

C2, F2c2 < i

These equations are solved subject to the boundary and initial conditions
(BC) -F(O,t)az(O,t) =q > 0 and p(l,t) =

and
(IC) p(z, 0) = po(z) >0 and F(z,0') = Fo(z) E (1/4,F 2 ), 0 <z< 1.

In this section we drop the subscript 1 for normalized dimensionless quantities.
It is not particularly difficult to demonstrate, either analytically or computationally,

that if the parameter q in (BC) satisfies q < cl/4, then solution of (D), (F), (BC), and
(IC) converges to the stable equilibrium

(2.1) po(z)= I + 4q(1 - z) and Fo(z) =-1/4, 0 < z< 1.

whereas if q satisfies q > F2c2, then p converges to 1 + q(1 - z)/F 2 and F to F2. Thus
we shall confine our attention to the situation where q E (c,/4, F2c 2) for it is in this
range that we see the oscillatory flows.

We use an operator splitting technique to integrate the system (D), (F), (BC), and
(IC). If b5 is our time step, we assume we have an approximate solution (p', Fn)(z)
defired at tn = nb, n - 0, 1. During the first half step we advance p keeping F
fixed; that is, we solve

Ot az F 0an O F

(2.2) F ) 0 and A-•-=0, 0<t<b

subject to the boundary condition (BC) and the initial condition

(2.3) (p,F)(z,0) = (pn ,Fn)(z), 0 < z < 1.

We denote the solution to (2.2), (BC), and (2.3) at t = 6 by (pl/2 , F1 /2 )(z) and of
course F 1/ 2(z) = F"(z). During the second half step we solve

P I F2 - F, "P> S (-F?-)
S09_ $OF a(2.4) 0 and F
at at 1 -F, -, < S (-F-)

4 a: /z

subject to the initial condition

(2.5) (p,F)(z,0) = (p t /2, F h)(z), 0 < z < 1.
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The solution to this latter problem at t = 6 is the new approximate solution at time
(n + 1)6.

In solving (2.2) and (2.4) we let n be an integer, h = and evaluate p and F2n+1

at the respective grid points z- = •f--h and z= (k - 1)h; 1 < k < (n + 1). We use
a fully implicit first order method on both (2.2) and (2.4). This allows us to choose 6
and h independently and have a stable integration scheme.

We have run a number of simulations on this system with a variety of parameter
values (F 2, qo, c2 ,ct, A) and shall report on a few of these at the end of this section.
Before doing this though, we report on one finding which surprised us. We observed
that once regular oscillations had been established (and transients had died out) that
the pressure field was approximately linear at each instant of time; that is the p profile
was approximately given by

deE

(2.6) P • Pu = p0(t) + (1 - po(t))z.

This observation suggested that a simplified model of the oscillatory flows should be
possible. Below we present such a model which exploits (2.6).

If we integrate (D) from z = 0 to z = 1 and exploit the fact that the solution to
(D) is approxmately given by (2.6), we find that po must satisfy

(2.7) 1 dp- (F(1,t)- F(0, t))(1 - po(t)).

Hepe, we are exploiting 9 - (1- p0). A consistent interpretation of the

boundary condition

(BC) - F(O, tl z(0,t) = q

is that
(2.8) - F(O, t)(1 - po(t)) = q

and thus (2.7) reduces to

(2.9)I dpo
(2.9) 1 d = - F(l,t)(po(t) - 1).

The equation for F(1, t) is obtained from equation (F); we merely replace -- 9(l, t) by

49---n (1, t) = (po(t) - 1) and obtain

(2.10) AdF () 0_ F 2 - F(1, t), (po(t) - 1) > $(F(1, t)(po(t) - 1))

"d- ' -- F(1,t), (pa(t)4- 1) < S(F(1, t)(po(t)1- 1)).
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The system (2.9) and (2.10) is the simplified model used to describe the oscilla-
tory flows. For each q E ('-,c2F2), the solutions of (2.9) and (2.10) converge to a
unique orbitally stable limit cycle whose particular character depends on the choice of
parameters (A, q, F2, cl, c2). Below we show two figures. Both were run with

(2.11) (A,, F2, c1,c 2 ) = (.5, .5, 1.95, 1.85)

In Figure 5
(2.12) q =.7

and in Figure 6
(2.13) q =.6.

In the top portrait of each Figure the horizontal axis represents the exit flow velocity,
Wexit(t), which is computed by

(2.14) ziexit(t) = F(1, t)(po(t) - 1)

and the vertical axis represents the pressure drop across the tube, po(t) - 1. The closed
curve in each figure is the stable limit cycle for the indicated parameter values and
these demonstrate the sensitivity of the oscillations to the incoming value of the flow,
q. The bottom graphs of each Figure show the time histories of the pressure drop and
exit velocity.

Figure 7 represents a simulation of the full system (D), (F), (BC), and (IC) run with
the same parameter values used to generate Figure 6. In these simulations n = 100
(and thus dx :_ .01) and dt = .005. In the top portrait of Figure 7 we have shown (1)
the limit cycle for the reduced system with the parameter values used for Figure 6, (2) a
graph of the pressure drop (p(O, t)-1) versus the exit velocity tib(l, t) = -F(1, t)&(1, t),
and (3) a graph of minus the exit pressure gradient, -- (1, t), versus the exit velocity
•(l1,t) = -F(1,t)-(1, t). The pressure drop curve is the narrower of these two. The
second set of pictures in Figure 7 shows time histories of these quantities. In the graph
labeled "pressure drop vs time" the time history of -• (1,t) is the curve with the
largest oscillations.

Figures 8-39 show snapshots of relevant flow variables at the time indicated in each
figure. The data shown in Figure 8 was also used to generate Figure 7. The only pictures
requiring some explanation are the ones labeled "shear vs velocity". Recalling that the
normalized wall shear, r,,, < 0, satisfies Irw . -- (z, t) and that the normalized mean
velocity, tb(z,t), is given by izI(z,t) = -F(z,t)2(z, t), we obtain the graphs under
discussion by plotting the curves z -- (-F(z, t)2(z, t), -22(z, t)), 0 < z < 1, at the
times indicated. The points labeled x are the images of z = 1 and those labeled o are
the images of z = 0 at the indicated times.
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3. Conclusions

We have produced a robust model which is capable of producing relaxation oscillations
which are qualitatively similar to those observed in polymer extrusion experiments.
The heart of the model is the switch rule (1.8) and (1.9) which allows us to go from the
slip to the no slip boundary condition at the capillary wall. Though we have not done
it here, we believe it is possible to go from the linear constitutive equations employed
here to more realistic ones for a molten polymer and to modify the linear slip boundary
condition to one employing a nonlinear relation between the velocity at the wall and
the the wall shear which is scaled by a dimensionless factor F which obeys a transition
mecha•iism similar to (1.8) and (1.9). Our colleagues at the Ecole Nationale Superieure
des Mines de Paris are currently pursuing this work.
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ANTIPLANE SHEARING MOTIONS
OF A VISCO-PLASTIC SOLID'

J. M. GREENBERGt AND ANNE NOURI:

Abstract. The authors consider antiplane shearing motions of an incompressible isotropic
visco-plastic solid. The Flow rule employed is a properly invariant generalization of Coulomb sliding
friction and assunmes a constant yield stress or threshold above which plastic flow occurs. [n this
model stresses above yield are possible-, but when this condition obtains, the plastic flow rule forces
the plastic strain to change so as to lower the stress levels in the mnaterial and dissipate energy. On
the yield surface, the flow rule looks like the classical one for a rate independent elastic-perfectly
plastic material when the velocity gradients are small enough but differs from the classical model for
large gradients.

Key words. plastic waves, visco-ptasticity. time-dependent problems

AMS subject classifications. 73E70. 73E60. 73E50

1. hitroductiou. In this note we consider antiplane shearing motions of an in-
compressible isotropic visco-plastic solid. This work generalizes and compliments
earlier work of Greenberg [1], (2], where he considered simple shearing flows for such
materials. The flow rule we employ is a properly invariant generalization of Coulomb
sliding friction and assumes a constant yield stress or threshold above which plastic
flow occurs. As with most such theories, we assume a multiplicative decomposition of
the deformation gradient into an elastic and plastic part, and we assume further that
the deviatoric part of the Cauchy Stress tensor depends only on the elastic portion of
the deformation gradient. For antiplane shearing motions this decomposition presents
no precedence problems; i.e., does the elastic deformation precede the plastic or vice
versa? One key feature of this model is that stresses above yield are possible. When
this condition obtains, the plastic flow rule forces the plastic strain to change so as
to lower the stress levels in the material and dissipate energy. The principal difficulty
in formulating this model occurs when the stress is at yield. Motivated by results of
Seidman [3], Utkin (4], and Filippov [5] on sliding modes induced by discontinuous
vector fields. we are led to the flow rule advanced in (2.38). On the yield surface, this
flow rule looks like the classical one for a rate independent elastic-perfectly plastic
material when the velocity gradients are small enough but differs from the classical
model for large gradients. This rule differentiates between loading and unloading and
generates an energy identity which guarantees that uniqueness obtains for initial and
initial-boundary value problems.

The organization of this paper is as follows. In §2 we develop the appropriate
equations describing antiplane shearing flows in visco-plastic solids. Section :3 focuses
on the uniqueness issue. Our basic estimate is that the energy associated with the
difference between two solutions generated by the same data is nonincr-asing. This
estimate relies in an essential way on the definition of the plastic flow rule. In J4 we

examine a one-dimensional signalling problem and discuss (I) the structure of tlii.•
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2 J. M. GREENBERG AND A. NOURI

solution, and (2) a procedure to analytically obtain an approximate solution. We
also compare this solution with what obtains for the more studied model of a rate
independent elastic-perfectly plastic material where uniqueness fails. Section 5 deals
with a numerical experiment for a two-dimensional signalling problem in the corner
domain r > 0 and -r/2 < 0 < 2-.r. Here the stresses are singular as one approaches the
corner and care must be taken in the implementation of the boundary conditions.

We note that in the last several years there have been a number of other efforts
aimed at capturing the essence of plastic flows. Antman and Szymczak [6], [7] have
advanced a finite deformation theory of such materials which is similar in spirit to ours
but differs in a number of essential ways. Their model is formally rate independent
where ours is not but their model also requires a history dependent strain hardening
mechanism. The predictions of the two theories are often qualitatively different: these
differences arise since in their model the imposition of large loads tends to elevate the
yield stress and create a temporally constant permanent plastic deformation, whereas
in our model such loading would generate a constant plastic deformation rate and thus
a plastic deformation which varies linearly in time. This may be seen by examining
the solution constructed in §4. Other efforts on elasto-plastic modelling may be found
in Coleman and Owen [8], Buhite and Owen [9], Coleman and Hodgdon (10], and
Owen [1l].

2. Model development. We say that a body is undergoing antiplane shear if
material points 4 = .,el + C2e 2 + '3e 3 move to x = zxel + X2 e 2 + X3 e3 with

(2.1) XI= 1 , Z2= 2, andx 3 =.lb+¢(, j 2, t)

under the action of a Cauchy stress tensor of the form

T = -,,r(el ® el + e2 9 e2 + e( & e 3 )
(2.2)l +(Sllei ® el + S 22e 2 ® e 2 + S 33e 3 ® e 3 )

+S31(el ® e3 + e3 0 el) + S32 (e 2 ® e3 + e3 , e3).

Here, -,r is the hydrostatic pressure and S is the deviatoric stress tensor and satisfies

(2.3) trace(S) = S1 + S•. + S33 = 0.

Relative to the above basis, the matrix representation of the Cauchy stress is given
by

(10 0 )\ ( S11  0 'S31
(2.4) j=-,'r 0 I 0J+ 0 .52 2 532

\0 0 1 ,531 S 32 533

and relative to the same basis the deformation gradient is given by1 0 0
(2.5) Y 0 1 0

F31 F3 2 1

1 ( = ), e2= and e3  0 ) are the standard basis elements for R3 and

0 0 I
ei o ej =eiejTr are thle standard basis elements for linear operators from R' to/ R'.



ANTEPLANE SHEARING MOTIONS OF A VISCO-PLASTIC SOLID 3

where

(2.6) F3 1z - and F32=a.

Noting that matrices

1 0 0
F(a~b) 0 1 0

a b I

satisfy the commutation relation

(2.7) =Fa. 2 ~at

we feel justified in decomposing the deformation gradient 7 into its elastic and plastic
parts 0 and P by

defde

(2.8) E :L ( 0 1 0 and "P : ( 0 1 0
(e3l e32 IP31 P32

where

1 0 0
(2.9) Y = ETj = PE 0 1 0 .

()1 e P31 e32 + P32 I

For such antiplane shear flows one need not make any assumption about the prece-
dence of the elastic and plastic parts of the flow.

Our basic constitutive assumption is that under a change of reference frame E
transforms in the same way as F and that the deviatoric stress S is an isotropic, frame
indifferent, trace free function of the elastic deformation gradient E.2 The constraint
that S is an isotropic, frame indifferent function of E implies that S must have the
functional form

(2.1C) S = •VJ+ + #CT + 7 5 -T- I

or

(2.11)3

(10 \ (1 0 e31 (1-4-ei C31e32 -e3l
S= 0 +0 0 1 e32. +7 e3 1e3 2  1-1e 3 2  -e32

0 0 1. \e 31  e32 r1++e;O -e31  -e32 /

where a, 0. and 7 are functions of the invariants of £-r in this case the scalar
e3 1 + e2,. Equation (2.4) implies that S21 = S12 = 0 and this, in turn, implies that
" -- 0 while the condition that traceS = 0 implies that a = -0(1+ ((e2 + e• 2 )/3)).

Combining these identities with (2.11) yields

(-(e~l + e2,) 0 eat
(2.12) 3=/ 0 1-(e1 Je•) t e32 )

k e32  3(e32 + e3)

2 E is the tensor whose matrix representation relative to the basis elements ei r) ej is given by

(2. F)t.
:3 For details see Gutrtin [12].
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In the sequel we shall assume that i3 is a positive constant. Equation (2.12) implies
that we may regard the elements S31 and S32 as basic descriptors of our system. In
terms of these S and C take the form

(2.13) s= 0 33S(.5, + Si2) S32( 531 S3 +.5~2) 112

and

o1 0

(2.14) S 0 1 0

We now turn to the equations of motion. Equation (2.1) implies that the Eulerian
velocity field u is of the form

(2.15) u = u(x1, x,,t )e3,

where

(2.16) u(X1 , X2 , ti) = - xi, X2 , t1 );
at,

and (2.16), when combined with (2.6), implies that

(2.17) -F31 a 0

and

(2.18) OF32 O-= o

Additionally, (2.9) and (2.14) imply that

(2.19) F31 =S31 + P3

and

(2.20) F32 = + P32.

Balance of momentum in the el and e: directions implies that

(2.21) a'-,r + 53 + a ,' + (53, 1 = 0

or equivalently that

('31+ 'S
(2.22) "r = (Z3 ,t) (S, ( I , ),3j3 ,
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whereas balance of momentum in the e 3 direction yields

du dS31  8!,3?. _ ,'ro
(2.23) P0 Otau --- - - a"

Ft1 I X1  49'_ 493

Here, po is the constant mass density of the material. Since 9r0o/0X3 depends on z3

and tj, whereas all quantities on the left-hand side of (2.23) depend only on xj, x,,,
and tj, we conclude that for antiplane shearing flows -ro/Mz3 is independent of Xa.

In what follows we shall assume this quantity is zero.
We now turn our attention to "yield condition" and the flow rule for the plastic

strain tensor P of (2.8)2, We assume that yield is determined by whether the scalar

.5j', + .52 exceeds a threshold .5.2 or not. This assumption relies on the special form

of S (see (2.13)) and is equivalent to a yield criteria determined by the norm of S.
where

(2.24) ISII2 :df S,2Sj 2(S' 1 + S"2 ) + 2. I + 3,2)2

or one based on the maximum shear stress
(2.25) sd2ef

(22)max IISe-(See)e112

In the sequel we let H denote the Heaviside function

(2.26) H(z) := 0 X <0

and define 7p1 and 02 by

1 2~~,+•

(2.27) ¢•= • - )L H(x - SY) dx

and

(2.28) t2= H(x - .5y) dx.

where .5 , > 0 is the "yield stress."
We shall confine our attention to the Coulomb type sliding law

(2.29)16P31 _ 531_(2-29) = H(S•i + 15j 2 - ,5;)

an d

(2.30) dp3. 3 - 32 .
- -~ 0,•' . H(j •

though much of what we say applies equally well to the flow rule

(231 4O31 SO• Sy. S31 (5 '

(2.31) _ S,• + ,_ _ H + 5,5 - S,
(2.at iI bYTO 333 1 $3TO 7.5571 ý 532
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and

(S2.32) W V ((232 t I M9S32  ,3T0  I ý+S32+

The constant 3 is the shear modulus in (2.12), S. is the yield stess, and To > 0 is
a fixed relaxation time. The flow rule is defined for S3, + S32 # S; and the problem
remains to define it on the yield surface.

We first note that if 5i, +Si2 5.2,, we can combine (2.17)-(2.20) and (2.29) and

(2.30) to obtain the following system for :a5. .532, and u:

(2.33) 31OSl Ou -t +o

(2.34) 1S3 9U -S 3 2 H( + 2 -

and
8u Oas3  O~22

(2.35) PO Ou 0 a S a-3 = o.

Equations (2.33) and (2.34) imply that for .5311 +- S32 # ,2

a . o ( au au)
Al~~ ~~ + .3 U+532 -)

(2.36) 
2t 4Z O

+ (SllH( + 5312 - Syl).

and (2.36), together with the results of [3]. (4]. (5], motivates our extension of the flow
rule on the yield surface SS4 + SS'2 = S;. We extend (2.29) and (2.30) to the yield
surface SS, + SS2 = S; by

(2.37) and31 c=.531 ad s3 0,532
at - 3TI dt - 3T"

where

(2.38)

1if 5 2 • S2 and S3 1 - S 32 --- >---
f u + 32 -.... .. Ox, 3T

au au a
3rT0 (S31 F + S3 -)b 2  ifS2 + -5i S; and

Q = V ."
au u. .s ;A

0 OS31 ax+532 d T 7

0 if S3, +S S = S;' and S.31 -, + S32 au < oc.-

4 The relatiotis (2.37) awd (2.38) transform in a franre iudifferi't fa(shion.
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In the sequel we shall confine our attention to the extended flow rule (2 29), (2.30).
(2.37) and (2.38). The relevant equations are

(2.39) 1 aS3 1  au -S31

(1 dS3 2  aU 0tS532
(72..40) - -~ 0

3 ati 49zr2 $T"o

du dS31 tS 32.

(2.41) P°O aU aF2 = 0,

where now

(2.42)

1 ifS1 +S>S2 > u

I ifS51 +S3 2 =S and "Tj (S3i ' +S 32  >i "

.so ; Ox 0zO'• '

13T a u au 2 2 an
s 3f S +S3 2 ifS3 1 +32= and - '

"5 ax, = S,"aX2• zjsi, ~az 2  x:

/ Ou au 0oif S5+ S52 =S; and E.2 I 53 1 -a 1+S 3 2 - )<0

0 if SS, + SS2 < S;,

and these are solved together with appropriate initial and boundary conditions. Hav-
ing solved the above system for S3 1, 532, and u we recover the deformation gradients
F3 t and F32 by solving

8F 3 1  Ou dF32  Ou
(2.43) - - = 0 and - - = 0

at1I az1  at, ax,

together with appropriate initial conditions. The plastic strains p31 and p32 are then
given by

(2.44) P31 = F.31 -- 3 and p3 1 = F 32 -

These equations should be contrasted with what obtains in the more commonly stud-
ied theory of rate independent elastic-perfectly plastic materials. In that theory (2.37),
(2.39)-(2.41), (2.43) and (2.44) still hold but a is given by
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(2.45)

(, Ox da

_ ' (.5 3 '-+ S 3 2  I
a = .Si i\. I~ dr, J ~~ u

.52 and (31 U+ S.12 < 0-

0 if s 1 + ' < '.

The unboundedness of ca on the yield surface .5"1 + '532 = Sy presents difficulties
not encountered in our model. In particular, across nonstationary shocks where F3 1 .
F 32 , u, S 31 , and S 32 experience jump discontinuities, we must admit jumps in the
plastic strains P31 and P32. The reason for this is that in the classical rate indepen-
dent theory-a as in (2.45)-we must allow "dirac" type singularities in the terms
aSa1i/3To and aSa2 /,'3To and therefore, we cannot conclude that

.2.46) cnl[P3l] = cn2[pa2] = 0.

Here, c is the normal velocity of the shock wave and n=(ni, n2 ) is the unit normal to
the shock. In our model a is bounded, no "dirac" type singularities arise in the terms
caS3 1//)'To and cVS32/,3Ta, and thus (2.46) holds. This implies that with our model all
nonstationary shocks satisfy c2 = 1; that is, they propagate with the speed of elastic
signals. With our model, the only surfaces across which the plastic strains can jump
are stationary, i.e. c = 0. Such jumrns are also allowed in the classical theory.

We conclude this section by wri.,mng down a dimensionless version (2.39)-(2.44).
We let

V 7To- Y 7 To- To-
(2.47)

V= u, 73 1 , T 73 2 = and r. = -

and observe that (2.39)-(2.42) transform to

(2.48) Oral _&at 19X =-r

(2.49) 1a2 19V _ 672, =

Ov Oat Oay

(2"50) Ov 9-Ola r3 0y=O

where

(2.51)

I
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1 if I + 3 2 >7 '

Iif r31+r32= and (lr31i +3 7 > 1,1 • (8 ,~2 -) if +r ran+ 27r+ T32 T-

1*31 +ri2 iZ f q" +3 q2 ;,an

I=2 a1, dv_.0__ < 731 '+-7•r32 _<

o ifr"1 +r3 =,' and I -3 1 -- +r 3  . <0,

o if r-41 + T.L < T;

The transformed versions of (2.4:3) and (2.44) are

OF31  Ov OF 32  av
(2.52) =0 and --- = 0

and

(2.53) P31 = F31 - r31 and P32 = F 32 - 732-

3. Uniqueness results. Our task in this section is to establish the following
THEOREM 3.1. Let Q2 be an open domain in R2 with smooth boundary f . Then,

there is at most one piecewise smooth,s L2o(2) iolution (r13, r32 , v) to (2.48)-(2.51)
satisfying

(3 .1) lim ( 731, T-32, V )( X, Yt, t0 =- ( 73 , r 32, V°)( X, )
t--0+

(3.2) lim (n1 T3 1 + n2r 32 )(z, y, t) = f1(r, Y, t),
(x,y)en;(x,y)-.an,

(3.3) lir v(z, Y t) = f 2 (z, Y, t).

Here Of2 = aQ I U .Q2 2 , fl n OQ2• is at worst a finite collection of points, n=(ni, n,)
is the unit exterior normal to 0Q1, and thefunctions fS are smooth functions in A
L2 ¢(a•i x [0, oo)).

Proof. We first note that if (rT,, -r 2 , v0) and (r3`1, r32 , 0a) are two solutions to
(2.48)-(2.51), then their differences satisfy

0(• • ( 0) = -- ,bb -- ar
(3.4) •(73, - l) - -(v - v') = -(a'31 - aT)at ax

(35O(rb 3. -b a _a

and

(3.6) W( - Va) (T31 - r) b- (i 2- ) = 0.

s This formulation adinits shocks which propagate with noraud velocity c satisfying c2 = 1.
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Here, &6 and d' represent the bounded function 6 defined in (2.51) evaluated at
(r 31, r32 , 0b) and (r71 , r3'12 , Va), respectively. The last three identities imply that

o((161 - r,2) 2 + (r3 2 - r, 2 )2 + (b a)2

(3.7) - ( [(71 - 7ra)(Vb - va)] - - 2 [(rn - T32)(V - vs)]

-(r' - r32)(&.r 3'1 - a Ta1 ) + (42 - ~2W 32 12)

We now claim that
(3.8) P :=L ( - 7'g1)( -&r3  - " -" ) + (:32 - ) 32 -

is nonnegative. In verifying this assertion there is no loss in generality in assuming

that

(3.9) 0 < &a < & _< I.

We first note that p may be rewritten as

(3.10) p - &a [(.r3 - ra,)2 + (r4 - T32) 2

+( ) )[(7).2 -4i + ( r)2 -124321

If &a = 0, then (1-,)2 + (-r2)2 < 7" and -31i+r.2 73b, 7 V(rT1) 2 + (r3,)2 and,
therefore, (3.10) implies that

(3.11) p Ž! &IV/ (r61)2 + (42)2 (2 (r 2 + -(72)2

If &b = 0, then (3.10) implies that p = 0, whereas if 0 < &b < 1, (2.51) implies
that x/(r3,)- + (r=)2 >_ ri,, and (3.11) then yields p >_ 0. We now turn to the case
where 0 < &' < &b < 1. If &b = &', the nonnegativity of p follows from (3.10),
and thus to complete the verification that p > 0 it suffices to consider the case where
O<& <&b < 1. Here we know that (r31 ) 2 +(r732 ) 2 

= and (+i)2 +(r42)2 > v The
former identity, along with (3.10) and -r3a•r b + r52 r4b.2 :_ ry/17(rI)•- + (r43f2)2, implies
that

P >_ &a [((•l_ -•,o ).2 + (r-• _a2-)-21
(3.12) p(

+(& - e•)V(r-,)'- + (r32)-2(/(.r)- + (.r2-- TO,

and (3.12), 0 < Lia < &b < 1, and (r4b)2 + (732)2 > ry complete the proof of the
assertion that p is nonnegative.

For any (xo, yo) E R 2 , r0 > 0, T > 0, and 0 <t <T we let

(3.13) C(zoyo, ro,1) 1 {(z, y)I(z -_o)2 
'- (y - Yo) 2 < (ro + T - t)2)

The identity (3.7) implies that if (r4t, r,42, v4) and (r3', r,2, uG) are two solutions
of (2.48)-(2.51) taking on the same data (3.1)-(3.3), then

(3.14) ((736(1 _ r(()2 +(r _ r32)2 +(V6 -v))dTdy
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-L,0r07n +~z P(yt) dxdY dt(Jc(o~uro.Tnn .3 yo)-2 -(v

+1 I o, o,t= , 1) (- - i-o) 2 + - -+ )2) .

-(Vb - d) ( - d) d &

(ro +T-t) (ro +T-t) ) )
=0.

Here, ~x.

(3.15) -C(oyoro,t) ( zy)(x - zo)2 + (y-yo) 2 = (- o +• t) 2 ..

The vector ((x - zo)/(ro + T - t), (y - yo)/(ro + T - t)) is the unit exterior normal
to d9C(zo, yo, ro, t), and cia is arc length along OC(ro, yo, ro, t). Since

(b - •a) (Z - ZO)(r• - TS) + ( YO)(r32 -

(to + T- t) (r + T - t)

(3.16) Ž-IV' - V1*I - a2+ r 2 - ~)

and since p _> 0, we see that all three integrals in (3.15) are nonnegative and their
sum is zero. From this we obtain

(3.17) IC'(:oyoraT)ln ((43lt -_ ra)2 + (r32 - ri2)2 + (V4 -_ va)2 )dzdy = 0,

which is the desired uniqueness result.

4. A signalling problem. In this section we consider an elementary one-dimen-
sional signalling problem for the normalized system (2.48)-(2.53). The solution is of
the form

(4.1) (r3 , 32, v) = (r(Z. t), 0, (z,t)), 0 < X < CC,

where r and v satisfy

Or Ov
(4.2) 5T 5 = 0 < Z < 00,

(4.3) --- 0O 0 < z < 0o,

and

f I ifr->r .r

I ifr 2 =TI and = >
rr 

9• i.ts

(4.4) &_ if r=rY2 and 0_< 5-, < 1,
if r = d .aands

0 if 12 < r;,
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t

Fic. l.

and the initial and boundary conditions

(4.5) (r, v)(X, 0) = (0, 0), 0 < z <

and

(4.6) v(0, t) = -ro, where r0 > rT.

We note that the results of the previous section guarantee there is at most one solution
to the above problem.

In the region 0 < t < x, we have (r, v) = (0, 0). Moreover, r + v is continuous
across the curve t = x and thus satisfies r- (t,t) + v-_(t.t) =- 0. The difficult part of
the problem is to show there is a curve t = J(x), 0 < x < z#, with -I < d/dz < 0,
such that in the region x < t < J(x) with 0 < z < z#, r and v satisfy

(4.7) >

(4.8) 4r Ov = -r and -t -9 = 0,

Fi 1a Ot (9X

the boundary condition (4.6) and r..(t,t) + v-_(t,t) = 0. On the curve t = 5(z)

we have limr,_O+ r(a, J(z) - e) = ry and 6(t) llf lim..o+ v(x, 5(x) - t) satisfies
0 < dl/dz < r,. In the region 5(x) < t and 0 < x < z# we have r(a,t) = ,, and
v(a,t) = 63(z), whereas in x# <a < 1, r -- ry and v(x,t) = &3(x#) = -ry (see Fig. 1).

The existence of a curve t = 5(z) with the desired properties may be established
by converting the system (4.6), (4.8), and r _(t, t) + v _(t, t) = 0 to integral equations
for r and v in z < t, verifying that for 0 < t - z < I the stress satisfies r > ry,
and finally by obtaining qualitative information on the level line t = J(z) defined by
lim,_ 0 + r(z, J(z) - f) = r.
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Rather than perusing that approach we shall show how to obtain simple approx-
imate solutions satisfying (4.6)-(4.8) and r- (t, z) + v- (t, t) = 0 as well as approxima-
tions to the level line t = J(x).

We note that for each integer N > 1 the system (4.8) has solutions

N

(4.9) VN = -ro + L A(k)It)Zx'
k= 1

and

(4.10)6 -=(k r -Z
"- 2k _-

where the coefficients satisfy

(4.) o + Ao = A1,

(4.12) Ak+A• =2k(2k + 1)A,+,, 1 < k < N- 1,

and

(4.13) )N + AN - 0.

These solutions satisfy the boundary condition vv(0+, t) = -r 0 and have 2N + I free
parameters which are determined by insisting that the equation

(4.14) rTv(t, t) + vN(t, t) = 0

is satisfied to O(t2N) as t - 0+. The approximate curve t = JN(x) is subsequently
determined by solving r•v(z, J'N(x)) = r.. An easy calculation shows that -jv(x) =
O((ro - r,")/ro) and djv/dx < 0 which guarantees that the number zx. defined by
JNv(x) = x4 is O((iro-ry)/ro), and thus on the boundary z = t, ry(t t)+ vN(t. t) is

at worst 0(("ro - rTy)/ro)2 N+1 for 0 < t < 4. We continue the approximate solutions
to the rest of the region described by Fig. I via the extensions procedure used for the
exact solution, that is, for 0 < t < x,

(4.15) (rvVN) =_ (0,0) ./

for Jv(x) < t and 0 < z < xN

(4.16) vN(X,t) = VN(Z,JVN(Z)) and r~v(z.t) =

and forx <x<t,

(4.17) VN(x,t) = VV(x#,NJv(z#)) and rN(Z,t)=Tr.

We are then guaranteed that the error made in failing to meet the boundary condition
rv(t, t) + vv(t, t) = 0 is at worst O((ro - ) for all t > 0. We shall present
the details of this procedure for the case N = 1.

In this case,

(4.18) V1 = -Tr + (A1,o + Al,ie-)x

" Here • denotes differentiation with respect to t.
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and

(4.19) rt= (A1 ,o + A1lte-t + Ao, e-t) - A -22

and the insistence that r1 (t, t) + vi(t, t) = O(t0) as t - 0+ implies that

A1,0 - Ao, I -

(4.20) A'o - A0 ,1 + 2AI. 1 = 0

Ao0, - 5A1.1 = 0

and hence that

(4.21) V 0= 70 +(31 -e+)x)

and

(4.22) L= - 3+ ( 3 -+5e- t 2 "

The approximate curve t = Ji(z) is obtained by solving ri(z, Ji(z)) =r or equiva-
lently the equation

(4.23) 3 + J,e + 5e-x' 2 ro'
_2 / m

The fact that 0 < 1-y/ro < I guarantees the unique solvability of this equation for
0 < z < I and that JT(0) = O(2((ro - ry)/ro)). A quick calculation also shows that

(4.24) dj, -2x < 0.dx (8 + 2j7, - z2)

The number xi, where j"(x) z' satisfies

(4.25) 3 + x1e-" + .5e-'" _(

#2 } O

and for 0 < rO - r. small enough we are guaranteed that xi = 0((ro - r,)/ro). This
estimate, when combined with (4.24), implies that -1 < dji/dx for 0 < z < xI

Our final task is to show that the function

(4.26) (X):= To -I+ (3 + 8

satisfies

(4.2T) 0 < A ,(x) <5 ,., o < x < x:j.
(4.27) dx

The defining relation (4.26) implies that

di31  (3+ , JI(•)\ 5roe-3 'l•
(4.28) -TI(X) = ro 8 3 ((z)
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and this relationship, when combined with (4.23) and (4.24), implies that

(4. 9 roe-' ((W- - 2JM )(8 + 2J, - z2) + 20zj)
(4.29) (z = + 16(8 + 2j, - Z2)

The fact that jij(:) > z' for 0 < z < z' = 0((r"o - rv)/ro) implies that the second
term in (4.29) is negative and this provides the desired upper bound for dj 1 /dz. The
desired lower bound is an immediate consequence of (4.2') and tie bounds for dJj//dx.

We conclude this section by contrasting the above solution with what obtains if
we replace our flow rule-a given by (4.4)-with the one generated by (2.31) and
(2.32) and also by the flow rule associated with a rate independent elastic-perfectly
plastic material. In the former case, (4.2) is replaced by

(4.:30) ar 9vTt -z = -_X

and (4.4) is unchanged.
In the region 0 < t < z we have (r, v) =_ (0, 0), and r + v is continuous across

z = t. For 0 < z < t < 2(ro - ry)/ir- we have

(4.31) V= -r + and r=r- r t
2 2

for 0 < z < 2(-o - ry)/ry and t > 2(ro - r,)/iv we have

(4.32) v=-ro+ and r=r7,
2

and finally for 2(ro - ry)/ry < z < t we have

(4.33) v=- -T, and r=r ,.

With this flow rule the curve t = J(-) is the constant function J(x) = 2(to -
ry)/ry, 0 < z < 2(to - ry)/Tp. Equations (2.52) and (2.53), the initial conditions
(F3 1, p31 )(x, 0) = (0, 0) for x > 0, and (4.31)-(4.33) allow us to determine (F 3 1,P3 1).
The result is

S(0,0), 0< t< X,
(7"o + r. -z) r,(i )) < X < t <

(4.34)(F 3t, 13j) = (ro + r -q ), rTo - rY + r( -)z)),V <rn- r, 1 <t and

0 <X< r-r,)

0), 2 r.-, < r <

It is worth noting that the above solution is unique. This can be established using
the arguments of §3 directly on the system (4.30) and (4.3)-(4.6).

We now examine the signaling problem for a rate independent elastic-perfectly
plastic material. Equations (4.1)-(4.3) and (4.5) and (4.6) still hold, except now & is
given by

(4.35) 0 if r2 = r and < ,

' if r = and 0<



16 .I.M. GREENBERG AND A. NOUR[

We also have

(4.36) dv Ov-0, 9 -1 r, and F3 1 -r+pm3,
at 4---at

and these satisfy the initial conditions

(4.37) (F 3 1,P 3 1)(Z,0) = (0,0),z > 0.

We seek solutions with structure similar to that obtained for the previous two modeis.
Specifically, a shock curve t = i(x) such that in the region 0 < t < i(x),

(4.38) (F 3 1 , P31, r, V) = (0, 0, 0, 0),

and in the region t > i(x) the shear stress r is at yield, i.e.,

(4.39) r(., t) = ,, i(x) < t.

We interpret (4.3) and (4.36)as conservation laws, and this, togýthier with (4.38) and
(4.39), implies that' on t = i(x),

di
(4.40) v -(x, i(x)) + r, 7 = 0

and

(4.41) Fj (X, i(x)) + V-(z, i(x))ad = 0.

Here, (W, Fj)(z, i(z)) = lim,_0+(v, F3 1)(z-f, i(x)). The identity (4.39) also implies
that in t > i(x) the velocity v is a function of x only. Near x = 0 we choose

(4.42) v(x, t) = -- r + Ax, A > 0.

With this choice we obtain

(4.43) Pa3 = A(t - i'()) + p_(x)

and

(4.44) F3 1 = 7y + A(I - i(x)) + p_(x).

Equation (4.40), together with i(0) = 0, then yields

(4.45) I~r) = - (to - Ax)"DAry

and (4.41),(4.44), and (4.45) imply that /I

(4.46) p_(z) = - T; .
ry

We now let

(4.47)ro - ry
(4.47) x = ---
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and note that

(4.48) p_(X) > 0, 0 < X < Z#,

(4.49) p_(x#) 0,

and

(4.50) # 1.

In the region (r7 - (r 0 - AX) 2)/2Arv < t and 0 < z < x# (r0 - r,)/A our solution
is given by

(4,51) F3 1 = ry + A t + r -(r - AZ) 2 )

(4.52) P31=A i+ --(7- AZ) 2 )

(4.53) v = -ro + AX,

(4.54) r = ry.

The shock curve is continued to z > x# by

(4 .5 5 ) r(n th e re i o + ( - Try

and in the region ((7-6'- )/2Ary)+(z-((ro -.- ,)/A)) < t and (o -ry)/A z# < x,

(4.56) F 3 1=r., P31=0, v=-r., andr=r,¢.

The line z = x# = (r 0 - r,)/A is a stationary contact discontinuity and across it P31
jumps while the other fields are continuous. The interesting fact about the signaling i 9 ,
problem for this model is the lack of unicity of solutions; we have a compatible solution ," I -

for every A > 0. This observation points out one of the weaknesses of the classical
model. -. ,

5. Computational experiments. In this section we present the results of a ," ,

computational experiment performed on the normalized system (2.48)-(2.52) when
the pressure gradient is zero. The results reported deal with a two-dimensional gen-
eralization of the signalling problem of the previous section.

The experiment deals with the system (2.48)-(2.51) solved in the region r > 0

and -,r/2 < 0 < 2-r, where r = V +y2. At time t = 0 we assume that

(5.1) (r 3 1, r32 , V) = (0, 0, 0)

for r > 0 and -r/2 < 0 < 2-,r, and for t > 0 we assume that

(5.2) vr = v(r, 27r-) =ro, r > 0,
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FiG. 2.

where ro > ry, and again r. > 0 is the yield stress.
The elastic version of this problem, namely, the system

(5.3) Orat a -o

Otr OV -O
(5.4) -- =0

(5.5) av O131 0r32 -

together with (5.1) and (5.2), was considered by Keller and Blank [13]. They obtained
exact solutions to this and a number of other problems with self similar structure.
Relevant to us here is the singular nature of r'1 + r' 2 as r - 0+. Their results
demonstrate that

(5.6) rS+ d= ( o I , - o+.

This singular behavior also obtains for the plasti. flow problem and forces us to
treat the boundary conditions in our numerical simulation carefully. Our integration
scheme for (2.48)-(2.51) is based on a symmetrized operator splitting algorithm for
the governing differential equations. At time t = nh, n = 0, 1, 2,..., our approximate
solution consists of lattice data

(5.7) (r.3, r3 2 , V)(n ,)= (r 3 ,, r 32 , v) ((2k 2--l) ', (2 72- [h, I h .

For the problem under consideration the boundaries are not part of the computational
lattice but are offset from it by a distance of h/2. The computational lattice is

(5.8) S= {(k,m) k <0 and m=0, -1,±2,...l }U((k, m) Ik> l and rne<0}.

To update the data (5.7) we successively solve
(.) Or31  Ov 6732 Ov Or31

(5.9) --- -= 0, --7-=0, and -- -9 =0, O<t<h,
at 8 t at ax
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dt~ O 32  dv dV (Th3 ,
(5.10) - =0, -=0, and --- = 0, 0<t<Ih,

02 0t ay 0i dy

and

_r31 adr3 2  -V
(5.11) -CC73 1 , =-5kr 32 , and - =-0, 0<t <h,di -t at

where of course a is defined in (2.51). For (5.9) we use the approximate solution
defined by (5.7) as initial data and let (-J1,. r2, v1 )(k,.) denote the value of this
solution at t = h on the lattice S_ We then solve (5.10) using the (rJ,. m2 v1 

)kml

as initial data and let (4s, r712. 2 )km) denote value of the solution at t = h on S.
Finally, we solve (5.11) with (rj', 7i2 v2)(k.,) as initial data and let (r 3

3
1 . -32, V3)(krm'

denote the value of this solution at t = h on S.
We then repeat the process solving (5.10) first with the data (5.7), and, we let

(T, r32, v 4 )(k,,m) denote the lattice update at t = h. We then solve (5.9) using
(r~1 , r 2 , V4 )(k,m) as initial data and let 03 denote the lattice update.
Finally we solve (5.11) with data (411,Trs 2 , V)(km) and let (r36, r34, v6 )(),+) denote

the lattice update at t = h. The desired approximate solution (731, r 3 2 , v),("I) is then

obtained by averaging (73l,.r32 , V3)(k,,m) and (r73, r3 2 , v6 )(k•m); that is, / j

3(-+ i) 6 3 6 3 -
I

(5.12) ('r 31i3 2 '(k,m) - 3 1 2 3 1 1, +3 2 +" 2 , V + )(km)-

Of course, all of the intermediate updates are solved subject to the boundary con-
ditions of the original problem. Here these boundary conditions manifest them- /
selves as reflection conditions at those lattice points that are a distance h/2 away
form the actual boundary. Formal accuracy could be maintained if we used either
(r3l,,3 32, V3)(km) or (711, 712, VS)(km) for the updated approximate solution but either
of these updates alone would, over time, tend to introduce asymmetries into the ap-
proximates not present in the actual solution. These asymmetries are removed with
the algorithm employed.

The results of our experiment are shown in Figs. 3-7. Each snapshot shows two
different representations of the velocity field and the total shear stress, namely the
quantity x/rT+ 2 . This simulation was run with h = i/50, r,, = 1. and r0 = 1.3. 7

The contours on the velocity plots are spaced 0.1 apart and run from v = 0 to v .= .
The stress contours run from I to 3.2 in increments of 0.2. In these snapshots •.,P

a of the plane wave solutions of the previous section but also the effect of
the corner singularity which are confined to the region 0 < r < t and ,r/2 < 0 < 2r.r

For comparison we have run the elastic version of this problem with the same
boundary conditions and same values of h, r,., and "o. These results are shown in

ter- Figs. 8-12.
It should be noted that for both problems the velocity fields satisfy the additional

condition

(5.13) lim v(r, 0, t) = 0, < 0 < 2-,r

and that our numerical solutions meet this consistency condition automatically.
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