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Abstract: A charged particle in a double well can emit, when driven by an
intense laser, intense low frequency radiation or become strongly localized in one
of the wells. By using perturbation theory and asymptotic analysis we determine

the conditions for which these processes take place, for a two level model.
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The behavior of a charged particle in a symmetric doubie well driven by a
strong laser has been studied recently in several articles(!-7). Grossman, Dittrich,
Jung and Hanggill2] have shown that the laser can prevent a particle located
initially in one of the wells from tunneling to the other well. Bavli and Metiu(8.9]
demonstrated that a semi-infinite Gaussian pulse can take the electron from a
delocalized energy eigenstate of the double well, localize it in one of the wells and
keep it there.

The emission properties of an electron in a double well are also interesting.
Numerical solutions of the time dependent Schridinger equation{?) show that the
Fourier transform pu(Q) of the induced dipole u(t) has peaks at three types of
frequencies: shifted even harmonics (SEH) (Q = 2nw + A with n=1,2,...), pure odd
harmonics (Q = (2n + 1), with n=0,1,2,...), and the frequency Q = A. The shift A is
a function of the laser frequency ® and its intensity I. These parameters can be
chosen to make A arbitrarily small and u(Q2) has a very low frequency peak. The
presence of this peak was called!?) low frequency generation (LFG). For certain
values of (»,I}, called("! points of accidental degeneracy (AD), A becomes equal to
zero and u(t) acquires a static component. In a symmetric double well the
presence of a static dipole, induced and maintained by the laser, is possible only
if the electron density has a static part that is asymmetrically distributed between
the wells, i.e. if electron localization occurs.

The calculations also show!?} that when (w,I} approaches an AD point the
LFG intensity is sometimes very large, exceeding the intensity of the fundamental
(i.e. the component having the frequency Q = w); as {®,I} reaches an AD point the
system has, sometimes, a very large static dipole. This means that the laser
induced localization is strong.

Finally, it is also observed that if {w,I} is not at an AD point then u(Q) has no
even harmonics (EH) (i.e. no peaks at Q = 2nw, n=1,2,.), in agreement with the

selection rules which state that such peaks are forbidden to all orders in
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perturbation theory. As {w,I} approaches an AD point and A -> 0, the SEH peaks
(at the frequencies Q = 2nw#*A) get closer and closer and become pure even
harmonics; strong even harmonic generation is observed, in disagreement with
the selection rules.

Clearly the shift A is a central parameter in describing this
phenomenology; interesting processes take place when A is small or zero. In
this article we use a combination of perturbation theory and asymptotic analysis
to provide a simple formula for A and to find the conditions under which the LFG
is intense and the localization is strong.

To do this we assume that the processes described above can be represented
in the space spanned by the two lowest energy eigenstates | 1) and |2) of the bare
(i.e. no radiation) Hamiltonian. R. Bavlil10] validated this assumption by showing
that the time dependent wave function for the double well model used in Refs. 6
and 7 can be represented at all times, with better than 90% accuracy, by the linear
combination ay(t)! 1) + ag(t)!2).

We use the two level Hamiltonian:

H=¢e{l1X11 -12X2D} - {1 1X21-12X1 D} Elt)= e0, - uyoE(L) oy (1)
Here 12 ) and |11 ) are the ground and first excited states of the electron in the
double well, respectively, and 6, and o, are Pauli matrices. The zero of energy is
halfway between the energy levels ¢, and €5, and 2e =¢, - &,.

The induced dipole is:

H(t) = po {w.tlo, ly,t), (2)
where |y,t) satisfies the time dependent Schridinger equation with the
Hamiltonian (1). By using standard methods we derive for p(t) the equation of

motion:

T
du(t)/dr = -(e/hw)2 {cos! esin(t)] f de'u(t) cos(egysin(t’)] +
0

T
+ sin[egsin (1)] f dt’ u(t) sin [egsin (1}, (3)
0




with ey = 21, Ey/hw and t=wt.
By using:(11]
expli egsinltl= § J (edexplint] ‘ (4)
N =00

where J,, are Bessel functions of integer order we can rewrite Eq.(3) as:

T
du(t)/dr = -(eJo(eo)/hm)‘é"’; dru() - (¢/hw) Flty) (5)
with:

T
Flzp) =2 ¥ Janlegicos[2nt] | dvn(r)[Joley) +2kf; Jonleg)cos(2nt ]+
n=1 0 ' =1

2n§1J 2n+1(€g) sin{(2n+1)1] 0‘ de'u()] 212“0 Joxs1(eg) cos [2n7' 1], ©)
The equation (6) can be formally “solved” to give:

(1) = pyy cos [A V) - (¢hae) J: dv’ cos[A(t-T’ )] F(T;u) (M)
We identify the frequency:

A = (eJgleg)h) 8

appearing in the first term in the rhs with the shift A discussed earlier in this
article. Therefore, the AD points are the points in the {©,I} plane given by 2u,,
Eyhw =r, where r, are the zeros of J,.

In the zeroth order approximation (i.e. if e¢/ho -> 0) Eq.(7) gives
H(t)=p ocos{At] and the Fourier transform p(Q) has a peak at the frequency A.
When A is small this corresponds to low frequency generation. In this
approximation the intensity of the LFG peak is very high, as compared to other
peaks, since W,, is the highest amplitude a Fourier component can have.

We must now examine the first order correction p,(t) and try to answer
several questions. Will the higher order terms modify the frequency A? Will they
change the amplitude u;, of the zeroth order term? Under what conditions is the

zeroth order term larger than all the others?




The first order correction is:

RT) = - (ehw)2 J: dv* cos[t-v'] F(";ny). . 9)
This is obtained by replacing p(t) under the integral in Eq. (7) with Ho- The
analysis of this term is tedious and we present here only the conclusions. (1) We
find no indication that the first or the higher order terms will renormalize the
shift A. Floquet theory!®) shows that in a two level system there could be only one
shift frequencyl?). Therefore, for all parameters for which the perturbation
expansion is valid the shift is given by Eq. (8). (2) The first order correction
contains terms whose time dependence is given by cos{At]. As a result, the
corrected dipole has the form u(t) = [uy, - (e/hw)? a] cosAt, where a is a sum of
Bessel functions squared and is always smaller than one. Thus as long as

eho<<1 (10)
this amplitude correction is small. (3) w1 contains shifted and pure harmonic
terms. The amplitude of these terms is of the form (¢/hw)2 b where b is less that
one; as long as Eq. (10) is satisfied the amplitude of these terms is smaller than
Ho- (4) The first order corrections contain “secular” terms of the form
t(e/hw)2Asin(At) which become infinitely large in time. This is a frequent
nuisance in the time dependent perturbation theory. It does not mean that u(t)
diverges, but only that as we increase t we are stepping outside the radius of
convergence of the expansion. Thus we are certain that ujo cosAt is the dominant
contribution in u(t) only if Eq. (10) and

t(ehw2A<< 1 (11)
are satisfied. Note that Eq. (11) implies that the time when the secular terms
become important is longer and longer as A — 0; there are no secular terms if
A=0.

The condition (11) implies that it is possible that LFG is intense and the

localization is strong only for a finite time, even if (¢/h®w)2 < 1. Our numerical
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experiments found no evidence for this, which suggests that, when calculated to
all orders, the secular terms add up to a well behaved function whose values are
smaller than .

To see under what conditions the secular terms will lead to corrections that
are smaller than y, we have performed an asymptotic analysis of pu(t). We start

from:

n %00

utigg = 1-(c/ho)? k;f_“J n(egdkleg) J; i dty explin t,] J:) " dto exp{-i n tolulto )iy
which is obtained by integrating Eq. 3 then using Eq. 4. This equation can be
solved by successive iterations. The first order term in the iteration scheme is
obtained by putting u(ty)=1 under the integral in the right hand side. Performing
the integrals leads to an expression of the form

1-(e/hw)2 [Jo(eg2(1)2/2 + td + g + K1)}

Here d and g are constants smaller than one and f{t) contains sines and cosines of
not, where n is an integer. As the iteration proceeds the term 1 -(e/hw)? Jo(e,)2 12/2
leads to cos{(A/w)t]. This cosine will exceed the next fastest growing secular term
if J,(e,)/2 T>> d. For the series leading up to the cosine to converge, we must also
have:

7 (¢/hw) Jgleg) < 1 (12)
These two conditions give the time interval in which cos At is the largest secular
term in the expansion:

1/2 << wt Jg < Ue/hw) (13)
If J is very small the asymptotic analysis ensures that jt;, cos{At] is the dominant
term in pu(t) at long times; moreover, condition ( 8) ensures this dominance for
short times. Together, these conditions cover the whole territory. They state that
if (/hw) << 1 and if A is small we have intense LFG; if (¢/hw) << 1 and A = 0 we have
good localization.

Bavlil8! tested these results by solving the equation of motion for u(t)

numerically. In Fig. 1 we show u(t) for (¢/hw) << 1, when the predictions made by




the theory are expected to work. We find that if the parameters are such that
Eq. (8) predicts that A =0 the calculated u(t)/u,, is equal to a constant which is
close to one, plus a term oscillating with a small amplitude and a high frequency.
H(tYu 4 is equal to one at all times only if the electron is perfectly localized, at all
times, in one of the wells. The example shown in Fig. 1 comes very close to this.
We found no case in which the predictions of the theory were in error. Fig. 1 also
shows a case in which (e/hw) << 1 and the value of A given by Eq. (8) is small. The
time evolution of p(t) shows a large-amplitude-low-frequency component and a
high-frequency-low-amplitude one; as predicted by theory the term ;5 cos(At)
dominates the behavior of i(t) and LFG is intense. We have also calculated the
Fourier transform of j1(t) and obtained from it the value of A and the absolute value
of the Fourier component u(A). We varied the laser frequency and the laser field
intensity E, so that ey=2u,,E/hw =6. The theory predicts that as long as (¢hw) << 1
Eq. 8 is valid and A is proportional to (¢hw). The plot shows this to be true. The
deviations from this prediction are not large even for (¢/hw) of order 2. Fig. 2 also
shows the absolute value of W(A)u,5 which is the intensity of LFG. As long as
(¢/hm)<<1 this is close to one which is the maximum intensity for this model. In a
double quantum well 1,5 is rather large leading thus to large LFG emission. The
predictions of the present theory also work well for almost all the AD points
discovered numerically in Ref. 7. The few discrepancies occur probably because
the system studied in Ref. 7 is approximately a two level system.

Previous work(%:10] has used perturbation theory to calculate the energy
difference AE between the Floquet quasi-energies. LFG and SHG were not
discussed, but the connection to localization was madell:2}: localization can occur
only if the Floquet quasienergies are equal; in the present context this means
A =0. However, previous work used the high field limit and obtained AE under
more restrictive conditions than those given here. The question of how large a

fraction of the electron density is localized and how intense LFG is has not been
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addressed before. We find that these effects are large if (¢/hw) << 1. While the

field strength is important for making A small, it is not a player in determining
whether the LFG is intense or the localization is strong.

While we used quantum wells as an example, the two level analysis
presented here is more general and these processes may be detectable for other
systems. For example, Corkum and his collaborators!12] have observed them
while exposing ions to a strong short pulse.
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Figure Captions

Fig.l.  The induced dipole u(t) divided by the transition dipole p,, as a function
of time obtained by solving the equation of motion numerically. (1) ep=2n,Eyho =
2.4, which corresponds to a point of accidental degeneracy (i.e. A given by Eq. (8) is
zero), hence to localization; (2) ey=2u,,Ey/hw = 2.7. The population oscillates in
accordance with Eq. (7). Since e¢/hw <<1, p(t) is dominated by the first term in
Eq. (7).

Fig.2. The dependence of the shift frequency and of the amplitude pu(a) of the
low frequency mode on e/ha for 2u,,E/hw = 6.0.
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