
AD-A265 254

FINAL TECHNICAL REPORT 1 U

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

by

Jeffery L. Kennington
Department of Computer Science and Engineering

Southern Methodist University

Dallas, TX 75275-0122
(214) 768-3278

for

Optimization Algorithms for Integer Networks
with Side Constraints for Application in

Routing and Scheduling

February 22, 1993

AFOSR F49620-92-J-0032

SMU #5-25141

:~T DOCJUjjENY\TMC)\3 AG`

. " ' TI A I I VV, lt 1,-J1 0

AMiE3ICY U'ý. ON'.LY {L,?.3ve n7oi,~k 3i 6i 92%

O:•fiMI T XON GORITHMS FOR INTEGER NETWORKS WITH
SIDE CONSTRAINTS FOR APPLICATION IN ROUTING AND SCHEDULING

6. Al U Q 0R(Si
, 2304/DS

JEFFERY L. KENNINGTON
61102F

7. PURIMIRP.ANG 3OlGAfIZATION ,ANIE.(S) AND ADDRCSS(ES) C.G:,NIZAT "ION

SOUTHERN METHODIST UNIVERSITY 5
RESEARCH ADMINISTRATION AJtR4R . "
P.O. BOX 8473
DALLAS TX 75275

,.S~'iSOFMI 6/ Ra()JiTORIrIG AGEiJ•V ;-..' 1ME(£j ,: 3D , I 1 " - .lOfl OW
ý!.".A ,L_ i N,(71 F'._!- 0 10 •U IviE

AFOSR/NM
110 DUNCAN AVE. SUTE Bu 11 F49620-92-J-0032
BOLLING AFb DC 20332-0001

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

'.~ 3. ^•TI1CT (l•/t~,? c, m 200 tvniocds)

This document presents a new serial and parallel algorithms for the on-to-one shortest problem.
This is the current best algorithms for this problem and we believe that our software
implementation is the world's fastest code. Other algorithms for various network models,
including the pure network problem, the generalized problem, the multicomrnodity network
problem with a piecewise linear convex cost function are also presented.

93-10664

MI SIJj.9jCT TF.RAS i 1 5. N3UMBER OF PAGES

i . PfriC- CODE

- 17. SECUr IV~ CLASSIFICATION Frtfl S CLASSIFICATION 19 ECURITY C.1 ASIFICAWT101 20. 1-UMITAI IONJ OF ABSITRACT~
E1WF RWIOr[t THIllS PAGE, OF ABSTRAC'T 'i

4JNCLASSum-) K.INLSTIFTF) NCASED. U4 LITM1~.
'AJN 7S40-01 280-5500 ... I4 J[rc ard 'Frm 29F (R.'v 2 89)

;IIV' II~h , .CJ' VIU /;iP l J ' l-|
't !'I) 1/

1, AGEN CYJ ' ULj OW Ie1 ;e holok) 12 REPO i" O 1 } # R Y Y6" , " 9i, N~tI•O 1l~l 9 ji3bEC 92

0O I BIAiN'iLGORITHMS FOR INTEGER NETWORKS WITH . .

i! SIDE CONSTRAINTS FOR APPLICATION IN ROUTING AND SCHEDULING

.123fA/DS
JEFFERY L. KENNINGTON

61102F

7- PEUWFOlM•,i"' u ObANI',ZATION NAi•lE(.) ANO ADDRCSS(ES} O. .(,-. O !CP.Ar, IOATtON

SOUTHERN METHODIST UNIVERSITY - ,
"i RESEARCH ADMINISTRATION AF%.,I, "

P.O. BOX 8473
DALLAS TX 75275

it43 SP'ONSORING.C RflOIMiiT(WINCG AGECiI(V NAPA(S) ANDO AIDOflSS(ESi 1 t 10 PzrK!: E'210H rC III

AFOSR/NM
110 DUNCAN AVE, SUTE BI15 F49620-92-J-0032
BOLLING AFB DC 20332-0001

.DSTRI1UfION AVAILADILITV STATEVE CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

ý3 M15TRACT (11AWýinruwn 200v e~,?10I

This document presents a new serial and parallel algorithms for the on-to-one shortest problem.
This is the current best algorithms for this problem and we believe that our software
implementation is the world's fastest code. Other algorithms for various network models,
including the pure network problem, the generalized problem, the multicomrnmodity network
problem with a piecewise linear convex cost function are also presented.

93-106649 1 _llll~(Illl/llIIIII(III

4. SIJCCLT TFIR, O P E

OF RFPORI -ills PAGE 01F AMTMACI Pil

................ . .. UNC SSIED NC SSI ED ,UL..UNLMITED) -,NSN <. i,,;,/~ :, ,J FO~ "'77 P4 ,, • i

Unclassified

SECURMITY CL.ASSIFICATION OF THIS. PAGE

REPORT DOCUMENTATION PAGE
i s REPORT SECUR4ITY CLASSIF!CATION 1b. RESTRICTIVE MARKINGS

unclassif ied
29- SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILA&ILITY Of REPORT

2b. OEC LASSI F ICAT ION/OOWNG RA DING SCHE GULE netrce

A PERFORMING ORGANIZATION REPORT Num$ERMS 6. MONITORING ORGANIZATION REPORT NUIIJMEPIS)

6*. NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

41C. ADDRESS (City. state and zip Code) 7b. ADDRESS (City. Stoat and ZIP Code)

Dallas, TX 75275-0122

Sa. NAME OF FUNDiNG/SPONSORING Bb. OFFICE SYMBOL B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Sk. ADORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. ______ _____

110 Duncan Avenue, Suite 100 PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, DC 20332-0001 EEETN. N.N.N

11. TITLE (~Incude Security Clis.ficea~ij I I
12. PERSONAL AUTHOR(S) Jeff ery L. Kennington

13.. YPE F REORT 3b. TIME COVERED 114. DATE OF REPORT ?Yr H.. DaM 1 PAGE COUNT
13,TP FRPR Final- P ROM 1 Jan 92 T0.31 Decij 22 Feb 1993 1
1S. SUPP' EMENTARY NOTATION

17, COSATI CODES 1S. SUBJECT TERMS (Continue on retqrse if ntceaury and identify by block number)
FIELD GPR'UPT SUB Gm.

19. ABSTRACT (CORSanue on Iyuere if necessory e,,d identify by block numfber)

* This document presents new serial and parallel algorithms for the one-to-one shortest
path problem. This is the current best algorithm for this problem and we believe that our
software implementation is the world's fastest code. Other algorithms for various
network models, including the pure network problem, the generalized network problem,
the multicommodity network problem, and the minimum cost network problem with a

* piecewise linear convex cost function are also presented.

20. DISTRIOUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

* INCLASSIPIEO/UNLIVITEO 3SAME AS RPT, 0 OTIC USERS CUnclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER4 22C. OFFICE SYMBOL
(Include A me Code)i

Jeffery L. Kennington 214/763-3273 CS E

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE

SECURT" CLASSIFICATiON OF THIS PAGE

Table of Contents

I. Statement of Work ... 1

1I. Technical Reports .. 2

EIl. Appendix A A-I

IV. Appendix B B-1

V. Appendix C C-1

I

F f'-T-, f: ;, I...
DTI-

J - acedes

B - - <)

I. Statement of Work
Many United States Air Force routing and scheduling problems can be analyzed and
modelled mathematically as some type of network flow problem. As budget pressures
become more intense, there will be even more emphasis on optimizing the use of the
assets available to the Air Force. Optimization algorithms and state-of-the-art software
will be important tools that can be used by Air Force planners and decision-makers
during the foreseeable future. Models and techniques which exploit the underlying
network structure of these problems will also gain added importance. The research
reported in this dccument is directed toward the discovery of new and improved
algorithms and the development of computational software to assist in the area of routing
and scheduling problems.

II. Technical Reports

Title
Network Flows
(September 1992)

Authors
Richard V. Helgason
Jeffery L. Kennington

Executive Sumary
The objective of this report is to clearly present the techniques used in a
computationally efficient implementation of the primal simplex algorithm specialized
for various network models. Numerous examples are included to help illustrate the
ideas and techniques. It is shiown mathematically and illustrated by example that
every basis for a linear network problem is triangularizable and corresponds to a
spanning tree. This result is used in the development of a specialization of the primal
simplex algorithm for the linear network problem which is at least two orders of
magnitude faster then general purpose software. It is shown mathematically and
illustrated by examples that every basis for a generalized network problem has a block
diagonal structure with each block corresponding to either a rooted tree or a one-tree.
While this structure is not as beneficial as that of the linear network problem, it can
still be exploited in performing the simplex operations. Other similar results for the
multicommodity network flow problem are also presented.

Publication Status
This manuscript has been submitted for publication as a chapter in a book and is
currently under review.

S2-

MENE

Title
The One-to-One Shortest-Path Problem: An Empirical Analysis with the Two-Tree

Dijkstra Algorithm
(Revised December 1992)

Authors
Richard V. Helgason
Jeffery L. Kennington
B. Douglas Stewart

Executive Summary
The problem of finding the shortest path between a designated pair of nodes in a
graph is a fundamental problem in operations research, computer science, and
scheduling theory. Good algorithms for this problem can be used as a building block
for other algorithms to solve the assignment problem, the semi-assignment problem,
the multicommodity network flow problem, and integer networks with side constraints.
The classical Dijkstra algorithm begins at one of the designated nodes and fans out
from this node until the othcr designated node becomes a member of the labeled set.
This is easily accomplished by a computer implementation that builds a tree rooted at
one of the designated nodes. In our investigation we empirically demonstrate that a
better algorithm (in terms of computational time) is obtained by a procedure that
begins at both designated nodes and fans out in both directions, either simultaneously
as in our parallel implementation or alternately as in our sequential implementation.
This new algorithm terminates when any node appears in the labeled set for both
trees. An interesting feature of this procedure is that the node which first appears in
both trees may not be present in the shortest-path, but enough information has been
developed to find the shortest-path. The speed improvement of this new algorithm
results from the empirical observation that many fewer nodes need to be scanned
under the new scheme. The new scheme is more complicated to implement, but
results in a 3ubstantially faster software package.

Publication Status
This paper has been accepted for publication in Computational Optimization and

A2l--3 n.

-3-

Title
A Direct Simplex Algorithm for the Network Flow Problem with Piecewise Linear
Costs
(January 1993)

Authors
Rajluxmi V. Murthy
Richard V. Helgason

Executive Summary
This paper presents a specialization of the simplex algorithm for a network problem
having a cost function which is piecewise linear and convex. The basis
characterization is the same for this problem but an improvement can be made in the
simplex pricing operation. The specialization results in at least a 50% speed
improvement over existing methods for this problem.

Publication Status
This paper has been submitted for publication and is under review.

-4-

I

p

APPENDIX A
I

I

I

I

p

I

I

p

p

I

p NETWORK FLOWS

Richard V. Helgason
Jeffery L. Kennington

* Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275

15 September 1992

1 Introduction
Our aim is to (1) summarize the ideas fundamental to efficient implementation
of the primal network simplex algorithm and its extensions, and (2) indicate how
these algorithms may be effectively used within other optimization algorithms.

1.1 Set Notation

For the most part we adopt standard set notation conventions. Sets will usually
be denoted by upper case Roman letters such as X. The empty set will be
denoted by 4. For a finite set X we let #X denote the number of elements

* in X. We let in {1,...,=n) and in = {0,...,n). Given set X, we define the
equahty relation on X to be X :-X = {(z,z) : zEX}. We will also use multisets
in which a repetition factor is allowed for set elements. For a finite multiset Y
then, #Y will also incorporate multiplicities.

1.2 Matrix and Vector Notation

Matrices will usually be denoted by upper case Roman letters such as A. Row
vectors will usually be denoted by lower case Greek letters such as 7. Column
vectors will usually be denoted by lower case Roman letter- such as z. The
element in the ith row and jth column of matrix A will be denoted by A,,.
The row (column) vector whose entries are from the ith row (jth column) of

SA will be denoted by A, (A,). The ith element of a vector such as z will
be denoted by xi. We will allow extensive subscripting and superscripting of
matrices and vectors for identification purposes. Inasmuch as this may interfere
with the subscripting convention for element identification above, we also adopt

* A-1

0

the functional notation (-)j and (.)'i for vector and matrix element identification,
respectively, so that (Xj)p, is the pqth element of matrix Xij. We will use ej
(e') for the column (row) vector whose ith element is a 1 and whose other
elements are all zeros. We will use eji to denote the column vector whose ith
element is a 1, whose jth element is a -1, and whose other elements are all
zeros, so that ej is e, - ej. We will use 0 and i as row or column vectors with
orientation and dimension given by context, having as uniform elements 0 or 1,
respectively. We abuse notation by allowing in = 1,.., n) to also be used as a
row vector. The diagonal of matrix A is the set of elements {Ajj). The matrix
A is said to be upper (lower) triangu larif A2j = 0 when j > i (i > j) and, more
simply, triangular in either case. The matrix A is said to be diagonal if it is both
upper and lower triangular. A triangular matrix will be nonsingular when its
diagonal elements are all nonzero. The matrix A is said to be triangularzzable
if it can be brought to nonsingular triangular form by a sequence of row and
column interchanges.

1.3 Graph Notation

We define a set of nodes or vertices V to be any set of consecutive integers which
we typically take to be in or jn. Given a set of nodes V, we define an arc or
edge for V to be any ordered pair (ij) with iEV, jEV, and i$j. The arc (ij)
is said to be incident on (touch) both i and j, to connect i and j (or j and i),
and to be directed from i to j. Formally, a network or directed graph is defined
to be G =< V,E > where V is a set of nodes and E is a set of arcs for V.
Apparently then E C (VxV)\(V'-V). When V = 0 then also E = 4 and in
this case C is called the trivial graph. We shall also allow E to be a multiset
when it is desirable to have more than one arc connect two nodes. in this case
one could more properly refer to G as a multigraph. For #E = mn, we will find
it convenient to label the arcs with elements from im.

1.4 Visual Representation

The nodes of a network may be viewed as locations o: terminals where a given
commodity can be moved from, to, or through and the arcs of a network may be
viewed as unidirectional means of commodity transport connecting or serving
those nodes. Hence arcs may represent streets and highways in an urban trans-
portation network, pipes in a water distribution network, or telephone lines in
a communication network. The structure of the network can be displayed by
means of a labeled drawing in which nodes are represented by circles or boxes
and arcs are represented by line segments incident on two nodes. Each line seg-
ment will have an arrowhead placed somewhere on it to indicate the direction of
the associated commodity transport. Typically the arrowhead will be incident
on the node to which the commodity is being transported. An example network
illustration is given in Figure 1.

A-2

Figure about here

Figure 1: Example network

1.5 Node-Arc Matrix Representation

The structure of a nctwork may also be described using a node-arc incidence
matrix A given by

+1 if arc k is directed away from node i,
Aik= -1 if arc k is directed toward node i,

0 otherwise.

Apparently then A.k = e1j for some i and j, and we shall allow ourselves to abuse
notation by saying that in this case the kth arc is eij. An exa-nple node-arc
incidence matrix corresponding to Figure 1 is given below.

arcs

1 2 3 4 5 6 7
1 1 0 0 0 0 -1

nodes 2 [-1 1 1 0 0 0
3 0 0 -1 0 1 -1 0
4 0 0 0 -1 - 1 1

1.6 Subgraphs

A graph G' =< V',E' > is said to be a subqraph of G =< VE > if V' C V
and E' C E. Note that G' is required to be a graph itself, so that V' and E'
cannot simply be arbitrary subsets of V and E, respectively. Further, G' is
said to span G or G' is said to be a spanning subgraph for G when E' = E.
Given a node subset V' C V, we define the subgraph generattj by V' to be
G(V') =_ {(ij) E G : i E V' and j E V'). Example subgraphs corresponding
to Figure 1 are given in Figure 2.

0 Figure about here]

Figure 2: Example network subgraphs

1.7 Paths and Cycles

Given a graph G =< V, E >, a finite odd length sequence

P = {vI, s eij, v2, ei2j 2 ,... V, e•,j,, vq+1}

* A-3

0

whose odd elements are nodes of V and whose even elements are arcs of E
is defined to be a walk in G of length q ! 0 in G if: (1) P has at least one
node, and (2) for 0 < r < q, arc e,,j, connects v, and vr+l. Apparently then
from (2), ei, could be either (v, v,+•.) or (vr+,, v,). The sequence formed by
reversing the elements of P is also a walk and will be denoted by rev(P). If we
envision moving from vi to vq+1, utilizing the sequential elements of P in order,
we can assign an (implied) orientation to the arcs in the walk by defining the
orientation function { +1 if ei'j = (Vr,V +0),

= -1 if 'ei = (Vr +I, Vr).

If the sequence of nodes {vi,..., vq+1} from P is composed of distinct nodes,
the walk P is said to be a (simple) path which links v, to vq,+. It follows that
the arcs of a path are distinct. Apparently then rev(P) is also a path which
links vq,+ to vj. It also follows that any walk P of length 0 is a path which links
v, to itself. If the walk P (1) is of length at least two, (2) {vIeiij3, , Vq) is
a path, (3) {v 2 ,ei.j,,. .. vv+I is a path, and (4) v, = v,+,, the walk P is said
to be a cycle. Example walks in the graph of Figure I are given in Figure 3.

1 Figure about here

Figure 3: Walks in the example network

Given a c3 :le P it is possible to form other cycles using the sequential
elements of P in wrap-around order, i.e., starting at vm we can define a cycle

P, = {V"",ei,,j,,,v,,+i,. •., 'VQei,j,, V1, e,j,, V2,- • •, Vm}

which retains the essential arc and node orders and arc orientations of P when
we envision moving from vm to vm on P'. Thus we will consider cycles such as
P and P' to be the same cycle and also refer to any of this set of equivalent rep-
resentations as u cycle on nodes {vl,...,Vq} . The arcs of a cycle are generally
distinct, except for two special cases which can arise when considering cycles of
length two. Cycles of the form

SV1,V 1,V2), V,(vjV2),Vil

and
{fv1 (V2, v), V2,(v2, V1), v1)

do have ares which are not distinct and will be called inadmissable cycles. All
other cycles (which have distinct arcs) will be called admissable. Apparently
then if P is an admissable cycle on nodes {vl,.. ., vq then rev(P) is a distinct
cycle on nodes {v 1,..., v.) . A graph G in which no admissable cycle can be
formed is said to be acyclic and is also said to contain no cycles.

A-4

II

II

1.8 Connectedness and Components

A graph G =< ', E > is said to be connected if any two vertices u and v can
be linked by a path in G. The maximal connected subgraphs of G serve to
partition G and are called components of G. If G' =< lv), f > is a component
of G, v is said to be an isolated node of G.

1.9 Trees

A nontrivial connected acyclic graph is called a tree. A graph which consists of
an isolated node only will be called a trivial tree. A graph whose components
are all trees is called a forest. An endnode of a tree is a node which has only
one arc of the tree incident on it. A leaf of a tree is an arc of the tree incident
on an endnode.
A tree G =< V, E > has several important properties:

(1) E has one less arc than V has nodes, i.e. #E = #V - 1,

(2) if an endnode and a leaf incident on it are removed from G, the
resulting subgraph is also a tree,

(3) if G has an arc (i,j) incident on two endnodes, then V = {i,j) and
E = {(ij)} or E = {(j,i)).

(4) if #E = 1, G has exactly one leaf,

(5) if #E > 1, G has at least two leaves,

(6) for every distinct pair of nodes u, vEE, there is a unique path in G
linking u to v.

An example tree is given in Figure 4.

1 Figure about here

Figure 4: Example tree

A root is a node of a tree which we wish to distinguish from the others,
usually for some algorithmic purpose. Occasionally this may be made explicit
by drawing a tree oriented with the root at the top of the diagram. Alternatively,
this may be made explicit in a diagram by drawing a short line segment (with
or without an arrowhead) incident on only the root node. An example rooted
tree is given in Figure 5.

A-5

Figure about here

Figure 5: Example rooted tree

1.10 Tree Solution Algebra

Consider the solution of the system

Az = b, (1)

where A is the nx(n - 1) node-arc incidence matrix for a tree T =< V,E >
with n nodes and n - I arcs and b is a given n-vector. A procedure which can
be used to reduce the system to a permuted diagonal form is given below:

procedure DIAGONAL REDUCTION

inputs: T =< V, E > - nontrivial tree with n nodes
p - root node for T
A - node-arc incidence matrix for T
b - n-vector

output: Ax - b - diagonalized system equivalent to Az b b

begin
[Initialize]
V 4c= V, E - E, A 4,= A, b t= b;
[Iterate until the tree becomes trivial]
while E $ 0 do

[Pick a leaf]
0 select an endnode p not the root p in the tree T =< V, >.

let r be the other node of the leaf incident on p.
let (i,j) be the leaf incident on p and r.
let c be the column of A corresponding to the leaf (i,)
[Pivot the system on the selected endnode]
br b, + bp, = + 4,;

0 b,: Apc(bp), Ap, -# Ape(Ap.);
[Update the tree by removing the leaf]
V - V \ {p),E = E\ {(ij)};

endwhile
end

* Note that at each pivot step in the above procedure, a partial sum of compo-
nents of b is produced in the component br, and in the last pivot, i. -' bk
is rroduced, Also, after each pivot and tree update, the subset of the rows and

* A-6

columns of A corresponding to the nodes of f' and the arcs of E, respectively,
is the node-arc incidence matrix of the updated tree T.In a node-arc incidence matrix A for a tree, let c be the column corresponding
to a leaf with an endnode p not the root node p and let r be the other leaf node.
Row p contains only one nonzero in column c, and row r contains the only other
nonzero in column c. Thus when a pivot is made at the matrix position Ape,

A,€ will be zeroed and Apc will become I if it was -1, but no other entries in
A will be altered.Now A, initially has 2n - 2 nonzeros and n - I pivots are made overall, so

that the final pivot produces a A with n - I nonzeros, all in the pivot rows.
Thus row p of A, the only row in which no pivot occurred, must contain allzeros. It follows that the system (1) has a solution if and only if !" = 0, hence

no solution is possible unless E=, bt = 0 . Furthermore, since n - 1 pivots
have been made, the matrix A has rank n - I so that when E=I bk = 0, the
solution produced by the algorithm is the unique solution to system (1I).

To illustrate the use of the algorithm consider the tree in Figure 4. The
original system corresponding to (1) is

-1 0 0 ["X,] bi
0 1 1 X2 b2
0 - 1 0 1b
1 0 1 3 b4

Selecting node 4 as the root and using the sequence of selected endnodes 3,2, 1
produces the following sequence of systems.

-1 0 0 Z b 1
0 0 1 [2 b2 +b3
0 1 0 ZX = -b 3
1 0 -1 13 b4

-1 0 0 bi

S0 1 Xb 2 + b30 1 0 z2 = -b3

1 0 0 X3 b2 + b3 + b4

1 0 0 X1-bl

S0 b2 + b30 1 0 X3 -b3
0 0 0 [][bl+b2+b3+b4

Now let us consider adjoining an additional column ek, where 1 < k < n,
to the right of A and lengthening z to accomodate the additional column. The
expanded system is then

[AlekIz = b, (2)

A-7

Suppose that we agree to choose k as the root node (p = k) and apply the above
procedure to the expanded matrix and original tree, i.e. in the initialization step
we set A c: [Alep] instead of A c= A.

The same vector b and matrix A is produced in the first n - I (original)
columns and A., = eL = ep. The system (2) is also permuted diagonal but is
now of rank n and in its solution has ek = E=1 bk . Since (Alek] is square, the
solution produced by the procedure must be unique. Furthermore, the solution
to (1) produced by the above procedure when E"1 bk = 0 must have the same
first n - 1 variable values as those produced for the enlarged system (2).

In the above example, the original system corresponding to (2) with root
node 4 is

0 1 1 0] 2 b2
0 -1 0 0 X3 b31 0 -1 1 X4 b4

And after the same sequence of pivots, the final equivalent system produced is

1 0 0 0 X1 -hi
0 0 1 0 X2 b2 + b30 1 0 0 X3 -b3
0 0 0 1 14 bl+b 2 +b3+b4

We remark that this usage of an extra ek column in conjunction with the
solution of system (1) provides strong impetus to extend the node-arc matrix
representation to include a representation of a root k by a column ek, when
the underlying graph is a tree. We will find it useful to do so even when the
underlying graph is a tree with additional arcs.

2 Primal Simplex Algorithm

All the network models presented in this Chapter may be viewed as special
cases of the linear program and many of the algorithms to be presented are
specializations of the primal simplex algorithm. Familiarity with the simplex
method is assumed and this section simply presents a concise statement of the
primal simplex method which will be specialized for several of the network
models.

Let A be an mxn matrix with full row rank, c and u be n-component
vectors, and b be an rn-component vector. Let X = {z: Ar = b, 6 < x <_ u)
and assume that X 4 $. The linear program is to find an n-component vector
1 such that cf = min{cx : zEX}. We adopt the convention that the symbol
x refers to the vector of unknown decision variables and the symbol f refers to
some known point in X.

Since A has full row rank, by a sequence of column interchanges it may
be displayed in the partitioned form [B IN], where B is nonsingular. With a

A-8

corresponding partitioning of both z and u, we may write

X = {(zBIzN) . BzB+NXN =bO<_ B < UB,6 < N < uN)

A point (.B I N) E X is called a basic feasible solution if N E {0, uF} for
all j E v (n - in) . The variables in zB (zN) are called the basic (nonbasic)
variables. It is well known from linear programming theory that for every linear
program with X 0 4>, there exists at least one basic feasible solution which is
optimal.

We say that two basic feasible solutions are adjacent if zaB and zB- differ
by exactly one variable, so that B1 may differ from B 2 in exactly one column.
The primal simplex algorithm is an iterative procedure which begins with some
basic feasible solution and moves through a sequence of adjacent basic feasible
solutions until a stopping criterion is met which guarantees that the final basic
feasible solution is optimal.

A mathematical description of the primal simplex algorithm follows:

procedure PRIMAL SIMPLEX

inputs: A - mxn constraint matrix
c - m-component vector of unit costs
u - n-component vector of upper bounds
b - rn-component right-hand-side vector

output: (±B I EN), an optimal basic feasible solution for min{cz : rEX}

assumptions: 1. rank(A) = m
2. X={z:Ax=b,O<z<u}04,

begin
[Initialization]
optimal 4= 'no';
let (iB JiN) E X be any basic feasible solution with A, c, and u parti-

tioned in corresponding fashion as [BIN], (cB IcN), and (UB IuUN);
while optimal = 'no' do

[Dual Calculation]

7 -- CB B-1

[Pricing]

L c= {j : -N. -c/ > 0 and 7 -0};

M4- : rNj - cN <0 and fv uvj};

A-9

if LUM = 0
then

optimal 4: 'yes'
else

select k E LUM
[Column Update]

y B B-N;

[Ratio Test]

R {i :y > 0} and S {i y, < 0};

if k E L
then

A 4 min{u: ,miniR (If.) ,ins };

else

A .= ran{u4,iminhER () inEs

T T4= R A) {•- = A1u{iES:(-•-)=,}

endif
[Value Update]

if k E L
then

= A and iB ==s=i - Ay;

else
S.:: UN -A andB :B +Ay;

endif
if A 4 UN

then
[Basis Exchange Update]

select j E T ;
Interchange zB with zv to form a new

partitioning [B I N]
endif

A-i0

endif
endwhile

end

The only sticky issue concerning the above algorithm is that it may be pos-
sible to move through a sequence of basis interchanges, all of which correspond
to the same actual point, only changing the representations to correspond to
the varying bases. That is, there may exist a sequence of basis interchanges
all having A = 0 which could result in the above procedure being stuck in a
nonterminating loop. This phenomenon is known as cycling. Much discussion of
cycling can be found in the literature along with anticycling rulesi which have
been developed to insure convergence.

3 Linear Network Models

Let < V, E > be a network through which some commodity will be flowing.
Associated with each node v E V we define a requirement r. A node having a
supply of the commodity is assigned a positive requirement equal to the supply.
Conversely, negative requirements correspond to demands for the commodity at
the specified nodes. The requirements for all transshipment nodes are zero.

Suppose that for the example network illustrated in Figure 1, that nodes 1
and 3 are supply nodes with supply of 10 and 5, resp, tively; and that node 4
is a demand point with a demand of 15. This netwoi -. and the corresponding
requirements are illustrated in Figure 6.

Figure about here

Figure 6: Example network with requirements

For linear network problems, one is seeking a set of flows on the arcs which
satisfy the supply and demand restrictions at each node. For the example
network, the total flow into node 2 plus the five supply units which originate at
node 2 must equal the total flow departing node 2. We say that a feasible flow
satisfies flow conservation which implies that it is an element of {i : Ax = r},
where A is the corresponding node-arc incidence matrix for < V, E >.

IWe have never observed cycling in any of our software implementations of this algorithm
and have not incorporated any of the anticycling rules in our software.

A-il

• !I

For the example network, the flow conservation equations are

£I

1 1 0 0 0 0 -1 X2 10-1 -I 1 1 0 0 0 Z3 50 0 -1 0 1 -1 0 Z4 0
0 0 0 -1 -1 1 05 -15

X6

X7

Associated with each of the arcs in E, we define a vector of unit flow costs c
and a vector of flow capacities or bounds u. Thus, the cost for each unit of flow
in arc k is given by ck and the flow on arc k is restricted to the interval [0, Uk].

Mathematically, the linear network model on < V, E > with node-arc incidence
matrix A is given by

min{cz : Ax = r,0 < z < u}
V

A sample model for the network illustrated in Figure 6 is

minimize z, + 3z 2 + 5z 3 - 7z 4 + 7x 5 - X6 + 9x7
subject to

'T

"X6
Z7

0 < 0 1 < 6
- <1 Z2 < 8

0 - 0 < Z3 < 10
0 5 04 < 10
0 _< X5 < 8
0 < £6 < 8
0 < £7 < 8

3.1 Basis Characterization

Recall that one of the assumptions for the primal simplex algorithm is that
the constraint matrix has full row rank, i.e. the mxn constraint matrix A
has rank(A) = m. But it is clear that if A is a node-arc incidence matrix,
rank(A) < m since for a connected graph, the rank of a node-arc incidence
matrix is one less than the number of nodes (also iA = 6). Traditionally, a root
arc is appended to the problem so that the constraint matrix will have full row
rank. Let

A-12

I'
X'={(xla):[Ate,] - =r,0(Z<uj

1a

The revised model is then simply
min{cz : (zia) E XE},

where the enlarged constraint matrix [Ale,] has full row rank, so that the primal
simplex algorithm can be applied directly to this model. In Section 1.10 it was
shown that the root arc will carry no flow (a = 0) when E r, = 0 and we are
only solving the linear system. This will also be true when any nonbasic arcs
are set to upper bound, since setting a nonbasic flow zj = uk, where zk is the
flow on arc (ij) is equivalent to adding uk to rj and subtracting uk from ri,
thus preserving the condition "• ri = 0.

Let B be a basis for [Alep] so that the entire matrix is partitioned as [BIN].
B may be further partitioned into [Slep]. Recall that the arcs corresponding to
S must form a spanning tree from < V, E >. We may write the corresponding
basic solution as (xSlaxzN).

By row and column interchanges B may be displayed in lower triangular
form. The trees corresponding to the bases

e4 1 e24 e 23 e 2 e12 e 41 e 43 e3
-1 0 0 0 1 -1 0 0

0 1 1 1 and -1 0 0 0
0 0 -1 0 0 0 -1 1
1 -1 0 0 0 1 1 0

are illustrated in Figure 7.

1 Figure about here]

Figure 7: Basis trees for sample network

The trees can be used to determine the row and column interchanges required
to display the bases in lower triangular form. The root node and root arc are
always placed in the last row and column. The first m - I rows and columns are
determined recursively by a process in which we first select an endnode with its
corresponding leaf arc and then remove them from the tree after appropriately
reordering the matrix. Note that this ordering may not be unique since multiple
endnodes are always present.

A procedure which can be used to display a linear network basis in lower
triangular form is given below:

A-13

procedure DISPLAY LOWER TRIANGULAR

input: [Slep] - mxm basis for a linear network problem

outputs: norder[i] - the node in row position i
arcorderUj] - the arc in column position j

assumption: S corresponds to a spanning tree

begin
[Initialization]
let < V, T > be a network corresponding to S
nodeorder[m] 4- p, arcorder[m] c= e,;
i C=-1;

while i < m do
[TDee Reduction)
let v E V be an endnode of< V,T >;
let ejk be the leaf arc incident to v;
nodeorder[i] 4= v, arcorder[ij 4- ejk, V 4 V\{v), T 4- T\{ejA,}, i c i+1;

endwhile
end

An app' cation of procedure DISPLAY LOWER TRIANGULAR to the tree
in Figure 7a with certain choices in the tree reduction yields nodeorder =
[3,1,4,2] and arcorder = [e23, e4 1 , e24 , e2 l]. The corresponding matrix is:

(nodes) e23 e 41 e24 e2

3 -1 0 0 0
1 0 -1 0 0
4 0 1 0
2 1 0 1 1

Another application of the procedure with different choices made in the tree
reduction would yield nodeorder = [1, 3,4,2] and arcorder - [e4 1, e23 , e24 , e2],
with corresponding matrix is:

(nodes) e41 e23 e24 e2

I -1 0 0 0
3 0 -1 0 0
4 1 0 -1 0
2 0 1 1 1

A-14

3.2 Dual Calculation

Based on the results in Section 3.2, it is known that every basis for a linear
network problem takes the form [Slep], where the columns of S correspond to a
spanning tree < V, T > and S is triangularizable. Therefore the dual calculation

r[sle"] = [cSI01

can be specialized to exploit the underlying network structure. Since S consists
of columns from a node-arc incidence matrix, every column of S is a vector eij
for some i and j. Hence S = [ei 2,, eij.,...., _ and the dual calculation
reduces to the system

IN Ip - 0 J

Since this system is upper triangular it can be solved by back substitution.
Beginning with r. = 0, the duals for all basic arcs incident on node p can be
determined. Once these duals are known, all duals for basic arcs incident on
those arcs can be determined. Continuing in this manner, eventually all duals
will be determined. The following procedure formally states how this can be
accomplished without actualy triangularizing a matrix.

procedure DUAL CALCULATION

inputs: [Sle,] - x m basis for a linear network problem
cs m - 1 vector of basic costs, where

es is the unit cost for basic arc eij

ou'put: 2r "- [c5I0][Slep]-1

begin
[Initialization)
let < V, T > be the spanning tree corresponding to S;
fori= ,...,m

Iabel[i] = 'no';
endfor
7,p 4-- O, label[p] 'C- 'yes',/ k 4= 1;

A-] 5

p

while k < m do
let eii E T such that label[i] 6 labelb];
if labelti] = 'yes'

then
*j = x, - cs, labelb] = 'yes';

else
=j + c-, labe l[i] 'yes';

endif
k 4 k + 1;

endwhile
end

Consider the basis tree in Figure 8 with

1 34, C4 1, C51I, CS74, 46 123

Since node 4 is the root node, 7 4 0 0. The equations

IF3- INl = 2

Ir7 -- 74 --- _-2

yield 7r3 = 2, 7r = -3, and ir = -2. Then the equations

-K-5 - 7r = - I

Ir I-- X2 = I
'77 -- r6 -" -- 3

yield irs = -4,ir 2 = -4, and W6 = 1. Also note that the dual calculation only
involves addition and subtraction. Hence, if the cost coefficients are all integer,
then the dual variables will also be integral valued.

I Figure about hereI

Figure 8: Dual variable calculation example

3.3 Column Update

Suppose e,t denotes the nonbasic arc which prices favorably and is selected for a
potential flow change. There is no guarantee that the flow wi!l actually change
since the ratio test could yield A = 0. The column update step of the primal
simplex algorithm requires that y = [Sle]-e,c be determined. Since the arcs
of S correspond to a spanning tree and (Sle.] is lower triangular, the calculation
of y can be simplified.

A-16

The updated column y is a vector which solves the lower triangular system

[SleI!y = e,t or, in component form,

S.1yi + S.2y2 + .. + Sm-Iym-i + ey&,,n = ess

That is, a set of scalars yi, -.. , ,, are sought which when multiplied by the
columns of S and the vector ep and added together form the vector es. Let
< V,T > denote the tree corresponding to S and let

P = {et,' eijj,, V2, eie,• ,..., st,, e ,i ,, V 1+ 1 }

denote the simple path in < V, T > linking s to 1. Such a path is illustrated
in Figure 9. Since some arcs in the path may be directed h.•m some v, toward
v,.+ and others from some vjBl toward t:, arrow heads have been omitted from
the illustration.

Figure about hereI

Figure 9: A simple path linking s to t

By reordering the rows and the arcs in S, the system of equations corre-
sponding to the arcs in the path may be illustrated as shown below.

1 0 0 0 1
-1 1 0 0 0

o -1 1 0 0
O o -1 0 0
4 Y y2- . Y3. yq

0 0 0 0 0
0 0 01
0 -1 0-J

Since the first row of the above system has a single nonzero, yj is uniquely
determined and must be either 1 or -1. Once yj is known, y12 is then uniquely
determined and must be either I or -1. Similarly, y, , y, can be determined
successively. Therefore, a solution to [Sle,]y = e~t can be constructed by setting
the components of y corresponding to the path from s to t in < VT > to ±ls
as described above and setting all other components to zero. This is generally
called a cycle trace and is formally presented in the following procedure.

procedure CYCLE TRACE

inpoits: [Sle] m rnxm basis for a linear network problem
e m vector corresponding to a selected

nonbasic arc

A-i 7

output: y- y =

begin
[Initialization]
let < V, T > be the spanning tree corresponding to S;
let P = f{v', eilh• 1 2, ei2j3 ... , - iq, eiji,, Vq+1 I

be the simple path in < VT > linking node s to node t;
for i =1,...,M

Y= 0;
endfor
k - 1;
while k < q do

let c be the column index of S corresponding to arc ej• ;
if ej = e - e+

then
YC = 1;

else
yC = -1;

endif
k k + 1;

endwhile
end

Consider ;he basis tree in Figure 8 and suppose = 5 and t = 6. The
simple path and corresponding values of the ,ipdated column are illustrated in
Figur 10. Note that the nonzero components of the updated column y are
identical to the orientation function (see Section 1.7) on the simple path from
s to t. Furthermore, the components of y are from {1,-1).

Figure about here

Figure 10: Updated column example

3.4 Basis Exchange Update

As seen in Sections 3.2 and 3.3, the key operations for the primal simplex
algorithm can be performed directly on the spanning tree < V, T >. In this
section a data structure used to store the spanning tree in computer memory is
presented along with an algorithm w'hich will perform the basis exchange update
using this data structure.

Suppose the rooted tree is drawn in the plane placing the root node at the top
with the branches extending downward as illustrated in Figure Ila. One may

A-18

imagine tracing a line around the contours of the tree as illustrated in Figure lib.
Traversing a tree in this way has become known as a depth-first search. For the
example, the nodes in this search could be ordered as 4,3,4,1,5,1,2,1,4,7,6,7,4. By
eliminating all duplicate occurances an ordering known as preorder is obtained.
For this example, the corresponding preorder is 4,3,1,5,2,7,6. The label which
gives the next node in the preorder for node v is known as the thread, denoted
by t(v). The thread for the example is illustrated in Figure lIc.

I Figure about here I

Figure 11: Illustration of thread labels for sample rooted tree

The other two labels are related to the path from a given node v to the root
p in the basis tree < V, T >. Let

P = { l, eiiji, V2, ei~j2 , Vq,ý i~j,, Vq+1}

denote the simple path in < V, T > which links v to p. The predecessor label
p(v) is v2 (the second node on the path) and the distance label d(v) is q (the
number of arcs on the path). Both the predecessor and the distance labels of the
root p are defined to be zero. The labels for the rooted tree shown in Figure 11
are given in Table 1.

Table 1. Labels for the rooted tree in Figure Ila
node predecessor thread distance

v p(v) t(v) d(v)
1 4 5 1
2 1 7 2

* 3 1 1 1
4 0 3 0
5 1 2 2
6 7 4 2
7 4 6 1

0
Figure about here

Figure 12: New rooted tree after basis exchange update

Both the dual calculation (Section 3.2) and the column update (Section 3.3)
0 can be easily implemented in software using the triple labels to represent the

basis tree < VT >. The only tricky part is the technique needed for a basis
exchange update. For example, suppose the arc (2,7) is exchanged with the arc
(1, 4) in the rooted tree illustrated in Figure 11.

A-19

0

Table 2. Labels after the basis exchange update
node predecessor thread distance

v p(v) t(v) d(v)
1 2 5 3
2 7 1 2
3 1 7 1
4 0 3 0
5 1 6 4

6 7 4 2
7 4 2 1

The new tree is illustrated in Figure 12 and the corresponding triple labels
are given in Table 2. An algorithm which will perform this exchange is given
below.

procedure BASIS EXCHANGE UPDATE

inputs: < V. T > - the current basis tree
p[i - the predecessor label oi node i
t[i] - the thread label of node i

d[i] - the distance label of node i
(u, v) - the arc selected to become part of the new basis
k - node such that k and p[k] are the end nodes of the

arc which is to be removed from the current basis

outputs: p[i] - updated predecessor label of node i
t[i] - updated thread label of node i
d[i] - updated distance label of node i

assumption: k and p[kJ are on the path from u to the root node of the
current basis tree

begin
[Initialization]
q -t- V, q' 4-: v, i q, j :p[q], k' 4-: p[k], 1I€ d[q'] + 1, end €:'no';

while end = 'no' do
I' c d(i], m .4= 1 - d[i], d(i] 4 1, z -# i, z * [,a;
while d[z] > P' do

dfr] 4-- d[x] +- m, z 4-- x, z -,=f~)
endwhile
r j;
while t[r) $ i do

A-20

,. t [,-];
endwhile
t[rI 4-- x;
ifi = k

then
t[z] - t[ql, t[q'] 4 q, p[q] -- q', end • 'yes';

else
t [z] 6-- j, r 4-= i, i 4-- j, j €: pU], p[i] €=r, I : I + 1;

endif
endwhile

end

In our software implementation of the primal simplex algorithm for linear
network problems, the basis exchange update is also integrated with the value
update. In addition, since the set of nodes whose dual values change and the
set of nodes whose distance labels change is the same set, the dual update
calculation is also integrated with the basis exchange update. All of these spe-
cializations can result in software which can execute one hundred times faster
than general purpose linear programming software. Most of the modern com-
mercial linear programming systems now contain a specialized network solution
module.

4 Generalized Networks

Let G be an mxn matrix with full row rank such that every column of G has
at most two nonzero entries. Let c and u be n-component vectors and b be
an m-component vector. Let Y = {x : Gx = b, 0 < x < u} and assume that
Y 0 0. The generalized network problem is to find an n-component vector I
such that

ci = rnin{fc : r E Y}

Note that the linear network model is a special case of the generalized network
problem. The revised model developed in Section 3.1 is simply

min{z : (z,o) E XE)

where
XE = {(xla) :Ax + ea =r,6 < < u)

The corresponding generalized model has G [Alep].
Let V = tm = {1,. .. , in). Then n arcs on the node set V can be constructed

using the n columns of G. If GC has two nonzero entries in rows i and k, we let
the corresponding arc be (i, k). If G.j had only a single nonzero entry in row i,
we let the corresponding arc be a root (i).

A-21

Consider the following matrix.

120 0000 00
-1 0 3 -2 0 0 0 0 0

000 0 1 22 00
0 0 0 0 0 4 0 -1 0
020 1 000 00
0 0 0 0 00 1 0 3
0 0 0 0 0 0 0 -1 1

Using the rule presented above, the following network can be constructed:

< {1.2,3,4,5,6,71,{(1,2),(1,5),(2),(2,5),(3),(3,4),(3,6),(4.7),(6.7)} >

A visual representation of this network is given in Figure 13. The numbers
assoc; ted with the ends of the arcs correspond to the nonzero entries in the
columns of G.

I Figure about herej

Figure 13: Example generalized network

4.1 Basis Characterization

Let G be an m xn matrix with full row rank such that every column of G has at
most two nonzero entries. Let B be a basis for G and let B be a reordering of
rows and columns of B such that B is displayed in block diagonal form. That
is,

f?2

B=P

For example:

1 2 0 0 0 0 0
-1 0 -2 0 0 0 0

00 0 1 22 0
B= 0 0 0 0 4 0 -1

02 1 0 0 0 0
0 0 0 00 1 0
0 0 0 0 0 0 -1

and

A-22

0

(row)
1 0 2 1

-1 -2 0 0 2
* = 0 1 2 5

1 0 0 0 6
0 -1 0 0 7
0 -1 4 0 4
2 0 2 1 3

with p = 2. The number of blocks, p, can be as many as m. Let the networks
associated with each of the blocks be denoted by < VW.El >,. < VP, EP >.
For the above example, < V1.E1 >=< {1,2,5},{(1,2),(2.5),(1,5)} > and
< Vi, E2 >=< {3,4,6,71, {(3),(3,4),(3,6),(4,7)} >. The corresponding net-
works are illustrated in Figure 14

Figure about here

Figure 14: Basis for a generalized network

A connected network having exactly one cycle is traditionally called a one-
trre and a connected network having exactly one root arc is traditionally called
a rooled free. It is well known that the connected components from a basis of
a generalized network are either one-trees or rooted trees. That is. < V1j, El >

S.., < VP. EP > are either one-trees or rooted trees. For the basis illustrated
in Figure 14, one component is a rooted tree and the other is a one-tree.

4.2 Dual Calculation

* Since the basis P has special structure, rrb = -E can be specialized to exploit
this structure. Since P is block diagonal we obtain

Hence, the p systems 7rq = j9 cam be solved independently.
Two cases must be considered. Suppose Bq corresponds to a rooted tree.

Then by row and column interchanges, B9 can be displayed in lower triangular
form and 7rqfBq = eg can be solved by back-substitution.

Consider the example illustrated in Figure 15 with
0

-1 02

00 -1 [-112141-2]
2 0 2 1

A-23

0

Figure about here

Figure 15: Rooted tree component of a basis for a generalized network

From the fourth equation, 7r3 = -2. Then from the third equation. 7r4 = 2.
The first two equations yield 7r6 = 3 and 7r7 = -4. For the rooted tree case, a
procedure similar to the one given in Section 3.2 can be developed.

Figure about here]

Figure 16: One-tree component of a basis for a generalized network

Consider the example illustrated in Figure 16 with

* [w r2 1715 [1 2 0] 5 15 14
0 1 2

This system of equations for a cycle is almost lower triangular (only the last
column has a nonzero entry above the diagonal) and takes the special form:

"a, bn
bi a2

b 2 a 3

b3 " .--.

", an-1

Lbn -1 an

which corresponds to the cycle illustrated in Figure 17. Under the assumption
that the above system has full row rank, then the unique solution is given by:

C1/a 1 + u'1 C2 /a 2 + tVWl 2 C3/a3 + + UW'tL'w -Lcn/a, (3)
1 -- U'I W2" .. "Wn

and i+ ci - aiGri for i = 1,...,n - 1, (4)

i l -- bi

where wi = -bi/ai for i = 1,...,n.

Figure about here

Figure 17: Cycle for a generalized network

For the example illustrated in Figure 17, w, = 1,w 2 = 1/2, w3 -1, 7r

2, 7r2 = -3, and r 3 = 0.

A-24

An extension of the procedure DUAL CALCULATION given in Section
3.2 can be developed for the case of generalized networks. The basic idea is
that the components corresponding to rooted trees are triangularizable and
the components corresponding to one-trees are nearly triangularizable. For the
components corresponding to one-trees, (3) and (4) are used for calculation6
involving the cycle acid all other calculations involve a lower triangular system
of equations. Hence, once the duals on the cycle are known, all other duals can
be determined by back-substitution.

4.3 Column Update

Suppose that the nonbasic arc corresponding to Gj prices favorably and is
selected for a potential flow change. The column update step of the primal
simplex algorithm requires that y be determined wherey = -" G• or By = G j.
Since B is block diagonal, this may be written in the form:

YI I ' 91
B2 2 = g2

Therefore, one must solve p system of the form f qy' = gl where the corre-
sponding network < V9, IF > is either a rooted tree or a one-tree. Furthermore,
gq will have at most two nonzero entries. If gg = 0, then 1q = 0.

Suppose g9 has two nonzero entries a and b in positions i and j. respectively.
Then g9 = aci + bej. Let yq and yq solve MY!y = aei and Mqy,' = be,, respec-
tively. Then yq = I + Y-. Hence, a specialized algorithm for the column update
can be developed from an algorithm to efficiently solve the system BqVy = cek
where < VA. Eq > is either a rooted tree or a one-tree.

If < V9, Eq > is a rooted tree, then f39 is triangularizable and y4 can be
found by forward substitution. Consider the example illustrated in Figure 18
with

1 0 00 Y36 0
0 -1 0 Y47 5

0 -1 4 0 Y34 0
2 0 2 1 V0 0

From the first equation, ym = 0. From the second equation, y47 = -5. From
the third equation, Y34 = -5/4 and from the fourth equation, y30 = 5/2.

Consider the one-tree illustrated in Figure 19 with

I 1 021 r2s 051
-1 -2 0 1125

0 1 2 L 5J 0 J

A-25

Figure about here

Figure 18: Column update for a rooted tree component of a basis for a gener-
alized network

The system of equations for a cycle is almost lower triangular (only the last
column has a nonzero entry above the diagonal) and takes the special form:

a, bn
b, a 2

b2 a 3

b 3 .Y

"'.]an-,

* which corresponds to the cycle illustrated in Figure 17. Under the assumption
that the above system has full row rank, the unique solution is given by:

and = a (5)1 --_W11W2" .. "Wn

and

ni+- for i = 1,._.n - 1, (6)

where u'i = -bi/ai for i = 1. n.
For the example illustrated in Figure 19, w, = 1,w2 = 1/2,u'3 = -14l12 =
10/3, Y25 = -5/3, and y15 = 5/6.

0 Figure about here

Figure 19: Column update for a one-tree 7omponent of a basis for a generalized
network

An extension of the procedure cycle trace given in Section 3.3 can be de-
veloped for the case of generalized networks. The basic idea is that the rooted
trees are triangularizable and the one-trees are nearly triangularizable. For the
components corresponding to one-trees, (5) and (6) are used for calculations
involving a lower triangular system of equations. If the nonbasic column of in-
terest, Gj, has two nonzero entries, then the procedure is applied twice and the
results are added.

4.4 A Data Structure

The data structure presented in Section 3.4 has been extended to accomodate
the one-tree components of a generalized network basis. With respect to the

- A-26

0

distance label, the nodes in the cycle of a one-tree and the root node in a rooted
tree are treated in the same way with all nodes in a cycle having distance label
of zero. The predecessor label of nodes in a cycle point to the next node in the
cycle. Beginning with any node in a cycle, say v, the sequence v, p(v), p(p(v)),...
will identify all nodes in the cycle and will eventually return to node v. For root
nodes, v we adopt the convention p(v) = v. The thread has also been extended
in an obvious way with the convention that traversal around a cycle using the
thread is in the opposite direction to that using the predecessor. The data
structure corresponding to the generalized basis illustrated in Figure 20 is given
in Table 3.

FFigure about here

Figure 20: Basis for a generalized network with the predecessor and thread
labels illustrated

Table 3. Data structure for the basis illustrated in Figure 20
node predecessor thread distance multipliers

v p(v) t(r) d(v) a b
1 5 2 0 9 8
2 1 11 0 2 1
3 3 6 0 5 0
4 3 7 1 6 7
5 2 8 0 4 3
6 3 4 1 10 11
7 4 3 2 12 13
8 5 9 1 14 15
9 8 10 2 16 17
10 8 1 2 18 19
11 2 12 1 20 21
12 2 2 1 22 23

Efficient procedures have been developed for updating this data structure
after a basis exchange. As with the linear network case, the flow or value up-
date and the dual variable update is usually integrated with the basis exchange
update. All of these specialized techniques can result in software from one to
two order of magnitude faster than general linear programming software. All
calculations involving the flows, dual variables, and updated columns must be
performed using real arithmetic as opposed to the linear network case which
only requires addition and subtraction of integers when the data is integral.

Some additional computational efficiencies can be achieved by scaling columns
of G so that every column has at least one +1 entry. The disadvantage of using
this scaling is that the resulting software cannot be easily incorporated within

A-27

a branch-and-bound algorithmn which can accomodate integrality restrictions
on some or all of the flow variables.

5 Multicommodity Networks

Multicommodity networks arise in practice when more than one type of com-
modity must share the capacity of the arcs in a network. Typical examples
include Air Force cargo routing models in which cargo with different origin-
destination pairs must share the capacity of the various aircraft which represent
arcs in the model. For this model, a commodity represents all cargo with a
given base of origin. The well-known LOGAIR Model is a model of this type.

Another well-known Air Force model is the family of Patient Distribution
System (PDS) Models. The PDS generator was developed to assist in evaluating
the airlift capacity of moving patients from a European theatre to U.S. hospitals.
One of the input parameters for the PDS generator is the number of days in the
model. A 20 day model has over 100,000 columns in the corresponding linear
program.

Let G =< V. E > be the underlying network through which K commodities
will be flowing and let the mx n matrix A denote the corresponding node-arc
incidence matrix. Let the m-component vector rk denote the requirements
vector for commodity k and the n-component vector zk denote the flows for
commodity k with corresponding unit costs and upper bounds of ck and u .
respectively. Let yk = {XI : AXk = rk, 6 < xk < uk} and assume that yk • .

Suppose the shared (also called mutual) capacity for arc i is bi, an entry of the
n-component vector b. The multicommodity network flow problem is to find K
n-component vectors 1 .. ,K such that

*, c ck ik= Min{j Eck Xk : < b, x kE Y k)
k k k

It is possible to generalize the multicommodity network model to allow for
both commodity dependent networks (Akzk = rk) and for multipliers on the
mutual capacity constraints (Ek Dk Zk < b, where each Dk is an n x n diagonal
matrix with nonnegative entries). It is also conunon that the mutual capacity

* constraints do not involve all n of the arcs. These generalizations present no
mathematical difficulties in the algorithms to follow but greatly complicate the
notation.

Consider the sample two commodity network illustrated in Figure 21. The
matrices and vectors corresponding to this model are as follows:

I 1 0 0 0
-1 0 1 1 0

A-28

0m

r =[5 0 0 -5]

r=2 4 2 -3 -3

c =[1 3 5 7 9]

* c2 [2 4 6 8 01

u1' [4 2 1 3 31

u2 =[2 3 2 2 31

6=[6 3 6 5 3]

Figure abothr
• Figure 21: Example multicommodity (two commodity) network model

After adding slack variables to the mutual capacity constraints the system
of equations corresponding to this model is

M r[] = [r:

where M is the matrix

I 1 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

• 0 -1 -1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 -1 -1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0•1i 0 0 0 o 1 0 0 0 0 1 0 0 0 00 1 00 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 A-29

0

In general, the linear programming constraint matrix corresponding to a
multicommodity network model takes the form:(A A

K: 1 (7)
A

Hence, the columns either take the form e, for some i or have exactly three
nonzcro entries (two +Is and one -1).

There are three types of specialized algorithms which have been used to
exploit the underlying structure of the multicommodity model. primal parti-
tioning, price-dtrtclzie decommpositwn, and resource-directire decomposition.
Primal partitioning is a specialization of the primal simplex method which ex-
ploits the network structure of the basis. Price-directive decomposition is a
specialization of Dantzig-Wolfe decomposition which exploits the network struc-
ture of the subproblems. Resource-directive decomposition allocates the mutual
capacity among the K commodities and solves K linear network problems per
allocation. The trick is to develop a reallocation scheme which will guarantee
that an optimum can be found.

5.1 PrimrnI Partitioning

By appending a root arc to the network for each of the K commodities, we
convert the matrix (7) into a matrix having full row rank. That is. the full
rank linear programming constraint matrix takes the form:

n+1 n+l n+lI n

/ .4Ie %

I). (8)

n 10 110 ..- 116 1
where A is a node-arc incidence matrix. It is well known that every basis for8) may be partitioned in the following form:

m BK RB

q pi pKTl... TK

n- q S, ..- SK U1 ... trK I

A-30

where BI- BK correspond to rooted trees. This basis takes the general form-

mnK n--p p

*mK(L, Ri
q L2 R 2 (9)
p L3 R3 I

where

* ~BK)

R1 R

L2 = (pi pK)

R2 = [T' - TKt

L3 =[S' sK]

and
R3 =[u ... 17K

By partitioning the dual variables to be compatible with (9), the dual calcula-
tion requires the solution to the following system:

.fL, R, I l
[lr, I Ir2 3] L2 R2 1/] C2 1o]

L,3 R3 I

Let Q = [R 2 -L 2L')R1]. Then 7r3 = 0, 2 = (c2 - 1 IA Rf)Q-, and 7r, = (c-
7r2 L2)Lj"'. Note that L1 corresponds to K rooted trees so that all calculatiions
involving L," 1 can be executed directly on the rooted trees and do not require
the use of explicit matrices. The only matrix operations involve the q x q matrix
Q which is called the working basis.

Partitioning the updated column in a similar way, the column update calcu-
* lation requires the solution of the following system:

L2 R 2 y =
L3 R3 z w

0 A-31

0

The solution is given by y = Q-1(r- L2L'lu), z = L-lu - L-'Rly, and
z = w- L3L, lu - (R 3 - L3LTI'Rl)y. As before, the only matrix operations
ir .olve the working basis Q.

Each basis exchange can alter the dimension of the working basis by at most
one. Efficient techniques have been developed for maintaining Q-1 as the basis
is updated. If q is smal!, then most of the work associated with a simplex
pivot can be performed efficiently using the K rooted trees. If q is large, then
the pivots can be more expensive than a regular simplex pivot which does not
exploit the special network structure.

5.2 Price-Directive Decomposition

For each kEtK, suppose that Yk = {zk : Ark = rk,0 < zk < u')
and is bounded, and let I ,. * ,k denote the extreme points of yk. Let the
nxnk mAtrix W1 be given by [ffk tI -i"" t,'k]. Then any iiEY' can be
represented as a convex combination of those extreme points (the columns of
WK). That is, fk - WkA where jAk = 1 and Ak > 0. Let

W={(A' Ak Is) Z I'- & kAk+s=bs8>Ž ,iA - ,k Ak>0}

Then an equivalent statement of the multicommodity network problem is tu,
find K + I vectors (A' I... I k I) such that

S C k'WVk Xk = min{Z-'CeklvkAk : (Al-.. IAk I s)EW}

The disadvantage of this statement of the problem is that it is quite difficult to
find all the extreme points for y' (which form the columns of iS-k). However, the
price-directive algorithm provides a mechanism for applying the primal simplex

* algorithm tv) this formulation by providing columns of Wk only when they are
needed. In fact, the complete matrix Wk is never actually generated.

Suppose we have a nonnegative basic feasible solution to the system of equa-
tions:

SWkAk +s = b (i)

k

1= 1 (70)

jK -

with the corresponding duals (11r I k ""]). From Section 2, we see that
the ith nonbasic slack variable prices favorably if iri > 0. Also, Aý prices favor-

ably if ti,,r + 7k -ckti, > 0. Note that the extreme point from Y' which prices

* A-32

most favorably can be found by solving the linear network problem

min{(c - k : W' EY}

using an extreme point algorithm. If the extreme point produced from solving
the linear network problem prices unfavorably, then none of the columns of
W4k will price favorably. Hence, colunms of Wk are generated only as they are
needed.

The linear program

minj(Ekckw k : (A ' I ' A 'i)ElW}

is known as the master problem and the linear network problems min{cf k
ZkEl"k} for kEK are called the slave subproblems. Columns of the master prob-
lem (extreme points of the yk) are found by solving linear network problems.

A mathematical description of the price-directive algorithm follows:

procedure PRICE-DIRECTIVE DECOMPOSITION

inputs: A - m x n node-arc incidence matrix
K - number of commodities
c1,.... ,cK _ n-component vectors of unit costs
Sul... , -K n-component vectors of upper bounds
r1 ,. .. , - m-component vectors of requirements
b - n-component vector of mutual capacities

outputs: *, K, - n-component vectors of optimal flows
assumption: yk =- k . Axk = rk,O < ? <Uk) }i and is bounded

begin
for all k E :K.

(Initialize Master Problem]
obtain a basic feasible solution [1l ... IK] for W with corresponding dual variables
[(lry] (if a basic feasible solution is not readily available, then artificial variables and
a two-phase procedure may be used);

• optimal e= 'no';
while optimal = 'no' do

[Price Slacks]
i t--1;
while i < n do
ifr, <0

then
perform one simplex iteration in the master problem using [eC 10] as
the nonbasic column which prices favorably;
update [11] and [rl7];

• A-33

else
i =i+1;

endif
endwhile
[Price Extreme Points)
k -- 1, favorable t= 'no';
while k < K and favorable = 'no'do

obtain an optimal extreme point wk for min{(ck -r)Zk Ak =
rk, 6 < Zk< U
if (C* - W)xk < -fk

then
favorable 4= 'yes';

else
k 4- k + 1;

endif
endwhile
if favorable = 'yes'

then
perform one primal simplex iteration in the master problem using
[fiklek] as the nonbasic column which prices favorably;
update (•' ... j1FK and [rlf];

else
optimal = 'yes';

endif
endwhile

end

A pictorial description of the price-directive decomposition algorithm is given
in Figure 22. The master program produces dual variables used to construct the
objective function coefficients for each of the slave subproblems. Each slave sub-
problem, in turn, produces an extreme point which may or may not provide an
objective-improving column relative to the current basis for the master problem.
A favorable column will be used for a simplex iteration in the master problem,
producing new dual variables for the slave subproblems. Note that successive
calls to a routine which solves a given subproblem involve only a change in the
objective function and do not involve any changes to the constraints. Hence
each such call can make use of the optimal basis tree produced by the previous
call. We also recommend that a wrap-around list be maintained to organize the
calls to the subproblems, a minor variation on the above procedure. That is, if
commodity k produced a favorably priced column at iteration i, then begin the

* new iteration by pricing the columns associated with commodity (k + l)modK.

• A-34

Figure about here

Figure 22: The price-directive decomposition algorithm

5.3 Resource-Directive Decomposition

It is the mutual capacity constraints E Zk < b that make the multicommodity
problem difficult. If these constraints could be eliminated or ignored, then the
problem would decompose into K linear network problems. Let ["
denote an allocation of b among the K commodities such that 0 < p 5 uk for
each k and 'k.V < b. Let

zk(•k) = min{ckzk : AZk = r', 6 < z' < 9k)

An equivalent statement of the multicommodity network problem is to find K
vectors [I.... •] such that

ku)= min{ Ec k r : Ax k = rb k < Zk <j}
k k

The objective function g([y' ... I]) = zk(yk) is piece-wise linear and
convex. Hence, the classic subgradient algorithm can be applied to this problem.

Consider the nonlinear program min{g(y) : yEY), where g(.) is piece-wise
linear and convex aid Y : 0 is formed by the intersection of a finite number
of closed half-spaces. To apply the subgradient algorithm, one must be able to
solve the problem

minfi[V _p,)21112 : yEYJ

* for any point p. The solution of this problem is called the projection of f onto
Y. This is traditionally expressed as i -- P[PJ.

Mathematically the subgradient algorithm may be stated as follows:

procedure SUBGRADIENT

* inputs: g(-) the objective function
Y - the feasible region
81 ,82,.., - the sequence of step size values

output: - an optimum for min{g(y) : Y E Y)
assumptions: g(.) is piece-wise linear and convex

Y # 0 is formed by the intersection of a finite number of
* closed half-spaces

begin
[Initialization]
obtain a point i E Y, optimal 4= 'no', i 4= 1;

* A-35

0

while optimal = 'no* do
obtain a subgradient f of g(-) at V;

ifte 0
opthen
optimal 4- 'yes';

elseP 4- P[gO - s•,i --:: i + 1;

endif
endwhile

end

Several convergence results for this algorithm have appeared in the literature.
These results all provide restrictions and guidance on the selection of the se-
quence of step sizes.

The computationally expensive part of the above algorithm when applied to
the multicommodity network flow problem is the calculation of the subgradient.
That is, we need a subgradient of the function g([Y I .. I']) at the point

[. K] , where g([V, ... I JK]) = Et zk(-k). By duality theory,

z'(p') = min{cYk : Azk=rkO <_Tk <
= max{rkP•-k Pk k pkA-vk<ck, , >O}

Let 1ý,ij for all kEtK denote optiml dual variables for g([' I I P" K)"
It can easily be shown that [-01 i... I -iK] is a subgradient for g(.) at the
point ([9' 1 ... -I K]). Efficient projection algorithms for the special case of
the multicommodity network problem are also available in the literature.

The major attraction of the subgradient algorithm is that the multicommod-
• ity network problem can be solved by solving a sequence of single commodity

network problems. The major disadvantage is that it is quite difficult to select a
set of step sizes so that the software implementation is robust over a wide range
of problems. Our experience has indicated that much skill is required in the
selection of the step sizes. Many skilled mathematical programming software
developers have discovered that the step size selection is more of an art than a

O science.

6 Reference Notes

The specialized algorithms presented in this chapter all rely on the graphical
interpretation of the simplex steps when applied to a linear program possessing

0 an underlying network structure, in whole or in part. Graphical characteriza-
tions for bases for both the linear network problem and the generalized network
problem can be found in Dantzig [1963]. Additional elaboration on the inter-
pretation of the algebraic operations on a graphical structure were provided by

A-36

u0a m

Johnson [1965]. The first software implementations which empirically demon-
strated the merit of those specialized algorithms were developed by Srinivasan
and Thompson '19731 at. ' by Glover and Klingman and their colleagues at the
University of Texas (see Glover, Karney, and Klingman [1974], Glover, Karney,
Klingman, and Napier [1974], and Glover, Klingman, and Stutz [1974]). Since
these seminal papers, hundreds of papers with various extensions and special-
izations have appeared in the literature. Bradley, Brown, and Graves [1977] and
Barr, Glover, and Klingman [1979] are two of our favorites.

The first specialized primal simplex code which exploited the graphical na-
ture of the basis of a generalized network was developed by Glover, Klingman,
and Stutz [1973]. Since then, many excellent software implementations have
been developed. A table of codes and references may be found in Clark, Ken-
nington, Meyer, and Ramamurti [1992]. One of our favorite generalized network
codes is GENNET which was developed by Brown and McBride [1984].

The primal partitioning method for multicommodity problems is due pri-
marily to Hartman and Lasdon [1970,1972]. The price-directive decomposition
procedure was first developed by Ford and Fulkerson [1958]. It is purported
that the well-known Dantzig-Wolfe decomposition algorithm (see Dantzig and
Wolfe [1960]) was inspired by the Ford and Fulkerson paper on multicomrmodity
problems. The subgradient algorithm was first applied to the multicommodity
network problem by Held, Wolfe, and Crowder [1974].

In this chapter, the algorithms presented were generally based on a special-
ization of the simplex method. There are three other basic approaches which
are now competing quite successfully in empirical analyses. The oldest is the
relaxation method which was developed by Bertsekas and his colleagues at MIT
(see Bertsekas [1991]). The second is the algorithm of Goldberg which has been
implemented in software by Anderson and Setubal [1992]. The third algorithm
which could have an impact on the field is the network interior point method
of Resende and Veiga [1992]. All of these approaches have their advocates and
we expect improvements for each of these relatively new algorithms to appear
in the literature in the near future.

Many books exist which contain excellent presentations of the various algo-
rithms for a variety of network problems. Our favorites include Papadimitriou
and Steiglitz [1982], Chvital [1983], and Ahuja, Manganti, and Orlin [1989].

* This chapter would not be complete without mentioning our own book (Ken-
nington and Helgason [19801) which contains a wealth of technical details not
found in other publications.

7 References

Ahuja, R., T. Magnanti, and J. Orlin, [1989], "Chapter IV: Network Flows,"
in G. L. Nembauser, A. H. G. Rinnooy Ksn, and M. J. Todd (eds.), Hand-
books in Operations Research and Management Science: Volume I Opti-

* A-37

0i

mization, North-Holland Publishing Company, Amsterdam, The Nether-
lands.

A-.derson. IL J. and J. C. Setub&, [1992', "Goldbe,$'s Algorithm for Max-
imal Flow in Perspective; A Computational Study," in D. S. Johnson and
C. C. McGeoch (eds.), DIMACS Implementation Challenge Workshop -

Algorithms for Network Flows and Matching, forthcoming.

Barr, R.., F. Glover, and D. Klingman, [1979], "Enhancement of Span-
ning Tree Labeling Procedures for Network Optimization," INFOR, 17,
16-34.

Bertsekas, D. P., [1991], Network Optimization: Algorithms and Codes, The
MIT Press, Cambridge, MA.

Bradley, G.. G. Brown, and G. Graves, 119771, "Design and Implemen-
tation of Large Scale Primal Transshipment Algorithms," Management
Science, 21, 1-38.

Brown, G. and R. McBride, [1984], "Solving Generalized Networks," Man-
agement Science, 30, 1497-1523.

Chvital, V., [1983], Linear Programming, W. H. Freeman and Company,
New York, NY.

Clark, R., J. Kennington, R. Meyer, and M. Ramnamurti, [199.]. "Gen-
eralized Networks: Parallel Algorithms and an Empirical Analysis," ORSA
Journal on Computing. 4, 132-145.

Dantzig. G. B., [1963], Linear Programming and Eztensions, Princeton Uni-
versity Press, Princeton, NJ.

Dantzig, G. B., and P. Wolfe, (1960], "Decomposition Principle for Linear
Programs," Operations Research, 8, 101-111.

Ford. L. R., and D. R. Fulkerson, [1958], "A Suggested Computation for
Maximal Multicommodity Network Flow." Management Science, 5, 97-

So101.

Glover. F., D, Karney, and D. Klingman, [1974), "Implementation and
Computational Comparisons of Primal, Dual, and Primal-Dual Computer
Codes for Minimum Cost Network Flow Problems," Networks, 4, 191-212.

Glover, F., D, Karney, D. Klingman, and A. Napier, [1974], "A Coin-

* putational Study on Start Procedures, Basis Change Criteria, and Solu-

* A-38

0 I

tion Algorithms for Transportation Problems," Management Science. 20,
793-813.

Glover, F., D. Klingman. and J. Stutz. [1973], "Extension of the Aug-
mented Predecessor Index Method to Generalized Network Problems,"
Transportation Science, 7, 377-384.

Glover, F., D. Klingman, and J. Stutz, 11974], "Augmented Threaded In-
dex Method for Network Optimization," INFOR, 12, 293-298.

Hartman. J. K., and L. S. Lasdon, [1970], "A Generalized Upper Bound-
ing Method for Doubly Coupled Linear Programs." Naval Research Logis-
tics Quarterly, 17, 4, 411-429.

Hartnman. J. K.. and L. S. Lasdon. 11972]. "A Generalized Upper Bound-
ing Algorithm for Multicommodity Network Flow Problems." Networks,
1.333-354.

Held, M.. P. Wolfe, and H. Crowder, [1974], "Validation of Subgradient
Optimization," Mathematical Programming, 6, 62-88.

Johnson. E., [1965], "Programming in Networks and Graphs," Technical Re-
port ORC 65-1, Operations Research Center, University of California-
Berkeley, Berkeley, CA.

Kennington, J. L., and R. V. Helgason. [1980], Algorithms for Network
Programming, John Wiley and Sons, Inc., New York, NY.

Papadimitriou: C. and K. Steiglitz, [19821, Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Resende. M. and G. Veiga, [1992], "An Efficient Implementation of a Net-
work Interior Point Method," Technical Report, AT&T Bell Laboratories,
Murray Hill, NJ 07974.

Srinivasan. V., and G. Thompson, [1973], "Benefit-Cost Analysis of Cod-
ing Techniques for the Primal Transportation Algorithm," Journal of the
Association for Computing Machinery, 20, 194-213,

A-39

2 3 3

*1 E2 6

1 46

* Figure 1: Example network

A-4 0

2
3

2

(a) Generated subgraph G((l, 2,3})

2 3

4 6 5

4

(b) A spanning subgraph for G

Figure 2: Example network subgraphs

A-41

P(O) = {4,e 43,3,ea4,4,e 24 ,2)

(a) Nonpath walk from node 4 to node 2

.2 .3

1 4
p(b) = {l,e 4 1,4,e 24 ,2,e 23 ,3)

(b) Path from node 1 to node 3

2 3

........ 4

P(') = {2,e 23 ,3,es4,4,e 2 4 ,2)

(c) A cycle on nodes {2,3,4)

Figure 3: Walks in the example network

A-42

2 3

1 - 4

* Figure 4: Example tree

A- 43

2 3

1 4

Figure 5: Example rooted tree

A-4

{5) {o1}

110)

Figure 6: Example network with requirements

A-45

2

1 4

(a) Basis tree I

(b) Basis tree 2

Figure 7: Basis trees for sample network

A-46

e34= 2 c~f1 = 3 74=-

317 a -- I- CB

(a) Costs for sample basis tree

0 ~~4 =~~.

7r = 2 3 1 71= -3 7r W= -2

•'s = -4 5 2 2 = -4 '6 1

(b) Dual variables for sample basis tree

Figure 8: Dual variable calculation example

A- 47

VI= S vt+1 t

Figure 9: A simple path linking s to f

A-4

V3 4

V2 17 N4

V = 5 6 v5 = t

(a) Simple path linking 5 to 6

4.

Y34 0 Y741

Y51 Y -1

5 6

(b) Updated column for e56

Figure 10: Updated column example

A-49

4

(a) Sample rooted tree

4

- 8\

4/7

0 1

"2 6
(b) Depth first search for sample treee 4,

S2 ,,7

3'1'7

6 %\

//

(c) Preorder for sample tree

Figure 11: Illustration of thread labels for sample root,.-d tree

A-50

* 4

37

Figure 12: New rooted tree after basis exchange update

A-51

00

03

2 -1

3 11

Figure 13: Example generalized network

A-52

12 2 32

21 \
2 -2

1 \4

2-1

Figure 14: Basis for a generalized network

A-53

1 3=-2

_I

1-4

6 4

* Figure 15: Rooted tree component of a basis
for a generalized network

A-54

1 -2
2 -2

* Figure 16: One-tree component of a basis
for a generalized network

A-55

cw CSja3

a~, b".1
Figure 17: Cycle for a generalized network

A0

A- 56

Yf30

2 2

Y36 Y34

4

6 4
-1

Y147

)-1

5

Figure 18: Column update for a rooted tree component
of a basis for a generalized network

0

S

S

S

A- 57

~~Y12

2 -2

1/15 1255

25 1

\5

Figure 19: Column update for a one-tree component
of a basis for a generalized network

A-58

09

0 5 17 19
3 -.

11 7
9 1 1 -16 18 - - - 1

41 10 6 -

(6 - - - - -- 4

, 13

* 12/
/

Figure 20: Basis for a generalized network with the
predecessor and thread labels illustrated

A-59

12

0I

{o,2}
(1,2) •. (7.8)

[4,21 (3, 21
b =6 b= 5

", = requirements (5,6)

{s,41 .)= unit costs [1,21 4
[.]= upper bounds b = 3

(3,A) (9,0)
[2, 3] [3, 3]

b =33 b= 3

{o,-3)

Figure 21: Example two-commodity multicommodity network

A

0

A- 6 0

Master Problem (n + K row Linear Program)

duals extreme extreme duals
V point point

VtO. t K

Commodity I Commodity K
linear linear

network network
problem problem

Figure 22: The price-directive decomposition algorithm

A-61

S

APPENDIX B

0

0

S

0

0

0

0

S

0

0

The One-to-One Shortest-Path Problem: An Empirical
Analysis With the Two-Tree Dijkstra Algorithm

Richard V. Helgason t

Jeffery L. Kennington t
B. Douglas Stewart t

Four new shortest-path algorithms, two sequential and two parallel, for the source to sink shortest-
0 path problem are presented and empirically compared with five algorithms previously discussed

in the literature. The new algorithm, S22, combines the highly effective data structure of the
52 algorithm of Dial, Glover, Karney, and Klingman, with the idea of simultaneously building
shortest-path trees from both source and sink nodes, and was found to be the fastest sequential
shortest-path algorithm. The new parallel algorithm, PS22, is based on 522 and is the best of the
parallel algorithms. We also present results for three new S22-type shortest-path heuristics. These
heuristics find very good (often optimal) paths much faster than the best shortest-path algorithm.

Revised (December 1992)

Since the late fifties when its first solution methods were developed, the shortest-path problem has

* become one of the fundamental problems in the areas of combinatorial optimization, computer science, and

operations research. Algorithms and applications are commonly found in the important books in these areas

(see for example Berge and Ghouila-Houri (1962), Bertsekas and Gallager (1987), Even (1979), Hu (1982),

Jensen and Barnes (1980), Lawler (1987), Papadimitriou and Steiglitz (1987), Quinn (1984), Rockafellar

0 (1984), and Tarjan (1983)). The study of this problem has been motivated by both its elegant mathematical

structure and its many practical applications. Our recent interest in this problem was occasioned by the

need to solve shortest-path subproblems in several mathematical optimization procedures we are developing

in an MIMD parallel computing environment.

* Excellent surveys of the many shortest-path problem variations may be found in Deo and Pang (1984)

and Gallo and Pallottino (1986). A survey of techniques and computational comparisons may be found in

Gallo and Pallottino (1988), in Dial, Glover, Karney, and Klingman (1977) and (1979), in Klingman, Mote,

and Whitman (1978), in Glover, Glover, and Klingman (1984), in Desrochers (1987), and in Divoky (1987).

The methods are grouped into two general classes: label-setting algorithms and label-correcting algorithms.

Dijkstra (1959) is credited with the first label-setting algorithm and any algorithm that uses this approach

has been considered a particular implementation of Dijkstra's original algorithm (see Gallo and Pallottino

(1986)).

Typically, the shortest-path problem is one that requires the shortest-path from a single source node, say

s, to all other nodes in a network. The solution can be represented as a shortest-path tree rooted at s. In this

paper we are concerned with the problem of finding the shortest-path between a source node and a sink node,

t. Dantzig (1960) suggested that a pair of trees be built with one rooted at s and the other rooted at t. No

stopping criteria were given. This strategy also appears in the book by Berge and Ghouila-Houri (1962) with

1* an incorrect stopping criterion. Nicholson (1966) was the first to present a correct analysis of the Dijkstra

B-1

0

t Department of Computer Science and Engineering, Southern Methodist University,
Dallas, TX 75275-0122.

* Department of industrial Engineering, University of Alabama, Tuscaloosa, AL
35406-0288.

This research was supported in part by the Department of Defense under Contract

Number MDA 903-86-C0182, the Air Force Office of Scientific Research under
Contract Number AFOSR F49620-92-J-0032, and the Office of Naval Research under
Contract Number N00014-87-K-0223.

B

0

B- 2

0

two-tree algorithm. Hart, Nilsson, and Raphael (1968) presented a one-tree algorithm utilizing heuristic

cost functions. They included the case in which lower bounds on distances between nodes are available and

proved that optimal paths are obtained. Pohl (1971) extended these results for the bi-directional algorithm,

antedating Mohr and Pasche (1988), who presented similar results. Additional discussion may be found in

the survey by Dreyfus (1969), where he conjectured that building trees from s and t would be ineffective for

this problem.

Few empirical studies have been reported in the literature for the two-tree algorithms. Pohl (1969)

presented results that have received little recognition, and no further studies appear until recently. Mohr

and Pasche (1988) solved for shortest-paths in three grid networks and a network representing a road map

of Switzerland, using the two-tree Dijkstra algorithm as well as their version of the two-tree algorithm for

networks with lower bounds available. They also simulated results for parallel algorithms if two processors

01 were available.

The motivation for this study was to implement two-tree algorithms using more efficient data structures

than the classical Dijkstra algorithm, and to actually solve shortest-path problems using two processors.

Four new algorithms were developed: sequential and parallel two-tree algorithms based on Dial (1969) (the

* S1 code in Dial et al. (1979)), and sequential and parallel two-tree algorithms based on the S2 code in Dial

et al. (1979). These codes are compared with the classical Dijkstra, S1, S2, two-tree Dijkstra, and parallel

two-tree Dijkstra codes.

While performing this study, it was noted that the two-tree S2 algorithm finds "good" paths quickly.

* Three heuristic path algorithms were developed by simply stopping early while executing the two-tree 52

algorithm. Often times these heuristics find a shortest-pat., although they do not prove it is so, and these

paths are found much faster than the fastest optimal algorithm. We present computation times as well as

measures of closeness to optimality for these heuristics.

* 1. THE ALGORITHMS

This section presents the definitions, notation, and nine algorithms representing the codes used in our

computational study. The notation and presentation are based on that found in Gallo and Pallattino (1986).

The input for each algorithm is a directed graph G = [N,A] with a node set N and an arc set A. Associated

with each arc (i,j) E A is a length 4i. A shortest-path is desired between two nodes s and t and it is

assumed that such a path exists. We also assume for all algorithms that Ii >_ 0 for all (i,j) E A. For

efficient implementation it is assumed that G is given in the form of arc-lists. Specifically, the forward star

for node u E N, FS(u), is the set of all arcs (u,j) E A. Six algorithms require a backward star, BS(v),

* defined as the set of all arcs (i, v) E A for node v E N.

The basic working entities of each algorithm include a set of labels, d,,, for node distances from the root

of a shortest-path tree T, a set of predecessors, p,,, for nodes in the tree, and the set of candidate nodes,

Q. In the algorithms based on the S1 and 52 algorithms, the set Q will be divided into subsets, or buckets,

* that will contain candidate nodes that are the same distance from the root node. This requires that each

B-3

0

arc length be integer to correspond to an index. For ease of presentation, we will let r be the set of indices,

{f ..., Imax) for the buckets of Q, where Iman = max~l,•, - (u, v) E A). The notation will be modified lir

the bi-directional algorithms by using the superscripts s or t to indicate the root of the tree. The algorithms

terminate with the length of the shortest-path from a to t and a small set of nodes, J, used to identify a

shortest-path. A shortest-path from s to t is implicit in the predecessor labels.

1.1 The classical Dijkstra algorithm

Dijkstra's classical algorithm (1959) begins at node s and builds a shortest-path tree T in which the

shortest-path from s to any node in the tree is known. When node t is placed in the tree we have a minimum

length directed path from s to t and may terminate. As mentioned before, the algorithms discussed here

differ in the way the candidate nodes are placed in and retrieved from the set Q. The implementation here

for the classical Dijkstra algorithm (DI) searches the list of candidate nodes, Q, for minimum label nodes

and places all such nodes in the set R. Then all the nodes in R can be scanned one after the other. When

there are many nodes tied with the minimum label, searches are avoided with only minimal effort. The

algorithm may be stated as follows:

Procedure Dl(s,t)

begin
initialize:

Pi - 0,d, *- 4- for all i EN; Q 4- 0;d, -- 0,p, *- s,R +- {s},T--;
while t 0 R

for each u E R do
for each (u, v) E FS(u) such that d,, + lu, < d4 dod, •- du + I..;

Pv - u;
ifvVQ then Qs--QU{v};

end
T .- TU {u};

end
comment: search Q for minimum label nodes and place in R
a - min{d1 : i E Q},R,- {i : d,=a},Q -- Q\R;

endwhile
end

1.2 The S1 algorithm

This one-tree algorithm is implemented as proposed by Dial (1969). As in algorithm DI, it selects a

minimum label node to scan each iteration, but the nodes in Q are stored in buckets according to their

distance labels. More specifically, rma: + 1 buckets are required, where lIma = max{l1," : (u, v) E A} and

a node u is stored in bucket z if du = z(mod imax + 1). Only nodes with equal distance labels will be in

bucket z and only Imax + 1 buckets are required, because for a node u with minimum label, we have that

for each v E Q, d, < d. <_ d, + imax. The buckets are implemented efficiently as two-way linked-lists. From

minimum label node u, the next non-empty bucket contains the next minimum label node(s) and the effort

to soarch an entire list as in algorithm D1 is greatly reduced. The trade-off is increased effort managing

B-4

the two-way linked-list each time a node has an improved distance label. The algorithm may be stated as

follows:
Procedure S1(s, t)

begin
initialize:

pi *-- O, di - oo for all i E N; Q, -- 0 for z = 1 Imax;
Qo *- {s}, d .-- Op. - , T 4- 0;

while t 0 T
let z be the next index such that Q, 0 0;
for each u E Q. doQ. .- Q. V{U};

for each (u, v) E FS(u) such that d. + l <d do
a - 4 (mod Imaz + 1);
d, - - + I..;
6 "- d.(mod Imax + 1);

Q. .I}
Qb Q U IV};

end
T - TU {u};

end
endwhile

end

1.3 The S2 algorithm

This one-tree algorithm is based on an idea due to Dantzig (1960) and the implementation here is due

to Dial et al. (1977). It requires that each FS(u) for all u E N be sorted in shortest first order. Given this,

the observation can be made that the entire forward star of P -,cd.. u need not be scanned all at once in that

the node, say v, that is first updated will have a distance label less than or equal to any subsequent nodes

updated from node u. The node v is placed on a one-way linked-list, paired with u, at a level d, + l11. In

stating the algorithm below, we use k(u) as a counter to point to the next arc in FS(u) to be scahined. The

node wk(u) is the corresponding node of this arc. The length of each forward arc-list is given by h(u). It

should be noted that the actual implementation does not use a counter. A simple minus sign in the forward

star array can indicate the next arc to be scanned.

Nodes may be duplicated on the linked-list, therefore no deleting is required. Even so, the number of

nodes on the linked-list will not exceed the total number of nodes since only one per scanned node is allowed.

Q is searched as in algorithm S1 for the next non-empty bucket and minimum label node. If the node's

paired predecessor is not its current predecessor, the node is already in the shortest-path tree and may be

discarded. The algorithm may be stated as follows (see Gallo and Pallottino (1986)):

B-5

Procedure S2(s, t)
begin

initialize:
*•i - O,di - oo, k(i) .- 1, h(i) = IFS(i)I for all i E•N;
Q. - 0 for z = 1, ..., imax; Qo - {a}, d. .- O,p, -s, T -- 0;

while t 0 T
let z be the next index such that Q. 6 0;
for each u E Q, do

comment: determine next node in FS(u)
'v I- Wh(U);

Q. .- Q.\{,•};
comment: determine new candidate arc
INSERT(u);
T - T t {u};
if v V Q then INSERT(v);

end
endwhile

end

Procedure INSERT(z)
begin

k(x) .- k(z) + 1;
Y '- Wk(c);

while k(z) < h(z) and d4 + t.y > d. do
k(z) -- k(r) + 1;
Y -- wk(4);

endwhile
if k(z) < h(z) then

py *--z
ds *' d, + 1,Y1
a - (mod lmax + 1);
Q, •- Q. U {x};

endif
end

1.4 The two-tree Dijkstra algorithm

The two-tree Dijkstra algorithm builds a pair of shortest-path trees, one from s and one from t. The

tree rooted at t is analogous to the one rooted at s, but scans backward stars, and its predecessors are the

heads of arcs rather than tails. The two trees are grown in alternate steps and termination is triggered

when a node appears in both trees. It should be noted however that the node appearing in both trees is not

necessarily on a shortest-path (see Nicholson (1966) for a proof of termination criteria). Testing on random

graphs showed that about 72% of the time this node will be on the shortest-path. A search is performed

over nodes in both trees to find a node, say r, such that d,' + &, is a minimum. A shortest-path from s to t

may be found by following predecessors from r to s and from r to t in each tree, respectively. We define J

as the set of nodes which can be used to identify a shortest-path. The algorithm requires twice the storage

of algorithm D1 and may be stated as follows:

B-6

Procedure D2(s, t)

begin
initialize:

pi "O, di - co for all t E N; Q' -. ;
"'! .- ,p* -- sT' *- ,R`-- {s};
P .- 0 ,• -o for all : E N; Q' -0;
Sd- 0, A -. tT7'-.IR ,-(;

while Tv nfl = 0 do
for each u E RO do

for each (u, v) E FS(u) such that d', + 1,, < d4 dod, . d', + lu,;
pS.*- u;
if v ý Q' then Q' +- Q' U {v};

end
T" - T' U {lu;

end
comment: search Q' for minimum label nodes and place in R'
a - min{d" : i E Q'}, R'" - {i: d:=a,), Q"-Q'\R*;

for each v E R9 do
for each (u, v) E BS(v) such that d. + l, < d& do

P - v;
if voQ' then (4 -Q'Uf{u};

endV" - 7' u {,,};
end
comment: search Qt for minimum label nodes and place in RV
a ,-- min{d& : i E Q*}, Rt -- {i : i=}, Q' - Q'\R';

endwhile
comment: stopping criterion met

S4.- min{d! + &: i ET' U V};
J -{i E i4 UT : di + di=g};

end

1.5 The two-tree SI algorithm

The two-tree S1 algorithm builds a pair of shortest-path trees, one from s and one from t, using S1 data

structures for each tree. As in algorithm D2, termination is triggered when a node is first found to be in

both trees. The node r such that d,' + d,. is minimum gives the shortest-distance from s to t and lies on a

shortest-path. The algorithm requires twice the storage of S1 and may be stated as follows:

Procedure S12(s, t)

begin
initialize:

pf 0, d -.- oo for all i E N; Q' - for z = 1,...,[maz;Q1 -- f s), d' -- 0, pI - s, T' _2 0;

A-- O,dP -- co for all i E N; Q' -0 for z = 1, ...,lnaz;Q ' fib dt, -- 0 ,pl -- t , ' -4

B-7

while T° n 1T = 0 do
let z be the next index such that Q 96 0;
for each u E Q1 do

Qs ,- Q` V{u);

for each (u, v) E FS(u) such that d, + I.. < d. do
a *- d,(mod imax + 1);
d.' -- dus + 1u.;

b .- d.(mod Imar + 1);
p•, ,-u;

Q' .- Q'\{v);Q; ,- Qb, U9 W;

end
T -- TT U {u};

end
let z be the next index such that Q' 9 0;
for each v E Q' doQz' .- Q, \{Vl;

for each (u, v) E BS(v) such that d, + l4, < d.u do
a -- du(mod lmaz + 1);

b - du(mod Imax + 1);

Qa, - Q'\{u};
QC _ Q1 u{u);

end
T' - T" u {v};

end
endwhile
comment: stopping criterion met
S- -rin{dr + &: i E T'U V};
J -J{i E T' u : d!+ , - =,O);

end

1.6 The two-tree S2 algorithm

As in the previous two-tree algorithms, the two-tree S2 algorithm uses mirror S2 data structures to build

two shortest-path trees. At first one would expect the stopping procedure to be the same as in the previous

two-tree algorithms, namely, when a node is in both trees, find the minimum di + &i for all i E TP U Tt .

However, at the time a node is first placed in its second tree, we are not quite ready to search for such a

minimum doubly labelled node. In Nicholson (1966) such a node is proven to be on a shortest-path because

each node in both trees has had its arc-list fully scanned. In the S2 implementation for each tree this is

not the case. In fact, this is the advantage of the one-tree S2 algorithm. In two directions we must perform

additional scanning to meet the Nicholson criterion, however, we will not need to manage the linked-lists.

All that is needed is to update distance labels and predecessors. Actually we need only scan a subset of arcs

from each arc-list. Nicholson proves that any node that is not in either tree when a node is first in both trees

will not be on a shortest-path. If arcs were scanned to these nodes, they would still not be in either tree or

on a shortest-path, so updating their distance labels would be wasted effort. These nodes also make up the

majority of the arc-lists. The only arcs that need to be scanned during the "mop-up" phase are those arcs

that have from nodes in one tree and to nodes in the other tree. Since these arcs may be scanned from either

node, it is more efficient to consider these arcs from the nodes in the smaller tree. After updating distance

B-3

labels and predecessors we are ready to search for the minimum doubly labelled node to find our minimum

distance from s to t and a shortest-path. The algorithm may be stated as follows:

Procedure S22(s, t)
begin

initialize:
p!- 0, d! - oo, fk(i) -- 1,fh(i) = FS(i)I for all i E N;
Q+'-0 for z = 1,...,Imax; Q' {s), d, -Op,.-s, T--0;
p' 0 o, .-- oo, bk(i) - 1,bh(i) = IBS(i)I for all i E N;
Q '--0 for z = 1,...,Imaz; Q0 - {i}, t '-A,pl ,-t, P 4-0;

while T' lTt = 0 do
let z be the next index such that Q, 0 0;
for each u E Q', do

comment: determine next node in FS(u)
V - W k(u);

Q4 .- OS\{•};
comment: determine new candidate arc
SINSERT(u);
T'- TV U {u};
if v 0 Q' then SINSERT(v);

end
let z be the next index such that Q' $ 0;

* for each v E Q' do
comment: determine next node in BS(u)
U "- Wbk(.);

Q'I -- Q'\{IV);
comment: determine new candidate arc
TINSERT(v);
T' - T' U {v};
if u 0 Qt then TINSERT(u);

end
endwhile
comment: mop-up phase from smaller tree
if IT$1 < ITrI then

Sfor each u E TI do
for each (u, y) E FS(u) do

if y E V then
if d8 + ly <d then

d-I d' +I1~

endtfI
endif

end
end

else
for each v E V1 do

for each (w, v) E BS(v) do
if w E T' then

if &, + 1,,, <dw' thend'. d- + 1.;
p, *-V;

endif
endif

end
end

endif

B-9

comment: stopping criterion met
j-min{d' + d1: i E TO U V);
J - {i E TO UT1 dil + &,=P1);

end

Procedure SINSERT(z)
begin

f k(z) -- fk(z) + 1;
Y '- tokiCs);

while fk(z) • fh(z) and d, + 1y >_ d, do

fk(z) - fk(z) + 1;
Y *"- wlk(r);

endwhile
if fk(z) <_ fh(z) then

dy d. +2y;

a - dy(mod Imax + 1);

Q'. - Q'. U 1x);
endif

end
Procedure TINSERT(z)

begin
bk(z) - bk(z) + 1;
Y -- Wbk(c);

while bk(z) < bh(z) and n + ly, > dly do

bk(z) 4- bk(x) + 1;

Y - Wbk(z);

endwhile
if bk(x) < bh(z) thenpt *-- z

a -- d (mod lmax + 1);

Qa .- Q' U {1};
endif

end

1.7 The parallel two-tree Dijkstra algorithm

It is readily observed that in the two-tree shortest-path algorithms, the trees are independent of each

other. The only requirement is to check whether or not a node is in the opposite tree. This read-only step

causes no interference using multiple processors. This leads to the simplest asynchronous parallel application

using two processors, one for each tree. When one processor recognizes that a node is in both trees, it sets a

flag to tell the other processor to find the minimum doubly labelled node in its tree while it does the same.

The minimum of the two is the minimum path distance from s to t. Again, a shortest-path is implicit in

the predecessor labels beginning with the minimum doubly labelled node. In the algorithms below, each

processor has its own indentifying number called procid. The parallel processing construct called fork(2)

B-IO

indicates that two processors are to be used to execute the sections until the)oin construct is reached. The

algorithm may be stated as follows:

Procedure PD2(s, t)
begin

flag - 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

* initialize:
Pi' O,d" -- o for all i E N; Q3 -0;
d: - O,p' P-s,T' 4" ,R - {s};

synchronize processors
while flag = 0 do

for each u E RI do
for each (u, v) E FS(u) such that d, + lu, < d, do

d- d- + u

if v ý Q' then Q' - Q3 U {v);
end
T' - T' U {u);
if u E TV then flag -- 1;

end
comment: search Q- for minimum label nodes and place in R'
a .- min{d! : i E Q'},R' - {i : d!=c4,Q Q - Q-\R-;

endwhile
, .--- min{d' + &j : i E T'};

endif

0 if procid = 2 then
initialize,:

P-J, d, - o for all i EN; Q' -0;
&, - o,p p - t, R - , R {t};

synchronize processors
while flag = 0 do

for each v E R' do
0 for each (u, v) E BS(v) such that d", + lI. <d" do

p - V;
if v E Q' then Q' - Qt U {u};

end
7" - V U {v};

* if v E T' then flag - l;
end
comment: search Q' for minimum label nodes and place in R'
a - min{d, : i E Q'),R' .- {i : :=cr)},Q' -Q'\R

endwhile
t -- minU(dd + di E Vi);

endif
0 comment: end use of multiple processors

join processors
/.- min (0,/,3t);
J -- {i E T' UT : d, + d=3};

end

0

1.8 The parallel two-tree Si algorithm

The parallel two-tree Si algorithm is similar to the parallel two-tree Dijkstra algorithm. Each processor

is assigned one of the nodes, s or t, and builds a tree using the SI data structure. When a node is found to be

in both trees, a flag is set to tell both processors to find the minimum doubly labelied nooe in its respective

tree. The minimum of these two gives the minimum distance path from s to t with a path implicit in the

predecessor labels. The algorithm may be stated as follows:

Procedure PS12(s,t)
begin

flag ,- 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

initialize:
pi 0-, dý .-- for all i E N; Q -0 forz = 1,...,max;
O {s}, d-,' 0,pI - s, .- 0;

synchronize processors
while flag = 0 do

let z be the next index such that Q', 6 0;
for each u E Q' do

Q• - Q.'\{uJ;
for each (u, v) E FS(u) such that d, + l, < d' do

a +-- dv(mod lmaz + 1);d-I - du + 1,,;
b •- d'(mod Imax + 1);

PV- U;
Q: -Q.\{v};

end
T' - T' U {u};
if u E Tt then flag - 1;

end
endwhile
f -*infd' + df: i E T');

endif
if procid = 2 then

initialize:
p' -0, d--- oo for all i E N: Q' for z= 1,.-Irnax;
Q01- {tI, al - Oi4 - t, ' -0;

synchronize processors
while flag = 0 do

let z be the next index such that Q' 5 0;
for each v E Q- doQX' - Q.'\{•);

for each (u, v) E BS(v) such that < + ±,,, < dt do
a -- d&(mod Imaz + 1);

d.- dv' + I..;
b d' d!(mod Imaz + 1);

Q'• - QU.{u};Q., - Q4' I {U,;

end
T' - TU{v};
if v E T' then flag - 1;

B-i2

end
endwhile
S.-- min{d! + di i E V);

endif
comment: end use of multiple processors
join processors
- rin{iE t UT' :;J--fE U : di. + =O)

end

1.9 The parallel two-tree S2 algorithm

As in the previous parallel algorithms, the parallel two-tree S2 algorithm assigns one processor to work

on the tree rooted at s and another processor t3 work on the tree rooted at t. When a node first appears in

both trees, a flag is set to initiate the mop-up node scanning phase. As explained in Section 1.6, we perform

the mop-up scanning phase from the smaller tree only. To perform this work with two processors requires

each one to share the same data, namely, distance labels. To prevent possible interference with each other,

parallel processing constructs called locks are used so only one processor at a time may update a distance

label. Following this, the processors are synchronized and the minimum doubly labelled nodes are found for

each tree. The minimum of these two gives the minimum distance path from s to t and a shortest-path is

implicit in the predecessor labels. The procedures SINSERT(z) and TINSERT(x) are as presented in Section

1.6. The algorithm may be stated as follows:

Procedure PS22(s,t)
begin

flag - 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

initialize:
pi- 0, dý - oo, fk(i) -- 1, fh(i) = IFS(i)I for all i E N;
Q. .- @0for z = 1, ... ,1Inax; QO ,- {s}, d; .- O, p, --- s, Ts .- 0 ;

pit•0, di - ox, bk(i) -- 1, bh(i) = IBS(i)I for all i E N;
Q1 - for z = 1, Imax; Q' d-- {t , O,p,' V tT - 0;

synchronize processors
while flag = 0 do

let z be the next index such that Q,' 5 0;
for each u E Q', do

comment: determine next node in FS(u)
V - Wfk(u);

Q. - QO\{u};
comment: determine new candidate arc
SINSERT(u);
T' *-- T' U Jul;

if v V Q' then SINSERT(v);
if u E T' then flag .- 1;

end
endwhile

endif

B-13

if procid - 2 then
initialize:

A•,-- 0, & -- oo, bk(i) --1, bh(i) =IBS(i)l for all i E N ;

Q. -- 0 for z = 1,...,Imaz; Q' - {t), d .-- 0,pt .- , T' -0;
synchronize processors
while flag = 0 do

let z be the next index such that Q, i 0;
for each v E Q1 do
comment: determine next node in BS(u)
u '- wbk(u);

Q's -- QJ,V\{);
comment: determine new candidate arc
TINSERT(v);
Tt --' u {v};
if u ý Qt then TINSERT(u);
if v E T' then flag - 1;

end
endwhile

endif
comment: mop-up phase from smaller tree
synchronize processors
if IT'I < IT1I then

comment: each processor works on next unscanned node u E T'
for each u E T' do

for each (u, y) E FS(u) do
ifyET'UT7 then

if df + l4s < d, then
set locked

P d-- + I y

set unlocked
endif

endif
end

end
elsefor each v E T' do

comment: each processor works on nex.t unscanned node v E 7v
for each (w, v) E BS(v) do

ifwET'UT` then
if dI + 1W, < dI then

set lockedd' . --a•+ I..;

set unlocked
endif

endif
end

end
endif
synchronize processors
if procid = 1,8, - min(d• + : i E TI);
if procid = 2 , 3t .r-in{d +d i E TI);
join processors
6 .- mini/?,, 00};

J -- {i E T' UT': d,, + d,=,);
end

B-14

2. COMPUTATIONAL EXPERIENCE

All nine algorithms have been coded in FORTRAN and run on a Sequent Symmetry S81 using either

one or two Intel 80386 processors. Several factors affect the performance of shortest-path codes. First, the

number of nodes is important for Dijkstra-type algorithms, whose majority of work is searching a node-

length array for a minimum label node. Second, the average degree (IAIIINI) is important because the

Dijkstra-type and Sl-type algorithms must scan entire forward (or backward) stars each iteration, while

S2-type algorithms typically scan only a subset. Finally, the cost range of a network affects the length and

sparseness of the Q array for Sl-type and S2-type algorithms, which are searched each iteration. The cost

range and degree also affect the number of nodes that tie with a minimum distance label, thereby reducing

the number of searches.

Four node levels (1000, 2000, 3000, 4000), ten average degree levels (5, 10, 15, 20, 25, 50, 75, 100, 125,

150), and three cost ranges (1-100, 1-1000, 1-10000) were chosen as being varied enough to demonstrate

which factors were influencing performance. The total number of random networks generated was 120. Each

code solved twenty problems per network using the same randomly generated s and t nodes, yielding a

total of 2400 problems. Each data point in Tables 1-3 is the sum of times (in seconds) to solve the twenty

problems. Since the S2-type codes require sorted forward and backward stars, all codes were given sorted

forward and backward stars to eliminate this as a relative factor among them. It is debatable whether or

not the sorting time should be counted against the S2-type algorithms since it requires sorted arc-lists. Here

we simply assume that the data is available in pre-sorted order and concede that if it were not -vailable, the

S2-type algorithms would not be appropriate.

With nine codes and 120 networks, many comparisons and observations can be made. We highlight the

major points of interest. First, there is some overlap with previous studies and we wish to confirm previous

results. As in Dial et al. (1979), we find that S1 is better than S2 on only the smallest degree problems. As

the forward stars get larger, the savings of scanning only a subset are realized. On four high node number,

low degree networks, Mohr and Pasche (1988) found that a D2-type algorithm required about 38% of the

time needed by a D1 algorithm. Here we found that the averages for D2 were 65%, 49%, and 237 of that

for D1 for the cost ranges 1-100, 1-1000, and 1-10000 respectively.

PS22, the parallel two-tree S2 code, is the overall winner. It had the fastest time on 108 out of the

120 networks, while PS12 was fastest on 12 networks. PS22 was the fastest code when the average degree

increased above 10 on networks with 1-100 cost range and when the average degree increased above 5 on

networks with 1-1000 cost range. It was always the fastest code when the cost range was 1-10000. PD2

improved on the networks with the lowest number of nodes, lowest cost, and highest degree - all factors

that reduce the number of and time for searches for minimum label nodes by increasing ties. Were the degree

increased to make these networks much more dense, PD2 might become more competitive.

Overall, S22 was the fastest sequential code, and was even faster than PSI2 and PD2_ It had the fastest

time of the sequential codes on all 120 networks. In general, the time required using two Sl-type trees is

about 23%, 26%, and 36% of the time using only one S1 tree on the 1-100, 1-1000, and 1-10000 cost ranges

B-1 5

respectively. Similarly, two S2-type trees require on average 23%, 27%, and 37% of the time required by the

S2 code on 1-100, 1-1000, and 1-10000 cost range networks, respectively.

Dreyfus (1969) commeuts that savings may accrue for two-tree algorithms if the stopping criterion is

reached well before N/2 nodes are permanently labelled in each tree. This is definitely the case for random

networks. The one-tree algorithms scan approximately 50.4% of the nodes in the network until t is placed

in the tree, while the two-tree algorithms scan only about 4.7% of the nodes until one is first placed in both

trees. That is, two-tree algorithms scan about 9.3% of the nodes scanned by one-tree algorithms, resulting

in the above mentioned savings in time.

It should be noted that we also solved the above problems using the efficient label-correcting code

THRESH-X2 (see Glover, Klingmnan, Phillips, and Schneider (1985)). The total times in seconds for the 1-

100, 1-1000, and 1-10000 cost range networks were 877.9, 963.4, and 976.0, respectively. Since this algorithm

solves the one-to-all shortest-path problem, it was not included in the tables. We can see, however, that it

is more efficient to use label-setting algorithms for the one-to-one problem since they stop before the entire

tree is built.

When using two processors, D2 and S12 parallelize nicely as the PD2 and PS12 codes. PD2 averages

a speed-up of 1.93 over D2. PS12 averages a speed-up of 1.93 over its sequential counterpart, S12. In fact,

on some networks a speed-up over 2.0 is achieved. This is due to ties for the minimum label node. The

sequential versions scan all nodes that tie in one tree before moving to the other tree. With two processors,

a node that is first scanned from a group with ties could be the one that is placed next in the opposite tree

and the remaining tied nodes need not be scanned as they are in the one processor version. Less work in

parallel results in a speed-up over 2.0. If the sequential versions scanned a node from each tree alternatel"

the speed-up would be less than 2.0, but overall this was slightly slower than scanning all nodes that tied.

PS22 averages only a speed-up of 1.40 over S22. This lower speed-up is due to the additional cost of

using the parallel processing locks during the relatively lengthy mop-up phase. That is, when one processor

has locked a section of code, the other processor waits idly until the section becomes unlocked before it can

execute the same section.

3. SHORTEST-PATH HEURISTICS

There are times when it may be of interest to quickly find "good" paths in a network. For example,

when finding a starting solution to a network flow problem, paths may be found to send flow from sources

to sinks that do not have to be minimum paths. "Good" paths at the start may mean the minimum cost

flow will be found more quickly. We find there is a trade-off between the time to find a path and the length

of the path relative to a minimum path.

We have seen in Section 2 that the S22 code is the overall fastest sequential code for finding a shortest-

path between two nodes. Recall that this algorithm requires a mop-up phase to scan all remaining unscanned

arcs in the forward or backward stars of the nodes in each shortest-path tree before a shortest-path can be

found. This mop-up phase has been found to take from 3% to 70% of the total time for low degree to high

B-16

degree networks, respectively. However, before this mop-up phase we have a node that is in both shortest-

path trees and a path from s to t implicit in the predecessor labels. It may not be an optimal path, but it

is likely to be good and is found much quicker on higher degree networks. The heuristic code H2 used the

path implied by this first node in each shortest-path tree.

Following the mop-up phase in the optimal S22 code, there is a search over all nodes in each tree for

the one with the minimum sum of its distance labels. This same search may be done at the end of heuristic

H2, without doing the mop-up phase, to see if there is a better path than the one implied by the first node

in both trees. Heuristic H3 is identical to H2, but performs this additional step.

Paths between s and t are known before a node appears in both shortest-pa' :es. Heuristic code HI

uses the path implied by the node that first has a finite distance label from both s and t.

Tables 4--6 show the times for twenty problems per network on the same networks used in testing the

optimal algorithms. Also shown is the percentage this time was of the optimal S22 algorithm. As expected,

substantial savings in time are realized on high degree networks, where the mop-up phase dominates the S22

times. On average, H1 requires about 65% of S22 time, while H2 and H3 require 73% and 75% respectively.

However on average, HI ranges from 81% of the S22 time on the lowest degree networks to 46% of S22 time

on the highest degree networks. Similarly, H2 has an average range of 93% to 51% of S22 time and H3 has

an average range of 95% to 52% of S22 time.

Tables 7-9 show how good these paths are compared to the actual shortest-paths. On average, Hi found

the shortest-path 55% of the time. The average length of its path was 8% greater than the shortest-path

and the worst path found averaged 44% greater than the shortest-path. H2 found 72% of the shortest-

paths (reaffirming the necessity of the mop-up phase). Its average path length was 2.4% greater than the

shortest-path and the worst path it found averaged 19% greater than the optimal path. H3 found 93% of

the shortest-paths with an average path length 0.5% greater than the shortest-path. Its worst path averaged

5% greater than the shortest-path.

It should be noted that in a few instances, HI found more of the optimal paths for a given network

than H2. (See Table 10, nodes = 1000 and degree = 5.) This is similar to the case in which the first node

placed in both shortest-path trees is not necessarily on a shortest-path. Here, the node that first has two

finite labels (Hi) is on a shortest-path, but is not the node that is first placed in both trees (112).

4. CONCLUSION

The objective of this paper has been to present four new shortest-path algorithms, two sequential and

two parallel, and to empirically compare them with five algorithms previously discussed in the literature.

The new algorithms combine the highly effective data structures of the SI and S2 algorithms with the idea

of building •rees from a source node and a sink node in order to find a shortest-path. We found that the

new 522 algorithm was the fastest sequential algorithm on all networks. The new parallel algorithm, PS22,

was the fastest algorithm on all but the lowest degree networks, where PS12 was the fastest. It appears that

the parallel two-tree Dijkstra algorithm, PD2, might be competitive only on very low cost, dense networks.

B-17

0

The secondary topic of this paper is heuristic S22-type algorithms for obtaining near-minimum paths.

Three new heuristic shortest-path algorithms were discussed and were shown to find very good (often optimal)

* paths from a source to a sink much faster than the shortest-path can be found. These heuristics eliminate

the time-consuming mop-up phase required in the 522 algorithm and are quite effective on higher degree

networks.

5. APPENDIX

Tables 1-3 present the computational results for solvint, twenty problems for each of the nine shortest-

path algorithms discussed above. Tables 4-6 present the computational results for solving twenty problems

for the three S2-type heuristics discussed above. Tables 7-9 show how often the heuristics found the optimal

solution and how far off the solutions were when they did not.

B1

B-18

Table 1. - Time in seconds for 20 problems (Cost range: 1-100)

code

nodes degree DI Si S2 D2 S12 S22 PD2 PS12 PS22

5 7.62 0.79 0.84 6.22 0.46 0.46 3.38 0.35 0.41
10 5.03 1.30 0.94 5.06 0.61 0.54 2.79 0.42 0.43
15 3.81 1.59 0.90 3.86 0.69 0.48 2.18 0.44 0.42
20 3.65 2.06 1.25 3.64 0.87 0.55 2.07 0.53 0.46

1000 25 4.17 3.06 1.74 3.52 1.01 0.57 2.00 0.61 0.48
50 4.03 4.57 2.05 2.50 1.50 0.65 1.49 0.82 0.53
75 4.67 6.21 2.09 2.27 1.91 0.73 1.36 1.05 0.60
100 6.65 9.00 4.01 2.50 2.63 0.89 1.36 1.30 0.64
125 6.74 9.87 4.33 2.10 2.57 0.93 1.25 1.36 0.63
150 9.46 13.72 5.75 2.53 3.32 1.11 1.40 1.70I 0.72

5 23.02 2.28 2.51 18.50 0.92 0.89 9.61 0.59 0.68
10 12.88 3.23 2.83 12.98 1.13 0.93 6.80 0.69 0.70
15 8.73 3.43 2.01 9.67 1.34 0.95 5.27 0.78 0.72
20 9.63 5.50 3.32 8.88 1.55 0.93 4.82 0.83 0.73

2000 25 9.28 6.55 3.35 8.36 1.89 1.09 4.57 1.06 0.78
50 10.05 11.14 5.31 5.97 2.87 1.21 3.33 1.52 0.92
75 9.70 12.56 3.65 4.69 3.22 1.23 2.65 1.59 0.89
100 13.37 18.91 8.79 4.35 4.00 1.41 2.42 2.18 0.98
125 17.01 23.21 9.16 4.53 5.18 1.52 2.51 2.45 1.05
150 18.43 27.33 8.74 4.81 5.91 1.79 2.62 2.89 1.15
5 35.26 3.23 3.44 31.17 1.30 1.24 15.72 0.79 0.92
10 20.38 5.00 3.98 19.70 1.55 1.25 10.38 0.90 0.94
15 17.52 6.86 4.95 17.94 1.96 1.34 9.29 1.09 1.00
20 14.28 8.14 5.26 13.39 2.22 1.37 7.13 1.21 0.99

3000 25 14.05 10.11 5.96 12.97 2.82 1.47 6.99 1.37 1 08
50 11.71 12.90 4.56 8.30 3.37 1.53 4.60 1.71 1.11
75 14.73 18.52 5.32 7.09 4.44 1.73 4.04 2.26 1.23
100 20.02 27.96 9.09 7.14 5.94 1.96 3.99 3.04 1.28
125 22.83 33.82 12.85 6.54 6.93 2.14 3.46 3.33 1.33
150 23.88 34.91 12.52 5.91 6.49 2.14 3.33 3.27 1.32

5 48.97 4.69 4.83 42.68 1.70 1.58 22.13 0.99 1.17
10 27.81 6.26 5.42 26.38 2.00 1.59 13.73 1.11 1.18
15 22.66 8.86 6.05 23.14 2.54 1.72 12.77 1.36 1.27

20 20.28 11.21 7.03 19.05 2.68 1.71 10.11 1.45 1.28
4000 25 21.14 15.66 9.17 17.76 3.32 1.81 9.39 1.71 1.36

50 18.55 20.51 8.52 11.65 4.49 1.99 6.46 2.18 1.40
75 24.84 32.71 14.88 10.82 6.69 2.23 5.78 3.13 1.55
100 27.68 38.53 13.72 9.12 6.84 2.37 5.03 3.24 1.56
125 30.99 44.23 13.37 9.17 8.66 2.56 4.93 3.90 1.69
150 30.05 47.07 10.90 8.34 9.63 2.70 4.44 4.39 1.76

total 655.56 557.49 235.39 425.20 12.9.15 55.29 227.58 65.59 39.34

B- 19

Table 2.-- Time in seconds for 20 problems (Cost range: 1-1000)

code

nodes degree D1 S1 S2 D2 S12 S22 PD2 PS12 PS22
5 30.08 1.16 1.15 8.70 0.781 0.67 4.62 0.51 0.54

10 20.47 1.52 1.14 9.82 0.87 0.63 5.20 0.55 0.53
15 20.95 2.28 1.45 9.37 0.9d 0.63 4.97 0.62 0.54
20 15.79 2.31 1.38 8.56 1.11 0.63 4.55 0.66 0.55

1000 25 14.87 3.11 1.64 7.60 1.15 0.63 4.07 0.69 0.55
50 10.59 4.77 1.99 6.91 1.83 0.78 3.76 1.04 0.64
75 10.74 7.26 2.73 7.04 2.50 0.94 3,71 1.26 0.69
100 10.54 9.24 2.95 6.12 2.91 1.03 3.33 1.54 0.79
125 11.78 11.68 4.75 6.22 3.58 1.23 3.36 1.80 0.89
150 9.90 10.46 3.21 5.07 3.31 1.12 2.76 1.72 0.79
5 93.53 2.19 2.33 27.70 1.21 1.06 14.14 0.75 0.80
10 64.37 3.43 2.52 24.63 1.32 1.02 12.65 0.80 0.79
15 50.13 4.35 3.12 23.35 1.53 1.06 12.18 0.89 0.80
20 41.88 5.34 3.31 20.52 1.72 1.02 10.69 0.94 0.79

2000 25 42.08 7.38 4.78 21.40 2.07 1.11 10.95 1.08 0.84
50 28.76 12.52 5.96 19.29 3.35 1.33 9.87 1.70 0.99
75 22.46 14.42 6.12 14.36 3.85 1.40 7.62 1.90 1.03
100 23.51 19.21 4.62 15.13 5.39 1.74 7.92 2.56 1.22
125 21.25 20.12 5.61 11.78 5.02 1.68 6.25 2.55 1.14
150 27.28 28.97 8.25 12.22 6.68 2.00 6.48 3.13 1.29
5 157.41 3.44 3.52 52.47 1.67 1.44 26.95 0.99 1.09
10 113.51 5.83 4.78 44.69 1.88 1.42 23.37 1.06 1.03
15 84.83 6.93 4.14 43.59 2.14 1.40 21.86 1.18 1.07
20 65.96 8.14 4.81 42.00 2.64 1.52 21.12 1 37 1.13

3000 25 63.72 10.61 5.97 39.18 2.83 1.50 19.74 1.46 1.13
50 39.78 15.73 7.43 25.20 3.84 1.63 13.08 1.88 1.22
75 41.44 26.88 11.87 27.83 5.98 2.06 14.06 2.85 1.38
100 34.30 26.80 9.63 20.02 5.99 1.98 10.48 2.79 1.36
125 34.88 32.14 13.63 18.56 6.55 2.05 9.72 3.15 1.39
150 38.17 39.71 13.01 17.74 7.94 2.26 9.30 3.67 1.42

5 269.68 4.98 5.42 78.45 2.03 1.81 39.54 1.17 1.32
10 172.27 8.38 6.76 81.07 2.51 1.83 40.44 1.37 1.35
15 105.57 7.47 4.21 52.22 2.40 1.67 26.15 1.33 1.28
20 100.07 11.86 6.64 62.87 3.17 1.85 31.88 1.64 1.36

4000 25 1.74 12.56 6.36 56.04 3.36 1.89 28.03 1.76 1.41
50 54.62 21.43 7,01 40.52 4.94 2.05 20.58 2.39 1.48
75 51.40 31.54 8.64 36.33 6.52 2.36 18.53 3.26 1.65
100 51.97 43.10 13.61 34.58 9.74 2.93 17.88 4.75 1.81
125 39.31 33.45 7.67 26.70 8.98 2.84 13.79 4.43 1.84
150 5 Si.74 50.83 15.91 24.54 10.33 2.99 12.53 4.82 1.93

total f 2223.33 573.53 230.03 1090.39 146.60 61.19 558.11 74.04 42.72

B-20

Table 3. - - Time in seconds for 20 problems (Cost range: 1-10000)

code

nodes degree DI SI S2 D2 S12 S22 P02 PS12 PS22

5 51.21 3.77 3.51 11.88 3.86 2.57 6.24 2.25 1.97
10 42.60 3.36 2.77 9.03 3.01 1.81 4.80 1.81 1.49
15 38.74 3.47 2.46 10.66 2.97 1.63 5.62 1.77 1.39
20 40.55 3.96 2.58 10.70 2.92 1.52 5.62 1.75 1.32

1000 25 43.22 4.59 2.74 9.99 2.99 1.53 5.33 1.78 1.30
50 30.62 5.83 2.53 9.21 3.34 1.42 4.88 1.95 1.24
75 34.97 9.09 4.00 11.77 4.31 1.64 6.16 2.34 1.37
100 28.98 10.11 3.87 9.32 4.28 1.63 4.93 2.37 1.36
125 24.48 10.66 3.02 9.21 4.72 1.70 4.87 2.57 1.40
150 25.63 12.82 3.79 8.10 4.79 1.66 4.33 2.57 1.39

5 170.47 5.02 4.63 30.39 4.32 2.99 15.70 2.47 2.26
10 152.29 5.32 4.31 25.R2 3.57 2.27 13.52 2.11 1.77
15 150.98 6.23 4.22 31.87 3.70 2.11 16.38 2.13 1.68
20 129.11 6.69 4.15 33.01 3.88 2.03 16.81 2.21 1.67

2000 25 109.28 6.65 L.19 26.79 3.73 1.90 13.92 2.15 1.57
50 101.63 12.15 5.21 28.23 4.87 2.01 14.45 2.64 1.60
75 90.39 17.34 6.67 28.80 5.86 2.13 14.80 3.15 1.72
100 66.55 17.62 5.15 27.10 6.51 2.27 14.11 3.43 1.69
125 62.73 21.42 5.41 28.49 7.54 2.50 14.11 3.86 1.89
150 65.88 28.84 8.73 27.35 8.46 2.69 14.11 4.32 2.01

5 380.23 6.43 6.07 53.09 4.80 3.44 27.06 2.75 2.54
10 330.84 7.48 5.82 49.91 4.15 2 67 25.16 2.37 2.05
15 313.76 9.13 6.07 51.80 4.22 2.53 26.47 2.40 1.95
20 309.35 11.13 7.24 50.05 4.33 2.37 2.47 1.89

3000 25 213.96 10.24 5.24 47.35 4.42 2.26 24.08 2.50 1.86
50 165.98 16.37 6.01 52.71 6.07 2.43 26.91 3.25 1.93
75 155.82 26.33 13.15 59.12 8.16 2.82 30.14 4.29 2.12
100 127.05 29.77 12.26 51.31 8.86 2.92 26.22 4.57 2.i6
125 81.45 24.72 7.66 35.55 7.83 2.54 17.83 4.11 1.90
150 916.22 41.81 10.07 41.62 9.84 3.00 20.97 5.04 2.15

5 741.87 8.62 8.65 108.49 5.51 4.02 53.39 3.12 2.94
10 386.83 7.57 5.51 61.50 4.33 2.92 30.72 2.50 2.24
15 527.01 12.33 8.74 89.12 4.90 2.90 44.47 2.78 2.27
20 416.12 13.36 7.33 82.19 5.03 2.75 41.75 2.78 2.15

4000 25 381.66 15.51 8.32 67.48 4.97 2.64 33.89 2.78 2.07
50 233.50 21.68 6.57 81.93 7.14 2.86 40.43 3.81 2.25
75 199.77 29.65 8.75 68.66 8.04 2.91 34.36 4.26 2.24
100 187.13 43.26 19.67 69.30 9.82 3.19 34.60 5.01 2.38
125 135.70 39.82 11.15 56.98 9.93 3.15 28.98 5.16 2.30
150 131.56 47.19 14.34 61.04 12.08 3.68 30.88 6.03 2.60

total 6986.12 617.34 262.56 1626.92 224.06 98.01 824.07 121.61 76.08

B-21

Table 4. -- Heuristic times in seconds for 20 problems (Cost range: 1-100)

degree overall

code nodes 5 10 15 20 25 50 75 100 125 150 avg avg

1000 time 0.33 0.35 0.34 0.34 0.35 0.34 0.34 0.37 0.34 0.34 0.34
% of S22 71.2 63.8 70.1 62.2 60.9 52.3 47.5 41.0 36.7 31.0 53.7

2000 time 0.69 0.68 0.67 0.66 0.68 0.68 0.66 0.67 0.68 0.67 0.67
H1 % of S22 77.3 72.9 70.5 71.6 62.6 56.3 53.4 47.7 44.5 37.5 59.4 0.83

3000 time 1.03 1.00 0.99 0.98 1.00 0.98 0.98 1.00 1.00 0.98 0.99 61.7
% of S22 83.0 80.3 74.3 70.9 68.4 64.0 56.5 51.1 47.0 45.9 66.7

4000 time 1.33 1.28 1.30 1.31 1.30 1.29 1.30 1.31 1.31 1.34 1.31
% of S22 83.9 80.4 75.5 76.7 71.8 65.2 58.4 55.3 51.3 49.6 66.8

1000 time 0.40 0.42 0.38 0.41 0.41 0.39 0.39 0.41 0.40 0.40 0.40
% of S22 86.3 76.4 79.0 74.8 71.4 60.2 53.4 46.2 42.7 36.4 62.7

2000 time 0.81 0.77 0.79 0.76 0.80 0.79 0.74 0.75 0.75 0.76 0.77
H2 % of S22 90.5 82.9 83.8 81.8 73.1 65.2 60.0 52.9 49.0 42.3 68.2 0.93

3000 time 1.15 1.12 1.14 1.11 1.14 1.10 1.09 1.11 1.10 1.08 1.11 '69.3
% of S22 92.4 89.4 85.6 80.9 77.5 71.8 63.3 56.6 51.4 50.3 71.9

4000 time 1.48 1.44 1.47 1.46 1.48 1.43 1.44 1.43 1.42 1.46 1.45
% of S22 93.7 90.7 85.7 85.1 81.5 72.2 64.5 60.4 55.5 54.1 74.3

*'1000 time 0.42 0.44 0.40 0.43 0.43 0.41 0.41 0.44 0.41 0.42 0,42
% of S22 90.6 80.5 83.2 79.4 74.7 62.7 56.7 48.8 44.7 37.9 65.9

2000 time 0.83 0.81 0.83 0.79 0.84 0.81 0.76 0.77 0.77 0.79 0.80
H3 % of S22 93.2 86.5 87.3 85.5 76.6 67.2 61.9 54.7 50.8 43.8 70.8 0.97

3000 time 1.18 1.19 1.18 1.15 1.18 1.17 1.12 1.18 1.12 1.11 1.16 71.9
% of S22 94.9 95.1 88.0 83.4 80.4 76.3 65.0 60.1 52.5 517 74.7

*[4000 time 1.5 14 .5 1.49 1.51 1.47 1.47 1.47 1.-46 11.4911.49% of S22 192.7 87.7 83.3 73.9 66.0 61.9 56.9 155.3 76.1

B-22

Table 5.- - Heuristic times in seconds for 20 problems (Cost range: 1-1000)

degree overall
code nodes 5 10 15 20 25 50 75 100 125 150 avg avg

1000 time 0.49 0.44 0.43 0.40 0.40 0.42 0.41 0.40 0.41 0.40 0.42
% of S22 73.7 70.0 69.0 64.0 62.6 53.5 43.1 38.7 33.2 35.4 54.3

2000 time 0.86 0.80 0.75 0.76 0.76 0.77 0.73 0.75 0.72 0,75 0.77
HI % of S22 80.7 78.6 70.9 74.0 68.3 57.9 52.3 43.0 42.7 37.4 60.6 0.92

3000 time 1.17 1.13 1.08 1.06 1.09 1.06 1.07 1.03 1.06 1.03 1.08 61.4
% of S22 81.1 79.5 77.2 69.7 72.7 64.9 51.9 51.9 51.5 45.6 64.6

4000 time 1.50 1.42 1.39 1.41 1.37 1.38 1.37 1.40 1.37 1.42 1.40
% of S22 82.8 77.6 83.5 76.4 72.5 67.3 58.1 47.8 48.0 47.6 66.2

1000 time 0.59 0.53 0.51 0.49 0.46 0.47 0.48 0.47 0.49 0.45 0.49
% of S22 87.7 84.8 81.1 77.2 72.8 60.9 50.9 45.5 40.0 40.5 64.1

2000 time 0.98 0.90 0.87 0.85 0.86 0.88 0.84 0.88 0.81 0.85 0.87
H2 % of S22 92.7 88.9 82.2 83.3 76.8 66.1 59.7 50.4 48.3 42.6 69.1 1.04

3000 time 1.34 1.26 1.22 1.23 1.22 1.17 1.23 1.15 1.14 1.14 1.21 70.0
% of S22 93.1 88.4 87.2 80.9 81.6 71.7 59.5 58.1 55.8 50.6 72.7

4000 time 1.68 1.65 1.50 1.58 1.55 1.52 1.53 1.61 1.52 1.57 1.571
% of S22 92.8 90.3 89.8 85.4 81.8 74.2 64.7 54.9 53.3 52.5 74.0

1000 time 0.61 0.56 0.52 0.51 0.48 0.50 0.51 0.49 0.52 0.48 0.52
% of 522 91.3 88.7 83.1 80.0 76.1 64.2 53.7 48.0 42.2 42.6 67.0

2000 time 1.01 0.97 0.90 0.88 0.88 0.90 0.90 0.91 0.84 0.88 0.91
H3 % of S22 95.5 95.9 85.0 85.8 79.0 67.9 64.3 52.4 50.1 44.3 72.0 1.07

3000 time 1.37 1.29 1.25 1.27 1.26 1.20 1.25 1.18 1.17 1.17 1.24 72.3
% of S22 95.2 190.4 189.0 83.2 184.1 73.5 160.8 M59.3 57.0 .51.9 74.4

*4000 f time 1.71 1.69 1.53f11.,12 1.58 1.55 1.56 1.64 1.55 1.60 1.60
% of S22 94.5 92.3 91.8 [87.4 83 6 75.7 166.1 56.1 54.4 53.6 75.6

B-2 3

Table 6.- - Heuristic times in seconds for 20 problems (Cost range: 1-10000)

I........_degree overall

code nodes 5 10 15 20 25 50 75 100 125 150 avg avg

1000 time 2.05 1.54 1.32 1.23 1.21 1.05 1.04 1.03 1.00 1.00 1.25
I % of S22 79.8 85.2 81.2 80.6 79.2 74.1 63.7 63.3 59.0 60.4 72.61
2000 time 2.59 1.86 1.71 1.61 1.53 1.42 1.36 1.34 1.35 1.33 1.61

HI H %of S22 86.9 82.0 80.8 79.1 80.5 70.6 64.0 59.0 53.9 49.6 70.6 1.75
3000 time 2.97 2.26 2.07 1.98 1.81 1.74 1.68 1.69 1.63 1.65 1.95 72.0

* % of S22 86.5 84.5 81.9 83.3 80.1 71.5 59.6 57.8 64.0 54.9 72.4t
4000 time 3.32 2.53 2.42 2.22 2.19 2.02 1.37 1.98 1.95 2.02 2.20

% of S22 82.7 86.6 83.4 80.8 82.9 70.7 58.1 62.1 61.8 54.8 72.4

1000 time 2.46 1.72 1.51 1.37 1.33 1.15 1.16 1.10 1.07 1.05 1.39
"% of S22 95.8 95.2 92.6 90.4 86.9 80.6 70.7 67.4 63.3 63.3 80.Gi

2000 time 2.90 2.13 1.94 1.83 1.69 1.55 1.51 1.47 1.48 1.46 1.80H2 % of S22 97.4 93.7 92.0 89.8 88.6 77.3 71.0 65.0 59.0 54.4 78.8 1.94

3000 time 3.32 2.54 2.30 2.16 2.00 1.91 1.92 1.86 1.72 11.77 2. 15 79.8" ofS922 96594.8 91.2 91.2 I88.6 78.7 168.1 63.6 167.8 158.9 79.9 1

4000 time 3.87 2.76 2.68 2.49 2.36 2.24 1.53 2.14 2.08 2.19 2.43
"% of S22 96.3 194.4 92.4 90.4 89.7 78.3 64.7 67.0 66.1 59.6 79.9

1000 time 2.48 11.75 1.53 1.40 1.35 1.16 1.19 1.13 1.09 1.08 1.42
% of S22 96.7 96.6 94.2 92.0 88.4 82.0 72.6 69.0 64.4 64.7 8K.1

2000 time 2.94 2.16 1.97 1.86 1.71 1.58 1.59 1.50 1.51 1.50 1.83
H3 % of S22 98.6 94.9 93.5 91.4 89.8 78.7 74.6 66.1 60.2 55.6 80.3 1.98

3000 time 3.35 2.60 2.34 2.20 2.07 1.99 1.96 1.89 1.79 1.84 2.20 81.4 1
%of S22 97.5 97.1 92.5 92.6 91.6 81.8 69.6 64.7 70.2 161.2 81.9

*4000 time 3.91 2.78 j2.74 2.52 2.39 2.28 1.56 2.18 2.11 2.22 2.47

L '% of S22 97.3 95.3 194.6 91.7 90.7 79.6 66.1 68.3 67.0 160.5 81.1

B-24

Table 7.- - Solution data for 20 problems (Cost range: 1-100)

degree 1 overall

* code nodes 5 10 15 20 25 50 75 100 125 150 avg avg

% opt 85.0 55.0 55.0 45.0 70.0 65.0 60.0 65.0 70.0 95.0 66.5
1000 %>opt 2.6 11.7 10.9 11.8 6.5 A.4 7.8 4.7 6.0 1.2 7.3

worst % 38.6 57.9 48.4 45.9 50.0 42.3 26.7 30.0 37.5 25.0 40.2

% opt 50.0 55.0 50.0 50.0 40.0 65.0 60M0 80.0 70.0 40.0 56.0
2000 %>opt 9.1 7.0 10.7 10.7 8.4 2.9 7.6 4.2 5.6 12.8 7.9 583

* Hi worst % 44.8 30.5 44.6 71.0 50.0 12.5 28.6 26.7 30.0 455 38.4 7.6
% opt 55.0 60.0 40.0 60.0 40.0 65.0 55.0 45.0 70.0 65.0 55.5 39.5

3000 %>opt 4.6 9.1 9.4 10.3 12.6 9.3 7.2 7.1 4.8 5.6 8.0
worst % 29.5 94.5 35.1 53.5 46.8 41.7 25.0 44.4 27.3 22.2 42.0

% opt 40.0 70.0 35.0 65.0 50.0 60.0 65.0 65.0 50.0 50.0 55.0
4000 %>opt 12.8 3.7 9.8 3.4 6.5 4.8 4.8 5.2 I1.0 11.0 7.3

* worst % 36.2 22.9 46.6 21.7 43.9 20.0 25.0 50.0 50.0 57.1 37.3

- - % opt 75.0 85.0 85.0 70.0 80.0 65.0 80.0 95.0 80.0 85.0 800-
1000 %>opt 3.7 1.0 2.2 3.1 1.3 5.0 3.1 0,5 4.8 3.0 2.8

worst % 38.6 8.2 26.2 14.3 8.1 23.5 26.7 9.1 33.3 28.6 21.7

% opt 65.0 80.0 70.0 80.0 60.0 75.0 85.0 90.0 85.0 75.0 765
2000 %>opt 2.4 1.7 2.7 1.2 3.1 2.7 1.4 0.8 2.0 4.7 2.3 76.1

H 12 worst % 16.8 22,1 13.8 11.3 16.7 17.6 13.3 12.5 25.0 42.9 19.2 2,6
% opt 75.0 60.0 65.0 70.0 70.0 60.0 90.0 75.0 85.0 80.0 73.0 19.9

3000 %>opt 1.8 3.6 2.7 2.9 2.3 5.0 0.7 2.9 1.4 2.8 2,6
worst % 16.7 35.0 15.7 19.1 15.2 37.5 6.3 15.4 9.1 25.0 19.5
% opt 65.0 55.0 65.0 85.0 70.0 90.0 75.0 75.0 85.0 85.0 75.0

4000 %>opt 4.1 4.5 2.6 1.0 2.3 1.0 2.4 2.8 2.4 1.7 2.5
worst % 35.5 13.7 20.0 7.0 15.2 12.0 40.0 20.0 16.7 11.1 19.1

% opt 100.0 90.0 100.0 95.0 100.0 100.0 85.0 100.0 95.0 100.0 96.5
1000 %>opt 0.0 0.7 0.0 0.1 0.0 0.0 1.2 0.0 0.6 0.0 0.3

worst % 0.0 7.1 0.0 1.8 0.0 0.0 7.7 0.0 10.0 0.0 2.7

% ept 100.0 80.0 95.0 100.0 75.0 100.0 90.0 95.0 95.0 90.0 92.01
2000 %>opt 0.0 1.7 0.5 0.0 1.8 0.0 1.1 0.4 1.0 1.2 0.8 93.6

H13 worst % 0.0 22.1 7.2 0.0 12.1 0.0 13.3 5.6 25.0 9.1 9.4 0.6
% opt 95.0 95.0 95.0 95.0 90.0 85.0 100.0 90.0 90.0 95.0 93.0 7.8

3000 %>opt 0.1 0.4 0.5 0.7 0.3 2.4 0.0 1.3 1.0 0,6 0.7
worst % 2.1 6.5 6.2 8 8 2.0 37.5 9.0 14.3 9.1 9.1 9.6

% opt 90.0 95,0 80.0 95.0 100.0 95.0 100.0 95.0 90.0 90.0 93.0

* 4000 %>opt 0.9 0.4 0.9 0.2 0.0 0.7 0.0 10.8 1.4 1.2 0.7

worst % 11.2 9.6 9.6 4.3 0.0 12.0 0.0 10.0 18.2 11.1 9.6

B-25

Table 8.- - Solution data for 20 problems (Cost range: 1-1000)

degree overall
c code nodes 5 10 15 20 25 50 75 100 125 150 avg avg

% opt 55.0 60.0 35.0 60.0 55.0 50.0 55.0 45.0 40.0 50,0 50.5
1000 %>opt 6.6 8.1 12.5 10.9 4.8 11.2 12.8 6.3 12.9 10.4 9.7

worst % 25.7 44.7 64.4 165.8 20.3 40.7 129.0 35.2 7317 70.7 67.0
% opt 55.0 70.0 35.0 70.0 50.0 50.0 55.0 45.0 65.0 40.0 53.5

2000 %>opt 4.9 5.5 10.0 4.2 5.3 I.9 5.6 8.4 11.3 13.1 8.0 52.6
* HI worst % 19.5 74.1 34.3 31.8 37.4 57.1 23.4 38.2 73.7 82,8 47.2 8.2

% opt 45.0 55.0 70.0 70.0 50.0 75.0 35.0 75.0 65.0 40.0 58.0 46.9
3000 %>opt 10.8 3.2 2.7 5.3 8.4 4.3 8.6 4,0 5.4 8.1 6.1

worst % 48.4 14.3 20.7 35.4 31.4 23.7 29.1 21.6 46.5 34.3 30.5

% opt 25.0 25.0 65.0 45.0 60.0 50.0 60.0 35.0 50.0 70.06 -48..;
4000 %>opt 10.9 11.3 7.4 10.4 7.8 7.2 6.5 13.1 7.7 5.8 8.80I

worst % 39.1 36.4 68.6 24.3 53.0 26.9 40.4 38.4 61,3 41.0 42.9
% opt 65.0 60.0 65.0 65.0 75.0 70.0 65.0 800 85.0 70.0 70.0}

1000 %>opt 2.8 5.7 4.5 4.9 2.3 1.8 4.1 1.4 0.8 4.9 3.3
worst % 38.0 32.9 49.4 49.8 31.5 12.3 12.8 7.7 8.2 313 27.4
% opt 70.0 65.0 55.0 70.0 80.0 65.0 70.0 fA0.0 900 T750 7001

2000 %>opt 2.0 1.4 2.3 2.4 0.8 3.4 2.3 3.9 0.4 1.1 2.0 69.9
R 12 worst % 14.6 17.4 13.7 15.8 12.5 22.4 17.2 19.1 3.8 7.2 14.4 2.4

%o opt 65.0 65.0 75.0 65.0 75.0 75.0 70.0 70.0 80.0 85.0 72.51 20.7
3000 %>opt 2.9 1.8 2.6 3.2 1.0 1.7 1.4 2.3 1.5 0.9 1.9

_ worst % 27.3 15.4 19.9 41.7 20.3 12.2 13.0 30.3 11.5 9.3 20.1

% opt 65.0 45.0 70.0 60.0 65.0 70.0 80.0 60.0 70.0 85.0 67.0
4000 %>opt 1.8 3.7 5.4 2.5 2.3 1.8 0.4 3.7 2.9 0.2 2.5

-worst % 14.9 25.9 59.2 18.9 29.0 4.8 5.2 26.4 21.3 1.3 20.7
% opt 100.0 100.0 95.0 90.0 95.0 85.0 100.0 95.0 95.0 85.0 94.0

1000 %>opt 0.0 0.0 0.1 0.5 0.1 0.9 0.0 0.2 0.2 2.8 0.5
worst % 0.0 0.0 3.0 8.4 1.2 13.9 0.0 3.9 4.6 31.3 6.6
% opt 80.0 95.0 95.0 90.0 95.0 85.0 95.0 95.0 100.0 90.0 92.01

*2000 %>opt 0.8 0.0 0.2 0.4 0.1 2.5 0.1 0.9 0.0 0.6 0.6 92.1
R3 worst % 8.4 0.6 5.2 4.5 1.3 20.7 1.9 19.1 0.0 7.2 6.9 0.6

% opt 90.0 95.0 90.0 90.0 95.0 100.0 90.0 95.0 95.0 100.0 94.0 7.6
3000 %>opt 1.6 0.0 1.5 0.2 0.8 0.0 0.4 0.1 0.2 0.0 0.5

worst % 27.3 1.2 19.9 3.1 20.3 0.0 5.0 1.2 5.2 0.0 8.3

% opt 80.0 80.0 90.0 90.0 95.0 70.0 95.0 95.0 95.0 95.0 88.5
• 4000 %>opt 0.8 0.7 0.6 0.2 0.0 1.4 0.0 1.0 0.8 0.1 0.6

worst % 4.3 8.8 110.4 2.0 0.3 4.8 0.9 21.8 28.9 1.3 8.4

B-26

Table 9.- - Solution data for 20 problems (Cost rarnge:1-10000)

degree overall
ode nodes 5 10 15 20 25 50 75 100 1i25150

% opt 40.0 65.0 45.0 55.0 50.0 50"0 45.0 75.0 45M0 60.0 505
1000 %>opt 8.4 12.7 9.8 7.3 6.9 14.3 11.8 3.2 7.7 6.8 9.7

worst % 32.0 90.7 40.6 35.9 54.9 89.5 48.1 26.2 21.9 59.4 67.0
% opt 45.0 55.0 45.0 60.0 40.0 35.0 70.0 65.0 55.0 45.0 53.5{

2000 %>opt 5.4 6.2 6.3 13.3 13.8 11.6 8.1 6.2 11.2 9.3 8.n 52.6
* HI worst % 20.5 30.8 29.6 57.0 35.1 52.3 55.8 46.0 40.0 18.5 47.2 8.2

% opt 50.0 70.0 50.0 65.0 45.0 65.0 50.0 40.0 65.0 50.0 58.01 46 9
3000 %>opt 9.1 5.4 7.5 9.6 12.8 5.7 13.4 12.6 9.0 6.9 6.1

worst % 58.8 22.2 52.6 52.0 165.3 42.6 80.0 56.5 99.6 39.0 30.5
% opt 40.0 55.0 65.0 50.0 30.0 35.0 60.0 60.0 60.0 60.0 48.5

4000 %>opt 8.5 7.1 2.9 8.3 13.8 8.5 6.5 4.9 8.9 5.3 8.8
* worst % 45.4 35.3 10.5 34.5 32.4 35.4 40.4 200 32.3 28.7 42.9

% opt 60.0 85.0 55.0 80.0 45.0 800 65.0 75.0 75.0 80.0 700
1000 %>opt 3.3 0.7 2.5 1.1 3.9 1.9 2.3 0.7 2.3 1.3 3.3

worst % 12.3 7.4 13.3 11.1 16.2 20.8 27.5 3.5 11.6 11.1 27.4
% 800 75.0 500 70.0 800 750 75,0 65.0 65.0 70.0 700o1

2000 %>opt 1.2 1.2 3.0 4.9 3.3 1.5 1.6 3.2 5.6 2.2 2.0 69,9
H H2 worst % 12.5 10.0 17.4 30.6 31.8 10.9 15.9 21.6 65.9 23.5 14.41 2.4

% opt 75.0 75.0 65.0 90.0 80.0 80.0 65.0 70.0 100.0 65.0 72.53 20.7
3000 %>opt 2.1 2.2 3.5 0.3 1.7 1.4 4.2 2.5 0.0 1.5 1.9

worst % 11.7 20.4 21.1 4.4 11.4 10.3 33.1 17.6 0.0 14.3 20.1
% opt 60.0 75.0 70.0 65.0 55.0 65.0 80.0 70.0 70.0 70.0 67.0

4000 %>opt 1.4 2.5 2.3 2.7 2.8 2.7 0.4 2.4 2.4 2.8 2.5
* worst % 5.9 27.1 16.3 15.9 9.3 14.7 5.2 19.2 17.5 34.7 2 0. 7

"% opt 85.0 95.0 85.0 95.0 85.0 85.0 95.0 100.0 95.0 90.0 94.0
1000 %>opt 0.8 0.3 0.4 0.2 0.4 0.8 0.1 0.0 0.0 0.2 0.5

worst % 6.1 5.2 4.5 2.7 2.4 6.3 1.5 0.0 0.3 2.2 6.6
% opt 100.0 90.0 75.0 80.0 90.0 95.0 100.0 95.0 90.0 95.0 92.0

2000 %>opt 0.0 0.1 1.2 3.1 0.7 0.4 0.0 0.2 0.4 0.2 0.6 92.1
H3 worst % 0.0 1.6 6.4 18.5 6.5 7.9 0.0 30 7.4 2.6 6.9 0.6

% opt 85.0 100.0 100.0 95.0 95.0 100.0 100.0 95.0 100.0 90.0 94.01 7.6
3000 %>opt 0.5 0.0 0.0 0.0 0.4 0.0 0.0 0.6 0.0 0.2 0.5

worst % 6.8 0.0 0.0 0.6 7.0 0.0 0.0 13.3 0.0 1.7 8.3I % opt 95.0 90.0 95.0 85.0 100.0 95.0 95.0 90.0 90.0 95.0 88.5
4000 %>opt 0.1 0.0 0.2 1.3 0.0 0.4 0.0 0.9 1.2 0.4 0.6

worst % 2.4 0.2 3.4 15.9 0.0 11.4 0.9 12.8 17.5 9.0 8.4

B-27

0

0

REFERENCES
C. Berge and A. Ghouila, Programming, Games, and Transportation Networks, John Wiley and Sons,
New York, NY (1962).

D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, NJ (1987).

G. Dantzig, "On the Shortest Route Through a Network," Management Science, 6 (1960) 187-190.

G. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.

N. Deo and C. Pang, "Shortest-Path Algorithms: Taxonomy and Annotation," Networks, 14 (1984) 27&

* M. Desrochers, "A Note on the Partitioning Shortest Path Algorithm," Operations Research Lette
(1987) 183-187.

R. Dial, "Algorithm 360: Shortest Path Forest With Topological Ordering," Communications of the A
12 (1969) 632-633.

R. Dial, F. Glover, D. Karney, and D. Klingman, "A Computational Analysis of Alteznative Algorithrru
Labeling Techniques for Finding Shortest Path Trees," CCS Report 291, Center for Cybernetic Studies.

* University of Texas, Austin, TX 78712 (1977).
R. Dial, F. Glover, D. Karney, and D. Khngman, "A Computational Analysis of Alternative Algorithms
Labeling Techniques for Finding Shortest Path Trees," Networks, 9 (1979) 215-250.

E. Dijkstra, "A Note on Two Problems in Connexion With Graphs," Numerische Mathematik, 1 (1
269-271.

* J. Divoky, "Improvements for the Thresh X2 Shortest Path Algorithm," Operations Research Lette
(1987) 227-232.

S. Dreyfus, "An Appraisal of Some Shortest-Path Algorithms," Operations Research, 17 (1969) 395-4]

S. Even, Graph Algorithms, Computer Science Press, Potomic, MD (1979).

G. Gaflo, and S. Pallottino, "Shortest Path Methods: A Unifying Approach." Mathematical Programi
Study, 26 (1986) 38-64.

G. Gallo, and S. Pallottino, "Shortest Path Algorithms," Annals of Operations Research, 13 (1988) 3-

F. Glover, R. Glover, and D. Klingman, "Computational Study of an Improved Shortest Path Algoritl
Networks, 14 (1984) 25-36.

F. Glover, D. Klingman, N. Phillips, and R. Schneider,"New Polynomial Shortest Path Algorithr..s and 'I
Computational Attributes," Management Science, 31(1985) 1106-1128.

P. Hart, N. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum
Paths," IEEE Transactions of Systems Science and Cybernetics, SSC-4, (1968) 100-107.

T. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA (1982).

P. Jensen and J. Barnes, Netw'ork Flow Programming, John Wiley and Sons, Inc., New York, NY (198,

D. Klingman, J. Mote, and D. Whitman, "Improving Flow Management and Control Via improving Shol
Path Analysis," CCS Report 322, Center for Cybernetic Studies, The University of Texas, Austin, TX 78
(1978).

D. Klingman, A. Napier, and J. Stutz, "NETGEN: A Program for Generating Large Scale Capacit
Assignment, Transportation, and Minimal Cost Flow Network Problems," Management Science, 20 (1
814-821.

* E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, New N
NY (1987).

T. Mohr and C. Pasche, "A Parallel Shortest Path Algorithm," Computing, 40 (1988) 281-292.

T. Nicholson, "Finding the Shortest Route Between Two Points in a Network," The Computer Journi
(1966) 275-280.

* C. Papadimitriou, and K. Steiglits, Combinatorial Optimization: Algorithms and Complexity, Prentice-I
Englewood Cliffs, NJ (1987).

B-28

0

1. Pohl, "Bi-directional and Heuristic Search in Path Problems," SLAC Report No. 104, Stanford, CA

I. Pohl, "Bi-directional Search." Machine Intelligence, 6, B. Meltzer and D. Michie, eds., Edinburgh Uni
Press, Edinburgh (1971) 127-140.

M. Quinn, Designing Efficient Algorithms 1o- Parallel Computers, McGraw-Hill, New York, NY (198

R. Rockafellar, Network Flows and Monotropic Optimrization, John Wiley and Sons, Inc., New Yor
(1984).

R. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mather
Philadelphia, PA (1983).

B-29

0

0

0

0

0

S

0

Technical Report 93-CSE-7

A Direct Simplex Algorithm for Network

Flow Problems with Piecewise Linear Costs

by

Rajluxmi V. Murthy
• Richard V. Helgason

Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275-0122

January 1993

This work was supported in part by the Air Force Office of Scientific Research und,
Grant Number AFOSR F49620-92-J-0032, and the Office of Naval Research under
Grant Number N00014-92-1619.

• c-1

A Direct Simplex Algorithm for Network Flow Problems with Piecewise Linear Co

Rajluxmi V. Murthy and Richard V. Helgason

Southern Methodist University

January, 1993

ABSTARCT. Minimum cost network flow problems with a piecewise linear convex cost function are

model various optimization problems. They are also used extensively to approximate nonlinear cost fui

which may otherwise be difficult to handle. Solving the piecewise linear problems using a reform

approach is possible but may be inefficient. In this paper we discuss a specialized direct approach

implementation for solving such problems. The direct approach handles the piecewise linear structure

cost function by allowing each arc to have varying costs on differernt segments. Computational result

been reported, from which we conclucle that using such an approach has a distinct advantage over L

reformulation approach.

1. Introduction

Minimum cost network flow problems with a convex piecewise linear cost function (PLNP) occur nal

when costs change abruptly. This may be due to the imposition of penalties whcn certain limits or

are exceeded by the flows in the arcs (see Rockafellar[1984]). For example, penalties can be impos

understocked or oversupplied goods or an increase in transportation cost due to the load exceeding a sp,

• limit. Random demand in a transshipment network may result in such a cost function (Sun and Tsai [1

Apart from direct applications, piecewise linear functions are often used to approximate functions th

more difficult to handle, and therefore, solution procedures for PLN P are of considerable interest.

* PLNP can be readily solved by a reformulation approach. In this approach each piece or cost seý

for every arc in the network is replaced by an arc in an equivalent linear network flow problem (NP)

resulting NP can be solved by any implementation of the bounded simplex method specialized for ne

flow problems, but it is a much larger problem to solve. As the number of pieces in the PLNP increa

does the dimension of the NP resulting from the conversion.

C-2

The motivation of our study is to be able to efficiently solve piecewise linear approximations of no

cost network flow problems. The approximation may have to be revised several times, and therefore,

* iU using . reformulation approach is undesirable. Such an approach is not only likely to take longer

the increased dimensions but will also result in additional buroen due to the data manipulation neede

each revision.

* The growth of dimensions can be avoided if a solution approach that can solve the PLNP dire

its original form, is used. Fourer [1985,1988] and Premoli [1986] presented direct approaches for

piecewise linear programs. Fourer [1985,1988] gives a comprehensive discussion of such an approach.

approaches can be specialized for problems with a network structure. Sun and Tsai [19901 impler

Fourer's approach for network flow problems. The approach uses a bound on the true reduced cost

nonbasic arcs. If none of the nonbasic arcs price favourably using the bound then an optimal solu

guaranteed. The drawback is that when a nonbasic arc does price favourably, its true reduced cost

• be determined to ensure that its entry into the basis will result in an improvement of the objective fui

This entails cycle traces in the network before each pivot can be made.

In this paper we outline a slightly different approach for solving the PLNP directly. Our approac!

* not require the determination of the true reduced cost of a seemingly favourable nonbasic arc, and the'

cycle traces are not needed. From our empirical results, we conclude that this illows a significant red

in the time taken to solve the PLNP. Section 2 gives an introduction to the problem follow'ed by a d(

discussion of the direct method with our approach in Section 3. Our implementation is discussed in S

4 and the computational results are reported in Section 5. Piecewise linear mnodification of 30 bend

problems given by Klingman et al. [1974] are used for the computational testing and their dimensio

given in Table I11. The problems are solved using both the reformulation and our direct approach. Sign

* reduction in computational times is achieved, as reported, when the latter approach is used.

2. Problem Definition

* The problem of interest can be defined as follows:

n

min f(z)=ZI.,(XA)

s~t. Ax=b (P.

C-3

0

0 <Z, < u

where A E Rxn is a given node-arc incidence matrix, b E R"' is the given requirement vector, u E

the given upper bound vector, and

Cj, if 0 < zj <:u ,

* f 1 (j) = {"
" ,if us" < Zj 5 U;,cj , ifuj

The arc ej has si segments. The breakpoints G, u are such that 0 < u, < U?... < U

* capacity of the arc ej). The costs cJ,.. ., c' on the si segments of arc ej are increasing, i.e.

1
c

2
< o

0 C < C; . 1.< e. < 00

* In the reformulation approach the j'4 arc would be replaced by a total of sj arcs. We solve the pr

directly and, therefore, retain its current dimension.

3. The Algorithm

0

The algorithm can be seen as an extension of the upper-bounded simplex method for network prograrr

problems. The upper-bounded simplex method allows the flow in a ncnbasic arc to be on its lower or t

bound. In our case each arc is allowed to have several breakpoints and the flow in a nonbasic arc is all

to be at any one of these breakpoints.

Definition: A basic solution [xBJ9zvN is a partitioning of x, where x8 are the basic variables which can

*1 any value within their lower and upper bounds, and x.V are the nonbasic variables, which must take o

value of one of the breakpoints.

Every basic solution corresponds to a rooted spanning tree TB in the network (see Kennington

* Helgason [1980]). The j"h arc ej is considered to be on the i1h segment if the flow z, in it is such

ui-1 < Zi < u>, If the flow on an arc is eoual to zero, the arc is considered to be on the first segment if

and on segment zero otherwise. The effective ist of any basic ar, is unambiguously determined, a& the

of the segment it is on. Using these costs, the dual vector r can be obtained from irB = cB, where B i0
basis matrix.

C-4

0

Definition: For any path P,

linking the from-node s, to the to-node Sn+1 in TB, the orientation sequence O(P) is given by

= P +1, if ek = (sk,sk+1);

l-1, if e, = (sk+1,sO)

(see Kennington and Helgason [19801).

3.1 Pricing

The price of a nonbasic arc is defined as

PN, = C+N - TF + 1T

P+ = - +

where rrF and 7rT are the duals of the from-node and the to-node respectively, of the arc e c, CN

the slopes on the right and left, respectively, of the flow in the arc. The pricing operation can be se

an extension of that in the upper-bounded simplex method. Unless a nonbasic variable zv, is at its

or upper bound, it can enter the basis if either increasing or decreasing its value will improve the objf

function, i.e., p+ < 0 and ZN, is increased, or p-, > 0 and zN, is decreased. Thus, the ilh and the (i -

segments of each nonbasic arc are priced to determine if either of them prices favourably. In the case v

the arc is at its lower (upper) bound, the flow in the arc cannot decrease (increase) any further, and thert

only the first (last) segment is priced.

Proposition 3.1 For a nonbasic arc on its iVh segment, it suffices to price only the i" and the (i 4

segments of each nonbasic arc. If these segments do not price favourably, the segments 1,2.... (i - 1)

2),... , si for the nonbasic arc e1 will not price favourably.

Proof: The result clearly follows from the fact that the piecewise linear costs on each arc are conve)

This pricing strategy can be viewed as a restricted basis entry approach as opposed to the pricing

nonbasic arcs in the reformulation approach. Note that the price pA', gives the true reduced cost of thý

ep'., only when none of the basic arcs are at breakpoints, or equivalently, the solution is nondegenerate.

C-5

0

The true reduced cost of a nonbasic arc es, is given by:

d+ =c+, N- 1 (CB)i(B-'A •Nj)i
d,= c+ ,•

iEB

d-N = Cj- -Z1: CBj(B-'AN,)a

iEA

where d' is the reduced cost when the flow in the arc is to be increased, and U` is the reduced co

the flow is to be decreased.

Proposition 3.2 When some of the basic arcs are at breakpoints, d+ > p+, and d- < PN*

nonbasic arc eN,.

Froof Let AN, = Yj. Then

d+ = C+

Nj CN, + (CB~ -O8J-)
• (v,,=-1 (Y,),=i

d7j = c + >, - >_
(YA,=-I (Y,),=1

If some of the basic arcs did not have a possibly underestimated cost assigned to them, pv, as defined

would give the net change in cost per unit change of flow in the nonbasic arc being priced (see r3l).

the assigned costs can only underestimate the actual costs, pAT, and dN, will differ in costs of onl)

basic arcs ei which will have an increment in flow due to the incoming nonbasic arc. Let Q denote th(

• indices of all such arcs. This implies that for i E £2,

d+= +I, Nil)'~ -(-~
(1',).=-'

* ~d- Bp >
0',).=-'

Since the piecewise linear costs are convex, (C+)i - (ci), > 0 for all i. Therefore,

•d+ > p+

dAT < PAT

If P, > 0 and p•,: <0, the true reduced cost of the nonbasic arc eN, cannot be favourable as well. Thei

if P+ > 0 and p- < n for all nonbasic arcs, the solution is optimal.

C-6

3.2 Ratio Test

The amount by which the flow is allowed to change on any arc is trie difference in the value of the n,

breakpoini and the flow. That is, the flow in a basic arc is allowed to move up or down only un the cý

segment. This differs from the strategy used in Fourer [1985,1988] and implemented by Sun and T

r1990], where at a given iteration, flows can change over several segments. Our approach eliminates the

* to trace cycles on the tree since in case

p., <0, but d+, >0

* or
p.>0, but dI,<O

we allow a pivot, which is degenerate.

0 Our computational experience demonstrates that the direct approach used by Sun and Tasi [191

ineffective since the cycle traces consume more time than that saved by keeping the dimension of the pro

unchanged. The times taken by our implementation of the two approaches have been compared in Tat

3.3 The Algorithm

STEP 0:

Find an initial basic feasible solution ro -- [xBIzN and let TB be the basis tree.

Calculate r using wrB = CB. Initially c. = c-(X') unless x0 = 0, in which case c= c,.

STEP 1: Pricing

Let

*1 = {eN, p+j < 0 and flow zN, in arc eN, is to be increased }

%F2 = {eN, :p, > 0 and flow ZN, in arc eN, is to be decreased.}

If *1 U *2 = €, terminate with [zBIZNI as the optimal solution,

.. herwise select ej E 'kl U %P2 and set

6 +1, if ei E 'lk;
-1, if ej E 'k,

C-7

STEP 2: Ratio Test

Set

U - ifej E 4,;
i-u,,if ejE %P2,

where u+ > zi and u- < z1 are the closest breakpotnts to the right and left of zj,

respectively.

0 A2= ain z,-u-}O-(P)=j

A 3 = mrin= { -Z,0O,(P)=j

where

0 uk' -i_<z S_

Define

A = min{A 1,A 2,A 3}

Let the minimum be attained for arc el

STEP 3: Update Flows

* Set zi = zj + AS and zi = zi - &60i(P)

If A = A go to step I

STEP 4: Tree and Dual Update

Replace el in the tree by e,. Update B, N and the duals.

Return to step 1.

4. Implementation

NETFLO [1980], which is an efficient implementation of the upper bounded simplex method on the g

* has been modified to implement the direct simplex algorithm and the modified code is called RFSBAS

data structures are, therefore, an extension of those used in NETFLO. RESBAS has additional arc-I

arrays used to store the breakpoinis and costs for the sj segments of each arc ej. Another arc-length ar

used to indicate the current segment that each arc is on. Additional node-length arrays are also intro4

to record the closest breakpoi,:ts above and below the current flow z2 for the basic arc e,.

C-8

The strategy outlined by Fourer in [1988] and implemented by Sun and Tsai in [1990], where flob

arc is allowed to change over more than one segment has also been implemented for a comparative

* The implementation is called PWNET.

5. Computational Experience

Standard network flow problems generated by NETGEN (1974] were modified to produce problem

piecewise linear cost functions. The capacity of each arc is divided into n segments which are aW

increasing costs. The number of segments generated can be varied. All the repvi ted times are the a'

* of the time taken over three runs. Table I lists the times taken to solve the modified NETGEN pie

linear problems with eight segments for each arc. The problems were solved using NETFLO, RESBA

PWNET. All the three codes are integer FORTRAN codes. To solve the problems using NETFLO

of the eight segments on every arc is replaced by an arc to yield an equivalent problem with a linea

function. The dimension of the reformulated problem is, therefore, eight times that of the original pie

linear problem. The testing was done on the SEQUENT Symmetry S81 and the times reported ar

clock times in seconds. The time taken for the input of the data and the output of the results is not inc.

Taf le I illustrates that on the average, the direct approach used in RESBAS takes 48 percent of th4

taken by the reformulation approach. A large part of the savings in time is accounted for by the fact th

the average, RESBAS takes 34 percent of the total time in the pricing operation, while NETFLO tal

* percent of the total time. The direct approach used in PWNET was found to take more time than NE'

in most cases. On studying the time taken by different parts of PWNET we concluded that the cycle

needed in this approach turn out to be expensive and result in its poorer performance.

• Table II lists the comparative times taken by NETFLO, RESBAS, and PWNET to solve the NE'I

problems with 80 percent of the arcs specified to be capacitated. The original NETGEN problems

uncapacitated arcs in most cases. An uncapacitated arc has a large upper bound, and under the absei

a capacity requirement, the breakpoints are large as well. As seen from Table II, having a large perce

of capacitated arcs does not effect the performance of either code considerably. RESBAS takes 55 perci

the time taken by NETFLO, on the average, for these problems and the performanoe of PWNET cont

to be poorer than that of NETFLO in most cases. PWNET is not used for further testing.

Table III lists the comparative times taken by NETFLO and RESBAS to solve NETGEN problems

C-9

60 percent of the arcs having a high cost and 50 percent being capacitated. The original NETGEN p:

have only 30 percent of the arcs with high costs in less than half of the problems. The increased per

* of high cost arcs has nearly no effect on the performance of RESBAS. From Table Ill we see that R

takes 52 percent of the time taken by NETFLO for these problems on the average.

A few problems were solved using NETFLO and RESBAS to see the effect of varying the nur

* segments used. The problems were solved using 4, 8, 16, 24, and 32 segments. The results are tabul

Table IV, and figures 1-5 illustrate the comparative time taken by the two codes. As the number of sej

used is increased, the relative performance of RESBAS is seen to improve. This is expected since w

increase in the number of segments the dimension of the problem to be solved by NETFLO becomes

which results in RESBAS having an increasing advantage in the time needed to solve the problem.

average for the five problems, RESBAS takes approximately 71 percent of the time taken by NETFLC

the number of segments used is 4. With an increase in the number of segments used to 32, the adv

• that RESBAS has over NETFLO increases significantly, and the average time taken is seen to be o

percent of that taken by NETFLO.

6. Conclusions

From our computational experience with problems of varying size and characteristics, we conclude i

direct solution procedure for PLNP has a definite advantage over a reformulation approach. On the a,

• RESBAS requires only 50 percent of the time required by NETFLO to solve the problems tested. T

for some problems the improvement was seen to be less striking than the average, RESBAS does no

longer than NETFLO to solve any of the problems. Since most of the savings in the solution time

from the pricing operation, RESBAS is likely to have an increasing advantage as the density of the pri

being solved increases. The number of arcs needed in the reformulation approach to replace an arc

original problem also plays an important role in the extent to which the direct approach out perforn

reformulation appraoch. As seen from tables 4-8 and figures 1-5, the improvement in the time tak

• RESBAS becomes increasingly significant as the number of segments used on each arc is increased fi

to 32.

C-10

6. References

SI R. Fourer, Mathematical Programming, 33, 204-233 (1985).

2 R. Fourer. Mathematical Programming , 41, 281-315 (1988).

3 J.L. Kennington and R.V. Helgason, Algorithms for Network Programming (Wiley-Interscien,

York, 1980).

4 D. Klingman, A. Napier and J. Stutz, Management Science, 20, NO. 5, 814-821 (1974).

5 A. Premoli, Mathematical Programming , 36, 210-227 (1986),

6 R.T. Rockafellar, Network Flows and Monotropic Optimization (Wiley-Interscience, New York,

7 J. Sun and K.-H. Tsai, Working Paper, (Northwestern University, Evanston, IL, 1990).

C-11I

Table I TIMEt TAKEN FOR ORIGINAL PROBLEMS

RB~ NTL RSA TIME TIME. OPTIMAL!ý NETFLO RESBAS RATIO* PWNET RATIO VALUE

1 2.17 .82 .38 2.02 .93 209934
2 2.28 .83 .37 1.98 .87 180820
3 3.77 1.31 .35 2.81 .75 162949
4 3.16 1.11 .35 2.39 .76 124369
5 4.58 1.46 .32 2.69 .59 130774

* 6 5.65 2.24 .40 5.60 .99 203737
7 9.27 3.16 .34 7.08 .76 161329
8 9.55 3.19 .33 6.91 .72 161288
9 11.35 3.77 .33 7.28 .64 141902
10 11.51 3.68 .32 7.63 .66 190070
11 2.92 1.49 .51 4.19 1.43 8871025

* 12 3.90 1.49 .38 3.23 .83 3682451
13 2.47 1.24 .50 3.52 1.43 7921016
14 3.51 1.39 .40 2.99 .85 3580569
15 4.25 2.52 .59 6.67 1.57 10660812
16 6.03 2.43 .40 5.14 .85 3145173
17 4.01 2.27 .57 4.62 1.15 19149 VI
18 4.58 1.95 .43 2.97 .65 2814656
19 7.02 4.18 .60 9.37 1.33 16522487
20 11.73 6.14 .52 14.03 1.20 19403203
21 5.11 2.78 .54 4.52 .89 11955635
22 8.20 3.77 .46 6.72 .82 14674811
23 6.10 3.13 .51 10.12 1.66 14471077
24 7.11 3.82 .54 10.84 1.52 12417227
25 9.17 4.42 .48 13 19 1.44 9154491
26 14,20 8.10 .57 25.17 1.77 16534913
27 14.59 7.88 .54 28.85 1.98 16363553
28 267.20 243.92 .91 1466.85 5.49 104874927
29 197.13 162.15 .82 791.95 4.02 37115244
30 125.51 71.32 .57 290.27 2.31 6462989

Average Ratio .48 1.36

tWaH clock seconds on the Sequent Symmetry S81 'With respect to NETFLO

C-12

0

Table II TIME1 TAKEN WITH 80% ARCS CAPACITATED

UM NETFLO IRESBAS I RATIO' PWNET RATIO VALUE

1 3.10 1.29 .42 3.46 1.12 234607
2 3.84 1.52 .40 3,44 .90 218543
3 5.06 1.87 .37 3.99 .79 203033

* 4 5.43 1.73 .32 3.90 .72 164195
5 7.76 2.54 .33 4.14 .53 108281
S9.46 3.73 .39 9.04 .95 296534
7 12.38 4.46 ,36 8.88 .72 204810
8 13.50 5.14 .38 8,63 .64 139952
9 15.85 5.53 .35 10.59 .67 131246

* 10 14.73 4.93 .33 8,55 .58 136127
11 5.35 3.37 .63 8.28 1.55 10889306
12 10.61 5.88 .55 9.17 .86 5186373
13 4.16 2.43 .58 4,95 1.19 9138062
14 6.15 2.84 .46 5.44 .88 4021478
15 7.06 4.55 .65 10.01 1.42 12538308

* 16 11.36 5.88 .52 10.93 .96 4259552
17 5.16 3.07 .59 6.13 1.19 8788133
18 6.98 3.25 .47 5.21 .75 3214784
19 7.02 4.18 .60 9.37 1.33 16522487
20 11.73 6.14 .52 14.03 1.20 19403203
21 5.11 2.78 .54 4.52 .89 11955635

• 22 8.20 3.77 .46 6.72 .82 14674811
23 20.82 15.35 .74 36.38 1.75 21816035
24 24.37 17.12 .70 40.92 1.68 18923270
25 31.21 23.47 .75 63.16 2.02 17110810
26 50.75 39.14 .77 97.90 1.93 25418455
27 52.81 44.33 .84 111.86 2.12 25106519

* 28 356.22 326.03 .92 1646.93 4.62 103360085
29 269.22 235.88 .88 1024.10 3.80 38642574
30 158.95 97.92 .62 356.02 2.24 7154302

Average Ratio .55 1.36

lWal clock seconds on the Sequent Symmetry S81 *With respect to NETFLO

C-13

0

Table Inl TIMEi TAKEN WITH 60% HIGH COT ARCS

'PRB #OF #OF TIME OPTIMAL
SjNU NODESI ARCS1 NETFLOQ RESBAS RATIO VALUE

1 200 1300 3.04 1.28 .42 274313
2 200 1500 3.34 1.33 .40 184679
3 200 2000 4.28 1.67 .39 213952
4 200 2200 4.53 1.67 X37 162210
5 200 2900 5.61 1.90 .34 184942
6 300 3150 9.42 3.89 .41 348180
7 300 4500 12.42 4.46 .36 245771
8 300 5155 10.67 3.82 .36 176457
9 300 6075 16,18 5.27 .33 157974
10 300 6300 13.83 4.57 .33 199056
11 400 1306 3.80 2.18 .57 10513520
12 400 2443 5.44 2.42 .44 3787240
13 400 1306 3.59 2.04 .57 9568307
14 400 2443 4.68 2.02 .43 3534618
15 400 1416 4.26 2.45 .57 9032347
16 400 2836 7.77 3,40 .44 4211578
17 400 1416 3.89 2.05 .53 8445932
18 400 2836 6.33 2.69 .42 3744264
19 400 1382 7.72 4.84 .63 30869990
20 400 2676 11.93 6.22 .52 13107867
21 400 1382 5.30 2.96 .56 19048864
22 400 2676 8.13 3.68 .45 10090412
23 1000 2900 15.58 10.61 .68 27878120
24 1000 3400 13.99 9.39 .67 19301285
25 1000 4401) 23.86 15.49 .65 16501324
26 1500 5107 34.69 24,92 .72 26560879
27 1500 5730 37.59 28.04 .75 25442763
28 8000 15000 317.98 294.26 .93 158984551
29 .5000 23000 218.67 183.66 .84 46185509
30 3000 35000 135.21 82.97 .61 6713147

Average Ratio .52

lWall clock seconds on the Sequent Symmetry S81

C-14

Table IV INCREASING # OF SEGMENTS

ýPRB 1 NUM jNETFIO IRIES13AS ITIMEIUMOF SEG TIMFE TIMEI RATIO

1 4 1.52 1.01 .67
8 2.18 .81 .37
16 3.84 .88 .23
24 5.32 .87 .16
32 6.52 .79 .12

10 4 6.50 3.75 .58
8 11.51 3.69 .32
16 19.66 3,44 .18

* 24 25.33 2.76 .11
32 25.67 2.19 .09

15 4 2.41 1.82 ,76
8 4.26 2.51 .59
16 10.28 4.17 .41
24 13.40 4.36 .33
32 17.54 4.87 .28

20 4 5.30 3.80 .72
8 11.77 6.i2 .52
16 30.14 10.55 .35
24 60.18 17.12 .28

• 32 94.71 24.32 .26

27 4 11.96 9.69 .81
8 14.43 7.88 .55
16 26.39 9.93 38
24 41.05 11.31 .28
32 65.59 15.73 .24

:WaIl clock seconds on the Sequent Symmetry S81

C-15

S -

Graphs of the Times Taken with Increasing Number of Segments

Fig 1 SOLUTION TIMES(#1)

_.

* NETFLO

C4

E-3-

2

1-- - - - - -- - - - ---------- -- -

0 5 2.0 15 20 25 30 25
SOF SEGMENTS

Fia 2 SOLUT ON TI:MESI#I0)

NETFO --25

20

10

0 5 10 15 20 25 30 35

OF SEGMENTS

C-16

1.2-

6-

2-

0 0
0 5 1-0 11 5 20 25 -0

#10. SETC-M4E'1T

F 4cy 4 SOL'JTOTN T:MES(F2C)
1-00

* o~ 0 NETFLO -
R83B1

1060-

0- 7 z :s : 20 2:

S sc7tT IN ::Ei•7

NETFLO -

60 RESEAS

E- 30-

* 20-

0 5 10 15 2 0 25 310

0 #LCF- SEGMTNTI

c-17

