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of the wells. By using perturbation theory and asymptotic analysis we determine
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The behavior of a charged particle in a symmetric double well driven by a

strong laser has been studied recently in several articles(11 7]. Grossman, Dittrich,

Jung and Hanggi[1 -21 have shown that the laser can prevent a particle located

initially in one of the wells from tunneling to the other well. Bavli and Metiu(8,9 1

demonstrated that a semi-infinite Gaussian pulse can take the electron from a

delocalized energy eigenstate of the double well, localize it in one of the wells and

keep it there.

The emission properties of an electron in a double well are also interesting.

Numerical solutions of the time dependent Schrbdinger equation[7] show that the

Fourier transform p.(Q) of the induced dipole gt(t) has peaks at three types of

frequencies: shifted even harmonics (SEH) (Q2 = 2no ± A with n=1,2 .... ), pure odd

harmonics (2 = (2n + 1)a), with n=0,1,2,...), and the frequency Q = A. The shift A is

a function of the laser frequency o and its intensity I. These parameters can be

chosen to make A arbitrarily small and g(Q) has a very low frequency peak. The

presence of this peak was called1 71 low frequency generation (LFG). For certain

values of (o),I), called(71 points of accidental degeneracy (AD), A becomes equal to

zero and g(t) acquires a static component. In a symmetric double well the

presence of a static dipole, induced and maintained by the laser, is possible only

if the electron density has a static part that is asymmetrically distributed between

the wells, i.e. if electron localization occurs.

The calculations also show[71 that when {oj,I} approaches an AD point the

LFG intensity is sometimes very large, exceeding the intensity of the fundamental

(i.e. the component having the frequency 0 = co); as {ce,I} reaches an AD point the

system has, sometimes, a very large static dipole. This means that the laser

induced localization is strong.

Finally, it is also observed that if ({,I} is not at an AD point then •(f2) has no

even harmonics (EH) (i.e. no peaks at Q = 2nco, n=1,2,..), in agreement with the

selection rules which state that such peaks are forbidden to all orders in
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perturbation theory. As {c,I} approaches an AD point and A .> 0, the SEH peaks

(at the frequencies a2 = 2no_±A) get closer and closer and become pure even

harmonics; strong even harmonic generation is observed, in disagreement with

the selection rules.

Clearly the shift A is a central parameter in describing this

phenomenology; interesting processes take place when A is small or zero. In

this article we use a combination of perturbation theory and asymptotic analysis

to provide a simple formula for A and to find the conditions under which the LFG

is intense and the localization is strong.

To do this we assume that the processes described above can be represented

in the space spanned by the two lowest energy eigenstates 1 1) and 12) of the bare

(i.e. no radiation) Hamiltonian. R. Bavli[1 03 validated this assumption by showing

that the time dependent wave function for the double well model used in Refs. 6

and 7 can be represented at all times, with better than 90% accuracy, by the linear

combination al(t) 11) + a2(t) 12).

We use the two level Hamiltonian:

H=e•I1X11 -12X21)} - {lI>21-12XIl)}•t2E(t)-- az- i2E(t) x- (1)

Here 12 ) and 11 ) are the ground and first excited states of the electron in the

double well, respectively, and a. and az are Pauli matrices. The zero of energy is

halfway between the energy levels el and C2, and 2x = ci "•"

The induced dipole is:

9(t) = 912 ('vt I ax IV,t), (2)

where I NV,t) satisfies the time dependent Schrddinger equation with the

Hamiltonian (1). By using standard methods we derive for jL(t) the equation of

motion:

dg(t)/dt = -(OlCO) 2 (cosfeosin(t)] d&'(-t') cos[eosin(t')] +

+ sin[e0sin (-)01 dt' & ±(V') sin [eosin (Q')]A, (3)
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with eo = 2g 12 EOU1 and c=wt.

By using:t111

exp[i eosin[,t= T Jn(eo)exp[int] (4)
n = -- w

where Jm are Bessel functions of integer order we can rewrite Eq.(3) as:

dg(t)/dt = -(oJ0(eO)/'h))2f dr'g(r') - (ho)) 2 F(Rr,t) (5)

with:

F(T•;j) =2 1 J 2n(e 0)cos[2nT]f d'TtO(r')[Jo(e 0 ) +2 Y J2n(eo)cos[2nT']]+
n=1 JOk=1

2n•_-J2n+i(eO) sin[(2n+l)tf de•t'j(')[ 2 0J 2k+l(eo) cos (2nt']], (6)
n=1 fok=O

The equation (6) can be formally "solved" to give:

g(•) = g12 cos [A T/JO) - (VAo))2 0 de cos[A(¶-t' )] F(t';g±) (7)

We identify the frequency:

A = (eJo(e0)/h) (8)

appearing in the first term in the rhs with the shift A discussed earlier in this

article. Therefore, the AD points are the points in the coj,I) plane given by 2g 12

E0/'hco =rn where rn are the zeros of Jo.

In the zeroth order approximation (i.e. if s/hco -> 0) Eq.(7) gives

4x(t)=9 1 2 cos[At1 and the Fourier transform p.(Q) has a peak at the frequency A.

When A is small this corresponds to low frequency generation. In this

approximation the intensity of the LFG peak is very high, as compared to other

peaks, since 9 12 is the highest amplitude a Fourier component can have.

We must now examine the first order correction g1 (t) and try to answer

several questions. Will the higher order terms modify the frequency A? Will they

change the amplitude 912 of the zeroth order term? Under what conditions is the

zeroth order term larger than all the others?
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The first order correction is:

) (Ao¶)2 di' cos[t-,e] F(,t';go). (9)

This is obtained by replacing p.(t) under the integral in Eq. (7) with go. The

analysis of this term is tedious and we present here only the conclusions. (1) We

find no indication that the first or the higher order terms will renormalize the

shift A. Floquet theory[9] shows that in a two level system there could be only one

shift frequency[71. Therefore, for all parameters for which the perturbation

expansion is valid the shift is given by Eq. (8). (2) The first order correction

contains terms whose time dependence is given by cos[At]. As a result, the

corrected dipole has the form 4±(t) = [p.12 - (E'ho0) 2 a] cosAt, where a is a sum of

Bessel functions squared and is always smaller than one. Thus as long as

E/ho << 1 (10)

this amplitude correction is small. (3) g(l) contains shifted and pure harmonic

terms. The amplitude of these terms is of the form (e/ho))2 b where b is less that

one; as long as Eq. (10) is satisfied the amplitude of these terms is smaller than

go. (4) The first order corrections contain "secular" terms of the form
t(Ah0) 2Asin(At) which become infinitely large in time. This is a frequent

nuisance in the time dependent perturbation theory. It does not mean that p.(t)

diverges, but only that as we increase t we are stepping outside the radius of

convergence of the expansion. Thus we are certain that 912 cosAt is the dominant

contribution in g(t) only if Eq. (10) and

t (E/&o)2 A << 1. (11)

are satisfied. Note that Eq. (11) implies that the time when the secular terms

become important is longer and longer as A -4 0; there are no secular terms if

A=0.

The condition (11) implies that it is possible that LFG is intense and the

localization is strong only for a finite time, even if (e/ho))2 < 1. Our numerical
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experiments found no evidence for this, which suggests that, when calculated to

all orders, the secular terms add up to a well behaved function whose values are

smaller than go.

To see under what conditions the secular terms will lead to corrections that

are smaller than go we have performed an asymptotic analysis of g(t). We start

from:

(•)/L12 = 1-(c/hco)2 • -,Jn(eo)Jk(eo) dtr exp[i n 'C dH2 exp[-i n '2-r(2)4L12
= -o Jo

which is obtained by integrating Eq. 3 then using Eq. 4. This equation can be

solved by successive iterations. The first order term in the iteration scheme is

obtained by putting g±(T2)=l under the integral in the right hand side. Performing

the intaegrals leads to an expression of the form

1-(E/(0)2 (Jo(e0)2 (t)2 /2 + t d + g +

Here d and g are constants smaller than one and fit) contains sines and cosines of

ncot, where n is an integer. As the iteration proceeds the term 1 -(v'no)2 Jo(e) 2 Z2/2

leads to cos((i/o)t]. This cosine will exceed the next fastest growing secular term

if Jo(eo)/2 z >> d. For the series leading up to the cosine to converge, we must also

have:

r (Whco) Jo(eo) < 1 (12)

These two conditions give the time interval in which cos At is the largest secular

term in the expansion:

1V2 << cot Jo < 1/(ME.co) (13)

If J 0 is very small the asymptotic analysis ensures that 9I12 cos(At] is the dominant

term in p(t) at long times; moreover, condition (8) ensures this dominance for

short times. Together, these conditions cover the whole territory. They state that

if (elhco) << 1 and if A is small we have intense LFG; if (e/hco) << 1 and A = 0 we have

good localization.

Bavli[8 ' tested these results by solving the equation of motion for ý.(t)

numerically. In Fig. 1 we show g(t) for (a/co) << 1, when the predictions made by
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the theory are expected to work. We find that if the parameters are such that

Eq. (8) predicts that A = 0 the calculated 9(t)0/ 12 is equal to a constant which is

close to one, plus a term oscillating with a small amplitude and a high frequency.

p(t)/9 1 2 is equal to one at all times only if the electron is perfectly localized, at all

times, in one of the wells. The example shown in Fig. 1 comes very close to this.

We found no case in which the predictions of the theory were in error. Fig. 1 also

shows a case in which (E/ho) << 1 and the value of A given by Eq. (8) is small. The

time evolution of .(t) shows a large-amplitude-low-frequency component and a

high-frequency-low-amplitude one; as predicted by theory the term IN1 2 cos(At)

dominates the behavior of g(t) and LFG is intense. We have also calculated the

Fourier transform of •(t) and obtained from it the value of A and the absolute value

of the Fourier component g(A). We varied the laser frequency and the laser field

intensity E0 so that eo=2g 12EoSlo =6. The theory predicts that as long as (W/ho)) << 1

Eq. 8 is valid and A is proportional to (hco). The plot shows this to be true. The

deviations from this prediction are not large even for (e/hco) of order 2. Fig. 2 also

shows the absolute value of ýL(A)/p. 2 which is the intensity of LFG. As long as

(elho))<<l this is close to one which is the maximum intensity for this model. In a

double quantum well "12 is rather large leading thus to large LFG emission. The

predictions of the present theory also work well for almost all the AD points

discovered numerically in Ref. 7. The few discrepancies occur probably because

the system studied in Ref. 7 is approximately a two level system.

Previous work[9,10° has used perturbation theory to calculate the energy

difference AE between the Floquet quasi-energies. LFG and SHG were not

discussed, but the connection to localization was made~i,21 : localization can occur

only if the Floquet quasienergies are equal; in the present context this means

A = 0. However, previous work used the high field limit and obtained AE under

more restrictive conditions than those given here. The question of how large a

fraction of the electron density is localized and how intense LFG is has not been
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addressed before. We find that these effects are large if (e/'i o)< 1. While the

field strength is important for making A small, it is not a player in determining

whether the LFG is intense or the localization is strong.

While we used quantum wells as an example, the two level analysis

presented here is more general and these processes may be detectable for other

systems. For example, Corkum and his collaborators[12) have observed them

while exposing ions to a strong short pulse.
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Figure Captions

Fig.1. The induced dipole p,(t) divided by the transition dipole .12 as a function

of time obtained by solving the equation of motion numerically'. (1) eo=2p.12 Eoihc =

2.4, which corresponds to a point of accidental degeneracy (i.e. A given by Eq. (8) is

zero), hence to localization; (2) eo=2ýL12Eo/h = 2.7. The population oscillates in

accordance with Eq. (7). Since "ihoo <<1, g(t) is dominated by the first term in

Eq. (7).

Fig.2. The dependence of the shift frequency and of the amplitude g(A) of the

low frequency mode on E/'h for 2•12 E0/ho = 6.0.
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