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ABSTRACT

Expendable bathymetric temperature (XBT) data taken from
an anticyclonic meander crest within the Gulf Stream (Hummon
et al 1991) is analysed by looking at the empirical vertical
structure. The ensemble averaged data is formed into a
projection matrix that compares the value of the temperature
at one depth with the temperature at a second depth. The data
is smoothed with the correlation analysis being performed at
10 metre intervals from 5 metres to a depth of 800 metres.
The first four, or principle, EOFs of the projection matrix
are computed and the modal amplitudes for each XBT determined.
Using objective analysis the modal amplitudes are interpolated
onto a specified grid. Synthetic XBTs are then reconstructed
at the grid positions using the interpolated grid modal
amplitude values. A measure of the error variance at each grid
point is determined. The objective analysis is repeated using
successively fewer XBTs from the data set, until the resulting

error in the interpolated XBTs at the grid points become
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I INTRODUCTION

From a military standpoint, to carry out a successful
range prediction against a surface or subsurface unit, for
either passive or active SONAR, it is necessary to have access
to the most recent vertical temperature profile that is
available for the area of interest. If several XBTs are taken
at different positions and at different times within a
region, what is the optimal vertical profile at some arbitrary
point of significance within the region based upon this
collected data? Or, perhaps if multiple units are on task,
each taking their own XBTs, what is the optimal interpolation
of the water condition at some point between the units? The
development of range dependent prediction models makes a
knowledge of the water conditions between a unit and its
target even more crucial. Thus the ability to be able to
empirically assess the vertical water conditions at any point
within a target region, and to obtain valid and useful
information, is of considerable importance.

From a purely scientific basis, it would be of benefit to
know the approximate number of vertical profiles that need to
be obtained before a comprehensive analysis of a given area
could be achieved. Similarly, some measure of the optimal
spacing between XBTs would be of value for planning and the

economic use of valuable assets and time.




Recent developments in satellite technology now allow the
determination of the subsurface vertical structure by
measvring the dynamic height of the ocean using altimetry
(Carnes et al 1990). But, how many readings need to be taken
for a given region of the ocean before a realistic
interpretation can be constructed? Additionally, 1if gaps
exist within the data collection, how much error will exist in
interpolating data void areas? If sufficient remote readings
could randomly be taken in and around a given feature, how
many readings would be required before the feature’s vertical
temperature structure can be adequately reproduced?

The ultimate goal of this study is to find out how few
XBTs are required before an adequate vertical temperature
profile can be compiled within a Gulf Stream meander.

The feature analyzed in this study is the warm side of a
Gulf Stream meander that was identified and rigorously sampled
during 1988 (Hummon et al 91). It is anticipated that a
study of this type conducted in this particular area will be
of general use, and give an indication of the number of XBTs
that need to be deployed before an adequate interpolation can
be made as to the underlying water structure.

Carter and Robinson (1987) considered empirically the
effects of reducing the size of an original data set upon
the value of the contour maps that were produced. They
considered the depth of the 15 degree Celsius isotherm. The

data were taken during the POLYMODE experiment and consisted




of 443 XBTs. The depth of the 15 degree isotherm was extracted
from each of these XBTs and optimally interpolated onto a
regular grid. The results of the interpolation are shown at
the top left of Figure 1 with the associated amount of error,
for any location, depicted in the top right of Figure 1. The
data set was then halved and the analysis repeated (the middle
two pictures), with the effect that the new results showed
very little change in the error field. However, as the last
two diagrams show, by the time only a quarter of the data is
included the error 1in the analysis field has grown
considerably, to the point where the analysis is unacceptable
for practical purposes. The study indicates that in order
to survey the given area of the ocean it would have been
sufficient to have launched half of the XBTs that were
actually launched without any serious decrease in the quality
of the 15 degree isotherm map that was produced. Additionally,
the interpolation procedure they employed gives an explicit
statement of the amount of error involved 1in the
reconstruction at any location within the region thereby,
giving an unequivocal statement about its usefulness, or
otherwise, to a future user.

The object of this study is to consider the reduction of
data problem in an objective analysis procedure more
rigorously. By reducing a data set repeatedly by one
observation until the resulting error in the reconstructed

vertical temperature profile becomes unacceptable, the minimum
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Figure 1 The result ot an objective analysis of the
depth of the 15 C isotherm using different amounts of
data, for a six degree square centred at 70 W 29 N. 25 m
contour interval for analysis, 0.25 contour interval for
error. A B C represent 443 222 and 111 observations
respectively (after Carter & Robinson 1987).




number of XBTs required in the analysis can be determined.
The area of ocean under consideraticn in this study is very
difficult to interpolate adequately without a large amount of
data because of the high degree of variability that exists
within short spatial and temporal ranges.

Rather than just lookiny at one parameter, such as sea
surface temperature or the depth of the 15 degree isotherm,
this study will seek to reproduce the vertical temperature
structure at a given position within the regicn from the
surface to a depth of 870 metres. The analysis will also give
an account of the average error involved in creating a
synthetic XBT profile.

There are two theoretical strands that are considered; (1)
the theory of objective analysis and (2) the therry of
Empirical Orthogonal Functions.

The first, objective analysis, describes a method to take
a finite number of data points, at irreqular spatial or
temporal intervals over an area of the ocean’s surface, and
interpolate the data in such a manner that an optimal estimate
of a scalar value can be obtained for any given location
within the region.

The amount of data to be interpolated per drid point is
further reduced by exploiting the properties cf Empirical
Orthogonal Functions. The use of EOFs allows a given XBT to be
broken down into modes that are constant for the whole data

set, and into corvesponding modal amplitudes that are unique




uto each particular XBT. Then, for each XBT, the sum of the
products of the modes and the corresponding modal amplitudes
give a complete representation of the XBT in question.
However, the first few EOFs often explain the majority of the
structure of the complete XBT. Thus it 1is possible to
approximately reconstruct each XBT with a reduction in the
data. If, for instance, only the first 4 modes are considered,
then each XBT is represented by just 4 unique numbers, the
modal amplitudes.

Having determined the unique modal amplitudes for each
XBT, objective analysis is used to optimally interpolate the
four principle sets of numbers onto a regular grid.
Multiplying each in turn by its corresponding mode, results in
a synthetic XBT being reconstructed at each of the grid
points.

Having synthetically produced XBTs at each grid point, an
objective error analysis is used to estimate the total error
variance of each of the synthetic XBTs. Thereafter, using a
random generator, successive XBTs are removed from the
original data set. The objective analysis and reconstruction
are repeated until the error variance in the synthetic XBTs

become unacceptable.




I1 THEORY

A. INTRODUCTION

This chapter is divided into 4 main sections. The first
section outlines the development and theory of EOFs and gives
an account of the use of EOFs in oceanography. Similarly,
section two covers the background of objective analysis and is
followed by a development of the theory. The third section
explains how the error analysis of the modal amplitudes is
used to account for the error in the reconstructed synthetic
¥BT. The final section outlines how all the strands can be

brought together.

B. DEVELOPMENT AND THECnY OF EMPIRICAL ORTHOGONAL FUNCTIONS
1. Development of Empirical Orthogonal Functions

The theory of Principle Component Analysis was first
proposed by Pearson (1901) and developed into a comprehensive
theory by Hotelling (1933). Hotelling’s work led Kelly
(1935) to advance a mnodel suitable for modern computer usage.
The theory was first put into practice by Wrigley and Nechus
(195%5) in the field of psychology.

Lorenz (1956) outlined the theoretical basis for the

use of Principle Component analysis in meteorology,
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demonstrating its use as an aid to efficient weather
prediction and coining the phrase Empirical oOrthogonal
Functions (EOFs) which has become the accepted norm within the
geophysical sciences. The value of EOFs as a tool in
geophysical research is reflected in the variety of uses to
which they have been put. For instance, in meteorological
research, which requires working with large data sets, the use
of EOFs have been used to reduce the volume of data that need
to be interpolated or stored.

Stidd (1966) used EOFs to study climatological rain
fall patterns within the State of Nevada. By interpolating EOF
analysis between climate stations he was able to successfully
reconstruct the climate record of a station that had been
removed from the initial analysis. This is similar to the
current study in that the temperature data at each XBT site,
like the rain fall data, is represented by modal amplitudes,
and the data must be interpolated to additional locations
using objective analysis.

EOFs have been featured hichly in climatological
studies causing Mitchell (1966) to comment that EOFs may be of
significant use as climatological indicators. This view is
strengthened by the work of researchers like Kutzbach (1967),
who used EOF analysis successfully to combine climatological
records of temperature, precipitation and surface pressure

over the United States; and Kidson (1974), who used EOFs to




produce climatological indicators for both hemispheres and the
tropics.

Paegle and Haslam (1982) used EOFs in the prediction
of the 500 and 850 mb pressure heights over a 24 hour period.
Wallace and Dickinson (1972) showed how EOFs may be applied to
time series analysis, reducing the data processing required
and increasing the efficiency for spectral modelling of the
atmosphere.

In oceanography the technique is finding an
increasingly wide variety of uses. For instance Kundu (1975)
used EOFs in a time series analysis of velocity fields along
the Oregon coast. Carnes et al (1990) have shown that EOFs can
be used in conjunction with satellite derived ocean dynanic
heights to obtain a measure of the ocean’s subsurface vertical
temperature structure. Oceanographic models at Fleet
Numerical Oceanographic Center (FNOC), such as the Optimal
Thernal Interpolation System (OTIS), employ EOFs to
effectively represent ocean thermal climotologies
(Tunnicliffe and Cummings 1991). Similarly, the Navy/NOAA
Oceanographic Data Distribution System (NODDS) includes the
use of EOF techniques to compress large volumes of data,
enabling distant users either ashore or at sea to receive by
telephone link sophisticated real time ocean and

meteorological information using a desk top PC.




2. Theory of Empirical Orthogonal Functions’s

The above examples show the versatility and value of
EOFs as an effective tool within the fields of meteorology and
oceanography. Set out below is a development of the basic
theory. The approach outlined considers the work of Lorenz
(1956), who first described the use of EOFs in geophysical
research, Harman (1976), who formally derives the general
theory, and Dunteman (1989), whose clarity and examples gave
considerable insight into the technique.

The object of Principle Component Analysis 1s to take
a large body of data and empirically reduce it. The model
assumes a linear set of numbers such that a linear combination
of these components leads to a complete representation of the
original data set.

Mathematically the method assumes that,

Pi=gya i+ @yt oo oo o QgYy

equation 1

where ( j = 1,2,......n) and each of the observed variable P,

is described linearly in terms of n orthogonal components

¥1+¥2+++.¥,- The power of this approach being that only a few

of the components need to be retained in order to retain the

majority ci the total variance.
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The coefficients qy, are referred to as the

“loadings, "scores" or '"weightings" and in geophysics as
"modal amplitudes". Each modal amplitude is multiplied by its
corresponding principle component, with the sum being equal to
the value of the original variable. The problem is to find
suitable values of g and y to be able to represent the

variable p; in question. This is efficiently achieved by
expressing equation 1 in matrix form as,
P=QY

equation 2

where P is an m by n matrix of scalar variables whose columns

represent the vector P;, @ is an m by n matrix of modal

amplitudes and ¥ represents n column vectors each with m rows.

Consider the situation where m elements (P;i=1...m)

have been measured at n different locations. For this study,
80 isotherm depth measurements (m)} made at each of 156
locations (n).

Let

A=p‘lp‘

equation 3

11




where

equation 4

the difference of a value P; from the mean value P. P¥ is

the transpose of P* and A represents the covariance matrix

formed by the dot product of P* and P*. The covariance matrix

A is normalized to form the correlation matrix &,

A=<P*> <P

equation 5

and the symbols <> denote an ensemble averaging of the

variance from each data point. The matrix A is also known as
the projection matrix.

From the theory of matrix algebra (Harman 1976) a

general matrix @ can be expressed in terms of its eigenvectorse

and eigenvalues A such that,

equation 6

12




where Ge is regarded as a transformation of @ with A as the

constant of proportionality. Each root A, has a non zero

solution e¢; and the m roots A,,A,,.......4, lead to n values
€,:€,.....2, such that equation 6 may be written as,
Gle,.e,....8)=he . re,....0e,
equation 7
or in matrix form
GB=EA

equation 8

where A=diag(A,,A,....A,).

Inserting matrix A from equation 5 into the general

egquation 8 gives,

AY=Y

equation 9

The vectors y, are linearly independent such that the

: . . 1
determinants are non zero and ¥ has a unique inverse ¥ ,

Yar=A.

equation 10

13




Since A is a correlation matrix and is symmetric

A=A’

equation 11

(Y'Y are characteristic values with ¥ being orthegonal with

the property that,

equation 12

the identity matrix or,

y*=y

equation 13

giving that equation 14 can be written as,

YAY=A

equation 14

Equation 14 states that the symmetric matrix A may
be diagonalized by means of the orthogonal transformations¥
and that the elements of A and ¥ are real with ¥ being made

up of n characteristic linearly independent equations.

14




From equation 14 diagonally decomposing A gives
values for matrix ¥, and A. Now knowing the values of P and
Y, Q, the matrix of coefficients or modal amplitudes, can be
determined from equation 2. Having obtained values for @ and¥
equation 2 states that the value of P can be exactly
determined and that it equals the matrix product of Q and Y.

From equations 2,13,and 14 it follows (Paegle and

Haslam 1982) that the total variance is given by the sum of

the eigenvalues,

E:i;;szz:il

equation 15

and that each eigenvalue 1; gives the contribution of each
eigenvector ¥, to the total variance of P.

When the eigenvalues are arranged in descending order
the variance represented by each mode or eigenvector decreases

dramatically as the number of the eigenvalues are increased.

A realistic estimate of the original data P can thus be
achieved by using only the first few modes 7 and the

corresponding modal amplitudes Q.

15




equation 16

The use of a limited number of modes reduces the
quantity of data that has to be stored and processed. 1In
addition the variability in the higher modes is 1likely to
represent noise in the original signal. Thus, by removing the
higher modes a "cleaner profile™ is obtained. Preisendorfer
et al (1981) suggest that modes which can not be distinguished
from randomly generated data should be removed. Dunteman
(1989) suggests that all modes for which the eigenvalue is
less than one should be removed. Dunteman’s approach is used

within this study.

C. DEVELOPMENT AND THEORY OF OBJECTIVE ANALYSIS
1. Development of Objective Analysis

Objective analysis is a technique that will produce
an optimal estimate of some qguantity at a given location by
the interpolation of irregularly spaced data points. The
method is based upon the Gauss - Markov theory.

Objective analysis was first used in meteorology by
Gandin (1965) who used the technique to analyze atmosphe: ¢
pressure and windfields. The technique was introduced for

oceanographic use by Bretherton et al (1976), who demonstrated

16




its value in determining optimal temperature, velocity and
streamline maps. The technique was applied by Freeland and
Gould (1976) to data taken during POLYMODE and successfully
produced stream function maps of the North West Atlantic.

Carter (1983) extended the use of objective analysis
by considering distance variations separately in the X and Y
directions and a temporal component, thereby allowing
observations made at different places and at different times
to be mapped. In addition, the theory allows an explicit
statement to be made about the error in the determination of
an interpolated value at a given location. Because of the
introduction of a temporal component, Carter’s method also
enables maps of the guantity to be predicted for a future
time.

Objective analysis is now widely used in oceanography.
For instance, Watts et al(1989) used objective analysis to
model the depth of the 12 degree Celsius isotherm from
inverted echo sounder observations taken in the vicinity of
the Gulf Stream. Objective analysis 1is a standard
interpolation tool that is extensively used for computer
aided numerical prediction in both meteorology and
oceanography (see Clancy 1989).

2. Theory of Objective Analysis

The derivation outlined below, after Carter (1983),

forms a statement of the Gauss Markov theory for determining

a least squares optimal value.

17




The statistical model for objective analysis assumes

a stationary h-mogeneous field. Let 9, be a measurement of
some quantity and let the error in the measurement be e

r*

Then,

er=er+er

equation 17

where 0, is the true value. It is assumed that observation

error is uncorrelated with the true field such that,
R(eH,) =0

equation 18

where R(e,8,) represents the correlation between the error e

at position r and the measured field at some other locations.
It is also assumed that the correlation between

observation errors at two locations is zero,

Rle,e,) =e*8_,

equation 19

where R(e,e,) represents the correlation between e, and e,,e?

is the error variance, and §,, is the Krondiker delta having

18




a value of one when r equals s and the value of zero

otherwise.
Objective analysis seeks to find the optimal value of

a given quantity X at an arbitrary location. The cptimal
estimate of the value at the grid location is designated £.

In matrix form the estimate at the grid points is given as a
linear combination of the values of the data measured at a

variety of locations r such that,

equation 20

where 8, is the value of the quantity measured at position r
throughout the region. For example 6, could represent sea

surface temperature measurements taken at various irregularly
spaced positions within a given region. Whereas X represents
true values, the value X is the estimate that is determined
at the grid points by interpolating the values of ® onto the
grid by the use of linear combinations of ©, using the matrix
A.

In order to determine the estimates at the chosen
gr.d points it is first necessary to ascertain values for the

elements in matrix A. This is done in such a manner as to give

the optimal estimate of £. Throughout the derivation X and®

19




are referred to as if they were known, whereas in fact they
are the quantities ultimately that are to be determined.
Initially it is the value of A that is soughbt svch

that it minimizes the error by a least squares fit between the
true value of X at the grid points and the estimate X.
Firstly let

C =E[x0')

equation 21

where C4 is the correlation matrix found by comparing the

value of the quantity at the required grid point locations

compared with those at the given data sites.

C =E[XX']

equation 22

where C, is the correlation between the value at any required

grid point location compared to the value at any other

required grid point location.

Cy=E£166]

equation 23

where (G, is the correlation between the values at any two data

pcint sites.

20




Then to obtain the optimal interpolation the value of

the error C, is minimized such that

C,=Elee’] =E[(X-X) (R-X)']

equation 24

where C, represents the correlation between the mean square

variance of the estimated values compared to the actual
values. Substituting equation 20 into equation 23 and

expanding gives,

c,=E[ (A0-8) (26-8)]

equation 25

and,

Co=ACHA'-CgA'-ACy,+C, .

equation 26

This expression can be simplified by using a matrix identity

and noting that qh=q;,

Co=(A-CyCs') Gy (A-CrgCs ) '~ CrgCa Cop*Cy
equation 27

21




Since the matrices ¢; and CS‘ are nonnegative definite, then

the error matrix is minimized when,
"8
A"c’ﬂq =0
equation 28
giving,
A=CoCo .
equation 29

The value of the error matrix C, can be written explicitly as,

1

C,=C,~CraCa Cip.
equation 30
From equation 29 and substituting for A in equation 20, the

estimate of the value of the quantity at the grid points is

given by,

22




i = CQCQJG r

equation 31

and the error in these estimates is given by equation 30.

Thus, providing the correlation matrices Cg4 andG

can be determined a value for f, the estimate of the value at

any given grid location can be obtained from a knowledge ot 8,
the value at any given location. Equations 29 and 30 are a
statement of the Gauss Markov theory.

3. The correlation function

The correlation matrix €4, a measure of the

correlation between the values at each of the data sites
compared to the values at each of the grid points, is unknown.

Similarly, the correlation matrix C,_, the correlation between

successive grid point values, 1is also unknown. The only

correlation that is available is Gy, the correlation between

data values at the irregularly sampled locations.

However, the determination of ¢, is not straight

forward. In order to determine the correlation between two
points it is necessary to have made several readings at each
location, whereas in this study only one reading at a given
location is available. This problem is overcome by assuming
that the correlation between any two points is a function of

distance.
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The correlation matrix G, is formed by computing the

distance between each data point and every other data point.
The data pairs are grouped into distance bins, and the
correlation between distance bins is then determined using the

expression,

o o 2 (8,5, (8,5
rs (E (01*6;) 22 (es_a';)Z)llz

equation 32

where 8, and 8, are data values at two points r and s, and B

iz the mean of the values for distance bin k. Once the
correlation function has been determined for the data points
within the region the results are applied to the two unknown

matrices Cg4z and C,. Simply knowing the distance between a

grid point and a data point or between two particular grid
points is sufficient information to enable the corresponding
correlation between the two points to be computed.
Unfortunately there i< one more slight complication, in that
the two matrices have to be, by definition, positive definite
for equation 31 to be valid. This means that an estimate of
the correlation between two successive points can not be
achieved from a database simply by interpolating between two
adjacent distance bins, because the approximation may not be

positive definite. In order to ensure that the two matrices
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are positive definite it is necessary to fit a function to the
distance correlation database.

The function that is normally fitted to the curve

(Carter and Robinson 1987) takes the fornm,

C,.=(1-(z/a)?) e

equation 33

where a and b are the unknowns to be determined, r the

distance between any two data points r and s, and (., the

correlation between them. The values of a and b are
determined iteratively by minimizing the error between the

original correlations C, as given in the database outlined

above and C,,. where the error is given by,

0= (C,,—C,) 2.

equation 34

The correlation matrices of C,4 and C, can now be

determined from the function described in equation 33 and the

objective analysis can be undertaken.
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D. INTERPOLATED ERROR

Having obtained an estimate for the value of the first
four modal amplitudes at each of the grid positions, it then
remains to use the theory of EOFs to reconstruct a synthetic
XBT at each of these positions. This is simply achieved by
multiplying each modal amplitude by 1its corresponding
eigenvector and adding the four resulting vectors together, as
per equation 16. However some of the estimated modal
amplitudes used contain error. The error variance of each
modal amplitude is specified by equation 30, and must be taken
into account in reconstructing a synthetic XBT at a grid
position.

Consider a modal amplitude at a particular grid location

0; having an error variance e and assuming the synthetic
i Qo

XBT at that position is going to be reconstructed using i

EOFs, then the error variance in the synthetic XBT eg can be

shown (Carter 1983) to be given by,
2
€3=§:12§Qﬂ'
equation 35
The error variance from this reconstruction is then mapped
to give a pictorial image of areas within the region that

have high and low error variances.
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The error variance is a measure of the confidence of a
given reconstruction. Figure 2 shows an example of an error
variance map. Low confidence is indicated when the values
approach one. This map is the combination of the individual
modal amplitude error maps shown in Figure 3 using equation
35. The figure also shows where each XBT cast was taken. As
would be expected, the lowest error variance (highest
confidence) occur in areas that have a high number of
samples, with the error variance (lowest confidence) being

largest where there are no or few samples.

E. APPLICATION OF THEORY TO CURRENT STUDY

All the elements of the theory can now be put together to
analyze the area under investigation. Firstly the original
XBTs will be converted into a correlation matrix, where one
depth is compared to another and the whole data set ensemble
averaged to give the projection matrix. This matrix will then
be decomposed to find the significant eigenvectors, noting the
value of the corresponding eigenvalues. The most significant
eigenvectors or modes will be selected, and for each XBT
within the set the corresponding modal amplitudes will be
determined.

Once the modal amplitudes have been found, a correlation
matrix as a function of distance can be constructed. From this

an appropriate function will be fitted and the correlation
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matrices C, and C,y determined. The modal amplitudes can

then be optimally interpolated onto a grid. The process is
repeated for the second, third, and fourth modal amplitudes.
Synthetic XBTs can then be reconstructed at each grid
point using the interpolated modal amplitudes and a measure of
the error variance in each XBT can be determined from the

error matrices generated by the objective analysis.
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Figure 2 Reconstructed error variance map using all 156
XBT’s. The map is produced using equation 37 (effectively
combining the four maps from Figure 2. The contours are at
0.1 spacing. The central contour represents 0.1 (or 10%)
error variance.
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Figure 3 Error variance maps for the first four modal
amplitudes. Top left shows error variance for first, top
right for second, bottom left and right show third and

fourth respectively. At 0.1 intervals. Inner most contour
representing 0.1 or 10% error variance.
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III DATA

A. THE MEANDER EXPERIMENT

The data for this study consists of 156 XBTs taken within
the region of a Gulf stream meander sampled during the period
Scptember 17th to October 13th 1988. The original data was
collected as part of a much wider experiment that involved two
cruises, one in the autumn of 1988 and the second in the
spring of 1989. The first cruise samplea an anticyclonic
meander crest (EN 185) where the path of the current is convex
to the North. The second cruise collected data from a cyclonic
meander trough (EN 194) where the flow of the current is
convex to the South. The objective of the two cruises was to
investigate the time dependent Kkinematics and dynamical
structures of Gulf Stream meanders. The Gulf Stream meander
was sampled with a variety of instruments, and density and
velocity fields were computed to enable fluxes of mass,
momentum and vorticity to be determined as the meander

progressed in space and time.

B. THE XBTs
The following technical details of the XBTs are taken from

the initial cruise report (Hummon 1991).
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The XBTs used in the survey were Sippican T7 probes which
have a nominal depth rating of 760 metres. The XBTs were
launched from a fixed stern deck launcher with a BathySystemn
810 XBT deck unit. The data was stored on a HP-85B computer
equipped with an HP9121D disk drive. The software was supplied
by BathySystems but was substantially modified to allow
simpler and faster processing. The raw data was recorded in
volts versus descent time, The data were transferred to a
MassComp computer and each profile was converted into
temperature versus depth measurements and stored onto disk or
magnetic tape.

The resolution of the data is 0.65 metres with a 0.1 metre
precision. The stated accuracy of the depth measurement is
five metres or 2% of the depth, whichever is greater.
Temperature data is stored to within 0.001 degree Celsius
with measurement accuracy to within 0.15 degrees Celsius.

The data was edited to remove the first three measurements
corresponding to depths less than two metres. Readings taken
at depths greater than 810 metres, outside of the stated
operating range of the probes, were also removed. Spikes, bad
data and wire breaks in individual profiles were deleted by
hand on the MassComp computer. The full set of XBT casts is
shown in Figures 4-17. The geographic distribution of the
casts is shown in Figure 2, with location values being given

in the log shown in Appendix A.
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IV METHODS

Part A of this chapter describes how the original
projection matrix was computed and how the eigenvectors and
eigenvalues were determined. Part B describes how the
Objective Analysis was implemented and how the synthetic XBTs
were reconstructed. Finally part C describes how the data set
was reduced to find the minimum number of XBT sites that were

required in the case of this particular Gulf Stream meander.

A. DEPTH CORRELATION MATRIX
1. The matrix

To overcome initial data analysis problems all XBTs
less than 800 metres were removed from the data set. This left
a total of 156 useable XBTs for further analysis.

The vertical correlation matrix was formed using
FORTRAN program LOADBATHYS (Appendix 1B) and subroutine REDATA
(Appendix 2B). The subroutine interpolates temperatur; values
from each XBT at 10 metres intervals commencing with a depth
of five metres. The vertical correlation matrix was computed
in the main program by comparing the temperature at one depth
with that at another depth. This process ensemble averaged

over all 156 XBTs using equation 36.
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A=Y’ (0,-5)) (8,-0 /(Y (8,-9))2(0,-F))2)*/2

equation 36

where A4 is the 80 by 80 projection matrix formed by comparing
the temperature at all 80 depths with each other and 6 is the
temperature at depths i and j, with the overbar representing

the mean temperature for that depth i or j. The projection

matrix is visualized in Figure 18.

8e402

6e+02};

4e+02

2e+02 Vi3

2e+0£

Figure 18 Contour map showing correlation of
temperature between depths.
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2. Eigenvectors and values
The correlation matrix, A, was decomposed to find its
eigenvalues and eigenvectors using equation 9.

Figure 19 shows the first six eigenvaluesland the
associated variance for the first four modes. Each eigenvalue
is proportional to the variance contributed by its
corresponding eigenvector (Harman 1976). The first eigenvector
accounts for over 75% of the variance of the correlation
matrix, the second eigenvector is responsible for 15%, the
third for 5.1%,and the fourth for 1.7%. The cumulative percent
variance explained by the first four eigenvectors is over 98%
of the total variance of the projection (correlation) matrix.
Thus, instead of using 80 eigenvectors to describe the
variance in the correlation matrix A, it is possible, using
the criteria discussed by Dunteman (1989), to describe the
matrix sufficiently with only four, with a minimal loss in
information, thereby saving considerably on data storage and
processing requirements and suppressing the noise conta’ned
within the higher modes. The modal amplitudes for ?ach XBT

were calculated using equation 16 in a MATLAB subroutine.
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Figure 19 The first 6 eigenvalues. Percentage of variance
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B. OBJECTIVE ANALYBIS

Each XBT, after the application of the EOF decomposition,
is represented by four modal amplitudes. The problem is to
interpolate 'he modal amplitudes to arbitrary positions
within the analysis region using objective analysis. It was
decided to compute the interpolated modal amplitudes at
regular intervals using a half degree spacing in both
longitude and latitude, over a grid extending from 37 to 40
degrees North and 64 to 72 degrees West. The length scale

between grid points of approximately 50 km was chosen because
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it is comparable to the Rossby radius of deformation at this

latitude.
The estimate, X, of each amplitude at each grid location

using equation 31 was computed. The correlations are assumed
to depend solely upon the distance between observations and
similarly between observations and grid points.

1. Determination of spacial correlation matrices

The distance between XBT sites was calculated and
grouped into bins. Several bin intervals were considered with
the object being to find an interval that gave a reasonable
number of data pairs per bin, allowing an unbiased measure of
correlation by distance to be determined. This was achieved
using the program DEEPCOR and the subroutine CALC described in
Appendix 3B.

The number of data pairs for the three intervals used
are shown at Table I. The 25 km interval gave sufficient
data pairs for each bin out to a distance of 200 km, and
allowed eight spatial correlation estimates to be made. The
results are shown in Figures 20-23.

The correlation function described in equation 33 was
used to model the correlation estimates shown in Figures 20-
23. The parameter a is equal to the distance at which the
correlation falls to zero, and is given as the point where the
curve in Figures 20-23 crosses the X axis. The value of b .s

the value of the distance when the correlation equals the e

folding distance (e"!'). The value of the coefficients a and b

.
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were found iteratively using the program FUNCTION given in

Appendix 4B. In this program, the square error (,),

e=(C.-C,)?2

equation 37

between the original data points, C, in Figures 20-23, and
the iterated values C,' calculated using egquation 33, 1is

minimized. The iteration sequence is intialized with values
of a and b from visually inspecting Figures 20-23.

In order to determine whether each incremented value
of a and b should be larger or smaller than the initial
value, equation 33 was differentiated with respect to a and
with respect to b. The analytical solution was used to
increment a and b in such a way that the mean square error was
reduced with each iteration. The iteration was repeated until
the error had reduced to 0.05. The final values of the
parameters a and b are shown in Table II.

It is assumed that the distance correlation function

1

determined above for Cy will also be applicable in the
observation to grid point correlation matrix Co"

The objective analysis FORTRAN source programs are
provided in Appendix 5B, 6B and 7B for reference. The first
guess for each analysis is taken as the local weighted average

of the modal amplitudes. Output from the objective analysis
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consists of contour maps of the first four modal amplitudes,
and analysis error of the interpolated amplitudes.

Contour plots of the first four modal amplitudes are
shown in Figures 24-27 and their associated error maps in
Figures 28-31.

2. The reconstruction

Using the modal amplitudes calculated by the
objective analysis, synthetic XBTs were reconstructed at
each of the grid points using Equation 16. However, the
error in the XBT reconstruction 1is dependent on the position
of the reconstruction. Synthetic XBTs produced in areas with
high concentrations of observation stations are expected to
suffer less error in reconstruction than synthetic XBTs
produced in areas with sparsely populated data. The error
variance in each XBT was calculated using equation 34 and the

resulting error variance map is shown in Figure 32.

C. REDUCING THE NUMBER OF XBTs

Of ultimate interest is the size of the error variance in
XBTs reconstructed within the anzlysis area. From the
associated error variance map it is possible to assess, for
any given position, the value of reconstructing and using a
synthetic XBT at that point.

It was decided that for a reconstructed synthetic XBT,
less than 30% error could be of use. The area inside the 30%

contour of Figuie 32 was noted. Successive XBTs were removed
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and the objective analysis repeated until the 30% contour
became the central or first contour. This meant that the area
that was now enclosed represented error variances greater
than 20% but less than 30%. The number of XBTs remaining was
noted.

The original XBTs were numbered sequentially and the
FORTRAN program RANDUM was used to place these numbers in
random order. On commencing the objective analysis suite of
programs, subroutine REDUCE permitted the number of XBTs to

be used in the objective analysis to be varied.

Table I NUMBER OF DATA POINT PAIRS PER BIN FOR THREE
DIFFERENT BIN SIZES.

12 km bin size
12 24 36 48 60 72 84 96
81 104 | 114 | 142 | 184 | 190 | 214 | 226

‘ 25 km bin size

" 25 |50 |75 |100]125] 150 175 | 200 | 225 | 250 “

195 | 266 | 412 | 452 | 370 | 310 | 276 | 224 | 90 68 I

50 km bin size
| 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
461 | 864 [ 680 | 500|158 |58 [52 |62 |92 | 106 "
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Figure 20 Correlation between data point pairs using a 25
km distance bin for the first modal amplitude.
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Figure 21 Correlation between data point pairs using a 25
km bin for the second modal amplitude.
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Figure 22 Correlation between data point pairs using a 25
km bin for the third modal amplitude.
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Figure 23 Correlation between data point pairs using a 25
km bin for the fourth modal amplitude.
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Table II PARAMETER VALUE a AND b FOR EACH OF THE MODAL
AMPITUDES.

—— —

MODAL AMPLITUDES
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Figure 24 Contour map of the first modal amplitude.
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Figure 25 Contour map »f the second modal amplitude.
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Figure 26 Contour map of the third modal amplitude.
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Figure 27 Contour map of the fourth modal amplitude.
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FPigure 28 Error variance map as a result of interpolating
the first modal amplitudes. 0.1 contour intervals.
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Figure 29 Error variance map as a result of interpolating
second modal amplitudes. 0.1 contour intervals.
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Figure 30 Error variance map as a result >f interpolating
third modal amplitudes. 0.1 contour intervals
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Figure 31 Error variance map as a result of interpolating
the fourth modal amplitudes. 0.1 interval contour spacing.
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Figure 32 Error variance map, produced by using equation
37, effectively the combination of Figures 28-31. The *
indicates the original XBT sites. The contours represent
the amount of confidence that can be placed in a
reconstruction at any location within the area.
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V INITIAL ANALYSIS

A. RECONSTRUCTION ALONG A LINE OF LATITUDE

To get a feel for how good or bad the reconstructions
appeared, a line of synthetic XBTs along 37.5 N from 72 West
to 69.0 West were reconstructed at 1/2 degree intervals and
are shown in Figures 33-36. A group of real XBTs, taken along
the proximity of this line are shown in Figures 37- 44. The
positions of the real XBTs are readily apparent by consulting
Figure 45 which indicates the position of the XBTs used in
this analysis.

Although the two groups of diagrams show a general
similarity in shape there are enough differences to cause
concern. Firstly, the synthetic XBTs all tend to exhibit an
temperature minimum at about 200 metres that is more
exaggerated than in the real XBTs surrounding this line of
latitude. Secondly, the synthetic XBTs also show a strong
negative temperature gradient within the first 30 to 80 metres
that again is not apparent in most of the real XBTs, which
for the most part are isothermal or exhibit only a slightly

negative temperature gradient over the same depth range.
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B. RECONSTRUCTION OF ONE XBT

To pursue these discrepancies further XBT 7105A was
selected for closer study. This particular XBT was chosen
because its position is at the same location as a
synthetically produced XBT. Thus, it would be expected that
the profiles of the real and the synthetic XBTs should show a
very high degree of similarity. The real XBT 71057, is shown
in Figure 42 and the synthetic XBT in Figure 34. Again, the
synthetic profile exhibits a temperature minimum at two
hundred metres and a negative gradient in the surface layer,
both features being less pronounced in the observed profiles.

As a check to ensure that the EOF decomposition had been
performed correctly it was decided to reconstruct 7105A using
all 80 modes. The results of this are shown in Figure 46 where
comparison with the original and the synthetic XBT using four
modes can be made directly. Figure 47 shows the difference

between the original and the reconstructed XBT using 80 modes
to be negligible, of the order of 10™° degrees Celsius,

whereas Figure 48, which shows the difference between the
original and the reconstructed XBT using 4 modes, shows a
much larger overall error of 0.44 degrees Celsius. Table IITY

gives the mean square error for a selected number of modes.
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C. RECONSTRUCTION AT CAST SITES

In addition, the objective analysis was performed at cast
sites taken within the 10% error variance contour line of
Figure 32. Thus, instead of the objective analysis being done
on a reqular grid, the procedure reconstructed synthetic
XBTs at the same sites where the original XBTs had been
taken. This was done as a check to ensure that the
reconstructed error map was consistent and to gain a measure
of how much error there was between the original XBTs and the
synthetic reconstruction. A selection of these XBTs are shown
in Figures 50 - 54, along with a graph of their associated
RMS error. The position of the original casts can be found
from Figure 49.

The RMS error at each of the 80 depth setting is computed
as a percentage of the temperature value compared to the
reconstruction using 4 modes. An average error, expressed as
a percentage, is then obtained for each XBT, and the results
are averaged over the set of XBTs used in the analysis. The
overall error between the synthetic XBTs compared to the
reconstruction using the four original EOFs was 5%, well
within the 10% boundary.

Reconstruction of all 15& XBTs, using only four modes,
gave an error, when compared to tile original XBTs, of between
6-7%. The overall error between the OA reconstructions and the

original XBTs was found to be between 10 and 11%.
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D. RECONSTRUCTION AT SELECTED GRID POINTS

A selection of XBTs were reconstructed at grid point sites
and the error compared to the originals that were likewise
taken at the same points. These plots and the associated
error graphs are shown in Figures 55 - 62. The position of
each XBT is shown in Figure 63. XBTs 71 and 88, shown in
Figures 60 and 61, are displaced from the nearest grid point
(38.5 N 70 W), to which they are coi'pared. These profiles are
included to show the wide range of variability that exists

within short spacial distances.
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Figure 33 Reconstructed XBTs at positions 37.5 N 72 W
(a)and 37.5 N 71.5 W (b).
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Table III TABLE SHOWING MEAN RMS ERROR FOR ORIGINAL XBT

7105A COMPARED WITH ITS RECONSTRUCTION USING DIFFERENT
NUMBERS OF MODES.

mode 1 2 3 4 5 6 “
error 4.4 1.6 0.8 0.4 0.3 0.3
mode 7 8 9 10 20 30
error 0.2 0.1 0.1 0.12 0.07 0.04
mode 40 50 60 70 80
error 0.03 | 0.02 | 0.01 |0.001 |0.001

‘ e
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73



temp Celctus
) w 3 r 2 ] |3
5
; /)"’-J
-’/
3t a7
_.? 49 weiptand
E{/ - ROY mnlpee
gt _-" .. 4 ety
é: 1A
s {
L3
x £
B
b oo H
s
3t i
3 everape o crrw (A 1 4 puwices ) (RIS
__-'} sverape 1 error OA feiginat= 79218,
= & S . A

.3
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XBT 63 compared with reconstructions using
the OA being performed onto the site of
the XBT cast. b, rms error between the OA and the 4 and 80
mode reconstruction for all depths.
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VI THE RESULTS

A succession of error maps using reduced data are shown in
Figures 64-70. It can be seen that the data were taken in two
natural clusters. In the discussion that follows, only the
Western cluster is considered. Within this cluster, most of
the XBTs lie within an area covered by the 10% contour. After
reducing the total number of XBTs to 40, the area covered by
the 30% contour is still on the order of the size of the area
covered by the original 10% contour.

The experiment was refined to identify a specific area
that lay within the original 10% error contour line.
Additionally, only XBTs taken in and around the designated
area were included in the subsequent analysis. The cluster to
the east was removed, plus a few XBTs laying in the extreme
north of the analysis area. This resulted in 133 XBTs being
used for the analysis (Figure 71). The aim of the experiment
was to reduce the data set until the 30% contour intruded into
the specified area. The sequence is shown in Figures 72 -
75. The 30% contour crosses the borders of the designated area
when the data set is reduced to 69 XBTs.

It was concluded that, for a Gulf Stream meander, a
minimum of 69 XBTs is required to adequately reproduce
synthetic vertical temperature profiles with an acceptable

error variance of 30%.
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Figure 71 Reconstruction error variance using the 133 XBTs
in the designated area.
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Reconstruction error variance using 100 out of the
possible 133 XBTs.
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Figure 73 Reconstruction error variance using 75 out of
the 133 available XBTs.
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Figure 74 Reconstruction error variance using 70 out of
the 133 available XBTSs.
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VI DISCUSSION

A. THE RECONSTRUCTION

The difference between an original XBT profile and its
reconstruction using only the first four EOFs has been of
concern throughout this study. The analysis showed the
average difference was of the order 6%. Thus, efore the
objective analysis is undertaken, a degree of error has
already been introduced with the best that can be hoped for
being a contour positioned on the error variance map accurate
to within plus or minus 6 %. As a result, a synthetically
reproduced XBT will have associated with it error due to the
objective analysis and error due to the use of a truncated
series of four EOFs. However, the first four modes account for
over 98% of the variance, and reflect a minimum number that
could reasonably be used. If higher accuracy was required,
then more modes could have been considered but at the risk of
of including noise from individual observations.

All these sources of variability are included in an 80
modes solution. The current situation is,in effect, a trade
off; loosing some of the fine structure due to the small XBT
data set and analysing only a limited number of vertical
modes. Nevertheless, the study shows that a limited number of

vertical modal amplitudes may be interpolated using objective
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analysis to synthetically create XBTs at any given point
within the region, with a definitive statement as to the

level of confidence that can be placed in the reconstruction.

B. THE NUMBER OF XBTs

The last set of data runs in this study (Figures 71-7%),
provide an example of a realistic military or scientific
scenario. The question asked was how many XBTs need to be
taken in a Gulf Stream meander for a reasonable estimate of
the ocean’s vertical temperature structure can be inferred any
where within the meander?

The area initially chosen was the area within the 10%
error variance contour and reflects the area that was most
heavily surveyed. The XBTs surrounding the area were also
included, as they were considered to represent XBTs that would
be dropped by units, whether by ship or aircraft, that were
proceeding to or away from the area. Overall, XBTs are not
dropped at regularly spaced intervals, and, although not
random in nature, they tend to reflect a distribution that
would be expected to be produced by several surface units
attempting to track a covert submarine.

The area noted in Figures 71-75 is approximately 1400
square miles and was initially surveyed by 133 XBTs. The
analysis indicates that, given a confidence 1level of 30%

error, the same area could have been adequately sampled by 70
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XBTs. This is a saving of nearly 50 percent in XBTs, but, more
importantly, this study indicates that an effective analysis
can be achieved in a complicated region with relatively few
XBTs. Although this study has atilized data from within only
one Gulf Stream meander, it provides a general indication of
the amount of observations that would be needed within other

Gulf Stream eddies or meanders.

C. OPTIMAL SPACING

The determination of the spacial correlation matrices
resulted in parameter b, the e folding distance, to be defined
and calculated for each of the modal amplitudes. This distance
places a limit on the separation that can exist between two
observations to be included in the analysis. From Table II it
can be seen that the second modal amplitude gives the smallest
vaiue, a distance of 25 km. This value represents the maximum
distance of separation that should exist between two adjacent
observations. For the purpose of economy and military
logistics the figure represents the optimal spacing that
should exist between XBT cast sites.

The value of 25 km is approximately half that of the
Rossby radius of deformation and is suggestive that a smaller

grid scale would have been more appropriate.
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D. RECOMMENDATIONS

To valididate the claim that 25 km is a good optimal
distance, it would be of value to extend the study to consider
regularly spaced XBTs (generating them synthetically; as the
data from any real survey, by its very nature, will tend to
have been erratically sampled data in terms of both time and
space) with the distance between adjacent casts being
gradually extended until the resulting error variance becomes
unacceptable.

The current analysis also does not take into account the
fact that each XBT was taken at different times. It was
assumed throughout the study that all XBTs were valid at the
analysis time. The study could be extended to take time into
account, with the interpolation being adjusted to allow for
an optimal value to be chosen both in terms of time and space
(see Carter 1982).

A different correlation function could also have been
fitted to the cross flow and along flow directions. This has
value as it helps to account for the rapid changes that take
place across the Gulf Stream front as opposed to the expected
similarity in values taken along the front. In this study, the
casts were taken within a well developed horseshoe shaped
meander so it was decided to assume homogeneous statistics

using the same correlation function in all directions.

98




However, the use of a non isotropic field should be
considered.

A major extension to the study would be to obtain the
principle modes by including data from other Gulf Stream
eddies and meanders so as to build a climatology of Gulf
Stream eddies. It is likely that the modal decomposition of
a projection matrix defined from a larger data set would
remove the spurious effects evident in the current study and
allow for an improved reconstruction of the data when using
the four principle modes. It is considered that a climatology
of eddies rather than a climatology of the North West Atlantic
would be of greater value in attempting to empirically model
XBTs within the Gulf Stream region.

It is noted that the surface layer is poorly modelled,
suggesting that two analyses may be required. One analysis for
the surface layer, the upper 80 metres, and the second for

the deeper water below the thermocline.
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VII CONCLUSION

The creation of synthetic XBTs at regular locations within
a Gulf Stream meander by the use of an objective analysis of
modal amplitudes produced from the decomposition of the
vertical temperature correlation projection matrix has been
shown to be of value. Although there is a degree of error in
the reconstruction, the value of the error is explicitly
stated.

Using the error variance field generated from the
objective analysis, it has been shown that within a 1400
square mile region of a warm Gulf Stream meander a minimum of
69 XBTs need to be taken in order for a synthetically produced
XBT to be within 30% of its true value.

The spacial correlation statistics indicate that the

optimal distance between XBT cast site must be 25 km or less.
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APPENDIX A.

|

|

Sep 17 88261:10:10 38 528 N 70 75 W xbt ]
Sep 17 88261:11:14 38 42.3 N 70 3.1 W xbt 2
Sep 17 88261:12:19 38 306 N 69 57.1 W xbt 3
Sep 17 88261:19:26 37 495 N 68 218 W xbt 4
Sep 17 88261:20:07 37 476 N 68 93 W xbt 5
Sep 18 88262:14:11 33 00 N 66 00 W xbt 6
Sep 18 88262:15:05 33 104 N 65 588 W xbt 7
Sep 18 88262:16:07 38 214 N 65 585 W xbt 8
Sep 18 88262:16:57 38 299 N 65 576 W xbt 9
Sep 18 88262:17:40 38 300 N 65 45.1 W xbt 10
Sep 18 88262:18:36 3B 253 N 65 314 W xbt 11
Sep 18 88262:19:34 33 174 N 65 167 W xbt 12
Sep 18 88262:20:39 38 86 N 6 09 W xbt 14
Sep 18 88262:21:38 38 163 N 64 508 W xbt 15
Sep 18 88262:22:26 38 253 N 64 425 W xbt 16
Sep 18 88262:23:19 38 266 N 64 264 W xbt 17
Sep 19 88263:00:31 38 284 N 64 34 W xbt 18
Sep 19 88263:02:52 38 443 N 64 146 W xbt 19
Sep 19 88263:05:04 38 584 N 64 424 W xbt 20
Sep 19 88263:07:29 39 0.1 N 65 152 W xbt 21
Sep 19 88263:11:34 39 03 N 66 144 W xbt 23
Sep 19 88263:14:06 38 548 N 66 48.6 W xbt 24
Sep 19 88263:16:11 38 539 N 67 217 W xbt 25
Sep 20 88264:04:20 38 147 N 70 155 W xbt 26
Sep 20 88264:05:27 33 52 N 70 264 W xbt 27
Sep 20 88264.06:25 37 564 N 70 335 W xbt 28
Sep 20 88264:07:23 37 484 N 70 414 W xbt 29
Sep 20 88264:08:22 37 409 N 70 505 W xbt 30
Sep 20 88264:09:30 37 325 N 71 18 W xbt 31
Sep 20 88264:10:44 37 234 N 71 144 W xbt 23
Sep 20 88264:12:01 37 304 N 71 294 W xbt 34
Sep 20 88264:13:18 37 40.1 N 71 43.1 W xbt 35
Sep 20 88264:14:20 37 494 N 71 537 W xbt 36
Sep 22 88264:15:32 383 06 N 72 6.6 W xbt 37
Sep 20 88264:16:34 38 7.8 N- 72 194 W xbt 38
Sep 20 88264:20:34 33 98 N 72 98 W xbt 39
Sep 21 88264:23:57 38 153 N 71 403 W xbt 40
Sep 21 88265:03:52 3B 169 N 71 251 W xbt 41
Sep 21 88265:09:20 383 66 N 71 103 W xbt 42
Sep 21 88265:10:25 38 170 N 71 98 W xbt 43
Sep 21 88265:15:59 38 160 N 70 560 W xbt 44
Sep 21 88265:21:39 38 178 N 70 357 W xbt 45
Sep 23 88267:15:35 37 228 N 72 237 W xbt 46
Sep 23 88267:17:22 37 223 N 72 127 W xbt 47
Sep 24 88268:00:26 38 18.1 N 71 239 W xbt 18
Sep 24 88268:02:54 38 133 N 71 109 W xbt 49
Sep 24 88268:03:58 38 11.2 N 70 504 W xbt 51
Sep 24 88268:05:03 38 13.1 N 70 295 W xbt 52
Sep 24 88268:06:07 38 167 N 70 141 W xbt 53
Sep 24 88268:06:58 38 197 N 70 33 W xbt 54
Sep 24 88268:08:00 38 188 N 69 496 W xbt 55
Sep 24 88268:09:01 383 82 N 69 478 W xbt 56




30
i

§8268:09:55 37 595 N 6 S19 W xbt 57
88268:10:56 37 478 N 69 47.3 W xbt 58
88268:11:56 37 386 N 69 31.5 W xbt 59
88268:13:48 37 324 N 69 443 W xbt 60
88268:15:23 37 294 N 0 02 W xbt 61
88268:17:12 37 29.1 N 70 216 W xbt 62
88268:18:34 37 289 N 70 384 W xbt 63
88268:19:59 37 292 N 70 569 W xbt 64
88268:21:29 37 299 N 71 176 W xbt 65
$8268:23:00 37 307 N 71 366 W xbt 66
88269:00:04 37 423 N 71 365 W xbt 67
88269:00:59 37 544 N 71 328 W xbt 68
88269:04:49 38 1.8 N 71 179 W xbe &
88269:08:33 38 65 N 71 48 W xbt 71
88269:12:11 38 11.3 N 70 523 W xbt 72
88269:13:26 3 32 N 70 405 W xbt 73
88269:14:52 38 146 N 70 400 W xbt 74
88269:15:53 38 258 N 70 400 W xbt 75
88269:23:05 38 133 N 70 25.1 W xbt 76
88269:23:58 38 81 N 70 140 W xbv 77
88270:04:20 38 267 N 70 01 W xbt 78
88270:07:35 38 57 N 69 521 W xbt 79
88271:17:59 38 170 N 71 330 W xbt 80
$8271:19:27 38 298 N 71 153 W xbt 81
88271:21:01 38§ 428 N 70 559 W xbe 82
88271:22:35 38 555 N 70 372 W xbt 83
88271:23:23 39 17 N 70 271 W xbt 84
88272:00:36 39 157 N 70 314 W xbt 85
88272:02:00 39 323 N 70 395 W xbt 86 -
88273:11:21 33 380 N 71 01 W xbt 87
88273:14:28 38 222 N 70 447 W xbt 88
88273:17:32 38 391 N 70 294 W xbt 89
88273:20:17 38 220 N 70 148 W xbt 90
88273:23:.09 38 379 N 69 599 W xbt 92
88274:00:55 38 297 N 69 527 W xbt 93
88274:04:11 33 303 N 69 360 W xbt 94
88274:05:11 38 380 N 69 297 W xbt 95
88274:08:01 38 23.0 N 6 100 W xbt 96
88274:09:27 38 105 N 6 SO0 W xbt 97
$8274:10:23 33 00 N 69 00 W xbt 98
88274:11:23 37 551 N &8 til4 W xbt 99
88274:12:27 37 506 N 69 238 W xbt 100
88274:13:25 37 475 N 6 338 W xbt 101
88274:14:24 37 443 N 69 46.0 W xbt 102
88274:15:31 37 402 N 70 04 W xbt 103
88274:16:33 37 36.1 N 70 125 W xbt 104
88274:17:56 37 300 N 70 300 W xbt 105
88274:19:21 37 239 N 70 440 W xbt 106
88274:20:00 37 215 N 70 503 W xbs 107
88274:21:47 37 16.1 N M1 78 W xbt 108
88274:23:12 37 72 N 71 200 W xbe 109
275:00:27 37_00 N 71300 W _xbe 110
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xbt 165
69 47,

W
w xbt 166




c APPENDIX 1B

program loadbathys
c
c

c.ttiﬁ“"iii““i.i.QQiﬂ.ﬁ.‘.i'OQQfﬁQiﬁiiiﬁiiib..'.bﬁb&dé'ﬁ‘b“ﬁfGtttiﬁ0040‘

c this file loads the bathys into an array. and calculates correlation.
cl...ﬁiit"’iii.ﬁf‘fiii'QQﬁ.ﬁﬁ’ﬁ.ibiitﬁ.ﬁi'il.iﬁib..iGiﬁ“ibi'ii’ﬁ&iﬁﬁit’tt.'

integer m,n,p,ly,iz.q

real sumab,corro,a,b.y.z .tempvar (80, 156), sumvar (80}
integer counta(80, 156), count

real deptha(30,156),corrol(80,82)

real tempa(80,156),mean(82),times,volt, qual

real sumsqAa, sumsqb, depthc (2000, 156), tempc (2000, 156)
character lat*10,long*12,time*4

character rechuma(80,156)+*8, renum(156)*9

integer yearday

c I E 2 R R E Y R S R F R R R R R R R RN R R R N R AN NN R RN E R R RS E R AR E N AN EEE AR ]

c LOAD IN DATA

write(*,*) ‘loading bhathys’

open (unit 4, file = 'deepname’,status = ’'old’)
open{unit = 20, file ‘name’)

open{unit 21, file 'namepos ‘)

p:o

]

do 200 n = },156
read(4, ' (a9%9) ' ,end = 230) renumin}
p:p&l
write(20,*) p,’ ', renum{n)
open{unit= 3,file ='/usr/whitney_dl/xbt/’'//renum(n}))

rewind 1

read{3,*)

read(3,210) yearday,time
read(1,220) lat, long
read(3,*)

read(3, ')

c write(*,*) yearday,time
write(*,*) lat, long
write(21,*) lat, long

210 format (9x,13,t29,a6)

220 format (6x,al0,t25,a12)

do 240 m = 1,2000
readd{l,*,end = 200) times,depthc(m,n),




$ volt, tempc(m,n),gual
240 cont inue
write(*,*) p
200 continue
230 close (4)
close(3)

write(*,*) p,’ bathys loaded’

(I Z 2 R 2 XXX R R R R R E R R R AR R R R AR R R RN R R R R AL R E R RN AR R R R 2 AR AR R 2

c¢ This section calls redata and calculates temp at
¢ 10m increment depths, starting at Sm, for each bathy and loads
c them into arrays. Also finds mean temp for given depth taken over
¢ all bathys.
ci"...ﬁﬁ’ti}ﬁ‘tiib‘#bGi‘l.t!ihQQQ‘QQGtﬁﬁilil.‘iﬁibt.i.ti’ﬁttl&"
¢ CALCULATE SMOOTHED TEMP AND MEAN FOR GIVEN DEPTH
c
open{unit =12 ,file = ‘meantemp’)

do 40 y = 5,800,10
sum = 0
iy = 1+ ((y-S)/10)
call redataly, iy, renum, count, counta, recnuma, deptha,
$ tempa, depthc, tempc, p)

do 30 b 1.p
shm = sum + tempa(iy,n)
30 cont inue
mean(iy) = sum/count
write(12,*) y,mean(iy)
40 continue

p.‘&'ﬁi‘ﬁiﬁi.QQQ'QGQQQQQQQQQQOG00060li‘l'ﬁiiiiﬁi'libi‘t.i.{iﬁﬁ...

¢ SEND TO OUTPUT

c
open{unit = 13 , file = 'profile.mat’)
do 100 n = 1,p
do 110 jy = 1,R0
write(13,*) tewmpa{iy,n)
110 cont inue
100 cont inue

= now loop through each depth calculating the corrolation compared
c with the shallow depth.

CQO‘QQQQQQ0000.000'000*’000“000600QQ.QOQi&'iili..t.i...i..t...'
-

c
c CALCULATE CORRALATION

cce openf{unit = 10,file = 'libokat’)
open{unit = 8,file = 'corrl.mat’)}




500
cece
ccce

510

10

305

o0

do 300 y = 5,800,10 ! the "shallow® depth ( the m loop)
iy = 1 + (y-5)1/10
write(*,*) 'depth *, y .iy

do 305 z = 5,800,10 ! the "deep” depth (the n loop)
! compare each deep with shallow
set constants, counter etc to zero
a==a
b=20
sumab = 0
sumsqa = 0
sumsqab = 0
corro = 0
iz = 14(2-5}/10

do 310 n =1,p ! loop through each "deep*
m=n ! record
q=n

if ((deptha{iy.m})).eq. (0.0)) goto 310
if((deptha(iz,n)).eq.(0.0)) goto 310

if (recnumal(iy,m).eq.recnumal{iz,n)) then

write(10,*) m,iy,deptha(iy,n),tempa(iy,m), recnuma{iy, m}
write(10,*) n,iz,deptha(iz.n),tempa(iz,m), rechumal{iz,n)

a = tempa(iy,m) - mean(iy)

sumsqga = sumsga + a**2

b = tempa(iz,n) - mean(iz)

sumsqgb = sumagh + h**2

sumab = sumab i (a*b)

else
do 510 m =1,p
if (recnuma(iy,m).eq.recnuma(iz,n)) goto 500
ront inue
goto 310

encd if
cont inue ! with next record
corro = sumab/sqrt (sumsqa *sumsgb)
corrnl(iy,iz) = corro
write(8,6*) corrol(iy,iz)
continue ! next “deep® depth

continue ! next "shallow® depth

end




c APPENDIX 2B

subroutine redata(z, iy, renum, count, counta, recnuma, deptha,

s tempa, depthe, tempe, p)
ctQiiiﬁhﬂif'ii*tiﬁiiiii‘ti‘tt‘Qfﬁ*i!'ittiﬁihithﬁiiGttﬁt#‘btbﬁ.‘f‘t
c this program finds temp for a given depth for all records
c and stores the value of temp and depth in arrays and passes them
C back to vertcorro.f . The depth for given temp iz found by
c averaging over a 10m bin. The value of depth used is passed in

e the call from main program.
cﬁi’if#ﬁ0“#.0#0*.‘0'}&#'&&l*'i}Oﬁbhiitibﬁitotlbﬁti000*’*00000*!.&

parameter (mm =2)

real t,depth{mm), temp(mm), z, tempc (2000, 156)

real deptha{80,156),tempa(80,156),depthc (2000, 156)

character renum(156)*8, rechuma(80, 156)+8

integer n,count,counta{80,156),iy

integer counter,nodatapt,p

real add
CQQQQ{Q"'*Q.QQ‘*QQ‘G"IﬁQiiili.ifQﬁiﬁ!ii‘0‘000*&&0!&&0&00‘.!‘0"
c open{unit = 10,file = ’‘datapt’) ! testing for data
c
¢ SET COUNT the number of records processed for a given depth
c

count = 0

c
1010 do 600 n = 1,p ! loop through each bathy

add = 0 t the sum of data points us 1 in a bin

counter = 0 ta connt of number of data points

! used in a bin
c
do 2000 m = 1,2000 ! Joop through all data points

c

deptii{l) = depthe{m, n)
temp(l) = tempc({m,n)
¢ SELECT DATA POINTS IN BRIN
if (depth{?1).ge.z-5.and.depth(1).1le.z+5) then
counter = counter +1 t add up number of
c data points
add = add + temp(l) sum values of

1

c ! data points

t = add/counter ! mean temp for
c ! given depth for
c ! given bathy

if (depthc(msl,n).gt.z15) goto 5000

if ((tempcims+l,n)).le.(0.0)) goto 5000

goto 2000

else

goto 2000
C

c LOAD VALUES INTO ARRAYS FOR PASSING BACK.




5000

2000

600

count = count + 1 ! increment counter
counta{i n) = count
tampal{iy,n) = ¢t ! value of t placed in array

recnuma{iy,n)= renum(n) ! name of record beng read
deptha(iy,n) = 2
nodatapt = counter‘count ! calculate number of

! data points

goto 600
end if
continue

continue
write (10, *)z, nodatapt ,count,counter ! sends to file
END




c APPENDIX 3B

program distcorro

parameter (max = 56)

implicit real*s (a-z)

real*s8 dpr /%7.29577951308232/

real*4 dist (max,max)

real declat,declong, lat(max), long(max),maxvalue,noofbins
integer n,m,z, lati, longi, p,width

real mode(4,max),corr(4,max),value(max,max)

integer inocofbins

c R I Iy e s X S S R R R R A A A S R A R R B

¢ This part calculates the distance between any two points and stores in
c an array

opan{unit
open(unit

3,file = ‘Qecpos.mat’)
1, file = ’‘deeppos’)

nou

do 10 n = 1,max

read(1,20) lati, declat,longi,declong
20 format (x,12,x,£5.2,4%,13,x,£5.2)

declat =declat/60

declong = declong /60

lat{n) = lati + declat

long{n)= longi - declong

write(3,*) long(n),lat(n)
10 continue

do 30 n = 1,mAx
do 40 m =1, max

c
t = {(long(n} - long(m})/dpr
dsinr= dsin(t) * dcos(lat(m)/dpr)
r = dasin{dsinr)
dsins = dsin{lat(m)/dpr)/dcos(r)
s = dasin(dsins)
decosd = dcos(r) * deos(s - {lat(n) /dpr})
d = dacos{dcosd) * dpr
c
dist{n,m) = d * 111.6114
c
40 continue
30 continue
c

c i‘.iiﬁ.ﬁﬁﬁ.'tii&‘ﬁi'..i.‘iﬁﬁﬁtﬁiii’&&'t'.Qltl“tt’l*ﬁ'lt‘ﬁbtt.iatﬁ

¢ Now load the modal amplitudes. (just the principle ones for now)

open(unit = 2, file = 'single.mat’)




do 110 z = 1,4
do 100 n 1,max
read(2,*) mode(z,n}

100 continue
110 continue

C
\AAARRARRE AR AR A R R R X R R R R A R R R R R R R R R R R EE RN ER R R SR N R N

find max distance for this data set

naaan

maxvalue = 0.0
do 210 n =1,max
do 200 m = 1,max
{f£( dist(n,m}.gt. maxvalue) maxvalue = dist(n,m)
200 cont inue
210 continue
write{(*,*) ’'maxvalue = ‘', maxvalue

c‘.‘.{.i"l..if’f“‘l..&Qttii.Qi'iiiiib"ﬁ’ﬁ.'t...iﬁi&..'.iﬁ‘i‘ﬁttﬁbi
c
c create bins by distance .
[of
write(*,*) 'enter bin width’
read(*,*}) width
end = max * max
noofbinz = maxvalue/width
inocofbins = int(noofbins)

C 1222 X222 XX 2 AR A R R R N R R R A R R R R S RN R R R ERRER R R RRRARSR RN R R R R X
C

a

Calculate corrolation as function of distance, for each bin{p).

-

1

10,file ='smith.
open{ unit 11,file ='smith.
open( unit 12,file =’smith.
open{ unit = 13,file ='smith.

open{ unit

o N e
“« ~ =
[P

do 700 z = 1,4
do 600 p = 1,inoofbins

call calc(mode, z,p,corr,width,dist)

600 continue

[ Z 2222 X RZE 2RSS SRR R R R RN RN ]

send corrolation for each bin to file smith

aaaanan

do 490 p = 1, ingofbins
write(9 + z,*) p*width,corriz,p)




400 continue
700 continue
c
chQOQﬁ.ﬁﬁﬁi“"ﬁﬁ*'tiﬁ&it.tlit"iﬁﬁt'QQCQQ}QO&'I—*Q*Q&GQ’{QIlbﬁb'.hﬁi&ﬁ&.
c

end




subroutine calc(mode,z,p,corr,width,dist)

c
parameter {max = 56)
real modea,modeb, meanmodea, cori (4, max)
real meanmodal, summodea, summodeb, sumab, sumsqga, sumsgb
real mode(4,max),dist (max,max)
integer p,counter,n,m,a,b,z,width,c,numberb(5000)
integer numbera{5000)
-
- (22 2 2 R A R R R R N R N Ry R R R S R A R R R R R R X A
[
c open{ unit = 1, file =z 'mean’)
c open(unit = 2, file = 'look’)
e open{unit = 31, file = 'aloop’)
c open{unit = 4, file = 'bloop’)
c set counter and all variables back to zero for a new p (bin).
c
counter - 0
modea = 0
modebh = 0
meanmaden = 0
meanmodnrh = 0
summodeay = 0
summodeb = 0
sumab = 0
sumsaqa = 9
sumsqgh = 0
corrl(z,p) = 0O
o

A AAA R R R REE A RE R R AR SR R R RN R N R R R R R R R R ]

c Determine which data points are used for a given bin.

do 300 n =1,max
do 310 m = n,max
A = ptwidth
b = ptwidth -29
c writa(*, ¢) n,m
if (dist(n,m).lt.a.and.dist {n,m}.ae.b) then

counter - counter 1
C - counter
write(*, ¢) a,c
numhera{e) n
numberb(c) m

]

i

end if .
310 cont inne
300 cont inue

c write(*,*) p,p*width,c




¢ the value ¢ is the number of data point pairs in a bin.
¢ numbera is the array number containing the first point and
¢ numberb is the array number containing the second point.
c
[od [ R R R R R R R P R N R R N R R RS N R R R T R R R RS R NS R R RS RN R R AR R R R RN R N
¢ now add up value of all data points used for given bin.and
c calculate the mean for "a* loop.
counter = 0
do 400 n = 1,max
do 410 an = 1,

if{n.eq.numbera(m}) then

summorlea = summodea + mode(z,n)
c write(3,*) p,n,m mode{z,n)

coiinter = counter + 1

gnto 400

olse

anto 410

end if
410 continue
400 cont inue

meanmodea = summoclea/counter

cﬁ‘iiiv.*i...‘*i{b*tG&Qiiitttlﬁli0&.*"0&00&‘000000ti‘ﬁbibéb

¢ now do same for "b" loop.

counter = 0
do 500 n = 1,max
do 510 m = 1,c
if(n.eq.numberb(im)) then
stimmodeb = summodeb + morde (z, n)
counter = counter + 1
c write(4,*) p,n,m,mode (m,n}
goto 500
else
goto 510
end if
S10 cont inue
500 cont inne
meanmodeb = sumnodeb/connter

c write(l,*) z,p,reanmodea, meanmodeb

r-‘liiil.t".ﬁ”ﬁ.t.l.b.&b#'QQlQQOQQGOQQGQQOi'iQiQQQQ60'0‘0"&“0&00}0'0"0‘0

-
c Calculate components for corrolation
c

do 320 n = 1,max

do 330 m = n,max

a = p*width




b = ptwidth -25
if (dist(n,m).lt.a.and.dist(n,m).ge.b} then

modea = mode(z,n) -~ meanmodea
modeb = mode(z,m} - meanmodeb
sumab = sumab + mndea*modeb

sumsga = sumsga + modea**2

sumsgb = sumsgb + modeb**2

end if
330 continue
320 continue
c
c calculate correlation, for passing hack.
c

corr{z,p) = (sumab}/sqrt{sumsqa’sumsqb)

c write(*,*) z,p,corr(z,p)

end




c APPENDIX 4B

c

¢ This will be a program that determines correlation
c for any distance by fitting to the data in ’'smith’.
c

CQQQQQQiniﬁﬂﬁtﬁtﬁiﬁbhtﬁﬁéhﬁb‘iQiiﬁiiiﬁﬁ0“..&000‘&{0000‘0‘0'}

parameter (i = 8)

integer m, j,n,count, istep

real cr(4,i).cn(4,28),error(4,i), sumerror,d(4,28),clderror
real a,b,newerror,deltaa,deltab,deltaral,deltaéal,r

real deltaebl,deltaeb2, incrementa, incrementb

real suma, sumb,deda,dedb

real alfa(4),beta(d)

c 2 R 2R R R X 22222 > s a2 N Z R AR S A0 A R S R R B R R B
open{ unit = 11, file = ’'smith.1')
open{ unit = 12, file = ‘smith.2")
open{ unit = 13, file = ‘smith.3'}
open{ unit = 14, file = ‘smith.4')
open{ unit = 2, file = ’'look’)
c
c ’Qlﬁﬁﬁi’*iﬁiii**‘b*0&&‘.0*.&0*'00#0"ﬁ§00tlﬁ0.§iQ*f}i‘ﬁﬁ&&‘
sumerxror = 0
c ‘ﬁﬁﬁ‘QQQQ&Q‘QQQ"OGQQQ&O.Q&Qli‘b&00‘0&&0‘&‘0“600&“0‘500}00
¢ load in values from ’'smith.all’.
c give initial values of a and b
alfa(l) = 130
beta(1) = 60
alfa(2) = 60
beta(2) = 30
alfa(3l) = 45
heta(3) = 20
alfa(4) = 50
beta(4) = 20
c
do 200 m = 1,4

c reset all variables to zero

olderror
newerror =
deltaeal
deltaeca2
deltaebl
deltaeb2
incrementa
incrementb
guyma = 0

H

H O o0 o0
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sumb = 0
deda = 0
dedb = 0

count = 0
c load in the modes

write(2,*) ‘i the number of bing =< ,i,6 'tesessss.
write(2,*)
do 10 n = 1,22
read(10 ¢+ m,*) d(m,n), cn{m,n)
c write{*,*) n, cnim,n)
10 cont inue
write(2,*)

alfa(m)

a
b bata{m)

-
c I R R R X R 2 R R R R R R R E X R ETZ 2 2R 2R E NS R R AR AR R A R R B A B 4
C

c Calculate cr

do 20 n = 1,14
r d{m, n)
cr{m,n) = {1 - (y/a)**2)*exp(-(r/b)**2)

20 continue
c
c [ R R A X 222 2 2 E RS R X R AR SR R R A RN X B 4
c
c calculate value of error { that is to be minimized)
c
do 30 n = 1,1

error{m,n) = (rcr(m,n) - cn{m,n))**2

sumerror = sumerror + error(m,n)
30 cont inue

olderror = sumerror/n
c
C
c [ kR R R R R R X XX X A X 2 XX 2R A S S R R R A R R R R R R R N J
C
c calculate the delta error,and decide whether
¢ to add or subtract the increment
deltana = 0.001
deltab = 0.001 )

c

suma = 0

sumb = 0




do 50 n = 1,1
deda = (4*(r**2)*exp(-{(r/b)**4)/(a**3))*(1-(r/a)**2)

$ - 4*(r**2)* (exp(-{r/b)**2))*cnim,n}/(a**3)
suma = suma + deda
50 continue

deda = suma/n

deltaeal = deda * deltaa
deltaea2 = deda * (- deltaa)

if (deltaesal.lt.deltaea2) then
incrementa = deltaa

else
incrementa = -deltaa
end if
c write(*,*) deda,deltaeal,deltaea2, incrementa

do 60 n =1,1
dedb = {4*{r**4)* {exp(-(r/h)**4))/b**S)

$ * o (1-2%(1/a)tt2 4+ (r/a)*Md)
§ + (4% (v**2)*enim,n)*{exp(-(r/b)**2}))/b**3)
s * ((r/a)**2 -1}
sumb = sumb + dedb
60 continue

dedb = sumb/n

deltaebl
deltaeb?2

decdb * deltab
dedb * (- deltab)

1]

i

if (deltaebil.lt.deltasb2) then
incrementb = deltab

else
incrementb = -deltab
end if
c write(*,*) dedb,deltaebl,deltaeb?2, incrementb
c
c .
c X Y222 2 2 S R R R E R R R R R R R R ZRRREXP RS A AR EZ AR 2RSS XSS R AR AR RN X2 J
c X RS R X Y R R R R R R A R R R R R R 2R 22222 E2 22 22X R R A R SRR R SRR R RN X R 2
c
c incremant a and b.
c
100 . count = count + 1 *
a = a + incrementa t normally ¥+ - - +
b = b - incrementhb ! normally - - + +

[o4
c X XXX XX XX TSR R SRR RN SRR RN R RRE RS SRR AR R RS S R A RS RS X 2 & 2

.

a




c calculate cr again

c
do 70 n = 1,4
r = d(m,n)
cr{im,n) = {1 - {(r/a)**2)*exp(~-{x/b)**2)
70 continue
(o4
¢ [ R 2 X R 2R 2 X R X R S E R N F R PR E R IR RSN R R R R R SR RSER SN RN R E R R R R N
c
c calculate error again. with new a and b
c
sumerror = 0
do 80 n =1,1
error(m,n) = (cr{m,n) - cnim,n))**2
sumerror = sumerror + error(m,n)
80 continue

newerror = sumerror/n

write(*,*) m, count, newerror,a,b
c stop
c I ZZ 2R R AR R ZZRZERZRRRRRRRRRE R R R XRRRRYRRERZ R SRR R AR R R R K X X 3
c
if {newerror.gt.olderror) then
write(2,*)
write(2,*) ‘for minimized error, mode’,m
write(2,*)’ a b error iterations’
write{(2,*) a,b,newarror, count
write(2,*)
goto 195
else
olderror = newsrror
goto 100
end if
195 alfa(m)
beta (m)
200 continue
call corrof{alfa,beta,i)
close(11)
close(12)
close(11)
close(14)
end

a
b



subroutine corro(alfa,beta, i)
parameter(i = 8)

integer m,n

real alfa(4),beta(d),a,b,cr(4,1i),bin,r

open{unit = 11,file =‘corl’)
open{unit = 12, file ='cor2’)
open{unit = 13,file ='corl’)
open{unit = 14 ,file ='cord’)

c alfa{l) = 115.37

[ beta(l) = 90.137

c alfa(2) = 84.18

c beta(2) = 59.18

c alfa(3) = 145.4¢

c heta(3) = 45.42

c alfa(4) = 51.86

c beta(4) = 46.86
bin = 25

c LR E R 222 R 2 X R R A R R R R R R R R R R R R R R R R R R R R R R R R N R R R R SRR NS

Lad

c calculate cr

c

do 60 m =1,4

a = alfa(m)

b = beta(m)

write(*,*) alfa(m),heta(m)

do 70 n =1,1
r= n* bin
er{m,n) = (1 - (r/a)**2)*exp(-(r/b)**2)
c print out
- write(10 + m ,*) r,cr(m,n)
70 cont inne
60 continue

end
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APPENDIX SB
SPACE-TIME OBJECTIVE ANALYSIS/STATISTICAL FORECAST PACKAGE
USING GENERALIZED OBJECTIVE ANALYSIS ROUTINE
(C) COPYRIGHT EVERETT CARTER 1981

ugses NCAR double precision matrix inverter INVMTX

UPDATES
21 Aug 1984 -- Modified package so that GETAVE is called
within OBJAN, also added COMMON block CBLOCK
in order to reduce correlation function calls
8 Ang 1984 -- added routine GETAVE, to remove weighted mean
27 DEC 1983 -- expanded 1ER flags
3 NOV 1983 -- added poor matrix inversion Warning
1ER is an error flag for OBIAN
=0 for no eriors detectern
~0 for matrix inversion errors (see matrix inversion routine)
=-1 for no input data (A Warnina-- not fatal)
=-3 for poor matrix inversion, it did it but the inversion was

nearly NUMERICALLY singular

THE MAIN PROGRAM MUST SET UP THE DIMENSIONS AS FOLLOWS
(FOR A 33X33 FIELD)
DIMENSION PSI(1089),X0OB3(1089,2), TOBS(1089)
DIMENSION X(2,1089), THETA(1089),EPS(1089)
DIMENSION PARSI(20)},T(20),FARX(2,20)
COMMON BLOCK ERR CONTAINS THE OBSERVATION ERROR PARAMETERS
E 1S THE MEAN SQUARE NOISE LEVEL IM TERMS OF FERCENT OF VAR
COMMON/ERR/E
THE FUNCTION F 1S THE CORRELATION FUNCTION
EXTERNAL F
M IS THE TOTAL NUMBER OF GRID POINTS
LIMIT IS THE MAXIMUM MUMBER OF IMFLUENTIAL POINTS
DATA LIMIT/10/
DATA M/1089/
DATA DIST,TIM/100.,20./
PSI  THE OBSERVATION VALUES
XOBS THE OBSERVATION POSITIONS
TOBS THE OBSERVATION TIMES
TCEN THE CENTRAL INTERPOLATIOM TIME (PREDICTION TIME)
X THE INTERPOLATION FOSITIONMS
THETA THE INTERPOLATIOM VALUE OF THE COMPLETED FIELD
EPS THE INTERPOLATION ERROR LIMIT OF THE COMPLETED FIELD .
E=0.05 :
EXAMPLE MAIN LOOT
DO 150 KX=1,M
CALL SELECT(LIMIT,X(KX,1),X(KX,2), TCEN, XOBS, TOBS, PSI,
PARSI, PARX, T, N, NOBS, DIST, TIM)
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CALL OBJAN(PARSI, PARX, T,NOBS, X (KX, 1),X(KX,2),
1 TCEN, B, W, 1ER)

THETA (KX) =B+AVER

EPS(KX)=W/VAR
CONTINUE

SUBROUTINE REMAV(PSI,M,AVER, SOV}
ROUTINE TO CALCULATE THE MEAM AND VARIANCE OF AN ARRAY
IT ALSO REMOVES THE MEAN FROM THE ARRAY
DIMENSION PSI{1)}
AVER=0.
Sov=0.
bc 10 I=1,M
AVER=AVER+PSI(I)
SDV=SDV+PSI(I)**2
CONTINUE
AVER=AVER/FLOAT (M)
SDV=SDV/FLOAT (M) -AVER**2
IF (M .NE. 1) SDV=(FLOAT(M)/FLOAT(M-1))*SDV
po 20 1=1,M
PSI(1)=PSI(1)-AVER
CONTINUE
RETURN
END

SUBROUTINE SELECT(LIMIT, X, Y, TCEN, XOBS, T, PSI,
1 PARSI, PARX, TOBS, t1, MORS, DIST, TIMM, alfa, beta)
ROUTINE TO SELECT THE AT MOST "LIMIT®* NEARBY POINTS
TO AN INTERPOLATIOM POINT X,Y, TCEM
LIMIT IS THE MAXIMUM HUMBER OF POIMNTS TO USE
DIST IS THE SPATIAL RADIUS OF IMNFLUEMTIAL POINTS It VM
TIM IS THE TEMPORAL RADIUS OF INFLUENTIAL PFOIMTS IN DAYS
DIMEMSION XOBS(2,1),T(1),PSI(1),PARSI(1),TOBS(1}
DIMEMSION PARX(2,1)
DIMENSION INDEX(2000),COR(2000)
real a,b
COMMOM/CBLOCK/C(20)
EXTFRNAL F
DATA CPHSE/0.0/
NOBS=0
DO 50 1=1,N
DELX=X~-XOBS (1, 1)
DELY=Y-XOBS (2, 1)
DELT=TCEN-T(I)
R=SQRT( (DELX-CPHSE*DELT) **2+DELY**2)
1F (ABS(DELT) .GT. TIM) GOTO 50 .
IF (R .GT. DIST) GOTO SO
NOBS=NOBS+ 1
INDEX (MNOBS) =1 .
COR({NOBS) =F {DELX, DELY, DELT,alfa, beta)
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CONTINUE
IF {(NoBS .EQ. 0) cOoTO 75
IF (NOBS .GT. LIMIT) CALL SORT(COR, INDFX, NOBS)
IF (NOBS .GT. LIMIT) NOBS=LIMIT
DO 70 1=1,NOBS
J=INDEX(1)
PARX(1,I)=XOBS(1,J)
PARX(2,1}=X0BS(2,.)
TOBS(I})=T{J)
FARSI{1)=PSI(J)
C(I)=COR(I)
CONTINUE
CONTINUE
RETURN
END

SUBRROUTINE SORT{COR, INDEX,})
A SHELL SORT ROUTINE TO SORT INDEX AND COR DOWN
ACCORDING TO THE VALUES OF COR
DIMENSION COR(1), INDEX(1)
IGAP=N
IF (IGAP .LE. 1) RETURN
ICAP=IGAPR/2
IMAX=N-IGAP
1EX=0
DO 20 I=1, IMAX
IPLUSG=1+IGAP
IF (COR(I) .GE. COR({IPLUSG)) GOTO 20
SAVE=COR(I)
COR({I)=COR(IPLUSG)
COR (IPLUSG) =SAVE
ISAVE=INDEX (1}
INDEX(I)=INDEX (IPLUSG)
INDEX (IPLUSG) =1SAVE
IEX=1
CONTINUE
IF (IEX .NE. 0) GOTO 10
GOTO S
END

SUBROUTINE OBJAN(PSI,L,T,N,X,Y,TCEN, B, W, IER,alfa, beta)
THE SPACE-TIME OBJECTIVE ANALYSIS ROUTINE

VERSION FOR 1 INTERFOLATION POINT

USES 2 SPACE AND 1 TIME DIMENSION

NOTE DELTA T = TCEM - T(J) .

L. 1S THE ARRAY OF OBSERVATION FOSITIONS, IN KM

T IS THE TIME OF OBSERVATION, IN DAYS

X IS THE ARRAY OF INTERPOLATION FOSITIONS, IN KM

TCEN IS THE CENTRAL INTERPOULATION TIME

FSI 15 THE ARRAY OF OBSERVATION VALUES
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B IS THE INTERPOLATED VALUE
W IS THE INTERPOLATION ERROR LIMIT
N IS THE NUMBER OF OBSERVATION POINTS
IER IS AN ERROR FLAG, ZERO FOR NO ERROR
~1 tlo data (WARMING)
-3 Poor matrix inversion {WARNING)
DIMENSION PSI({1),T(1),L(2,1)
COMMON/CBLOCK/C(20)
REAL*8 A(20,20)
REAL L
COMMOM/ERR/E
EXTERNAL F
B=0.
W=1.0
IER=-1
IF (N .LE. 0) GOTO 500
CALCULATE THE INVERTED AUTOCORRELATION MATRIX FOR THE OBSERVATIONS
CALL SETA(A,L,T,N, IER,alfa,beta)
IF (IER .GT. 0) cGOTO 500
CALL GETAVE(A, PSI,MN,AVE)
CALCULATE THE MATRIX C
-- already calculated in this version, common block CBLOCK

CALCULATE THE RMS IHTERPOLATION ERROR,W
AND CALCULATE THE INTERPOLATED VALUE B
V=0,
B=0.0
Do 150 I=t,N
H=0.0
DUMC=C{1I)
DO 140 J=1,NH
P=DUMC*C(J) *SHCL(A(I,J))
W=Ws+P
P2=SNGL(A(1,J})*PSI(])
H=H+P2
CONTINUE
DUMY=DUMC*H
B=B+DUMY
CONTINUE
BR=B31AVE
W=ABS(1.-W)
CONTINUE
RETURN
END

SUBROUTINE SETA (A, PARX, T, HNOBS, 1ER,alfa, beta)

THIS ROUTINE CALCULATES THE AUTOCORRELATION MATRIX FOR THE
OBSERVATIONS GIVEN THE POSITIONS, PARX AND TIMES, T

IT RETURNS THE INVERTED MATRIX

DIMENSION PARX(2,1),T(1)
REAL*8 A{(20,20),Det
Integer 1P(40)
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COMMON/ERR/E
EXTERNAL F
DATA NA/20/
The Guard value for DETERMINANT WARNINGS
DATA GUARD/1.0E-4/
1 FORMAT (SX, 'MATRIX A IS SINGULAR')
2 FORMAT (SX, 'ERROR,MATRIX A IS TOO SMALL',/, '
X ' NA MUST BE .GE. NOBS',/,’ NA=',13,5X, '"NOBS=",13,//)

3 FORMAT (SX, 'WARNING, DETERMINANT IS VERY SMALL (’,1PE11.4,')°’,
X ' -~ TRY SMALLER NUMBER OF INFLUENTIAL POINTS’)

TEST THE SIZE OF THE OBSERVATION ARRAY

1ER=1

IF (MA .LT. NOBS) PRINT 2,NA,NOBS
IF (NA .LT. HOBS) RETURN
TER=0
DO 20 I=1,NOBS
DO 10 J=1,NOoBS
DELT=T(1)-T(J)
DELX=PARX (1, 1)~-PARX{1,.7}
DELY=PARX(2, 1) -PARX(2,.7)}
A{1,J)=DBLE(F(DELX, DELY,DELT,alfAa,beta))
A(J,1)=A(1,3)
10 CONTINUE
A(I,1)=A(1,1)+DBLE(E)
20 CONTIMNUE
INVERT THE NOBS*MOBS MATRIX A
THE INVERTED MATRIX I5 HAMED A
Call InvMtx({A,NA,A,NA, NMOBS,Det, IP, Ier,alfa,beta)
IF (IER .MNE. 0) FRINT 1
IF (IER .NE. 0) GOTO 40
CHECK THE DETERMIMNANT
IF (DET .LT. GUARD) FRINT 3,DET
IF (DET .LT. GUARD} IER=-1
40 CONTINUE
RETURN
END

SUBROUTINE GETAVE(A, PST, N, AVE}
Calculate and remove the weighted mean
DIMENSION PSI(1)
DIMENSION C(20),D(20)
REAL*8 A(20,20)
po 10 1=1,N
C(1)=0
D(I)=0
DO 10 K=1,N
C(I)=C{I}+A(I,K)*PSI(K)
D(I)=D{1I)+A(1,K) *
10 ENDDO
SUM1=0
StUM2=0
Do 20 1=1,N




SUM1=SUM1+C(1)
SUM2=SUM2+D (1)
20 ENDDO
AVE=SUM1/SUM2
DO 30 I=1,N

PSI(I)=PSI(I)-AVE

30 ENDDO
RETURN
END
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APPENDIX 6B

this is the program that links all the elements together.
and also controls the reduction or removal of successive bathys.

parameter (most = 56)

real alfa(d),beta(4),amode{most), xpos{most),ypos (most)
real a,b

integer n,printer, loop, ran{most), i, j, l2ft,ans,num ,reply

read in the data for each time data set is reduced by one

do 100 2z = 1,most

write(*,*) ' process 1 = y 2 = end’
read(*, *) reply
if{reply.eq.2) goto 200

write{ *,*) 'how many XBTs o you want to use ( max 133)°¢
read(*,*) ans

j = most - ars

call reduce(j)
left = most - j

read in modes
do 10 n = 1,4
open ( unit = 1, file = ’rdecpos.mat’)
open { unit = 11, file = 'rmodl’)
open { unit = 12, file = ‘ymod2')
open { unit = 13, file = 'rmndl’)
open { unit = 14, file = 'rmod4’)

set parameters for input

chose values for a and b

alfa(l) = 155.5
beta{l) = 85.3
alfa(2) = 92.15

heta(2) = 62.14
alfa(}) = 136.65%
bheta(3) 28.1%
alfa(4) 39.4

beta{4) = 30.5%

LAAAARE R R R E R R N Y Y R N S R R A R R




¢ now loop through oa four times.once for each mode
c
c read in latitude and longitude of obs

4]

do 26 { = 1,left

read(1l,*) num,xpos{i),ypos(i)
26 continue

tewind(1}

¢ read in modes
do 27 { = 1,1eft
read(10 + n,*) amode(i)

2, continue
close{l)
close(11)
close(12)
close{13)
close(14)

c

c give values of a and b

c

a = atfa(n)
b = beta(n}

¢ set output diagnostics.

C
printer = 30 + n
loop = n

c

ol iQiiit0*"0#*0&&00&&00.&.000‘.0&‘00'..QQGQQQQ’GQQOQQG#QQQG

C
call modeoa(amode, xpos,ypos,a.b,printer, left, loop)
10 continue

¢ print out modes and errors to combined files

call allimods
100 continue

200 write(*,*) ’'program finished’
end




c Program by E.F. CARTER

subrout ine modeoca(amode, x,y,alfa, beta,printer,most, loop)
FROGRAM modeoa

UNIT 1 IS THE XBT (INPUT) DATA
UNIT 2 IS THE PRINTABLE OUTPUT DATA (DIAGNOSTICS)
UNIT 4 IS THE UNFORMATTED OUTPUT DATA

INTEGER INFILE,DISK, PRINTER
PARAMETER (INFILE=1, DISK=4)

Nnaaoagnoaaanaaan

Parameter {MXOBS = 56)
INTEGER DAY (MXOBS), Gint (MXOBS), printer, most
DIMENSION X (MXOBS), Y (MXOBS), Tin{MX0B5), amode (MXOBS)
DIMENSION XOBS(2,MXOBS), TOBS(MXOBS), UrBS (MXOBS)
DIMENSION UOPT(20),VOPT(20)}, TOPT(20), XOPT(2, 20)
DIMENSION XI(119),YI(119),01(119),ERRU(119)
INTEGER START, EMi{'TY, loop
Real Mniay,MxDay,alfa,beta
COMMOM/ERR/E
EXTERMAL F
DATA EMPTY/156/

c DATA MOST/S57/
DATA LIMIT/S/

c SPATIAL AND TEMPORAL LIMITS
DATA DIST,TIM/150.,0./
DATA CFX,CFY/15.0,15.0/
DATA START/1/
DATA TINC/1/

DATA NOBJ/1/

A Z 2 R R AR R R R E R R R R R R AR R R R R R R R R Y E R R R R RS R R RN RN

0

c write(*,*) ‘modeoca now being called’

c open files for output
open (unit = 31, file
open {(unit = 41, file
open (unit = 51, file
open (unit = 22, file
open (unit 42, file
opan (unit = 52, file

]

‘ontputl’)
‘gridmod.1’)
‘errormod. 1)
‘output2’)
‘gridmod.2’)
‘errormod. 2’}

I R ST

HH
H

n

open (unit = 33, file = ‘outputl’)
open (unit = 43, file 'gridmod.3’)
open {unit = €1, file 'errormod.3')

open (unit = 34, file
open (unit = 44, file ‘gridmod.4’)

open {unit = 54, file 'errormod.4’)
¢ I ¥ R R R R R R R N PR R R R R PR R RN R FYEESIFERRN RS AN SRR AR ERE R E FRE R EE RN

‘outputd )
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‘DIAGNOSTICS OF ALL modal OBSERVATIONS : ')
*X Position Diagnostics (Km): ')}

'Y Position Diagnostics (Km): *)

‘X grid Diagnostice (Km): ')

‘Y grid Diagnostics (Km): ‘)

'INTERPOLATED mode FIELD DIAGNOSTICS:’)

* INTERPOLATED mode Error FIELD DIAGNOSTICS:')
*JULIAN DATE:',F8.3,

* NUMBER OF Observations used :‘, 14)
‘MINIMUM DATE:'F8.3, ' MAXIMUM DATE:',F8.3)
*ERROR, XOBS TOO SMALL. MXOBS=z=',13)
‘Assumed NOISE LEVEL:’,F8.5)

‘Date (Time) Diagnostics (Julian Date): °)
'‘Number of influential points is : °,14,//)

(A A 22 2R XX E 2 R R R R R RN R R R R R R R R R R R R R R R R R R R NS R R AN R E R R RN

WRITE (PRINTER,9) F

1 FORMAT {SX,
2 Format (S5x,
3 Format (Sx,
22 Format (Sx,
23 Format (5x,
4 FORMAT (5X,
5 FORMAT (5X,
6 FORMAT (SX,
&
7 FORMAT (5X,
8 FORMAT (7X,
9 FORMAT (SX,
10 Format (S5X,
18 FORMAT (SX,
c
c
c
E=0.1
<
c
C
c I=1
c 25 Continue
c
[
c I=14+1
c Goto 25
c 30 Continue
c Most=I-1
c
c
c

(22 R R A 2 AR R R AR AR R R R R R AR R R AR R RE SRR A AR R R R R R R R R R R RN R AR RN E R R R ER R RS

READ IN THE OBSERVATION DATA
OPEN (UNIT=INFILE,File='xht.dat’}

READ (INFILE, *,End=30) Day(I), Gmt{I},¥(I),X(I),6SST(I)

CLOSE (UNIT=INFILE)

2 R Y R P R R R R R R R R R R R R A R R R RS R E R R R R R R SRR R R RN RS R AR AR A S

c Read in the observed data.

c for day and time
do 25 1 = 1,most

Day(i) = 1

Gmt (i) =1

tin(i) = 1
25  continue

c for latitude and longitude of observations

(unit = 1, file = ‘dec.po3’)

C
c open
do 26 § = 1,most
write{*,*) x(i),y(l}
26 continue
C
¢ for modal amplitudes
o
c

open { unit = 2, file = ’'xaa‘)




< do 27 {1 = 1,most

¢ read(2,*) amode(i)

c27 continue

c

c for latitude and longitude of grid points
c

open{unit = 3, file = ‘grid.pos’}
do 28 { = 1,119
read(3,*) n,xi(i),yi(1)
28 cont inue
rewind(3)

close(3)
c .Qiiitiﬁ.ii"'fﬁ“iiti‘it.i‘iiiﬂQQ‘OQQ'Qlii*ﬁ'iiﬁi““i"i‘l.

CALL SCALE(X,Y,Most)

Write (Printer,2)
Call Diag(X,Most,Printer}
Write (Printer, 3)
Call Diag(Y,Most, Printer)

c
CALL SCALE(Xi,Yi,119)
[ o4
Write (Printer,22)
Call Diag(Xi,Most,Printer)
Write (Printer,23
Call Diag{vYi,Most,Printer)
c
c CALL JULIAN(DAY,Gmt,Tin, Most)
c
Write (Printer, 19}
call Diag(Tin,Most,Printer)
c
WRITE (PRIMTER, 1)
CALL DIAG({(amode, MOST, PRINTER)
c
Call Remav{amode,Most, Ave, V)
c
o [ R A2 R R R R R E R R R R R R E R R R R R R R R R RN R R R R R RN R R R R RN R R R RN RN A NN
c SET UP THE INTERPOLATION POSITIONS
c M=0
< DO 40 J=1,21
c DO 40 1=1,13)
c M=M+1
¢ XI(M)=CFX*(I-17)
c YI(M)=CFY*{J-11)
c 40 ENDDO
- .
c [ E R R R R E R R R R R EN AR R R RRRRRRRR AR R R RT XA RRRRR AR R R R R RS X R 2 X

DO SEVERAL ANALYSES .

a0




WRITE (PRINTER,18) LIMIT
TCEN=START-TINC
DO S00 10BJ=1,NOBJ
TCEN=TCEN+TINC
C GET THE USABLE OBSERVATIONS FOR THIS DATE
CALL GETOBS(Tin, X, Y, amode,Most, TCen, Tim,
X Tobs, Xobs, UOBS, N}
UNDAY=TCen-TIM
MXDAY=TCen+TIM
WRITE (PRINTER,6) Tcen,N
WRITE (FRINTER,7) MNDAY,MXDAY
WRITE (FRINTER, 18) LIMIT
IF (N .EQ. 0) GOTO 500
IF (N .GT. MXOBS) THEN
WRITE (FRINTER,8) MXOBS
GOTO 500
ENDIF
c
C m is number of grid positions,and will not change.

m= 119
DO 50 k =1, m

CALL SELECT(LIMIT,XI(K),YI(K), TCE!N, XOBS, TOBS, UORS,
X UOPT, XOPT, TOPT, N, NOBS, DIST, TIM, alfa, beta)

Print *,’M, Nohsz, *,N,Nobs
Do 49 1PXJ=1,NOBS
Print *,Xopt(l, IPXJ)},XOpt (2, IFXJ),Uopt (I1PXJ}
49 EndDo
CALL OBJAN(UCPT, XOPT, TOPT, NOBS, XI(K),YI(K),
X TCEN, UI(K),ERRU(K)}, IER,alfa, beta)
UI{K)=UI(K)+Ave
50 ENDDO

s Ees s Ne]

WRITE (PRINTER, 4}

CALL DIAG(UI, M, FRINTER])
WRITE (PRIMTER,S)

CALL DIAG(ERRU,M, PRINTER)

WRITE (30 + lnop,*) ‘centre time’,TCen
WRITE (30 foop,*) ‘ number of obs points’,N

+

WRITE (S50 loop,*) -72, -64, 37 ,40
write (50 loop,.*) 17, 7
WRITE (40 loop,*) -72, -64, 37 ,L40
write (40 + loop ,*) 17, 7
do 51 {4 = 1,m
WRITE (40 +loop,*} UI(1)
WRITE (50 +loop,*} ERRU({1)

51 continue :

- e




500 CONTINUE

close(31)

close(32)

close(33)

close(34)

close(41) .
close(42) '
close(43)

close(44)

close(S1)

close(52)

close(53)

close(54)

END

c (AR R AR E X R R R R N S R R R R R R R R R N R S R R R R R S R R R RN
c IR AR A Z R R R R R R R R R R R R R R R R R R R R R R R E R R R A R R R RS R R R AR R R 2

[ (A2 ZEE R R R R R R R R S R R R R R R R R R R N SRR RS A E R R AR EEE R R X 4

SUBROUTINE GETOBS (Day, Posx, Posy, UOBS, Ninp, CDay, Tim, T, X, U, N)

ROUTINE TO GET THE OBSERVATION DATA
N IS THE NUMBER OF OBSERVATIONS

C

(o Input data:

c Day, Posx, Posy space-time location of data
c UoBS ohserved data

c Minp number of input points
c CDay Central day of estimate
C TIM width of time window

C

C Output data:

C T.X loration of data

c u chosen obsarvation data
c N number of points used
C

C

C

Cc

DIMENSION T{1),X(2,1}),0(1)

DIMENSION Day(1),UO0BS(1l}),POSX(1),POSY(1)

Real MXDAY, MMDAY

MXDAY=CDAY+TIM

MMDAY=CDAY-TIM

KOUNT=0

Do 10 I=1,Ninp
IF (DAY(1l) .GT. MXDAY) GOTO 10
IF [DAY(I) .LT. MNDAY) GOTO 10
KOUNT=KOUNT+ 1
T({XOUNT)=DAY (1)
X{1,KOUNT) =POSX(I) »
X(2,K0OUNT)=FOSY (1) N
U(KOUNT) =UOBS (1)

10 Continue
H=-KOUNT
RETJURMN




e}

o]

10

10

SUBROUTINE SCALE(X,Y,.N)
Scale Lat and Long to Km
DIMENSION X(1),Y(1)
Parameter (XCen = -70.5%5, Yren = 38.25)
Parameter (CFX = 110.99, CFY = 87.84)
DO 10 I=1,N
Y(I)=CFY*{ Y{I)-YCen)
X(I)=CFX*{ X(1}-XCEN)
ENDDO
RETURN
END

SUBROUTINE JULIAM(DAY,Gmt, Time, N)

INTEGER DAY (1).CGmt (1)

Dimension Time (1)

Integer Offset

Parameter (Offset = 86000, Julian86 = 6431)

Real MnDay,MxDay,Minutes

FORMAT (S5X,’'MIN DATE :°,F8.3,’ MAX DATE :',F8.3)

MMDAY=9999.9

MXDAY=0.0

DO 10 1=1,N
Time(I)=Float {Gmt (1)) /100.
Minutes=100.*{(Time(1) -~ IFix(Time(I)})
Time(I)=Time(l) + Minutes/60.0
Time{I) = Float(JulianB6 s Day(l) - Offset) + Time(1)/24.0
IF (Time(l) .GT. MYXDAY) MXDAY=Time(I)
IF (Time(I) .LT. MNDAY) MNDAY=Time(I)

EMDDO

WRITE (2,1) MNDAY,MXDAY

RETURN

END

FunCcTION F(X,Y,T,alfa, beta)
THE CORRELATIOM FUNCTION
THE SCALE FACTORS
Parameter (a=111.6, b=86.6)
a = alfa
b = beta
r2=x**2 + y**2
F=(1.0 - r2/a**2)*exp(-r2/b**2) v
RETURN "
END




¢

C this program generates first 158 numbers ranomly

c

43

20

10

parameter (max = 58)
integer {,m,x(max),n

open{ unit =1, file = ’‘randnumdeep’)
call srand(3)

do 10 £ = 1 , max
n = irand{)
x{i}) = n

1f{i.gt.1} then
do 20 m = 1,i-1
If ((x(i).eq.x(m)).or.{x{i).gt.max-2)) goto 40
cont inue
endif

write(*, *) i,x(i)
write(1,*) x(i)
continue
end




close (1)
cloge {2}
close(1l)
close(12)
close(13)
close(14)
close(20)
close({21)
close(22)
close(23)
close(24)
end




aaoaan

115
116

101
102

103
104

105

106

APPENDIX 7B
Program by E.F. Carter

SUBROUTINE INVMTX (A,NA,V,NV,N,D,IP,IER,alfa, beta)
Double Precision version
MATRIX INVERSION V=INV{A)
THE ARRAY A MAY BE ENTERED AS V TO SAVE MEMORY
IP MUST BE DIMENSIONED TO AT LEAST 2*N
IMTECGERP NA NV N, IP(1)}, TFER
REAL*S A{MA,N) VNV, ) D
Real®*s VMax, VH, PVT, PVTMX, HOLD
IEXMAX IS SET TO THE LARGEST BASE TEN EXPONENT THAT CAN BE
REFRESENTED OM THE MACHINE, I.E. LARGEST=10**IEXMAX
DATA IEXMAX/38/
FORMAT (2BHO*MATRIX SINGULAR IN INVMTX')
FORMAT (34RO *DETERMINANT TOO LARCE IM INVMTX*)
1ER = IERINV{N,NA, NV)
IF (IER .NE. 0) RETURN
Do 102 J=1,N

IP(J) = O

po 101 I=1,N

v(I1,J) = A(1,J)

CONTINUE
CONTINUE
D=1.
IEX = 0
DO 110 M=1,N
VMAX = 0.
DO 104 J=1,N

IF (IP(J) .ME. 0) GO TO 104
DO 103 1=1,1
IF (IP(1) .HE. 0) GO TO 103
VH = ABS(V{I,J))
IF (VMAX .GE. VH) GO TO 103
VMAX = VH
K =1
L =J
CONTINUE
CONTINUE
IP(L) = K
NEM = MM
IP(NPM) = L
D= D'WHIK, L)
IF (ABS(D) .LE. 1.0) GO TO 106
D = D*0.1
IEX = IEX+1
GO TO 105
COMNTINUE
PVT = V(K,L) .
IF (M .EQ. 1) PVTMX = ABS{FVT)
IF (ABS(PVYT/FLOAT(M))+PVTMX .EQ. PVIMX) GO TO 113
VIK,L) = 1.
Do 107 J=1,N *




subroutine reduce(j)

parameter (most = 56}

integer {,3,ran{most),val,.p

real amodl {most}, amod2 (most}, amodd (most}
real amodd {most), xpos(most),ypos(most)

c read in original modes

open (unit = 2, file = ‘randnumdeep’)

open { unit = 1, file = ’'decpos.mat’)
open { unit = 11, file = 'modil.mat’)
open { unit = 12, file = 'mod2.mat ')
open { unit = 13, file = ‘modl.mat’)
open ( unit = 14, file = 'mod4.mat’)

write out reduced set.
open { unit = 20, file = ‘rdecpos.mat’)
cpen { unit = 21, file = "rmodl’)
open ( unit = 22, file = 'rmocd2’)
open { unit = 23, file = 'rmodl’)
open { unit = 24, file = ’‘rmod4’)

a

: R R Y X 2222 22 2 T E XS AR R A AR R R A AR R A R B R J
c
c this rection will reduce data set by j,the parameter fed from
¢ program driver.
p =0
do 100 { = 1, most

read(2,*) ran{i)

write(*,*) i, ran(i}

read(l,*) wvpos(i),ypos(i)

read(11,*) amndl (i)

read{12,*) amod2(i)

read{13,*) amod3 (i)

read(14,*) amod4 (i)
100 continue
c

do 110 { = 1,most
do 120 n = 1,3
if(i.ne.ran{n)) goto 120
1€(i.eq.ran(n}) goto 110

120 continue

p=p+1
write(20,*) p,xpos(i),ypos(i)
write(21,¢) amodl (1)
write(22,*) amnd2(i}
write(23,*) amndl (i)
write(24,*) amod4.(i)
110 cont inte




HOLD = V{K,J}
V(K,J) = V{(L,J)
V(L,J) = HOLD/PVT
107 CONTINUE
DO 109 I=1i N
IF (I .EQ. L) GO TO 109
HOLD = V{1,L)
v(1I,L) = 0.
po 108 J=1,N
v(I,J) = V(I,J)-V(L,J)*HOLD
ioe CONTINUE
109 CONTINUE
110 CONTINUE
M = N+N+1
pbo 112 J=1,N
M= M-1
Ip(M)
K = 1IP{(L)
IF (K .EQ. L) GO TO 112
= -D
Do 111 I=1,N
floLb = V{I,L)
v(1,L) = V{I,K)
V(1,K) = HOLD
111 CONTINUE
112 CONTINUE
IF (IEX .GT. IEXMAX) GO TO 114
D = D*10_**1EX
RETURN
113 IER = 33
PRINT 115
RETURN
114 IER = 1
D = FLOAT{IEX)
PRINT 116
RETURN
END
FUHCTION IERINV (N,MA,MNV)
103 FORMAT(23HO* N .LT. 1 IN INVMTX *)
104 FORMAT(24H0* NA .LT. M IN INVMTX *)
105 FORMAT(24410* NV .LT. N IN INVMTX *)
IERINV = O
iF (M .GE. 1) GO TO 101
IERINV = 34
PRINT 103
RETURN
101 IF (NA .GE. N) GO TO 102
IERINV = 35
PRINT 104
RETURN
102 IF (NV .GE. N) RETURN
IERIMV = 36
PRINT 105
RETURN

[
]
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3 APPENDIX 8B

this matlab file reconstrucis the bathys at the grid points
using 4 modes only, after the OA with reducing number of
initial XBT's.

o 6 B P

%%%t%%%%‘!!%t\%t\%!!%%!%%!t\%t&%%%%%%%%t%%%%%!%!%t%\!%%\\\t%%

% this part reconstructs all synthetic, grid, XBTs using 4 modes.
%

cleay

<lag

hold off

load vec;

load gridmod;
load errmod;
arid = gridmod’;
1

for 3 1:4;

for 1 = 1:80;
eigvec(i, j)
end

end

H

vec(i, (81-3));:

recbath = elgvect*grid;
save recbath.mat recbath /ascii;

T ORBTRRRALLELELELAEEERCLLILTLEIFITLLIRTLTRLTLLTTLLTLITRIILLELIETICLS
t PLOT GIVEN XBT

% this part plots a given bhathy, SELECT XBT NUMBER

Y 1, being lower left corner.

* maxis = {0 30 -80 0};
* axis{maxis);
¥plot {recbath{S6),’."'});
Y grid;
ttitle(’ XBT 56 );
tylabel ('depth metres’):
t xlabel(’'temp Celcius’);
%t hold on
% pause
tprint
T OSTRRIRTLARALLLLTLRILILIERIETTRIRGTIALEIRLRILRIITIIEIRIZIEILERIRIRILILERTIESISLILIY
)
% now to calculate the error in each reconstructed bathy
eigvecard = eigvec’ * eigvec;
xhtvar = eigvecsrd*errmod’;
xbtvar = sum(xbtvar)
view = reshape(xbtvar,17,7)

view = view’;




view = flipud (view);
tview = nerr;
save batherr.mat view /ascii;

THTTTTTETLELEETRRTATTLLLIRCEEIETRRIERTRERRERERRTIERBRIRRTLRIYYY
hold off

% plot routine for MATLAB, of the reconstructed oca error.

for { = 1:17;
x{i) = -72.5 +0.5%*1;

end

for £ = 1:7;

y{i) = 36.5 + 0.5%*1;
end

¢ = contour(view,x,y);
v = {0.2,0.4,0.6,0.8];
clabellc,v);

grid;
t title(’reconstruction error, using 1 out of 156 XRTa'); % the title must cha
xlabel('Longitude west from Greenwich’): % each time

ylabel('Latitude North’);
title(’' reconsruction error variance using all 156 XBTs')

hold on

T LITETRLLLLLRTALELLLLLLLLEILELEATIETITRILELELE L2328
%

%

t loading in data positions.

load rdecpos

long = rdecpos{:,2):

lat = rdecposi:,);

tplot (long, lat, ***);

txlabel ('Longitude west from Greenwich’)
tylabel(’'Latitude North’)

ttitle ('position of deep XBTs')
%text(-70.5,38.5,'X")

tprint

tpause

TEETETREEELTLTRLCLLLRLLERIERIELITLILLIEIRERSEY
% mark on box .
box =f ~-70.5 38.1




~70.5 38.75
-69.25 38.7%
-69.25 38.5

-70.5 138.1)
blong = box({:, 1)
blat = box(:,2)
tplot (blong,blat)}
pause
print

TETTLLELTTLELETALLARALELTLEEITRTLEEESELEEEERLLY
t load in each modal error.

hold off

clg

moderrl = errmod(:,1)’;

moderr]l = reshape(moderri,17,7);
moderrl = moderri’;

moderrl = flipud{moderrl);

k1 = contour {moderrl,x,y);
clabel (kl,v);
title ('‘mode 1 error’)

tprint

tpause

moderr2 = errmod(:,2)';

moderr2 = reshape(moderr2,17,7);
moderr2 = moderr2’;

moderr2 = flipud{moderr2};

k2 = contour{moderr2,x,y};
clabel{k2,v);

title (‘mode 2 error’)
tprint

tpause

moderrl = errmod(:,3)"',

moderr3 reshape (moderr3,17,7);
moderrl = moderrl’;

moderrl = flipud(moderr3);

k3 = contour(moderr3,x,y):
clabel(kl,v):

title (‘mode 3 error’)

tprint

tpause

moderrd = errmod(:,4)';

moderr4 = reshape(moderrd,17,7);
moderrd = moderrd’;

moderr4d = flipudi{moderr$);

k4 = contour(moderrd,x,y);

clabel (kd4,v);

title ('mode 4 error’)

tprint .
tpause




clg

subplot (221), contour (moderrl,x,y);
subplot (222}, contour {moderr2,x,y);
subplot (223}, contour (moderr3, x,y);
subplot (224}, contour (moderr4,x,y};
tprint

tclg

TILLLTLLELTLETLLALLTTITLLITLRIELIRLIEILIRBRRRLRR

% plot routin=: for CONTOUR
ftnerr= nerr’;
tsave err.con nerr /ascii;

TITETITTLLRLLATLLLLLLLTTLLLILELILERIRTIRR TR TR LY

h

%

tpluserr = recbath(:,21) + totalerr(:,21);

¥mipuserr = recbath{:,21}) - totalerr(:.21):
tplot (pluserr)

*plot (minuserr)

tglunk = totalerr(:,21);

tclong = recbath(:,21);

tsave err7105.mat glunk /a=cii

tsave bath7105.mat clong /ascii

$for j =1 :1

2for i = 1:80

fdeptherr(i,j) = glunk(i,j)*100/clong(i,j);
Yend

tend

tsave percenerr.mat deptherr /ascii
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