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ABSTRACT

Expendable bathymetric temperature (XBT) data taken from

an anticyclonic meander crest within the Gulf Stream (Hummon

et al 1991) is analysed by looking at the empirical vertical

structure. The ensemble averaged data is formed into a

projection matrix that compares the value of the temperature

at one depth with the temperature at a second depth. The data

is smoothed with the correlation analysis being performed at

10 metre intervals from 5 metres to a depth of 800 metres.

The first four, or principle, EOFs of the projection matrix

are computed and the modal amplitudes for each XBT determined.

Using objective analysis the modal amplitudes are interpolated

onto a specified grid. Synthetic XBTs are then reconstructed

at the grid positions using the interpolated grid modal

amplitude values. A measure of the error variance at each grid

point is determined. The objective analysis is repeated using

successively fewer XBTs from the data set, until the resulting

error in the interpolated XBTs at the grid points become

unacceptable. Accesion For
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I INTRODUCTION

From a military standpoint, to carry out a successful

range prediction against a surface or subsurface unit, for

either passive or active SONAR, it is necessary to have access

to the most recent vertical temperature profile that is

available for the area of interest. If several XBTs are taken

at different positions and at different times within a

region, what is the optimal vertical profile at some arbitrary

point of significance within the region based upon this

collected data? Or, perhaps if multiple units are on task,

each taking their own XBTs, what is the optimal interpolation

of the water condition at some point between the units? The

development of range dependent prediction models makes a

knowledge of the water conditions between a unit and its

target even more crucial. Thus the ability to be able to

empirically assess the vertical water conditions at any point

within a target region, and to obtain valid and useful

information, is of considerable importance.

From a purely scientific basis, it would be of benefit to

know the approximate number of vertical profiles that need to

be obtained before a comprehensive analysis of a given area

could be achieved. Similarly, some measure of the optimal

spacing between XBTs would be of value for planning and the

economic use of valuable assets and time.
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Recent developments in satellite technology now allow the

determination of the subsurface vertical structure by

measuring the dynamic height of the ocean using altimetry

(Carnes et al 1990). But, how many readings need to be taken

for a given region of the ocean before a realistic

interpretation can be constructed? Additionally, if gaps

exist within the data collection, how much error will exist in

interpolating data void areas? If sufficient remote readings

could randomly be taken in and around a given feature, how

many readings would be required before the feature's vertical

temperature structure can be adequately reproduced?

The ultimate goal of this study is to find out how few

XBTs are required bofore an adequate vertical temperature

profile can be compiled within a Gulf Stream meander.

The feature analyzed in this study is the warm side of a

Gulf Stream meander that was identified and rigorously sampled

during 1988 (Hummon et ai 91). It is anticipated that a

study of this type conducted in this particular area will be

of general use, and give an indication of the number of XBTs

that need to be deployed before an adequate interpolation can

be made as to the underlying water structure.

Carter and Robinson (1987) considered empirically the

effects of reducing the size of an original data set upon

the value of the contour maps that were produced. They

considered the depth of the 15 degree Celsius isotherm. The

data were taken during the POLYMODE experiment and consisted

2



of 443 XBTs. The depth of the 15 degree isotherm was extracted

from each of these XBTs and optimally interpolated onto a

regular grid. The results of the interpolation are shown at

the top left of Figure 1 with the associated amount of error,

for any location, depicted in the top right of Figure 1. The

data set was then halved and the analysis repeated (the middle

two pictures), with the effect that the new results showed

very little change in the error field. However, as the last

two diagrams show, by the time only a quarter of the data is

included the error in the analysis field has grown

considerably, to the point where the analysis is unacceptable

for practical purposes. The study indicates that in order

to survey the given area of the ocean it would have been

sufficient to have launched half of the XRTs that were

actually launched without any serious decrease in the quality

of the 15 degree isotherm map that was produced. Additionally,

the interpolation procedure they employed gives an explicit

statement of the amount of error involved in the

reconstruction at any location within the region thereby,

giving an unequivocal statement about its usefulness, or

otherwise, to a future user.

The object of this study is to consider the reduction of

data problem in an objective analysis procedure more

rigorously. By reducing a data set repeatedly by one

observation until the resulting error in the reconstructed

vertical temperature profile becomes unacceptable, the minimum
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Figure 1 The result ot an objective analysis of the
depth of the 15 C isotherm using different amounts of
data, for a six degree square centred at 70 W 29 N. 25 m
contour interval for dnalysis, o.25 contour inter'val for
error. A B C represent 443 222 and 111 observations
respectively (after Carter & Robinson 1987).
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number of XBTs required in the analysis can be determined.

The area of ocean under consideration in this study is very

difficult to interpolate adequately without a large amount of

data because of the high degree of variability that exists

within short spatial and temporal ranges.

Rather than just looking at one parameter, such as sea

surface temperature or the depth of the 15 degree isotherm,

this study will seek to reproduce the vertical temperature

structure at a given position within the regicn from the

surface to a depth of 8V0 metres. The analysis will also give

an account of the average error involved in creating a

synthetic XBT profile.

There are two theoretical strands that are considered; (1)

the theory of objective analysis and (2) the theory of

Empirical Orthogonal Functions.

The first, objective analysis, describes a method to take

a finite number of data points, at irregular spatial or

temporal intervals over an area of the ocean's surface, and

interpolate the data in such a manner that an optimal estimate

of a scalar value can be obtained for any given location

within the region.

The amount of data to be interpolated per grid point is

further reduced by exploiting the properties of Empirical

Orthogonal Functions. The use of EOFs allows a given XBT to be

broken down into modes that are constant for the whole data

set, and into corresponding modal amplitudes that are unique

5



uto each particular XBT. Then, for each XBT, the sum of the

products of the modes and the corresponding modal amplitudes

give a complete representation of the XET in question.

However, the first few EOFs often explain the majority of the

structure of the complete XBT. Thus it is possible to

approximately reconstruct each XBT with a reduction in the

data. If, for instance, only the first 4 modes are considered,

then each XBT is represented by just 4 unique numbers, the

modal amplitudes.

Having determined the unique modal amplitudes for each

XBT, objective analysis is used to optimally interpolate the

four principle sets of numbers onto a regular grid.

Multiplying each in turn by its corresponding mode, results in

a synthetic XBT being reconstructed at each of the grid

points.

Having synthetically produced XBTs at each grid point, an

objective error analysis is used to estimate the total error

variance of each of the synthetic XBTs. Thereafter, using a

random generator, successive XBTs are removed from the

original data set. The objective analysis and reconstruction

are repeated until the error variance in the synthetic XBTs

become unacceptable.

6



II THEORY

A. INTRODUCTION

This chapter is divided into 4 main sections. The first

section outlines the development and theory of EOFs and gives

an account of the use of EOFs in oceanography. Similarly,

section two covers the background of objective analysis and is

followed by a development of the theory. The third section

explains how the error analysis of the modal amplitudes is

used to account for the error in the reconstructed synthetic

XBT. The final section outlines how all the strands can be

brought together.

B. DEVELOPMENT AND THECL1Y OF EMPIRICAL ORTHOGONAL FUNCTIONS

1. Development of Empirical Orthogonal Functions

The theory of Principle Component Analysis was first

proposed by Pearson (1901) and developed into a comprehensive

theory by Hotelling (1933). Hotelling's work led Kelly

(1935) to advance a model suitable for modern computer usage.

The theory was first put into practice by Wrigley and Nechus

(1950) in the field of psychology.

Lorenz (1956) outlined the theoretical basis for the

use of Principle Component analysis in meteorology,
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demonstrating its use as an aid to efficient weather

prediction and coining the phrase Empirical Orthogonal

Functions (EOFs) which has become the accepted norm within the

geophysical sciences. The value of EOFs as a tool in

geophysical research is reflected in the variety of uses to

which they have been put. For instance, in meteorological

research, which requires working with large data sets, the use

of EOFs have been used to reduce the volume of data that need

to be interpolated or stored.

Stidd (1966) used EOFs to study climatological rain

fall patterns within the State of Nevada. By interpolating EOF

analysis between climate stations he was able to successfully

reconstruct the climate record of a station that had been

removed from the initial analysis. This is similar to the

current study in that the temperature data at each XBT site,

like the rain fall data, is represented by modal amplitudes,

and the data must be interpolated to additional locations

using objective analysis.

EOFs have been featured hichly in climatological

studies causing Mitchell (1966) to comment that EOFs may be of

significant use as climatological indicators. This view is

strengthened by the work of researchers like Kutzbach (1967),

who used EOF analysis successfully to combine climatological

records of temperature, precipitation and surface pressure

over the United States; and Kidson (1974), who used EOFs to

8



produce climatological indicators for both hemispheres and the

tropics.

Paegle and Haslam (1982) used EOFs in the prediction

of the 500 and 850 mb pressure heights over a 24 hour period.

Wallace and Dickinson (1972) showed how EOFs may be applied to

time series analysis, reducing the data processing required

and increasing the efficiency for spectral modelling of the

atmosphere.

In oceanography the technique is finding an

increasingly wide variety of uses. For instance Kundu (1975)

used EOFs in a time series analysis of velocity fields along

the Oregon coast. Carnes et al (1990) have shown that EOFs can

be used in conjunction with satellite derived ocean dynamic

heights to obtain a measure of the ocean's subsurface vertical

temperature structure. Oceanographic models at Fleet

Numerical Oceanographic Center (FNOC), such as the Optimal

Thermal Interpolation System (OTIS), employ EOFs to

effectively represent ocean thermal climotologies

(Tunnicliffe and Cummings 1991). Similarly, the Navy/NOAA

Oceanographic Data Distribution System (NODDS) includes the

use of EOF techniques to compress large volumes of data,

enabling distant users either ashore or at sea to receive by

telephone link sophisticated real time ocean and

meteorological information using a desk top PC.

9



2. Theory of Empirical Orthogonal Functions's

The above examples show the versatility and value of

EOFs as an effective tool within the fields of meteorology and

oceanography. Set out below is a development of the basic

theory. The approach outlined considers the work of Lorenz

(1956), who first described the use of EOFs in geophysical

research, Harman (1976), who formally derives the general

theory, and Dunteman (1989), whose clarity and examples gave

considerable insight into the technique.

The object of Principle Component Analysis is to take

a large body of data and empirically reduce it. The model

assumes a linear set of numbers such that a linear combination

of these components leads to a complete representation of the

original data set.

Mathematically the method assumes that,

Pl=ql~yl+q2y2 . . . . . . . . . c4yj

equation 1

where ( j = 1,2. ...... n) and each of the observed variable Pi

is described linearly in terms of n orthogonal components

Yly?,'''Yn" The power of this approach being that only a few

of the components need to be retained in order to retain the

majority of the total variance.

10



The coefficients qj, are referred to as the

"loadings, "scores" or "weightings" and in geophysics as

"modal amplitudes". Each modal amplitude is multiplied by its

corresponding principle component, with the sum being equal to

the value of the original variable. The problem is to find

suitable values of q and y to be able to represent the

variable pi in question. This is efficiently achieved by

expressing equation i in matrix form as,

P=QY

equation 2

where P is an m by n matrix of scalar variables whose columns

represent the vector Pi, Q is an m by n matrix of modal

amplitudes and Y represents n column vectors each with m rows.

Consider the situation where m elements (P~i=l.. .m)

have been measured at n different locations. For this study,

80 isotherm depth measurements (m) made at each of 156

locations (n).

Let

A=p'P

equation 3
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where

equation 4

the difference of a value Pi from the mean value P. P' is

the transpose of PI and A represents the covariance matrix

formed by the dot product of P" and PO. The covariance matrix

A is normalized to form the correlation matrix A,

A=P > <P*>

equation 5

and the symbols <> denote an ensemble averaging of the

variance from each data point. The matrix A is also known as

the projection matrix.

From the theory of matrix algebra (Harman 1976) a

general matrix 0 can be expressed in terms of its eigenvectorse

and eigenvalues X such that,

Ge=)e

equation 6

12



where Go is regarded as a transformation of & with I as the

constant of proportionality. Each root 11 has a non zero

solution ej and the m roots )., ........ )M lead to n values

e1, e...... en such that equation 6 may be written as,

G ( el, e2 . . . . e ll) = ) Ie l1,X . . . . I e n

equation 7

or in matrix form GE=EA

equation 8

where A=diag(A1,A; .... I)d

Inserting matrix A from equation 5 into the general

equation 8 gives,

AY=AY

equation 9

The vectors y1 are linearly independent such that the

determinants are non zero and Y has a unique inverse Y-,

Y'AY=A.

equation 10

13



Since A is a correlation matrix and is symmetric

A=A'

equation 11

(e)' are characteristic values with Y being orthogonal with

the property that,

equation 12

the identity matrix or,

equation 13

giving that equation 14 can be written as,

Y'AY=A

equation 14

Equation 14 states that the symmetric matrix A may

be diagonalized by means of the orthogonal transformationsY

and that the elements of A and Y are real with Y being made

up of n characteristic linearly independent equations.

14



From equation 14 diagonally decomposing A gives

values for matrix Y, and A. Now knowing the values of P and

Y, Q, the matrix of coefficients or modal amplitudes, can be

determined from equation 2. Having obtained values for Q andY

equation 2 states that the value of P can be exactly

determined and that it equals the matrix product of Q and Y.

From equations 2,13,and 14 it follows (Paegle and

Haslam 1982) that the total variance is given by the sum of

the eigenvalues,

equation 15

and that each eigenvalue X1 gives the contribution of each

eigenvector Y, to the total variance of P.

When the eigenvalues are arranged in descending order

the variance represented by each mode or eigenvector decreases

dramatically as the number of the eigenvalues are increased.

A realistic estimate of the original data -6 can thus be

achieved by using only the first few modes P and the

corresponding modal amplitudes •.

15



equation 16

The use of a limited number of modes reduces the

quantity of data that has to be stored and processed. In

addition the variability in the higher modes is likely to

represent noise in the original signal. Thus, by removing the

higher modes a "cleaner profile" is obtained. Preisendorfer

et al (1981) suggest that modes which can not be distinguished

from randomly generated data should be removed. Dunteman

(1989) suggests that all modes for which the eigenvalue is

less than one should be removed. Dunteman's approach is used

within this study.

C. DEVELOPMENT AND THEORY OF OBJECTIVE ANALYSIS

1. Development of Objective Analysis

Objective analysis is a technique that will produce

an optimal estimate of some quantity at a given location by

the interpolation of irregularly spaced data points. The

method is based upon the Gauss - Aarkov theory.

Objective analysis was first used in meteorology by

Gandin (1965) who used the technique to analyze atmosphe2 z

pressure and windfields. The technique was introduced for

oceanographic use by Bretherton et al (1976), who demonstrated

16



its value in determining optimal temperature, velocity and

streamline maps. The technique was applied by Freeland and

Gould (1976) to data taken during POLYMODE and successfully

produced stream function maps of the North West Atlantic.

Carter (1983) extended the use of objective analysis

by considering distance variations separately in the X and Y

directions and a temporal component, thereby allowing

observations made at different places and at different times

to be mapped. In addition, the theory allows an explicit

statement to be made about the error in the determination of

an interpolated value at a given location. Because of the

introduction of a temporal component, Carter's method also

enables maps of the quantity to be predicted for a future

time.

Objective analysis is now widely used in oceanography.

For instance, Watts et al(1989) used objective analysis to

model the depth of the 12 degree Celsius isotherm from

inverted echo sounder observations taken in the vicinity of

the Gulf Stream. Objective analysis is a standard

interpolation tool that is extensively used for computer

aided numerical prediction in both meteorology and

oceanography (see Clancy 1989).

2. Theory of Objective Analysis

The derivation outlined below, after Carter (1983),

forms a statement of the Gauss Markov theory for determining

a least squares optimal value.

17



The statistical model for objective analysis assumes

a stationary h-mogeneous field. Let 8. be a measurement of

some quantity and let the error in the measurement be er.

Then,

equation 17

where er is the true value. It is assumed that observation

error is uncorrelated with the true field such that,

R(exes) =0

equation 18

where R(erax) represents the correlation between the error e

at position r and the measured field at some other locations.

It is also assumed that the correlation between

observation errors at two locations is zero,

R(eres) =e 2,8.

equation 19

where R(ere) represents the correlation between er and e,,e

is the error variance, and 68. is the Krondiker delta having

18



a value of one when r equals s and the valuce of zero

otherwise.

Objective analysis seeks to find the optimal value of

a given quantity X at an arbitrary location. The optimal

estimate of the valce at the grid location is designated A.

In matrix form the estimate at the grid points is given as a

linear combination of the values of the data measured at a

variety of locations r such that,

equation 20

where e, is the value of the quantity measured at position r

throughout the region. For example er could represent sea

surface temperature measurements taken at various irregularly

spaced positions within a given region. Whereas X represents

true values, the value 2 is the estimate that is determined

at the grid points by interpolating the values of 0 onto the

grid by the use of linear combinations of 01 using the matrix

A.

In order to determine the estimates at the chosen

grad points it is first necessary to ascertain values for the

elements in matrix A. This is done in such a manner as to give

the optimal estimate of 2. Throughout the derivation X andf

19



are referred to as if they were known, whereas in fact they

are the quantities ultimately that are to be determined.

Initially it is the value of A that is soughlt su'ch

that it minimizes the error by a least squares fit between the

true value of X at the grid points and the estimate 2.

Firstly let

C• =E[xO']

equation 21

where C0 is the correlation matrix found by comparing the

value of the quantity at the required grid point locations

ccmpared with those at the given data sites.

CQ=E [ XX']

equation 22

where Cx is the correlation between the value at any required

grid point location compared to the value at any other

required grid point location.

Co=E[EWi

equation 23

where C is the correlation between the values at any two data

pcint sites.

20



Then to obtain the optimal interpolation the value of

the error C. is minimized such that

C*=E[ee'] =E[ (9-X) (9-X) ]

equation 24

where C. represents the correlation between the mean square

variance of the estimated values compared to the actual

values. Substituting equation 20 into equation 23 and

expanding gives,

C O=E[ (AO-8) (AO-O)']

equation 25

and,

C.=ACOA'-C.A'-AC* Cr .

equation 26

This expression can be simplified by using a matrix identity

and noting that C=c4=,

C.= (aC~Cj1 ) C(A-CA-.Ci*) -(CCA-+cz.

equation 27

21



Since the matrices C9 and qj are nonnegative definite, then

the error matrix is minimized when,

equation 28

giving,

equation 29

The value of the error matrix C* can be written explicitly as,

equation 30

From equation 29 and substituting for A in equation 20, the

estimate of the value of the quantity at the grid points is

given by,

22



equation 31

and the error in these estimates is given by equation 30.

Thus, providing the correlation matrices CPA and4

can be determined a value for 2, the estimate of the value at

any given grid location can be obtained from a knowledge ot 0,

the value at any given location. Equations 29 and 30 are a

statement of the Gauss Markov theory.

3. The correlation function

The correlation matrix C0, a measure of the

correlation between the values at each of the data sites

compared to the values at each of the grid points, is unknown.

Similarly, the correlation matrix C., the correlation between

successive grid point values, is also unknown. The only

correlation that is available is ;, the correlation between

data values at the irregularly sampled locations.

However, the determination of C. is not straight

forward. In order to determine the correlation between two

points it is necessary to have made several readings at each

location, whereas in this study only one reading at a given

location is available. This problem is overcome by assuming

that the correlation between any two points is a function of

distance.
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The correlation matrix C9 is formed by computing the

distance between each data point and every other data point.

The data pairs are grouped into distance bins, and the

correlation between distance bins is then determined using the

expression,

, O-a-) -U~-j) 2/

equation 32

where 0r and e. are data values at two points r and s, and

is the mean of the values for distance bin k. Once the

correlation function has been determined for the data points

within the region the results are applied to the two unknown

matrices C. and C=. Simply knowing the distance between a

grid point and a data point or between two particular grid

points is sufficient information to enable the corresponding

correlation between the two points to be computed.

Unfortunately there i• one more slight complication, in that

the two matrices have to be, by definition, positive definite

for equation 31 to be valid. This means that an estimate of

the correlation between two successive points can not be

achieved from a database simply by interpolating between two

adjacent distance bins, because the approximation may not be

positive definite. In order to ensure that the two matrices
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are positive definite it is necessary to fit a function to the

distance correlation database.

The function that is normally fitted to the curve

(Carter and Robinson 1987) takes the form,

, )e)

equation 33

where a and b are the unknowns to be determined, r the

distance between any two data points r and s, and Cr, the

correlation between them. The values of a and b are

determined iteratively by minimizing the error between the

original correlations C. as given in the database outlined

above and Cro. where the error is given by,

(C,,-C")

equation 34

The correlation matrices of 0, and C. can now be

determined from the function described in equation 33 and the

objective analysis can be undertaken.
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D. INTERPOLATED ERROR

Having obtained an estimate for the value of the first

four modal amplitudes at each of the grid positions, it then

remains to use the theory of EOFs to reconstruct a synthetic

XBT at each of these positions. This is simply achieved by

multiplying each modal amplitude by its corresponding

eigenvector and adding the four resulting vectors together, as

per equation 16. However some of the estimated modal

amplitudes used contain error. The error variance of each

modal amplitude is specified by equation 30, and must be taken

into account in reconstructing a synthetic XBT at a grid

position.

Consider a modal amplitude at a particular grid location

Q1 having an error variance e2, and assuming the synthetic

XBT at that position is going to be reconstructed using i

EOFs, then the error variance in the synthetic XBT ea can be

shown (Carter 1983) to be given by,

equation 35

The error variance from this reconstruction is then mapped

to give a pictorial image of areas within the region that

have high and low error variances.
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The error variance is a measure of the confidence of a

given reconstruction. Figure 2 shows an example of an error

variance map. Low confidence is indicated when the values

approach one. This map is the combination of the individual

modal amplitude error maps shown in Figure 3 using equation

35. The figure also shows where each XBT cast was taken. As

would be expected, the lowest error variance (highest

confidence) occur in areas that have a high number of

samples, with the error variance (lowest confidence) being

largest where there are no or few samples.

E. APPLICATION OF THEORY TO CURRENT STUDY

All the elements of the theory can now be put together to

analyze the area under investigation. Firstly the original

XBTs will be converted into a correlation matrix, where one

depth is compared to another and the whole data set ensemble

averaged to give the projection matrix. This matrix will then

be decomposed to find the significant eigenvectors, noting the

value of the corresponding eigenvalues. The most significant

eigenvectors or modes will be selected, and for each XBT

within the set the corresponding modal amplitudes will be

determined.

Once the modal amplitudes have been found, a correlation

matrix as a function of distance can be constructed. From this

an appropriate function will be fitted and the correlation
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matrices 0. and C. determined. The modal amplitudes can

then be optimally interpolated onto a grid. The process is

repeated for the second, third, and fourth modal amplitudes.

Synthetic XBTs can then be reconstructed at each grid

point using the interpolated modal amplitudes and a measure of

the error variance in each XBT can be determined from the

error matrices generated by the objective analysis.

39.5-

39- -

0 3p.5- Th central c

37.3

37
-72 -71 -70 -69 -68 -67 -66 -65 -64

Longitude west frorn Greenwich

Figure 2 Reconstructed error variance map using all 156
XBT's. The map is produced using equation 37 (effectively
combining the four maps from Figure 2. The contours are at
0.1 spacing. The central contour represents 0.1 (or 10%)
error variance.
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Figure 3 Error variance maps for the first four modal
amplitudes. Top left shows error variance for first, top
right for second, bottom left and right show third and
fourth respectively. At 0.1 intervals. Inner most contour
representing 0.1 or 10% error variance.
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III DATA

A. THE MEANDER EXPERIMENT

The data for this study consists of 156 XBTs taken within

the region of a Gulf stream meander sampled during the period

September 17th to October 13th 1988. The original data was

collected as part of a much wider experiment that involved two

cruises, one in the autumn of 1988 and the second in the

spring of 1989. The first cruise samplea an anticyclonic

meander crest (EN 185) where the path of the current is convex

to the North. The second cruise collected data from a cyclonic

meander trough (EN 194) where the flow of the current is

convex to the South. The objective of the two cruises was to

investigate the time dependent kinematics and dynamical

structures of Gulf Stream meanders. The Gulf Stream meander

was sampled with a variety of instruments, and density and

velocity fields were computed to enable fluxes of mass,

momentum and vorticity to be determined as the meander

progressed in space and time.

B. THE XBTs

The following technical details of the XBTs are taken from

the initial cruise report (Hummon 1991).
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The XBTs used in the survey were Sippican T7 probes which

have a nominal depth rating of 760 metres. The XBTs were

launched from a fixed stern deck launcher with a BathySystemn

810 XBT deck unit. The data was stored on a HP-85B computer

equipped with an HP9121D disk drive. The software was supplied

by BathySystems but was substantially modified to allow

simpler and faster processing. The raw data was recorded in

volts versus descent time, The data were transferred to a

MassComp computer and each profile was converted into

temperature versus depth measurements and stored onto disk or

magnetic tape.

The resolution of the data is 0.65 metres with a 0.1 metre

precision. The stated accuracy of the depth measurement is

five metres or 2% of the depth, whichever is greater.

Temperature data is stored to within 0.001 degree Celsius

with measurement accuracy to within 0.15 degrees Celsius.

The data was edited to remove the first three measurements

corresponding to depths less than two metres. Readings taken

at depths greater than 810 metres, outside of the stated

operating range of the probes, were also removed. Spikes, bad

data and wire breaks in individual profiles were deleted by

hand on the MassComp computer. The full set of XBT casts is

shown in Figures 4-17. The geographic distribution of the

casts is shown in Figure 2, with location values being given

in the log shown in Appendix A.
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Anatomy of a Meander experiment.
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Figure 12 XBTs 97 - 108
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Figure 14 XBTs 121 - 132
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Figure 15 XBTs 133 - 144
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IV METHODS

Part A of this chapter describes how the original

projection matrix was computed and how the eigenvectors and

eigenvalues were determined. Part B describes how the

Objective Analysis was implemented and how the synthetic XBTs

were reconstructed. Finally part C describes how the data set

was reduced to find the minimum number of XBT sites that were

required in the case of this particular Gulf Stream meander.

A. DEPTH CORRELATION MATRIX

1. The matrix

To overcome initial data analysis problems all XBTs

less than 800 metres were removed from the data set. This left

a total of 156 useable XBTs for further analysis.

The vertical correlation matrix was formed using

FORTRAN program LOADBATHYS (Appendix 1B) and subroutine REDATA

(Appendix 2B). The subroutine interpolates temperature values

from each XBT at 10 metres intervals commencing with a depth

of five metres. The vertical correlation matrix was computed

in the main program by comparing the temperature at one depth

with that at another depth. This process ensemble averaged

over all 156 XBTs using equation 36.
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equation 36

where A is the 80 by 80 projection matrix formed by comparing

the temperature at all 80 depths with each other and 0 is the

temperature at depths i and j, with the overbar representing

the mean temperature for that depth i or j. The projection

matrix is visualized in Figure 18.

8C402 ,
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4e402 . j .....
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7 2e+02 4e*02 6e+02 8e.02

Figure 18 Contour map showing correlation of
temperature between depths.
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2. Eigenvectors and values

The correlation matrix, A, was decomposed to find its

eigenvalues and eigenvectors using equation 9.

Figure 19 shows the first six eigenvalues and the

associated variance for the first four modes. Each eigenvalue

is proportional to the variance contributed by its

corresponding eigenvector (Harman 1976). The first eigenvector

accounts for over 75% of the variance of the correlation

matrix, the second eigenvector is responsible for 15%, the

third for 5.1%,and the fourth for 1.7%. The cumulative percent

variance explained by the first four eigenvectors is over 98%

of the total variance of the projection (correlation) matrix.

Thus, instead of using 80 eigenvectors to describe the

variance in the correlation matrix A, it is possible, using

the criteria discussed by Dunteman (1989), to describe the

matrix sufficiently with only four, with a minimal loss in

information, thereby saving considerably on data storage and

processing requirements and suppressing the noise conta'ned

within the higher modes. The modal amplitudes for each XBT

were calculated using equation 16 in a MATLAB subroutine.
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Figure 19 The first 6 eigenvalues. Percentage of variance
is shown for first 4 modes.

B. OBJECTIVE ANALYSIS

Each XBT, after the application of the EOF decomposition,

is represented by four modal amplitudes. The problem is to

interpolate ;he modal amplitudes to arbitrary positions

within the analysis region using objective analysis. It was

decided to compute the interpolated modal amplitudes at

regular intervals using a half degree spacing in both

longitude and latitude, over a grid extending from 37 to 40

degrees North and 64 to 72 degrees West. The length scale

between grid points of approximately 50 km was chosen because
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it is comparable to the Rossby radius of deformation at this

latitude.

The estimate, I, of each amplitude at each grid location

using equation 31 was computed. The correlations are assumed

to depend solely upon the distance between observations and

similarly between observations and grid points.

1. Determination of spacial correlation matrices

The distance between XBT sites was calculated and

grouped into bins. Several bin intervals were considered with

the object being to find an interval that gave a reasonable

number of data pairs per bin, allowing an unbiased measure of

correlation by distance to be determined. This was achieved

using the program DEEPCOR and the subroutine CALC described in

Appendix 3B.

The number of data pairs for the three intervals used

are shown at Table I. The 25 km interval gave sufficient

data pairs for each bin out to a distance of 200 km, and

allowed eight spatial correlation estimates to be made. The

results are shown in Figures 20-23.

The correlation function described in equation 33 was

used to model the correlation estimates shown in Figures 20-

23. The parameter a is equal to the distance at which the

correlation falls to zero, and is given as the point where the

curve in Figures 20-23 crosses the X axis. The value of b •s

the value of the distance when the correlation equals the e

folding distance (e- 1 ). The value of the coefficients a and b
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were found iteratively using the program FUNCTION given in

Appendix 4B. In this program, the square error

(Cr-C') 2

equation 37

between the original data points, C., in Figures 20-23, and

the iterated values Cr, calculated using equation 33, is

minimized. The iteration sequence is intialized with values

of a and b from visually inspecting Figures 20-23.

In order to determine whether each incremented value

of a and b should be larger or smaller than the initial

value, equation 33 was differentiated with respect to a and

with respect to b. The analytical solution was used to

increment a and b in such a way that the mean square error was

reduced with each iteration. The iteration was repeated until

the error had reduced to 0.05. The final values of the

parameters a and b are shown in Table II.

It is assumed that the distance correlation function

determined above for C will also be applicable in the

observation to grid point correlation matrix

The objective analysis FORTRAN source programs are

provided in Appendix 5B, 6B and 7B for reference. The first

guess for each analysis is taken as the local weighted average

of the modal amplitudes. Output from the objective analysis
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consists of contour maps of the first four modal amplitudes,

and analysis error of the interpolated amplitudes.

Contour plots of the first four modal amplitudes ire

shown in Figures 24-27 and their associated error maps in

Figures 28-31.

2. The reconstruction

Using the modal amplitudes calculated by the

objective analysis, synthetic XBTs were reconstructed at

each of the grid points using Equation 16. However, the

error in the XBT reconstruction is dependent on the position

of the reconstruction. Synthetic XBTs produced in areas with

high concentrations of observation stations are expected to

suffer less error in reconstruction than synthetic XBTs

produced in areas with sparsely populated data. The error

variance in each XBT was calculated using equation 34 and the

resulting error variance map is shown in Figure 32.

C. REDUCING THE NUMBER OF XBTs

Of ultimate interest is the size of the error variance in

XBTs reconstructed within the analysis area. From the

associated error variance map it is possible to assess, for

any given position, the value of reconstructing and using a

synthetic XBT at that point.

It was decided that for a reconstructed synthetic XBT,

less than 30% error could be of use. The area inside the 30%

contour of Figule 32 was noted. Successive XBTs were removed
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and the objective analysis repeated until the 30% contour

became the central or first contour. This meant that the area

that was now enclosed represented error variances greater

than 20% but less than 30%. The number of XBTs remaining was

noted.

The original XBTs were numbered sequentially and the

FORTRAN program RANDUM was used to place these numbers in

random order. On commencing the objective analysis suite of

programs, subroutine REDUCE permitted the number of XBTs to

be used in the objective analysis to be varied.

Table I NUMBER OF DATA POINT PAIRS PER BIN FOR THREE
DIFFERENT BIN SIZES.

12 km bin size

12 24 36 48 60 72 84 96 108 120

81 104 114 142 184 190 214 226 210 168

25 km bin size

25 50 75 100 125 150 175 200 225 1250

195 266 412 452 370 310 276 224 1 90 1 68

50 km bin size

50 100 150 200 250 300 350 400 450 500

461 864 680 500 158 58 52 62 j92 1106
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Figure 20 correlation between data point pairs using a 25
km distance bin for the first modal amplitude.
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km bin for the second modal amplitude.
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Table II PARAMETER VALUE a AND b FOR EACH OF THE MODAL
AMPITUDES.

MODAL AMPLITUDES

_____ 1 2 f 3 4

a 134 65 37 44

b 64 25 28 26
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Figure 24 Contour map of the first modal amplitude.
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Figure 25 Contour map of the second modal amplitude.
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Figure 26 Contour map of the third modal amplitude.
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Figure 27 Contour map of the fourth modal amplitude.
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Figure 28 Error variance map as a result of interpolating
the first modal amplitudes. 0.1 contour intervals.
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Figure 29 Error variance map as a result of interpolating
second modal amplitudes. 0.1 contour intervals.
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Figure 31 Error variance map as a result of interpolating
the fourth modal amplitudes. 0.i interval contour spacing.
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Figure 32 Error variance map, produced by using equation
37, effectively the combination of Figures 28-31. The *
indicates the original XBT sites. The contours represent
the amount of confidence that can be placed in a
reconstruction at any location within the area.
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V INITIAL ANALYSIS

A. RECONSTRUCTION ALONG A LINE OF LATITUDE

To get a feel for how good or bad the reconstructions

appeared, a line of synthetic XBTs along 37.5 N from 72 West

to 69.0 West were reconstructed at 1/2 degree intervals and

are shown in Figures 33-36. A group of real XBTs, taken along

the proximity of this line are shown in Figures 37- 44. The

positions of the real XBTs are readily apparent by consulting

Figure 45 which indicates the position of the XBTs used in

this analysis.

Although the two groups of diagrams show a general

similarity in shape there are enough differences to cause

concern. Firstly, the synthetic XBTs all tend to exhibit an

temperature minimum at about 200 metres that is more

exaggerated than in the real XBTs surrounding this line of

latitude. Secondly, the synthetic XBTs also show a strong

negative temperature gradient within the first 30 to 80 metres

that again is not apparent in most of the real XBTs, which

for the most part are isothermal or exhibit only a slightly

negative temperature gradient over the same depth range.
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B. RECONSTRUCTION OF ONE XBT

To pursue these discrepancies further XBT 7105A was

selected for closer study. This particular XBT was chosen

because its position is at the same location as a

synthetically produced XBT. Thus, it would be expected that

the profiles of the real and the synthetic XBTs should show a

very high degree of similarity. The real XBT 7105A, is shown

in Figure 42 and the synthetic XBT in Figure 34. Again, the

synthetic profile exhibits a temperature minimum at two

hundred metres and a negative gradient in the surface layer,

both features being less pronounced in the observed profiles.

As a check to ensure that the EOF decomposition had been

performed correctly it was decided to reconstruct 7105A using

all 80 modes. The results of this are shown in Figure 46 where

comparison with the original and the synthetic XBT using four

modes can be made directly. Figure 47 shows the difference

between the original and the reconstructed XBT using 80 modes

to be negligible, of the order of 10-6 degrees Celsius,

whereas Figure 48, which shows the difference between the

original and the reconstructed XBT using 4 modes, shows a

much larger overall error of 0.44 degrees Celsius. Table IIT

gives the mean square error for a selected number of modes.
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C. RECONSTRUCTION AT CAST SITES

In addition, the objective analysis was performed at cast

sites taken within the 10% error variance contour line of

Figure 32. Thus, instead of the objective analysis being done

on a regular grid, the procedure reconstructed synthetic

XBTs at the same sites where the original XBTs had been

taken. This was done as a check to ensure that the

reconstructed error map was consistent and to gain a measure

of how much error there was between the original XBTs and the

synthetic reconstruction. A selection of these XBTs are shown

in Figures 50 - 54, along with a graph of their associated

RMS error. The position of the original casts can be found

from Figure 49.

The RMS error at each of the 80 depth setting is computed

as a percentage of the temperature value compared to the

reconstruction using 4 modes. An average error, expressed as

a percentage, is then obtained for each XBT, and the results

are averaged over the set of XBTs used in the analysis. The

overall error between the synthetic XBTs compared to the

reconstruction using the four original EOFs was 5%, well

within the 10% boundary.

Reconstruction of all 15C XBTs, using only four modes,

gave an error, when compared to the original XBTs, of between

6-7%. The overall error between the OA reconstructions and the

original XBTs was found to be between 10 and 11%.
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D. RECONSTRUCTION AT SELECTED GRID POINTS

A selection of XBTs were reconstructed at grid point sites

and the error compared to the originals that were likewise

taken at the same points. These plots and the associated

error graphs are shown in Figures 55 - 62. The position of

each XBT is shown in Figure 63. XBTs 71 and 88, shown in

Figures 60 and 61, are displaced from the nearest grid point

(38.5 N 70 W), to which they are coi'pared. These profiles are

included to show the wide range of variability that exists

within short spacial distances.
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Figure 33 Reconstructed XBTs at positions 37.5 N 72 W
(a)and 37.5 N 71.5 W (b).
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reconstruction of the XBT using all 80 EOF's.
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Figure 48 Difference between original temperature and that
produced by reconstruction of XBT using only 4 modes.

Table III TABLE SHOWING MEAN RMS ERROR FOR ORIGINAL XBT
7105A COMPARED WITH ITS RECONSTRUCTION USING DIFFERENT
NUMBERS OF MODES.

ill l i i i|#11

mode 1 2 3 4 5 6
error 4.4 1.6 0.8 0.4 0.3 0.3

mode 7 8 9 10 20 30

error 0.2 0.1 0.1 0.12 0.07 0.04
mode 40 50 60 70 80

error 0.03 0.02 0.01 10.001 0.001 1
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mode reconstruction for all depths.
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mode reconstruction for all depths.
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Figure 52 a, XBT 35 compared with reconstructions using
4 and 80 EOFs, the OA being performed onto the site of
the XBT cast. L, rms error between the OA and the 4 and 80
mode reconstructinn for all depths.
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Figure 56 a, XBT 37 compared to 4 and 80 modes and to OA
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original for each depth.
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Figure 59 a, XBT 122 compared to 4 and 80 modes and to OA
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Figure 60 a, XBT 88 compared to 4 and 80 modes and to OA
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VI THE RESULTS

A succession of error maps using reduced data are shown in
Figures 64-70. It can be seen that the data were taken in two
natural clusters. In the discussion that follows, only the
Western cluster is considered. Within this cluster, most of
the XBTs lie within an area covered by the 10% contour. After

reducing the total number of XBTs to 40, the area covered by
the 30% contour is still on the order of the size of the area

covered by the original 10% contour.

The experiment was refined to identify a specific area
that lay within the original 10% error contour line.

Additionally, only XBTs taken in and around the designated

area were included in the subsequent analysis. The cluster to
the east was removed, plus a few XBTs laying in the extreme

north of the analysis area. This resulted in 133 XBTs being
used for the analysis (Figure 71). The aim of the experiment

was to reduce the data set until the 30% contour intruded into

the specified area. The sequence is shown in Figures 72 -

75. The 30% contour crosses the borders of the designated area

when the data set is reduced to 69 XBTs.

It was concluded that, for a Gulf Stream meander, a
minimum of 69 XBTs is required to adequately reproduce
synthetic vertical temperature profiles with an acceptable

error variance of 30%.

88



40

395-72 -1 -0 -9 - -7 -6 6 6

39gtd et(rn rewc

F 0ue6 eosrcinero aineuig10oto

-72 -71 -70 -69 -68 -67 -66 -65 -64

Longitude west ftrom Grenwich

Figure 65 Reconstruction error variance using 500 out of
156 available contous ntra.i .

389



40

39.5-

0.42

-72 -71 -70 -69 -68 -67 -66 -65 -64

Longitude west fram Greenwich

Figure 66 Reconstruction error variance using 30 out of

156 available XBTs.

490



40

39.5

38.

37.5L

37
-72 -71 -70 -69 -68 -67 -66 -65 -64

Longitutuc west from Grenwich

Figure 69 Reconstruction error variance using 25 out of
156 available XBTs.

39.59

39 -

3 P

37.5-

372 -71 -70 -69 ,.68 -67 -66 -65 ,.64

Lonigitude west froon Greenwich

Figure 69 Reconstruction error variance using 20 out of

156 available XBTs.

91



40

39.5

39

3 38.5

38

37.5 i9
37

-72 -71 -70 -69 -68 -67 -66 -65 -64

Longilude west frmn Greenwich

Figure 70 Reconstruction error variance using 10 out of
156 available XBTs.

3975 - 7 -7 -6 -6 -6 -6 -6 -4

39-9

38 ,

37/.5 •.' •

37
_72 -71 -70 :ý9 ." 67 6'6 -65 -64

Longkude west from Gfmnwkh

Figure 71 Reconstruction error variance using the 133 XBTs
in the designated area.

92



40~
39.5-

39

z '•38.5

38-

37.5 ••

37
-72 -71 -70 -o9 -68 -67 -66 -65 -64

Longitude west froin Grccnwich

Figure 72
Reconstruction error variance using 100 out of the
possible 133 XBTs.

-72 -71 -70 -69 -68 -67 .66 -65 -64

L~ongitude west famn Greenwich

Figure 73 Reconstruction error variance using 75 out of
the 133 available XBTs.

93

z



Q4)

39.5

39

S38.5

38 < 0

37.5

-72 -71 -70 -69 -68 -67 -66 -65 -64

Longitude wst fronm Gmcnwkh

Figure 74 Reconstruction error variance using 70 out of
the 133 available XBTs.

40 .. ...

S38.5

37.

37-72 -71 -70 -69 -6 --67 -66 5 -

Longitude west rrmn GOrenwkh

Figure 75 Reconstruction error variance using 68 out of
133 available XBTs. Note the 30% error variance line which
crosses into the designated area.

94



VI DISCUSSION

A. THE RECONSTRUCTION

The difference between an original XBT profile and its

reconstruction using only the first four EOFs has been of

concern throughout this study. The analysis showed the

average difference was of the order 6%. Thus, >efore the

objective analysis is undertaken, a degree of error has

already been introduced with the best that can be hoped for

being a contour positioned on the error variance map accurate

to within plus or minus 6 %. As a result, a synthetically

reproduced XBT will have associated with it error due to the

objective analysis and error due to the use of a truncated

series of four EOFs. However, the first four modes account for

over 98% of the variance, and reflect a minimum number that

could reasonably be used. If higher accuracy was required,

then more modes could have been considered but at the risk of

of including noise from individual observations.

All these sources of variability are included in an 80

modes solution. The current situation is,in effect, a trade

off; loosing some of the fine structure due to the small XBT

data set and analysing only a limited number of vertical

modes. Nevertheless, the study shows that a limited number of

vertical modal amplitudes may be interpolated using objective
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analysis to synthetically create XBTs at any given point

within the region, with a definitive statement as to the

level of confidence that can be placed in the reconstruction.

B. THE NUMBER OF XBTs

The last set of data runs in this study (Figures 71-75),

provide an example of a realistic military or scientific

scenario. The question asked was how many XBTs need to be

taken in a Gulf Stream meander for a reasonable estimate of

the ocean's vertical temperature structure can be inferred any

where within the meander?

The area initially chosen was the area within the 10%

error variance contour and reflects the area that was most

heavily surveyed. The XBTs surrounding the area were also

included, as they were considered to represent XBTs that would

be dropped by units, whether by ship or aircraft, that were

proceeding to or away from the area. Overall, XBTs are not

dropped at regularly spaced intervals, and, although not

random in nature, they tend to reflect a distribution that

would be expected to be produced by several surface units

attempting to track a covert submarine.

The area noted in Figures 71-75 is approximately 1400

square miles and was initially surveyed by 133 XBTs. The

analysis indicates that, given a confidence level of 30%

error, the same area could have been adequately sampled by 70
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XBTs. This is a saving of nearly 50 percent in XBTs, but, more

importantly, this study indicates that an effective analysis

can be achieved in a complicated region with relatively few

XBTs. Although this study has fatilized data from within only

one Gulf Stream meander, it provides a general indication of

the amount of observations that would be needed within other

Gulf Stream eddies or meanders.

C. OPTIMAL SPACING

The determination of the spacial correlation matrices

resulted in parameter b, the e folding distance, to be defined

and calculated for each of the modal amplitudes. This distance

places a limit on the separation that can exist between two

observations to be included in the analysis. From Table II it

can be seen that the second modal amplitude gives the smallest

value, a distance of 25 km. This value represents the maximum

distance of separation that should exist between two adjacent

observations. For the purpose of economy and military

logistics the figure represents the optimal spacing that

should exist between XBT cast sites.

The value of 25 km is approximately half that of the

Rossby radius of deformation and is suggestive that a smaller

grid scale would have been more appropriate.
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D. RECOMMENDATIONS

To valididate the claim that 25 km is a good optimal

distance, it would be of value to extend the study to consider

regularly spaced XBTs (generating them synthetically, as the

data from any real survey, by its very nature, will tend to

have been erratically sampled data in terms of both time and

space) with the distance between adjacent casts being

gradually extended until the resulting error variance becomes

unacceptable.

The current analysis also does not take into account the

fact that each XBT was taken at different times. It was

assumed throughout the study that all XBTs were valid at the

analysis time. The study could be extended to take time into

account, with the interpolation being adjusted to allow for

an optimal value to be chosen both in terms of time and space

(see Carter 1982).

A different correlation function could also have been

fitted to the cross flow and along flow directions. This has

value as it helps to account for the rapid changes that take

place across the Gulf Stream front as opposed to the expected

similarity in values taken along the front. In this study, the

casts were taken within a well developed horseshoe shaped

meander so it was decided to assume homogeneous statistics

using the same correlation function in all directions.
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However, the use of a non isotropic field should be

considered.

A major extension to the study would be to obtain the

principle modes by including data from other Gulf Stream

eddies and meanders so as to build a climatology of Gulf

Stream eddies. It is likely that the modal decomposition of

a projection matrix defined from a larger data set would

remove the spurious effects evident in the current study and

allow for an improved reconstruction of the data when using

the four principle modes. It is considered that a climatology

of eddies rather than a climatology of the North West Atlantic

would be of greater value in attempting to empirically model

XBTs within the Gulf Stream region.

It is noted that the surface layer is poorly modelled,

suggesting that two analyses may be required. One analysis for

the surface layer, the upper 80 metres, and the second for

the deeper water below the thermocline.
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VII CONCLUSION

The creation of synthetic XBTs at regular locations within

a Gulf Stream meander by the use of an objective analysis of

modal amplitudes produced from the decomposition of the

vertical temperature correlation projection matrix has been

shown to be of value. Although there is a degree of error in

the reconstruction, the value of the error is explicitly

stated.

Using the error variance field generated from the

objective analysis, it has been shown that within a 1400

square mile region of a warm Gulf Stream meander a minimum of

69 XBTs need to be taken in order for a synthetically produced

XBT to be within 30% of its true value.

The spacial correlation statistics indicate that the

optimal distance between XBT cast site must be 25 km or less.
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APPENDIX A.

Sep 17 88261:10:10 38 52.8 N 70 7.5 W xbt I
Sep 17 88261:11:14 38 42.3 N 70 3.1 W xbt 2
Sep 17 88261:12:19 38 30.6 N 69 57.1 W xbt 3
Sep 17 88261:19:26 37 49.5 N 68 21.8 W xbt 4
Sep 17 88261:20:07 37 47.6 N 68 9.3 W xbt 5
Sep 18 88262:14:11 38 0.0 N 66 0.0 W xbt 6
Sep 18 88262:15:05 38 10.4 N 65 58.8 W xbt 7
Sep 18 88262:16:07 38 21.4 N 65 58.5 W xbt 8
Sep 18 88262:16:57 38 29.9 N 65 57.6 W xbt 9
Sep 18 88262:17:40 38 30.0 N 65 45.1 W xbt 10
Sep 18 88262:18:36 38 25.3 N 65 31.4 W xbt 11
Sep 18 88262:19:34 38 17.4 N 65 16.7 W xbt 12
Sep 18 88262:20:39 38 8.6 N 65 0.9 W xbt 14
Sep 18 88262:21:38 38 16.3 N 64 50.8 W xbt 15
Sep 18 88262:22:26 38 25.3 N 64 42.5 W xbt 16
Sep 18 88262:23:19 38 26.6 N 64 26.4 W xbt 17
Sep 19 88263:00:31 38 28.4 N 64 3.4 W xbt 18
Sep 19 88263:02:52 38 44.3 N 64 14.6 W xb, 19
Sep 19 88263:05:04 38 58.4 N 64 42.4 W xbt 20
Sep 19 88263:07:29 39 0.1 N 65 15.2 W xbt 21
Sep 19 88263:11:34 39 0.3 N 66 14.4 W xbt 23
Sep 19 88263:14:06 38 54.8 N 66 48.6 W xbt 24
Sep 19 88263:16:11 38 53.9 N 67 21.7 W xbt 25
Sep 20 88264:04:20 38 14.7 N 70 15.5 W xbt 26
Sep 20 88264:05:27 38 5.2 N 70 26.4 W xbt 27
Sep 20 88264:06:25 37 56.4 N 70 33.5 W xbt 28
Sep 20 88264:07:23 37 48.4 N 70 41.4 W xbt 29
Sep 20 88264:08:22 37 40.9 N 70 50.5 W xbt 30
Sep 20 88264:09:30 37 32.5 N 71 1.8 W xbt 31
Sep 20 88264:10:44 37 23.4 N 71 14.4 W xbt 33
Sep 20 88264:12:01 37 30.4 N 71 29.4 W xbt 34
Sep 20 88264:13:18 37 40.1 N 71 43.1 W xbt 35
Sep 20 88264:14:20 37 49.4 N 71 53.7 W xbt 36
Sep 20 88264:15:32 38 0.6 N 72 6.6 W xbt 37
Sep 20 88264:16:34 38 7.8 N- 72 19.4 W xb! 38
Sep 20 88264:20:34 38 9.8 N 72 9.8 W xbt 39
Sep 21 88264:23:57 38 15.3 N 71 40.3 W xbt 40
Sep 21 88265:03:52 38 16.9 N 71 25.1 W xbt 41
Sep 21 88265:09:20 38 6.6 N 71 10.3 W xbt 42
Sep 21 88265:10:25 38 17.0 N 71 9.8 W xbt 43
Sep 21 88265:15:59 38 16.0 N 70 56.0 W xbt 44
Sep 21 88265:21:39 38 17.8 N 70 35.7 W xbt 45
Sep 23 88267:15:35 37 22.8 N 72 23.7 W xbt 46
Sep 23 88267:17:22 37 22.3 N 72 12.7 W xbt 17
Sep 24 88268:00:26 38 18.1 N 71 23.9 W xbt 18
Sep 24 88268:02:54 38 13.3 N 71 10.9 W xbt 49
Sep 24 88268:03:58 38 11.2 N 70 50.4 W xbt 51
Sep 24 88268:05:03 38 13.1 N 70 29.5 W xbt 52
Sep 24 88268:06:07 38 16.7 N 70 14.1 W xbt 53
Sep 24 88268:06:58 38 19.7 N 70 3.3 W xbt 54
Sep 24 88268:08:00 38" 18.8 N 69 49.6 W xbt 55
Sep 24 88268:09:01 38 8.2 N 69 47.8 W xbt 56



Sep 24 88268-09:55 37 59.5 N 69 51.9 w xbt 57
Sep 24 88268:10:56 37 47.8 N 69 47.3 W xbi 58
Sep 24 88268:11:56 37 38.6 N 69 31.5 W xbt 59
Sep 24 88268:13:48 37 32.4 N 69 44.3 W xbt 60
Sep 24 88268:15:23 37 29.4 N 70 0.2 W xbt 61
Sep 24 88268:17:12 37 29.1 N 70 21.6 W xbs 62
Sep 24 88268:18:34 37 28.9 N 70 38.4 W xbt 63
Sep 24 88268:19:59 37 29.2 N 70 56.9 W xbt 64
Sep 24 88268:21:29 37 29.9 N 71 17.6 W xbt 65
Sep 24 88268:23:00 37 30.7 N 71 36.6 W xbt 66
Sep 25 88269:00:04 37 42.3 N 71 36.5 W xbt 671
Sep 25 88269:00:59 37 54.4 N 71 32.8 W xbt 68
Sep 25 88269:04:49 38 1.8 N 71 17.9 W xbt 69
Sep 25 88269:08:33 38 6.5 N 71 4.8 W xbt 71
Sep 25 88269:12:11 38 11.3 N 70 52.3 W xbt 72
Sep 25 88269:13:26 38 3.2 N 70 40.5 W xbt 73
Sep 25 88269:14:52 38 14.6 N 70 40.0 W xbt 74-
Sep 25 88269:15:53 38 25.8 N 70 40.0 W xbt 75
Sep 25 88269:23:05 38 13.3 N 70 251 W xbt 76
Sep 25 88269:23:59 38 8.1 N 70 14.0 W xbt 77
Sep 26 88270:04:20 38 26.7 N 70 0.1 W xbt 78
Sep 26 88270:07:35 38 5.7 N 69 52.1 W xbt 79"
Sep 27 88271:17:59' 38 17.0 N 71 33.0 W xbt 80
Sep 27 88271:19:27 38 29.8 N 71 15.3 W xbt 81
Sep 27 88271:21:01 38 42.8 N 70 55.9 W xbc 82
Sep 27 88271:22:35 38 55.5 N 70 37.2 W xbt 83
Sep 27 88271"23:23 39' 1.7 N 70 27.1 W xbt 84
Sep 28 88272:00:36 39 15.7 N 70 31.4- W xbt 85
Sep 28 88272:02:00 39 32.3 N 70 39.5 W xbt 86
Sep 29 88273:11:21 38 38.0 N4 71 0.1 W xbt 8'
Sep 29. 88273:14:28 38 22.2 N 70 44.7 W xbt 88
Sep 29 88273:17:32 38 39.1 N 70 29.4 W xbt 89
Sep 29 88273:20:17 38 22.0 N 70 14.8 W xbt 90
Sep 29 88273:23:09, 38 37.9 N 69 59.9 W xbt 92
Sep 30 88274:00:55 38 29.7 N 69 52.7 W xbt 93
Sep 30 88274:04:11 38 30.3 N 69 36.0 W bt 94
Sep 30 88274:05:11 38 38.0 N 69 29.7 W xbt 95
Sep 30 88274:08:01 38 23.0 N 69 10.0 W xbt 96
Sep 30 88274:09:27 38 10.5 N 69 5.0 W xbt 97'
Sep 30 88274:10:23 38 0.0 N 69 0.0 W xbt 98
Sep 30 88274:11:23 37 55.1 N 69 11.4 W At 99
Sep 30 88274:12:27 37 50.6 N 69 23.8 W Xbt 100
Sep 30 88274:13:25 37 47.5 N 69 33.8 W xbt 101
Sep 30 88274:14:24 37 44.3 N 69 46.0 W xbt 102
SZp 30 88274:15:31 37 40.2 N 70 0.4 W xbt 103
Sep 30 88274:16:33 37 36.1 N 70 12.5 W xbt 104
Sep 30 88274:17:56 37 30.0 N 70 30.0 W xbt 105
Sep 30 88274:19:21 37 23.9 N 70 44.0 W xbt 106
Sep 30 88274:20:00 37 21.5 N 70 50.3 W xbt 107
SeP 30 88274:21:47 37 16.1 N 71 7.8 W xbt 108
ScP 30 88274:23:12 37 *7.2 N 71 20.0 W xbi 109
CI 1 88271:00L27 37 0.0 N 7130.0.W txb 110



Oct 1 88275:03:03 .J7 9.1 N 71 50.5 W xbf -11Oct 1 88275:03:57 37 10.0 N 71 59.9 W xbi 112Oct 1 88275:07:36 37 38.8 N 71 44.8 W xbt 113Oct 1 88275:08:57 37 54.1 N 71 31.1 W xbt 114Oct 1 88275:10:23 37 58.4 N 71 10.2 W xbt 115Oct 1 88275:11:27 38 0.8 N 70 51.0 W xbi 117Oct 1 88275:12:20 37 56.7 N 70 45.9 W xbt 118Oct 1 88275:17:41 28 5.9 N 70 29.8 W xbt 119Oct 1 88275:20:18 38 28.0 N 70 29.9 W xbt 120Oct 1 88275:21:14 38 28.1 N 70 17.6 W xbt 121Oct 2 88276:01:09 38 6.3 N 70 15.0 W xbt 122Oct 2 88276:02:13 38 6.5 N 69 59.3 W xbt 123Oct 2 88276:05:15 38 28.4 N 69 59.8 W xbt 124Oct 2 88276:06:09 38 27.9 N 69 45.2 W xbt 125Oct 2 88276:12:44 38 27.7 N 69 30.0 W xbt 126Oct 2 88276:13:54 38 27.9 N 69 14.3 W xbt 127Oct 4 88278:13:43 39 0.1 N 70 43.5 W xbt 129Oct 4 88278:15:06 39 0.0 N 70 30.0 W xbt 130Oct 4 88278:16:20 39 0.0 N 70 14.9 W xbt 131Oct 4 88278:17:31 39 0.1 N 70 0.5 W xbt 132Oct 4 88278:18:52 38 59.9 N 69 43.6 W xbt 133Oct 4 88278:19:55 39 0.0 N 69 30.1 W xbt 134Oct 4 88278:21:06 39 0.0 N 69 15.0 W xbt 135Oct 4 88278:22:28 39 0.0 N 68 58.1 W xbt 137Oct 5 88279:05:54 38 45.4 N 69 59.7 W xbt 138Oct 5 88279:11:21 38 44.7 N 69 30.0 W xbt 139Oct 5 88279:15:25 38 45.0 N 69 0.1 W xbt 140Oct 6 88280:13:12 38 30.0 N 70 30.0 W ;xbt 141Oct 6 88280:19:23 37 39.6 N 71 9.3 W xbt 142Oct 6 88280:21:07 37 24.1 N 71 9.3 W xbt 143Oct 6 88280:22:36 37 29.9 N 71 8.6 W xbt 144Oct 7 88281:05:37 38 10.8 N 70 19.3 W xbt 145Oct 7 88281:07:34 38 18.1 N 70 28.1 W xbt 146Oct 7 88281:08:42 38 22.1 N 70 12.3 W xbt 147Oct 7 88281:11:06 38 18.4 N 70 0.3 W xbt 148Oct 7 88281:11:42 38 20.4 N 69 50.6 W xbt 149Oct 9 88283:11:44 38 30.3 N 69 29.3 W xbt 150Oct 9 88283:13:43 38 11.1 N 69 17.1 W xbr 151Oct 9 88283:14:26 38 4.5 N 69 9.4 W xbt 152Oct 9 88283:15:25 38 11.8 N 68 58.4 W xbt 153Oct 9 88283:15:35 38 11.8 N 68 56.1 W xbt 153Oct 9 88283:16:40 38 2.4 N 68 45.4 W xbt 154Oct 9 88283:17:40 38 0.0 N 68 30.0 W xbt 155Oct 9 88283:19:00 37 50.0 N 68 15.0 W xbr 156Oct 10 88284:15:39 37 17.6 N 69 23.5 W xbt 157Oct 12 88286:11:11 38 30.0 N 68 0.1 W xbt 158Oct 12 88286:12:35 38 30.0 N 68 20.6 W xbt 159Oct 12 88286:13:51 38 30.1 N 68 40.0 W xbt 160Oct 12 88286:15:11 38 30.0 N 69 0.3 W xbt 161Oct 12 88286:16:28 38 29.8 N 69 20.2 W xbt 162Oct 12 88286:19:35 38 44.7 M 69 30.0 W xbt 163Oct 12 88286:20:46 38 58.4 N 69 29.9 W xbt 164



OIt 12 88286:22:4 39 16.2 N 693bOct 13 88287:00:05 39 36.5 N 69 47.7 W xbt 166



c APPEN4DIX lB

program loadbathys
c

c this file loads the bathys into ait array. atid calculates correlAtion.

integer m, i,np, iy, iz, q
real sumab,corro,a,b~y~z .tempvar(80,1S6),sunivar(80)
integer coutita(80. 156) ,couuti
real depthia(830,l56)corrol(80,82)
real tempa(80,156),meari(82),tinmes,volt.qutAl

reail sumsqAiýtumsqb,rleptluc(2000,156).tempc(2000,156)
character lAt*10Oldtig'12timae*4
character rcim(0l6Briunl6'
integer yeardny

c 4444444444444444 & 4444444444 * 444

c LOAD XIN DATA

write(*,*) 'loadinig hathys'
open(utiit =4, file l dcernpinmel status 'old')
opentunit = 20, filp
open(unit =21, file ='Inamepos')

p= 0

do 200 11 1,156
read(4, (a9) ',end =230) rentim(n)
p =p + I
writef20,*) p,' 1, rewntr(n)
openfunit= 3, file ='/uisr/whiitney_dl/xbt/'//renura(n))

c

rewind 3
ree~df3,*)
read(3,210) ypardny,tinie
tParl(3,220) lAt,Ioiiq
read (3,
read (3,'

c rie')yearday.titne
wrie('')lat,Ioncf

write(21,*) lat~long

210 form;-t(9x,13jt29,A6)
220 format(6x~alO,t25,al2)
c

do 240 m =1,2000n
reAA3,*ond= 200) timem,depthc(m,n),



volt.tempc(m,n) ,qual
240 continue

write(*,*) p
200 continue

230 close(4)
close(3)
write(*,*) p,I bathys loaded'

C

"c This section calls redata and calculates temp at
"c lore increment depths, starting at Sm. for each bathy and loads
"c them into arrays. Also finds mean temp for given depth taken over
"c all bathys.

c CALCULATE SMOOTHED TEMP AND MEAN FOR GIVEN DEPTH

c
open(unit =12 ,file = °meantemp')

do 40 y = 5,800,10
suim = 0

Qy l-((y-5)/l0)
call redata(y, iyrenumcount,countarecnuma,deptha,

$ tempa,depthctempc,p)
c

do 30 n = 1,p
stim = sum * tempa(iy,n)

30 cont inue
mean ( iy) = .un/ct

write(12,*) y,mean(iy)

40 continue

c SEN/D TO OUTPUT
c

open(unit = 13 , file = 'profile.mat')

do 100 n = l,p

do 110 iy - lA0
writa(13,') tempafiy,")

1 10 cont inue

100 continute

c now loop through each depth calculating the corrolation compared
c with the shallow depth.

c

c CALCULATE CORRALATION

ccc open(unit = 10,file = 'Ibokat')
open(unit = 8,file = 'corrl.mat')



do 300 y = 5,800,10 1the Ishaijowo depth ( the mn loop)
iy 1 +- (y-S)/l0

write(*,*) 'depth 1, y ,iy
c

do 305 z =5,800,10 1 the deep" depth (the n loop)
!compare ebach deep with shallow

C set constants, counter etc to zero

b= 0
sumab = 0
sumsqa = 0
summqb =0
corro = 0
iz =1*(z-5)/l0

do 310 n =l,p l oop through each 'deep*
fn n record

if (dph(ym.e.(0.0)) cioto 310
if(deph.'iz~)).q.(.ongoto 310

500 if (t,-rnmwv(iy,m).Pq.rc'rmtmm%(iz,n) ) then

cccc write(l0,*) n,iz,clepti~a(iz~tu),te~mp~i(iz,rn),recituma(iz,n)

n tomp."i(iy'T) - rneali(iy)
MIuMSCqa = SLIMSqA + i'i"2
h = t~mpa(iz.n) - meait(iz)

suma'b sumab 4 (,%'b)

elSe
'CO 510 in =Ilp

if (rcltii~?.qrcttait)goto 500
510 '-oet itwe

goto 310

310 Cotdif ime 1 with niext record
corro =sumab/sqrt ('umsqA *surnsqb)
corrol~y~iz) - corro
wrIte(8,*) corrol(iy~iz)

305 Collt iI u e next *rdeep" depth
c
300 continue Inekt "shallow' depth
c

end



c APPENDIX 2B

subroutine redata(z, ly, renum, count, counta, recnuma,deptha,
S tempa,deptlhc, tempc,p)

c this program finds temp for a given depth for all records
c and stores the value of temp and depth in arrays atid passos them
C back to vertcorro.f . The depth for given temp is found by
c averaging over a 10m bin. The value of depth used is passed in
c the call from main program.

parameter (mm =2)
real t,depthl(mm),temp(m}n),z,tempc(2000,156)
real deptha(80,156),tempa(80,156),deptlhc(2000,156)
character renum(l5€)8,reCliurn.(80,l56)'*
integer n,count,cotinta(80,156),ly

integer counternodatapt,p
real add

c open(unit = 10,file = 'datapt') ! testing for data
c

c SET COUNT the number of r-ecords processed for a giveti depth
c

count = 0

1010 do 600 n - lIp ! loop through each bathy

add = 0 I the sum of (dnta points uE -1 in a bin
counter = 0 Ia cotnt of nutmber of data points

used in a bin
c

do 2000 m = 1,2000 ! loop through all data points
c

d~pt•,•l) = rlepthir(m,n)

temp(l) tempc(m,n)
c SELECT DATA POINTS IN PIN

if (depth{1).ge.z-Sand.depth(l).le.ze5) then

counter = counter *1 ! add irp number of
c data points

add = add + temp(l) ! sum values of
c ! data points

t = add/counter ! menn temp for
c ! given depth for
c ! given bathy

if (dlepthw(in,n).gt.%u5) goto 5000
if ((tempc(ml,n)).le..(0.0)) goto 5000

goto 2000
P I se
goto 2000

C
c LOAD VALUES INTO ARRAYS FOR PASSING BACK.



C

5000 count = count + I ! increment counter

counta(i n) = counit
t-mpa(iy,?) = t ! value of t placed in array
recnuma(ly,n)= renum(n) ! name of record beng read
deptha(iy,n) = z
nodatapt = counter'count I calculate number of

c ! data points

goto 600
end if

2000 continue

600 continue
c write(l0,*)znodatapt ,countcoutnter ! sends to file

END



c APPENDIX 38
c

program distcorro

parameter(max = 6)
implicit real'B (a-z)
reaal*8 dpr /SI.2gS7795l308232/
real*4 distrmax.nrnx)
real declat,declonig, lat(max), long(max) ,maxvalue~noofbiris
integer n~m, z, lati. lorigi, p~width

real mode(4,max),corr(4,max,dvalue(max.max)
Integer Inootbins

c

"e This part calculates the distance between any two poinits and stores in

"c an array

oppn(unit =3,file 'de~cpos.mat')
open(unit =I, file ='d.eeppos')

do 10 11 l,mavc

20 formpkt(x,12,x,f5.2,4x, i3.,x,f5.2)
declat =declnt/60
declovig declong /60

lat(n) =lati + declat
long(n)= longi - declong

write(3,*) long~n) ,lat O)

10 continue

do 30 n = l,maxi
do 40 mn =l,ni.'x

t = (Joncq(t) - loiiq(mfl/clpr

dsinr= dsin(t) * dcos(latWm/dpr)

r = daqitv(dsfiir)
dsins =dsinjlat(m)/dpr)/dcos(r)
9 = clasin(dsins)
dcosd = dcos(r) *dfcns(s - (lat(n) /dpr))

d = dacos(dcosd) clpr

c
distfn~m) = d *111.6114

c

40 contilnue
30 continue
c

c

c Now load the modal amplitudes. (just the principle ones for now)

open~unit = 2, file = single.mat')



do 110 z = 1,4

do 100 n= ma

read(2,*) mode(z,n)

100 continuv
110 continue
c

c

c find max distance for this data set
C

maxvalue = 0.0
do 210 n =l,,nAX
do 200 m = ,max

if( dist(n,ni).gt. maxvalue) maxvalue =dist(n.m)

200 continue
210 continue

wrltef*M4  'Jnaxvalue ',mAxvalu'e

C*

c create bins by distance
c

write(*,*) '0ntpr bin width'
read(*,*) widith
end = max mn~wx
nootbins maixva1lo/width
inoofbins int(iioofbins)

C ~**4*444444444&4444444*4**4
C

c Calculate corroIlition as function of distance. for each binfp).

opent unit =11.file ='smith.2')

oppn( unit =13,file ='smith.2')

do 700 z =1A4
do 600 p = l,inoofbinn

call ca1c(mode, z.p~corr~width~dist)

600 continue
c
c 4*4*444*44444

c
c send corrolation for each bin to tile smith
c

do 400 p = 1inoofbins
write(9 *z.61 p'width,cotrrz.p)



400 contiltue
700 continue

c
end



c

subroutine calc(rnode~z,p,corr,wtdth,dist)
c

pararneter(inax n 56)
real moden,modeh,m unmodea,coti (4,max)
real menenmodnk,su~minoden, summodeb. sumnab.sumsqa, sumnsqb
real inode(Cmay),dist(ynax,rax)
integer p,counter,n,n,.a,h,z,width,c,numberb(5000)
integer numbera(5000)

c open( "nit 1, file 'ea'
copen("nit 2, fil' 'look')
Copan(unit 3, fila 'aloop')

c open(unit 4, file ='bloop')

C set counter and all variables back to zero for a unew p (bin).
C

couinter -0

mod."b =0

mpnnmo -b 0

s~mmod = 0

sutnab =0

corrQz,p) = 0

c Determine which data poinits Are used for a given bin.

do 300 " Ii m

do 310 mn "I.miax

a -p'widtii

c writaPM' ",m

f0111tot 7 counte rt j

c' - n"o

""mhoinbe(r) = n
numberb(c) =m

end If
310 continuie
300 continue

c write(*,*) p,plwidth~c



"o the value c is the number of data point pairs in a bin.

"c numbera is the array number containing the first point and

"c numberb is the array number containing the second point.

c

r now add up value of all d-ita points used for given bln.and

c calculate the mean for "aO loop.

counter = 0

do 400 n l,max

do 410 cii - ,c
if(n.o-q.nutmbpra(m)) then

summordea = summodoe + mode(zn)

c writo(3,4 ') p,n,m,mode(z,n)

coiintpr = counter + 1

qoto 400

e Is,-
ooto 410
,urd i f

410 continue

400 cont iliue

meanmodea = sZiinodron/colInter

c now do same for "b* loop.

cou•nter 0

do 500 n l,max

do 510 in 1,c
if (n. eq. n,,mborb(,n) ) thon

summorlob -ummodob + morle(z, n)
counter counter 4 1

c write(4,*) p,n,m, mode(mn)

goto 500

eISe

qoto 510
-nd i f

510 continue

S00 cont in w

meanmodeb = sunnodeb/co ntor

c writell,l) z,p~reanmodeameanmodeb

f7 Calculate compone-ntm for corrolatiomi
C

do 320 n = l,nax
do 330 in =

a = p*wi]th



b = pwidth -25
if (dist(n,m).1tý.a.and.dist(n,mn).ge.b) then

modea = mode(z,n) - memnmodpA
mocieb = mode(z.m) - mepinmodeb

sumsqn simsq~i + nodpa*2
sumsqb =sumsqb + modeb**2

end if
330 cont inuse
320 continue
c

c calculate correlation, for passing sIack.
C

corr(z,pl (sum~b)/sqrt (sumsrpn*sumsqh)
c write(*,*) z,p,corr(z~p)

end



c APPENDIX 4B

c

"c This will be a program that determines correlation
"c for any distance by fitting to the data in 'smith'.
c

parameter(i B)
integer mj,n,countistep
real cr(4,i),cn(4,28),error(4,i),sumerror,d(4,28),olderror
real a,bnewerror,deltaa,deltah,delta~nl,deltaea2,r
real deltaebl,deltaeb2, incrementa, incrementb
real suma,sumb,deda,dedb
real alfa(4),beta(4)

e 4j4O4444444444444444444444444* 4444* 444444*4**** * 44********4

open( "ntri = 11, file a 'smith.l'|

open( "nit = 12, file a 'smith.2')
open( "nit = 13, file a 'smith.3')
open( "nit = 14, file a 'smith.4')
open( unit = 2, file a 'look')

c

sumerror = 0

"c load in values from 'smith.all'.
"c give initial values of a and b

alfa() = 130
beta(l) = 60
alWa(2) = 60
beta(2) = 30
alfa(3) = 45
betn(3) = 20
alfa(4) = 50
beta(4) = 20

do 200 m = 1,4

c reset all variables to zero

olderror = 0
newerror = 0

deltaeal 0
deltaea2 0
deltaebl = 0
deltaeb2 = 0
incrementa = 0
incrementb = 0
suma = 0



sumb = 0
deda = 0
dedb u0
count = 0

c load in the modes

write(2,*) 'i the number of bins ,i,'* '

write(2,*)
do 10 n = 1.22

read(lO . m,') d(m.n}, cn(mn)
c write(*,}) n. ci(m,n)
10 continue

write(2. )

a - alfa(m)
b beta(m)

c Calculate cr

do 20 n - I,i
r d(m.n)

cr(m,n) = (1 (r/a)*2)'exp(-(r/b)'*2)

20 continue

c

c calculate value of error ( that is to be iniminized)
c

do 30 n -i

error(mn) = (crr(m.u) - cn(m.n) 2

sumerror = sum-rror + error(mr.n
30 continue

olderror = simprror/n
c

c

c
c

c calculate the delta error..and decide whether
c to add or subtract the inicrement

d.ltna = 0.001
deltab = 0.001

c

suma - 0
sumb - 0



do 50 n =1,.1
deda =(4*(r**2)exp(-(r/b)**4)/(a**3) )*(l-(r/a)"2)
$-4*(r**2)*(exp(-(r/b)**2))*cn(m,tn)/(a**3)

suma = suma + deda
50 continue

deda. = suma/n

delteaea1 = deda *deltaa
deltaea2 = deda *(- deltna)

if (deltApal.it.deltaea2) then
Incrementa =deltaa
else
incrementa = -deltaa

end if

c write(*,) decla,deltAeal,deltaea2,iuicremenita

do 60 n =l~i
dedb (4* (r* 4M) '(exp(- (r/b) **4)) /h' 4 5)

$ + (4'1r*4 2) 'cn(m,ii)*iexp(-(r/b)*'2) )/b''3)

stimb =sunib + dedb
60 continue

dedb = sunib/n

dgeltap.bl = dpclb deltab
deltaeb2 = dedb *(- deltab)

if (deltas-hl.lt.0plt.,-b2) then
increnientb = deltab
else
incrementb = -deltab

end if
c write(*,*) dedb,cleltaebI,deitaeb2,inicrenientb

C.

C incremant a and h.

100 count C01iint + 1
a = & 4 incremetita normally 1 - +

b = b - increm'.ntb !normally - - + +

c



c calculate cr again
c

do 70 n =l,i
r = d(m,n)
crim,n) = (I - (r/a)**2)exp(-(r/b)**2)

70 continue
C

c
C

c calculate error again, with new a and b
c

sumerror = 0
do 80 n =l1i

error(m,n) = (crim~n) - c-n(rn,n))**2
sumerror = sunmerror + error(m,n)

80 continue
newerror = sumerror/n

write (*,*) m, count, newerror, a, b
c stop

if (newerror.gt.oldierror) thent
write(2,*)
write(2,*) 'for minimized error, mode-',m
write(2,*)' a b error iterations'
write(2,*) a b, newer ror, comit
write (2. )

goto 195
else
olderror =neworror
goto 100

Ond i f
195 alfa(m) =a

betadm) = b
200 continue

call corro(alfa,bpta~i)
clone(l1)
close (12)
r-lose (13)
rlose (14)

end



subroutine corro(alfa~beta, i)
pararneter(i = 8)
integer in,n
real alfa(4) ,beta(4) ,a,b,cr(4 i) ,bin,r

open~unit = 11.file =ecorl')
openjurait = 12,file ='cor2')
openjuflit = 13,file ='cor3V)
openjunit = 14. tile ='cor4')

c alfa(1) = 115.37
c beta(1) = 90.37
c alfa(2) = 84.18
c beta(2) = 59.18
c alfa(3) = 145.46
c betaM3 = 45.42
c alfa(4 = 51.86
c betaM4 = 46.86

bin =25
c ****4*****.&&*****,* ****4**

C*

c calculate cr
C

do 60 mn =1,4
a= alfa(m)
b = beta(m)

do 70 n =~

r = ni bin
cr(m,n) (1 - Cr/ 2)*Pyp(-(r/bP*2)

c print out
writef10 + mn.' r'Cr(mi:1)

'70 contintle
60 continue

end



c APPENDIX 5B

C SPACE-TIME OBJECTIVE ANALYSIS/STATISTICAL FORECAST PACKAGE
C USING GENERALIZED OBJECTIVE ANALYSIS ROUTINE
C
C (C) COPYRIGHT EVERETT CARTER 1981
C
C uses NCAR double precision matrix inverter IIIVMTX
C
C UPDATES:
C 21 Aug 1984 -- Modified package so that GETAVE is called
C within OBJAN, als-o added COMMON block CBLOCK
C in order to tx'duce correlation function calls
C 8 Auig 1994 -- added routine GETAVE, to remove weighted mean
C 27 DEC 1983 -- -xpanded IER flags
C 3 NOV 1983 -- added poor matrix inversion Warning
C
C IER is an error flag for oH.AtJ

C =0 for nio Priors dotect•ri
C "0 for matrix invorsio:n srrorr, (see matrix inversion routine)
C =-I for tin inputi dat. (. 1/.,rnincu-- tint fatal)
C =-3 for poor matrix itiv-rsion, it did it but the inversion was
C nearly NUMERICALLY singular
C
C
C
C THE MAIN PROGRAM MUST SET UP THE DIMENSIONS AS FOLLOWS
C (FOR A 33X33 FIELD)
C DIMENSION PSI(1089),XOBS(1089,2),TOBS(1089)
C DItIENSION X(2,1089),TIIETA(1089),EPS(1089)
C DIMENSION PARSI(20),T(20)?PARX(2,20)
C COMMON BLOCK ERR CONTAINS TIlE OBSERVATION ERROR PARAMETERS
C E IS THE MEAN SQUARE NOISE LEVEL Ill TERMS OF PERCENT OF VAR
C COMMON/ERR/E
C THE FUNCTION F IS THE CORRELATION FUNCTION
C EXTERNAL F
C H IS TIlE TOTAL NU11BER OF GRID POINTTS
C LIMIT IS THE MAXIMUM ftUMBER OF ItIFLUEN•rIAL POINTS
C DATA LIMIT/10/
C DATA M/1089/
C DATA DIST.TIM/100.,20./
C PSI THE OBSERVATION VALUES
C XORS THE OBSERVATION POsITIONS
C TOPS THE OBSERVATION TI11E.q
C TCEN THE CENTRAL INTERPOLATION TIME (PREDICTION TIME)
C X THE INTERPOLATION POSITIOtNS
C THETA THE INTERPOLATIOtN VALUE OF THE COMPLETED FIELD
C EPS THE INTERPOLATION ERROR LIMIT OF TIlE COMPLETED FIELD
C E=0.05
C EXAMPLE MAIN LOO-
C DO 150 KX=1,M
C CALL SELECT(LIMIT.X(KX,I.),X(KX,2).TCE!,.XOBS,TOBSPSI,
C I PARSIPARXT,NNOBS.DIST,TIM)



C CALL OBJAN(PARSI,PARXTNOBSX(KX,1),X(KX,2),

C 1 TWEN,8, W, IER)
C THETA(KX)=BtAVER

C EPS(KX)=W/VAR

C 150 CONTINUE
C
C
C

SUBROUTINE REMAV(PSIMAVER. SDV)
c ROUTINE TO CALCULATE THlE MEAN AND VARIANCE OF AN ARRAY
c IT ALSO REMOVES THE MEANI FROM THE ARRAY

DIMENSION PSIM1
AVER=0.

qDV=0.
DO 10 1=1KM

AVER=AVER+PSI (I)
SDV=SDV&PSI (I)**2

10 CONTINUE
AVER=AVER/FLOAT (M)
SDV=SDV/ FLOAT CM)-AVR*2
IF (M .NE. 1) SDV=(r'LoAT(M)/FLOAT(M-1))*SDV

DO 20 1=1M

PSI(I)=PSI(l)-AVER

20 CONTINUE

RETURN

END
C

C
C

SUBROUTINE SELECT(LIMIT,X,YTrEII,XOBS,T. PSI,
1PARS1, PARX,TrOB, t1, ROMSDIST, THItiaIf a,beta)

C ROUTINE TO SELECT THlE AT MOST 7..ItIIT NEARBY POINTS

C TO AN !NTERPor.ATIOM POINT X,YTCEtI
C LIMIT IS THE MAXIMUM I$UM!PER OF POIlIT5S TO IJSE
C DIST IS THE SPATIAL RADIUS OF WtFLUEtrrIAL POtINTS Itl VM

C TIM IS THE TEMPORAL RADIUS OF IrIFUIJFTIAL POINTS IN DAYS
DIMENSION XOBS(2,I),T(1) ,PSI(1LPAR-SI(1),TOBS(1)

DIMIENSION PARX (2, 1)
DIMENSION INDEX(2000) ,COR(2000)

re~i1 e,b

C0M!M10/CBLOCK/C (20)

EXTERNAL F

DATA CPHSE/0.0/

NOBS=0
DO 50 1=1.11

DELX=X-XOB9(1, I)
DELY=Y-XOBS(2, I)
DELT=TCENl-T( I)
R=SQRT( (DELX-CPIISE*DEL.T) "*2.DELY**2)

IF (ABS(DELT) .G1. TIM) COTO 5O
IF (R G0?. DIST) GOTO 50

tNOB.S=NOBSi 1

INDEX (MOBS) = I
COR (MOBS )=F (DELX ,DELY ,DEL?. ,,lfa~beta)



50 CONTINUE
IF (NOeS .EQ. 0) GOTO 75
IF (NOeS .CT. LIMIT) CALL SORT(COR,INflFX,NOBS)
IF (NOBS .GT. LIMIT) NOBS=LIMIT
DO 70 I=I.NOBS

J=INDEX(I)
PARX(lI)=XOBS(1,J)
PARX(2, I)=XOBS(2,J)

TO8S(I)=T{J |
PARSI( I )=PSI (J)

C(I)-COR(I)
70 CONTINUE
75 CONTINUE

RETURN
END

C
C
C

SUBROUTINE SORT (COR, INDEX, 1i)
C A SHELL SORT ROUTINE TO SORT IN1DFX AND COR DOWN
C ACCORDING TO TIHE VALUIES OF COR

DIMENSION COR(I) ,INDEX(1)
ICAP=N

S IF (IGAP LE. 1) RETURN
ICAP= ICAP/2
IMAX=N- IGAP

10 IEX=0
DO 20 I=1.IMAX

IPLUS=I€ I+ AP
IF (COR(I) CE. COR(IPLUSG)) COTO 20
SAVE=COR ( I)
COR( I) =COR( IPt,USG)

COR ( IPLUSG) =SAVE
ISAVE= INDEX ( I)
INDEX (I) =INDEX ( IPLUSO)
INDEX(IPLUSG) =ISAVE
IEX=l

20 CONTIWUE
IF (IEX .NE. 0) GOTO 10
CtOTO 5

END
C
C
C

SUBROUTINE OBJAN(IPSI,L,T.N,X,Y,TCEtU,B,W,IER,alfa.beta)
C THE SPACE-TIME OBJECTIVE ANALYSIS ROUTINE
C VERSION FOR 1 IfTERPOiATIOtN Poitrr
C USES 2 SPACE AND I TItlE DIMIENSION
C NOTE DELTA T = TCEtl - T(J)
C L IS THE ARRAY OF OBSERVATION POSITIONS, IN KM
C T IS THE TIME OF OBSERVATION, IN DAYS
C X IS TIlE ARRAY OF INTERPOLATION POSITIONS, IN KM
C TCEN IS TIHE CENTRAL INTERPOLATION TIME
C PSI I9 TICE ARRAY OF OBSERVATION VALUES



C B IS TIIE INTERPOLATED VALUE
C W IS THE INTERPOLATION ERROR LIMIT
C N IS THE NUMBER OF OBSERVATION POINTS
C IER IS AN ERROR FLAG, ZERO FOR NO ERROR
C -1 No data (WARNING)
C -3 Poor matrix inversion (WARNING)

DIMENSION PSI(l),T(l),L(2,I)
COMMON/CBLOCK/C (20)
REAL*8 A(20,20)
REAL L
COMM4ON/ERR/E
EXTERNAL F
B=O.
W=1.0
IERt--1

IF (N .LE. 0) GOTO 500
C CALCULATE THE INVERTED AUTOCORRELATION MATRIX FOR THE OBSERVATIONS

CALL SETA(A,L,TN,IERalfabeta)
IF (IER .GT. 0) GOTO 500
CALL GETAVE(A, PSI,NAVE)

C CALCULATE THE MATRIX C
C -- already calculated ini this version, common block CBLOCK
C
C CALCULATE TIlE RMS ItITERPOLATION ERROR,W
C AND CALCULATE THE INTERPOLATED VALUE B

W=0.
B=0.0

DO 150 l=1,N
IH=0.0
DUMC=C(I)
DO 140 J=lIM

P=DUt4C*C (J) * SIL (A (I, J)
W=W+P

P2=SNGL(A(IJ) )*PSI(.J)
H= If f P2

140 CONTINUE

DUMY'D1MC* II
B= 8DUMY

IS0 CONTINUE
B=BIAVE
W--ABS { 1.-W)

500 CONTINtUE
RETURN

END
C
C
C

SUBROUTINE SETA(APARX,T,JIORS. IER, alia,beta)
C THIS ROUTINE CALCULATES THE AUTOCORRELATION MATRIX FOR THE
C OBSERVATIONS GIVEN THE POSITIONS, PARX AND TIMES, T
C IT RETURNS THE INVERTED MATRIX

DIMENSION PARX(2,1),T(1)
REAL*8 A120.20),Det

Integer IP(40}



COMON/ERR/E

EXTERNAL F
DATA NA/20/

C The Guard value for DETERMINANT WARNINGS
DATA GUARD/I. OE-4/

I FORMAT (SX,'MATRIX A IS SINGULAR')
2 FORMAT (SX,'ERROR,MATRIX A IS TOO SMALL',/,

X ' NA MUST BE .GE. NOBS',/,' NA=',I3,5X,'t1OBS=',I3,//)
3 FORMAT (SX,'WARNING, DETERMINANT IS VERY SMALL (',IPE1.4,')',

X ' -- TRY SMALLER NUMBER OF INFLUENTIAL POINTS')
C TEST THE SIZE OF TIHE OBSERVATION ARRAY

IER=-

IF (NA .LT. NOBS) PRINT 2,NA,NOBS
IF (NA .LT. NOBS) RETURN
IER-0
DO 20 I--1,NOBS

DO 10 J=I,NOBS
DELT=T( I) -T(.J)
DELX=PARX( 1,1I)-PARX( 1, .J)
DELY=PARX(2, I)-PARX(2,.J)
A (I, J) =DBLE(F (DELX, DELY, DEt;r,,a I fa, beta ))
A(J, I)=A(I,J)

10 CONTINUE
A(I, I) =A(I, I) +DBLE(E)

20 CONTINUE
C ItNVERT THE NOBS*NOBS MATRIX A
C THE INVERTED MATRIX I flAMED A

Call InvMtx(A, 1A,A, NA, OBS, Det, IP, Ier alfna, beta)
IF (IER .tIE. 0) PRINT 1
IF (IER .NE. 0) GOTO 40

C CHECK THE DETERM~tIANT

IF (DET .LT. GUARD) PRINT 3, DET
IF (DET .LT. GUARD) IER=-3

40 CONTINUE

RETURN
END

C
C
C

SUBROUTINE GETAVF(A, PI, 11, AVR
C Calculate and remove thp weighted mean

DIMENSION PSI (1)
DIMENSION C(20],D(20)
REAL*8 A(20,20)
DO 10 I-1,N

C(I)=0
D(I)=0
DO 10 K--,N

C(I)-C(I)4A(I,K) *PSI(K)
D(I)=D(I)4A(IK)

10 ENDDO
SUM 1=0
SUM2=0
DO 20 I=1,N



SUH1=StJH1+C(I)

SUM2=SUH2.O( I)
20 ENDDO

AVE=SUM1 /SU142
DO 30 =I=,fl

30 PSI (I)=PSI (1)-AVE

RETURN
END



C APPENDIX 6B

C this is th,_? program that links all the elements together.
r: and also controls the reduction or removal of successive bathya.
C

parameter(most = 56)
real alfa(4),beta(4),amode(most),xpos(most),ypos(most)

real a,b
integer nprinter,loop,ran(,nost),ij,leftans,num ,reply

c read in the data for each time data set is reduced by one
c

do 100 z = l,most
write(*,*) ' process I = y 2 = end'

read(' *) reply
if(reply.eq.2) goto 200

write( *,*) 'how many XBTs rio yotu waiit to use ( max 133),
read(*,*) ans

j = most - ans

call reduce(j)
left = most - j

c read in modes
do 10 n = 1,4
open ( unit = 1, file 'rdorpo.r.mat')
open ( unit = I1, fila 'rmndl')
open I unit = 12, filp = 'rmod2')
open ( unit = 13, filo = 'rmoril')
open ( unit = 14, file = 'reod4')

C
C
c set parameters for iniput
c

c chose values for a and b

alfa(l) 155.5
betall) = 85.3
alfa(2) 92.15
beta(2) 62.14
alfa(?) 36.65

beta(3) = 28.I5
alfa{4) = 39.4
beta{4) = 30.55

c

c

c



c now loop through oa four times.once for each miode

c

c read in latitude and longitude of obs
c

do 26 1 l,left
read(1,*) num,xpos(i).ypos(i)

26 continue
tewind(1)

c

c read in modes
do 27 1 = 1,1eft

read(1O 4 n,*) amode(i)
2', continue

close(1l)

close(12)
closeM13)
close(14)

c

c give values of a and b
c

a c alfa(n)

b = beta(n)

c set output diagnostics.

c
printer = 30 4 n

loop = n
c

C

call modeoa(amode,xpos,ypos,ab,printer,left,loop)

10 continue

c print out modes and errors to combinpd files

call allmods

100 contiuile

200 writel*,*) 'program finished'
end



c Program by E.P. CARTER

subroutine modeoa(amnode,x,y,alfa,beta.priniter,most,loopI
c PROGRAM modeoa
C
C
C
C UNIT 1 IS THE XST (INPUT) DATA
C UNIT 2 IS THE PRINTABlLE OUTPUT DATA (DIAGNOSTICS)
C UNIT 4 IS THlE UNFORKATTED OUTPUT DATA
C
c INTEGER INFILE, DISK, PRItrrER
c PARAMETER (INFILE=l, DISK=4)
C

PArameter MXOBSS 56)
INTE(3ER D)AY (MXOBS) ,Grnt (MXOBS) ,pritltt?r,mort
D!IMENSION4 X(HIXOBS) ,Y(W(MOBS) ,Titiil4XOBS) ,irnode(MXOBS)
DIMENS ION XOBS (2,MIXOSS) . TOSS (fMXOrI') tJjrB!-- (NxoBs)
DIMENSION UOPI,(20),VOPT(2OLTOPT(2OLxorT(2.20)
DIMENSION XI(119),YI(119)',UI(119) ,EPRU(119)
INTEGER START, Eti['TY, loop
ReAl MnLay,MxDay, alfa,bet1a
COMthION/ERR/E
EXTERNAL F

DATA EMPTY/156/
DATA MOST/57/

DATA LIMIT/Si
C SPATIAL AND TEMPORAL LItlITS

DATA DIST,TIM/ISO. O.0.
DATA CPX,CrY/1S.0,15.O/
DATA START/li
DATA TINC/1/

C
DATA N'OBJ111

c write(*,*) 'modeon n1ow ibeiig called'

c open file~s for output
open (unit = 31, file onivtpiitl')
open (unit =41, file 'grcldmod.li)
open (unit =51, f ile oerrormod.l')
open (unit =32. filp 'outptit2')
open (unit = 42, file 'cgridmod.2')
open (unit = 52, f ile 'errormod.2')
openi (unit = 33, file I outtpu t-3')
open (unit = 43, file 'g r idnod. 3)
opena (tin it = 51, file 'errormoc,3')
open (un it =34, fil I s 'outpiiW)
open (uin it =44, file 'g ri. dmori. 4 1
open (unit = 54, file 'errorniod.4')

c i&*&.4**.& .. 4..4.4444*44ha.44



c

1 FORMAT (5X.'DIAGNOSTICS OF ALL modal OBSERVATIONS :')
2 Format (Sx,'X Position Diagnostics (Wh: ')
3 Format (Sx.,'Y Position Diagnostics (min):

22 Format (Sx,'X grid Diagnostics (Km): )

23 Format (Sx,'Y grid Diagnostics (Km): 'I
4 FORMAT (SX,'INTERPOLATED mode FIELD DIAGNOSTICS:')

5 FORMAT (5X,*INTERPOLATED mode Error FIELD DIAGNOSTICS:')

6 FORMAT (SX,'JULIAN DATE:',F8.3,
& * NUMBER OF Observations used :',14)

7 FORMAT (SX,'14INIt!UM DATE:'F8.3, ' MAXIIIJ DATE:',FS.3)
8 FORMAT (7X,'ERROR, XOBS TOO SMALL. MXOBS=',13)
9 FORMAT (SX,'Assumed NOISE LEVEL:',FB.5)
10 Format (SX,'Date (Time) Diagnostics (Julian Date): ')
18 FORMAT (X,'Number of influential points is ',14,//)

C

Cc
E--0.1

WRITE (PRINTER,9) E

C READ IN THE OBSERVATION DATA

c I=l
c 25 Continue

OPEN (UNIT=ItNFILE, Fi le=' xbt .dat')
READ (INFILE, ,End=30) Day(I),Gmt(I),Y(I),X(I),SST(I)

c I=I41
c Goto 25

c 30 Continue
c Most=I-I
C CLOSE (UNIT=IUFILE)

c Read in the observed data.

c for day and time
do 25 i = 1,most

Day(i) -- 1

Gmt(i) 1
tin(i) = I

25 continue

c for latitude and longitude of observations
c

c open (unit = 1, file = 'dec.pos')
do 26 i = l,most

writel*,*) x(i).y(i)
26 continue
C,

c for modal amplitudes
c
c open ( unit = 2, file ='xaa&)



c do 27 1 =l'mos*
c read(2,*) arnode(i)
c27 cont:inue
c

c for latitude and longitude of grid points
c

open(unit = 3, file a 'grid.poo')
do 28 1 = 1,119

28 continue
rewind(3)
close(3)

C

CALL SCALE(X,Y,Most)

Write (Printer,2)

Write (Printer,3)
Call Diag(Y.Host,Printpr)

c
CALL SCALE(XI,Yi,119)

c

Write (Printer,22)
call Ding (Xi,tiost, Printer)
Write (Printer,231

call Diag(Yijtlost.Printer)
c
c CALL JULIAti(DAY,GmtTindlost)

Write (Printer. 10)
Call Ding(Tin, Most, Pr inte-r)

c

Call Remav(amode,Most ,Ave,V)

C t4=O
c DO 40 .7=1,21

c DO 40 1=1,33
c ?4=t141

c xr(m)=crx*(I-171
c YIWM)=CFY*(J-11)
c 40 ENDDO
r

c

C Do SEVERAL ANALYSES
C



WRITE (PRINTER. 18) LIMIT
TCEN=START-TINC

DO 500 IOBJ=1,NOBJ

TCEN'=TCEN'+TINC
C GET THE USABLE OBSERVATIONS FOR THIS DATE

CALL GETOBS(Tin,X.Y,Amode,Most,TCen,Tim,
X Tobs.Xobs,UOBS,N)

MNDAY=TCen-TIM

MXDAY=TCens.TIM
WRITE (PRINTER, 6) Tcen,N
WRITE (PRINTER,7) MNDAY,HXOAY
WRITE (PRINTER, 18) 1,114IT

IF (N .EQ. 0) COTO 500

IF (N .GT. MXOBS) THEN

WRITE (PRINTER,8) MXOBS

GOTO 500
EtIDIF

C
C m is number of grid po.sitioiis,Anud will not chianqp.

M 119

DO 50 k =1. mn

CALL SELECT(LIMIT,XI(K),YI(YK),TCENl,XOBS,TOB5S,UOSS,
X UOPT,XOPT,TOPT.NNOBqDIST,TIM,nlfa,beta)

C Print 1,1N, Nohfz, ',N,Nob.;
C Do 49 IPXJ=1,NOBS
C Print *,Xopt(l,IPXJ),Xopt(2,IPXJ]).Uopt(IPXsI)
C 49 EndDo

CALL OB.IAN(tJOPT,XOPT.TOPT,NOBS,XI(K),YI(K).

UI(K)=UI(K).Ave
50 ENDDO

WRITE (PRINTER. 4)

CALL DIAG(mI,M RINTER)

WRITE (PRINTER,S)

CALL DIAG(ERRU,M. PRINTER)

WRITE (30 + Iloop,*) 'cevitre? tlime',TCen

WRITE (30 + loop,*) 'nuimber of obs poitits',IJ

WRITE (50 .4 loor,*) -72, -64. 37 .40
write (50 + loop,*) 17. 7

WRITE (40 4 loop,*1 -72, -64, 37 .40

write (40 + loop *)17. 7
do 51 1 = Im

WRITE (40 4loop,*) hJIM
WRITE (50 *loop,*) EPRLJ(l)

51 continue



500 CONTINUE
close(31)

close( 32)

close(33)
close(34)

close (4 1)
close (42)

close (43)

close(44)

close(S1)

close(52)

close(53)

close(S4)
END

SUBROUTINE GETOBS(Day,Posx, Posy,tTOBI'liiip.CDay,TimT,X,U,Hl)
C
C Input data!

C Oay.posx,Eosy space-time locAtion of data
C UOB.S observed data
C Ninp 1mimbor of Input points

C CDay Central day of estimate

C TIM width of time window
C
C Output data:

C T,X location of data
C U chosen obse~rvationi data
C N ntimber of pofints used
C
C ROUTINE TO GET THE OBSERVATIOtI DATA
C N TS TVHE NUMBER OF OBSERVATIONS
C

DIMENSION Ti1),X(2,lLU(l)
DIMENSION DAy(1) .UOBS(l) ,P0SX(1) ,POSY(1)
RealI MXDAY, MNDAY
NXDAY=CDAY*TlII
MI1DAY-CDAY-TIM
TKOUNT=0
Do 10 Id.,Ninp

IF' (OAY(t) .GT. MXDAY) GOTO 10
IF :DAY(I) .LT. MNI)AY) GOTO 10
1'OUNT=KOU11T4.1

T ( YOUNT) =DAY (I)
X(1,KOUNT) =POSX(I)
X(2,KOUNT) =POSY(I)

U (KOUNT) =UOBS I)
10 Cant'intiq

tTJKOUJT
RETJRN



END
C
c

SUBROUTINE SCALE(X, Y. )
C Scale Lat and Lotig to Km

DIMENSION X(1l)Y(1)
Parnmptoi MXeni -70.5, Yren 38.25)
Parameter (CFX 110.99, CFY 87.84)
DO 10 I=1,N

Y(I)=CFY*( Y(I)-YCen)
X(I)=CFX*( X(I)-XCEN)

10 ENDDO
RETURN
END

C
C

SUBROUTINE JULIAN (PAY. Gmt ,Time, N)
I HTECER DAY ( 1 ,mt(1I
Dimnension Time( 1)
Intpoer offset
PArampter (o~ffst 86000, 7lujjan86 64311)
Real MnDay, MxDn'y, Minte-,

1 FORMAT (5X,'MIN DATE :',F8.3,' MAX DATE :',F8.3)
tMRNDAY=9999 .9

?IXDAY=0 .0
DO 10 I=1,N

IMitutes=100.*(Time(I) -IFix(Tilne(I)))

Tirnefl) =Flont(JiiliariR6 ;- Dny(I) - Offs~et) + Time(I)/24.0

IF (Titue(I) .LT. MNDAY) MNDAY=Time(I)
10 VHDDO

WRITE (2,.1) MNDAY,MXDAY
RETURN
END

C
C
C

FUNICTION F(X,Y,T,a.lfa,b4-ta)
C T11E CORRELATIOll FUNCTION
C THlE SCALE FACTORS
c Parameter (a=111.6, b=R6.6)

a alfa
b, beta
r2=x**2 + Y*

F=0-.0 - r2/a*2)*exp(-.r2/b**2)
RETURN
END



C this program generates first 158 numbers ranomly
c

parameter(max = 58)
integer i,m,x(max),n

open( unit =1, file = 'randnumdeep')
call srand(3)
do 10 1 = I , mix

,4 n = irazidi)

x(i} = II

if(i.gt.1) then
do 20 m = 1,i-I

if ((x(i).eq.x(i}).or.(x(i).gt.max-2)) goto 40
20 continue

endif

write(*,*) i,x(i)
write(l,*) x(i)

10 continue
end



close(l)
close (2)
close ( 11)

close(12)
close(13)
close(14)
close(20)
close(21)
clo.siri22)

close (23)
close( 24)
end



C APPENDIX 7B

C Program by E.F. Carter

SUBROUTINE INVMTX (A,NA.VtV,N,D,IP,IERalfa,beta)
C Double Precision version

C MATRIX INVERSION V=INV(A)
C THE ARRAY A MAY BE ENTERED AS V TO SAVE MEMORY
C TP MUST BE DIMENSIONED TO AT LEAST 24N

-1 tTE-GP MA,NN!, M, I P f1) I!F
REAL*8 A (NA, N) ,V(NV, tl) ,D

RealI V*8 ax, VII, PVT, PVTMX, HOLD
C IEXHAX IS SET TO THE LARGEST BASE TEN EXPONENT THAT CAN BE
C REPRESENTED ON THE HACIrI1E, I.E. LARGEST=10**IEXMAX

DATA IEXHAX/38/
115 FORMAT(28H10*MATRIX SINGULAR IN I NI4TX')
116 FORMAT(34H0*DETERMINANT TOO LARGE IN INVMTX*)

IER = IERINV(N,NA,HV)
IF (IER .NE. 0) RETURN
DO 102 J=I,N

IP(J) = 0
DO 101 I-1,N

V(IJ) A(IJ)
101 CONTINUE
102 CONTINUE

D-- 1.
TEX -- 0

DO 110 M=1,N
VMAX 0.

DO 104 J=1,14
IF (IP(J) .11E. 0) GO TO 104
DO 103 I=1,ti

IF (IP(I) .JE. 0) GO TO 103

V11 : APS(V(I,J))
IF (VMAX .GE. VII] GO TO 103

VMAX = VH
K = I

L = .3
103 CONTINUE
104 CONTINUE

IP(L) = K
NrM = N*M
IP( (NIrt) = L
D = D*V(K,L)

105 IF (ABS(D) .LE. 1.0) GO TO 106
D = D*O.1

IEX = IEXil
GO TO 105

106 CONTINUE
PVT = V(KL)

IF (M .EQ. 1) PVTIX = ABS(PVT)
IF (ABS(PVT/FLOAT(M))+PVTMX .EQ. PVTMX) GO TO 113
V(K,L) = 1.
DO 107 J=1,N



suibroutine reduce (j)
parameter(most = 6)
integer i, j, ran(most) ,vnt , p
reail AmodI (most) ,.mod2(mcrti ,.modl (most)
real amod4(most),xpos(most),ypos(most)

c read in original modes

open (unit: 2, file ='randnumdeep')

open ( unit 1, f ile ='dec-pos-.mnt)
open ( unit It1, f ile ='modl.m~t I)
open Iunit 12, tile ='ntod2.mat')
open ( unit =13, file = 'nmod3.mat')
open ( unit =14, tile = 'mod4.niat')

c write out reduced set.
open ( unit = 20, t iles = 'rdscpos. int')
open ( unit =21, file = 'rmodi')
open ( unit =22, file = 'rmorl2' )
open ( uinit = 23, filr- 'rmo(d3' )
open ( unit =24, file = rntod4')

"o this section will reduce data set by j,the parameter fed from
"o program driver.

p' =0
do 100 1 =l,most

read(2,*) ran(j)

write(*,*) . itan (i)

rand(li, ') .'unorl I ()
read(12,*) amndl2i)
readfl3,1) nmor. ( i )

100 continue

do 110 i = ,most
do 120 11 1.j

if (i. ti. r~ti(n) ) goto 120
if(l.eq.ran(n)) goto 110

120 continue

P = p+1
write(20,*) p~xpos(i),ypos(i).
write(21,*) nmodl(i)

write(24.*) amod4.i)
110 cont Inue



HOLD = V(KJ)
V(K,J) V(1S,.J)
V(LJ) =HOLD/PVT

107 CONTINUE
DO 109 I=I,N

IF (I .EQ. L) GO TO 109
HOLD = V(X,L)
V(I,L) = 0.
DO 108 J=I,N

V(r,J) = V(IJ)-V(L,J)*HOLD
10P @ CONTINUE

109 CONTINUE
110 CONTINUE

H N+1+1

DO 112 J=1,N
H = M-1
L IP(M)
K = IP(L)
IF (K .EQ. L) GO TO 112

D = -D
DO III I=I,N

HOLD = V(I,L)

1(I,L) = V(I,K)
V(I,K) = HOLD

111 COtITINUE
112 CONTINUE

IF (IEX .GT. TEXHAX) GO TO 114
D = D*10.**IEX
RETURN

113 IER = 33
PRINT 115

RETURN
114 IER =1

D = FLOAT(IEX)
PRINT 116
RETURN
END
FUtICTION IERINV (N,tIA,ttV)

103 FORMAT(23110* N .LT. 1 I M INVMTX *)

104 FORMAT(24110* NA .LT. N IN INVI4TX *)

105 FOP.NAT(24110* NV .LT. N IN INVHTX *)

IERINV m 0
IF (N .GE. 1) GO TO 101

IERINV = 34
PRINT 103

RETURN
101 IF (NA .GE. N) GO TO 102

IERINV = 35
PRINT 104
RETURN

102 IF (NV .GE. N) RETURN
IERINV v 36
PRIMT 105

RETURN



APPEN'DIX 8B

Sthis matlab file reco,,qtruc.i-s the b~thyn At the qrid points
Susing 4 modes only, After the OA with reducing nuimber of

I~ initial XBT's.

I this pArt. reconstructs nall synthtetic, grid, XBrs using 4 modeq.

hold off

lond vac;
load gridmod;

load errmotd:
arid =gridmod';

for j 1:4;
for 1 1:80,
Pigvec(i,j) vec(i.(B1-jfl:

end

rpc-bath =eigvpc'grid;

save recbath.mat rec-bath /Ascii;

I PLOT (PTVEN XBT
I this part plots A given batIhy, SELECT XBT NMRBER
1 1, being lower left corner.

% srnxin = J 30 -80 01;
I AXiS (MfAXiS) ;
1plot (recbAth¶56),'.)
I grid;
Ititle(' X13T 56 ');
lylabel ('depth metreq'):
I xlabel('temp Celcius');
I hold on
I pallse

Inow to calciilatp the error iti eAch reconstructed bathy
Pigvecsrd = eigvoc' * eigvec;
xbhzvmr eigvecsrd~errmod';
xbtvar .sum(xbtvAr)
view = reshape(xbtvar.17,7)

view =view*:



view flipud (view);
%view = err;
save batherr.mat view /ascii;

hold off

% plot routine for IATLAB, of the reconstructed oa error.

for i = 1:17;
v~i) = -72.5 *0.5*1;

end
for i = 1:7;
y(i) = 36.5 * 0.5i;
end

c = contour(viewx,y);
v -- 0.2,0.4,0.6,0.81;
clahel (c, v);

grid;
I title('reconstruction error, using 1 out of 156 XPTs*); I the title must chA

xlAbel(Longitude west from Greenwich'); I each time
ylabel(MLatitude North');
title(' reconsruction error variance using all 156 XBTs')

hold on

I t%1%%%%%%%%1%%%%%%I%%%%I%%%%%1%1%%%II%%%%%%%%%%%%%%%%
I

I loading in data positions.

load rdecpos

long = rdecpos|:,2);
fat = rdecposf:,3);
Iplot (long, lat, ''');

Wxlabel('tongitude west from Greenwich')
lylabel('Latitude North')
%title ('position of deep XBTs')
Itext(-70.5,38.5, 'X)
1print
Ipause

A mark on box
box =[ -70.5 38.1



-70.5 38.75
-69.25 38.75
-69.25 38.5
-70.5 38.11

blong =boxf:,l)
blat =box(?,2)
Iplot (blong. blat)
pauew
print

Sload in each modal error.

hold off
cig

moderrl errniod(:,l)';
moderrl reshape(modetrl,17,7);
moderrl moderrl';
moderrl flipudfmoderrl);
kl contour(rnoaerrl,x,y);

title ('mode 1 error')
1print
tpause

moderr2 = rmd 2
moderr2 =reshape(moderr2,17.7);
moderr2 =moderr2';
modprr2 = flipud(nioderr2);
k2 =contourfmoderr2,x~y);
clabel(k2,v):
title ('mode 2 error')
1print.
tpause-

mnrlprr3 =errmod(:,3)'
modrJ' =r reshape(moderr3,17,7):
mnderr3 = moderr3';
moderr3 =tlipud(moderr3);
k3= contour(moderr3,x,y);
clabpl (k3,v);
title Cmode 3 error')
tprint
%paiuse

moderr4 =errmad(:,4)';
modprr4 =reshape(morierr4,17,7);
mnderr4 =moderr4';
,noderr4 = flipur](maderrl);
k4 =contour(moderr4,.x,y);
clAhel (k4,v);
title ('mode 4 error')
1print
I pati s



subplot(C221). contoir (moderrl x, y);
subplot (222) ,contoir (moderr2, x,y):

stubplotC223).contour(moderr3.x.y);
subplot (224) ,contour(moderr4,x,y);
Iprint

I plot routini~ for CON4TOUR
%nerr= n'err';
%save err.con nerr aci

lpliisprr =reclvnth(:,2l) totalerr(:,21);
lminiis'prr = recbath(?,21) -totalerrC.,

2 1);

Iplot (Pluserr)
%plot (itninserr)
*gltink tatalerr(:,21);
%clong recbath(:,21);

In~ve bath7lOS.n'at clang /ascii

!for j =1 :1
Ifor i = 1:80
Id.I.ptherr 4i. j) = glunk Ci.j)*100/cloiig( i, j)

Inave ipercenerr.mat dppthr~rr /ascii
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