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Formal Specification and Verification of
Concurrent Programs

Capsule Description not be used in a software development unless they
are perceived as reducing the total cost of the devel-

This module introduces formal specification of con- opment. That is, they must be perceived as reducing
current software and verification of the consistency the number of eventual errors, and the perceived cost
between concurrent programs and their specifica- of the residual errors were they not done must be
tions. First, what one might want to be able to prove higher than the cost of carrying them out.
about a concurrent program is discussed. Then, a Consistent with this utilitarian view is the obser-
number of formal descriptions of the concept are vation that very often the process of writing the for-
presented. These vary in their coverage of the real specification of a system is the same as the proc-
phenomena, and some can be used as the bases of ess of designing the system's functionality. That is,
formal specifications of programs. Next, techniques the act of writing the formal specification is simply
for carrying out the proof of consistency between the recording the requirement decisions that have been
specification and the program are described. made, and most changes taking place in a specifi-
Finally, it is noted that some of these techniques cation before the first verification attempt are made
have automated tools such as verifiers associated for the purpose of getting the function of the system
with them. right.

This philosophy dictates what material is included in
this module. Material is included if, in the opinion of

Philosophy the author, it is oriented toward the practice of soft-
ware development, that is, if the author believes that
the material can be used to help the software engi-

Programming concurrent software is a complex, neet develop systems or applications that exhibit
error-prone task. Because of the inherent nondeter- concurrency. Hence material describing develop-
minism, it is difficult for the programmer to under- ment methods and specification and verification en-
stand the effect of his or her own program. It is even vironments is included. Theoretical work is de-
more difficult for others, such as the client and the scribed to the extent that it provides the logical basis
maintainer, to understand this effect. for practical work. Deep theoretical issues-such as

Formal specification of concurrent software and ver- axiomatic completeness, formal modeling of fair-
ification of the consistency of the software with ness, which are important in their own right-are not
respect to these specifications are useful if for no covered here because they do not have an impact on
other reason than they force a closer examination of the applicable work.
the software. Sometimes, the formal models exhibit Another issue dictating what is covered herein is the
aspects of the nondeterministic behavior that were simple fact that as this module is being written, the
not otherwise apparent. Other times, just the plain field is expanding! Indeed, the release of this module
fact of redundancy-the specification and the pro- has been delayed more than once by the discovery of
gram are two statements of the same thing, but in recent new material. An arbitrary decision was taken
different languages-is what is useful. to release the module now with what is already in it.

* It is clear that the cost of carrying out formal specifi- Surely, the document is thick enough!
cation and consistency verification is high. It is so
high that formal specification and verification will

SEI-CM-27-1.0 1



Formal Specification and Verification of Concurrent Programs

Finally, there is still other not-so-recent material that * verifications of consistency carried out in
is consistent with the philosophy and is nevertheless any of the proof systems
with a bibliographical citation. These citations point

to approaches that are so similar to approaches o a specification of a program in at least
covered in detail, that not enough would be gained one specification language
by discussing them in detail. The choice of which 9 a verification of the consistency of a pro-
approach to cover among similar approaches was ar- gram to specifications in the above lan-
bitrary, reflecting what was known first to the au- guage
thor, and should not be construed as saying that the Evaluate
presented approach is any better than the others. • the coverage of any of the above or new

In any case, this module discusses neither VDM formal models, specification languages,
[Bekic74] nor Z [Hayes87] because and environments

1. VDM is covered in another module
[Pedersen89] in detail, and

2. neither is really intended for use in deal-
ing with concurrency; they both aim at Prerequisite Knowledge
treating programs as functions, and most
concurrent programs, being nonhalting The student should be fully familiar with the mate-
systems, are just not describable as func- rial of the curriculum module Formal Verification of
tions. Programs [Berztiss88] and of all of its prerequisites,

especially those of programming and mathematical
maturity. The student should also be familiar with
the of the curriculum modules Concepts of Concur-

Objectives rent Programming [Bustard90] and Languages and
System Support for Concurrent Programming

The student who has absorbed the material of this [FeldmangOl and their support materials.

module can be expected to It is useful, but not essential, to have some

Know familiarity with the material in the curriculum rood-
ules Formal Specification of Software [Berztiss87],

* of the various tools and environments of Software Specification: A Framework [Rombach87],
tools for carrying out specification and and Software Development using VDM
consistency verification [Pedersen8g].

Comprehend
"* the basic terminology of concurrency
"* the various properties that concurrent

systems may or may not satisfy and the
meanings of and differences between
these properties

"* the various formal models of concur-
rency and their relations to each other
and their coverage

" the various formal specification lan-
guages

"* the methods for proving programs con-
sistent with specifications

Apply

* at least one of the specification lan-
guages to a problem of moderate size

Analyze O

* specifications in any of the various speci-
fication languages

2 SEI-CM-27-1.0
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Module Content

Outline
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c. Data Security 2. Database Integrity

d. Proper Termination 3. Protocols

e. Partial Correctness 4. Other Problems

2. Liveness Properties V. Doing the Verifications
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c. Sent Message Will Arrive 1. AFFIRM

d. Each Request Serviced 2. FDM

e. Termination 3. Gypsy

f. Total Correctness 4. HDM

3. Others 5. P-NUT

* III. Formal Models 6. SARA

1. Operational - NDISM 7. PAISLey

a. Description of NDISM by Program 8. STATEMATE

b. Formal Mathematical Descriptions of 9. Process Algebras
NDISMs 10. ASTRAL

c. Redundant Specification of Properties VII. Current Status

d. Formal Verification of Redundantly
Specified Properties

e. Graph Models of Concurrent Computation

2. Axiomatic

3. Temporal Logic
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Formal Specification and Verification of Concurrent Programs

Annotated Outline left represents an initial snapshot, and each forking
point represents the choice of successor snapshots. A

. Ucomputation is a path from left to right along the tree..Unifying Model Note that the nondeterminism that represents concur-

For the purpose of unifying the discussion of all of the rency is different from the traditional automata
formal models of concurrency covered in this module theoretic nondeterminism [Hopcroft79}. Automata
and for providing a basis for comparing them with each theoretic nondeterminism is an abstraction of either (1)
other, this module uses the formal model of compu- trying all possible computations at once until one is
tation, known as the Nondeterministic Information found that gives an answer to the problem that the
Structure Model (NDISM) [Wegner68]. It is a state automaton solves or (2) always choosing the right suc-
machine formalism in which the content of the state is cessor snapshot that leads directly to an answer. In
left unspecified but can be made as simple or as com- concurrency, one is choosing only one path, anr there
plex as desired. The same pictorial version of this is no notion that any one is more correct than the other.
formal model is used in the textbook Programming A computation C=(so ..... s,-,si, .. ) in an NDISM
Language Structures [Organick78] and in "A Visual M=Y, lo, ý is said to halt at snapshot s, if and only if
Execution Model for Ada Tasking" [Dillon92J. 1. s. is in C
In NDISMs, concurrency is modeled by supposing the 2. F(sn)=(3
existence of process items in the state and nondeter-
ministically selecting one such process to execute one Note that Condition 4 of the definition of a compu-
instruction at each state transition. In other words, con- tation guarantees the uniqueness of s,; it is the first and
currency is modeled by interleaving process computa- only snapshot in C that can satisfy Condition 2 of the
tions at the granularity of the single instruction, same definition.

For the purpose of establishing the notation used in this The execution of a program p in the presence of input i
module, the basic definitions given in the support is a computation beginning from an initial snapshot s.,
materials are repeated in this section. which contains some representation of p and i. For a

The formal model is that of a nondeterministic infor- given p and i, there may be more than one compu-
mation structure model (NDISM) [Wogner68]. tation, some of which halt and some of which do nothalt. If a computation halts, the computation is said to @

M=(IO J, F) is an NDISM if and only if yield an output, namely a portion of the final snapshot
1. 1 is a countable set designated as the output o. There are some special

2. IoQJ situations that have special names.
* If for all input i, all computations arising from i and

a program p halt, then p is said to be a halting

The elements of the set I are called snapshots. program.
e If for all input i, all computations arising from i and

A possibly infinite sequence C=(so, .... , s,,S, ... ) is a program p do not halt. then p is said to be a
a computation in an NDISM M=(I, 10, F) if and only if looping program.

1. Vsi in C, sj. I * If for all input i, the initial snapshot built from i and
2. 0s0 10  a program p gives rise to at most one computation,
3. ViO, s,. F(si-t) then p is said to be a deterministic program.

. CNote that a program that is not a halting program is not4. C is a proper initial subsequence of no other se- ncsaiyaloigporm si a aesm
quence meeting conditions 1-3 necessarily a looping program, as it may have some

computations that do halt and some that do not halt.

Note that the ith snapshot is one of the elements yielded A deterministic halting program, which is actually not
by applying the transformation F to the i-1ih snapshot. the subject of this module, is said to implement a
Herein lies the nondeterminism; in each step of each function because for each input, the program yields a
computation, the next step is chosen from among pos- unique final snapshot from which a unique output may
sibly several candidate next steps. Condition 4 assures be extracted. A deterministic non-halting program is
that no finite subcomputation of a computation is con- said to implement a partial function; one assigns
sidered a computation; thus infinite computations must undefined as the result of the function for those inputs
be carried out forever, giving rise to non-halting computations. A nondeter-

Because of this nondeterminism, one may view an ministic halting program can also be considered a func-
NDISM M as giving rise to a tree of potential computa- tion, on the inputs to sets of all possible outputs for the
tions from each initial snapshot, as Figure I illustrates. inputs. A nondeterministic non-halting program can
(All figures and tables are gathered at the end of this likewise be considered a function to sets some of which
document starting on page 100.) The point in the far may contain undefined as elements corresponding to

non-halting computations.

4 SEI-CM-27-1.0



Formal Specification and Verification of Concurrent Programs

A looping program considered as a function is a very Any property that one may wish to verify about con-. uninteresting function, as all of its results are undefined current programs may be categorized according to the
or singleton sets containing undefined. More usually, nature of the property involved The property may
looping programs are called s'stems. Normally an usually be classified as a saJen, property or a livenes.s
operating system is supposed to be a looping program. property. The difference between them, as described in
In reality, operating systems are really non-halting, detail below, is in the nature of the quantifiers used
non-looping, nondeterministic programs. Their halting over snapshots in their formal expression. 1'ili% classi-
computations are considered erroneous! A challenge of fication captures most of what is desired to prove.
program verification is to prove that programs that are There are other properties that cannot be classified as
supposed to implement functions do and that programs either safety or liveness properties.
that are supposed to implement systems do. For each property described below, enough of a formal
In the usual formal model of concurrency, the snap- statement is given to show why it is a property of the
shots contain some structure representing processes, type claimed. The only quantification shown explicitly
each of which is in one of the three abstract statuses, is that over snapshots. The assertions in the scopes of
awake, asleep, and terminated. When F is applied to a these quantifiers are given in English. These assertions
snapshot si, the resulting set of snapshots contains one may obviously contain implicit quantifiers, but none of
element for each awake process in si. The result snap- them are over snapshots; rather they are over elements
shot for a given process shows the changes caused by within a snapshot. Such quantification does not change
having that process execute one instruction. Thus the nature of the property.
choosing an element of F(s1) amounts to selecting one All the kinds of properties are described in terms of the
process in si to have it execute one instruction. The NDISM model introduced earlier.
formal model then models the concurrency with an in-
terleaving at the level of one instruction. 1. Safety Properties

The question can be asked "Is this interleaving model A safety property is one that can be expressed in an
an accurate depiction of concurrency that may include assertion involving universal quantification over
genuine parallelism?" To see that the answer is "Yes!" snapshots. Examples, in the abstract, of such
observe that if the processes shared no data objects properties are those that can be expressed thusly

* (communications channels included) the' no process * P is true in all snapshots, i.e., Vs in C(P(s))
can affect another, and the results of a computation * P never happens, i.e., VsinC(-,P(s))
involving these (independent) processes is indistin-
guishable from those of any, even serial, ordering of * Whenever P happens Q is true, i.e.,
the processes. The only way processes can affect each Vs in C (P(s)DQ(s))
other is through shared data objects. As an example of Note that the C mentioned is implicitly universally
access to shared data, consider now two processes, quantified over all computations of the program
being run by two processors, trying to write to the same about which the property is being proved. The pro-
memory location. In all machines known to this au- gram together with any set of input files determines
thor, there is some hardware arbiter that prevents two an initial snapshot which, in turn, determines a set of
processors from writing to tie ,iiie memory location computations of that irinial snapshot.
at the same time and serializes these writes so that one
is finished entirely before the other begins. The net Historically these properties are quite familiar, be-
effect will be the effect of the second write. This arbit- cause they can be demonstrated by inductive means
ing occurs on every device and guarantees that every [King80, Cousot82, Manna72]. That is, they are
possible interaction of otherwise independent processes shown to hold for initial snapshots and then they are
is serialized to the level of the machine instruction, shown to be preserved by the transition function F
Thus, any possible concurrent, even parallel, behavior of the NDISM. They are vciy ottca c.Apzksscd with-
can be simulated by an interleaving model that inter- out the quantifier, relying on implicit universal
leaves at the instruction level. This unit of interleaving quantification of free variables.
is called the granularity of the interleaving. Thus, it is a. Deadlock Freeness
legitimate to use an interleaving formal model to repre-
sent concurrency. In no snapshot are all processes asleep or ter-

minated, i.e., Vs in C, there is at least one awake
If. Properties of Concurrent Programs process in s.

Recall the discussion about safety and liveness b. Mutual Exclusion
properties in [Bustard9O]. Here, this discussion is
recast in terms of the NDISM model. Later, when In no snapshot are two or more processes in their. other formulations of these properties are given in critical region, i.e., Vs in C, if one process in s is
other formal models, these formulations will be seen as in its critical region then no other process in s is
expressing the same ideas. in its critical region.

SEI-CM-27-1.0 5
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c. Data Security I. within every n steps, with n fixed, the van-
ables decrease with respect to that ordering,In no snapshot arc there unauthorized disclosures, and

i.e., Vs in C, if a process in s is writing data to a 2. that the variable has reached the miVmum im-
file in s, then the data it is writing is fromn pli. that the iesired p etyhelds
object in s to which the process has access. plies that the desired property holds

Since a well ordered set has a least element, it is
d. Proper Termination inevitable that the computation will eventually reach

If and when the computation halts, then all pro<- a snapshot with the desired property One typically
s anwen ther compated(ie.,one areasltsehenp) ishows that the variables decrease by appeal to some

esses are terminated (i.e., none are asleep), i.e., safety, i.e.. invariant, property. There is the need for
Vs in C, if F(s)=O then no process in s is asleep. considerable creativity in finding variables, some
Note that if F(s)=W, then no process in s can pos function of them, and a relation over the range of
sibly be awake. Were there an awake process intht unto tat low net cryottepoo. t
s, it would be selected for execution to yield a should be c lea om th cpxy of the above

nextsnaphot.should be clear from the complexity of the abovwe
next snapshot. description that showing liveness is considered

e. Partial Correctness much harder than showing satcly

If at the beginning of the computation, the input is Because proofs of liveness properties usually require
legitimate, and if the computation halts, then the showing some invariant properties along the way, it
output is what is required. In other words, if at is no problem if the existential quantifier is within
the beginning of the computation, the input is the scope of a universal quantifier.
legitimate, then in any final snapshot, the output
is as required. In other words, if the input of a. Farness
s0 inC satisfies input condition I and VsinC, if In all snapshots for all ready processes, eventually
F(sd)=0, then the output of si satisfies output con- the process will become running; i.e., Vs, in C, for
dition 0. all 1-, a ready process in s, 3s, in C. such that j >i

Alternatively if at the beginning of the compu- and 11 is running in S1.

tation the input is in the range of the function to b. Receiving Requested Data
be implemented and if the computation hahs, then
the output is the result of applying the function to In all snapshots, if a request for information has
the input, i.e., if the input i of soinC is in the been received, then there is a future snapshot in

domain of the function f, and Vsj in C, if F(sj)=O, which this information, if legitimate to do sc. is
n te released, i.e., Vs,inC, if Ii in s, has requested

then the output o of s~i is such that o~fti). data from an object o in s, and 11 has access to the

Note that the second definition accommodates object o, then 3s1 in C, such that j Ži and i- in s,

nondetermmistic functions. receives the data.

2. Liveness Properties c. Sent Message Will Arrive

A liveness property is one that can be expressed in In all snapshots, if a message is sent. then in some
an assertion irwolving existential quantification over future snapshot, the message will be received. i.e.,
snapshots. Examples ot such properties are those Vs, in C, if a message m is sent in s, then 3s, in C.
that can be expressed as the following: such that 2:i and m is received in s,.

• There exists a snapshot in which P is true, i.e.,
3s in C (P(s)) d. Each Request Serviced

* There exists a snapshot in which P is not true, II. 0di snapshots, if a serice is requested. then
i.e., 3sin C(--P(s)) there is a future snapshot in which this request is

* Whenever P happens then at some later time Q is granted, i.e., Vs, in C, a service is requested in sr
true, i.e., Vsi in C(P(s)(Os, inC (j>i^Q(sj)))) then ]sj in C, such that j>-i and the request is

The difficulty with liveness properties is that they granted in s,.
cannot be demonstrated directly by the familiar in-
ductive methods. They must be demonstrated by
showing that each step in the computation brings the Eventually the computation halts, i.e., 3s, inC,
computation closer to a snapshot in which the de- such that F(s.)=0
sired property is true. One typically finds a well
ordering (that is, a partial ordering with a least f. Total Correctness
element) |Manna74l and program variables, or a
function thereof, such that the variable or function If at the beginning of the computation the input is
values are related by that well ordering such that

6 SEI-CM-27-1.0
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legitimate, then eventually the computation halts behaviorally, that is by describing what happens dur-
and the output is what is required, i.e., if the input ing its computations. In every operational model is
of soin C satisfies input condition 1, then 3s, in C, lurking an N1)ISM of some form. That is, in every
such that F(si)=0 and the o,-put of ýi satisfies operational model one will find a description of the
output condition O. snapshots or states, a description of initial snapshots,

and a description of how to obtain a next snapshot
Alternatively if at i' beginning of the compu- from the current one. Some operanonal models are
tation the input is in the ranige of the function to described with programs and others are described by
be implemented, then the computation halts and othe; formal means-
the outr'ut is the result of applying the function to
the input, i.e., if the input i of s.in C is in the a. Description of NDISM by Program

, 1omain of the function f, then 3s, in C, such that When one uses a program to describe an opera-
F(s.)=0 and the output o of s is such that ocfli). tional model, one is in effect writing an inter-

preter program which computes from initial snap.
3. Others shots. The snapshots are described by the

These properties cannot be described either as uni- declarations of the data structures needed by the
versal quantification over unquantified snapshot interpreter; the initial snapshots are described un-
assertions or as possibly universally quantified ex- plicitly as that configuration of the snapshot data
istential quantification over snapshot predicates. A structures that are accepted by the interpreter as
non-exhaustive list follows: being legitimate to begin a computation. The

transformation is defined implicitly as what the
"* P happens infinitely often - for all snapshots, interpreter does in modifying one snapshot into

there exists a later snapshot such that P, i.e., the next. Usually, in the interpreter there is a
Vs, in C(03s in C(Q>iAP(Sj))). single identifiable point at which the configura-

"• Whenever P happens, within n steps, Q happens, tton of the snapshot data structures are considered
i.e., Vs, in C(P(si)D3sj in C (j>i+nAQ(S))). to form a new snapshot; in a normal interpreter

*Whenever P happens, within x seconds, Q hap- this would usually be at the top of the loop in
pens, that is, Vsi in C Q(P(s,)3sj in C which instructions are fetched and executed. Ex-
p(iTiete(se),Tise(si)li^Q(s())) amples of these kinds of definitions are the orig-

( inal and several later LISP definitions
* The transition satisfies constraint P [Locasso80, [McCarthy65] [Reynolds72J and the definition of

Scheid86a] - every transition satisfies P, i.e., Euler [Wirth66]. Such definitions are in general
Vs,,s, I in C(P(s1 sj)) hard to use for verification. The transformation

111. Formal Models function is only implicit. Thus, one is forced to
use the formal methods of verifying normal, se-

This section describes several well-known formal quential program behavior [Berztiss88] just to
models of concurrency. Each of these is intended for show that the interpreter is doing what it is
and has been used for formal verification of properties claimed to, so that one can show that the inter-
of concurrent programs. A later section details the preted program is doing what it is claimed to. An
proofs that have been done with each. In this section, NDISM in which the transformation function is
each is described in terms of its relation to the NDISM expressed more directly is preferable.
model described in Section 1. Two considerations dic-
tated the choice of the NDISM as the model of Section b. Formal Mathematical Descriptions of
I. NDISMs

I. The NDISM, which turns out to be an operational The other languages for writing NDISMs have
model, is one of the most fundamental in that it more mathematical notations for expressing the
can capture all known phenomena, it corresponds transformation in a manner that allows a more
to what is implementable and thus what will be direct use of parts of its definition in pr•ofs-
found in implementations, and it can be used to These languages provide some notation for de-
model all the others. scribing the set of all snapshots and the set of

2. In fact, models similar to NDISMs are used by initial snapshots as a subset of the set of all snap-
other authors to describe their formal systems. shots. In these languages, snapshots have been

For each formal model, the description includes defini- described as trees with labeled nodes and/or
tions of the basics and a brief discussion of what can be edges, lists, ordered tuples, sets, functions, etc.
proved using it. There are a number of different ways of speci-

O I. Operational - NDISM fying the F of a particular NDISM. These ways
may be classified by a number of different dimen-

Operational models attempt to specify the system sions. There are direct methods in which F itself

SEI-CM-27-1.0 7
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is described and them are indirect methods in memory location by one, the statement might
which a program P which computes F is de- indeed be compiled into a single indivisible
scribed. A program P computes F if and only if step,
each computation of P is a computation induced +1 X
by F and vice versa, Lamport jLamporl8Oa] has suggested a way to
(i) Direct Description of F of NDISM indicate indivisible operations at the source

language level by use of angle brackets, "'<, >",
Within the former methods, there are two dif- around indivisible steps. A decomposition
ferent approaches to directly describing F: equivalent to the first translation above would

"• Write a function which given a snapshot be specified as
yields the set of next snapshots, and <X:=<<X>+1>>

"* write a predicate satisfied by legitimate
pairs of successive snapshots. while a decomposition equivalent to the second

In these approaches of direct specification of F, translation would be specified as

it is easy to see the individual snapshot transi- <x:=x+l>
tions but hard to visualize a program P com-
puting the transitions. It may, however, be ex- c. Redundant Specification of Properties
plicitly stated along with the NDISM that the In all of these methods of specifying F, it is some-
transition F is not intended to represent primi- times allowed to specify non-algorithmic
tive or indivisible, transitions of the specified properties as a redundant description of what the
system. In this case, one cannot know the indi- computation is supposed to be doing. For ex-
vidual primitive snapshot transitions. Some ample, one may have specified in F a database
examples of languages of the First kind are system in which each transition represents an up-
VDL [Lucas6g, Wegner72], and SPECIAL date of or a query to the database. The redundant
[Silverberg79]. Some examples of languages of description might describe integrity properties
the second kind are Ina JoTMI [Locasso8O, that the data of the database always satisfy. The
Scheid86a], and AFFIRM [Thompson81]. purpose of this redundant specification is to allow

(ii) Indirect Description of F of NDISM checking or even verification that the operations
as specified preserve these properties.

Within the latter method, any programming

language, either of the implemented or Redundant Properties
gedanken variety can be used. In the gedanken In the direct methods of specifying F, one might
variety, e.g., the language of the Euher defmi- give assertions that are to be satisfied by initial

tion [Wirth66], one ftn ds languages with sets as snapshots, by all snapshots, and by final snap-
data types and not-so-easily-implemerited set shots. In the indirect methods, one might give a
theoretic operations, including quantification, number of program point-assertion pairs such that
as operations. In these methods of writing a every time execution gres through a point, its
program P, the program computing F is ex- assertion is to hold. For example, consider a pro-
plicit, but it is hard to see the individual transi- gram to sort the elements of an array into ascend-
tions. Indeed, it is usually left unspecified as ing order. Attached to the entry point of the out-
to what are the indivisible operations in order ermost loop, which steps through the array in as-
to give the compiler the right to choose the cending order, might be an assertion claiming that
primitive operations. For example, for the portion of the array between the beginning

x :=x+1 and the element indexed by one less than the cur-

the indivisible steps depend on the machine for rent loop index value are sorted and are less than

which the code is generated. Usually the code all elements in the rest of the array.

is something like Many of the methods of ver.fying what systems
LD 1, or programs do consists in verifying that the F or
AD 1,=1 P are consistent with their redundant descriptions.
ST ix , Typically for the direct methods of specifying F,

resulting in three indivisible steps for the as- an inductive approach is taken to prove that a

signmenL On the other hand, if the machine specified property holds in all snapshots. It is

has a special instruction for incrementing a shown that the property holds in all initial snap-
shots, and then it is shown that if the property
holds in any snapshot S. then it holds in any snap-
shot yielded by applying F to S. 0

'Ina Jo i-. a trad&mark of Unisys CQxponttiro.
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Safety Properties If F is specified directly, the usual interests areO ~either of the following:
In principle any expressible property can be eiVerof certainhe

proved in these operational models, However, Verify certaM n properties hold about oie
because of the inductive nature of the typical ND1SM specified by F, or

proof, they have been used primarily for safety * verify that an implementation of the
properties. It is quite straightforward to express a NDISM is correct.
safety property as an aszeruon that must be true in
every snapshots. One proves the property induc- Itf one is to verify a property of the ND)ISM
tively by showing that all initial snapshots satisfy itself, one states the property in the language of

-ae assertion and then showing that if it holds at the NDISM, say as an asserion involving dc-
any sn ,it will hold again at any next sp- ments of the snapshot or as a property that Faysnapshot, mustwsatisfydorgaicombtnationnoftboth The

shot, Showing the latter amounts to showing that must satisfy or a combination of ver. Then
the transformation preserves the holding of the the assertion is proved by induction over the
asserion. length of the computation,

Liveness Properties If one is to prove that an implementation of the
NDISM is correct, then one must first specify

Generally, liveness properties are not specified the implementation either as another NDISM
and proved. In some cases, the formal basis is not or as a program P implementing the compu-
even in the model. For example, in the Ina Jo ration induced by F.
language, there is explicitly no requirement that
any transform (the transformation of the NDISM If the implementation of an NDISM Md i
is the disjunction of the transforms) be done. All given as another NDISM M ,'4 then the proof is
one is allowed to show is what will happen if a carried out by showing that MK simulates Md
transfc.m is done. Moreover, at any snapshot, by a proof technique [McGowan7l, Berry72]
there is no guarantee that any transform will be that is similar to that used in automata theory
applied. In any case. even if the necessary as- work.
sumptions are present, tiveness properties requir,.
existential quantification over snapshots. This is One shows that for each computation Cd in M,
considered more difficult than plain universal there exists a computation C in M which be-
quantification. Indeed if one has only universal haves the same way. By behaving the same
quantification over snapshots, one is not obliged way is meant that there is a function W: I--+Id
to work with any quantification over snapshots; which builds each snapshot of Cd from its cor-
the properties that hold on these ur. .,vrsally quartn responding snapshot in C . That Wt has this
tified snapshots are proved invariant by inductive property is shown by mathematical induction
means. In fact in the cases of the Ina Jo language, on the length of the computation Cd.
AFFIRM, and SPECIAL, the accompanying in-
teractive or semi-automatic proof system simply Many times, C5 simulates Cd in a lock-step
cannot handle quantification over snapshots; and snapshot-by-sr, pshot fashion. However, many
there is no way to express them in the language of times, this lock-step simulation is not possible;
the system. it takes several steps in C . to implement a

Operational models can handle both halting and single step in Cd. The meaning of correspon-

looping programs. Unlike a functional treatment dence can be changed to allow W to build only
which assigns undefined to each non-halting com- some of the snapshots of Cd out of only some
putation, operational models consider the se- of the snapshots of C8 . The constraint is that a
quence of snapshots in a computation as the gap of no more than some fixed number is al-
meaning of any initial snapshot. Hence non- lowed between successive building snapshots
halting computations are distinguishable by the in C8 and between successive built snapshots
.adivilual infinite computation sequences. in Cd.

d. Formal Verification of Redundantly The lock-step situation is illustrated in Figure
Specified Properties 2. The Support Materials for Concepts of Con-

current Programming has a full formal defini-
There are a number of approaches to verifying tion of simulation of one NDISM by another.
properties of NDISMs. The approaches depend
on how the F of the NDISM is specified, either
directly or indirectly.

(i) For Directly Specified F of NISM 4The subscrip -'d" signitie.i implementeD, and the sulhcript "g" signi-

fies implement arG.
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If on the other hand, the implementation of the rect, and it is not required to be able to do
NDISM is not another NDISM, but is in fact them all, then standard methods for non-
code in some programming language, then two concurrent programs are to be used. These
possibilities exist: are outside the scope of this module and the

* The whole NDISM is implemented by a reader should consult [Berzliss88] for more

single program P. The correctness issue is details.
whether P implements the whole of F down (2) NDISM Implemented by a Collection
to the nondeterministic choices and the 1o- of Invokable Procedures
tential unbounded computation length.

* The F can be decomposed into a collection In the second possibility, the problem his
of individual operations, each of which been reduced to showing the correctness of a
does one of the possible transformations, collection of non-concurrent subroutines in-
The operation of F consists, in each appli- plementing non-concurrent transitions,
cation, of selecting one of these transfor- whose only non-determinism is for the pur-
mations and executing only it. In this case, pose of allowing any one of several possible
the usual implementation is built of a col- results. The concurrency has been pushed
lection of procedures for the individual down into the process of selecting which of
operations and of a previously cooked shell the available transitions will be invoked
which chooses the right operation at each next. If one verifies that the procedures do
step and invokes the corresponding proce- implement the transitions, then to the extent
dure. The correctness issue is then whether that the basic invoking shell works, the col-
the individual procedures implement the in- lection of procedures plus the shell imple-
dividual operations, the shell being ments the NDISM. The meaty part of this
presumed correct. verification has been reduced to the standard

In either case, one ends up using the various non-concurent variety which is outside the
program verification techniques, such as that of scope of this module.

Hoare [Hoare69) in which one shows an actual (ii) For Indirectly Specified F of NDISM
program to satisfy certain properties
[Berztiss88]. If F is specified indirectly with a prtgram P,

the interests are the same as for a directly spec-
(I) NDISM Implemented by Single ified F, i.e.,

Program - to verify that an implementation of the

In the first possibility, if the NDISM truly NDISM is correct, or
exhibits non-deterministic behavior and the a to verify certain properties hold about the
non-determinism is part of the specified be- NDISM specified by P.
havior, e g., to specify concurrency as op-
posed to possible allowed non-concurrent It is rare that one has to prove the correctness
computations, then the program will have to of an implementation of an NDISM specified
exhibit the same non-determinism in the by a program, particularly when the specifying
form of concurrency. The NDISM specifi- program is executable. However, when it is
cation will have to be converted somehow done, particularly when the specifying program
into a specification that is used by one of the is not executable, it is done by proving the im-
various methods to prove program behavior. plementing and the defining programs equiv-
If the NDISM halts for all desirable corn- alent. This proof can be done by showing that
putations, then input, output, and most likely * both compute the same function,
invariant assertions will have to be gener- * both satisfy the same formal specifications,
ated to describe the program's behlvior. If albeit input/output or temporal logical,
the NDISM intentionally does not halt for
all desirable computations, then output * a series of correctness preserving transfor-
assertions are useless, as they vacuotusly mations (Balzer8l, Balzer85] modifies one
hold. Moreover, invariant and so-called (usually the defining one) into the other, or
"eventually" assertions, i.e., liveness asser- e one is compiled into the other.
tions, will have to be generated to describe
the program's behavior. Then the chosen Verifying that certain properties hold involves
proof method is used to verify that the pro- specifying these properties in the foim of asser-
gram has the desired behavior. If on the tions which are attached to the program as a
other hand the NDISM's non-determinism is whole or to various places in the program, de-
merely to state allowable computational or- pending on the method being used. Then thc
ders, any allowed order is considered cor- code is proved consistent with the assertions by
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the method being used. For example, if one is objects. However, one can express proper ter-
using Hoare logic, the assertions will be mination as termination, i.e., having no fireable
sprinkled around the program, while if one is node (no node has tokens on all of its input arcs)
using temporal logic, the assertions will be at- while having less than some fixed number of
tached to the program as a whole. Assertions tokens on each arc. For such control flow
attached to the program as a whole describe schemes, proper termination is even decidable.
properties of the program's computation as a 2. Axiomatic
whole in terms of particular snapshots that ex-
ist at various times during the computation. Axiomatic systems for dealing with concurrency
Assertions attached to points in the program provide three main ingredients,
describe the snapshot at any time execution 1. an assertion language for describing snapshots
passes through that point. at arbitrary points in a program's execution,

e. Graph Models of Concurrent Computation usually the language of first order predicate
calculus with equality,

The various graph-based systems such as control- 2. a set of axioms for describing the behavior of

and data-flow schemes, Petri nets [Peterson8l], pitv statem es,

etc. are also operational. However, the language primitive statements,

for expressing the parts of the NDISM is pictorial. 3. rules of inference for combining behaviors of
Associated with each is a description of how a constituent statements into behaviors of the
diagram is to be interpreted as specifying a corn- containing constructs such as loops, condition-
putation. Usually this description says something als, programs, etc.
to the effect of Hoare Logic and its Limitations

Select some process node, all of whose in-
put arcs contain tokens. Fire that node. Axiomatic systems for dealing with concurrency are
remove one token from each input arc. and generally based on Hoare's logic [Hoare69] or
deposit one token on each output arc. Dijkstra's weakest precondition logic [Dijkstra76].

That description may be stated in natural lan- The main difficulty in using these logics directly for
guage, some programming language, some math- dealing with concurrent programs is that because of
ematical language or some mixture of all of these. the potential of interference, their axioms do not
Generally what the processes in the nodes do is work. For example, the axiom for assignment is
left unspecified or, to use the terminology, of the
models uninierpreted. Those that model data P1 x:=e {P)
flow as well as control flow state which data ob-
jects are used, but in the uninterpreted domain, which when adapted to the assignment statement

they say nothing about the actual values of the x :=x+ 1
data. Bccause there are no interpretations as to
what the processes do, the set of computations under the condition that
that can be described is limited. One uses such x=1
models strictly to focus on the concurrency and prior to the assignment yields
synchronization issues. The philosophy behind
these uninterpreted models is that if a property {x=1) x:=x+1 {x=2).
can be proved of an uninterpreted model then it However, as mentioned in Section II.3.d, when this
holds for all interpretations of that model. One assignment is executed in the presence of other in-
might be able to prove mutual exclusion for a terferinmg processes, the ne ruesed to compute x+ 1
program just on the basis of its control structures, may not be the same as is mentioned in the input
independent of any values of any objects. Be- assertion.
cause of the limited functionality in the models, it
is generally easier to carry out proofs; there are The various extensions to the axiomatic logics deal
fewer operations to consider. On the other hand, with this interference problem in different ways.
this lack of functionality may prevent proving The axiomatic systems surveyed are
properties that hold only because of the values of * the Owicki-Gries extension of Hoare logic,
objects and not strictly because of the structure of
the programs. * the Lamport extension of Hoare logic, and

o the Lamport extension of Dijkstra's weakest
Because of the limited functionality, not all precondition logic.
properties expressible in other operational models
are expressible in these pictorial models. For ex- Owicki-Gries's Extension of Hoare Logic
ample, it is impossible to demonstrate partial or
total correctness without knowing the values of Owicki and Ciries [Owicki76a, Owicki76b] use ordi-

nary Hoare logic axioms but put non-interference
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requirements into the antecedents of rules of in- Because these axiomatic methods prove that asser-
ference. For example, the rule they give for the tions which are attached to specific places in the ___

parallel-execution statement program are invariant, they really address only W
resource ri(variable list),..., rm(variable list) safety properties.

cobegin S] II ... II S,, coend Dijkstra's Weakest Precondition Logic
is as follows. Dijkstra introduced a variation of the Hloare

If (P}ISI{ (Q) and ... {IPn)Sn(Q, and no variable axiomatic system when he introduced a proof-
directed discipline of programming [Dijkstra76]. Thefree in P, or Q1 is changed in Sj with i•J, and all approach, that of weakest precondition, attempts to

variables in 1(r) belong to resource r, then find the weakest conditions under which a given

{PI^... ^APAl(r)) statement is guaranteed to halt and to yield a snap-
resource r,(variable list). rm(variable list) shot satisfying a given postcondition. For example,

cobegin Si 11 ... 11 Sn coend wp(x:=x+ 1, x=2)
(Q{ . .^ .AQAl(r)). is
This rule says that in the case of parallel execution x=l.
of statements, the normal axioms and rules may be
used for the individual statements if there is no because only when x=I is x:=x+l guaranteed to
chance of interference between them. The rule puts halt and yield x=2. The general rule for the assign-
upon the prover the obligation to show non- ment statement is
interference.

Lamport's Extension of Hoare Logic wp(x:=e,P)=-e,
the obvious correspondent to the Hoare rule,

Lamport takes sort of an opposite approach, of
changing the meaning of the assertions and the (e)x.=eIP}.
axioms for primitive statements so that they catch
interference in a slightly different way. In the Lam- There is a dual for the weakest precondition called
port logic, the strongest postcondition. The strongest postcon-

1P} S I Q) dition, sp(S, P), of a statement S and a precondition V
P is the strongest condition describing any snapshot

means, "if execution is begun anywhere in S with yielded by the execution of S from any snapshot
the predicate P true, then executing S will leave P satisfying P.
true while control is inside S, and will make Q true if
and when S terminates." Thus, Lamport's treatment The Hoare rule is a partial correctness rule, as its
of the assignment meaning carries no requirement that the statement

halts. It provides only that if the statement halts then
x :=x+ 1 the postcondition is true; if the statement does not
under the condition that halt, then any postcondition is accepted as vacuously

true. The weakest precondition formulation, on the
X=I other hand, finds preconditions which guarantee

prior to the assignment is halting as well.

(x=IA[after('<x+ 1>')Dvalue('<x+ 1'>)=2]) Lamport's Extension of Weakest Precondition
<x>:=<x+ 1> {x=2) Logic

In this, angle brackets are used to surround opera- Recall that most concurrent programs are systems
tions that are atomic, i.e., cannot be interrupted and that are supposed never to halt. For such programs,
are guaranteed to be done within a single NDISM the weakest precondition would be false for any
step both in the abstraction and in any implemen- postcondition. Therefore, Lamport has developed a
tation. The rule says that if x starts off as 1, and variant of the weakest precondition approach that is
after doing x+1 the value of that subexpression, more useful for concurrent non-halting systems. For
x + 1, is still 2, then the assignment causes x to get 2. concurrent programs that do not halt, the interest
In other words, if there was no interference with x would be to prove some invariant property, i.e., a
during the assignment, it behaves as an assignment safcty property. Accordingly, Lamport [Larmport871
in the normal nonconcurrent situation. Of course, it defines the concepts of weakest invariant, win, and
is on the prover to demonstrate that there is no inter- strongest invariant. sin, and gives rules for deriving
ference. In this sense, this approach is equivalent to them for programs given the wp, sp, win, and sin for
Owicki's. constituent statements. 0
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I is an invariant of S if n p-'- p•

Lamport then defines S as leaving an assertion I
invariant if and only if It is useful to define some other operators that cor-

IDwp(S,l); respond to often used temporal relations. One such
useful relation is "leads to" (--).

it is also the case that

sp(S , I) n I. 
A ->B=-A D•B

With these temporal operators it is easy to express
Then, win(SQ) is the disjunction of all predicates I both safety properties and liveness properties. To do
such that ID Q and S leaves I invariant, and these, it is necessary to let INIT be an assertion that
sin(S,P) is the conjunction of all invariants I of S is true at all and only proper initial snapshots; that
such that P c n 1. assertion is needed to anchor the time to the start of

the computation rather than to any arbitrary current

Lamport is able to extend the Owicki-Gries method snapshot.
to be able to reason about programs for which the Expressing Properties with Temporal Operators
atomic operations are not specified. However, note
that the weakest and strongest invariants do not give Recall the general safety properties intr i...c.. in
the power to work with liveness properties. Section II.4.a.i.

3. Temporal Logic * P is true in all snapshots, i.e., JNFIDDP

Temporal logic [Pnueli77, Pnueli81] is an attempt to * P never happens, i.e., INITnF"-]--,P
deal with the logic of computation sequences with-
out succumbing to the difficulties of quantification. * Whenever P happens Q is true, i.e.,
One is able to talk directly about sequences of snap- 1NITD[-](P'•Q)
shots, all snapshots, and the existence of a snapshot
that have desired properties. The direct expression Recall also the general liveness properties intro-
is based on an axiomatized logic of time that ob- duced in Section Il.4.a.ii.
viates the necessity to quantify over snapshots. *u ee in acsn apshota i n.* There exists a snapshot in which P is true, i.e.,
In temporal logic, one: is provided temporal INITD P
operators, "henceforth" ( _] ) and "eventually" (0) * There exists a snapshot in which P is not true,

which can be applied to the standard assertions i.e., INITDO 0-,P
about snapshots. While they can be defined relative 9 Whenever P happens then at some later time Q is
to each other axiomatically, any model of them tue, i.e., INIThII(P--Q)
makes use of some underlying NDISM. Hence, they
are described here in that manner. Temporal logic can even capture some properties

Basic Temporal Operators that are neither safety nor liveness, such as the con-
cept of P happening infinitely often.

Temporal semantics talks about assertions that hold
true in the current snapshot or all or some future INITflDbL P
snapshots. Therefore, it will be necessary to identify
which snapshot in a computation is the current one. Provided with the temporal logic is a system of
The current snapshot will be called sc in the follow- axioms and rules of inference for reasoning directly
ing discussions. in the temporal domain without having to fall back

-- , on a model. In order to be able to prove things
SP='vs,(i >c-zP(sc)) about a program using temporal logic it is necessary

to provide a temporal logic-based semantics of one's
0 pm3si(i cAP(sc)) programming language. Besides saying what each

kind of statement does, the semantics provides a ba-
Note that occurring henceforth includes occurring in sic liveness property for each primitive statement
the current snapshot. That something eventually oc- that says that it eventually finishes. From this live-
curs includes the possibility of it occurring in the ness property and the semantics of the various con-
current snapshot. structs, the prover is able to prove liveness

SJust as the universal quantifier and the existential properties of whole programs.

quantifier are duals of each other so are [L_ and 0.
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Linear and Branching Time the correctness of programs implementing a number
of network protocols and resource allocation sys-

There are, in fact, two alternative models of time in temns.
temporal logic, linear time and branching time.
Both are intended to be used with nondeterministic In VALET, processes and monitors are written in
computations. Recall in Section 1, that two kinds of the form of separate modules that may see and in-
nondeterminism were identified, the kind that yoke each other. The form of a process module is
models concurrency and the kind that is used for similar to that of a Pascal program. It declares local
automata-theoretic investigations of algorithms, variables and has a body consisting of a sequence of
Linear time corresponds to the concurrency- statements which may contain calls to procedures
modeling nondeterminism, and branching time cor- offered by the monitor modules Generally, the
responds to the automata-theoretic nondeterminism. body of a process module is an infinite loop. A
The temporal logic described above is in fact linear monitor module declares local variables and a col-
time, as it was stated that lection of procedures invokable from outside the

monitor, in fact, in general, no module's local var-
0P=-s ý ]--1P ables are visible from outside the module. The

semantics of these modules is that all process mod-
That is, if it is not true that P never occurs, it even- ules are invoked to run concurrently at the beginning
tually occurs. This statement is true only if there is of the computation. All monitors are invoked also in
only one possible future, namely a single path down order to have their initialization code executed.
the tree of computations. "Not occurring never" Then the monitors sit and wait until monitor proce-
means that it must eventually occur. However, in dures are called by the processes. The operational
branching time, automata theoretic nondeterminism, rule is that no more than one process can be execut-
the fact that it is not true that P never occurs means ing the body of any procedure inside a given moni-
that there exists some computation in which P does tor. The at most one process that is executing inside
occur; it may not occur in all possible futures, i.e., a monitor procedure is said to currently own the
all possible computations from now. The formal monitor.
treatment of branching time is to distinguish be-
tween the "eventually" and the "not never" For a particular system involving process and moni-
operators. The former has the meaning implied by tor modules one gives specifications as follows for
the operational model and the latter is the dual of the each module:
"henceforth" operator. However, since branching 1. For each process, one gives an invariant and a
time is not really a good model of concurrency, it commitment.
will be discussed no more in this module. 2. For each monitor as a whole, one gives an in-

Another Temporal Operator variant.
3. For each monitor procedure, one gives a ser-

There is a third temporal operator used by some au- vice specification and a commitment.
thors, e.g., Ben-Art, Manna, and Pnueli [Ben-Ari8l]
and Hailpern (Hailpern82l, namely the "next' (o) op- Invariants
erator. It applies its argument predicate to the next
snapshot. Among the invariants above, there are two kinds

which are somewhat different from the more
oPDP(sc.t) familiar loop invariant, which is true each time con-

As the use of o implies an explicit time scale or an trol passes through the loop cut point and which may
explicit sequential progression of time, the tendency not be true at other points in the loop. A loop in-
is not to use it. Using it would overspecify a compu- variant would be specified as the following kind of
tation to the point of saying that a certain event has safety property:
to happen in the next snapshot and would not be u i I
acceptable if it were implemented as a multi-step _.J(atCutPoint')

procedure. where I involves only variables visible at the cut

Temporal Logic Specification of Concurrency point. The invariant of a process is a property of
variables visible to the process which is true at all

Hailpern's PhD. thesis jHailpern82] defines a use- times. It would be specified more simply:
able version of temporal logic, describes a program-
ming language, VALET, with processes and moni- -[]()
tors, gives a temporal logic semantics for the lan-
guage, and demonstrates how properties of programs where I involves only variables visible to the proc-
in this language may be specified and verified. ess. A monitor invariant is a property of the local
These ideas are then applied to specify and verify variables of the monitor which is true at all times,

except possibly during the execution of the body of
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a monitor procedure. This exception allows monitor monitor procedure bodies are verified by composi-.procedure bodies to make temporary changes that tion of the liveness assertions of their constituent
may invalidate the invariant so long as they restore statements.
the holding of the invariant upon exit. For example,
in a monitor which keeps a linked list of the Advantage of Temporal Logic
resources it is managing, the invariant would de- The advantage of temporal logic in working with
scribe a well-formed linked list. The monitor proce- conc, rrency is that temporal logic expressions read
dure to remove an item from the list would tem- more like the natural language temporal statements
porarily invalidate the invariant as it performed the than do the equivalent snapshot quantified asser-
pointer manipulations to rebuild the list after remov- tions. For example, the temporal logic expression
ing the item. However, after the list is rebuilt, the
invariant would once again hold. It is safe to let the sent(M) :) # 0 (arrive(M))
monitor procedures invalidate the invariant tem- captures the natural language statement
porarily because it is guaranteed that at most one
process can be inside any procedure of a monitor at "If a message is sent then eventually it will arrive"
any given time. Therefore, it is not possible that any much more naturally than does
other process's concurrent operation can mess up the
list while it is not in proper form. It is on the moni- sent(Ms_) : 3si(>_ cAarrive(M, s))
tor writer to insure that all invariants still hold when- Certainly, the temporal logic expression is more
ever a process can relinquish ownership of the moni- readable than is the quantified assertion. This more
tor, namely upon a wait statement or upon return natural flavor of the temporal logic allows it to be
from a monitor procedure. It is this invariant that is more abstract concerning the passage of time. Even
called I in the rule for the monitor procedure body. if the logic is that of branching, discrete time, one

The invariant of a process is proved by standard can write specifications that hide the detail of dis-
safety assertion verification methods. That is, it is crete passage of time and express that something
shown that the invariant holds upon initiation of the happens just "eventually". With quantification over
process and that each statement inside the process snapshots, one must show this aspect of the formal
preserves its holding. The invariant of a monitor is model, even though it is irrelevant to what is being
demonstrated to hold after the end of its initializa- specified.
tion part, and then each monitor procedure is dem- Indeed, obtaining this ability to abstract away from
onstrated to preserve the invariant's holding across, discrete time passage was the rationale behind
but possibly not within, its body. Nixon and Wing's proposal to add temporal logic to

Service Specification the Ina Jo specification language [Wing89]. The Ina
Jo language is for writing operational specifications

A service specification for a monitor procedure is and in fact does not permit quantification over snap-
simply its input/output specification, i.e., the P and shots. It was proposed to add the temporal operators
Q of the rule for the monitor procedure body. This by defining them axiomatically in terms of each
is demonstrated by standard safety assertion verifi- other rather than by reducing them to formulae with
cation methods. quantification over snapshots.

Commitment Two programming notations or program specifica-
tion notations have been developed in the temporal

A commitment is a liveness assertion, as it states logic mold. One is is a notation for specifying con-
properties that are guaranteed to happen. Note that a current program modules, introduced by Lamport
service specification does not really guarantee very [Lamport83a], and the other is UNITY developed by
much since it is only a statement of partial correct- Chandy and Misra [Chandy88]. Both use whatever
ness, i.e., what happens if the body halts. A commit- is convenient from mathematics for expressing
ment, being a liveness assertion can carry a values of variables. Both allow concurrency at the
guarantee of something happening, especially if it level of the assigment statement. The meaning of a
contains an occurrence of the eventually operator, program is expressed in terms of assertions about
Indeed, it is for this reason that processes, which states that hold at specific points or globally, either
generally loop and do not halt, do not have service invariantly, occasionally, or at specific instances.
specifications. A process's commitment states the There are a variety of temporal operators allowing
progress that it guarantees to have as it loops in- expressing both safety and liveness properties.
definitely. Lamport's description, being limited to a journal ar-
The liveness assertions of a process are proved by ticle, is not formally complete. The Chandy and
composing the liveness assertions of its statements Misra book gives full details on the language and
and the liveness assertions of the monitor procedures describes the meanings of statements and the tem-
it calls. As mentioned, liveness assertions of the poral operatos axiomatically, With the help of
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Boyer-Moore logic, the UNITY proof system has process should also be a continuation. However.
been mechanized [Goldschlag90a, Goldschlag90b]. here what function is computed by this continuation

is not clear The normal continuation computes the
Another language incorporating temporal logic is final snapshot, if it exists, as a function of the cur-
COL [Karam91 ]. COL is a linear-time temporal- rent snapshot and the changes caused by the current
logic based specification language, which can be statment. Thus, the continuation corresponding to a
used to specify concurrent Ada programs. Associ- process should compute all possible final snapshots
ated with COL is TimeBench, a concurrent system as a function
design environment that includes a deadlock
analyzer. TimeBench is an extension of the second * of the current snapshot
Buhr's CAEDE visual Ada program design environ- * which of the processes is selected to execute
ment and uses its notations for expressing program next, and
structures. * the changes that the selected process's next state-

4. Denotational ment causes.

In normal denotational seniantics, continuations are
There are two main aspects to a denotational seman- composed tobu l oer continuations at e
tics of a language. composed to build other continuations. That is, the

continuation from now until the end of the current

* The semantics are described in a syntax-directed loop is composed with the continuation from the end
manner, that is the meaning of a construct is built of the loop until the end of the computation to get
from only the meanings of its direct syntactic the continuation from now until the end of the com-
components. putation. Recalling the tree of Figure 1, consider

* The meaning of a program is usually, but not how this composition would occur. In Figure 3, the
always, taken as the function on input to output left hand contour delimits the part of the tree denot-
that it computes. ing one continuation, say to the end of the current

Actually the word "denotational" is used to refer to a cobegin-coend construct. The right hand contour
definition which is entirely syntax directed as de- denotes the continuation going from the end of the
scribed above. In principle, any semantic domain cobegin-coend construct to the end of the compu-
can be used, e.g., the computation sequence given tation. Their composition is not the whole tree.
rise to by an initial snapshot. However, the tradition Figure 4 shows a computation tree with no forks; in
is to use the function that a program computes as its such a deterministic case, the composition of the two
meaning. A program which does not halt at some parts of the path is the whole computation, as is
inputs is given as its meaning a function that com- desired. The reason for this is that in composing one
putes undefined for those inputs. This tradition of choice's continuation with the continuation contain-
course, limits the applicability of denotational ing the choice, one loses the ability to choose the
semantics to function programs. This particular kind unchosen choices. Thus, concurrent continuations
of denotational semantics would not be useful for cannot be usefully composed. Other means must be
modeling looping programs such as operating sys- found to build continuations. See the literature
tems. [Plotkin76, Smyth78, Berry85, Schmidt86] for more

details.
Nonconcurrent Flow of Control

Limited Concurrency
In order to be able to model gotos and other wild
flows of control without needing other than direct The result of these difficulties is that most denota-
syntactic components, the semantics of each lan- tional semantics of concurrency have focussed on

guage feature is given as a function of itself, tie non-shared memory concurrency in which the only
current snapshot information, and a continuation, interaction between processes is via messages sent
The continuation of a construct is the function com- along a communication channel that enforces
puted by the part of the computation that follows the synchronized access [Francez8Oj. The restricted in-
completion of the construct, i.e., the rest of the com- teraction greatly limits the number of choices that
putation. have to be re-interleaved. Indeed, if two processes

are totally non-interfering there is no need to inter-
This continuation turns out to be the value of a label, leave them. [Plotkin76, Plotkin83]
so that doing a goto means replacing the continua-
tion that exists at the point of the goto by the one 5. Comparisons of the Coverage of the
which is the value of the label. Approaches

Concurrency and Processes The view of the world is three dimensional, and the

dimensions are
The facts that processes do gotos and labels are con- 1. the nature of the program,
tinuations leads directly to the conclusion that a 2. the nature of the property to p-t- !"I
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3. the definitional and proof approach. they work with invariants, they are useful only
* The choices for each dimension are: for demonstrating safety properties.

1. the nature of die program: * Temporal semantics, not being tied to partial cor-

* functional, i.e., halting rectness, can deal with either functional or loop-
ing programs and are useful for demonstrating

0 looping safety and liveness properties.

2. the nature of the property to prove: * Denotational semantics, as traditionally used,

e safety can deal only with functional programs and are

* liveness useful for demonstrating safety and livene~s
properties but only of processes that do not share

3. the definitional and proof approach: memory. When processes share memory, the
* axiomatic amount of interaction possible, and which must

* denotational be dealt with formally, explodes to the point of

* operational intractability.

• temporal IV. Actual Specifications of Software

The issue is, "For any configuration of two dimen- In the literature, a number of the above formal systems
sions, which choices of the third are available." have been used to specify concurrent programs and in
Since three dimensional paper does not exist yet, it some cases, properties have been proved of them. The
is necessary to show the world as three two- primary examples have been in verifying security of
dimensional tables, as Figure 5 shows. operating system kernels, verifying integrity of data-

The first of these shows all the approaches tht cbases, and verifying the correcmess of protocols.

be used for any given property that is to be proved 1. Operating System Security
about any kind of program. The choices are more
limited for liveness properties and for looping pro- The approach taken by the various workers in the
grams. Liveness properties cannot be handled by security area is an operational one. The main prob-
strictly inductive invariance proofs, and looping pro- lem is to design an operating system that enforces a
grarm__: zausc partial correctness and functional ap- certain security policy. It is recognized that to prove
proaches to be to give no useful information. The an entire operating system adhering to any but the
functional approaches are those that try to treat all most trivial property, e.g., true, is hopeless because
programs as implementing functions, i.e., the of the sheer size of the code for an operating system.
axiomatic and the denotational approaches. Fortunately, for a security policy, it is not necessary

prove that the entire operating system enforces it.
The second table shows all the properties that can be M.,st operating systems are structured in such a
proved for any kind of program using any of the manner that a small kernel gets the job of allocating
discussed approaches. This table shows that the objects to users and enforcing the policy. If the
functional approaches cannot be used with looping kernel properly does its job and the only way the rest
programs to prove any useful properties. It is clear of the system and any other program or procedure
that safety is more universally covered than is live- can get to the protected objects is by invoking the
ness. kernel operations, then it is not necessary to worry

Finally, the third table shows all the kinds of pro- about what the rest of the system or the other pro-

grams for which one can prove the various grams or procedures do. Thus, in a properly struc-
properties using the various approaches. In this tured kernel-based operating system, it suffices toproprtis usng he vrios aproahes.In hisverify that the kernel does the job right and to at-
table, it is clear that it is much harder to deal with rang that the res of the system and n o o r-

looping programs than functional programs, and that range that the rest of the system and no other pro-
axiomatic approaches do not help at all when trying gram or procedure can directly access the protected
axipromaticapraes doobjects. The latter can usually be verified by inspec-
to prove liveness. tion that no objects are accessed directly or it can be

The following summarizes what is possible for the enforced by the compiler's normal symbol table
approaches. mechanism; that is, the protected objects are not

" Operational models can deal with either func- even visible in the symbol table. Thus, the problem• Opratonalmodls an dal itheithr fnc-of verifying the security of a kernel-based system is
tional or looping programs and are always useful reduced to that of verifying the security of the kernel

for demonstrating safety properties. They may itself.

be used to demonstrate liveness properties only

if the language permits quantification over snap- It has been said that the only programs that can be
shots; most do not. verified are toy programs. The kernel-based ap-

"* Axiomatic models based on partial correctness proach [Popek75, Popek79] aims to make the only
deal only with functional programs, and since program that has to be verified, i.e., the kernel, small

enough to be a toy!
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Security Policy Identification kernel operation is selected for execution, The
security policy is expressed as an invariant and other

In the typical effort to design and implement a assertions that the operations must preserve and sat-
verifiably secure operating system, the effort begins isfy. For example, that in all snapshots no process
with an identification of the security policy has read access to any file that is at a classification
[Landwehr 81, Landwehr83], that is, what objects are higher than its clearance is an invariant expressing
going to be protected, what is the nature of this pro- part of the example policy.
tection, and from whom they are going to be
protected. The usual situation is that files are the This particular formal model has two important
objects being protected and they are being protected simplifying assumptions.
against inappropriate access by processes represent- 1. The model does not necessarily insist that the
ing users. For example, a file may be given a classi- only thing that can happen during a compu-
fication, e.g,, secret or top secret, based on the sensi- tation is what is specified. Thus, the model
tivity of its contents. That file would be protected assumes that any thing else that might happen
from being read by processes representing users is simply not security relevant. This is reason-
whose clearance is not at least equivalent to the clas- able if it is known that all accesses to the en-
sification of the file, i.e., secret or top secret. respec- tities involved in the security policy are de-
tively. The system might also allow blind append- scribed completely in the model
ing of this file by any process whose clearance is at [Kemmerer82].
least equivalent to the classification of the file. The 2. The execution of each kernel operation is indi-
formalized security policy most often quoted is that visible, so that it is a correct model to inter-
of Bell and LaPadula 1130173]. leave at the level of their invocation. This is

Decomposition of System reasonable since in most systems, such opera-
tions are implemented in a non-interruptible

Once the elements of the policy are identified, it is manner so that they are effectively indivisible.
necessary to decompose the system into two parts,
the kernel and the rest. The intention is that the Iterative Design Process
kernel will be concerned with at least everything that The designers begin an iterative process which halts
can affect or be affected by the security policy, i.e., only when the operations as specified provably meet
the files, the processes, and the access rights and the the security requirements as specified. They attempt
operations governed by these rights. The kernel is to prove the operations as specified meet the speci-
designed so that, in the case of the example, the only fied requirements. Each failure to do so leads to
way to create processes and files is by asking the closer inspection of both the operation specifications
kernel to do so and the only way that processes can and the security policy specifications. Usually this
gain access to files for reading and writing is by examination leads to identification of the reason that
asking the kernel for permission to do so, and the the proof fails, and this identification leads to
only way that processes can actually read from or changes to the operations, their specifications. the
write to files is by having obtained permission from security policy, and its specification. After changes
the kernel. This means that in the rest of the system are made, a proof is again attempted. It is probably
and in any other program running on the system, this close inspection and tubsequent changes that are
these operations on files and processes can be done the most valuable aspects of the method, far more
only by invoking kernel routines or by invoking valuable than the proof per se.
routines that ultimately invoke kernel routines.

This particular decomposition of a system into a ker- Program Development
nel and the rest makes sense from the software engi- Once the kernel specification has been verified to
neering point of view. A glance at the way operat- adhere to the desired security policy, two particular
ing systems are designed, not for the purpose of en- program developments may proceed. One of these
forcing security, but for the purpose of making an is of the software that uses the kernel. The two main
easy to understand and easy to maintain system, constraints on any such software are that
shows the same basic decomposition being followed 1. it invoke only kernel operations when it
[Dijkstra68, Organick72, Ritchie74, Comer84, wishes to do something which can be security
Bach86, Tanenbaum87]. relevant and

Specification of Policy 2. these invocations assume the specifications

The specification of the kernel includes a specifi- given in the NDISM for the kernel.
cation of security policy that it must satisfy. The The other program development is that of the kernel
usual approach is to specify an NDISM in which F itself. Assuming that the kernel is structured as a W
is a function that non-deterministically invokes ker- collection of subroutines that can be invoked from
nel operations. That is, at each transition some one outside the kernel, i.e., a collection of supervisor
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routines, it suffices to show that each subroutine cor- cannot get read access to files with a classifi-O rectly implements its corresponding transition speci- cation higher than its clearance I lowever, prov-
fication. The specification of each such transition ing this will not prevent a process from reading
tends either to be deterministic or non-deterministic snapshot changes caused by another process that
with the intent of specifying allowed variations and can legitimately read the file. If that process
not concurrency. Therefore proving these sub- purposefully changes snapshot at an agreed upon
routines correct cai, be done with traditional non- rate so as to signal the bits of the content of the
concurrent methods, as covered in [Berztiss88]. The file it can read, then it will manage to transmit
important thing here is the concept that if the speci- the contents of the file to other processes that are
fication of an operation meets a given requirement not supposed to have access to the file.
and one has shown that a procedure correctly imple- * Because of the sheer difficulty of carrying out
ments the specification, then one has also shown that proofs, what is specified tends to be only the
the procedure meets the given requirement, barest minimum of security relevant properties.

A fuller description of the technique is given in No attempt is made to prove that the transitions
[Cheheyl8i]. This paper describes the general tech- do what they are supposed to. There is no

nique and four different specification languages. A guarantee that an operation to read a file in fact
causes copying of the contents of that file, only

small example illustrates each one. that the copying does not happen unless the

The famous Orange book [Klein83] describes re- security policy permits it. In some cases, the
quirements for systems to be accepted as secure by formal system used cannot even guarantee that
the Department of Defense. It specifies both the an operation once invoked will even terminate.
basic policy that must be implemented and the The formal system handles only safety properties
methods by which the system must be developed and and not progress properties. Note that an opera-
verified to implement the policy. A system cannot tion that does not gik the data that is requested
receive so-called Orange-book certification unless it is quite secure, but it is not very useful.
was developed and verified in a manner that inspires * The security is as good as the underlying as-
confidence in the claimed security. In other words, sumptions of correctly performing compilers,
how the system is designed and implemented is at hardware, etc. The software has still kept its

* least as important, if not more, than what policy it promise if as a result of a hardware failure, all
implements - a recognition of the importance of top secret files get spilled out to the line printer
having a systematic method for engineering the that is in a public reading room.
secure system. One system that has been certified
Al Secure under the Orange book is SCOMP Network Security
[Benzel84]. Several authors have dealt witht the related problem

Real-Life Use of Technique of secure transmission of messages over a non-
secure network, i.e., of making sure that the intended

The method has been applied a number of times at recipient and only the intended recipient of a mes-
the level of verifying that the specified NDISM sage see the message (Good82, Britton84].
meets the security requirements. To this author's
knowledge, the method has never been carried out to 2. Database Integrity
the point that the implementation meets the security Given a database scheme, consisting of a collection
requirements. While this failure is an indictment of of data types, e.g., for relations or inverted trees,
claims to practicality of formal proof methods, in etc., operations that can be performed on the data,
practice the failure is not that serious. It is generally and a statement of what it means for the data to have
agreed that the hard part of the implementation of a integrity, the problem is to insure that the database
secure system is getting the specification of the ker-
nel right. The kernel procedures are small enough will maintain that integrity.
and generally simple enough that getting their im- Run-Time Checking
plementations right is far easier.

The more usual situation is to do the checking at run
Limitations time. However, this is expensive. Moreover, it is
The method has its limitations. not clear what to do if the data are discovered not to

have integrity; the operation that made the change,
* The system can be no securer than the specifi- which is the primary cause of the lack of integrity,

cation of security. That is, if the desired concept may have been done long ago.
of security is not covered by the specification,
then the system may not satisfy it, and it cannot Verification Approach
be expected to observe it. For example, the Another approach is to verify, at design time, that
speri~fied security policy may state that a process the database as specified has the required integrity.
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This approach to database integrity verification is an tributing datum has changed, the process releases
operational one which is similar to that of operating access and backs out of the operation. If the fre-
system kernel security verification. One defines an quency of concurrent access is low enough, then the
NDISM to model the database; I defines the scheme, probability is high that the process will be able to
I0 defines the initial configuration, F defines the write the changes. With the right frequency of con-
operations. The integrity constraints are then ex- current access, the two-phase commit exhibits sig-
pressed as an assertion on L To prove that the data- nificantly more throughput than using the brute-
base has intzgrity, it suffices to show that the in- force method.
tegrity constraints assertion is an invariant. That is
the integrity constraint falds for all elements of 10 3. Protocols
and it is preserved by each operation (Leveson83], Network protocols are generally modeled as proc-
[Paolini8l 1. esses passing messages to each other across some

bi-directional media. The medium between twoOnce the NDISM definition of the database has been processes is modeled as storage accessible to both

verified to have integrity, any correct implementa- processes ta holds th ran e messige fo at
tionof t aso as nterity Futhemor, ay dta-processes that holds the transmitted message for at

tion of it also has integrity. Furthermore, any data- least one snapshot. If the protocol is designed tobase application programmed entirely in terms of work across faulty media, then in the formal model

operations of the NDISM is also guaranteed to have woracross giuen meda, th eneral moue

integrity; this is because all accesses to the datibase the storage is given the ability to generate srurious
integrit; thrg operatnse tat aressuarate e to prdae- data, to lose data, and to corrupt data with nonzero
are through operations that are guaranteed to pe- probabilities. The procedure that the processes ex-
serve integrity. ecute in order to send and receive messages is called

The upshot of this approach is that no additional the protocol. Generally, all processes execute the
run-time integrity checks are needed. It is known same protocol procedure, and the procedure tends to
that the operations are designed never to get the data have a part that deals with sending and a part that
into a snapshot in which they do not satisfy the in- deals with receiving. The two parts may even be
tegrity constraints, two different invokable procedures. Usually, in an

attempt to simplify the formal model while retaining
Limitations its focus on the protocol, the formal model consists

only of two processes, a sender executing only the
The method suffers from the same drawbacks as sending part and the receiver executing only the
does verifying security, e.g, the real integrity of the receiving part of the protocol, and a uni-directional W
database is only as good as the specification of what medium.
integrity means. If the database is a concurrent one,
i.e., several processes may be accessing the data at a Main Properties to Prove
time, then the same approach works. All that is
required, as is the case with operating system ker- The main property that it is generally desired to
nels, is that the operations be indivisible or atomic. prove about a protocol is that if a message m is sent

from the sender, it eventually is received uncor-
Making Operations Atomic rupted by the receiver. For some protocols, there

may be additional properties, such as that the mes-
There are a number of approaches to making dte sages arve uncorrupted in the order that they are
implementation of the operations atomic. The brute sent.
force method is to physically prevent more than one
process at a time from accessing the database. This The second of these properties is a safety property,
approach is wasteful, however. In a truly large data- because it says that in all snapshots, the sequence of
base, it is quite likely that the concurrent accesses messages sent by the sender is an initial subsequence
are to independent parts of the database. In such a of the sequence of messages received by the
case, concurrent access is not harmful, and disallow- receiver. However, the main property is a liveness
ing it would slow down the operation of the database property, because it says that in all snapshots, if a
intolerably; Consider an airline reservation system in message is sent by the sender in that snapshot, then
which only one agent world-wide could access the there exists a later snapshot in which the same mes-
database at a time. A more useful approach is to use sage has been received by the receiver. Hence, a
a two-phase commit [Bernstein87] in which a proc- popular way to specify and verify properties of
ess does all the calculations necessary to do an up- protocols is with temporal logic (Hailpern82,
date unprotected, but then just before it is about to Schwartz8l, Lamport83a, Schwabe85, Wolper82,
write the changes, it grabs uninterruptible, unique Nguyen84].
access to the data, checks that all data that con-
tributed to the new values have not changed, and if Temporal Logic Specifications
not, then writes the changes and releases access to As an example, consider a general protocol specifi-
the data. If the process finds that at least one con- cation given by Hailpem. In this specification, the

medium is modeled as a monitor:
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send(m): Operational Specifications
pre: ot=A
post: oa=A<m> There are a number of operational definitions of
live: 0 (after send) protocols. Among them are specifications written in

AFFIRM [Sunshine82] and in a graphic specifica-

receive(var in): tion language invented by Chen and Yeh [Chen83].

pre: 3=B AFFIRM
post: 0=B<m>
live: 0 (ExisrsM) : 0 (after receive) The AFFIRM language has been used to specify a

variety of protocols and the AFFIRM verification
ExistsM: environment has been used to verify a number of

pre: true properties of these specifications. A later section
post: true describes AFFIRM and its environment. For now, it
live: 0 (after ExistsM) suffices to say that AFFIRM allows specifications of

NDISM in a way in which it is possible to quantify
Monitor Invariant: over snapshots. Therefore, it is possible in AFFIRM

ExiSSMA[j](-after receive):)-](ExistsM) to specify liveness as well as safety properties. Sun-
L n shine, Thompson, Erickson, Gerhart, and Schwabe

Note how a message cannot be received until after [Sunshine82] have written a paper in which they
the message exists in the communication medium. show how several protocols can be specified and
The monitor invariant, relying on the assumption of verified to satisfy a number of useful properties.
only one receiver, says that if ExistsM becomes true,
then it will not become false before a receive opera- They define a basic service protocol which captures
tion takes place, i.e., if an existing message is never what h roliuer seesates, ascarrelereevdthen it will always be existing, medium which delivers all messages, uncorrupted,
received tand in the order sent. Typical of the properties of
The property that the medium can duplicate, lose, the service protocol that they specify are:
aid re-order messages is captured by using history a Messages are delivered uncorrupted and in the
variables a and [5 which keep the list of messages order sent, a safety property.
sent and received respectively. Then it is specified e All messages that are sent are delivered, a live-*that Almesgstaarsetaedlerdali-

ness property.
mE a mE These are specified using whatever needed quanl-

Thus no spurious and corrupted messages are cre- tification over snapshots. Then the AFFIRM natural
ated. In order that the protocol eventually deliver a deduction interactive verifier is used to prove that
message, it must be that the nieeium eventually the service protocol satisfies these properties. Ac-
transmits a message if it is sent often enough. This tually, failed attempts to prove these properties of
is guaranteed by putting two commitments on the the service protocol led to modifications to the spec-
medium, one for the send end and one for the ifications of both the service protocol and the
receive end. properties. These modifications continue until the

proofs had been successfully carried out.
agrows-wirhout-boundz[-)(ExristsA() Then they define a number of implementing

protocols, such as the Alternating Bit (AB) protocol,
m repeated-without-bound-in ae whose job is to implement the service protocol given

^A grows-without-bound unreliable transmission media that lose messages,
D 0 (mE 03) corrupt messages, generate noise, etc. They prove

The first says that pumping enough messages into that the implementing protocol satisfies the
the medium guarantees that eventually one will exist properties of the service protocol by proving each of
in the medium. The second says that if a particular the service properties as theorems in the implement-
message is pumped into the medium often enough ing protocol under the mapping from the implement-
and the receiver receives often enough, then even- ing protocol data to the service protocol data. Inter-
tually the particular message will be received. estingly, they did not take the approach of proving

that the implementing protocol was a correct imple-
Hailpem's book describes two other protocols in de- mentation of the service protocol. Proving only that
tail and proves that each causes its medium to satisfy the so-called implementation satisfies the desired
the service specification and the commitment of the properties directly ,-es less effort than proving that
medium described above. the so-called implementation is in fact an implemen-

tation and then to deduce by transitivity that it satis-
fies the properties.
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Graphic Specification 4. Other Problems

Another operational approach is that of Chen and Hayes has edited a collection of case studies of for-
Yeh. They use a picture-based model that directly mal specifications [Hayes87]. Among the examples
exhibits distribution of processes typical of many specified are a telephone network, the UNIX file
concurrent systems these days, especially protocols. system, several reservation systems, and several dis-
One draws structure diagrams consisting of nested tributed systems.
modules (boxes) connected by directed arcs emerg-
ing from and entering into modules and output and V. Doing the Verifications
input sockets. Figure 6 shows a typical diagram There is an excellent book by Howard Barringer
consisting of a single module called RT with an in- [Barringer85] that surveys all the specification and veri-
put socket I and an output socket 0. A module fication methods except denotational and temporal.
contains some computing agent. Messages of ar- The papers by Lamport and Owicki [Lamport83a,
bitrary data types flow along the arcs. The sockets Lamport83b, Lamport86, Owicki82] on the topic of tem-
represent sets of message arrival events at the poral semantics show how to do tcmrporal proofs. The
boundaries of the module. The behavior of an inner- survey article by Cheheyl, Gasser, Huff, and Millen
most module is described by giving axioms relating [CheheyI81] shows how the various operational sys-
the message arrival events at its own sockets. These tems are used. The detail required for an adequate
axioms may express equality, arithmetic, Boolean, coverage precludes their inclusion in this module.
etc. relations between contents of messages as well
as temporal and enabling relations on the events VI. Specification Languages and Verification
themselves. For example, when the function of the Environments
RT module is that an output message oc 0 that ar-
rives at the output socket 0 is a copy of an input Many of the operational semantic languages have been
message it I that arrived at the input socket 1, then implemented. That is, for these languages, there exists

1. the arrival, i, of the input message at the input a specification language processor which given a speci-
socket1precedes the arrival, o, ooft the otput fication and a list of properties to prove, generates con-socket precedes the atval, o, of the output jectures, which if proved, imply the holding of the
message at the output socket: properties. Most of these systems also come with in-

teractive or semi-automatic theorem provers that can be

2. i enables o: used to prove the conjectures generated from a specifi-
cation. In fact, these tools sit in environments that are

i==t'o directed at specifying and implementing verifiably cor-
3. the contents of i and o are the same: rect systems.

i.cont = o.cont The specification and verification environments sur-
veyed in this module are representative what is avail-

The language permits existential and universal quaut- able:
tification of events. Thus it is possible to express 1
both safety and liveness properties. The "precedes" * AFFIRM
and "enables" relations on events are defined * FDM
axiomatically. For example, "precedes" is defined * Gypsy
as a partial ordering. This allows defining two * HDM
events as concurrent if neither can be shown to
precede the other. Once the model and its properties 0 P-NUT
are specified, any theorem prover that can handle e SARA
axiomatic definitions can be ,.sed to carry out proofs * PAISLey
of property satisfaction by the model. * STrATEMATE
The paper gives a protocol service specification as a * Process Algebras
single module with one input and one output socket
The relations on the events on these two sockets o ASTRAL
describe a reliable transmission from the input to the Most of these environments have actually been used to
output socket. The paper then gives a specification carry out specifications and property verifications of
of the AB protocol as a more detailed nest of mod- real software. These include mainly kernels of operat-
ules which contain an innermost module modeling ing systems that are supposed to enforce security
an unreliable medium. The AB protocol is proved to puicies and protocols.
implement the service protocol by proving the rela-tions that specify the service protocol to be theorems For each language and environment the discussion in-tionsthatspeciy the s e protcol mso anberf theom eludes descriptions of as much of the following as isin the AB protocol model. Also a number of the relevant.
usual safety and liveness properties are proved of the
AB protocol model. 1. the language itself
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2. how one specifies an NDISM in the language As there may be more than one operation applicable
3. how complete the specification can be to a given snapshot, it is possible to model nondeter-

minism. The operations are specified algebraically,
4. what kinds of properties can be proved of an using equational axioms, whose left and nght sides

NDISM contain applications of operations, including the Lre-

5. how one specifies, if at all, the redundant ate operations.properties that are to be proved of an NUISM The view of rules as rewrite rules is interesting when
6. the associated system development method the ADT is used to define an NDISM. Specifically
7. known limitations of the language or its environ- application of a rule can be viewed as a snapshot

ment transformation, i.e., as taking one step of the compu-
8. the tools of the environment tation. Thus a computation can be viewed as a se-

9. actual system developments to which the lan- quence of rewrite rule applications. Concurrency is

g eand its environment have been applied modeled when there is no unique sequence of rewnt-
guage dings, that is when which rule is applied next is non-

Topics 1, 8, and 9 get their own subsections and topics deterministic.
2 through 7 are covered in a single subsection entitled
"Specification and Verification". The AFFIRM language permits univtrsal and ex-

istential quantification over the values of the abstract
Each of these is described by literature mentioned in its data type. Therefore, it is possible to express both
own description below. There are some surveys that safety and liveness properties in AFFIRM specifi-
cover more than one of these. The first four are sur- cations of NDISMs.
veyed very thoroughly by Cheheyl, Gasser, Huff, and
Millen [Cheheyl8a]. The Cohen, Harwood, and Jack- Tools
son book [Cohen86] has brief descriptions of AFFIRM,
Gypsy, HDM, and SARA. The Lindsey survey The AFFIRM environment contains a number of
[Lindsay88] describes a number of automated verifica- useful tools, including
lion environments, including AFFIRM and Gypsy. * an algebraic specification analyzer,

1. AFFIRM * a library of useful data type specifications,

Language • a library of useful proofs,
: a theorem prover, and

AFFIRM [Thompson8l] was designed by USC's In- * a friendly user interface.
formation Sciences Institute (ISI) as a system for The specifications analyzer attempts to check that
specifying abstract data types (ADTs) [Liskov74] and the specification meets certain well-formedness
verifying their properties. The AFFIRM language is properties sich a- smihility as rewrite niles and
basically a notation for writing algebraic specifica- popeties s tcan ohly astrewriaecniletennd
tions of abstract data types [Gut tag78]. First, the completeness. It can only attempt a completeness
signature of each operation of the ADT is given in check, because in general completeness of an axiomthenaform of tahels ofheratye of itse paretes aend iset is undecidable. The theorem prover allows inter-the form of the list of the types of its parameters and active natural deduction. The user enters thethe type of its return value. Then a set of axioms are relevant ADT specifications and then gives it con-
given to relate the values of various applications of jectures about these data types to prove.
the operations.

Actual Use
The theorem prover uses the axioms defining an

ADT as rewrite rules. Therefore, there are restric- AFFIRM has been used to specify and prove
tions on the form of the axioms to make sure that properties of a number of network protocols
their applications as rewrite rules cannot go into infi- [Sunshine82]. The properties proved include both
nite loops. Among the restrictions is that the left safety and liveness properties. AFFIRM was also
side should consist of a single function application used in the Delta Experiment [Gerhart79). The Delta
and that the right side should be have at least as system is part of the Military Message System
many terms as the left side. (SIGMA). It is a collection of functions, about 1000
Specification and Verificition lines of BLISS code, for reading and appending

comments to messages in a secure manner. The col-
One defines an NDISM as an ADT whose data are lection was specified as operations of a message
the snapshots and whose operations create the initial ADT. Certain security properties were proved. An
snapshot and perform the individual i- ý.nsformations. abstract implementation was written and proved cor-
That is, each operation except the create operation rect. This abstract program was generated by hand
accepts a snapshot as its only parameter and returns from the original BLISS language programs of the
as its result a next snapshot. The create operation system.
takes no parameter and returns an initial snapshot.
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2. FDM the redundant specifications, discussed below, of the

The Formal Development Method (FDM) [Eggert89, parent level can be proved to hold in the child level.

Barton88, Eckmann89, Holtsberg89] was developed The FDM suggests the following way of designing a
by Unisys (which absorbed System Development secure system. The designer starts with the writing
Corporation) for use in specifying systems and veri- of the TI-S. He or she decides on the data of its
fying that they satisfy desired properties The lan- snapshot, on its initial conditions, and op its security
guage of FDM is the Ina Jo language [Locasso80, policy as expressed by criteria and constraints in-
Scheid86a, Scheid86b, Scheid89]. volving the variables of the snapshot.

Language The designer then begins an iterative process by
which transforms are added until the model has all

The Ina Jo language allows a direct specification of the desired transforms and all of them preserve the
NDISM by giving assertions relating before and aaf- criteria and satisfy the constraints. As a transform is
ter snapshots of individual selectable transfor- added, it should be verified as preserving the criteria
mations. The language permits quantification over and satisfying the constraints. If not, then the trans-
values of snapshot variables but not over snapshots form must be changed until the verification suc-
themselves. ceeds. As the set of transforms is being decided
Specification and Verification upon, the designer may also choose to start supply-

ing more implementation details. In this case, the
An Ina Jo specification consists of a list of level designer specifies a new level in which the data vari-
specifications. The first of these is called the Top ables exhibit more implementation details. The
Level Specification (TLS), and the last of these is designer writes the entire level, the data, the initial
called the implementation specification. Each level conditions, and th-e transforms so as to implement
specification consists of four main parts the parent level. The way in which the child data

"* data declarations implements the parent data is captured in the map-
"* initial conditions ping section of the child level.

"* transform specifications Because of the great difficulty in carrying out de-

"* correctness assertions tailed proofs of implementation correctness, the
designers of the FDM have stuck to more modest

"* mapping specification (except in the TLS) goals. Specifically, it is required only to prove that W
The data declarations declare the types of values the child level satisfy the criteria and the constraints
used byathe dariatios andec the v yaesroablaes appeaof the TLS that define the correctness of the model.
used by the variables and the variables appearing in Rather than prove the child level a correct imple-
the snapshot ("state" in FDM terminology), and the mentation of the parent level through its mapping,
possibly parameterized snapshot interrogation func- cacti successive level starting with the child of the
tions. TLS is shown to satisfy the mapped criteria and con-

The initial conditions describe by assertion all the straints ot the TLS brought down through its parent.
possible legal initial snapshots. Consistent with this method of adding more trans-

The transform specifications describe for each trans- forms, the set of computations defined by an Ina Jo
form the conditions under which it may be invoked level specification is not necessarily that generated
and how the before and after snapshots are related; by applying arbitrary compositions of transforms to
these relations can be functional, but they do not the snapshots satisfying the initial conditions. The
have to be. set of computations is a superset of these and a sub-

set of those generated by applying the arbitrary com-
The correctness assertions are redundant assertions position of the constraints, considered as transforms,
of two kinds, criteria and constraints. Each criterion to the snapshots satisfying the initial conditions.
is a one-snapshot assertion that is supposed to be an While it is never known if there will not be more
invariant, and each constraint is a two-snapshot transforms added later, it is known that all those
assertion that is supposed to be satisfied by all trans- added later will satisfy the constraints.
forms.

Because the redundant assertions are invariants and
All levels except the TLS have a mapping section constraints, one can specify and prove safety
which explains how to write expressions of the lan- properties and relations between successive snap-
guage of the preceding level, i.e., its parent level, in shots. Because there is no quantification over snap-
the language of its own level. This is to allow an shots, one cannot specify and prove liveness
assertion of the parent level to be rewritten in the properties in the Ina Jo language.
language of the child level in order to see if it can be
proved a theorem in the child level. In this manner,
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Tools developed by a group of people at the University of
Texas at Austin [Good78, Ambler78, Good84a,The FDM is supported by an environment, the FDM Good84b]. Whereas the emphasis of AFFIRM,

platform, which includes a number of tools, the most FI)M, and 11DM are on verification that a specifi-
important of which are the following: cation and a design meet stated requirements, the

" Ina Jo processor emphasis of the GVE is on verification that an in-
"• Interactive Theorem Prover (ITP) plementation is correct to stated requirements. The

GVE has been used for code correctness proofs,
The Ina Jo processor is essentially a compiler. It which, in general have not been done in any actual
checks input Ina Jo specification for syntax and type application of AFFIRM, FDM, and IIDM.
errors, and if none are found, it generates a set of
conjectures, one for each level specification. These Language
conjectures imply that The language of the GVE is Gypsy. Consistent with

"* the initial conditions satisfy the possibly mapped the emphasis of the GVE, Gypsy is a Pascal-like
criteria, language that can be used both for specification and

"* the transforms preserve the possibly mapped cri- for implementation. There are restrictions from Pas-
teria, and cal and extensions to Pascal in Gypsy. The restric-

"* the transforms satisfy the possibly mapped con- tions are for the purpose of eliminating features that

straints. cause anomalies to the standard Hoare axiom sys-
tem. For example, no function or procedure ac-

In other words, if the conjectures are verified, then cesses any non-local variable; all accesses to a vari-
the NDISM specified by the data declarations, the able other than local variables must be via variable
initial conditions, and the transform specifications parameters. Functions have only by-value
have been shown to meet the correctness conditions parameters and thus cannot have side effects. Proce-
as given by the redundant assertions. dures that do not return values can have side effects

The ITP [SteinS0, Smith86] is used in order to at- only through their parameters. On the extension
tempt to prove these conjectures. The ITP first side, there is a syntax for assertions that can be at-

generates the logical negation of the conjecture to be tached to arbitary points in the program as well as

proved; then the ITP helps the user find a contradic- at procedure and function headings as interface

tion thus proving the original conjecture a theorem. specifications.

Actual Use Specification and Verification
ethe original intention of being able to carry In Gypsy one specifies NDISMs solely in an indirect

Despite omanner by writing a program that implements it. In
out the FDM over several levels down to code, no odrt bancnurny ys a ubro
application has even been carried out over more than order to obtain concurrency, Gypsy has a number of

2 levels and no application has been carried to code. fetures for setting up processes and for
In order to carry out the FDM all the way to code, synchronization.

another tool is needed for each programming lan- Tools
guage the might be used in conjunction with the
FDM, namely a verification condition generator The GVE has a number of tools:
(VCG) [Scheid83a, Scheid83b] that generates verifi- * Gypsy syntax directed editor
cation conditions asserting that a given procedure
body implements a given transform as specified in * Gypsy parser
the implementation level specification. Unfor- * Gypsy interpreter
tunately, to date, there is no complete VCG for any * Gypsy compiler
programming language. * Gypsy optimizer

The FDM has been applied to specify and prove the * verification condition generator (VCG)
data security of a number of system programs. One * theorem prover
of these was the AUTODIN II multi-level securepacket switching network [Cheheyl8 1]. The second Controlling all of these is the GVE executive. It is
ofckthesewasching for work Kasecey k he secozed ver-worth noting that the optimizer uses knowledge thatof these was for KVM/370 a secure kernelized ver-

sion of VM/370 [Gold79]. In both of these cases, the can be gleaned from the assertions in making op-
top level was proved to meet the specified security timization decisions; for example, if the assertions
requirements. Neither was carried to any additional imply that one anm of a conditional is impossible to
levels, ever follow, its code is not generated.

O 3. Gypsy The VCG generates conjectures which imply that
the code is partially correct with respect to the asser-

The Gypsy Verification Environment (GVE) was tions given as annotations in the code. Because of
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its basis on the Hoare axiom system, safety Language
properties can be proved. Ibis author believes that
certain liveness properties such as halting are also The specification language of the HDM is SPE-
proved, but not by conjectures generated by the CIAL. SPECIAL allows direct specification of
VCG. These have to be submitted directly to the NDISMs. A SPECIAL specification of an NDISM
theorem prover consists of two main parts,

* the data part, and
The GVE uses a Boyer-Moore theorem prover. * the ath part .

a the algorithm part.
Actual Use The data part declares types used by the variables
The GVE has been used for a secure network appli- and the variables of the snapshot of the NDISM.
cation [Good82]. That is the software that encrypts Each data type is specified algebraically with
messages prior to sending them out over a non- axioms.
secure network and that decrypts received messages The algorithm part consists of a collection of opera-
only for the stated recipient. It was verified that tion specifications. There are two kinds of opera-
only encrypted messages get out into the network, tion sp and There are are value foer-
and that all received messages are equal to the cor- tions, VFUNs and OFUNs. VFJNs are value func-
responding original message. The GVE was also tions; they return values computed from the current
used to develop the ACCAT guard. The ACCAT values of variables and have no side effects on these
guard is used to assist a human being in downgrad- variables. OFUNs are procedures that change the
ing documents from a higher security level to a values of variables and do not return values. Their
lower one. It is proved that no data are downgraded notation is not unlike that of Parnas's [Parnas72bJ,
unless the human operator has seen it; thus it is and indeed the HDM designers suggest using the
presumed that the human is cleared to the higher same software design methods touted by Parnas in
security level and is competent to decide on the sen- the same and related papers [Pamas72a].
sitivity of the document and to excise portions that Specification and Verification
should not be released to those who are cleared for
the lower security level. For both of these projects In the HDM terminology, the specification of an
the security criteria was stated as Gypsy assertions NDISM is a Top Level System (TLS). The TLS
and the code was written in Gypsy. specifies the visible behavior of the system, which

the users of the abstract machine can rely upon. Be-
More recently, the people responsible for the GVE low the TLS, is a list of NDISMs each of which is a
have moved in other directions. One such direction refinement of the one above it. A refinement
is to use the Boyer-Moore logic directly to to specify NDISM provides more implementation details than
both an abstraction and an implmentation as the one above it, but provides no new operations; to
NDISMs and to prove the correctness of the implc- do so would violate the 'IlS's specifying the visible
mentation of the abstraction by showing that the lat- behavior of the system. Below the lowest level
ter simulates the former as suggested in Section comes the implementation of the specified TLS as a
III. .d (Bevier87]. The Boyer-Moore prover has also module or a collection of procedures and data struc-
been used to mechanize a proof system tures in some implemented programming language.
[Goldschlagg0a, Goldschlagg0b], defined in the
Boyer-Moore logic, for UNITY [Chandy8e8. Tools

4. HDM There are no redundant properties mentioned in a
SPECIAL specification. Instead the properties to be

The Hierarchical Development Method (HDM) was proved are provided by the prover at proof time to
developed at SRI International for the purpose of the verifier. Given the basic purpose of the HDM to
specifying and verifying the security of operating be able to prove systems multi-level secure (MLS),
system kernels f8obinson79, Silverberg79]. Operat- there is an MLS Formula Generator which takes a

ing systems are developed by hierarchical decom- TLiS and generates conjectures which collectively
position and the kernels are multi-level secure. The ily themutev securit ofith TllecthelS

hierrchcaldecopostio of he ystm iscariedimply the multi-level security of the TLS. The MLShierarchical decomposition of the system is carried Formula Generator is based on Feienag' s

out using traditional software engineering methods; Forma Genelaor islbasecurity.
for example, information hiding is used to decide Foierag8OJ model of multi-level security.

how to decompose a system into modules, and each These conjectures can be submitted along with the
module is made an abstract machine providing some TLS to the Boyer-Moore theorem prover that is
service, such as memory management, to the other available. The user of the theorem prover may also
abstract machines. Each such abstract machine is interactively provide other conjectures to prove, thus
specified as an NDISM using SPECIAL. allowing him or her to prove properties other than 4

multi-level security.
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While the TLS is to be demonstrated MLS, the re- create the token assignment of the next snapshot. At. finement levels are to be proved correct implemen- each snapshot any fireable transition may be se-
tations of their immediate parents. This proof is lected for firing. Thus concurrency is modeled by
based on the standard mapping from the implement- having more than one transition fireable.
ing level's data to the implemented level's data de-
scribed in Section II.l.d. In addition the code im- A Pei net may be timed or untimed. Normally a
plementing a TLS is to be proved correct by proving Petri net is untimed. When it is timed, a delay is
each procedure a correct implementation of the cor- associated with each transition indicating how long
responding operation in the lowest level refinement it takes for the transition to fire. A Petri net may
of the TLS. For each implementing programming also be interpreted or uninterpreted. Normally it is
language there is supposed to be a verification con- uninterpreted, but one may associate an actual func-
dition generator (VCG) that generates conjectures tion with a transition. In this case, each token
implying this correctness relation. At present there represents one parameter. Thus these functions are
are VCGs for Pascal, FORTRAN, and JOVIAL. In not applied unless all input parameters have been
order not to have to develop a VCG for every pro- supplied.
gramming language that might be used, SRI has de- Specification and Verification
veloped a Common Internal Form (CIF) which can
express implementations and whose programs can A system is specified by giving a Petri net for it.
be translated straightforwardly to any implementa- This Petri net can be totally uninterpreted, however,
tion language. They have written a VCG for CIF as then not much beyond its flow control is specified.
the implementing language. Currently translation More information can be given in the form of timing
from CIF notation to an implemented programming estimates for the furing of places and interpretations,
language is done by hand. i.e., procedures, that explain what happens when a

Actual Use place fires.
Tools

The HDM has been used to specify, design, and ver-

ify MLS secure two operating systems, Kernelized The P-NUT environment contains a variety of tools,
Secure Operating System (KSOS) JMcCauley79] and including
Provably Secure Operating System (PSOS) * an interactive graphic Petri net editor,
[Neumann77, Feiertag79]. * a translator,

5. P-NUT * an untimed reachability graph builder,

P-NUT is a suite of tools developed by the Distri- • a timed reachability graph builder,
buted Systems Project at University of California at e a reachability graph analyzer,
Irvine [Razouk85a, Razouk85b, Morgan87]. The
purpose of these tools is to allow design of concur- * a reachability graph pretty printer, and
rent systems in a manner that allows detection of e a simulator.
timing, synchronization, and resource contention er- The translator converts a Petri net input in linear
rors. The approach used is to specify these systems form into an intermediate form which is used by all
with analyzable models and to have tools which do the other tools to stand for the net.
the analysis. P-NUT is built around giving Petri net
models of concurrent systems [Peterson8l]. The reachability graph builders build graphs whose

nodes are all the snapshots achievable in any compu-
Language tation of a candidate Petri net. The builders try to

A Petri net is a bipartite directed graph whose nodes keep these graphs finite by recognizing when a

are transitions and places. Figure 7 shows a Petri newly generated state is the same as one it Las seen

net describing a service protocol. The places PI and before.

P2 send messages to each other via the transitions These reachability graphs are analyzed for timing,
TI and 72. The directed arcs indicate for each tran- synchronization, resource contention, and deadlock
sition which places are input places and which problems by the reachability graph analyzer (RGA).
places are output places, namely those places which The RGA is the most important tool of P-NUT.
are at the tail and heads of the arcs respectively. With it, the user can specify propositions and predi-

cates about places, transitions, and arcs in the PetriA snapshot in a Petri net computation consists of an net and about reachable states in the reachability

assignment of zero or more tokens to each place. A graph. All of these entities can also be bound by

transition is fireable if there is at least one token on both the existential and universal quantifier. There-

each of its input places. If a transition fires, then fore both saety and liveness prpetiecbe Tpeci-
on tke i rmoedfrm ac ipu pac ad nefoe ot safety an ieesproperties can bespeci-

one token is removed from each input place and one fled. The RGA proves these by exhaustive examina-
token is deposited at each of its output places to tion of the reachability graph. There are also a num-
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ber of generic properties that the RGA knows how ule, one gives multiple models of the system or
to demonstrate: module at hand, each from a slightly different point

"* boundedness, that there is some constant max- of view. The models are structural and behavioral, li
imum number of tokens at each place and there is a mapping between behavior model ele-

"ments and the supporting structure model elements.
* safeness, that there is a maximum of one token at A structure model (SMi consists a number of nested

each place modules (boxes) connected by undirected arcs that
"* conservation, that the total number of tokens in meet the modules only at sockets. Figure 8 shows

any snapshot is less than or equal to some con- an SM on the lefthand side with two modules, MI
stant and M2, and an arc connecting them at sockets Ob-

"* liveness, that a particular transition is potentially serve that the modules are mapped via dashed lines
fireable in all reachable snapshots to elements in the rest of the diagram. The behavior

"model, in the form of a graph model of behavior
t deadlock-freeness, that it is not the case that no (GMB) consists of three submodels,
transition is alive

a a control flow graph (CFG),
The simulator takes a graph in intermediate form e a data flow graph (DFG), and
and an initial assignment of tokens and simulates
computations by firing fireable nodes and redistrib- 9 an interpretation.
uting tokens according to the firings. If the net is The two flow graphs together form an uninterpreted
timed the simulator will keep track of simulated model. Figure 8 shows a GMB on the righthand
time. If the net is interpreted, the simulator will side.
invoke the procedure for fired nodes and keep track The CFG consists of process nodes connected by
of the values of the tokens. There are useful facil- directed arcs. An arc represents precedence of ac-
ities for controlling the progress of the simulation. tivated of Ah prcessesent thehed end of at-
The user may choose which node to fire, or he or she tivarion of the processes at the head and tail; that is,m~ay let the simulator select one at random. the process at the tail must finish before the process

at the head can begin. Each CFG node may have
The interactive graphic Petri net editor allows input- more than one in-pointing arc headed at it and more
ting nets by drawing them with the aid of a mouse. than one out-pointing arc tailed at it. For a given
This is more convenient than the linear form of the node, the in-pointing arcs are either in an "and" or
graph consisting of ordered pairs defining the arcs. an "or" relation, and likewise for the out-pointing

arcs. These relations constitute the input and output
Actual Use logics for the process node, respectively. The CFG
The tools of P-NUT have been used to specify in the GMB of Figure 8 has two process nodes, P1
protocols and to prove both safety and liveness and P2, connected by two arcs flowing in opposite
properties about them. The paper by Morgan and directions.
Razouk [Morgan87] shows a specification of the Al- A snapshot in the computation of a CFG is an as-
temating Bit (AB) protocol and proof of its signment of zero or more tokens to each arc. In any
properties. There is a service specification as a snapshot a process node is enabled if the tokens on
fairly simple Petri net and then a very detailed Petri its in-pointing arcs satisfy the logic; that is, if the
net describing the AB protocol as an implementation logic on the in-pointing arcs is "or", then at least one
of the service specification. With the help of the such arc has at least one token, and if the logic is
RGA, the AB protocol Petri net is proved to satisfy "and", then all such arcs have at least one token. In
the liveness property of implementing the service each snapshot, any enabled process node is selected
specification. The AB protocol Petri net is also for initiation, and execution. The next snapshot is
shown to be safe, so that the readers are mutually obtained by removing tokens from the initiated
exclusive. process's in-pointing arcs, according to the input

6. SARA logic, and depositing tokens on the process's out-
pointing arcs, according to the output logic. That is,

The SARA design environment was developed at if the input logic is "or", then exactly one token is
UCLA to support requirement-driven top-down de- removed from exactly one of the in-pointing arcs,
sign of possibly concurrent digital systems and if the input logic is "and", then exactly one
[Razouk77, Vernon8O, Razouk8O, Estrin 861. The token is removed from each of the in-pointing arcs.
SARA method dictates top-down design from re- Similarly, if the output logic is "or", then exactly
quirements until the level at which it is possible to one token is deposited on exactly one of the out-
compose the system from off-the-shelf components. pointing arcs, and if the output logic is "and", then

exactly one token is deposited on each of the out-
Language pointing arcs.

At the topmost level or at each refinement of a mod-
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The DFG is a bipartite composed of process and The GMB Analyzer generates the graph of all reach-. dataset nodes. An arc with the head at a process able states and then asks various questions that can
represents the dataset at the tail being an input to the be answered by examining the structure of this
process, and an arc with the tail at a process graph.
represents the dataset at the head being an output of
the process. Each DFG process is associated with The Performance Analyzer uses supplied timing in-

some process in the CFG so that a DFG process is formation to build a closed form queueing theory

initiated to do its data transformation from input to model of the CFG.

output when the corresponding CFG is initiated. The GMB Simulator is in the form of a token ma-
The DFG of the GMB of Figure 8 has two process chine. It implements the token-distribution seman-
nodes, PI and P2, and two dataset nodes, D1 and tics of the GMB model, allowing the user to choose
D2. All the arcs flow from one kind of node to the among enabled nodes, and it invokes associated in-
other. Observe that an association has been set up terpretation procedures as process nodes are in-
mapping the DFG processes P1 and P2 to the CFG itiated. The token machine shows the simulation on
processes P1 and P2 respectively, the screen by highlighting initiated nodes and show-

Associated with each process node in the CFG may ing tokens moving from arc to arc.

be an interpretation, a procedure in some imple- Actual Use
mented programming language, LISP in the current
version of SARA, describing the behavior of the The models of SARA have been used to describe
process. The input and output of this procedure protocols, and the tools of the SARA environment
must be consistent with the connectivity of the have been used to verify certain useful properties of
process's associate in the DFG. these protocols, such as proper termination

[Razouk79, Ruggiero79]. The SARA tools do not
Specification and Verification permit verification of correctness, since the require-

The design and implementation of a system ments language is only natural language.

proceeds from requirements downward to imple- 7. PAISLey
mentation using components, including program-
ming language statements, off the shelf. The re- PAISLey [Zave72, Zave87a, Zave87b, Zave87c,
quirements are stated as an enumerated list of natu- Zave9l is an executable specification language for
ral language sentences, the numbering giving a specifying concurrent digital systems. That is, be-
means to map implementation details to the require- sides formally specifying a concurrent system, a
ments that they help implement. The topmost level PAISLey definition can be given to an interpreter
design is a complete complement of designs in each that will execute the specification to produce one or
of SARA's languages. The tools described below more of the specified computations.
give means to analyze, simulate, and test the design.
As the designer moves from level to level, he or she It is claimed that PAISLey is different from an ordi-

takes a yet unimplemented SM module and either nary programming language because a specification
implements it easily with off-the-shelf components in PAISLey, when it can be given, is implementation

or refines it into a complete complement of models independent. That is, it can describe all required
giving more details. This process continues until the properties and behavior of a digital system only to

system is completely tested and implemented. the level of detail desired, leaving all other aspects,
including bow the properties and behavior are imr-

Tools plemented, unspecified. For example, instead of de-
scribing a computation over all the elements of a list

The SARA environment is a graphics based environ- as a loop that visits the elements in some order, the
ment in which one can draw the models and estab- result of this computation is specified using univer-
lish the mappings and associations between elements sal quantification over the elements of the list
of the models visually. Figure 8 shows these map-
pings as dashed lines. In this environment, there are PAISLey tries to get the best of two computational
a variety of tools that can be used to validate the models, asynchronously interacting concurrent proc-
models, in particular the GMB models, esses and functional programming. The cycle of

* GMB Analyzer for analyzing the CFG in order each process is specified functionally. One can

to test for proper termination and thus for dead- specify timing corstraints on any function, and thus
lock, also on any step of proces&_.. These timing con-

straints may either be a ACmMula j;iving the estimated
* Performance Analyzer for a stochastic variant of time of a step or formulae gi':g upper and lower

the CFG, and bounds on the estimated time of a step. The inter-
* GMB Simulator for allowing the user to exercise preter keeps lower and upper bound total time es-

the model with visual feedback, timates for any computation path it follows.
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According to Zave and others who have used PAIS- process returns as the value of the function call the
Ley, PAISLey is intended to and is well-suited to argument of the other's call. That is, if process [I1
model highly parallel, real-time, possibly distributed calls x-t ime 1], and process n 2  calls
systems, such as process-control and communication x - t ime [ 2 1 at times that allow the calls to match,
systems. then H1 returns 2 from its call of x-time, and/n2
Language and Specification returns 1 from its call of x - t i me. To each process,

an exchange function call appears as an ordinary
A PAISLey system is a fixed set of processes, each value-returning function call; however, during the
running independently and asynchronously with execution of the exchange function call, depending
respect to the others of the set. By "fixed number of on the type of the function, a process may have to
processes" is meant that the number of processes is wait asleep, until a match occurs between exchange
determinable at specification processing time. In or- function calls to the same channel.
der not to have to write many nearly identical copies
of a definition that is describing the behavior of The three types of exchange functions are x xr and
more than one process, a process specification can xm. They differ by whether the calling process
be replicated over an indexed set of processes, but waits or not and with what other kind of exchange
the replication is a kind of macro obeyed by the calls they can match. Each side of a communication
specification processor. The purpose of bounded- may be of a different type.
ness in the number of processes is to allow proof I in an x-type function, the caller waits if there is
that synchronization attempts will be successful no other process that has called an exchange
within a bounded amount of time, by allowing estab- function over the same channel. If and when a
lishing bounds on the mount of time required to per- match occurs, the call returns the argument of
form any observable function, the matching call.
Formally a system is specified as a tople of prcess • In an xr-type function, the caller does not wait if

cycle functions, each applied to its initial state. there is no other process that has called an ex-

Thus to specify a two-process system, consisting of change function over the same channel; in this

a clock whose state is the current time and a watcher case, the call returns the value of its own argu-

whose state is the last observed time, one would ment. If there is another exchange call to the
whose ssame channel waiting or issued at the same cy-write cle, the a match occurs, and the call returns the

TIME=INTEGER; clock-cycle: argument of the matching call.
TIME -- > TIME; * An xm-type function call behaves as an x-type
watcher-cycleo: TIME function call, except that it cannot match another

watcher-cycle[Ol); xm-type call on the same channel.
[buaxs anmachx', r's ad ii's x'sca

A process is specified with the aid of a cycle func- mhus x's can match's, xr's, and xm's, xr's can

tion that maps the process's state to its next state. and xrch.

Each application of the cycle function is called a and xr's.

process step or a process cycle. Because the argu- Any time an exchange function is evaluated, if more
merit to a process's cycle-function is only the than one match is possible, then some legal match '*
process's own state, each process appears to have a chosen nondeterministically.
non-forked, deterministic computation tree. How-
ever, processes do communicate by exchanging Consider the following PAISLey definition, of a
values through shared synchronizing channels. That clock ticking every second and a watcher occasion-
is, a process may have to wait unspecifiable num- ally looking at the current time of the clock. The
bers of other process's steps before it can continue current time is the state of the clock and the last time
its own step with an unpredictable value. The un- read from the clock is the state of the watcher. In
predictability in the number of steps and in the value PAISLey, comments are surrounded by quotes.
returned from the exchange causes nondeterminism. The cycle of the clock process can be described in

In PAISLey, communication between two processes words as: compute a new time value as the current
occurs with the help of exchange functions. Each time plus one and offer the current time value to
exchange function name specifies both the type of anyone who will read it. The new time value, i.e.,
exchange and the channel over which the exchange the first component of the tuple, is taken as the next
occurs. For example, x- time specifies an x type state of the clock. The offering of the current time is
exchange over the time channel. When two proc- accomplished as a call to an xr, non-waiting ex-
esses have called an exchange over the same channel change function on the time channel that is read by
at the same time (defined more precisely below) the watcher. Since the clock does not wait, it can
then the function calls are said to match, and each guarantee to finish its cycle in precisely one second.
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The cycle of the watcher can be described in words hung up, the clock would not be able to
as: wait until there is a current time being offered in guarantee that it will finish an execution of
the time channel; when the match occurs take the clock-cycle in the 1.0 second time limit set
time argument passed into the matching call and above; thus its exchange function must be of
return it as the read time. Note that when the type xr."
watcher gets back a time, and that time is installed
as the next state of the watcher that time will be one xr-time will return its argument if no other proc-
second behind the time installed as the next state of ess has asked to read the time channel and null
the clock, otherwise, as is required for offer-time."

"BEGIN DEFINITION" "DEFINITIONS FOR THE WATCHER
PROCESS"

TIME=INTEGER; "watcher-cycle appears to take a TIME to some
"INITIAL STATE OF PROCESSES" "It also TIME, but in fact, it ignores the input TIME and
says that the system has two processes, the occasionally returns a TIME read from the time
clock and the watcher, each with its own cycle." channel."

(clock-cycle[Ol, watcher-cycle[0]); watcher-cycle: TIME -- > TIME;

"DEFINITIONS FOR THE CLOCK PROCESS" watcher-cycle [time] =

read-time[null];
"The function clock-cycle takes TIME to the
next TIME. Thus, the state of the clock is its read-time: FILLER -> TIME;
current time, and its initial state 0 is time 0." "read-time is a mnemonic for a waiting ex-

clock-cycle: TIME -- > TIME; change function, i.e., of type x, on the time
channel; x-time will wait until another process

"The lower bound and upper bound of the time has attempted an exchange on the same chan-
for a cycle are both 1.0 second. Thus, a cycle nel and will return the argument of that call.
is precisely 1.0 second long!" Since the only other process, the clock-cycle,

clock-cycle: I lb 1.0 s, ub 1.0 s; will be calling offer-time every second, the
watcher'e, x-time will wait no more than one sec-

"The next time is the first component of a two- ond until it returns, if and when the watcher
tuple consisting of does a call to x-time."

the current time bumped by 1 read-time[null] = x-time[null];
and an offering of the current time to "END DEFINITION"

the watcher

i.e., the offering is done only for effect and its Now the question is what is the computational
results are ignored in the clock's progression to model of the formal model of PAISLey. That is,
its next state." how is concurrency modeled? The model is unusual
clc k-cyc1eti mel =in that there are definitely sequences of states. How-

pro [ (1, ever, the state transitions are not the unit of inter-
proj (1,) leaving. Rather, a state tansition is defined as an

offer-time[time, ) application of a function, which in turn may be de-
fined in terms of other, possibly concurrent function
applications. The initiation and termination of func-

"offer-time either returns with the time it offered, tions applications that are the units of interleaving.
indicating that this offered time was not read or
it returns null, the unique value of type FILLER, A system in PAISLey is a set of processes, each
indicating that the offered time was read." running independently of and asynchronously with

each other. A process specification describes a se-
offer-time: TIME -- > TIME I FILLER; quence of states. Each process has an initial state

"offer-time is defined as a more mnemonic and each subsequent state is obtained from the previ-
name for a exchange function of type xr on the ous by application of a mapping or function on
channel called time, i.e., for xr-time." states to states. Each application of a process's state

transition mapping is called a step or cycle of the
offer-time[time] = xr-timeltimel process. Figure 9(a) shows a system with three

"It is important that the exchange function for processes. In the absence of synchronization, each
offer-time not get hung up waiting if there is no process's cycles proceed independently and concur-
other process who has asked to read the time rently of each other. Nothing can be said in the
from the time channel; if the clock were to get formal model about the speeds of these cycles. In
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the absence of synchronization, the cycles do not lower and upper bounds on the execution time, or
occur in any kind of lock-step with each other, both. The simulator will keep track of simulated
Thus, the figure shows the cycles taking varying time elapsed, using a random number generator to
amounts of time and states of processes not lined up select some time in the range if a range is given.
with each other in time. The PAISLey processor and other tools are available
An event is either an initiation or a termination of a from the UNIX tool chest and is available free to
mapping application. Thus there is an event at least educational institutions.
at the beginning and end of each step of any process.
There may be more events, because the definition of Actual Use
a mapping may be in terms of other mappings or of PAISLey has been used in projects at AT&T as an
tuples of mappings. The initiation and termination executable specification language [Zave87c,
of each of these submappings is an event. Zave91]. These include the specification of the in-
Moreover, the individual mappings of a tuple of terface to a database in the Submarine Lightguide
mappings are evaluated concurrently. Therefore, Project, the specification of the user interface to the
within each cycle of a process, there may be any PAISLey environment, and, in the FEARS (Finite
number of mapping evaluations going on concur- Element Adaptive Research Solver) project, the
rently, with their starting and termination events oc- specification of a distributed implementation of an
curring in any which order. Figure 9(b) shows the application that had never been distributed before.
detail of two cycles of one process. Each cycle has In all of these cases, it was found that "a little for-
an encompassing mapping application. Each of malization goes a long way" [Zave9] 1to help under-
these contains nested mapping applications, some stand difficult problems. This understanding comes
disjoint and some overlapping with each other. The from the mere exercise of trying to formalize the
events are marked with little filled boxes. system under design even if the formalization is left

The events of all processes of a system are inter- incomplete.
leaved. Thus the smallest observable grain of comn- Other Similar Systems
puting are the initiation and the termination of a
function evaluation. Within each process's cycle The specification language Gist [Feather87], devel-
there may be any number of possibly concurrent oped by Feather and others at ISI, is in a family with
function applications going on. It is their startings PAISLey, although its formal definition is probably ,
and endings that are interleaved. If two events are more carefully laid out. In Gist, the meaning of a
supposed to occur at precisely the same time, concurrent program is a set of histories, each being a
whatever that means, one of them will be chosen sequence of transitions. A transition is a set of
arbitrarily to execute first. Thus, in Figure 9(b), the deltas, and each delta is a function on a primitive
two events on the same vertical, time axis near the state variable to its next value. By having a fimction
middle of the second cycle are arbitrarily inter- for each variable of the state, concurrency can be
leaved. represented to the granularity of the individual vari-

able update. Gist is used to write specifications forThe author of this module asked Zave what is the components of distributed composite systems, fromI

model. She replied by electronic mail that "It is which correct implementations of the components f
definitely operational, as there is an interpreter and ofwthe system itself can be formally derived.
which nondeterministically selects the next event in

the computation. Petri nets and dataflow diagrams Another operational approach based on sequences of
both capture some aspects of the execution model." events is that of TSL-I (Task Sequencing
Tools Language-I) [Luckhama6] TSL-I is language for

specifying sequences of tasking events that occur
As PAISLey is an executable specification language, during the computation of a distributed Ada pro-
there is an environment providing a specification gram. The events of interest are task initiations and
checker and a specification simulator. The specifi- terminations and rendezvous initiation and termina-
cation checker does all sorts of compile-time checks tion.
including that all functions are called with argu- TSL-1 statements are annotations added to Ada pro-
ments of the correct type. The simulator tool is gram that appear as comments to the Ada compiler,
quite spiffy with a variety instructions to allow user but when processed by the TSL compiler, cause gen-
to select more or less output, frequency of sampling, eration of calls to a run-time monitor which checks
etc. Also the output is always pure ascii to allow that the actual computation is consistent with the
other tools to be used to analyze the output in the annotations.
traditional UNIX pipe paradigm.

Performance information can be given for functions. TSL-I statements allow specification of the eventsPerfrmace nforatin cn begivn fr fuctinsthat will occur during a program's computation; it
One can specify a distribution of execution times,
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also allows specification of when two of these formational system, such as a batch formatter, is. events are connected, i.e, that one must follow the event driven and must be continually available to
other. For example, the acceptance of an entry call react to internal and external stimuli. Examples in-
is connected to and must always follow the cor- clude avionics systems, communication networks,
responding entry call. The ordering of all other pairs computer operating systems, process controllers,
of events must be left unspecified because in a dis- telephones, VLSI circuits, windowing systems,
tributed system, there is no clear notion of what hap- WYSI[WYG formatters, etc. The problem in design-
pens first. Two events may appear in opposite or- ing such systems is to descriNý their behaiviors
ders to different ubsca'vrs at two different sites in clearly and realistically. The authors of
the system. The specified events and connections STATEMATE have paid close attention to the prob-
imply a partial ordering of events. The checking lems of visual formalisms in designing their notation
done by the run-time monitor is that the actual for the three views. They were quite creative in
events in the monitored computation are consistent their notation for the behavioral descriptions.
with this partial ordering. To give more detail about the three views:
Because TSL- I is formally defined, it should also be
possible to formally verify the consistency of the A structure chart for the SUD consists of
specification with the program, and not have to rely * possibly nested modules, each being a rectangle,
on run-time monitoring. e information flows from modules to modules,

8. STATEMATE each being a possibly multitailed and a mul-
tiheaded arrow,

STATEMATE fHarel88a, Hare188b] is a graphics- The SUD is itself a module, and modules of the
based environment for describing reactive concur- environment external to it are drawn with dashed
rent systems. The mode of use of it is similar to that lines. Inside the SLID module are both processing
of SARA, described above. One is expected to use modules and data modules, with the latter being
the STATEMATE languages to carry out the design drawn with dashed lines. A module may encap-
of a system starting from requirements. In sulate internal modules which are shown in another
STATEMATE, the system under design (SUD) is diagram in which the encapsulating module is regard
described with three different views, structural, as the SLID of that diagram. In this manner, the
functional, and behavioral. As with SARA, the idea structure is hierarchically decomposed into modules
is to obtain redundancy, as each aspect is described that have no internal substructure. For an example,
from three different points of view and these see Figure 10.
descriptions are reconciled as part of the consistency
checks performed by the STATEMATE tools. An activity chart is similar to a structure chart, ex-

cept that the rectangles denote the activities or func-
The structural view decomposes the SlID into its tions carried out by the system, and the arrows
physical components, modules together with chan- denote flows. A solid arrow denotes data flow and a
nels for the flow of information. The functional dashed arrow denotes control flow. For an example,
view describes what each component can do, i.e., the see Figure 11.
function it can compute or the data it can carry. The
behavioral view describes the order in which the The behavior charts are the most innovative. They
components are activated in order to carry out their may be thought of as extended state transition
function. diagrams (extended finite-state machine) for which

the traditional limitations of these diagrams have
Language been avoided. State transition diagrams are inappro-

For each of these three view, STATEMATE pro- priate for describing behavior of complex reactive
vides a graphical language together with an on-line systems because they are flat and unstructured and

graphics-based editor that checks the validity of a inherently sequential. Moreover, they tend to suffer

diagram as it is being built element by element. The an explosive, exponential growth in the number of
resulting diagrams, called module-charts, activity- states as the SUD is extended slightly.
charts, and statecharts, respectively are all based on These problems are avoided by the ability to hierar-
a number of new graphical conventions invented by chically decompose states into AND- and OR-
the authors of STATEMATE to get around the size combined states plus a broadcast mechanism. Once
problems that other graphic notations have run into states are hierarchically decomposed, it is necessary
and which prevent them from being used on large, to be able to have transitions enter and leave at any
real systems. level of the decomposition. Figure 12(b) shows the

As mentioned, STATEMATE was designed to allow diagram resulting from OR-decomposition of Figure
specification of large and complex reactive systems. 12(a). Either diagram shows that from state V the
A reactive system, as opposed to a functional trans- computation goes either by transition e to state S or
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by transition h to state T and then from either back Pnueli by electronic mail. The basic idea is to con-
to V by transitionf. Figure 12(b) has clustered states sider the atomic transitions, i.e., those that go from
S and T into a new state U such that to be in U atomic states, which have no components. "At each
means being either in S or T. If it turns out that T is step in the execution of a statechart, there is a set of
specified as the default state of U, then the diagram events and conditions that come either from the en-
can be changed to that of Figure 12(c). vironment, or have been generated by the statecharn

in the immediately previous step. These events and
Figure 13 shows AND-decomposition. In Figure conditions enable a certain set of transitions, which
13(a), there is a cluster of ordered-pair states. If are edges in the statechart graph that depart from a
these are clustered into a new state U consisting of a state that is curreitly active, and whose labels are
Cartesian product of smaller state transition statisfied by the events and conditions that are cur-
diagrams, the diagram can be simplified con- rently true. The next step consists of a maximal
siderably into that shown in Figure 13(b). Quite conflict-free set of enabled transitions, and all of
likely the meaning of the individual sub state transi- them are jointly taken in this step. In case of non-
tion diagrams is clearer than that of the larger determinism, several such maximal conflict-free sets
diagram with ordered-pair states. Recall your own may be available." One of these is nondeterminis-
experience constructing the AND- and OR- tically selected and all of its transitions are take in
combined finite state machines when you learned this step. "In interactive simulation, the user is
that the union and the disjunction of finite state lan- asked to choose one. In non-interactive
guages were also finite state. Figure 14 shows the (batch-)simulation, the system chooses one at ran-
use of broadcasting. In this machine, each state is a dom. The taken transitions usually generate events
three-tuple. When the computation is in state and modify conditions, and these will be available in
(V,W,R) and event m occurs, then the next state is the construction of the next step."
(X,Y,P) because the transition under m from R to P
broadcasts e, causing transitions from V to X and There is true concurrency in the formal model, as for
from W to Y. PAISLey. However, since the set of transitions se-

lected to fire in parallel are mutually non-
Concurrency is achieved through the AND decom- conflicting, the result can be no different that having
position using Cartesian product states. Each sub gone through the same transitions in any order.
transition diagram can be considered the specifica- Thus, the model is equivalent to a fully atomic-step
tion of an independent process running concurrently interleaving model. TIe obvious question is "Why
with the process that is specified by the other sub is there this unnecessary concurrency in the formal
transition diagrams. Thus in Figure 13(b), one proc- model?" Perhaps, it is to justify the interpreter tool
ess is running the diagram in S and the other is run- using the same model, i.e., of doing many steps con-
ning the diagram in T. In figure 14, there are three currently. Certainly time estimates will be more ac-
processes, S, T, and Q. Synchronization is said to curate if the concurrency in the model is an accurate
occur at like named transitions in the sub transition reflection of the concurrency that can take place in
diagrams. Thus in Figure 13(b), the first process real life.
that gets to a transition e will have to wait until the
other gets there also in order that both can proceed. Actual Use

The ability to decompose states and to broadcast are STATEMATE is in use by several companies, in-
powerful tools for reducing the size of transition cluding Israel Aircraft Industries and SEI itself to
diagrams into manageable chunks, each part of help specify and design reactive systems. Leveson
which can be understood independently for its con- and others report on the use of STATEMATE to
tribution to the whole. But what is the meaning of a build a system requirements specification for a real
computation when states have substructure. If a aircraft collision avoidance system, a system involv-
state S consists of a subdiagram, then activation of S ing real-time concurrency [Leveson9l].
means activation of the subdiagram. Then suppose
S, at the level it appears atomic, is concurrent with Tools
state T, then what is the relationship between the Among the STATEMATE tools are the following:
components of S with P7 Moreover, in an interleav-
ing model, what is considered atomic is critical, for * a simulation package for executing the specifi-
that determines the grain of interleaving. If in a cation of the SUD to allow observation of its
nondeterministic selection S is selected to run before behavior
T, then should the submachine of S finish entirely * report generators that, among other things, can
before initiating T or should the components of S be generate DoD required standard documentation
interleaved with 71 e testing package for doing a number of dynamic

The module author raised this question with the an- tests, such as reachability analysis and detection
thors of STATEMATE and received an answer from of deadlock and nondeterminateness
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* an Ada code generator that produces an Ada pro- symbols are uninterpreted in the CCS and CSP for-
totype of the SUD according to simple rules malisms, but can be chosen to be mnemonic of a
about how to implement the components of a meaning to the human reader. For example, the
specification event start-timer can be understood as the event of

the timer starting up, even though to CCS and CSP,
9. Process Algebras it is no more than just another atomic event.

CCS (Calculus of Concurrent Systems) and CSP Thus, in addition to the logic, set, and function
(Communicating Sequential Processes) are for- operators are a collection of operators for working
malisms for specifying concurrent systems in terms with finite sequences such as concatenation, head,
of sets of possible traces of observable events given tail, f-,h element, etc.
rise to by the system. Thus the formalisms are oper-
ational. Furthermore, each specifies a system in The concept of observable event is critical and pro-
terms of its component processes that are independ- vides a powerful abstraction tool. It is up to the
ent except for explicit communication between definer of a system to specify which of the possible
them. Each component is specified in terms of con- indivisible actions that occur during the execution of
straints on its possible traces of observable events, the system are considered observable. Events not
The system as a whole is understood as a composi- critical to the abstract description of the system can
tion of these traces according to various trace com- be ignored. Among the operators of CCS and CSP
position operators. is restriction of a trace to symbols in a sub-alphabet

In both, each process is specified in a grammar-like of symbols.

notation in which the nonterminals or variables are The specification of a sequential program is given as
regarded as process states and the terminals or con- a description of the set of all possible traces of ob-
stants are regarded as names of actions, events, or servable events of the program. The specification of
ii-ansitions. A multiprocess system is specified by a concurrent program is given as the composition of
composing process definitions using a variety of specifications of its constituent sequential processes.
operators that model choice between processes and This composition effects an interleaving of the
concurrent execution of processes. These operators events of the individual processes. For this inter-
form a process algebra leaving to be meaningful and to capture all possible

computation histories, it is essential that the events
CCS was developed as a formalism for describing be atomic. Communication between two processes
multiprocess systems and for exploring the various is accomplished by having two processes execute
notions of equivalence of processes two separate halves of what is considered one event.
[Milnerao,Milner89]. The original CSP was in fact a One half is the write and the other half is the read of
programming language (Hoare78] that later proved a datum on a channel. Both processes have the same
to be the inspiration for the Occam language. A event symbol in their traces. The process that ar-
proof system for that version of CSP can be found in rives at its half of the event first must wait until the
a paper by Apt, Francez, and de Roever [Apt80]. other arrives at the other half; only then does the
The CSP formalism (as opposed to programming event happen, i.e., the reader reads what is written.
language), developed to explore specification of
processes, is described in a book of the same title Fundamental Semantics
[Hoare85]. These formalisms have been the inspira-
tion for at least one standardized concurrent system In both, one views a collection of process definitions

specification language, LOTO [IS(089] that is being as specifying what is called a synchronization tree.
used to specify Open Systems Interconnection A synchronization tree, shown in Figure 15, is not

(OSI). There is a more recent extension of CCS unlike the tree of possible computations of an
called SCCS (Synchronous CCS) for specifying sets NDISM illustrated in Figure 1. There is more infor-
of processes that operate in lock-step synchronized mation embodied in the synchronization tree, but it

concurrency [Cohen86]. is possible to derive from it the tree of possible com-
putations of the NDISM implied by the synchroniza-

Language and Specifliation tion tree and its process definitions. To understand
CCS, CSP, and langauges derived from them it is

The languages of CCS and CSP are built on the useful to understand the NDISM implied by a set of
standard notation for mathematics, using theusual process definitions.
logical, set, and function operators.

Consider Figure 15 as a representation of a collec-
In both (although strictly speaking, CCS does not tion of process definitions. Each node represents a

* really define the trace), a trace is a finite sequence of global state of the defined processes perhaps ex-
symbols representing atomic, indivisible observable pressed as a tuple of the states of the individual
events in which a process or processes have partic- processes if it is desired to examine the composition
ipated in up to some instant of time. The event of the states. Each arc represents a transition from
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one state to another via an action or event whose In the literature on CCS, CSP, and their linguistic
name is the label of the arc. There is one arc label c descendants, choosable choices are called
that is a place holder naming all hidden actions. A deternini•sic and nonchoosable choices are called
hidden action is an action involving portions of the nondeternunistic. This choice of vocabulary to de-
state that are not intended, for the purposes of the scribe different choices within the specified system
definition, to be visible to the user of the system. is perhaps unfortunate becatse of the entirely differ-
All other labels are names of actions that the user of ent meaning of these terms at the level of the formal
the system is to be aware of. model of the specified system. At the level of the

formal model, if the synchronization tree has any
One can take either an active or an inactive view of forks, the specified system is called nondeterminis-
a system. In the active view, the viewer is a user is tic, and a deterministic system is one whose
operating the system and non-'r labels are names of synchronization tree has no forks, i.e., at any state
actions and that can be explicitly chosen or invoked there is at most one possible action out of the state-
by the user, while "r labels are place holders for inter- To avoid this confusion, this module continues to
nal actions over which the user has no control that use the terms "choosable" and "nonchoosable" for
cannot be invoked. In the inactive view, the viewer expressing the degree of external control over
is merely watching the system compute. Non-r la- choices in a nondeterministic system, which has
bels name actions that are intended to be visible to choices.
the viewer, while 't labels are place holders for inter-
nal actions that are intended to be invisible to the Each synchronization tree denotes a set of possible
viewer. computations. In CCS and CSP a computation is a

sequence of states for which the actions between
The literature on CSP and CCS takes both points of them have non-,t labels. In other words, the ob-
view, unfortunately often in the same document. served computations consist only of the non-hidden
The mixture of viewpoints was confusing to the au- actions that are taken in traversing the synchroniza-
thor of this module, because the reasoning consistent tion tree from the root towards a leaf. Figure 16
with one point of view is not applicable to the other. shows the set of computations denoted by the
Moreover, the passive view of just observing evnts synchronization tree of Figure 15. Some are infinite
happen puts the viewer in the awkward position of and some are finite. All start with the initial state
observing unobservable T events. Therefore, this from which there was only one possible action, that
module takes solely an active point of view. labelled a. Observe that transitions labelled T and

As with the tree of possible computations of an the node at their target are eliminated in building the
NDISM, a forking node of a synchronization tree computation sequences. Thus a computation con-
denotes a choice of different actions out of the state sists only of actions that are externally visible or
represented by the node. If the labels of all of the invokable. In CSP, a computation sequence is called

arcs coming out of' a node are distinct and none of a trace.
them is r, then the node is said to be choosable. In On this basis, it is easy to see how to construct the
this circumstance each arc has a unique label by tree of possible computations of the NDISM implied
which it can be selected and non of them is invisible, by a synchronization tree. Figure 17 shows the ex-
Otherwise, if at least two arcs are labelled the same traction of the tree of possible computations from
or there is at least one arc labelled 'T, then the node is the synchronization tree of Figure 15. The arcs of
said to be nonchoosable. The meaning of being the synchronization tree are dotted lines and the arcs
choosable is that in the active view, the external en- of the tree of possible computations are solid lines.
vironment can choose which iction to take from a From each non-r labelled synchronization tree arc is
state simply by invoking that action's label. If two obtained a tree-of-possible-computations arc that is
arcs are labelled the same, choosing that label does labelled identically. If the parent of a non-'r labelled
not uniquely identify a single arc; thus the choice synchronization tree arc a is labelled T, then the cor-
must be made internally. If at least one arc is responding arc a of the tree of possible computations
labelled T, then the external environment looses the is extended upward to the parent of the arc labelled
ability to completely choose because the hidden -E. This process of extending arcs upward continues
events denoted by the "r labelled arcs might happen recursively until there are no arcs labelled 't. Figure
before the external environment can exercize a 18 shows the tree of possible computations without
choice by explicitly invoking a non-t label. the distraction of the synchronization tree from

The idea of a node being choosable or nonchoosable which it was derived.
simply does not jibe with a passive view. It is The two formal systems, CCS and CSP, differ in the
simply impossible to passively observe whether or ways that forking nodes of synchronization trees can
not an active choice has been made when a choice is be specified. Each has a slightly different set of
observed. The set of possible observable events is choice composition operators. In addition there are'
no different when the choice is purposeful from slightly different operators for specifying concur-
when it is nod
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rency. The effect of these operators is on the repre- In CCS, all choices, choosable and not involve the
sentation of the states as a function of the compo- use of the + operator on processes.
nent process states and on the actions that are pos- P+Q behaves either as P or as Q. As n as thesible to take from these. PQbhvsete sPo sQ stna h

first action of one process is performed, the other
Notation process is discarded.

Choiceless Sequential Processes A choosable choice is one in which the labels of the
first actions of both are not t and they are distinct,

The notations to describe the individual processes in otherwise the choice is nonchoosable. Thus,
CCS and CSP are quite similar and will be described
together before continuing on the description of each a.P+b.Q
separately. is choosable, but

The specification of a choiceless sequential process a.P+a.Q,
has the flavor of a recursive, grammnatical specifi- a-P+'r.Q,
cation of the finite state language of traces whose t.P+b.Q,
alphabet is the set of observable event names. and

For example, a specification of a vending machine,
VM, that repeatedly accepts one coin and in response are nonchoosable.
to the coin issues a chocolate is While T events disappear when considering com-

VM=coin.choc.VM (CCS) putations, they cannot always be elided when con-
VM=(coin--4(choc-.--VM)) (CSP) sidering process definitions. Clearly,

which is to be read "The VM accepts a coin and then a.t.P=a.P
issues a choc and then repeats itself, and

The set of traces that these specifications generate is

({<coin,choc>o) but among

i.e., the singleton set containing the unbounded se- and A = A+,.bA

quence of arbitrary repetitions of coin, choc. , = a.B+b.B

Figure 19 shows the infinite, linear synchronization A and B should be different. B may perform either a
tree generated by these. Collapsing the synchroniza- or b in any state. However, A may reach a state via T
tion by cycling at the first recurrence point yields the in which b is possible but a is impossible because
state transition diagram of Figure 20. the other option has been discarded, and there is no

way for the environment to control whether or not A
In general, if P is a process and a is in the alphabet gets to this state. Now in a concurrent combination
of P, then of processes, the environment may offer only an in-

a.P (CCS) vocation of a, and A is deadlocked. If the the envi-
(a-*P) (CSP) ronment offers only an invocation of a tp b, there is

no deadlock. Figure 21 shows the state transition
describes a process that does action a and then does deadfor A an B

the actions of P. diagrams for A and B

With the common parts of the two notations de- In CSP, there is no explicit T action. Therefore, the

scribed, consideration turns to the choice and con- distinction between choosable and nonchoosable

currency composition operators which differ in the choices mu'! be made explicit in the operator.

two languages. (a--+P-Ib--Q), where a*b, describes a process which
Choices initially does one of a or b. If the chosen action is a,

then after that it behaves as P. If the chosen action
Both notations have ways to express both choosable is b, then after that it behaves as Q.
and nonchoosabl' choices. Even within a kind of The "" operator is not a process operator even
choice, the notations differ in subtle ways. In the
following discussions, unless otherwise explicitly though its operands are processes. So, in fSP, one
stated, P, Q, R, and S are processes and a, b, c, and d cannot say "Pr Q". its operands must be of the form
are actions, which are assumed to be in the common w'action-process" so that there is always an explicit

* alphabets of the processes involved. In cases in way to choose the desired choice, by selecting its
which what happens when an action is not in the first action. Indeed, the "-" itself is not really the
involved processes' alphabets, the alphabets are de- operator; "o( ad of t--y... act is the operator
scribed explicitly. taking for operands of types action, prcess, action.
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and process, in that order. The expression a cannel for each coin, but the customer cannot
(a-4PIb--Q) is considered as a whole much the predict v'hich, would be specified as
same way that there are no "if", "then", and "else"
operators, and a conditional expression is considered (choc-4VM)F1
as a whole. Multiway choices are written as fiat (carahnel-+>VM)).
expressions using one pair of parentheses and more
than one "I". Thus, (a-*P I b->Q I c-*R) is correct In CCS, the former would be specified as
and (a->PI(b--*Qjc--+R)) is not. Note also the re-
quirement that the initial actions of each operand of V.V
"1( .". -ý-' I • • --4 - • )" be distinct is syntactic. ((dime.choc.VM)+

It is syntactically incorrect to write (a->Pla-4Q) (nickel.caramel.VM)),

Indeed, these syntactic constraints are what distin- and the latter would be specified as

guish CSP's VM=(coin.(

(a-+P I b-iQ) (choc.VM) +
(caramel.VM))).

from CCS's Figure 22 shows the state transition diagrams of the

a.P+b.Q two newer vending machines.

purposely written without parentheses, which means Concurrency
almost the same thing. The CCS "+" is an operator
that can be applied to processes; so P+Q is In both CCS and CSP, concurrency is introduced by
legitimate. Also it is legitimate and meaningful to operators that cause the individual actions of the ar-
write a.P+a.Q. The result is a nonchoosable gument processes to be interleaved in some way par-
choice; the fact that the first actions of both ticular to the operator. For some of the operators,
operands are the same prevents the user from ex- there is the possibility of synchronization occurring,
ercizing a choice that chooses between a.P and a.Q. that is, of two processes engaging in simultaneous

complementing actions. These complementing ac-
A nonchoosable choice is expressed in CSP with an tions are considered a communication (the "S"es in
operator on processes. "CCS" and "CSP"!)

PFlQ is a process which behaves either as P or as In CCS, there is one concurrency operators on proc-
Q. The choice is made arbitrarily without knowl- esses of like n: •'abet, the "1" operator. Before it can
edge or control of the environment, be defined, it is necessary to define complementing

The other way to obtain a choosabie choice in CSP action labels. Two action labels are complementing
iwthae o phereway ato r o ota n prcessales. h CSif they have the same spelling but one has a over barand the other doeb not. For example a and d are

P a Q is a process which behaves either as P or as Q. complementing labels.
The environment can control which of P or Q is
selected provided that the control is exercized on the PIQ is that process whose actions are the interleaved
very first action. actions of P and Q. In each state, any action from

either process is nondeterministically chosen to the
It is clear that if a*-b, be the next action of PIQ. The component process

whose action is selected is taken to the state that
(a-*P) f (b->Q)=(a->P Ib-Q), follows the selected actions. If, in both processes
but the next possible actions are complementing, then
(a-->P) 0 (a-+Q) = (a-+P)r" (a->Q), one possible next action is the -t action which takes

each componen: process into the state that follows
which in turn equals its one of the complementing actions,

a-+(PF1Q). If complementing actions are possible, it is possible

With the choite operators it is possible to define for the composed process to select one of the com-

more realistic vending machines. In CSP, a vending plementing actions to take as an individual action.

machine that issues a chocolate for a dimc and Given process definitions,
caramel for a nickel would be specified as A=aA'

VM = A' =ZA
((dime-+(choc--4 VM))( and
(nickel-4(caramel-4 VM)))) . B = c.B'

A vending machinc that issues either a chocolate or 03'= .X..

That is,
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A=a..A via the event or input or output. If the next actions

and of P and Q are not complementing, i.e., they differ

B=c.B.B or are not over the same channel, then the processes
deadlock.

A1B is definable as (a-4P)ll(a-4Q) = a-+(PIIQ)

<AIB>=a.<A'IB> (c !v-P)ll(c?x-4Q(x)) = c!v--N(PIIQ( v))
<A1B> = c.<AIB'>
<A'IB>=c.<A'IB'> In the latter, the combined event is consiaered the

<A'1IB>-=.<AIB> output to the external environment.

<A'IB> =t".<AIB'> (here, t= c) If a.b and c-€d, then
<A[B'> = 1i.<AIB> (a -P)li(b --Q) =
<A lB'> =a. <A IB'> >a +~ j~~ -<A'IB'> = B.<A'IB>

(a4P)lB(cbxQx) =

<A'lB'> = .<AIB'>, (c!v---P)l1(d?x--4Q~x)) = STOP

where <PIQ> denotes the state of process AIB built Thus, for two processes with identical alphabets to
from state P of process A and state Q of process B. compose in parallel without deadlock, they must go
Figure 23 shows the state transition diagrams of A, through sequences of identical actions or input and
B, and AIB. output over identical channels.

In CSP, there are a variety of operators affecting a If however, the alphabets of the processes P and Q
concurrent composition of processes. Only the two are different, then events that happen to be in both of
main ones are discussed here. The distinction be- their alphabets require simultaneous participation of
tween the operators is in their treatment of potential both processes. However, an event that is in the
interaction. Recall that in CCS, an interaction might alphabet of one and not the other is ignored by the
occur when two processes are composed and they other and is done at the one's leisure. The result is
have complementing actions. If the interaction oc- that the alphabet of PIIQ is the union of the alphabets
curs, the two complementing actions occur and can- of P and Q.
eel each other to yield a single t action that is invis-
ible to the observer. Then again, the interaction Suppose that
might not occur and each complementing action is
left to occur on its own, possibly to interact with a is in the alphabet of P but not in that of Q.
another, external complementing action. b is in the alphabet of Q but not in that of P.c and d are in both alphabets, and c-€d.

In CSP, the complementing actions are either like- Clearly aeb. Then only P can do a, only Q can do b,
named events or an input and an output on the same but P and Q must do c or d simultaneously for PIIQ
channel. Thus action a on one process complements to avoid deadlock. More formally,
action a on another process. An output of a value v
on channel c is written (c--->P)Nl(c---Q) = c-*(P1IQ)

c!v. (c-*P)ll(d.-Q) = STOP
(a-4P)lt(c---Q) = a--(Pjl(c--cQ) )

This output is complemented by an input to a vari- (c--)lj(b---)Q) = b-+((c-WP)llQ)
able x from the same channel c, which is written (a-P)II(b--*Q) = a-4(Pl(b-4Q))l

c?x . b-((a--P)llQ) .

If and when the input-output interaction occurs over Actions in the common alphabet of P and Q require
channel c, the result is that the value v is assigned to simultaneous participation of both processes, while
the variable x of the reading process's context. all remaining actions occur in arbitrary interleaving.

To see this, consider the processes P and Q defined
The simplest concurrent composition operator is the

parallel composition operator "lr". P =a----b-c-PQ=d--4c---)Q.
If P and Q have the same alphabet, then PIIQ The traces of P and Q are shown in Figure 24. Also
denotes the process with that same alphabet which i
behaves as the system composed of P and Q inter- in that figure is a representation of all possible traces
act/ing in lock-step synchronization. of PIIQ. Events that lie in a chain of arcs must be

ordered as in the chain, but events that lie on op-

That is, in each step of PIIQ, if the next actions of P posite paths of parallel chain of arcs are not ordered
and Q are complementing, then the common event with respect to each other. The merging of the event
or the input and output over the common channel arcs for c is supposed to indicate a requirement of
happens and each process is taken to its next state simultaneous occurrence. Thus, one possible trace

is a;d;b;c;d;a;b;c;
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Note that if P's and Q's alphabets have no actions in If a = b then effectively, the 10"l becomes f 1, i.e.,
common, then P and Q are completely independent, the choice becomes nonchoosable. In general the
and the traces of PIIQ consists of arbitrary interleav- choice is choosable in that if a and b are different,
ings of the individual actions of P and Q. Each such choosing the first action determines which operand
trace is indistinguishable in net effect from even a is executed. This point is illustrated best when a
sequential composition. process is interleaved with another copy of itself.

Let R=(a--4b-->R). We would expect that RIIIR be
Parallel composition interacts with choices in an in- an arbitrary interleaving of a and b events such thai

teresting way. Each operand process is considered the difference in the numbers of as and bs does not

to be in the other's external environment. Thus, in grow without bound.

any step, when one or both processes offer choos-

able choices of initial events, only the complement- RIIIR=
ing events, if any, are possible. Each process is, in a--((b---R)lllR)
effect, choosing the other's choosable choices and is i# a -4 (R Ill (b -4 R))].
choosing the right one to continue the computation. Since the first actions are the same for each choice,
Thus, if this
P= (a-.b---IPb--,P) = a--(((b-.-R)lllR) F1(RIII(b-+R)))
Q = (a---(b--*QIc-4Q)) which
then, = a--((b-4R)IIJR) .

PIIQ = a--(b-+ Pll(b--- Qlc-4Q)) = a--+(b-4(PIIQ)) However,

In the first step, Q's first action chooses the a choice (b-+R)IIIR= (a--)((b-4R)lll(b-+R))) a] (b---(RIIIR))
of P, and in the second step, the b--P chooses the b which
choice of (b--Qlc---Q). However, letting PIIQ be X, =(a-)(b-4((b--R)IIIR))) [
X= a---(b--+X) (->a-~-•~lR)

Letting (b--*R)liIR be X, we have that
Note however, if any choice is nonchoosable, the

possibility exists that the internal action chooses a X= (a-4b-4X) 0 (b--m--X) , and
first action not complementing the only or chosen letting RiIIR be Y, we have that
action of the choosable choices, yielding a deadlock. 0
As mentioned, the traces generated from PF]Q and Y= (a->b-->Y) 0 (b-a-X).

P ] Q cannot distinguish them. However it is pos- CSP has a number of other operators for combining
sible to put them in a parallel combination with processes in concurrent and non-concurrent be-
other processes so that P[iQ can deadlock, but havior. These include operators for
P [1 Q cannot. Let P= (a->P) and Q= (b-4Q) where
a•-b. For (P[1 Q)I P, at every state, the lone P offers e piping the output of the first concurrent process
a; therefore PIIQ is forced to choose the P alter- to the input of the second,
native because its first action is a. However, if a subordinating the second process to the first,
PH1 Q is put into a concurrent combination with P, at 9 executing the two processes sequentially,
every state the lone P offers a; however, the PF1 Q
may choose internally to select the Q alternative, * interrupting the first process with the second, and
whose first action requires b to proceed. There is no * alternating between the two processes step-by-
b coming from the other process, so the combination step.
deadlocks. Observe that CCS's concurrency operator, "I", is dif-
The other main concurrency operator is the inter- ferent from both of CSP's concurrency operators,
leave operator "Ill" defined for processes with iden- "U'. and "Il". The "I" allows both synchronization
tical alphabets. This operator gets the two processes and interleaving, and which one it does at any time
to execute concurrently with out direct interaction or is nondeterministic. In CCS,
synchronization. (a.P)l(b.Q) = a.(P1(hb "w)+b.((a.P)IQ)

An action of PIIIQ is an action of P or of Q; if both (a.P)l(a.Q)=a.(Pl(a.Q))+a.((a.P)IQ)
processes are able to execute the same action, then (a.P)I(-.Q)=x.(PIQ)+a.(PI(•.Q))+d.((a.P)IQ).
only one is chosen nondeterministically to do that This is different from in CSP in which applying a
action, leaving it still to be done by the other. synchronization is not optional. In CSP,
Thus, synchronization is obligatory with "T', and if it can-

not occur, then deadlock happens. Thus,
(a--*P)llI(b---*Q) = 0

a--(PIII(b--*Q)) 9 b--((a--4P)lIIQ). (a-4P)ll(b---Q) is a deadlock
while
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(a-)P)fl(a-4Q) = a--(PIIQ). CCS does not need a concealment operator because
S On the other hand, in CSP interleaving is obligatory it is implicit in the cancelation of complementing
withe oll r Than, ievents. CSP does not need a prevention operator
with 10"'r. Thus, because it can be forced by using its obligatory
(a--P)llI(b-+Q)= synchronization operator together with processes

a--+(PllI(b--Q)) whose first actions are disjoint.
n] b-.>((a-*P)IIIQ). Example Specification in CSP

The CCS concurrency operator is a catch-all, captur- The system consisting of the PRODUCER and
ing all modes of concurrency, while CSP gives a CONSUMER running concurrently is
separate operator to each kind of concurrency.
Similarly, CCS choice operator captures all kinds of SYSTEM=PRODUCERIICONSUMER,
choice, while CSP gives a separate operator for each The definition of PRODUCER would be something
kind of choice. like

Prevention and Concealment of Actions PRODUCER=

CCS has an operator "'" on processes and sets of (producevalue-+
actions whose effect is to prevent the process from (c!value--PRODUCER)),
doing any action in the set. and the definition of CONSUMER would be some-

P\A where A is a set of actions is that process ob- thing like

tained from P by preventing P from doing any ac- CONSUMER=
tion in A. (c?var--(consune_contents_of var

-- CONSUMER)).
Thus,

(a.P)\(a} =NIL Verification

is a deadlock because its only possible first step is Hoare's book on CSP, besides being a text book,
prevented. The "V' operator can be used to cause a treats CSP as a formal system and gives algebraic
CCS parallel composition to behave like a CSP laws that can be used to show that two specifications
parallel composition. Recall that are equivalent and to prove other properties such as

avoidance of deadlock. Indeed as an example of the
(a.P)1(4.Q)= .(PIQ)+a.(PI(i.Q))+'.((a.P)IQ). power of the system, the book devotes considerable

space to specification of a solution to the dining
Preventing the individual a and J actions forces their philosophers problem and verification of properties
cancellation into the hidden r event, of this solution.

((a.P)I(Z.Q))\(a) ='r.(PIQ), Actual Use

thus simulating the effect of CSP's ((a-4P)jl(a--+Q)). CSP has been used to specify a variety of systems.
For example, Woodcock has used CSP to specifyCSP has an operator "V' on processes and sets of and prove properties of several different primitives

actions whose effect is to hide as internal actions the for transaction processing EWoodeo<tki7i.

actions of the process that are in the set.

The module author has even seen students use it
P'a where A is a set of actions is that process ob- informally during the course of an informal discus-
tamed from P by making all actions in A hidden, sion of how a certain system works. This fact tes-
internal actions. tifies to the naturalness of the notation and the case

Thus, with which it is used. Probably its greatest strength
is the uninterpreted alphabet that allows events to be

(a-4P)\{(a} =PX{a). considered at any level of detail.

Concealment of events can turn a choosable choice Also in a recent study at SEI comparing several
into a nonchoosable choice by hiding the actions by methods, CSP, VDM, and denotational semantics
which the choice would be chosen. [PlacegO], to specify concurrent software, CSP was

(a--.P)I(b--+Q)\(a,b} =P\{a,b}F1Q\{a,b) taken as the first one in which to write the specifi-
cation. While the authors of the report professed to

CSP's "V' operator can be used to achieve CCS's being fair, it seems clear in retrospect that CSP was
hiding of cancelling events as c actions. Suppose chosen to be first because working with it involves
C= {c!vlve alphabet of channel c). Then, less notational baggage than other methods; one can

((c!v-+P)IJ(c?x--Q(x)))\C= (PIIQ(v))\C. write strictly the relevant events.
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Tools Synchronization or communication happens when
the involved processes do complementing actions in

At least two tools for writing and verifying CSP the same step. It is possible for more than two proc-
specifications have been developed. Both use the esses to be involved in a synchronization or commu-
trace model of T ýP-specified computations as the nication, because all processes are executing in all
basis for the formalization embodied in the tool. In steps.
one case, Moore has shown how to carry out mul-
tilevel decompositions of requirements not unlike In order to permit processes to act at different, vary-
those done for the FDM and the HDM (See Sections ing, and unspecified speeds, the definer of a process
VI.2 and VIA.) [Moore9O]. Hle uses the EHDM (See can introduce choices of Tr actions at any point to
Section VI.4 on HDM) verification system to verify allow the other processes to proceed faster with
proofs of the correctness of the decomposition, so non-'T actions. Of course, it is possible to split
that properties ascribed to the highest level can be lengthy actions into sequences of shorter subactions;
inferred of the lowest level. Camilleri has the length of the sequence for each split action
mechanized the CSP trace model with in Higher Or- would be made proportional to an estimated time for
der Logic (HOL) so that the HOL verifyer can be the action. Care should be taken in decomposing
used to prove properties of a CSP specification actions, for it is intended in SCCS that process ac-
[CamilleiN0]. tions be atomic and non-interruptable.

The Concurrency Workbench is an automated tool Milner was able to derive CCS from SCCS. Basi-
for analyzing networks of finite-state processes cally, given an SCCS definition, allow each process
specified in CCS [Cleaveland89]. to nondeterministically choose a r action at each

steop. Then, in any computation, in each step, have
Differences Between CCS and CSP all processes but the one that CCS would choose

The two languages CCS and CSP clearly have a lot execute T actions. The result is a CCS interleaved
of semantics in common, and their operators are tan- computation. Moreover, SCCS can express commu-
talizingly similar, but fundamentally different. Cor- nications involving more than two processes; doing
respondences are shown in Table 1. As can be seen, so is impossible in CCS. Therefore, SCCS is strictly
except for the exact correspondence between CCS's more general than CCS.

"".. and CSP's "--*', no CCS operator corresponds to LOTOS
exactly one CSP operator and vice versa.

LOTOS (Language Of Temporal Ordering
It seems in retrospect, that CCS is a minimal lan- Specification) [ISO89,Boio~nesi87J is a language de-
guage providing no concept in more than one oper- veloped under the auspices of ISO (international
ator and even lumping several concepts into one op- Standards Organization) to allow formal specifica-
erator. CSP provides more specialized operators tion of OSI (Open Systems Interconncction) com-
each providing only one concept and, in some cases, puter network architectures and of open, distributed
more than one way to achieve a single concept. For systems in general. LOTOS is based on process
this reason, CSP is probably more useable in writing algebras and has nothing to do with temporal logic,
specifications of concurrent systems. Indeed, one its name notwithstanding. Officially, LOTOS is
system specification language, LOTOS, which is based on CCS, but after reading any description of
claimed to be derived from CCS first and CSP sec- LOTOS, it will be clear that CSP has had greater
ond, appears to be more a descendent of CSP than syntactic and semantic influence.
otherwise.

Besides the basic process algebra to be described
Synchronous CCS below, LOTOS also has features for describing data

SCCS (Synchronous CCS), also devised by Milner structures, value expressions, and their types via in-
ICohen8el, is an extension of CCS in which a sys- itial algebraic specifications of abstract data types.
tem is viewed as a collection of processes, all run- In LOTOS, as in CCS and CSP, a distributed con-
ning in parallel rather than being interleaved in a current system is viewed as a process. A process
nondeterministic fashion. That is, at each step, each may itself be composed of processes, called
process is put through one of its next actions, there sub-processes to form a hierarchy of process defini-
being the possibility of choice of next action for a tions.
process. Each process is specified to have sequen-
tial behavior with choosable or non-choosable A process performs a sequence of atomic actions,
choices at any step just as in CCS. The parallel some of which are internal and unobservable and
composition operator gets the individual processes others of which interact with other processors form-
working together in lock-step synchrony. Thus in ing the external environment of the process
SCCS, a system's state is a tuple of individual proc-
ess states, and each process is specified by equations
much as in CCS.

42 SEI-CM-27-1.0



Formal Specification and Verification of Concurrent Programs

Process synchronization is achieved by having sev- within an enclosing box is hidden by the process of. eral processes execute the same event during the that box. A channel that sticks out from a box is
same state transition. A synchronization may in- connected to an externally visible gate.
volve exchange of data among the processes partici-
pating in the event. Notationally and semantically, Concurrency Operators
these synchronization events are as in CSP. They In the MaO3 definition is an example of the most
are via like-named events in several processes or via general concurrency operator in LOTOS.
a channel that all processes have access to, with one
process doing output and the rest doing input on that Given processes P and Q and a set of gates S, PISIQ
channel. is able to perform any action at a gate not in S or any

action that both P and Q are ready to perform at any
The specification of a process looks like that of a
procedure in a programming language. A process
has a name and parameters called gates. These gates Note that if, say, P is ready to execute an action at
are the ports by which the communication channels an S gate and Q is not ready to execute an action at
connect to the process. The connection of at least the same gate, then P must wait until Q is ready.
processes with like-named gates forms a channel
with that same name. In the body of the process is Another of the concurrency operators in LOTOS is
an expression describing its composition in terms of the "10" operator, which carries exactly the meaning
other sub-processes and events. As an example, of ISI with an empty S. Since there is no possibility
consider of synchronization, the "1" operator effectively

amounts to specifying interleaved execution, exactly
process Max3 [in l,in2,in3,out] as in CSP.

hide mid in
(Max2fin 1,in2,mid] The third concurrency operator in LOTOS is the "'1"
I[mid]l operator which is equivalent to IS] with S being the
Max2[mid,in3,out]) set of all gates in the system. Thus, the two corn-
where ... posed processes are forced to proceed in complete

endproc. synchrony except for internal events, just as in CSP.

* It is assumed that Max2 is a process which outputs It is interesting that LOTOS defines as its basic
on its third gate the maximum of the values input on parallelism operator something which reduces, as
its first two gates. Max3 is intended to be a process special cases, to the two main concurrency operators
that outputs on its fourth gate out, the maximum of of CSP.
the values input on its first three gates in], in2, in3.
The expression There are other operators that are not discussed here

(Maxt2[m fn,in2,,idj in the interest of conserving space.

l[midll LOTOS has been used to specify a variety of distri-
Max2[mid,Win3,out]) buted systems. Moreover there exists automated

indicates that two instantiations of Max2 are to be support for the language, specifically tools to
composed with the output of the first, mid, being the * write specifications,
first input of the second, via a channel called mid. 9 validate and verify specifications, and
The notation * compile specifications to C and Ada.

I[mid)l

is an operator specifying concurrent, i.e., inter. RAISE

leaved, execution of its two process arguments, RAISE (Rigorous Approach to Industrial Software
synchronizing via the channel mid connection gates Engineering) [Nielsen89] is an attempt to address the
named mid in the two processes. Note that the two problems that prevent the Vienna Development
inputs to the first Max2 are the first two inputs to Method (VDM) from being used in large-scale in-
Max3, the second input to the second Max2 is the dustrial software developments of modem concur-
third input to Max3, and the output of the second rent and distributed systems.
Max2 is the output of Max3. The process definition 1. VDM is completely manual.
specifies that mid is hidden from the external envi-
ronment of Max3. 2. The VDM specfication language lacks a satis-

factory way to specify concurrency. (This fact
Associated with this process definition is a diagram kept it from being considered in this module.)

* that shows the physical composition of the process. 3. The VDM specification language lacks a way
For Max3 the digram in shown in Figure 25. A to build abstractions and a way to modularize
process is a box, a channel is a line, a gate is where a specifications into managemable, separable
channel meets a process. A channel that is entirely pieces.
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4. The VDM specification language lacks an ade- ments. It is formally defined, has the type time con-
quate mathematical semantics. sisting of numeric values, has the notions of now,

future, and past, but lacks features that would make
The RAISE language, methods, and tools are aimed it feasible to use for specifying real-life systems. In
at solving these problems by offering particular, it has no modularity and no hierarchical

1. a formally defined, denotational semantics- structuring, and its realtime machine-level formal
based specification language with modulariza- language makes reading specifications extremely
tion and abstraction building features, difficult for any but the writer of the specifications.

2. a rigorous method for specifying, validating, However, its formal definition makes it a good basis
implimenting, and verifying the correctness of for a specification and verification environment.
systems, not unlike the methods assumed by Add to RT-ASLAN features for modeling inter-
FDM (See Sertinn VI.2) and HDM (See Sec- process communication and specify the resulting
tion VI.4), and language by showing how to translate any of its

3. a collection of tools for editing, printing, specifications into TRIO, and you have ASTRAL.
checking, and verifying properties of specifi- From RT-ASLAN, ASTRAL gets the modularity
cations written in the specifcation language. and specification structuring that TRIO lacks, and

from TRIO, ASTRAL gets the formal basis it needsThe RAISE specification language (RSL) is a wide- for a proof system and specification execution.spectrum language in which the main part dealing

with data structures and the nonconcurrent part of The formal model for ASTRAL is a state-machine
alogorithms follows the denotational frame and model like Ina Jo's and ASLAN's. It assumes max-
strongly resembles the VDM specification language. imal parallelism with noninterruptable and nonover-
The part of the RSL that deals with concurrency is lapping transitions in a single process instance. That
based on CSP (hence the fact that this discussion is is, the model behaves as though each process were
in this section). given its own physical processor and that physical

10, ASTRAL resources, e.g., memory, available to it are un-
limited. A processor is never idle when it has a

ASTRAL (Ghezzi91], developed by Kemmerer and transition available to execute, and if no other transi-
Ghezzi, is an executable specification language for tion is pending, a transition is executed as soon as its
describing real-time systems. Its geneology is in- precondition is satisfied. All variable updates of a
structive. Kemmerer et al at the University of Call- transition are treated as taking place in a single
fornia at Santa Barbara developed ASLAN atomic action occurring at the end of the transition.
[Auernheimer85] based on Ina Jo in order to provide The reason for adopting this model is that it allows
an executable specification language for roughly the the processes to be designed under the assumption of
same class of systems specifiable in a independence except for explicitly specified

Language communications. Such designs tend to be cleaner
than those that deal also with scheduling. After the

RT-ASLAN [Auernheimer86] is an extension of AS- design is validated, scheduling can be specified
LAN for specifying real-time systems; it was devel- separately to insist that timing requirements be met
oped by adding timing constraints (in the vernacular in the face of the reality of limited resources.
sense of the word) to the transforms and constraints
(in the formal sense of the word) of ASLAN. A Specification and Verification
timing expression in a transition specification speci- In ASTRAL, a real-time system is specified by
fies the time required to execute the transition, i.e.,
the time limit to which the transform adheres, while giving a collection of state-machine specifications,
that in a constraint specification specifies general one for each t hpe of process, and a single global
time limits to which all transforms are required to specification, for the environment in which the proc-
adhere. It must be verified that the time limits of the ess instances sit. Each state machine specification
constraint are implied by those of the transforms. is, in fact, the definition of a process type in the Ada
One of the strengths of ASLAN and RT-ASLAN is sense, and there may be multiple instantiations of
the ability to structure specifications into smaller this type in the system as a whole. The assumptionpieces. They allow layering and composition of mentioned above that the transitions of the processes

piecs. heyallo laerig ad copostio ofare nonoverlapping allows properties proved about
specifications, and the formalism allows reasoning arepnnven a pro pertie poved abo
about the pieces to be composed into reasoning properties proved about the whole system.about the whole specification.

TRIO [Ghezzi9Ol is a first-order logic language de- The state variables and transitions defined in a proc-
veloped at Politecnico di Milano as a formal nota- ess type specification may be accessed without re- w
tion for specifying and verifying timing require- striction by any instance of that type. Normallythese variables and transitions are not accessible
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from outside any containing process. However, invariant, constraint, and schedule assertions. An. variables and transitions may be marked as exported, invariant must be true in every state of its containing
in which case they are accessible from outside. It specification, a constraint must be true of any transi-
appears from the literature about ASTRAL that from tion in its containing specification, and a schedule
outside the defining process, a variable is read-only. azsertion describes the timing of the initiation and
Changes to such variables are achieved by invoking terminatiou of the transitions in its containing speci-
exported transitions that do the changes internally. fications. Only a no.,global, process specification
All interprocess communication is via these ex- may have transition specifications, each describing
plicitly exported variables and transitions. This one state transition of a process of the type specified
scheme is classic information hiding of process type by the specification containing the transition specifi-
definitions, cation. Each transition specification has at least one

pair of entry and exit assertions specifying the state
Among the exported variables of any process speci- condition that must be true upon a normal invoca-
fication are variables for inquiring the start and en- tion of the transition and what is true upon comple-
ding time for the kth last invocation of any other tion of such an invocation. A transition specifica-
operation with or without specific parameter values tion may also have any number of exception and exit
in some or all parameter positions. These allow assertion pairs. Each specifies the state conditions
writing of timing expressions that depend on values for a so-called exceptional invocation of the transi-
of variables and on the history of the computation so tion together with the handling response to that ex-
far. ceptional condition.

Whereas RT-ASLAN used interface specifications Finally, only a process specification may have an
for interprocess communication, ASTRAL uses a initial assertion describing the possible initial states
multicast communication model, not unlike the of any process of the type specified by the contain-
model implemented by an Ethernet or similar net- ing specification.
work in which each packet is made available to all
nodes and a node picks up only packets addressed to The inovation in ASTRAL is its ability to describe
it. In the formal model, a message is sent to all time in its assertions. The basic time primitives are
processes and only the target process actually gets it. the notion of time as a numeric value over which
Formally, at the beginning of a transition, the ex- arithmetic and ordering operators can be applied
ecuting process broadcasts the start time. At the end plus some specific time valued constants and func-
of the transition, the executing process broadcasts tions such as now, Start(t, and End(t) where t
both the finish time and the final values of all ex- denotes an invocation of a transition. Assertions
ported variables for receipt by all processes that about time can appear in any of the kinds of asser-
have imported them. tions described above. An example of a transition

The broadcast itself is regarded as taking place in-specification that has timing assertions is:

stantly. This way, the multicast can be used to TRANSITION Notify-Death
model shared memory access as well as communi- ENTRY
cation via a point-to-point channel. In the latter Now - Start (New_Info) >
case, the real communications delay must be ex- T imeout
plicitly specified for an appropriate amount of time. & -ChannelClosed
Moreover, the combined effect of universal broad- EXIT

Msg[DataPart] = Closed
cast of the start and finish times of transition execu- & Msg [IDPart ] = Self
tions and instantaneous broadcast is that timing & ChannelClosed
assertions in all specifications can make use of full
information about the time of events without there This specifies that the transition Not i fy-Death
being any delay to obtain the timing information; may be invoked only if it has been more than
that is there is no Heisenberg effect built into the Timeout units of time since the start of an invoca-
formal model. tion of the New_Info transition and the channel isnot already closed.
An ASTRAL system specification consists of a

global specification together with a set of individual A conjunction such as End (This) -
specifications for the process types mentioned as Start (This) _< 5 * n says that the time be-
used in the global specification. Both kinds of spec- tween the start and end of the current invocation of
ifications have type, constant, and variable declara- Th is transition no greater than five times n units of
tions. The variables of any specification make up time, where n might be a parameter of the current
the state of whatever is described in the specifica- transition or a constant, variable, or a function builtS tion. As with Ina Jo and ASLAN, a constant or from all of them. If this conjunct appears in an exit
variable may be a function on values or values and assertion of a transition specification, then the cor-
variables. Both kinds of specifications may have responding normal or exceptional invocation is
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guaranteed to finish by the specified time. This kind environments, at least AFFIRM and HDM have under-
of a conjunct in a schedule assertion in a process or gone enhancement to yield more powerful specification
global specification would be subject to proof for the languages and verification environments. AFFIRM has
process or globally given what is guaranteed or been upgraded to AFFIRM-85 [MusserSSa,
proved for the contained transitions or processes. Musser85b]. AFFIRM-85 has more facilities for struc-

turing specifications hierarchically, and its environ-
Verification ment has a library of reuseable proofs.
Verification of an ASTRAL specification follows The language of Enhanced HDM [Rushby9laj is
the same general framework as in Ina Jo. The speci- Revised SPECIAL [Levit85J. It has a number of nm-
fication is compiled into conjectures written in the provements over SPECIAL, including parameterizable
TRIO language. These conjectures assert the fol- modules, the use of second order predicate calculus,
lowing: and the treatment of program operations as data ob-

I In each process specification, iects A more powerful logic is needed to support these
"* the invariant is implied by the initial asser- enhancements [Shostak82]. More recently, EIIDM has

tion, been used successfully to help construct a verifiably
"correct distributed clock synchronization algorithm* the invariant is preserved by each transi- [Rushby9lb, Rushby9lc].

tion,

"* the constraint is implied by each transition; Gypsy has been ported to several other machines in-
and cluding Symbolics machines [Smith85].

2. in the global specification, Another approach that has been explored is that of
"* the invariant is implied by each process's symbolic execution of am, operational model specifi-

invariant, cation, such as AFFIRM, Ina Jo, or VDL. UNISEX
"* the constraint is implied by each jrocess's [Kemmerer83, KemmererS5] is a suc.cessful implemen-

constraint, tation of this idea for non-concurrent programs written
in Pascal. Inatest has been developed to allow sym-"• the schedule requirement is implied by bolic execution of Ina Jo specifications in order to test

each process's schedule. whether what is desired equals what is specified
In the above, when something is implied by a traiis. [Eckmann85]. Others are exploring extending this idea
tion, it is implied by its entry and exit assertions pair to deal with Ada tasking (Dillon 88a, Dillon88b,
and by each of its except and exit assertions pair. Harrison88].

Tools

The authors realized that a interpretable specifica-
tion language without an interpreter is not very use- Glossary
ful; therefore the design of the language proceeded
in parallel with the design of the environment for
compiling ASTRAL specifications into TRIO speci- asynchronous execution
fications and the TRIO evaluator. At the present the appearance of parallel execution achieved
time, a syntax-directed ASTRAL editor exists in through true parallel execution or multiplexing,
prototype form. The translation from ASTRAL to in which what happens next is unpredictable,
TRIO is done by hand, but a syntax-directed trans- and in which the concept of next may not even
lator is under development. Finally, a TRIO sym- be meaningful
bolic executor, written in PROLOG, is available for
distribution. bipartite graph

Actual Use an ordered graph with two disjoint sets of nodes,

ASTRAL appears to this author as the first real-time such that for each arc, the head and tail nodes
system specification language that has a chance of are in the opposite sets
being applied to the design specification and verifi-
cation of real-time systems in a way that whether the concurrent program
real-time constraints are met are subject to formal a program whose execution consists of or gives
mathematical verification. ASTRAL is too experi- rise to asynchronous execution
mental to have had any industrial strength applica-
tion. deadlock

VII. Current Status the situuation that occurs when all nonter-

Of the above described specification and verification minated processes in a computation are asleep;
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i.e., each is waiting for a resource that another the program meeting its requirements in all of its.provides; an alternative definition is when at halting computations; a program is partially cor-
least one process is waiting for an event that rect if for all input that meets its input require-
cannot occur ments, the program meets its output require-

ments whenever it inalts
distributed computing

a collection of processors not sharing memory, process item
but sharing communication channels that allow a data structure keeping the state of a process in
the processes on them to communicate with each the memory accessible to the processors which
other can execute on behalf of the process

fairness process
a property of a scheduling al-or'hm that insures an execution of a program or a portion thereof
that all awake processes eventually get to run; if
a scheduler is fair then one method of starvation process status
cannot happen at the level of the program, a process can be ei-

ther awake, asleep, or terminated; a process is
interference awake if it is is capable of running and would

the act of two or more processors attempting and run if there were sufficient processors available
possibly succeeding to use the same physical de- to run it; a process is asleep if it cannot run be-
vice (including memory locations) at the same cause of a condition defined in the program it is
time executing, i.e., it is waiting for a resource from

another process with which it shares data; a
multiplexing process is terminated if it cannot run any more,

(IEEE:multitasking) a mode of operation in e.g., it has finished its work or it has committed
which two or more tasks are executed in an in- an unrecoverable error; at the level of the imple-
terleaved manner (by a single processor) mentation, an awake process is either running or

ready; it is running if a processor is running it; it
multiprocessing is ready if at the moment no processor is avail-

a mode of operation in whiicb two or more proc- able to run it; note the distinction between ready
esses are executed simultaneously (iEEE uses and asleep processes; the latter could not be run
"concurrently") by separate processing units that even if there wcre enough processors available

have access to a common main storage processor

nondeterminate an agent capable of executing a program or por-
a nondeterministic computation is nondeter- tion thereof
minate if the differing orders of computation program
cause different final results

(IEEE:computer program) a combination of
nondeterministic computer instructions and data definitions that

a computation is nondeterministic if at each enable computer hardware to perform computa-
state, the step to be done next is not defined by tional or control functions
the program being computed; the choice of what
is to be done next is made by an agent external proper termination
to the program if and when a computation terminates, i.e., there

are no awake processes, then there are no asleep
parallel execution processes still waiting for a resource; proper ter-

simultaneous execution of more than one proc- nination implies absence of deadlock.
ess, which can happen either in multiprocessing race condition
or distributed computing

the situuation that occurs when the resolution of
* partial correctness interference for a particular device can cause un-

a form of program correctness characterized by predictable results
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real time
(IEEE: real time) pertaining to a system or mode
of operation in which computation is performed
during the actual time that an external process
occurs, in order that the computation results can
be used to control, monitor, or respond in a
timely manner to the external process

starvation
the situuation that occurs when an awake proc-
ess fails to get any work done because it is
denied a resource it needs; either it is busy wait-
ing for a resource beirg held on to by another
process or it is being denied a processor by the
processor scheduling algorithm

synchronous execution
the absence of asynchronous execution, in which
what happens next is completely predictable

task
the same as process

total correctness
a form of program correctness characterized by
the program halting for all inputs and meeting its
requirements in all cases; a program is totally
correct if for all input that meets its input re-
quirements, the program halts and meets its out-
put requirements

48 SEI-CM-27-1.0



Formal Specification and Verification of Concurrent Programs

Teaching Considerations

Suggested Schedules Worked Examples

There is far more material in this module than can be The worked examples should be sufficiently corn-
covered in one semester or one quarter. Therefore, plex that the act of specifying them actually teaches
the instructor will have to pick and choose from the the students about the function of the software.
topics mentioned in the module. Protocols are ideal for this because they are gener-
Since the emphasis of the course should be the appli- ally difficult to understand without some model. ForSince the e rmpasis ofetheourse sould beifiath app- example, the students might be shown in lectures
cation to the formal methods of specification and formal definitions of the Alternating Bit protocol inverification to the development of concurrent soft- ec ftelnugsadnttoscvrd

ware, the instructor should pick topics and methods each of the languages and notations covered.

that he or she is most comfortable working with in
front of the class. The instructor will have to per-
sonally demonstrate the methods in front of the stu-
dent and will have to be prepared to field difficult Exercises
questions from the students and bug emergencies as
the students find errors in what the instructor is If the class goals include the ability to write specifi-
presenting. cations of concurrent systems, then in all probability,

the instructor will be writing some specifications inThe outline below represents how the module author front of the students in class. Then, as homework,
would teach the course based on his own preferences the students should be asked to define another more
and familiarities, complex protocol, say, Stenning's Data Transfer

1. Foundational Background (Section I) Protocol [Sunshine82], in each of the same Ian-
2. Ada Concurrency Features (Material guages and notations and to prove implementation of

from the module [Feldman9O]) the basic service protocol, safety, and liveness
3. Properties of Concurrent Programs properties.

(Section 11) It would be useful to get a copy of or get access to
4. Operational Mcdels (Section 111. 1) one of the formal specification and verification envi-

ronments so that students can attempt to use these in5. Temporal Logic (Section II1.3) which to carry out their assigned specifications and
6. Specifications and Verifications of verifications.

Protocols in Operational and TemporalModels (Sections IV.3 and V) From where can these environments be obtained?
Models(Se of and SARA todothesBelow is information on how to obtain environments

7. Use of FDM and SARA to do these spec- for most of the languages covered in detail in Sec-
ifications and verifications (Sections tion VI. Note that although the module author has
VI.3 and VI1.7) seen some of these environments in operation, he

Of course, the instructor who wishes to follow a has never tried porting any of them from its original
similar outline but is not comfortable with the spe- site.
cific languages, methods, and tools, could use PAISLey
others, e.g., Concurrent Pascal, Axiomatic Seman-
tics, Operating System Security, and AFFIRM. As mentioned earlier, the PAISLey environment, in-

The module author considers it critical to cover cluding the processor and other tools, is sold through
Topics 1,mfoundue autioa bcnsiero , ciad 2, somer AT&T's UNIX toolchest. Use the UNIX toolchest,Topics 1, foundational background, and 2, some dial the computer at 201-522-6900 and log in as

language's concurrency features. The students need guest. The system will prompt you. The environ-

this material to make what follows an abstraction of ment i saso a ill free pt yoacade envtron-
concptsthe aleadykno raherthantotllynew ment is also available free to any academic institu-

concepts they already know rather than totally new tion. Faculty members interested in ordering it
material from which they may derive an understann- should send to Pamela Zave a request for the envi-

ronment on institutional letterhead. Her address is

Dr. Pamela Zave, Software and Systems Research
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Center, AT&T Bell Laboratories, Room 3D-426, cost for as long as the cost continues to be covered
Murray Hill, NH 07974, U.S.A., e-mail: by National Computer Security Center. Please con-
pamela@allegra.att.com. tact Deborah Cooper, Unisys Corp., Formal Methods

AFFIRM 5731 Slauson Ave., Culver City, CA 90230,
213-338-3727, e-mail:cooper@culv.unisys.com for

Work has ceased on AFFIRM entirely. The original details. Available with the distribution is a full set
AFFIRM, developed at ISI, runs on only the PDP 10 of user documentation, including the FI)M User
class machines, and there appear to be none around Guide with a complete tutorial example. Unisys also
except in museums. offers a two-week Advanced FDM Course empha-
According to David Musser, the leader of the project sizing hands-on experience. This course includes re-Accodin to avi Musertheleadr o theproect views of first order logic and state machines. There
to develop AFFIRM-85, Affirm-85, a version of Af- is a p ian orderelogic and rse as There

firm available from Rensselaer Polytechnic Institute, is a plan to develop a Basic Course, as a prerequisite

runs on VAX/VMS machines. No license for to the Adva, ccd course, for brand new users.

Affirm-85 is required, and no support is provided, Unisys has recently developed the Model Executor
but licenses are required for Interlisp-VAX from as a simulator of Ina Jo specifications. It has proved
DEC (at least a run-time license) and for Unipress to be a good pedagogical tool for understanding the
Emacs (which is used as part of the user interface) semantics of Ina Jo and Ina Jo specifications. It is
from Unipress, Inc. Affirm-85 was developed at written in Quintus Prolog. Therefore, a site not al-
General Electric Corporate Research and Develop- ready licensed for Quintus Prolog must pay a
ment Center (as a porting and extension of the orig- $400.00 licensing fee to run the Model Executor.
inal Affirm system developed at USC/Information The Model Executor is accompanied by documen-
Sciences Institute) but is in the public domain, as it tation, Model Executor User Guide.
was sponsored by the U.S. Air Force. It may also be HDM
possible to get Affirm-85 from Rome Air Develop-
ment Center, Griffiths Air Force Base, Rome, NY The original HDM no longer exists. There is an
(John Faust). The distribution tape from Rensselaer newer version of the method, called EHDM. EHDM
includes the source files and a binary executable file. has been developed by the Computer Science Labo-
Documentation describing installation procedures ratory (CSL) of SRI International for the U.S. Gov- w
and differences from the original ISI Affirm system eminent and is therefore in the Public Domain. SRI
is included (copies of the original Affirm documen- International has no wish to restrict the availability
tation may also be obtained from Rensselaer, or of EHDM, but distribution of the EHDM system and
from ISI). A nominal charge will be made for tape its documentation is subject to controls imposed by
copying and document reproduction. Send inquiries the U.S. Government. Permission to obtain copies
to Professor David Musser, Rensselaer Polytechnic of the EHDM system is generally routine for Agen-
Institute, Computer Science Department, Amos cies of the U.S. Government, and for U.S. Corpora-
Eaton Hall, Troy, NY 12180, U.S.A., e-mail: tions working on U.S. Government contracts.
musser@turing.cs.rpi.edu. Policies on wider distribution are unclear a present.

GYPSY VERIFICATION ENVIRONMENT (GVE) Those interested in using EHDM '•'. d contact
The GVE is available for distribution subject to cer- John Rushby at the Computer Sciv .cr Laboratory,tain export restrictions imposed by the U.S. govern- SRI International, 333 Ravenswood Avenue, Menlo

tamexortretritins mpsedbytheU.. gven- Park, CA 94025 USA, 415-859-5456, FAX:
ment. The GVE is a free product though there are 415-859-284, e-mail: rushby@Acsl.sri.com.
some conditions for release. Requests can be sent to
Ron Olphie, Computational Logic, Inc., 1717 W. 6th EHfDM Version 5.1.4 is currently available for
Street, Suite 290, Austin, TX 78703, U.S.A., email: Sun-3 and Sun-4 workstations (Symbolics machines
olphie@cli.com 512-322-9941. are no longer supported). At least 8 MB of real
Various system documentation, including a user's memory (16 MB recommended), 35 MB of swap
manual, is available. These consist mainly of Coin- space (50 MB recommended), and about 32 MBytes
putational Logic, Inc. technical reports. Contact Ron of file space are required. EHDM is implemented inOiphie at the address above to obtain this documen- Sun Common Lisp and you will need the appropriate
tation. RTU license from Sun. A full GNU Emacs is

needed since EHDM uses this as its interface.
FDM The documentation available includes a Language
The FDM environment for Sun 3's is available at no manual, a System manual, a Formal Semantics, and
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a rather good Tutorial. These are all available theO same restrictions mentioned above.

SARA

The old SARA system is not available and the latest
CoSARA (Cooperative SARA) is not ready for dis-
tribution. CoSARA will allow several designers to
be working on the same design at the same time
from different workstations.

P-NUT

P-NUT is distributed as part of the standard Arcadia
distribution tape. There is a licensing agreement that
must be signed, and there is a nominal distribution
fee. For further information about the Arcadia dis-
tribution, please contact Professor Richard Taylor,
Information & Computer Science Department, Uni-
versity of California, Irvine, CA 92717, U.S.A. e-
mail: taylor@ics.uci.edu.

STATEMATE

STATEMATE may be licensed on a commercial
basis from i-Logix, Inc., 22 Third Avenue, Bur-
lington, MA 01803, U.S.A., 617-272-8090, FAX:
617-272-8035. It is available on a number of
hardware platforms including VAX/VMS. It comes
with a graphic user interface for constructing the. models and an analyzer for analyzing and simulating
models.

Caveats

Beware of typographical errors in textbooks adopted
for any course. While you, the instructor, can wea-
ther these errors, the students may not be able to dis-
tinguish between their own misunderstanding and
genuine errors in the text.
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Conference. Arlington, Virginia: DoD Computer Software Engineering Institute, Carnegie Mellon
Security Evaluation Center, Sept. 1984. University, Pittsburgh, Pa., Oct. 1987.

This paper is one in a series that examines the for- (From Capsule Description) This module intro-
mal verification process used to certify the SCOMP uduces methods for the formal specification of pro-
operating system. This is a long and stringent math- grams and large software systems, and reviews the
ematical process that is required to prove formally domains of application of these methods. Its em-
the protection properties of a system. It is notewor- phasis is on the functional properties of software. It
thy that SCOMP is certified Al under the Orange does not deal with the specification of programming
Book criterion by the US DoD. languages, the specification of user-computer inter-

faces, or the verification of programs. Neither does

Berg82 it attempt to cover the specification of distributed

Berg, H.K., W.E. Boebert, W.R. Franta, and T.G. systems.

Moher. Formal Methods of Program Verification
and Specification. Englewood Cliffs, NJ: Prentice- Berztiss88
Hall, 1982. Berztiss, A. and M.A. Ardis. Formal Verification of

Programs. Curriculum Module SEI-CM-20, DTIC:
The book has a wide-ranging survey of verification. ADA 235775, Software Engineering Institute, Car-
Chapter 6 deals with correctness of parallel pro- negie Mellon University, Pittsburgh, Pa., Dec. 1988.
grams and surveys several methods of dealing with
shared-memory parallelism and interference. The (From Capsule Description) This module introduces
bibliography is extensive with 166 ,i-tries. formal verification of programs. It deals primarily

with proofs of sequential programs, but also with
Bernstein87 consistency proofs for data types and deduction of

Bernstein, P.A., V. Hadzilacos, and N. Goodman. particular behaviors of programs from their specifi-

cations. Two approaches are considered: verifica-
Concurrency Control and Recovery in Database tion after implementation that a program is consis-
Systems. Reading, MA: Addison-Wesley, 1987. tent with its specification, and parallel development

This book has a tutorial explanation of two-phase of a program and its specification. An assessment
commit. of formal verification is provided.

Berry72 Bevier87

Berry, D.M. "The Equivalence of Models of Bevier, W.R. A Verified Operating System Kernel.
Tasking." ACM SIGPLAN Notices 7, 1 (Jan. 1972), Technical Report 11, Computational Logic, Inc.,
170-190. Austin, TX, 1987,

Abstract: A technique for proving the equivalence Abstract: We present a multitasking operating sys-
of implementations of multi-tasking programming tern kernel, called KIT, written in the machine lan-
languages is developed and applied to proving the guage of a uni-processor von Neumann computer.
equivalence of the contour model and a multi- The kernel is proved to implement, on this shared
tasking version of the copy rule. computer, a fixed number of conceptually distribu-

ted communicating processes. In addition to im-
plementing processes. the kernel provides the fol-

Berry85 lowing verified services: process scheduling, error
Berry, D.M. "A Denotational Semantics for Shared- handling, message passing, and an interface to
Memory Parallelism and Nondeterminism." Acta In- asychchronous devices. The problem is stated in
formatica 21 (1985), 599-627. the Boyer-Moore logic and the proof is mechani-

Abstract: It is first shown how to construct a con- call checked with the Boyer-Moore theorem

tinuation from a deterministic Vienna Definition prover.

Language control tree. This construction is then
applied to nondeterministic control trees. The Bolognesi87
result is a denotational but not quite continuation Bolognesi, T. and E. Brinksma. "Introduction to theS semantics for arbitrary shared-memory nondeter- ISO Specification Language LOTOS." Computer
minism and parallelism. The implications of this Networks and ISDN Systems 14 (1987), 25-59.
result are discussed.

Abstract: LOTOS is a specification language that
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has been specifically developed for the formal de- semantics of CSP operators can be mechanized in
scription of the OSI (Open Systems Interconnection) higher order logic, and show how the laws associ-
architecture, although it is applicable to distribu- ated with these operators can be proved from their
ted, concurrent systems in general. In LOTOS, a semantic definitions. The resulting system is one in
system is seen as a set of processes which interact which natural-deduction style proofs can be con-
and exchange data with each other and their envi- ducted using the standard CSP laws.
ronment. LOTOS is expected to become an ISO
standard by 1988. Chandy88

Chandy, K.M. and J. Misra. Parallel Program
Britton84 Design. Reading, MA: Addison-Wesley, 1988.
Britton, D.E. "Formal Verification of a Secure Net-
work with End-to-End Encryption." Proceedings of This book defines the UNITY parallel program de-

the 1984 Symposium on Security and Privacy. sign language and and develops a complete theory

Washington, DC: IEEE Computer Society, April of programming with UNITY and of the meaning of

1984. UNITY programs.

Abstract: A formal specification and verification of Cheheyl81
a simple secure communications network using end- Cheheyl, M.H., M. Gasser, G.A. Huff, and J.K. Mil-
to-end encryption is presented. It is shown that all len. "Verifying Security." ACM Computing Surveys
data sent over the network is encrypted and all 13, 3 (Sept 1981), 279-340.
hosts on the network exchange messages only if they
are authorized to do so. The network and its hosts Abstract: Four automated specification and verifi-
are modelled by a set of concurrent processes that cation environments are surveyed and compared:
communicate via unidirectiona; buffers. Each proc- HDM, FDM. Gypsy, and AFFIRM. The emphasis
ess is viewed as a state machine. The specification of the comparison is on the way these systems could
has been formally verified using the commercially be used to prove security properties of an operating
available VERUS verification system, system design.

Bustard90 The acronyms HDM and FDM stand for tiierar-
chical Development Methodology and Formal De-

Bustard, D.W. Concepts of Concurrent velopment Methodology, respectively. HDM is
Programming. Curriculum Module SEI-CM-24, based on the specification language SPECIAL, and
DTIC: ADA 223897, Software Engineering Insti- the (non-interactive) Boyer-Moore theorem prover.
tute, Carnegie Mellon University, Pittsburgh, Pa., FDM makes use of the Ina Jo specification language
April 1990. and an interactive theorem prover. Gypsy is a

highly integrated enviruiunent intenided for the in-
(From Capsule Description) A concurrent program cremental verification of software. In AFFIRM,
is one defining actions that may be performed software development is regarded as the specifica-
simultaneously. This module discusses the nature tion and implementation of abstract data types, and
of such programs and provides an overview of the specifications are written as algebraic axioms. Al-
means by which they may be constructed and ex- though this survey deals specifically with the verifi-
ecuted. Emphasis is given to the terminology used cation of security, it provides clear descriptions of
in this field and the underlying concepts involved, the four verification methodologies listed above and

is an invaluable guide to further reading. The
Camilleri90 largest application example known at the time is
Camilleri, A.J. "Mechanizing CSP Trace Theory in indicated for each environment.
Higher Order Logic." IEEE Trans. Software Eng.
16, 3 (Sept. 1990), 993-1004. Chen83

Abstract: The process algebra CSP is widely used Chen, B.S. and R.T. Yeh. "Formal Specification and
Abstfrmal: easong p hes alebas oVerification of Distributed Systems." IEEE Trans.
for formal reasoning in the areas of concurrency,

communication, and distributed systems. Math- Software Eng. SE-9, 6 (Nov. 1983), 710-722.
ematical proof plays a key role in CSP reasoning, Abstract: Computations of distributed systems are
but despite this, little mechanical proof support has extremely difficult to specify and verify using tradi-
been developed for CSP to facilitate the exercise tional techniques because the systems are inherently
and eliminate the risk of human error. In this paper concurrent, asynchronous, and nondeterministic.
we described how a mechanized tool for reasoning Furthermore, computing nodes in a distributed sys-
about CSP can be developed by customizing an ex- tem may be highly independent of each other, and
isting general-purpose theorem prover based on the entire system may lack an accurate global clock.
higher order logic. We investigate how the trace
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In this paper, we develop an event-based model to gebraic specification and the Vienna Development.specify formally the behavior (the external view) Method (VDM). Chapter 6 covers specification of
and the structure (the internal view) of distributed concurrent systems. Chapter 7 describes formal
systems. Both control-related and data-related methods in the development environment. This
properties of distributed systems are specified using chapter includes a listing of centers of current re-
two fundamental relationships among events: the search activity in the more theoretical approaches to
".precedes" relation, representing time order; and specification, and of experimental specification Ian-
the "enables" relations, representing causality. No guages.
assumption about the existence of a global clock is
made in the specifications. Comer84
The specification technique has a rather wide range Comer, D. Operating System Design. the Xinu
of applications. Eramples from different classes of Approach. Englewood Cliffs, NJ: Prentice-Hall,
distributed systems, include communication sys- 1984.
temns, process control systems, and a distributed
prime number generator, are used to demonstrated This book describes the Xinu system, similar to the
the power of the technique. UNIX kernel, that runs on the LSI- I1 minicomput-

er. The book describes and gives the complete C
The correctness of a design can be proved before code for the system.

implementation by checking the consistency be-

tween the behavior specification and the structure
specification of a system. Both safety and liveness Cousot82
properties can be specified and verified. Further- Cousot, P. and R. Cousot. "Induction Principles for
more, since the specification technique defines the Proving Invariance Properties of Programs." In
orthogonal properties of a ,ystem separately, each Tools and Notions for Program Construction,
of them can be verified independently. Thus, the D. Neel, ed. Cambridge, England: Cambridge Uni-
proof technique avoids the exponential state- versity Press, 1982, 75-119.
explosion problem found in state-machine specifi-
cation techniques. Abstract: We propose sixteen sour, 4 and complete

induction principles for proving program in-

O Cleaveland89 variance properties. We study their relationships
SR., J. Parrow, and fi. Stcffen. The Con- and show that they can be derived from each other

Cleaveland,cy J, ar Semand B ased The for by commuting mathematical transformations. Only
currency Workbench:" a Semantics Based Tool for five of these induction principles correspond to al-
the Verification of Concurrent Systems. LFCS re- ready known invariance proof methods. We choose
port series, ECS-LFCS-89-83, Dept. of Computer a non-conventional induction principle and con-
Science, University of Edinburgh, Edinburgh, UK. struct corresponding partial correctness, non-
1989. termination and clean behavior proof methods.

When constructing these new proof methods, we in-Abstract: The Concurrency Workbench is an auto- formally apply our mathematical approach

mated tool that caters for the analysis of networks publy arlier thematial coach
of finitestate processes expressed in Milner's Cal- published earlier. This essentially consists in
culus of Communicating Systems. Its key feature is vdlved in the induction principle into an equivalent

its scope: a variety of different verification methods, set of local invariants and in deriving the cor-
including equivalence checking, preorder checking, responding verification condition.
and model checking, are supported for several dif-
ferent process semantics. One experience from our
work is that a large number of interesting verifi- Dennis68
cation methods can be formulated as combinations Dennis, J.B. "Programming Generality, Parallelism,
of a smaller number of primitive utgorithms. The and Computer Architecture." In Information Proc-
Workbench has been applied to examples involving essing 68. Amsterdam: North-Holland, 1968,
the verification of communications protocols and 484-492.
mutual exclusion algorithms and has proven a valu-
able aid in teaching and research. Abstract: Parallelism and programming generality

are increasingly important attributes of computer

Cohen86 systems. Yet their joint influence on computer ar-
chitecture has not been felt. In this paper, a pro-

Cohen, B., W.T. Harwood, and M.I. Jackson. The gram graph description of algorithms is developed
Specification of Complex Systems. Wokingham, that meets the requirements of programming gener-

O England: Addison-Wesley, 1986. ality and allows asynchronous parallel execution
This brief, 143 page book explores some aspect% of without loss of determinism. A machine organi-

zation inspired by the progiam graph models is
the electronic office by means of equational a]- sketched
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Oijkstra68 Abstract: Symbolic execution has been used suc-
Dijkstra, E.W. "The Structure of 'THE' Mul- cessfully with sequential programs for generating
tiprogramming System." Comm. ACM 11, 5 (May the verification conditions required for correctness
1968), 341-346. proofs. This paper shows how the symbolic execu-

lion model for sequential programs can be extended
Abstract: A multiprogramming system is described to a tasking subset of Ada. The criteria for correct
in which all activities are divided over a number of operation of a concurrent program include safety
sequential processes. These sequential processes properties, such ,' mutual exclusion and freedom
are placed at various hierarchical levels, in each of from deadlock. The extended model, therefore pro-
which one or more independent abstractions have vides a basis for the automatic generation of verifi -
been implemented. The hierarchical structure cation conditions for proving general safety
proved to be vital for the verification of the logical properties of Ada tasking programs.
soundness of the design and the correctness of its
implementation. Dillon92

Dillon, L.K. A Visual Execution Model for Ada
Dijkstra76 Tasking. Technical Report, Department of Comput-
Dijkstra, E.W. A Discipline of Programming. er Science, University of California, Santa Barbara,
Englewood Cliffs, NJ: Prentice-Hall, 1976. CA, 1992,

The topic of weakest preconditions is developed by Abstract: A visual execution model for Ada tasking
the master himself. The book has no index and no can help programmers attain a deeper understand-
bibliography. ing of the tasking semantics. it can illustrate sub-

telties in semantic definitions that are not apparent
Dillon88a in natural language descriptions of Ada tasking, as
L.K. Dillon, R.A. Kemmerer, and L.J. Harrison. An well as the consequences of choices made in the

Experience with Two Symbolic Execution-Based Ap- language design.

proaches to Formal Formal Verification of Ada We describe a contour model of Ada tasking that
Tasking Programs. TRCS88-6, Department of pictorially depicts asynchronous tasks (threads of
Computer Science, University of California, Santa execution), relationships between the environments

Sin which tasks execute and the manner in whichtasks interact. The use of this high-level execution

Abstract: There have been several efforts to use model makes it possible to 'see' what happens dur-
symbolic execution to test and analyze concurrent ing execution of a program. For example, our con-
programs. Recently proof svsterns have also tour model can illustrate race conditions that arise
emerged for concurrent programs and for the Ada during execution of programs, the effects of the
language in particular. This paper reports on an definitions of task dependence and termination in
experience with developing tw& different ap- Ada on inter-task communication and svnchroniza-
proaches, which use symbolic execution, to prove tion, and the interplay between these definitions and
partial correctness and general safety properties of basic run-time storage management concerns.
Ada programs. One approach is based upon inter- The paper provides a high-level introduction to the
leaving the task components while the other is contour model of Ada tasking and demonstrates its
based upon verifying the tasks in isolation and then usem
performing cooperation proofs. Both approachies use.
extend past efforts by incorporating tasking proof
rules into the symbolic executor allowing Ada pro- Eckmann85
grams with tasking to be formally verified. Eckmann. "INATEST: an Interactive Environment

The limitations of each approach are presented, for Testing Formal Specifications." ACM Software
along with each approach's advantages and dis- Eng. Notes 10, 4 (April 1985).
advantages. In particular, the difficulty of dealing (From the Introduction) Because the cost of for-
with communication statements in a loop structure mally verifying large software systems is high in
are addressed in detail. both dollars and time, it is often the practice to for-

mally verify only critical requirements. For ex-
Dillonr88b ample, a system may be formally verified to be con-
Dillon, LK. "Symbolic Execution-Based Verifica- sistent with a particular security model. lHowever,
lion of Ada Tasking Programs." Proceedings of in addition to these formally verified critical re-
Third International IEEE Conference on Ada Ap- quirements, most systems "Jso have less critical
plications and Environments. Washington, DC- functional requirements that must be satisfied....
IEEE Computer Society, May 1988, 3-13. During the past twelve months, the Reliable Soft-
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ware Group at UCSB has concentrated its effort on Feather87
* the design and implementation of a symbolic execu- Feather, M.S. "Language Support for the Specifica-

tion tool called Inatest.... Inatest is an interactive tion and Development of Composite Systems." ACM
tool for testing specifications early in the software Trans. Prog. Lang. and Syst. 9, 2 (April 1987),
lifecycle to determine whether the functional re- 198-234.
quirements for the system being designed can be
met. It provides an environment with various Abstract: When a complex system is to be realized
modes of operation to be used in testing formal as a combination of interacting components, dev-
specifications written in na Jo.... lopement of those components should commence

from a specification of the behavior required of the

Eckmann89 composite systems. A separate specification should
Eckmarn, S.T. Ina Flo User Guide. Unisys Corpo- be used to describe the decomposition of that system
Erktion, Cinto components. The first phase of implementation
ration, Culver City, CA, May 1989. from a specification in this style is the derivation of

(From the Introduction) Ina Flo is an information the individual component behaviors implied by
flow analysis tool built into the Ina Jo specification these specifications.
language processor. Ina Flo partially automates The virtues of this apporach to specification are ex-
covert channel analysis of Ina Jo specifications. pounded, and specification language features that
Covert channel analysis is any method for finding, are supportive of it are presented. It is shown how
and evaluating the consequences of covert channels these are incorporated in the specification language
in a system. Gist, which our group has developed These issues

are illustrated in a development of a controller for
Eggert89 elevators serving passengers in a multistory build-
Eggert, P., Cooper, D. Eckmann, S., J. Gingerich, ing.
S. Holtsberg, N. Kelem, and R. Martin. FDM User
Guide. TM-8486/000/03, Unisys Corporation, Cul- Feiertag79
ver City, CA, Sept. 1889. Feiertag, R. and P.G. Neumann. "The Foundations

of a Provable Secure Operating System (PSOS)."S (From Preface) This guide is for the users of the National Computer Conference. Montvale, NJ:

Unisys Formal Development Methodology (FDM). atioS, 1 o79, 329-M t4.

New users should read the entire guide for instruc- AFIPS, 1979,329-334.
tions about how to use FDM. Experienced users (From the Introduction) PSOS has been designed
can skip to the last part of Section 4, which de- according to a set of formal techniques embodying
scribes the changes in the latest FDM version. the SRI Hierarchical Development Methodology

(HDM). HDM has been described elsewhere, ...
Estrin86 and thus is only summarized here. The influence of
Estrin, G., R.S Fenchel, R.R. Razouk, and M.K. HDM on the security of PSOS is also discussed
Vernon. "SARA (System ARchitect's Apprentice): elsewhere.... In addition, Linden ... gives a general

Modeling, Analysis, and Simulation Support for De' discussion of the impact of structured design tech-

sign of Concurrent Systems." IEEE Trans. Software niques on the security of operating systems

Eng. SE-I2, 2 (1986), 293-311. (including capability systems).

Abstract: An environment to support designers in Feiertag80
the modeling, analysis, and simulation of concur- Feiertag, R.J. A Technique for Proving Specifica-
rent systems is described. It is shown how a fully tions are Multilevel Secure. CSL-109. Computer
nested structure model supports multilevel design Science Laboratory, SRI International, Menlo Park,
and focuses attention on the interfaces between the
modules which serve to encapsulate behavior. CA, Jan. 1980.
Using simple examples, the paper indicates how a (From the Introduction) The following sections de-
formal graph model can be used to model behavior scribe a technique for verifying that a design for an
in three domains: control flow, data flow, and inter- operating system expressed in terms of a formal
pretation. The effectiveness of the explicit environ- specification is consistent with a particular model of
ment model in SARA is discussed and the capability multilevel security. The technique to be described
to analyze correctness and evaluate performance of is mathematically rigorous and, if applied properly,
a system model are demonstrated. A description of gives assurance that the given design is multilevel

* the integral help designed into SARA shows how the secure by this particular model. The technique is
designer can be offered consistent use of any new supported by a collection of automated tools.
tool introduced to support the design process.
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Feldman9O major operations, (d) implementation of the recur-
Feldman, M.B. Language and System Support for sive functions in PASCAL with the abstract data
Concurrent Programming. Curriculum Module types, and (e) implementation of the PASCAL pro-
SEI-CM-25, DTIC: ADA 223760, Software Engi- grams in BLISS; and (4) the experience gained in

neering Institute, Carnegie Mellon University, Pitts- this experiment, both in specification and verifica-

burgh, Pa., April 1990. tion.

(From Capsule Description) This curriculum mod- Ghezzi9O
ule is concerned with support for concurrent pro- Chezzi, C., D. Mandrioli, and A. Morzenti. "TRIO:
gramming provided to the application programmer A Logic Language for Executable Specifications of
by operating systems and programming languages. Real-Time Systems." Journal of Systems and Soft-
This includes system calls and language constructs ware 12, 2 (Feb. 1990), 107-124.
for process creation, termination, synchronization,
and communication, as well as nondeterministic Abstract: We motivate the need for a formal speci-
language constructs such as the selective wait and fication language for real-time applications and for
timed call. Several readily available languages are a support environment providing tools for reason-
discussed and compared; concurrent programming ing about formal specifications. Then we intro-
using system services of the UNIX operating sys- duced TRIO, a logic-based specification language,
tern is introduced for the sake of comparison and TRIO is first introduced informally through ex-
contrast. amples. Then a formal declarative semantics is

provided, which can accommodate a variety of un-
Francez8O derlying time structures. Finally, the problem of
Francez, N., D.J. Lehmann, and A. Pnueli. "A executing TRIO formal specifications is discussed,

Linear History Semantics for Distributed and a solution is preseted.

Languages." Twenty-First Annual Symposium on
Foundations of Computer Science. Long Beach, GhezziCmCA: IEEE Computer Society, 1980. Ghezzi, C. and R.A. Kemmerer. "ASTRAL: an

Assertion Language for Specifying Realtime
Abstract: A denotational semantics is given for a Systems." In Proceedings of the Third European
distributed language based on communication Software Engineering Conference, ESEC '91. Lec-
(CSP). The semantics uses linear sequences of ture Notes in Computer Science, no. 550. Berlin.
communications to record computations; for any Springer-Verlag, 1991.
well formed program segment the semantics is a
relation between attainable states and the communm- Abstract: ASTRAL is a formal specification lan-
cation sequences needed to attain these states. In guage for realtime systems. This paper discusses
binding two or more processes we match and merge the rationale of ASTRAL 's design and shows how
the communication sequences assumed by each the language builds on previous language experi-
process to obtain a sequence and state of the com- ments. ASTRAL is intended to support formal soft-
bined process. The approach taken here is distin- ware development; therefore, the language itself
guished by relatively simple semantic domains and has been formally defined. ASTRAL's specification
ordering, style is illustrated by discussing a case study taken

from telephony.
Gerhart79
Gerhart, S.L. and D.S. Wile. "Preliminary Report on Go1d79
the Delta Experiment." Specifications of Reliable Gold, B., R. Linde, R. Peeler, M. Schaefer,
Software. Washington, DC: IEEE Computer Soci- J. Scheid, and P. Ward. "A Security Retrofit of
ety, April 1979, 198-211. VM/370." National Computer Conference.

Abstract: The ISI Delta Experiment is an effort to Montvale, NJ: AFIPS, 1979, 335-344.
specify and verify a piece of real software of moder- (From the Introduction) The VM/370 Security
ate complexity and size (roughly 1000 lines). This Retrofit Program is a continuing research and devel-
preliminary report describes: (1) the Delta function, opment initiative, funded by the Defense Advanced
managing the editing of a single file by several Research Projects Agency (DARPA), with addition-
users within an operational message processing al funding provided by Canadian Department of Na-
system; (2) the formal specification of the Delta tional Defense. The program's primary goal is the
function in prose and in algebraic axioms; (3) the security retrofit of a popular commercial operating
verification methodology in levels of (a) prose for system, VM/370. Two approaches were originally
the system interface level, (b) algebraic axioms for planned: (1) the design of a feasible, formally veri-
abstract data types, (c) recursive functions for fled security kernel to VM/370 and (2) a
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"hardening" effort to repair known VM/370 used to specifA, and verift both safety and liveness. penetration weaknesses. It was subsequently properties. However, it is defined with respect to
decided not to proceed with the VM1370 hardening an operational semantics of the transition system
task because of the uncertainty of the end result: model of concurrency. Proof rules are simply
correction of known security flaws does not theorems of this operational semantics. This meth-
guarantee the absence of exploitable, but not yet odology makes a clear distinction between the
detected, security flaws in the hardened system. theorems in the proof system and the logical in-

ference rules and syntax which define the under-

GoldschlaggOa lying logic. Since this proof system essentially en-
codes Unity in another sound logic, and this encod-Goldschlag, D.M. "Mechanizing Unity." In ing has been mechanically verified, this encoding

Programming Concepts and Methods, M. Broy and proves the soundness of this formalization of Unity.
C.B. Jones, eds. Amsterdam: North-Holland, 1990, This proof system has been mechanically verified by

the Boyer-Moore prover, a computer program
Abstract: This report describes a mechanically ver- mechanizing the Boyer-Moor logic .... This proof
ified proof system for concurrent programs. This system has been used to mechanically verijy the
proof system may be used to mechanically verify the w:orrectness of a distributed algorithm that computes
correctness proofs of concurrent programs. Me- die minimum node value in a tree. This paper also
chanical verification increases the trustworthiness describes this algorithm and its correctness
of a prooof, theorems, and presents the key lemmas that aided

the mechanical verification. The mechanized proof
This proof system is based on Unity .... but is de- closely resembles a hand proof but is longer, since
fined with respect to an operational semnantics of the all concepts are defined from first principles. This
transition system model of concurrenc-v .... All proof system is suitable for the mechanical verifi-
proof rules are justified by this opearrional seman-
tics. This methodology makes a clear distinction cation of a wide class of programs, since the under-
between the theorems in the proof system and the lying prover, though automatic, is guided by the
logical inference rules and syntax that define the user.
underlying logic. Since this proof system essentially
encodes Unity in a conservative extension of anoth- Good78
er sound logic, this encoding proves the soundness Good, D.I., R.M. Cohen, C.G. Hoch, L.W. Hunter,
of Unity. and D.F. Hare. Report on the Language Gypsy, Ver-

The proof system has been implemented on the sion 2.0. ICSCA-CMP-10, Institute for Computing
Poyer-Moore p-'er, : computer program Science, University of Texas, Austin, TX, Sept.
mechanizing the Boy.r-Moor logic,... and has been 1978.
used to nmechanically verifj the correctness of an
n-processor program satisfying both mutual exclu- Good82
sion and absence of starvation. This paper also Good, D.I., A.E. Siebert, and L.M. Smith. Message
describes this program and its correctness theorems Flow Modulator Final Report. Report No. 34, Insti-
and presents the key lemmas that aided the mechan- -
ical verification. This proof closely resembles a tute for Computing Science, University of Texas,
Unity hand proof but is longer, since all cincepts Austin, TX, Dec. 1982.
are defined from first principles. This proof system Abstract: The message flow modulator is a for-
is suiable for the mechanical verification of a wide mally specified and proved filter program that is
class of thoerms, since the underlying prover, applied continuously to a stream of messages flow-
though automatic, is guided by the user. ing from one computer system to another. Mes-

sages that pass the filter are passed to their destina.
Goldschlag90b tion. Messages that do not are logged on an audit
Goldschlag, D.M. "Mechanically Verifying Concur- trail. The modulator has been designed specifically
rent Programs with the Boyer-Moore Prover." IEEE to monitor the flow of security sensitive message
Trans. Software Eng. 16, 3 (Sept. 1990), 1005-1023. traffic from the Ocean Surveillance Information

System of the United States Naval Electronic Svs-
Abstract: This paper describes a proof system suit- tems Command.
able for the mechanical verification of concurrent The modulator has been designed, specified, and
programs. Mechanical verification, which uses a implemented in the Gypsy language. All of the
computer program to validate a formal proof, in- modules, from the highest level of design to the
creases one's confidence in the correctness of the lowest level of coding, has been formally specifiedvalidated proof lws ee fcdnha enfral pcfe

and mechanically proved with the Gypsy Verifica-
This proof system is based on Unity ..., and may be tion Environment. The modulator is specifically de-
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signed and intended for use in actual filed opera- technique for proving both safety and liveness
tion. It has been tested in a simulated operational properties of parallel programs. Safety properties
environment at the Patuxent River Naval Air Test are assertions that must be satisfied by the system
Center with scenarios developed by an independent, state at all times; they are analogous to partial cor-
external group. With any modification, the proved rectness. Liveness properties refer to events that
modulator passed all of these tests on the first at- will occur in the future, such as program termina-
tempt. tion or the eventual execution of an instruction. We

describe new tools for verifying programs and
Good84a heuristics for developing proofs. We demonstrate

Good. DI. Revised Report on Gypsy 2.1. Institute the applicability of the technique by proving the

for Computing Science, University of Texas, Austin, correctness of a number of algorithms from the
TX, March 1984. literature in the areas of network protocols and

resource allocation. The spirit of this thesis, how-

Abstract: Gypsy is a language for specifving, im- ever, is concerned with the design of programs.
plementing, and proving computer programs. This
document is the revised report on Gypsy 2.1. Gypsy Hare188a
2.1 includes alnost all of Gypsy 2.0 with some ex- Harel, D. "On Visual Formalisms," Comm. ACM 31,
tensions and minor modifications. 5 (May 1988), 514-531.

Good84b Abstract: The higraph, a general kind of diagram-

Good, D.I., B.L. DiVito, and M.K. Smith. Using the ming object, forms a visual formalism of topologi-
G y Methodology. Draft Technical Report, Insi- cat nature. Higraphs are suited for a wide array of

Gypsy Mapplications to databases, knowledge representa-
tute for Computing Science, University of Texas, tion, and most notably, the behavioral specification
Austin, TX, June 1984. of complex concurrent systems using the higraph-

Abstract: This report describes how to use the based language of statecharts.
Gypsy methodology for designing and building for-
mally verified systems. The emphasis is on tech- Hare188b
nique and examples. Harel, D., H. Lachover, A. Naamad, A. Pnueli,

M. Politi, R. Sherman, and A. Shtul-Trauring.
Guttag78 "STATEMATE: A Working Environment for the
Guttag, J.V., E. Horowitz, and D.R. Musser. Development of Complex Reactive Systems." 10th
"Abstract Data Types and Software Validation." International Conference on Software Engineering.
Comm. ACM 21, 12 (Dec. 1978), 1048-1064. Washington, DC: IEEE Computer Society, 1988,

396-406.
Abstract: A data abstraction can be naturally spec-

tijwd using algebraic axioms. The virtue of these Abstract: This paper provides a brief overview of
axioms is that they permit a representation- the STATEMATE system, constructed over the past
independent formal specification of a data type. An three years by i-Logix Inc.. and Ad Cad Ltd.
example is given which shows how to employ al- STATEMATE is a graphical working environment,
gebraic axioms at successive levels of implemen- intended for the specification, analysis, design, and
tation. The major thrust of the paper is twofold. documentation of large and complex reactive sAs-
First, it is shown how the use of algebraic tems, such as real-time embedded systems, control
axiomatizations can simplify the process of proving and communication systems, and interactive soft-
the correctness of an implementation of an abstract ware. It enables a user to prepare, analyze and
data type. Second, semi-automatic tools are de- debug diagrammatic, yet precise, descriptions of the
scribed which can be used both to automate such system under development from three inter-related
proofs of correctness and to derive an immediate points of view, capturing, structure, functionality
implementation from the axioms. This implemen- and behavior. These views are represented by three
tation allows for limited testing of programs at de- graphical languages, the most intricate of which is
sign time, before a conventional implementation is the language of statecharts used to depict reactive
accomplished, behavior over time. In addition to the use of

statecharts, the main novelty of STATEMATE is in
Hailpern82 the fact that it 'understands' the entire descriptions
Hailpern, B. Verifying Concurrent Processes Using (sic) perfectly, to the point of being able to analyzeHailern B.them for crucial dynamic properties, to camry out
Temporal Logic. Lecture Notes in Computer Sci- te o rca yai rpris ocr u
Temporal Logi. Lectun:Springer N es in CompuerSrigorous animated executions and simulations of the

ence, no. 129. Berlin: Springer-Verlag, 1982. described system, and to create running code auto-
(l-rom the Introduction) In this thesis we present a matically. These features are invaluable when it
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comes to the quality and reliability of the final out- This paper discusses the design process for the SRT
come. which was carried out using the SDC Formal De-

velopment Methodology (FDM). The SRT project is

Harrison88 the first application of the FDM code level verifi-
cation capabilities. However, since the code levelHarrison L.J. and R.A. Kemmerer. "An Interleaving verification has not yet been performed this paper

Symbolic Execution Approach For the Formal Veri- concentrates on the design problems inherent in
fication of ADA Programs with Tasking." targeting a system for code level verification.
Proceedings of Third International IEEE Con-
ference on Ada Applications and Environments. Hoare69
Washington, DC: IEEE Computer Society, May Hoare, C.A.R. "An Axiomatic Basis for Computer
1988, 15-26. Programming." Comm. ACM 12, 10 (Oct. 1969),

Abstract: There have been several efforts to use 576-580, 583.
symbolic execution to test and analyze concurrent Abstract: In this paper an atempt is made o ex-programs. Recently proof systems have alsoAstat nhippeantemtsmdeoe-
emerged for concurrent programs and for the Ada plore the logical foundations of computer program-language in particular This paper focuses on using mning by use of techniques which were first appliedlanguagexecution to prove partial correctness and in the study of geometry and have later been ex-symbolic ecotended to other branches of mathematics. This in-general safety properties of Ada programs. It ex-
pands upon last efforts by incorporating tasking volves the elucidation of sets of axioms and rules of
proof rules into the symbolic executor allowing Ada inference which can be used in proofs of theprgas ihtskn obe formally verified, properties of computer programs. Examples are
programs with tasking to bgiven of such axioms and rules, and a formal proof

of a simple theorem is displayed. Finally, it is
Hayes87 argued that important advantages, both theoretical
Hayes, I., ed. Specification Case Studies. and practical, may follow from a pursuance of these
Englewood Cliffs, NJ: Prentice-Hall, 1987. topics.

This book is a collected set of case studies based on This is the original paper on Hoare's method. The
the use of Z, providing a well-structured introduc- important theoretical and practical advantages al-
tion to the use of formal methods. The section on luded to in the abstract have indeed followed from a
specification of the UNIX filing system may in- pursuance of the topics of this paper.
volve sufficiently familiar material to provide a
good introduction for many students. It is suitable Hoare78
for use by both instructors and students. Hoare, C. "Communicating Sequential Processes."

Hennessy88 Comm. ACM 21, 8 (Aug. 1978), 666-677T

Hennessy, M. Algebraic Theory of Processes. Cam- Abstract: This paper suggests that input and output
bridge, MA: MIT Press, 1988. are basic primitives of programming and that

parallel composition of communicating sequential
This book starts with a tutorial about a language processes is a fundamental program structuring
very similar to CCS. method. When combined with a development of

Dijkstra's guarded command, these concepts are
Hinke83 surprisingly versatile. Their use is illustrated by
Hinke, T., J. Aithouse, and R.A. Kemmerer. *'SDC sample solutions of a variety of familiar program-

Secure Release Terminal Project." Proceedings of ming exercises.

the 1983 Symposium on Security and Privacy. Hoare85
Washington, DC: IEEE Computer Society, April Hoare, C.A.R. Communicating Sequential
1983. Processes. Englewood Cliffs, NJ: Prentice-Hall,

Abstract: The SDC Secure Release Terminal (SRT) 1984.
project provides a useful view of the process in-
volved in constructing software whose code is in- This book is the definitive book explaining lan-
tended to be formally verified to satisfy desired guage, semantics, and the use of CSP.
security properties. The purpose of the SRT is to
move appropriately classified data from a process- Holtsberg89

S ing environment at one security level to a process- Holtsberg, S., P. Montgomery, and J. Gingerich.
ing environment at another level in machine read- FDM Error Message Reference. TM-8494/001/01,
able form. Unisys Corporation, Culver City, CA, June 1989.
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(From Preface) This reference is for users of the Kemmerer83
Unisys Formal Development Methodology Kemmerer, R.A. and S.T. Eckmann. A User's
(FDM).... The purpose of this document is to pro- Manual for the UNISEX System. TRCS83-05, De- W
vide a reference for the error messages generated by partment of Computer Science, University of Cali-
Release 12.4 of the FDM tools. fornia, Santa Barbara, CA, Dec. 1983.

Hopcroft79 (From the Introduction) UNISEX, a UNIx-based
Hopcroft, J.E. and J.D. Ullman. Introduction to Symbolic EXecutor for Pascal, provides an environ-
Automata Theory, Languages, and Computation. ment for testing and verification of programs.
Reading, MA: Addison-Wesley, 1979. Kemmerer85

This book is the key book used to teach formal lan- Kemmerer, R.A. and Eckmann, S.T. "UNISEX: A
guages and automata theory. UNIx-based Symbolic EXecutor for Pascal."

Software-Practice and Experience 15, 5 (May
IS089 1985), 439-458.
International Standards Organization. Information Abstract: UNISEX is a UNIX-based symbolic ex-
processing systems - Open Systems Interconnec-
tion - LOTOS - A formal description technique ecutor for Pascal. The UNISEX s.ystem provides an

environment for both testing and verifying Pascalbased on the temporal ordering of observational programs. The system supports a large subset of
behavior. International Standard ISO 8807. Swit- Pascal, runs on UNIX and provides the user with a
zerland: International Standards Organization, 1989. variety of debugging features to help in the difficult

This is the defining document for the international task of program validation. This paper contains a
brief introduction to symbolic execution, followedstandard LOTOS specification language by an overview if the features of UNISEX, a discus-

sion of the UNISEX Pascal language, and some of
Karam9l the implementation details for the UNISEX system.
Karam, G.M. and R.J.A. Buhr. "Temporal Logic- Finally, some of the problems encountered when de-
Based Deadlock Analysis for Ada." IEEE Trans. signing and implementing the system are discussed
Software Eng. SE-I 7, 10 (Oct. 1989), 1109-1125. as well as future directions.

Abstract: This paper describes an [sic] temporal
logic-based specification language and deadlock King80
analyzer for Ada. The deadlock analyzer (along King, J.C. "Program Correctness: Or. Inductive
with other analyzers) are intended for use within Assertion Methods." IEEE Trans. Software Eng.
TimeBench, a concurrent s3"stem-design environ- SE-6 (1980), 465-479.
ment with support ]or Ada. The specification lan-gae, with susesrt linr AdaimTe spempoalication po- Abstract: A study of several of the proof of correct-guage, C O L. uses linear tim e tem poral logic to pro-ne s m t o si p r e t d In a t cu r, hef mvide a formal basis for axiomatic reasoning. The ness methods is presented. In particular, the form
deadlock analysis tool uses the reasoning power of of induction used is explored in detail. A relationalCCL to demonstrate that Ada designs specified in semantic model for programming languages is in-COL are system-wide deadlock-free; in essence, it troduced and its relation to predicate transformersuses a specialized theorem prover to deduce the ab- is explored. A rather elementary viewpoint is takensence of deadlock. The deadlock algorithm is in order to expose, as simply as possible, the basic
shown to be decidable for finite systems and accept- differences of the methods and the underlying prin-
able otherwise: it is also shown to have a worst- ciples involved. These results were obtained by at-
case computational complexity that is exponential tempting to thoroughly understand the "subgoal
with the number of tasks. The analyzer has been induction" method.
implemented in Prolog. Numerous examples are
evaluated using the analyzer-the examples vary in Klein83
complexity and in the number of tasks: readers and Klein, M. Department of Defense Trusted Computer
writers, gas station, five dining philosphers, and a System Evaluation Criteria. Fort Meade, MD: De-
layered communications system. The results in- partment of Defense, 1983.
dicate that analysis time is reasonable for moderate
designs in spite of the worst-case complexity of the (From Preface) The trusted computer system evalu-
algorithm. ation criteria defined in this document classify sys-

tems into four broad hierarchical divisions of en-
Kemmerer82 hanced security protection. They provide a basis
Kemmerer, R.A. Formal Verification of an Opcrat- for the evaluation of effectiveness of security con-

ing System Security Kernel. Ann Arbor, MI: UMI trois built into automatic data processing system

Rcscarch Press, 1982.
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products. The criteria were developed with three ferent temporal logics for reasoning about a compu-. objectives in mind: (a) to provide users with a tational model. The same formulas appear in both
yardstick with which to assess the degree of trust logics, but they are interpreted differently. The wi,
that can be placed in computer systems for the interpretations correspond to two ways of vic.ing
secure processing of classified or other sensitive in- time: as v continually branching set of possit dities,
formation; (b) to provide guidance to manufacturers or as a single linear sequence of actual evenLs 'Ilie
as to what to build into their new, widely-avaitable temporal concepts of "sometime" and "not itever-'
trusted commercial products in order to satisfy trust ("not always not") are equivalent in the theory of
requirements for sensitive applications; and (c) to linear time, but not in the theory of branching time
provide a basis for specifying security requirements - hence, our title. We will argue that the logic of
in acquisition specifications. Two types of require- linear time is better for reasoning ah•ut concurrelit
ments are delineated for secure processing: (a) spe- progranis, and the logic of branching tune is better
cific security feature requirements and (b) assurance for reasoning about nondetermi.ni.stic programs-
requirements.

Lamport83a
Lamport76 ! amport, L. "Specifying Concurrent Program
Lamport, L. "The Synchronization of Independent Modules." ACM Trans. Prog. L",g. and Ssr. 5, 2
Processes." Acta Informatica 6 (1976), 15-34, (Feb. 1983), 190-222.

Abstract: This paper considers the problei, s of Abstract: A method for specif.ing progran. mod-
programming a tdultiple process system so that it ules in a concurrent program is described. It is
continues to operate despite the failure of individaal based upon temporal logic, but it uses new kinds of
processes. A powerful s.ynchronizing primitive is temporal assertions to make the specification'
defined, and it is used to solve some sample prob- simpler and easier to understand. The semantics of
lems. An algorithm is then given which implements the specifications is describe, informally, and a se-
this primitive under very weak assumptions about quence of examples are given culninatir, in a spec-
the nature of interprocess comr;.unication, and a ification of three modules compriAing the
caretul informal proof of its correctness is given, alternating-bit communication protocol, A fotrmal

semantics is given in the appendix.
* Lamport80a

Lamport, L. 'The 'Hoare Logic' of Concurrent Lamport83b
Programs." Acta Informatica 14 (1980), 21-37. Lamport, L. "What Good is Temporal Logic?" In

hInformation Processing 83, R.E.A. Mason, ci.
Abstract: Hoare's logical system for specifting and Amsterdam: North-Hollandg 1983, 657-667.

proving partial correctness properties of s.a-Aential
progranns is generalized to c•ncurrent programs. Abstract: Temporal Logic is a jormld svstc',n Jor
The basic idea is to define the assertion {P} f{Q) to specifying o-1 reasoning about concurrent pro-
mnean that if execution is begun anywh;,re in S with grains. It provu.'os a uniform framework for de-
P true, then P will remain true until S terminates, scribing a system at any level of abstraction.
and Q will remain true if and when S terminates, thereby supporting ,;ierarchical specification and
The predicates P and Q may depend upon program verification.
control locations as well as upon the values of vari-
ables. A system of inference rules and axiom
schemas is given, and a form.,. correctness proof Lamport84
for a simple program is outlined. We show that b' Lamport, L. "What it Means for a Concurrent Pro-
speci~f-ing certain requirements for the unimple- gram to Satisfy a Specification: Why No One Hlas
muented parts, correctness propcrties can be proved Specified Priority." Conference Record Twelfth An-
wv;h,!It completely implementing the program. The nual ACM Symposium on Principles of Program-
relation to Pnueli's temporal logic formalism is fuing Languages. New York: ACM. Jan. 1985.
also discussed. 78-8 3.

Lamport80b Abstract: The formal correspondence between an
implementation and its specification is examined. ItLamport, L. "'Sometime' Is Sometimes 'Not Never'. is shown that existing specifications that claim to

On the Temporal Logic of Programs." Conferenc- describe priority are either vacuous or else too re-
Record Seventh Annual ACM Symposium on Prin- strictive to be implemented in some reasonable
tiples of Programming Lat;guages. New York: situations. This is illustrated with a precisely for-

t ACM, Jan. 1980, 174-184. mulated problem of spt'cifving a first-come-first-
served mutual exclusion algQorithm, which it is

(From the Introduction) We will describe two dif- claimed ,annot be solved hv existing methods.
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Lamport86 Lee81
Lamport, L. A Simple Approach To Specifying Con- S. Lee and S.L. Gerhart. AFFIRM User's Guide.
current Systems, Technical Report 15, Digital Sys- USC Information Sciences Institute, Marina del Rey.
teins Research Center, Palo Alto, CA, i986. CA, Feb. 1981.

Abstract: In the transition axiomn method, safety (From Preface) The AFFIRM USER'S GUIDE ac-
properties of a concurrent system can be specified companies the AFFIRM REIERENCE MANUAL
by programs; liveness properties are specified by and the AFFIRM TYPE LIBRARY in order to make
assertions in a simple temporal logic. The method life easier for people who really want to use
is described with some simple examples, and its AFFIRM, The GU1I)E is a distillation of expen-
logicaifoundation is informal]y explored through a ence by the PV project (and others) which we want
careful examination of what it means to implement to pass on to users.
a specification. Language issues and o;her prac-
tical details are largely ignored. Leveson83

Leveson, N.G., A.1 Wasserman, and D.M. Berry.
Lamport87 "BASIS: A Behavioral Approach to the Specitica-
Lamport, L. win and sin: Predicate Transformers for tion of Information Systems." Information Sciences
Concurrency. Technical Report 17, Digital Sy-tems 8, 1 (1983), 15-23.
Research Center, Palo Alto, CA, May 1987. Abstract: This paper is an overview of BASIS

Abstract: Dijkstra's weakest liberal precondition (Behavioral Approach to the Specification of Infor-
and strongest postcondition predicate transformers mation Systems), a multi-step formal method used
are generalized to the weakest invariant and for information systems design and development.
strongest invariant. These new predicate trans- The steps include information analysis, semantic
formers are useful for reasoning about concurrent specification, verification of the specification. con-
programs containing operations in which the grain crete implementation, and verification of the imple-
of atomicity is unspecified. they can also be used to mentation. In this way, BASIS can be used to pro-
replace behavioral arguments with more rigorous vide a formal basis for information systems devel-
assertional ones. opment. We provide an example showing how BAS-

IS can be used in conjunction with implementation
Landwehr8l in the programming language PLAIN.
Landwehr, C.E. "Formal Models for Computer
Security." ACM Computing Surveys 13, 3 (Sept. Leveson9l
1981), 247-278. Leveson, N.G., M. Heimdahl, H. Hildreth. J. Reese,

Abstract: Efforts to build "secure" computer sys- and R. Ortega. "Experiences using Statecharts for a
terns have now been underway for more than a System Requirements Specification." Sixth Interna-
decade. Many designs have been proposed, some tional Workshop on Software Specification and
prototypes have been constructed, and a few sys- Design. Washington, DC: IEEE Computer Society,
tents are approaching the production stage. A 1991, 31-41.
small number of systems are even operating in what Abstract: This paper describes some lessons
the Department of Defense calls "multilevel" mode: learned and issues raised while building a system
some information contained in these computer sys- requiremes specfication for a real aircraft col-
temns may even have a classification higher than the lision avoidance system using statecharts. Some en-
clearance of some of the users of those systems. hancements to statecharts were necessary to model
This paper reviews the need for formal security the complete system and a few notational changes
models, describes the structure and operation of were made to improve reviewabilit'.
military security controls, considers how automa-
tion has affected security problems, surveys models Levitt85
that have been proposed and applied to date, and Levitt, K.N. Communications Network in Revised
suggests possible directionsforfuure mnodels. SPECIAL. Computer Science Laboratory, SRI Inter-

Landwehr83 national, Menlo Park, CA, June 1985.

Landwehr, C. "The Best Available Technologies for Lindsay88
Computer Security." Computer 16, 7 (July 1983). Lindsay, P.A. "A Survey of Mechanical Support for

Abstract: This concise overview of secure system Formal Reasoning." Software Engineering Journal 3
developments summarizes past and current projects, (1988), 3-27.
deciphers computer security lingo, and offers ad-
vice to prospective designers.
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This survey examines seven support systems in de- Lucas69
* tail and introduces eleven others. The systems dis- Lucas, P. and K. Walk. "On the Formal Description

cussed in detail are LCF (Logic for Computable of PL/I." Annual Review in Automatic Programming
Functions), NuPRL, Veritas, Isabelle, AFFIRM, the 6, 3 (1969).
Boyer-Moore system, and Gypsy. The bibliography
contains 87 items. (From the Introduction) This paper presents tools

and dsiga criteria for the formal description of pro-

Liskov74 gramming languages. The results reported were

Liskov, B.H. and S.N, Zilles. "Programming with achieved mainly during the development of the for-
mal definition of PLlI as documented in a series ofAbstract Data Types." ACM SIG PLAN Notices 9, 4 ehia eot fo B inaLbrtre]

(Apri 197), 5-60.Technical Reports [from IBM Vienna Laboratories].(April 1974), 50-60. An appropriately tailored subset of PL/I is used to

Abstract: The motivation behind this work in very- illustrate these results. Their applicability is, how-
high-level languages is to ease the programming ever, not restricted to PL/I.
task- by providing the programmer with a language
containing primitives or abstractions suitable to his Luckham86
problem area. The programmer is then able to Luckham, D.C., D.P. Helmbold, S. Meldal, D.L.
spend his effort in the right place; he concentrates Bryan, and M.A. Haberler. "Task Sequencing Lan-
on solving his problem, and the resulting program guage for Specifying Distributed Ada Systems." In
will be more reliable as a result. Clearly, this is a guage fopeng D id Ada Systems." onworthwhile goal. System Development and Ada: C'RAI Workshop on

Software Factories and Ada. Lecture Notes in Com-
Unfortunately, it is very difficult for a designer to puter Science, no. 275. Berlin: Springer-Verlag,
select in advance all the abstractions which the 1986.
users of his language might need. If a language is
to be used at all, it is likely to be used to solve Abstract: TSL-1 is a language for specifying se-
problems which its designers did not envision, and quences of tasking events occuring in the execution
for which the abstractions embedded in the lan- of distributed Ada programs. Such specifications
guage are not sufficient. are intended primarily for testing and debugging of

Ada tasking programs, although they can also beThis paper presents an approach which allows theapleindsgngroam.T -Ipcfc-

set of built-in abstractions to be augmented when applied in designing programs. TSL-1 specifica-

the need for a new data abstraction is discovered, tions are included in an Ada program as formal

This approach to the handling of abstractions is an comments. They express constraints to be satisfied

outgrowth of work on designing a language for by the sequences of acutal tasking events. An Ada

structured programming. Relevant aspects of this program is consistent with its TSL- I specifications

language are described, and examples uf the use if its rutime behavior always satisfies them. This
paper presents an overview of TSL-l. The featuresand definitions of abstractions are given. of the language are described informally, and ex-
amples illustrating the use of TSL-I, both for de-

LocassoSO bugging and for specification of tasking programs,
Locasso, R., J. Scheid, D.V. Schorre, and P.R. Eg- are given. A definition of robust TSL-I specifica-
gert. The Ina Jo Reference Manual. tions that takes into account uncertainty in runtime
TM-(L)-6021/001/000, System Development Corpo- observation of behavior of distributed systems is
ration, Santa Monica, CA, June 1980. given. A runtime monitor for checking consistency.

of an Ada program with FSL-I specifications has
Abstract: The Ina Jo specification language is in been implemented. In the future, constructs for de-
use at SDC as part of its formal development meth- fining abstract tasks will be added to TSL-I, form-
od. System specifications written in Ina Jo Ian- ing a new languages, TSL-2, for the specification of
guage are verified mechanically with respect to distributed systems prior to their implementation in
user-defined criteria. An Ina Jo specification is a any particular programming language.
collection of levels; each level describes an abstract
machine by describing its states and possible state Manna72
transitions. Lower levels contain mappings de-
scribing how they are intended to implement parts Manna, Z., S. Ness, and J. Vuillemin. 'Inductive
of higher levels. The top level cortains correctness Methods for Proving Properties of Programs." ACM
requirements that must be met by the entire system. SIGPLAN Notices 7, 1 (Jan. 1972), 27-50.
Thus an Ina Jo specification allows for a structured Abstract: We have two main purposes in this

S proof of the desired properties of a complete sys- paper. First, we clarify and extend known results
tern. about computation of recursive programs, empha-

sizing the difference between the theoretical andi
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practical approaches. Secondly, we present and ex- McCarthy65
amine various methods for proving properties of McCarthy, J., P.W. Abrahams, D.J. Edwards, TP.
recursive programs. We discuss in detail two Hart, and M. Levin. LISP 1.5 Programmer's
powerful inductive methods, computational induc- Manual. Cambridge, MA: MIT Press, 1965.
lion and structural induction, illustrating their ap-
plications by various examples. We also briefly dis- This book is the original LISP manual. It contains a
cuss some other related methods. definition of LISP written in LISP.

Our aim in this work is to introduce inductive meth-
ods to as wide a class of readers as possible and to McCauley79
demonstrate their power as practical techniques. McCauley, E. and P. Drongowski. "KSOS - The
We ask the forgiveness of our more theoretical- Design of a Secure Operating System." National
minded colleagues for our occasional choice of Computer Conference. Montvale, NJ: AFIPS, 1979,
clarity over precision. 345-353.

Manna74 (From the Introduction) This paper discusses the de-
Manna, Z. Mathematical Theory of Computation. sign of the Department of Defense (DoD) Kernel-
New York: McGraw-Hill, 1974. ized Secure Operating System (KSOS, formerly

called Secure UNIX). KSOS is intended to provide
The book has a wide-ranging survey of topics in the a provably secure operating system for larger min-
theory of computation. Chapter 3 deals with verifi- icomputers, KSOS will provide a system interface
cation of program correctness and halting. closely compatible with the UNIX operating sys-

tem. The initial implementation of KSOS will be
Manna81 on a Digital Equipment Corporation PDP- 11/70

Manna, Z. and A. Pnueli. "Verification of Concur- computer system. A group from Honeywell is also

rent Programs: The Temporal Framework." In The proceeding with an implementation for a modified

Correctness Problem in Computer Science, R.S. version of the Honeywell Level 6 computer system.

Boyer and J.S. Moore, eds, London: Academic McGowan7l
Press, 1981, 215-273. McGowan, C.L, "An Inductive Proof Technique for

Abstract: This is the first in a series of reports Interpreter Correctness." In Courant Computer Sci-
describing the application of Temporal Logic to the ence Symposium on Formal Semantics of Program-
specification and verification of concurrent pro- ming Languages, R. Rustin, ed. Englewood Cliffs,
grams. NJ: Prentice-Hall, 1971.
We first introduce Temporal Logic as a tool for
reasoning about sequences of states. Models of Abstradc: A general inductive u ouf Lechdiquc in
concurrent programs based both on transition presented which has been successfully used in es-
graphs and on linear-text representations are tablishing the correctness and equivalence of inter-
presented and the notions of concurrent and fair preters for the lambda calculus and for block struc-
executions are defined tured languages.

The general temporal language is then specialized Meadows88
to reason about those execution states and execu- Meadows, CA. A Method for Automatically Trans-
tion sequences that are fair computations of concur-
rent programs. Subsequently, the language is used lating Trace Specification into Prolog. NRL9131,
to describe properties of concurrent programs. Naval Research Laboratory, 1988.

The set of interesting properties is classified into
Invariance (Safety), Eventuality (Liveness) and Milner80
Precedence (Until) properties. Among the Milner, R. A Calculus of Communicating Systems.
properties studied are: Partial Correctness. Global Lecture Notes in Computer Science, no. 92. Berlin:
Invariance, Clean Behavior, Mutual Exclusion, Springer-Verlag, 1980.
Deadlock Absence, Termination, Total Correctness,
Intermittent Assertions, Accessibility, Starvation This book is the definitive book defining CCS
Freedom, Responsiveness, Safe Liveness, Absence
of Unsolicited Response, Fair Responsiveness and Milner89
Precedence. Milner, R. Communication and Concurrencv.

In the following reports of this series we use the Englewood Cliffs, NJ: Prentice-Hall, 1989.
temporal formalism to develop proof methodologies This book is the definitive book explaining and de-
for proving the properties discussed here. fining CCS. It is significantly more tutorial than the

other book by the same author in 1980.
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Moore90 user-defined analysis algorithms to reachability
* Moore, A.P. "The Specification and Verified graphs. The alternating-bit protocol, with a

Decomposition of System Requirements Using bounded channel, is used to demonstrate the power

CSP." IEEE Trans. Software Eng. 16, 3 (Sept. of the tool and to point to future extensioms.

1990), 933-948. Musser85a

Abstract: An important principle of building Musser, D.R. and D.A. Cyrluk. AFFIRM-85 Instal-
trustworthy systems is to rigorously analyze the cri- lation Guide and Reference Manual Update. Gen-
tical requirements early in the developmen! process, cral Electric Corporate Research and Development,
even before starting system design. F-risting proof Schenectady, NY, March 1985.
methods for systems of communicating processes y
focus on the bottom-up composition of component-
level specifications into system-level specifications. Musser85b
Trustworthy system development requires, instead. Musser, D.R. "Aids to Hierarchical Specification
the top-down derivation of component requirements Structuring and Reusing Theorems in Affirm-85."
from the critical system requirements. This paper ACM Software Eng. Notes 10, 4 (1985).
describes a formal method for decomposing the re-
quirements of a system into requirements of its comn- (From the Introduction) TVhe AFFIRM Program
ponent processes and a minimal, possibly empty, set Verification System originated at the University of
of synchronization requirements. The Trace Model Southern California Information Sciences Institute
of Hoare's Communicating Sequential Processes (ISI). It is an experimental system for the algebraic
(CSP) is the basis for the formal method. We apply specification and verification of abstract data types
the method to an abstract voice transmitter and de- and Pascal-like programs using these types....
scribe the role that the EHDM verification system AFFIRM-85 is an enhanced version of AFIIRM
plays in the transmitter's decomposition. In combi- that is being developed at General Electric Corpo-
nation with other verification techniques, we expect rate Research and Development Center (GE-CRI)).
that the method defined here will promote the devel- This paper briefly describes the two major exten-
opment of more trustworthy systems. sions that will completed in early in 1985. The

primary purpose of these and several minor exten-
SMorgan07 sions is to enable the use of AlFqRM in carrying

Morgan, E.T. and R.R. Razouk. "Interactive State- out a larger part of the software development proc-

Space Analysis of Concurrent Systems." IEEE ess than previously has been possible.

Trans. Software Eng. SE-13, 10 (Oct. 1987),
1080-1091. Neumann77

Neumann, P.G., R.S. Boyer. R.J. Feiertag, and K.N.
Abstract: The introduction of concurrency into Levitt. A Provably Secure Operating System: The
programs has added to the complexity of the soft- System, Its Applications, and Proofs. Final Report,
ware design process. This is most evident in the Computer Science Laboratory, SRI International,
design of communications protocols where concur-
rency is inherent to the behavior of the system. The Menlo Park, CA, Feb. 1977.
complexity exhibited by such software systems Abstract: This report provides a detailed descrip-
makes more evident the need for computer-aided tion of the design of a secure operating system and
tools for automatically analyzing behavior, some of its applications, along with proofs of some

The Distributed Systems project at UCI has been of the properties related to security. Discussed here
developing techniques and tools, based on Petri are:
nets, which support the design and evaluation of a formal methodology for the design and
concurrent software systems. Techniques based on implementation of computer operating sys-
constructing reachability graphs that represent tems and application subsystems, and for
projections and selections of complete state-spaces the formal proof of properties of such sys-
have been developed. This paper focuses attention tems, with respect to both the design and
on the computer-aided analysis of these graphs for the implementation;
the purpose of proving correctness of the modeled * the design of a secure capability-based
system. The application of the analysis technique to operating system according to this mneth-
evaluating simulation results for correctness is dis- odology to meet advanced security re-
cussed. The tool which supports this analysis (the quirements, together with relevant imnple-
reachability graph analyzer, RGA) is also de- mentation considerations:

* scribed. This tool provides mechanisms for proving
general system properties (e.g., deadlock-freeness) * the design of several application subsys-
as well as system-specific properties. The tool is tents for this operating system, including
sufficiently general to allow a user to apply complex support for multilevel security classifica-
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tions, for confined subsystems, for a secure Organick72
relational data management system, and Organick, E.I. The Multics System. Cambridge, MA:
for monitoring of security; MIT Press, 1972.

"* the statement and proof of properties of
the design for the operating system and for This book examines the structure of the MIT mul-
certain application subsystems; tics system from the bottom upwards.

"* an evaluation of the significance of this
work, and considerations for the future de- Organick78
velopment of secure systems and subsys- Organick, E.I., A.]. Forsythe, and R.P. Plummer.
tems. Programming Language Structures. New York,

NY: Academic Press, 1978.
Nguyen84 This book uses Johnston's Contour Model, a pic-
Nguyen, V., D. Gries, and S. Owicki. "A Model for torial information structure model to describe a
Temporal Proof System for Networks of Process." variety of programming languages and their fea-
Conference Record Twelfth Annual ACM Sym- tures.
posiumn on Principles of Programming Languages.
New York: ACM, Jan. 1985, 121-131. Owicki76a

Abstract: A model and a sound and complete proof Owicki, S. and D. Gries. "Verifying Properties of
system for networks of processes in which compo- Parallel Programs: An Axiomatic Approach."
nent processes communicate exclusively through Comm. ACM 19, 5 (May 1976), 279-285.
messages is given. The model, an extension of the Abstract: An axiomatic method for proving a num-
trace model, can describe both synchronous and ber of properties of parallel programs is presented.
asynchronous networks. The proof system uses Hoare has given a set of axioms for partial correct-
temporal-logic assertions on sequences of obser- n es hasutitey are ot strong e ou pa ot c ases.
vations--a generalization of traces. The use of ob- hess, but they are not strong enough in most cases.
servations (traces) makes the proof system simple, This paper defines a more powerful deductive sys-
compositional and modular, since internal details tem which is in some sense complete for partial cor-

can be hidden. The expressive power of temporal rectness. A crucial axiom provides for the use of
logic makes it possible to prove temporal properties auxiliary variables, which are added to a parallel
(safety, liveness, precedence, etc.) in the system. program as an aid to proving it correct. The infor-
The proof system is language-independent and mation in a partial correctness proof can be used to
works for both synchronous and asynchronous net- prove such properties as mutual exclusion, freedom
works. from deadlock, and program termination. Tech-

niques for verifying these properties are presented
and illustrated by application to the diningNielsen89 philosophers problem.

Nielsen, M., K. Havelund, K.R. Wagner, and
C. George. "The RAISE Language, Method and Owicki76b
Tools." Formal Aspects of Computing 1, 1 (1989), Owicki, S. and D. Gries. "An Axiomatic Proof Tech-
85-114. nique for Parallel Programs I." Acta Informatica 6

Abstract: This paper presents the RAISE software (1976), 319-340.
development method, its associated specification
language, and the tools supporting it, The RAISE Abstract: A language for parallel programming.
method enables the stepwise development of both with a primitive construct for s anchronization and
sequential and conccurrent software from abstract mutual exclusion, is presented o are's deductivespecification through design to implementation. All system for proving partial correctness of sequential

specificiof thr ofw devtoimplmentar. e- programs is extended to include the parallelism de-stages of RAISE software development are ex-the language. e proof method lends
pressed in the wide-spectrum RAISE specification insight into how one should understand and present
language. The RAISE tools form an integrated tool insight programs.oxmplesta n ung sev-environment supporting both language and method, parallel programs. Examples are given using sev-

eral of the standard problems in the literature.
The paper surveys RAISE and furthermore, more Methods for proving termination and the absence of
detailed presentations of major RAISE results are deadlock are also given.
provided. The subjects of these are (a) an example
of the use of the RAISE method and language, and Owicki82
(b) a presentation of the mathematical semantics of Owicki, S. and L. Lamport. "Proving Lweness
the RAISE specification language. Properties of Concurrent Programs." ACM Trans.

Prog. Lang. and Syst. 4, 3 (Oct. 1982), 455-495.
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Abstract: A liveness property asserts that program Pedersen89
* execution eventually reaches some desirable state. Pedersen, J.S. Soft~war- Development Using VDM.

While termination has been studied extensively, Curriculum Module SEI-CM-16, DTIC: ADA
many other liveness properties are important for 235996, Software Engineering Institute, Carnegie
concurrent programs. A formal proof method,
based on temporal logic, for deriving liveness Mellon University, Pittsburgh, Pa., Dec. 1989.
properties is presented. It allows a rigorous for- (From Capsule Description) This module introduces
mulation of simple informal arguments. How to the Vienna Definition Method (VDM) approach to
reason with temporal logic and how to use safety software development. The method is oriented
(invariance) properties in proving liveness is toward a formal model view of the sofware to be
shown. The method is illustrated using, first, a developed. The emphasis of the module is on for-
simple programming language without synchroniza- mal specification and systematic development of
lion primitives, then one with semaphores. How- programs using VDM. A major part of the module
ever, it is applicable to any programming language. deals with the particular specification language (and

abstraction mechanisms) used in VDM.
Paolini8l
Paolini, P. Abstract Data Types and Data Bases. Peterson81
Ph.D. Th., Computer Science Department, Univer- Peterson, I.L. Petri Net Theory and the Mode!;,, of
sity of California, Los Angeles, CA, 1981. Systems. Englewood Cliffs, NJ: Prentice. ilall,

1981.Parnas72aParnas, LThis is the classic book covering Petri Nets andParnas, D.L. "On the Criteria to be Used in Decom- their use in modeling of concurrent systems,
posing Systems into Modules." Comm. ACM 15, 2
(Dec. 1972), 1053-1058. Place90

Abstract: This paper discusses modularization as a Place, P.R.H., W.B. Wood, and M. Tudball. Survev
mechanism for improving the flexibility and com- of Formal Specification Techniques for Reactive
prehensibility of a system while allowing the shor- Systems. CMU/SEI-90-TR-5, DTIC: ADA 22374,

S tening of its development time. The effectiveness of Software Engineering Institute, Carnegie Mellon
a "modularization" is dependent on the criteria University, Pittsburgh, PA, 1990.
used in dividing the system into modules. A system
design problem is presented and both a convention- Abstract: Formal methods are being considered for
al and unconventional decomposition are described, the description of many svstems including systems
It is shown that the unconventional decompositions with real-time constraints and multiple concurrently
have distinct advantages for the goals outlined. The c.recuting processes. This report develops a set of
criteria used in arriving at the decomposition are evaluation criteria and evaluates Communicating
discussed. The unconventional decomposition, if Sequential Processes (CSP), the Vienna Definition
implemented with the conventional assumption that Method (VDM), and temporal logic. The evaluation
a module consists of one or more subroutines, will is based on specifications, written with each of the
be less efficient in most cases. An alternative ap- techniques, of an example avionics systemn.
proach to implementation which does not have this
effect is sketched. Plotkin76

Parnas72b Plotkin, G.D. "A Power Domain Construction."SIAM Journal of Computing 5, 3 (1976), 452-487.
Parnas, D.L. "A Technique for the Specification of

Software Modules." Comm. ACM 15, 5 (May 1972), Abstract: We develop a powerdomain construction
330-336. P(e), which is analagous to the powerset construc-

tion and also fits in with the usual sum, product and
Abstract: This paper presents an approach to writ- exponentiation constructions on domains. The de-
ing specifications for parts of software systems, sire for such a construction arises when considering
The main goal is to provide specifications suf- programming languages with nondeterministic fea-
ficientlv precise and complete that other pieces of tures or parallel features treated in a nondeter-
software can be written to interact with the piece ministic way. We hope to achieve a natural. fillv
specified without additional information. The sec- abstract semantics in which such equivalences as (p
ondary goal is to include in the specification no par q) = (q par p) hold. The domain
more information than necessary to meet the first (D.-Truthvalues) is not the right one, and instead

S goal. The technique is illustrated by means of a we take the (finitely) generable subsets of D. When
variety of examplesfrom a tutorial sYstem. D is discrete they are ordered in an elemeniwise

fashion. In the general case they are given the

SEI-CM-27-1.0 71



Formal Specification and Verification of Concurrent Programs

coarsest ordering consistent, in an appropriate of concurrent programs is presented in which n
sense, with the ordering given in the discrete case. processors are executing concurrent n disjoint pro-
We then find a restricted class of algebraic induc- grams under a shared memory environment. The
tive partial orders which is closed under P(e) as semantics of such a program specifies the class of
well as the sum, product and exponentiation con- state sequences which are admissible as prorer ex-
structions. This class permits the solution of recur- ecution sequences under the program. 7,e two
sive domain equations, and we give some illustra- main criteria which are required are:
live semantics using p(*). * Each State is obtained from its predeces-
It remains to be seen if our powerdomain construc- sor in the sequence by exactly one proces-
lion does give rise to fully abstract semantics, al- sor performing an atomic instruction in its
though such natural equivalences as the above do process.
hold. The major deficiency is the lack of a convinc- * Fair Scheduling: No processor which is
ing treatment of the fair parallel construct. infinitely often enabled will be indefinitely

delayed.
Plotkin83 The basic elements of temporal Logic are intro-
Plotkin, G.D. "An Operational Semantics for CSP." duced in a particular logic framework DX. The
In Formal Description of Programming Concepts H, usefulness of Temporal Logic notation in describing
D. Bjorner, ed. Amsterdam: North-Holland, 1983, r"operties of concurrent programs is demonstrated.
199-224. A construction is then given for assigning to a pro-

gram P a temporal formula W (P) which is true on
Abstract: Hoare's CSP is used to illustrate a meth- all proper execution sequences of P. In order to
od employing the well-known idea of labelled transi- prove that a program P possesses a property R. one
tion systems to provide operational semantics for has only to prove the implications W (P) c R_ An
programming languages. What is new is their example of such proof is given. It is then demon-
specifications; following the modern emphasis on strated that specification of the Temporal character
structure they are given by structural induction on of the program's behavior is absolutely essentialfor
abstract syntax, resulting in a precise but intuitive the unambiguous understanding of the meaning of
semantics. Most of CSP is treated including the programming constructs.
arbitrary nesting of parallel commands and the
failure convention when communicating with a ter- Popek75 V
minated processp also a solution to the libratprob- Popek, G.J. and C.S. Kline. "A Verifiable Protection
lem is proposed. System." ACM SIGPLAN Notices 10, 6 (June 1975),

Pnueli77 294-304.

Pnueli, A. 'The Temporal Logic of Programs." Abstract: This paper reports on the design and
Eighteenth Annual Symposium on the Foundations implementation of the UCLA Virtual Machine Svs-
of Computer Science. Long Beach, CA: IEEE Corn- tem, a multiuser operating system base that has

Society, Nov. 1977. been developed to provide ultra high reliability pro-
purer tection and security. Details are presented of the

Abstract: A unified approach to program verifi- UCLA-VM sstem, a prototype of which now eists.
cation is suggested, which applies to both sequen- Concepts which have influenced its structure are
tial and parallel programs. The main proof method discussed, including program verification, security
suggested is that of temporal reasoning in which the kernels, virtual machines, virtual memory, and the
time dependence of events is the basic concept. need for flexible information sharing facilities. A
Two formal systems are presented for providing a new mechanism, capability faulting, is developed in
basis for temporal reasoning. One forms a for- order to remove much of the virtual memory sup-
malization of the method of intermittent assertions, port from the security kernel. Flexible, reliable
while the other is an adaptation of the tense logic control of sharing is obtained by extensions to sev-
system Kb, and is particularly suitable for reason- eral of these concepts, especially through the use of
ing about concurrent programs. levels of kernels.

Pnueli81 Popek79
Pnueli, A. 'The Temporal Semantics of Concurrent Popek, G., M. Kampe, C. Kline, A. Stoughton,
Programs." Theoretical Computer Science 13 M. Urban, and E. Walton. "UCLA Secure Unix."
(1981), 45-60. National Computer Conference. Montvale, NJ:

AFIPS, 1979, 355-364.
Abstract: The formalism of Temporal Logic is sug-S..-d .. ar ... "'" tool for formalizing the (From the Introduction) The UCLA Data Secure
semantics of concurrent programs. A simple model Unix [sicl operating system is intended as a demon-
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stration that verifiable data security with general Razouk85a
* functionality is attainable today in medium scale Razouk, R.R. and C.V. Phelps. "Performance Anal-

computing systems. More specifically, the UCLA ysis Using Timed Petri Nets." In Protocol Specifi-
system has the characteristic that data security, the cations, Testing, and Verification, IV, Y. Yemini,
assurance that data cannot be directly read or modi- R. Strom, and S. Yemini, eds. Amsterdam: North-
fled without specific permission, is enforced via a
limited amount of kernel software. High levels of Holland, 1985.
care are being applied to demonstrate that the Abstract: Petri Nets have been successfully used to
security properties of that software are correctly irm- model and evaluate the performance of distributed
plemented. In addition, the system is designed so systems. Several researchers have extended the ba-
that confinement can be demonstrated by audit of sic Petri Net model to include time, and have dem-
some additional, isolated code. onstrated that restricted classes of Petri Nets can be

analyzed efficiently. Unfortunately, the restrictions
Razouk77 prohibit the techniques from being applied to many

Razouk, R.R. The GMB Simulator System Reference interesting systems, e.g.. communication protocols
This paper proposes a version of timed Petri Nets

Manoul. Computer Science Department, University which accurately models communication protocols.
of California, Los Angeles, CA, July 1977. and which can be analyzed using Timed Rea-

chability Graphs. Procedures for constructing and
Razouk79 analyzing these graphs are presented. The analysis
Razouk, R.R., M. Vernon, and G. Estrin, is shown to be applicable to a larger class of Timed
"Evaluation Methods in SARA - The Graph Model Petri Nets thar previously thought. The model and
Simulator." Proceedings of the Conference on Simu- the analysis technique are demonstrated using a

lation, '1easurement and Modeling of Computer simple communication protocol.
Systems. Washington, DC: IEEE Computer Society,
Aug. 1979, 189-206. Razouk85b

Razouk, R.R. and D.S. Hirschberg. "Tools for Effi-
Abstract: The supported methodology evolving in cient Analysis of Concurrent Software Systems."

S the SARA (System ARchitects' Apprentice) system Proceedings of SOFTFAIR 85 Conference on Soft-
creates a design framework on which increasingly
powerful analytical tools are to be grafted. Control ware Development Tools, Techniques and
flow analyses and program verification tools have Alternatives, Washington, DC: IEEE Computer So-
shown promise. However, in the realm of the com- ciety, Dec. 1985, 192-19F.
plex systems which interest us there is a great deal Abstract: The ever increasing use of distributed
of research and development to be done before we computing as a method of providing added comput-
can count on the use of such powerful tools. We ing power and reliability has sparked interest in
must always be prepared to resort to experiments methods to model and analyze concurrent
for evaluation of proposed designs. hardware/software systems. Efficient automated
This paper describes a fundamental SARA tool, the analysis tools are needed to aid designers of such
graph model simulator. During top-down refine- systems. The Distributed Systems Project at UCI
ment of a design, the simulator is used to test con- has been developing a suite of tools (dubbed the
sistency between the levels of abstraction. During P-NUT system) which supports efficient analysis of
composition, known building blocks are linked to- ccncurrent software. This paper presents the prin-
gether and the composite graph model is tested rel- ciples which guide the development of P-NUT tools
ative to the lowest top-down model. Design of test and discusses the development of one of the tools:
environments is integrated with the multilevel de- the Reachability Graph Builder (RGB). The P-NUT
sign process. The SARA methodology is exemplified approach to tool development has resulted in the
through design of a higher level building block to production of a highly efficient tool for constructing
do a simple FFT. reachability graphs. The careful design of data

structures and associated algorithms has signifi-
Razouk8O cantly enlarged the class of models which can be

Razouk, R.R., M. Vernon, and M. Brewer. analyzed.

Control-Flow Analyzer Reference Manual Comput-
er Science Department, University of California, Los Reynolds72Angeles, CA, Feb. 1980. Reynolds, J.C. "Definitional Interpreters for Higher-

Order Programming Languages." Proceedings of the
ACM Annual Conference. New York: ACM, Aug.
1972.
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Abstract: Higher-order programming languages ers to think about software development in terms of
(i.e., languages in which procedures or labels can these concepts. This approach defines a system as
occur as values) are usually defined by interpreters consisting of a set of components arranged in a par-.
which are themselves written in a programming ticular structure. The components are specified
language based on the lambda calculus (i.e., an ap- using languages developed for that purpose. Some
plicative language such as pure LISP). Examples properties of the specifications can be evaluated by
include McCarthy's definition of LISP, Landin's on-line tools; others can be measured by subjective
SECD machine, the Vienna definition of PLI, evaluation. The languages and tools of HiDM have
Reynolds' definitions of GEDANKEN, and recent been designed to enforce its concepts and to realize
unpublished work of L. Morris and C. Wadsworth. its mechanisms.
Such definitions can be classified according to This volume describes the basic concepts of I1DM.
whether the interpreter contains higher-orderfunc- Thestag es pv e au ste ordeptn of tem
tions, and whether the order of the application (i.e., The stages provide a suggested ordering of system
call-by-value versus call-by-name) in the defined development. Guidelines for the use of I1DM are
language depends on the order of application in the also presented.
defining language. As an example, we consider the
definition of a simple applicative progranmning Ian- Rolph
guage by means of an interpreter written in a Rolph, S. and T. Alfano. Statemate by Example.
similar language. Definitions in each of the above Burlington, MA: i-Logix, date unknown,
classifications are derived from one another by in-
formal but constructive methods. The treatment of This book shows by use of a simplified, but real
imperative features such as jumps and assignment example how STATEMATE might be used to de-
is also discussed. sign a reactive system. (The book has no sign of

any publication date!)

Ritchie74
Ritchie, D.M. and K.L. Thompson. "The UNIX Rombach87
Time-Sharing System." Comm. ACM 17, 7 (July Rombach, H.D. Software Specification: A
1974), 365-375. Framework Curriculum Module SEI-CM- 11, Soft-

ware Engineering Institute, Carnegie Mellon Univer-Abstract: UNIX is a general-purpose, multi-user, sity, Pittsburgh, Pa., Oct. 1987.
interactive operating system for the Digital Equip-
ment Corporation PDP-11/40 and 11/45 computers. (From Capsule Description) This module provides a
It offers a number of features seldom found even in framework for specifying software processes and
larger operating systems, including: (1) a hierar- products. The specification of a software product
chical file system incorporating demountable type describes how the correspoding products
volumes; (2) compatible file, device, and inter- should look. The specification of a sofwtare proc-
process 1/0; (3) the ability to initiate asynchronous ess type describes how the corresponding processes
processes; (4) system command language selectable should be performed.
on a per-user basis; (5) over 100 subsystems includ-
ing a dozen languages. This paper discusses the Ruggiero79
nature and implementation of the file system and of
the user command interface. Ruggiero, W., G. Estrin, R. Fenchel, R. Razouk,

D. Schwabe, and M. Vernon. "Analysis of Data

Robinson79 Flow Models Using the SARA Graph Model of

Robinson, L. The HDM Handbook, Volume I.- Tie Behavior." National Computer Conference.

Foundations of HDM. SRI Project 4828, Computer Montvale, NJ: AFIPS, June 1979.

Science Laboratory, SRI International, Menlo Park,
CA, June 1979. Rushby91a

Rushby, I., F. von Henke, and S. Owre. An Intro-
(From the Introduction) 11DM provides an inte- duction to Formal Specification and Verification
grated collection of languages and tools that aid in Using EHDM. CSL Technical Report, SRI-
the software development process. HDM addresses CSL-91-02, Computer Science Laboratory, SRI In-
many of the aspects of the general software problem ternational, Menlo Park, CA, Aug. 1991.
- namely that software is often late, too costly,
unreliable, and noncompliant with its Abstract: This report is a tutorial on formal speci-
requirements .... fication and verification using EHDM. The EHDM
In developing 11DM, we have selected some patic- specification language is very expressive, based on

ularly useful concepts and integrated them into a a strongly typed higher-order logic, enriched with
unified approach that encourages software develop- elements of the Hoare (relational) calculus. Thetype system provides subtypes, dependent types, and
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certain forms of type-polymorphism. Modules are Rushby91c
Sused to structure large specifications and support Rushby, J. Formal Specification and Verification for

hierarchical development. The language has a Critical Systems: Tools, Achievements, and
complete formal semantic characterization and is Prospects. Computer Science Laboratory, SRI Inter-
supported by a fully mechanized specification and national, Menlo Park, CA, Aug. 1991.
verification environment that has been used to de-
velop large specifications and perform very hard Abstract: Formal specification and verification use
formal verifications. mathematical techniques to help document, specify.

The tutorial uses simple examples to describe the design, analyze, or certify computer software and
EHDM language, methodology, and tools. The first hardware. Mathematically-based notation can pro-
examples illustrate the basic ideas of specification vide specifications that are precises Isic] and un-
and theorem proving in EHDM. We then introduce ambiguous and that can be checked mechanically
the ideas of testing specifications, of horizontal and for certain types of error. Formal verification uses
vertical hierarchy, and of consistency and conser- theorem proving techniques to establish consistency
vative extension. Later chapters cover more ad- between one level of formal specification and
vanced topics including subtypes, higher-order another.
logic, proofs by induction, and program verification This paper describes some of the issues in the de-
using Hoare logic. The tutorial is illustrated sign and use of formal specification languages and
throughout with self-contained examples of EJIDM verification systems, outlines some examples of the
specifications and proofs, all of which have been application of formal methods to critical systems.
mechanically checked. and identifies the benefits that may be obtained

from this technology.
Rushby9lb
Rushby, J. and F. von Henke. Formal Verification of Scheld83a
the Interactive Convergence Clock Synchronization Scheid, J. Implementation Specification.
Algorithm. CSL Technical Report, SRI-CSL-89-3R. TM-7315/000)0, System Development Corpora-
Computer Science Laboratory, SRI International, tion, Santa Monica, CA, 1983.
Menlo Park, CA, Aug. 199i. (From the Introduction) The Implementation Speci-

Abstract: We describe a formal specification and a fication provides the capability for the user to ex-
mechanically checked verification of the Interactive press the connection between an abstract Ina Jo
Convergence Clock Synchronization Algorithm of specification and the implementation of it in a
Lamport and Melliar-Smith .... In the course of this Higher-Order Language (HOL) code.
work, we discovered several technical flaws in the
analysis given by Lamport and Melliar-Smith, even Scheld83b
though their presentation is unusually precise and Scheid, J. The Design of the Ia Jo Verification Con-
detailed. As far as we know, these flaws (affecting
the main theorem and four of its five lemmas) were dition Generator (VCG) for Modula.
not detected by the "social process" of informal TM-7393/000/00, System Development Corpora-
peer scrutiny to which the paper has been subjected tion, Santa Monica, CA, 1983.
since its publication. We discuss the flaws in the (From the Intoduction) This document contains the
published proof and give a revised presentation of functional design of the da Jo verification con-
the analysis that not only corrects r; e flaws in the dition enesitor (VCG) for the Modula I program-
original, but is also more precised a-d, we believe, ming language. Although the VCG can be used
easier to follow. rhis informal presentation was only for programs written in York Modula for
derived directly from our formal specification and PDP-1 1/Unix [sic] systems, much of the design is
verification. Some of our corrections to theflaws in also l icable sto o the des /the original require slight modifications to the as- also applicable to other compilers / languages /
sumeptions underlying the algorithm and to the con- operating systems / computers. One reason for thisstraints on its parameters, and thus change the cx- partial design independence is the use of a modifiedternal specification of the algorithm. version of Ina Jo (Inamod) on both sides of the InaJo/VCG interface, i.e. in the implementation speci-
The formal analysis of the Interactive Convergence fications and imbedded Isic) in the Modula code
Clock Synchronization Algorithm was performed [sic].
using the EHDM formal specification and verifica-
tion environment. This application of EHDM pro- ScheidO6a
vides a demonstration of some of the capabilities of Scheid, J., S. Anderson, R. Martin, and S. Holtsbcrg.. the system.ScedJ.S.AdroRMatnanS.Hlsr.

The Ina Jo Specification Language Reference
Manual. TM-(L)-6021/001/02, SDC, A Burroughs
Company, Santa Monica, CA, Jan. 1986.
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Scheid86b uniform framework in which to specify and formally
Scheid, J. and S. Holtsberg. Enhancements to For- verify both safety and progress (liveness) properties
mal Development Methodology (FDM): Ina Jo ofthe protocol.
Definition. TM-7527/016/00, SDC, A Burroughs
Company, Santa Monica, CA, March 1986. Shostak82

Shostak, R.E., R.L. Schwartz, and P.M. Melliar-
Scheid89 Smith. "STP: A Mechanized Logic for Specification
Scheid, 1. and S. Holtsberg. The Ina Jo Specification and Verification." In Proceedings of the Sixth Con-
Language Reference Manual. TM-(L)-6021/001/05, ference on Automated Deduction. Lecture Notes in
Unisys Corporation, Culver City, CA, May 1989. Computer Science, no. 138. Berlin: Springer-Ver-

lag, 1982.
(From the Introduction) Ina Jo is the specification
language of the Formal Development Methodology (From the Introduction) This report describes a
(FDM). This reference manual describes Ina Jo as logic and proof theory that has been mechanized
it is implemented in Release 12.4 of the FDM tools. and successfully applied to prove nontrivial

properties of a fully distributed fault-tolerant sys-
Schmidt86 tem. We believe the system is closer to achieving

the critical balance in a man-machine interaction
Schmidt, D.A. Denotational Semantics, A Method- necessary for successful application by users other
ology for Language Development. Boston: Allyn than the system developers.
and Bacon, 1986. ST? is an implemented system supporting specifi-

This book presents the topic of denotational seman- cation and verification of theories expressed in an
tics from an engineering standpoint, focusing on extension of multisorted first-order logic. The logic
programming language description and implemen- includes type parameterization and type hierarchies.
ration. Chapter 12 covers denotational semantics of STP support includes syntactic checking and proof
nondeterminism and concurrency. components as part of an interactive environment

with a certain core theory that comprises a set of
Schwabe85 primitive types and function symbols, and extends
Schwabe, D. and A.R. Cavalli. "Temporal Logic this theory by introducing new types and symbols,
Specification of a Virtual Ring Lan Access together with axioms that capture the intended com-

plete decision procedure for a certain syntacticallyProtocol." In Protocol Specifications, Testing, and characterizable subtheory. By providing aid to this
Verification, IV, Y. Yemini, R. Strom, and component in the form of the selection of appro-
S. Yemini, eds. Amsterdam: North-Holland, 1985. prime instances of axioms and lemmas, the user

Abstract: This paper presents the use of temporal raises the level of competence of the prover to en-
logic for the specification of the access protocol of compass the extended theory in its entirety. As a
a local area network, REDPUC, developed at the result of a successful proof attempt using STP, one
Department of Informatics of the Catholic Univer- obtains the sequence of intermediate lemmas, to-
sity in Rio de Janeiro. The particular temporal gether with the axioms, auxiliary lemmas, and their
logic system used allows the application of the auto- necessary instantiations, which lead to the theorem.
mated proof techniques developed ... [by Cavalli et The system automatically keeps track of which for-
all. The protocol described here exhibits a higher mulas have been proved and which have not, so that
degree of complexity than other protocols the user is iot forced to prove lemmas in advance of
previously described in the literature, especially if their application. The system also monitors the in-
one considers only efforts using temporal logic. cremental introduction and modification of specifi-

cations to maintain soundness.

Schwartz8l
Schwartz, R.L. and P.M. Melliar-Smith. 'Temporal Silverberg79
Logic Specification of Distributed Systems." Second Silverberg oo, L. Robinson, and K.N. Levitt. The
International Conference on Distributed Computing HDM Handbook, Volume I1. The Languages and
Syslems. Washington, DC: IEEE Computer Society, Tools of HDM. SRI Project 4828, Computer Sci-
April 1981, 446-454. ence Laboratory, SRI International, Menlo Park, CA,

June 1979.
Abstract: This paper describes the use of temporal
logic to specify protocols for distributed network (From the Introduction) In this volume, we present
communications. The Alternating Bit protocol, cho- the languages and tools of the SRI Hierarchical De-
sen for illustration, provides a simple yet non-trivial velopment Methodology (HDM). The languages
example of the method. Temporal logic lends a provide a way of recording and communicating de-
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cisions made throughout stages of system design, ology, and formal verification of the specifications. specification, implementation, and verification. The written in the Ina Jo language is accomplished by
tools assist the system developer during this devel- using FDM's Interactive Theorem Prover (ITP).
opment process. The current set of tools is used
primarily to determine whether certain well- Smyth78
formedness and consistency criteria are satisfied. Smyth, M.B. "Powerdomains." J. Comp. and Syst.

The languages of HDM are intended to capture the Sci. 17 (1978), 23-36.
concepts and computational model described in
Volume I. SPECIAL (SPECification and Assertion (From the Introduction) If the meaning of a deter-
Language) is used to specify modules and mapping ministc program may be considered to be a iune-
functions. HSL (Hierarchy Specification Language) tion from D to D, where D is some domain of
is used to describe the structuring of modules into "states", then it would seem that the meaning of a
machines, and machines into systems. ILPL nondeterministic program is a function from D to
(Intermediate Level Programming Language) is 2 D, or perhaps from 2 D to 2D. To apply the meth-
used to record module implementation decisions. In ods of fix-point semantics, then, we should find
addition, the final implementation code is written in some way to construe the power set of a domain as
some executable programming language such as itself a domain, with a suitable ordering.
Pascal, Euclid, Ada, etc. Such implementation lan-
guages could also be considered "languages of SteinSO
HDM", though we will take a narrower view and Stein, J. and D.V. Schorre. The Interactive Theorem
restrict our attention to SPECIAL, HSL, and HLPL. Manual (ITP) User Manual. TM-(L)-6889/000/(X) I,

System Development Corporation, Santa Monica,
Smith85 CA, Dec. 1980.
Smith, M.K. and R.M. Cohen. "Gypsy Verification (From the Introduction) The interactive theorem
Environment: Status." ACM Software Eng. Notes 10, prover (ITP) uses the rule of mathematical logic to
4 (April 1985). generate, with the active and occasionally imagi-

(From the Introduction) The Gypsy methodology is native help of a human operator, proofs of complex
* an integrated system of methods, languages, and theorems derived from specifications written in the

tools for designing and building formally verified INA 10 language. These proofs would be ex-
software systems. The methods provide fo, the tremely laborious if done without mechanized tools
specification and coding of programs that can be as the theorems are usually quite long and many
rigorously verified by logical deduction always to proof steps are required. The ITP uses the principle
run according to specification. These specification, of reductio as absurdum (or indirect derivation) to
programming, and verification methods dictated the prove the theorems. To show that a particular set of
design of the program description language conditions are true, the assumption is made that
Gypsy.... Gypsy consists of two intersection corn- they are not true. From this assumption, contradic-
ponents: a formal specification language and a veri- tions (statements that negate each other) are de-
fiable, high level programming language. These rived; therefore, the original negated statements are
component languages can be used separately or col- contradictions and the original set of conditions are
lectively. The methodology makes use of the Gypsy true.
Verification Environment (GVE) to provide auto-
mated support. The GVE is a large interactive sys- Sunshine82
tern that maintains a Gypsy program description Sunshine, C.A., D.D. Thompson, R.W. Erickson,
library and provides a highly integrated set of tools S.L. Gerhart, and D. Schwabe. "Specification and
for implementing the specification, programming, Verification of Communication Protocols in AF-
and verification methods. FIRM Using State Transition Models." IEEE Trans.

Smith86 Software Eng. SE-8, 5 (1982), 460-489.

Smith, G. and D.V. Schorre. The Interactive Abstract: It is becoming increasingly important
Theorem Manual (ITP) User's Manual, that communication protocols be formally specified
TM-(L)-6889/0001006, SDC, A Burroughs Compa- and verified. This paper describes a particular ap-

proach--4he state transition model-using a collec-
ny, Santa Monica, CA, Dec. 1986. tion of mechanically supported specification and

(From the Introduction) SDC's Formal Develop- verification tools incorporated in a running .s'stem
* ment Methodology (FDM) is an integrated method- called AFFIRM. Although developed for the speci-

ology for the design, specification, implementation fication of abstract data types and the verification
and verification of software. The Ina Jo specifi- of their properties, the formalism embodied in AF-
cation language forms the basis for this method- FIRM can also express the concepts underlying
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state transition machines. Such models easily ex- Wegner70
press most of the events occurring in protocol sys- Wegner, P. "Three Computer Cultures: Computer
tems, including those of the users, their agent proc- Technology, Computer Mathematics, and Computer
esses, and the communication channels. The paper Science." In Advances in Computers. New York:
reviews the basic concepts of state transition Academic Press, 1970, 7-78.
models and the AFFIRM formalism and methodol-
ogy and describes their union. A detailed example, Abstract: Computers have proved so useful as sci-
the alternating bit protocol, illustrates various entific and technical tools that computer science is
properties of interest for specification and verifi- widely regarded as a technological discipline whose
cation. Other examples explored using this for- purpose is to create problem-solving tools for other
realism are briefly described and the accumulated disciplines. Within computer science there is a
experience is discussed. group of theoreticians who build mathematical

The paper is an excellent induction to A IRM models of computational processes. Yet computer

and a demonstration of its practical utility in a science is neither a branch of technology nor a

realistic problem domain, branch of mathematics. It involves a new way of
thinking about computational schemes that is partly
technological and partly mathematical, but contains

Tanenbaum87 a unique ingredient that differs qualitatively from
Tanenbaum, A.S. Operating Systems: Design and those of traditional disciplines. This paper il-
Implementation. Englewood Cliffs, NJ: Prentice- lustrates the special quality which distinguishes
Hall, 1987. computer science from technology and mathematics

by means of examples from the emerging theory of
This book describes operating systems in general programming languages.
via the construction of MINIX, a UNIX look-alike
that runs on IBM-PC compatibles. The book con- Wegner72
tains a complete MINIX manual and a complete Wegnerflisting of its C codie. Wegner, P. "The Vienna Definition Language."

ACM Computing Surveys 4, 1 (March 1972), 5-63.

Thompson8l Abstract: The Vienna Definition Language (VDL)
Thompson, D.H. and R.W. Erickson. AFFIRM Ref- is a programming language for defining program-
erence Manual. USC Information Sciences Institute, ming languages. It allows us to describe precisely
Marina del Rey, CA, Feb. 198!. the execution of the set of all programs of a pro-

gramming language. However, the Vienna Defini-
Abstract: Affirm is an experimental interactive tion Language is important not only as one defini-
system for the development of specifications and the tion technique among many others but as an illus-
verification of abstract data types and algorithms. tration of a new information-structure-orie,.ted ap-
This document discusses the major concepts behind proach to the study of programming languages.
Affirm, and explains the purpose and use of each of This paper may be regarded as a case study in the
the abstract machines comprising the structure of information structure modeling of programming
the system as seen by the user. languages, as well as an introduction to a specific

modeling technique....

Vernon8O
Vernon, M., W. Overman, and R. Razouk. GMB Wing89
PLI Preprocessor Reference Manual. Computer Wing, J.M. and M. Nixon. "Extending Ina Jo with
Science Department, University of California, Los Temporal Logic." IEEE Trans. Software Eng.
Angeles, CA, Jan. 1980. SE-15, 2 (Feb. 1989), 181-197.

Abstract: Toward the overall goal of putting for-
Wegner68 mat specifications to practical use in the design of
Wegner, P. Programming Languages, Information large systems, we explore the combination of two
Structures, and Machine Organization. New York: specification methods: using temporal logic to spec-
McGraw-Hill, 1968. ify concurrency properties and using an existing

specification language, Ina Jo, to specifv functional
This book introduces the concept of Information behavior of nondeterministic systems. In this paper,
Structure Model and uses it to describe program- we give both informal and formal descriptions of
ming languages and computers. both current Ina Jo and Ina Jo enhanced with tem-

poral logic. We include details of a simple example
to demonstrate the use of the proof system and de-
tails of an extended example to demonstrate the ex-
pressiveness of the enhanced language. We discuss
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at length our language design goals, decisions, and separately, in the simplest possible context I hcO their implications. The appendix contains a list of specification is then the con)unction of all these re-
axioms, rules of inference, derived rules, and quirements. As each is developed as a predicate
theorem schemata for the enhanced formal system. over traces of the observable events in the sYstem, it

is also implemented as a simple communicating

Wilrth66 processs, the implementation of the entire s-ystem is

Wirth, N. and H. Weber. "EULER: A Generalization then merely the parallel composition of these proc-

of ALCOL and its Formal Definition." Comm- ACM esses. The laws of CSP are then used to transform
rhe system to achieve the required degree of con us-

9, 1 & 2 (January & February 1966), 13-23 & 89-99. rency, to make it suitable for execution tn a

Abstract: A method for defining programming lan- multiple-tasking system, for example. Finallt, there
guages is developed which introduces a rigorous is a discussion ,f how state-based s.stems may be

relationship between strucr,'-e and meaning. The developed using this approach together with some

structure of a language is defined by a phrase struc- appropriate notation for specifying and refininQ

ture syntax, the meaning in terms of the effects data structures and operation upon them and of

which the execution of a sequence of interpretation how the system may be implemented, Ihis work I.

rules exerts upon a fixed set of variables, called the intended as a case study in the use of CSP.

Environment. There exists a one-to-one correspon-
dence between syntactic rules and interpretation Woodward79
rules, and the sequence of executed interpretation Woodward, J. "Applications for Multilevel Secure
rules L determined by the sequence of correspond- Operating Systems." National Computer
ing syntactic reductions which constitute a parse. Conference. Montvalc, NJ: AMPS, 1979, 319-32S.
The individual interpretation rules are explained in
terms of an elementary and obvious algorithmic (From the Introduction) The need for secure corn-
notation, A constructive method for evaluating a puter systems has been identified in many areas of
text is provided, and for certain decidable classes of DoD) operations, but in the past these systems have
languages their unambiguity is proved. As an ex- not been built in a secure manner because a secure
ample, a generalization of ALGOL is described in operating system on which to run has not existed.
full detail to demonstrate that concepts like block- Now that verifiably secure microcomputer operat-. structure, procedures, parameters, etc. can be de- ing systems are becoming a reality, ipplications for
fined adequately and precisely by this method, secure systems are becoming more ,carly thought-

out, designed and implemented. This paper surveys

Wolper82 some proposed DoD and non-DoD secure computer

Wolper, P. "Specification And Synthesis of Commu- applications.
nicating Processes Using an Extended Temporal
Logic." Conference Record Ninth Annual ACM Sym- Yu90
posium cn Principles of Programming Languages. Yu, C.-F. and V.D. Gligor. "A Specification and
New York: ACM, Jan. 1982, 20-33. Verification Method for Preventing Denial of

Service." IEEE Trans•. Software Eng. SE-16, 6

Abstract: We apply an Extended Propositional (1990), 581-592.

Temporal Logic (EPTL) to the specification and

synthesis of the synchronization part of communi- Abstract: In this paper. we present a specification
cating processes. To specify a process, we give an and verification method for preventing denial of
EPTL formula that describes its sequence of com- service in the absence of failures and of integrial
munications. The synthesis is done by constructing violations. We introduce the notion of "user
a model of the given specifications utsing a tableau- agreements" and argue that lack of specific atinn%
like satisfiability algorithm for the extended tem- for these arguments and for simultaneity conditions
poral logic. This model can then be interpreted as makes it impossible to demonstrate denial-of-
a program. service prevention, in spite of demon.strahl% fair ser-

vt,e access. We illustrate the use of thiý rnethd

Woodcoc:.a7 with an example and explain wh\• current meth-t.•

Woodcock, I.C.P. "Transaction Processing Primi- for specification and verircation of zcrfet and ivc.
n hess properties of concurrent programs do no.,

tives and CSP." IBM Journal of Research and De- handle this problem. 1he proposed specification
velopment 31, 5 (1987), 535-545. and verificution method i meant to auernent cur-

A bstract: Several prcmitives for transaction proc- rent methodsfor secure sstm design.er-tng systems are developed using the notations of
Communicating Sequsential Processes The ap-
proach taken is to capture each requirement
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Zave72 forced to confront its difficulties rather than avoid
Zave, P. "An Operational Approach to Requirements or change them.
Specification for Embedded Systems." IEEE Trans. The case studies fit into two major categories, 0
Software Eng. SE-8, 3 (1972), 250-269. "Academic Problems" are all relatively simple. rela-

Abstract: The approach to requirements specifi- tively unrealistic problems that have been posed for
the benefit of researchers. Because of their simplic-cation for embedded sstems described in this paper ity, they are solved in great detail. "Real Systems"

is called 'operational' because a requirements aie just that-system-developn,, ra i, ojLcts (,,
specification is an executable model of the proposed which PAISLey has been used. Due to their sizes
system interacting with its environment. The ap- the specifications of real systems are described in
proach is embodied by the language PAISLey, the ration presented ai be
which is motivated and defined herein. Embedded general rather than presented in detail
systems are characterized by asynchronous paral-
lelism, even at the requirements level; PAISLey Zave9l
specifications are constructed by interacting proc- Zave, P. "An Insider's Evaluation of PAISLey."
esses so that this can be represented directly. Em- IEEE Trans. Software Eng. 17, 3 (March 1991),
bedded systems are also characterized by urgent 212-225.
performance requirements, and PAISLey offers a
formal, but intuitive treatment of performance. Abstract: PAISLey is an executable specification

language, accompanied by specification methods,
Zave87a analysis techniques, and software tools; it was the

subject of a long-term research project. The paperZave, P. PAISLey User Documentation, Volume 1: also discusses research methods--both how the
REFERENCE MANUAL Computer Technology results were obtained, and how the project might
Research Laboratory, AT&T Bell Laboratories, have been improved.
1987.

Zave87b
Zave, P. PAISLey User Documentation, Volume 2:
TUTORIAL Computer Technology Research Labo-
ratory, AT&T Bell Laboratories, 1987.

(From Prologue) PAISLey is an executable specifi-
cation language. It is fully formal and can be ex-
ecuted by an interpreter, just like any programming
language. But it is also meant to be as
implementation-independent as possible, so that it
can describe the required properties and behavior of
a digital system without constraining how those
properties and behavior are implemented.

Zave87c
Zave, P. PAISLey User Documentation, Volume 3:
CASE STUDIES. Computer Technology Research
Laboratory, AT&T Bell Laboratories, 1987.

(From the Introduction) The purpose of this volume
of documentation is to provide examples of PAIS-
Ley specifications. There are plenty of examples in
the tutorial, but the specifications in this volume are
different in two important ways: (1) Most of the
examples in the tutorial are fragments of specifi-
cations selected to illustrate particular points about
PAISLey. The specifications here are all described
in their entirety, and they are presented so as to
simulate the mental processes that created them. (2)
I made up all the examples in the tutorial by myself,
with no outside constraints. The case studies are
exactly the opposite---each specification solves a
problem that came from somewhere else, and I was
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Tables and Figures

This section contains all the Tables and Figures cited in the text of the module.

Below, all distinct symbols are assurned to be unequal.
Also, ' is taken to represent a hidden event also in CSP,

CCS CSP

a.P a->P
(a.P)+(b.Q) (a..P Ib-+Q)
(a.P)+(a.Q) (a--->P) n (a--*Q)

(a. P) + (U.Q ) 'c-+(P] Q) =- (PI Q)

(,c.P)+(tr.Q) PfQ

(T P)+(a.Q) Pfn(Po{a-Q))
NIL STOP

Table I

so S1 S 2  53 S4 55 S6 S7 Si Si.1

0

Figure 1
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Cd

S S S

CS

29

Figure 2
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Figure 3
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Figure 4
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Approaches that can be used
to prove Properties about Programs

programs functional looping
properties

axiomatic
safety temporal temporal

operational operational
denotational

liveness temporal temporal
I denotational operational

Properties that can be proved about
Programs with available Approaches

programs functional looping
approaches
axiomatic safety (prove only vacuous properties)
denotational safety (treats as undefined)

liveness
operational safety safety

liveness liveness
temporal safety safety

liveness liveness

Programs for which Properties can
he proved with availahle Approaches

properties safety liveness
approach

axiomatic functional (not possible)
denotational functional functional
operational functional functional

looping looping

temporal functional functional
looping looping

Figure 5
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Q0

RT

Figure 6

TI

Figure 7

MI D2

M2 P2- P2
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THREE-PROCESS SYSTEM

state *
cycle - Figure 9(a)

DETAIL OF TWO CYCLES OF ONE PROCESS

tvent

mapping A Figure 9(b)

application •
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