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FOREWORD

The Tenth Army Conference on Applied Mathematics and Computing was held at the U.S.
Military Academy, West Point, on 16-19 June 1992. This is the third time the Military
Academy has served as the host for this series of Army conferences. For each of these
meetings the heads of the Department of Mathematics served as Chairpersons on Local
Arrangements. Colonel Frank Giordano served twice in this capacity. For the tenth
conference, he was assisted in this task by Lieutenant Colonel Scott Crawford and
Captain Rick Stevens. These individuals are to be commended for their efforts in
coordinating all the details required to conduct this large successful scientific meeting.

The 1992 conference was attended by more than 80 scientists and engineers
representing various Army agencies and academia. The meeting featured seven invited
speakers. These general talks covered several topics of current interest, including natural
language processing, wavelet analysis, variational methods, small sample asymptotics,
computational fluid dynamics, digital control programs, and parallel programming. The
names of these speakers, together with the titles of their addresses are listed below. The
second part of the program consisted of special sessions on topics such as
computational algebraic geometry, mathematical aspects of material sciences, scalability
in high performance compujting, and robust control and nonlinear systems. In addition,
about 50 contributed papers were presented by both Army and Academic participants.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor Anil Nerode and Extraction of Digital Control
Alexander Yakhnis Programs from Specifications
Cornell University for Continuous Plants

Professor Ken Kennedy Architecture-Independent
Rice University Parallel Programming Support

in Fortran D

Professor C. R. Rao Current Trends of Research in
Pennsylvania State Statistics: Robustness, Small

Sample Asymptotics & Resampling

Professor Aravind K Joshi Natural Language Professing
University of Pennsylvania

Professor Charles K. Chui Wavelet Analysis and Its
Texas A&M University Applications

Professor David Kinderlehrer Variational Methods for the
Carnegie Mellon University Materials Sciences
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SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor Paul Woodward Visualization in Computational
University of Minnesota Dynamics

The evening events provided by the host installation added a great
deal to this conference: On Tuesday evening there was a bus tour
of West Point, on the following evening the banquet was held, and
the Thursday evening workshop, put on by the members of the
Mathematics Division, introduced some attendees of the conference
to computer algebra.

This conference is part of a continuing program of Army-wide
symposia held under the auspices of the Army Mathematics Steering
Committee (AMSC) to promote better communication between Army
scientists and the Army Research Office investigators. In ard4t
that Lhi6 mission be accomplished, a large number of scientists had
to expend a great deal of effort. The members of the AMSC would
like to thank all these individuals for their excellent
presentations and their valuable contributions to the field of
science.
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TENTH ARMY CONFERENCE ON APPLIED MATHEMATICS AND COMPUTING

Host

U.S. Military Academy, West Point, New York

16-19 June 1992
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0745- 1600 Registration - Thayer Hall, Room 342

0815- 0830 Opening Remarks - Thayer Hall, Room 342

0830 - 0930 General Session I - Thayer Hall, Room 342

Chairperson: Benjamin E. Cummings, U.S. Army Human
Engineering Laboratory, Aberdeen Proving Ground,
Maryland
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Anil Nerode and Alexander Yakhnis, Cornell University,
Ithaca, New York
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Research Triangle Park, North Carolina
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PERSPECTIVE

Michael Stillman, Cornell University, Ithaca, New York

TOWARD A NEW METHOD OF DECODING ALGEBRAIC CODES
USING GROBNER BASES

Brinton Cooper, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland
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at Austin, Austin, Texas
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TOWARD A NEW METHOD OF DECODING ALGEBRAIC CODES
USING GROBNERB BASES

A. Brinton Cooper, III
U.S. Army Research Laboratory

Aberdeen Proving Ground, Maryland 21005-5066
USA

Abstract

A binary BCH error control code is a vector subspace of binary n-tuples. Alge-
braically, the code is generated by a polynomial having binary coefficients and roots in
GF(2 m). It is decoded by computing a set of syndrome equations which are multivariate
polynomials over GF(2m ) and which exhibit a certain symmetry. If the number of trans-
mission errors in a received word does not exceed a bound t for the code, the roots of the
syndromes are tne locations, in the received word, of those errors. These multivariate
polynomials are taken as the basis for an ideal in the ring of polynomials in t variables
over GF(2m ). A celebrated algorithm by Buchberger produces a reduced Grobner basis
of that ideal. It turns out that, since the common roots of all the polynomials in the
ideal are a set of isolated points, this reduced Grbbner basis is in triangular form, and
the univariate polynomial in that basis is the well-known BCH error locator polynomial,
the roots of which specify the error locations. Decoding is algorithmically complete when
this polynomial is known.

1 Introduction

Modern algebraic techniques have been used to design and decode codes for error control as
far back as the presentation of Hamming's codes [1]. In the early 1960s, the binary BCH,
codes [3-6] were discovered independently by Bose and Chaudhuri and by Hocquenghem.
The BCH codes and their descendents are popular for several reasons, including their regular
algebraic structure which permits easy encoding using simple shift registers and the existence
of codes for a wide range of block lengths and error correction capabilities.

However, the asymptotic performance of BCH codes is not "good" [6] in that the er-
ror probability after decoding and the information rate of the code are not simultaneously
bounded away from zero with increasing block le'igth. Nevertheless, the BCH codes and

1 Bose-Chaudhuri-Hocquenghem. McEliece [2] presents an interesting history of the naming of these codes.



their derivatives are widely used because they are easy to generate, well understood, and
useful in the control of transmission errors over noisy channels. Decoders, however, axe
complex, and work continues to find simpler and more powerful decoders.

This work applies recent results from the algebra of multivariate polynomials to the
direct solution of the syndrome equations of binary BCH codes. In this problem, up to t
nonlinear polynomial equations must be solved for the locations of the errors.

Following a review of the basic theory of linear block codes, Section II presents the
polynomial model of cyclic codes and shows how a BCH code is specified solely by a set of
roots of its generator polynomial. Section HI defines the essential problem for decoding BCH
codes. Section IV casts the problem into ideals in the polynomial ring GF(2m)[X 1,..., Xt],
such ideals being defined by their roots. Modern methods are used to solve these equations
directly.

Examples are included.

2 Linear Block Codes

2.1 Introduction

A common method for controlling errors in information transmitted over noisy channels is
the use of linear block codes (LBC) 2. Algebraically, a LBC is a subspace of a vector space of
n-tuples over a finite field and, therefore, has a basis which spans the code. The dimension
of the LBC is smaller than n, the number of elements in the n-tuple. This gives rise to the
existence of n - k redundant symbols in each codeword. This redundancy provides distance
between pairs of codewords. The sense in which we define "nearness" is Hamming distance.

Definition: The Hamming distance dH between two n-tuples is the number of places
in which they differ.

Channel noise often reduces the distance between two received words. Sufficient redun-
dancy, however, can provide enough inter-codeword distance to protect against specified
levels of channel noise.

2 For a thorough coverage of this topic, the reader is referred to any of several excellent texts [2-9].
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2.2 Polynomials and Cyclic Codes

Using powers of an indeterminate x as placeholders permits writing a polynomial model
of the LBC. This is more than formalism, however, as it permits code construction and
decoding based upon the roots of certain polynomials.

Information is carried in the (binary) coefficients of

i(X) = io + i1X +...+ iA-lzk-i, ii E GF(2), j = 0,1,...,k- 1. (1)

Codeword polynomials are generated by multiplying i(z) by a generator polynomial g(z) of
degree n - k:

g() = go + gl +... + g- -k, 9i E GF(2), =0,1,.., n - k (2)

Coefficients of the resulting polynomial v(x) represent the binary symbols in the codeword:

vWx = i(x)g(x)
= vo+vIX+...+v,_lx"- 1 , vi EGF(2), j=0,1,...,n- 1 (3)

A code is said to be cyclic if every cyclic shift of every codeword is also a codeword. Alge-
braically, it is true that a code is cyclic whenever g(x)xzn - 1, and it follows that a cyclic
code is an ideal3 in the ring of polynomials modulo xn - 1. More important, the codeword
length n is the smallest integer for which g(z)lrn - 1.

2.3 BCH Codes

The BCH codes provide a convenient paradigm for several families of powerful LBCs includ-
ing Reed-Solomon [2-9] and Goppa 12] codes. A binary, primitive BCH code is a cyclic code
of length n = 2" - 1. Its generator polynomial numbers among its roots 2t consecutive
powers4 of a primitive element a of the locator field GF(2m ). With correct decoding, this
code can correct up to t channel errors in every codeword. 5

Example: Let m = 4 and t = 2. Then n = 15 and the roots of g(x) include
a, a2, a 3, and a4 . Because a15 = 1, these must also be roots ofg(x): {as, as, a 12 , a9 }.

3 A formal definition of ideal is given later.
4The nonzero powers a ' ,..., a0- of a primitive element of GF(2') are the distinct nonzero elements

of that field.
'In order that the codewords be binary, it is necessary, for every root /0' of g(z), that all conjugates

{p2,34i, .... be roots of g(z) as well.
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Hence, the degree of g(x) is n-k = 8 so that the dimension k of the code is 7. (i.e., the code
has 27 - 128 code words.) The code is capable of correcting at least t = 2 errc,,d in every
codeword, and the code rate, k/n is 0.47 information bits per binary symbol transmitted.

3 BCH Decoding

Of course correcting t errors in a codeword of length n requires a decoding procedure that can
achieve this error correcting potential. A trivial but completely correct decoding technique
is to construct a table of every received binary n-tuple and the codeword into which it must
be decoded. When symbol errors are independent, the rule is to decode a received n-tuple
into the nearest codeword 6

However, such table lookup decoding is feasible only for rather small codes, so we continue
to be interested in algorithmic, algebraic decoders which are much faster and demand much
less storag_.. Let r(x) represent the received vector when a t-error correcting BCH codeword
v(x) is transmitted over a channel corrupted by additive noise:

r(x) = v(z) + e(z)- (4)

e(x) is the error polynomial: ej = 1 if an error occurred in the jth position and 0 otherwise.
The paradigm for many useful decoders of this code is a four-step decoding procedure:

9 calculate syndromes, functions of the coeffcients of r(x);

* calculate coefficients of the error locator polynomial;

0 solve the error locator polynomial for the locations of the errors; and

* (for nonbinary codes) calculate the error values.

3.1 The Syndromes

Consider the channel output, r(x) as given by (4). The jt4 syndrome value is:

Sj = r(a") = g(a&) + e(a&) = e(aj), j = 1,...,2t (5)

6 Because this is a minimum distance decoding techique, no other decoder can correct more errors on a

memoryless channel.
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Writing only those coefficients ei which are not zero leads to the following form of the 2t
syndrome equations:

eizcail + ei,2a 2 + + + eit, 't = S1

ei, a 2'i + eijta2 i2 + + eit C2it = S2

el, a 2
til + ei 2t26 -+- .. e, C,

2t
69 = St (6)

Note the following:

(a) In (6), if a"j for any j is known, then the location ij of the corresponding error also
is known. It is convenient, therefore, to write Xi = aij. The values of the ai" are called the
error locators of the received word.

(b) In any field GF(2m ) of characteristic two, (a + b) 2 = a2 + b2. Therefore, in (6) every
syndrome computed from even powers of a is an even power of some syndrome computed
from odd powers of a; e.g., S2 = S2. These are redundant and do not contribute to solving
for the error locators.

(c) In.(6), ei, = 1, j = 1,...,2t. The syndromes {$S, .j = 1,...,2t} are known
(computed) elements of GF(2m) and can be expressed as powers of a; i.e., S., = aj,'.

Considering (a), (b), and (c) with (6) gives a system of t polynomial equations, the
solutions to which are the error locators of the received word.

S3 = ail =X 1
3 +X 2

3 +..+Xt3

S2t-I = =1 X -2tl + X22t-1 + + Xt 2 t-1 (7)

3.2 The Error Locator Polynomial

Derivation of (7), a set of power-sum symmetric functions, assumed that no more than t

errors occured in a block of length n. The error locator polynomial is derived from these

functions.
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Definition: The error locator polynomial o(z) is the (univariate) polynomial all the
roots of which indicate the locations of errors in a received word.

a(z) = l(x- X,)
i=1

= Xt + CZ-1 + o 2zt-l +... + at (8)

Decoding is complete when the roots of a(z) are found and the necessary corrections made
to r(x). The Chien search [81 is a method for doing this without explicitly solving a(x). This
method uses a digital circuit which evaluates a(z) at each member &r of GF(2m ) and sets a
correction bit to unity if a(x) is satisfied. The received polynomial r(x) is clocked through
the circuit and the correction bit is added module 2 at the appropriate location. Whenever
a root of a(x) is found, therefore, the appropriate received symbol is complemented. The
Chien search will be required in implementing the direct solution methods discussed below.

4 Direct Solution Techniques

The objective is to find a solution set to (7):

aril = XI+X2+"'+Xt

a j3 = X13 +X2 3+-...+ Xt3

aj•'-l = X12t-1 + X22t-1 + + Xt-1 (9)

where a is a primitive element in GF(2m). Because the number of errors in a received word
does not exceed t, (9) is a system F of t independent equations with at most t solutions. Hence
F is a system of t polynomials in t unknowns and has one unique solution, 3 = (01,.. lot)

4.1 Rings and Ideals

Direct solution techniques of (9) exploit the rich algebraic structure of the ring R = K[X] =

K[X 1,X 2,..., Xt] of polynomials in t variables over K = GF(2') [11]. A subset I of a ring
is called an ideal if it is a subgroup of the additive group of the ring and if, for every i E I

'Actually, the rigorousl correct statement is that all zeros of the system are "equivalent" and "mapped
on one another by an isomc rphism which leaves fixed the elements of the ground field..." [10]



and ,3very r E R, both ir and ri belong to I. Hilbert's Basis Theorem [10] requires that
every ideal in K[X] have a finite basis.

Consider F to be a subset of the ring K[X]. The set T(F) spanned by members of F
(where coefficients are taken from K[X]) is an ideal in K[X]:

2(F) = (F) C K[X]. (10)

The common zeros of the polynomials of F are said to form an algebraic manifold, [10]
which is "defined by" those polynomials. All points of the manifold satisfy every member
of T(F). Direct solution techniques require searching 1(F) for another set G of polynomials
which are simpler to solve than those in F. Hence, new methods for finding bases of ideals
in K[X] bear on the decoding problem.

4.2 A Basis for the Ideal

The objective is to find for 2(F) a basis G which is "easily" solved for the underlying roots.

The basis G is obtained from the defining polynomial set F by applying transformations
which do not eliminate any roots of the system.

Example: Suppose set F is:

fl: X 1 +X 2 +a' = 0
f2: X3+X3±+ak = 0, (11)

and siippose that it is known that this system has the solution (f31,3•2) E GF(2m) 2. Then

y(X) = a,(X)fi(X) + a 2 (X)f 2(X) (12)

is satisfied by (,31, ,P2) as well8 .

Suppose a2(X) = 1 and

ai(X) = X 2 + X1 (X 2 + a0) + (X 2 + Cr)2. (13)

Then,

y(X) = X2'a + X2 a2j + a 2 + ak, (14)

"8 Of course, if al(") and a2 (X) have a common factor, y(X) may have an additional root that does not
satisfy fl or f2, but this case is of no interest.
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and the system has been reduced from two equations (a cubic and a linear) to a single,
univariate, second degree equation having the same solution (81,/f2). We say that the cubic
has been reduced modulo F to y(X).

The algorithm for deriving the desired ideal basis G is based upon such reduction op-
erations. It produces a reduced Gr6bner basis [121 of the ideal spanned by F. A reduced
Grfbner G basis is a set of polynomials:

* which is a basis of the ideal;

* each member of which has coefficient of highest order term = 1;

* no element of which can be reduced modulo G.

It is known [12] that a reduced Gr~bner basis for Z(F): can be written in triangularized
form:

gi = g1(X 1 )
g2 = 92 (X 1,X 2 )

: (15)

gt = gt(X 1 ,X 2,. .. ,X)

This suggests a recursive root finding technique. However the univariate member g, of the
set is, in fact, the BCH error locator polynomial [13].1

4.3 Grobner Bases as a Basis for Decoding

It would be redundant to include here the general form of Buchberger's algorithm for finding
the Gr5bner basis of an ideal I(F). The interested reader should refer to the literature, of
which [12] is the most comprehensive source. The method is illustrated in this example:

Example: This is the general form of the problem. Take K to be GF(24), and t = 3.
Then the resulting g(x) generates a 3-error correcting code with block length n - 24 - 1,

9 At worst, gi is isomorphic to the error locator polynomial. As shown in [13] however, the isomorphism
is trivial.



dimension k = 5, and 32 code words. In general, the decoder produces these non-redundant
syndromes:

X 1 +X 2 +X 3 +Ca' = 0

x +X2+X3+Cx ' = 0 (16)
xIS+X25+x5+Ck = 0.

Define three intermediate polynomials,
2

pi(X) = FX (X 2 + X, +a') 2 j
i---o

4
p2(X) = E XY(X2 + XI + a')4-,

j=O

p3 (X) X 2 +r X 2 X1 +X 2 a' + X2 + Xia' +a 2 , (17)

and from these produce three "coefficient" polynomials:

a,(X) = pIp 3(Xl + a') + p2(X1 + a') + p(a' + a3')
a 2 (X) = p3(Xl+a') + aj- -a 3N

a3(X) = X 1 +a'. (18)

Substitute the pi into the aj to get

ai(X) X 1X3+ a'X3+XX 2X3+a'X2 X3 + XI2X1 + a X 2 + xjX 2

+a(= •2 X X2 + a'X 2X2 + a2 XlX + ajX2 + 3iX3 + X 2X2X3 + aX2ixx 3

+j'X 2 X 3 + a1X 2 X 3 + a'XIX3 + aX 1iX 3 + ajr 'X 3 + aX X2

+ax 2x + a x 1 2x +a+ 2 X2x + a 4'x + X 2

+aiXj 4 + a 2iX1 + ajX2? + a 4iXl + aj+2i + asi

a2(X) = X1X, + a'x• + X1X 2 + a2 X2 + X13 + a..

This yields a univariate polynomial which we recognize as the error locator polynomial:

3

o(x ) = a,(X)f.(X)

= X3(& + a 3 i) + X2(ai+j + a4i) + X 3 (ak + a 2i+j) (19)
rti+k JrO2j r 3i+j 6rti.

+a( s + ae o + prob +a

Finding cr(X) solves the decoding problem.

9



5 Conclusion

Mathematically, we have shown a decoder that computes a set of syndrome values which are
functions of the roots of the code's generator polynomial and of the error locations. These
syndromes are the constant terms of a system of nonlinear polynomials. We have presented
a method for extracting from that system the error locator polynomial, which is satisfied by
the error locations expressed as elements of GF(2m). The coefficients of the error locator
polynomial are functions of the syndrome values only. Thus, the decoder need do only two
things: compute syndromes and coefficients.

Work is ongoing to generalize this method and to extend it to Reed-Solomon and Goppa
codes.
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An Algorithm for the Computation of
Grdbner Bases

W. W. Adams * A. Boyle t P. Loustaunau t

Abstract

Let R be a Noetherian integral domain which is graded by an
ordered group r and let x be a set of n variables with a term order.
In this paper we present a new algorithm for computing Gr6bner bases
in the ring R[xj. This algorithm is based on the authors earlier paper
[2]. In the case where R = k[y] is graded by a term order, then this
gives a new algorithm for computing Gr6bner bases in k[y, x]. This
algorithm requires the computation of many Gribner bases but in
fewer variables than the usual Buchberger Algorithm.

1 Introduction

Let y and x be sets of variables, each with a term order and an elimination
order between them. Let k denote a Noetherian commutative ring. In several
places in the literature (e.g. [1], [2], [3], [5], [9], [1101), the problem of lifting
Gr6bner bases from the ring k[y] to the ring k[y, x] has been investigated.
This entails understanding the difference between a Gr6bner basis in (kty])[x]
and a Grdbner basis in k[y, x]. We refer to this as the transitivity question.
This problem was examined in [1] mainly for the case when x = x consisted
of a single variable. There it was shown that certain subsets of the leading

"*University of Maryland, College Park, MD
tNational Science Foundation, Washington D.C.

lGeorge Mason University, Fairfax, VA
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coefficients with respect to x must form Grobner bases in k[y] in order to go
from a Gr6bner basis in (k[y])[x] to a Gr6bner basis in k[y, x]. The results in
[1] were generalized in [2] to the case where x is more than one variable. The
key concept was the so-called saturated sets of polynomials as introduced
by M61ler in [7] (where they were called maximal sets). In this paper we
provide a preliminary discussion of how these ideas can be used to give a
new algorithm for computing Gr6bner bases.

In [21 we found that graded rings are a natural setting for the transitivity
question. So, let R be a Noetherian integral domain and assume that R
is graded by an ordered group r. The concept of Gribner basis can be
extended to such graded rings R (see, for example [2], [6]). If x denotes a set
of n variables, the ring R[x] can be graded both by r x Z' and {0} x Z'.
Then the transitivity question in this setting becomes: when is a Gr6bner
basis in R[xJ, graded by {0} x ZV, also a Gr6bner basis in R[x], graded by
F x Zn . The solution is stated in terms of certain sets of leading coefficients,
corresponding to the so-called saturated subsets, being Gr~bner bases in R.

In Section 2 we will give the definitions for the generalization of the con-
cept of Gr6bner bases to graded rings and state the usual characterizations
of Or~bner bases in this context. In Section 3 we will give some computabil-
ity conditions on a graded ring so that we can give the usual Buchberger
algorithm for computing Grbbner bases in such rings. In Section 4 we recall
from [2] the results on transitivity that allow us to give our new algorithm.
This algorithm is presented in Section 5 and an example is given computing
a Gr6bner basis by this method.

2 Graded Rings

In this section we briefly review the definitions for the theory of Gr6bner
bases in a general graded ring. For more details see [2].

Let F be an additive abelian group which is totally ordered with respect
to an order, denoted by "<", and where we assume that the order respects
the group law. The latter means that for all -r, 6, q E F, we have that "Y < 6
implies that -y + 77 < 6 + Y7. We assume that R is a Noetherian integral domain
graded by F. Thus R = E 7 Er R.y, where each R., is an additive abelian group
and R7,R 6 C R.,+ 6 for all j, 6 E F. Let Fo = f'y E1 FIR., $ 0}. Since 0 E r0
(1 = 12 E R0), we see that F0 is, in fact, a submonoid of F. We will assume
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that ro generates r. We will also assume that ro is well ordered. We note
that this is equivalent to 0 -y for all -y E ro.

Now for each a E R (a 0 0) we may write a = •_<. ay, with a. E R7
and ay.0 : 0. We define lt(a) = a. and v(a) = -yo. Set lt(O) = 0 and v(O) = 0.
We call lt(a) the leading term of a and v(a) the value of a. Since R is an
integral domain, we have, for all a, b E R, tt(ab) = lt(a)lt(b), and if ab 0 0
then v(ab) = v(a) + v(b). For a subset F C R, we set Lt(F) = (lt(a)la E F).
(Here the symbol (... ) denotes the ideal generated by ---. ) Clearly Lt(F) is
a homogeneous ideal.

Definition 2.1 Let I be an ideal in R and let F be a subset of I. We call
F a Gr6bner basis for I provided that F is finite and Lt(F) = Lt(I).

We will say that a subset F of R is a Gr6bner basis provided that F is
a Gr6bner basis of the ideal, (F), that it generates.

In our context we also have reduction. Let F = {fi,...,f,} be a finite
subset of R. For f, g E R, we say that f reduces to g modulo F, denoted
f g, provided that f - g = E!,=I aifi, where lt(f -g) = lt(f) and

Fv(lt(f- g)) = max(v(lt(a1 )lt(fi)). We let ---. denote the transitive, reflexive

closure of _*. We say that f is reduced provided there is no g such that
F---- g.

The following Theorem provides in our context the usual equivalent con-
ditions for a set to be a Grbbner basis. It parallels exactly the corresponding
Theorem I in [71 and is proved in exactly the same way. (See [21.)

Theorem 2.2 Let F = {fl, . . . , f,} be a finite subset of R. Then the follow-
ing statements are equivalent:

1. F is a Grdbner basis.

2. For every a E (F) we can write

= ri fi where v(a) = max(v(ri f)) (1)
i_<i<s

and ri E R.

3. Let B be any finite basis of the syzygy module consisting of all sequences
(bl,..., b,) where bi E R such that F,!= bilt(f,) = 0 and where we may
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assume that for all (bl,. ,b.) E B we have that there is a -y E r
satisfying v(bilt(fi)) = -f for all i such that bi $ 0. Then for any
sequence (bi,... ,b.) E B we have that

a E bifi
i=1

has a representation as in Equation 1 above.
F

4. a --- *+ 0 for every a E (F).

5. For B as in 3 and for every (bl,...,b) E B we have

2bf, F0+ 0.
t=1

3 Gri*bner Bases in Graded Rings

In order to compute Gribner bases in a graded ring R we need to make some
computability assumptions about R. We first assume that the grading is
effective. By that we mean that given any r E R we can effectively deter-
mine lt(r). It then follows, since F0 is well ordered, that we can effectively
decompose r into its homogeneous components. We further assume that we
can do effective computations in homogeneous ideals. That is, we can answer
the membership and representation questions for homogeneous ideals. We
finally assume that we can determine a basis of the syzygy module of a tuple
of homogeneous elements of R (we can then determine a homogeneous basis
because of our assumption that the grading is effective). (Note that if R is a
polynomial ring over a field k = RO, and F is given by a term ordering, then
these conditions are equivalent to the usual assumptions that one can solve
linear equations inside k.)

Using these assumptions, it is easy to see that the process of reduction
described in the last section is also effective. This observation and Theorem
2.2 allow us to give an algorithm for the computation of Gr6bner bases in R,
which is basically the usual Buchberger algorithm over rings (cf [4] or [7]).



ALGORITHM: GradedGB({r 1 ,...,r,},F)
INPUT: r 1,...,ra in R.
OUTPUT: A Gr6bner basis for (r1 ,...G :={r,.,o
F:= 0
While F 6 G do

F:=G
Compute a homogeneous basis B 1,...,Bt

of the syzygies of (It(r) I r E F)
For i = I to t do

Set Bi = (b1 ,...,b,)
El 1biri F_++ r, where r is reduced
If r#O then G:=GU{r}

We note that in this algorithm, the new elements obtained in the Gr6bner
basis are effectively expressible in terms of the input polynomials. We will
need this for our application in Section 5. We also note that given the
hypotheses above on R, we are able to compute Gr6bner bases for any ideal
in R, and hence we axe able to answer the ideal membership question and

the syzygy question for arbitrary ideals in R.
As an easy example, we consider R = kfx, y] for a field k and F = Z, where

the grading is given by total degree. Let fi = x 2y + xY2 + y, f2 = y3 + X + y.
A homogeneous basis for the syzygy module of (It(f 1 ), lt(f 2)) is given by
(_y 2, x2 + xy). We compute -y 2f1 + (x 2 + Xy)f2 = _y3 + x3 + 2x 2y + xy 2.
Since the latter polynomial cannot be reduced by f, and f2, we denote it by
f3 and add it to the basis. A homogeneous basis for the syzygy module of
(It(f1 ), lt(f 2 ), lt(f3 )) is given by (x+y, -y, y). Since (x+y)fl +(-y)f2+yf3
0, the while loop ends and we have that {f,, f2, f3} is a Gr6bner basis for
the ideal (fl,f2).

4 Transitivity for Grbbner Bases.

Let x = {xi, ..., x,, } be variables. Assume that we have a term order " <" on
Z". (We note that this is just an order on the group Z" in the sense given in
Section 2.) Given any integral domain R there is the natural Z' grading on
R[x] whose non-zero homogeneous summands are indexed precisely by N".
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Now assume that R is, in fact, a F-graded ring as above. Set A = F x Zn.
Then we can define a A-grading on Rixi where, for ', E F and v E Zn we
have

R~l-, = R-,x'

provided that v E Nn and is {0} otherwise. (By x1 we mean x4 ... x1-
where v = ( vi,...,vn).) We see that A0 = '0 x N'. We will define an order
on A as follows.

Definition 4.1 The elimination order on A is defined as (,I, vi) < (2, v2)
if and only if v, < v 2 or v, = v2 and -t < y2.

This generalizes the concept of elimination order that occurs in the liter-
ature, for example, in the computer algebra system Macaulay, and also in [1]
and [2]. It is easily seen that Definition 3.1 makes A into an ordered group
satisfying the conditions assumed above.

Now given a E R we use the notation ltr(a) and vr(a) to specify the
leading term and value of a as defined in the previous section. If f E R[x] we
denote the same concepts with respect to A by ItA(f) and vA(f) respectively.
Write f = axl + lower terms in x, where a E R and a 0 0. Then set
lt.(f) = ax", lp.,(f) = x', lc(f) = a and v,(f) = v. Of course, It, and v. are
the leading term and value concepts in R[x] with respect to the group {0} x F.
Also, lp.(f) is called the leading power product of f and lc,(f) is called the
leading coefficientof f. We note that lt,%(f) = ltA(lt,(f)) = ltr(lc,(f))Ip,(f)
and vA(f) = (vr(lc,(f)),v.,(f)). We also define Ltr, Lt, and LtA as in the
last section. The former will give homogeneous ideals in R and the latter will
give ideals in R[x], homogeneous with respect to {0} x Zn and A respectively.

In order to state our algorithm we must relate Gr6bner bases in R[x] with
respect to A = F x Z' to Gr6bner bases in R[x] with resnect {O} x Z" and
Gr6bner bases in R with respect to F of certain subsets of leading coefficients.
We now define these subsets of R. Let F = { fl, .. , f, } be a set of polynomials
in R[x]. We adopt the notation that

fj = aiXj, lower terms in the x variables,

where Xi is a power product in the x variables, and ai E R. That is, lc,(fi) =
a, and Ip,(fi) = X,. We will continue using this notation throughout the
paper.

For each subset S of { $.I... s}, we define



* = lcm, 5sX, = lcms{lp.(f,)},

* Fs = {f1IXi divides Ds}, and

* = {ajifi E Fs}.

Also let S* = {ilfi E Fs}. We say that S is saturated if S* = S.

Theorem 4.2 F is a Grdbner basis in R[x] with respect to A = r x Zn if
and only if

1. F is a Grdbner basis in R[x] with respect to {0} x Z" and

2. For all saturated subsets S of {1,...,s}, Gs is a Gr6bner basis in R
with respect to r.

The proof is given in [2].
The next theorem is the basis of the algorithm we will give in Section

5. It is easily deduced from Theorem 4.2 (see [2]). It shows that if we can
compute Grobner bases in R[x] with respect to {0} x Z , and in R with
respect to F, then we can compute Grobner bases in R[xJ with respect to
F x Z".

Theorem 4.3 Let R be a F-graded ring, and F = {fl,..., f.} be a Gr6bner
basis in R[x] with respect to {0} x Z". For each saturated subset S of
{1,..,s} let {a, 1 ,... a be a Gr6bner basis of Gs in R with respect
to F. Write

as,i = bs,a
jES

and define

DSSjes j

for all i = ,...,ts. Then

F' = U { f;,l,'",f;,,s}UF

s saturated

is a Gr6bner basis with respect to A.

The above theorem generalizes a result of M6ller in [7]. There F 0, and
R is a PID and the polynomials fs,i's are called T-polynomials.
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5 A New Algorithm for Computing a Gr*bner
Basis in R[x]

Now based on Theorem 4.3 we give our new algorithm for computing a
Grobner basis for an ideal in R[x] with respect to r x Z", which differs
from the usual one as given in Section 3. The algorithm in Section 3 will be
used to compute Gr6bner bases in R[xi with respect to {0} x Z" and to com-
pute Gr6bner bases in R with respect to r. (We note that the computability
assumptions on R made in Section 3 are inherited by R[xl for either of the
gradings.)

INPUT: 9,...,g, R[x]
OUTPUT: A Grobner basis of (gl,... ,gt) with respect to r x Zn.

F =GradedGB({gj,...,gt}, {0} x Z")
Set F ={f,...,f.} and set lp.(fi) = Xi and Ic.(fi) = aj.
For each saturated subset S of {1,...,s} do

GS =GradedGB(Gs, r)
For each a*E Gs do

Write a = Ej~s biai
Set f = Eis bi x-if,
F = Fu {f'}

If we specialize to the case where R = k[y] and the grading on k[y] is
given by a term order, then the algorithm above gives a new algorithm for
computing a Gr6bner basis with respect to an elimination order in the poly-
nomial ring k[y, x]. So we can compute a Gr6bner basis for a polynomial
ring in m + n variables by computing many Grobner bases in m variables
and one in n variables. The algorithm for computing the one basis in n vari-
ables relies on being able to compute syzygies over k[y] which may be done
by computing Gr6bner bases in m variables. (Alternatively, we could use
M6ller's method of inductively computing the syzygies, cf [7].) We could,
of course, apply this same idea to compute the Gr6bner bases in m vari-
alles obtaining a recursive procedure. Since we are always computing with
a smaller number of variables, there is the hope that time could be saved in
this manner. However, an initial investigation with a naive implementation
on Maple was not too encouraging.
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We now give a simple example of computing a Gr6bner basis using our
algorithm. We consider the ring Q[x, y, z,t], where Q is the field of rational
numbers, with a lexicographic term ordering with x > y > z > t. Let
fi = Xt - xz2 + yz, and f2 = xyzt 2 + xy + y2 . We use our algorithm
to compute a Grobner basis for the ideal I = (fl, f2). Let R = Q[z, t],
where F = Z2 with the ordering defined by lex with z > t. We adjoin the
variables x and y with the lex ordering with x > y. The first step in our
algorithm is to compute a Gr6bner basis of I with respect to {0} x Z2 using
the algorithm of Section 3. We first need to compute a basis of the syzygy
module of lt(fl) = x(t - z 2),It(f 2) = xy(zt 2 + 1). This is trivially seen to be
(y(zt 2 + 1), -(t - z2 )). The corresponding S-polynomial is: y(zt 2 + 1 )fl - (t -

z2)f 2 = y2(z2t2 + z2 + z - t). This polynomial is not reducible, so we call it f3.
Now we need to compute the syzygies for It(fl),lt(f 2 ),lt(f3 ) = f3, but it is
easily seen that the corresponding S-polynomials reduce to 0. The next step
in our algorithm is to compute the saturated sets where lp(fi) = x, lp(f 2) =
Xy, lp(f 3 ) = y2 , which gives S1 = {1,2} for Ds, = xy and S2 = {1,2,3} for
Ds2 = xy 2. (Gs,) = (t - z2, zt 2 + 1) has Gr6bner basis {z + t3, t5 - 1}. Since
z + t 3 .= t 2 (t - Z2 ) + z(zt2 +.1), and t5 -1 = t 4(t-z 2 )+(zt2- 1)(zt2 + 1), we
need to add the T-polynomials f4 = yt2f, + zf 2 = xyz + xyt3 + y2zt 2 + y2z
and f5 = t4 yfl + (zt 2 - 1)f2 = xyt 5 - Xy + y2zt4 + y2 _t2 - y2. Finally we

note that (Gs2) = (t - z2, zt 2 + 1, z2t2 + z2 + z - t) = (Gs,), so no new T-
polynomials are needed. Therefore {f,, f2, f3, f4, ft} is the desired Gr6bner
basis of I. We note that if f2 is eliminated the remaining polynomials form
a reduced Gr6bner basis of I.

As a final comment, we note that there is another concept of Gr6bner
basis, the so-called strong Gr6bner basis (as opposed to the concept we used
so far in this paper which is sometimes referred to as a weak Gr6bner basis ).
Namely, if R is a Unique Factorization Domain, and I is an ideal of R, then
f1,... , f, is a strong Gr6bner basis for I if for every f E I, there exists a j
such that lt(fj) divides lt(f). Using material in [2i we could have developed
an algorithm for this case similar to the one above.
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Long Time Behavior of a Numerical Approx-imation to a
Nonlinear Evolution Problem in Viscoelasticitv

Donald A. French"
Department of Mathematical Sciences, University of Cincinnati, Cincinnati. OH 45221-0025

June 15, 1992

Abstract

We summarize our results on the analysis of the long time behavior of a numer-
ical approximation of a nonlinear evolution problem which are given in detail in [7]
and [8]. The time step scheme is derived using finite elements and is called the con-
tinuous time Galerkin(CTG) method. It is implicit, of arbitrary order, and closely
related to the implicit-Runge Kutia (IRK) methods which are 'derived from Gauss

Legendre integration formulas. The main Theorem of this short note states that
the approximate solution to the evolution problem converges to a discrete steady
state solution. This behavior is qualitatively correct since the true solutions of the
evolution problem also tend to static solutions.

Presented at the Tenth Army (Conferr n'- of A:ppli( d ,llath mat(i,n ý and C'omputing. West

Point. New York. 16-19 June 1992.

1. Nonlinear evolution problem from viscoelasticity:

We consider a model equation for the one-dimensional motion of a viscoelastic bar which

may undergo phase changes. We search for U = U(x, t) which is the displacement of a
particle at time t having position x in some reference configuration and satisfies

Utt = (a(U.) + t'xt). in (0,1) x (0. Xc
U(0.t) = 0, for t > 0

(¢(U.) + 1"t)(t.t) = 0. for t >0 (1)
U(.0) = Uo(.) and Ud(. 0) = V'00.) in (0. 1)

"Partially supported by the Army Research Office thru grant 2,R535-\iA.
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where
s+I if s<-1/2

a(s) = -s if -1/2 < s < 1/2
s-1 ifs > 1/2.

The stress a is nonmonotone allowing for two phases.
Multiplying the equation by Ut, integrating in x and t, and using the boundary

conditions with integration by parts gives the energy equation

&(t2) + j Uj (dtdx - £(t) (2)
0 •j

where

(t) - 2

and ý', is a double-well potential

V1(s) = a(r)dr + 1j_> 0

and 0 < t1 < t2. This energy relation is crucial to the analysis of the long-time behaviour
of U. The steady state equation is

(a(U.))x= on (0.1) (3)

U(O) = a(U 1(1)) = 0.

Functions U that satisfy the boundary conditions and have derivative, U1. that takes
on the values ±1 or 0 are weak solutions of (3).

Pego [121 summarizes previous results on (1) and similar equations including studies
done on the asymptotic behavior of U as t - x. In the introduction he discusses
the results of Dafermos [5], Andrews and Ball [2] and his own. Briefly, they state that
problem (1) has a unique global weak solution. Ut - 0. U - U"', and o'(Ul) = 0.

2. Continuous time Galerkin methods:

In this section we introduce the CTG scheme for problem (1). For simplicity of presen-
tation we discretize space and time with uniform meshes.

0 = .o < .r < ... < x.\t = L, and to <t1 < 12 < ...

where ,= = = h ,• -Xn ,-1. Jn = (t,_, 1,,,. k = t,- t,-, and Q,
(0,1) x J4.
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The finite element space for the variable x is

Sh {X E C(Q0, 1]): x1i, E Pl(l,,),n = 1 ,... M with X(0) = 0}.

Pq(J) is the set of all polynomials of degree <_ q on the interval J. For the variable t
we will use the space

Vk = {r E C([0, oo)) : -ir E P,(I,,),n = 1 ... oo}

where r is also a positive integer. Letting Vlhk = Sh ,c Vk our method is as follows:

Find (u. v) E Vhk X Vhk such that

((ut - V,X )) .= 0 VX E S h 31 P ,-. (J,,)

((vt, A)),. + ((ut + a(u..),AU)),, 0 VA E Sh Pr_-I(Jn)

where n = 0, 1,2,3,... u(.,0) = uo - U and v(.,0) v0  , V-.

The inner product is

((v. W))n = vwdxdt.
I ýJ

Letting x = vt.and A = ut we obtain a discrete version of (2)

En + u O atdxdt = gn-I (5)

where the sum of the kinetic and stored strain energy at time f, is

p= j(v(.,t,)2 + L'(urL..t,))dx.

CTG methods were first introduced in the context of ordinary differential equations
by Hulme [10]. They are closely related to IRK schemes based on Gauss-Legendre
quadrature rules (See [10]). In most applications we expect a Or rate of convergence
for the IRK and CTG schemes. See Akrivis and Dougalis [1]: Baker, Dougalis and
Karakasian [4]; and Mckinney [11] for more on the IRK schemes. See [9] for more
references and discussion of energy preserving schemes.

The following result is proved in [81:

THEOREM 1: Problem (4) has a unique solution for k < 1.
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3. Long time behavior:

The key to our analysis of u(-, t) as t -. oo is the following Theorem which was originally
stated and proved in Elliott [6].

Let
Zh = {z E Sh : (a(z.),)= 0 VO E S}.

un = u(', tn), and Vnf = V(., t,).

THEOREM 2: Suppose
00J+1 L <O, K, (6)flIu~,v~)II2 = IIu~IIL~(o,1) + IIV~I~,( 1 <__ (6

lira(m •,p• 0 VO E Si,, (7)

Urn Wv , )= 0 ' V\ E Sh . (18)

11(1 - Z2)flL2(0,1) >_ -A > 0 Vz 1 ,z 2 E Zh, (9)

and for each z E Zh,

I1l(u, - . v,)fl _ 111( U -' -_ V,-,)Ill (10)

where It > 1 ih a constant. Then

v' - 0as n--,, x.1

u' - z E Zh as n--•c. (12)

A complete proof of this Theorem is given in [8]. The verification of the hypotheses (6)
- (10) so that the desired results (11) - (12) is also given in [,S] and is summarized here.
The boundedness property (6) follows from the discrete energy inequality (5). The fact
that u.t - 0 also follows from (5) since

j0o Yj 1Utdxdt < E(O).

From this one can prove (7) and (8). The space of steady state solutions can be identified
explicitly.

Zh = { 5 E Sh I1I, E {-L,.l}}

and then (9) follows. Property (10) follows by an energy argument.
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4. Conclusions:

By using finite elements to discretize time for a nonlinear evolution problem from vis-
coelasticity a numerical method which preserves (discretely) the energy of the original
problem is obtained. With this property it is shown that the numerical approximations
tend to discrete steady states as t -- ac just as the true solutions to the evolution
problem tend to continuous steady states.
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CONDENSATION OF THREE-DIMENSIONAL FINITE ELEMENTS
TO SOLVE PROBLEMS OF WAVE PRnPAGATION
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ABSTRACT

The solution of some three-dimensional (3-D) wave propagation problems
can be achieved effectively using a two-dimensional (2-D) finite element
formulation not involving assumptions of plane strain. This formulation has
been adopted into a new computer code to rapidly solve a broader class of wave
propagation problems using 2-D methods without loss of accuracy thus resulting
in appreciable savings in computer time.

The formulation of the solution method involves two primary components:
the condensation of the dynamic stiffness matrices to produce an equivalent
2-D system and the representation of the distribution of loads in the out-of-
plane direction using a Fourier expansion. The 2-D mesh is solved in the
frequency and wave-number domain and then inverse Fourier transforms are
performed to obtain dynamic displacements at any location.

The purpose of this presentation is to describe the general
formulation of the solution method, present some results of validation studies
and parametric analyses, and make comparisons of computational effort on the
US Army CRAY Y-MP between the new 2-D code and a commercial 3-D solution
package.

INTRODUCTION

This paper summarizes a method to estimate the variation of
displacements in space and time produced by dynamic loads in complex isotropic
media, consisting of dipping, discontinuous, and/or irregular layers, using a
numerical approximation method (Sykora and Roesset, 1992). The distinguishing
feature of this work is that the formulation allows three-dimensional (3-D)
problems to be solved using a two-dimensional (2-D) numerical model. To
implement this method, the stratigraphy and material properties of the model
cannot vary in a horizontal direction (2-D stratigraphy). However, the
distribution and extent of loads may vary in both horizontal directions (3-D
load) providing for the analysis of synthetic vibratory sources such as a
Vibroseis truck. These types of problems cannot be solved analytically but
normally would be solved using a laborious 3-D numerical approximation.

The finite element method was selected for computational solution to
permit discretization of geologic systems with numerous materials of arbitrary
geometry. The formulation involves two primary components: the condensation

I Research Civil Engineer, Geotechnical Laboratory, US Army Engineer
Waterways Experiment Station, Vicksburg, MS, 39180.

2 Professor, Department of Civil Engineering, University of Texas,

Austin, TX, 78712.
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of 3-D dynamic stiffness matrices to equivalent 2-D matrices and the
representation of the distribution of loads in the out-of-plane direction
using a Fourier expansion. This strategy was explicitly proposed for axi-
symmetric problems by Winnicki and Zienkiewicz (1979) and Lai and Booker
(1991) and for 3-D formulations by Runesson and Booker (1982, 1983) and Lin
and Tassoulas (1987). This strategy was used specifically for wave
propagation studies in horizontally layered pavement systems by Kang (1990)
and Hanazato et al. (1991). The 2-D system of equations are first solved in
the frequency and wave-number domain; inverse Fourier transforms are then
periormed to obtain the solution as a tuntion of out-of-plane distance and
time, if so desired.

One objective of this study is to examine the potential for determining
elastic moduli of materials in complex systems of soil, rock, and structural
materials from measured motions. The Spectral-Analysis-of-Surface-Waves
(SASW) method (Nazarian and Stokoe 1985a, 1985b) is an existing method of
field measurement and mathematical inversion to determine the moduli of
horizontally layered systems. This method involves the use of signal
processing techniques on two measured vertical components of motion spaced at
equal increments from the vibratory source. A similar procedure of
determination is desired for more complex systems. In addition, the use of
artificial neural networks holds promise to improve inversion schemes (Rix and
Leipski, 1991). Therefore, Rayleigh wave propagation will be of primary
interest. Rayleigh waves normally contain most of the energy of wave
propagation for the near surface regime and Rayleigh wave energy will
attenuate with distance at a much 13wer rate than body waves. The response at
the ground surface is normally of greatest interest since it provides the
easiest access for measurements..

Assumptions for Two-Dimensional Systems
A common assumption used to reduce the computational effort for the

engineering analysis of stress and strain in boundary value problems of
interest for geotechnical engineering applications is that of plane strain.
Plane strain implies that the displacements in the direction perpendicular to
a two-dimensional plane are equal to zero (Love, 1944). This assumption
reduces the analysis of a problem from 3-D to 2-D. Conditions of plane strain
require 2-D geometry and boundary conditions and loads that are uniform in the
direction perpendicular to the plane under consideration (Timoshenko and
Goodier, 1970). A plane wave with particle motion only in the 2-D analysis
plane is consistent with this assumption.

A surface load distributed over a finite area induces stresses that vary
in three principal directions. If stresses vary in a direction perpendicular
to the analysis plane, displacements and strains will be non-zero. Therefore,
3-D loads are inconsistent with plane strain assumptions. This study deals
with the analysis of "planar" geosystems which proves to be beneficial from a
computational standpoint. The primary assumptions are that the geometry and
boundary conditions of the system and the distribution of material properties
are planar (2-D) but the loads are non-planar (3-D). This set of conditions
has a broader range of applications than that for plane strain while
circumventing expensive 3-D solution methods.
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PREVIOUS STUDIES

The evolution of the state of knowledge for dynamic loads acting on
elastic media, particularly that involving Rayleigh waves, was reviewed to
provide insight into which problems have been solved, what approaches were
used, what conclusions have been reached, and which studies provide a proper
basis for validation of the present formulation. Despite a large number of
papers on the subject, few are considered to be useful for comparative
purposes with this study because:

a.. Almost ali studies consider plane wave propagation.

b. Many of the studies consider only R-wave energy (do not include
in-plane P-SV waves),

Experimental studies generally focused on "thin plate" tests which
have plane stress boundary conditions, which are generally
incompatible with assumptions for this study, and

d. Plane strain conditions are generally assumed for theoretical and
numerical studies.

The exact solution used for validation of the computer program were published
by Kausel (1981) for point, disk, or ring loads acting on axi-symmetric
systems. These solutions were derived using discrete Green's functions
evaluated numerically and are excellent approximations.

Soil dynamics studies conducted in the 1950's and 1960'% using finite
difference and finite element methods, and in the 1970's and 1980's using
Green's functions and boundary element models, generally assumed plane
harmonic waves and horizontally layered media extending to infinity. The
subsurface distribution of materials at most sites is not simple nor is it
conducive to analytical closed-form solutions of wave propagation problems.
Sloping strata of finite length, an irregular ground surface, and/or two-
dimensional load distributions are prevalent. The present study describes a
procedure to analyze wave propagation in these more complex systems while not
assuming plane strain assumptions.

MATHEMATICAL FORMULATION

The mathematical formulation is based on simple principles of Elasto-
dynamics, superposition, Fourier series expansion, and numerical discreti-
zation and solution procedures using the finite element method. The set of
assumptions is intended to be small, to broaden the class of problems that can
be solved. The primary assumption required for the condensation method
described herein is that the geometry of the system and material properties
are planar (do not vary in some horizontal direction). A number of other
assumptions were used to derive the first generation computer code, vib3:

a. Media are isotropic,

b. Hysteretic behavior is represented by complex moduli relation,
c. Source produces vertical, steady-state excitation at one

frequency,

d. Base is rigid, and

e. Distribution of loads is symmetric about y-axis.
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These assumptions are not necessary and some will be phased out in future
versions of the code. In addition, the computer code does not allow for
transmitting boundaries in the 2-D analysis plane. Rather, the domain must be
discretized to include enough area for the motions to attenuate sufficiently
before being reflected back to the area of interest.

Field Eguations
Two primary sets of variables adequately describe the effect of forces

acting on linear systems -- stresses and displacements. These variables exist
in the following field equations: stress equilibrium, strain-displacement,
and constitutive equations. These three sets of equations are combined in
terms of displacements to derive the governing equations for the problem.
Wave propagation involves the effects of inertia and deformation of the media.
The effects of inertia result from masses being accelerated. The derivations
below apply to isotropic materials.

Stress equilibrium equations, The summation of stresses acting on a
small rectangular parallelepiped in three-dimensional Cartesian space and
Newton's second law of motion neglecting body forces are used to derive the
stress equilibrium equations. The equations of motion using indicial notation
and the soil mechanics convention of compressive forces as positive and
accounting for the symmetry of the Cauchy stress tensor are:

"-P (1)

where
a -"stress components [F/Lz]
p - mass density [F-s 2/L]
- _ a2 /at 2 [l/s 2 ]

Strain-displacement eguations, The strain-displacement (compatibility)
equations are derived from small strain theory. The equations for a
displacement field, u , are:

.i.=1 (u.. ' +uj,) (2)
S2 "

and are often referred to as engineering measures of strain.
Constitutive equations. The constitutive equations provide the means to

relate stress and strain; they define the deformability of the material.
Individual material layers are assumed to be homogeneous, isotropic, and
visco-elastic. To begin the formulation of constitutive relations, consider
the simplest case of linear elasticity proposed by Hooke. For homogeneous and
isotropic conditions:

"= 2vG\ ) A 8 6 + 2G tii (3)

where
G - shear modulus
v - Poisson's ratio, and
a., is the Kronecker delta: 8 J -O if i~j

I8J -1 if i-j !
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Soil is an inelastuic material -- energy dissipates from friction as
waves travel through it. This phenomenon is called material damping and
mathematical models are used to approximate it in governing equations. One
form of damping, called hysteretic, is independent of the frequency of
excitation. This form of damping can be introduced into the formulation for
frequency-domain analyses through the Correspondence Principle (Wolf 1985).
This principle states that the elastic stiffness (in this case shear modulus)
is replaced by a complex stiffness to obtain the damped solution. The results
of this study are expected to be applied at distances greater than one
wavelength from the source (e.g., Nazarian and Stokoe, 1985a; Kang, 1990)
where shear strains from synthetic sources are small . The following
relationship is commonly used to model linear-hysteretic behavior for small
shear strains (and small values of damping):

G' - G(U + 24p) (4)

where
G* is complex shear modulus

Sis the damping ratio[-

ý Vr_-

The magnitude of damping is considered to be independent of strain (Hardin and
Drnevich 1972; Johnston, Toksoz, and Timur 1979; and Toks~z, Johnston,
Timur 1979) for the levels of shear strains expected.

Equations of Equilibriu
The three sets of field equations are combined to obtain the governing

equations. A stiffness formulation was chosen, that is, a relation in terms
of displacements (also referred to as displacement approach). These equations
are associated with Navier and can be derived by substituting the strain-
displacement equations into the constitutive equations, then, substituting the
resulting equations intu the equilibrium equations. Assuming that the body
forces are zero and applying Newton's second law, the result is:

G" [( i-- ) uj,.i + ui,j,] - -Ptli (5)

These are the partial differential equations that govern wave propagation in
three-dimensional Cartesian space for homogeneous, isotropic materials with no
body forces. The partial differential equation is classified as hyperbolic
leading to an initial value problem.

Finite Element Method in Three-Dimensional Cartesian Spa~ce
The finite element method is a numerical analysis technique used to

approximate the response of a continuous body by dividing the domain of
interest into a discrete number of subdomains. Boundary conditions and
external forces are imposed at discrete nodes where the displacements are
calculated. Results can be obtained at any point in the body through the use
of interpolation functions. In general, as the subdomains become smaller, the
solution converges to that of the continuum. Many textbooks describing the
finite element method are available with different sets of notation. The
notation below closely follows that used by Zienkiewicz and Taylor (1989).
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There are two basic approaches to formulating a problem using the finite
element method: the (direct) displacement method and the variational method.
The displacement method is the most popular and most easily understood
procedure (Zienkiewicz and Taylor, 1989) and was selected for this study. The
displacement method can be easily used with Fourier superposition analysis in
the frequency domain for the solution of elastodynamic problems.

Displacement method, Displacements are specified as the unknowns for
the displacement method. Letting u represent the vector of displacements at
any point and U the vector of displacements at the nodes of a finite element:

U - X U (6)

where N is the matrix of interpolation functions. The strains at any point
can be represented as:

e =2u (7)

where

ex
ey

£ = (8)

Yyz
Yxz

and

0 0ax

0 0
az

8z (9)
a a0ay OX

a0  a
az xy

Then,

Z =Iu =ENU =BU (10)

where B is a matrix containing the corresponding derivatives of the
interpolation functions.

The Correspondence Principle allows the constitutive model to represent
hysteretic behavior using complex moduli for solutions in the frequency
domain. Superposition is valid because of this linear representation. A
frequency domain solution implies that the excitation function must be
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periodic. Calling D the complex constitutive matrix of the material:

1-v V V 0 0 0
V 1-v V 0 0 0
V V 1-v 0 0 0

D = 2G_ 0 0 0 1-2v 0 )
1-2v 2

0 0 0 0 1-2v 0
2

0 0 0 0 0 1-2v
2

The stress vector at any point is:

o =aD (12)

with:

OX
O0

or 
(13)

TYR

T x

Applying the principle of virtual work and making use of the abo-;e
relations, the equations of motion become:

M6 + KU = P (14)

where M is 'he mass density matrix defined by:

f p NT N dv (15)

where
p - mass density

and K is the (static) stiffness matrix defined by:

K zf BrD B jv (16)

The relationships for nodal acceleration, U , and displacement. U , are
derived by imposing the steady state condition. Considering the load vector:

p p el' t  
(17)
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where
p - vector of amplitudes of nodal forces
w- frequency of excitation (rads/sec)

Then the displacement vector, U , can be written as:

V -15 e~'" (18)

where
U - vector of amplitudes of nodal displacements

and the velocity and acceleration vectors are:

i W ii ei"t (19)

0 = -S ei-" (20)

By substituting Equations 18 and 20 into Equation 14 and canceling the
exponential term, the equations of motion are:

(K- W2 ) U S U = P (21)

where I ig the dynamic stiffness matrix of the system defined by:

S=~ K-2 K (22)

The dynamic stiffness matrix is complex and a function of frequency.
Equation 21 can be solved using matrix operations incorporated in various
solution algorithms ("solvers").

The formulation to this point is specific to steady-state, frequency-
domain analyses for homogeneous and isotropic materials. The formulation is
applicable to analyses in one, two, and three dimensions and any element
configuration. Henceforth, the formulation will be specific to the remaining
assumptions and requirements of this study.

3-D finite element. A 3-D, isoparametric, finite element with 16 nodes
was chosen to implement the condensation formulation described in the next
section. Each node has three degrees of freedom. The element has quadratic
interpolation in the analysis plane (x and z) and linear interpolation in the
out-of-plane direction (y). Equations 15 and 16 can now be stated in more
specific terms using the transformed space:

K = f'flfJuI'r N d~dndC (23)

C = f__1f. B D B 1JJ d~dqdd (24)
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where I J I is the determinant of the Jacobian matrix for the 3-D finite
element and E, q, and C represent coordinates in iso-parametric space.

Fourier superxosition. Fourier superposition is a three-step solution
process for linear systems that involves a forward transformation into a
wavenumber domain, the calculation of a solution to Equation 21 at a number of
increments, and the determination of the total solution through an inverse
transformation of all incremental solutions. A time-temporal frequency
transform pair of a load function p are:

p(W) -fp(t) e-iwt dt (25)

P(t) P (w) e: "t dw (26)

Similarly, the distance-spatial frequency (wavenumber) transform pair for
expansion in the y-direction are:

p(m) = p(y) ei•" dy (27)

Se-dm (28)

where
m - wavenumber (spatial circular frequency) in y-direction

Fourier superposition applied in both the time and y-spatial domains leads to:

p(m,•) =f fip(Yt) e -i ("t-) dtdy (29)

p !Yt) f::f P(m, ) eii't'r• d~dm (30)

The corresponding transformation equation for displacements is:

u(y,t) = --L- fu(m, ) e '" -) ddm (31)

Making the load vector specific to steady-state vibrations with constant
amplitude, the time-temporal frequency transform pair reduce to:

P(W) - T (32)

p (t) = T eLwt (33)

where F is used to represent amplitude which allows Equations 29 and 30 to
be reduced to:
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P(m) f= rp (Y) ei "dy (34)

P (y't e L-tf. p (m) . e -1-Ydr, (35)

for a specific w. The corresponding equations for displacements are:

u(m). f•if" u(y) eim dy (36)

u(y,t) - e-- f u(m) e 'y dm (37)

Element condensation. The process of element condensation is the key
aspect of the reduction of computational effort. Element condensation refers
to the process of reducing the number of degrees of freedom by relating points
adjacent in the y-direction using the functional relationship of the Fourier
expansion. The dependent degrees of freedom are then eliminated by expressing
them in terms of the degrees of freedom of the in-plane nodes. In this case,
the degrees of freedom corresponding to the nodes outside of the x-z plane are
eliminated. Each node in the 2-D mesh maintains three degrees-of-freedom.

Consider an arbitrary discretized model of a physical system that meets
the requirement of uniform geometry and material properties in one direction.
The coordinate system is chosen to have the z-direction positive down and the
other in-plane direction to be x. Consider three vertical planes separated by
a distance of Ay at some arbitrary- location along the geosystem. The 3-D
dynamic stiffness matrix for any element between the slices, such as that
shown in Figure la, is calculated using Equations 23, 24, and then 22.

The dynamic stiffness matrix for a single element, such as that shown in
Figure la, can be partitioned as:

= S1 , S - (38)
g 21 S22

where the subscripts "l" and "2" refer to the degrees of freedom on the
positive and negative face in the y-direction, respectively. The assemblage
of the dynamic equations for any two finite elements adjacent in the y-
direction, as shown in Figure ib, can be reduced by canceling the time-
dependent exponential term on each side to:

'- s -S b I = Iý (39)

22 11 12UH F

where
"+" denotes element in positive y-direction (from Ay to 0)
"-" denotes element in negative y-direction (from 0 to -Ay)
"a" denotes the degrees of freedom on face a (i.e., at y- 0)
"b" denotes the degrees of freedom on face b (i.e., at y- +Ay)
"c" denotes the degrees of freedom on face c (i.e., at y- -Ay)
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Figure 1. Condensation of finite elements adjacent in
out-of-plane (y) direction

Using the Fourier expansion described earlier (Equations 34 and 36),
forces and displacements are expressed as:

(Cm)- .f(y) e 'dy (40)

r (M) = f (y) e'dy (41)

where 9 and 0 are used to represent vectors of nodal forces and
displacements, respectively, in m space. Rewriting Equation 39 to incorporate
the Fourier expansion of loads:

+ E2+S21 0.(m) = (m) (42)
o -il "i;2 O0 (m) P, (M)

In the transform (m) space, the displacements on the "b" and "c" faces are
related to the displacements on the "a" face at any instant in time by the
simple relationships:

eb (m) = Uo(m) e '- (43)
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0o(m) -U(m) e-"•Y (44)

Defining:

2(m) -5 ,e ( -÷ 9,2) ÷ • el'y (45)

Equations 43 and 44 can be substituted into Equation 42 to get the system of
equations for the equivalent two-dimensional system shown in Figure lc:

1(m) O.(m) = P,(m) (46)

This formulation, then, allows the 3-D finite element with a 2-D geometry to
be represented with an equivalent 2-D finite element. The representation of
surface loads are described below.

Surface loads. This study focuses on the preparation for analysis of
waves propagating from a synthetic, 3-D source. Vibroseis trucks generally
use a rectangular platen with plan dimensions on the order of I by 2 m ( 3 by
7 ft). At large distances from the source and with large wavelengths, this
area approaches a point source. Therefore, the horizontal distributions of
the load considered for this study were a point load and a rectangular load of
various sizes. A point source is not a physical reality and is difficult to
replicate with finite elements. Kang (1990) used a point load and circular
load as these were appropriate vibration sources for pavement systems.

The formulation for equivalent nodal forces in the x-direction for point
and rectangular loads are described below. The formulation of equivalent
nodal forces for rectangular loads involves integration of the force
distribution in light of the interpolation function:

S= f" X' T dx (47)

The distribution of forces applied to the platen is assumed to be uniform and
therefore the integration reduces to simple algebra. For example, a
continuous, uniform load with a total magnitude of unity (p - Ax - 1), the
equivalent nodal forces are 1/6 for the endpoints and 4/6 for the midpoint.

Time-dependent displacements. The real-valued, time-dependent
displacements may be obtained from the calculated complex displacements, U.
If the forcing function is-of the form sin wt, then:

U, = A1 SIN(Gt) + BiCOS(ot) (48)

If the forcing function is of the form cos wt, then:

ul = AiCOS(wt) - BISIN((t) (49)

where
Ai - real part of complex displacement amplitude at node i
B, - imaginary part of complex displacement amplitude at node i
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For the analysis of the vibrations produced by a Vibroseis, Equation 49 is
more appropriate. The phase angle of motion, * , is calculated by:

*- tan-1 (Bi) (50)

VALIDATION STUDIES

Validation studies and parametric analyses were used to prove that the
formulation and computer implementation are sound, accurate, and stable for
the limited problem class to which accurate solutions are available. The
findings of validation studies are not mutually exclusive from the parametric
analyses because the definition of the problems for validation should conform
somewhat to the findings of parametric analyses. The results of the vali-
dation studies are described below; the parametric analyses are described in
the next section.

The best form of validation consists of comparing the results between a
subject program and exact mathematical relationships for several different
problems. Comparisons with measured data or prototype testing provide a
constructive means to confirm findings when conducted under certain controlled
conditions. These comparisons are not appropriate as the primary means of
validation, however. Comparisons with other numerical approximations are even
less appropriate for validation. Validation of the computer code developed
for this study was made through conparisons with analytical results for the
simplest class of planar geometry -- a horizontally layered system extending
to infinity. Green's function solutions formulated for axi-symmetric problems
by Kausel (1981) were used exclusively. Some minor differences in
displacement may exist between the Green's function solutions and the 2-D
approximations because the shape of the load is different -- disk loads were
used for the axi-symmetric problem and square loads were used for this study.
The same total area and total load of unity were used to minimize these
differences. The model systems used to validate the computer code are
described in the next section.

The validation studies described in this part pertain to variations in
system geometry, material properties, and aspects of finite element analysis.
The dynamic vertical displacements are of primary interest because they
predominate in surface motions caused by vertical excitations. Moreover,
vertical vibrations are normally measured in non-destructive testing
techniques such as the SASW method. For purposes of this paper, the results
are presented in terms of the variations of real and imaginary components of
dynamic displacement in the y-direction (calculated at node beneath the
centroid of the load and expanded out in the y-direction). Comparisons are
made at the free (ground) surface with distances normalized to the wavelength
of Rayleigh waves, I , for Model 1. The displacements are oriented positive-
down to be consistent with the convention used in the formulation and
correspond to the top surface (z - 0).

Test Models and Discretization Schemes
Four hypothetical models were created for validation studies and are

shown with unit-less dimensions in Figure 2. These models were designed to
represent ideal site conditions of horizontally layered soil overlying rock
and realistic material properties (considering units of ft-lb-sec) while
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conforming to limitations of the analytical solutions. All models have the
same total height (1000 units) and are assumed to overlay a rigid material.
Model 1 is the simplest system -- a homogeneous medium overlyin8 rock. The
range of material properties for this medium used in the following comparisons
are shown in Figure 2. The other three models consist of four homogeneous
layers overlying rock with different combinations of stiffness.

MODEL 1: MODEL 3:

G.-4 106 1 aI 10 V

0.m, 040. O. 049 250| Gv - i
0 

4 00  
1000 P. 40

SP-0.02.0.05.00.10,0.1S 500 G . 4 •x106 0.-005

MODEL 2: MODEL 4:
12 G.6EI0 v-4615 G • 1G V 0

Q .6110 251 G.,X,0

1000 aP 4. 1000 P.4

Soo G -12 106 ) 0.0005 S G0- 12x 10
6  

0.05

Figure 2. Test models used for validation studies

A domain with dimensions 1000 units high and 2500 units wide was chosen,
along with the material properties and frequency of excitation, to be large
enough to ignore the effects of reflections and correspond to about 31 high by
81 wide. Three different finite element meshes were created to represent this
domain, using 4 by 10, 8 by 20, and 16 by 40 square elements. The size of
these elements corresponds to 0.81, 0.41, and 0.21, respectively. A plane of
symmetry at the left boundary, defined by x - 0, was utilized to reduce the
degrees of freedom by nearly one-half. A frequency of excitation of 3 Hz,
system damping of 2 percent, and a radius of load of 5.64 (total area of 100)
were used to analyze all four models.

Analytical Solutions
The Green's function solutions formulated by Kausel (1981) were

calculated with the computer code PUNCH (Kausel 1989) using a personal
computer. The calculated solution approaches the exact solution as the number
of layers increases. Twenty-five was found to be an adequate number of layers
to adequately represent these models for further comparisons and validation.
The displacements calculated using PUNCH correspond to a disk load with radius
r and total load, P, of I (_ pxr 2 ) or a point load with magnitude of unity.

Element Performance to Static Loads
The specialized 3-D finite element was evaluated for the ability to

represent static response to various loads. This evaluation was accomplished
by comparing the results of two approaches with analytical solutions. One
approach was to place the algorithms defining the element stiffness into a
static finite element computer code and examine the response of a cantilever
beam. The other approach used vIb3 with a point load acting on a homogeneous
body with the frequency equal to 0. Each of these are described below.
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Static finite element code. A static finite element code was used to
evaluate the specialized finite element. This program evolved from an unnamed
finite element code used for instructional purposes at the University of Texas
at Austin. A cantilever beam was discretized with 2, 5, 10, 40, and 80
elements and subjected to tension, compression, and shear-induced bending
loads. The effect of element shape was also evaluated by considering square,
rectangular, parallelogram, and trapezoidal configurations. Comparisons
between calculated and closed-form solutions for displacements and stresses
were good and indicate that the algorithms defining the element stiffness are
accurate for conditions of static loading.

Dynamic code, The static vertical displacements calculated using vib3
with Model 1 at the ground surface is shown in Figure 3 using a mesh that was
16 elements high by 40 elements wide. The comparisons with Green's function
solutions are excellent for the real part and very good for the imaginary part
at distances slightly removed from the point of load (greater than 100 units).
Comparisons are similar at all depths. The imaginary part should be zero at
all distances but vib3 produces non-zero values at locations close to the
load. The less favorable comparisons near the point of loading are common
when modeling a point load using the finite element method. These errors are
normally minimized through mesh refinement near the point of loading but
accuracy close to the source is not of interest for this study.

ADnroximations for Dynamic Loads
The computer code vib3 was used to calculate dynamic displacements for

each of the four models described previously. These results were then
compared with the Green's function solutions presented in the previous
section. All four models were discretized using the finest mesh. A square
load with plan dimensions of 5 by 5 centered about the origin with a total
load of 1 was applied at a frequency of 3 Hz. The wavelength for Rayleigh
waves is then about 313 and the dimension of the square elements are
62.5 units or about 0.21. The material properties are listed in Figure 1.

The parameters defining the condensation and Fourier expansion for the
validation were selected based on the findings of Kang (1990). Values of Av =

0.051 and the number of Fourier discretization points, NM, equal to 256 were
fixed for the comparisons and the finest finite element mesh was used unless
otherwise specified. This provided for a discretized extent (in the
y-direction) of -131 (± 6.41), slightly less than the total extent discretized
in the x-direction (t 81). Displacements at distances up to 51, or about 1500
units, are used for comparison because the amplitudes are rather small beyond
this distance.

Model 1: Homogeneous system, The results for Model I at z - 0 is shown
in Figure 4 and compared with the Green's function solutions. The variation
of the real part of the complex displacements compare well with the Green's
function solution. The variation of the imaginary part closely follows the
Green's function solutions. Both parts of the calculated solutions compare
more favorably at distances less than 31, about half the distance expanded in
the y-direction. The comparisons are also slightly better at some depth as
compared to at the ground surface.

The effects of varying Poisson's ratio and damping ratio on t*he
displacements for Model 1 were also examined. Comparisons between the
calculated and the Green's function solutions for variations in v indicates
that the 2-D approximation provides a reasonable means of representing
different v. The best comparison is for v - 0.40 and the poorest comparison
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is for v - 0.49. Generally, the imaginary part compares well but the real
part varies somewhat. The 2-D approximation provides an accurate means of
representing damping. The accuracy of calculated displacements improves
somewhat as the damping ratio increases. The results for 5 percent damping
compare much better with the Green's function solution than the results for 2
percent. Both 2 and 5 percent damping levels are used for comparisons
hereafter.

Other models: Stiffness varying with depth. The results for Models 2, 3
and 4 are shown in Figures 5 through 7 and compared with the Green's function
solutions. Total distances are used rather than normalized distances since
considerable dispersion is expected. The results for vertical displacements
are nearly equivalent to the Green's function solutions except at the first
peak in the real part for all three cases.

PARAMETRIC ANALYSES

Parametric analyses were conducted to assess the sensitivity of the
formulation and computer code vib3 to anticipated ranges of system variables.
Calculations were made using Model 1 and the finest mesh except in the case of
examining sensitivity to mesh size. Green's function solutions calculated
using PUNCH (Kausel 1989) are used for comparison.

Effect of Ay
The effect of the spatial increment of discretization in the

y-direction was evaluated by comparing the results using three values of Ay
between 0.051 and 0.201 (0.051 used for validation study). The number of FFT
points, NM, was also varied to keep the total discretized distance in the y-
direction, YTOT, constant. This distance is defined by:

YTOT -NM Ay (51)

Keeping YTOT constant serves to isolate the effects of Ay. The variation of
vertical displacements for the different values of Ay are compared in
Figure 8.

The large difference among relationships presented in Figure 8 indicate
that Ay has a significant effect on the ability of vib3 to accurately
calculate dynamic displacements. Comparisons between the calculated
displacements and Green's function solutions are favorable when Ay < 0.10X
although some improvement is noticeable by decreasing Ay to 0.051. These
results are consistent with Kang's (1990) who recommended that Ay < 0.10).
The results for Ay > 0.201 are considered to be too inaccurate. The
parametric analysis of Ay with respect to I indirectly addresses the effect of
frequency of excitation on the results. For a homogeneous system (with
constant stiffness), I is inversely proportional to frequency. So, the
spatial increment Ay can also be put in terms of frequency:

Ay ! V
10 f (52)
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where
V - phase velocity
f - frequency (Hz)

The phase velocity can be taken equal to the Rayleigh wave velocity as a first
approximation. Similar relationships to Equation 52 have been observed in
other types of discretized solutions for dynamic loading.

Effect of Extent of Fourier Expansion
The comparisons for the effect of Ay were made using a constant value of

YTOT. The effect of varying YTOT was examined next. The total distance was
varied at three values between 3.2. and 12.81 (corresponding to ± 1.6) and
+ 6.4), respectively) by keeping Ay constant at 0.05) and varying NM between
128 and 512. The variation of vertical displacements for the three values of
YTOT are compared in Figure 9. The results for the vertical displacements are
very good for the case of YTOT - ± 12.8). The results for YTOT - + 6.41 are
also good, especially for distances less than 3), and the results for
YTOT - ± 3.21 are considered to be too inaccurate. A threshold of 10) is
likely to be appropriate.

Effect of Element Size
The effect of varying the size of the finite elements on the solution

determined using the three different meshes is shown in Figure 10. The values
of Ax (- Az) corresponding to these three meshes are 0.20), 0.40), and 0.801.
The results for the variation for the three meshes are compared in Figure 10.

The variation of vertical displacements compare well with the Green's
function solutions except for the coarsest.mesh (4 by 10 elements). The
results for the coarsest mesh are unacceptable. The finest mesh produces peak
values of displacement slightly greater than the Green's function solution and
the original mesh.

Effect of Width of Load

The load width in the x- and y-directions, XLOAD, ranges from a point
load to ± 0.0641 (80 by 80 in total plan dimensions at 3 Hz). For all
practical purposes and at these distances and depths, these loads are
essentially point loads. The results for the variation for the different load
widths are compared in Figure 11. Little noticeable effect is evident as XLOAD
is varied over the specified range. A threshold of load < + 0.10) appears to
be reasonable to maintain good accuracy. The small difference between the
results for the point load and the smallest square load is somewhat
surprising. Kang (1990) noticed a larger difference and researchers have
recognized the difficulty in calculating an accurate distribution of
displacements from a point load using the finite element procedure without a
refined mesh in the vicinity of the load.

Computational Effort
The amount of time necessary to run the program with different system

parameters was reviewed. The two parameters considered to have the greatest
effect are the number of FFT points, NM, and the number of degrees of freedom,
dof. (Recall that the equations are solved for only half of the NM and the
results mirrored prior to the inverse Fourier transform.) Comparisons of user
CPU (central processing unit) times versus NM are shown in Figure 12. The
three finite element meshes described earlier were used to provide a range in
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degrees of freedom. The solution times are of the same order as NM (linear
relationship) for a fixed number of dof. The slopes of these lines range from
1.3 to 26. Comparisons of user CPU times versus dof for various NM are shown
in Figure 13. The relationship is slightly non-linear for a fixed NM; the
exponent of dcf is about 1.12 and increases slightly as NM increases.

f = 3.0 Hz Avy/X = 0.05
fl = 0.02 NM = 256

2 A = 313. YTOT/A = ± 6.40
2. Ax/X=Az/X = 0.20 XLOAD/X = 0 to .13
2.0 .

P• ý I_ t~o -ýd ! . ....
i'.OAD - -" 0, 03,

I VERTICAL

2.0 - 0.' '

S-L2.0

0 .F40 - A. 13

_z

VERTICAL

1.10 2.0 3.0 .1,0 5
HOPIZONTAL DISTANCE (in ')

Figure 11. Comparison of vertical displacements showing
effect of varying load width

The amount of time saved in using the present formulation over a
conventiunal 3-D finite element formulation was estimated by solving the
problem for Model I using the commercial software package ABAQUS. Two planes
of symmetry were used such that only a 3-D quarter space was required to be
discretized. A total discretized space of 81 by 31 in plan by 31 deep was
used and the element size was equal to that used in the 8 by 20 mesh
(Ax - Ay - Az - 0.401). A 3-D isoparametric element with 20 nodes (quadratic
interpolation functions in all three directions) was selected as being
comparable. The extent and accuracy of discretization in the y-direction is
roughly equivalent to NM - 64 and Ay - 0.101 which were used with vib3. Free
end conditions were used for non-symmetric boundaries. The calculated results
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were not of particular interest. The user CPU time required by ABAQUS to
solve for dynamic displacements was about 2820 sec compared to 370 sec using
vib3. A comparison of times is shown in Figure 12. Moreover, almost 8 Mwords
of memory were required to solve the problem using ABAQUS whereas about
3.6 Mwords were used by vib3.

SUMMARY AND CONCLUSIONS

A method to calculate dynamic displacements in 2-D geosystems produced
by a harmonic point or rectangular load has been formulated and implemented in
a 2-D finite element computer code that functions on the US Army CRAY
supercomputer at WES. The formulation involves creating a 3-D dynamic
stiffness matrix and then condensing the components into an equivalent 2-D
dynamic stiffness matrix. The out-of-plane loads are represented by a Fourier
expansion and applied as nodal forces. The solution to the system of
equations is made for each spatial wavenumber and then the inverse Fourier
transform produces the dynamic displacements. The compute'r code has been
validated with analytical solutions for the case of axi-symmetric geosystems
subjected to static and dynamic loads. Parametric studies were performed to
determine how the accuracy of the calculated displacements are affected by the
various input parameters. All comparisons indicate that this method is a
viable alternative to more time consuming 3-D numerical solution methods.

Validation studies were performed for cases of static and
dynamic loads generally using reasonable values of system parameters. The
effects of static loads were examined in terms of displacement and stress
field for cantilever beams in tension, compression, and torsion using the
specialized 16-node, 3-D, finite element incorporated into a static 3-D finite
element computer code. Calculated values were compared with closed-form
elastic solutions. The displacements produced by static and dynamic point and
square loads were examined for cases of a homogeneous medium and three
combinations of four-layered media using vib3 and compared with Green's
function solutions proposed by Kausel (1981).

The analysis of parameters necessary to the program indicates that once
threshold values are met, the formulation is stable to variations in
parameters defining the discretization, condensation, and Fourier expansion of
the problem. These thresholds are: Ay < 0.051, YTOT > + 1OX, Ax - Az < 0.301
(for quadratic interpolation), and XLOAD < + 0.10X. Additional improvements
may be realized by using even smaller values of Ax, Ay, and Az. Displacements
can be calculated about 8 times faster using the new formulation when compared
to the 3-D finite element code ABAQUS.
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GENERALIZED STROH FORMALISM FOR ANISOTROPIC ELASTICITY
FOR GENERAL BOUNDARY CONDITIONS

T. C. T. Ting and M. Z. Wang
Department of civil Engineering, Mechanics and Metallurgy

University of Illinois at Chicago
Box 4348, Chicago, IL 60680

ABSTRACT. The Stroh formalism for two-dimensional deformations of
anisotropic elastic bodies is generalized so that it can be easily applied to boundary

conditions of the type more general than the prescription of traction, displacement or slip

boundary conditions. A simple modification is all it takes to encompass all eight different

types of boundary conditions. The final solution to a given problem, which looks very
similar to that of unmodified version, is applicable to anyone of the eight boundary

conditions. By relaxing the definition of Iu and I defined in the paper, the number of
different types of boundary conditions is increased to cover more than eight types. It is

worth mentioned that the modifications required on the Stroh formalism are very minor.
Yet the results are applicable to a rather wide range of boundary conditions.

EXTENDED SUMMARY. The present work is motivated by, and is an extension

of, the work presented in [11 in which the boundary conditions at x 2 = +1 of a semi-infinite
strip of anisotropic elastic material can be anyone of the following eight conditions:

021"-O, ="2 2 = O, a23 = O. (la)

"21 = 0, a22 = 0, u3 = 0. (Ib)

0"21 0, u 2 = 0, a23 = 0. (lc)

021 0, u2 = O, U3 = O. (id)

Ul 0, 0"22 = 0, 1"23 = 0. (le)

u 1 0, a22 = 0, u3 = 0. (if)

ui = 0, u 2 = 0, 023 = 0. (Ig)

u = 0, u 2 = 0, u3 = 0. (lh)

*Supported by the U. S. Army Research Office.
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Equations (la), (lh) and (1c) are, respectively, the conditions for a traction-free, rigid,

and slip boundary. According to the Stroh formalism [2, 31 the stresses aj are related to

the stress function 4i by

11i = i'2' '2i = ýil (2)

where the comma stands for differentiation with x, or X2. Hence

4i(xh, x2) = f o2i(C, x2)dC

and the boundary conditions for a2i = 0 can be replaced by 4b = 0. In matrix notation u

and *, we may write (la-lh) in one equation as

Iu u + 0 € = 0, (3)

1 u + I = 1. (4)

In the above I is the 3x3 unit matrix and Iu, Iý are 3x3 diagonal matrices whose diagonal

elements are either one or zero. The special cases (la) and (lh) correspond, respectively, to

Iu = 0, I = I and Iu =, 12 = 0. Equation (3) encompasses all eight conditions in (1).

We will generalize the above derivation in two ways. First, the right hand side of

(3) is replaced by something which is prescribed. Thus one may prescribe non-zero

tractions or displacement at the boundary. Secondly, we replace (4) by
T +I I =, (5)Iu

IT 1  0 1 T 1  (6)
U ý - c U

where I, I are now subject to (5) and (6) but otherwise arbitrary, and the superscript T

denotes the transpose. The I, I defined earlier satisfy (5) and (6) but the new Iu, I

defined by (5), and (6) admit a wider class of boundary conditions. The explicit
expressions of the new Iu, I and the physical meanings of some of the Iu, I will be

presented. The modification required on the Stroh formalism to encompass the general

boundary conditions is rather minimal. The final solution, which resembles the original

unmodified solution, applies to a wide range of boundary conditions. One advantage of the

generalized formalism is that, when a different boundary condition is desired, there is no

need to re-formulate the problem.
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Computation of Microstructure Utilizing Young Measure
Representations*

R. A. Nicolaidest and Noel J. Walkingtont

Center for Nonlinear Analysis
Department of Mathematics, Carnegie Mellon University

Abstract

An algorithm is proposed for the solution of non-convex variational problems. In order
to avoid representing highly oscillatory functions on a mesh, an associated Young measure,
which characterizes such oscillations, is also approximated. Sample calculations demonstrate
the viability of this approach.

keywords: Calculus of Variations, Young Measures.

1 Introduction

A recent development in continuum mechanics is the introduction of continuum energy func-
tionals modeling nonlinear effects of crystal thermoelasticity [2, 6, 7, 8]. Among other things
these functionals can be used to study displacive phase transformations and shape memory
effects [9].
A characteristic feature of the energy functionals is their multiple well structure. Typically, each
well represents a potential equilibrium state of the crystal, and at a transformation temperature
more than one well is accessible to the crystal as a stable configuration.

The variational approach to finding an overall equilibrium state for the crystal requires that the
energy functional be minimized in some suitable sense. In attempting such minimizations, one
frequently encounters minimizing sequences of rapidly oscillating functions. These oscillations
are usually a mathematical precursor to the formation of microstructure. This microstructure
is characterized mathematically by probability distributions which, in principle, can be found
by taking certain averages of the oscillatory functions.

In computational practice, the minimizing sequences are often constructed using a finite mesh,
for example by finite elements. The oscillations referred to above then show up as grid scale
oscillations of the (generally nonunique) minimizer. As the mesh is refined, the oscillations
persist becoming more and more rapid while remaining of finite amplitude e.g. f41. Usually, one

*This work was supported by the Army Research Office and National Science Foundation through the Center
for Nonlinear Analysis

:Supported ;uy Ail'.rce Grant AFOSR F49620-92-J-0133.
$Supported by'National Science Foundation Grant No. DMS-9002768.
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wishes to know the values of macroscopic quantities associated with the deformation. These
axe computed in two different ways. Essentially, linear functions of the deformation can be
obtained as the limits of the same linear functions of the minimizing sequence. On the other
hand, nonlinear functions of the deformation (including energy) in general have to be computed
as expected values of the probability distribution mentioned in the previous paragraph.

In some situations, the probabilities that are needed for computing nonlinear functions of the
deformation are known a priori. In this paper we are interested in the opposite case. Although
in principle it must be possible to compute the probabilities from the oscillatory minimizing
sequence, in practice this could be very difficult if there were a relatively large number of wells.
Also, it is easy to imagine that a rather fine mesh would be necessary to accumulate enough
data to permit the evaluation of stable averages. We refer to this as the "microscopic" approach.

An alternative method is to compute with the probabilities as dependent variables. However,
this is feasible only if we have some information about the limiting probability distributions
which can occur. It turns out that frequently there is enough prior information to permit the
computation to be done in that way. Our main goal is to investigate this alternative approach,
which we will call the "macroscopic" methodology. Its potential advantage is that since the
probabilities are smoothly varying quantities, a relatively coarse mesh can be used to approxi-
mate them. In this way we can avoid the need to deal with the oscillations explicitly. Nonlinear
functions of the deformation (and linear functions as a special case) may be approximated using
the computed probability distributions.

In the sections which follow, we state our algorithm and explain the ideas behind it. Then we
present the results of some model computations. The work reported is of a preliminary nature.
So far, we do not have sufficient experience with the algorithm to makc rational comparisons
with other approaches. It is hoped to address these isbues in a future report.

2 The macroscopic formulation

We will begin with a simplified presentation of some background information in variational
methods which is sufficient for understanding the principles behind the formulation of the
algorithm. More detailed accounts can be found in [5. 12, 13].

We consider variational integrals

J( :=) F(x., U, Vu Idx. u E IF•lP()m, (1)

where Q E R' is a bounded domain and F(..,.) is continuous. Inhomogeneous boundary
conditions can easily be accommodated if necessary. The case of most interest is when F(x. u, .)
is not convex with respect to its last variable. The multiple well property of stored elastic
energy functions causes this lack of convexity. fi hiis case. the infimumn of J(.) usually cannot
be reached in IWI'P(A)" and it is necessar.r to admit generalized solutions.

The standard example to illustrate this is
./= - 1)2 + a9daI. W,4 0OE ).

The sequence {uk}, whose first three members are illustrated in rigure lb below, gives

J(uk)= u2 dx -0= inf J(u),
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so that {uk) is a minimizing sequence. Also clear is that limk-_o. uk = U S 0. On the other
hand, u 174 0 in any ordinary sense, and so for this {uk}, inf w.s J(u) is not attained. It is the

k 0
existence of the two wells at ±1, illustrated in Figure la, which is responsible for the oscillatory
behavior of the sequence {u'}.

1.0

No(p = [p2-i]2

0.5

S %% 2,5 U

Fi~lgre la. Double wellnergy. Figure lb.A minimizing sequencV

The behavior of the sequence {u'} strongly suggests that its "values" at any point 0 < xo < 1
may be described by the probability distribution u'(x0) = ±1 with probability 1/2. In fact there
is a general result from which this can be inferred: for any bounded sequence in WiP(fQ),

II uk 11,p:5 M, {uk } contains a subsequence {uk,} such that uk, - u E LP(Q)'. Additionally a
subsequence of {uk3 } eyists (denoted the same way) with the property that for any continuous
g which is reasonably behaved at infinity, and for each x E Q? there is a probability measure u.

such that
g(7uk,) - G E Lg(y)d , (2)

where

G(x) =J (y) dv.(y) (3)

for almost all x E Q. A useful version of this result, due to Kinderlehrer and Pedregal [10],
states that if the sequence {uk} is a minimizing sequence for a variational problem having
non-negative integrand with p-growth. then g may also have p-growth.

A family of probability measures {f x} obtained in this way is called a family of gradient Young
measures [11]. Young measures also exist which are not gradient measures. They are derived
in a similar way from bounded sequences in LP(Q) .

There is a very useful characterization of Young measures v-r due to Ball [1]. We will state
this for gradient Young measures: let vk.6 denote the probability distribution of the values of
Vuk(z) as z is chosen uniformly at random from B(x, 6), the open ball with radius 6 and center
x E Q. Then

Urn lim g (y) dvx(y) -fng(y) d1z{k6(y) -0.
6-0 k--o IR, R

This result reveals how it is the minimizing sequence that determines the probability distribution
v, and provides a way to approximate it.

The result (2)-(3) does not give any information about the structure of the measure v,, and
in particular whether it is discrete. General results on this do not appear to be available.
Nevertheless, there is a large class of problems where it is expected on physical grounds that v,
is indeed discrete. This class includes most, if not all. of the continuum functionals used so far
to model crystal energy. Since we want to make essential use of discreteness, we will introduce
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it as a hypothesis. Specifically, we will assume that

L

1 = (4)
1=l

L

=A(x) 1, 0<At< 1, (5)

where 6 A,(f) denotes a Dirac mass with pole at AI(x) and A1(x) varies measurably with X.
References [3, 2, 8] contain examples satisfying the discreteness hypothesis.

Choosing g in (2) to be F(x, u(x), .) and denoting by {uk} a minimizing sequence bounded in
WI'P(Q)m, we have

lira F(x, uk,, Vuk,)dx = v, F(x, u(x), .)) dx,

where (v,, .) denotes the action on the right side of (3). Additionally, choosing g in (2)-(3) to
be the identity mapping shows that

L
VTu : Adzx)At(x).

These results motivate the following generalized variational problem: minimize

I(u) :-/(Y., F(x, u(x), .)) dx, u E TVoi' (Q), (6)

subject to
L

vu(x) = Z Aj(x)At(z)
1=1

over suitable Ai E LP(D) m-- , Ai E L-(f), I = 1,2 .. , L. Solutions to this problem are
regarded as generalized solutions to (1). Notice that classical solutions to (1) may be recovered
from the generalized formulation by taking, say, A1 = 1.

The variables in the generalized formulation are, in principle. slowiy varying or macroscopic.

3 Numerical Algorithm

In this section we consider discretizations of the generalized problem. Basically, we use contin-
uous piecewise linear apý)roximnations for u. and piecewise constant approximations for the A,
and Al, 1 < I < L. However, it is important to note that the Al cannot be always be arbitrarily
chosen, since the combination on the right of (-) must be a gradient Young measure. We present
a general way to handle this issue.

3.1 Computing the Constraints

The algorithm presented above involves several constraints, namely,

L L
VU=ZAIAI, ZAl=1, and O<A_<l1 11<l<L

1=1
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(recall that the discrete u is piecewise linear, so its gradient is piecewise constant, as are
the discrete Al and Al). In addition to these obvious constraints, when u is vector valued
further constraints on the representation of the gradient are required to guarantee that V =
EL= A16A, is a gradient Young measure. The constraints on {A 1}L= are convex and trivially
accommodated; however, the constraints associated with the gradient are not convex. Moreover,
since imposing constraints can be computationally taxing, it is imperative to resolve them in
an efficient manner. Below we outline an algorithm that effectively eliminates the constraints
on Vu analytically.

We begin by considering the case with L = 2, i.e.

Vu = AAo + (1- A)A1 .

Letting b = A1 - Ao, we may write

Ao =Vu- (I - A)b, and A, = Vu + Ab.

In this situation,

(F(xu,.),) = AF[x,uAo]+(1-rA)F[x.u, Aj]

- AF[x,u. Vu-(1-A)b]+(l-.A)F[x,u,Vu+Ab].

In the scalar case, b E Rn can be selected arbitrarily, however, when u is vector valued,
Vu E Rm"', and it is necessary and sufficient that b = A1 - Ao be a rank one matrix,
A, - Ao = a ® n, in order to obtain a gradient Young measure (a E R"', n E R' may be chosen
freely). i.e.

Ao=Vu-(1-A)a n, A, =Vu+Aa®n,

(F(x,u,.),v) = AF[xu,Ao]+(1 - A)F[xu. Aj]

= AF[x. a. 7u- (1 - A)a --) n] + (1 - A)F[x, a, Vu+ Aa: in].

To obtain a representation of the gradient for arbitrarily large L. we repeat the construction as

follows. Given Ao and A, as above. write

Ao -- AoAoo + (1 - Ao)A-t. A1  AjA\ o +(I -A 1 )A11 ,

where

Ao0 - Aoo= bo, and .411 - Alo = bi,

if a is scalar valued, and

A01 - Aoo = ao no. alld .I - AID = a, .' ni,

it u is vector valued. The representation For the gradient then becomes,

Vu = \AoAoo + A(I - Ao)A 01 + (t - A)A\AAo + (I - A)(1 - Al)All.

The quantities Aoo etc. are determined from b (or a and n), A. bo (or ao and no), Ao, etc., for
example,

A01 = u - (1 - A)b + Aobo
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in the scalar case, and

A01 = Vu - (1 - A)a ® n + A0ao ® no

in the vector case.

By repeating this process N times, we obtain admissible Young measures consisting of 2N Dirac
masses. This construction is conveniently represented with a binary tree as shown in Figure 2.
Each matrix occurring in the representation of the measure corresponds to a leaf on the tree,
and is uniquely identified by a binary word of length N.

A= Vu

Ao A - [l-x]aon A, =A+ .asn

ao no / /a .
xxl

Aloo A101 = A1 + X1o aloon lo

Figure 2. Binary tree representation of the micro structure

This representation of the gradient has the following desirable properties.

" If F is convex in its last variable, then trivially the minimum of (F(x, u, .), 1/) is attained
with b = bo... =- 0, A0 = A1 = ... =- 'it. and in this situation the problem reduces to
the classical algorithm for approximating the solution of elliptic problems using piecewise
linear functions.

" Given a guess for the minimizing function u, minimizing with respect to the piecewise
constant functions b. A b0 etc. can be done in parallel over each element, suggesting
the overhead associated with calculating a Young measure can be minimized by taking
advantage of mc-lern computer architectures.

4 Numerical Results

4.1 Computational Considerations

To obtain a solution of the discrete problem. simple relaxation was used in conjunction with
the "numerical tricks" discussed below. The idea behind relaxation is to freeze all but one
unknown, ý (a nodal value of u, or a A value for an element, etc.), and to make one Newton
iteration for the Euler equation dI/dý = 0, i.e. ýf+i = ý, -_'(•,)/I"(ý,,). The following
embellishments were required for a practical algorithm.
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" Clearly it is necessary to restrict A to lie in [0, 1]. Moreover, since the algorithm degener-
ates when A = 0, A = 1, or b = 0, A was required to satisfy c < \ < 1 - E for some c > 0
(typically f = 10-6 or 10-7). Additionally, terms of the form 4E(A - 1/2)2 were added to
the integrand to give a preferred value of A = 1/2 when b = 0.

" Except for the Dirichlet data, initial values of u = 0, b = 0, and A = 1/2 were chosen. It
was observed that initially oscillations in u might develop before a suitable microstructure
was found (this corresponds to computing a minimizing sequence directly). In order to
suppress these oscillations while the microstructure developed, an "artificial viscosity" of
the form p(Au) 2 was added to the integrand. In all instances, A was set to zero for the
latter iterations.

" Since relaxation is a local algorithm, it is prone to "getting stuck" in local minima.
It was frequently observed that microstructure would be present in one element, but
not in an adjacent element. To remedy this problem, the micro-variables (A. b etc.)
were substituted for those in adjacent elements. If this lowered the energy, the modified
microstructure was accepted. This non-local move was very effective for avoiding local
minima.

This modified relaxation algorithm was found to be very effective for the computation of global
minima. As with classical relaxation for the solution of elliptic problems, convergence was slow.
especially in the latter iterates.

4.2 One Dimensional Examples

We consider one dimensional examples of the form.

1(u) = fIF(u')+(u - . U(0) = u0, U(1)= U1,

where F(p) = (p 2 - 1)2 (see Figure 1) is the classical double well potential. and f : [0.1] -- R
is specified. For one dimensional problems, it suffices to consider only one level of the binary
tree, i.e.

u'=AAAo+(1-A)A1 , Ao=u'-(1- A)b, A,=u'+Ab.

4.2.1 Example 1 (Non-Homogeneous Young's Problem)

Setting f(x) = (x - 1/2)', the generalized solution of the variational problem is u = f, A -

1/2(1 + fP), b = 2. For problems of this type (i.e. -I K f< 1). it is possible to show that
the discrete solutions {Uh};,>o converge to u in lI'P(O, 1) at the optimal rate of h. Similarly,
\h - A in LP(O. 1) at optimal rate h. This is exhibited in Figure 3 where the L,(0. 1) and
H1(0, 1) errors for al, are tabulated. The solution obtained with a 16 element mesh is shown
in Figure 4a.

63



0.250

0.200

0.150

0.100

0.050

0.000 0.25 0.50 0.75 1.00

(a) Example 1.
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(b) Example 2.

Figure 4. One Dimensional Exapmles (16 Elements).
Black = well at -1, White = well at +1
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Example 0.1 Example 2

No.Elemensu - uhl__(O._) _ _u_ -_ _L__) _U - lhI.L2(oj, IIu' - uj1UIrn2,

4 0.010423 0.144338 0.002352 0.0297993

8 0.002604 0.072121 0.000582 0.015258
16 0.000654 0.036115 0.000145 0.007673
32 0.000176 0.018454 0.000037 0.003867

IL?- -(0I) or IIU'IIL2(O.1) 0.111803 0.577350 .. 0.205711 0.719047

Figure 3: Error Norms for One Dimensional Examples

4.2.2 Example 2

We consider a second less trivial example involving a "broken" extremal'. The nonhomogeneous

term is,
f(x) = -3/128(x - 1/2)5 - 1/3(x - 1/2)3,

and the solution, given by

u(X) f f(x) 0< x 1/2,
u)= 1/24(x - 1/2)3 + (x - 1/2). 1/2 < x < 1,

has microstructure in (0,1/2) and is *'elliptic" on (1/2,1). On (0,1/2). A = 1/2(1 + u') and
b = 2. Note that the derivative of u jumps from zero to one at x = 1/2. Figure 3 exhibits the

optimal rates of convergence observed for {(uA}h>o in L2(0. 1) and HI(0. 1). The solution for a
16 element mesh is shown in Figure 4b.

4.3 Two Dimensional Example

WAe consider examples of the form

I(IL) = f "•t1 - w'l-,1 71 - w2i ,

where wl, w2 E R 2 are the locations of the energy wells. %Ve chose Q = (0, 1)2 to be the unit

square, and impose Dirichlet boundary conditions on a. Triangular meshes are constructed by
dividing the region into similar squares. and dividing them in two along, the diagonal with slope
-1. We consider examples where the slope of a lies on the line joining w, and w2. so that
the micro-struct ure can be represented by a gray scale with wl colored black and w 2 colored
white.

We present two examples. one being obtained from the other by a rotation of 900. This il-

listrates what happens when the mesh is most favorabl)v and 1Vast favorably aligned with the
contoil rs of the, (,xmCt solutioni. U. In l.gil r1f, 5a. a ,olition with w1  ( -L, -1 ) and w, = (1,
is slown having ,,xact solution

"2 •-+• "+ I(r+ )
u(xY)- +2 1 ,X - 2

Vi = Awl +±(1 - A•w 2, A\r, y)= (c - •4+•4)/(•2 -).

'This solution wa., suggested bv Lnc Tarfar.
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(a) Black (1,1) we~ll White (1,-1) well

1.00
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0.50

0.25 /.

UO- -

0.25 0.50 0.75 1.00

(b) Black = (1,-i1) well, White (1,1) well.

Figure 5. Two Dimensional Example, 8 x 8 Mesh.
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The solution corresponding to a 900 rotation is shown in Figure 5b. Here w = (1, -1),
W2 = (-1, 1) with exact solution

2e e2 + I
U(XY) = - 1e 2 

- (X -

Vu = Awl + (1 - A)w2 , A(x, y) = (e'+X-V - 1)/(e 2 - 1).

5 Concluding Remarks

In conclusion, the computations show that the overall approach is a useful one, and that it does
produce optimal rates of convergence under mesh refinement. Certainly, more work must be
done to implement the vector case, and also to improve the performance of algebraic solvers.
It is hoped to address these matters in the future.

Acknowledgment: We thank David Kinderlehrer for many valuable conversations and sug-
gestions.
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Kinetically Driven Elastic Phase Boundary Motion Activated by
Concurrent Dynamic Pulses1

Jiehliang Lin and Thomas J. Pence

Department of Materials Science and Mechanics
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East Lansing, M1 48824-1226

Abstract: We consider the behavior of a phase boundary that is subjected to
concurrent dynamic pulses, one from each side, in the event that the phase
boundary motion is governed by a simple kinetic relation. The total energy loss
is contrasted to that which would occur if the two pulses were not concurrent.

1. Introduction
In one spatial dimension, nonlinearly elastic stress-strain laws that are not monotonic pro-

vide a model for stress induced diffusionless phase transformations [1975E]. In this setting the
purely elastic interaction of acoustic pulses with phase boundaries are mathematically underdeter-
mined, necessitating the consideration of additional physical effects. Possibilities include criteria
which capture kinetic effects [1987TJ, [1990031, [1991A], [19911J, impedance effects [1991P),
dissipative effects [19801], [1986H], [1991PP1, [1992P] or other phenomena not accounted for by
the purely elastic theory [1983H], [1991T].

In [1992L] we considered maximally dissipative dynamical motion, meaning that phase
boundaries move so as to maximize the instantaneous local rate at which purely mechanical
energy is converted to nonmechanical energy. Understanding acoustic pulse reverberation pro-
cesses governed by this principle focuses attention on a concurrent pulse problem, namely a situa-
tion in which two pulses, one from each side, act simultaneously on a previously stationary phase
boundary. In particular, [1992L] addressed the question:
How does the total energy loss for a concurrent pulse problem governed by the maximum dissipa-
tion rate criterion (MD.C.) compare to the combined energy loss for two subsidiary problems:
one involving only the pulse which impinges from the front (governed by M.D.C.), and the other
involving only the pulse which impinges from the back (also governed by M.D.C.)?
We showed in [1992L] that the answer to this question was dependent on whether the two pulses
were of the same sign with respect to the strains in the ambient initial static state, or whether
instead they were of opposite sign. Namely, we concluded, under the maximum dissipation rate
criterion (M.D.C.), that the concurrent pulse encounter suffers the greater energy loss in the event
that both incoming pulses are of the same (strain) sign, whereas the concurrent pulse encounter
suffers the lesser energy loss in the event that the incoming pulses are of opposite sign.

Our purpose here is to consider the same question for the case in which the interaction

1. Supported by the U.S. Army Research Office under contract DAAL03-89-G-(X)89.
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dynamics are not governed by the maximum dissipation rate criterion, but are instead governed by
a linear kinetic relation (L.K.R.) between the driving traction on the phase boundary and the
phase boundary velocity. This linear kinetic relation is given in (3.4). Thus we address the ques-
tion

How does the total energy loss for a concurrent pulse problem governed by a linear kinetic
relation (L.K.R.) compare to the combined energy loss for two subsidiary problems: one involving
only the pulse which impinges from the front (governed by L.K.R.), and the other involving only
the pulse which impinges from the back (also governed by L.K.R.)?

We show that the latter is greater than the former if both incoming pulses are of opposite sign,
which is like the result obtained in [1992L] for the M.D.C. case. In the event that the incoming
pulses are of the same sign, and if each pulse is sufficiently small, we find that the former is
greater than the latter. However we also find numerically that certain situations involving suffi-
ciently large pulses of the same sign result in the concurrent pulse encounter suffering the lesser
energy loss.

2. Families of Solutions to the Concurrent Pulse Problem

Since the framework for the problem addressed here does not depart from that addressed in
[1992L] until after the invocation of the particular resolution of the nonuniqueness issue, it fol-
lows that the families of solutions to the concurrent pulse problem here are ._..tical to those
obtained in [1992L]. Accordingly, we here repeat, verbatim for completeness, the derivation of
these solution families as previously given in [1992L]:

Let z, y and v denote respectively stress, strain and particle velocity. Following [1991 P], we
consider a layer, O<x<h, composed of an elastic material whose stress-strain behavior in one
dimension is given by

C c2' Y for 0<5 V5Y

(Y for YM<_Y<5, , (-Y) =-(), (2.1)

S2 f+d for y 'y.

where c and d are constants and !,, (y) is a smooth decreasing function that renders t (y) continu-

ous. The layer is assumed to be initially pre-stressed in equilibrium, so that v=O, with a single
phase boundary at x = so separating high strain phase with Tyt in x < so from low strain phase

with 7y=a in x> s0 . The strain values ya and yb are taken to be the well known Maxwell strains
which have the geometrical interpretation of cutting off equal areas on the stress strain curve (Fig.
1). An immediate consequence is that the initial configuration is one of minimum energy [I1975E]
for the prevailing boundary conditions governing the initial equilibrium configuration. Any subse-
quent change in the boundary conditions will give rise to changes in the strain and velocity fields

governed by the equations 2

vx - 7, = 0, t'(7) YX - v = 0. (2.2)

In particul-", we consider a loading condition at x=O that gives rise to a square wave pulse with

2. Primes and subscripts denote differentiation in the usual fashion. Note also that we have taken the density
to be equal to one in (2.2)2.
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t(y/) t( t. J~(1) for yms g•< -j

ý.c2y+ d for yt ym

TM axwe . . . . . .. .. ... . . . . .. . . . ..

"Ta T'M Tm Tb

Fig. 1. Stress-strain constitutive response as described by (2. 1). The descending portion of
such a constitutive response function is associated with unstable material behavior [ 1975E].
The strain intervals: [-yTM,'{], [yMy.y], [Tmn, 0o), correspond respectively to a low strain phase,
an unstable phase and a high strain phase.

strain yb+Ayl over a time interval tb, and a loading condition at x = h that gives rise to a square
wave pulse with strain ya+Ay2 over a time interval ta. We shall not concern ourselves with the
specific loading conditions needed to generate these pulses, nor with restrictions upon AyI and
Ay2 necessary to ensure compatibility with (2.1) other than to note that these issues can be treated
in a systematic fashion [1991P]. According to (2.2), each pulse will travel toward the phase
boundary with speed c; furthermore the right moving pulse has width ctb and particle velocity
given by -cAyl, while the left moving pulse has width cta and particle velocity given by cAy 2. The
encounter of such a right moving pulse with the phase boundary is treated in [1991P] on the
assumption that the encounter ends before the arrival of any pulse from the other side. Our pur-
pose here, however, is to study such a concurrent encounter. There are four generic cases: (rr),
(rH), (1r), (1/), where (rr) denotes the case where the right moving pulse (with strain increment AyI)
encounters the phase boundary first and also terminates last, (rH) denotes the case where the right
moving pulse encounters the phase boundary first, but the encounter with the left moving pulse ter-
minates last, and the remaining two cases are defined accordingly. For the remainder of this sec-
tion, and also for Section 3, we shall restrict attention to the (rH) case. There are then three distinct
interaction periods: I71 in which only the right moving pulse encounters the phase boundary, rcon
in which both pulses encounter the phase boundary concurrently, and [12 in which only the left
moving pulse encounters the phase boundary. Figure 2 diagrams these encounters in the (x,t)-
plane. According to this figure, the following additional assumptions are also implicit in our treat-
ment: (Al) the phase boundary remains at rest unless acted on by a pulse, (A2) phase transitions
take place only by movement of the pre-existing phase boundary, and (A3) the phase boundary
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velocity is constant during each of the three interaction periods and these three phase boundary
velocities obey

-c <sl < c, -C < icon < c, -c < i2 < c. (2.3)

Further discussion of these issues can be found in [199 1P]. In addition we have depicted the phase
boundary as coming to rest after the complete encounter has ended, in which case the fields return
to their initial conditions on each side of the since displaced phase boundary.

In Figure 2, the subscripts Ti and R 1 denote the fields in the transmitted and reflected pulses
associated with interaction period rI1. In addition, the (x,t)-domain with combined incoming and
reflected pulse during the interaction period H1 is denoted by subscript Si. A similar convention
is followed for subscripts 72, R2, and S2 for the pulses associated with interaction period "2. The
fields associated with the combination of TI and the incoming pulse characterized by Ay2 is
denoted by subscript Tli2. Finally, there are four additional (x,t)-domains associated with pulses
that arise as a consequence of the concurrent interaction period 1-co,; these are denoted by the
subscripts S1T2, R172, TiS2, and TIR2. A consequence of (A3), (2.1) and (2.2) is that the value
of strain and particle velocity are individually constant on the individual (x,t)-domains associated
with the 11 symbols TI, RI, Si, Tli2, T2, R2, S2, S172, RIT2, TIS2, and T1R2. The correspond-

""(I I M"' 2)(Y I 2'V I 2

Fig.2.Concurrentencounter.ofa.right.a ,s, a mvigs p ondry

727

k +k5- (YTrts2' Vr s2)....

(YRI1 vnl) , icon, .(YT> ............" 2' VTI i2)
k 3 "Y •'" V $ 1 T 2 i .................. . "

(-b )•:_. k3+ -- k...... +
~~~~~S ........... VTIVs) 4

-k l + ========= =
(,+ ''-c q) ... kl- ("tf, + A 2', cAY'2)

~s o q X€= - q - - •

Fi.2. Concurrent encounter of a rig~ht moving shear pulse, a left moving shear pulse and a phase boundary.
Teshear strain y and velocity v in these incoming pulses and the generated pui.ks are denoted by <'yv>.

The characteristic curves are indicated by dashed line segments.
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ing 22 unknown values for strain and velocity, in conjunction with the three unknown phase
boundary velocities si, io,, , and i2, comprise the unknown quantities in the complete encounter

problem. Relations connecting these 25 unknown values to the parameters c, yb, ya, Atl, Ay2

which characterize the material, initial conditions, and loading conditions follow from the theory
of Riemann invariants as applied to (2.1), (2.2). In particular, this gives that v-cy is constant on

any line segment with slope dx=c in the (x,t)-olane provided that it does not cross the phasedt
dx

boundary. Similarly v+cy is constant on all line segments with slope d =-c that do not cross the

phase boundary. Each of these Riemann invariant conditions generates 8 algebraic equations

relating {yTv} pairs between contiguous (x,t)-domains; the associated connecting line segments

are denoted by KI+,...8+ and K, .... K8 - in Figure 2. Across the phase boundary, the two Rank-

ine-Hugoniot conditions

[I[V] = -. I t[fl, [[1t]I = -1[[v]]. (2.4)

associated with (2.1), (2.2) are required to hold. These give rise to an additional 6 algebraic equa-
tions, 2 for each of the 3 interaction periods ITl, 'Icon, and 112. Thus in total there are 22 equations

relating the 25 unknown values. Regarding the three phase boundary velocities as parameters, the
22 equations are linear in the 22 strain and particle velocities. The resulting 22x22 coefficient

matrix is nonsingular provided that none of the three phase boundary velocities il, ion , and i2,

take on the values c or -c. Hence (2.3) ensures that the system can be inverted. Certain simplifica-
tions are achieved in the resulting problem due to various uncouplings (i.e. zero blocks in the
coefficient matrix). For example {yS 1,vS } and {YTI,VT1 I can be found from the 2 Riemann invari-

ant conditions associated with K1 + and KIf, Jlong with the 2 Rankine-Hugoniot conditions associ-

ated with interaction period Fl1. The resulting 22 field quantities are thus found to be given by:

(fb - Ya)d I c (7b - Y)

YSJ = •b+ A' 2(S,+c) vs1=-cA¥• 2(C'+c)

('Yb - ^fo) c (y'b - 7.) s

"7R1 = Tb 2(i 1 +c) , vR 2(si+c)

(Y'b - Y) 'I c ('b -Y)d

YTI= Y .+A 71  2( 1 -c) VT! -cAY - 2(s 1 -c)

y+Ay+A Ya)S'Y gI V~ 2 C ,+CA , (Yb - T) j
YTli2 =ya+A+AY2 + 2(., -c) 2Ti2 = y -cCAY)

AyAy-(ftb - Yd) icon - y, cyC (Tb- Yd 'Con

SIT2 =Yb +A1A2 2 (icon + c) VSIT2 = -cA2y+ cAy, 2 (icon+c)

(7b -- Ya) icon C (7b -- Ya) icon

7T1S2 = A^1+Ay1 +Ay 2 + 2(iconc) Vrls2 =-CAY+CAY2- 2_(iconC)

R IT2 = Yb+ AY 2  (^tb Yd cn+c • v 7-2 cA ,2- 2(7b Yo ) ico

2(icon+C) 2 (irn +

73



T~R7+All+ 2(.yb yd '- "TIR 2 -CA'YI - C (it0 -cY) S
)TIR2 2 - c) ' 2 5- c)

('Yb -- ydra '2 C (TYb -a 'a)'2

Y 2 Ya *+ 20(2 -c) VR 2 (02 - c)

(lb- o) i2 c (Tb- Y) '2
Y72= Tb+A 72 2(0 2 +c) VT72 = CA'Y2- 2(0 2 +c)

The phase boundary velocities !I, Vcon, and i2, are undetermined by the above procedure and can
be regarded as parametrizing all possible solutions. In addition to (2.3), various additional restric-
tions upon the phase boundary velocities will arise due to the requirement that the strain values in
(2.5) remain confined to the intervals associated with the different branches of the stress-strain
relation (2.1). The net effect of these considerations is to generate additional inequality constraints
beyond (2.3) on the phase boundary velocities. The totality of inequality constraints are not mutu-
ally exclusive provided that Ayl and Ay2 are sufficiently small. If, however, Ay1 and Ay2 are large,
then mutual exclusivity may prevail (see [1991P]). We shall henceforth assume that we are deal-
ing with values of AyT and Ay2 which do not give rise to mutual exclusivity so that three non-
empty parametrization intervals, 1, 3Cox, and 22, exist for the three phase boundary velocities.

3. Solutions Obeying a Linear Kinetic Relation for the (rt)-case
As mentioned in the Introduction, the freedom to determine the phase boundary velocity allows
the theory to accommodate additional requirements upon conditions which govern phase bound-
ary motion. It is at this juncture that the treatment given here departs from that given in [1992L]
which considered the maximum dissipation criterion (M.D.C.) as the method for resolving the
nonuniqueness issue. Here we instead examine a different operative condition, namely a linear
kinetic relation (L.K.R.). Recall that the motion of a phase boundary gives rise to a change in the
total mechanical energy stored in the mechanical fields [1980J]. In particular, if y+--,Ks(t)+,t) and
Y---(s(t)-,t) are the strains directly adjacent to the phase boundary, then the energy loss rate, or
dissipation rate, is given by

D(t) = i(t)fi:), flit) = (()dy,- ( W,) + I(y)) (W, - Y) (3.1)

where 1it) can be interpreted as the phase boundary traction [1991A]. For the concurrent pulse
problem, with strains as given in (2.5), one finds that the dissipation rate and phase boundary driv-
ing tractions during the three interaction periods are given by

{C 2(C 2 _• (f rl _ ,y.)2 _ (IS l _ b) 2} } fl D i:-DI 2s2,-

D -It1 2C2 _2 2_ 2 32cn 2con (c { I (_lS2 - Yd) (sI n lb)} I fcon Ds (3.2)

D2= - 2 2(C2-_2) 2 (2y2 _ y) 2 _ Tlb)2 D2
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where use has been made of the special equal area property of the Maxwell strains ya and yo which

characterize the initial configuration.

A kinetic relation is now assumed to govern the motion of the phase boundary. As discussed
in [1991 A], one form for such a kinetic relation is an additional relation between phase boundary
velocity i and the phase boundary driving traction f:

s = F(t) (3.3)

where the new constitutive function F(j) is required to obey f. F(f) 0 in order to deliver D (t) a 0
and hence ensure compatibility with a purely mechanical version of the second law of thermody-
nanics that is appropriate in the present setting. In this study we shall consider the case of a linear
kinetic relation F(f) = kf where the phase boundary mobility k is a positive constant so that (3.3)
becomes

S= kf (k > 0). (3.4)

Hence, entering (3.4) with (3.2) and (2.5) one obtains the following implicit equations for il,

icon I and i2:

2 (Tba) Cil

kc' (Tby- T) 2 (c2 - i')

icon (Tb- Ta)Ccon
A71 + AT2 2 2 (3.5)

i2 ('Yb - Id ci2

'&12 (2 _ 2kc2(Ty_-y) " 2(c -_ 2)

Each of the equations (3.5) admits a unique solution obeying (2.3) which we shall denote by
(kr) .(kr) a .(r)and s2  . For a given pair (Ay,, ay2) it may or may not be the case that j Er) 3

•(kr) . (kW)
oon con' and S2 e 3 2' however in what follows we shall assume that these inclusions hold.

Thus we deal with a set in the (Ay 1 Ay2)-plane which ensure that Skr) e 1, kr) e 3 and

(kr) E 2 for the remainder of this communication, even though we do not here investigate the

extent of this set.

We now introduce normalized phase boundary velocities, normalized pulse strain incre-

ments and normalized mobility k as follows:

S = -, - Y = k (3.6)C(Tb -Ta) kkY'a

. (kr)
where subscripted and superscripted quantities such as scon are defined in the obvious fashion by

these same normalizations. Note that -1 < s < 1. Then the associated values for D1 , Dcon, and D2,

which will be denoted by Dkr), Dcokr) and D(kr are givenb
52 by
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Dk) (kA))2 C3 (,Yb 2 .(kr) 2
D = k (s )

(kr). 2 =3 2 (kr) 2

-((,r_ 2soj (b •,) (,
ucon k = i (~, 37

( ,kr) ( 2 ) 3(yb_y,)2 _.(kr) 2
D2 k 2 a (S2 )

k

where

-(kr) - .(kr) (kr) -
1 = S (Ail), $con = S (AY + A02 ), S2  = S (A 2 ), (3.8)

and S(Aj) is defined for all real Ay as the unique root, within the interval -1 <S = S(Aj) < 1, to
the equation

.3 - .2 k -

S - kAS - (1+ )S+kAy= 0, (A(A=o) = (S= 0)). (3.9)

From (3.5) and (3.8) one also obtains

>0, when AY > 0,
S(Ai)1 =0' when Ai = 0' (3.10)

< 0, when Ay < O.

At the same time one finds that the first derivatives and second derivatives of S(Aj) obey

S'(Ai) = -S-•((Aj)) > 0, for a.l A'y, (3.11)
dAy

and

< 0, when Ay>0.
5" (Ay)=----• -S(Ay) 0. when Ay = 0, (3.12)

d>(Ay) >, when AY < 0.

For small Aj one obtains from (3.9) that

S(A =2k -A)2+O((Aj)'). (3.13)
,2+k)

In contrast, for small Aj under the maximum dissipation criterion, one finds from (3.8) of [1992L]
2that S (Ay) = A+ o ( (Ay)), which coincides with (3.13) in the event that k = 2. This indicates

that, for infinitesimal pulses, the dynamical theory based upon the maximally dissipative solution
criterion should be quantitatively similar to the dynamical theory based on the linear kinetic rela-

tion (3.4) with k = 2.
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4. Linear Kinetic Relation Solutions for the Concurrent Pulse in General

The (rr), (1r), and (11)-cases can be treated in a similar fashion. In all cases, formulae (3.7)2 and

(3.8)2 hold during the genuinely concurrent part of the encounter. If and when a portion of the

encounter only involves the right moving pulse with strain increment Ay, then (3.7), and (3.8),

hold, whereas (3.7)3 and (3.8)3 govern those portions of any encounters that involve only the left

moving pulse with strain increment Ay2 . In order to determine which of the four possible cases is

that which occurs, let

h (4.1)
q = So

Then one finds that the four cases occur according to

(kr) (kr) (. r) (kr) (kr) (kr)
(rl): q>0, Cta(C+1 1 ))(c-sc,) -ctb(c+sI )(c+Sco,)+2q(c-.i1  ) (c+scon ) >0.

(rr): q>(0, Ct A(C+Skr)) ( rc ) - (r) -Ct(A(C )C+S nr) +2(kr) . (kr)
I co I con + q (c- s ) (~s,,, )<0,(4.2)

(Ar) (kr) (kr) (kr) (kr) (kr) (
(ir): q<0. Cta(C- Sl ) (C-iSco) -Ctb(C- ) (C+icon ) +2q(c + jr ) (C-Sco ) <0.

(kr) (kr) (kr) (kr) (kr) ( )(11): q <0, Cta (C -2 j (C-Sci -tb s (+So j+ 2q (c +s r) (ci .) >
2 ~ ~~~ ~ ~ cos l C-S2)( cncon )>O

5. Energy Loss for the Linear Kinetic Relation Solution in the (r)-case

In this section we begin the examination of the question raised in the Introduction. For the (ri)

case discussed in Sections 2 and 3, let tIAr), I(A. and t(r) denote the time duration of the

encounters associated with the interaction periods , 'con, and 1-I2 . These quantities are given in
((r) , (kr) . (kr)terms of S , icon Iand S2 a

(Ir) (k r)
( cr) 2q (+r) _ C +l ) -2q(c-j 1

.(kr) Io .(kr) ( kr)

(kr) C -S c (Ar) (kr) (C+ SA r) (C q (c- kr) (Ar) 5

12 = (kr) (kr)(C+.S1r) (C-Sicon ) (C +S2

so that the total energy loss for the complete encounter process governed by (L.K.R.) is

AE(kr) = D1 (kr) (kr)+ D(kr)(kr) +D (r) .(kr) (5.2)

We now turn to consider the energy loss which would accompany two subsidiary problems.

The first problem is that in which only the right moving pulse, associated with strain incre-
ment Ay1, impinges upon the phase boundary. The encounter dynamics are again assumed to be

governed by (L.K.R.). The phase boundary velocity and dissipation rate for this problem can sim-
(Ar)

ply be found by setting Ay2--O in the previous development; consequently they are given by sr

and DIkr). Similarly, the second problem is that in which only the left moving pulse, associated

with strain increment Ay2, impinges upon the phase boundary with encounter dynamics governed
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by (L.K.R.). Hence the phase boundary velocity and dissipation rate in this problem are given by
(kr) and D (k"). It is, however, important to note that the time duration of the encounters are not
S. (2

given by t4 A) and tkr), but rather are each of a longer duration due to the additional interaction
time which was taken by the concurrent pulse in the original problem. These additional interac-

tion times will be denoted respectively by St kr) and 81(kr) ; they are given by (see Figure 3):

St(kr) - ctb (CC + 'Ikr) )-2q(c.-ij4kr) )

2 ( +r) (r) (c( s r)
I 1 (5.3)(kr)(kr)(k• (kr) .

8t kr =Ct(C+ i ( +sc.(k) 2q (c_- i r)) (C+Icon)
2(c A[r)) .(kr) W

(C+iI)(c - Scon , (c + Sj2 ))

so that the total energy losses in the two subsidiary problems are given by

AE (kry D(kr) (4Ar) + St:k), AE 2k) (kr) (kr) +1() (5.4)A,& my, • ¥only = DII&y " "y- 2 0

Consequently, the difference in the energy loss between the original problem and the combined

energy loss for the two subsidiary problems, is given by3

2 7

Fig.3. Te (r) cncurent ncouter

con



r A(Ar) (&E(r) Or'~) O ~~(r) 06 (Or)&(r (r ~r 55
W) Ayloaly AY2 aly Cox con C2 .)2

In order to develop a simple expression for T (,0 it is convenient to introduce

2q(c-I . ()6
fd " tb .(kr) > 0, (5.6)

((kr)

where td > 0 follows either from tion > 0 or else from its interpretation as a 'projected time' given

in Figure 3. The interaction times 4), 81 (k,) and 8(4 kr) are then given by

.; (kr).(kr) l1 (tkr) td (1 Or + Scon rd)57
con (r) d" 0:6(kr) 2. (kr)

1 -- s (0 - sco. ) (1+ s2

Substituting from (5.7) into (5.5) and using (3.7) yields

= C3Id(Yb-'fa) 2  :(kr) :(kr) -(kr)
W( - 0 (st ,Scon ,S2 ), (5.8)

k

where

-(it)2 .1kr) 2 -(kr)2 -(kr)
S(kr) - (kr) - (Ar) $Con $1 S2 0 + $con)

0(Si ,Scs2 52 -) _-r)r) ( r) - -:(r) (5.9)
0l - Soon ) O--$1 ) O+$2 ) 0-411-cn

In view of (3.8) we define
.:(kr) .(kr). -(kr)

4(Ay1 ,yl. 2) - 0(S(Ail),S(AYi +Ai 2),S(Ay 2 )) = 4(sI , $con .S2 ). (5.10)

Thus the question posed in the Introduction reduces, in the (rf)-case, to a determination of the sign

of 4. We note that if either Ail = 0 or Ay2 = 0 then the corresponding subsidiary problem is triv-

ial and the remaining subsidiary problem is identical to the concurrent pulse problem, thus

0 (Ay1 ,Ay2) = 0, if A'&i = 0 orif Ay2 =. (5.11)

-.(kr)
Analytically, the Atl -0 case of (5.11) follows from (5.9) since A'l = 0 implies sl = 0.
.: Wk) z, (kr)

SCo,, = s2 ; while a similar argument gives the Ai2 = 0 case of (5. 11).

We now begin an examination of the sign of b in each of the four quadrants of the

(Af,,A'y2) -plane. The following result establishes that this sign is negative in the second and

fourth quadrants:

3. Note that T = r(-) which is in general different from" = T•,"d appearing in (5.5) of [1992L].
(H) (H ('I) WFor legibility, h (kr) superscript is implied in what follows. A similar remark applies to subsequent func-

tions. such as 0 and $ appearing in (5.8) and (5.10) respectively. We note in passing thpt the functional
dependence upon k and k has not always been acknowledged in the argument li-s, eg S - S (k , 4).
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Theorem 1. If either Ai < O,Aj 2 >0 or Al> O,Aj2 <0, then ' (Ayl ,A/2 ) <0.

Proof. Consider separately the five cases corresponding to the four octants which comprise the
second and fourth quadrants, along with the diagonal line separating these octants.

- (kr)
Case 1: the diagonal line. Here Ai1 + Aj2 = 0, yielding sc,, = 0 so that the first term of the right
hand side of (5.9) is zero. The second term and the third term of the right hand side of (5.9) then

give that i (A71 ,Ay2) < 0.

Case 2: the N-NW octant. Here Ail<0, Aj22 >0 and Ai1 + A 2 >0, in which case
-(kr) -(kr) -(kr)
sI < 0 < So < s2 . The first term and the third term of the right hand side of (5.9) then combine
to give

_(kr)2 -(kr) 2  _(kr)

-Neon s2 (I+ Sco(1
. (kr) - (kr) - (kr)

0l-5c..) (l+ s2 )(l-scon)

I (- kr) 2 -(kr) - (kr) 2 -(kr)

-(Ar) -.(kr) ( Sco (I +S2 ) -S2 (I +Scon) 5.2

(l+s2 ) lscon )

I (-kr) 2  .(kr) 2  g(kr)'(kr) .(kr) -(kr)

-. (kr) z (kr) 8con -- S2 +S2 Scon (Scon --S2 ) <0.
(0+32 ) (0-Sco.)

Since the second term of the right hand side of (5.9) is negative, the result (5.12) then gives

0(Ay1 ,A'Y2) < 0.

Case 3: the W-NW octant. Here Ail<0, Ay22 >0 and Ail+A A 2 <0, in which case
. (kr) -(kr) -.kr)
si <sco1, < < S2 . The first term and the second term of the right hand side of (5.9) then com-
bine to give

-(kr)2 .(kr)
2

SCOM1  Sl

_.:(Ar) -(kr) :k ()(l-Scon) (-Sl)

[-(kr)2 -(kr) -(kr)2 :(kr) 1
.(kr) -(kr) ( Scon 01- Sl )-sl 0l- sCo. ) (5.13)

(1-si )(l- soon)

1 06(- r) 2  .(kr) 2  -(kr).;Ikr) .;(kr) ._(.kr)

-(kr) z(kr) IScon -sj +si Soon (Sl Scon ))<0.
(1-sl ) lSc.'.

Since the third term of the right hand side of (5.9) is negative, the result (5.13) then gives

4'(Ai1 ,Ay2) < 0.

Cases 4 and 5 corresponding to the E-SE and S-SE octants can be treated similarly.

QED
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Theorem 1 indicates for the (ri) case that the concurrent pulse encounter suffers the lesser
energy loss in the event that the incoming pulses are of opposite signs. As mentioned in the Intro-
duction, a similar result was obtained in [1992L] for the case in which the phase boundary motion
is governed by (M.D.C.) instead of the kinetic criterion (3.4) considered here.

Before examining the first and third quandrants of the (A'.,Ay2) -plane, we shall briefly con-

sider the behavior of •,(Aj1 ,,&j2) near the origin. Let partial derivatives of D be denoted by

numerical subscripts, e.g. ( )= _a-4 (Ay1.A'2), then (5.11) gives ýb (0.0) = 0,
MAY,

4b •(0,0) = 0. •2(0.0) 0 0. ýbl(00) = 0, i22(0,0) = 0, while (3.8), (3.9), (5.9), (5.10) gives

12 (0,.0) - 2 so that
(/lk+ 1/2)

2 + 0 ((A) (5.14)
(Ilk+ 1/2)

yielding saddle point behavior near the origin. This result corroborates Theorem 1 and also indi-

cates that ýb>0 in the first and third quadrants provided that (A&YI,AY 2) is sufficiently close to
(0, 0). Again, similar qualitative results were obtained in [1992L] for the (M.D.C.)-case. Also, as

anticipated, the special case of k = 2 in (5.14) gives the same local result as that for the maximally
dissipative problem (viz (5.11) of [1992L]).

The qualitative behavior of solutions to the problem under study here departs from the
behavior of the solutions governed by (M.D.C.) as studied in [1992L] for incoming pulse incre-

Tablel.Valuesof 4(AiyAi 2) fork=1.

-1.000 -0.800 -0.600 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000

1.000 -0.418 -0.410 -0.368 -0.286 -0.162 0.000 0.187 0.378 0.545 0.665 0.717

0.800 -0.314 -0.316 -0.290 -0.231 -0.135 0.000 0.168 0.353 0.531 0.677 0.770
0.600 -0.216 -0.222 -0.208 -0.169 -0.101 0.000 0.134 0.294 0.463 0.617 0.735

0.400 -0.129 -0.136 1-0.130 -0.108 -0.065 0.000 0.091 0.208 0.340 0.474 0.591

0.200 -0.056 -0.061 -0.059 -0.050 -0.031 0.000 0.045 0.105 0.178 0.259 0.336

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.200 0.040 0.045 0.047 0.041 0.026 0.000 -0.041 -0.098 -0.174 -0.268 -0.374

-0.400 0.066 0.076 0.080 0.072 0.047 0.000 -0.073 -0.183 -('330 -0.518 -0.742

-0.600 0.078 0.092 0.100 0.092 0.062 0.000 -0.102 -0.253 -0.462 -0.735 -1.072

-0.800 0.081 0.097 0.107 1 0.102 ,0.070 O0.•(-M0 -'2Y1" [0.304 1-0.563 -0.908 -1.342

-1.000 0.075 0.093 0.106 10.103 10.072 0.000 -0.J130 -0.334 1-0.629 -1.028 -1.539



Table 2. Values of -b (Aj.Aj 2 ) for 1-l0.

'-1.000 -0.800 -0.600 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000

1.000 -0.664 -0.787 -0.738 -0.552 -0.277 0.000 0.089 -0.081 -0.414 -0.830 -1.288

0.800 -0.418 -0.595 -0.673 -0.558 -0.295 0.000 0.122 -0.007 -0.294 -0.661 -1.069

0.600 -0.237 -0.357 -0.496 -0.506 -0.301 0.000 0.161 0.088 -0.134 -0.432 -0.768

0.400 -0.122 -0.179 -0.268 -0.348 -0.265 0.000 0.197 0.197 0.066 -0.130 -0.359

0.200 -0.046 -0.065 -0.097 -0.140 -0.144 0.000 0.182 0.252 0.233 0.170 0.085

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.200 0.010 0.016 0.027 0.044 0.059 0.000 -0.272 -0.662 -0.999 -1.277 -1.525

-0.400 -0.008 -0.001 0.012 0.033 0.056 0.000 -0.351 -1.084 -2.005 -2.927 -3.821

-0.600 -0.034 -0.028 -0.015 0.009 0.039 0.000 -0.321 -1.063 -2.238 -3.757 -5.433

-0.800 -0.060 -0.054 -0.041 -0.014 0.023 0.000 -0.283 -0.941 -1.993 -3.567 -5.722

-1.000 -0.084 -0.078 -0.063 1-0.034 0.009 0.000 -0.254 -0.847 -1.747 -3.035 -4.990

ments (A•t,A, 2) which lie away from the origin in the first and third quadrants. We have numeri-

cally calculated 4) (Ail, A 2) for various pairs (Al, A 2) and various mobility values k. Some of

these results are displayed in Table I (k = 1) and Table 2 (k = 10). It is to be noted for the k = I

case of Table 1 that ý > 0 in the first and third quadrants for all of the tabulated pairs (A 1,,Aj2 ) . In

contrast, for the k = 10 case of Table 2 it is found that ýD < 0 in the first and third quadrants for cer-

tain pairs (A7 1,,Ay). Similar data for the cases k = 2 and 100 indicates that the extent of the

(AI ',Aj2 ) -domain in the first and third quandrant on which Z < 0 increases with k. The following
Theorem provides a certain characterization of the domain in the first and third quandrants on

.:(kr)
which ý, > 0 in terms of the normalized phase boundary speed SCO = S (Ayl + A•2 ).

Theorem 2. If either Ail >0.Aj 2 >0 or Ail <0.Aj 2 <0, such that IS(Ail +Ai9) <0.5, then

i, (AiA72 ) > 0.

Proof. Using (3.5) to rearrange (5.9), one finds that (5.10) can be expressed as

S(Ail,,A7 2 ) = (AY1 , AY2 , k-) + Y^(,y) W (Ai, Ai2) + Y(Ay2)Z(Ay, + AY,) W 2 (AYl AY2 ) (5.15)

where

X(A, Ay2, k) = X (S (Ail), S (A• +AY2 ), S (Ay•2 ), k),

=(Ai) Y(S(Ay,)), Z(Ay, +Ay 2 ) = Z(S(Ayl +Ay2 )), (5.16)

4Wl(Ay1 ,Ai2) =W,(S(Ai,),S(Ai1 +AT-2)). W 2 (Ay71 -Aj2) = W2 (S (AY,+ AY2) .S (A72)
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with

-,(kr) -: (kr) : (kr) - (kr) : (kr)

.(kr) :(tr) z(kr) . 2(1 + son ) (Sco, ) (SI +S2 -soon )
X(s -,scon s2 ,k) =

k
-(kr) -(kr)

:(kr) -(kr) I + Soon
Y (Si ) - (SCOn : = (kr) '(5.17)

-((tr) -(kr) .(kr) z (kr) (kr) - (kr)

W1 (si ,SCLA )=s COn(G+sco,,)-si (I+sl ),
.:(kr) - (kr) _- (kr) - (kr) - (kr) - (kr)

W2 (Scon , S2 ) =scon (1-con ) --S2 (--S2 ).

We now examine the sign of each of the five functions appearing in (5.17). The following lemma
addresses the function k(&y1, Ay2, k).

LemmaA. X&(Ay 1,,Ay 2 ,i)>0, if Ajt1 A'&2 >0.

; (kr)
Proof of Lemma A. Since k > 0 and 1 + s.. > 0 it follows from (5.17), that

4 (kr) z (kr) . (kr) z (kr)
,'(Al,Ay2 ,k)>0, if (So. ) (s1  +S2 -Sco. ) >0. (5.18)

.; (kr)

In the first quadrant, Ail > 0 and Aj'2 > 0, one has Sco; > 0. and we examine the remaining factor
.;(kr) ; (tr) :-(tr)
sl + s2 - s.°, of (5.18) by considering separately the two cases: Aj•l > Aj2 and Ai-y <,A- 2 . In the

first case, Ai> Ay2 > 0, an application of the Mean Value Theorem gives
-(kr) - - --

SCo = S(AY, +A' 2) = S(Ail) +A T2S' (a). with 0 <, <a<<Ay Ay 2  (5.19)
.: (kr)

2 S = Aj) S (0) + A-S'(b) = A• 2S'(b). with 0<b<.by 2A

so that

.; (kr) . (kr) : (kr) - -

Sl +S2 -se,, = A&2 (S' (b) -S' (a)), with 0< b<Ay2S Ayz <a<Ayl + Ay2. (5.20)
: (kr) : (tr) ; (kr)

Now(3.11)and(3.12)givethat a>b>O=*S' (b) >S'(a) > 0 wherein (5.20) yields sl +s2 -Sa.. >0

which establishes the required condition in (5.18) for the case Ay1 > A12 > 0. The required condition in

(5.18) can be established in a similar fashion for the other first quadrant case Ay2 >Aj1y > 0. The case for
the third quadrant follows in a similar fashion.

QED Lemma A

-(kr) - (kr)
Now since -1 < s, < 1 with sign(s1  ) = sign(Ail) it follows from (5.17)2 that

sign(k(Ayi)) = sign(Ay1 ) (5.21)

while (5.17)3 with -I <SS.. < I gives

S(AyI+ Ai2 ) > 0. (5.22)
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The next lemma addresses the functions VI' (Ail,Ay2) and 4'2 (Ail,'y 2).

Lemma B. If Ay1 >OAy2 >0 such that IS(A •1 +Ai 2) <0.5, then "l( (i ,AY2 )>0 and

W2 (&lI, Ai 2 ) >0.

If Aj1<OAj 2 <0 such that fS(Ai,+AiM2)j<0.5, then Wl(A'• 1.Aj2)<0 and

Proof of Lemma B. We write

-;(kr) ;" (tr) -(kr) -(tr) .
*I (Ay41,Ay- 2) = W1 (st sco, ) = G (so, )-G ((si ), G I(s) as( +s). (5.23)

-.(kr) : (kr) :(kr) _-(r) G : -. '
WP2(Aj1,Aj2) W2 (sc.. ,s2 ) = G2 (SCoN ) -G 2 (s52 ), (S) aS(1-S),

and note that both GI(s) and G2 (s) are monotonically increasing for [ <05. Therefore if

Ayl > 0, A2 > 0 such that IS (Ajl + Ay'2)I <0.5 it then follows that

- r .. ( )kr) _k,) (kF) z (kr)

.: (kr) - (kr) - (kr) ; (kr)
Ail+a, 2 >Ay2 >0= 0.5> sOo >S2 >o=0G 2 (sco.) >G 2 ( s ) JV2 (A 1 ,,AY2) >0.

Similarly if Ay1 <0, Ay2 <0 such that IS (Ail + A 2) <,0.5 it follows that

(kr) ;kr) OF) ..(kr)
Ail +Ai 2<A< Ai <o= -0.5-<s,,, < s <o0 G , (so,.) <G ,(s1  ) W, (a4Y,AT 2) <0, (5.25)

.:(kr) . )(kr) (kr) . (kr)

A71 AY~2 < AY2<0 -03 < ScOM < S2 < 0=G 2 (SCOM) < G2 (Si ) =W 2(Ay1 , A72) < 0.

QED Lemma B

Therefore (5.21), (5.22) and Lemma B give, under the hypotheses of the Theorem, that

Y(Liy1)W, (Ail, Ay2 ) > 0, Y(A)Z(A20 1 + AY2) W2 (AYl -02) > 0. (5.26)

This result, in conjunction with Lemma A and (5.15), then establishes the Theorem.

QED
-(kr)

In Table 3 we display the phase boundary speed s;,, corresponding to the k = 10 case for which
Swas previously given in Table 2. Examination of the bold entries of these two tables indicates
numerical consistency with Theorem 2. In addition, it is also clear that the converse to Theorem 2
does not hold.

6. Energy Loss for the General Concurrent Pulse Problem Governed by the
Linear Kinetic Relation

The energy losses for the (rr), (Ir), and (11)-cases can be determined in a corresponding way.
The energy loss differences analogous to T(ro) for these other cases are found to be given by

F4



- (kr)
Table 3. Values of so,, for k =10.

A' A'-1.000 -0.800 -0.600 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000

1.000 0.000 0.307 0.513 0.637 0.714 0.765 0.801 0.828 0.849 0.865 0.878

0.800 -0.307 0.000 0.307 0.513 0.637 0.714 0.765 0.801 0.828 0.849 0.865
0.600 -0.513 -0.307 0.000 0.307 0.513 0.637 0.714 0.765 0.801 0.828 0.849

0.400 -0.637 -0.513 -0.307 0.000 0.307 0.513 0.637 0.714 0.765 0.801 0.828

0.200 -0.714 -0.637 -0.513 -0.307 0.000 0.307 0.513 0.637 0.714 0.765 0.801

0.000 -0.765 -0.714 -0.637 -0.513 -0.307 0.000 0.307 0.513 0.637 0.714 0.765

-0.200 -0.801 -0.765 -0.714 -0.637 -0.513 -0.307 0.000 0.307 0.513 0.637 0.714

0.400 -0.828 -0.801 -0.765 -0.714 -0.637 .513 -0.307 0.000 0.307 0.513 0.637

-0.600 -0.849 -0.828 -0.801 -0.765 -0.714 -0.637 -0.513 -0.307 0.000 0.307 0.513

-0.800 -0.865 -0.849 -0.828 -0.801 -0.765 -0.714 -0.637 -0.513 -0.307 0.000 0.307

-1.000 -0.878 -0.865 -0.849 -0.828 -0.801 .765 -0.714 -0.637 -0.513 -0.307 0.000

3 2
(rr): T = - F(Ay 1,A)

(rr) k 7)

3 2
C -,q .

(/r): T (t - (AYtA'Y2), (6.1)
((-).k

(ib): T = - Id 2 (AI.AA2)-
(II) k

with
P(A-1,A- 2) = (- A- - A-). (6.2)

2q (c + $2ri

In the (lr)-case, another projected time t E t, ( + 2 has been introduced.C a (kr)
C (C -i2 )

In particular, 4(A&il,Aj 2 ) and '1'(Ail,A- 2) are each negative in the second and fourth quad-

rants, whereas neither sign is excluded in the first and third quadrants. Thus we now summarize
our findings for the concurrent pulse problem with phase boundary speed governed by the linear
kinetic relation (3.4):

The concurrent pulse encounter suffers the lesser energy loss in the event that both incoming
pulses are of opposite sign, whereas knowledge that the incoming pulses are of the same sign is
not sufficient to conclude that the concurrent pulse encounter suffers the greater energy loss.
However if the incoming pulses are of the same sign, and each is sufficiently small, then the con-
current pulse encounter suffers the greater energy loss.
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Finally, we recall from Section 2 that we have not seriously considered the effect of the
additional restrictions upon be phase boundary velocities which are necessary to ensure that the
strain values in (2.5) remain in the segregation intervals associated with tueir respective phases. In
particular, we have not explicitly constructed an example in which: the incoming pulses are of the
same sign, the concurrent pulse suffers the lesser energy loss (implying by Theorem 2 that

.(kr) . (kr) (kr)
s Žn120.5), and ý(r e 31. ý e r: 3

Scol>O5),nds •5, con •con' 52 32.
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A FUNCTION WHOSE VALUES ARE INTEGERS, II

JOSEPH ARKIN. DAVID C. ARNEY, and EDITH H. LUCHINS°
Department of Mathematical Sciences

United States Military Academy
West Point, NY 10996-1786

Abstract: In this paper we prove the following:

For any value of k, there exdsts a value of m. for which

is an integer.

Introduction. In [1], using determinants of certain triangular matrices, the following was proved.

Theorem. For any positive integers k and n,

((2k+1)! _____

is an integer.

The proof is repeated here. For any integers k and w, k > 0, notice that

Dr. Luchins spent the 1991-1992 academic ye'. 's the Distinguished Visiting Professor of Mathematics at the
United States Military Academy and has sir..e returned to Rensselaer Polytechnic Institute
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(2) (a) (w + 1) _ = - w 2 kl÷ = I + 2.•| W -,

2k ,2k+l F1 ,

)=) w

where

q!(P-q)! (q=O,l.... p).

For any positive integers m and n, let S(m,n) = I" +2M +...+ n¶. Ifin (2a) we let w=O,1,2,-.*,n,
and add, we obtain

(3) (n + I)2*÷' = Y = r.• )S(2k+l-r,n) +n+l.

Just as we found (3) from (2a), from (2b) we get

(4) -n Y (- 1), k~ (2k +I- r,n) n.

Replacing k byj and subtracting (4) from (3), we obtain

(5) a2 ,+ =2 2j 1 S(2j+ 2-2r, n),

where

(6) a2,1, = (n + 1 ) 2 j+I + n2j+l - (2n + 1).

Next, we consider the k equations obtained from (5) by successively replacingj by 1,2,-- ,k. With

1 = 1,2,..-,k,these k equations in the k unknowns 23(21,n) can be solved by Cramer's rule to obtain

(7) 2(D0)S(2k,n) = ( )k+ID2,
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where D, and D, are the determinants given below:

1  ,2k-5J ,2k-3)

o o t2k-3) (2k-3"

o o

o(1) (1D
o 0 0 (3)

a (~ ~3 .. 2k -3) ý2k-i1)

a,,(2k-1).. (2k-i) (2.k-11

I 2k-5 (2k-3d
a.2,3 0 2k-73 (2k- 3)

D2 =

0 (5) (5)

0 0

log



Since DI is the determinant of a triangular matrix, it is simply the product of the diagonal entries. Hence
*

D, =fH (2r+ 1) = (2k +M)!/2*k .
"F-I

Equation (7) then becomes

(8)6 2k + 1)( 2, n)="D(s) L•~-24 ,:k ,l , 2

To complete the proof it suffices to show that D2 is a multiple of 6S(2,n). This will be so if every entry in a
column of D2 is such a multiple.

To this end let u = 6S(2,n) = n(n + 1)(2n+ 1). Then we show that for any positive integer j

(9) a 2i+t sO (mod u),

which shows that u divides every entry in the first column of D2.. To reduce the problem still further, notice that

n, n + 1, and 2n + 1 are relatively prime in pairs, so that the congruence (9) is equivalent to the three

congruences a2,.. - 0(mod m), (m = n, n + 1, 2n + 1). Although our notation has hidden the fact that a2,,,

depcnos on n, equaton (6) shows that these congruences become

(n+1)z' +n 21k' me 0(mod2n+l),

n2k+1 !m n(mod n + 1),

which are easily verified. This completes the proof of (1).

n(n + 1)(2n + 1) _1.I 1.i ses oso
Proof of (A). It is evident that the denominator in (A) equals 6 D. In (1). it is easy to show6

that (2k+! =1,5,5,...(2k+1)=J.

32 kk !

Letn=(2k+l)!+lso ,t n -= 2 (2 k•1) 2+= 3[ I .2(2k+1)! Now, it is evident
L 2+1 J L3+1J

that the only common factor of D and J is 1, which completes the proof of (A).

REFERENCO

[1] Joseph Arkin, "A function whose values are integers", Mathematics Magazine, Vol. 38. No. 4, September
1965.
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REVERSE DIGIT CONSTRUCTIONS OF PERFECT, MAGIC, AND

DOUBLY MAGIC CUBES

Joseph Arkin
David C. Arney

Frank R. Giordano
Rickey A. Kolb

United States Military Academy
West Point, NY 10996-1786

and
Paul Smith

University of British Columbia
Vancouver, British Columbia V6T 1W5

ABSTRACT

In this paper we introduce the concept of reverse digit

pazrs. We then exhibit an orthogonal, perfect, magic and

doubly magic 4-cube of order 8, with the property that each

row contains reverse digit pairs. In addition, orthogonal

cubes with this reverse digit property are discussed and in

particular an orthogonal, reversed digit 4-cube of order 10

is presented.

NOTE.

Since the actual construction of the k-cubes requires

thousands of numbers, we decided to send the 22 pages of

tables, separately, to anyone who is interested.

Pease send Your request for the tables •g:

Professor Joseph Arkin
Dept. of Math. Sci.
United States Military Academy
West Point, NY 10996-1786
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Few Brim-f Historical N an Perfect Cuba

(1) In 1888, the first pgrfact magic cuba ever constructed was of or.er 8,

and was placed in The Memoirs of the Natjonal Academy of Science, Ell.

(2) Martin Gardner defines a perfect magic cube as follows:

"A perfect magic cube is a cubical array of positive integers from

I to N3

such that every straight line of N cells adds up to a constant. rhese iines

include the orthogonals (the lines parallel to an edge), the two main

diagonals of every orthogonal cross section and the four space diagonals.

The constant is

(1+2+3÷...÷N3 )/N 2 - ij(N 4 +N)" E2J.

(3) E.G. Straus, in 1976, in a private letter to Arkin, described how he

constructed a 7x7x7 perfect magic cube. This may be the lowest possible

order of a perfect Latin 3-cube 133.

(4) In 1985, Arkin superimposed 6 orthogonal Latin cubes of order 7 to

form 20 s'parate Latin 3-cubes E43.

(5) A perfect 4-dimensional hypercuoe of order 7 was constructed at West

Point in 1989 C53.

(6) A perfect, associative and doubly maagic Suoorcube was constructed at

West Point in 1990 E6].

LatUi k-cubg 9± order n.
A Latin square of order n is an nxn square in which each of the

numOers Ol,... ,n-1 occurs exactiy once Ln each row and exacrIv once in

each column. For example

01 012 0123
10 120 1230

201 2301
3012

are the Latin squares of order 2,3,4, respectively. Two Latin squares of

order n are orthogonal, when one is superimposed on another, every ordered

pair 00,01,...,n-I n-I occurs. Thus

012 012 00 11 22
120 and 201 superimpose to 12 20 01
201 120 21 02 10

and therefore are orthogonal squares of order 3. A set of Latin squares of

orders n is orthogonal if every two of them are orthogonal. As an example

the 4x4 square of triples

000 111 222 333
123 032 301 21u
231 320 013 102
312 203 130 021

f12



represents three mutually orthogonal squares of order 4 since each

of the 16 pairs 00,01...,33 occurs in each of the three possible

positions among the Lb triples.

We can generalize all these concepts to nxnxn cubes and cubes

of higher dimensions. A Latin cube of order n is an nxnxn cube (n

rows, n columns and n files) in which the numbers 0,1,...,n-1 are

entered so that each number occurs exactly once in each row,

column and file. If we list the cube in terms of the n squares of

order n which form its different levels we can list the cubes

01 10 012 120 201
10 01 and 120 201 012

201 012 120

as Latin cubes of order 2 and 3, respectively.

Orthogonality of Latin cubes is the following relation among

three Latin cubes: three Latin cubes of order n are orthogonal if.

when superimposed, each ordered triple 000,001,...,n-1 n- 1 n-i

will occur. For example the pair of 3x3 Latin squares
00 11 22
12 20 01
21 02 10

leads to the fOUr 3X3X3 cubes

012 120 201
a: 120 201 012

201 012 120

012 120 201
b: 201 012 120

120 201 012

021 102 210
C: 210 021 102

102 210 021

021 102 210
d: 102 210 021

210 021 102

Superimposed these lead to a cuoe ot quadruples in three levels

with I over II over Ill.
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abcd:

0000 1122 2211 1111 2200 0022 2222 0011 1100
1221 2010 0102 2002 0121 1210 0110 1202 2021
2112 0201 1020 0220 1012 2101 1001 2120 0212

I II III

where each ordered triple occurs in every one of the four possible

positions in the quadruples.

Note. We define a cube of triples (say abc) where each ordered

triple occurs in some order in the 27 cells of the three levels (I

over II over III) of the cube abc as a Latin 3-cube of order 3.

In this paper we have constructed an orthogonal 4-cube of

order 8. This construction consists of eight Latin 4-cubes.

To individually construct each one of the eight cubes, we

superimpose 4 orthogonal Latin cubes of order 8. Now, each one of

the resulting 4098 cells throughout the construction contains four

digits, where each ordered quadruple (0000,0001,...,7777) occurs

only once in every cell.

A Perfect Construction.

Each of the eight Latin 4-cubes is perfect in the following

way (we consider only one of the eight cubes at a time): the sum

(31108) of the elements in each minor diagonal is equal to the sum

of the elements of a row in each of the 2 directions in each of

the t-espective souares (lavers) that make un each Latin 4-cube of

order 8. The sum (31108) of the elements of a row in each

direction of a cube is equal to the sum of the elements in each of

the 4 major diagonals and the sum on all the diagonals of the cube

is the same (namely 31108). The sum (31108) of each of the eight

major zpace diagonals throughout the supercube is the same.

The construction of the cube is based on the 3 orthogonal cubes

=x, + 2 x-, - 3x&,
A = -- -

x, - x -3x,

A 14 x= + 3xj + 2x+ ,

where (Xlq...,X&=(O,1,...qY) and arithmetic is (mod 8).
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Doubly-Magic ProglLjqh.

By labeling the +our digits in each quadruple ABCD, new

entries +or the 4-cube can be formed in each and every one of

the 64 squares, in columns, by the following six three-aigit

combinations - ABA, BAB, BDB, DBD, CDC and DCD. With these

new entries, each of the 64 squares in the 4-cube not only

has in each column the magic sum of 3108 in base 10, but also

a doubly magic sum. That is by squaring each new entry (we

consider the squares that are made by using the six column

entries - ABA, BAB, BDB, DBD, CDC and DCD instead of ABCD.

the new entries) in base 10 and summing the eight appropriate

numbers, we obtain 1,640,100.

Super Doubly-Maqic Properties.

Considerino one square at a time (in what follows. we

use all four digits in each cell);

a) the sum of each of the 8 columns and each of the 2

mini-diagonals are the same

b) squaring each of the four digits in each cell, we fina

that the sum of each of the 8 columns and each of the 2

mini-diaconals are the same.

rKeverseu Lqiz Lonsz:r'L1cton.

In the constructions that follow, each and every row

throughout the 4-cube contains reversed digit pairs. For

example:label the 4 digits in any cell wxyz, then on the same

row there will always be another cell with four digits

labeled xwzy.

Note. Each of the 10 sums in (b) above may vary from square

to square.
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In the 4 pages that follow we have exhibited the

following constructions:

I. In this table, we list the cjm1ete reversed diit and

magic construction of a Latin 4-cube of order 3. The 81

numbers (0000 through 2222), are distinct from each other.

II. In this table, we display cube 1 of a Latin 4-cube of

order 4, which is made up of 4 cubes, cube 1, ... , cube 4.

Each of the 4 cubes contain 64 distinct four digit numbers

and each of the 4 cubes is made up of reversed digit and

ma_qx_ constructions. The complete Latin 4-cube of order 4

consists of 256 distinct four digit numbers, 0000 through

3333.

III. In this table, we display cube 1'of a Latin 4-cube of

order 8, which is made up of 8 cubesq cube 1, ... , cube 8.

Each of the 8 cubes contain 512 distinct four digit numbers

and each of the 8 cubes is made up of reversed digit,

perfect, magi and doubly maqic constructions. the complete

Latin 4-cube of order 8 consists of 4096 distinct four digit

numbers, 0000 through 7777.

IV. In this table, we display cube 1 of a Latin 4-cube of

order 10, which is made up of 10 cubes, cube 1, ... , cube 10.

Each of the 10 cubes contain 1000 distinct four digit numbers

and each of the 10 cubes is made up of reversed digit and

m~aic constructions. The complete Latin 4-cube of order 10

consists of 10000 distinct +our digit numbers, 0000 through

9999.
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I.

1122 2•0 02u1i
2211 0•102 iu2O

CUBE I SQUARE 1

.l L ~ 1 2002 0220
2200 0121 1012

CUBE I SQUARE 2

222 2011(- 1001
0011 1202 2120
1100 2021 0212
CUBE 1 SQUARE 3

1112 2000 0221
2201 0122 1010
0020 1211 2102
CUBE 2 SQUARE i

2220 1Oll 1002
0012 1200 2121
1101 2022 u21 lu
CUBE 2 SQUARE 2

OU001i222 2110
1120 2011 0202

2212 0100 1021
CUBE 2 SQUARE 3

UC10 1201 2122
1i.2 202u 021i
CUBE 3 SQUARE 1

0002 1220 2-ii
1121 2012 0200
2210 C)10i1 1022
CUBE -3 SQUARE 2

1110 20u1 (Z222

22CB2 0127 101
0021 1212 2100
CUBE 3 SQUARE 3



.000 2233 3311 1122
32 0101 -,23 210

3113 1320 02U2 2031
1221 3012 2130 0303
CUBE I SQUARE 1

2321 0112 1030 3203
0013 2220 3302 1131
1232 3001 2123 0310
3100 1333 0211 2022
CUBE I SQUARE 2

3132 1301 0223 2010
1200 3033 2111 0322
0021 2212 3330 1103
2313 0120 1002 3231
CUBE I SQUARE 3

1213 3020 2102 0331
3121 1312 0230 200Z
2300 0133 1011 3222
0032 2201 3323 1110
CUBE 1 SQUARE 4
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III.

0206 4617 1360 5771 3124 7535 2042 6453 6063 2472 7105 3514 5341 1750 4227 0636
6043 2452 7125 '3534 5361 1770 4207 0616 0226 4637 1340 5751 3104 7515 2062 6473
5611 1;00 4777 0366 6533 2122 7455 3044 3474 7065 2512 6103 0756 4347 1630 5221
3454 7045 2532 6123 0776 4367 1610 5201 5631 1220 4757 0346 6513 2102 7475 3064
4537 0126 5451 1040 7615 3204 6773 2362 2752 6343 3634 7225 1470 5061 0516 4107
2772 6363 3614 7205 1450 5041 0536 4127 4517 0106 5471 1060 4635 3224 6753 2342
1120 5531 0046 A457 2202 6613 3364 7775 7345 3754 6223 2632 4067 0476 5101 1510
7365 3774 6203 2612 4047 0456 5121 1530 1100 5511 0066 4477 2222 6633 3344 7755

CUBE I SQUARE I CUBE I SQUARE 5

i570 5161 0416 4007 2652 6243 3734 7325 7715 3304 6673 2262 4437 0026 5551 1140
7735 3324 6653 2242 4417 0006 5571 1160 1550 51i 0436 4027 2672 6263 3714 7305
4167 0576 5001 1410 7245 3654 6323 2732 2302 6713 3264 7675 1020 5431 0146 4557
2322 6733 3244 7655 1000 5411 0166 4577 4147 0556 5021 1430 7265 3674 6303 2712
5241 1650 4327 0736 6163 2572 7005 3414 3024 7435 2142 6553 0306 4717 1260 5671
3004 7415 2162 6573 0326 4737 1240 5651 5261 1670 4307 0716 6143 2552 7025 3434
0656 4247 1730 5321 3574 7165 2412 6003 6433 2022 7555 3144 5711 1300 4677 0266
6413 2002 7075 3164 5731 1320 4657 0246 0676 4267 1710 5301 3554 7145 2432 6023

-- CUBE I SQUARE 2 CUBE I SQUARE 6

3444 7055 2522 6133 0766 4377 1600 5211 5621 1230 4747 0356 6503 2112 7465 3074
5601 1210 4767 0376 6523 2132 7445 3054 3464 7075 2502 6113 0746 4357 1620 5231
6053 2442 7135 3524 5371 1760 4217 0606 0236 4627 1350 5741 3114 7505 2072 6463
2416 4607 1370 5761 3134 7525 2052 6443 6073 2462 7115 3504 5351 1740 4237 0626
7 7?F, 7 75. .,17 250' 4057 0446 5!Z! 1520 1110 5501 0076 4467 2232 6623 3354 7745

-7! 7 ~- ~ ~ * ~741 !233 'ILI 4077 0466 511! 156 n
2762 6.73 504 7215 1440 5051 0526 417 4507 0116 5461 1070 7625 324 6743 2352

4527 0136 5441 1050 7605 3214 6763 2372 2742 6353 3624 7235 1460 5071 0506 4117

CUBE I SQUARE 3 CUBE I SQUARE 7

2332 6723 3254 7645 1010 5401 0176 4567 4157 0546 5031 1420 7275 3664 6313 2702
4177 0566 5011 1400 7255 3644 6333 2722 2312 6703 3274 7665 1030 5421 0156 4547
7725 3334 6643 2252 4407 0016 5561 1170 1540 5151 0426 4037 2662 6273 3704 7315
1560 5171 0406 4017 2642 6253 3724 7335 7705 3314 6663 2272 4427 0036 5541 1150
6403 2012 7565 3174 5721 1330 4647 0256 0666 4277 1700 5311 3544 7155 2422 6033
0646 4257 1720 5331 3564 7175 2402 6013 6423 2032 7545 3154 5701 1310 4667 0276
3014 7405 2172 6563 0336 4727 1250 5641 5271 1660 4317 0706 6153 2542 7035 3424
5251 1640 4637 0726 6173 2562 7015 3404 3034 7425 2152 6543 0316 4707 1270 5661

CUBE I SQUARE 4 CUBE I SQUARE B
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14,51, 11-0880 377: 6724, toot 2642 4•94 944"1 M.7 51720 70 JO. !217 0465 53l8 1271• 391 Skt 61 6814 4o09,

NO1 8448 1221 7551 4884 0.330 5775 3003 it o4 ?5651 3501 1lei; 5110 W."•. 81.11 .1057 7442 0275 9640 618(
3223 t009 5665 2332• 0118 M&5A 7441 1881 4774 0190 0! 158 o4, 21.1O[ 1,04 V728 481L $130 840? 2647
4334 7tt7 lilt 1001 3443 5225 0110 8668 ro, $886 6051 4646 446( 52,70 08.S 7312 2507 1983 3721 Wa3
S44L 0550 8989 1819 '172" 4154 1331 7227 5005 '113 i 'w• •2 7 1643 &134 %411 eg8t 5050 4314 7272 ýý0s

0560 4•24 7117 59?..• ;551 3883 toot 2442 8338 1 til281 0311 4Mi0 7647 6724 013$5 1271 W81 1053 5460
7007 2882 6336 8220 Jil 5,11¥ 4554 0770 3663 5445 4276 3131 9059 1313 5640 6504 0721 2467 0905 7692
0778 1661 3553 0440 5335 2992 1229 M114 7887 4004 1463 .5980 0725 28517 7052 3641 6314 W0l 4131 08175
5885 67h6 2002 4114 )667 1441 M93 9339 0220 8558 7132 t468 3271 850t 4906 5890 0445 6054 2317 1723

CUBE I SQUARE I CUBE I SQUARE 6

1155 5511 0088 3377 6622 8800 2266 409• 1144 1133 0066 4422 7711 33" 9559 3388 6600 2244 0833 1177

9494 4949 6262 5801 3737 2626 7313 0158 IM1 85110 0243 2834 1605 4382 51751 4950 13V7 1061 0714 3428

7943 2086 ?734 84"0 0260 0512 4809 5621 3157 1175 1837 6710 8103 3241 7601 1425 2314 41'52 5009 0596

5731 1625 4371 7513 2146 3417 8080 ?264 0808 6152, 4172 M&5 2574 .1427 6830 5249 1711 8103 7381 9065
0518 8150 1005 9624 5001 4731 0942 2374 7403 3267 7421 3068 0386 $953 4712 2174 1833 6510 1247 560t

3087 6492 2156 1265 7603 0378 51514 8730. 4621 31411 5711 9245 60160 0601 1387 7591 8423 3171 2954 4032

6372 0738 85940 4159 1495 5261 3627 7083 2516 t604 f595 7171 3838 2064 0246 4602 5959 1717 6420 8383

8620 7263 3517 2736 9154 1945 0498 6802 5371 408H V58 1607 5421 6170 8063 003& 7241 t385 4592 2714

2806 9374 5491 6092 451? 7153 1735 3947 e2S0 01128 080 8571 4242 59715 2424 1067 0176 5839 3601 7951
420 :3807 7623 0948 8370 51084 5151 1515 L732 24%6 2604 538? IM7 7831 3518 1713 4042 0426 q175 6240

CUBE I SgUARE 2 CUBE I SOUARE 7

2•111 8844 112 7755 4489 0033 5,571 3300 MI9 1155 7700 21.39 663 08922 IM19 711 4455 0077 33,6 r4544

6309 3690 4578 0034 7965 5497 9751 1212 2121 0843 3076 0147 14.',9 29,18 e.542 4195 5824 6703 7630 i281

96596 5121 06?6 0.13 1572 4848 3030 0849 7215 2751 5364 WS3 3546 ?071 6453 1289, 0917 2011 89.02..7820
e964 2481 3750 9M84 5697 7305 0123 6579 1032 4218 2548 7190 0627 5284 4365 8072 9131 3454 &913" 1709

1842 0213 2031 4,4859 1124 39'60 4598 5751 131,0 7575 4283 9701 7510 Slit 2538 0547 Ml5 (M2 5074 114,52,

7125 4308 5217 2571 1036 1752 6849 0963 3410 8114 8632 1079 4705 74W0 M94 16823 1286 M51 0197 2368
4758 Itt? 0693 3210 2301 8574 7485 1121 5347 603t 1829, 6543 1361 0707 7070 2458 Bill 543 4M8 3116
0483 ?'576 7645 3167 621f. 26591 1302 4038 8754 3120 till 5454 8762 4545 3701 7360 6073 1119 2828 0537

+503? 079 1304 412•8 3940 1216 MI.6 7615 0573 14111 4915 x-ý.i 2078 163t 0.267 5704 7540 tu• 1451 Slit

CUBE I SQUARE 3 CUBE I SQUARE I

•.T?2 99'00 5566 2213 8811 6955 1744 1188 4477 00" 8877 IM6 3355 OM 4! •33 2299 t922 "11 7700 4400

4187 1478 1741 WO5 2093 7814 4231 5326 3562 MS0 7&18 $791 5923 1296 0404 ?532 4040 117$ 0351 2169

•0479 7564 40V7 110 5746 8101 16•8 59810 2323 3232 4780 91•52 7409 21ll 3T25 5163 6211 1536 0874 8047

1'090 3812 1238 0909 7474 2113 4565 4747 5656 8321 14%5 8557 6041 410• 1792 0614 2351 7126 3215 5273
5M'6 1,325 3652 4817 1'560 10•8 1471 7234 Sill 2743 3115 21179 8297 7538 1354 6401 5783 "042 4610 09'24

256 lilt 7324 3742 065? 5236 Ml0 6095 1011 WO7 0354 $613 t872 1527 425?0 3045 7161 2401 4531 1711,

9231 50%6 W45 1320 3182 V740 2813 0569 M94 4657 S,043 30¢5 2781. 6121 Sill 1126 0534 MO• 9112 1218

HIS5 0794 25¢3 M04 4327 34)2 5186 8$01 9.2" 150 2531 4920 01H4 1402 7671 1787 3615 529S 1046 6151

7654 4237 1180 8561 15908 0321 3092 2473 6705 5816 1212 7048 161L 5353 6161 .4870 8407 0114 2121 153,5
1746 2653 08111 5476 6235 4561 1320 3902 0091 7184 6921 OM 4 45A 3785 2149 7350 1176 11147 $403 1612

CUBE I SQUARE£ 4 C:UBE I 5t•ME 1

4433 77" 1977 1100O 344 5522 0011 8866 2255 US 5598e 6677 220"k 4411 7764 1144 3391 1133 0022 Sloss
2865 8256 3014 7529 1680 0341 6108 59437 4973 5M• 0932 1023 73%6 1147 4851 3749 0415 2,•80 5200 1074

6251 0971 2685 58&2 "017 3794 85216 7349 143•0 4103 8025 '.M• 0852 1134 2390 7474 1143 470? 4581 5411
7681 4343 11106 6718 0251 1860 5f72 2015 Ml2 3434 6857 57W'8 9413, 8075 302? 4931 1204 OM9 2140 )584
9797 5432 4523 2345 7979 1686 M54 0101 6M• 1010 2670 1584 5148...0742 Q207 O995 70216 $419 1435 439,1

1970 3864 0411 4013 652P 59107 2795 5682 8346 7259 4201 7136 ISIL-398 -8145 2410 0672 IM17• 63 4027
3104 9627 5252 8436 4863 701f 1340 6970 07ft 2525 7416 2850 10224 M•345738 6317 4761 8205 3019 0142

5342 6018 17510 0681 2435 4253 9047 1524 7109, 8176 1744 8395 4671 HSI9 0582 5028 2930 7146 6417 9203
0521 2105 7869 3974 8796 &438 4683 1250 501! 9347 3109 0412 0937 7204 O.673 985585 4021 1394 2760
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ANALYTIC ROOTS OF THE PERIOD THREE QUADRATIC RECURSION POLYNOMIAL

Harry J. Auvermann
U. S. Army Atmospheric Sciences Laboratory

White Sands Missile Range, New Mexico 88002-5501

ABSTRACT. This paper is concerned with stable points of iterates of the
function F(d,z) - d - z2 . Tne number of these stable points changes as the real
parameter d varies from -1/4 to 2. The number of stable points is termed the
period. Period one stable points are roots of the polynomial that result from
substituting z for F(d,z) in the above. Two applications of F(d,z) produce a
fourth order polynomial. Period two stable points are roots of this polynomial
that are easily obtained. Three applications of F(d,z) produce an eighth order
polynomial. Period three stable points are the roots of this polynomial. Two
of these roots are known from analysis of the lower iterates. Solution of a
sixth order polynomial then determines the period three stable points. An
analytic solution to the period four recursion polynomial was reported at last
year's conference. We apply the method of the former paper to the period three
case and show how the application must be chAnged for a period that is a prime
number.

INTRODUCTION. Motivation for this work has been covered in a previous
paper (Auvermann, 1992a). Briefly, the interest arises because transition from
order to disorder, similar to the transition of a fluid from laminar to turbulent
flow, has been observed in mathematical expressions such as one-dimensional maps,
an example being the recursion expression

(1) Zk+1 - d - Zk2 .

The parameter d in the mathematical process corresponds to the Reynolds number
in the fluid flow process. Corresponding to the random-like samples of the local
velocity in the flow are the iterates Zk of the mathematical process. If d is
less than a certain value, called the accumulation point, stable points occur
(Feigenbaum, 1978). Stable points are repeating numbers in the sequence zk.
This sequence is termed a limit cycle, and the number of points in the cycle is
termed the period. If d is larger than the accumulation point, there are
isolated intervals wherein stable points occur (Berge', 1984). Between these
isolated intervals are intervals of chaos similar to fully developed turbulence.
That is, the iteration sequence never repeats itself and the values depend upon
the starting point. This similarity between iterate sequences and random
processes is the reason for the intense interest in the mathematics of one-
dimensional maps and limit cycles.

The condition where each point is the same stable point is analyzed by substitu-
tion of zk -or Zk+1 on the left side of equation (1) and solving for the roots of
the resulting polynomial. Bifurcation occurs here in the sense that for larger
values of d, the stable points repeat every second iteration. This sequence of
two is termed a period two limit cycle. The former case is termed a period one
limit cycle. In this paper our attention will be confined to period three limit
cycles. Prior work on period three stable points and the general applicability
of quadratic recursion has been covered in the former paper (Auvermann, 1992a).
Abel (1829) has shown that solutions of polynomials of this type can be reduced
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to the solution of polynomials whose order is the same as the period. Abel also
gave a method by which all such lower order polynomials may be solved. Netto
(1898) has shown how the method of Lagrange resolvants can be used to solve for
period three and period four roots,

The new results we report are an alternate method for obtaining the roots of a
period three quadratic recursion polynomial. This method, having only been
applied previously (Auvermann, 1992a) to period four and now to period three,
is not as general as the methods of Abel and Netto. However, it is simpler
than that of Netto and serves to accomplish the reduction of the full recursion
polynomial to the polynomials solved in general by Abel. Some comments on
extension of our method co other periods are contained in the conclusions section
below. Much of the algebra necessary to show the results presented here has been
left out. More details are contained in a companion government report
(Auvermann, 1992b).

The following list contains the essential elements of the remaining notation
used. The symbol n is used for the pericd of a particular limit cycle.

Pn(d,z) - period n recursion polynomial of order 2'

En(d,z) - a factor of Pn(d,z) such that Pn(d,z) - P1(d,z) En(d,z)

Z(d,n,m) - mth (m - 1, 2,...2') stable point of P,(d,z)

Dn- threshold of d where the roots of Pn(d,z) become real

j - (-)112.

En(d,z) is called here the reduced polynomial. For periods that are not prime
numbers, roots of some lower period polynomials are also roots of the higher
period polynomial. When all of these lower order poly•,omials are factored out,
the remaining polynomial is called the primitive polynomial. Using period eight
as an example, the primitive polynomial is defined as

H8 (d,z) - a factor of P8(d,z) such that P8 (d,z) - P4(d,z) Ha(d,z).

Primitive polynomials are discussed briefly in the conclusion section. When the
period is a prime number, the primitive and reduced polynomials are identical.

EXPRESSIONS ASSOCIATED WITH PERIODS ONE, TWO, AND THREE. In this section,
the expressions for the polynomials, stable points, and the thresholds for
periods one, two, and three will be developed. The first step is to write out
the corresponding stable point polynomials.

For a beginning value of the variable, za, qnd Q given parameter, a series of
iterates Zk is produced by repeated application of equation (1). If d is greater
than DI, Zk approaches a fixed point Z(d,l,m) as k increases. This stability
occurs when Zk+1 is equal to zk in equation (1). The values of z that satisfy
this conditio•t are the roots of the period one polynomial

(2) P1(d,z) - z2 + z - d.
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where the serial number k has been dropped for writing economy. The perked two
polynomial is obtained by developing the expression for the iterate two later in
the sequence. Hence,

(3) P2(d,z) - (z2 - d) 2 + z - d.

From equations (2) and (3), one has

(4) P2 (dz) - Pj(dz)[Pj(d,z) - 2z + 1],

(5) P2 (d,z) - Pj(d,z) E2 (d,z).

Equations (4) and (5) serve to define reduced polynomial E2 (d,z). The period
three polynomial is obtained in a similar manner by developing the expression for
the iterate three later in the sequence. Hence,

(6) P3(d,z) - [(z 2 - d) 2 - d] 2 + z - d.

From equations (2) and (6)

P3(d,z) - Pj(d,z)([Pj(d,z)] 3 - 2(2z - l)[P1 (d,z)] 2

(7) + (4z 2 - 6z - l)P 1(d,z) - 2z(2z - 1) + 1),

(8) P3(d,z) - PI(d,z) E3(d,z).

Equations (7) and (8) serve to define reduced polynomial E3(d,z) axd show that
P1 (d,z) is a factor of P3 (d,z).

Roots of polynomial P1 (d,z) of equation (2) are given by

(9) Z(d,l,l) - 1/2[-1 + (I + 4d)"21,

(10) Z(d,l,2) - 1/2[-l - (1 + 4d)1/ 2].

Z(d,l,1) is a stable fixed point and Z(d,l,2) is an unstable fixed point
(Feigenbaum, 1983). From equation (8) we see that two roots of the period three
polynomial P3(d,z) are the same as the roots of P1(d,z). The remaining period
three roots are obtained by solving E3 (d,z) from equation (7). The period three
reduced polynomial fully expanded is

E3 (d,z) - z - z + (I - 3*d)*z4 - (I - 2*d)*z 3

+ (1 - 3*d + 3*d 2 )*z 2 
- (1 - 2*d + d2 )*z

(11) + (1 - d + 2*d 2 - d 3 ).

The thresholds will now be considered. For equations (9) and (10) to be real,
the radical must be nonnegative. This condition on d defines the period one
threshold.

(12) D, - -1/4.
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Similar conditions define the thresholds for period two and period four
(Auvermann, 1992a) as D2 - 3/4 and D4 - 5/4. The accumulation point has been
determined numerically (Berge', 1984), which is D. - 1.4011519 when transformed
to the parameter of recursion relation (1). The period three threshold, not
apparent from equation (11), has been determined numerically to be

(13) D3 - 7/4.

In the next section we show how this number arises in the algebra of the root
determination process. Thus, the period three interval (where the polynomial
roots are real and are stable) begins above the accumulation point at 7/4.

PERIOD THREE ROOT EXPRESSIONS. The objective is to find analytical
expressions for the six roots of E3 (d,z). It is instructive to investigate the
root behavior when d is zero to determine how the roots are connected to one
another. Under the condition d - 0, equation (6) becomes

(14) P3 (0,z) - z 8 + z - 0.

From equation (14) we see that zero is one root. The other roots are determined
from z 7 + 1 - 0 and are

Z(0,3,1) - 0 Z(0,3,2) - -1,

(15) ZO(0) - Z(0,3,2 + 2) - eJ(z2  -7)(X/7), 1 -1 , 2,...6.

In equation (15) we have used a more convenient index I and will continue so
doing in the remainder of this paper. By applying equation (1) to Z1 in
succession, we find the sequence is Z1, Z2 , Z4 , Z1, etc. By applying equation (1)
to Z6 in succession, we find the sequence is Z6, Z5 , Z3 , Z6 , etc. For this case
(d - 0), the two sequences correspond in conjugate pairs. Because the roots are
continuous functions of d, we write the relationships for the roots in general
as

(16) Z2 (d) = d - [Z1 (d)] 2  Z5 (d) - d - [Z6 (d)] 2 ,

(17) Z4 (d) - d - [Z2 (d)] 2  Z3 (d) - d - [Z5 (d)] 2 ,

(18) Z,(d) - d - [Z4 (d)] 2  Z6 (d) - d - [Z3 (d)] 2 .

At this point we apply the method that was successful in solving the period four
polynomial (Auvermann, 1992a), but in a different way. In period four for d -

0, the roots are in conjugate pairs within the same sequence. Here they are in
conjugate pairs across sequences. The method is a change of variables
essentially. We write

(19) Z, = A + B Z6 - A - B,

(20) Z2 - C + D Z5 - C - D,

(21) Z4 - E + F Z3 - E - F.
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Here, A, B, C, D, E, and F are the new variables, each a function of d. B. D,
and F are imaginary numbers for 0 > d > D3 , but will change to real above D3 .
They were written as a general number because they will have the same functional
form throughout the range of the d parameter. Therefore, the functional
dependence has been dropped to provide additional writing economy. Rewriting
equations (16), (17), and (18) in the new variables, we have

(22) C + D - d - A2 - 2AB - B2 C - D - d - A2 + 2AB - B2,

(23) E + F - d -Cz - 2CD - Dz E - F - d - C2 + 2CD - D2

(24) A + B- d- E2 - 2EF- F2  A- B- d- Ez + 2EF - Fz

Combining appropriately, we find that

(25) C- d - A2 - B2  D- -2AB,

(26) E - d - C2 - D2 F - -2CD,

(27) A- d - E2 - Fz B- -2EF,

and that

(28) 1 - - 8ACE.

The next step is to define the polynomials associated with each root set. This
is done as follows.

(29) P+ - (z - Z1 )(z - Z2 )(z - Z),

(30) P. - (z - Z6 )(z - Z5 )(z - Z3 ).

Expanding equation (29), we have

P+ = z (Z1 + Z2 + Z4 ) z2 + (ZIZ 2 + Z2 Z4 + Z4ZO) ZlZ2 Z4

P+- - [(A + C + E) + (B + D + F)] z 2

"+ [(AC + CE + EA + BD + DF +- FB)

"+ (AD + BC + CF + DE + BE + AF)] z

- [(ACE + ADF + BCF + BDE)

(31) + (ACF + ADE + BCE + BDF)],

(32) P, = z' - (R + S) z 2 + (T + U) z - (V + W).

In equation (32), the symbols R, S, T, U, V, and W represent the corresponding
combinations of A. B, C, D, E, and F in equation (31). These are

(33) R - A + C + E,
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(34) S - B + D + F,

(35) T - AC + CE + EA + BD + DF + FB,

(36) U - AD + BC + CF + DE + BE + AF,

(37) V - ACE + ADF + BCF + BDE,

(38) W - ACF + ADE + BCE + BDF.

These particular combinations were chosen because the set S,U,W changes sign in
PK. As a result, we can write

(39) P_ - z 3 - (R - S)*zz + (T - U)*z - (V - W).

Since the reduced polynomial is the product of P+ and P., we can write

E3 (z,d) - P. P_

.z 2.R-zl + (R2 
- S2 + 2*T)*z4

2*(RT - SU + V)*z 3 + (2*RV - 2*SW + T2 - uZ)*Z2

(40) - 2*(TV - UW)*z + (V 2 
- W2 ).

Equating coefficients between equation (40) and equation (11), we find

(41) R - 1/2,

(42) (R2 - S2 + 2*T) - (I - 3*d),

(43) - 2*(RT - SU + V) - (I - 2*d),

(44) (2*RV - 2*SW + T2 - U2 ) _ (1 - 3*d + 3*d^2),

(45) - 2*(TV - UW) = - (1 - 2*d + d^2),

(46) (V2 - W2 ) - (I - d + 2*dA2 - d^3).

Another relation is obtained from equation (36) above for U by adding and
subtracting the appropriate terms as follows

U - AD + AF + AB - AB + CB + CF + CD - CD
+ ED + EB + EF - EF,

(47) U - (A + C + E)*(B + D + F)- (AB + CD + EF),

(48) U - RS + (l/2)*S - S.

The simFqlification from equation (47) to equation (48) came about from applying
the right members of equations (25), (26), and (27) and equations (33), (34),
and (41).
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Substituting equations (41) and (48) into equations (42) through (45) (equation
(46) is not needed), we obtain

(49) U2 - 2*T + 3*(d - 1/4),

(50) T - 2*Uz + 2*V - (I - 2*d),

(51) V - 2*U- + T2  Uz - (1- 3*d + 3*d^2),

(52) 2*UW - 2*TV - (1 - 2*d + dA2).

Substituting equation (49) into equation (50), equation (52) into equation (51),
and then the result into the new (50), we obtain

(53) Tz + 2*T*d + d^2 - 1/4.

Since equation (53) is a quadratic involving only T, it may be solved using the
quadratic formula and then the remaining coefficients of equation (32) are
available directly. A bit of caution is required here, however, to insure that
the remaining identifications are consistent. Solving equation (49) for T and
substituting into equation (53) and using equation (48), we obtain

(54) S4 - 2*(d - 3/4)*S2 - 7/16 + (3/2)*d - d2 .

Completing the square, we obtain

(55) [S 2 
- (d - 3/4)]2 - 1.

The roots of equation (55) are

S - ±[±1 + (d - 3/4)11/2

- ±(d + 1/4)1/2 or

(56) = ±(d - 7/4)1/2.

We will choose the positive root from equation (56) because of the known
threshold condition (13), but it is interesting that the period one threshold
condition has shown up. The implications of this have not been investigated.

(57) S - +(d - 7/4)1/2 - U.

This result may now be used to obtain all the other coefficients by substitution
in sign sensitive expressions.

(58) T = (1/2)[S2 - 3*(d - 1/4)] - -(d + 1/2),

(59) V - (3/2)*T + (2*d - 1/4) - (i/2)*d - 1,

(60) W - [TV - (1/2)*(l - d) 2 ]/S - -d*(d - 7/4)1/2
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S, U, and W are proportional to the factor (d - 7/4), which is zero at d - D3 ,
the threshold condition. This threshold condition manifests itself in the
recursion polynomial in a remarkably simple way. Equation (32) may now be
written with its full d dependence as

P+- z 3 - [(1/2) + (d - 7/4)1/2]*z2

+ [-(d + 1/2) + (d - 7/4) 1 / 2 ]*z

(61) [(1/2)(d - 2) - d*(d - 7/4)1/2].

The roots of equation (61) will be derived below. Since the coefficients of
equation (61) can be complex in the general case, there is not in general a real
root. At threshold the polynomial is

(62) P+(D 3 ,z) - z3 
- (I/2)*z2 - (9/4)*z + (1/8).

The numerical values of these roots are

(63) Z1 (D3) - -1.30193773,

(64) Z2 (D3 ) - 0.05495813,

(65) Z4(D 3 ) - 1.74697960.

Repeated application of equation (1) cycles through equations (63), (64), and
(65) as expected. Since the root expressions for d general are so complicated,
only one will be written out. The cubic pattern (Abramowitz, 1970) is

(66) z3 + a2*z
2 + a1 *z + a0 - 0.

In terms of these coefficients, four other auxiliary quantities are defined

(67) q - (l/3)*al - (l/9)*a2
2 ,

(68) r - (I/6)*(a1*a 2 - 3*a 0 ) - (i/27)*a 2
3,

(69) s, - [r + (q3 + rZ)1/2]1/3,

(70) s2 - [r - (q 3 + r2)1/2 1/3

The least complicated root is

(71) Z - Si + s2 - a2 /3.

In the case of equation (61), the pattern coefficients become

(72) a 2 - - [(1/2) + (d - 7/4)1/21,

(73) a, - + [-(d + 1/2) + (d - 7/4)1/21

(74) ao - - [(1/2)(d - 2) d*(d - 7/4)1/21.
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The least complicated root, identified with Z4(d), is then

Z4 (d) 1-} + (4d - 7)1/2]

)+ IQ-14 + 12 d - (I + 8d) (4d - 7)1/21

(75) - 33/2 [(4d- 7) - 16d 2 + 8d(4d - 7)1/211/3

+{3. } 4 + 12d - (I + 8d) (4d - 7)1/23

+ 3 3/2 (4d- 7) - 16d 2 + 8d(4d - 7)1/2]1/2)1/3

Substitution of the threshold D3 for d returns equation (65). Z,(l.8) is
1.74734295. Three applications of equation (1) return this same number,
verifying the analytical choices.

CONCLUDING REMARKS. The author is indebted to Dr. D. M. Giarrusso, then
a member of the Mathematical Sciences Institute at Cornell, now at St. Lawrence
University, for the location of the early works of Abel (1829) and Netto (1898).
The solution method reported in this paper is independent of Lagrange, but of
course gives the same expressions for the roots. Abel proves that solutions of
polynomials whose roots are connected by a rational expression and repeat after
n applications of this expression (our period n quadratic recursion is a special
case) have the following property. Given the order of the recursion polynomial
is u - men, u,n,m integers, then this polynomial may be factored into m
polynomials of order n. These polynomials I will call root polynomials. Root
polynomials are always solvable for any n because the coefficients in them are
related to each other by rational functions that can be determined. Further, if
m is a product of other integers, say P1, v2 . . . .. . I Lj, then root polynomials may
be separated by solution of j other polynomials whose orders are the v's. These
polynomials I will call separation polynomials. The following table is
constructed for quadratic recursion to reflect this property.

Table 1. Order Properties of Quadratic Recursion Polynomials

Polynomial Type

Period Recursion Primitive Root Separation

1 2 2 2 N/A
2 4 2 2 N/A
3 8 6 3 2
4 16 12 4 3
5 32 30 5 2,3
6 64 54 6 3,3
7 128 126 7 2,3,3
8 256 240 8 2,3,5

As we have seen above for period 3, the separation polynomial (equation (53)) is
order 2 in accordance with table 1. For period 4 (Auvermann, 1992a, equation
(35)) the separation polynomial was easily found by the method used there and was
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indeed order 3. The separation was so straightforward for period 4 that the
root polynomials did not have to be solved. Once the separation polynomial was
solved, finding the stable points involved only a series of square root
extractions. This simple procedure was not used above for period 3, but rather
the root polynomial itself was solved. The fact that equation (28) and equation
(80) were not used in the solution perhaps indicates that some manipulation of
equations (25), (26), (27), and (28) not yet found would result in the identifi-
cation of equation (53) without resort to the root polynomials.

There is more than one separation polynomial for periods 5 through 8 because m
is not prime. The separation polynomials for periods 5, 6, and 7, if they can
be written down, are all solvable as indicated in table I. Period 8 is the
lowest with a separation polynomial of order 5, which is not solvable by
conventional techniques. Experience with the method of the present paper has not
been deep enough to determine if it will aid solution of periods 5, 6, and 7.
Certainly, expressions similar to (25), ... , (28) appear for all periods. These
facts coupled with the result from Abel that the individual polynomials for each
root set can be solved algebraically give substance to the idea that our method
can be extended further than period four.
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A GODUNOV SCHEME FOR ELASTO-PLASTICITY

JOHN W. GROVE
BRADLEY J. PLOHR

DAVID H. SHARP

FENG WANG

ABSTRACT. This paper describes a computational scheme for modeling one-dimensional
flow of an elasto-plastic material. The method is based upon a conservative formulation for
elasto-plasticity in the Eulerian frame; it uses a second-order Godunov scheme. To validate
the method, numerical simulations of loading in plate impact problems are compared with
experimental results.

1. INTRODUCTION

Metals and other elasto-plastic materials exhibit a variety of interesting and complicated
wave patterns when they are subjected to high stresses and strains. For instance, a shock
wave can split into a double wave pattern, with an elastic precursor followed by a plastic
compression wave. The precise structure of such a wave reflects the constitutive properties of
the material, including the elastic response, yield criterion, and rate sensitivity. To properly
resolve elasto-plastic phenomena, numerical methods for modeling the flow must be of high
quality.

In this article, we describe a numerical method for modeling one-dimensional elasto-
plastic flow. The method is based on a formulation of the governing equations as conserva-
tion laws in the Eulerian frame: it employs a high-resolution Godunov method. We validate
our method by applying it to the problem of loading in high-velocity impact of metal plates.
The results are compared with experimental measurements and with other numerical com-
putations. These comparisons show that the method is successful at resolving the flow, and
suggests that extensions of our approach to loading-unloading and multidimensional flows
will be useful.

Our computational method is based on a fully conservative Eulerian formulation of the
equations of motion for an elasto-plastic medium proposed by Plohr and Sharp [13]. By
contrast, the numerical methods commonly used for such computations are nonconservative
and Lagrangian. Our computational method has several advantages over the more traditional
methods. The Eulerian formulation avoids the problems of poor resolution and numerical
diffusion caused by the spatially nonuniform grids and frequent remeshing of Lagrangian
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x=0

Figure 1: A schematic representation of the impact problem. A flyer plate moving at high
velocity collides with a stationary target plate.

methods; instead, we are able to use a fixed spatial grid. The conservative formulation
of the flow equations insures that the speeds of the discontinuous waves produced by the
interaction are correctly computed. Also, the conservation form of the equation makes it
possible to use a high-resolution Godunov method for the computation of the flow. Such
methods have been extremely successful in computations of gas dynamical flows, and they
are beginning to prove themselves as equally successful in the computation of elastic and
plastic waves [18, 2, 5]. In future extensions of this work, we intend to implement front
tracking; we expect that tracking will improve the resolution of these waves considerably.

To test our implementation, we have used it to study the high-velocity impact of two
tantalum metal plates. A schematic diagram of this experiment is shown in figure 1. A flyer
plate moving to the right collides with a stationary target plate; the velocity of the flyer
is sufficiently high to produce plastic deformation in both plates. The outer edges of the
two plates, the so-called free boundaries, are not constrained. The results of our simulations
are compared with the numerical computations of Steinberg and Lund [16] and with the
experimental data cited in this reference.

Although the computations presented in the article are only one-dimensional, the con-
servative Eulerian formulation applies to fully three-dimensional flows. Our implementation
has been designed to be extended to treat multidimensional problems. This extension is now
being developed, and will be applied to study important problems in elasto-plastic flow, such
as the production of shear bands and the multidimensional stability of elastic and plastic
waves.
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2. ELASTO-PLASTIC DYNAMICS

This section briefly describes the system of nonlinear hyperbolic equations governing the
finite deformation of an elastic-plastic material in the Eulerian frame. We use here the fully
conservative formulation of these equations recently proposed by Plohr and Sharp [13].

The conservation laws are supplemented by constitutive relations for the elasto-plastic
material. In this work, we take the material to be hyperelastic [8, 141, with strain energy of
the form appropriate for deformations with small anisotropy [20, 6]; thus the internal energy
function is the sum of a hydrostatic term and a small shear term. The plastic flow rule we
adopt is that of Levy-St. Venant (or Prandtl-Reuss): the plastic strain rate is parallel to
the deviatoric stress. We impose this rule in the intermediate configuration, so that plastic
deformation preserves volume.

The main restriction in the current numerical calculations is that the physical variables
depend upon only one spatial variable. In our application to normal impact problems, we
also make the simplifying assumption of uniaxial deformations (cf. references [17] and [7]).

Let us now summarize the conservation laws and the constitutive relations. For more on
the derivation of the equations, see reference [13].

2.1 Conservation Laws. The deformation of a continuous medium is represented, in the
Eulerian picture, by the inverse deformation map ik carrying the medium from its current
configuration to its undeformed configuration: X' = 0'9(x',t), where i,a= 1,2,3. The
evolution of this map is governed by partial differential equations of second order, but these
equations can be reduced to first order by introducing the derivatives of V'•. The gradient
Sof i := alp/a.zx' is called the inverse deformation gradient, whereas the time derivative is

related to the particle velocity v' through (90'/8t = -g'kvk. We use g"i and v' as flow
variables in place of 0'.

The governing conservation laws involve several other quantities that characterize the
state of the material and its dynamic response: the Cauchy stress tensor aoj, the specific
internal energy e, the plastic strain tensor E. (measured relative to the undeformed config-
uration), the plastic source term A,.,, the strain-hardening parameter K, and the hardening
source term h. These quantities are discussed further below. It is also convenient to intro-
duce the deformation gradient tensor F': (I-')' :, the Jacobian J := det F, the mass
density p := poJ-' (with po being the mass density of the undeformed material), and the
specific volume r := 1/p.

Throughout this paper, we assume that the flow variables depend upon only one space
variable, say x := x1 . In this instance, the principle of continuity (i.e., equality of mixed
partial derivatives of ?k'), the conservation laws of momentum and energy, and the flow rules
for the internal plastic variables can be expressed as follows:

;97 9 + TX0, (2.1)
a

j-•gi = 0, i=2,3, (2.2)

(pv + -P 1 = 0, (2.3)

[ = 0 (2.4)
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a (p,) + a ph , (2.5)

S(pEa)+ -(p£. v') pA . (2.6)

The principle of continuity implies that the components ga, for a = 1,2,3 and i = 2,3
are independent of time. For simplicity, we assume that the initial state is unstrained, i.e.,
glt=o is the identity matrix. Therefore, for all time,

912 = g 1
3 = g 23 = g32 = 0 , 9g22 = g 3 1 . (2.7)

In particular, gil = J- 1.
Let us denote by U the 14-component vector of conserved quantities

U : (g C1 ,PVi , p(Ivivi+ e), pic,pEP))T , (2.8)

with a, i = 1, 2, 3. Here E(') represents Voigt indexing of the six independent components
of EPo (the indices (a) = 1, ... , 6 corresponding to af3 = 11, 22, 33, 23, 31, 12.) Then
Eqs. (2.1) and (2.3)-(2.6) form a system of conservation laws

-U + H(U) = S(U). (2.9)at aX

2.2 Constitutive Relations. Since we assume that the response of the material to
deformation is hyperelastic, the thermodynamic variables determine the specific internal
energy e of the material through an equation of state [8] of the form

= (E 1, EPK, ,x (2.10)

where
E.:= k.F -. - (2.11)

is the (Lagrangian) strain tensor and 7 the specific entropy. The Clausius-Duhem thermo-
dynamic inequality leads to the identification

a 'j = , .E-. Fj" (2.12)

The motivation for the specific choice of energy function in Eq. (2.10) derives from the
following microscopic picture. At each point of the material, we imagine cutting out a
small neighborhood and relaxing the forces on its surface, recovering an intermediate stress-
free configuration. Because of plastic working, this configuration differs from the original
Lagrangian configuration. The linear map (Fp)•a carrying the Lagrangian configuration
to the intermediate configuration is therefore regarded as a measure of local, irrecoverable
deformation. This-suggests decomposing the deformation gradient as a product [10] of elastic
and plastic parts:

F'. = (F)' . (Fp)* . (2.13)
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The elastic deformation gradient (Fe)'. can be regarded as mapping the intermediate con-
figuration to the Eulerian configuration. For more on the Lagrangian, intermediate, and
Eulerian configurations, see reference [14].

In these terms, we identify the Lagrangian plastic strain tensor a;

E. = 1 [(Fo).. (Fp) - 6.0 (2.14)

We also define the elastic strain, measured with respect to the intermediate configuration,
to be S:= [ ( - -

(2.15)

Since we are modeling metals at high strain rates, we assume the material to be isotropic
in the intermediate configuration. Therefore the internal energy depends on the principal
isotropic invariants of E':b alone [10]. These isotropic invariants, in fact, can be written as
functions solely of Eo and EPc [13]; therefore isotropic energy functions have the form of
Eq. (2.10). (From this perspective, the plastic and elastic parts of the deformation gradient
appearing in the decomposition (2.13) need never to be introduced.)

Of particular importance is an invariant measure of bhear strain. In analogy with the
definition used in reference [6], we define such a measure 4e by

S:= IldevE ll2 , (2.16)

where the norm 1hAIl and deviator dev A of a 3 x 3 matrix A are defined by JJAil 2 = tr A2

and devA := A.- trA I, with I being the 3 x 3 identity matrix. Equivalently, Z satisfies

Z lldevb ll2 , (2.17)

where be is the elastic Finger tensor

b, := FF = F(I+ 2EP)-' FT . (2.1)

Following Wallace [20] and Garaizar [6], we take the specific internal energy _- to be

S= 9h(T,r/) + roG(r,77 )Z• , (2.19)

where the first term represents a hydrostatic contribution to the energy and the second ac-
counts for small shear deformations. Models for the hydrostatic energy Eh and the shear
modulus G are given below. Using the small-shear equation of state (2.19), the identifica-
tion (2.12) leads to the stress-strain relation

S[-p+ ---r EJ I+ JGbedevb,. (2.20)

For the hydrostatic component of the energy, 4h, our computations use a stiffened poly-
tropic equation of state [4, 12]:

-6h1( (r (1-7y-)n/R(p0 + p.),o + p0r (2.21)
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Here m = 1/po and po are the specific volume and pressure in the undeformed state, while
y, Pc,, and R are prescribed constants that characterize the material, -Y being dimensionless,

p,, being a pressure, and R having units of entropy.
In elastodynamics, the pressure p, temperature T, adiabatic bulk modulus K, and

Griineiscn coefficient r are related to first and second derivatives of the internal energy
(see, e..g., reference [20]). In this work, we make the same identification with respect to the
hydrostatic energy Eh:

ash 8.6h
aOsh I T 6a2 = r' r (2.22)

K ' h r (02gh

&r2 T 9r,077

By straightforward computations, we obtain the following relations in the undeformed state:

RTo = (po + p,)ro, K = (po 4- P.)7, F = - - I. (2.23)

The bulk modulus K and the Griineisen coefficier t I are given in the literature; therefore
we can use Eq. (2.23) to calculate R, p,,, and -f. Table la shows the resulting values for
tantalum.

The shear modulus G in our calculations is taken from Steinberg et al. [15]:

7+ G ) p + GT(T - To) , (2.21)

with Go, Gp, and GT being material constants and To the temperature in the undeformed
state. The constant Go is the shear modulus of the material in the unstrained state. See
table la for the values for tantalum given in reference [15].

2.3 Plastic Flow Rule. To complete the specification of the governing equations, we
must define the plastic and hardening source terms. These terms are zero unless the shear
stress exceeds a certain threshold, the yield strength. Rather than using the Cauchy stress
in the yield criterion, however, we use the stress tensor S := JF,'ja (Fj1)T corresponding
to the intermediate configuration. This is consistent with measuring the shear strain E, in
the intermediate configuration, and it guarantees that plastic deformation does not change
the volume (see the discussion below).

One easily sees that IIdevSI1 = J[Idev ab-l 1. Therefore we interpret the von Mises
criterion for elastic flow as

Ildev(&b-')II < V rY Yo. (2.25)
For the static yield strength Yo we adopt the model of Steinberg et al. [151:

Yo := Ys(K)G(r, q)(226)Go (26

with the strain-hardening part of the yield strength being

Ys(K) := min { YA (1 +, 3 )", Ymax} • 2.27)
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Table la ,,,_
Po(.-) .. (unitless) R(~E~l) ) po(Mbar) Go(Mbar) G.(Mbar)- GT(kK)-

16.6 2.67 0.145 0.72 0.69 1.45 -0.13

Table lb
YA(Mbar) P(unitless) n(unitless) Y. (Mbar) Yp(Mbar) UK(eV) k

0.00375 10 0.1 0.011 0.01 0.31 0.086171

Table 1c
model C,(s') C2 (Mbarys)

1 0.71 0.12
2 0.71 0.012
3 7.1 0.12
4 7.1 0.012

Table 1: Values of material parameters for tantalum, as used in the numerical simulations.
The constants R, p., and -y are computed by using Eq. (2.23), with K and F' taken from
reference [15]. The values for P0 and k can be found in standard physics tables, such as
reference [11]. The values for YA, 3, n, Yn,, Yp, UK, Go, GP, and GT are those used in
references [15, 16]. Four sets of values are used for C1 and C2, as indicated in table 1c.

Here YA, Ymax, 3, and n are material constants. See table lb for the values corresponding to
tantalum.

During plastic loading, where inequality (2.25) is violated, the plastic strain rate tensor
is assumed to be parallel to the deviatoric stress, as in the flow rules of St. Venant-Kirchhoff
and Prandtl-Reuss. It is suggestive to write the plastic strain rate in the intermediate
frame [10, 14] as

(LPEP)ab :(F•')" kp 3E-0 (devS1)a (2.28)

where iA is a nonnegative scalar function that vanishes when inequality (2.25) holds. Such a
flow rule can be expressed equivalently as

FTb-' dev (abel) F
A 3 =A Ii dev (arb;1') (2.29)

The flow rule (2.29) (or (2.28)) has the feature that plastic deformation causes no volume
change [13], as is usually assumed in metal plasticity. Indeed, the time derivative of detFp =;

[let (I + 2EP)J 212 is proportional to the trace of the right-hand of Eq. (2.28). which is zero.
To define A, we adopt the rate-dependent model of Steinberg and Lund [16]. making the

identification of %/31A with the quantity ip of this reference:

(''I exp ["•--1 T) 2] + C2 (2.:30)
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where

YT:= -- dev(Gb' )I -ýJY3 (2.31).•/•3GI[Go

is the thermal!y-activated part of the dynamic yield strength, which measures the extent
to which the yield criterion has been exceeded. (Strictly speaking, YT is set to zero if it is
negative, and to Yp if it exceeds Yp.) In the definition of A, the quantities C1, C2 , Yp, and
Uk/k are material constants; values for tantalum are shown in tables lb and 1c.

Finally, the source term for the hardening law is

h SA- ; (2.32)

thus K represents the accumulated plastic strain.
Hoge and Mukherjee [91 have reported extensive experimental data on tantalum, including

plots of YT vs. ip at T = 0.3 kK and YT vs. T at ip = 10-" As-'. Figure 2 compares these
data with the predictions of the models correspondin,, to the different sets of values for C,
and C2 shown in table 1c.

As seen in figure 2, model 4 seems to agree best with the experimental data, particularly
in the range of ip from 10-ps-1 to 10-2 ps-1. This observation is consistent with the
results of numerical simulations discussed in section 4 below. Notice that 4p has a maximal,
or saturation, value. For model 1 the saturation value is 0.0746is-', whereas for model 4
it is 0.746 ys- 1 , ten times larger. These values are to be contrasted with the nominal strain
rates in the impact problems discussed below, which range from about 0.01 Ms-1 to 0 's-

2.4 Uniaxial Flow. For the normal impact problem we consider, the governing equations
can be simplified because the flow is uniaxial (cf. references [17] and [71). The inverse defor-
mation gradient has the form g = diag(J-1,0, 0) and the velocity vector is v = (v1,0,0)T.
Furthermore, the plastic strain is diagonal, the 22 and 33 entries are equal by symmetry,
and det(I + 2EP) = 1 (there being no plastic volume change); therefore we can use a single
variable 0 [10, 20] to describe the plastic strain tensor:

EP= diag (~(e-2lk -i) , 1 (eik~ -i) '~ (e"k -i)) .(2.33)

In these terms,
b, = diag (J2e, e- e-l') (2.34)

and
e (e-1 - el) 2  (2.35)

It proves convenient to ascribe a sign to F4, defining

71 (e.lk - J2e~k (2.36)

Then
S= +7- - 2 F3Je2G (2.37)

and

All = -2sgn te-2lA • (2.38)
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(a) (b)

YT [Mbar] 
YT [Mbar]

' ' II ....
0.010 -, 0.010 1

adata data
.. model 1 ........... model I

0 ....- model 2 ---- model 2
-----..model 3 ------ model 3

0.006- model 4 0.006 ', model 4r 4/

0.004/ 0.0041

"0.002 0.002

0.000 . 0.000
10-10 10-8 10-6 10-4 10-2 100 0.0 0.1 0.2 0.3

4p [(As)-'] TjkK]

Figure 2: A comparison of constitutive models with experiment. (a) Thermal yield stress
vs. plastic strain rate at T = 0.3 kK. (b) Thermal yield stress vs. temperature at ip =

1010 ps-sI; models 1 and 2 are nearly overlapping, as are models 3 and 4.

The conservative system (2.9) can now be simplified to be

0jp+ - (pV ) = 0, (2.39)

-- [p ('(V1)2 + + "at [p (vl)2 + _) v 1 
-- v I1] = 0 , (2.41)

Pic) + a (py) = ph (2.42)o-7X (' + )

-i a9 (pov') = psgn h, h (2.43)

together with the constitutive relidtions (2.19), (2.37), and (2.32).
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3. NUMERICAL METHOD

Our computations use a second-order variant of Godunov's method. The basic algorithm
for this method is described in references [19, 1, 3, 18]. Since the numerical calculations of
this paper are restricted to one space dimension, we describe the method for this case only.

The Godunov type methods require three basic steps: reconstructing the discrete solution
from cell averages, computing the interaction of the incoming waves at cell edges using
the method of characteristics, and updating cell averages by means of conservative finite
differencing.

3.1 Characteristic Analysis. The equations governing smooth elastic-plastic flow can
be written in the following characteristic form:

tV + A(V)5 V = 3(V) (3.1)

where
V= (go,', v7, N oE))T  (3.2)

The Jacobian matrix appearing in system (3.1) is

V' 133 g 0 0 0
-P-'A 9  V' 1313 -p-1 A, -p-'A,, -p-'AAEP

A(V) := 0 0 v1 0 0 (3.3)
0 0 0 V1 0

0 0 0 0 V' 1616
with

(AO EP,., (AEP)')Pi :=-,•EE,,,
aciIo~l (3.4)

(A•)i O• [E,EP,7 E,,

The source term in system (3.1) is

S := (01.6, dl(pT), h, A(o))T (3.5)

with d denoting the plastic dissipation term

d := -p•----Ap A - . (3.6)

In order for the system (3.1) to be hyperbolic, A(V) must have real eigenvalues. Evi-
dently, eight of the eigenvalues of A(V) are v1 , with the corresponding left eigenvectors being
appropriate rows of the identity matrix. The remaining eigenvalues are those of the 6 x 6
matrix

B:=(v' 13X3 9 (3.7)
122-p-Ag V 3x
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Since
det (B - AI)= -det (-P-A9 9 - (V1- A)2 13X3) (3.8)

the system (3.1) is hyperbolic if and only if the matrix

C Ag (3.9)P

has nonnegative eigenvalues. One can verify that -pCIk coincides with the adiabatic acoustic
matrix corresponding to the x'-direction, i.e., with ailki = cilkl + 0464ik, so that C is a
symmetric matrix. Therefore there are eight characteristic speeds equal to vI, three equal to
v1 plus the positive square roots of the eigenvalues of C, and three equal to v1 minus these
square roots.

Assume that the system (3.1) is hyperbolic. Then we can find a nonsingular matrix L,
the rows of which are the left eigenvectors of the matrix C, and a diagonal matrix 11, whose
diagonal entries are the square roots of the eigenvalues of C, such that

LC = 11 2L . (3.10)

We choose L such that LLT = I. The left eigenvectors of B are then determined by the
following relation:

(-Lf L V'1 3 13  g

-lf L -PA '3X3 (3.11)

0 V1 13 ,3 + I- lLf L

The right eigenvectors can be obtained in a similar manner. Finally, in terms of the 3 x 8
matrix 1

D := -- (A, ,AEAsp) , (3.12)P

the left and right eigenvectors 11, '.., 114 and r1 , ... , r14 of the Jacobian matrix A(V) are
given by

-flLf L -W'-1LD
(l,...,114)T= ILf L ll-1 LD (3.13)

0 0 Isx8

and, with R := LT,

S-½gRrI-' 'gRr-I-' -g C-1 D

(r-,... , r- 4 ) = R 03x8 (3.14)
0 8x3 0 8x3 I8X5

These eigenvectors satisfy the normalized biorthogonal condition, i.e., Ii rj =. j.
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3.2 Godunov Scheme. In the numerical scheme, the flow is represented by associating
states with points on a grid; each state represents the average of the flow state over the mesh
cell centered at the grid point. We choose a fixed Eulerian spatial grid, indexed by i, with
spatial increment Ax. To advance the solution from time t,, to t,•+, we use a time step At
that satisfies the Courant-Friedrichs-Lewy (CFL) stability condition

AtP= CAX (3.15)

where Pma is the largest absolute value of the eigenvalues of A(V) and c < I is a positive
constant called the CFL number. In our numerical experiments, c < 0.5.

Given the increments Ax and At above, the method consists of four steps:
(1) Reconstruction of the flow profile from the cell averages. This step constructs a piece-

wise linear approximation to V(x, t,,) by determining a slope AV/Ax, which approximates
dV/0x, in each cell. A slope limiter is employed to avoid introducing extraneous local minima
and maxima. In our computations, we use the standard van Leer slope limiter [19, 1, 3].

(2) Computation of the half-step left and right states, V+It and + 1,at the edges

of each cell. These states are found by freezing coefficients in system (3.1) and integrating
along characteristics.

(3) Resolution of wave interactions. We solve the Riemann problem for system (2.9)
at each cell edge, with left and right states obtained from step (2). We currently use an
approximate Riemann solver based on freezing coefficients in system (3.1).

ll+

(4) Conservative finite differencing. Using the states "n+: of step 3 to approximate the

flux and source terms in system (2.9), the states at time tn+l are obtained from the flux
balance relation:

=i Uin - At [H (u (n+2)>.-H (0 (,n(!))] (3.16)

At [S (,,(V !,)) + S (e, (,.))]2 (3.17)+ ( +
where U (V) is the invertible map carrying V to U.
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Table 2a
initial state for flyer initial state for target

g I3X3 g= I3X3
=l V VF , V2 = v3 =0 vI =•v2 - V3 = 0

77 =0 7 = 0
/C=0 X=0

Ep = 0 3x3 E = 0 3x3

Table 2b
test 161 232 1 310 390

impact velocity (cm/hs) 0.0161 0.0232 0.0310 0.0390

Table 2: Initial and parameter values used for the numerical simulations.

4. NUMERICAL RESULTS

We apply our code to the problem of the collision of two tantalum plates. This problem
is similar to those presented in references [21, 16, 18]. The initial data and values for the
parameters for the constitutive laws are riven in tables 2 and 1. The simulation begins as the
flyer plate strikes the target plate at x = 0. The collision initiates several waves, two moving
right and two moving left. The faster wave in each group is called the elastic precursor,
and the slower is called the plastic compression wave. When the waves moving right hit
the free surface of the target plate, the surface is accelerated. The waves moving left reflect
from the free surface of the flyer plate; when they subsequently hit the free surface of the
target plate, this surface is decelerated. While the free boundary of the target plate is being
accelerated, it is said to be undergoing loading; similarly, the deceleration of this boundary
i,; called unloading. A schematic diagram of the wave structure of the impact problem is
shown in figure 3a.

In physical experiments, one typically measures the velocity of the free boundary of
the target plate. The velocity profile for the complete loading-unloading process resembles
figure 3b. When the elastic-plastic wave group first arrives at the boundary, the elastic
precursor raises the velocity to a level that is roughly independent of the impact velocity.
As the material yields, the strong plastic wave loads the material to a peak velocity. After a
plateau at the peak velocity, which is approximately the same as the impact velocity, waves
reflected from the free surface of the flyer plate arrive, causing unloading.

At present, our numerical code is capable only of resolving the loading portion of the
collision process. In place of the velocity of the free boundary of the target plate, we cal-
culate the velocity at several fixed points in the target plate. The resulting velocity profiles
correspond directly to the free-surface velocity prior to the time of arrival of waves reflected
from the free surface of the flyer plate. Thus we can monitor how the shock wave in the
target plate splits into a double wave structure.

Figures 4 and 5 show the velocity at three different points plotted vs. time; superimposed
in each plot are the results for either different values for C1 and C2, different grid sizes, or
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(a) (b)

free surface velocity
target free surface

'F (moderate v F

*VF

A amplitude
independent -

"v rF____t

Selastic precursor, / plastic wave,
"v speed - ([K+4/3 Cl/p) speed - (KIP)

• • •X

splits Into elastic and plastic waves vF = impact velocity G = shear modulus

vF = impact velocity P density K = bulk modulus

Figure 3: (a) Wave structure of the impact problem. (b) A schematic profile of free surface
velocity vs. time.

different impact velocities. In all of these figures except figure 5b, the velocity is measured
at the locations x = 0.1388cm, x = 0.6003cm, and x = 0.96cm in the target plate; the
corresponding plots appear on the left, in the middle, and on the right.

Since the values of the parameters C, and C2 used in our constitutive model are diffi-
cult to determine from fundamental principles, we seek to determine the influence of these
parameters on the computed solution. For test 390, figure 4a shows the superposition of
the velocity plots for four separate simulations, using the values of C1 and C2 indicated in
table 1c. Models 1 and 3 produce a similar profile, which shows almost no distinct elastic
wave. Models 2 and 4, for which ýP is larger for large YT, have more distinct elastic and
plastic waves. Model 2 shows an elastic precursor wave with an amplitude about 10% larger
than that of model 4. Of the four models used in test 390, model 4 seems to be closest
to the experimental results at x = 0.96cm shown in figure 6 of the work of Steinberg and
Lund [16]. Figure 4b shows a refinement study for test 390. A grid of 400 cells resolves the
problem successfully.

In comparing the results of the four different tests in figure 5a, we observe that the
effect of an increased impact velocity is to raise the plateau velocity at the target points.
In test 161, the plateau velocity is approximately 1.6 x 10- 2cm/its. Test 232, which uses
an impact velocity that is 44% faster, shows a peak velocity at the target points of nearly
2.3 x 10- 2 cm/jis. Test 310, which uses an impact velocity that is 34% faster than test 232,
shows a peak velocity at the target points of almost 3.1 x 10- 2cm/pis. Test 390 uses an impact
velocity that is 26% higher than test 310; the peak velocity is about 3.9 x 10- 2 cm/ps. For
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Figure 4: (a) Effect of different values of the parameters C1 and C2 on the computed solutions
in test 390. (b) Grid refinement study in test 390.

each of the tests, nearly the same peak velocity is obtained at the three points x = 0.1388 cm,
x = 0.6003 cm, and x = 0.96 cm. Most importantly, different impact velocities have little
influence on the amplitude of the elastic precursor wave.

Finally, figure 5b shows the velocity plots for tests 161, 232, and 390, with parameters
C, and C2 coming from model 4. These plots most closely resemble the experimental results
shown in figures 4-6 of the work of Steinberg and Lund [161.

5. CONCLUSION

,ke have described a numerical method for the computation of elasto-plastic flows in
one space dimension. The key feature of this numerical method is the use of a conservative
Eulerian form of the equations of motion. The equations of motion are solved using a
second-order Godunov method. The advantages are the reduction of numerical diffusion
in the computed solution and a more uniform distribution of numerical resolution in the
computation.

We applied this numerical method to the problem of the high-velocity impact of two
metal plates. The results of these computations are in good agreement with computations
using other methods and with experimental results. We investigated the effect of varying
certain material parameters and observed significant differences in the flow behavior. Our
conclusion is that the choice of material parameters corresponding to model 2 of table lc
most closely reproduces the results of experiment.
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Figure 5: (a) Effect of different impact velocities on the computed solutions. (b) Velocity
vs. time for tests 161, 232, and 390.

Future directions of development of our numerical code will include the use of front"
tracking for the elastic and shear waves in the solid medium, and, more importantly, the
extension of the method to flows in two and three space dimensions.
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The Korteweg Theory of Cappilarity and
the Phase Transition Problems *

Harumi Hattori
Department of Mathematics

West Virginia University
Morgantown, WV 26506

Abstract
In this paper we first summarize the earlier results on the slow motion in the

Korteweg theory of cappilarity in the one-dimensional case and show some numerical
results. In the multidimensional case we discuss the existence of local solutions to
the system of equations for compressible fluids of Korteweg type.

1 Introduction

In order to model the capillarity effect of materials, Korteweg [12] formulated a constitutive
equation for the Cauchy stress that includes density gradients. It turns out that his theory
is useful to discuss phase transition problems.

First, we discuss the one-dimensional isothermal motion. In this case the equation we
discuss is given by

(1.1) = O'a(u•) + Ut - CU:, 0 < x < 1, t > 0.

where u is the displacement and u,,t and u. terms represent the viscosity and the cap-
illarity effects, respectively. Typical boundary conditions come from either a soft loading
device or a hard loading device. Although the slow motion occurs in both cases, in this
note we discuss the soft loading case only for simplicity. The boundary conditions in this
case are given by

u(O. t) = 0, a(u:) + vu, - f2UXXX•:, = P.
(1.2) u•:z(Ot) = 0, u•(1,t) = 0.

The initial conditions are given by

(1.3) u(zXO) = f(X), ut(x. 0) = g(x),

where f,g E H'(O, 1). The boundary conditions (1.2a) show that the stress P is applied
at x = 1. The boundary conditions (1.2b) are the natural boundary c,,nditions for the
corresponding variational problem.

"The author was supported in Dart by Army Grant DAAL 03-89-G-0088.
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In what follows, we assume that c" is given bv Fig. 1.1. In this figure (O.a'] and
[ o3,co) are called the a-phase and the 3-phase, respectively. They correspond to the
different phases of the material. The interval (a*, 06) is called the spinodal region and
physically unstable. We denote by a, 6, and 03 the values of u. at the intersections of
y = P and y = cr(u,: ) in the a-phase, the spinodal region, and the 3-phase, respectively.
The value of P for which areas A and B are equal is called the Maxwell line. We denote
by am, O3M, and 8M the values of a, 3, and 5, respectively, for which we have the Maxwell
line construction.

Y

y 0- c(U.)

nAP.

a' UXIa &• 6• t"//,

Figure 1.1

The capillarity term was first introduced by Korteweg [12]. Recently, various effects of
this term have been discussed. For example, Serrin [15], [16] reconsidered the Korteweg
theory and has shown the existence of steady profile connecting the a-phase and the 13-
phase. Slemrod [17] and Hagan and Slemrod [9] considered the existence of travelling wave
solutions. The static problems concerning the soft loading case and the hard loading case
have been discussed in [3] and [4], respectively. The dynamical aspects of these loading
cases are discussed in Hattori and Mischaikow [10] and Andrews and Ball [1].

In Section 2 we summarize the result in [ill] about a slow motion of (1.1) resembling
the dynamics of (2.3) discussed in [7], [5], [2], and [8]. In Sectiou 3 we show some numer-
ical examples of slow motions. In Section 4 we dsicuss the existence of local solutions to
the system of equations for two dimensional isothermal motion of compressible fluids of
Korteweg type. The higher order terms of density (or the deformation gradient) in the
Cauchy stress tensor is not in genera' compatible with the classical theory of thermody-
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namics. Dunn and Serrin [61 introduced the concept of interstitial working and derived
the Cauchy stress tensor compatible with thethermodynamics. First, we summarize their
results and derive the system of equations. Then, we state the theorem for the existence
of local solutions.

2 Slow motions one-dimensional case

In this section we sumrnmerize the results in [2], [8], and [11]. Multiply (1.1) by ur, integrate
in x and t, and then integrate by parts using (1.2). After dividing by c, we have,

(2.1) E[uJ(t) + -f vt,,(x,.)dxds = E()

where

(2.2) E[u] (t) =o f 2-ut + -(W(u") - Pus) + ' u2"}(Xt)dx.

In (2.2) W(u.) is a primitive of o. For the remainder of the paper we shall assume that P
= o(crM). This implies that WV(u,) - Pu, will be double-well potentials with equal depth.
For the sake of simplicity we shall also assume that W(ur) - Pu, is given by (u,, - 1)'.
The same con~clusions will hold for more general non-linearities.

Observe that (2.1) is similar to that for the parabolic equation

(2.3) I/vt = f2 - (v3 _ V),

with either the homogeneous Neumann boundary condition

v, (0, t) = 0, v (1,t) = 0

or a Dirichlet condition

v(0, t)=a, v(1,t)=b, ab=±1.

In particular the energy relation for (2.3) is given by

(2.4) Ep[v,(t) + - f ,vt(x, s) dxds = E[vJ](0),

where
(2.5) Ep[v](t) = f 4E - 1) + t) dx.

Now we summarize the results of the slow motions for the parabolic equation. We
assume for the initial data of (2.3) that

(2.6) w(X) = limVra (x, 0)
C-0
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exists as a limit of L' norm, where w is a piecewise constant function taking only the values
±1, with exactly N discontinuities at {x1 ," XN} and we also assume that the initial data
satisfy
(2.7) Ep,[vc](0) _< Nco + K2 exp(-K/e).

Then, we have

Lemma 2.1 Suppose the initial data for (2.3) satisfy (2.6) and (2.7). Then, for any T
satisfying 0 < T < Fves exp(-K/e), we have

(2.8) sup I' vE(x, t) - vE(x, 0) 1dx < (FG)I/2'(J+I).
O<_t<T O

Next, we summarize the results concerning the slow motions of (1. 1). As the form of the
energy relation (2.1) resembles (2.4), we can expect to draw the same kind of conclusions
for (1.1). For this purpose we rewrite the energy Eju] as

E.[u] = E,[uj + E,[u.], E[u] = u(x,t)dx.

We assume that the initial data for (1.1) satisfy

(2.9) u,(x,0) = v,(x,0)

and
(2.10) E. [u'] (0) _< C exp (- K/e)

The condition (2.9) is imposed for the sake of simplicity. As long as u,(x, 0) satisfies (2.6)
and (2.7), with v being replaced by u., the same conclusion should be obtained.

Lemma 2.2 Suppose (2.9) and (2.10) are satisfied. Then, for any T satisfying 0 < T <
F~ve'exp(K/l), the solution to (1.1) satisfies

(2.11) sup tJ Iut(x,t) - u!(x,0)1dx < (FG,)1/2E•(s+1).
O<_t<_T J

Using Nirenberg's inequality and Lemmas 2.1 and 2.2, we can show

Theorem 2.3 If s > 1, then the difference in the L' norm between u' and vt is 0(E(s-))
for at least 0 < t < Fvc-exp(K/1), where F, = min{F.F}J.
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3 Numerical examples

We give a numerical exmaple of the soft loading case to confirm the results in the previous
section. We introduce the transform

P= ut(xt) dx, q = u.

similar to Pego's [14]. Then, (1.1) becomes

(3.1) pt = vp. - iqq., + a(q) - P,

qt = prxx

The boundary conditions for p and q become

(3.2) wP.(0,t) = 0, p(0, t) = 0,

qz(0,t) = 0, qz(1,t) = 0.

For the initial condition, we consider the case when

(3.3) p(z,0) = 0, q(x,0) = Cf(X),

where C is a parameter representing the magnitude of initial data.
As an example, we consider the case when e = 0.01, v = 1.0, and the initial data for

the parabolic equation and for (3.1) are given, respectively, by

v(x, 0) = C(cos 27rx + cos 97rx),

p(x,0) = 0, q(x,0) =v(x,0).

For C we gave the following values:

C = 1.0, 0.5, 0.1,0.01,0.001.

One of the reasons why we change the magnitude of the initial data is to see how this
influences the metastable states. We should note that for either choice of C above, the
conditions (2.9) and (2.10) are not satisfied. Nevertheless, when C = 1.0, 0.5, 0.1. v and q
have reached the same metastable state in each case. Here, we show the numerical results
of C = 0.1,0.01 only. In Figures 3.1 and 3.2 we show how v and q evolve for 0 < t < 10
and then in Figures 3.3 and 3.4 we show the profiles of v and q at t = 1000. We use the
solid lines for v and the gray lines for q. When these lines overlap, we see only the gray
lines. When C = 0.1, they agree at least to 10-7 at t = 1000 and this agreement continues
at least until t = 10000. In these figures, the values of x should be multiplied by 0.01.
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Figure 3.1. v and q for C = 0.1, 0 < t < 10.
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Figure 3.2. v and q for C = 0.01, 0 < t < 10.
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4 Local existence in multidimensional case

Dunn and Serrin (61 modified the Korteweg theory and derived the following set of equations
for the conservation of mass, the balance of linear momentum, the balance of energy, and
the Clausius-Duhem inequality:

pt + div(pu) = 0,

Du
p- = divT,

(4.1)
p•= T. L -divq +divw,

pO-P--+ divq + q 0gr -&DtŽ,

Df

where-- = f, + u Vf andDt

1. p = p(x, t) is the density of the fluid at the point x at time t,

2. u = u(x, t) is the velocity of fluid,

3. 0 = 0(x, t)(> 0) is the absolute temperature,

4. -..= e(x, t) is the specific internal energy per unit mass,

5. 77= 77(x, t) is the specific entropy per unit mass,

6. T = T(x, t) is the Cauchy stress tensor.

7. q = q(x, t) is the heat flux vector,

8. L =gradu.

The main difference with the classical thermodynamics is the divw term and w is called the
interstitial work flux representing spacial interactions of longer range. They have proved
that for a given Helmholtz free energy u(p, 0. d), the following forms of w and T

w = PP~t2d + w,
(4.2) k'+

T = (_p 2i.,p + pd •,Vd + p2V7 • 'd)I - pd ) W•d

are compatible with (..1d). Here. pW,•(p, 0, 0) is the pressure and * is the "'static" portion
of the interstitial work flux w. They have shown that if the material possesses a center of
symmetry, */€ = 0. In what follows, we consider the materials which posess the center of
symmetry. They also have observed that the classical forms of viscosity and conductivity
tensors are compatible.
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In this note we state a result concerning the existence of a unique local smooth solution
in the two-dimensional isothermal motion of the Korteweg type materials where the viscous
effect is also included. The 3-dimensional case can be discussed similarly. In what follows,
we state the assumptions on the Helmholtz free energy and derive the system that we shall
discuss. We assume that the Helmholtz free energy is given by

(4.3) 'k=F(p) + + p'),

where F is a smooth function of p and v is a positive constant. This choice is to make the
terms appearing in (4.4) as simple as possible, yet to reflect the effect of the higher order
terms of p. 1

1
With the choice the Helmholtz free energy given in (4.3) and with A = -ýji, the system

then becomes
pt + (p,,)• + (pv)y = 0,

(4.4) (pu)t + (pu 2 )x + (puv), = (Tll)O + (T 12 )•,

(pv)t + (puv)x + (pv2 )1 = (T21). + (T22)y,

where u and v are the x and y component of velocity and

T T11  T12
(45)T 21  T22  2

=ýV I PZ P + V,

(4.6) p = p2 F'(p),

and V V1 1V V1 2

(4.7) V21 K2

a-{(gradu) -t- (gradu)" - jýdivu)j}.

Here, I is the unit rank-two tensor and a superscript T denotes the transpose of a tensor.
Since we discuss the existence of a local solution, we do not need the monotonicity of the
pressure on p. Further computation simplifies the divT term

(4.8) divT = -Vp + vpV7(Ap) + divV.

We discuss the local existence for the pure initial value problem of (4.4) with the initial
data given by
(4.9) (p,u,v)(X,y,O) = (PO, U., Vo)(X,y).

1Another reasonable choice is to change the last term in (4.3) with V(P2 + p2 ). Although this choice
may be physically more realistic, mathematically it is more cumbersome to handle. For example, the
expression for divT is very complicated. Therefore, we do not discuss this case (See (4.8)).
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We assume that the initial data satisfy

(4.10) (Po - ffo, uo, vo) E Hk(R 2), o 6 > 0,

where k > 4 and )5-a > 0 is a positive constant. Denote by I" = " , the L2 norm and
by 1." the k-th order Sobolev norm. Set

IWJT 0<t< ~t 12 + IV t12)+ (iivu~tnr1 + IIVV(t)112)d
O<t<T

and
jW1J1 = &lW~I12,

where w = (p, u, v). The main result is stated as follows.

Theorem 4.1 For any initial data (po, uo, vo) such that po > S > 0 and (po - 5o, uo, vo) E
Hk(R 2) (k > 4) where 6o > 0 is a constant, there exists a T > 0 such that in t E
[0, T], the Cauchy problem (4.4), (4.9) has a unique solution (p, u, u) such that p - o0 E
L00([0, TI; Hk+I(R 2 )) and (u, v) E L'([O. T]; Hk(R 2 )) and

iIW11 < CIwol! -+ 1Ipoll1+.

Since the linearized problem of (4.4), (4.9) is not of any classical type, the existence of
solutions is not known even for the linearzed problem. We prove the existence of solutions
for the linearized problem by establishing an energy estimate for the dual problem and
then using the dual argument.
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Singular Value Computation on a Fat-Tree Network
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Abstract

The Singular Value Decomposition (SVD) is a matrix tool that plays a critical 'ole in many

applications: for example. in signal processing. it is often necessary to calculate the SVD in real
time. We present here a new technique for computing the SVD on a parallel architecture whose
processors are connected via a fat-tree. We tested our idea on the Connection Machine CM-5. and
achieved efficiency up to 40(7( even for moderately sized matrices.

KEYWORDS. Singular value decomposition. parallel Jacobi algorithm, fat-tree. CNM-5.
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1 Introduction

Let A be a real m x n matrix. Its singular value decomposition (SVD) is given by

A = UTVT

where U and V are respectively m x m and n x n orthogonal matrices and E is an n7 x n diagonal
matrix. The best approach to parallel SVD computation is apparently one of the Jacobi type: see.
e.g.. [1], [2]. [4]. [5]. [7]. [11]. [12]. In this paper. we will discuss the efficient implementation of a
Jacobi method on a parallel computer with a fat-tree interconnection network. We will propose a
new Jacobi ordering for a fat-tree and analyze its behavior both theoretically and experimentally
(on a Connection Machine CM-5).

This paper is organized as follows. In the next two subsections, we present the fat-tree ar-
chitecture and Jacobi algorithm. Section 2 introduces a new fat-tree ordering, and provides some
kernel programs. We analyze communication costs on a fat-tree network in Section 3. and discuss
implementation results on the CM-5 in Section 4.

1.1 Fat-Tree Architecture

The fat-tree was introduced by Leiserson [10] as a novel approach to interconnect the processors of
a general-purpose parallel supercomputer. This communication structure can also be seen in the
distributed computing environment, such as a network of workstations.

The routing network of the Connection Machine CM-5 [14] is based on the fat-tree. This parallel
machine consists of up to 544 (= 512 + 32) nodes for the model at the Army High Performance
Computing Research Center (AHPCRC) at the University of Minnesota. ane 32 nodes at the
Northeast Parallel Architeclures Center (NPAC) at Syracuse University. Each node of the CM-5
is a SPARC chip which runs at 32 MHz and delivers 22 Mips and 5 Mflops. There is a 64 Kbyte
instruction and data cache and a 16 Mbyte memory in each node. All the nodes are synchronized.
In October of t992. two vector units will be installed in each processing node: each vector unit
is capable of 64 Mflops peak and 40 .flops sustained [9]. The control and data networks are
connected via a skinnv fat-tree structure. By skinny, we mean that the bandwidth does not
increase proportionately to the number of nodes: in particular. the bandwidth is 20.lbyte/sec per
node in a group of four processors. 10 Mbyte/sec per node in a group of sixteen. and 5Mbyte/sec
overall. So data contention may severely degrade performance when all nodes need to access a large
set of data from other nodes through the top level of the tree.

1.2 Jacobi Algorithm

The one-sided Jacobi method [8] generates an orthogonal matrix V such that the columns of the
matrix 1I'. given by It' = .41'. are mutually orthogonal. The matrix V can he generated by a
sequence of plane rotations 1 V......where each 1k() is an identity matrix except for four
ntries:f) cos= . , -sin O, (k) = sin and() = cos0. where (i.j) represents the

index pair of the columns of .4 that V(", orthogonalizes. The SVD computation requires O(ntn 2 )
operations for an m x n matrix .4. For a limited number of processors. i.e.. up to n/2 processors.
an efficient way is to configure them as a linear array along the horizontal dimension. Columns can

he distributed either in blocks or in a wraparound fashion. Note from the above derivation that
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each column-pair can be orthogonalized independently, so that we may transform up to p pairs
concurrently, where p denotes the number of processors. This method was used for computing the
SVD on special machines. e.g.. parallel computers such as the flliac IV [11] and vector processors
such as the CYBER 205 [3]. The one-sided Jacobi method is composed of these major steps:

1. Compute the norm of each column.

2. Compute plane rotations to orthogonalize paired columns.

3. Apply the plane rotations to update the columns and the column norms.

4. Permute the columns in a pre-chosen order to generate the next column pairs. and repeat the
process from step 2.

If the column pairs are distributed to different processors. then step 4 requires communication.
In the case of a two-dimensional niesh (as in the ILLIAC IV). each column is itself distributed
among different processors and step 3 requires that the iotation parameters be transmitted to all
the processors containing each given column pair. In the case of a one-dimensionzl array. each
column pair is stored entirely in one processor and significant speedup is possible if vector units
are present within each processor.

In this paper. we use the one-dimensionai array, with each processor storing two blocks of
columns. That is. we use a block Jacobi algorithm, in which the column blocks are circulated
according to a given ordering to be defined, and the cYclic-by-rows ordering [6] is used within each
block.

2 New SVD Algorithm

In the past, when thl hypercube interconnection topology was in o.)gue. several Jacobi ordering
schemes were proposed [1]. [4]. [7] to utilize the hypercube structure. Here. for a one-dimensional
array of processors with no wraparound. a chess-tournament ordering [2] may be chosen because
it does not waste Processing power or ineniory space. However. comnmulnication requires a two-way
Transmission of columns between adjacent processors. An alternative is a ring ordering [4] which
uses only one-way transmission. but it requires a wraparound connection. To develop an ideal
ordering for a fat-tree. we aim to minimize the total path length b - using the extra bandwidth of
a fat-tree.

2.1 Fat-Tree Ordering

It is easiest to describe this ordering by an example. In Figure 1 we show the case for sixteen
columns and eight p)rocessors. For pedagogic reasons. we use a base 8 nuniberiag; of the indices
and so A=,. B=9. H= I5. The XOR (exclusive-or) column is the binary NXOR -)f the column
indices: at each step. the XOR value of each index pair is the same. and from one step "o the next
this quantit *y follows the Gray code. The cost-to-this-step coluimn denotes the maxiniui innumber
of It,%(,ls li) the t'ee the messages must travel to reach their destiinations from the previous step.
In general. if there are p processors and two columns per processor, then a sweep requires 2p - 2
steps. We save one step per sweep tecause the last step of sweep i can be included as the first step
for sweepl) I + 1.
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Cost to
Step Ordering of Index Pairs XOR This Step

0. (O1)(23)(45)(67)(AB)CCD)(EF)(GH) 0001 NA
Forward Sweep

1. (03)(12)(47)(56)(AD)(BC)(EH)(FG) 0011 1
2. (02)(13)(46)(57)(AC)(BD)(EG)(FH) 0010 1
3. (o6)(17)(24) :Sý)(AG)(BH)(CE)(.DF) 0110 2
4. (07)(16)(25)(34)(AH)(BG)(CF)(DE) 0111 1
.5. (o5)(14)(27)(36)(AF)(BE)(CH)(DG) 0101 2
6. (04)(lS) (26) (37) (AE) (BF) (CG)(DH) 0100 1
7. (OE)C1F)(2G)(3H)(4A)(SB)(6C)(7D) 1100 3
S. (OF)(1E)(2H)(3G)(4B)(SA)(6D)(7C) 1101 1
9. (OH)(IG)(2F)(3E)(4D)CSC)(6B)(7A) 1111 2
10. (OG)(1H)(2E)C3F)(4C)(SD)(6A)(7B) 1110 1
11. (OC)(ID)(2A)(3B)(4G)(Sli)(6E)(7F) 1010 3
12. (OD)(1C)(2B)(3A)(4H)(SG)(6F)(7E) 1011 1
13. (OB)(lA)(2D)(3C)(4F)(5E)(6H)(7G) 1001. 2
14. (OA)(lB)(2C)(3D)(4E)(SF)(6G)(7H) 1000 1

Backward Sweep
13. (OB)(1A)(2D)(3C)(4F)(SE)(6H)(7G) 1001 1
12. (OD)(1C)(2B)(3A)(4H)(SG)(6F)(7E) 1011 2
11. COC)(ID)(2A)(3B)(4G)(5H)(6E)(7F) 1010 1
10. (OG)(1H)(2E)(3F)(4C)(5D)(6A)(7B) 1110 3
9. (OH)(lG)(2F)(3E)(4D)(5C)(6B)(7A) 1111 1
S. (OF)(lE)(2H)(3G)(4B)(SA)(6D)(7C) 1101 2

7. (OE)(1F)(2G)CSH)C4A)(5B)(6C)(7D) 1100 1
6. (04)(15)(26)(37)(AE)(BF)(CG)(DH) 0100 3
5. (3S5)(14)(27)(36)(AF)(BE)(CH)(DG) 0101 1
4. (07)(16)(25)(34)(AH)(BG)(CF)(DE) 0111 2
3. (06)(17)(24)(35)(AG)(BH)(CE)(DF) 0110 1
2. C02)(13)(46)(57)(AC)(BD)(EG)(FH) 0010 2
1. (03)(12)(47)(56)(AD)(BC)(EII)(FG) 0011 1
0. (01)(23)(45)(67)(AB)(CD)(EF)(GH) 0001 1

Forwiard Sweep
1. (03)(12)(47)(56)(AD)(BC)(EH)(FG) 0011 1

Figure 1. Fat-tree Ordering based on the Gray code
(eight processors and s.ixteen columins).

2.2 Kernel Programs

ro see how to write a simpi)k, iode programn 1o generate the fat-tree ordering, we ~iie the following
observatiowms from the exam ple in Figure 1. To shimlpify the presentationl. we consider only the
forward sweep. At each step. each processor muist commnunicate with a rentote processor whose
label differs in one bit. Thme basis for our, kernel pr-esented here is to comipute a miask such that the
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exclusive-or of the mask with the current processor label yields the remote processor label, When
using the Gray code. this mask can be computed using only the step number - it is independent of
the processor label.

We also use the following observations. First, we use the fact that the XOR's follow the Gray
code. Second, we observe that during thp second half of the forward sweep (steps 7-14). the lower
half of the columns (numbers 0 .... 7 in Figure 1) remain fixed in the processor with the saine
number. Hence the location of the remaining columns is fixed entirely by the Gray code. Third.
we observe that the first half of the steps (steps 0-6) amount to doing a Gray code fat-tree ordering
on each half of the processor array separately. The only remaining step is the transition from the
first half to the second half (step 6 to step 7). Hence we can define the ordering for these steps
recursively from the smaller cases.

We can summarize the steps for the forward sweep in the following procedure. in a pseudo-
MATLAB notation assuning for the sake of simplicity of the presentation that the 'vin(Is do not
block.

% Node program for processor ProcNo for one forwara sweeD using an array of
%. NProcs processors. Assume Column(1) and Column(2) are the head and tail
% columns, respectively, in the local memory.

OrthogonalizeIndividualColumnBlocks %, (within each block);

for StepNo = 1:2*NProcs-2,

Pairwise_ OrthogonalizeColumnBloc.ks;

7.7. for each processor, figure where the data goes to and send it.

[Mask,ColumnSwitch] = MakeMask(StepNo,ProcNo,NProcs);
RemoteProci'o = XOR(ProcNo,Mask);

Send Column(2) to remote processor RemoteProcNo;
if ColumnSwitch == rotate,

Column(2) = Column(1);
Column(1) = receive.from(RemoteProcNo);

else
Column(2) = receive-from(RemoteProcNo);

end;

end;
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function [Mask,ColumnSwitch]=MakeMask(StepNo,ProcNo,NoProcs);

.ColumnSwitch indicates which column of the pair is to be sent/received.

SMask is the XOR Mask so that RemoteProcNo = XOR(ProcNo,Mask).
7 The Mask is computed independent of the processor label ProcNo.

% Handle first 2 steps as speci;d cases to start recursion
if StepNo <= 2,

Mask=1;
ColumnSwitch = tail;
if rem(ProcNo,2) == I & StepNo == 1, ColumnSwitch = rotate; end;

% First half of sweep: pretend this is a separate fat tre, sweep on each
% half of the processor array.
else if StepNo < NoProcs-1,

[Mask,ColumnSwitchJ = MakeMask(StepNo,rem(ProcNo,NoProcs/2),NoProcs/2);

SMiddle of sweep: here is first exchange through top of tree.
else if StepNo == NoProcs-1,

Mask = NoProcs/2;

ColumnSwitch = tail;
if ProcNo >= NoProcs/2, ColumnSwitch = rotate; end;

% Last half of sweep: only tail columns move, figure Mask using Gray codes.
else if StepNo > NoProcs-1,

Mask = xor(gray(StepNo),gray(StepNo+l));
ColumnSwitch = tail;

end;

2.3 Test of Convergence

For a fat-tree ordering. any consecutive 2p-2 (or even 21- U) steps may not constitute one sweep.
WeP must complete a sweep. either forward or backward. to ensure that all (olumn pairs have been
orthogoiialized. The convergence test is simple. W\e mitaitain a one-bit cotsnteir ii everiy processol.
The counter is reset at the beginning of every sweep. anzd is set whenever a column pairl needs to
be orthogonalized. At t he end of the sweep. a global or operation is performed and convergence is
achieved if no bit has been set.
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3 Analysis on a Binary Fat-Tree Network

We consider a binary fat-tree with p processors, and assume that the communication time from

one processor to another is determined by the number of links a message has to traverse and the

capacity of these links. Our assumption is supported by experimental results reported in [13].

Define a channel to be the communication link between any two adjacent nodes: here a node can

be a processor or an internal switching element. The capacity of a channel equals the number of

parallel wires in the channel. and thus the maximum number of simultaneous bit-serial messages

it can support [10]. Denote the capacity of the channels at the bottom level by -1. Label the levels
from bottom up as level 1.2 .... so that the capacity of the channels at level I is given by 21-11,.

Let us ignore start-up and latency costs. Within a single problem, all the messages have the same

size and thus we measure the cost of multiple message transmission using path length.

For the ring ordering, at each step a message always goes through the top level and the maximum

path length equals 21ogp (unless otherwise stated, we use base 2 logarithms). Since there is at

most one message at each channel. congestion never occurs and it takes 2p - I steps to complete
one sweep. The total pat hi length equals (4 p - 2) logp.

The fat-tree ordering does not cause congestion oil a fat-tree network. Hence it suffices to coulnt

the number of times that each level is used. Denote that count by c( p.I). Consider the forward

sweep. We see froni Figure I that with p = 1 processors. the top level is used in two transition
steps. the middle level in six steps and the bottom in fourteen steps. The first six steps correspond

to the fat-tree ordering for the first four processors. and also for the second four processors. In the
general case of p processors. there are 2p - 2 steps using log p levels, of which the first p - 2 steps

amount to the ordering for p/2 processors. When the number of processors doubles to 2p. we add

a new top level and the first 2p - 2 steps correspond exactly to the p processor ordering. There are

an extra 2p steps. of which two use the new top level, four use the next level (the old top level).

eight use the following level. etc. Formally. we get the recurrence

c(2p.) = c(p.1) + 4(p/21) for I 1 ..... logp,

starting with c(p. logp) = 2 and c(p.1) = 0 for / > logp. Therefore. r(p.l) = 4p/2" - 2. and the

total path lengfthl is ogiven by

log j)
2 •3 p.1) = 2[(2p- 2 ) +±(p- 2)-... + 14 + 6 +21 = 8p- 4logp- S.

1=1

For a large p. the path Itegthi ratio of the two orderings grows like log p/2. a vwry attractive result
for our new ordering.
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4 Connection Machine CM-5

Although the CM-5 network is a 4-way tree, the analysis on 2-way trees is applicable. We take
a 4-way tree and expand every interior node into a binary tree consisting of that node with two
new children each connected to two of the four former children. The number of levels as well as
the path length are doubled. However. the CM-5 is skinny and the capacity only doubles at every
level. Hence it becomes a skinny 2-way tree in which the capacity goes up by v\/ at each level.

To simplify our analysis, we concentrate on the 32-processor model. So p = 32 and there are
three tree levels because rlog 4 pI = 3. The dominating communication cost for the CM-5 is the
overhead time that is spent on address calculation, buffer space management. and so on. Let t•,
and tef represent the cost of such overhead in each step for the ring and the fat-tree ordering.
respectively. Let tcf be the overhead cost for resolving contention in the channels of the C.M-5
network when applying the fat-tree ordering, and let t, be the time for traversing an edge in the
network. We note that t, < tcf < tUh. where Uoh E {fto.¼t}. t,1 ; to. and t, E (tuh/lO3. tvh/102).
The overheads t o, and tof depend on the data size and are of equal magnitude.

We proceed to compute the coefficient for t,. which we assume to equal the number of messages
that traverse the channels in one sweep. For the ring ordering, there is no congestion in the
networks. So the coefficient for t, is 2. 63. 3 (=378). and the total cost equals 63 t:, + 378 t,. For
the fat-tree ordering, we observe that level 1 is visited 62 times, level 2 fourteen times, and level 3
two times. We model the resolution of the contention by sending messages in batches. Messages
through level 2 must be sent in two batches and messages through level 3 in four batches, in order
to avoid contention. Hence we account for the thinness of the CM-5 network by assigning a weight
of two to level 2 and a weight of four to level 3. The total path length is 2(62 + 2 14 + 4 -2) = 196
and thp total cost equals 62 ty + 196 1, 4 ! f . Thus. on the CM-5 the fat-tree ordering may not
outperform the ring ordering because of the extra cost associated with message contention.

4.1 Experimental Results

In Table 1 we present implementation results on a 32-node CMI-5 for random n x n matrices with
n ranging from 64 to 1024. The program was written in Fortran and each experiment repeated tell
times. \We measured the overall and computation ( by disabling communication) costs for one sweep.
and ('sti imated the coilniitilicatioln cost l)y sibtractinog the latter froom the former. Our results show
that. despite the message coitgestion that it causes on the ('NI-S. the fat-tree ordering gets more
competitive as n grows. justifying our effort to minimize the total message path length (see also
[13]). The mnflops (million floating-point operations per second) figures in Table 2 are computed
based on the count that .nt flops are required for one sweep. We conjecture that the compute
performance deteriorates when n gets beyond 512 because the cache is no longer large enough to
hold the huge column blocks. Nonetheless. our implementation results shows how. as the message
size increases (hence t, increases [13]). the fat-tree ordering quickly becomes competitive.
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_ 6__....4 128 256 512 1024
Overall Ring 7.595e-2 3.229e-' 2.628 1.794eI .380e 2

Fat-tree 8.134e- 3 2.237 .0795e 1.361e 2

Compute Ring 3.013e-1 2.320e-1 1.871 1.493 e' '0e

Fat-tree 3.436e--' 2.420e- 1  1.878 1.493eI 1.310e 2

Communicate Ring 4.582e- 2 0.909e- 1  0.757 3.010 7.110
Fat-tree 1_4.698e-' 1 .061e-'1 0.359 3.020 5.140

Table 1. CPU Time (seconds) of Ring and Fat-Tree Orderings

n 64 128 256 512 1024

Overall Ring 27.61 51.96 51.07 59.85 62.25
Fat-tree 25.78 48.20 60.00 59.82 63.11

Compute Ring 69.60 72.32 71.74 71.92 6.5.62

Fat-tree 61.03 69.33 71.47 71.92 65.57

Table 2. Mflops Rates of Ring and Fat-Tree Orderings
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abstract

We introduce a framework for exploring array detection problems in a reduced dimensional
space by exploiting the theory of invariance in hypothesis testing. This involves calculating a
low dimensional basis set of functions called the maximal invariant, the statistics of which are
often tractable to obtain, thereby making analysis feasible and facilitating the search for tests
with some optimality property. Using this approach, we obtain a locally most powerful test for
the unstructured covariance case and show that the Kelly and AMF detectors form an algebraic
span for any invariant detector. Applying the same framework to structured covariance matrices,
we gain some insights and propose several new detectors which are shown to perform as well or
better than existing detectors.1

Introduction

The problem of detecting a signal vector of known direction but unknown strength in Gaussian
noise whose covariance matrix is unknown has received much. attention lately. In [7], Reed et al
used the sample covariance estimate from secondary (signal free) data vectors to derive a weight
vector for use in an adaptive matched filter (AMF) detector. Kelly[3] used the Generalized
Likelihood Ratio (GLR) procedure to derive a constant false alarm rate (CFAR) test. Both
methods assume that the covariance matrix is completely unknown (unstructured). In many
applications, however, the array geometry and partial information of the noise environment
(number of interferers, rough bearing estimates etc.) impose a structure on the covariance
matrix. It has been shown in [1] and [4] that the use of structured covariance estimates results
in a significant improvement in performance in terms of gain in PD and reduction in the number
of secondary data vectors required.

In this research, we introduce a framework for studying the optimality properties of these
tests. We consider the following structure for the covariance matrix:

R = %,BI" + AR0  (1)

where R(N x N) is the covariance matrix, T(N x d) spans a rank-d subspace and R0 is a known
covariance matrix. For this research, we assume that %P is known while B and A are not. This
structure not only corresponds to the case of a low rank interference component in a dominant
subspace (which frequently arises in narrow-band processing when the noise has an interference
component due to a small number of sources superimposed on the receiver noise which is usually
white); but also as a special case reduces to the unstructured matrix when d equals N. We shall
therefore work with this model to obtain general results which can then be applied to specific
instances.

1An earlier version of this material was presented at the IEEE ASSP confuence, March 1992, San Fransisco,
CA
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Another case is the block diagonal form for the covariance which may be used to model a
non-stationary environment.

Unfortunately, it turns out that for these covariance structures, with the signal bearing and
waveform known, it becomes intractable to use the GLR procedure to obtain a test statistic.

Consequently, we approach signal detection from the viewpoint of the general theory of
hypotheses testing. We model the signal strength p as deterministic-unknown. This along
with the unknown covariance matrix become the parameters describing the distribution of the
observed data vectors. The problem of signal detection becomes one of choosing between two
disjoint parameter sets based on the observations. Thus we have the following hypothesis testing
problem:
Given

XNZL - Kl(liae{', R ® 1) (2)

where the columns of X are independent data vectors each normally distributed with covariance
R as in (1), a is the signal vector (known), possibly present only in the first column and p is its
strength (unknown).
Test
Ho : p = 0 versus Hi : 1 p 0

Note that the covariance is a nuisance parameter which should not affect the decision statis-
tic. This motivates us to reduce the problem as follows. Transformations on the data that
induce transformations on the parameters to which the parameter sets are invariant leave the
decision problem unchanged. Therefore, the decision statistic should also be invariant to all
such transformations. More concretely, this can be formulated as follows:

Let X be the data characterized by the probability distribution P9, 0 E Q2 and let g be a
1 : 1 onto transformation on the sample space such that gX is distributed as Pe,, 01 E Q. Thib
transformation thereby induces a transformation j on the parameter space. It is shown in [5]
that the set of all transformations g, such that the corresponding induced transformation # is a
1 : 1 map of S1 onto itself, form a group.

The decision problem HO : 0 E Q0 vs H I : 9 E i 1
is invariant to the group of transformations, G, if 9f~i = l, i = 0, 1 for all g E G. In that case
we require the decision statistic to be invariant to all transformations in G.

This principle of invariance (Lehmann[5]) greatly reduces the class of detectors to be con-
sidered and frequently, it may become possible to find a uniformly most powerful test within
this smaller invariant class (UMPI), even though no general UMP test may exist. Often, the
GLR procedure leads to such a test. In our case, since the GLR is unavailable, we proceed by
deriving the group of transformations that leave the problem invariant. From this, we obtain
the maximal invariant, which is the algebraic basis for the largest set of independent functions
of the data that are invariant to the transformations. These functions separate the sample space
into orbits or invariant subsets. Thus, M(X) is a maximal invariant iff

M(X) = M(g(X)),Vg E G (3)

M(X1 ) = M(Xg)(. -\X = g(. 2 ) for some g E G

It is shown in [53 that all invariant test statistics are functions of the maximal invariant, whose
distribution depends on a reduced parameter set (this may eliminate the nuisance parameters
from the problem, which is a very desirable feature). The maximal invariant turns out to be a
small set and it is feasible to come up with a reasonable test statistic.
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A Maximal Invariant Framework

To begin, consider as a special case of (1) the following structure

R 0 a R 0O (4)

0 RO 2I(N-d)L 
(

This is completely equivalent to equation (1) with R,/, = B + cr2Id, since it can be obtained
by a known linear transformation on the data. Again, for the same reason, we can assume the
following form for the signal vector, a, and partition the data matrix accordingly:

[a X11 X12

a- X21 X22  (5)
a2  X31 X32
0 X 4 1 X4 2

where xl is 1 X 1, X12 is 1 x (L - 1), X21 is (d - 1) x 1, x31 is I x 1 and x41 is (N - d) x 1

We can represent this matrix as a length-NL vector

Xg21

Ve = 2 (6)
Z31
X41

vec (X12)J
where vec(A) - [AH AH ... AH]H for A = [A, 1  A2  AN]

This is distributed as a Gaussian vector with mean pa and covariance dia9( R&,&IL a2I(N-d)L)
where ® denotes the Kronecker product.

This decision problem is invariant to all transformations which preserve the Gaussian r-i're
of the distribution, the mean vector to a scale factor and the structure of the covariance ma~rix.
The largest group of such linear transformations are given by T(x) = Gx where

10
oo r , 0.U, 7

0 u1

where UJ(L - 1) and U2((N - d)L - 1) are unitary matrices, OH is (1 x L - 1) and r is
(N - I x L - 1).

We show in [8] that the maximal invariant to this group of transformations is given by

-11  - X12zX2 2(x22z22) 1 X21 12
X21- X2"(X 2 2 X2')1IX2 2 )XHI2

= H(X22X")I2M2 =X21 522

155



Xli31112
M3 I 11-32 112 + 11--41 112 + 11 X4 7,

M4 = - X12 X2(X 2 2 X2)1X21 (8)
X3 1

A corresponding maximal invariant in the parameter set is given by

01= IA1t2jal 12 (Rv,)fl1

02 = (P )1(9)

Thus we have greatly reduced the dimensionality of the problem. We obtain the density
function for the maximal invariant [8] which is now parameterized by 01 and 02 above. We show
there that no UMP test exists for this problem. Further, since 02 is a free parameter even under
HO, the distribution function of the maximal invariant is not completely specified thereunder and
hence an invariant decision statistic will, in general, not have the CFAR property. Approximate
CFARness is all one can hope for.

For the unstructured case, the maximal invariant reduces even further, to m, and m2 and
the corresponding parameter set to a single parameter 01 (which is the SNR). The distribution
function under HO only depends on the dimension of the data set, and so in this case, any
invariant decision rule will be CEAR. Again, in this case no UMP test exists. However,. in
many applications the performance is critical only for low SNR and a locally most powerful
invariant test(LMPI) in the limit of zero SNR is of interest. Since, the parameter space is one
dimensional, it becomes feasible to obtain the LMPI test statistic following the theory in [6].
The LMPI decision rule in the limit of 0o is given by:

6fe x) H,0>" (10)

where f is the density function of x with parameter 0.
In [8) we derive the following density function for m, and M2 :

1 + n)-NM NV-2 *I
f(,n1 ,M 2) = k0 .+M 2.. e.e ,+Nm-2

(1 + mI + m 2 )L-,V

L-N 0 1m1 )I (11)

Sk2((0 +m 2 )(l+mI +rM2)k =O

where k, - L-l! and k 2  L-N!N-2!L-N- 11 -L'-N-k!kl

Applying the rule in (10), we obtain the following LMPI test:

(L- N)tA- H1  (12)
(l + m2)(tK + l) H<

where t K = ml 1(1 + ra 2 ) is the Kelly statistic.
The probability of false alarm for this test is given by

PFA = (I T )LI( L - N )L-IV (13)
L - N L-- N• Il
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for r > 0. The detection probability is calculated numerically as a finite sum of simple integrals.
Preliminary comparisons with the Kelly statistic indicate a slightly better performance at very
low SNR (a gain of 0.1 dB for N = 4,L = 9,pfa = .1 at -5dB SNR) at the expense of a
degradation in the higher SNR region (0.3dB loss at 10dB SNR). Further simulations are in
progress.

Finally, we note that m, is exactly the AMF statistic and the Kelly statistic is Mn/(1 + M 2 ).

Thus these two form an equivalent basis set to mn and M 2 . This implies that they form an
algebraic basis for all invariant detectors and in searching for viable detectors, it is sufficient to
look at compositions of them. It is not necessary to explore alternative ways of projecting down
the initial raw high-dimensional data.

Detectors for subspace covariance structures

For the structure in ( 4), the UMPI test does not exist and the notion of LMPI test is not directly
applicable either. However based on considerations of the maximum likelihood estimates of the
covariance from the signal free data, we obtain an invariant test which reduces to the Kelly
statistic for the unstructured case:

11aH-l x11 2 H, (14)

Where

S=diag ((Ld)( 1+-2) X22] [X12 X ) (15)

(N-d)L-1

with the partitioning of the data and the signal vector as in (5) This is shown to be approximately
CFAR and the simulation results in [8] show that it outperforms the Kelly test applied to the
data truncated to the span of the interference and signal spaces. In fact, it does nearly as well
as the clairvoyant colored noise matched filter whose weights are based on the true covariance
and which therefore bounds the best achievable performance.

In some cases, the noise level is known to be of the same order of magnitude in each of the
subspaces. This situation may arise for block diagonal covariance matrices modelling certain
kinds of non-stationary environments. In this case, a CFAR test is shown to perform almost as
well as the test proposed by Kelly in [2].

Conclusion and Comments

Detection in an array environment involves projecting down the multivariate data to a scalar
statistic. Since any reasonable statistic must satisfy the invariance criterion, the maximal in-
variant set specifies all the functions one need consider in devising the detector. Since this set is
often small, it is feasible to do analysis and search for a detector with some optimality property
with the confidence that the search is over the whole class of reasonable detectors. This frame-
work provides an alternate route to conventional methods like the GLRT for arriving at decision
rules and further enables the study of their optimality properties. Thus, for the unstructured
covariance case studied by Kelly and others, we show that the Kelly and the AMF statistics form
a maximal invariant set. Further, we show that a UMPI does not exist and obtain a LMPI test
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around 0 SNR. The Kelly detector is seen to perform nearly as well which is a good endorsement
for its use. For the structured covariance case where the GLRT breaks down, we again obtain a
small invariant set whose statistics can be analyzed. For this case, the UMP test does not exist.
We propose several new tests and show via simulation that they are equivalent or better than
existing ones.
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Abstract

With a constant need to solve scientific and engineering problems of ever
growing complexity, there is a corresponding need for software tools that assist
in generating solutions with minimal user involvement. Parallel cumputation is
becoming indispensable in solving the large-scale problems that arise in science
and engineering applications. Adaptivity is at the center of efficient methods for
solving partial differential equations often used in such applications. Yet 'the use
of parallel computation and adaptive techniques is limited by the high cost of
developing the needed software. To overcome this difficulty, we advocate a com-
prehensive approach to the development of scalable architecture-independent
software for adaptive solutions of partial differential equations.

Our approach is based on program decomposition, parallel computation
synthesis and run-time support for adaptive computations. Parallel program
decomposition is guided by the source program annotations provided by the
usei. A family of annotation languages has been designed for this purpose.
The synthesis of parallel application is based on configurations that describe
overall computation and interaction of its components. Run-time support is re-
sponsible for redistributing data and computation during program execution in
response to changing computational needs of different subregions during ,tdap-
tive solution. Adaptive finite difference and finite element procedures tuned to
a specific size and type of parallel architecture will be synthesized from compo-

nents of a decomposed source programs. In this paper, we discuss annotations
and configurations suitable for parallel programs written in FORTRAN or in
the functional parallel programming language called EPL.

"This work was partially supported by National Science Foundation under grants CCR-8920694
and( CDA-8805910
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1 Introduction

Several problems listed as "grand challenges" of the Federal High-Performance Com-
puting Program [16] involve' the solution of complex multi-dimensional steady and
transient partial differential equations. As the mathematical models include more
realistic effects, all of these problems exceed the capabilities of current computer sys-
tems. We believe, as others do, that computer performance in the needed range of
teraflops can be attained only through massive parallelism. However, raw computing
power aline is not sufficient to solve a complex problem. We must ensure that (i)
adequate mathematical models are used, (ii) reliable numerical methods are employed
to approximate these models, (iii) accurate parallel implementations of the methods
are executed, (iv) results are within prescribed numerical accuracy, and (v) parallel
impiementations use the available computaLioxal power efficiently.

Adaptivity, with its associated error estimation and shrewd use of computation
only in regions where accuracy requirements are not satisfied, provides the needed
numerical reliability and efficiency. Adaptive solutions often converge at rates that
are much higher than those obtained by conventional methods using a single grid. At
the same time, adaptive methods are challenging from the point of view of program-
ming complexity because they use sophisticated data structures, recursion, run-time
domain and method selection, etc. Parallelism adds to this challenge because software
development for parallel architectures is more complex than for sequential machines
due to the increased complexity of assuring parallel program correctness and effi-
ciency. Parallel program correctness requires the results to be independent of the
number and speed of the processors. This scalability requirement can be satisfied
only if the parallel tasks are independent of each other or properly synchronized
when a dependence exists. Synchronization design and verification are the major
source of difficulty in assessing parallel program correctness. Different categories of
parallel architectures have led to a proliferation of dialects of standard computer
languages. Varying parallel programming primitives for different parallel language
dialects greatly limits parallel software portability. Clearly, the large efforts required
to develop and implement parallel adaptive solution techniques have hampered their
widespread application by scientists and engineers. In addition, poor portability of
parallel programs has resulted in duplication of effort and has limited the use of
developed systems.

The aims of scientific computation are to further understanding of natural phe-
nomena by implementing and executing mathematical models when experiments
would be impractical and/or to supplement experiments when direct measurements
are n ot possible. Large-scale computation requiires high performaace parallel archi-
tectures and efficient program implementation to attain acceptable execution times.
To facilitate scientific parallel progi am development, there is a need for software tools
that will support efficiency as well "

scalability - the same mathematical models and numerical algorithms are often used
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in computations with different accuracy and size and executed with a variable
number of processors; hence, the cost of the algorithms used in the software
tools should increase slowly with the increase in the number of processors used
(e.g. the cost function is poly-logarithmic in the number of processors used),

reusability - basic numerical algorithms frequently appear in different models and
different computations,

extensibility - interactive development and stepwise refinement of mathematical
models describes an implementation of the new models in terms of changes to
the old model.

Design methodology of software tools with the above properties is currenitly a research
goal of great importance. Our approach to such design methodology is based on de-
composition and scalable synthesis of parallel programs for scientific and engineering
computation. The goal is to enable the users to describe high-level features of a par-
allel computation and to synthesize computation from numerical algorithms, program
fragments., and data structures that are separately implemented. Such decomposition
and synthesis can support (i) parallel task formulation and allocation. (ii) data dis-
tribution, (iii) run-tipre optimization, and (iv) rapid prototyping of different parallel
implementations.

SoO
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The summary view of our approach is given in Figure 1. Program components
are created by annotating source programs in FORTRAN or in the functional paral-
lel programming language EPL [141. FORTRAN programs are transformed into an
equational form before decomposition. The configuration definition guides the syn-
thesis of the components into a parallel computation. The synthesized computation
together with the architecture description is used by the code generator to produce
an object code customized for the target architecture. In the future, we will add a
scalable library and an associated librarian to increase versatility of the system. In
Figure 1, continuous lines describe implemented paths of the system, broken lines
represent paths currently under construction, and dotted lines correspond to paths
at an early stage of investigation.

This papcr is intended as an overview of the research done towards implementing
software tools as envisioned in Figure 1. More technical discussion cni be found
elsewhere [4, 10, 13, 14, 15].

The paper is organized as follows. Annotations and program decomposition are
discussed in Section 2. Program synthesis and the design of the configurator are
presented in Section 3. A dynamic load management strategy for adaptive scientific
computation on SIMD architectures is a topic of Section 4. Finally, conclusions are
outlined in Section 5.

2 Annotations

Annotations provide an efficient way of introducing user's directives for assisting the
compiler in parallelization. To be effective, annotations have to be carefully limited to
a few constructs. They also should preserxe semantics of the original program. In our
approach, annotations are introduced solely to limit the allocation of computations to
processors. Hence, programs decorated with arinotations produce the same results as
unannotated program. Consequently, sequential programs that have manifested their
correctness over many years of usage are good candidates for parallelization through
annotations. By being orthogonal to the program description, annotations support
rapid prototyping of different parallel solutions.

2.1 nnotations in EPL

In EPL, each equation can be annotated with the name of the virtual processor on
which it is to be executed. 'Virtu al processors can be indexed by the equation's
subscripts to identify instances of equations assigne(d to individual virt ual processors.
Equation instances annotated bv the same virtual processor constitute the smallest
granule of parallel computation. An example of the use of EP1L annotations in a
program for the LU decomposition of a matrix is shown in Figure 2.
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int: n; /* array size */
real: Ainf*,*],U[*,*],L[*,*];
subscript: i,;

range.Ain=n; range(2).Ain=n; range.U[j]=j-1; range.L[i]=i;

T[ij]:A[kiJ] = if k==l then Ain[ij]
else if i==Piv[k,k] then A[k-1,Piv[k,klj]-L[i,k-1]*U[k-l,j];

else A[k-1,ij]-L[i,k-1]*U[k-1jj;
Do]: LU,k] = if j==k then 1

else A[k,j,k]/U[k,k];
D[j]: U[k,j] = A[k,Piv[k,k],j];
D[i]: Piv[k,i] = submax(abs(A[ki,k]),i:i>=k);

Figure 2: LU decomposition of a matrix A in EPL

2.2 Annotations in FORTRAN

As in EPL, the notion of a virtual processor has been introduced in annotations of
FORTRAN programs. FORTRAN annotations define blocks of statements associated
with a virtual processor, each virtual processor defining a parallel task. Such tasks
may include synchronization statements, if they encompass disjoint blocks. FOR-
TRAN virtual processors can have subscripts associated with them to indicate repe-
tition. An example of an annotated FORTRAN segment for the LU decomposition
of a matrix is shown Figure :3. The scope of the block extends from the point of
definition in the program to the statement labeled 10. In this example, a vector of
virtual processors main, each associated with a single loop body, is defined. Blocks
can also be nested in each other. Such nesting defines a hierarchy of blocks and helps
in global program optimization.

Each virtual processor produces data, typically used by other virtual processors.
and in turn consumes data produced by others. Performing data-dependence analysis
in a style of PTRAN [12], the annotation processor can find the dependencies local
to each block and data structures produced and consumed by the block. All data

produced by the block are placed in the memory of the corresponding virtual pro-
cessor. The created parallel tasks are ext ended by communication statements needed
to move data. Parallel tasks associated with virtual processors at the bottom of the
block hierarchy are the smallest components used in the program synthesis. An im-
portant step towards an efficient parallelization of FORTRAN programs involves an
equational transformation during wlich the equational equivalent of the program is
generated. The transformed programs obey the single assignment rule and do not
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PARAMETER (N = 50)
REAL A(N,N), TEMP
INTEGER IPIV(N)
DO:: main 10 K = 1, N-I

IPIV(K) = K
DO :: pivot 20 L = K+I, N

20 IF (ABS(A(IPIV(K), K)) .LT. ABS(A(L, K)) IPIV(K) - L
DO:: swap 30 L = K, N

TEMP = A(K, L)
A(K, L) = A(IPIV(K), L)

30 A(IPIV(K), L) = TEMP
DO :: lower 40 L = K+1, N

40 A(L, K) = A(L, K) / A(K, K)
DO :: up-update 10 L = K+1, N

DO 10 M = K+1, N
10 A(M, L) = A(M, L) - A(M, K) * A (K, L)

IPIV(N)=N
STOP
END

Figure 3: LU Decomposition of a matrix A in FORTRAN

contain any control statements [5]. The transformation is done in the following steps:

Reassignments Elimination: The reassigned variables are replaced by:

* vector (additional dimension) - inside loops,

* variants - in "if" branches and basic blocks.

Condition Analysis: Condtitions in the transformed program are analyzed using a
Sup-Inf inequality prover [4] and the Kaufl variable elimination method [8] to
find pairwise equivalent or exclusive conditions.

Variable's Variants Elimination: Variable variants created in equivalent and ex-
clusive conditions are merged into a single variable.

Additional Dimension Elimination: Memory optimization is performed to re-
place entire dimensions by windows of few elements for multidimensional vari-
ables [15].

The transformed FORTRAN program is then compatible with the programs pro-
duced by annotating EPL programs.
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2.3 Annotation Processing

Annotation processing includes:

"* creating parallel tasks defined by annotated fragments of an original program,

"* declaring ports needed to interconnect created tasks into a network,

"* building task communication graph that show data dependences between cre-
ated tasks.

To translate the annotated program into an efficient collection of parallel tasks, it
is necessary to embed a spanning tree into the tasks communication graph [11]. The
following three criteria are used in selecting such an embedding:

" Dimension nesting: If two tasks with different dimensionalities are connected
in the task communication graph, the task with more dimensions should be
located lower in the spanning tree. If, for example, tasks T 'i] [jI were located
above the tasks D Cj] in the spanning tree, the addressing and creation of child
tasks in T would involve executing an if-then statement in all i * j T tasks.

" Range nesting: Whenever possible, tasks sharing the same range should be
clustered together in the spanning tree. Vatiables that share ranges tend to
appear in the same equations. Thus, clustering such variables together decreases
the number of cross-process references to distributed variables.

* Data flow: The total communication cost of the selected spanning tree should
be the smallest among all spanning trees satisfying the above two criteria.

Let G(V,E) be a task communication graph with a set of nodes V (representing
processors) and a set of edges E C V x V representing communication. With each edge
eij E E we will associate the cost c(ei.j) that represents the volume of data being
sent from the processor i to the processor j. With each spanning tree T, we will also
associate the distance dT(ei,j) that defines the minimum number of tree edges that
have to be traversed on the path from task i to task j . The cost of the spanning tree
T can then be defined as:

C(T) = > c(e,,,) * dT(ea,j)
e,, EE

To minimize the total communication cost we need to find a proper cut-tree, which
can be done by solving i V I maximal flow problems. Each maximal flow problem re-
quires 0(1 V I') applications of the Ford-Fulkerson labeling procedure. Hence, finding
the solution takes 0(1 V I') steps.

Trees created from annotations of LU decomposition programs are shown in Figure
4 (for EPL and FORTRAN programs).
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Figure 4: Communication tree for EPL and FORTRAN programs

3 Program Synthesis

In our approach a parallel computation is viewed as a collection of cooperating com-
ponents. The components are defined during the program decomposition. Their
cooperation requires an additional description, called a configuration. The configura-
tion guides the process of synthesis. For example, components of the configuration
that communicate frequently can be synthesized into a single task. The ratio of
physical processors to virtual processors dictates how virtual tasks are to be mapped
onto the target architecture. Usually, different annotations result in different config-
urations and, hence. cause different code to be generated. The user can, therefore.
experiment with various annotations to find the one that results in the most efficient
code. The configurator uses the dependence graph created during configuration anal-
ysis to generate an architecture-independent parallel description which is fed to the
code generator.

Configurations define tasks (and their aggregates) and ports. Statements of the
configuration represent relations between ports in different tasks. Some of this state-
rnens are generated during decomposition (at the subprogram level), others can be
supplied by the user (when the programs are integrated into a computation).

Tasks created dynamically can communicate with ports located at parent, child.
and sibling tasks (each of those tasks is just a copy of the same program or program
fragment, except that a parent task can be arbitrary).

The goal of configuration processing is to establish scheduling constraints for the
overall computation. In the parallel computation. individual process correctness is a
necessary but not sufficient condition foi the correctness of the entire computation. If

1E6



a task has input/output ports that belong to a cycle in the configuration graph, then
this task's input messages are dependent on the output messages. Such dependences
(in addition to dependences imposed by the statements of a task) have to be taken
into account in generating the object program for individual tasks; otherwise, loss of
messages, process blocking, or even a deadlock can arise.

The algorithm for finding external data dependences has been presented in [13]. It
produces configuration dependence file used by the synthesizer and the code generator.
This file contains a list of the additional, externally imposed data dependences (edges
and their dimension types) that need to be added to the task array graph. One task
may have several such files, each associated with the different configuration in which
this task participates.

4 Run-Time Task Distribution

One of the most challenging problems encountered while implementing adaptive sci-
entific computations on distributed memory machines is run-time mapping of a dy-
namically changing computational load onto the parallel processors. The published
solutions to this problem focus mostly on MIMD architectures and coarse grain par-
allelism [3]. Recently the following Rectilinear Partitioning Problem (RPP) has been
considered in [9]: Partition the given n x m workload matrix into (N + 1) x (M + 1)
rectangles with N + M rectilinear cuts in such a way that the maximum workload
among rectangles is minimized. Such optimization is appropriate for adaptive finite
element computations on architectures with local communication that is faster than
global. Since balanced partitions tend to increase the volume of local vs. global
communication, solution to RPP decreases the overall communication costs.

In [10] we investigated adaptive scientific computations on SIMD machines, the
problem with similar motivation and applications as RPP [9]. Unlike RPP however,
in which the sum of the weights is taken as the cost of a rectangle, we measure the
rectangular costs as the ratio of workload to the area of the rectangle that represents
the number of processors active in that rectangle. Our approach is motivated by the
mesh refinement techniques of the considered adaptive methods and the newly intro-
duced coordinated parallelism on the CM-5 computer. In coordinated parallelism a
machine can be partitioned into several parts each running SIMD code. The work-
load redistribution results in regions that have different time-step and/or grid size;
therefore, the same computation is nested in loops with different boundaries. That
means that each region either has to be done on the whole machine (sequentially, one
after the other on the CM-2) or in a separate partition (in parallel on the CM-5).
Each entry in the workload matrix represents the error in the solution obtained by an
error estimation procedure [2]. The high-erroi regions need recomputing to the extent
that is proportional to the magnitude of the error. Hence, the number of processors
reassigned to each solution region should be proportional to the refinement factor.

Consider a load balancing problem as illustrated in Figure -5 for a one-dimensional
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Figure 5: Example of partitioning in one-dimension

problem. The uniform mesh yields the solution with a high error in the interval
b < x < c and within the required accuracy in intervals a < x < b and c < x < d.
Taking the magnitude of an error as an estimate of the work w, for each element
i =1,... ,n, we assign a small weight c << maxi{wi} to work estimate in regions
a < x < b and c < x < d. To balance the workload, the majority of the processors
should be assigned the interval b < x < c.

In adaptive solutions of partial differential equations parallel tasks perform ba-
sically the same computation over different spatial subdomains (intervals for one-
dimensional problems) and with different discretization parameter Ax. Let K denote
the number of such tasks. It is important to keep this number small for the following
reasons. The subdomain interactions are proportional to the number of existing sub-
domains and in higher dimensions such interactions require time-consuming global
communications. In each time step of the subdomain computation, a fraction of ex-
ecuted code is subdomain specific (e.g. in hyperbolic equations the time step has
to be set differently in each subdomain). For purely SIMD machines, execution of
this code fraction has to be done in K consecutive stages. In each stage, processors
in one subdomain are executing while processors belonging to the remaining K - 1
subdomains remain idle'. Therefore, each subdomain associated with a parallel task
should represent a localized structure in the solution domain.

Figure 6(a) shows an example of the more difficult two-dimensional case in which
a coarse mesh is trivially mapped to the processor mesh. In regions A and B, the
mesh must be refined due to the presence of high errors. Hence, we have to spread
sub-domains A and B over bigger rectangular sub-sets of processors to improve load
balancing as in Figures 6(b) and (c).

If we are employing mesh-movement or static rezone techniques, the mesh elements
are moved into high-error regions. A global solution strategy will refine the high-
error regions and repeat the entire step of the iteration. Consequently, we will need
a re-assignment of processors. A local solution strategy, on the other hand, repeats

'For more general architectures, capable of coordinated parallelism mode of execution (i.e. CM-
5), all K subdomains will be able to execute this fraction of code in parallel.
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the iteration only where it is needed. Hence, local refinement results in less direct
computation and enables more processors to be assigned to regions A and B. However,
local refinement requires more ihteractions between the local and global solutions.
Such interactions involve global communication that can outweight the benefits of
an adaptive procedure. Global solutions and mesh-movement techniques require less
interactions of this kind. Careful buffering of the high-error regions can increase
the number of iterations executed before regridding or mesh movement is needed.
This will in turn decrease the frequency of the needed load balancing. It is this
global mesh-refinement and mesh movement techniques executed on a mesh connected
architectures that motivated us to develop density-type partitioning.

C CI E B
A

a (b)

A n
(C M

_ _ _ _ I
(c) (d)

Figure 6: (a) Coarse mesh with high error regions A and B. (b) repartitioning with
global refinement (c) repartitioning with local refinement (d1) Nicol's partitioning

It should be noted that applying Nicol's [9] partitioning methodology l PP to the
example shown in Figure 6(d) results in assigning unnecessary processors to regions
(C and D. To WOild such waste, we did not restrict our partitioning methodology to
rectilinear cuts extending across the whole domain both dimensions. Instead, in
our problem definition and solution [101, we require that K selected rectangles cover
the whole domain. The heuristics for the two-dimensional case project.s the weights
to one-dimension and results in rectilinear cuts extending across the whole dimension
in one direction. Figure 6(b) shows an example of this kind of partition.
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Let PK be a set of partitions of a one-dimensional workload array w,, i = 1,..., n
into K subintervals (xIk,x2k), where 1 <_ Xlk _• x2, :_ n, k = 1,...,K. The one-
dimensional workload partitioning problem can be then stated as:

G(zl A ,, X~) (xl•zj• k = 1.... K EPK(1

As shown in Table 1, selecting different meaning for operations ED and ®& we
can obtain different optimization problems from this formulation. For (e =r min,
& _ max and f(xI,,x2k) = 1 we obtain the Nicol's problem that has solutions of
complexity O(Kn) and O(n + (Klogn) 2 ) [9].

Problem I (D I f(xi,,zX2) 1 ,I e1]
Nicol's ID
partitioning min max 1 00 0
Density-type
for PDEs min max (x2, - xl, + 1) 00 0
Shortest
path with k min + 1 00 0
arcs
Density-type
for PDEs max min (x2, - xl, + fl 0 ,O

Table 1: Instances of problem represented by equation (1)

The problem involving load balancing for adaptive PDE solvers discussed in this
section is obtained for (D =_ . ® - max and f(xl,,x,2) = (x2, - xj, + 1). i.e.,

we divide the sum of the workloads in each partition by the interval length (i.e.. the
number of processors). There is a similarity between the weighted independent set
for interval graphs and our problem [7]. The interval graph for our problem can be
created by having a node representing one of the possible subintervals (xl,,x2.) with
the weight I . il/f(xl,, x2k) and edges representing the intersections between the
subintervals. In such a graph, the independent set of size K which covers the whole
interval. 1,.... , n, gives the solution to the original problem. We convert that interval
graph to a directed acyclic graph (DAG) and apply the shortest path algorithm to
find the minimum weight dominating set [101. This approach results in the optimal
algorithm for the one-dimensional case and leads also to a heuristic algorithm that
(,an be easily generalized to two dimensions (by projecting the workloads to one
dimension).

5 Conclusion

Our approach is based on the following presumpions:
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"* Adaptivity is at the center of efficient methods for solving partial differential
equations.

"* Annotations provide an easy and efficient way for parallelization of existing
codes.

"* Absence of control statements simplifies program analysis and increases the
compiler ability to produce an efficient parallel code.

"* Most parallel code optimization problems are NP-hard; hence, development of
proper heuristics is important.

"* A hierarchical view of parallel computation is helpful in extracting functional
parallelism.

Program decomposition through annotations and computation synthesis through
configuration can support efficient parallel code generation for domain-specific compu-
tation. Adaptivity, with its associated error estimates and shrewd use of computation
only in regions where accuracy requirements are not satisfied, can provides the needed
numerical reliability and efficiency to parallel computation. Massive parallelism com-
bined with adaptivity offers a promise of true breakthroughs that will allow scientists
and engineers to solve the most demanding problems with available resources.

Our research on scalable program synthesis is in its early stages and many issues
remain unexplored. Future work on program synthesis should include more work
on run-time code optimization. Large applications will measure the efficiency of the
generated solutions.
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Automated Interpretation of Topographic Maps

T. Cronin
CECOM Signals Warfare Directorate

Warrenton VA 22186-5100

Abstract: Some new results which impact favorably upon the issue of automated topographic map interpretation
are presented. Actually, the "new" results consist of heretofore undiscovered applications of two concepts known to
mathematicians and computer scientists for many years: binary search, and the normal vector. Binary search is
extended by the technique from not only one to two dimensions, but arguably to three dimensions, since
topographical maps are two-dimensional representations of three-dimensional surfaces. Such maps are essentially
sorted hierarchies of nested contours, which form a multiply-connected subdivision of the plane. The perimeter of a
subdivision element is defined by a set of contours of extremal elevation and the edges of the map; a naming
convention attaches a label to each element of the planar subdivision. Whenever one is afforded the luxury of dealing
with a sorted data structure, one may invoke the power of binary search to achieve O[ log n ] time complexity during
processing of a topographical query, where n is the number of contours which comprise a specific element of the
planar subdivision. A topographical query is a request by a user to interpret the position of an arbitrary map
coordinate, called the query point, in the context of a topographic map background. An "interpretation" as currently
defined consists of a five-tuple of information: the label of the map subdivision element within which the query
point resides; the topographical contour of the subdivision element within which the point minimally resides; the
local slope at the point; the local elevation at the point; and the flank of the partition element (hillside) upon which
the point is situated. As an example, the following list is an interpretation of a query point: (MLt. Hood subdivision,
contour # 10600-d, 65 degree gradienL, 10655 feet elevation, 350 deg NW). As is the case with one-dimensional
binary search, the two-dimensional version must concern itself with items having identical keys. Because
topographical maps may contain multiple contours lying at the same elevation, the topographical query process
must have a mechanism for choosing among them before proceeding. Thus, when "halvinig the interval", one must
check to ensure that the interval is in fact uniquely defined. Inclusion testing within contours is achieved with a
deterministic point-in-polygon algorithm developed by the Army in previous research. The traditional normal vector
is utilized extensively by the point-in-polygon algorithm, and also by the processing components which interpolate
slope and elevation, and determine hillside emplacement. A new theorem derived from the law of cosines provides a
decision rule based on integer arithmetic to decide which segments of a polygonal boundary justify a computation of
the normal vector. As a byproduct of the research, an algorithm based on the Cevian formula has been developed to
find the nearest segment to a query point, without using any floating point operations whatsoever. Future research
issues include the topic of visual line-of-sight (binary map coloring) from a query point, and an analysis of the space
and time complexity of the new technique, vs. the more burdensome alternative of storing elevation and slope data in
large raster archives.

I. BACKGROUND AND TERMINOLOGY

Topographic Line Maps.

A topographic line map (TLM), also known as a contour map, is a vector representation of the boundaries
of cross sections of the earth's surface. The projection of the boundary of a cross section of the earth's surface onto
the xy-plane is called a topographic contour. The equispacing between cross sections along the z axis is called the
contour interval of the map. A contour map is bounded by the rectangular edges of a map sheet. The edges of a map
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form what is called a clipping region. which prevents an observer fium knowing the behavior of portions of contours
which pass outside the rectangular perimeter of the map.

Heuristics to guide map understanding soow becomie apparent to a novice: e.g.. when contours are closely
packed together in the xy-piane. the underlying terrain is steep;, when far apart. the terrain is MOat or of gentle
gradient. As a general rule, contours do not cros. although there ame rue exceptions such as natural bridges.
overhangs. or bizarre sandstone formations like those found in Utah. For those well-versed in their nseqetaon.
topographic maps can pcovide a realistic pomyal of actaml terrain. However. many Wumn= beings findl topographic
maps difficult to interpret, and have problems visualizing errain from contour data It is for this reaso that the
Army Topographic Engineering Center has opted to utiliz perspective displays as an alternative otpgrpi
maps [I1t. %espective displays render an artistic version of a terain as it appears from some vantage point am or
upon the ground. Figure I is a graphic borrowed froms referenc [K4], and portrays a perspective display of a terrain.
together with its corresponding topographic contour representation.

Figure 1. A perspective dispidy and Its corresponding topographic line map.

Interpreting a Topographic Line Map.

T1he objective of automated topographic map interpretalion is to wriLm a computer algorithin which locally
describes a random query point in the context of a contour map. An interpretation as currently defined c~onsists of
five pieces of information: the label (if it exists) of the subdivision within which the query point resides; the name
of the topographic contour which brackets the query point from outside; the elevatio~n above or below sea level at the
query point; the slope of the terrain at the quay point; and the dircctional gradient at the query point. As an
example, the following list constitutes an interpretation of a query point;~ (ML Hood subdivision, contou # 10600-d,
65 degree gradient. 10655 feet elevation, 350 deg NW).
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The five pieces of information currently sought by the algorithm hardly constitute a complete interpretation
of a query poinL Other descriptors are desirable in the long term: e.g.. the visual line-of-sight from the query point,
the profile of a traversible path passing through the query point, the profile of a path which optimally avoids the
query point, the feasibility of using the query point as a site for sensor placement, etc. However, the five primitive
data currently being returned by the algorithm go far toward providing inputs to some of the higher level queries,
which may be synthetically constructed from the primitive queries.

Contour Notation.

In this section, notation is adopted to facilitate reasoning with topographic contours. Associated with every
contour is a specific value, denoted El(C), which represents the contour's elevation above or below sea level. The
elevation is modulo k, where k is the fixed contour interval of the topographic map. On a particular map, there may
be several distinct contours with the same elevation value; for spatial reasoning applications it is important to
differentiate among them. Each contour with an elevation value above sea level is contained within another contour,
and may itself contain contours.

If contour C1 is contained within contour C2 , then C1 is said to be nested within C2 . A contour cannot be
contained within two or more contours which are not nested, but it can contain multiple contours which are not
nested. If C is a contour of interest, then we denote the contour which minimally contains C to be C-. By
minimally contained, it is meant that any other contour D other than C- which contains C also contains C-, which
implies that both C- and C are nested within D. A contour minimally contained by C is called C+, where the set of
all such contours is denoted [C+). If a query point lies between two elements of {C+}, then it is said to be a saddle
point. Note that (C+) may be the null set. A graphic illustrating these concepts is shown below.

Contour Notation: C, C-, and {C+}

Contour C+ is inside contour C, which is inside Contour C-.

(C+)} = {C+1 , C+2 , C+3

Figure 2. An Illustration of contour containment.
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A query point and its bracketing contours.

A query point is defined to be any random point of interest. Except for special cases, a query point is
bracketed by adjacent contours of a map: one contour which encloses it, called the outer bracket, and another contour
which does not enclose it, called the inner bracket. Since contours are well-rdered at equispaced elevations, the
difference in elevation between bracketing contours is equal to plus or minus the fixed contour interval of the map
(except for a zero difference at saddle or culvert points). The figure below illustrates the brackeis of a query point.

A Query Point and its Bracketing Contours

p =query point

C - outer bracket

C+ = inner bracket

Figure 3. Bracketing a query point from within and without.

II. TWO-DIMENSIONAL BINARY SEARCH APPLIED TO TOPOGRAPHIC MAPS.

Extending binary search to two dimensions to interpret topographic maps.

Binary search has traditionally been applied to a one-dimensional data structure, sorted by some user-defined
ordering property. The data structure might be an array of numbers sorted by the natural ordering of the reals, or a
list of employee records sorted alphabetically by name. One commonly utilized data structure is 2D trees, in which
the data consists of a set of ordered pairs of integers. In a 2D tree, the data is sorted on two keys (the abscissa and
the ordinate), with one key primary. A 21) tree is not a true instance of two dimensional binary search data structure,
because one key is predominant over another during the sorting process. A better candidate is outlined at [K21, in
which an interior point method for linear programming "halves" an ellipse during point-in-polygon testing.
However, to be truly elegant, two dimensional binary search should avail itself of the natural containment property

•aherent to two diripensions. In the digital domain of the computer, two dimensional objects are in general
polygons. Just as the one dimensional version must check to see if a point lies between two other points, the two-
dimensional version is required to decide if a polygon is contained "between" two other polygons [CI]. Betweenness
is equivalent to bracketing a query point with nested polygons.

Topographical contours exhibit a natural ordering due to the way in which the forces of nature have
combined to stabilize the crust of the earth. For example, gravity has assured that the top portion of a mountain has
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a smaller cross section than its base. Thus, when projected onto a plane, contours from the same mountain appear
to be nested. Ordering by elevation, and nesting by containment are properties which may be exploited to sort
contours. The data structure which results by appealing to a two-dimensional sort on elevation and nesting is called
the contour containment graph. The motivation is that to exploit the O[ log n I query power of binary search, one
requires that the underlying data structure be sorted. We will see below that there are two preprocessing steps
required to set up an efficient two-dimensional search of topographic maps: the first is the construction of the
contour containment graph, and the second is the partitioning of the containment graph into regions suitably indexed
for binary search.

The Contour Containment Graph, and Labeling of Topographic Features.

As a first step in constructing the contour containment graph, we can uniquely label each contour, and then
sort all contours on elevation, in ascending order. We then "nest" contours. To illustrate, suppose a specific 10-
meter contour is labeled, and the contour interval of the map is 10 meters: we now seek to find all 110 meter
contours contained within fe labeled contour. If we find one, we create a pointer from the 100-meter contouis label
to the label of the 110 meter contour discovered to be contained in the contour. We continue this process until no
more contours are found to be within the 100-meter contour. We repeat this operation for all other 100-meter
contours. When this step is completed, we switch our baseline celi complex from all those bounded by 100-meter
contours to all those bounded by 1 10-meter contours, and continue we process until there am no contours remaining
to be processed. An example of a terrain and its contour containment graph is depicted in the figure below. The
terrain features three hills. All three are contained within baseline contours of twenty and forty meters elevation.
Note that a label may be associated with the forty meter contour to delimit the extent of the "hill country". Also, a
label may be installed on each of the sixty meter contours to name the individual hills. One of the three hills
contains two small knobs at the top, at an elevation of one hundred twenty meters. Each time that the set (C+I
contains multiple elements for a giver. contour C, another level of sorting must be initiated to assure that the
contour contairiment graph is properly structured and nested for binary search.

P NN

Binary Search. -T•~w

Levd TopoSort

Coeutr 60(1) ComiMe 00() C omOrnU)
Biuary Search Commar 04(1) Cmm=, 5(Z) Co- 20)

Coaloa. 1501) Cemimw 1502) Ces~mw 1ottO)Level 2 Topo Sort

Casow 126(l) Comanm 120(2) Cmlmw U12*(3)

Combos, 140(i) Coe.a. 140(2)

Binary Search.
Comtm 120I(XI) Combo. l2(3X2)

Levd 3 Topo Sort

Figure 4. A sorted terrain, nested in preparation for binary searcb.
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Within each level of a contour containment graph, binary search may be invoked to achieve Of log n I time
complexity, where n is the number of contours contained at that level. To illustrate, in the figure below, a hill is
represented by eight contours. On the first iteration of binary search, a contour halfway up the hillside at eighty
meters is considered, and the query point is determined to be inside. On the second iteration, it is determined that the
query point is not inside the one hundred twenty meter contour, which is three quarters of the way up. The third
iteration decides that the point is not inside the one hundred meter contour, which is five eighths of the way to the
top. At the next iteration binary search concludes, having bracketed the query point between the eighty and one
hundred meter contours, while having interrogated only three of the eight contours.

a - 8 contoun

Is p inside -meter S onkur? 4e
- Yes

Is P inside 120-metwcaoumr?
- NO

Is p inside lO-metr coa•ur?
-No

Number of coanmurs swd

= log 2 8=3

Conclusion: p is between an
80-meter contour and a
100-meter contour, at about 85
meters altitude, on a moderate
slope of about 30 degrees, which
faces roughly northwest.

Figure S. Binary search brackets a query point.

Although two-dimensional binary search may achieve O[ log n I time complexity over a database of n
contours, the issue remains open regarding the time complexity of the search as a function of the number of vertices
contained within a given contour. For example, one topographic contour may contain a single vertex, whereas
another may contain thousands of vertices. Processing a set of contours comprised of a small number of vertices is
clearly more desirable for performance considerations than processing a set of contours comprised of a large number
of vertices. An objective metric of time complexity should take into account both the number of contours and the
nh.mber of vertices per contour.

Partitioning a Topographic Map for Binary Search.

Any topographical map contains contours of locally minimum elevation. These are readily identified from
the contour containment graph developed in the preceding section. The strategy is to partition the map between all
such contours, by constructing synthesized boundaries to act as cuts for binary search. Optimal placement of the cut
boundaries is a load balancing problem, which needs to address not only the number of contours within each cut, but
the total number of vertices which comprise contours in the cut. In the diagram below, four hills have been
partitioned by synthesized boundaries into regions suitable for binary search. Note that the bold lines are not
contours but synthetic boundaries. The first cut runs roughly down the middle of the map, and segregates the
rightmost hill from the other three. Observe that the first cut contains nine contours on the left, but only seven on
the right. This is not arbitrary, but is designed to compensate for the longer perimeters of the contours on the right
of the cut (it is implied that a longer perimeter equates to a larger number of vertices in the contour boundary data).
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The second cut is dependent upon the decision made during the first cuL If a query point is to the left of the first cut,
then the second cut lies between the two most northerly hills and the hill in the southwest comer. Conversely, if
the query point is to the right of the first cut, then the second cut lies halfway up the rightmost hill. Continuing in
this fashion, the number three cuts am synthesized. No further cuts art shown, but the logic to create them is
similar.

Partitioning a Contour Map for Binary Search

Bold lines amc synthesized for .I"

binary search.

Figure 6. Load balancing a contour map to create a two-dimensional binary tree.

Dealing with contours which exit the clipping region of a map.

Figure 6 is oversimplified. In general, contours are not so wel-behaved. There is one common problem to
consider, a contour may exit the rectangular region bounding the map, and therefore pass outside the clipping
region. The problem may be solved by conjoining the troublesome contour with the rectangular edge of the map.
This contrivance forces two polygons to be synthesized from the errant contour, to create a data structure compliant
with two-dimensional binary search. Synthetic boundaries for binary search may also be constructed accordingly.

The figure below depicts a clipped contour of forty meter elevation which exits the map at both sides. Two
dimensional binary search requires that data structures be in the form of polygons. We synthetically create two new
polygons by conjoining the clipped contour with the edges of the map. Because the point-in-polygon algorithm of
choice (described in the next section) requires a sense of handedness, we assure that the vertices of the new polygons
are in counterclockwise order. At execution time, we may now ask if a query point is contained within either the
upper or the lower polygon manufactured by utilizing the clipped contour, and proceed accordingly.
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Clipping
Region

40

Figute 7. Creating two polygons from a clipped contour.

II. AN INCLUSION (POINT-IN-POLYGON) ALGORITHM, AND PROXIMITY.

Perceived shortcomings of currently available point-in-polygon technology.

The two-dimensional binary search algorithm requires a utility function to establish whether or not a query
point is inside a topographical contour. The utility function is a true workhorse, so it must be efficient. There is
no margin for error, which means that point-in-polygon algorithms which rely on the precision of machine
arithmetic are inappropriate candidates. For this reason, approaches based on the winding number or the parity
algorithm are currently infeasible. The Apple Macintosh family of computers has implemented a predicate called
"point-in-region-p", available as part of the Quickdraw graphics repertoire, but the predicate consumes quadratic
amounts of region space in memory, which becomes prohibitive for even a moderate number of polygonal
boundaries. A high-performance algorithm from the computational geometry literature, based on triangulation [K31,
is a viable candidate, although it remains an untested quantity, since it has never been tasked against a multi-
megabyte database of topographical contours.

Because of perceived shortcomings of on-the-shelf point-in-polygon algorithms, and the lack of benchmark
data to test the performance of the triangulation algorithm, the author has opted to implement his own algorithm
[C2], which has been extensively tested against actual contour data. The algorithm assures that a contour is oriented
in a counterclockwise direction, so that the interior of the contour is to the left during traversal. Inclusion testing is
then conducted as a function of a query point's proximity to a contour (see figure below). One benefit of the
algorithm is that it returns distance and direction (normal vector) to the nearest point on a boundary, in addition to
the inclusion decision. As will be seen below, the normal vector is crucial to topographic map interpretation. As
originally conceptualized, the algorithm anticipated that every pixel in a digital boundary would be explicitly
available as part of the data structure. However, the Defense Mapping Agency does not represent feature boundaries
so obviously. Instead, a contour is provided in chain-coded format, where the boundary of the contour consists of a
set of ordered vertices. It is up to the user of the data to create the edges which join the vertices.
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Proximity and Inclusion of a Query Point p to

Contour C

C P

en 0. C is a set of chain-coded vertices
with implied edges.

1. Order C counterclockwise.
¢ew!

2. Selectively drop normal n to C.

3. If magnitude of n < magnitude of
all other normals, then p is closest
to edge e of contour C.

4. If p is to the right of C, it is
outside; otherwise it is inside.

Figure 8. The normal vector may be used to decide Inclusion.

The Voronoi diagram for data produced by the Defense Mapping Agency.

Vector data distributed by the Defense Mapping Agency (DMA) contains three kinds of objects: points,
line segments, and polygons. It has been known for some time that the skeleton, or medial axis of a polygon
consists of portions of parabolas and line segments [B21. The parabolas are the locus of equal distance between
points and segments. The line segments are the locus (angle bisectors) between extended segments. It is also true
that for any set of points, segments, and polygons the equidistance locus consists of parabolas and line segments.
Thus, the Voronoi diagram for DMA data, which is defined to be the locus of equal distance, is in general parabolic.

There is currently no commercial product available to generate the parabolic Voronoi diagram for an
arbitrary set of polygons, segments, and points. However. there are three research and development tools (of varying
degrees of robustness) circulating among researchers in academia [M31. The developmental products implemented to
date have encountered problems of numerical precision, primarily when deciding upon which side of a parabola a
query point lies [F21. However, as indicated at reference [EI], the theory behind the sweepline algorithm [I1] to
generate the linear Voronoi diagram should be directly extensible to the parabolic diagram. It is clear that for the
asymptotic solution to the static proximity problem, the Voronoi diagram is the paradigm of choice. As a stopgap
measure, until a tool to generate the parabolic diagram is available, the author has developed his own proximity
algorithm, described below, based on restricted use of the normal vector. The author's algorithm, unlike the Voronoi
diagram, facilitates dynamic objects. If an object's position changes, the Voronoi diagram must reinvoke a relatively
"expensive preprocessing step, whereas the author's algorithm simply replaces the object's old boundary position with
the new.
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Finding the nearest point of a contour to a query point.

A contour, which when represented with digital data is in the form of a polygon, consists of a set of
vertices and the implied eages which connect the vertices. Thus, when one speaks of proximity to a contour from a
query point, one is actually referring to minimal Euclidean distance to the set of vertices, vs. distance to the set of
edges.

Minimal distance to an edge is non-trivial to compute. This process entails dropping the normal vector
from a query point to the edge. Since floating point operations may be required at every edge to which the normal is
dropped (although the author introduces below a new technique which avoids floating point arithmetic), we would
like to limit the number of edges incurring such an expensive operation. If the normal vector strikes an edge
directly, the edge is said to be admissible to the normal vector. Refer to the figure below. Clearly, it does not
behoove us to drop the normal from query point p to edge e2, since the tip of the normal does not even intersect e2,
but rather its extension. Such cases are precisely those which we strive to avoid, by appealing to a normal vector
admissibility filtering technique. It will be shown below that as a side effect, the filtering technique returns minimal
distance to a vertex.

Normal Vector Admissibility

e 1 is admissible;

P e2 is not

Contour boundary e3

Lel -e2- e3 . . .

Figure 9. Certain contour edges do not admit the normal vector.

Derivation of edge admissibility conditions from the law of cosines.

Construct orthogonal rays from the endpoints of contour edge e, as in Figure 10 below. Now suppose that
query point p lies between the rays. Note that the angle between edges x and e is acute, as is the angle between
edges y and e. Let the angle between y and e be 01 and the angle between x and e be 02. Then. by the law of
cosines,
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X2 = y2 + e2 -2 ye cos 6i [1]

y= x2 +e 2 -2 xe cos02 [2]

The cosine fincton is positive for acute angles. We therefore obtain

X2 + a] = y2 + e2  (3]
y2 + 2 =x 2 + e2; a,, 2-0 [4]

These equations are altematvely exressed by the inequalities:
x2 .. y2 +e 2  [5]

y2 x +e; [6]

This set of inequalities must be true for segment e to admit the normal vector. Point p of Figure 10 satisfies the
conditions.

Admissible Nqrmal Vector Condition
Both base angles are acute.

P

xy

e = segment of boundary

Figure 10. An edge Is admissible If base angles are both acute.

In practice, it is more likely for the test to be failed than to be passed, so it makes sense to test first for
failure rather than for success. The failure condition may be written as the predicate

-[ x2 <_ y2 +e 2  A y2 < x2 +e2 ] [71
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From DeMorgan's rules, this may be rewritten

-"1x2  y2 +e ] V .+[y 2 <x 2 +eC] (8]

which is equivalent to

x2 > y2 +e 2  v y2 > x 2 + 2 91

If either side of disjunction [9] is true, then edge e is not admissible to the normal vector, and a potentially
expensive floating point operation is avoided by means of a simple integer-valued decision function. An example of
satisfaction of the second inequality of the disjunction is illustrated at the figure below. In this case, edge e fails de
admissibility condition, so that the normal vector computation is avoided.

Inadmissible Condition
A base angle is obtuse.

n Y

e = segment of boundary

Figua-e 11. An obtuse base angle precludes admissibility.

As a byproduct of the admissibility test, minimal distance to a vertex is returned. Consider the integer-
valued expression (Sp-SV)2 + (Etpv)2, where (sv,tv) is the coordinate at the vertex and (Sp,tp) is the coordinate at ttK,
query point. This expression is synonymous with either of the arguments x2 or y 2 in equations [1]-[9] above.
Hence, the filtering operation as a side effect monitors the squares of the distances to each of the vertices of a
contour. When the smallest such expression is found across all vertex possibilities, the square root is extracted. The
entire process involves n integer-valued operations for n vertices, and one floating point operation. for a time
complexity of O[ n ], The integer-valued operation here involves two integer multiplies, three integer adds, and an
integer comparison. The floating point operation is a single-shot appeal to the square root of the minimal integer-
valued result.
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A Common Lisp implementation of the edge admissibility temt might appeak as follows:

(defun admissible -anal-segment-p (x y a. ay b. bN)
(a,) and 0,, b, ) arm the endpoints of segment e in figures; (x,y) is query point.

(jiog (dilsqr &i2sqr dis3sqr)
(declare (type longint x y a, a, b. b, dislsqr dis2sqr dis3sqr))
dissqrW= (dissqra a, ay bb)
dis2qr = (dis.,W x y a. a,)
dis3sqr = (dissq x y b. by)
(cond ((> dis3sqr (+ dislsq dis2sqr)Xreumn nil))

((> dis2sqr (+ dislsqr dis3sqr)Xreturn nil))
(t (rern t)))))

Finding the normal vector with minimum magnitude, across all segments.

Although we now have a test to determine which segments of a boundary admit the normal vector from a
query point, we have not said anything about the actual computation of the minimal such vector across all segments.
In this section we develop a new test to find the smallest normal vector, without resorting to any floating point
computations. If the actual magnitude is desired two floating point operations ame required over the entire database.
We appeal to a very useful result from analytic geometry, called the Cevian formula (for a development see (KI 1). A
cevian is defined to be a line segment drawn from a vertex of a triangle to the opposite side. Note that medians,
angle bisectors, and altitudes are all examples of cevians. The Cevian formula is shown in the figue below, where n
is an altitude in this case. It is convenient that the altitude is equivalent to the normal vector under discussion. in
the figure, observe that rz and sz are lengths which sum to side z, whereas r and s are ratios which sum to one.

The Cevian Formula

Ini2 = ry2+sx 2 -rsz 2 ,
where r = rz/z and s = sz/ z

P

Xy
n

z = segment of boundary

Figure 12. The Cevlan formula relates a normal vector to the sides of a triangle.
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Unfortunately, we do not know the values of r and s. because we do not know the point at which the
normal vector impacts side z. In the equations below, which until step [15] echo the discussion in [1(], we derive a
formula for the square of the magnitude of the normal in terms of a ratio involving the squares of the sides. Steps
[10]-[11] are a reiteration of the information conveyed by the figure. Steps [121-4131 involve a substitution for s,
followed by a reformulation as a quadratic equation in terms of r. In step [14] we set the discriminant equal to zero,
because the roots of equation [13] must be non-negative and equal, since r and s form a convex set. Solving this
equation for n2 results in the ratio shown at [15], which but for the divide operation is economical to compute, since
it involves four integer multiplies and three adds. If one were tuning the technique with assembly code, two of the
multiplies (those involving the 4) could be converted into two-bit left shifts, since shifts are cheaper than multiplies.

r= r.;s= ,; r+s-1; rz+s,-z [101
z z

2 2 2 2 U1n = ry +sx - rsz

n 2 = ry 2 + (I - r)x2 - r(l- r)z2  [121

z2r 2 - (x2 + Z2 - y 2)r +(x 2 - n2) = 0 [131

(z 2 
-y2 + x2 )2 - 4z2 (x 2 - n2 ) = 0 [141

n2 4x 2 z2 _(x 2 +z 2 _y 2 )2  [15]
4z

2

What about the division by 4z 2 , which implies a floating point operation? The answer is that in order to
find the normal vector of smallest magnitude, we may refrain from performing the division until all admissible
segments have been associated with a numerator and denominator as at [15], and checked against the shortest normal
vector found thus far. The check is made as follows. Let nl be the normal dropped from a query point to segment
zj, with xl and yj the distances to the respective endpoints of z1. Let n2 , z2 , x2, and Y2 be defined similarly. Then
the squares of the normals are shown respectively at [16] and [17]. Now n1 < n2 if and only if [191 and [201 are true,
but [201 is true if and only if the product of the means is less than the product of the extremes as shown at [21].
Cancelling the common factor produces test inequality [221. Notice that if we are using integer-valued coordinates,
as we must if we are working with data displayed to a computer screen, there are no floating point expressions
involved in the test.

4xz2 _-(X2 + Z2 y 2)2
, Z [161

4 1
n2 U- 42z 2 - (X2 + 2 _ y2)2
n2 4 2-2- 4 2z _Y )2  [171

4z'
n, < n 2 4= [18]

2 2 n2 [19]

S1 1 1 Y1 4.- 2z2 __22 2 Y 2)2( 044 ( + y) 2 44-( . [201

4z2 4Z2

[4XZ2 -(X4 + Z2- 2 21)]4 4 2 2 + Z )2214z [21
z[4Xz2 -(X4 + Z - y2)2] < Z( [4 4 Xz-(4 * z2 - yZ_2)] [221
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Using the test is simple. As input we receive a query point and candidat segment with integer coordinates.
The squares of the distances fiom the query point to the segment endpoints are computed with the usual Euclidean
formula, as is the square of the distance between the endpoints. These three quantities ar used to compute the
integer-valued numerator and denominator of equation (15]. The same technique applied to some other candidate
segment produces another numerator and denominator, which we crow-multiply with the frst at inequality [22]. If
the product of the means is less than that of the extremes, then the first segment is closer to the query point;
otherwise the second segment is closer. We continue this process until all segments are exhausted, remembering the
segment giving rise to the shortest normal vector as we do so.

Observe that we have located the nearest segment (according to the true Euclidean metric) to a query point
without resorting to any floating point arithmetic. Granted, we do not yet know the magnitude of the shortest
normal vector, but we know that we have the shoMneL To obtain the magnitude, we merely need to perform the
division indicated at equation 1151, and extract the square root of the result. Note also that we never had to compute
any of the points of a line segment; we were able to make do with the vertices at its endpoints. This latter artifact
demonstrates the power and leverage of the Cevian formula, developed over three centuries ago. The formula may
potentially be used to assist in the generation of the parabolic Vorunoi diagram for line segments and polygons.

We briefly summarize before moving on to the next section. When the two-dimensional binary search
paradigm requests the inclusion algorithm to decide whether or not a query point is contained within a specific
contour, the inclusion algorithm is handed the counterclockwise-oriented set of contour vertices and the query point
as arguments. The first action taken by the inclusion algorithm is to subject all of the implied edges of the contour
to the normal vector admissibility test, maintaining the squared distances to the vertices on the side. Generally, the
test returns just a handful of edges admissible to the normal vector. To each of these, the cross-product test shown at
[22] is performed to locate the minimal normal vector. This quantity is compared against the minimal result
obtained for the vertices. If the square of the distance to an edge is smaller than the squared distance to a vertex, a
test is invoked to decide if the query point is to the left or the right of the edge; if to the left, the point is inside the
contour, and if to the right, the point is outside. At this time the numerator and denominator of equation [ 151 may
be divided and the square root extracftr to obtain the actual magnitude of the normal vector. If the squared distance to
a vertex is smaller than that to an edge, a synthetic edge is constructed from the venex's predecessor and successor
vertices in the contour boundary, and a test is invoked to decide if the vertex is to the left or the right of the
synthetic edge; if to the left, the query point is inside the contour, and if to the right, the point is outside. The
square root may be extracted to obtain the magnitude of the normal vector. The shortest normal vector points to
either the inner or the outer bracketing contour of the query point.

IV. INTERPRETATION OF A QUERY POINT IN THE CONTEXT OF A MAP.

Binary search of a contour containment graph concludes by returning the two bracketing contours of a query
point. The algorithm is now armed with all the information it requires to produce an "interpretation" of a query
point, as defined in the first section of the paper. If either bracket has inherited the name of a mountain, hillside,
crater, etc., for which the bracket is a structural element, then the name is available for simple display, or for further
suatial reasoning operations such as line-of-sight or traversibility reasoning. Because inclusion testing as described
avove returns as a byproduct the normal vector from a query point to a contour, both the distance to the outer bracket
and the distance to the inner bracket are known when binary search completes. These two distances may be used in
conjunction with the contour interval of the map to obtain estimates for the point's elevation and slope. The
direction from a hilltop to the query point, together with the elevation values and orientation of the bracketing
contours, may be used to determine a directional gradient, which establishes upon which flank of a hillside a query
point resides. The details involved in extracting the elevation, the slope, and the directional gradient are described
below.
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Deriving the elevation of a query point from its bracketing contours.

Once the bracketing contours for a query point have been established, it is a simple matter to compute an
interpolated elevation at the query point. Without loss of generality, let us assume p is on an uphill slope from
outer bracket C to inner bracket C-, as depicted at the figure below. The elevation of query point p, denoted El(p),
may be obtained by using similar triangles to compute an expression which accounts for ps relative location
between the contours, and multiplying it by the fixed contour interval of the map. To this expression is added the
baseline elevation at pVs outer bracket (if p were on a downhill slope, the expression would be sutbacd instead).
Special cases require additional processing. If a query point has ma outer bracket but no inner bracket. m it will when
it resides within a contour which represents a hilltop, and there me no control points available to indicate the actual
elevation at the hilltop, then the query point inherits the elevation of its outer bracket, since interpolation is
impossible. If a control point is available (generally obtained by surveyors with a spirit level, and represented on the
map with an "X" or a delta symbol), then interpolation is possible even in the absence of an inner bracketing
contour. One simply coc the inner bracketing contour to be the control point, and temporarily sets the map
contour interval to be the difference between the elevation of the control point and the elevation of the outer bracket.
Downhill slopes, craters, saddles, and culverts may be treated with similar logic.

Interpolating the Elevation
Between Bracketing Contours

In I

El(p) = EI(C) + dy

IIn I+I +II

C+

C El(p)

nc nc+

Figure 13. Elevation Is obtained through simple linear interpolation.
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Obtaining the slope at a query point from Its bracketing contours.

The local slope at a query point is so simple to estimate that even interpolation is not required. It is
simply the angle with a tangent equal to "the rise over the run". The "rise" is fixed, as it is given by the contour
interval of the map. The "run" is defined to be the sum of the magnitdes of the nonmal vector drawn to the outer
and inner braeting contus, At the top of a hill or at the base of a depression, in a addle or a culvet, the slope is
assumed to be zero, for flat ground. However, if a control point is available to provide addiinal elevation data. then
logic similar to that outlined for elevation in the paragraph above may be utilized to obtin a refined estimate of
slope. Outside the limits of the lowest lying contours, the algorithm is designed to return the string "drinage ma,
which again is assumed to be flat gpoun. There may or may not be a perennial stream flowing through a drainage
area, but during flashfloods it is assured that water would flow therem

Note that a peculiar thing happens if we slide the query point along either of the normal vectors pointing to
the backeting contown The slope remains fixed as we do so. This is the price we pay for appmoximating a terrain
by a set of cross-sectional contours. The computed slope cannot be made more accurate than the resolution imposed
by the contour interval of the map. Thus, between any two nested contours, there is a vector field of slope vectors
which connect every digital point of the inner bracket with some digital point of the outer bracket, and vice versa.

Computing the Slope

Between Bracketing Contours

Slope. = arctan [ dy / dx]

dy is given by the contour interval

C+

dy = 10 meters

ncnc

1dx =I I c + Inc+I I
Figure 1,. The "rise" Is fixed, and the "run" Is the sum of the normal vector magnitudes.
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Obtaining the directional gradient at a query point from its bracketing contours.

Again, assume the familiar example of an uphill slope, so that El(C) - El(C") - k, where k is the fixed
contour interval of the map. Construct the vector from the hilltop to the query point. Define the hilltop to be the
control point at the top of the hill if it exists; otherwise make it some reasonable estimate, such as the centroid of
the topmost contour. If there are multiple topmost contours, then make the hilltop the centroid of them all.
Suppose that the hilltop to query point vector points to the left, as in the figure below. Then it is pointing
downhill, because C's elevation is less that that of C+, and it is pointing to the west since due north is as shown by
the map. The query point is therefore on the western flank of a hillside. Variations on this theme are computable
for other configurations of terrain. If the elevation of C is greater than that of C+, and we observe a leftward-
pointing vector, then we would be on the western flank of a crater or valley. If the elevation of C was to be equal to
that of C' and the vector was to point to the south, then the query point would be on a saddle or in a culvert,
oriented in an east-west fashion.

The vector pointing from a hilltop to a query point is a suitable gauge of directional gradient from a global
perspective. However, a query point may be situated locally on a geologic feature of a hillside, with an orientation
seemingly at odds with the global result. For example, on the south side of a mountain, there may be a ridge which
proceeds from the summit down to the south. The ridge will have both eastern and western flanks. Suppose for the
sake of argument that a query point is on the western flank of the ridge. We conclude it is possible for a query point
to be locally on a western flank, but globally on the south side of the mountain. The local flank estimate is easily
computed by drawing the normal vector from the query point to its outer bracketing contour. The vector points in
the compass direction of the local gradient. This procedure is particularly useful for rugged terrain such as that
encountered on Mount Rainier in the state of Washington, where contour data tends to resemble a set of nested
"octopuses".

Computing the Directional
Gradient on Hillsides

Magnetic north is given by map.

N

P is on a western flank of moderate gradient.

Figure 15. Determining a query point's emplacement on a hillside.
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V. AN IMPLEMENTATION, AND CONCLUSIONS.

The theory of automated topographic map interpretation, as developed to dat, has been partially
implemented on a Macintosh Ilfx workstation, using Macintosh Common Lisp, version 2.0. There are plans to
convert the code, into C, using the Symantec Think C environment The conversion is intended not so much for
performance purposes, since the Lisp compilers perfomnace is favorable when compared to that of the Symantec
package, but to be able to control the process of garbage collection, which in the Lisp package is beyond the reach of
the user.

There are two databanks of contour data: real and simulated. The first source of the real variety is a set of
digital elevation matrix (DEM) data, which is a gridded representation of elevation values sampled at equispaced x and
y increments. DEM data is produced by the United States Geographical Survey (USGS) office, as a result of data
collection performed primarily by civilian engineers. To obtain topographical contours from DEM data, one may
utilize a geographic information system (GIS) to extract contiguous points of equal elevation from the grid. Mr-
author used an on-the-shelf GIS package called Macgrnzo [M1] to create contours for the Killeen Texas ea. The
second source of real data, which is the military counterpart to DEM data, is digital terrain elevation data (DTED),
which currently is available in two resolutions: Level I, at 100 meter spacing, and Level II, at 30 meter spacing.

The simulated data is handcrafted by appealing to Macintosh Quickdmw graphics. A representative train
containing four hillsides is depicted in the figure on the next page, where a query point is represented by the tip of
the cursor (the arrowhead at the right). In this case, the partitioning algorithm during a preprocessing step created
level one and level two cuts to segregate the four hillsides. The level three cuts and beyond partitioned each of the
individual hills, using the nesting principle described earlier. Now comes execution time, and two-dimensional
binary search. In this example, hills two and four were selected in the first binary cut, and hill two in the second
CuL In the third cut, it was determined that the query point was not inside hill two's forty meter contour, in the
fourth cut it was determined that the point was inside the twenty meter contour. Binary search concludes at this time
because the contour containment graph-has been exhausted. Therefore, the outer bracket is hill two's twenty meter
contour, and the inner bracket is the forty meter contour. Associated with each of these two conours is the label
"HILL2". The gradient computation deduces an easterly downhill slope; the slope is computed to be forty eight
degrees; and the elevation interpolates to thirty three meters. Currently, the interpretation process says nothing
about the relationship among HILL2 and the other hills; future work will address this issue.

Future Work.

The research to date has focused on a local interr'tation of a query point By definition, a local
interpretation is limited to a description of a query point in terms of the label of the hill upon which it resides, the
two contours which bracket it, an interpolated elevation, a slope value, and a directional gradient This information
is useful for localized reasoning about the immediate environs of a query point A natural outgrowth of this work is
to extend the reasoning to a more global capability. For example, one could utilize knowledge about the location of
a hillside with respect to other hillsides in a specific region, to achieve context-cued line of sight reasoning or
traversibility planning.

To illustrate line-of-sight reasoning, consider the following example, based on the author's personal
experience. In Grand Teton National Park in Wyoming, if one is on the western shore of Jenny Lake, the tallest
visible peak is Teewinot Mountain, which looms spectacularly nearly a mile above the observer's head. One peak
away is the Grand Teton, which although a thousand feet higher, may not even be seen from this vantage point
because it is blocked from sight by Teewinot. The interpretation process described in Section IV would determine
that the query point is on the eastern flank of Teewinot Mountain, on a moderate slope, at about 6600 feet elevation.
Utilization of the directional gradient calculation would indicate that the direction to the tops of Teewinot and the
Grand Teton are roughly the same, but the slope of the segment joining the query point to the top of Teewinot is
greater than that drawn to the top of the Grand Teton. Hence, one concludes that line-of-sight westward to the Grand
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is restricted by the intervening mass of Teewinot. Futum work will involve refining and formalizing concepts such
as awee.

Already, the normal vector admissibility filtering technique has been extended to objects other than
topographic contours. The Defense Mapping Agency produces a set of vector overlays corresponding to a
transportation network, a hydrology network, obstacles, surface orientation, surface composition, and vegetation
type. In addition, dhe DMA produces a gridded product called digital terain elevation dam (DTED), at both thiry and
one hundred mewe horizontal resolution. The vector products together with thirty-meter DTED in large pait
comprise what is known as tactical terrain dat (TTD), a database being developed by DMA with the cooperaion of
the US Army Topographic Engineering Center [M2. The integer-based decision rule derived fron the law of cosines
has proven to be of high utility in gauging proximity and inclusion with respect to the multi-megabyte vector
databases contained in TMD.

Global location: HILL2

Flauk of hbil: EAST
Slope in degrees - 48
Elevation in meters = 33

Figure 16. Interpreting a query point In terrain.
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Conclusions.

Two-dimensional binary search has been utilized in conjunction with two new algorithms which avoid the
expensive floating point operations associated with computing the normal vector, to produce an algorithm adept at
locally interpreting topographic line maps. An interpretation consists of a human-like description of a query point
in terms of its global location, interpolated elevation, local sope, and directional gradient. The search algonthm
relies heavily upon proximity and inclusion algorithms developed with computational geometry research funded by
the US Army. For credibility, the technique is being leveraed against multi-megabyis databases of contour
information corresponding to actual terrain. An integer-based decisio function which aibitrms when to drop the
normal vector to an edge (during proximity testing) has proven to be extensible to objects other than elevation
contours, such as segments of roads and streams, and polygons delimiting types of vegetation cover and surface
material composition. As a byproduct of the research, an algorithm based on the ancient Cevian formula has been
developed to find the nearest segment to a query point, without using any floating point operations whatsoever.
New work will focus on extending the definition of map interpretetion to be more globally descriptive of a terrain.
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1. INTRODUCTION

1.1 Exploratory and Inferential Data Analysis

Broadly speaking, eliciting information (or drawing inference) form observed data is
accomplished in two stages. The first is EDA (exploratory data analysis), the purpose of which
is to understand the nature of the data and the underlying stochastic mechanism. This is done
through a descriptive analysis of data and graphical displays, which can be of help in scrutinizing
data for inhomogeneities, editing, faking and other inconsistencies and in suggesting a probability
model underlying the data. The second is IDA (inferential data analysis) whose purpose is to test
the appropriateness of the stochastic model selected for the analysis of observed data, to estimate
the unknown parameters in the model, and, what is more important, to evaluate in quantitative
terms the uncertainty in the conclusions drawn (inference) from the data. The two stages of data
analysis, EDA and IDA, are represented in Table 1, with some additional explanations on the
generation of the data and the end results of analysis.

1.2 Parametric and Nonparametric Models

In IDA, the analysis of data is dictated by the chosen (or specified) stochastic model and,
therefore, the validity of our conclusions depends on how accurate the specification is. In the
early stages of the development of statistical methodology, much emphasis was raid on parametric
mode!s, and especially the normal distribution was taken as basic to all quantitative data. Other
more elaborate parametric models such as the Pearsonian system of frequency curves were
introduced but mathematical difficulties prevented their full exploitation in applications. At this
stage, attempts were made to develop nonparametric infernce without assuming any particular
family of probability distributions, i.e., under which the con iusions drawn remain valid whatever
may be the underlying distribution. However, the inference in such a case is not as precise as
it would be under a valid parametric model.

These two methodologies are at the extreme ends of our knowledge about the specification
of the stochastic model. In the sixties some new concepts were introduced by combining the
parametric and nonparametric inference procedures. It was assumed that a basic parametric
model holds, but the observed data may be contaminated with extraneous observations. To
accommodate such situations, the specification is enlarged by considering mixtures of the basic
model with possible contaminating distributions. Methods are then developed to ensure
robustness against the contaminating distributions. The different approaches to specification and
the nature of inference associated with them are given in Table 2.
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Table 1

[FORMULATION OF SPECIFIC QUESTIONS ]•

DATA Design Historical

COLLECTION of (published Surveys

TECHNIQUES Ex eriments maericaI

RECORDED MEASUREMENTS

HOW ASCERTAINED?

DATA

CONCOMITANT EXPERT OPINIONS

VARIABLES PREVIOUS FINDINGS

CROSS
EXPLORATORY DETECTIVE ANALYSIS

EXAMINATION

OF DATA (detection of outliers, error, bias, faking, Internal

(CED, EDA) consistency, external validation, spaecial features)

T t'
SPECIFICATION

MODELLING (cross validation, how to use expert opinions

and previous findings, Bayesian analysis?)

IHYPOTHESIS 1 ESTIMATION IDCISION
TESTING (point, Interval) MAKING

INFERENTIAL

DATA MEA SUMMARY GRAPHICAL
ANALYSIS ANALYSIS STATISTICS DISPLAYS

(IDA)

GUIDANCE FOR FUTURE INVESTIGATIONS
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Table 2: Inferential Data Analysis

Specific Parametric Nonparametric
parametric model with a model

model neighborhood

F(O) (1 --a)F(O) +azG Wide class of
Fisher (1922) Huber (1964) distributions

Pitman (1937)

"* What is the ap- * For what class of - How best to use
propriate method models a particular ranked data?
of data analysis for method is appropri- * Inference valid
the chosen model? ate or meaningful? for any underlying

"* Inference spe- - Inference on F, distribution
cific to the chosen robust against G,
model and other possible

errors in data.

Too much reliance Provides robustness Generally does not
on the chosen or insurance against result in efficient
model. Inference possible deviations use of data
could be mislead- from the assumed
ing model

1.3 Asymptotic Theory

However, in IDA, after choosing a stochastic model, we are faced with the problem of
computing the probability distributions of statistics used as estimators or test criteria, or in
general of evaluating complicated integrals over specified regions of the sample space. This is
not easy to do exactly and approximations have to be made. This gave rise to asymptotic
theories of inference based on limit theorems which ensured the accuracy of certain
approximations as the sample size increased. However, different approximations could not be
compared on the basis of limit theorems alone, which necessitated investigations on the rates of
convergence. New concepts such as second order efficiency (Rao (1961)), small sample (or
higher order) asymptotics (Barndorff-Nielsen and Cox (1989), Field and Ronchetti (1990)) and
resampling techniques such as Jackknife (Quenouille (1956), Tukey (1958)) and bootstrap (Efron
(1982)) were introduced. Much of the current research is centered round these concepts, which
are described in this paper. The basic results and techniques of asymptotic theory are presented
in Table 3.
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Table 3: Asymptotic Theory

Parametric Non-parametric

Normal Non-normal

Exact sample theory • Central limit theorem # Central limit theorem
(generally available) * Berry-Esseen bound * Empirical Edgeworth

* Edgeworth expansion expansion
* Cornish-Fisher expansion
e Saddle point

approximation
- Conjuga -e density and

related techniques
e Second (third) order

efficiency

Resampling techniques
• Jackknife
e Bootstrap

Note 1. In this paper, only the key references to original papers are given. For the numerous
other relevant references, the papers and/or the text books in which they can be found are
mentioned.

Note 2. The following abbreviations and notations are used.

df = distribution function, pd = probability distribution.
EE = Edgeworth expansion, 4D = df of N(0,1)
4 = pd of N(0,1), N(0,1) = standard normal variable

iid - independent and identically distributed
Field and Rochetti (1990) = FR, Barndorff-Nielsen and Cox (1980) = BC
Bhattacharya and Denker (1991) = BD

2. EDGEWORTH AND RELATED EXPANSIONS

2.1 Berry-Esseen Theorem

One of the first results in asymptotic theory is the central limit theorem which says that
the df (distribution function) of the standardized average of a sample of n iid observations
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tends to normal as n - ' M. The following theorem gives the conditions under which this result
holds and an expression to the upper bound for error can be found.

Theorem 2.1 (Berry-Esseen). Let X,,...,X, be n iid random variables (r.v.'s ) with a

common df F such that E(X,) = 0, E(Xi2) _ 02>0, EIXiI 3 - p<o-.. Denote by Fn the

distribution of the standardized statistic N - 11(X +--+X,ý)/. Then, for all n

supjF.(t) -4 <.)j (2.1.3)

where 0(t) is the df of the standard normal variable.

The best known constant which replaces 3 in (2. 1. 1) is 0.7975. The result of Theorem
2.1 has been generalized to non iid r.v.'s, U-statistics, linear combination of ordered statistics,
symmetric functions of iid r.v.'s and so on. For references to papers on the extensions and
generalizations of Berry-Esseen theorem, the reader is referred to Field and Ronchetti (1990),
which we indicate by FR in the sequel.

The Berry-Esseen theorem raises the following question. Under what conditions can we
obtain a complete asymptotic expansion

- Aj(t)

such that

k AQ)

j-o n~

We provide some attempts that have been made to solve the above problem, and the results that
are now known.
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2.2 Charlier Differential Series

Let F(x) and G(x) be two distribution functions such that all the derivatives of G
vanish at the extremes of the range of x. Denote the cumulants of F and G by 03, and

Y,, r = 1,2,..., respectively. Charlier established the following formal expansion

I~) e-xp -" G (2.2.1)
F~x) e~xp k-ir! J0x

where D denotes the differential operator and e D (j!)- 1D j.
j-0

The series (2.2.1) known as Charlier differential series enables us to find the expansion
for the df of an r.v. in terms of its cumulants and derivatives of any given df. An important
application of this idea, which led to a number of important developments is due to Edgeworth.

2.3 Edgeworth Expansion

Edgeworth (1905) obtained Charlier type expansion for the distribution of the average of
a sample of n observations in terms of the normal distribution and its derivatives. Modern
versions of EE (Edgeworth expansion) and its extension to other statistics are as follows.

Theorem 2.2. Let X1,...,Xn be iid r.v.'s with a common df F. Let

E(X1 ) = 0, E(X72 ) = a2 < o- and F,,(x) = [n 1ý2 X/o < x].

If F is not a lattice df, and if the third moment P3 of F exists, then uniformly in x

F,(x) = '(n) +I P3 (1 -x 2)€(x) + o(n -12)

Theorem 2.3. Let Xl,...,Xn be iid r.v.'s with a common df F and characteristic function W1/.
Further let
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E(X) =o, E(Xil = o2 <

and f,(x) be the pd of n 1/2X)/. Suppose that the standardized moments Xi , Pi!I° exist

for i = 2,--,k and INIv is integrable for some v > 1. Then f,, exists for n > v and as
n -

,,(x)- = O(x) +(x) P(x)/l (42)-1 . 1
r-3 (n (W•)-I

uniformly in x. Here Pr is a real polynomial of degree 3(r-2) depending only on
but not on n and k (or otherwise on F).

For instance, the first few successive approximations to the density function are

f,(n) = O(x)

fn'x) -- 4(x){l +. (x 3 3-3X)}

6•X) O , -6x2 +3) +..n (x; -15x.+ _x215),.
f~ x) = (x { +± .. (x 3- x 24n 7ý 2 n' )

Note that when X3 = 0 (i.e., when F is symmetric), the normal approximation is accurate to

order (1/n).

EE has been extended to U statistics of degree 2 (Bickel, Gotze and van Zwet), regression
models (Qumsiyeh), maximum likelihood estimators (Skovgaard), M-estimators, likelihood ratios
and other statistics (Bhattacharya and Denker (1990)), which we indicate by BD in the sequel,
and functions of mean values of functions of vector random variables (Bhattacharya and Ghosh
(1978)). The results of Bhattacharya and Ghosh have been recently extended by Bai and Rao
(1991) to cases where some of the components of the vector variables are not continuous.
References to the above authors are given in FR and BD.
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2.4 Cornish-Fisher Expansion

Consider an es,4mator 0. of a real parameter 0 lying in an open set 9, and let s/Fn

be an estimate of its standard error. Suppose that G,(x90), the df of Fn (A.-O)/s has the

asymptotic expansion

k-2
Gn(;,O) = (x) *O n -"'2qr(,6O)O(x) +o(n -<k-2)12) - 'P',(x;e) +o(n -k-22)) (2.4.1)

rul

uniformly in x e *1 and 9 in any compact K c e. In (2.4.1), qg(x;O) are polynomials

in x whose coefficients are smooth functions of e (say, (k-2) times continuously

differentiable in 0). For purposes of obtaining a confidence interval of 9 or testing a
hypothesis concerning 0, we need upper and lower tail percentage points of G,(rx-,). We can

use the expansion (2.4.1) to obtain a good approximation to the upper p-fractile by finding x,,€
such that

G,,(x,,P;0)= p +o(n -<k-2)2)

or equivalently

pk,(x,,;0) p +o(n -(k-2)t2). (2.4.2)

The equation (2.4.2) can be solved recursively by starting with the initial approximation x., the
upper p-fractile of the standard normal distribution in the form

J
X N1 = xp +rp n '/2c,(x,;0) +o(n -j/2), 0 <_ • < k-2 (2.4.3)

r-I

which is known as Cornish-Fisher expansion.

For instance
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c,(x,;O) - -q(x,;O), c2(x,;O) - -2-Xpq 2(x,;e) +qj(x,;6)qj'(x,;O) - q2(x ;O)

where q1' is the derivative of q1.

For proofs and examples, the reader is referred to BD.

2.5 Laplace Approximation

Consider an integral of form

g = fabe "' ) h(y)dy. (2.5.1)

Assume that the minimum of r(y) is attained at 9 e (ab), that r'I() = 0 and re(q) > 0
and that h(9) * 0. Then, we can expand e "m•) at 9 and approximate (2.5.1) by omitting
terms involving higher derivatives of r(y)

fet -(h(9) + (y-9)h'(9) +-' }*(Y-9[nry)]-1 (2.5.2)

- e O)hl {{,, J12(1 +O(n -))

Suppose that r(y) is minimized at a and y'(y) * 0 there. Then

S= e .n,(a) h(a) + O(n -2)} (2.5.3)Lnrl(a) I

with a similar result if the r(y) is minimized at b. The multiparameter version of (2.5.2) is

gn= De I'•h(y)dy e -'•)h(.)(2i)m 1 +O(n 1)} (2.5.4)
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where it is assumed that r(y) takes its minimum at Y in the interior of D c V, the gradient
is zero and the Hessian y"(') is positive definite.

The Laplace approximations (2.5.2-2.5.4) have proved very useful in Bayesian inference.
A series of papers by Tierney, Kass and Kadane give a number of applications involving the
evaluation of posterior expectation of a parametric function. For further details regarding Laplace
approximation and references to the above authors, the reader to referred to Barndorff-Nielsen
and Cox (1989, Ch. 3), which will be denoted by BC in the sequel, and Reid (1991).

2.6 Stochastic Expansions

Sometimes, it is useful to obtain a stochastic expansion of a random variable in terms of
other variables, which are easy to handle. To define a stochastic expansion, consider a base set
of sequences (b..), h = 0,1.... such that as n -+ -*, bh. = o(bh_..,,) with boa = 1. Typical
examples are

bo. 1, b1n = liee, b,, = l/n, (2.6.1)

bo,, 1, b1n = 1in, b2, - lln,

Suppose that (Yn} is a sequence of continuous r.v.'s such that

Y, = X0 +X1bl, +÷'- +Xhbm +Op(bh+l.n) (2.6.2)

where {X0,X1,...} have a distribution not depending on n. We call an expansion of the form

(2.6.2) a stochastic expansion of Y,,. It is seen that as n -4 0., the distribution of Y.

converges to that of X0 .

For example, it is shown in Cox and Reid (1987) that if Y. follows a chisquare

distribution with n degrees of freedom, then

(Y,-n)(2n)-1/2 = XO + 3--12(X2-1) +O P(n -) (2.6.3)

where X0 is a standard normal variable. Under some conditions, stochastic expansions and
asymptotic expansions for distribution functions are equivalent. If
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Y, w X 0 +n -1/2X 1 +O(n -1) (2.6.4)

then, as demonstrated in Cox and Reid (1987), F4 (y), the df of Y. has the form

Fn(y) = F0(y)( 1 +n "tt2a (y) +O(n -1)) (2.6.5)

where

a,(y) ,, E(XI iX°=y)fo(y)[Fo(y)]-l.

and E(X1 1X0) is the conditional mean. If E(X1 1X0) = 0, then (2.6.5) reduces to

F0 (y)( I +O(n -i)).

Stochastic expansions of statistics are useful in deriving stochastic expansions of their
df's. For instance, in M-estimation (including maximum likelihood) through an estimating
equation, it is often possible to obtain a stochastic expansion of the estimator. This enables the
derivation of distributional results concerning the estimator. For details, the reader is referred
to BC, BD and Cox and Reid (1987).

3. SECOND ORDER EFFICIENCY

Following the work of Fisher (1925), Rao (1961) introduced the concept of second order
efficiency (SOE) of an estimator. [In modem terminology, my SOE is called TOE (third order
efficiency)]. If 1,(0) is Fisher information on 0 in a sample of size n and I,(0) is the

corresponding information in a Fisher consistent estimator t,., Fisher suggested the expression

e -- lira (1,1(6 -/t.()) (3.1)
n-.)

as the limiting loss of information. This criterion is difficult to work with. Rao (1961) defined
tA to be first order efficient (FOE) if
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Fn'(n -1 ,0(x,O) - P[t:(x)-O]) -+ 0 in P9 probability as n - (3.2)

where 1.(xO) is the score (derivative of log likelihood based on the sample). The second order

efficiency is defined to be the minimum asymptotic variance of

In(x,O) - n[[tn(x) --0 - Xn[t,(x)-0] 2 (3.3)

for suitable choices of 03 and X. Under some conditions, it was shown (Rao, 1961) that the
minimum asymptotic variance of (3.3) is

2 2

i(0)pO3-22 -1i( 40 - I211P30- 2PlP30, (3.4)

where i(0) is Fisher information in a single observation and

(I1 df'~ (Id2f} 35

where f is the pd of a single observation. It tumned out that Fisher's evaluation of (3.1) was
the same as (3.4). The conditions for equivalence of the two definitions remain to be worked
out in a rigorous manner. The result (3.4) is termed as Fisher-Rao theorem by Efron (1975).

In a later paper, Rao (1962) obtained the approximate expression

A-- 2 + 2  (3.5)

n n2

when i. is suitably truncated and corrected for bias up to order (1/n). The minimum value of

A1  1/i and of A2 is (3.4), which provides a decision theoretic interpretation of SOE.
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Rao's work on SOE was extended by Pfanzagl, Ghosh and Subramanyam, Efron, and
Akahira and Takeuchi. Some of these authors used the criteria of median unbiasedness and
concentration around the true value. References to these authors and proofs of certain statements
can be found in BD and in a forthcoming book by J. K. Ghosh (1993).

4. SADDLE POINT APPROXIMATION

A finite order EE provides a good representation of the df in the middle region, but not
in the tails. Evaluation of tail probabilities is often needed in statistical inference. Use of EE
for this purpose gives poor and sometimes negative results. A promising approach in such cases
is the saddle point approximation introduced by Daniels (1954) originally for approximating the
density function of ', the average of n iid r.v.'s, xj,...,x.. We explain the technique for a

general statistic V, = V with density f,(v).

Let Mn(t) and KP(t) = logMn(t) be the moment and cumulant generating functions

of V, and RJ(O) = n -1Kn(nt). Further let, for given v, i be the unique value such that

R(1)(t") = v, where R (s) denotes the s-th derivative of Rn. Then the density of V,, at v

is

fn(v) - MM(it)e -itdt

if (4.1)

n f.-c~i*e n[R0(t-oIdt"
2r Jc-i.-

where c is any real number in the interval where the moment generating function exists.

Expanding at r I,

n[R,(r)-rv] = n[fin-iv] +nlA (2) (i-t)2n(~OII=nR- ,,J 2!+.. (4.2)

substituting in (4.1) and integrating term by term, we obtain

208



fn(V) I=w (vI+f. 5g. (4.3)
Ml ~24)

where

e A-i, Prn Prn(t) = rA(

The expression (4.3) will be an .symptotic expansion if pr, r > 3 are of order at most 0(1)

so that the first term dropped is o(the last term included).

If V,1 = T, we obtain the expression given by Daniels (1954)

fn = e n¢K(- 4  x + +O(n

where K(t) is the cumulant generating function of x,, an individual observation, K<1)(i) = Z

and p, = K (r)(t)/[K (2)(t)]12. It is customary to use as the approximation to f,(x-), a normalized
version of (4.4)

1n2
f,(X -" c )(t ] 4 'II I O(n -1)) (4.5)

where c is determined so that the right hand side of (4.5) integrates to unity up to o(n -1).

Expressions such as (4.3-4.5) are obtained by using methods of deepest descent for
evaluating the complex integrals involved or the method of exponential tilting or using the
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conjugate density approach. The second approach involves the use of EE of the pd of 1 from

the conjugate density fty)exp[^y-K(t)] with mean E(y) = i.

The saddle point approximations have now been worked out for a number of statistics.
For further details, the reader is referred to FR and a thesis by Yau (1989).

S. HAMPEL'S TECHNIQUE

Consider the problem of approximating f,,, the p.d. of Z, the mean of n iid r.v.'s with

a common p.d. f. The conjugate density of f centered at t is

h,(x) = c(t)ftx) e )(x-) (5.1)

where c(t) is the solution of

f(x-t)hl(x)dx = 0. (5.2)

The existence of ca() and its derivatives up to order 4 is ensured if we assume

fx rePf(x)dx < - for r up to 5.

Then
n-1 n-1

-n(t) f .. fh h nt-1 nc-nthn) (5.3)
fn(t) = nc .. (nt-E x) I1 ht(xi)dxl ... = C "(t)h(t)(53

I 1

where htn(t) is the density of T• with underlying density h/(x). Recall that

Eh (1) = t, Vh (X-) = a3 (t),n. (5.4)

Hence htn(t) can be approximated by ni l 2/2xa(t), and ht'/(t)ht~(t) by a (t)/l(t), each
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with errors of order 1/n. The term n -1/2 disappears since we are evaluating the density at the
mean. From this

fn) W -n c(t) - al(t) +O(n-1) - -na(t)- W(t) +O(n-1). (5.5)

fc(t) C(t) 0(0) 0(r)

Using (5.5), f,(t) is obtained by integration, which may have to be done numerically. In FR,

the approximation (5.5) for f,'/fn is shown to be extremely good compared to others.

6. EVALUATION OF TAIL PROBABILITIES

Tail probability approximation is another area of great development. One method is to
use a good approximation to the pd of a statistic and obtain the tail area by numerical integration.
Another is to use the saddle point approximation directly to the integral representing the tail
.probability. A third method is to evaluate the integral for the tail probability directly by
numerical integration.

Consider the example given in FR from the paper by Helstrom and Ritcey (1984). The
problem is to evaluate the tail probability of T,, > x0 where

n~ x 2 y 2) (6.1)21n

and xj - N(sj,l), yj - N(tj,l) are iid r.v.'s. It is seen that under the non-null hypothesis, the

moment generating function of T, is

Mn(t) = (I -r) -ne su(1 -t) (6.2)

when s = (Z12 +1 )/2. If s and t. are themselves r.v.'s with M,(S) as the moment
Ji If I

generating function of S, then
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M (t) - (1 -t"MS[ -t/(1-t)]. (6.3)

The pd of T, is

f,(x) .. frM,,(it)e -dt (6.4)

and the tail probability is

"" = -i.d . 7 M,()e '00dr = fine wRQ (6.5)

where wn,(t) = -logt -ro÷ +Kn(O, K,, = -ogM,. We have two alternatives; either to use saddle
point approximation by expanding the integrand in (6.5) around the saddle point and use the
method of steepest descent or to apply numerical integration directly to (6.5) for evaluating the
integral along the contour defined in the (xy) plane by Imag [x +iy] = 0. It is found that the
latter approach gave slightly better results. Perhaps, with the development of accurate numerical
integration methods, the need for asymptotic expansions will become less important.

For further details on the subject and attempts at finding highly accurate explicit
approximation formulas for tail probabilities stemming from the work of Luganani and Rice
(1980), the reader is referred to FR and Yau (1989).

7. JACKKNIFE

Let xl,...,x, be iid r.v.'s having a common df F, and A be an estimate of a parameter

0. As a first step, one would like to know the properties of A in terms of bias and variance.

The Jackknife methodology assumes that

a, a2z a, a2 (7.1)
E(O -0) - -+-..., E(6 1-0) + - k (7.1...

n n 2 n-l (n-l)2
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where 0i is the estimator based on all the observations except xi. The expressions

S= n{-(n-1)- 1 , i 1,.-.,n (7.2)

are called pseudvalues, and their average value

Aj = nO-(n-1)0. (7.3)

where +6 = (&_1 +... +,)/n, is called the Jackknife estimator of 0. It is seen that the bias in

01 is of the order of 1/n2 .

Tukey (1958) suggested an estimate of the variance of Oj in the form

n 
n

-= [n(n-1)]-f (oj-_J)2 = (n-l)n1  (7.4)
1 1

and conjectured that the statistic

01-° (7.5)

has approximately a t distribution with (n-1) degrees of freedom. The results (7.4) and (7.5)
may not be valid in all cases, but are found to provide good appioximaiiuas in1 cases of regular
estimators which are asymptotically locally linear.

More generally, we can delete d observations at a time and compute the estimate based

on the remaining set of observations. Let Os be such an estimate for a particular deletion (s)

and A be the estimate obtained from all the observations. Then an estimate of V(O) is
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d!(n__.-d)!.r (0s.4)2 (7.5)

n!d s

where the summation is over all possible deletions of d observations and r = n -d. When •
is not a sufficiently smooth function, then the expression (7.5) with a large d is a better

estimator of V(O) than (7.4) based on d = 1.

Further details and references to the key contributors to Jackknife beginning with the
pioneering contribution by Quenouille (1955) can be found in a survey paper by Peddada (1993).

8. BOOTSTRAP

Bootstrap is another tool like jackknife for studying the properties of estimators. It is
wore general than jackknife and can handle problems where jackknife fails.

Let 0 be a parameter of a df F and t. = t(x,.--,x) be an estimator of 0 based on

iid r.v.'s, xl,...,xn from F. We wish to know the characteristics of t. such as the following,

under repeated sampling from F.

Bias: EF(Q) -0 = b. (8.1)

Variance: EF(t,) - [E #t.)] 2 = v. (8.2)

Tail area: PF(tf>-y) = pY. (8.3)

The actual evaluation of Wilese quantities is extremely complicated even under simple forms for
F. Bootstrap is a general resampling technique :o obtain their approximate values.

The first step in bootstrap methodology is the estimation of F based on the sample. In

the nonparametric situation F is simply estimated by F1 = F., the empirical df. In the

parametric situation, if F(x) = F(x;0) where F has a known form but 0 is an unknown

parameter, then an estimate of F is F, = F(x;O) where 0 is an efficient estimate of 0.
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We now consider P. as our population and denote by (x1',.-.,,x), n iid observations

from t,,. Define t: = t(x,,.-.,x:) and

E,-t =b (8.4)

E -O (tn)2-[Ep.(t:)12  V (8.5)

PP (t:y) (8.6)

Since F. is completely known, the quantities (8.4)-(8.6) can in principle be computed, although
it may not be easy.

Efron (1975) suggested approximating them by simulation. That is, we repeatedly draw

samples (Xl ,...,x:) from P., and compute t* for each sample. Suppose that we have drawn

B samples, in which case we have B values of t

t* . (8.7)

Then b * and v * are estimated by the average and variance of the values in (8.7). We

represent them by b and V *respectively. Similarly we can find the proportion of values in

(8.7) which are equal to or greater than y, which is represented by f;. It is claimed that when

B is sufficiently large,

96 • - b, V' v, p; - py. (8.8)

The claim is substantiated by empirical studies and theoretical investigations on the rates of

convergence of the bootstrap estimates b *, v * and p" to the true values b, v and py
respectively.

The bootstrap methodology can also be used to find the null distribution of certain test
criteria. For instance, let the test criterion for testing that the mean of F has a specified value
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po be r = F/n(i-&o)/s, where s is the standard deviation computed from the sample. We
need the distribution of t, or certain percentile points of its distribution.

* *

Let F. be an estimate of F and x, ,-.,xn be a sample from FP,. Further, let i'
and s be the average and standard deviation of x1°,-.,x , Construct the statistic

n .

t Fn (i'-x-)/s where I is the average of the original sample. We obtain the distribution

of t* Ly drawing repeated samples from ft,,. Then

Pp (t Ž>_y) - PAt>_y). (8.9)

Further details and references to numerous key papers on bootstrap can be found in a survey
paper by Babu and Rao (1993).

9. ROBUST INFERENCE

It has been known for some time that certain statistical procedures are sensitive to slight
departures from the assumptions on which they are based. But it is only in the sixties and
seventies, systematic attempts were made to develop robust techniques. One of the main
concerns was the effect of outliers, gross errors and contaminating observations on estimators.
To study this, new concepts such as influence function, breakdown point and qualitative
robustness were introduced.

As an alternative to the least squares method for the estimation of parameters in a linear
model, which is unduly influenced by outliers, new methods of estimation known as M, L and
R were introduced. The most popular among them is M-estimation based on a suitably chosen
estimating equation. For example, to estimate a location parameter 0, an equation of the type

(9.1)

is used. where xl,...,x,, are iid observations, 0 is an unknown location parameter and s is
some estimate of the scale parameter. To reduce the effect of outliers, yt functions of the
following forms shown in the accompanying diagram, are recommended instead of the endless
line passing through the origin at 450, which is the y/ function for least square estimation.
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Figure 1

REDESCENDING M-ESTIMATORS

-- a- b r

Figure I. ShaPc of the *-function (and the influence function) of Hamnpel's three-paut

redescending M-estimator.

Figure I. Andrew's sine function.

0 r.,

Fipure 3. Tukey's biweight.
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For details concerning robust inference, the reader is referred to the thesis of Ronchetti
(1982) and the book by Hampel, Ronchetti, Rousseeuw and Stahel (1986). We can also consider

M-estimation by introducing a loss function 4(xj-0) and determining 0 such that

Sg(x1.0) (9.2)
i-1

is a minimum. In recent papers, Bai, Wu and Rao (1992) and Bai, Liu and Rao (1992)

considered 4 functions of two types. One is the difference of two convex functions and
another is non-increasing in the range (-0,0) and non-decreasing in the range (0,c). With
such loss functions, which cover a wide variety of shapes, an asymptotic theory is developed with
a minimum number of assumptions.

Note 1. Asymptotitis: In the initial stages of development of statistics, much emphasis was laid
on small sample theory, an exact treatment of which was possible under the normal distribution.
Most of the current research papers deal with nonparametric or semiparametric situations and
present asymptotic results. No attempt is made to examine how useful and relevant these results
are for application in actual practice where we meet with only finite (small) samples. This
phenomenon is aptly described by Tukey (1993) as Asymptotitis. Perhaps, we should be
addressing ourselves to questions like: What sample sizes suffice to make asymptotic theory
useful (or even relevant)?

Note 2. Most of the expansions considered in the literature use the limit distribution of the
statistic under consideration as the leading term. There are other possibilities like the one
considered by Rao (1951), which are likely to give improved results. Further research in this
direction would be useful.
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The variational theory of three dimensional motion of curved twisted and extensible elastic
rods is obtained based entirely on the kinematical variables of position and rotations. The
constitutive relations that define the resistive couples and the axial force as gradients of the
strain energy function are established. A candidate for the strain energy function, derived
on the basis of classical assumptions, is presented.

INTRODUCTION

In the Historical Introduction of the "A Treatise on the Mathematical Theory of
Elasticity," Love (1892) narrates that in 1742 Daniel Bernoulli wrote to Euler suggesting
that the differential equation of the elastica could be found by making the integralof the
work done or the square of the curvature a minimum. Acting on this suggestion Euler was
able to obtain the differential equation of the elastica and the various forms of it. Thus the
concept of the strain energy was born and the foundation of the variational theory of elastic
rods were laid out. The equilibrium equations that were much later developed by Love are
applicable to an initially bent and twisted rod.

Our aim in this paper is to establish a variational formulation for the title problem and in
the process infer the existence of the strain energy function and determine the constitutive
relations that relate this function to the bending and twisting couples and the axial force
within the rod. This development together with equations of motion and the geometry of
deformation define a direct approach and an exact nonlinear theory for the three
dimensional motion of a one dimensional elastic medium capable of resisting bending
twisting and extension. Going a step further, in order to actually construct an explicit
form for the strain energy function, we enter the realm of hypothesis and use Kirchhoffs
description of deformations in a thin rod. This view enables us to determine a strain
energy function that can be used in engineering applications.

The recent history of investigations of the rod theories consists of developments along two
separate streams, the direct approach and approximations from three-dimensional
continuum. In the direct approach a one-dimensional continuum view is pursued and the
medium is supposed endowed, in addition to its position, with vector fields, the directors,
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that are to be interpreted appropriately to define bending, twist and extension properties of
a rod. This approach has its origin in the work of E. and F. Cusserat (1909) and numerous
investigations have contributed to it among them Naghdi (1982), Naghdi and Rubin
(1984), Whitman and DeSilva (1970), Green and Laws (1966), and Eriksen (1970).
Extensive investigation into the qualitative aspects of the nonlinear theory such as
questions of existence of solutions and global behavior have been carried out by Antman
(1976). His basic work entitled "The Theory of Rods" (1972) describes these theories both
as approximations to the three-dimensional continuum theory and as a one-dimensional
continuum with directors. The work presented here, although pertains to a
one-dimensional continuum does not use directors, but is formulated entirely on the basis
of kinematical quantities consisting of the position vector of points along the curve of
centroids and the orientation angles of the cross sections of the rod relative to a fixed
coordinate system. It is a generalization of the work of Tadjbakhsh (1966) in which the
theory of planar motion of the extensible elastica was described.

The history of construction of approximate theories in the context of three-dimensional
nonlinear continuum theory is also varied and to it many investigators including some of
the above authors have contributed, see for example, Naghdi and Wenner (1974).

KINEMATICS

An elastica is a nearly uniform slender rod of finite length. In the unstressed state the
centroids of the cross section form a space curve C that is called the reference curve with
an arc length s. The orientation of the principal axes of the cross section vary continuously
along the rod. This means that in the unstrained state the rod has arbitrary twist and
curvatures. With respect to an inertial Cartesian frame x the position of a point s in the
unstrained state is denoted by X = Xi(s)ni, i = 1,2,3, with ni being the dextral unit
vectors of the frame x.

The cross sectional area can be slowly varying function of s and will be denoted by A(s).
As the rod deforms the curve C acquires new configuration c that changes with time. The
arc length along c is denoted by ý that depends upon s and t, i.e. • = • (s,t). The position
of a point s on c at an arbitrary time is x (s,t) so that

x(s,to) = X(s), 0(s,to) = s (la,b)

where to is a reference time at which the rod is in the unstrained state. Also

= =(x, x)f (2)

where prime denotes differentiation with respect to time and summation over a repeated
index is implied. The strain e is defined by

e=- -1 (3)

where e > 0 denotes extension and e < 0 contraction. The strict positivity of • implies
that -1 < e < w.
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Attached to any point s of c a Cartesian coordinate frame y will be assumed and
will be referred to as the body reference frame. The coordinate axes of the body frame are
Y1, Y2, Y3 with the y3 axis pointing in the direction of increasing s and y, and Y2 being the

principal axes of the cross section. The dextral unit vectors of the y frame will be denoted
by ei, i = 1,2,3, with their orientations at the reference time t. being Ei.

Denoting by lij(s,t) and Lij(s) the elements of the matrices of direction cosines of

the dextral sets ei and Ei one has

S= lij ej = LijEj (4)

and

e, = lij nj Ei = Lijnj (5a,b)

The angles Wi represent rotations between the corresponding pairs of Ei and ei when

these directions are assumed to issue from a common origin, Fig. 1. These angles are
determined through

cos~pi = ei • 9i = Iji Lji, i=1,2,3 (sum only on j) (6)

The direction cosines li are characterized non-uniquely by three orientations angles

01(s,t), 02(s,t) and 03(s,t). These angles can be selected in a variety of ways and
represent three finite rotations about unit vectors ei or ni. If these rotations are properly

selected the fixed orientation ni may be brought to any arbitrary body orientation ei.
Kane et al. (1983) list at least 24 possibilities for the order of rotations of the angles 01, 02,

03 about the body set of unit vectors ei or the fixed set of unit vectors ni.

Regardless of the particular choice of orientation angles the angular velocity
W = wiei of a cross sectional element Ads, Fig. I of the rod is determined uniquely from

(" a) (7)Wi =nTigh | islih, (0=

where?7ijk = fijk (fijk + 1)/2, (no sum on i.j.k) and fijk is the alternator tensor with the
non-zero components ef2 3 = ý231 = '321 = + 1 and t, 3 2 - f321 = E2 13 = --.

The curvature vector K = Kiei of the rod can be defined in a similar way with K3

representing twist and Kjand K2representing bending curvatures about the principal
directions of the cross section. Using the dynamical analogy of E.I. Routh, Love (1944) has
noted that if the frame y were to move with unit speed along the curve c such that at any
point t of c it has the orientation of the y frame at that point then the angular velocities w,
and W2 will be the principal curvatures K , and K2 of the rod. Also the angular velocity w3
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will be the twist curvature K3 of the rod. Thus the fornmulas that define the angular
velocities from direction cosines can be used to determine curvatuires, provided time
differentiation is replaced by differential with respect to f. Therefore one has

Ki = 17igh ali 1-- ?igh I" g lih k , (8)

where differentiation with respect to ý has been replaced with differentiation with respect
to s and curvature parameters ki = (l+e)Ki is also introduced. For future use one may
note the formulas for derivatives of direction cosines lij and the unit vectors ej.

lij = (l+e) Cghj lig kh ij = Cghj Iig Wh (9a,b)

ei = Ckii kJ ek e •-kji wj ek (10a,b)

if Ki be the curvatures of the rod in the unstrained state (e = 0) then from (8)
I

Ki = fligh L ig Lih (11)

Since d3 and Ox/e5l are both unit tangents to the central line one has

Xi = (1+e)li 3  (12)

We assume that the center of mass of the cross sections coincide with the centroids.
The linear and the central angular momentum per unit length are then given by

p = pA xin1  (13)

and

H - p1w = p(Iii wtel + 122 W2 e2 + 133 w3e3) (14)

where p is the mass density per unit unstrained length and I is the diagonal moment of
inertia tensor with components

In= fy2 dA, 122- yld2 , 133-=Il+122 (15)
A I

Equations of Motion

Referring to the body set of axes ei one can define the vector F of the resultant
shear stresses F, and F2 and the axial stress resultant F 3. Similarly, one may define the
couple stress vector M consisting of the bending moments M, and M2 and the torque M3.
Explicitly we have

F = Fiei and M = Miel (16)

The well known dynamic equilibrium of the rod can be expressed.by the equations
of the balance of linear momentum
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F' +f=O (17)

and of the balance of angular momentum

M' +x' x F+m=m (18)

wherein f and m represent distributed force and moment acting on the rod. The scalar
components of these equations can be referied to the body set of axes. For this purpose one
needs to express all vector quantities in terms of unit vectors el and use (9)-(10). Then
(17) becomes

FI + k2F 3-k 3F 2+ f - pA R. lI (19a)
I i

F2 + k F 1-k 1 F3 + f = pA ij 1j, (19b)

3F + kFj- k2 F f1+' = pAJ•j 1j3 (19c)

while (18) assumes the form

MI + k2M3 - k3M2 - (1+e)F2 + mI = pI1(w1 + w2w3) (20a)I y

M2 + k3M1 - kIM3 - (1+e)F1 + m2 = P12(W2 + WIW3) (20b)

M3 + k1M2 -k 2M1 + mY = P[Jc 3 + (I2-I 1)ww7 (20c)

where 1 = 111 12 = 122 and I = J3 = I• + I2. The superscript y on the components of f
and m denote the components of these vectors in the body reference frame.

To express the equations of motion in the inertial frame we introduce the
components of the stress resultants in that frame. Thus

FiX =1li Fj Mi =li Mj (21a,b)

Then (19) becomes
X

Fi + f -pAi. (22)

and (20) assumes the form

xi
Mi -(l+e)F 2 + mt = P(Irj lIj 6jr + C grj Isj 'it WWsr) (23a)

M 2 -(1+e)F, + m 2 = P(1rj 1l 2 j r + egrj Isj 12g WsWr) (23b)
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M3 + m3 = P('rj 13j 6r + eJj 'Sij '3g WsWr) (23c)

Either of the set of equations (1-9H20) or (22)-(23) can be considered as the governing
differential equations of motion. These equations will have to be supplemented with
constitutive relations that define resultant axial stress F 3 and the resultant bending and
twisting couples M1, M2 , M3 in terms of the axial strain e and curvatures k1 , k2, k 3. In the
next section we consider the derivation of these constitutive relations.

Constitutive Relations

We assume that the motion of the elastic rod is equivalent to the stationarity of the
Hamiltonian H which is defined by

t 2 s8

HIEij (W), xi, el = f f Ydsdt +

ti 81

t2 S2 S2 t2

f 1 •iXi+Ii] dt-f [,pAv-x,] ds-

t 1 81 i

82. 12
/P[I 1W1 tt.-I, 2 ,2 2+ J- (p3 ds (24)

St ti

where .2¶s the action density function

.Y= 4pA 1i ii + I P(I W +I 2 1 2 J ) -w (e, ki) +

)XjIj3 (1+e) - x] + z xi + mx Wi (25)

-1 -I -2 -2
and Fi, M' and Fi , Mi are the applied forces and moments at ends sa and s2 respectively.

-12 -12
Also vi' and wil are the initial and final linear and angular velocities. The strain energy

function w depends upon the kinematical variables e and ki. The precise nature of this
dependence is the constitutive relations that we seek and is a consequence of the
stationarity of H. The functions Ai are the Lagrange multipliers that allow the constraints
(12) to be incorporated within the Hamiltonian. As a result xi and l can be regarded as
independent variables. Additionally the constraint (12) implies the definition (2)-(3) for
the strain e and hence in (24) e can also be viewed as an independent variable. To see this
we need to note that if each side of (12) is multiplied by itself we obtain x' x' -

i i
(1+e)2lili- = (1+e) 2 which is restatement of (2)-(3). The terms f xi and my wi in (25)

represent the density of the potential of the applied forces and moments on the rod. As
stated in (5) the angles Wo1 are the rotations from Ei to ej.
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With these preliminaries we note that the Euler equation corresponding variationsI x

6xi is simply A` + f~ = pA xi which when compared with (22) reveals that A = F. Next

considering the variations with respect to e we obtain

11 3 = li = F 3  (26)

which is the constitutive relationship determining the axial force F 3 as the derivative of
strain energy with respect to axial strain e.

We now turn to the Euler equation corresponding to the variation b6,. For this
purpose we note that lij, wi and k1 depend on wi. For orientation angles of the cross
section we select the sequence of body rotations first 02e2, second 03e 3 and the third 0Oe,
with 01 S V1. In this sequence the last rotation is through V, with respect to which
variation is sought. The matrix I of the direction cosines is given by

[C2C3 -CC2SS3 +S1 S2  SiC 2 S3 +CCS2

1= B (02)C(03)A(P1 ) = / s --C3 (27)

L-S 2C3 C IS 2S3 +SIC2 -SIS 2S3 + CIC2

where

Ct = Cos j, Si = Sin Oi (28)

1 0 0 coso 0 sine'

A(O)= 0 cosO -sinO B(O)= 0 1 0

0 sinO cos J --sine 0 cosj

cose -sine 0

C(O) {sine cosO 0 (29)

0 0 1

Subsequently, we find from (7) and (8)

wl=02 S3 + 01, W2=02 CIC 3 + 03 Sip W3=-0 2 SC 3 + 83C, (30)
1 I / I /

k,=02 S3 + 01, k2=02 CC 3 + 63 Si, k 3=-9 2 StC 3 + 03C1  (31)
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From (24) we have

{F') + La.+(l )Fj [ 1P, +__

a 1W awil - P12W2 8W2 8P w~
NIP IVvd [Vv-,~ ur Pipw8  (32)

Noting that 81 E V, we have from(30) 0WI/081 = 1, 0&2/&pM = W3 OW3/0V1 --- 2.
Alsofrore (31) ki/0O.I = 0, 8121/aP = k3, ,k318(PI = -k 2 and from (27) 0l9,I, = -li.
Using these results and the inverse of (21a), (32) becomes

(•.-i)' + k• - kr3- -(l+e)F2 + m*I = pII(&1 + W2w3) (33)

In exactly the same manner one can proceed o determine the Euler equation for a
variation 64o2. Now the consecutive sequence of body rotations 03e3, Ole, and 02e2 is
selected with 02 _=.2 Without going into details one obtains

+ k W + - kT7--(l+e)Fi + m2 = pI 2(ý2 + WIW3) (34)

For variation of 93 we adopt the consecutive sequence of body rotations leb, 02e3
with 63 = (p. The matrix of direction cosines is

[ C2C3 -C2S3  s2
I=A(0,)B(8 2)C(03)=[ SIS 2C3 + CIS3 -S•S 2S3+CIC 3 -SlC2 (35)

L-CS 2C3 + 5S53 CIS2S3+S1C3  cIC2

with angular velocities of the cross section and the curvatures given by

W1= 01C2C2 + 02S3 WJ2 = 02C3 - A0S 3, W3 =03 + 6152 (36)

k1 = O1C2C3+ 02S3, k2 = 02C3 -0C2S3, k3 = 0 3 + S2  (37)

For this case li3 does not depend on 03 and hence the Euler variational equation assumes
the form

+V k -- k~r-f + mi3 = p[J63 + (12 - II)wIw21 (38)

The specified boundary conditions at s = sI, s2 must be consistent with

[(F1 - F1 )&xt + (1Fi - M1)bW1J]' = 0 (39)

for arbitrary and independent variations 5xi and 6 (i. Similar restrictions are imposed on
initial and final data, i.e.
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{ pA(xic - Vi)&5xi + p[II(w1 - Zj~~

+ 12(w 2 - D2)6b2 + J(W3 - =3)6w3] 0 (40)ti

Comparison of equations (33), (34) and (38) with equations (20a,b,c) respectively,
establishes the constitutive relations

Mi = i i = 1,2,3 (41)

A STRAIN ENERGY FUNCTION

In order to gain an insight into the nature of the strain energy function we consider the
strain of the lines and angles in the cross section of the rod. For this purpose we invoke the
Kirchhoff hypothesis which assumes that the plane cross sections of rod that are normal to
the axial direction in the unstrained state remain normal to the strained axial direction
during deformation. Therefore the position vector to a material point in the cross-section
before and after deformation can be given by

R = X(s) + yjE1(s) + y2E2(s) (42)

and

r = X(s) + *(s)[ylel(s) + y2e2(s)] (43)

respectively. The parameter c(s) is to be fixed by enforcing traction-free boundary
conditions on the lateral surface of the rod.

Using the concept of extensional strains for stretching of line elements and distortion of
angles between perpendicular lines as shear strains (Wempner, 1991), we define
components of strain by

cj = +(gi - gj -- Gi • Gj) (44)

where

8r 4r
gael, 92 W2,

g 3 = += a'yle ± a/y*e2 + ayle 1 + aY2e2 + (l+e)e3  (45)

G, = Y-1 = El, G2 = o•- = E 2

G3  - = yIEI + y2E; + E 3  (46)
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Using (8) we can establish

e* • ej = •Ej,, (47)

Ei • Ej = fjKM (48)

where Ki is the curvatures and twist in the unstrained state. Therefore (9) yields as the
strain components

El = f22 = i(a2 - 1), C12 = 0

C1 = f[a(a'yl- ay2ks) + y2K 3]

E23 = 4a(a'y2 + ay2k3) - ylK 3]

E33 = e + je 2 - yx[(l+e)ak 2 - K21 + y2[(l+e)ak1 - KI] - y•, 2(a2kjk 2 - KIK 2) 4-

1y•[a"2 + 2(k• + k3) - K2 - K3)
+ jy2[a,2 + a2(k2 + k2) - 2i- 2I) (49)

For a linear isotropic elastic material the non--zero stress components per unit strained
area are

041 = (A + G)(a 2 - 1) + A3 30 12 0

22= (A + G)(a 2 - 1) + A.33 , a23  2Ge2 3

a = A (a 2 - 1) + (A + 2G)e33, •03- = 2GE31  (50)

where A and G are Lame's constant and the shear modulus, respectively. The traction per
unit undeformed are is then given by

t3 = r~igi(51)

One can define the axial stress resultant F3 by

F3 = ft e 3 dA
A

=A (1+e) [(A+2G)(e+ie2) + A(a2 -1)]

+ (A+2G)[Id[(l + e)akt - K1]aki + 12[(1 + e)ak2 - K 2]ak2

+ -Ij(1 + e)(a'l 2 + ak2 - K2  + 2k 2 -K 2 )
I L 3

+ j 2(1 + e)(a/'2 + a2k2 - K2 + a2k2- K2)] (52)
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Similarly we have

MI= f ayt 3 - e3 dA = iX(A+2G)I4[(1 + e)ak1 - Ki](1 + e)
A

+ 4Ia2k,[A(a2 - I) + (A + 2G)(e + ½e2)] (53)

M2 =-•aylt3. e3 dA = a(A+2G)I2[(1 + e)ak2 - K 2](l + e)

+ 12a2k2[A(a2 - 1) + (A + 2G)(e + e2)] (54)

M 3 =-fa(ylt 3 - e3 - y2t 3 - e,)dA = JGa2(a2k 3 - K 3)

+ Ja2k3[A(a2 - 1) + (A + 2G)(e + ie2)] (55)

One may note that the integrability conditions

' = •' - ' = ----')

6 M 2 0M 2  M2 = M 3  (56)

are satisfied. Hence existence of a strain energy function is assured and by integration we
have

W = A- 2 e2(1+e+4-) - AA(l-a2)(e+ie 2)

+AIla2(a2--1), + (A+2G)I iak E[1+ 2e+4ek ý-l+e)KI]

+AI2a2(a2---1) + (A+2G)I 2 ak2 [1.÷2e 2+4ea.. 1 + e)K2 ]

_+2 l+e)2 1(a-2 + a2k -K2) + 12(a'2 + a2k2-K2)

vc2(2~l~ + =j=~~e)ak-3 + jGJ a(&ik -K 3) 2 (57)

For an initially straight rod Ki should be set equal to zero. The above form of W reflects
material isotropy, i.e. W(e,ki, k2, k3) = W(e, k2, ki, k3), provided that I1 = 12.
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We note that positive curvatures imply positive bending moments and conversely negative
curvatures imply negative bending moments provided that e>(-1+1/f3) for a = 1. This
shows that equations (53) have a limited range of validity if the sense correspondence
between moments and curvatures is to be retained. We also note the second order coupling
between the squares of the curvatures and the axial strain e in (52), which implies that
axial force can be generated by bending or twist only.

The parameter a(s) depends on the boundary conditions applied at the lateral surface of
the rod. If the lateral surface is fixed, then a(s) = 1. For zero tractions on the lateral
surface, a condition appropriate for thin flexible rods is adopted according to which the
average of atl and a 22 over the cross-section should vanish, i.e.

fadA= f a2dA = 0 (58)

The above condition reduces to

H(a,ki,e) =- a'J + a2(Iik 2 + I2k 2 + Jk 2 + A
2 2 2

-{ 1K21 + g2K2 + JK 3) + 2Ae(1 + ½e) A 0 (59)

This equation should be interpreted as a differential equation for a(s) when ki and e are
known. To achieve this (52) is solved in an iterative procedure in which at every step ki
and e are known. We begin by writing (52) as lim H(anl,, k'1, en) = 0 with n = 0, 1, 2, 3,

n-f
... For the first iteration (n=0), e0 = 0, kq = K i, a, = 1, and the six equations (15) - (16)

after using (22), (33) and (57) contain only six unknown quantities F1, F2, e, and k! when
the externally applied forces and moments are prescribed. Solution of this set of equations
enables one to use k! in the curvature-orientation angle relations such as (31) to determine
the latter i.e. 8i. Now lij (hk) are known and one proceeds to determine Vi from (21) and
xi from (9) using the appropriate boundary conditions. The solution for the first iteration
is complete. One enters (52) with el and k! and computes a2 and the iteration proceeds.
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VISCOHYPERELASTICITY
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ABSTRACT

A recently developed 1 ' 2 ' 3 ' 4  internal solid theory for rubber

viscoelasticity is reviewed in the context of finite hyperelasticity.

Viscohyperelasticity, in which time dependent reference geometries are used

with internal solids having hyperelastic energy functions, is developed. The

material constants for the internal solids are determined by tensile, shear

and biaxial tests. Computational aspects of the theory and its inclusion

into finite element analysis are discussed here. Previous finite element

models1 2 ,3'4 are improved with a predictor-corrector scheme. Time dependent

pressure loads are applied to the interior of a thick walled rubber cylinder

to demonstrate the use of viscohyperelasticity.

INTRODUCTION

The development of useful computational models for rubber vulcanizates

requires interactions between experimentalists and analysts. These

interactions often involve modeling the performance of rubber subjected to

dynamic strains. Many studies have been done to analyze the case of small

dynamic strains about a large strain deformed elastic state. Although the

information obtained from such studies has proven valuable for the design

process, it does not preclude the need for a capability to measure and

predict large strain dynamic data. Viscoelastic models valid for large

strains have been under development for about forty years. Typical

weaknesses of these models are a lack of standard laboratory tests to

determine their parameters and their inability to predict a wide range of

large strain dynamic test data.

* Vehicle Structures Division

** Mechanics Division
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History integral formulations for modeling the viscoelastic response of
5

elastomers have been used by Bernstein, Kearsley and Zapas and McGuirt and

Lianis5' 7 . Their efforts consisted of applying the theory of Green and

Rivlin8 to the viscoelastic deformations of both low and high percentage

crosslinked elastomers. In both cases they demonstrated that only a few

parameters are needed to model most materials of interest. However, the

history integral method has not proved attractive for finite element

algorithms due to its large storage and computational requirements. The fact

that only a few parameters were needed to model viscoelastic effects in the

rubberlike materials they tested implies that alternative models may also be

useful. Finite element viscoelasticity algorithms using Kelvin elements
9

(valid for small strains) were developed by Zienkiewicz, Watson and King

and Carpenter 0. These algorithms avoided the use of the history integral

method, are computationally attractive and have given acceptable accuracy for

small strains.

In this paper we review viscohyperelasticity '2,3,4 and present a finite

element analysis of a thick viscoelastic rubber cylinder subjected to a

cyclic internal pressure loading. We also restrict this paper to the

essentials of the computational algorithm.

VISCOHYPERELASTICITY

Background information on hyperelasticity, determining principal

stretches, strain invariants, etc. is available in many books (for example,
11 12 13

see Treloar , Ogden , or Green and Zerna3). The first new concept to

describe in viscohyperelasticity is that of a changing reference shape. This

can be seen by considering the step-strain relaxation of a two network system

consisting of chemically crosslinked molecules and entangled molecules as

shown in Figure 1. The sides of the rectangles represent the chemically

crosslinked molecules which are not damaged during deformation. The diagonal

represents a molecule which is rigidly bonded at its ends to the chemically

crosslinked network and the loop on the diagonal represents an entanglement

which can slip when stressed. During the step-strain relaxation the stress

due to the deformation of the chemically crosslinked system (square -

rectangle) remains constant in time. It is determined from a hyperelastic

energy function. The stress, a in Figure 1, due to the deformation of the
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entangled molecule (or a molecule which breaks and reforms continuously in

time) decreases in time since the reference shape continuously changes until

it looks like the deformed shape (see the bottom of Figure 1). The second

concept is related to Green and Tobolsky's 14 work, it states that the force

driving the changes in reference shape is a function of the difference (in

the sense of a mapping function) between its current shape and the shape of

the chemically crosslinked network to which it is attached. The overview of

viscohyperelasticty follows.

Consider a collection of N solids, with reference shapes given by

coordinates (Xsi, Xs 2, Xs3 ), where s = 1, 2, ... , N, and each with the same

deformed shape given by coordinates (x$, x2 , x 3 ). Let one-to-one

differentiable mappings between the reference shapes and the deformed shape

be indicated by

D = D s(X s, x) ()

where X = (Xsit Xs2, Xs) , x = (xI, x2 , x3 ), see Figure 2. The

mappings of equations (1) are used to detehmine the principal stretches for

each solid, As = (Asl, As2 A s3). Let the solids be isotropic and

hyperelastic with energy density functions given by

Ws = Ws (As) (2)

Then, for the case of incompressible solids, the principal Cauchy stresses

are given by

aw
A - . p i = 1, 2, 3 (3)

Si. Si a3X. s
si

where ps the hydrostatic pressure which is determined either analytically

by the stress boundary conditions or numerically by the requirement that the

mapping of equation (1) represent an incompressible deformation. In

continuum mechanics the study of rubber elasticity (for incompressible

deformations) is focused on the mathematics of (1) and (3), and on the

physics and mathematics of (2).

Assume the stresses in (3) are viscoelastic. Then, let s = 1 represent

the long term (relaxed) hyperelastic solid whose reference geometry does not

237



change in time. That is, = the relaxed stresses at a specified

deformation. Let the remaining solids have time dependent reference

geometries. We then have Xs = Xs(t) = (Xsl(t), Xs2(t), Xs3 (t)) for

s = 2, 3, ... , N. The Cauchy stress vector in the time dependent deformed

body x(t) = (x 1 (t), x2 (t), x 3 (t)) from all of these solids is

N
{T(t)} = {•I (XIV x(t)) + E {s (X s(t), x(t))} (4)

s=2
3

where {ts} = ts{ei} with s = 1,2,3

i=1

and {e.} = the Cartesian unit vector for the i'th principal

Cauchy stress.

We will have a viscoelastic model if X varies in time such that E(t)5

relaxes. That is, such that si(t) - 0 for s = 2, ... , N when x(t) = a

constant shape.

The viscohyperelastic model simulates relaxation as follows. At any

instant of time let the deformed state x(t) be the relaxed state of X s(t) for

s = 2, ... , N. That is, if x(t) is held constant at xc then require X (t)

xc as t - -. This represents a kinematical relaxation process for which

I si(Xs(t). Xc) -* si(XC, xc) = 0 as t - - (5)

Then, from (4), {1i(t)} - {11 (XI, Xc)} = the long term hyperelastic Cauchy

stress vector in the solid as t - -.

At this point we note that there are different ways to enforce the

kinematical statement X (t) -* xc. We have selected to drive the kinematics

with Cauchy stresses on the shapes X (t). These stresses are generated as
follows. Let the inverse mapping of (1) be given by

ds = ds (x, Xs) = D s(Xs, x) for s = 2, ... , N (6)

Use equations (6) to determine principal stretches for each inverse mapping,

As = (A s, As2, As3). Note, since we assumed the mapping (1) represents an

incompressible deformation then the inverse mapping of (6) also represents an
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incompressible deformation. For each mapping (6) define hyperelastic energy

density functions

Qs = Qs(AS) (7)

Then, the principal Cauchy stresses on the geometry Xs with respect to

geometry x as a reference are given by

= A - 1 1, 2, 3 (8)
51 Si ;A- P

where ps = a hydrostatic pressure. The energy function Ws is ad hoc in

this model. The desire is to determine a QW which will allow large strainS

viscoelastic stress data to be modeled. Note, Maxwell models are also ad

hoc.

The stresses in (8) are of a hyperelastic form and the internal solid

model is completed by requiring that Xs(t) W x(t) by a relaxation of T.si

That is, determine X(t) by integrating the following differential equation

which states that the rate of change of is, per unit time is proportional

to I

ai . ai dX
- as a 3X dt s(

s

Equation (9) is a nonlinear differential equation whose integral determines

the time dependent undeformed geometries. To implement the theory we must

measure stress relaxation data and use it to determine Wi, W, Qs and n for

s = 2, ... , N. Below, we: (a) present a one dimensional example of the
the theory in which the form of Q is identical to the form of W , (b) review

SS

the finite element implementation of viscohyperelastic theory and (c)

computationally demonstrate the method by applying a dynamic pressure loading

to the interior of a thick walled cylinder.

ONE DIMENSIONAL MODEL

A one dimensional time dependent internal solid (network) is shown in

Figure 3. It is assumed that in all states the material is NeoHookean with a

shear modulus given by p. Its time dependent reference length is given by

L(t) and its deformed (actual) shape is given by x(t). Following Treloar
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at any time, t, the force required to hold the material at length x(t) is

given by

f(t) = 2 (10)

x(t)
where X - = X(t) = the internal solid's stretch ratio.

L(t)

Next, we compute a force (Cauchy) on t... current reference shape, L(t), by

computing a stretch A(t) = L(t)/x(t). This stretch will go to unity as

L(t) - x(t). The force is given by

g(t) A A2 (

The model is completed by relaxing g(t) with a time constant q as follows

a8g gdA
- -= - n- - =g (12)

at aA dt

Given x(t) (enforced motion), equation (12) can be numerically integrated and

the time dependent viscous force for this internal solid (network) is then

given by equation (10). If f(t) is specified then a predictor-corrector

algorithm (described below) is useful for obtaining the simultaneous

solutions of both (10) and (12).

Figure 4 contains a typical response of the above one dimensional

internal solid when it is subjected to a step-strain relaxation test. A more

general one dimensional model is easily obtained by superimposing a number of

internal solids (different energy functions and relaxation times) with a long

term solid (time independent reference shape).

FINITE ELEMENT ANALYSIS

Consider the superposition of solids indicated in Figure 2 with finite

element discretizations as shown in Figure 5. Assuming inertial forces are

negligibly small, the time dependent potential energy of all the solids in

Figure 5 is given by
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N
I = E Ie = Z [Ws(X sX) + P s(Xsx)] - V(xt) (13)

e S1

where XsX = global vectors of nodal unknowns,

Ws (X sx) = hyperelastic energy function for solid s,

Ps(X s,x) = penalty function to enforce incompressibility

for solid s,

and (P(x,t) = work done by applied forces.

The first variation of H in equation (13) yields

E11= [ gs - f 6x + Z h 6X (14)S=1 ss=2S S

where

s = - W+ P = g(Xx) s = 1,2,...,N

andax h - Ws + Ps fgs s = 2,3,...,N

ax
and

a(P
f = -=f(x,t).

ax

The variables X can not be freely changed. They must change in accordance

with their relaxation equations hence, *6X = 0. Thus, the equations ofS

motion are given by setting the coefficient of 6x in equation (14) to zero.

These equations must be solved simultaneously with the relaxation equations.

Thus, the solutions are obtained by solving

N
Z gs(X ,X) - f(x,t) = 0 (15)

s=l
and

ax
-_ss (x,X s) at = g s = 2,3,...N (16)

at
where

a

s

a
2

f X2 Qs +Ps

S

Qs (X,X) = a hyperelastic energy function for the relaxation of Xs,
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and P (x,Xs) = a penalty function to enforce incompressibility on Q Ws Ss
The integration of equations (15) and(16) can be accomplished with the

following predictor-corrector scheme. Let x(n), X s(n) and x(n+l), X s(n+1) be

the configurations shown in Figure 5 at times tn and t n+. Also let At =

t - t and let x(k)(n+l) X(k)(n+l) be estimates of x(n+l), X(n+l) at

iteration k. We make a trapezoidal prediction for equation (16) and a Newton

- Raphson correction of equation (15) as follows.

A. Initialize X (n+l) with an Euler step on the relaxation equation.

At -1
AXs(n) - - [•s(x(n),Xs(n)] gs (x(n),X s(n)) (17)

ns

X (1)(n+1) = Xs(n) + AXs(n) (18)

B. Initiaiize x(n+l)

x(1) (n+1) = x(n) (19)

Note: As vectors x(n) are collected equation (19) can be improved with

conditional extrapolations using previous states x(n-1), x(n-2), etc.

C. Compute equilibrium at tn+l.

(k) N (k) (k) (k) (k)
G (n+1) = Z 9s(Xs (n+l),x (n+l)) - f (x (n+l),t n+1)(20)

s=1

D. Check for convergence.
11 G (k) (n+l) 11 < c (21)

E. if converged, go to the next time step, equation (17), if not

converged update x(n+l) using a Newton - Raphson step on the equilibrium

equation. (k+1) x(k) (k) -1 G()
x (n+1) =x (k)n+l) - [KG )(n+l)] G k)(n+1) (22)

where

(k) N (k) (k) (k)
KG (n+1) = Z K s(X sk(n+l),x (n+1)) - Kf(x (n+l),t n+)

s=l
a2  af

Ks = - (W + P ) and K = -x
3 X2 s s f ax

F. Finally, we make a trapezoidal update to X s(n+l) using x (k+)(n+1)
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and the relaxation equation

AX (n+1) = - [RZ s(x(k+l)(n+l),Xs.kln+l))]
is(x(k+l) (n+l),X sk) (n+l))

X (k+l)(n+l) = X (n) + 1/2 ( AX (n) + AX (n+l)) (24)S S S S

G. Go to equation (20).

The above integration algorithm has the desirable feature of maintaining

the volume constraint on all solids as accurately as numerically possible at

each time step (given that we have a penalty formulation). We now determine

the large time dependent displacement of an inflated thick walled cylinder.

The dimensions of the cylinder are shown in Figure 6. it is assumed that the

cylinder does not deform in the axial direction. Although this problem can

be solved with a one dimensional model we use it to test the axisymmetric

finite element code (check for symmetry, etc.). We model the long term

hyperelastic response with solid #1 and the Mooney energy function by Oden15

as modified for a penalty enforcement of the volume constraint by Fried and
Johnson1 6 . Two internal solids were used, one quick and one slow relaxing

solid. The energy function for each solid was (s = solid #)

A( 32/3 s 2 1/2(2

B132s 313s ) + -- ln (13s (25)
2

where Ils, I2s' and I3s are the strain invariants for each solid's mappings

(equation (1)). The material constants are listed in Table 1.

Table 1. Material constants for solids.

Solid # As B X ns

1 80. 20. 50,000. -

2 20. 5. 12,500. 2.

3 20. 5. 12,500. i10.
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Details on the element mappings, the expressions for the work performed

during inflation, etc., that are not provided in Reference16 are included in
17

Reference .

The pressure vs time curve for the first example is given in Figure 7.

In this case, the pressure was ramped, held constant, ramped, and then held

constant again. Figure 7 also shows the dynamic displacement of the inner

surface. The large strain creeping under constant loading is clear. Also,

the deformed mesh is compared to the twu time dependent reference meshes at

both t = 30 sec and t = 75 sec. Figure 8 shows the pressure vs inner radius

displacement. The static solutions of Oden15 are approached in Figure 8 at

the end of the creeping (constant load).

A cyclic sawtooth pressure loading was applied in the second example.

The pressure +ime curve is given in Figure 9. The inner radius vs time graph

demonstrates softening fifects (the displacements continue to grow in each

cycle). Also, at t = 10 sec the time dependent reference geometries and the

deformed mesh are compared. Solid #2's reference shape closely follows the

deformed shape (fast relaxing material). That is, it is nearly in phase with

the deformed shape. Solid #3 (slow relaxing material) is out of phase with

the deformed shape in this example. The pressure vs displacement hysteresis

loops are shown in Figure 10 with the long term (quasistatic) solution of

Oden.

SUMMARY

An internal sol~d model for large strain viscoelasticity in which

hyperelastic solids with time dependent reference shapes

(viscohyperelasticity) are superimposed was reviewed. The time dependent

kinematics are driven by the relaxation of hyperelastic forces. Like a

Maxwell model in small strain theory, both creep and relaxation behavior can

be simulated. Viscohyperelasticity, however, allows for the viscous forces

to be dependent on both the large strain history of the deformation and on

the current large strain state (through the hyperelastic energy functions

selected to drive the kinematics). The inflation of a thick walled cylinder

was determined using the finite element method to demonstrate the theory.
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MULTIGRID ALGORITHMS FOR THE FIRST BIHARMONIC
PROBLEM: ROBUSTNESS*

M. R. HANISCH
MATHEMATICAL SCIENCES INSTITUTE

CORNELL UNIVERSITY

ITHACA, NY 14853

Abstract. We consider the numerical solution of the first biharmonic problem. Numerous discretiza-
tions proposed for this problem lead to large, sparse, and extremely ill-conditioned linear systems AU = F.
We shall describe certain fast solvers for such systems. In particular, for the mixed method of Ciarlet and
Raviart, and for the nonconforming finite element method of Morley, we describe multigrid iterative solvers
for the systems AU = F.

Theoretical results and practical computations have shown that the multigrid V-cycle and W-cycle iter-
ations work extremely well for second-order elliptic problems. However, the V-cycle and W-cycle iterations
may diverge when applied to the first biharmonic problem. It is nevertheless possible to construct provably
robust multigrid iterations for these fourth-order problems. From a single "Variable V-cycle" iteration we
construct a preconditioner 5 with the property that BA is uniformly well-conditioned. Furthermore. BA
is symmetric with respect to an appropriate inner product. The linear systems AU = F may then be
rapidly solved with a preconditioned conjugate gradient iteration. The effectiveness of this strategy will he
illustrated computationally. For example, on a 255x255 mesh where the condition number of A may exceed
10', we obtain BA with condition number typically less than 20.

1. Introduction. In this paper we consider the behavior of multigrid iterations ap-
plied to finite element schemes for the first biharmonic problem in the plane. The first
biharmonic problem models the bending of clamped elastic plates and in fluid dynamics.
two-,dimensional Stokes flow. We 'specifically consider the Ciarlet-Itaviart mixed method
[11] and the nonconforming method of Morley [23]. Additional mixed methods, the method
of Herrmann and Miyoshi [16, 17, 22], and of Herrmann and Johnson [16, 17. 181. and the
method of Raviart and Thomas [25] for second-order problems. may similarly be considered:
cf. [15]. Each of these methods leads one to solve a sparse but extremely ill-conditioned
linear system. And in the case of the Ciarlet-Raviart mixed method we obtain an indefinite
block matrix equation of the form

t 'h D9 0 U jh ) = "

Here U1h and Sh are vectors of approximate nodal values for the solution and its ,legative
Laplacian. For simplicity we shall take G = 0, in which case (1.1) corresponds to the
Dirichlet problem with homogeneous boundary data. Eliminating S1, friom ( 1.1). we obtain
an equation involving an ill-conditioned but typically symmetric positive definito Schur
complement

(1.2) A Ih = [DQ-'T] 1h F.

With Uh obtained front (1.2). one may then compute i, = _O-lpt( The costly com-
putation of Q-1 may be avoided using a technique described in Section 2.1.

This work was partly supported by the U.S. Army Research Office through dhe M ath,'matical Sciences
Institute of Cornell University.
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It can be proved that a multigrid 'N-cycle iteration which uses a sufficiently largo?
but undetermined number of smoothing steps, a number we shall parametrize with in.
can be used to solve the Morley equiations aud also the Ciarlet-Raviart equations through

(1.2). The hypothesis that ia is sufficiently large is common to many niultigrid analyses.
For example, Brenner [9] has proved convergence of a 'N-cycle iteration for the Morley
equations when m is sufficiently large. And if m is sufficiently large, a W-cycle iteration
for the Ciarlet-Raviart normal equations, ,V

2 = Vt iV, can be proved to converge, see '241.
Furthermore, practical computations demonstrate that m = I is large enough for W-cvcie
convergence for many problems. However, for the Mvorley and Ciariet-Raviart eqluationis.
larger values of m may be required for 'N-cycle convergence. A numerical example i,7 giVenl
in Section 4 for which 'N-cycle convergence is not guaranteed unless at > 8. As a value for
mn sufficient for convergence cannot be specified a priori, W-cycle iterations are not robutst
for these problems.

To obtain a robust multigrid scheme, we will construct a multigrid preconditioner B for
the Schur complement A. The action of this preconditioner is computed by performing a
single iteration of a particular multigrid scheme. A multigrid preconditioner will similarlY
be constructed for the symmetric positive definite Morley system. Conjugate gradient
iterations for the preconditioned problems. for example

(1.3) BA Uh = 8F,

are known to converge with a rate which is hounded by a function of the conditik n number
of SA, K2(BA). The smaller the condition number, the better the hound, as we snail see ill
(3.20) of Section :3.2. It will be shown that a. -Variable V-cycle" multigrid precoraflitioner
yields problems (1.3) with small condition n~umber. Iounded indepenidenflY of Ihle niesh
diameter for a scale of underlying finite elemnent meshes. TFhis is an irnlproýveniviit oVer ;I
result of Braess and Peisker [4].

The( lack of 'N-cycle robustness observed with the Morley and Ciarlet -Raviar!T0t nierhd<
ca;n be understood to he a conseqjuence of certain features: nanielv. hI lption uiv.teeripss o

the Morley finite elemuent spaces andl thte non lin hen tedlness of' qua~drat i forin- i rid iced by'
pequations of theý forin ( 1.2). Hlowever, a miult igrid anal~ysi~s bedon 1he tlihe-Yorf 4 ranintik
lPasciak. and] Xu iH c-an be provi led in eachl cas.e. Acc, rdi uly,ý' an "ApproxiiniiuT on anld

Regulri anty" property no ust be p rov-ed.
W'e wvill assume that problemns are posed on conivex polygonal domain Qs : i.e.. IC-

regul an t is 01)tai ned for the first bib armon ic problemn. '[hel ni iiitigrid anal vsI. Is oxieyj n (f'
to noticonvex polygonal domains Iin [1 5j. Finally, we note thiat iii thef ''iniei bned forniti
nestped space', Sett~ing the W-cycle is J)IUvdlI robust:. s;,e !`. 3,6. P', . 20 20

Tliiis paper is arrange-d itt t ie following, roan non. Ilii Sction 2. w owiflo n''lif va nou u
fir tie ('lenient miethiods considerod for thie first biibarniouuic tro~lurii. Ili.' tiurlIIiql prie1)
"co(It~ioner Is described ini Section 3. Ii tOe finial se.' ion, we pri-verur Ili.'r-ul- of ývevcrd
('()tui Jilt a tr rimt.ý

'l'oirrrofglo~it hiii- paranoer ~v'ile. Iro., er'i .s~ i ns n iI~jil
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2. Finite element methods. Given a convex polygonal domain Q in R2 with bound-
axy 8Q, the first biharmonic problem (with homogeneous boundary data) is:

(2.1) A 2 u = f in Q?,
U = 2-u = 0 on OQ9.av

where A denotes the Laplacian operator and • is the normal derivative at the boundary
of Q. This problem provides a simple model for the displacement of a clamped elastic
plate, or for the stream function of a steady-state planar Stokes flow.

Recall the definition, for nonnegative integer s, of the Sobolev spaces containing func-
tions with square- integrable derivatives,

(2.2) H`(•l) def {v E LAQ) : Dvy E L2 (Q?), for Jal :< s},

where D denotes the distributional or weak derivative, and a is a multi-index. The Sobolev
space H3 (f) is a Hilbert space and we s.all denote its norm by jivl•. We will refer to
additional spaces H•(Ql) which may be defined as the completions of C'(Q) with respect
to the norms 11-1, (Denote by C°(Q) the space of infinitely differentiable functions with
compact support contained in Q.) A useful a priori inequality can be obtained for solutions
to (2.1) when f is given in certain negative norm (dual) spaces lt-S(Q) L [Y"(Q)I'. In
particular, with Q a convex polygonal domain and f E H-1(Q). the unique exis•ence of a
solution u E H3(Q) f H2(fg) to (2.1) is known and we have

(2.3) I1•tl 3 < C 11fI- 1 ,

for a constant C which is independent of f, see [131.

2.1. The Ciarlet-Raviart method. Introducing an auxiliary variable <7 such that

a=-Au and -Aa=f,

and using a standard G(pen's formula, one may obtain a weak formiulat ion for (2.1).

{ FIND: fo,){au} E II'(Q) x H'(Q) such that for f G
(2.A) D (v,4a)V 0 VvE ll(Q).

- )(a, w) = -(f. w) V ,'E /Il(11).

where the "I-irichlet form", D., .). and the L2-inner product are given by

This form ulation was stidied bv Ciarlet and Raviart in fll]. It i in•t di tiicult It) o show
that the prohlern (2. 11 has a unique, solution {a. }t I le 1(Q ) x /I,,(Sh I IOr all f E 1-•' Q
linrt hrnore. a = -Au. and this satne u solves (2.1 in ;itt dppro priaI, •e •,.

(;iven a regular and qnasi-,iniforrn triangulation I 1hw h ,vitso of ('iarlet '1t)) 7, (d- 2.
wit It mesh diamneter hI. define finite dimensional subspaces I, C !f (Qi and A.l, C 1t•i .
from the space

(2.5) ,h" -./ {i E (-(1, 1.r E l•'I /)(T . V I' C- r}
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where P(m) (T) is the space of polynomials of degree m or less over triangle T. Set Vh = S'h
and Mh = S, n H5(f0). The Ciarlet-Raviart mixed method approximates the solution
{a, u} of (2.4) with the unique solution to the fo!lowing problem.

FIND: {crh,Uh} E Vh X Mh such that for fE H-'(Q),
(2.6) (ah, V)L2 - D (v, uh) = 0 V v E Vh,

I D-(ah, w) = -(f,w) V w E Mh.

Choosing bases {•i} for Vh and {f.j} for Mh, consider the linear system (2.6) in block
matrix form with the notations [lh] = -D (pj, 4), [Qh]j = (P, '.)L 2 , If], = Uf001
and denote the transpose of Dh by Dt. Applying block Gaussian elimination we obtain
the reduced system for (the coefficients of) Uh

(2.7) DhQ~lD U, = F.

As was noted in the Introduction, it is possible to avoid computing the action of the
inverted Gramm matrix Qh'. In particular, we replace the L2 inner product with a certain
approximating bilinear form (., ")h. Using the approximate form leads to the new problem.

FIND: {1d,h, Ud,h} E Vh x Mlh such that for f E H-l(Q),
(2.8) (adh,v),,- D(v, ud,h) = 0 V v E Vh,

I- D (ad.h, w) = -(L, w) V w E "lh.

We then consider the assdciated reduced system, perhaps using different computational
bases

"(2.9) Dd,hQ Dh ,h Us,,h = F,

where Qd,h is the Gramm matrix associated with ('-')h- For quadratic (Ciarlet-Raviart
spaces we take

6

(2.10) (u' V)h = W Z .,a.TFrT(,,).FQ.T(V).
TErh a=1

with a indexing the nodes and the midpoints of the edges of triangle T. When a selects
a node nc we use a weight W-,,T = larea(T) and define the functional () = (n,)
If a indexes a midpoint on an edge of T which joins node n,,+ to node n,-, then we set
-ýa,T = .area(T) and F,,.T(U) = u(n1) - t(u(n.+) + u(n,-)). It is shown in [1-1] that the
problem (2.8) has a unique solution with approximation properties comparable to those of
{(h, Uh), the Ciarlet-Raviart approximate solution. Specifically. we have

Il - U Ihll, < Ch2 1luH 3  and 1a - ',1,h1!,0 Chl al,,.

Furthermore, in [1,11 ?, basis {f'} for the space Vh is constructed for which [Pd 1

-DI(,J, 0') is sparse and [Q~h]ij= (•'. - )h is diagonal, and hence is trivially inverted.
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2.2. The Morley method. A natural weak formulation of (2.1) seeks a function
u E H02(Q) such that

(2.11) i/ AuAvdx = Ia fvdx VvEH12(f).

To obtain a so-called conforming finite element method from this weak formulation requires

finite element spaces which are contained in H0J(2)-this leads to the use of continuously
differentiable, hence complex, piecewise polynomial spaces.

An alternative nonconforming finite element method has been proposed by Morley [23].
Let rh denote a regular and quasi-uniform triangulation of the domain Q. The spaces of
Morley are defined so that v E Mh if and only if:

(a) v restricted to each triangle T E rh is a quadratic polynomial,
(b) v is continuous at triangle vertices and vanishes at boundary vertices, and
(c) the normal derivative 22 is continuous at triangle edge midpoints and vanishes at

midpoints along Qfl.
The Morley method approximates the solution of (2.11) with the solution to the following
problem.

{ FIND: Uh E Mh such that for f E L2 (Q)
(2.12) 1 fW AuhAvdx = fvdx V w E MAh.

TE'rhT

Note that the elements of Mh are not continuous at rh edge midpoints. It is not difficult
to see that if Th/2 is constructed by joining edge midpoints in rh, then Mh is not contained
in MhA2 . Consequently, multigrid methods for Morley discretizations involve nonnested
spaces.

It can be shown that _TEhSfT/A(.)A(.)dx is an inner product for The space MA.

Consequently, (2.12) has a unique solution. The Morley approximation Uh is known to
satisfy

I1U - UhI2,h < C h [IttIU 3 + h !lfJo]
where u denotes the solution of (2.1) (or (2.11)), and IIVI! 2 ,h (-TEh fT AV dx)1 1 .

Since Mh contains discontinuous elements, the requirement f E L 2 (Q) is necessary
for fn fv dx in (2.12) to make sense. Let v' denote the piecewise rh-linear interpolant of
v E Mh. Then the Morley method may be extended to allow f E H-', (since v, E H0I(Q))
as follows,

{ FIND: gh E Mh such that for f C %--'

E IT-zh4vdx = fv! dx VW E Mh.
TErh

The unique solution Tih of this problem is known to satisfy the error estimate [1]

[I U - uhll2.h < C h lul .

Finally, let {i} denote a computational basis for the space Mh. We may write (2.12)

in matrix form

MhUhA= Fh ,

where Uh is the coefficient vector for uh and [Fh]i = f ffh' dx.
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3. Multigrid Algorithms. In this section we will describe several inultigrid ap-
proaches and apply them to the finite element methods of the previous section. In par-
ticular, we shall describe a multigrid W-cycle iteration which has as a parameter m the

number of (symmetrically applied) smoothing iterations computed during each iteration.
As this standard W-cycle will diverge unless m is larger than an (a priori) undetermined
value, we propose a second, more robust, multigrid approach. We show that an effective
multigrid preconditioner can be constructed, and that the action of this preconditioner can

be computed as the outcome of an ordinary "Variable V-cycle" multigrid iterative step. We
shall also show that the W-cycle is itself a most simple, in this case a too simple multigrid
preconditioned iteration.

3.1. Overview. Consider a nested sequence of quasi-uniform (in the sense of Ciarlet

[10]) triangulations of a domain Q with mesh diameters {hk}k=l,...,. satisfying a growth
condition

(3.1) hk-, 1 < Ohk,

and with 0 independent of k. Beginning with a coarse triangulation 7h, of Q. such a
sequence may be obtained by joining the midpoints of the edges of mesh rhk_, to form mesh
7rhk. On each mesh we construct a Ciarlet-Raviart or a Morley space Mhk/ and consider the
associated finite element methods. (In the sequel, subscripts hk will be replaced by the
subscript k.) Given local bases, denoted by {€}, these methods lead to linear systems

(3.2) AkUk = Fk.

Here, Ak denotes either the matrix DdkQdil 'Dt,k or A4k of Section 2. and U,, denotes the
coefficient vector of the approximate solution ud,k, or Uk, for the Ciarlet-Raviart. or for
the Morley method, respectively. We wish to obtain for k = j the solution to problem
(3.2)-the solution on the finest mesh.

Multigrid analyses commonly study quadratic forms associated with the matrices Ak.
Let U and V denote coefficient vectors of u and v, elements of 11 k (i.e. , =

We define

Ak(u, V) =_ (AkU, V),

where (.,.) denotes the Euclidean inner product. Let (.,.),, denote inner products tor the
spaces Mk for which the induced norms 1lluI110,k = (U, U)k1/2 are uniformly (with respect to
k) equivalent to the L2(R) norm. The inner products (.,')k could be L2 inner products
and need not be related to the approximate L2 inner products mentioned in Section 2. 1.
For each space Mk, let Ak : M, -* M% denote the symmetric (self-adjoint with respect to
the inner product (-1 ,)k) positive definite operator satisfying

A .U- v) = (Aku, v), V u. v E Vlk.

(The self-adjointness of Ak is a consequence of the symmetry of Ak.) With f] e Mk defined
so that (A, v)k = (Fk, V) = f 0 fvdx for all v., E Mlk, we may rewrite the equations (3.2) in
an equivalent operator form

(3.3) Auka = f.
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REMARK 1. The quadratic forms obtained for the Ciarlet-Raviart method have the
following useful representation,

hk(u, U)112 ( Dd,kQd,,k DIkU, U)/12 = (Q-D -kU, Qd-kQ_. ',r)'/ 2

(Q~(,,k d~k d),Vk

(3.4) -- (Qdk(QdkdkU), V)

VEVk\{O} (Qd,k V, V)1/2

- ~ D(v,u)= sunpu

vEVk\o0} (v, V)hk1/22

making use of the fact that (Qd,k',-) induces an inner product for the space Vk. It is
not surprising then that these forms are "noninherited", i.e., that for k < j there is some
U E Mk C Mj such that Ak(u, u) A Aj(u, u). 1

To define a multigrid algorithm, assume further that one has linear mappings, "pro-
longations", Ik : VkI. - Mk. For example, if the space Mk-. is contained in Mk, then

Ik may be taken to be the natural injection operator. See [9] for a suitable [k in the
Morley setting. Let T k denote the matrix for Ik given in terms of the computational bases
for Mk and Mk-l, It can be shown that the operator PO-l : Mk -V lk-I induced by the
transposed matrix -'• satisfies

(3.5) (PkO_.lUv )kl = (u, Ikv)a V v E M--Ik.

Finally, we shall employ linear "smoothing iterations" associated with the problems
(3.2), for k = 2,...,j. We postpone the discussion of the suitability or a smoothing
iteration, but now claim that point, line, or block Jacobi or Gauss-Seidel iterations, or the

Richardson iteration, may be effectively used. These smoothing iterations can be expressed
in terms of procedures

Xi = lRk(X 1-,Fk),

where each Rk(., .) satisfies

(1) (consistency) X = IZI(X,AkX) for all X, and
(2) (linearity) Zk( X.Y) + alZk(U,V) = IZk(X + aU, Y + "V).

Alternatively, if we define a matrix lRk so that IdkX = RAk(, X) for all X. then we may
rewrite the smoothing iteration. Combining properties (t) and (2) we have

Xi-' 7--Ik(O, AkX'-') -+ ldk(X'-1,o0)

hence

XiX = (X Fk

= •?k(Xt- 1 ,O)+7k(O), Fk)

= x'-' + 74(O. P - Ak.\-'

(3.6) Xi= xi-l + Rk [Fk - AA'- 11 .

The smoothing procedures Z = lZk(.X, F) induce analogous procedures z = Rk(x. f) acting
directly on elements of the space llk. Here X and Z denote coefficient vectors of x E -Ilk
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and z E Mk and f is related to the ith component of F by [Fli = (fU, O)k- Consistency.
S= Rk(x, AkX), and the linearity of Rk(., .) follow from the same properties of R7k(.,-).
From RJ(., -) we obtain a smoothing operator RA : Mk -+ Mk, Rk- R(O, z), and we can
write the smoothing iteration (3.6) in operator form

(3.7) Xi = Xi-i + Rk(fk - Akxi-I)

where fk satisfies (/k, v)k = (Fk, V).
REMARK 2. In order that we may later symmetrize our multigrid schemes, we

allow for a somewhat more general smoothing; cf. [8]. For example, if Rk denotes the
(asymmetric) smoothing operator induced by one particular Gauss-Seidel sweep, then R1,
is the operator which corresponds to a Gauss-Seidel sweep in the "reverse" direction. Here,
the superscript t denotes the adjoint or transpose with respect to (., -)k. We shall define a

Gauss-Seidel operator R(') so that

Rk(') { Rh if i is odd,
= Rt if i is even,

and consider smoothing iterations

(3.8) r= x 1 + R)(fk - AkX-).

We shall use the notation X' - 1Z()(X'-, Fk) to denote the action of this alternating
smoother. 0

We may now define a rather general symmetric multigrid process for iteratively solving
(3.2). Given an initial approximation Z-17 to the solution Uk of the problem AkUk = Fk,
compute an improved approximation, Z4 = Mgk(Z•'-,Fk). The procedure MgW(&,.) is
defined below by the recursive Algorithm 1. Setting p = 2 in this algorithm and using
m(k) = m smoothings for each level k yields a multigrid W-cycle. With p = 1. a V-cycle is
obtained. It is possible to increase the number of smoothings m.(k) as k decreases without
significantly increasing the cost required to compute Mgk(., .). We shall refer to a Variable
V-cycle as that scheme obtained from Algorithm 1 with p = 1 and

Oo3m(k) _ m(k -1) • _ 1 m(k) and 1 < /30 < l.

Observe that the Variable V-cycle with m(k) = 2 j-k and the W-cycle with m = 1 require
the same number of smoothing iterations for each level, and hence require roughly the same
computational effort to perform.

It can be shown that the multigrid procedure is linear and is also consistent with
X = Mgk(X,AkX). Consider again the multigrid solution of (3.2) which generates iterates

(3.9) Z' = Mgj(Z''-, Fj)

from an initial guess ZV. Repeating the arguments used to obtain (3.6) and defining
matri,'-s Bk so that BkX = Mgk(0, X), we may rewrite (3.9) in the form

(3.10) ZI = ZLI-1 + B(F, - A)Z'-')
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procedure Mgk(Zl- 1 , Fk)

if k = 1, solve exactly

return Mg, (Z-, FI) = A-lF1

else, define Mg (Z'-1, Fk) in terms of Mgk-I(.,") as follows:

0. initialize X' = Z4-1 and Q0

1. smooth m(k) times

X = X'' + 19,((Fk - AkXt-l), i = 1,..., m(k)

2. perform a coarse grid correction

ym(k) = Xm(k) + -k QP

where

Qj = Mgk-,(Qj-',Z,(Fk - AkX-(k))), j = 1,...

3. smooth m(k) more times

y= y'- 1 + TiZ)(Fk• -Akyl-'), i = r(k) + 1,..., 2n2(k)

return Mgk(Z'-1, Fk) = y2m(k)

ALGORITHM 1. A symmetric multigrid procedure.

or in an equivalent operator form

(3.11) zI = zt-1 + B1 (f, - Ajz'-') .

We conclude that the multigrid iteration is simply a linear iterative scheme fbr solving the
preconditioned system

(3.12) BiAj Uj = BjF8 or BjAju, = Bjf 3 .

Denoting the I~h error el = uj - z', from (3.11) it is clear that

eI = Ejel-I

holds for a linear error reduction operator Ej Mj -- MV. In fact,

(3.13) E1 = I - BA.

If the smoothing iterations are "symmetrically performed", see Remark 2, then B. can be
shown to be symmetric with respect to (.,-)j. Consequently, E, is symmetric with respect
to the inner product (A, .,.)j . The multigrid iteration (3.9) is contracting provided that
the eigenvalues of the operator E, are contained in the interval (-1, 1). or if IIEI11 < 6 < 1.
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Equivalently, the linear iterative scheme (3.11) converges provided that the eigenvalues of
BjAj are contained in (0, 2). For a result in this direction, see Theorem 4.

If the maximum eigenval.e of BjAj is larger than 2, then (3.11) generally diverges;
although, a different iterative scheme for solving (3.12), conjugate gradients for example.
may rapidly converge. This is an important observation for the multigrid iteration when it
is applied to the finite element methods of Section 2. Indeed, the W-cycle with m = 1 may
diverge for these methods. However, the problem (3.12) with Bj obtained from the Variable
V-cycle with p = 1 and m(k) = 2j-1 has a small condition number-independent of the
mesh aiameter hk-and is rapidly 3oived by a conjugate gradient iteration; rf. Theorem 5.
Even when 11EjJ < 6 < 1 so that the multigrid iteration (3.11) converges, the spectral
condition number of BjAj satisfies

)= K-2(1,A 3 ) = Ax(BjAj) < 1+6
,( )) Ai,(BjAj) -I - 6

and it is often faster to solve (3.12) with a conjugate gradient iteration.
Using the inner product [-, .] = (B"T'., .) in which BjAj is symmetric, a conjugate gra-

dient algorithm for BjtAjUj = BjFj can be derived; see Algorithm 2. (Note that the matrix
BjAj may not be symmetric.) Algorithm 2 happens to be identical to the preconditioned

.8ý1anl2rrB-1l2r 1 ='•2 )dsrbdi
conjugate gradient algorithm for the problem 12, .,u)) - F, described in
[12].

I=0; X°=0; R°=F)
while IIZl'l > fIZ1II

compute Zi = BjRl
1=I+1
if I = 1

else
0 = (R'-1) t Z-' / (RI- 2 )tZI- 2

PI = Z1- 1 + OP'-1

end
Of = (Rl-1)tZl-1 / (Pl)tAjPl
X- = XI- 1 + aPt

R' = R'-' - aAjP'
end

ALGORITHM 2. A multigrid-preconditioned conjugate gradient algorithm.

3.2. Convergence theory. We now outline the convergence theory for the multi-
grid schemes of the previous section following the approach taken in [8]. The analysis is
performed using operator notation and is based upon two conditions. Before introducing
the first condition, which concerns the smoothing iteration, it is convenient to define an
error operator Kk = I - RkAk and its adjoint with respect to the inner product (Ak., .). .
K* = I - RkA.
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(C.1) There is a constant CR independent of k such that the smoothing procedure satisfies

(3.14) °'k < CR(Rk, u)k V u EMk,(3.14)Ak

for both =k - (I- Kk*Kk)A- 1 and -Ak = (I- KkK*)A- 1 , where Ak is the largest

eigenvalue of Ak, and IljuI•o,k denotes the norm induced by the inner product (.,!)k"

In [7] it is shown that (C.1) is equivalent to the condition that the smoothing iteration

(3.8) converge at a rate exceeding that of a Richardson iteration defined by Rk = WA- II
with w = CR- 1 . That paper then proves (C.1) for a class of smoothers defined by subspace

decomposition and which satisfy simple hypotheses. In particular, point, line, and block
Jacobi or Gauss-Seidel iterations satisfy (C.1).

REMARK 3. The multigrid algorithms described in [7, 8] use the following iteration

as a smoothing
i= - + -(t+"k)) (fk - Akx'- 1 )

This iteration differs from (3.8) only notationally. In fact, the meaning given to R(1) (e.g.

the sweep direction for the first Gauss-Seidel smoothing) can be chosen, perhaps differently.
for each notation so that the two iterations are identical. 0

The second condition is expressed in terms of the adjoint Pk-I Mk - M-%- Of Ik

taken with respect to the inner products Ak(-, ") = (Ak., .)k and Ak- (1),

(3.15) Ak-e,(Pk-lu,v) = Ak(U,Ikv), Vv E MVk-1.

(C.2) "Approximation and Regularity" - for some a E (0, 1] with C,, independent of k,

(3.16) IA((I - JkPk- 1)u, u)I < C 2 (IAkuIII ) Ak(U, 10)1- V u E Mk.

The condition (C.2) is typically proved using the approximation properties of the spaces
ilfk and the elliptic regularity (2.3) of the underlying partial differential equation.

We consider first a result for the W-cycle. For the Morley method, convergence of the
W-cycle iteration was first proved by Brenner [9].

THEOREM 4. (W-cycle) If the conditions (C.1) and (C.2) are satisfied, then the in-

smoothing W-cycle iteration defined by Algorithm I converges for sufficiently large m. and

E= I - BkA is a contraction, with contraction number (independint of k) given by

M

- M C+rn

where M is a constant, M = M(a, C,,, CR). Furthermore, the same conclusion holds if 'rn

is sufficient!1, !7rge" is replaced by the assumption

(3.17) Ak(Iku, Iku) _< 2 Ak-I( u, u) V a E MA_.
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An explicit expression for M can be found in [6]. For the bilinear forms Ak(", -) obtained
for the Morley or for the modified Ciarlet-Raviart method, the condition (3.17) fails. And
a,- previously noted, "m sufficiently large" can mean m > 8 in this context; see Section 4.
Not only will the W-cycle diverge for small m, but numerical results show that for the W-
cycle, the preconditioned operator BiAi may be indefinite. It is not certain that a conjugate
gradient iteration for (3.12) will then converge. The next Theorem will demonstrate that
one does not encounter this difficulty with the Variable V-cycle.

THEOREM 5. (Variable V-cycle) If the conditions (C.I) and (C.2) are satisfied, then

the Variable V-cycle multigrid algorithm yields preconditioners Bk such that

(3.18) 77oAk(U, u) < Ak(BkAku, u) < 77 Ak(u, u). V u E Mk,

with

___k)__+ A~) (~ C~)• M .* m(k)•,~)

(3.19) 7 0 _ MJk ' 71 -< 1 (k) '

M +m(k)- ' ri (I+_ýi <M~~

where M is a constant, M = M(a, Ca, CR).

As consequence of this theorem, the spectral condition number of BkAk satisfies

2(BkAk) .!- M + m(k) •2

a2(Bkk) <r0 y-"<\ m(k-•o

and the multigrid-preconditioned conjugate gradient solution of (3.12), converges with an

asymptotic rate of

SK2(BjAj) - 1 M
(3.20)

ýC 2 (B;A,) + 1 - M + 2w(j)y

per iteration.
A proof of (C.2) for the Ciarlet-Raviart mixed method may be found in [14]. A proof

of (C.2) for the Morley method appears in 15]. The preconditioning properties of the
simple V-cycle are questionable in comparison to those of the Variable V-cycle. Numerical
experiments described in Section 4 suggest that this condition number may not be bounded

independent of the mesh.

4. Numerical Results. According to Theorem 4, convergence of the standard W-
cycle iteration applied to the Ciarlet-Raviart or the Morley method is assured provided
that enough smoothing iterations are performed. Guarantees of convergence are provisional
since (3.17) is not satisfied. In this section, we will present computations which show that

W-cycle iterations with minimal smoothing are not robust here, these iterations commonly
diverge. Rather than abandon multigrid for these finite element methods, we advocate that
Theorem 5 be employed in these situations. According to this Theorem. a single Vari•hle
V-cycle generates a robust preconditioner for (3.2). -The effectiveness of this preconditioner
when combined with a preconditioned conjugate gradient (PCCG) iteration is illustrated
by a second set of computations.
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In the following computations the modification to the Ciarlel-Raviart method and
piecewise-quadratic spaces have been used. Using the discrete forms defined by (2.10)
makes it affordable to apply Gauss-Seidel smoothing iterations to the C(iarlet-Raviart
Schur complement. (This is another good reason to use the modified Ciarlet-Raviart
method. Similar multigrid behavior is observed for the standard Ciarlet-Raviart method
with Richardson smoothing.) We construct a sequence of nested quasi-uniform triangu-
lations of Q2 = [0, 1] x [0, 1] from a coarse mesh by joining triangle midpoints to get finer
meshes. For each computation, the coarsest mesh consists of two triangles.

The first set of computations examines five-level W-cycles as the number of multigrid
smoothing iterations, m, is increased. Eigenvalues A,mi, and Am,, of the "W-cycle precon-
ditioned" operators BkAk are displayed in Table 1 for k = 5 and both Richardson (U; = 1.5)
and Gauss-Seidel smoothing. Recall from Section 3.1 that the error reduction operator for
the standard multigrid iteration .atisfies Ek = I - BkAk, cf. (3.13). Consequently. if
the spectrum of BkAk is not contained in the interval (0, 2), then the standard multigrid
iteration may diverge. Alternatively, one might consider the multigrid reduction factors
3 = max(IA,,,, - 11, 11 - Aminl). In practice we find that 6 = Am - 1. (This differs from
the usual inherited form situation in which Ama, < 1 and 5 = 1 - , For the modified
Ciarlet-Raviart scheme, we see from Table I that if Richardson smoothing is used. one
must take "m > 8" smoothings per five-level W-cycle iteration in order to guarantee con-
vergence. Clearly Gauss-Seidel smoothing is to be preferred for this problem--yet m > I
is still necessary for general W-cycle convergence. Similarly, for the Morley discretization,
Richardson smoothing is again unsatisfactory for small m. In this case, it appears that
m = 1 Gauss-Seidel smoothing yields an acceptable W-cycle. However, it is not certain
that this will continue to be true for finer grids or for different domains Q2.

TABLE 1. W-cycle preconditioned BsAs, extremal eigenvalues vs. in.

modified Ciarlet-Raviart Morley

m Richardson Gauss-Seidel Richardson Gauss-Svidel

Amax Amin Amax Amin A max Amnin Amax r r

S2.48 -23.3 2.23 1-1.16 2.10 .211 1.86 .594
2 2.47 -10.5 1.96 .119 1.79 .377 1.65 .815

3 2.29 1.46 1.84 .520 1.73 .509 1.55 '81
4 2.22 -.645 1.72 .694 1.69 .612 1.49 .922
.5 2.18 -.328 1.64 1.757 1.65 .694 1.45 .948
6 2.13 -.070 1.56 .806 - - - -

7 2.06 .132 1.49 .844 . .. . .

8 1.999 .28-1 1.44 .874 . .. ..

Next we examine the effectiveness of the Variable V-cycle (3 2) preconditioners Bk.
Computed values for extremal eigenvalues and condition numbers of the preconditioned
operators BkAk, k = 2, ... .6. are listed in Table 2. According to Theorem 5. the condition
numbs " of BkAk is bounded independently of k. Further computations with varying 3 con-
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firm that the slow growth of ),,,ax seen in this table is not inconsistent with this Theorem,
but is reminiscent of the upper bound in (3.19),

A ma (BkAk) _ t711 < I ( +
1=1

where mr(i) = 2 k-. For comparison, note that with k = 8 (hk = 1/128), the condition
number of Ak, the Schur complement from (2.9), exceeds 108.

From the condition numbers of Table 2 we can estimate reduction factors for Variable
V-cycle preconditioned conjugate gradient iterations. For condition numbers K2(BkAk) :_

20 we obtain bpcca <_ .68 (averaging over 10 iterations). Similarly, 6.,cCG < .48 for the
Morley method when t,2(BkAk) < 7. These reductions are significantly better than those
obtained for W-cycle iterations. According to Table 1, 5b'=' < .86 and CLR2 < .96 for
k = 5. This distinction, which is supported by iteration data (cf. Table 3). is explained
in Section 3.2, see (3.9) - (3.12). It was shown there that the standard multigrid iteration
is nothing more than a preconditioned iteration using a scheme which is generally less
effective than the preconditioned conjugate gradient scheme.

TABLE 2. Extremal eigenvalues for variable V-cycle BkAk.

modified Ciarlet-Raviart Morley

k~ z FA.T ri mAmin [ X____ _ .. Amin_ I Amaz/ArnLjn

2 1.22 0.553 2.20 .9999 0.846 1.18
3 2.18 0.355 6.12 1.47 0.641 2.29
4 3.38 0.297 11.4 2.05 0.612 3.35
5 t.45 0.284 15.7 2.75 f0.595 1.63

6 5.07 0.281 18.0 113.40 0.88 3.78

To further illustrate the behavior of the various inultigrid schemes we provide Table :3.
In particular, this data demonstrates that, in addition to being robust, the Variable V.-
cycle preconditioner is cheaper to use than an m > t W-cycle. Recorded in Table 3
are the numbers of iterations required to solve Akuk = fk with relative error less than

2 × 10-7. Relative error was measured in the norm (AkBkAk, .) 1/2, (2 x 10-7 corresponds
to approximately six correct digits), and iteration counts were averaged for five simple
test problems. Results are listed for both the modified (iarlet-Ravi art and the Morley
methods. In each case Gauss-Seidel smoothing was used. For '.he W-cycles, results for the
standard multigrid scheme appear first and are followed by a slash and then the results tor
the associated preconditioned conjugate gradient (PCCG) scheme. Note that the W-cycle
may be used as a preconditioner provided that 77 is large enough. ( m > 2 for the modified
Ciarlet-Raviart method). In comparing results note that an (m. = 1) W-cycle or a (3 = 2)
Variable V-cycle iteration is roughly 50 to 100 percent more costly than an (irn = 1) V-cycle
iteration. An mr-smoothing W-cycle is roughly Tn times as expensive as a (•3 = 2) Variable.
V-cycle.
It is not known if the V-cycle provides a bounded preconditioning for these problems.
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TABLE 3. Convergence of multigrid iterative and preconditioned schemes.

modified Ciarlet-Raviart Morley
variable-V W-cycle V-cycle variable-V W-cycle V-c:ycle

PCCG standard multigrid / PCCG PCCG PCCG inultigrid / PCCG PCCG
k /3=2 m=2 m=3 mn==l /3=2 m= I rn=1

2 6.8 9.0 / 5.0 6.6 / 4.2 6.8 4.8 8.0 / 4.8 4.8

3 15.2 53.8 /10.8 32.8 / 8.8 14.8 9.0 19.3 / 9.0 8.6

4 20.8 519.0 / 14.0 56.2 /11.0 21.0 11.6 42.4 /11.0 11.2

5 24.2 305.6 / 18.8 72.4 / 12.6 26.8 13.4 79.0 / i2.0 14.0

6 26.8 262.6 / 22.0 80.6 / 13.8 32.8 15.0 160.4 / 12.6 16.4

7 27.4 273.4 / 21.8 72.0 / 14.4 41.0 16.4 187.8 / 14.0 19.2

8 26.6 207.6 / 21.0 67.0 / 13.4 49.6 16.6 174.0 / 13.8 22.0

Acknowledgment. The author is indebted to Jim Bramble for many helpful suggps-
tions.
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ABSTRACT. Simulated annealing algorithms for optimization over continuous spaces
come in two varieties: Markov chain algorithms and modified gradient algorithms. Unfor-
tunately, there is a gap between the theory and the application of these algorithms: the con-
vergence conditions cannot be practically implemented. In this paper we suggest a practical
methodology for implementing the modified gradient annealing algorithms based on their
relationship to the Markov chain algorithms.

1. INTRODUCTION. Simulated annealing is a popular approach to global optimiza-
tion of functions with multiple local minima. One type of annealing algorithm for continu-
ous optimization involves simulating a Markov chain using a generalized Metropolis (or
related) method. We refer .to these algorithms as Markov chain annealing algorithms
(MCAA's). There is a large amount of theoretical analysis and practical methodology
developed for the MCAA's (Vanderbilt and Louie, 1984; Bohachevsky et al., 1986; Corana
et al., 1987; Brooks and Verdini, 1988; Press and Teukolsky, 1991; Gelfand and Mitter,
1992). However, the feasibility of MCAA's for high-dimensional problems is questionable.

Another type of annealing algorithm for continuous optimization involves modifying
gradient-type search algorithms. Let U(°) be a smooth cost function on RD. A standard gra-
dient algorithm for finding a local minimum of U(.) (and hence a global minimum if U(-) is
convex) is given by

Zk+I = Zk - 9VU(zk)

where g.t is a step-size parameter. A modified gradient algorithm for finding a global (or near
global) minimum of U(°) is given by

Xk+1 = Xk - kIVU(Xk) + 2" gWk

where IWkO is a white Gaussian noise sequence and T is a "temperature" parameter which is
slowly decreased as the algorithm proceeds. The idea behind this algorithm is that by
artificially adding in the noise term (via Monte Carlo simulation) it is possible to escape from
strictly local minima. We refer to this modified gradient algorithm as a gradient annealing
algorithm (GAA). Now there is some theoretical analysis developed for the gradient anneal-
ing algorithm (Kushner, 1987; Gelfand and Mitter, 1991b,c), but no practical methodology
that we are aware of. On the other hand, there may be some hope of using GAA for high-
dimensional problems with smooth well-behaved cost functions, as it attempts to exploit the
smoothness by its use of derivatives. The goal of this paper is to use some theory from Gel-
fand and Mitter (1991a) relating the MCAA and GAA, and some practical methodology
from Johnson et al. (1989) for the MCAA, to develop a practical methodology for GAA.
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2. MARKOV CHAIN ANNEALING ALGORITHMS. Most of the theory and applica-
tion of MCAA deals with discrete (combinatorial) optimization. The literature on MCAA's
for continuous optimization is by and large a straightforward generalization of the discrete
case. It is this point of view we discuss in this section. The discussion is very brief and the
reader is referred to the literature for more details.

Let U(-) be a cost function on RD. We wish to find an element of RD which minim-
izes U(*). A general description of the MCAA for solving this problem is as follows (we
only consider the Metropolis procedure here):
Given a current solution x c RD generate a candidate solution y e RE
If U(y) < U(x) then accept y as the next solution.
If U(y) > U(x) then accept y as the next solution with probability exp(-(U(y) - U(x))IT);
(otherwise the next solution is the current solution x).

Here the candidate solution is usually a probabilistically generated perturbation of the
current solution. Also, the "temperature" parameter T is slowly decreased as the algorithm
proceeds, making transitions to higher cost states less likely. The algorithm stops subject to
some termination criterion.

The MCAA can be precisely formulated as a continuous state Markov chain as follows.
Let q(x,y) be a transition probability density from x to y (x,y e RD); q(x,y) is a probability
density for the candidate state y giver the current state x. The continuous state annealing
chain (Yk} (at a fixed temperature T) has 1-step transition probability density from x to y
given by

(2.1) p(T, x, y) = s(T,x, y)q(x, y) + m(T, x)S(y - X)

where

s(T,x,y) = exp [- y) TU(x)1+

and m(T,x) is chosen to provide the correct normalization. Here [*]+ denotes positive part
and 8(*) is a Dirac-delta function. For a fixed temperature T this annealing chain ({Yk has a
Gibbs equilibrium distribution with density function

n(T,x)= Iexp TU JZ(T--)

Z(T)= f exp - U(x)]d(<)

and as the temperature T tends to zero we get xr(T,*) converging to a density 7C* (), which is
concentrated on the global minima of U(*). If the rate of temperature decrease is slow
enough, then (YkO remains near the equilibrium distributions and also concentrates on the
global minima for k large (Gelfand and Mitter, 1992) (we note that the proof of convergence
in the continuous case naturally requires many more technical assumptions and details than
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the discrete case).

Unfortunately, there is a large gap between the theory and application of the MCAA.
The main problem is that the theoretically appropriate rates of decrease for the temperature
are far too slow for practical implementation. In practice, one needs a temperature schedule,
a candidate generator and a termination criterion which achieve desirable tradeoffs between
complexity and performance.

A practical methodology for continuous state MCAA's can be adopted with relatively
few changes from the methodology for discrete state MCAA's developed by Johnson et al.
(1989) (refinements of this latter methodology form the basis for most implementations of
MCAA's in both continuous and discrete state-space). A key quantity in this methodology is
the acceptance probability PA(T) which is estimated by

(2.2) PA (T) = NA(T
N(T)

where NA(T) is the number of moves accepted, and N(T) is the number of moves attempted,
at temperature T. Although there is some motivation for allowing N(T) to increase with
decreasing T, the experiments by Johnson et al. (1989) suggest that there is no real advantage
to doing so, and hence N(T) is fixed at some number N. The methodology proceeds by mak-
ing this fixed number of iterations (attempted moves) at each of a sequence of geometrically
decaying temperatures, and the initial and final temperatures are selected by requiring that
the acceptance probability be specified values. For termination in the discrete case it is also
required that the running cost for the best solution has not decreased over the 5 previous tem-
perature values; in the continuous case considered here we modify this to only require that
the running cost for the best solution has not decreased by more than a small threshold. A
summary description of the algorithm is given below.

Markov chain annealing algorithm methodology. Input parameters: P0 (initial accep-
tance probability), PF (final acceptance probability), p (geometric ratio in temperature
schedule), N (number of iterations at any temperature), c (termination threshold)

1. Find initial temperature To such that PA(To) = P0 ,(PA(TO) given by Equation (2.2)).
2. Setj =0.

3. Run the annealing chain N iterations at temperature Tj = pJTo
4. Let Y* be the best solution found through temperature Tj

IfPA (Tj) < PF and U(Yj) U(Yj- 5 ) - e
then terminate the search and output Y* and U(Y)
else set j = j + 1 and go to 3.

Although there havc been some successes reported with MCAA's of the general type
described above, it has been observed that the method is very inefficient for high dimen-
sional problems, essentially because it does not exploit the smoothness of the cost function.
In the next.section, we discuss the GAA which may overcome this inefficiency in some prob-
lems.
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3. GRADIENT ANNEALING ALGORITHM. Let U(o) be a smooth cost function (at
least C2) on RD. We wish to find an element of RD which minimizes U(9). Here we con-
sider GAA as an alternative to the MCAA described in Section 2.

The GAA (with a fixed step size gi and temperature T) is given by the following sto-
chastic recursion

(3.1) Xk+1 = Xk - PVU(Xk) + 2'Ti'Wk

where (Wk) is a standard D-dimensional white Gaussian noise sequence, artificially added
in (via Monte Carlo simulation) to try to avoid getting trapped in local minima, and the tem-
perature T (and possibly the step-size g)'is slowly decreased as k gets large. The asymptotic
(large-time) behavior of GAA and MCAA are similar. For fixee temperature T and small
step-size g the process (Xk) nearly has a Gibbs equilibrium distribution with density func-
tion x(T, °), and as the temperature T tends to zero we get 7r(T, .) converging to a zr (.) which
is concentrated on the global minima of U(°). If the rate of temperature and step-size
decrease are chosen appropriately, then {Xk) remains near the equilibrium distributions and
also concentrates on the globil minima for large k (Kushner, 1987; Gelfand and Mitter,
1991b,c).

GAA is plagued by the same gap between theory and application as the MCAA's.
Theoretically appropriate rates of decrease for the temperature schedule are too slow for
practical implementation, and no results are available concerning the important case of fixed
step-size which by analogy with standard gradient algorithms is necessary for rapid conver-
gence. In practice one needs a temperature schedule, a step-size (assumed known and fixed
here) and a termination criterion which achieve desirable tradeoffs between complexity and
performance. Practical implementation of GAA appears not to have received any attention
in the literature.

We shall suggest a practical methodology for GAA based on the methodology for
MCAA's discussed in Section 2, and the relationship between GAA and MCAA which we
shall elaborate on below. We shall show that GAA and a certain class of MCAA interpo-
lated into continuous time (with step-size/interpolation interval g) both have a diffusion limit
(as ±-- 0), and these diffusion limits are linearly time-scaled versions of one another.
Hence by taking into account the appropriate time-scaling, we can use the MCAA methodol-
ogy as a basis for a GAA methodology. An important feature of this approach is that it
allows us to implicitly associate the idea of acceptance probability with GAA - a critical
quantity in developing temperature schedules and initialization and termination criterion for
most practical annealing schemes.

3.1. Diffusion Limits for MCAA and GAA. We first formulate a MCAA which has the
appropriate structure and scaling to admit a diffusion limit. Referring to the general version
of the MCAA in Section 2 we consider here a transition density q(, a) which corresponds to
selecting a coordinate direction at random, and then making a Gaussian perturbation along
that coordinate. Let xi denote the i-th coordinate of x E RD. We choose

1 DO

(3.2) q(x,y) = -5 -YN(xi,axg)±yj)fl(yj - xj)
i=1 "
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whe:e N(m, O2 )(') denotes a (scalar) Gaussian density with mean m and variance a2. Note
that the variance of the Gaussian perturbation along the selected coordinate is o41 where cc
does not depend on T (so that q(*,*) does not depend on T) and is to be specified. Let (Yk)

be a Markov chain with I-step transition density p(T,-,°) given by Equations (2.1) and (3.2).
Interpolate (Yk = Yt: k = 0,1,...) into a continuous-time process (YV(t): t - 0) by

Y11(t) = Yt, t e [kg,(k+l)pi), k = 0,1,...

It can be shown (Gelfand and Mitter, 1991a) that Y'(,) has a diffusion limit, i.e,
YA(-) -+ Y(-) as p. 4.0 (in law), where Y(-) satisfies the Ito equation

a
dY(t) = - - VU(Y(t))dt + •j dV(t)

2TDF

and V(.) is a standard D-dimensional Wiener process.

Next, consider the GAA {Xk) given by Equation (3.1). Interpolate {Xk = Xt: k -
0,1,.... into a continuous-time process (XV(t): t -Ž 0) by

X4(t) -- Xý, t e [kgt,(k+l1)g), k = 0,1 ....

It is easy to show that Xl(.) also has a diffusion limit, i.e., X4(-) --+ X(o) as g ,. 0 (in law),
where X(-) satisfies the Ito equation

dX(t) = -VU(X(t))dt + 42TdW(t)

and W(-) is a standard D-dimensional Wiener process.

Now consider the process defined by linearly scaling time by a factor 1 > 0 in the pro-
cess X(-):

X(t) = X(P3t)

By standard calculations X(-) satisfies the Ito equation

dX(t) = -1VU(X(t))dt + I2TF'dW(t)

where *(-) is a standard D-dimensional Wiener process. From the (assumed) uniqueness of
the Ito equation solution, it is seen that if we take

15 = P('r) =a
2TD

then Y(*) = X(.) (in law), i.e., Y(*) is a linearly time-scaled version of X(,), with scale-factor
13(T) depending inversely on the temperature T.

3.2. Toward a Methodology for GAA. In view of the limit diffusion behavior exhibited
by both GAA and MCAA, we have that under suitable conditions, GAA is close to a linearly
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time-scaled version of MCAA. This suggests that we can use the MCAA methodology to
guide the GAA methodology by correcting for the scaling (this is not to say that GAA and
MCAA perform the same; see the discussion in Section 4).

The idea is the following. Suppose we run the MCAA {Yk) for N iterations at tem-
perature T, and consider the GAA I Xk) also at temperature T. Then since the limit diffusion
Y(-) for (Yk} is a linearly time-scaled version of the limit diffusion X(o) for (Xk) with scale
factor P3(T), the suggestion is to run the GAA (Xk I for N(T) = jP(T)N iterations at tempera-
ture T to compensate for the time scaling. Now we still need to choose the parameter a in
the variance of the MCAA. We do this by choosing D'(T0) = 1, i.e., we choose the GAA and
MCAA to run at the same time scale at the initial (high) temperature value To (this choice is
somewhat arbitrary but avoids introoucing additional parameters). Hence a = 2ToD and so
P3(T) = TO/T and thus N(T) = (T0MN, and we run the GAA {Xk} for

Nj = p-iNO

iterations at temperature Tj = pýTo. From a practical point of view, we may impose a ceiling
on the number of iterations the GAA can make at any temperature.

The basic structure of the MCAA methodology now carries over to a GAA, except that
the MCAA uses a fixed number of iterations at each of a geometrically decreasing sequence
of temperatures, while the GAA uses a geometrically increasing sequence of iterations at a
geometrically decreasing sequence of temperatures.

To apply the MCAA methodology to GAA it is desirable to find a good estimate of the
acceptance probability, which is used to determine the initial and final temperatures.
Clearly, it is not desirable to estimate the acceptance probability via a Monte Carlo simula-
tion of a MCAA (in addition to the GAA). Now in view of the limit diffusion analysis, the
appearance of the gradient term in the GAA can be viewed as a local approximation in a cer-
tain MCAA. This approximation is possible because of the (assumed) smoothness in the cost
function and the smallness of the step size, and should result in significant computational and
performance advantages for GAA. We shall next discuss how to make some other local
approximations in the MCAA to facilitate estimation of the acceptance probability, which
should make for more efficient determination of the initial and final temperatures.

The acceptance probability at temperature T is given by

PA(T) = fJt(T, x)PA(T j x)dx

where

PA (T I X) = fs(T, x, y)q(x, y)dy

is the conditional probability of accepting a candidate move given the current state is x. We
develop an approximation to PA(T) as follows. Substituting for q(*,-) from Equation (3.2)
and setting a = 2ToD we can write
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D

PA(T I X) = ""PA(T I X,i)

where

PA(TI x,i) = js(T,x,y)N(xi,2ToDiL)(yj)HS(yj - xj)dy
j*i

is the conditional probability of accepting a candidate move given the current state is x and
coordinate i is selected for perturbation. Fix T, x and i for the moment and let

S=(Xi, -..... Xi-1 ,yi,Xi+1, ....- XD)

Then

PA(T I x, i)=fexp F.[Ua()-U(x)+] N(xj,2ToDg)(yi)dyi

We estimate PA(TIx,i) by

PA(T I x,i) = fexp L [U (x)(yi_-Xi)"UxiXi (X)(y i-_X)2/2]+

L. T

N(xi,2ToDp)(yi)dyi

It is possible to work out expressions for ýA (TI x, i) in terms of the exponential and error
functions. Finally we estimate PA(T) by

(3.3) PAA(T)- 1 NI Xk
N(T) k=I

1D.

PA(TIx) = D DPA(T1xi)D i~

where the average in the first equation is computed over the N(T) iterations of GAA at tem-
perature T.

A summary description of the proposed methodology for the GAA is given below.

Gradient Annealing Algorithm Methodology Input parameters: Po (initial acceptance
probability), PF (final acceptance probability), p (geometric ratio in temperature schedule),
No (number of iterations at initial temperature), e (termination threshold)

1. Find initial temperature To such that PA(TO) = P0 (PA(TO) given by Equation (3.3)).

2. Setj = 0.
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3. Run the modified gradient algorithm Nj = pJNo iterations at tempecature Tj = OT0

4. Let X! be the best golution found through temperature T1

If PA(Tj) Spf and U(X) >U(Xs)-e
then terminate the search and output X and U(X;)
else set j = j+l and go to 3. 0

4. CONCLUSIONS. In this paper we have developed a methodology for GAA based
on the relationship between GAA and MCAA. The idea here is that GAA and a certain
MCAA have diffusion limits which are linearly time-scaled versions of each other, which
suggests that a GAA methodology can be obtained from a MCAA methodology by correct-
ing for the time-scaling. This approach allows us to associate the idea of acceptance proba-
bility with GAA, a quantity which plays a critical role in temperature schedules for most
practical annealing schemes. We also show how to make some local approximations which
facilitate better estimation of the acceptance probability.

The experimental evaluation of the proposed GAA methodology is currently being
undertaken. One interesting comparison would be between GAA and MCAA. Our intuition
is that GAA will do a better job of finding a global minimum than MCAA for sufficiently
smooth, well-behaved cost functions. For this to make sense, the implicit assumption that
we are making is that GAA and MCAA are close enough to their diffusion limit to have a
similar methodology (i.e., structure of their temperature schedule and termination criterion),
but far enough from their diffusion limit to have distinctly different performance on certain
problems.
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RESPONSE OF A CYLINDRICAL SECTION TO AN
EXPLOSIVE BLAST

Aaron Das Gupta
Research Mechanical Engineer

U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066.

ABSTRACT

Transient response analysis of a hollow long cylindrical section subjected to an internal
explosive biast has been conducted from a structural integrity standpoint. The reflected
blast overpressure upon the internal surface of the cylinder was estimated based on a cube
root scaling law and the modified Friedlander exponential decay. A closed form solution of
the governing equation of motion for.the internally pressurized cylinder was obtained subjec.
to initial conditions. The solution was optimized by a trial and error approach to yield an
optimum time which was employed to predict the peak response.

INTRODUCTION

There is a continuing need for modeling the structural damage due to explosive blast
to ensure structural integrity and to rationally provide hardening for such structures. This
has been a subject of long standing interest for the U.S. Army and the Ballistic Research
Laboratory (BRL). A number of studies have been performed and damage data [1-6] gathered
ovcr the past several years. However, most data 6-,dilable at preseut are in the form of impulse
correlation curves and residual deformation and relatively little has been devoted to transient
response studies due to explosive blast effects on structures at high strain rates.

Recently, computation using hydrodynamic codes for shock wave propagation and struc-
tural loading estimation [7-91 has been reported. Unfortunately the application of such codes
to generate loading and subsequent coupling with structural response prediction codes is
rather expensive and laborious. Such procedures are justifiable when a high degree of accu-
racy is needed in modeling complex problems involving large deformation and nonlinearity.
A detailed analysis with coupled codes is beyond the scope of the current investigation due to
time and cost constraints. This investigation involves the "evelopment of a simplified model
and formulation of the equation of motion as well as subsequent effort at a closed-form so-
lution based on simplifying assumptions and previous work on blast loaded plates [10-191 to
obtain optimum structural response and critical time of occurrence for the structure.
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ESTIMATION OF TRANSIENT LOADS

The transient loads were estimated under the assumption that the detonation of the
explosive would generate a blast wave which would impose an uniform reflected overpressure
on the internal surface of a long cylindrical hollow tube section with open ends. Although
some variation in internal pressure peaks, arrival and duration times at different locations of
the section can be expected due to variation in scaled distance from the point of detonation
to the surface of the cylinder, for the sake of simplicity, this variation has been ignored in
the current investigation.

For the estimation of reflected overpressure loading, a conservative cube-root scaling
law [18,19) is employed to compute the scaled distance, z, from the charge location to the
nearest location of the wall in the form

z = RI / (1)

where IWVE is the equivalent charge weight and R is the distance of the nearest point of the
wall from the charge location.

Once the scaled distance is known, the reflected parameters such as peak overpressure,
impulse, duration time and time of arrival of the blast wave could be estimated from compiled
air blast tables or the Blast code [20'23). The decay of the reflected overpressure is assumed
to obey the modified Friedlander exponential decay equ:Aion which can be written as

P(t = P,,[1 - t/t/j,-'t1/1p (12)

where tP is the positive pressure phase duration of the impulse measured from the time of
arrival of the blast wave front at the nearest internal cylindrical wall location, Pm is the peak
reflected pressure in excess of the ambient condition and t is the total elapsed time.

The total reflected impulse imposed on the surface of the cylinder can be obtained by
integrating the pressure with respect to time from initial up to the positive phase duration
as shown below

I,= jtP(t)dt (3)

where we have tacitly assumed that time zero is the initial time when the blast wave reaches
the internal wall such that arrival times could be ignored. Upon substituing the expression
for P(t) from equation (2) in above and performing the integration as indicated earlier results
in

I,. = Pt,[a' - I + e-'1/(a')2 (4)

where I, is the reflected impulse. Using the value of z from equation (1), one can obtain
the values for 1,, Pm and tP from Reference [21]. The value of a' which is the decaying
exponent can be determined using the above three quantities in equation (4) by a trial and
error implicit solution. When a' is determined, the complete reflected pressure-time loading
history upon the structure is known.
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Fig.1. Free body diagram of a pressurized cylindrical section.

FORMULATION OF THE EQUATION OF MOTION

The equation of motion for a hollow cylindrical section subjected to an internal blast
from the detonation of a symmetrically located charge weight can be obtained by considering
the free-body diagram in Figure 1.

Imposing a balance of forces in the radial direct'.,n yields the governing relationship for
the cylindrical section as follows:

P(t)RO - aoshsin(O) = OuOt2  (5)

where P(t) is the internal transient pressure, R is the internal radius M is the mass per
unit length given by M = p R 0 h, p is the mass density of the material from which the
cylinder has been fabricated, 02u7 /Ot 2 is the acceleration of the differential section in the
radial direction, ao' is the circumferential stress in the hoop direction and the remaining
variables are defined in Figure 1. To obtain the transient structural response, the differential
equation above needs to be reduced to a form amenable to a closed-form solution subject to
appropriate initial and boundary conditions.

For a differential ci- umferential segment as sin(O) approaches 0 which can be replaced
lbv dO in the differential form, equation (.5) could be simplified in the form:

J~u,/Ot2 + ?'o9/(pR) = P(t)l(ph) (6)

In order to solve the above equation, we need to obtain expressions for o6 9 and P(t) as
a function of u,.
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The strain-displacement relations for the normal components of a long hollow cylinder
with axisymmetric loading are given as

Err = Nu/OR,

Egee = ur/R, (7)

and, fz. 0.

Assuming linear elastic conditions and noting that volumetric stress in the radial direc-
tion is rather small for the long hollow cylinder, an expression for volumetric strain in the
hoop direction can be derived as

E= -[(1 -(8)

Invoking Hooke's Law, circumferential stress in the cylinder could be obtained as

crag = [El(1 + v,)(1 - 2v)][ve,. + (I - 1,)eg,, (9)

where Er and coo are volumetric strain in the radial and circumferential directions respec-
tively, v is Poisson's ratio and E is the modulus of elasticity of the material. Substituting Err

and co from equations (7,8) in above results in an expression for the circumferential hoop
stress as a function of the radial displacement and the internal averaged radius which could
be given as

oee = Eu,/[R(I - v2] (10)

Substitution of equation (2) and above in the equation of motion developed in the previous
section results in a differential equation of motion in the form

49u2/at 2 + W2U, = (a -- /t)e- t  (11)

where,

W = E/[pR2(1 - v21

a= Pm/(ph)

= P,/(phtp) (12)
a = I'tp

METHOD OF SOLUTION

The governing equation of motion for the cylinder wall must be solved subject to initial
conditions that both initial displacement and velocity are zero at time t = 0. Let us assume
a trial solution for radial displacement of the form

ur(t) = Asinwt + Bcoswt + (C - Dt)e--" (13)
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Substituting the trial solution above in equation (11) and setting the coefficient of the
functions e-"' and te-•Y to zero, the constants C and D can be evaluated to obtain

u,(t) = Asinwt + Bcoswt + (1/C)[a - 2-y/3/p- 13t8e-7 (14)

where,
=./2 +2 (15)

Subsequently, the initial conditions are applied in the equation above to evaluate the
constants A and B which yields

Cu,(t) = [6 + /3/yI(7/w)sinwt - Scoswt + (6 - Ot)e& (16)

where,
2yp/( (17)

The above equation computes in a closed-form the time dependent radial displacement vari-
ation of the cylinder as a function of the geometric and material parameters as well as the
transient internal pressure load due to detonation of an explosive.

To obtain peak radial displacement of the cylinder, the time of occurren6e of the peak
radial response must be computed. Taking derivative of the radial displacement with respect
to time and setting it to zero ensures that the displacement attains an optimum. This
operation ensures that the radial displacemnt is an optimum at an elapsed time provided the
radial velocity. is zero. However, to guarantee that the displacement is in fact a maximum,
the radial acceleration should also be negative. The radial acceleration can be obtained
by differentiating the velocity again with respect to time which should vanish when radial
velocity attains a peak value.

DETERMINATION OF PEAK STRESS

Using the definitions of oee from equation (10) and w' from (12), it can be easily seen
that

ae0 = pRW2 u, (18)

Substituting u. from equation (19) in above yields

0o0 = pRjw/4[(6 +/3/y)(-/w)sinwt - bcoswt + (6 - t)e-'Y' (19)

The above equation can be used to determine the maximum hoop stress that the cylin-
drical wall will experience in case of an accidental explosion. However, prior to peak stress
computation, the time of occurrence of the peak response must be found. Evaluating the
derivative of a,0e with respect to time at the optimum time of occurrence and setting the
resulting expression to zero, we obtain
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(,&y + 3)co.(wt,,) + ,wsin(wt,) - [.y( - 3t,,,) + l3 e-',- = 0 (20)

Above equation can be solved implicitly for the optimum time, t,,, when hoop stress
becomes a maximum. To ensure that the stress is indeed a maximum, the left hand side
expression in above must be differentiated again with respect to time and evaluated to ensure
that the double derivative of agee with respect to time is negative at the optimum time.

Once the value of the optimum time, t,, is known, it can be substituted in equation
(19) to obtain the maximum hoop stress in the form

,peak = pR,.W2/[(6 + t1IY)( 7Iw)sin(wtm..) - 6cos(wtm) + (b - Itm)e-e"- (21)

Peak radial displacement can be predicted by substituting the optimum time of occur-
rence in equation (17) which yields

(Ur),eok = (1/1)[(S + /l')(/)l(,t,)- 6cos(wtm) + (6b-Jft,)e-"mI (22)

Once peak radial displacement is known, peak radial velocity and acceleration could be
determined by taking single and double derivatives of the displacement given in equation
(17) and replacing t by t,, in the corresponding terms.
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ABSTRACT. Current methods, including Army Technical Manual (TM) 5-855-
1, of designing buried structures to withstand the effects of the detonation
of an earth penetrating conventional weapon, utilize decoupling assumptions in
determining the loads on those structures. Free-field stresses and velocities
at the structure location are computed and then assumptions are made to
convert these stresses to structure loads. A recent series of tests, CONWEB,
sponsored by the Defense Nuclear Agency, emphasized the need for better
methods of predicting loads on structures.

The most serious drawback of any of the current methods is the decoupling
of the free-field stress calculation from the structure loading and structure
response calculations. Therefore, an analysis method is needed in which the
detonation of the explosive, the propagation of stresses through the soil, the
soil-structure-interaction and the structure response are included in a single
calculation. The development of this fully coupled analysis method is
presented in this paper.

The Finite Element (FE) method is an excellent method for attempting to
perform this fully coupled analysis. A constitutive model capable of
functioning in the very high stress region near the charge, and a method of
stabilizing the solution, without adversely affecting the results, are needed.
This model and method were developed and implemented in an FE computer code.
A nonreflecting boundary method capable of functioning extremely well in
regions of nonlinear response was also developed. This boundary is used to
reduce the volume of soil which needs to be modeled and makes the fully
coupled analysis method practical.

This paper presents comparisons of the results of analyses performed
using this newly developed method, to free-field stress and velocity data
measured in tests in sand and clay in the CONWEB test series. Analyses using
this method did a good job of predicting those free-field stresses and
velocities. Analyses performed to assess the new nonreflecting boundary
demonstrated that this boundary functions extremely well. This analysis
method has been implemented in an FE computer code capable of modeling the
soil-structure-interaction and structure response, and will be extremely
useful in developing new methods of designing buried protective structures.
The use of this new method will result in tremendous savings in the
construction of this type of structure.
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O . The military has assets which are critical to its
mission and must be capable of surviving a conventional weapons attack.
Quite often this objective is met by placing these assets in a buried
reinforced concrete structure such as the one shown in Figure 1. These

structures are extremely expensive and efforts must be made to minimize
costs.

Figure 1. Typical buried hardened structure

Damage to a buried structure from a conventional weapon detonation
is usually highly localized. One means of reducing costs is to accept
moderate to high levels of localized damage, as long as structural
failure does not occur. Accurate design procedures are needed to ensure
against failure without being overly conservativel since this increases
costs and defeats the purpose of allowing localized damage.

CURRENT ANALYSIS PROCEDURES. Army Technical Manual (TM) 5-855-1
S1) recommends the use of a single-degree-of-freedom (SDOF), spring-

mass, system to analyze the structural element being designed.
Procedures are outlined to determine the equivalent SDOF system to model
one-way and two-way slabs with various end fixity conditions. Equations
and figures are presented to determine the capacities of these slabs and
for computing stress and velocity histories in the soil. Methods of
determining the load on, and response of the structure, as tell as.
recommendations on acceptable response, are provided. The designer can
select a trial structural geometry and very quickly evaluate it using
the guidance provided in TM5-855-l.

An accurate determination of the structure load is critical to
designing the structure. The structure loading is a function of the
stresses propagating through the soil and the interaction of the soil
with the structure. Thus, the structure loading is coupled to the
structure response.

TM5-855-1 recommends a decoupled analysis. The loads on the
structure are determined by modifying the free-field stresses (the
stresses which would have been present in the soil at the structure
location if the structure was absent) and these loads are applied to the
SDOF model to determine the structure response. A semi-empirical
procedure is used to determine the structure loading from the free-field
stresses. Elements of linear elastic wave theory combined with
experimental data were used to develop the procedure used to compute the
structure load from the free-field stress. The peak structure load is
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linearly to the free-field stress in a time equal to twelve transit

times of a stress wave through the thickness of the wall or roof slab

being analyzed.

An Air Force protective construction manual [2] recommends a

procedure very similar to the one used in TM5-855-1. The major

difference in the two procedures is the method of computing the loads

from the free-field stresses. The decoupling procedure recommended in

this manual uses linear-elastic 1-D wave theory to determine the

structure loads. Assuming continuity of stress and velocity at the

soil-structure interface, the structure interface loading, si, is given

by:

Si = sff + qC (Vff - Vs) eqn. 1.

where: off is the free-field stress, qC is the acoustic i. ,edance of the

soil, and Vff and V. are the free-field and structure velocities,

respectively. This will be referred to as the soil-medium-interaction

(SMI) method of determining the load on the structure. This equation is

further simplified using the linear elastic 1-D relationship:

sff M qC Vff eqn. 2.

Substituting equation 2 into equation 1 results in the modified SMI

(MSMI) equation:

si = 2 Off - qc Vs eqn. 3.

Either eqn. 1 or 3 is used to compute the structure loading as long as

the result is a positive (compressive) loading on the structure. Since

the soil-structure interface cannot support tension, the loading is set

equal to zero when eqn. 1 or 3 predicts tension.

The SMI, MSMI, and TM5-855-1 procedures for computing structure

load have been evaluated (3] against experiments conducted for the Air
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Two of these experiments, Figure 3, were identical, except that
one was buried in wet clay while the other was buried in dry sand. The
structure buried in the wet clay was severely damaged (19 in. deflection
on a 43.2 in. span). The damage to the structure in sand was minimal
(1.4 in.deflection).

Figure 4 compares the early time loading at the centers of the
slabs. This figure shows that the peak loading at the center of the
slab buried in clay is much higher than that of the slab buried in sand.
The duration of this initial loading is much higher in the sand,
resulting in an initial impulse that is approximately the same as for
the structure buried in clay. Since the initial loadings are
approximately the same, this indicates that the late-time loading on the
slab is responsible for the difference in response and late-time loads
are Important.

These analyses of experiments have indicated that late time loads
on buried structures significantly affect the response of the structure
and that neither method of predicting loads on the structure adequately
predicts these late-time loads. Therefore an improved method of
predicting these late-time loads is needed. A study was initiated to
determine a better method of accounting for soil-structure-interaction
(SSI) effects when predicting structure loads from free-field stresses.
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NEED FOR FULLY COUPLED ANALYSIS PROCEDURE. In order to develop a
better method of decoupling the structure response analysis from the
free-field stress analysis, an analysis procedure which does not require
decoupling is needed. One possibility is to use a "soil island*. The
structure and a small "island" of soil around it are modeled in a finite
element (FE) analysis. Stresses and/or velocities are input on the
boundary of the "soil island".

This method has the advantage that it does not require assumptions
to decouple the soil from the structure and it does not require that the
detonation of the explosives be included in the analysis. The drawback
to this procedure is that it requires the introduction of an artificial
boundary, the soil island boundary. This boundary does not affect the
very early loads on the structure, but does affect the late-time loading
since the boundary must be placed between the explosive and the
structure and the explosive is very close to the structure. Since the
purpose of this study is to study late-time loads, the soil island
approach is not appropriate.

The only way to avoid adding a boundary which affects the loading
on the structure is to include the detonation of the explosive and the
structure response in the same analysis. Analyses of this type have not
been reported in the literature; therefore, a fully-coupled analysis
procedure which includes the detonation of the explosive, the
propagation of stresses through the soil, the SSI, and the response of
the structure was developed.

DEVELOPMENT OF FULLY-COUPLED ANALYSIS PROCEDURE. The development
of this fully coupled analysis procedure is presented in this paper.
Before this procedure can be used to study SSI, it must be shown that it
adequately predicts free-field stresses and velocities. Analyses were
performed for comparison with free-field stress and velocity data
collected in the CONWEB experiments in wet clay and dry sand. These
comparisons are presented in this paper.

The analysis procedure must be capable of adequately modeling the
SSI. When a stress wave propagates through the soil to the structure
there are several possible occurrences. Initially the soil will load
the structure and the structure will start to deform. The structure
could deform fast enough so that the soil separates from the structure,
and thus the structure is unloaded. Later the soil may catch up with
the structure and reload it. It is also possible that the soil may
elide on the structure, and the soil may flow past the structure.

There are FE procedures capable of modeling these effects. There
are also FE methods for modeling the detonation of explosives, the
propagation of the stresses through the soil and the response of the
structure. Thus it appears that the FE method is ideal for attempting
to develop this fully coupled analysis procedure.

There are several considerations specifically related to the FE
method of solving this problem. Constitutive models in FE codes are
capable of mc'deling non-linear behavior such as the behavior of soil.
These models are not, in general, capable of functioning in the very
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high stress region adjacent to the explosive. Therefore it was expected
that the constitutive model would nt. I modification in order to perform
the SSI study.

The SSI study will involve the propagation of a very high stress
wave through the soil. The extremely short rise time associated with
this stress wave cannot be propagated through the FE grid which
represents the soil continuum as a series of elements. Attempting to
propage this stress wave through the grid leads to numerical
instability. Some method of stabilizing the solution without adversely
affecting the response Is needed. This is typically accomplished by
including artificial viscosity forces. These artificial viscosity
forces spread the shock front over several elements and damp out the
numerical instabilities. Procedures for stabilizing the solution are
built in to fE codes, but these default procedures were not satisfactory
for an explosive detonating in soil and a modified method of stabilizing
the solution without adversely affecting the solution was developed.

In order to adequately predict the rise times on the free-field
stress histories, a fine grid will be needad. The grid size must be
limited so that the run times will be reasonable. Nonreflecting
boundaries are available to reduce the required grid size. These are
boundaries which are ueed to model an infinite amount of material beyond
the boundary.

A nonreflecting boundary was developed by Lycmer and Kuhlemeyer
161 for dynamic loadings. A similar procedure developed by Underwood
and Geers 171 is suitable for both static and dynamic loadings. They
demonstrated that these boundaries are extremely effective when the
boundary is placed in a region of linear elastic response. In another
study, 18], they showed that these boundary techniques are not effective
when the boundary is placed in a region of highly nonlinear response.

The behavior of the soil will be highly nonlinear in a large
region around the charge, and it will be impractical to include all of
the soil in the SSI analysis. Therefore, a nonreflecting boundary
method capable of functioning in the nonlinear response region of the
soil was developed.

The large deformation, large strain, explicit, three-dimensional,
FE code, DYNA3D (9] contains the Jones Wilkins Lee (JWL) (101 equation
of state which can be used to model the detonation of the explosives.
The Cap model [11, 12] is available to model the soil, nonreflecting
boundaries are available, and an interface routine which allows
separation, recontacting, and sliding with friction of the soil on the
structuri is available. These features make DYNA3D an excellent
candidate for attempting the SS1 analyses; therefore, it was selected
for this study.

DEVELOPMENT OF HIGH-PRESS=RE CONSTITUTIVE MODET FOR SOIL. Before
attempting the SSI analyses it should be demonstrated that the method is
capable of adequately predicting free-field stresses and velocities.
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This requires that a constitutive model capable of functioning in the
very high stress region near the charge and a method of stabilizing the
solution be developed and implemented in DYNA3D.

The Cap model is an excellent model for predicting stress wave
propagation through soil, but the Cap model in DYNA3D would not converge
to a solution for simple test problems using the material properties of
the CONWEB clay material. Therefore, another Cap model was obtained
(13].

This new Cap model functioned well for b>th the CONWEB clay and

sand materials, but would not function in the very high stress region
near the charge. In this new Cap model the volumetric stress strain
relationship is divided into the elastic and plastic parts. The change
in elastic volumetric strain is the change in pressure divided by the
constant bulk modulus, K. At extremely high pressures in soils, the
bulk modulus increases significantly with increasing pressures.
Ignoring this increase will cause the model to predict unrealistically
high volumetric strains. Therefore the Cap model had to be modified so
that the bulk modulus varied with pressure.

Static test data (141 at very high pressures have shown that the
bulk modulus is adequately represented by the following function:

KX Ki + K1 PK2 eqn. 4.

Where Ki, K1 , and K2 , are material constants and P LO the pressure. The

new Cap model was modified to use this function for the bulk modulus.
Analyses were then performed to ensure that the modified Cap model
combined with the JWL equation of state would satisfactorily predict
free-field stresses and velocities.

DEVELOPMENT OF STABILIZATION METHOD. In the initial attempts to
validate the Cap model, the FE analyses were unstable. DYNA3D (15] uses
linear and quadratic artificial viscosity forces to spread the shock
front over several elements. An artificial force, f, is introduced for
elements which are compressing. This is the method developed by von
Neumann and Richtmyer [161 and it has been demonstrated that this method
stabilizes the solution, but does not perturb the solution away from the
shock front. The artificial force is given by:

f - ql Iekkj (Q1 1 I'kkI + Q2 c) eqn. 5.

Where QI, and Q2 are dimensionless constants, q is the mass density, 1

is the characteristic length of the element, c is the sound speed for
the material, and i~kkl is the magnitude of the volumetric strain rate.

For relatively uniform grids, it is appropriate to use the cube root of
the element volume for 1, and this is done in DYNA3D. Q, and Q2 default

to 1.5 and 0.06, respectively, in DYNA3D.
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Figure 5. Grid for explosives and surrounding soil

In the SSI analyses a 2-D cylindrical grid, as shown in Figure 5,
will be used to model the charge and surrounding soil. Because of the
shape of the elements and the reduction of stresses as the shock
propagates away from the charge, it is more appropriate to use viscosity
forces which are proportional to the radial dimension of the element,
rather than the cube root of the volume.

Using the cube root of the volume will result in artificial
viscosity forces which are too low near the charge. This effect can be
offset by using values of the constants Q, and Q2 which are higher than

the default values. At distances away further away from the charge the
artificial viscosity forces will be too high, and will affect the
predicted stress and velocity histories. This effect can be reduced by
modifying the method of computing the characteristic length of the
element, or by using artificial viscosity terms which vary with distance
from the charge. The latter method was easier to implement, therefore
it was used.

COMPARISONS TO EXPERIMENTAL FREE-FIELD DATA. One-dimensional
spherical analyses were performed for comparison with the free-field
data in the CONWEB experiments in clay and sand. A complete description
of these analyses has been reported [17). In these experiments free-
field stresses and accelerations were measured at 3, 4, 5, 6, and 7 ft
from the explosive. The acceleration histories were integrated to
obtain the free-field velocities.
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Initially the analyses In clay-vere attempted using the default
values of the artificial viscosity coefficients, but these analyses were
unstable. The lowest viscosity coefficients which produced a stable
solution were 5 times the default values. The predicted stresses for
this analysis are compared to data in Figure 6. This figure shows that
stresses are predicted extremely well at the 3 and 4 ft ranges. At the
other ranges the peak stresses are well predicted, but the rise times
are too long and the late-time stresses are too high.

Figure 7 compares the free-field velocities to the data for this
experiment. The velocity histories also agree reasonably well with the
data. The late-time velocities are slightly overpredicted and the peak
velocities at the farther ranges are overpredicted. Rise times to
maximum velocities are overpredicted. The overpredicted stresses at the
farther ranges are due largely to the free surface which is present in
the experiment, but not included in the analysis.

The large rise times of the stress and velocity histories, as
compared to the data, are due to the method which DYNA3D uses to
stabilize the solution. Rise times which are too long could affect the
loads transmitted to the structure; therefore it is important to model
them reasonably well.

This analysis was repeated using the newly developed method of
stabilizing the solution. This did not affect the stress and velocity
histories at 3 and 4 ft but did affect those at the farther ranges. The
stress and velocity histories at the 5, 6, and 7 ft ranges are compared
to the original analysis in Figures 8 and 9, respectively. These
figures show that the stress histories do not change significantly,
except for the rise times which are significantly improved by using the
new stabilization method. The latter analysis does a much better job of
matching the rise times of the experimental data.

Analyses were also performed for comparison with the CONWEB sand
experiment. These analyses could not be performed using the default
viscosities. Viscosity coefficients of 3 times the default values were
needed to stabilize the solution. Free-field stress and velocity
histories were predicted reasonably well. In general, rise times were
too long and arrival was too late. Late time stresses and were
overpredicted and late-time velocities were underpredicted. The late-
time overpredicted stresses and underpredicted velocities are due
largely to the effects of the free surface and the finite test pit.
These effects were not included in the analysis.

Arrival times and rise times at the 6 and 7 ft ranges were
improved significantly by using the modified method of stabilizing the
solution. This does increase the predicted peak pressures and
velocities but the overall effect of using the newly developed
stabilization procedure is to improve agreement between the analysis and
the experimental data.
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NONREFLECTING BOUNDARIE Figure 10 shows the results of several
analyses performed using a 1 in. radius charge in clay in a I-D
cylindrical geometry. In one case the grid boundary was placed at 40 ft
from the charge, and the effects of this boundary do not appear in the
time period shown. In the other histories, three different types of
boundaries were placed at 10 ft from the center of the charge. This
figure shows that using the nonreflecting boundary installed in DYNA3D
produces about the same stress history as providing a fixed boundary at
the same location.

This boundary is based on the elastic properties of the material
and is obviously not effective when placed in a nonlinear response
region. The nonreflecting boundary in DYNA3D is based on the work of
Lysmer and Kuhlemeyer 17], and amounts to placing viscous springs at the
boundary to simulate the material which would have been on the other
side of the boundary. The constants for these viscous springs are based
on the elastic properties of the material.

1500

0- 1000 -

S-- Nonrefecting

500 -
abundawy

Free •

0-
0 2 4 6 8 10 12 14 16 18 20

rime, msec

Figure 10. Effect of boundaries on stress history

Figure 11 shows the volumetric stress-strain relationship for the
CONWEB clay. The solid curve in this figure includes both elastic and
inelastic response. This curve shows a significant stiffening of the
material at strains above 4 percent. At this time, all of the air voids
have been compressed out of the soil and the soil behaves as an elastic
material. The material will unload parallel to the elastic curve. The
dotted curve shows the elastic pressure volumetric strain relationship
at low pressures. At strains above 4 percent the total strain curve is
parallel to the elastic strain curve.

The nonreflecting boundary is based on this elastic curve, and the
boundary is too stiff until the strains reach 4 percent. For a
monotonically decreasing stress pulse similar to the ones shown in
Figure 6, propagating into an infinite amount of soil, there will always
be material in front of the shock which is strained to less than 4
percent, therefore the nonreflecting boundary will always be too stiff.
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The nonreflecting boundary was modified to reflect the total
stress-strain behavior of the material instead of the elastic behavior.
This was done by using a stress-strain relationship like the one shown
as the dashed curve in Figure 11. This was accomplished by modifying
the subroutine which provides the material property information to the
nonreflecting boundary subroutine. Using this method, the nonreflecting
boundary problem can be corrected without affecting the material
constants used for the wave propagation analysis.

Because this problem involves a single outgoing monotonically
decaying stress pulse, this nonreflecting boundary should perform
satisfactorily. A comparison of analysis results with the boundary far
away to those using the modified nonreflecting boundary is presented in
Figures 12 and 13 for stresses and velocities, respectively. These
figures show that the modified nonreflecting boundary is extremely
effective.

Similar results were obtained when the modified nonreflecting
boundary was used in the sand backfill material.
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SUMMAY. Accurate design procedures are needed so that the costs
of buried hardened structures can be reduced. The most serious drawback
of current analysis methods is the method used to decouple structural
response calculations from free-field stress calculations. A fully
coupled analysis procedure which includes the detonation of the
explosive, the propagation of stresses through soil, the soil-structure
interaction, and the response of the structure was needed.

It was decided that the FE method was appropriate for attempting
these SSI analyses. There were several problems with existing FE
methodology which had to be addressed before the FE method could be used
for the SSI study. Typical constitutive models for soil do not function
well in the extremely high stress region adjacent to the charge. A
modified Cap model capable of performing immediately adjacent to the
charge was developed. The same constitutive model can also be used at
much lower stress levels far away from the charge.

The methods typically used in FE codes to stabilize the solution
for shock wave propagation were not adequate for computing stress wave
propagation in cylindrical and spherical grid geometries near the model
of a explosive detonation. A method which stabilized the solution,
without adversely affecting the problem solution was developed.

Analyses were performed to assess the modified Cap model and
stabilization method. The analysis results using these modifications
agreed extremely well with test data.

A nonreflecting boundary is required to reduce the grid size so
that run times will be reasonable. Currently availble boundaries
function well in regions of elastic response but do not function well in
regions of significant nonlinear inelastic response. In the SSI study,
the boundaries must be placed in regions of significant nonlinear
response. Therfore, a nonreflecting boundary routine which functions
well in regions of nonlinear behavior was developed. Analyses performed
using this modified boundary showed that the stress and velocity
histories were very similar to analyses in which the boundary was far
away.

CONCLUSIONS. The modified Cap model along with the JWL equation
of state and the new method of stabilizing the solution functioned
extremely well. Predicted stresses and velocities agreed reasonably
well with experimental data in both wet clay and dry sand. The newly
developed nonreflecting boundary worked extremely well when placed in a
region of highly nonlinear response in the soil. These methods were
verified in wet clay and in dry sand. The response of most soils will
fall between these two. Therefore, thee methods should perform equally
as well for these intermediate soils.

With the new methods and procedures presented in this paper, a
fully coupled analysis, including the detonation of the charge, the
propagation of stresses through the soil, the soil-structure interaction
and the response of the structure is possible. This fully coupled
analysis procedure can be used to develop better methods of predicting
loads on buried structures. The use of more accurate procedures for
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predicting loads on structures will result in tremendous cost savings in
the construction of hardened structures.

This method can be used to analyze structrres when other methods,
such as the soil island approach are not appropriate. The soil island
approach can only be used if the bomb is relatively far away from the
structure, or if late-time loads are unimportant. The newly developed
method can be used to model both early- and late-time behavior. The new
method is appropriate for charge standoffs of only several charge
diameters. Therefore this method is applicable for almost all
conventional weapons analyses except f, r contact bursts. Since this is
an FE method, a wide variety of structure geooetries can be modeled.
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Abstract

The numerical modeling of an explosion and the effects of its pressure loading on
surrounding structures involve several different length scales. The failure of a grid to
resolve these length scales can lead to an inaccurate solution which is characterized
by grid orientation effects and nonphysical oscillations near wavefronts. An adaptive
grid which concentrates grid points in regions where solution gradients are large can
minimize these types of errors. As an application of the use of adaptive grids, an
automatic rezone scheme has been developed for the two-dimensional Cartesian and
axisyrnmetric ;ulerian finite-difference algorithms in the HULL hydrodynamics code.
The rezone algorithm is completely automated with the grid point locations based
on values of the pressure and its derivatives. Sample computations demonstrate how
adaptive rezoning can be used to calculate more realistic solutions without increasing
the total number of grid points. The'examples include the simulation' of atmospheric,
underwater, and underground explosions.

1 INTRODUCTION

The success or failure of a numerical simulation often depends on the grid that is used. The
failure of a grid to resolve all of the significant length scales in a problem will lead to both an
inaccurate and an unrealistic solution. This is especially true in the modeling of explosions
where large solution gradients must be resolved by the numerical algorithm. An insufficient
number of grid points in the region near a shock wave leads to either oscillations or smearing
in the solution. A grid with uniform spacing in each coordinate direction could be used
for solving problems of this type, but that would be wasteful since there are typically large
regions where the solution is nearly constant. It would be desirable to have a grid with a
high concentration of grid points in regions where the solution gradients are large and very
few points where the solution is nearly constant. However, this cannot be done a priori
since the shock wave location is determined by the solution. What is needed is an adaptive
rezoning capability that regenerates the grid during the computational procedure based on
the current values of the numerical solution.

The purpose of this report is to apply one-dimensional concepts of equidistribution
to rezone Cartesian grids for solving multi-dimensional problems. The equidistribution
principle has been used extensively for solving one-dimensional problems. One of the earlier
surveys appeared in the paper by Russell and Christiansen (1]. With a multi-dimensional
Cartesian grid system, the rezoning can be done directly without iteration, which is often
not practical when applying analogous methods to general curvilinear coordinate systems.
The adaptive rezoning method has been used in the solution of several problems involving
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the numerical simulation of explosions. The method has worked well on these problems,
which were solved using the HULL hydrodynamics code, and could be applied to other
problems where the grid must be composed of horizontal and vertical lines. The HULL
code has several existing rezone options, but none of them was applicable to the solution of
explosion problems.

2 REZONE ALGORITHM

Let us begin by considering a two-dimensional problem which is to be solved using a cell-
centered finite volume scheme. The finite difference grid is composed of vertical and hori-
zo:'tal lines

z= X, i=0,1,", m u2
11 = yji,j=O, 1,...,jrnax.

The spatial intervals are

=yj Yj/j-1,Jl= ,--.

The values of the numerical solution are defined.at the cell centers so. that for a typic.
solution variabie p, the value in cell i,j is

1 1
pj, = p(T(zi + xi 1), (yj + yj-1)).

Now a new grid is to be constructed based on these solution values defined on an existing
grid. An adaptive grid must sense variations in the solution and adjust the grid accordingly.
Since there may be several solution variables, more than one adaptive grid could be con-
structed. However, in explosives problems, the pressure is a key variable in assessing blast
effects. Thus, the rezoning algorithm used in the later examples is based on the variations
in the pressure.

Since the same scheme is used to redistribute points in each coordinate direction, only
the redistribution along the x-axis will be explained in detail. Now any distribution of
grid points can be viewed as being defined by a continuous mapping from the parametric
interval [0, iax4 onto the coordinate interval [zo, xi,,,]. The parametric variable will be
denoted by ý and the grid points xi are the images of the points ý = i under the mapping
from parametric to coordinate variables. Under this terminology, a uniform grid would be
produced whenever the mapping is a linear function. But linear functions are the general
solution of the second order differential equation

d2X
d42

The particular solution which gives rise to the uniform grid would also satisfy the boundary
conditions

X(0) = To
r(imaz)= = ,
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By considering more general boundary value problems, methods can be developed for gen-
erating nonuniform grids. To be more specific, nonuniform grids will be constructed as
solutions of the second order equation

d dx

where wo = w(ý) is a weight function used to control the distribution of grid points. This
equation can be integrated once to give the first order equation

dz
w .- constant.

The following rezone scheme will be based on a discretization of this first order equation.
Having motivated the concept of grid distribution from a continuous model, the discrete

problem of generating the grid point locations will now be addressed. The first consideration
will be the selection of a weight function to be used to control the grid spacing. Each weight
function will control spacing in only one direction and must be a function of a single variable.
Therefore we will start out by defining a function P by the formula

Pe = max {p•j : 1 < j _< jm }. (.)

In order that the grid spacing be influenced by the values of both p and its derivatives, the
weight function will be given as

Wi = colPil + cilP'I + c2 jPJ"l, (2)

where P' and P" denote the finite difference approximations of first and second derivatives.
The coefficients ci are included to add flexibility to the scheme. If co is the dominant
coefficient, then the grid spacing will be smallest where the function P is greatest. The cl
term causes grid points to cluster where the derivative is largest, such as near shock waves.
The c2 term would cluster points where large changes in the derivative occur, such as near
oscillations in the numerical solution. Nearly all numerical algorithms work best when there
is a smooth change in grid spacing. Since tw is defined in terms of P and its differences, it
may change drastically from point to point and from time step to time step. In such cases
it is advisable to smooth the function P before computing w. A diffusive smoother is used
which is based on the numerical solution of the heat equation on a nonuniform grid.

The motivation for the smoothing formula will be accomplished by considering again
functions of a continuous variable. Suppose that P(x) is the initial value for the solution of
the heat equation

Tt OX2

This equation can be written in terms of the parametric variable ý as

(aX ~ O )3a X9 2 U 02: O
aý at - aý 092 09 Oa (3)

Now consider the discretization of the above parabolic equation with the time step chosen
locally so that the maximum stable time step is used at each point. This is the procedure
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that was used to arrive at the smoothing formula used in our algorithm. The value of P
on the right hand side of the following equation is the input grid function and the value on
the left is the smoothed value computed by taking one time step in the numerical solution
of equation (3).

Pi =PA + r(P1~1 + P,.I - 2P, - i'(P 1 +1 -

where

r= -m in
4 fljoIJl

S=2 Ax•+1 - Axi-I

a' 2A-,+1 + Axi- I + 2Axi

The parameter r is chosen from the stability analysis. Note that a is due to the nonunifor-
mity of the grid spacing. After each smoothing sweep, the endpoint values are reset to the
values of their interior neighbors.

P1 = P2

Pimae = Ptmnaz-1

At least one smoothing step is recommended; however, it should be noted that repeated
smoothing will reduce. the function P defined in (1), and hence w, to a constant which
would result in a uniform grid. The smoothing formula used here has worked better than
the usual averaging techniques sinc, it takes into consideration the grid distribution.

The weight function defined in (2) is for rezoning in the z-direction and will henceforth
be denoted as w.,. The value of the weight function at ý = i is indicated by w,,. If z is
replaced by y and i is replaced by j, an analogous weight function w. can be derived for
rezoning in the y-direction. Now the maximum weight function value in both directions can
be computed as

Wm.x = max {max we,,, max WYj }. (4)

A parameter w > 1 will be introduced which will determine the degree to which the grid
adapts to the weight functions. In order to see how this is done, consider the grid function

W l = I + (-1) W- (5)
Wmax

We are going to rezone so that the intervals Axi for the new grid will satisfy

Ax W C = C. (6)

where C,, is a constant to be determined. Now it can be seen that if w. is near the maximum
value w,,,, then W, is approximately equal to w and Ax, ; C,,/w. On the other hand, if
W, is much less than w,,., then Wi is nearly 1 and Ax , C.,. Therefore, when w. assumes
values near both extremes, the quantity w is approximately the ratio of the maximum to
minimum grid spacing. To determine the constant Cr., note that

imax I- C- tA

X,.ax - = A = W = CZ 1
3=1 6



which implies that

C. - ZO) (7)

The new grid intervals along the z-axis can be computed from (6) as

C.Wi

with C. given in (7) and Wi given in (5), and the coordinates along the axis given as

k=l

A new distribution of grid points along the y-axis can also be computed using the following
analogous formulas.

I
31i = A .

k=i

CY = (yj.. - yo)

Wj 1 + (w - )

3 COMPUTATIONAL RESULTS

The adaptive rezoning procedure was used in the solution of several different types of prob-
lems involving the modeling of explosions. In all cases the grid was dynamically coupled
with the solution so that the grid moved at every tenth time step. The choice of ten time
steps between updates of the grid was chosen mostly by experience. It is often enough so
that the grid is able to keep up with the solution. It is possible to rezone at each time step,
but that is not advisable for two reasons. First of all, the computation time increases sig-
nificantly, and secondly, the rezone procedure tends to smooth the solution so that pressure
peaks are excessively damped. The rezone procedure was most successful in improving the
qualitative nature of the numerical solution. It greatly reduced the oscillations (or ringing)
in the solution without the. addition of artificial viscosity. The adaptive grid algorithm was
implemented with w = 5 to give a ratio of five for the maximum to minimum grid spacing.
This had the effect of reducing the grid spacing in the neighborhood of the shock by a factor
of approximately three.

The gridding scheme was capable of producing extremely fine grids near the shock, but
the HULL code documentation [21 recommended that the grid aspect ratio not exceed three.
This ratio was exceeded on some of our computations with no noticeable loss of accuracy,
but in some cases erroneous results were obtained when the aspect ratio was extremely
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large. The weight function was computed with co = c= = 1 and C2 = 0, since it is doubtful
that the second derivatives can be reliably approximated for these types of problems. Only
one smoothing iteration was used.

The first example is the computation of the underwater explosion of an infinite cylindri-
cal charge of TNT as depicted in Figure 1. This was solved as a one-dimensional problem
with a 500 by 2 grid. Figures 2 and 3 may be used to compare the solutions at t = 0.01
seconds computed using a uniform and an adaptive grid. The location of every tenth cell is
indicated along the top borders of the plots. The adaptive grid clearly generated a smoother
and more realistic pressure profile. However, neither peak pressure was near the theoretical
value in Cole [3]. It would have taken three times as many grid points with a uniform grid
to achieve the same resolution near the shock wave as was achieved using the adaptive grid.
The lower peak pressure with the adaptive grid is primarily due to the smoothing effect of
the interpolation between grids.

The next example is the solution of an axisymmetric problem. A charge of TNT in the
shape of a cylinder is detonated underwater. The initial stage of the solution, illustrated
in the axial and radial coordinate system, appears in Figure 4. The solutions computed on
the uniform and adaptive grids are compared at two different times. Figure 5 is a plot of
the solution on the uniform grid at an early time when the shock wave is near the charge.
Figure 6 is the solution on the adaptive grid at the same time. Note the high concentration
of grid points near the charge that is needed at the early stagq of the computations in
order to keep oscillations from initiating and propagating. Figures 7 and 8 are plots of
solutions on the uniform and adaptive grids at a later time when the shock wave is near
the outer boundary of the computational region. Oscillations in the solution computed on
the uniform grid can be observed especially near the axis of symmetry. The solution also
fails to develop into a spherically symmetric solution as discussed by Cole [3]. On the other
hand, the solution computed on the adaptive grid develops into a nearly spherical solution
with very little indication of grid orientation effects.

The adaptive rezoning scheme has also been used in the computation of airblasts. A
spherical charge of HMX explosive is detonated in the atmosphere above the soil surface as
illustrated in Figure 9. The solutions on the uniform and adaptive grids before the blast
front reaches the surface are plotted in Figures 10 and 11. The grid for this problem is
sufficiently fine so that both solutions appear quite reasonable. However, with the uniform
grid there is a noticeable perturbation in what should be circular contour lines near the
axis of symmetry. Both solutions were continued and correctly modelled the reflection of
the shock wave rnff of the soil surface. The solution on the uniform grid is plotted in Figure
12. The solution on the adaptive grid appears in Figure 13. Note the concentration of grid
points at the surface. This is due to the large pressure gradient between the air and soil
which did not allow the grid to follow the reflected shock.

The final example is the computation of an underground explosion. A spherical charge
of nitromethane is buried below the surface of the soil as indicated in Figure 14. The
computed solutions on a uniform and adaptive grid are plotted in Figures 15 and 16. The
coarse grid effects of the uniform grid are clearly evident in the noncircular contour lines.
Both of these solutions were continued, but neither grid was capable of correctly modeling
the shock wave as it passed through the air/soil interface.
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4 CONCLUSIONS

It has been demonstrated that adaptive rezoning can significantly improve the quality of
numerical solutions computed on a Cartesian grid system. Grid orientation effects were no-
ticeably reduced in the examples included in this report. For problems involving explosions,
the adaptive grid algorithm can be automated so that the grid points are concentrated in
regions of high pressure gradient.

It should be noted that the capability of rezoning is limited by the fact that the HULL
code uses only Cartesian grids. The ability to refine the grid locally would be a convenient
feature in adapting the grid to the solution, but that would require a major restructuring
of the code.
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watar

Figure 1. Initial configuration for an underwater explosion of an infinite
cylindrical charge of TNT.
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Figure 2. Pressure values calculated on a uniform grid at t=1O milliseconds.
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Figure 3. Pressure values calculated on an adaptive grid at t=1O milliseconds.
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Figure 4. Initial configuration for an underwater explosion of a finite
cylindrical charge of TNT.
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Figure 6. Presoure contours and velocity vectors calculated on an adaptive grid
at t=200 microseconds.
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Figure 7. Pressure contours and velocity vectors calculated on a uniform grid
at t="00O microseconds.
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Figure 8. Pressure contours and velocity vectors calculated on an adaptive grid
at t=800 microseconds.
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air

Figure 9. Initial configuration for an atmospheric explosion of a spherical
charge of HMX.
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Figure 10O. Pressure contours and velocity vectors calculated on a uniform grid
at t=500 microseconds.
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Figure 11. Pressure contours and velocity vectors calculated on an adaptive grid
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Figure 12. Pressure contours and velocity vectors calculated on a uniform grid
at t=2 millseconds.
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Figure 13. Pressure contours and velocity vectors calculated on an adaptive grid
at t=2 milliseconds.
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air

Figure 14. Initial configuration for an underground explosion of a spherical
charge of nitromethane.
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Figure 15. Pressure contours and velocity vectors calculated on a uniform grid
at t=400 microseconds.
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Abstract

The idea of using estimation algegras to construct finite dimensional nonlinear filters was first proposed
in Brockett and Clark [1], Brockett [2] and Mitter [3]. In his famous talk at the International Congress of
Mathematics in 1983, Brockett proposed to classify all finite dimensional estimation algebras. An affirmative
solution to Brockett's problem will allow us to construct all possible finite dimensional recursive filters from
the Lie algebraic point of view.

In 1990, the first named author [21] considered a general class of nonlinear filtering systems which
include both Kalman-Bucy filtering systems and Benes filtering systems as special cases. A simple algebraic
necessary and sufficient condition was established for an estimation algebra of this class of filtering systems
to be finite dimensional. Consequently he has rigorously constructed a new class of finite dimensional filters
which include both Kalman-Bucy filters and Benes filters as special cases. Note that the method used in
[21] computes the fundamental solution of the D-M-Z equation and hence it also solves filtering problem
with non-Gaussian initial conditions. In [5,22], the concept of an estimation algebra with maximal rank
was introduced. This is the most important general subclass of estimation algebras because there is no
assumption on the drift term of the nonlinear filtering system. The first named author and Chiou have
already classified all maximal rank finite dimensional estimation algebra with state space dimension at most
2 15,22]. In this report we continue the project and study the case for state space dimension 3. Consequently,
we have shown that at least for low dimensional state space the finite dimensional filters constructed in [21]
are the most general filters from Lie algebraic point of view.

1. Problem formulation

The filtering problem considered here is based on the following signal observation model:

f dx(t) = f(x(t))dt+g(x(t))dv(t) x(O)=xo
(1.1) dy(t) = h(z(t))dt + dw(t) y(0)=yo

in which z, v, y and w are respectively R', RP. R' and R' valued processes, and v and u, have components
which are independent, standard Brownian processes. We further assume that n = p, f, h are C' smooth,
and that g is an orthogonal matrix. We will refer to z(t) as the state of the system at time t and to y(t) as
the observation at time t.

Let p(t,x) denote the conditional density of the state given the observation {fy(s) : 0 < s < t}. It is
well known (see [8], for example) that p(t, x) is given by normalizing a function. u(t, z). which satisfies the
following Duncan-MGrtensen-Zakai equation:

(1.2) da(t,x) Loa(t,x)dt + ZLi(t,x)dyi(t), a(O,x) = ao

where

i=1 0 = _=1 ti

• Supported by the U.S. Army Research Office
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and for i = 1, .., m, Li is the zero order differential operator of multiplication by hi. ao is the probability
density of the initial point zo. In this paper, we will assume ao is a C' function.

Definition : If X and Y are differential operators, the Lie bracket of X and Y, JX, Y], i- defined by

IX,Yfr = X(YP) - Y(XP)

for any COO function 4'.

Definition: The estimation algebra E, of a filtering problem (1.1) is defined to be the Lie algebra generated
by {Lo,L,... ,L or E -< Lo,L, ,Lm >L.A.- If in addition there exists a potential function * such
that fi = j. for all 1 < i < n, then the estimation algebra is called exact.

Define
n n r

Di "_ , and F +Zf. 2 + h2.
i"= i=1

Then

"L =i fit

We need the following basic results for later discussion.

Theorem 1. (Ocone) Let E be a finite dimensional estimation algebra. If a function ( E E, then ( must
be at most a quadratic polynomial.

Ocone's theorem (112], see [6] for an extension) says that hi,..- h,h in a finite dimensional estimation
algebras are polynomials of degree • 2.

Definition : The estimation algebra E, of a filtering problem (1.1), is said to be the estimation algebra
with maximaJ rank if zx + ci E E for all 1 < i < n where ci is a constant.

Remark : If m >_ n,hi(x) -= jj + ci for I S i < m with A = (ai,)n,,, invertible, then E is of
maximal rank.

The following theorem in [20] plays a fundamental role in the classification of all finite dimensional
estimation algebras.

Theorem 2. Let E be a finite dimensional estimation algebra of (1.1) satisfying &J.!- a where

wij are constants for all I < i < n. Then hi,-.. . , h,, are polynomials of degree at most one. Furthermore,
if E is of maximal rank, then q is a polynomial of degree at most 2 and E is a real Lie algebra spanned by
{1,L0,xjDj : 1 < i < n}.

2. Classification of finite dimensional maximal rank estimation algebra

§2.1 Classification Theorem

Main Theorem : Suppose that the state space of the filtering system (1.1) is of dimension three. If E
is the finite dimensional estimation algebra wih ma-ximal rank, then E is a real Lie algebra of dimension 8
with basis given by {1, £,X2, 1 3, D1, D 2 . D3 , Lo}.

In light of Theorem 2 above, it suffices for us to establish that wij = constant Vi,j. Since W,2 = [Dj, DiJ
must be in E, wij is a polynomial of degree at most two.

First of all, we'll show that wii's are polynomials of degrees at most one.
Let wij = degree 2 homogeneous part of wi

=02£I+bx 2 21XZ
u;12 = a22 +- bl2x2 +- c12X 3 + d 12Xlz 2 + el2XzX 3 .+ f+22X3

W13 = 33aX8 + b1 x+ C13X3 13 X 2 + e] 3 XlX 3 + /13X2X3

W123 = 23X? + 623X'2 + C23£3 + d23-1 Z2 + e 23 1XX 3 + 123 £2X3
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and 
W12 = W12 +P12

8:I 09Z20fh _ 81 = W13 = Wti13 + P13

OIXI aZ3

3 O -- 8f2= 23 = W23 + P23
8Z2 8X3

where pij is the linear part of wli Then we have the following basic cyclic relationship which is also true for
general state dimension n > 3 :

(2.1) •0 12 + 2 + -o
O:3 o:1 '9X2

Lemma 1: W = (tq)3x3 = (0)3.3 if any two of the wij's with i 0 jare 0.
Proof : There are (3) = 3 cases: (i)wW1 = W23 = 0,(ii)w 23 = w 1 2 = O,(iii)w1 2 = w 23 = 0. Writing

-U1 0 W3 and =(j)\-W13 -J23 00

then fl (w•&) is a vector with entries in E (by considering [[Lo, DiJwj1]). For case (i), it suffices for us
to consider operators w1 2  . and W12.y-' only. Operate them on W12 and using Ocone's result, we conclude
that W does not depend on X1,X2 i.e. w12 = c12Z3, w 1 3 = W2 3 = 0. The above cyclic relationship (2.1)
implies.that 2c12 Z3 is a constant, hence c1 2 mUst be zero. Cases(ii) and (iii) can be treated similarly and we
are done, i.e. W = (0)3x3 as desired.

Q.E.D.
Lemma 2: If one of the w3 ,'s is zero where i 9 j, we have the following relationships among the coefficients
in wij's:

9W13 89W12(i) w2 3 =0 = L =0 and d13 =el 2 ,2b) 3 =A 2 4-1 3 =2c1 2 ;
Ox2 OX3

(ii) w 12 =0 =: - C= 0 and d 13 =2a23 ,2b 13 =d 23 , f 13 =e 23 ;
O9x Ox2

(iii) W•3 = 0 =* -9W2 ++ --2 =0 and e1 2 = -2a 23 ,2c= 2 -e 23 ,f 12 =-d 23 .
8:1 0Z3

Proof : These are easily verified by equation (2.1). Q.E.D.

§2.2 fl is linear

For the proof of W = (0)3X3 in general, we define the operators:

a a
DI := 1 X2• + ,J3 ý'-'-z

D2 -W12 + "'23

89 8
D3 := W13 Y- -W3

Since E contains Y3 = [Lo,Dj, so tYjwk,]= F3=1 wi~i., (wji) E E, i.e. =, wji ,, (Wjk) are polynomials
of degree at most two. We may set the coefficients of terms with degree 3 equal to zero. But these terms arise
from degree 2 terms of wij's only, therefore it suffices for us to consider wi, instead of wi in the following
calculation.
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Let

Diw,.300:- coefficient of xi of Di(wjk)

Diwik030 := coefficient of x2 of Di(wik)
Diuk03 :---- coefficient of z• of DI(w,)
Diwjk21O := coefficient of x32 of Di(wjk)

Diwjk201 : coefficient of z~xs of Di(wjk)

Diwjk120 := coefficient of :4zi of Di(wik)

DiWjk021:= coefficient of z2zs of Di(wi,)

Diwi,102 := coefficient of xjz3 of Di(wih)

Diwjk012 := coefficient of zx32 of Di(wjk)

Diwjklll := coefficient of zXZ2X3 of Di(wi,)

Objective To show that all coefficients of wij's are zero, i.e. the system of 90 equations has only trivial

solution.
Observe that D1w1 2 003 = c1 2(f12 + 2c,3).

Suppose c12 6 0. =: f12 = -2c 1 3 , Dlw1 3 030 = bI 3(fI3 + 2b 12).

Suppose b13 0 0. =* f13 = -2b,2 =P D2wl2003 = C12(2C23 - e12 ),D3wI3030 = -b 1 3 (d1 3 + 2b23 ).

Se12 = 2c 23 , d13 = -2b23. =o D2W2 3300 = a 23 (e23 - 2a 12), D3w2 3300 = -a 23 (d2 3 + 2a 1 3).

Suppose a23 # 0. *= e 23 = 2aI2 , d23 = -2at1. =* Dlw2s030 = 2b, 2 b23 + bl 31 3 , D3wi:030 = -2b6 2 b23 -

bi 3d12. Add these two gives b1 3(f 2 3 - d1 2 ) = 0. Since b13 6 0 is assumed, we have 123 = d1 2 .

Suppose d12 9 .0 * b129,b23 ,cMc 23 ,a 2 3,a 13 6 0 since Dlw23 030 = 2 b6 bu23 + d1 2bM, Dlw23003 =

c12d1 2 + 2C2 3 C•3, D2w2 3210 = -2a 1 2 a13 - dl 2a23 . Moreover from DMw 1 2021, Dlw23 120, D2w1 2201, and

D2wt 2021 we can obtain the following proportional relationships: a23/a02= b2 3/b 2 = c23a/CI 2, a13/a12=

b13/b12= c1a/C12 and Q23/a13= b23/bI 3 = C23 /C1 3.
Observe that W2•= a023+ b23X2+ C23Z3- 2at3lx,2+ 2a•2IX3-r+ dl 2zX2X- Using the expressions -d 1 2

/2= a12aI3/a23= b12b23/bI3= c13c23 /cI 2 it can be shown that a 23w23= (a23zX- al3X2+ a12•3)2. Similarly,

223W12= a 1 2 (a 2 3z1- a13Z2+ al123)2 and a2w313 a13 (a23:1- al3Z2+ a0123)2. The cyclic relation (2.1)

implies that 0= i.+ S9=2 , + ( 23 x- 0) a( 1+ *). Contradicting that a1 2 , aI3,imlestat0 •• O _.1- (a2 8 al33 a a32( 24. a23

a23 #0. Hence d1 2 6 0 under c 12 , b13, a23 # 0 is impossible.

Then we are working with d1 2 = 0 under the assumptions that c1 2 , b13 , a23 6 0. =o D2w12 111--4a1 3c1 2

a 013 = 0 =* Dlw2 120=2al 2 b13 , D2w1 2210=-2a2scI 3 , D2wI 33O0=a23eI3, D3wI 3300=-a23 dI3 , D3w1 3210=-

2a23 b23 , D3w2a030=-2b23 * a1 2 = c 13- e 13= d1 3= b13= b23=0 *: D2W12201=2 a23Cl 2. Contradicting that

a23 6 0 and c1 2 # 0. So it's impossible for a23 # 0 under C12, b13 9 0.

Then a23 = 0 under the assumptions that C12, b3 • 0. : D2w1 2300 = -2aI 2 , D3w13 300 = -2a, 3

a 012 = 0,a1s = 0 =* D2w23 201 = e23, D3w23210 = -d4 3 = e23 = = 0 =• D2w2 3 003 =2•,

D3w2 3030 = -2b23 =*' c23 = 0 ;* Dlw2 3 030 = b1•3V 2 , D2wI2003 = -cllelM, D2wI 2 120 =-2

D2wI 3003 = -e 1 3cI 2 , D3w13 120 = - =* f2= e12= dl 2= e13= d13 =0 Now 'W23 = 0. (2.1) gives c13 =
-b 1 3 . Then Dltv12 050= 2b12- 2bl 3 cI3= 2(b12+ b1 3), so b13 = 0. Contradiction. So b13 # 0 cannot come

together with c1 2 # 0.

Then b13 = 0 under the assumption c12 9 0. =* DIwI 2030 = 2b 22, D3w 2303 -= * b2 = 0,

b23 = 0 =: Dlw13 021 = fI23, D3wi3 120 = -d*23 =1 f13 = 0, d13 = 0 * Dlw1 201 - 2c 3 , D3w1 3300 = 2

=* C•3 = 0, a13 - 0 *• Dlw1 2210 d•2 , Dw 1 3201 = e13, D2w23021 = f223, D3w23210 = - d22= e13 =

f23= d 23 =0 =0 W13 " 0. By Lemma 2 e23 = -2c 1 2 . Togethcr with D2w23003 = -e 23 c 1 2 + 243 we obtain

0=2(C2 2 + ch). Contadicting c1 2 4 0. Then c12 cannot be non-zero.

Now we knew that c1 2 = 0 and no other restrictions. Then DIwI3003 = 2C23, D2w2 ,003 = 243.

* c13 - 0, c23 = 0 =* Dlw012 = f•, D2wI 2 102 = -e 1 2 =* f12 = 0, el2 = 0 * DlwI 2 030 = 2b2,
D2w1 2300 = -2a2 *: bI2 = a12 = 0 =* Dlw12 210 = d•2 , Dlw13 201 = e2, Dlwv1 021 = 113' D2w23 201 -

23, D2w23 201 = f223 =: dI2=eI3=fI3 e23 =f23 = 0 ;* W12 = 0. Lemma 2 gives d1 3 = 2a23, d23 = 2b13 .
Together with D3wxa300 - -2a�3 - a 23 dI3 and D3w23 030 = -d 2 ab1 3 - 2b23, we can conclude that w3 =

W23 = 0 also.
= = (u.zj1))s) is shown to be linear.
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S2.2.1 Appendix

There are 90 quadratic q,,uations aricd from~ the coefficients:

300,030,003 a 12dI 2 + aW~12,2012 + b1 3d 12 4c12 f 12 + 2C13C1 2
210 d212 + 2o12 b 2 + al3f12 + d13eI 2
102 aj 2f 12 + e12dI 2 + 2a1 3CI2 + el 3e12
120 3bI~d12 + b13eI2 + d13f12
021 3b, 2f, 2 + 2b13C12 + 113112
102 cl2d1 2 + eULfa + C13eI2 + 2e13CI2
012 f122 + 2c12b1 2 + 013112 + 2113c12
ill I2d 12 M~ + 2e, 2bI2 + 2dI3CI2 + e13 fI2 + f 13e12

300,030,003 a12dI3 + al 3e13, bIAb3 + 613f13, 2413 + f13CI2
210 2aI2bI3 + d12 dI3 + 013113 + d13 eI 3
201 (912f13 + d13C12 + 2aj 3c1 3 + 21
120 bl2d,3 + 2dI2b13 + b13eI 3 + dj 3f 13
021 b12fI3 + 2613/12 + 2bI 3C13 + f,2
102 d13Ct2 + f 1 3eI2 + 3CI3 eI3
021 2bI3C12 + 113112 + 3C13 fI3
1ll1 dl2 f1 3 +2b, 3e, 2 +d 1 3f1 2 +2dl 3 C1 3 +2e 1 3 f13

300,030,003 alzd23 + a1 3 e2 3 , 2b1 2b23 + bl 3f 23 , 012123 + 2013023
210 2al2b23 + d1 2d-.3 + 013123 + d13e 23
201 012123 + e12d23 + 2013023 + e1 3e23
120 b12d23 + 2dl 2 b23 + b13e23 + d13f23
021 b12f23 + 2f] 2b23 + 2b13C23 + 113/23
102 C12d23 + el2f23 + C13e23 + 2e13C23
012 2C12 b23 + /12/23 + C13f23 + 2fI3C2 3
ill 1d 12f23 + 2eI2b23 + f, 2d23 + 2dI 3c23 + e13 f2 3 + f1 3e-23

30003000 -20:12 + a23e12, -bl 2dl 2 + f1 2 b2 3, -C 12 eI2 + 2C23C12
210 -3a,2d12 + a23112 + el 2 d23
201 -3al2e 12 + 2a23CI2 + e2 3e1 2

120 -a12b1  - 12 + e1 2b23 + fI2d23
021 -e 1 2 bI2 - d12fI2 + 2CI 2b23 + 112123
102 -2012012 - e2 +ce 1 + 2 ec 1

012 C2d2- e12fI2 + C23 f12 + 2012123
111 j -2e, 2d1 2 - 2012112 + 2c1 2d23 + e23 f 12 + e1 2f 23

D2W13_ _ _ _ _ __ _ _ _ _ _

300,030,003 -12al2a13 + a23 e13 , -b12dI3 + 623fI3, 2cI 3C23 - e13C12
210 -a, 2 dl 3 - 2d, 2a1 3 + a23113 + d23 eI 3
201 e1 3e2 3 - a12e13 - 2a13012 + 2a 23CI3
120 -2612a13 - dl 2 d)3 + b23e13 + d23fI3
021 113123& - ble3- d13fI2 + 2t'23 CI3
102 2C1 3e23 + e13c23 - 2aI3C12 -e 13eI 2
012 2013123 + 113023 - d13C12 -e 13 fI 2

11 C3f23 + 113e23 - d1C3- dje2- 2a13/12 + 2d 23C1 3

D2 W2 3
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300,030,003 -2a 12 a 23 + a 23e2 3, -b6 2 d23 + b23f23, -e 23c1 2 + 24J 3

210 -a 12 d2 3 - 2dj 2a23 + a23 f 23 + d2ue23

201 - a 12e23 - 2aU e2 + 2a 23 c2
120 -2bl 2a23 - d 12 d23 + b23 e23 + d23f23
120 f23 - b2e23 - f1 2d23 + 2b23c23
102 -2a23c 1 2 - e23 eI2 + 3c23e23
012 -c 1 2d23  e23••2 + 3c23 f 23
111 -dl 2 ei3 - el 2 d23 - 2a23•I2 + 2d23c23 + 2e 23f2 3

300,030,003 -2a 1 2a1 3 - dl2a23, -2612b23 - dj 2 b13 , -c 1 3 eI 2 - c23••2

210 -duzd23 - 2a1 2 dI3 - dla,3 - 2bl 2a23
201 -2al 2 e]3 - ae12 - a23f12 - d12 e23

120 -2bl 2 d23 - d12b2 - dj 2d13 - 2aI 2b1 3

021 -2b61f23 - 1b223 - b13e2 - djf13
102 -ej 3 e12 - 2cI 3 aI2 - c 23d12 - e23fI2
012 -112123 - CA2- f13e 12 - 2C23bI2
111 -duz 123 - fl 2d23 - d12eI3 - d13eI2 - 2a12113 - 2bI 2e23 -

D3 Wj3
300,030,003 -2a03 - a2•d 13 , -b 13 dI3 - 2b 23b1 3 , -C 13 e13 - •3C23

210 -3aI 3d13 - 2a23 bI3 - d23d, 3
201 -3a 1 3e1 3 - a23•I3 - d13e23
120 -d2 3 - 2b13a13 - 613d13 - 2d23•b 3
021 -b1 3 eI3 - d13 f13 - b23••3 - 2b1323
102 -e 3 - 2aI3CI 3 - d3c2 - f 3e 23
012 -d 13 CI3 - e13 f 13 - 2b13c2 3 - f1323
Ill -2dI 3 eI3 - 2al3f 13 - d2f3 - 2b1 3 e23 - d1 0 2 3

300,030,003 -2a13a2 3 - a23 d23 , -2b23 - d23 bI3, -c, 3 e23 - c 23 f 23

210 -d2 3 - al 3d23 - 2a 2 3dI 3 - 2a 23 b23

201 -a13e 23 - 2a 23e1 3 - a23 f 23 - d23 e23
120 -2a23b13 - d23d13 - 3b23d23
021 -b13e23 - d23 f I 3 - 3b23f23
102 -2a 23 cI 3 - el•e23 - d23c23 - e23f23
012 -f23 - d23c13 - f]3e2 3 - 2b23c23
iI -d 13e 23 - d23eI 3 - 2a•W1f3 - 2d3f 23 - 2b 23e23

We have the expression c12 (f12 + 2c 13 ), which is Diw1 2003.

§2.3 f is constant

Our next task is showing that fl is in fact constant matrix.
Since E is finite dimensional with maximal rank. there exist constants ci's such that x, + ci E E for

i = 1. 2.3. Then we have the following elements in E: Dj = [Lo, xj + c,], .j, = [Di, Dj], and

3= ( a0w,, 1 a27
I(LoDjDk i= - .=Di -

Oxk / 2 _ OxkOx, 2 4XkOXj

As wj, is linear, so we may infer that

3 1 82, EE

2=1
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More compactly we write
SS - !Heus(q) or fl 2 + !Hess(q)

2 2
which is a matrix with entries in E. Ocone's result says that these entries are at most quadratic polynomials.
So q is a polynomial of degree at most 4.

If E possesses a nontrivial quadratic polynomial, the argument is very involved and we'll not diszuss it
here. We consider the case that E has at most linear polynomials.

Writing Pi = ( polynomials with degree at most iI.
Let f = Ax, + BX2 +CZs (mod Po) where A = (aij)3.3, B = (bij) 3 .3, C = (ci,)3x3 are skew-symmetric

matrices. We make use of f12 + !Hess(q) = 0 mod P1 to infer that A = B = C = (0)3,3 as follows. Let

H f2 = HI 1 2 + H22X2 + H33X2 + H 12 zXz 2 + Hi3IzX3 + H 23 r2z 3

= A + B 2 2 + C 2X2 + (AB + BA)zxx 2 + (AC + CA)zIz 3 + (BC + CB) 2zX3

We consider terms in q and relationships derived from fl 2 + IHess(rj) = 0 mod P, in terms of entries in Hij
matrices. Coefficient of x 24A in -,I = HuI2,21 H 2 2 11,1I = IH12i1,2). Similarly, Hi1l3,3] = H3311,1]

½H 13[1,3] (Hij[p,q] means the (p,q)-entry of matrix Hj). We have
(2.2) a,2 + a 23 = b12 + b213

2 3-- •(az3 b22 + 2 2 3 b1 3 )

(2.3) a1 + 23 = C212 + -(a 2 C 3 + a23C 2 )

Suppose A. B, C are not all zero matrices, without loss of generality we may assume that A 03 1x3:

Consider terms X •jk#1 zjzk in i1. There exists an orthogonal transformation R leaving Z, fixed and

changes Xj-,k•1 za, to canonical form k 2 2 + k3 3 where i = Rx. So without loss of generality we may

ass~ume from the beginning that i? does not contain the term xlx2zs, which implies that H1 [2,31 = 0. Hence

ai 2 a13 = 0.

Suppose a13 = 0. (2.2) implies

b12 + b2 + a22 + a2 = a23b13 < '(a43 + b23 )

S+ b23 + 242 + a 2 3 5 0

=:ýa12 = a 23 = 0

So A = 0 3x3. Contradiction. Similarly, a12 = 0 will lead to a contradiction also. Hence A.B,C are
simultaneously zero matrices.

For reference we list out the H,, matrices below2 2
I a 2 + a13  al3a23  412a23

H I (a a13a23  a?2 +2~a 2 1

2 2
kal2a23  al 2a 13 3+ a3/

/b22 +1b3  bl3b23  bj2b23
H122 =-fb 13b23  b?2 + b~3 b2  b

b12 b23  b12 b•3  b23 + b23

"Ct1 2 + 13  C13C23 C12C23

H33 = - c13 c2 3  2 + C2 3  C12C13 I
c12 c23  c12 c13  c + 2

/2a1 b1 2 + 2a1 3b1 3  a1 3b23 + a 23bI3  -al 2 b23 - a 23 bI2

H12 a13b23 + a 2 3 b1 3  2a1 2b; 2 + 2a 23b23  a12bI3 + a 13 b1 2  J
-al 2 b2 3 - a 23 b1 2  al 2 b, 3 + aj 3 b12  2a 13b 13 + 2u23623

(2a1:c 1 2 + 2a 1 3 c 1 3  u 13c23 + a 2 3 c 1 3  -a 1 2c 23 - a 23 c 1 2

H13 = - al3C23 + a23 C! 3  2a12Ci2 + 2a23C23  al2Cl 3 + al3CZ2 J
-a- 1 2C2 3 -- 23C1 2  a 1 2 C13 + a 1 3 C12  2aI3cI 3 + 2a 23 c2 3 /

2b 1 2 c 1 2 + 2b 1 3 c 13  b 13 c 2 3 + b23 c 1 3  -b 1 2 c23 - b23c 1 2

H123 = - b 13 c 2 3 + b23c 1 3 2b 1 2 C1 2 + 2b 2 3c 2 3  b 12 c 1 3 + b 13 c 1 2

-b 1 2c 2 3 - b23c,2 b1 2 c 1 3 + b!3Ci2 2b 1 3 CI 3 + 2b 2 3 c 23 /
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Abstract

This paper presents a hybrid technique for optimal discrete-time control of a continuous-

time Turret-gun system. The optimal regional-pole placement technique is utilized to de-

sign a continuous-time linear state-feedback control law. This law is then converted to an

equivalent discrete-time control law for digital implementation aided by the recently de-

veloped digital redesign technique and ideal state reconstructor. A preload compensation

is also added to the digital controller for reducing the effect of the turret motor friction.

A digital simulation of the designed nonlinear Turret-gun system is presented.

1. Introduction

The Turret-gun system contains hard nonlinearities such as Coulomb friction, back-

lash, and saturation, and it is subject to external disturbances such as the firing distur-

bances and base motion, as well as, parameter variations caused by thermal effects on gur

t supported by the U.S. Army Research Office under contract DAAL-03-91-G0106 and

the NASA-Johnson Space Center under grant NAG-9-380
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barrel and torsional stiffness. The primary objective of the Turret-gun servo control sys-

tem is to rapidly stabilize and accurately point the gun to a target position in the presence

of the above nonlinearities, disturbances, and model uncertainties. This requires that the

designed servo control system has the properties of robust, rapid and accurate tracking,

and disturbance and noise rejection. To develop, demonstrate, and validate the advanced

algorithms for Turret-gun control system, the advanced weapon tracking testbed (ATB-

1000) was designed at the Army Research Development Engineering Center to provide

a realistic simulation of Turret-gun system in laboratory environment [1]. The ' .ailed

linear and nonlinear models, developed by Integrated System Inc. (ISI), are used as the

basis for this study.

The primary objective of this paper is to develop a digitally implementable optimal

controller for the continuous-time nonlinear Turret-gun system so that the responses of the

system converge at an appropriate speed and any vibrating modes are well damped. The

hybrid controller design methodology developed in this paper can be briefly described as

follows.

A cascaded internal model (which contains an integrator) and a feedback integrator

are inserted into the continuous-time linearized model to reduce nonlinear effects and fir-

ing disturbances. Based on the above integrated linear model, a linear quadratic regulator

approach [2] is utilized to design a robust optimal state-feedback control law. This law

optimally places the closed-loop poles of the above integrated linear model within the com-

mon region of an open sector and to the left hand side of a line parallel to the imaginary

a•is in the complex s-plane. Thus, the designed system responses converge at an appropri-

ate speed and any vibrating modes are well damped. Moreover, for digital control of the

Turret-gun system, recently developed digital redesign techniques [3] are applied for digital

redesign of the inserted continuous-time internal model and the developed continuous-time

optimal state-feedback control law. In order to implement these digitally redesigned con-

trollers without constructing a digital observer, a new ideal state reconstructor is developed
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for the estimation of the discretized states under noise disturbances and nonlinear effects.

2. Design formulation

A linear model obtained from the given nonlinear model of the ATB-1000 test fixture

is described by following state space equation,

io = A.zo + Bouo
(1)

Y. = CoZo

where z. E •'xl, uo E R?., Y, e 7ZExR, and A., B,, C. are matrices with appropriate

dimensions. The effect of nonlinearities is simply ignored in this model, but these will be

considered in the formulation of the controller structure. The six outputs of the system are

turret motor yaw, turret motor rate, inertial wheel yaw, strain gauge 1, strain gauge 2, and

tip acceleration, respectively. Although there are other measurable outputs on the ATB-

1000 test fixture, they are not practically accessible for control of an actual Turret-gun

system.

In order to reduce the effect of nonlinearities and to increase the robustness of the

designed control system, an internal model which contains an integrator is inserted before

the system. The steady-state error of the barrel tip position caused by nonlinearities is

eliminated by another integrator appended to third output of yo,, i.e., the inertia wheel

yaw. Note that the inertia wheel yaw is used here instead of the barrel tip position due to

the non-availability of tip sensor. With the addition of these two integrators, the overall

system is augmented to an 12th order system as shown in Fig. 1. The augmented state

space equation is given as

S= Ax + Bu
(2)

Y= Cz
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where

- /Zo EE 2 xl,uER, yE"R
Zi2

Z=- output of the first integrator

Z= output of the second integrator

A = JA. I EX 1 2x 1 2

B = 01ox, ER12XI I C= [0 Oixio 1]E RIX12

The r in Fig. 1 is the reference input or the command input for the inertia wheel yaw

(which is identical to the tip position in steady state). Since r is considered as an external

disturbance in the design of the optimal state feedback control law, it does not appear in

(2)

The eigenvalues of the system in (2) are {0.0, 0.0, -4.50, -2.11 ± j27.57, -5.76 -

j59.61, -2.52 ± j138.43, -5.77 ± j384.88}. Thus, the eigenvalues have a large spread.

Although the optimal regional-pole placement method can be directly used to optimally

place the closed-loop poles in the previously mentioned region, a rather large feedback gain

would be obtained as a result of the large eigenvalue spread. This is undesirable due to the

presence of nonlinearities and unmodelled dynamics. Since the state feedback gain is to be

connected to the observed or reconstructed states, any deviation of the observed or recon-

structed state from the actual state will significantly affect the control effort which would

saturate the actuator and, even worse, destabilize the closed-loop system. Therefore, it is

advantageous to decompose this large-scale and stiff system into a completely decoupled

multi-time scale structure, so that each subsystem has its own distinct characteristics and

can be designed accordingly.

The multi-stage design algorithm developed by Tsai, et al. (2] is modified and utilized

here to design the sy-tem in (2). The design procedures can be described as follows:
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Step 1. The eigenvalues of the augmented system in (2) are divided into three groups

that are located in three circular rings, [O,r,], [,r,r2],[r2,r3], as shown in Fig. 2, where

r, = 15, r2 = 100, t3 = 400. The first circular ring contains the eigenvalues {,0, 0, -4.5};

the second circular ring {-2.11 ± j27.57,-5.76 ± j59.61}; and the third circular ring

{-2.52 ± j138.43, -5.77 ± j384.88}. A block modal matrix is constructed by using the

'matrix sign algorithm [3] to decompose the original system into three decoupled subsystems

corresponding to the three groups of eigenvalues. The modal matrix is given as

M, = [S3 S2 SI1 (3)

where
Si= ind[sign.. 1,,.,)(h(A))] E )Z12Xn', 1 < i < 3

and nj = 4, n 2 = 4, n 3 = 4

sign(,.,,)(h(A)) [sign(,,_,(h(A)) - sign(,,)(h(A))]

h(A) = (A - rin)(A + riI,,)-1

In the above definitions, ind(.) represents the collection of the linearly independent column

vectors of (.) and ro = 0, sign(o)(h(A)) = In. Then

Ad = M"'AM, = block diag(Ad 3, Ad2 , Adj)

Bd3 l (4)Bd=MM B= B Bd2

BdI j

where Adi E 7R4x4 Bdi E 7R4xl

Step 2: Set i = 1, A = Ad = block diag[A3, A2,Ai, , = f? = block diag[BT, BT,BTIT ,

M = I,, and the feedback gain KX = 0 ,x,.

Step 3: The subsystem considered for design at this stage is (Ai, !•i). Design this subsystem

by using the optimal pole placement method [2]. Let the immediate optimal feedback gain

be Ai and the corresponding continuous-time closed-loop system be (A, f3i).

Step 4: Update

k/ :=/ke + [0,x(n-nmi),K 1i]M?' (5a)
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A: A - DtomX,,..nni),Rt~] ii [i (5b)
where 1 = blck dia rA. '0,ix(nni) A~, (b

where Ai = block diag [Ai,],Wi = -[B&, jTAfC•I. The ni is the order of the subsystem

that is being designed at this stage. The dimensions of the matrices A1 and W1 are

(n - ni) x (n - n1), (n - ni) x ni, respectively.

Step 5: Block-diagonalize the partially designed system A and move the last block of A in

(5b) (viz., A-,,) to the first block, via a transformation matrix M2 which is given as

3 [Li r., ] [0n.,X(n.,) i (6aM2 i - ,0NX(n-n,) I •- I._., -Li (6I

The matrix Li (E 'R(n-nI)xn,) can be solved from the following Lyapunov equation,

ALi - LiAo, + W, = 0(n_.,)Xn, (6b)

The transformed system is

A := M•2 •AM 2 = [A, 0x(_•) ] (6c)
10(n--ni)Xni Ai I

B := Mj-xR = [B, (Bi - LBi)T]T (6d)

where B} = [BT, BjTT. Accumulate the transformations in M1 := MA1M 2 .

Step 6: Set i := i + 1. If i > k (k is the number of time-scales. In this specific case, it

equals 3), then go to Step 7; else, go to Step 3.

Step 7: The state-feedback gain for the original system is obtained as K, = KCM,- 1 .

The final result is given as follows: with the designing parameters h, = 15, h2

20, h3 = 15, the state-feedback gain is computed as

Kc [391.0 23.0 144.0 23.0 250.0 11.0 -43.0 23.0 241.0 19.0 328.3 -41071.0]

(7)

The closed-loop eigenvalues are given as {-25.5, -30.0, -30.0, -30.0, -37.89±j27.57, -66.40±

j66.40, -27.48 ± j138.43, -24.23 ± j384.88}.

350



3. Digital implementation

3.1. Digital redesign

In order to implement the designed continuous-time state-feedback control law in the

sampled-data environment of the ATB-1000 test fixture, the digital redesign technique [3]

is used to convert the continuous-time control gain Kc in (7) to an equivalent discrete-time

control gain K 4 . The state feedback gain K1 can be converted [31 by

1X 1 (I1 + 1 KH)_-K,(I. + G) (8)
2 2

where K. is given in (7), G eAT, H = freAr dr, and T = 0.0025 sec. The Kd is

computed as

K, = [Kdl,Kd,, Kd2] (9)

where

K1j = 292.89

Kdo = [5.7936,83.24,21.30,164.88,11.77, -10.91, 12.20,208.01, -21.46, 1750.4]

Kd2 = -24429.0

The digital control law is then given as

u 4(kT) = -Kz 4 (kT) = -Kd4 zxi,(kT) - KIzxo(kT) - K, 2 z,• 2(kT) (10)

Furthermore, the inserted integrators can be discretized by using the Tustin approximation:

1

3.2. Digital state reconstructor using recursive weighted least-squares (RWLS)

algorithm

:4 i1(kT) and Zdi 2 (kT) in (10) are outputs of the inserted integrators and are directly

accessible. However, the state x4o is not directly measurable. Thus, a state reconstructor

is developed in this paper to reconstruct the actual state zi,(kT) from the measurable

outputs and inputs of the system in (1).
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Let the discretized state space equation for system in (1) be

zdok+l = Gxdoi + Hudi,
(11)

Ydok = CZdok

Then, the following RWLS algorithm can be used to estimate the digital state in (11):

ihl= Gij + Huhk + Kk,(yk - C4i) (12a)

Kh = GPjCT(AI, + CPkCT7)- (12b)

PA+1 = A G - KkCIPIGT (12c)

where : is the estimation of the digital state zmdo at t = kT, A is a forgetting factor.

The algorithm presented here bears many resemblances to the Kalman filtering al-

gorithm. The RWLS algorithm is simpler in terms of the required knowledge of noise

characteristics, and thus provides a practical alternative to Kalman filtering.

3.3. Friction compensation

It is observed that the Coulomb friction presented in the turret motor has a significant

undesirable effect on the overall system performance. The presence of the Coulomb friction

makes the system response rather sluggish, and the system response takes much longer time

to settle down. Simply increasing the feedback gain does not solve the problem due to the

limitation of the actuator. In this paper, an inverse nonlinear technique is utilized to deal

with this problem. Specificly, a nonlinear compensation term is added to the input of the

turret motor. This compensation term takes the form of uc,,,(kT) = frsign(ydo2(kT)),

where f, is the turret motor friction and yo2(kT) is the sampled value of the turret

motor velocity. The effect of this nonlinear compensation is to convert the low frequency

disturbance caused by the turret motor friction to a high frequency impulse disturbance.

The converted high frequency impulse disturbance has less effect on the system due to the

lowpass nature of the designed closed-loop system. The control law in (10) now becomes

Utd(kT) = -KdxdI(kT) - Kdoid(UT) - Kd2--di2 (kT) + Ueop(kT) (13)
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4. Simulation results

The complete digitally implemented control system of the ATB-1000 test fixture is

shown in Fig. 3. Nonlinear simulations are carried out using the MATRIXx simulation tools

and the results are shown in Figs. 4-5. Nonlinear simulation of the closed-loop system using

the control law without the friction compensation is also carried out and the results are

shown in the same figures for comparison.

5. Conclusions

A hybrid technique for optimal discrete-time control of a continuous-time Turret-gun

system has been proposed in this paper. A continuous-time linear state-feedback control

law has been designed by using the optimal regional-pole placement technique. This law

is then converted to an equivalent discrete-time control law for digital implementation

aided by the digital redesign technique. A recursive weighted least-squares algorithm has

been utilized to estimate the digital state of the Turret-gun system. A preload compen-

sation is also added to the digital controller for reducing the effect of the turret motor

friction. Finally, all these components have been integrated together to yield a practically

implementable controller for the ATB-1000 test fixture. The result of the nonlinear digital

simulation of the designed nonlinear Turret-gun system has demonstrated the effectiveness

of the proposed techniques.
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WAVELET ANALYSIS AND ITS APPLICATIONS*

Charles K. Chui
Center for Approximation Theory

Department of Mathematics
Texas A&M University

College Station, TX 77843-3368

ABSTRACT.

The objective of this writing is to give a brief introduction of the subject of wavelet

analysis, and to compare it with the classical subject of Fourier analysis. Spline examples

are considered, and the integral wavelet transform is considered as a bandpass filter with
variable bandwidth. A comparison of some of the existing wavelets is also given. Finally, a

list of applications of wavelets is included. During the hour-talk, demonstrations of these

applications were shown by taking advantage of the multimedia facilities.

INTRODUCTION.

While Fourier analysis is a well-established subject within classical analysis and ap-

plied mathematics, the subject of wavelet analysis was born only during the last decade.

The objective of this writing is to give a comparison of these two subjects. A brief account

of the existing wavelets and a list of applications are included in this writing.

1. FOURIER SERIES.

Every 27r-pcriodic function can be represented by its Fourier series

f(x> ~
11 00

* Research partially supported by ARO Contract DAAL 03-90-G-0091.
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where a single function
O(x) := e' =cosx + isinx

is used in the series representation. Not only is this representation very useful, the terms in

the series are also very meaningful. namely, each term c4(nx) indicates the nth "mode"

of f(x), when f(x) considered is as a "wave". In this regard, only one "basic" function

p(x) = ei, is needed to represent all 21r-periodic functions f(x). This function may be

considered as the analyzing wave.

2. SERIES REPRESENTATIONS FOR NONPERIQDIC FUNCTIONS

For convenience, we only discuss the class L 2(-o_, oc) of functions f(x) with "finite

energy", namely:
Ilf 112 V:= If (X)12 d.X) < 00.

In order to imitate the Fourier series, we again look for a single "basic" function (also

denoted by *(x)) to represent all f(x) E L 2 (-oo, cc) in the form of an infinite series as

before.

Assuming that 4*(x) should be "Lipschitz continuous", say, then for ;b(x) E L 2 (-oo, 0o),

we have
P(x) -- 0, as x -- ±c.

So, just "dilation" (i.e. ip(nx)) alone cannot do the job, and we need "translation" also.

In addition, in order to group ranges of frequencies (i.e. "frequency bands" or "octaves"),

we consider:
"dilation by powers of 2"

instead of dilation by integers. Also, for simplicity, we only consider translations by "inte-

gers". That is, we will consider

01j,k(z) := 2i/2 (2jx - k), j, k E Z.

Where, as usual, Z denotes the set of all integers. The normalization constant 2)/2 is used

here so that
ItVi,k 112 = !t'112, all j, k E Z.

Hence, we are interested in series representations of the type:

36-0-- k=--
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for all f(x) E L 2(-oo, oo). Let the above representation of f(x) be separated into compo-

nents:
00

f(z) = W gj(x), with

=-00
k=oo

We see that gj(x) represents the component of f(x) in the "2j th frequency band" (or jth

octave). Suppose that the separation

.0

f(X)= E g9(x)=...+g_,(i)+go(x)+-.

is "unique" (that is, we have an infinite direct-sum decomposition of any f(x) E L 2 (- c, •c)).

Then by setting

Wj := {gj: f E L2(-oo,_ )},

we have a direct-sum decomposition of L 2 (-_o, co), namely:

j=00
L2(-oo,o) = :e w•.

Next, let us consider the partial direct sums:

n-I

Then we arrive at a nested sequence of approximating subspaces of L2 (-oo, 0c), namely:

•.C V-1 C Vo C V, C ... C L2 (-_0, o0), and

clos,2 U Vi = L2 (-oo, oc)
jEZ

in particular, for each integer n, we also have

V,,+ 1 = V,-, GIW.

That is, the subspaces W,, are complementary subspaces of the nested sequence {f }.

3. EXAMPLE (CARDINAL CUBIC SPLINES).
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Let Vo denote the collection of functions f(x) E L2(-oc, co) satisfying:

(a) f(x) E C 2 (-oo, oo); that is, f(x), f'(x), and f"(x) are continuous for all x, and

(b) the restrictions of f(x) on each of the intervals [k, k + 11,k = 0,0, 1,

are cubic polynomials.

Then each f(x) E Vo is called a cardinal cubic spline with knot sequence Z.

For each j E Z, consider

Vj = {f(2jx): f(X) E Vo}.

Then every f(x) E V1 is a cardinal cubic spline with knots 2-jZ. Since removing a knot is
equivalent to imposing a third continuous differentiability condition at the knot, we have
a nested sequence of subspaces of L2 (-co, oc), namely:

•.- C V-1 c Vo C V1 C ... c L2 (-oo, 00).

From this nested sequence of subspaces V,/, there are many choices of the complementary
subspaces W,,.

Let us choose those complementary subspaces as dictated by a given projection

operator.

(i) L 2 -projection.

Let Pj: L2 (_ 0,0,) - Vj be defined by

I1f - Pjf 11 = min 1f - h112

hE Vj

for all f E L 2 (-oo, o0). So, by setting

Wj = {f - Pjf: f E V+},

we have
yj+I = y, Gw,.

In fact, this direct sum is an orthogonal sum: Vj -L Wj. Hence,

aooL

L 2 (-oo, oo)= 1 W,.

3j=-00

Now, considering the "spline approximation" problem:

f -. f) := Pjf E V,



we then have
.7 := h+1 - fj , f - f =0

for all sufficiently large j, provided that f is sufficiently "smooth". But gj E Wj. So, the
jth octave of f is - 0 in very high frequency ranges.

How about if f is smooth on some intervals, but not so smooth elsewhere?

Since the cardinal splines are "locally generated" (by translates of a B-spline), we

expect to have
gj (z) - 0 where f(x) is "very smooth";

gj (x) reveals the details of f(x), elsewhere.

(ii) Interpolation at the knots.

Let Ij: C n L2 (-o, oo) --. Vj be defined by

(f) • f • , kEZ,

for all f E CfnL 2(-oo, cc).

Again by setting

Wj I=f{- f: f E Vj+l},

we have
yj+j = yj G wj,

and hence,
00

CnL L 2(-_C, o)= @ w& .
j=-00

But this direct-sum decomposition is not an orthogonal decomposition.

It is well known that every cubic spline f(x) E V0 has the representation

k=00
f(x) = V" ckN4(X - k.)

where {ck} is square-summable

i.e. E jCk 12 < oc

and N4 (x) is the cubic B-spline. Consider the orthogonal complementary spaces ,V.; that

is,

v1 = Vo eL Wo
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defined by using L2-projection. Then for every g E W0, we also have the representation

00
gXx) -= E di.4(X-- k)

where {dk} is square-summable, and tP4 (x) is the cubic B-wavelet (see [1] and Figure 2).
While N 4 E Vo has minimum support in Vo, ?P4 E Wo also has minimum support in

Wo. From Wo, we can go to any Wj, j E Z by defining, as before,

04;j,k(X) := 2i' 2 04(2jx - k).

Then every gj E Wj has a (unique) representation

Since every f(x) E L 2 (-co, c) can be separated as a direct sum of gj(X) E Wj, j E Z, we

have the following cubic B-wavelet series representation of f(x):

fWx) = d W

j--o. k=-oo

4. WAVELET SERIES.

Let V E L 2 (-oo, cc) and set

Oi,k(X) := 2'/ 2 (2jx - k), j, k E Z.

Assume that we have a 7 such that every f(x) E L 2 (-cc, cc) has the (unique) series

expansion:
f(x) ,.,• d•¢3*,k(X).

j,kEZ

Remarks.

(i) Riesz Basis. For implementation, we would rathcr work with the coefficicnt sequence
{dk}, j, k E Z, instead of f(x). This requires "stability"; that is, the existence of

positive constants A and B (independent of f(x)) such that

A Ck12 < Ilfll < 13 !

j,k j,k.
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If this stability condition is satisfied, we call ({4j,k} a Riesz basis of L 2 (-oo, oc).

(ii) For a Fourier series, the Fourier coefficients can be expressed in terms of the 27r-

periodic function by using the orthogonality property of {einZ}, namely:

f ) =-oo

n f2 f(x)e"sndX.

Similarly, in the L 2 (- oo, oo) setting, if the Riesz basis {I ?b,k(x)}I is an orthonormal
(o.n.) basis of L 2 (_oo, oc); that is,

(4'O,k, Oft,m) : 0 f 4j,k(X)1.1~,m(X) dX = bj,t 6 ic,m, j, k, f, m E Z,

then we also have
S= (f, Vlj,k(x))

= f(X)Oj,k(X) dx.

In general, if the Riesz basis {'j,,k(x)} is not o.n., then we need the dual (or bi-

orthogonal) basis {pJ0k(x)}, defined by

(l¢j,k, V")~m = bij,16k,j, j, k, e, M E Z.

Remark.

Although {4j',k(x)} is derived from a single function ip(x), the family {4 ',m(x)} may

not come from one single function p. If it does, then

V)I,,m(X) 12~'i(~

and we call 4 the dual of 0.

In general, if V) has a dual Z, then the series

f(x) = Z- dPi,k(x)
j,k

is called a wavelet series. Hence, if {Wjik} is an o.n. bmsis of L2 (- -, 00), then since

)= 4, the above series expansion is a wavelet -cries.
The importance of the dual ý is that in the above wavelet serics expansion of f(x),

we have
d~k



where
1 00 •x,-b'•(Wýf)(b,a) 7= dx

is called the integral wavelet transform (IWT) of f(x) with respect to the mother (or
basic) wavelet 4. Hence, the wavelet series expansion of f(x) E L 2 (-oo, oc) is given by

j,kEZ

We conclude this discusssion with the following observation.

Comparison of Fourier analysis with Wavelet analysis.
(a) In Fourier Analysis, we have two areas:

(i) Fourier series and
(ii) Integral Fourier Transform,

and they are not related.

(b) In Wavelet Analysis, we also have two areas:

(i) Wavelet series (WS) and .
(ii) Integral wavelet transform (IWT),

but these two areas are intimately related: the coefficients d, of the WS of f in
terms of a wavelet V) are the IWT of f at (k, ) using the dual 4 of 0 as the
mother wavelet.

5. THE INTEGRAL WAVELET TRANSFORM AND TIME-FREQUENCY ANALYSIS.

The IWT of f

W~f)(b, a) = [ O t dt

may be considered as a "time-windowing process", where f(t) is treated as a continuous-
time signal. This window slides along the time-axis, while the width of the window is
adjusted by the value of the scale a > 0. The smaller the value of a, the narrower the
time-window; and consequently, a more accurate time-location is achieved.

By the Parseval identity, we have

W)(b, a) =2 -i f(w)ein,(a(w - )d,

where
17) := +
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and w* is the "center"of tk(w). Hence, the IWT also gives localized information on the
spectral behavior f(w) of the signal f(t). Again, the scale a > 0 adjusts the width of the

frequency window.

If the frequency w is set to be c/a for some calibration constant c > 0, then the time-
scale plane becomes the time-frequency plane, and the "time-frequency window" narrows
at high frequencies and widens at low frequencies.

6. WAVELET DECOMPOSITION AND RECONSTRUCTION ALGORITHMS.

Recall that

L 2 (-oo, oo) ;,z VN = WN_1 E... D WNM E VNM.

Hence, any f(x) E L 2 (-00,o0) can be first approximated by an fN (x) E VN and then

fN(x) is decomposed into a sum of its "wavelet components" gj(x) and its "blurred"
version fN-M(x):

f -fN =- gN-1 + + gN-M + fN-M.

Write

f,(x)= N),

and

gj{(x) = d V/(2-x- k),
k=-oo

where ¢ generates V0 (e.g. N AT4 ).
Let {ak, bk} be the "decomposition sequences" (relating 0(2x - g) with €(x - k) and

O(x- k)), and let {Pk, qk} be the "reconstruction sequences" (relating O(x) with 0(2x - f),
and iP(x) with 0(2x - i), respectively. Then the algorithms can be described as follows:

(i) Decomposition algorithm

Zk be-20kc

(Movihg averaging followed by "downsampling")

dN-1 dN- 2  dN-AI
/ / // /

CN CN-l CN-2 CN -M
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(ii) Reconstruction algorithm

C'= Z(Pk-21C~j + qk-2tdjj_)

("Upsampling" followed by moving averaging)

dN-M dN-M+1 dN-i

CN-M cN-M+ ... cN- 1  CN

7. INTEGRAL WAVELET TRANSFORM AS BANDPASS FILTERING.

Let V.(x) be a mother wavelet. For each (fixed) scale a > 0 (that decides the frequency
range in the passband), set

h(t) f-.

Then the IWT of f becomes 00
(W~f)(b,a) = h(b - t)f(t) dt

=(h * f)(b).

That is, for fixed a > 0, WO is a time-invariant linear filter with transfer function given by

Ha(W) = h(M).

Remarks.

(i) The bandpass filter has linear-phase if and only if h(t) is symmetric; that is, there is
some to such that

C(to + t) = (to - 0.
(ii) The bandpass filter has generali"ed linear-phase if and only if h(t) is antisymmetric;

that is, there is some to such that

V)(to + t) = -?P(to - t).

(iii) Linear-phase (or at least generalized linear-phasc) V1 (t) is essential for distortion-free
filtering.



8. COMPARISON OF WAVELETS.

The Haar wavelet Oh does not give good frequency localization. So, in the following,
we will assume that 40 # ?ph.

(i) Compactly supported o.n. wavelet 4.
(Note: {I)j,k} is an o.n. basis of L2 (-_x, oo).)

"* All the decomposition and reconstruction sequences {a,, b,} and {p,,, q,} are
finite.

" 7P is not symmetric and not antisymmetric.

"* Side loop/main loop ratio is fairly large.

(See Figure 1.)

(ii) B-wavelets (of cardinal spline functions) V),.
W,,I , n =Aj.
I {a., b.} infinite, {p.,, q.} finite.

* 4,m(X) symmetric for even m, and antisymmetric for odd m (with respect to the

center 2rn-4)

Side loop/main loop ratio is smaller for m > 2.

(See Figures 2 and 3.)
(iii) Symmetric or antisymmetric compactly supported V) with finite decompo-

sition and reconstruction sequences.

* W, YWj.

9. APPLICATIONS.

Real-time wavelet decomposition algorithms can be implemented in parallel, sepa-
rating the signal, image, etc., into "disjoint" frequency bands, with time (and/or space)
localization (of high and low amplitudes) in each band. Furthermore, "wavelet-packet"
tree algorithms can be implemented, even adaptively, to further decompose the compo-
nents in the high-frequency ranges. Since the real-time wavelet reconstruction algorithms
are equally efficient, it is easy to imagine that the list of potential applications of wavelets
is endless. We only discuss a few examples here.

(i) Analysis of transient signals

(ii) Sonar applications
(iii) Echo detection and cancellation

(iv) Noise removal (e.g. acoustic pop noise)
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(v) Image compression

Demonstrations of all these items were presented in the lecture.

Reference

1. C. K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.
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Design and Analysis of Scalable Parallel Algorithms.
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Abstract

We have developed parallel algorithms and data structures for a variety of numeric and
nonnumeric problems and analyzed their performance and sgalability on various parallel archi-
tectures. Our analysis sheds light on what problems can be soved cost effectively on large-scale
parallel computers. It also gives us insights into the best. possible parallel architectures for
solving various problems of practical interest. This paper presents an overview of our research.
In particular, it summarizes resLIts on development and analysis of parallel algorithms such as
load balancing of unstructured tree cc mrputations, finite element method, sparse linear system
solvers, backpropagation neural network learning algorithm and fast fourier transforms.

1 Introduction.

This research addresses the problem of exploiting the massive computation power of large scale
parallel computers. It is possible to construct parallel processors containing 10's or 100's of thou-
sands processors. The cost bf these machines is comparable to that of large mainframes ($ 1 to 20
Million), but they offer 100 to 10,000 fold more raw computing power. There are many important
industrial/military problems that can become solvable with the 100 to 10,000 fold increment in
computing power. It is not possible to exploit this massive power until scalable parallel algorithms
are developed for the problems of interest. We are developing parallel algorithms for a variety
of numeric and non-numeric problems and analyzing their performance and scalability on various
parallel architectures. The scalability analysis is important because the hardware technology is
changing rapidly (in terms of number of processors, computation and communication speeds and
network technology) and experimental results for a problem on a specific architecture may become
obsolete with any of these changes. This research will help answer the following questiops: (i)
what problems can be solved cost effectively on parallel computers? (ii) what are the best parallel
algorithms and architectures for solving various problems of interest?

We have used the isoefficiency metric to analyze well known techniques for partitioning finite el-
ement meshes. Our analysis predicts the relative performance of these schemes on different parallel
architectures and helps in determining more scalable schemes. We have analyzed the performance

"This work was supported by IST/SDIO through the Army Research Office grant # 28408-MA-SDI to the Univer-
sity of Minnesota and by the Army High Performance Computing Research Center at the University of Minnesota.
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and scalability of the Preconditioned Conjugate Gradient Algorithm on parallel architectures such
as mesh, hypercube and CMSTM 1 for different types of sparse matrices. We have predicted the
relative performance of different mappings and the scalability of different preconditioners on large
scale parallel computers. The analytical results have been verified through experimental implemen-
tations of these schemes on CM5. We have developed a new and highly scalable network partitioning
method for mapping the Backpropagation Algorithm for parallel computers such as nCUBE2TM 2

and CM5. Even an unoptimized version of our hybrid parallel formulation on a 256 processor CM5
(without vector units) performs over 60 million weight changes per second (or over 180 million
connections per second) for irregular networks. We have developed highly scalable methods for
load balancing of unstructured tree computations on on both MIMD and SIMO) machines. We
have studied the scalability and the cost-performance tradeoffs for the FFT algorithm on different
architectures. This analysis highlights the dramatic impact of certain hardware parameters cn tho
scalability and performance of the FFT algorithm. We have presented new parallel algorithms
for matrix multiplication, and have analyzed the performance and scalability of these and existing
algorithms for a variety of architectures.

In subsequent sections we provide an extended summary of our research results.

2 Analyzing the scalability of parallel algorithms and architec-

tures.

At the given state of technology, it is possible to construct parallel computers employing hundreds
of thousands of processors. Availability of such systems has fueled interest in investigating the
performance of parallel computers containing a large number of processors. The scalability of a
parallel algorithm on a parallel architecture is a measure of its capability to effectively utilize an
increasing number of processors. Scalability analysis of a parallel algorithm-architecture combina-
tion can be used for a variety of purposes. It may be used to select the best algorithm-architecture
combination for a problem under different constraints on the growth of the problem size and the
number of processors. It may be used to predict the performance of a parallel algorithm and a
parallel architecture for a large number of processors from the known performance on fewer pro-
cessors. For a fixed problem size it may be used to determine the optimal number of processors
to be used and the maximum possible speedup that can be obtained. The scalability analysis can
also predict the impact of changing hardware technology on the performance and thus help design
better parallel architectures for solving various problems.

A number of metrics for scalability analysis have been developed [211. In [23), we presented
isoefficiency as a metric for characterizing the scalability of parallel algorithm - architecture com-
binations. If a parallel algorithm is used to solve a problem instance of a fixed size, then the
efficiency decreases as number of processors P increases. The reason is that the total overhead
increases with P. For many parallel algorithms, for a fixed P, if the problem size W is increased,
then the efficiency becomes higher (and approaches 1), because the total overhead grows slower
than W. For these parallel algorithms, the efficiency can be maintained at a desired value (between
0 and 1) with increasing number of processors, provided the problem size is also increased. We call

'CM5 is a trademark of the Thinking Machines Corporation.
2 nCUBE2 is a trademark of the nCUBE corporation.
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such algorithms scalable parallel algorithms.
Note that for a given parallel algorithm, for different parallel architectures, the problem size

may have to increase at different rates w.r.t. P in order to maintain a fixed efficiency. The rate
at which W is required to grow w.r.t. P to keep the efficiency fixed is essentially what determines
the degree of scalability of the parallel algorithm for a specific architecture. For example, if W
is required to grow exponentially w.r.t. P, then the algorithm-architecture combination is poorly
scalable. The reason for this is that in this case it would be difficult to obtain good speedups on the
architecture for a large number of processors, unless the problem size being solved is enormously
large. On the other hand, if W needs to grow only linearly w.r.t. P, then the algorithm-architecture
combination is highly scalable and can easily deliver linearly increasing speedups with increasing
number of processors for reasonable problem sizes. If W needs to grow as f(P) to maintain an
efficiency E, then f(P) is defined to be the isoefficiency function for efficiency E and the plot
c& f(P) w.r.t. P is defined to be the isoefflIciency curve for efficikAcy E. A lower bound on
any isoefficiency function is that asymptotically, it should be at least linear. This follows from the
fact that all problems have a sequential (i.e. non decomposable) component. Hence any algorithm
which shows a linear isoefficiency on some architecture is optimally scalable on that axchitecture.
Algorithms with isoefficiencies of O(Plogc P), for small constant c, are also reasonably optimal for
practical purposes.

In [211, we critically asse s the state of the art in the theory of scalability analysis, and to
motivate further research on the development of new and more comprehensive analytical tools to
study the scalability of parallel algorithms and architectures. We survey a number of techniques
and formalisms that have been developed for studying the scalability issues, and discuss their
interrelationships. We show some interesting relationships between the technique of isoefficiency
analysis developed in [23] and many other methods for scalability analysis. We point out some of
the weaknesses of the existing schemes, and discuss possible ways of extending them.

In [12], we study the impact of parallel processing overheads and the degree of concurrency of a
parallel algorithm on the optimal number of processors to be used when the criterion for optimality
is minimizing the parallel execution time. We also study a more general criterion of optimality and
show how operating at the optimal point is equivalent to operating at a unique value of efficiency
which is characteristic of the criterion of optimality and the properties of the parallel system under
study. In this paper, we also show how the paper generalizes and/or extends earlier results of many
other researchers.

3 Scalability Analysis of Load Balancing Algorithms.

Load balancing is perhaps the central aspect of parallel computing. Before a problem can be exe-
cuted on a parallel computer, the work to be done has to be partitioned among different processors.
Due to uneven processor utilization, load imbalance can cause poor efficiency. In (20], we have an-
alyzed the problem of load balancing in multiprocessors for those parallel algorithms that have the
following characteristics.

* The work available at any processor can be partitioned into independent work pieces as long
as it is more than some non-decomposable unit.
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" The cost of splitting and transferring work to another processor is not excessive. (i.e. the cost
associa&ed with transferring a piece of work is much less than the computation cost associated
with it.)

" A reasonable work sputting mechanism is available; i.e., if work w at one processor is par-
titioned in2 parts 'Ow and (1 - b)w, then 1 - a > i > a, where a i- ait arbitrarily small

constant.

"* It is not possible (or is very difficult) to estimate the size of total work at a given processor.

Although, in such parallel algorithms, it is easy to partition the work into arbitrarily many
parts, these parts can be of widely differing sizes. Hence after an initial distribution of work among
P processors, some processors may run out of work much sooner than others; therefore a dynamic
balancing of load is needed to transfer work from processors that have work to the ones that are
idle. Since none of the processors (that have work) know how much work they have, load balancing
schemes which require this knowledge (eg. (16, 181) are not applicabie. The performance of a load
balancing scheme is dependent upon the degree of load balance achieved and the overheads due to
load balancing.

Work created in the execiition of many tree search algorithms used in artificial intelligence
and operations research [22, 271 and many divide-and-conquer algorithms [151 satisfy all the re-
quirements stated above. As an example, consider the problem of searching a state-space tree in
depth-first fashion to find a solution. The state space tree can be easily split up into many parts
and each part can be assigned to a different processor. Although it is usually possible to come up
with a reasonable work splitting scheme [26], different parts can be of radically different sizes, and
in general there is no way of estimating the size of a search tree.

A number of dynamic load balancing strategies that are applicable to problems with these
characteristics have been developed. Many of these schemes have been experimentally tested on
some physical parallel architectures. From these experimental results, it is difficult to ascertain
relative merits of different schemes.

In [20, 9], we have been able to determine the most scalable load balancing schemes for dif-
ferent architectures such as hypercube, mesh and network of workstations. For each architecture,
we have established lower bounds on the scalability of any possible load balancing scheme. We
present the scalability analysis of a number of load balancing schemes that have not been analyzed
before. From this we gain valuable insights into which schemes can be expected to perform better
under what problem and architecture characteristics. For each of these architectures, we are able
to determine near optimal load balancing schemes. In particular, some of the algorithms analyzed
here for hypercubes are more scalable than those presented in [23]. Results obtained from imple-
mentation of these schemes in the context of the Tautology Verification problem on the Ncube/2TM

multicomputer are used to validate theoretical results for the hypercube architecture.
In [171, we present new methods for load balancing of unstructured tree computations on large-

scale SIMD machines, and analyze the scalability of these and existing schemes. An efficient
formulation of tree search on a SIMD machine comprises of two major components: (i) a triggering
mechanism, which determines when the search space redistribution must occur to balance search
space over processors; and (ii) a scheme to redistribute the search space. We have devised a
new redistribution mechanism and a new triggering mechanism. Either of these can be used in
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conjunction with triggering and redistribution mechanisms developed by other researchers. We
analyze the scalability of these mechanisms, and verify the results experimentally. The analysis and
experiments show that our new load balancing methods are highly scalable on SIMD architectures.

In particular, their scalability is no worse than that of the best load balancing schemes on MIMD
architectures.

4 Scalability analysis of parallel formulations of the Fast Fourier
Transform algorithm.

Fast Fourier Transform plays an important role in several scientific and technical applications.

Some of the applications of the FFT algorithm include Time Series and Wave Analysis, solving
Linear Partial Differential Equations, Convolution, Digital Signal Processing and Image Filtering,
etc. Hence, there has been a great interest in implementing FFT on parallel computers. In [11],we
analyze the scalability of a commonly used parallel formulation of FFT [30] on mesh and hypercube
connected multicomputers. We also present experimental performance results on a 1024-processor

Ncube/1 multicomputer to support analytical results.
The scalability analysis of FFT on hypercube provides several important insights. On the

hypercube architecture, the parallel FFT algorithm can obtain linearly increasing speedup with

respect to the number of processors with only a moderate increase in problem size. This is not
surprising in the light of the fact that the FFT computation maps naturally to the hypercube
architecture [28]. But there is a limit on the achievable efficiency which is determined by the ratio
of CPU speed and communication bandwidth of the hypercube channels. This limit can be raised
by increasing the bandwidth of the communication channels. Efficiencies higher than this limit can
be obtained only if the problem size is increased very rapidly. The technology dependent features
such as the communication bandwidth determine an upper-bound on the overall performance that
one could obtain from a p-processor system for a give n problem size. Thus if the processing speed
of the CPU used in a p-processor hypercube is increased (and if these other factors are not changed),

then the overall performance does not increase beyond a point. An interesting insight is that this
upper-bound can be improved by either increasing the problem size exponentially or by improving

the communication related parameters linearly.

From the scalability analysis, we found that the FFT algorithm cannot make efficient use of
large-scale mesh architectures unless the communication bandwidth is increased as a function of
the number of processors. If the width of inter-processor links is maintained as O(,/p), where

p is the number of processors on the mesh, then the scalability can be improved considerably.
Addition of features such as cut-through-routing (also known as worm-hole routing) [3] to the mesh
architecture improve the scalability of several parallel algorithms; e.g., see [25] . But these features
do not improve the overall scalability characteristics of the FFT algorithm on this architecture.
We also show that if the cost of a communication network is proportional to the total number of
communication links, then it is more cost-effective to implement the FFT algorithm on a hypercube

rather than a mesh despite the fact that large scale meshes are cheaper to construct than large

hypercubes.
We have used the single dimensional unordered radix-2 FFT algorithm for a major part of the

analysis and for obtaining experimental results. This is the simplest form of FFT and not the most
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efficient one. It is shown through similar analysis for multidimensional, ordered and higher radix
algorithms, some of which are more efficient than the simple algorithm given here, that the nature
of the results does not change [11].

5 Scalability analysis of parallel formulations of the Precondi-

tioned Conjugate Gradient method.

In [13], we study performance and scalability of parallel formulations of the Preconditioned Conju-
gate Gradient (PCG) algorithm [7] for solving large sparse linear systems of equations of the form
A x = b, where A is a symmetric positive definite matrix. A linear system of equations is often
preconditioned to accelerate the rate of convergence of the CG algorithm. In this paper, the use
of two such preconditioning methods is considered - the diagonal preconditioner and that resulting
from the Incomplete Cholesky (IC) factorization of the matrix of coefficients. Two different kinds
of matrices are considered. First the scalability of the PCG algorithm with penta-diagonal matrices
resulting from two dimensional square or rectangular finite difference grids with natural ordering
of grid points is analyzed. Two commonly used schemes for mapping the data on the processors
are compared and one is shown to be strictly better than the other one. These results are then
extended to the matrices resulting from three dimensional finite difference grids. The second type of
matrices that are studied are randomly sparse symmetric positive definite matrices. The analytical
results are then verified through extensive experiments on the CM5 parallel computer. Apart from
the basic questions answered by isoefficiency analysis, this analysis helps in answering a number of
other questions, such as -

Which feature of the hardware should be improved for maximum returns in terms of perfor-
mance per unit cost?

How does the Incomplete Cholesky (IC) preconditioner compare with a simple diagonal pre-
conditioner in terms of parallel performance?

What kind of improvement in scalability can be achieved by re-ordering the sparse matrix?

Which parts of the algorithm dominate in terms of communication overheads and hence
determine the overall parallel speedup and efficiency?

Although, we specifically deal with the Preconditioned CG algorithm only, the analysis pertain-
ing to the diagonal preconditioner case applies to the non-preconditioned method also. In fact the
results of the entire paper can be adapted for a number of iterative methods that use matrix-vector
multiplication and vector inner product calculation as the basic operations in each iteration.

It is shown that for such matrices, the computation of vector inner products dominates the
rest of the computation in terms of communication overheads. However, with a suitable mapping,
the parallel formulation of the CG algorithm is highly scalable for such matrices on a machine
like the CM5 whose fast control network practically eliminates the overheads due to inner product
computation. A method of using the Incomplete Cholesky (IC) preconditioner is presented that
leads to a further improvement in scalability on the CM5 by a constant factor. As a result, if
enough processors are used, then a parallel implementation with the IC preconditioner may execute
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faster than that with a simple diagonal preconditioner even if the latter executed faster in a serial
implementation. For hepta-diagonal matrices resulting from three dimensional finite difference
grids, the scalability is quite good on a hypercube or the CM5, but nct as good on a 2-D mesh
such as Intel Touchstone machine. In case of a random sparse matrix with a constant number of
non-zero elements in each row, the parallel formulation of the CG method is unscalable on any
parallel architecture. Bus the parallel system can be rendered scalable either if, after reordering,
the non-zero elements of the N x N matrix can be confined in a band whose width is O(N1) for any
y < 1, or if the number of non-zero elements per row increases a. N' for any x > 0. The scalability
increases as the number of non-zero elements per row is increased and/or the width of the band
containing these elements is reduced. For random sparse matrices, the scalability is asymptotically
the same for all architectures.

6 Scalability analysis of parallel algorithms for matrix multipli-

cation.

Matrix multiplication is widely used in a variety of applications and is often one of the core compo-
nents of many scientific computations. Since the matrix multiplication algorithm is highly compu-
tation intensive, there has been a great deal of interest in developing parallel formulations of this
algorithm and testing its performance on various parallel architectures.

Some of the early parallel formulations of matrix multiplication were developed by Canon [2],
Dekel, Nassimi and Sahni [4], and Fox et. al. [5]. Variants and improvements of these algorithms
have been presented in [1, 14]. In particular, Berntsen [1] presents an algorithm which has a strictly
smaller communication overhead than Canon's algorithm, but has a smaller degree of concurrency.
Ho and Johnsson [14] present another variant of Canon's algorithm for a hypercube which permits
communication on all channels simultaneously. This algorithm too, while reducing communication,
also reduces the degree of concurrency.

In [10], we use the isoefficiency metric [23] to analyze the scalability of a number of parallel
formulations of the matrix multiplication algorithm for a wrap-around mesh, hypercube and related
architectures. We analyze the performance of various parallel formulations of the matrix multipli-
cation algorithm for different matrix sizes and number of processors, and predict the conditions
under which each formulation is better than the others. We present a new parallel algorithm for
the hypercube and related architectures that performs better than any of the schemes described in
the literature so far for a wide range of matrix sizes and number of processors. The superior perfor-
mance and the analytical scalability expressions for this algorithm are verified through experiments
on the CM5 parallel computer for upto 512 processors. We show that special hardware permitting
simultaneous communication on all the ports of the processors does not improve the overall scal-
ability of the matrix multiplication algorithms on a hypercube. We also discuss the dependence
of scalability of parallel matrix multiplication algorithms on technology dependent factors such as
communication and computation speeds and show that under certain conditions, it may be better
to have a parallel computer with k-fold as many processors rather than one with the same number
of processors, each k-fold as fast.
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7 Scalability analysis of partitioning techniques for finite ele-

ment graphs.

Parallel formulations of finite element techniques require a mapping of the elements onto processors,

and the performance of the overall formulation is a very sensitive function of this mapping. Any
mapping of elements to processors must try to satisfy the following criteria:

1. The ratio of computation to communication associated with elements on a processor should

be maximized.

2. Locality of communication should be preserved.

3. The computational load should be balanced to the extent possible.

These conditions represent the classical communication - load imbalance tradeoffs. Optimizing

one of these criterion leads to a deterioration with respect to one or more of the other criteria.
The mapping problem in its optimal form is known to be NP complete even for simple models
of computation and communication costs [6]. Hence, a number of heuristic approaches have been
presented to derive reasonable suboptimal partitions in a reasonable amount of time. All of these
try to balance the various tradeoffs mentioned. Most of these schemes have been evaluated only on

specific parallel computers for certain problems.
In [8], we perform scalability analysis, using the Isoefficiency metric [24, 251, of three partitioning

algorithms, namely, striped partitioning, binary decomposition, and scattered decomposition. This
helps us establish the relative performance of these schemes over a range of processor3, and the

effect of communication related parameters on the performance of these schemes. We also relate the

performance of each of these schemes to the various problem characteristics such as mesh geometry
and density. The theoretical results are verified through simulations.

8 Scalable Parallel Formulations of the Backpropagation Algo-

rithm.

The Backpropagation algvrilhm (BP)[29] is one of the most popular neural network learning algo-
rithms. It has been used in a large number of applications.

BP can be parallelized either by network partioning or by pattern partitioning. In network
partitioning schemes, nodes and weights of the neural network are partitioned among different

processors and thus the computations of node activations, node errors and weight changes are
parallelized. In pattern partitioning, individual weight changes due to various learning patterns

are computed concurrently. Pattern partitioning and network paititioning can also be combined to
form hybrid schemes. Several machine architectures including linear arrays, meshes and hypercubes

have been explored to implement parallel BP.
In [19], we present a new technique for mapping the backpropagation algorithm on hypercubes

and related architectures. A key component of this technique is a network partitioning scheme
which is called checkerboarding. The major communication intensive operation in the commonly

used vertical sectioning scheme is the all-to-all broadcast. In this operation, each of the P processor

has to broadcast its local m units of information to all other v)rocessors. This takes O(mP) time
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on linear array, mesh as well as hypercube. Hence, the vertical sectioning scheme performs equally
well (or equally poorly) on ?Li these architectures.

The checkerboarding , '.eme allows us to replace the all-to-all broadcast operation by concurrent
non-interfering single ource broadcasts, which are much faster on hypercubes. Furthermore, our
method can use a larger number of processors without incurring higher communication costs th•kn
the vertical sectioning scheme. and shows strictly better performance on hypercubes with more
than 16 processors. Our scheme also performs better than pattern partitioning scheme for a large
clz .- of problems. In addition, our scheme can be combined with the pattern partitioning scheme to
form a hybrid scheme which performs better than either one for a wider variety of cases. Although
the scheme is natural for the hypercube architecture (e.g., nCUBE, Intel iPSCTM3), it is equally
suitable for Fat-tree based architectures such as CM5. Our scheme is applicable only to fully

connected networks; i.e., each node in a layer (except the output layer) is connected to all nodes in
the next layer. The number of nodes in each layer can be the same (uniform network) or different
(non-uniform network).

Experimental results on nCUBE2 and CM5 show that our scheme performs better than the othei
schemes for both uniform and non-uniform networks. Furthermore, it provides very high overall
performance on existing commercial parallel computers. For example, an unoptimized version of
our hybrid parallel formulation on a 256 processor CM5 (without vector units) performs over 50
million weight changes per second (or over 160 million connections per second) for non-uniform
networks. With the upgrade of processors on the CM5, this performance is expected to improve

by 1 or 2 orders of magnitude.

9 Concluding Remarks.

Development of efficient parallel algorithms and the understanding of their scalability for the prob-
lems mentioned above is very useful for both military and industrial applications. Finite element
and finite difference methods are widely used in modeling fluid flows, fluid dynamics and many
other applications. Unstructured tree search algorithms such as Branch and Bound are used to
solve combinatorial optimization problems such as resource allocation, logistics and transportation
problems, etc. Dynamic load balancing techniques play a very important role in various prob-
lems including discrete event modeling such as battlefield simulations. Neural Network learning

algorithms suctL as Backpropagation are important components of target ecognition systems. The
FFT algorithm is an integral part of many applications that involve signal processing. Our research
has led to a better understanding of the relative merits of various parallel formulations of different
algorithms and development of new and more scalable formulations for many of these problems.
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DYNAMICAL SYSTEMS IN ASYMMETRIC SPACE AND TIME

Richard A. Weiss
U.S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT, The basic equations of kinematics and dynamics are derived for
particles moving in space and time with broken internal symmetries. Within this
formalism the space and time coordinates, velocities and accelerations of
particles must be described as complex numbers having magnitudes and phase angles
which can be variables. Incoherent spacetime is associated with changes in the
magnitudes of the space and time coordinates while coherent spacetime is
associated with the rotation of the coordinates in an internal space. Newton's
law of dynamics is formulated for broken symmetry spacetime in four ways which
allow the description of four limiting kinematic states of motion: incoherent
space and incoherent time, coherent space and incoherent time, incoherent space
and coherent time, and finally coherent space and coherent time. The
relationship between the measured velocity and acceleration of particles and the
conventionally calculated values of velocity and acceleration is determined for
spacetime with broken internal symmetries. An application to the internal space
and time motions of the harmonic oscillator is presented as an elementary example
of the theoretical formalism.

1. INTRODUCTION, It has been suggested that the thermodynamic functions
such as pressure, internal energy and entropy are skewed in an internal space,
and must be represented by complex numbers with internal phase angles.' This
conclusion follows from the assumption of the validity of a relativistic trace
equation which introduces the effects of the Gruineisen function and the bulk
modulus on the relativistic state equation for a material system. 1.2 The broken
symmetry nature of the pressure combined with Euler's equations of motion for
fluids suggest that the space and time coordinates within matter have internal
phase angles and must be represented as complex reimbers in an internal space. 1

It then follows naturally that the kinematic quantities such as particle
velocity, momentum, acceleration and energy also have internal phase angles.
Dynamical quantities such as force, Lagrangian, Hamiltonian and action variables
must also have broken internal symmetries and be represented by complex numbers
in an internal space. In this way the broken symmetries of matter and spacetime
at a macroscopic scale of pressure and energy density require the microscopic
formalism of particle dynamics to also have internal phase angles for the
dynamical variables. The reverse argument can also be made that the broken
symmetry of the microscopic kinematic and dynamical variables leads to internal
phase angles being associated with pressure and internal energy. The internal
structure of space and time affects the measured kinematic and dynamical
quantities of mechanics. In this way mechanics, the oldest discipline of
physics, can be related to the internal structure of space and time which on a
macroscopic scale is determined mainly by gravity. On a microscopic scale the
possible internal motions of space and time can be related to the structure of
matter. For instance, in high-T, superconducting materials it is thought that
both space and time are coherent and that the Cooper electron pairs move about
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each other by internal spacetime motions. In this way the factor 6/I enters the
calculation of the normalized superconducting energy gap and gives rise to it's
possible high values compared to the corresponding values predicted by standard
BCS superconductivity theory. 3

The space and time coordinates must be written as complex numbers in inter-

nal space as follows1

v v exp(j 8 v) (Q)

t - t exp(jO') (2)

where v - x , y , z for cartesian coordinates; r , , z for cylindrical polar co-
ordinates; and p , , * for spherical polar coordinates. Strictly speaking the
internal phase angle of time OV is associated with each space coordinate so that
for the three elementary coordinate systems the internal phase angles of time
are:

x r Py ez 0  , e aP , 6 (3)
t , t t t tt

The following quantities often appear in the calculations involving partially
coherent broken symmetry space and time 3

tan =V vae V /av (4)

tan -tt taev/lt (5)
tt t

as for example in the following differentials

d; - sec 8v dv exp[j(6 V +a VV)] (6)

= csc 8 vdeV expllj(6 + 8 VV)

dE = sec,8tv dt exp[j(ev + O)] (7)
tt t tt

M cac a V tdev exp(j(6v + 8t)tt t t tt

For incoherent spacetme 8 -0 and 0tt = 0 while for coherent spacetime
r/2 and Ot W/2 . The measured coordinates of space and time are given by

v - v cos6 t" t Cos (8)

m V m t

The complex number coordinate speed is obtained from equations (6) and (7) as

74 - vV exp(JOv) - dv/dt (9)

where
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v - sec B dv/dt (10)
V tt VV

=cos att csc B v de /dt (11)

-snaVse t- 1 dv/dev (12)tt Vv V= sin 8 tt sec (12)

sin V csc a v/t de /dOV (13)
tt vv V t

where

+- + -V -B t (14)
v'V V VV t tt

and where v xs, y, z ; r, •, z ; or p , , •. The particle velocity, momentum and
energy are written as complex numbers in internal space as follows1

vv = v, exp(je,) PV W PV exp(J pvE E exp(JO)Ev (15)

and the corresponding measured quantities are

vm = vv cos -w PVM " PV cos 6pv Em E cos eE (16)

For the case of harmonic motion the space coordinates are complex numbers
in both the internal and the external spaces, and the coordinate magnitudes that
appear in equation (1) are written for cartesian coordinates as

x - x exp(iwt) y - y. exp(iwt) z - z exp(iwt) (17)

so that the full expression for the complex number cartesian coordinates repre-
sented by equation (1) are

S= x exp(iwt + J 8 X) (18)

S= yw exp(iwt + Jiy) (19)

z = z exp(L t + JeZ) (20)

or in general for harmonic motion

U - v exp(JOV) v - v exp(iwt) (21)

where V - x,y, z or r, ,z or.p,$,J. From equations (4) and (21) for
harmonic motion it follows that

tan 0VV " - L/w aev/at (22)

This suggests that for harmonic motion in external space the angle 8 V is an
imaginary number in external space given by
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V -iQ (23)

where Q= real number. Then

tan 8V - - i tanh Q (24)

which gives for harmonic motion in external space

tanh Qv = w-1OV/at (25)

QV = tanh-I (W-ae /at) (26)

OWv - i tanh- (W-la /at) (27)

for v = x , y, z or r, , z or p , € , 4'

The broken symmetry sine and cosine functions are written asi

sin 4 exp(j Ss) cos 4 = C4 exp(-j6 c) (28)

S = [sin2  cos 0.) + sinh2  sin 1)]I/2 (29)

C f (cos 2  Cos 0*) + sinh22  sin 0 1/2 (30)

tan Osv - cot(4 cos 04*)tanh(* sin 04) (31)

tan 0cV = tan(* cos eP)tanh(4 sin e4) (32)

For small values of angle magnitude 4

S*e 0 * (33)

which are useful expressions for studying the motion of a pendulum.

This simple introduction to broken spacetime symmetry is sufficient to
proceed to the study of dynamical systems in asymmetric spacetime. This paper
examines the effects of broken spacetime symmetries on the basic laws and for-
malisms of kinematics and dynamics. Only an elementary development of the me-
chanics of a single particle is given. Specifically, Section 2 considers kine-
matics in asymmetric spacetime, and Section 3 examines Newton's laws of motion
in spacetime with broken internal symmetries.

2. KINEM&TICS IN ASYMMETRIC SPACETIME. This section develops the basic
expressions for particle speed and acceleration in spacetime with broken inter-
nal symmetries. The concept of motion in totally coherent spacetime is intro-
duced. The connections are made between the measured kinematical quantities of
partially coherent spacetime and the conventionally calculated kinematical
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quantities of incoherent spacetime.

A. Particle Speed.

The speed of a particle in broken symmetry spacetime is obtained from equa-
tions (9) through (14)

; = -v x exp (je vx) did (34)

where

v cos a sec 8 dx/dt (35)
xtt xx

x
= cos $ t csc 8xx x d6x/dt (36)

- sin sec t d/dO (37)
tt xx t

= sin 8tt csc 8 x/t d x/dOt (38)
tt xx x t

and

8 = 8 + a x - X (39)
vx x t tt

x

where axx and Btt are given by equations (4) and (5) respectively. The measured
particle speed is given by equations (16) and (35) through (39) as

v - v cos e (40)

The single particle momentum is then given by

Px M px exp(JOpx) Px = mVx epx = Ovx (41)

Equations similar to (34) through (39) can be developed for the y and z coordinates.

B. Particle Acceleration.

For a broken symmetry spacetime the particle acceleration is given by equa-
tions (34) through (39) as

ax ax exp(je ax) -di/di - d2I/dt2 (42)

From Newton's law of motion written as

Fx Fx exp(J Fx) W M- x (43)

it follows that

F = ma, en a eax (44)
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The measured acceleration is given by

ar= M ax cos 6ax (45)

The measured force is given by equations (43) and (44) as

F - F cos 6Fx (46)

Combining equations (44) through (46) gives

F ma (47)

and therefore the measured acceleration is determined from the measured force
by Newton's law of motion. The values of the acceleration magnitude a. and ac-
celeration internal phase angle 8 ax will now be calculated for several cases of
interest.

Case a. Incoherent Space and Incoherent Time.

A general expression for the acceleration is developed that can be used
to deduce the limiting case of incoherent space and incoherent time which is
described by

= - 0 0 et = 0 a ot M 0 (48)

The appropriate expressions for the acceleration magnitude and internal phase
angle are deduced from equation (42) to be

a - sec cosOx dv /dt (49)x vxvx tt x

-e - o aX (50)
ax vx vxvx t tt

where

tan 0vxvx v aevx/yVx (51)

Combining equations (35) and (49) gives

ax cos 0 x sec B d/dt(cos B' sec B dx/dt) (52)x tt vxvx tt xx
2x2 2

cos 2tt sec a sec 0 d2x/dt2 (53)
222x

cos 62t sec2B0 d2x/dt2 (54)
tt xx

Combining equations (39) and (50) gives

eax ex B+ + a - 2 (0X + att) (55)
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When the conditions in equation (48) are valid the expressions in equations (52)

through (54) reduce to the standard case of incoherent space and incoherent time.

Case b. Coherent Space and Incoherent Time.

General expressions for the acceleration are now deduced which can be used
to make the transition to the case of coherent space and incoherent time which
is described by

Oxx M w/2 6 x , 0 axtM0(6
x xt3~~mr2= 8tt 0 (56)

The appropriate general expression for the acceleration magnitude and internal
phase angle for this case is obtained from equations (42) and (55) to be

ax csc 8 cos Bat v dO /dt (57)xvxvX tt x vX

a 6e + 8 + - 2 (,x + x (58)
ax x x v t tt

Combining equations (36) and (57) gives
2x

ax = csc a cos 2 csc a x dOx/dt dO /dt (59)xvxvx tt xx x vx

where from equation (39)

dO /dt = d/dt(O + ex x t tx (60)
vX X xx t tt

For the case at hand it is convenient to write the acceleration in equation (42)
as

x = ax exp(Jeax) = atx exp(jeta) (61)
x x ax xax

= d-x/di - d2 -/d2

where

at . - a (62)
x x

-t -- (63)ax ax

so that

at .- csc v cos 8tx V dO /dt (64)x vxvX tt X vx
2x

- - csc x cos B csc 8l x de /dt de /dt (65)
vxX tt xx x vx

et - e + x + _ 2 (,x + )x (66)
ax x xx vxvx t tt
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which is an equivalent description of the acceleration.

For the special case of coherent space and incoherent time, equations (56),
(65) and (66) give

at - - csc 8 ci x(del/dt)2  (67)x vxvx 7

ecit=x + 6ci - -f/2 (68)ax x vxvx

where from equations (36), (39), (51) and (56) it follows that
ci

v fi x d6x/dt (69)x x

6ci A= + n/2 (70)vx x

tanac E Ci/Fci (71)
a vxvx xt xt

where

E.ci = (dO /dt)2 ECi > 0 (72)
x xt

cs i 2 2 Fc 1/ (3=dO/d xt

Equation (71) then gives

cs 0 f (E ci )2 + (,ci)2 1/2/Eci (74)vxvx xt xt (74t

Because Fci < 0 it follows from equation (71) that
xt

8ci =1T/2 + (75)vxvx xt

where Kxt > 0 is a small number which is also given by

tan = IFciI/Eci (76)xtxt (76

Combining equations (67), (68), (74) and (75) gives

ci( ci 2 Fci.2 1/2
aix . - X[(Ext) + .Fxt) (77)

Scit• . + K(78)

ax x xt

eag is generally a small number. Clearly the acceleration in this
case is directed opposite to the displacement x.
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Case c. Incoherent Space and Coherent Time.

An expression for the acceleration is now derived from which the limiting

case of incoherent space and coherent time can be obtained. This limiting case

is described by

(x = 0 Bxx = 0 S it /2 (79)
xx tt

The required general expression for the acceleration magnitude and acceleration
phase angle is obtained from equations (42) and (55) as

ax sec B sin axtt -1d/dMe (80)
xvxvx tt 'C t

S -8 + B + 8 - 2(,x + xt) (81)
ax x vxvx xx t tt

Combining equations (37) and (80) gives

ax secvxvx sin x - d/d8t(sin 8$x sec B t- dx/det) (82)x ~ X tt t tt x

2 x -2 2 x2
"sec 8vXvx sin Ott sec 8xx t d x/det (83)

For this case it is convenient to rewrite the acceleration equation (42) in the
following form

a - a exp( x a' exp(Jax) =- d 2 /d-2 (84)

x ax a' dx/

where

a' = - a (85)
x x

8' - e + r (86)
ax ax

so that an equivalent representation of the acceleration is

at -sec 8 sin a'x t dVx/de (87)
x vxvx tt x t

-sec a sinOx t 1 d/dO (sin 8 x sec S t-1 dx/dO8) (88)= e vxVx si tt t tt sec 8x

sec - sin 2tx sec x t 2 d2 x/d 2 (89)
vX-Vx tt xx t

8' -e +8 + - 2(0x +a )+ + (90)
ax x xx vxvx t tt

In the case of incoherent space and coherent time, equations (79), (88)
and (90) give
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aic' - sec t-2 d2x/dex 2  (91)
x vxvx t

eic' = Oic - 28 X (92)ax vxvx t
w ^ic 'where e is a small number, and where from equations (37), (39), (51) and (79)

it follows that

Vic M t-I dx/dOx (93)

8 ic = - 8 x -i/2 (94)
vx t

ic _ic._ic
tan0 -i E ic/F ic(95)vxVx xt xt

where

Eic =_dx/d&X Eic > (96)xt t xt

Fic = d2x/de x2 Fic > 0 (97)
xt t xt

_cic.2 Fic2] 1/2/Fic
sec 8ic = [(Ex) + )2 IF (98)Vxx t xt xt

ic ic icBecause -t 0 and F > 0 it follows that v1 is a small positive number for
this case. Equationsx(91) and (98) give

aic' - 2 E ic )2 + (Fic 2 1 1/2 (99)X t xt xt

Case d. Coherent Space and Coherent Time.

In this section an equation for the acceleration of a particle is obtained
which can be used to attain the limit of coherent space and coherent time which
is defiued by

w/2xx x - r/2 (100)x - / tt

The general expression for the magnitude and internal phase angle of the accel-
eration is obtained from equation (42) and (55) as

ax csc sinx v/t dO /d6x (101)ax cvxvx t x vx

S -e +8 + +8 - 2 ( 0 +- 2,) (102)ax x VXVX t tt

Combining equations (38) and (101) gives

ax = csc 8 sin 8it csc 8xx xt2 d /dO dO d(103)

2~ 2 x t (103)
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where from equation (39) it follows that

dO6 /de = do /dox - 1 + d/dex(O - 6 x (104)
vx t x t t xx tt

Another expression for the acceleration can be obtained from equations (38) and
(80) which gives

ax =sec sin ax t- 1 d/d xt(sin Bt csc 8 x/tdo /dOx) (105)
ax se tt t tt sinx t

In the present case it is convenient to write the acceleration in equation (42)
as

ax - ax exp(JGa) a a' exp(j8'x) - i x/di - d2 /dt2 (106)

where

a' - a (107)
x x

0' = 8 + r (108)
ax ax

and an alternative representation of the acceleration is
,x 2 x

a' - csc v sin 8 csc a x/t2 do /d8x do /do' (109)

x vxvx tt xx x t vX t

sec 0tsin a t d/dO (sin 8 csc 8 x/t dO /do') (110)
ffi tt t tt xx x t

e' =8 + v x 8 x
ax vx v -x t tt

x + 0 + xx- 2 (8 x + 8 t) +
x xx t tt

A comparison of equations (109) and (110) gives

tan S.. = -C xt/Dxt (112)

2 +2 1 1/2./ (113)
csc8BvXvx xt +xt) /Cxt

sec Wvxvx 2 t + Dt" 2  /Dt (114)

where

C t sin X csc 8 x/t do /dOt[dO /d8x 1 + d/de (8 - x (115)
xt tt xs x t x t t xx tt

x x d x/dt

D = d/dOe(sin BO csc. B x/t do /d) (116)

where in general CXt 1 0 . Therefore
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a' - - C /t csc 8 sin x(117)
x xt vxvx tt

-- D /t sec 8 sin Ox (118)
Xt vXvx tt

Equations (117) and (118) can also be written as

a' - (C2  + D 2 /2 /t sin 6' (119)
x x 1t tt

For the case of coherent space and coherent time equations (109) through
(111) become with the help of equation (100)

a' - csc a x ' x/t 2 d1 /dex(dO /de - 1) (120)

=-sec $C x/t 2 d2 x/dex 2  (121)

6' = 8 + c - 20, + w/2 (122)ax x vxvx t

From equations (38) and (39) it follows that

cv = x/t dO /dOx (123)
xx t

8c f 0 - 8x (124)
vx x t

Equations (51), (123) and (124) give

ta 8 =Ec/F c (125)tan8
vxvx xt xt

where

Ec = dO /dBX(dO /dex - 1) Exc 4 0 (126)
xt x t x t xt

Fc 2 x2 cFc - d ex/de t F;t > 0 (127)

csc Bc - [(Ec 2 + (c 2 21 (128)w•v (F xt) ] (2

sec [ c 2 c 21/2 /Fc (129)
Xxt

where d8 /d8 I4 1 . In a gravitational field, for example, the following rela-
tionship holds1

206 X \ d3 0/dOx - 2/3 (130)
t Xx t

Therefore in general L•t 4 0 and Fct > 0 , and it is convenient to introduce a
new angle by writing
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8 cvxv = - '/2 + 6t (131)

or equivalently

tan 6 " FC /IEC 1 (132)it it xt

so that in general Sxt > 0 . Combining equations (120) through (122) and (126)
through (129) gives for coherent space and time

a ffi - x/t2((Ect)2 + (Fxt) 2 (133)

x it it

ax +8 vXVX - 0xt + i/2 (134)

vX t xt

M6+ Bc - 2,x + w/2

= +e - 2 -28 ++

'C t
t 2c

Therefore Oax is a small number. Actually equation (133) folluws directly from
equation (119) by noting that for coherent space and time equations (115) and
(116) give

Cc = x/t Ec Dc M x/t Fc (135)xt xt Xt xt

Coherent space and time represents an internal motion in space and time
that can be written in complex number form as

dR - jiddO dx dt jtde8 (136)

which is equivalent to equation (100). The magnitude and phase angle equations
(123) and (124) are equivalent to the following complex number expression for
the particle speed in coherent spacetime

c W /dic - -/ /dxvx (dI/dt)c - x/ dx /de (137)

The magnitude and phase angle of the acceleration that are given in equations
(133) and (134) correspond to a complex number acceleration that is obtained
from equation (106) and is given by

2- -2c 2 22
a - (d i/d2) /Ed [d /d6'(dex/dex- 1)- jd 2 0 /dx2 (138)

as it must be because of the definition of Sxt given in equations (131) and
(132). For a linear solution of the form

"e 0 x + b a (139)x ax t x x
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it follows from equation (133) that

aC - x/t 2 la (ax - 1)1 = - x/t 2a(G - ax) (140)
x x x

which corresponds to FCt - 0 and R" - '/2 by equations (125) through (127).

C. Harmonic Motion.

For harmonic motion

v = v exp(iwt) (141)

and it follows from equation (23) that for harmonic motion in external space
with x and t varying 0. is an imaginary number given by

8-,

xx tanh Q w - W f /-at (142)

sec 8xx - sech Q csc 6xx = i csch I (143)

so that equations (35) through (38) become

v = iWx cos 8tt sech (144)

- ix cos Btt csch Q dOx/dt (145)

- iwx/t sin Ox sech Qx dt/d6t (146)

- ix/t sin 0tt csch Qx dex/d& (147)

where for harmonic motion the coordinates and velocities are complex numbers in
external space so that

x - x exp(iwt) v W v exp(iwt) v - iWxW (148)

R x exp(iwt + Jex) v, - v exp(iwt + Jevx) (149)

Comparing equations (144) and (147) gives

wt - tan coth dex/do8 (150)

tt t

while combining equations (144) and (145) gives

w - coth x dOx/dt (151)

For the case of harmonic motion in external space, where x and t are
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variables, ývxvx is an imaginary number given by

tan 8 = vxae /av (152)

Sxae v/ax / - i/w dO vx/dt

Introducing a new quantity Qvx by

8v = - i (153)

allows equation (152) to be written as

tan8 = i tanh Q vx -i/ dO vx/dt (154)

-1
tanh Qvx= - dOvx/dt (155)

sec 8vxvx =sech Qvx csc 8N'vx ii csch Qvx (156)

which are valid for harmonic motion. For harmonic motion equation (53) can be
rewritten using equation (143) as follows

a w - x cos28 a sec 0 sech q (157)
x tt vxvx Q

or since a is an imaginary number given by equation (153) for the case
where x and t are variables it follows from equation (156) that equation (157)
can be written as

a w 2 xcos 2 s ech sech % (158)

D. Measured and Conventionally Calculated Kinematic Quantities.

The average speed of a particle in spacetime with broken internal symme-
tries is defined as

-av av av xv•x -vx exp(JO ) = iIE x/t exp[j(8x - e8)] (159)

vav x/t av - (160)
x vx x t

The conventional definition of the average speed is given by

Vcon Xm/tx - (x cos e )/(t cos ex) (161)

while the measured value of the average speed is obtained from equations (159)
and (160)

vav av ear v
v - v cos n x/t cos(6 - e) (162)Sx vx 9 t
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A comparison of equations (161) and (162) gives

(v -Vcon av )/v = cos() -et) - (cos 8 )/(cos et) (163)
mc conx x x tX t

x (0 - X (164)
t x t

where equation (164) is valid for small angles.

The value of the instantaneous velocity is defined for broken symmetry
spacetime by equations (34) through (39). The conventionally defined instanta-
neous velocity is given by

V dx /dtx - d(x cos 6x)/d(t cos 6x) (165)
conx m x t

- f dx/dt cos e sec Ox (166)x x t

where tx is defined by equation (8), and where
m

f = (1 - tan e tan 8 )/(1 - tan 6x tan ax (167)x xx t tt

The measured value of the instantaneous speed of a particle in approximately
incoherent spacetime is obtained from equations (34), (35), (39) and (40) to be

v = v cos O (168)m• x vx

-dx/dtCos0X sec8 cos 8
tt xx vx

- V o/f CosOx secB se cos x Cose
conx X tt xx x t vx

where equation (35) was selected for vx and where fx 0 0 . Combining equations
(166) and (168) gives

(v - v )/v - cos(e + Oxx - x (169)
tcox X x t (t

- f cos 8 secO6 cos 8 secXx x t xx tt

x x x ax
t tt(x xx t tt

X

For the case where ait - 0 and 0. - 0 this equation becomes the same as equa-
tion (164) for the average speeds. Equations (165) and (166) show that a con-
ventionally defined stationary particle is defined

Vconx 0 dxm/dtm a 0 (170)

Generally this is associated with dx/dt - 0 , but if it is associated with
fx U 0 then
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cot ex - tan $xx dx/x - tan 8 xdO x =W/ 2 - e (171)

which integrates to

x - k sec e xm xcos 6 = k (172)

where k - constant. For this case dx/dt * 0 and in fact from equation (172)

dx/dt = k sece tan O dOxldt (173)
x x x

For the case fx " 0 , which corresponds to Vconx - 0 from equation (166) and
which yields the relation in equation (173), it follows from equation (35) that
the particle velocity magnitude and the measured particle velocity are given
respectively by

v - k cos Bx' sec8 sec 6 tan f, dO /dOx (174)

v = k cos 0x sec 8 sec x tan 6 cos 0 dO /dOx (175)
Mxtt xx x X VX x t

where 8vx is given by equation (39).

The conventionally defined instantaneous velocity given by equation (165)
can also be written as

v =g x/t dO MdO sin e csc Ox (176)
cox xx t x t

where

= (G - cot e x I-dx/dO )/(I - cot 8x t- dt/dOS) (177)
x x t t

In this case the measured instantaneous speed is obtained from equations (38)
and (40) to be

v - v cos 60, (178)

x t tt vx

- V /g csc XX sinB csc sin 0x Cos econx x tt x t vx

where gx 0.

The particle momentum is written as
Px exp(jp) "mý - mdx/di (179)

xm msec Cos8 dx/dt (180)

x vxt xtt (1)
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The measured momentum is

P= = Px cos epx (182)

The conventional momentum is

Pconx f mVconx '* mdxm/dtm (183)

Then

Pr= = mpx Vconx (184)

where

m M M/f cos 8at sec secOx cos cos p (185)
px x tt xx x t pX

where fx 0 , and where mpx - effective mass which relates the measured momen-
tum to the conventional definition of particle speed in the x direction.

The average acceleration of a particle in broken symmetry spacetime is
given by

-.av av .avX
ax = ax exp(jOa) - Vx /E "v /t exp[j(8 - 8t ) (186)
x X ax x x vx t
av 8av 8x

a av /t 6 -e -e (187)
x x ax vx t

where Vx = speed of particle after time t for a particle starting from a rest
position. The conventional definition of average acceleration for a particle
initially at rest is given by

avx
a on = V /tM = (v cos M)/(t cos ex) (188)
conx mx m vx

The measured value of the average acceleration is obtained from equation (186)
to be

a av= a vos v /t cos( 8 x) (189)
mx x ax x vx t

From equations (186) through (189) it follows that

(a a- a V)/a - cos(8 - 8e) - (cos v )/(cos ex) (190)
mx conx x vx t vx

ex ( (191)
t vx t

where equation (191) is valid for small angles. Therefore in an external field
which breaks the spacetime symmetry the measured average acceleration does not
have the same value as the conventionally calculated average acceleration.
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The instantaneous acceleration is given by equations (42) through (158).
The conventionally defined acceleration is expressed in terms of measured space
and time coordinates as follows

a - dv /dtm = d(v cos e )/d(t cos ex) (192)
conx MX m x vx t

= h dv /dt cos 8 sec ex

x x vx t

where

hx = (I - tan e tan MI)/( - tan ex tan 8x (193)
xvx vxvx t tt

where from equation (35)

dv /dt d/dt(cos $x sec a dx/dt) (194)
X tt x

Scos 6x sec 6 d 2x/dt 2  (195)Lt 6xx

Combining equations (192) and (195) gives

a h cos x scB os6 ec8x d2xd 16conx x tt xx vx t 2 (196)

On the other hand the measured value of the acceleration of a particle in bro-
ken symmetry spacetime is obtained from equations (49), (50), (53) and (55) to be

a - a coseax (197)

xCosa sec Cos6 dvx/dt (198)
tt vxvx ax x

Scos 2 $ sec v sec $ cos 8 d2x/dt2  (199)

where the internal phase angle of the acceleration is taken from equations (50)
or (55). Clearly aconx and amx are not equivalent. Combining equations (49),
(50), (55), (192) and (198) gives

(a - a )/ax cos a - h cos v sec6 sec Cos8 (200)
mx conx xax x vx t tt vxvx

x Bttx 8xvxvx 8tx ttx(21S(0 X + )(ev_ +8 - x_

S(e + a x)Me + 8 + 8 - 2 (6x + a ).] (202)
t .tt x xx vxvX t tt

where equations (201) and (202) are valid for small internal phase angles.
From equations (192) and (197) it follows that

axa /h cosxax sec. 0 sec 0 cos0 Cos a (203)aonx - at co a vxvx sa vx t co ax

- dvx/dt cos 8tx sec v cos e (204)

tt vxvx ax

403



where (ax is given by equations (50) or (55), and h. # 0

For the case when hx = 0 and the conventional acceleration given by equa-
tion (192) is zero, aconx 0 , then it follows from equation (193) that

tan Bvxvx ae,/av x cotvx 8 vxvx Wn/2-evx (205)

v = k sec 8 v = V cos e = k (206)

Combining equations (49) and (206) gives

a = k cos Ox sec x sec e tan e d6 /dt (207)
Xtt vv vx vx

The measured acceleration is then given by

a = a cos 8 (208)
mx x ax

where 6ax is given by equations (50) and (55). This is an example of a case
where a force exerted on a body is associated with a zero value of acceleration
in the conventional sense because aconx = 0, but does have a measured accelera-
tion value given by equation (208). The acceleration sensed by dynamical mea-
surements is given by equation (208) and (47).

E. Measured and Conventional Angular Velocity.

The conventional angular speed is given by

con idO/dtm f¢ cos 0 sec etdo/dt (209)

where

- * cos t = t cos (210)

f (1- tan B tan 0 )/(1 - tan Bt tan 0) (211)
0tt t

where eo and Bt are the time internal phase angles associated with rotational
motion. If f - 0 then wcon - 0 and

tan B = cot 0, ODO /30 - cot 08 0 n/2 - 6 (212)

or

* - k sec m =k (213)

Therefore a rotating system may be conventionally interpreted to be at rest,
but rotates internally so that the magnitude of the angle changes in the follow-
ing manner from equation (213)
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dO/dt - k sec 60 tane 0 de /dt (214)

The complex number angular speed is written as

S- w exp(j W ) - dj/di (215)

and the measured angular speed is given by equations (10) and (16) as

w - sec € cos 00 cos 0 do/dt (216)
in 0, tt (A

- k cos 00 sec € cos e sec e ran e dO /dt

where from equation (14)

Oe,= 8- + a0- -a • (217)

where 0 and 00 are given by equations (4) and (5) respectively.

The angular momentum is written as

L = L exp(jEL) - Id¢/dt (218)

where the moment of inertia is written as

S-I i exp(j eI) I - mr2 6, - r (219)

The measured value of the moment of inertia is given by

I m = I cos 6 (220)

From equations (10), (14) and (218) it follows that the magnitude and internal
phase angle of the angular momentum is given by

L - I sec 800 cos 00 de/dt (221)
B0tt

0 - e + e + -eo - a t M 8 + e (222)
L 1 I

where from equation (4)

tan 8,, = oae,4/3 (223)

The measured angular momentum is given by

L L cca OL (224)

I sec8 Cos so cos OL do/dt (225)
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Combining equations (209) through (225) gives

Lm - Ieff d m/dtm = Ieffwcon (226)

where the effective moment of inertia is given by

/eff m sec 6 cos $ sec e cos 0o seL 8 Cos L (227)

for f, i 0 . For the case fo - 0 the conventional angular speed in equation (209)
has a zero value, while equations (214), (221), (224) and (225) give

L - kU sec.$€€ cos 00 sec e tan e de /dt (228)
0 tt0 0

L - kl sec 0 cos 00 sec 0 tan 0 cos 8 de /dt (229)
m 00 tt f 0

Equations (226) and (227) are not valid for the case f, - 0.

3. NEWTON'S LAW OF MOTION IN BROKEN SYMETRY SPACETIME. Newton's law of
motion for a particle in a potential field can be written for spacetime with
broken internal symmetries as follows4- 6

mi x md 2/d2 -2 W/. i F (230)x x

where m - particle mass and W - complex number potential which can be written as

S= W exp(Ji W) (231)

The derivatives of the potential function can be written in four ways. Repre-
senting the complex number force in the following way

Fx F exp(jO ) = - AW/ax (232)

gives

Fx - - cos 8xx sec aWW aW/Dx (233)

. - cos axx csc aW W368w/ax (234)

- - sin axx sec OW x-I aW/a0x (235)

- - sin OXX csc OWW W/x eW/ae x (236)

and

8Fx a W + w - exOx- 8 x (237)

where 8Fx is a small angle, and where
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tan B = W6w /aW (238)

Then the phase angle condition for Newton's law is obtained for nearly inco-
herent space and nearly incoherent time from equations (55) and (237) as

6ax 6 FX (239)

For nearly coherent space and nearly incoherent time, equations (63) and (237) give

et 6 (240)
ax Fx

For nearly incoherent space and nearly coherent time, equations (86) and (237) give
6' -o (241)
ax eFx

For the case of nearly coherent space and nearly coherent time it follows from
equations (108) and (237) that

e' = 'N (242)

Newton's law of motion given by equation (230) will now be considered for the
four kinematic spacetime conditions that were considered in Section 2.

A. Incoherent Space and Incoherent Time.

This section develops the Newtonian law of dynamics for broken symmetry
spacetime in a form that is suitable to make the transition to the case of in-
coherent space and incoherent time which is described by

=0x M0 0 (243)

where x and t are variables. Combining equations (43), (49), (50), (230), (233)
and (237) gives

mcos 0tt sec8 dv /dt i-cos 8x sec aW/ax (244)
tt vxvx x . x

" " - t -tt (245)
ax x vvx t tt

- W + W- ex - xx

where O and OW are given by equations (51) and (238) respectively. Com-
bining equations (35) and (244) gives

x x
M cos t sec 6 d/dt(cos :tt sec 1,3 dx/dt) (246)

= - cos 8xx sec Oww ZW/lx
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which can be written approximately as

m cos 2 x sec 8 sec a d2x/dt 2 
"X - cos 8 sec 8a 3W/ax (247)

Combining equations (55) and (245) gives

6 -e +a +a 2 (, x (248)
ax x xx vxvx t tt

"M 86W + OWW - ex - 8xx

If the potential function is given by a power law W , x-0 then equation (238) gives

Ow -a 8xx (249)

Therefore a reasonable approximation to equation (248) for many potential func-
tions is given by

2e + B + a - 2(,x + ) ' 8w (250).
x X xx t tt

With the further approximation that avxvx % 8xx equation (250) becomes

2(0 + x 8 x -t ) 8W (251)
Xx x t tt w

Within the approximations vxvx I- 8xx and 8ww "' 8xx equations (55) and (248) becomes

"e e + 28a - 2(G8  + $t) (252)

Sw - ex

while equation (247) with 0. n 8xx becomes

m cos 2tt sec 8vxvx sec 8xx d 2x/dt - Wax (253)
tt

and with the further approximation that avxvx , 6xx equation (253) becomes

2Cos 2it se22 6 d2x/dt2 Wax (254)

If on the other hand it is assumed that vxvx nu 0 , or equivalently 6xt I/2,
then equations (250), (55) and (253) become

2ex + . - 2 (,x + 8xt) - ew (255)
xt tt

xx

6 6 + 8 - 2(8t + at)
ax x t tt

m Cos 2ax sec 8 d 2 x/dt2 Wax (257)
tt 8
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The approximations in equations (255) through (257) are not nearly as good as
the approximations in equations (251), (252) and (254) respectively. The limit-
ing case of incoherent space and incoherent time is obtained by setting all
phase angles equal to zero and the exact equation (246) becomes

m d2x/dt 2 = - 3W/ax (258)

which is the standard form of Newton's law of motion.

B. Coherent Space and Incoherent Time.

The case of coherent space and incoherent time is described by

8xx = n/2 et = 0 8x = 0 (259)tt

where 8x and t are variables. This section develops a form of Newton's law of
motion that is suitable for making the transition to the case of coherent space
and incoherent time given by equation (259). Combining equations (64) and (236) gives

- m csc v cos 8t vx de v/dt = - sin 8xx csc B W/x 3 08 W/Dx (260)

Equivalently, combining equations (65) and (236) gives
2x

mcsc 8 cos 82a csc 8 x dO /dt d6 /dt (261)vxx t x x vx
"--sin a csc aWW W/x a8W/38x

where d8vx/dt is given by equation (60).

For the limiting case of coherent space and incoherent time given in equa-
tion (259), it follows that equation (261) becomes

- m csc ci (dOx/dt) 2= - csc aW W/x aeW/a8 (262)
vxvx x

Using equations (71) through (74) with equation (262) gives

- [(Eci )2 + (Fci) 2 I1/2 = - W/x a8w/ae (263)
xt xt WW x

ci ci
where E.t and Fxt are given by equations (72) and (73). If the potential func-
tion changes coherently when the space coordinate changes coherently it follows
that 8W = .w/2 and equation (263) becomes

- (Eci )2 + (Fci) 211/ 2  W/x aeW/36 (264)
xt xt W X

The internal phase angle equation for Newton's law of motion in coherent space
and incoherent time is obtained from equations (78), (237) and (240) to be

8cit 8 + K W - (265)
ax x xt W x
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where icxt is given by equation (76).

C. Incoherent Space and Coherent Time.

In this section a form of Newton's dynamical law is developed for broken
symmetry spacetime that can be used to attain the case of incoherent space and
coherent time which is described by

0 -0 8 0 atr /2 (266)
x

where x and 8 are variables. Combining equations (87) and (233) gives

-mse sinx t-1 dV/dO - 8co sec &.. aW/3x (267)vxvx tt x t oiw

From equations (88) and (233) it follows that equation (267) can be written as

_msec8 sin Ox t 1 ded(sin xse8 t-I dx/dO) (268)vxvx tt t tt txx

-Cos xx sec BW DW/Dx

Equations (267) and (268) are completely general equations.

For the limiting case of incoherent space and coherent time, equation
(268) becomes

- m sec 0ic t-2 d2x/d6 x2 see 0 Wax (269)vxvx = - e WW Wx(29

Using equations (96) through (98) with equation (269) gives with 0. . 0

- mt-2 [(Eic )2 + (F)ic 11 2 . _ (270)xt) (xt) f W 20

ic ic
where E t and Fx are given by equations (96) and (97). The corresponding phaseangle condition xor Newton's law of motion is obtained from equations (92), (237)
and (241) to be

aic' ax 8 ic M -a W (271)
ax vxvi

ic
where 6w - constant and 8w - 0 , and where Vvx is given by equation (95).
Equations (270) and (271) represent Newton's dynamical law of motion for inco-
herent space and incoherent time.

D. Coherent Space and Coherent Time.

This section considers a formulation of Newton's law of dynamics in broken
symmetry spacetime that can be reduced to the limiting case of totally coherent
spacetime which is described by

Sim M w/2 6K w/2 (272)
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where Ox and 6t are variables. The proper form of the law of motion for this
case is obtained from equations (101), (106), (107), (230) and (236) which give

mcsc8 sin ýx v/t de /dex (273)
-tvxvx sn vx t

- CC 8WW sin 8xx W/x ae /aeDo=

Equation (273) can be rewritten using equation (109) as follows

-mx/t2 csc 8 sin 2 csc x vO /dOd dO /deX (274)
vxvx ttX t vx t

cSC 8WW sin 8xx W/x 3ew/Dex

Equation (274) can be rewritten using equation (39) to give the following approx-
imation for slowly varying 8xx and 8tt

-mx/t2 c sin2 BxcscB d x/dex(dO /dex - 1) (275)
vxvx tt xx t

CSC a8WW sin Oxx W/x aew/ax

Combining equations (249) and (275) gives the further approximation

mx/t2 csc 8 sin 2 csc dO /de8 (dO /de' - 1) (276)
vxvx tt xx x t x t

- W/x Do w/3x

Equations (110) and (236) give an equivalent form of Newton's law of motion

-mtI sec a sin x d/dO(sin 8x csc x/t dO /dex) (277)
vxvx tt t tt xx X t

-csc aW sin a W/x R19 /aO

Equations (274) and (277) are equivalent to

-mt-I (C2 +D 2 )I/2 s Ox cSC 8sin 8W/X ae /ae (278)xt xt tt WW xx w/x

- W/x aOw/aOx

where Cxt and Dxt are given by equations (112) through (116). The corresponding
phase angle equations (111), (237) and (242) gi,-e

_+8 +a -2(6 + x )+ e + -6 - (279)
x vxvx xx t tt W WW Ox

which is valid for nearly coherent space and nearly coherent time.

411



The case of coherent spacetime corresponds to equation (272), and equ-
tion (276) becomes

- mxt-2 csc 6c d6 /de'(de /dex - 1) =-W/x 90 /;e (280)vxvx x t x t W x

which can be rewritten using equations (125) through (128) as

mxt- [t x 1/-mxt 2 [(Ex ) 2 + (Fc)2 1 =- W/x a0w//ei (281)

c Cwhere Eýt and F~t are given by equations (126) and (127). Equation (281) is the
coherent spacetime limit of equation (278). The phase angle condition for Newton!s.aw of motion in coherent spacetime is obtained from equations (134), (237) and
(242) or directly from equation (279) to be

6 l=60 2 + 6 66 - (282)
ax X t xt W X

where 6xt is given by equations (131) or (132). Equivalently, equation (282)
can be rewritten as

2( - + 6 = W (283)

Equations (281) through (283) are equivalent to the complex number form of Newton!s
dynamical law of motion given in equation (230) which for coherent spacetime is
written as

mx/E2[dO /dOx(d8 /d8x - 1) - jd2 6 /d62] = - W 36 w/axae (284)
x t x t x t w x

For a free particle moving in coherent spacetime

a w/ae = 0 (285)

and two possible solutions to equation (284) can be found

6x = c (286)

"- e x + c2  (287)°x t 2

where ch and c 2 are constants. These solutions can also be deduced from equa-
tion (2 1). Equation (286) represents a state of rest for internal motion, and
equation (287) represents a state of uniform motion in internal spacetime.

E. Simple Harmonic Oscillator.

Perhaps the most elementary system in mechanics is the simple harmonic
oscillator. - For broken symmetry spacetime the complex number potential
energy for the simple harmonic oscillator is given by
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= -/2j2 W = 1/2kx2  OW = ok + 28x (288)

The equations of motion for the simple harmonic oscillator are now considered

for four limiting spacetime conditions.

Case a. Incoherent Space and Incoherent Time.

Equation (258) gives

d 2x/dt 2 + kx - 0 (289)

which is the standard equation for the simple harmonic oscillator.

Case b. Coherent Space and Incoherent Time.

Equations (264) and (265) give
_ci.2 ci2 21/2

- m[(E x) + (Fxt) + k = 0 (290)

S=8% (291)xt k

ci ciwhere Ec and Fxt are given by equations (72) and (73).

Case c. Incoherent Space and Coherent Time.

Equations (270) and (271) give
t-2[(ic. 2 .it. 2 1/2

mt (E) + (F + kx = 0 (292)-t •xt)

ic x (293)
vxvx t

ic ic
where t and Fxt are given by equations (96) and (97).

Case d. Coherent Space and Coherent Time.

Equations (281) and (282) give

- 2 (Ec )2 + (F c) ] + k = 0 (294)
xt xt

6 - 2e = ek (295)6xt t

where Ect and F~t are given by equations (126) and (127). It is clear from
these cases that the simple harmonic oscillator can undergo internal spacetime
motion.

F. Measured Force.

The measured force is given by equations (43) through (47), (244) and
(273) to be
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F - F cos eFX F x cose = ma (296)m x x ax mx

mCosax sec Cos8 dvx/dt (297)tt vxvx ax x

x msin8 csc Cose v /t d6 Me1x (298)
"tt vxvx ax x vx t

Combining equations (203), (296) and (297) gives the measured force as

F - mFx aconx - mFx dv /dtx (299)
ccxi i mx m

with the effective mass mFx given by

aho sec sec 0 cose x Cos (300)mFx - mlhx cos •tt se vxvx vx et co ax

where hx is defined in equation (193). For broken symmetry spacetime the eff-
ective mass mFx relates the measured force to the conventionally defined accel-
eration in the x direction, and mFx 0 mpx where mpx is given by equation (185).
The measured time in the x direction is given by equation (8).

F. Conservation of Energy.

The obvious generalization of the law of conservation of energy to the
case of broken symmetry spacetime is4-6

p2 /(2m) + W - E (301)

which can be rewritten as two scalar equations

p2 /(2m) cos(28 p) + W cos 8W = E Cos 0E (302)

p2/(2m) sin(2 p) + W sin -W = E sin 8E (303)

or equivalently as

(p 2 /(2m)] 2 + p2 /m W cos(28p - eW) + W2 ZE2  (304)

tan(2Bp) - (E sin eE - W sin 8W)/(E cos 0E - W cos 6W) (305)

The value of the momentum magnitude obtained from equation (304) is
p 2 - 2mW cos(2ep- OW) + 2m[E 2 

- W42 sin2 (28 - eW)]t/2 (306)

In this way p and Op are obtained in terms of E, SE ,W and eW . An approximate
solution of equation (301) gives

p 2 /(2m) + W %, E 2ep " e8W N eE (307)
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which assumes that each term in equation (301) has the same value of internal
phase angle.

4. CONCLUSION. Broken spacetime symmetries are described by internal
phase angles of the space and time coordinates, and affect the basic kinematic
and dynamical equations of motion of Newtonian mechanics. The kinematic and
dynamic variables such as particle speed, momentum, acceleration, force and
energy must also have internal phase angles and be represented as complex
numbers in an internal space. The internal phase angles of the space and time
coordinates represent additional degrees of freedom for a particle and allow
an internal motion to occur in matter for fixed magnitudes of the space and
time coordinates. Elementary mechanical systems, such as the simple harmonic
oscillator, can experience internal motions in space and time.
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SLOW AND ULTRAFAST WAVE PROPAGATION PROCESSES

Richard A. Weiss
U.S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. A theory of wave propagation in space and time with broken
internal symmetries is developed from which the special cases of slow and
ultrafast processes associated with the wave propagation can be obtained as
limiting cases. Physical quantities and space and time coordinates are
represented as complex numbers in an internal space. Ultrafast processes are
associated with the coherent rotation of complex number physical quantities in
an internal space while the magnitudes are held fixed. Slow processes are
associated with changes in the magnitudes of the physical quantities. Spacetime
can be coherent in which case the complex number space and time coordinates
change by rotations in an internal space while the coordinate magnitudes remain
fixed, or spacetime can be incoherent in which case the changes in spacetime
coordinates occur as variations of the magnitudes of the coordinates. Eight
possible special cases of wave propagation processes in asymmetric spacetime are
delineated according to whether a process is slow or ultrafast, space is
incoherent or coherent, and time is incoherent or coherent. The ultrafast
processes described in this paper can be studied by femtosecond laser light
pulses. The coherent spacetime condition is associated with the superconducting
state of a high-T0 compound while the partially coherent spacetime condition is
associated with the normal state of a high-T. material.

1. INTRODUCTION. The intense interest in ultrafast processes has been
stimulated by the development of very short (femtosecond) laser pulses as a
diagnostic tool for studying processes that occur on short time scales. 1-2 These
processes include chemical reactions, optical dynamics of molecules, laser
induced plasmas and their radiations, chemical explosions and many others. 1 "13

Ultrafast laser sources have been developed that operate in the infrared, visible
and ultraviolet regions of the electromagnetic spectrum. Incoherent femtosecond
x ray emissions have been observed from laser induced plasmas, and can be used
for studying ultrafast atomic and molecular processes in gases, liquids and
solids.1-8 The dynamical behavior of matter at femtosecond time scales gives a
picture of molecular dynamics such as occurs in relaxation and transport
phenomena. 1" 2 These studies can be made at surfaces and interfaces as well as
within bulk matter. Specific phenomena that can be studied include: fluid
transport, wave propagation and phonon interactions, diffusion and heat flow,
electromagnetic emissions, vibrations, adsorption and desorption, phase
transitions and chemical reactions such as detonations. 1 - 13 Processes that occur
in supernova explosions such as the rapid neutron capture process, neutrino
emissions and shock wave transmission also occur on short time scales. 14"11 All
of the above processes can occur in matter that is located in incoherent
spacetime which appears in ordinary matter, or in coherent spacetime which occurs
in the high-Ta superconducting state of matter or in matter located in very
strong electromagnetic or gravitational fields. This paper studies the pro-
pagation of waves that are associated with short time scale energy transfers, and
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develops the forms taken by the wave equation for slow and ultrafast wave pro-
pagation processes that occur in space and time that have broken internal sym-
metries due to a special structure of matter or to the presence of an external
field such as gravitation or electromagnetism.

In the presence of external fields or in the vicinity of a peculiar atomic
or molecular structure, the space and time coordinates must be represented as
complex numbers as follows17

a = a exp(jea) (1)

where a =x,yz, and

t = t exp(je ) (2)

All physical quantities, with the exception of the light speed in the vacuum,
have broken internal symmetries and must be represented as complex numbers in an
internal space.' 7 This includes, for example, pressure, entropy, energy and mag-
netic and electric field strengths. Therefore for the case of wave propagation
the amplitude of the waves must be represented as a complex number in internal
space as follows

T = V exp(je V) (3)

Strictly speaking, the value of the internal phase angle of the time is associ-
ated with the particular physical quantity which is varying with time, so that
for the case at hand

t t exp((jO T) (4)
t

where eT - internal phase angle of time that is accociated with the time varia-
tion of the wave function T . Space is taken to be homogeneous so that the in-
ternal phase angle of time 6T is independent of the internal phase angles ea oft
the space coordinates. In other cases, such as particle dynamics and kinematics,
the space and time coordinates are not independent and the internal phase angles
of the space coordinates ea are each associated with a corresponding internal
phase angle of time ea for a - x ,y, z with 36a/a # 0 . But for the case of
wave propagation the time and space coordinates are taken to be independent
parameters so that 0' and 0a are unrelated quantities with 0 a/aey - 0. In
general

TV T(a,e ,t,e') (5)as t

e0 0 (a,e ,t,e') (6)

where a = x, y, z . From equations (1), (2) and (3) it follows that

dE - sec 8aa da exp(J(ea + 0aa)] (7)

= csc 8 aa adea exp[j(e0a + 8aa)] (8)
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dt - sec dt exp[j(O + 8 td] (9)t tt

= csc B tdT exp[j(eY + t (10)

di - sec 6 T d' exp[j(%I + 8a)] (II)

= csc 6 YPdO exp j(e + aT)] (12)

where

tan a = ae fa/a (13)

tan 6tt= ta /at (14)

tan = T =ae/Y /ay (15)

These expressions will be used in Sections 2 and 3 to obtain the first and sec-

ond derivatives of the wave function with respect to the space and time coordinates.

This paper develops a general theory of wave propagation in space and time
that have broken internal symmetries. The wave function must also be represent-
ed as a complex number in internal space, and therefore the possibility exists
in nature of having slow wave propagation processes in which the wave function
magnitude changes in space anG time, and ultrafast wave propagation processes
in which the wave function rotates in internal space with a constant magnitude.
The space and time coordinates themselves can also change in an incoherent and
a coherent manner, so that in fact there are eight possible limiting cases of
wave propagation in asymmetric spacetime. The paper is briefly organized as
follows: Section 2 evaluates the first and second derivatives of the wave func-
tion with respect to space and time coordinates; Section 3 develops the general
forms of the wave equations that can be specialized to the eight limiting cases
of slow and ultrafast processes, coherent and incoherent space, and coherent and
incoherent time; and Section 4 gives the solutions to the eight limiting types
of wave equations.

2. SPACE AND TIME DERIVATIVES. This section evaluates the space and time
derivatives that enter the wave equation for space and time with broken internal
symmetries. The wave equation for space and time with broken internal symmetries
is written as the following generalization of the standard scalar wave equa-
tion 18-24

a 2 T/ai 2 . E-2a2T/a-2 (16)

where the sum is over a - x, y, z and where the complex number space and time
coordinates a and t are given by equations (1) and (2) respectively. The com-
plex number wave function is written as

T - IF exp(je T) (17)
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and the complex number wave speed is written as

S= c exp(je C) (18)

The complex number wave speed for sound waves can be written as17

2 K/p = dP/dp (19)

where K = complex number bulk modulus, and p = mass density. For electromag-
netic waves in matter the wave speed is written as25

-2 c2 - -C (U)- 28 c - C - e ( (20).

where E and • = complex number electric permitivity and magnetic permeability
respectively. For electromagnetic waves in the vacuum with no external fields
present 8 c = 0 .17,25 In general for wave propagation in matter ec is a small
number. In order to delineate the various wave equations derived from equation
(16) for the cases of slow and ultrafast processes and for various types of
space and time variations, it is necessary to evaluate the second derivatives of
the wave function with respect to space and time as are required by equation (16).

A. First Derivatives with Respect to Space and Time.

The first derivatives of the wave function with respect to space and time
are written as

va = va exp(jOv) = aw/aa (21)

S- u exp(jOu) = aD/ai (22)

where a = x , y , z . For the space derivatives in equation (21) the magnitudes
va can be written as

v = sec 8$T cos 8aa ay/aa (23)

= csc 8a cos a Te T8 /aa (24)

-1.(5
"= sec 8 sin 86 a aP a (25)

= csc NY sin 8 'a / T/ae la (26)

and the internal phase angles as

0va = 0 + 8a - 8a - 8aa (27)

where 8 aa and 8T are given by equations (13) and (15) respectively. The mag-
nitude of the time derivative that appears in equation (22) is written as
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u = sec 8 cos t aP/at (28)

= csc cos t ae t (29)

sec sin t- /ae (30)= ls l tt t

= csc $ sin If It aet (31)

while the internal phase angle is given by

eu 'lO + ' t -Bt (32)

where aTt is given by equation (14) and OT = internal phase angle of time that
is associated with the time variation of the wave amplitude T.

Four limiting forms of the first derivative of the wave function with re-

spect to the spatial coordinates will now be considered.

Case 1. Slow Process and Incoherent Space.

This is described by

eO = 0 BY = 0 8 = 0 Ba = 0 (33)

Then equations (23) and (27) give

v =. a/aa = 0 (34)
a va

Case 2. Ultrafast Process and Incoherent Space.

This case is given by

8 = ir/2 0a = 0 80 = 0 (35)

Equations (24) and (27) become for this case

ui uivu = TV /aa/6 v = 8 + 1T/2 (36)

or equivalently

v OL j~ae /a a (37)

Case 3. Slow Process and Coherent Space.

The following conditions hold for this case

O- = 0 0 # 00a Ma - w/2 (38)
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and equations (25) and (27) become

v -1= 0a-/1 - e - T/2 (39)
aa va a

or equivalently

--SC j/6 3Tlao (40)

Case 4. Ultrafast Process and Coherent Space.

This case is described by

8w=7r/2 8 T 1/2 (41)

and equations (26) and (27) give

vuc = T/a /0 e 6uc 8va - a (42)

or equivalently

•uc (43)
a 'I'

These are the four limiting cases associated with the first derivative with re-
spect to the spatial coordinates.

Now the four limiting conditions will be given for the first derivative of

the wave function with respect to time.

Case I. Slow Process and Incoherent Time.

This case is given by

OT = 0 B• = 0 o T = 0a t=0(4
TTBit =0 (44)

and equations (28) and (32) become

u = / si = 0 (45)u

Case 2. Ultrafast Process and Incoherent Time.

This case is described by

B? = 7r/2 B0 T- 0a tW0(6
TT 8t -o (46)

Equations (29) and (32) then give

ui Yae/at eui =e + n/2 (47)u =•@e/atu =

or

ui = j7ae /at (48)
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Case 3. Slow Process in Coherent Time.

The following conditions are valid for this case

6, = 0 8 =0 8tt - n/2 (49)
Tytt

while equations (30) and (32) give
sc -1 Sc

u C ýlaot = - at - 7/2 (50)
u t

or

-sc j= 3/3 t (51)

Case 4. Ultrafast Process in Coherent Time.

This case is described by the following conditions

=1 /2 8a =t /2 (52)tt

and equations (31) and (32) give

uc ae /38" 8uc - BY (u = p/tueae =6 -6' (53),
TP t U '1 t

which can be rewritten as

g 1 36 aeal / (54)

TI t

B. Second Derivatives with Respect to Space.

The second derivatives of the wave function with respect to the ,,atial
coordinates will now be represented in four general forms which can be special-
ized to four limiting cases of physical interest corresponding to slow and fast
wave propagation processes in incoherent and coherent space. The second deri-
vative of the wave function with respect to space coordinates is written as

4( =&a exp(j ) 2- a2T/a2 - 3%/93 (55)

where a = x , y, z ,and where •a is defined in equation (21).

Case 1. Slow Process in Incoherent Space.

A general expression for the second spatial derivative of the wave func-
tion will be derived which can be used to pass to the limit of a slow process
in incoherent space which is described by

- 0 - 0 ea a 0 8 M 0 (56)

for a - x, y and z. Equations (23) and (55) give
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SM sec B vav cosa avaaa (57)

=sec a cos / aMaa(sec 6 cos 8 3V/Da) (58)

Ssec 8vava cos28aa sec 6Y a 2 /3a 2 (59)

while equations (27) and (55) give

e9a = e +a - e - (60)a va 8vava a iaa

-eY + 8Y + 8vava - 2(e6 + a) (61)

where 8 vava is given by

tan 8vava = va /lv•a (62)

where va is given by equation (23) and Ova by equation (27). For this case 8•a
is a small number. In the limiting case of a slow process in incoherent space
equation (56) is valid and equations (58) and (61) become

Sli = 2 T/3 2 esi = 0 (63)
a E

which is the conventional result.

Case 2. Ultrafast Process in Incoherent Space.

This section derives a general equation for the second derivatives of the
wave function with respect to the space coordinates which can be utilized to
obtain the limiting case of an ultrafast process in incoherent space which is
defined by

8 m T i/2 ea -0 8ac = 0 (64)

where 8O is now a variable. From equations (24) and (55) it follows that

= csc avcos8 aa v aeva /3a (65)

= csc a ave cos 28 csc 80 TV ae l/a 6ev /aa (66)

where 8vava is given by equation (62) with va given by equation (24) and where
equation (27) gives

ae va/a - 3/la(e% + BTT - ea - )oa (67)

The corresponding internal phase angle for the second spatial derivative is
given by
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e=0 va + 8vave - 8 -a aa (68)

Y + a TY + avava -2(06 + 6 a) (69)

For an ultrafast process it is convenient to introduce an alternative represen-
tation of the second derivatives which is given by

•E =a exp(jO t)& exp(j3 ) (70)

=a2T/3&2 _ Va a

where

t = - ta (71)

0± =0 -6 (72)

Then it follows that

E =-csc 6rave cos 8 a v aeva /a (73)

=-, csc 6vava cos 2 a csc 6 Y TMf/aa aOva /aa (74)

and

± = + 8a + 8a - 2(e +a )-zr (75)
T T vava a act

for the general case.

In the limiting case of an ultrafast process in incoherent space, equa-
tion (64) is valid and equations (61) and (66) become

ui ui2•a = csc8 'vv•(e•/3ac) (76)

&u = + 8 ui + i/2 (77)

From equations (36) and (62) it follows that

tan aui _Eui_ /Fui (78)
vava = Ta Ta

where

Eui aea)2  Eui > 0 (79)ETa - (3T•)Ea

FUi a a 2 e /a2 F2Fui < 0 (80)
'Pa 'P Pa

From equation (78) it follows that
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csc ui (E ui 2 FU(F)ui.) 2 /Eui (81)
vava (E) + ] a

Equations (76) and (81) give

ui (ui.2 + (Fui) 1/2 (82)Ca Ta Y[aa

For the signs chosen in equations (79) and (80) it f(!lows from equation (78) that

8 aui = 7/2 +K (83)

where K., is a small positive number defined by

t an IIF ui (84)

Equations (77) and (83) give

euiue + K + r (85)

Finally equations (71) and (72) give

•uit = [(Eui. 2 + ui 211/2 (86)a = .a• (Fa)()

Suit6 . + K (87)

^uif
so that i is a small number.

Case 3. Slow Process in Coherent Space.

An expression is derived for the second derivative of the wave function
with respect to the spatial coordinates, which can be used to pass to the limit
of a slow process in coherent space whose characteristics are

e-M 0 a -Y 0 3a - 7/2 (88)

where 0. is variable. From equation (55), (25) and (61) it follows that

Ea " sec Bvava sin Bam av/ae a(89)

= sec OVava sin 0am a- a(sec 8 sin 8am a-I 3/ae 0) (90)

e -=V + 8 T +B vuva - 2(ea + aa) (91)

where 8 vava is given by (25), (27) and (62). In this case it is convenient to
introduce another representation of the second spatial derivative, namely
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= E exp (j ) E' exp (J ) (92)

= 32T/aa2 = a /aa

where

ca a (93)

e' = + 7 (94)

The limiting case of a slow process in coherent space is obtained from
equation (88) which combined with equations (90) and (91) gives.

•sc M sec 8sc a-2 a2 /ae2 (95)
a vava C

ssc M -28 -- (96)
Ea vava a

Equations (39) and (62) give

tan sc sc._sc
tan a E /F Sl (97)vava 'Ya Yia

where
,sC = - E sc > 0 (98)

Fsc =2 i/a2 Fsc > 0 (99)Faa FYa

seca s~c [(Esc) 2 + (Fsc 2 1/2 /Fsc (100)
vava a i [a

scand therefore ovava is a small positive angle. Equations (95), (98) and (100) give

sc a2 sc 2 sc120 /2
a [E1T) + (F Q)1 (101)

The alternative description of the second derivative with respect to space is
obtained from equations (93), (94), (96) and (101) as

•sc' -2 sc) 2 + (Fsc) 2 1/2.- - a ((E") -.T) J (102)

0 sc' - asc - 28 (103)

ýa vava a

where 68C is seen to be a small angle.

Case 4. Ultrafast Process and Coherent Space.

This section develoos a representation for the second derivative of the
wave function with respect to the space coordinates which can be utilized to
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attain the limit of an ultrafast process in coherent space whose description is

OTT = /2 B =i /2 (104)

The magnitude and internal phase angle of the second derivative is obtained
from equations (26), (55), (61) to be

& =csc 8vava sin 8a I/ aea /ae ([05)

=a s vava si aa cCa vYTa 23 /a aa /0O(16= csc8 vv sin28u csc86 V//a aOv/ae aov lao (106)

8• -0 + 6T +a 8vva - 2(e + a) (107)

where 8vava is given by equation (26) and (62), and where from equation (27)
it follows that

aevaea = 36T/ae a - 1 + a/ao (8OT, - aaa) (108)

A different expression for the second derivative can be obtained from equations
(89) and (26) and is

-1

Ci=sec 8vava sin 8 a 1v av/aLo (109)
-i

= sec 8 sin 8 a a I/na (csc 8 sin 8 P T/a H /ae/a) (110)

A comparison of equations (106) and (110) gives

tan 6vava = C a/D T (111)

2 2 1/2/Ccsc vava =(Cvi +Dpa) Ca (112)

sec v (C 2 + D21/ (113)

where

C = sin 8 csc 8 P/c ao /ao/ a•/ o /36a (114)

Dq, = a/a a(csc 8 sin 8 P/Q a l/ao) (115)

where 8eva/3ae is given by equation (108) and where Cy L 0. Therefore,
-1

Ea W CT -a1 csc8 vava sin B S (116)

-1
a sec sin (117)
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which can be rewritten as

= C2 D2 )1/2 -i
S 2a + a (115)

It is convenient for the case at hand to write the second derivative of the wave
function with respect to space coordinates in equation (55) as

•a " exp(JO Iexp(J (119)

= a

where

a - •(120)
a a

e' -e + 7 (121)F•a 8•a

which gives a useful alternative de6cription of the second derivative with re-
spect to space.

For an ultrafast process in coherent space described by equation (104) it
follows from equations (106), (110), (118) and (120) that

tuc' 8csc uc '/a 2 uc (122)Svava ETa

= -sece8$uc P/a 2 Fuc (123)vava FTa

-1 uc 2 uc2 21/2
a -.a [(C a) + (D e) 2 (124)

Ta-2[ (Euc )2 + (F uc)2 1/2  (125)

where

uc Euc < 0
E Ta ae /aeOL ae T/36a E a ,(126)

F auc M a 2 e)/362 Fauc > 0 (127)'P a 'P

Cuc , n/a Euc (128)
'Pa 'Pa

Duc = T/a uc (129)
'Pa FVa

From equations (42) and (62) or directly from equation (111) it follows that
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ta uc uc _uc
tan v 8El/c (130)VOia a 'Va

csc Buc [(E uc 2 + (Fuc 2 1/2/Eucvava (Z + (•)a (131)

sec Buc HE uc 2 + (F.u- 21/2 Fuc (132)
vava (Ea +Ta (132

Because of the choice of signs in equations (126) and (127) it follows that

Buc = - T/2 + 6 (133)vava T•a

where 6, > 0 , so that

tan 6 - F a/jE 1 (134)

The internal phase angle of the second derivative then follows from equations
(104), (107), (121) and (133) as

euc' Buc
0 = a + u' - 20 + n/2 (135)

=f 8 - 26 + 6 (136)

so that e is a small number. The complex number second derivative with re-
spect to space coordinates that corresponds to equations (125) and (136) is
given by

-uc 2(32 2)uc -/2 - - 2 2(3 L Y /2[ /3ea (306/a - 1) - ja 6 /36 e (137)
•a "'(2P a)u

for an ultrafast process in coherent spacetime.

C. Second Derivative with Respect to Time.

This section evaluates the second derivative of the wave function with
respect to time for four cases of physical interest: slow and ultrafast pro-
cesses and coherent and incoherent time. The complex number second derivative
of the wave function with respect to time is wricten as

- a2j/a2 (138)
Et a t exp(J ) E/t 1 /3t (138)

where G is defined in equation (22).

Case 1. Slow Process in Incoherent Time.

For this case a general expression for the second derivative of the wave
function with respect to time is derived which allows a transition to the lim-
iting case of a slow process in incoherent time which is described by

e8 -0 8 - 0 -t M 0 BTt - 0 (139)
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Equations (28), (32) and (138) give

Et W sec a cos a ettu/at (140)

sec a Cos 6 T /at(sec a cos a ?a/at) (141)- e uu CO tt TY Btt

sec a cos 2 sec 8 a 2 /at2 (142)
uu tt T

6~ = e + a 6 T T 13

E u 8uu t tt

MO + a + u - 2((6T + Ba ) (144)
q' vFT uu t tt

where

tan Ouu UDOu/au (145)

where u and eu are given by equations (28) and (32) respectively.

The limiting case of a slow process in incoherent time is obtained by im-
posing the conditions in equation (139) on equations (141) and (144) with the
result that

si 2t =2i 0 (146)

t C

which is the standard result.

Case 2. Ultrafast Process and Incoherent Time.

The general expression for the second derivative of the wave function with

respect to time will now be given which produces the correct limit for the case
of an ultrafast process and incoherent time which is described by

0 W -n /2 0t M 0 att - 0 (147)
TTy tt

From equations (29), (32) and (138) it follows that

Et csc a cos att u 30u/at (148)
tuu tt u

csc B cos B2t csc B• F ae /at a O/at (149)

et +Bu u - (150)

-es+a + S+uu- 2(OT + ) (151)

where Buu is given by equation (145) with u and 6u given by equations (29) and
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(32) respectively, and where equation (32) gives

ae /at = a/at(eO + - - 8T T (152)

Define the following alternative representation of the second time derivative
of the wave function as follows

= E exp(Jt) (153)•t • exp(je~t) = •

= a2T/at2 = a=/aj

where

9t . - Et (154)

t t

ett M - • (155)

so that

Et = - csc a cos a T u aeu/at (156)

S- cscu cos22t csc ' T 30 /at aeu/at (157)

et = e6 + + u - 2(OT + t) - T (158)

For the limiting case of an ultrafast process and incoherent time, equa-
tions (147), (149), (151) and (152) become

u2. ui T(ae /at)2 (159)-iff csc •uu (O/a)

t uu, TI

tui O- + auu + w/2 (160)

where from equations (47) and (145) it follows that

tan Bui =Eui uI (161)
uu Pt E 'Tt

where

Etui . (ao8/at)2 Etui > 0 (162)

F ui M a2 o8/at 2  Ftui 14 0 (163)

Equation (161) gives

a ui.HE ui 2 + (Fui. 2]1/2/Eui (164)
csc uu [(EUt) + (t1 t
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which combined with equations (159) and (162) gives

ui , 'V(E ui 2  ui )2 ]/2 (165)
t + (Ft

Equation (161) and the choice of signs in equations (162) and (163) give

ui-- =w/2 + (166)
uu Tt

where the positive angle Kt can also be defined by

tan KiTt = tFi/E t (167)

and equations (160) and (166) give

ui . 0 + t + • (168)
E~t Tn~ K +Tt

The alternate representation in equations (154) and (155) gives

uit ui)2 ui 2 1/2•ti± - V[(Ept) + (Fpt) ] 19

uit
0t =0 +i

so that 6uit is a small angle.

Case 3. Slow Process and Coherent Time.

For this case the following conditions are valid

O =0 0 a 0 a = /2 (171)'V = 'V' = tt

and a general expression for the second derivative of the wave function with
respect to time is required which will accept equation (171) as a limiting case.
Equations (30), (138) and (144) give

E sec sin 0 t-1 au/aeT (172)•t"se uu sin t

- sec t sin ' -l a/ae(sec sin 6V t- 1 a'/ae'V) (173)
uu tt t T' tt t

0 -0 + 8 + uu - 2(e + OTt) (174)
&t 'V TIP u t tt

where Ouu is given by equation (30), (32) and (145). The alternative descrip-
tion introduced in this case is

Et M E exp(je8) - t exp(je8,) (175)

-a2;la2 _ ai/aj
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where

t - t(176)

8't 0 ýt + I (177)

The limiting case of a slow process in coherent time is obtained from
equation (171) which combined with equations (173) and (174) gives

sc sec 8 sc t-2 2 T62 (178)
t uu - t'/ae (179)

6 sc = aso - 2e I - 7T (179)
Et uu t

Equations (50) and (145) give

tan 8sc EsC /FSC (180)uu 'tlt (I1t

where

E tsc ff W Tae t E tsc 0 (181)
'lt t 'lt

F sc a2 T/ae2 Fsc 1 0 (182)Tt t Tt

sec 0sc = [(Esc)2 +..(Fsc.2]1/2/FSC (183)se uu = .t) .Tt) Y-t(83

so that Os is a small positive angle. Equations (178), (182) and (183) give

Esc M t-2 [(sc) 2 + sc 2 1/2(184)t t [ETt) +FTt) 14

Finally, the alternative description of the second derivative of the wave func-
tion with respect to time is obtained from equations (176), (177), (179) and
(184) to be

•sc' -2 sc 2 sc 2 1/2
C - t ((Est) + (Fft) 1 (185)

t sc' uc - 2e T (186)
ýt uu t

where is a small angle.

Case 4. Ultrafast Process and Coherent Time.

In this section a representation of the second derivative of the wave
function with respect to time is determined which has the proper form to be
used to obtain the limiting case of an ultrafast process with a coherent time
variation that is described by
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a -/ = =r/2 (187)T /tt

For this case the proper magnitude and internal phase angle of the second deri-
vative is obtained from equations (31), (138) and (144) to be

Et = csc $ sin B6 u/t 3e /De T (188)uu tt u t

= csc u sin2'V a Tc T/t2 36 'Vu/36T (189)

e =M + 8 + 8 - 2(e + 8 t) (190)

where Ouu is given by equations (31), (32) and (145), and where equation (65) gives

D/DT=D/9T- 1 + a/ae6(8(a - 8'~ ) (191)

From equations (31) and (172) a second form of the second derivative of the wave
function with respect to time can be written as

secB sinBT t- I au/I8T (192)•t=se uu si tt t

= sec sin 6 Tt- I ;/ae(csc 8a sinT /t 36 / (193)

s u sintt t• s )

Combining equations (189) and (193) gives

tan u ffi C1t/D Vt (194)

csc $ (C2  +D 2  1/21/C (195)
uu (t 't "Vt

2 2 1/2/D(9secuu =(CTt +Dt) /t(196)

where

C = sin 0tt csc 86 /t ae /36 DO /364 (197)

D't = d/dOe(csc a'' sin 8t T'/t DeO/aeT) (198)

where a8u/38T is given by equation (191). The magnitude of the second deriva-
tive of the wave function with respect to time can then be written as

Et M C t- csc a sin t (199)

= D t sec u sin 8tt (200)

2 + D2 )1/2 t-1 Ii (201)
"(C't +'Tt) sin tt
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It is convenient for the case of an ultrafast process and coherent tlmeto intro-
duce the following alternative representation of the second derivative with re-
spect to time

Et = t exp(jt = gt exp(j't) (202)

= a2-/a-2 = 36/3E

where

=t - Et (203)

0' = + E (204)

In the limit of an ultrafast process and a coherent time variation, de-
scribed by equation (187), it follows that equations (189), (193), (201) and
(203) become

Et uc - cscu PC /t2 E t (205)

t uu T

=-sec a uc T/t 2 F uc (206)
uu Tt

t-1 [(c) 2 + (Duct) 2 11/2 (207)

- _2 C(.uc) 2 + (FUC 2 1]/2 (208)

where

Etuc = ae /aeT(ae /a6 - 1) E tuc < 0 (209)

Fuc = a2 a/aOT2 Ftuc > 0 (210)

-1e -uc
Ctuc M Tt E (211)

Duc =, Tt_ Fuc (212)
'lt Iyt

From equations (47) and (145) or from equation (194) it follows that

uc E uc .uc (213)
uu lTt Ift

csc 8uc " (uc - 1H uc )2 +(P uc. )2,1/2(24
uu (Et) [(Et) + "Ft)]| (214)

sec Buc uc1 H uc 2 (uc212 (215)
uu"(Ft [(E~t) + "F t)]
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Combining equation (213) with the choice of signs in equations (209) and (210)
gives

uc
u - 7r/2 + 6Pt (216)

where 6yt is a positive angle given by

tan 6 " Fc/" It (217)

Equations (187), (190), (204) and (216) give

9 t =I M +uu - 28 + T/2 (218)
e~t Tl uu t

-M0 - 2e + 6 (219)

and therefore 8u' is a small angle. Equations (208) and (219) are equivalent
to the following complex number representation of the second derivative of the
wave function with respect to time

-uc (•22c Y .t 0 ( 2T/ aE2 ) uc = T/ t2 [36 l/•0 T(a0 / aeT - 1) - j a 2 / @0t ] (220)

which corresponds to an ultrafast process with a coherent time variation.

3. WAVE EQUATIONS IN BROKEN SYMMETRY SPACETIME. This section develops
the various forns taken by the wave equation for slow and fast processes that
can occur in coherent and incoherent space and coherent and incoherent time. In
three dimensions the complex number wave equation is written as the following
generalization of the standard scalar form of the wave equation in cartesian
coordinates 

1
8-24

a a2T/aa2 = 1/e2a2T/a2 (221)
a

where a - x, y, z, and where the complex number space and time coordinates t
and Z are given by equations (1) and (2) respectively, and where

T - T exp(j0 ) c M c exp(JO ) (222)

For wave propagation in a single space dimension equation (221) becomes

a2T/aE2 _ 1/E2 32T13i2 (223)

From equations (55) and (138) it follows that the wave equation (221) can be
written as

Z1a - Zt / 2  (224)

or
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I % exp(J ) =) c-2&t exp[j(6 t - 2e d] (225)
a

For a one dimensional case equation (225) becomes

Ex exp(Jf x) = c-2&t exp[J(iEt - 209d] (226)

where ec = 0 for the light speed in the vacuum.

An exact solution of the complex number wave equation (225) requires that
the real and imaginary parts be taken, but this leads to very complicated equa-
tions. A simpler, but approximate, way of solving equation (225) is to make the
assumption that the internal phase angles of each of the component terms of
equation (225) are equal. However, because the phase angles on either side of
equation (225) or (226) can have a zero or a ± w term included, as shown in
Section 2 in equations (61), (72), (94), (121), (144), (155), (177) and (204),
the solutions of equations (225) or (226) require that the eight possible pro-
cess and spacetime states be considered individually, so it follows that

+c-2 &t (227)

9 a +- (7,0) = t- 2c ± (r,O) (228)

where a = xy, z for the three dimensional case, and a = x for the one dimen-
sional case. From the general equations (61) and (149) it is clear that equa-
tion (228) can be written as

8rays - 2(0 + a ) ± (r,0) - 8uu - 2(6 + If - 26c (nO) (229)

which gives the possible phase angle conditions.

The wave equation components given in equations (227) and (228) will now
be investigated for eight possible states associated with the slow or ultrafast
process rates, coherent or incoherent space coordinate variation, and the co-
herent or incoherent time coordinate variation.

Case a. Slow Process, Incoherent Space and Incoherent Time.

This section develops a general form of the wave equation that can be
used to make the transition to the limiting case of a slow process occurring in
incoherent space and incoherent time which is described by

6• -0 NIP = 0 a - 0 8aa - 0 60' W0 W0 (230)

where a - x, y, z . For the case considered all internal phase angles are small
numbers so that the approximate solution to equation (225) can be obtained from
equations (227) and (228) to be
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S-2 (231)

8&a =6 Et - 28c (232)

where equation (232) is valid for a = x , y, z . Equations (58), (141) and (231)
give

Xsec 8vava cos 8aa 3/la(sec 8BT cos 8 8a /acz) (233)

C -2sec 8 Cos 8 3/t(sec a cos 8 82P/at)uu tt T• tt

For slowly changing values of OTTa , pl and 8 tt equation (233) becomes

Isec cos 2 13 Ia2 2 s o a2 /at2 (234)
a vava aa uu tt

where Ovava and Suu are given by equations (62) and (145) respectively. From
equation (229) it is clear that equation (232) can be written as

a -2(0 a 0 -2(e" + ) - 26 (235)SvavC xau t t

for a = x , y , z , where Ban and 8tt are defined in equations (13) and (14) respec-
tively, and 6a and 6t are given in equations (1) and (2).

For the special case of a slow process in incoherent space and incoherent
time described by equation (230), it follows that equations (233) or (234) reduce
to the standard form of the wave equation

S 2 T/aQa2 = c-2a2P/at2  (236)

For the one dimensional case equation (236) becomes

a2 /ax2 = c-2a2 Vat2 (237)

The phase angle equation (235) yields a trivial null result assuming 8c M 0 for

a slow process in incoherent space and time.

Case b. Slow Process, Coherent Space and Incoherent Time.

In this section a general form of the wave equation is developed that can
be used to pass to the limit of a slow process that occurs in coherent space
and incoherent time whose description is given by

= 0 a = 0 8a f/2 ot - 0 a tt= 0 (238)

for a - x , y , z . Equations (90), (92), (93), (141) and (227) become

E M&2 E (239)
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or equivalently

-I sec avv sin 6 a- I/ (see sin a a- I /3) (240)

e-2 s cos 0 T /at(sec cos ay/•at)= e uu 8tt IT 6tt

while equations (61), (92), (94) and (228) give

O' =6 - 2 (241)•a Ot C

or

o a + 7F = 6t - 20c (242)

which is equivalent to equation (229) written as

6vava - 2(6 + + Br u - 2(6y +8t) - 2ec (243)

For the special case of a slow process in coherent space and incoherent
time as described by equation (238) it follows that equation (240) becomes

-Xsee $ sc a - 32 Y/aa2 = c2 •2T/at 2 (244)

a vavct a

Combining equations (100) and (244) gives
2 2 ~sc 2 1/2 -

a- 2 [(E") 2 + (Fs2aV =a-22/2 (245)
Ta 'Y'

SC SC

where E a and F s are given by equations (98) and (99) respectively. For one
space dimension equation (245) becomes

- c 2 x-2 [(Esc) 2 + (Fsc)2 ]1/2 = 2/t2 (246)

Combining equations (238) and (243) gives

asc -2 =- 26 (247)
vava a c

Combining equations (97) through (99) with equation (247) gives

tan[2(a - e)]= ES a/FF sc (248)
a c To' 'Pa

or

tan[2(8 -- - (3a/i/a) M 2 2/( 2 (249)
a c a aL

which is valid for a slow process in coherent space and incoherent time.
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Case c. Slow Process, Incoherent Space and Coherent Time.

This section derives a general form of the wave equation which can be
used to attain the limiting case of a slow process occurring in incoherent
space and coherent time which is defined by the following characteristics

e= 0 8 = 0 8 = 0 a = 0 a tt Tr/2 (250)
YT

t 
a11 aa tt

Equations (58), (173), (176) and (227) give

I Ea = - c -2Et (251)

or equivalently

X sec cvavO Cos 8 a a/aa(sec cos 3 aa T/Da) (252)

= - 2 sec uu sin 8Tt t -1 V/8• (sec 8a sir 8' t y/a

while equations (60), (174) a-I (177) give

Oea = e -28 (253)

or

S a= -26 + it (254)

or equivalently from equations (61), (174) and (229)

vBva - 2(6 + 8a) =uu t- 2(- + 28 + 7 (255)

For the limiting case of a slow wave propagation process in incoherent
space and coherent time, equations (250) and (252) give

2 2 -2 s sc t-2 a 22 2Z 2M/Ia2 - c secO 32'/•8 (256)

a uU t

Combining equations (182), (183) and (256) gives

I a2T/a 2  -- 2 t [(Ec)2 + (Fsct) 21/2 (257)

where Eyt and Fvt are given by equations (181) and (182). For one space dimen-
sion equation (257) becomes

_2t2.2 2 (E') 2 + (F )211/2 (258)

Combining equations (250) and (255) gives the phase angle condition for this
limiting case of the wave equation as
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S= sc - 2e' - 20 (259)
uu t C

Combining equations (180) through (182) and (259) gives the phase angle condi-
tion as

-VSC FSC 20

tan[2(0 + e)] E /F (260)
t c 'Vt 'Vt

or equivalently

tan[2(8 + c)] = - ('/3 TM)/(a 2V/38 ) (261)
t C t t

Case d. Slow Process, Coherent Space and Coherent Time.

A general form of the wave equation is aerived in this section that can
be used to obtain the limiting case of a slow process occurring in coherent
space and coherent time which is described by

O=0 8 2"_0 a~ i/2 B Ti/2 (262)B•T = ? aa / tt

The combination of equations (90), (93), (173) and (227) gives

a c E -- t (263)

or equivalently

sec 6vava sin 6 a a a/a8 (sec a'V' sin 6 a 1 a'V/a6 ) (264)

2 sec a sin t- I a/ae8 (sec 5 sin ai t' ay/ae

while equations (60), (94), (174), (177) and (229) give

e' - 6' - 20 (265)•a •t c

or

2(0+ )=a -2(0+B (266)
vava a aa uu t tt c

where + T has been cancelled from both sides of equation (266).

For the special case of a slow wave propagation process in coherent space
and coherent time, equations (262) and (264) give

sc - 2 2 -2 Bsc t-22 F
sec 6 a a2T/38 W C sec - 2 a/32 (267)

a vava a uu t

Combining equations (99), (100), (182), (183) and (267) gives

_sc.2 sc 2]I/ 2  -- 2 sc2 sc 2 /2c-2 f(E•a)+ (F a) - c-2t-2 f(E't + (psc)2] (268

aIraa2
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sc Sc SC Sc
where El. , FTa Eit and FPt are given by equations (98), (99), (181) and (182)
respectively. For one space dimension, equation (268) becomes

(ct/x) 2 [(E x) + (Fsx) ] = ( 7t) + (F t) (269)

Combining equations (262) and (266) gives

asc - 20 = 8sc - 20 - 20 (270)
vava a uU t c

Equation (270) can be rewritten using
ta-1 sc sc -1ESc/_Sc.

tan (EsV/Fsc) - tan-1 'Vt/Fs) = 2 6 - et- c (271)

which is valid for a slow process in coherent space and coherent time.

Case e. Ultrafast Process, Incoherent Space and Incoherent Time.

This section develops the general form of the wave equation that can be
utilized to attain the limiting case of an ultrafast process in incoherent space
and incoherent time which is represented by

0• = ir/2 0a = 0 aa = 0 0 T = 0 6Y 22
t a=0 (272)

Combining equations (66), (71), (149), (154) and (227) gives

- =I a = - t (273)
aat

or equivalently

Xcsc va cos 2 6 ie••a a Iva/a (274)

=c-2 csc 0uu cos28 T3 •a0 /t 36u/at

where a factor ' csc 8OT has been divided out of both sides of equation (274).
The phase angle condition is obtained from equations (69), (72), (151), (155)
and (229) as

At L 0 - 0 (275)
•a F t c

or equivalently

8vava a2 (0 aa+ UU. = tuu - 2(0 + ) - 20 (276)

where - v has been cancelled from both sides of equation (276).

For the special case of an ultrafast wave propagation process in incoher-
ent space and incoherent time, equations (36), (47), (272) and (274) give
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Scsc aui (Do /aa) 2 = c-2 csc ui (ae /at) 2 (277)

Svavc UU

From equations (79), (81) (162), (164) and (277) it follows that

Sui 2 (Fui )2 / 2  -2 ui 2 +(Fui 2 /2(278)

ui ui ui uiwhere Ea , Fa, Eut and Fut are given by equations (79), (80), (162) and (163)
respectively. For one space dimension equation (278) becomes

c2 [(ui 2 + ui 2 11/2 = ui 2 (Fui 2 1/ 2  (279)c.[Elx) +(Fux) ] = [(E11t)+(F)]29

Combining equations (272) and (276) gives the phase angle equation for the wave
equation in this special case as

6ui = Bui - 28 (280)
vava uu c

and finally using equations (83), (166) and (280) gives

Ka Kyt - 26c (281)

where KT, and K1 t are given by equations (84) and (167) respectively.

Case f. Ultrafast Process, Coherent Space and Incoherent Time.

Consider now the development of a general form of the wave equation that
can be used to obtain the limiting case of an ultrafast wave propagation pro-
cess in coherent space and incoherent time which is described by

a 7it/2 a = n/2 t f =0 tt - 0 (282)

Combining equations (106), (120), (149), (154) and (227) gives

- I c -2 E (283)

aa t

or equivalently

I csc 8vav s sn 2B a -2 a/I38 38 /36 (284)

-2 2s ý Cos /at 36u/at
= c 2csc uu cos tt

where a factor T csc ByT has been divided out of both sides of equation (284).
Combining equations (107), (121), (151), (155), (228) and (229) gives

8' =O 2 (285)
6a - O t - 20c

or
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eoa + W= - 28c - n (286)

or equivalently

Bvava - 2(6a + Baa) + V - auu - 2(8T + 8aI) -2 - it (287)

For the special case of an ultrafast wave propagation process in coherent
space and incoherent time, equations (42), (47), (282) and (284) give

Scsc auc a-2 36- /) = c-2 csc 8ui (ae /at)2 (288)
a vava 1 U I

Combining equations (126), (131), (162), (164) and (288) gives

-2 [(E )2 + (F) 2 11 2 = c 2 [(Et)2 + (F) 2 ]1 1 2  (289)

uc uc ui ui
where Euc , F•a , Eyt and Fyt are given by equations (126), 27), (162) and
(163) respectively. For one space dimension equation (289) becomes

2 -2 uc 2 uc 2 1/2 ui2 + (Fui2 11/2 (290)cx [(Ex) + (FTx) ] ((t) +"t"2

From equations (282) and (287) it follows that

8uc - 28 = Bui - 20 - 7 (291)
vava a uU c

Combining equations (133), (166) and (291) gives

6TM - 2 -20 c (292)

where 65 a and KTt are defined by equations (134) and (167) respectively.

Case g. Ultrafast Process, Incoherent Space and Coherent Time.

This section gives the general wave equation for spacetime with broken
internal symmetries that can be used to approach the limiting case of an ultra-
fast wave propagation process in incoherent space and coherent time whose char-
acteristics are given by

a~ Mw/2 0 - 0 8 M 0 aIM/2 (293)TT a aa t

From equations (66), (71), (189), (203) and (227) it follows that

-"2a (294)

or
Scsc 8 cos 2 a ao/ HOL /am (295)

a vava a
-2 2Y , -2 Vo/o e/e

c csc u sin2 t2 a/36 ae /3
uu tt 'V t u t
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where a factor ' csc OTT has been divided out of both sides of equation (295).
Combining equations (69), (72), (190), (204), (228) and (229) gives

8± =6' - 28 (296)•a •t c

or

aEa -IT = Et - 2eC.+ + (297)

or equivalently

8vv - 2(6e + 8 e) - it = 8u - 2(8t + t) - 28c+i 28
vctva a aa uu t tt (6-+0 T Cy+ 8+i 28

For the special case of an ultrafast wave propagation process in incoher-
ent space and coherent time, equations (36), (53), (293) and (295) give

I csc 8aui (o/•) 2 = c-2 t-2 csc uu ae /30T(aey/30Y - 1) (299)
a vava UU c t csTu te~a~3,1 ~-1

Combining equations (79), (81), (209), (214) and (299) gives

- ui 2 (F-ui)2 I/2 -. -- 2[.EU. 2 "F-uc'2 1/2 (300)+[(EF=) + [(= c ) + ](F30)

_ ui _ui uc aduc
where E ,F ,i E and Fut are given by equations (79), (80), (209) and (210)
respectively. For one space dimension equation (300) becomes

2t2 ui 2 ui 21/2 = uc 2 + (3021)/
C 2 (Eyx) 2+ (Fu x) 21/2= [(E ut) 2+ (F ut) 2j / (301)

Equations (293) and (298) give the internal phase angle equation for this spec-
ial case of the wave equation as

aui 8 uc 20 Y -28 (302)
vava uu t c

Combining equations (83), (216) and (302) gives

a = 6 yt - 20 - 28c (303)

where K., and 6,t are defined by equations (84) and (217) respectively.

Case h. Ultrafast Process, Coherent Space and Coherent Time.

In this section a completely general form of the wave equation in broken
symmetry spacetime is developed for the purpose of attaining the limiting case
of an ultrafast wave propagation process in coherent space and coherent time
which is described by

5 'a V r/2 B Yr/2 a it/2 (304)

From equations (106), (120), (189), (203) and (227) it follows that the scalar
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component of the wave equation is

- I ca = - c--2 t (305)
a

or equivalently

csc a sin.2 8 a-2 ae /8ae 36va /ae (306)

C -2csc 0 sin2B t t-2 36oi36o 36u/36
uu tt 'T t U t

where a factor Y csc •Ty has been divided out of both sides of equation (306).
Combining equations (107), (121), (190), (204), (228) and (229) gives the phase
angle condition for the wave equation as

e' =0' eI - 20 (307)•a •t c

or

0 ý + 6= t - 20c + ir (308)

or equivalently as

a -- 2(6 + -2(o0 +%T: 26 (309)•vava 2(a + a) = uu t tt) 2c(3

where + n has been cancelled from both sides of equation (309).

In the special case of an ultrafast wave propagation process in coherent
space and coherent time, equations (42), (53), (304) and (306) give

Buc -2

csca a aoaO/(aOl(3/aO - 1) (310)
a vava 'T a 'T a

- c- 2 csc 8 uuC t-2 a - 1)

Combining equations (126), (131), (209), (214) and (310) gives

x a-2[(Euc) 2 + (Fuc) 211/ 2 . ()- 2 [(Euc) 2 + (Fuc) 2 11/2 (311)"a a) +(Ta) " )2'Tt) + Tt) 31

where E 0 , tI Et and Ft are given by equations (126), (127), (209) and (210)
respectively. For one space dimension equation (311) becomes

2 uc 2 + uc.2]I/2 - uc2 + (uc 211/2 (312)

From equations (304) and (309) it follows that the phase angle relationship
for this special case of the wave equation is given by

auc - 26a - 8uc - 20T - 20 (313)
VOW a uu t

447



Combining equations (133), (216) and (313) gives

6 - 280 = 6 - 26 ' - 20 (314)aa Tt t c

where 6T. and 6Tt are defined by equations (134) and (217) respectively. The
results given above can also be obtained from equations (137) and (220) which
give the wave equation for an ultrafast process in coherent space and coherent
time as

,_ 2-uc
E(Iuc = t/•u (315)

01 t

or equivalently

I 2oa2 (a o /a0 (30 ,ao - 1) - a2 a/@ 2  (316)
aL TY OL a T~ a

= (Ei)-2 [ e9/aoe ( /aeT - 1) - j32 0 /e'Y2]

Equation (316) is equivalent to equations (311) and (313). The one dimensional
analog of equation (316) is given by

(Ec/x)2[3• O/ao (38•/ao - 1) - ja 2e l a (317)
T x T x x

=36/aeoY(a%/ae T 1) a *2 a/eT

4. WAVE EQUATION SOLUTIONS. The general forms of the wave equations de-
rived in Section 3 are too complicated to allow simple analytical solutions.
This is true for equations (233), (240), (252), (264), (274), (284), (295) and
(306) and their corresponding phase angle equations (232), (243), (255), (266),
(276), (287), (298) and (309). For some special cases of the wave equation it
is relatively easy to find analytical solutions, and it is these cases that are
considered in this section.

Case a. Slow Process, Incoherent Space and Incoherent Time.

The standard wave equation (236) has the following well knowm solution18-24

T= A exp[i(j k a ± Wt] (318)
a a

where a x , y and z . For this case a and t are variables, and equation (318)
is a solution to equation (236) only if the external space wave numbers k. are
are related to the external frequency w by the following standard equation

X k 2 M w2 /c 2  (319)

where c - propagation speed. For the one dimensional case the solution to the
wave equation is

T - A expfik (x ± ct)] (320)
x
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where

kx = W/c (321)

The ± signs in equations (318) and (320) correspond to the two possible direc-
tions for the wave propagation along each axis.

Case b. Slow Process, Coherent Space and Incoherent Time.

For this special case the wave equation (245) has the following simple
solution

SA exp( - I a 0 ) expl i(j k a W wt)] (322)
a aaC a a

where e. and t are variables, a = x , y and z - constants, aa - constants, and
where as usual k. and w are constants. From equations (98), (99) and (322) it
follows that

Esc =aT Fsc = a2'2 (323)EYa a Fa a

a2Y/at =2 - W2 (324)

Equations (98) and (323) give the condition aa > 0 . Combining equations (245),
(323) and (324) gives the condition between the internal space parameters aa
and the external time angular frequency w required for a solution

I a-2 a(a2 + 1)12 . (W/c)2 (325)
a a a

From equation (97) it follows that for this solution

tan 8sc = a (326)

For the one dimensional case the wave function is

T - A exp( - axex) exp[ikx (x ± ct)] (327)

which gives the condition for a solution as

a(a 2 + 1)1/2 - (Wx/c) 2  (328)

which gives the constant ax as

ax - ( - 1/2 + 1/2[1 + 4(wx/c)4]1/ 2 1l/2 (329)

where ax > 0 . This case corresponds to the wave amplitude T propagating eva-
nescently in internal space 8a for fixed spatial coordinate magntiudes a , and
oscillating in external time. For this special case the measured space coor-
dinates change in time according to
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am = a cos Oa dam/dt-- a sin Oa dO /dt (330)

There is no wave propagation in external space for this case because a - con-
stant in the phase factor of equation (322).

Case c. Slow Process, Incoherent Space and Coherent Time.

The wave equation corresponding to this special case is given by equation
(257) and has the solution

S= A exp( - b e5) exp[i(I k a t wt)] (331)
tta a

where a and et are variables, t = constant and bt = constant. Equiations (181),
(182) and (331) give

Esc = bY Fsc 2 t(332)Eytt FTt t 32

a2 T/a2 k 2T
a

Equations (181) and (332) give bt > 0 . Combining equations (257), (332) and
(333) gives the following connection between the external space wave numbers
k. and the internal time parameter bt

I k = (ct)- 2 b (b 2 + 1)1/2 (334)
a a t t

where a = x , y , z . From equation (334) it follows immediately that for bt > 0

bt { -1/2 + 1/2a1+4(ct)4(1 k2)2 11/21l/2 (334A)
aa

For this solution equation (180) gives the following phase angle condition

tan Bsc = b- 1 (335)
uu t

For the one space dimension case the solution to the wave equation is obtained
from equation (331) as

T= A exp( - b 6 t) expiik (X + ct)] (336)
t t x

subject to

bt(b2 + 1)1/2 . (ctk )2 (337)
t: t x

from which the constant bt is determined to have the value

bt I{ - 1/2 + 1/211 + 4(ctkx )4]1/2}1/2 (338)

with bt > 0. The wave function in equation (331) corresponds to t - constant
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so that the wave propagates in external space with an evanescent wave propa-
gation in internal time. However, the measured time does change during the
motion because

m t m t t

There is no wave propagation in external time because t = constant in the phase
angle of equation (331).

Case d. Slow Process, Coherent Space and Coherent Time.

For the special case the wave equation (268) has the solution

T = A exp( - t d 6 - dte) exp[i( ka ± t)] (340)

where Oa and () are variables, a and t = constants, and where da and dt con-
stants. Equations (98), (99), (181), (182), (268) and (340) give

Esc =dT Fsc = d2'2 (341)
PTa a± Tac a

ESC = dF sc = d2  (342)
Tt F t t

Combining equations (98), (181), (341) and (342) gives d. > 0 and dt ) 0 . Then
combining equations (268), (341) and (342) gives the condition between da and
dt that is required for equation (340) to be a solution of the wave equation
(268) as follows

I a-2d (d2 + 1)1/2 = (ct)- 2d (d2 + 1)1/2 (343)a aa t

or equivalently

d2 = - 1/2 + 1/211 + 4(ct)4[l a-2d (d 2 + 1) 1/212IY/2 (344)
t a a

where dt > 0 . For this solution the phase angle conditions in equations (97)
and (180) give

tan 8 sc =d- tan Bsc . d-1 (345)
vava a uu t

For the case of one space dimension the solution to equation (269) is written as

T= A x( - d 6te) exp~i(k x t wt)] (346)
SA exp( - d x (

subject to the following condition between the constants dx and dt
2d 2 1/2 2d 1/247

(ct/x) d (d + 1) = dt +1) /2(347)

or equivalently
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d { - 1/2 + 1/2[1 + 4(ct/x) 4d2 (dZ + 1)]1/2V1/2 (348)
t x x

where dx > 0 and dt > 0 . Because a = constant and t = constant there is no wave
propagation in external space or time. This case corresponds to an evanescant
propagation of the wave amplitude Y in both internal space and internal time.
However, the measured space coordinates am and the measured time coordinate tm
are changing during this process as shown by equations (329) and (338)

da MOd = -a sin8 d0 /d 6T (349)
in t a a t

dtM/dOT =- t sin6 (350)
m t t

Therefore this case should be physically observable.

Case e. Ultrafast Process, Incoherent Space and Incoherent Time.

For this special case a simple solution to equation (278) is written for the
case of three dimensional cartesian coordinates as

S= A exp(jS T) (351)

8 = e a + e t -4+ e (352)

where a and t are variables with a x • y , z , and wiiere ea , et and eo = con-
stants. In this case, equations (79), (80), (162) and (163) give

ui 2 ui =0 (353)
EPa = ea FPa

ui 2 u =0 (354)
EPt = et FPt

where ea and et are positive or negative real numbers. Combining equations
(278), (353) and (354) gives

e 2 = c- 2 e 2  = ± c(j e2)1/ 2  (355)
a a t a a

which gives the relation between the constants ea and et that is required in
order for equations (351) and (352) to be a solution to the wave equation (278).
For this solution equations (78) and (161) give the phase angle conditions as

a =¶ /2 6 =i r/2 (356)
vava uu

For the case of one space dimension the wave function is

S= A exp(jO P) (357)

e'• iex +ett + e (358)
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subject to the condition
2 22

e = c e e =±ce (359)
t x t x

so that

6'y = ex (x ± ct) (360)

where the constant eo can always be absorbed into the multiplicative constant,
so that finally

S= A exp[je x (x ± ct)] (361)

where x and t are variables. This special case corresponds to the propagation
of the internal phase angle Oy in external space and time.

Case f. Ultrafast Process, Coherent Space and Incoherent Time.

In this special case a simple solution to equation (289) is

= A exp(j8 T) (362)

e= I faea t f + f0 (362
aa

where 6a and t are variables, a = x ,y, z constants, and fe , ft and f. = con-
stants. For this case equations (126), (127), (162) and (163) give

E uc = f (f F uc = 0 (364)
Ta =a a Ta 0 34

Eui f 2  Fui = 0 (365)
ETt t Tt

From equations (126) and (364) it follows that E• < 0 and 0 < fe • 1. Combin-
ing equations (289), (364) and (365) gives

I a-2if (f - 1)1 = c- 2 f 2  (366)
a a t

which can be written equivalently as
Z a-2f (I -f) f c- 2 f 2  (367)

a Oa a t

or as

ft- c( a-2f (1 - f )] 1/2 (368)
a a a

and therefore f_ Z 0 but always 0 < f < I The condition in equations (366)
or (367) relates the constants fm and ft and is required in order to insure
that equations (362) and (363) are a solution to the wave equation (289). For
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this special case the phase angle equations (130) and (161) give

=c -•r/2 8 Uiu = T/2 (369)
vava uu

For a one dimensional space the solution is

S= A exp(j% ) (370)

e• = fx x + ftt + f (371)

subject to the condition

(c/x)2 f ( _ f ) = f2 (372)
x t

or equivalently as

ft = ± c/x [fx ( - f x)]I/2 (373)

where fx is a positive number satisfying 0 •< fx < I while ft can be positive or
negative. This case corresponds to the propagation of the internal phase angle
Oy of the wave in external time and internal space.

Case g. Ultrafast Process, Incoherent Space and Coherent Time.

For this case the wave equation (300) is valid and has a solution of the form

S= A exp(j6 ) (374)

e g a + gtet + g (375)

where a and et are variables and t = constant, and where ga , gt and go - con-
stants. For this special case equations (79), (80), (209) and (210) give

Eui 2 Fui =0 (376)YPta O'Pa

uc = -1) Fuc = 0 (377)E Tt = t9 t - 1 t

Equations (209) and (377) give 0 < gt < I. . Combining equation (300) with equa-
tions (376) and (377) gives the condition required for equations (374) and (375)
to be a solution of the wave equation (300) as follows

X g2 = (ct)- 2 1gt(g _ 1)1 (378)
aa t t-

, (ct)-2gt(l - gtd

Equation (378) then gives
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= 1/2 ± 1/211 - (2ct) 2 ý g2•1/2 (379)

subject to

I g2 < (2ct) -2 (380)

The constants ga can be positive or negative real numbers, while gt is always a
positive real number. For this special case the phase angle equations (78) and
(213) give

8 =i r/2 uc =-/2 (381)
vavc uu

For the case of one spatial dimension the solution to equation (301) is written as

S= A exp(j8 ) (382)

64 = gxx + g et + g (383)
x t t 0

subject to the following equation that connects gx and gt

g2 = (ct) -Ig(gt - W (384)
x

-2=(ct) g t(l gt)

with 0 < gt < 1 . Equation (384) gives
2 2,1/2

g = 1/2 ± 1/211 - (2ct) g2J (385)

with

g (2ct)- 1  (386)

and

gx= (ct)- lgt (I - gt)]1/2 (387)

so that gx 0 0

Case h. Ultrafast Process, Coherent Space and Coherent Time.

A solution to equation (311) can be written as

T A exp(J8) (388)

h ah + ht6 t + h (389)
ax t 0

where 0. and Oy are variables, a and t are constants, and ha , ht and ho are
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constants. For this special case equations (126), (127), (209) and (210) give

uc uc =0 (390)
E a = ha(hCx - I F a

uc Fuch=-0 (391)
F t = ht(ht - F) 0t

Equations (126), (209), (390) and (391) give 0 -4 ha < 1 and 0 <, ht < 1 so that
h. and ht are positive real numbers. Combining equation (311) with equations
(390) and (391) gives

Sa-2 1h (h - I)J = (ct)-21ht(ht - 1)1 (392)

a OLa t

or since 0 < ha < I and 0 < ht 4 1 equation (392) can be rewritten as

Sa-2 h (1 - h ) = (ct)-2 h ( - h ) (393)
aa a t t

as the condition relating the internal space parameters ha and the internal time
parameter ht in order for equations (388) and (389) to be a solution to the wave
equation (311). From equation (393) it follows that

ht = 1/2 1/2[1 - (2ct) 2 1 a- 2 h (1 - h )]1/2 (394)

with

z a- 2 h ( - h ) < (2ct)-2 (395)
a a a

For this special case the phase angle equations (130) and (213) become

8uc = - i/2 auc =- /2 (396)
vava Uu

For a one dimensional space the solution to equation (312) is

T= A exp(j0%) (397)

y + h 6 + h (398)
'I, x x t t 0

subject to 0 < hx < I and 0 < ht < I , and equation (392) becomes

1hx(hx 1)1 = [x/(ct)]21ht(ht - I)J (399)

Because 0 < hx < I and 0 < ht < I equation (399) can be written as

h x( - hx) = [x/(ct)] 2 ht (I - ht) (400)

which relates hx and ht . From equation (400) it follows that

ht = 1/2 t 1/2[1 - (2ct/x)h x(I - hx)]I/2 (401)
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with

h x(1 - h < [x/(2ct)1 2  (402)

This case represents wave propagation of the internal phase 6T in internal space
and internal time.

Consider now an alternative analysis of the special case of an ultrafast
wave propagation process in coherent space and coherent time. The solution to
the wave equation (16) is written as

'Y exp(j6) XX X zT (403)

Then it follows that

S= X X X T (404)
xy z

e6 = 1e x + oT (405)

=eXx + eXy + 0Xz + eT

Substituting equation (403) into equation (16) yields the following complex
number generalization of the standard scalar time equation and the standard one
dimensional 3calar homogeneous Helmholtz equations18-24

2- -2 2-
d T/dt + @2T = 0 (406)

2- 2 -2d2X /df 2 +k2 =0 (407)
aaa

where a x, y, z and

T - T exp(jeT) (408)

Xa Xa exp(JX X) (409)

and where the complex number angular frequency and wave number are written as

@ - w exp(j8 ) (410)

k - ka exp(j ka) (411)

It is required to solve equations (406) and (407).

The forms of the complex number second derivatives that appear in equa-
tions (406) and (407) have already appeared in equations (137) and (220). Ap-
plying equations (037) and (220) to equations (406) and (407) and dividing
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through by T and X, respectively gives

dT6/d0(l, - d6T/de) + jd 2T/deT2= 2t 2 (412)

d6 Id6 (1 - d /d) +jde /d6 E (413)
Xa a Xa a Xcz a a

where t and a = constants. But for wave propagation to be possible it has been
shown that jit and ka must be real numbers.' Therefore

2 22 = t2 2 8 W-e t (414)

F2i2 = a2 k2a kk (415)

Combining equations (412) through (415) gives

de/d&= de'de 22 (416)T t T t w

d2 T/dO'2 = 0 (417)T t

dO /de(1 - d6 /de) a k 2 (418)
Xa a Xa a a

d2Ox /d2• =0 (419)
Xa a

The solutions to equations (416) through (419) are given by

8 = hO6Y + c (420)
T t t 1

Xex = h Oa + c2 (421)

provided that

ht(I -h) = t 2W2  (422)

h ( - h) a 2 k22 (423)
a a a

so that 0 4 ht < I and 0 < ha 4 1 . Equivalently, equations (422) and (423) can
be written as

ht = 1/2 ± 1/2(1 - 4t 2 2 )1/ 2  (424)

h = 1/2 t 1/2(0 - 4a 2 k 2 )1/2  (425)
a a

subject to
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W < (2t)0- k a (2a) - (426)

Equations (424) and (425) are equivalent to equation (394), and equation (426)
is equivalent to equation (395), as can be seen by noting that equations (422)
through (425) are equivalent to equation (394) because it follows from equation
(423)

Sa-2hh (1 - h 2 2 = k2 = W2/c2 (427)

Combining equations (405), (420) and (421) gives

%= Zh + ht8T + h (428)

which is just equation (389). Equations (412) and (413) or equivalently equa-
tions (416) through (419) describe internal phase wave propagation that occurs
at a fixed point (a,t) in spacetime.

5. CONCLUSION. The wave equation is somewhat more complex than it is
generally thought to be. In the presence of an external field such as gravi-
tation or electromagnetism, the wave amplitude and the space and time coordi-
nates can be taken to be complex numbers in an internal space. For this case
the wave equation has eight possible limiting forms according to whether the
wave amplitude changes slowly or in an ultrafast manner and according to wheth-
er the change in the space coordinates is coherent or incoherent and the change
in the time coordinates is coherent or incoherent. For a slow wave propagation
process the wave amplitude changes in magnitude whereas for the case of an
ultrafast wave propagation process the wave function changes by a rotdtiua in
internal space. Similarly, incoherent space and time changes occur through a
variation of the magnitudes of the space and time coordinates, whereas coher-
ent space and time changes occur as rotations in an internal space. The eight
possible forms of the wave equation have unique solutions with their own spec-
ial characteristics and suggest that new and as yet unobserved phenomena can
occur for wave propagation in matter in the presence of strong external fields
such as may be realized in stellar compact objects.
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CLEAN FISSION NUCLEAR REACTORS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. This paper develops the basic physics concepts necessary for the
design of clean fission nuclear reactors. The concepts are based on the creation
of a broken symmetry state of the atomic number and the atomic mass number when
nuclei are placed in an electromagnetic field. In an electromagnetic field the
atomic number and atomic mass number of a nucleus must be represented by special
types of complex numbers in an internal space. The nuclear radius, binding
energy and mass must also be represented by complex numbers, and therefore a
liquid drop model type of nuclear mass formula is developed that. incorporates
complex number values of the atomic number and atomic mass number. The Bohr-
Wheeler condition for spontaneous and thermal neutron induced nuclear fission is
evaluated for nuclei in the presence of an electromagnetic field. The
electromagnetic field introduces the internal phase angles of the atomic number
and atomic mass number into the fission condition in such a way that nuclear
fission with thermal neutrons can occur in nuclei lighter than the actinides.
It is found that the wavelength of the electromagnetic waves required for the
catalysis of clean fission nuclear reactions with thermal neutrons is in the 7
ray region, and in particular that the energy of the 7 rays corresponds to the
giant dipole resonance frequency of the subactinide element that is chosen as
nuclear fuel. This suggests that nuclei in the presence of -y rays can be
fissioned by thermal neutrons even for values of Z and A sufficiently small as
to prohibit fission under zero field conditions. A formula is presented that
allows the calculation of the energy and power density of the 7 rays required to
catalyze the sustained nuclear fission of elements lighter than the actinides by
thermal neutrons. The -y ray catalyzed clean fission nuclear reactors will
produce only low level nuclear waste products or possibly no radioactive wastes
at all. Design concepts for a 7 ray catalyzed thermal neutron induced clean
fission nuclear reactor are presented which will deliver clean power with little
or no radioactive waste products. In fact, the nuclear wastes of present day
uranium and plutonium reactors can be used as fuel elements in clean fission
nuclear reactors, and in this way stored waste radionuclides can be eliminated
in a useful way to generate power.

1. INTRODUCTION, The generation of power has always been at high cost to
living organisms. For millennia and still today beasts of burden were used to
generate power for agricultural purposes, transportation and mining.' With the
advent of the industrial revolution came the engines and machines which required
wood, coal and petroleum products as fuel. The combustion of millions of tons
of coal and gallons of gasoline pollutes the atmosphere with carbon dioxide and
sulfur dioxide among many other chemical compounds some of which are
carcinogens. 2 "8  These pollutants enter the atmosphere and cause damage to
fore ts by producing acid rain, and damage to people by an increased incidence
of lung cancer, emphysema and other diseases. 2-8 Nuclear fission reactors, once
thought to be the power source of the future, are, now known to be a potentially

463



dangerous way of generating powe: because they are susceptible to accidents and
because they produce radioactive waste products whose safe disposal still chal-
lenges engineers and scientists a half century after the first nuclear reactor
was developed. 9-15 After the Three Mile Island and Chernobyl nuclear accidents
the lack of public confidence in fission reactor power plants has brought the
construction of new power plants to a standstill.

Alternative energy sources are now one of the major research endeavors of
science and engineering.16-22 Wind power has been utilized on a small scale in
a few areas but it cannot power a city like Chicago. 2 3 -2 5  Solar power can be
used effectively to heat single family dwellings in geographic areas which have
generally clear skies, but it is of limited use on a large scale and cannot be
used to power New York City.26-29 Geothermal energy is clearly of use only in
limited geographic regions and has produced no significant contribution to the
world's power generatiou capacity and it cannot be used to power a city like
Tokyo. 3 - 3 2 Nuclear fusion power still remains a dream after nearly a half
century of research and billions of dollars of investment. 33-4 All of these
energy sources are impractical alternatives to nuclear fission power. If the
safety and nuclear waste problems can be solved it appears that nuclear fission
reactors still represent the best hope for future power development. 4 6 55  But
new concepts and designs for clean and environmentally safe nuclear reactors
are required. This paper presents the mathematical and physical theory for the
development of y ray catalyzed clean fission nuclear reactors which have little
or no dangerous radionuclide waste products, and which are operationally safe.
Design concepts for clean fission nuclear reactor cores are presented.

The clean fission nuclear processes that are described in this paper are
based on the concept of the broken symmetry of quantum numbers and space and
time coordinates.56 It has been suggested that space and time coordinates have
internal phase angles and are written as complex numbers as follows 5 6

S= x exp(jQx) y=y exp(jy) = z exp(jez ) (1)

t= t exp(j6t) (2)

where the phase angles describe an internal space. For spherical polar coor-
dinates the complex number space coordinates are written as 5 6

r exp(jar) q = 0 exp(jO6) p= i exp(je) (3)

Corresponding to the complex number azimuthal angle is the following complex
magnetic quantum number 5 6

S= M exp(j M) = m cos e6 exp(-j) (4)

where m = 0 ,±1 , ±2 , ±3 , "-- is the standard magnetic quantum number. Therefore 5 6

M = m cos 0 am = - a6 (5)

Itis often convenient to define the following positive magnetic quantum number 5 6
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M' = M' exp(jet ) = Iml cos e exp(-j%) (6)

M' = Iml cosa 0% = -M (7)

For 0 0 these quantities reduce to the standard concepts.

Under the action of a time varying external field, such as an electromxg-
netic wave, or simply a spontaneous decay, the magnetic quantum number has the
following time variation

dM/d F = FM cos, $t exp[j(0M- - - Btt) (8)

where

FM -dm/dt cos 0M - m sin 0M d6M/dt + jm cos 0M d6M/dt (9)

- dm/dt cos 6M + md0M/dt exp~j(j/2 + M)

- dm/dt cos 8 -m sin 86 d 0/dt - jm cos 8O dO /dt

- dm/dt cos 8 - mdO /dt exp[j(Tr/2 - 04)]

and where

tan Btt = tGt /at (10)

It is assumed that 0 M = OM(m,H) and 0 = 0 (mH) where H = applied magnetic field
strength. The application of the chain rule gives the following derivatives

d0M/dt = GM /3m dm/dt + ae /3H dH/dt (11)

dO /dt H 0 /am dm/dt + 30 /3H dH/dt (12)

Then equation (8) can be written as

dM/d! = (BM dm/dt + Z. dH/dt)cos 8tt exp[j(8 - 0a - t)] (13)

where

B = cos 0M + mae / /an exp[j(ir/2 +4 04)] (14)

- cos 80 - mae /am exp[j(ir/2 - 04))

CM - maoM/afH exp[j(n/2 + M)](15)

- - m•a /aH exp(J(/2 - e )]

Two special cases are of interest.

465

I I I I I I I1 • I III I II I



Case a. Constant Magnetic Field.

For this case equation (13) becomes

(dM/dt)H = BM cos ait dm/dt exptj(6M- - - Ott)] (16)

which corresponds to spontaneous decay for a fixed magnetic field.

Case b. Constant m.

From equation (13) and (15) it follows that for this case

(dM/di)m = ýM dH/dt cos itt exp[j(6M - 8t - 8t)] (17)

- maeM/3H dH/dt cos Stt exp(j(n/2 + 2eM 6 -8 t]

M -mae /3H dH/dt cos 8tt exp[j(-/2 - 28 - 8t -Ott)]

= M sec 8e 6 /9H dH/dt cos 8t exp[j(w/2 + 8M - t- Btt)]

which corresponds to a decay associated with a change in the internal phase angle
of the azimuthal angle that is induced by a time varying magnetic field.

A more general expression for the time derivative of the complex magnetic
quantum number can be written as

dM/di - sec 80M cos ait dM/dt exp(j Mt) (18)

= csc 8MM cos 0tt M deM/dt exp(jlHt) (19)

= sec 8 sin B t-I dM/d8t exp(JOM (20)

= csc Om sin Ott M/t dOM/dt exp(JOMt) (21)

where

tan 8M m MaMe M - - Mae 0aM (22)

DMt = eM + aMM " Ot - Ot (23)

From equation (5) it follows that the time rate of change of the magnitude of the
magnetic quantum number is given by

dM/dt - dm/dt cos 8 - m sin 60 d8 /dt (24)

Combining equations (12) and (24) gives
dM/dt - dm/dt[cos 80 - m sin 80 a /am] - m sin 6 0 e0/3H dH/dt (25)

- dm/dt[cos 0M - m sin 8M aeM//m] - m sin eM aeM/ aH dH/dt
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cos52M 1/211 + (1 - 4f 2 ) 11/ 2] (38)

f = m-1(ml sin MI Cos 6 MI + m2 sin 0M2 cos GM2) (39)

where m is given by equation (34).

This brief summary of the theory of broken symmetry space and time coor-
dinates and broken symmetry magnetic quantum numbers is sufficient to begin a
study of the effects of broken symmetry on the quantum numbers of atomic nuclei.
It is suggested in this paper that in the presence of a y ray electromagnetic
field the atomic number Z and the atomic mass number A are integer quantum num-
bers, analogous to Imi of equation (7), which have complex number generalizations
i and 5 respectively, analogous to R' of equation (7), which determine the bind-
ing energy, symmetry energy, Coulomb energy, nuclear surface energy, giant reso-
nance frequency, incompressibility, fissility and many other nuclear properties.
It is also suggested that the number of nuclei located in an electromagnetic
field or gravitational field has an associated internal phase angle, which al-
lows the possibility of coherent radioactive decays in which the integer number
of nuclei is fixed but the internal phase angle of the number of nuclei is changing.
The theory of nuclear fission will be affected by the concept that the atomic
number and atomic mass number must be taken to be complex numbers in an internal
space when nuclei are located in the presence of an electromagnetic field. It is
well known that some of the actinide nuclei elements either fission spontaneous-
ly or undergo induced fission by thermal neutrons, but present day theory suggests
that spontaneous or thermal neutron induced fission does not occur for nuclei
lighter than the actinides. The main thrust of this paper is the development of
a theory of y ray catalyzed spontaneous and thermal neutron induced fission re-
actions of nuclei lighter than the actinides but heavier than 5 6Fe. The theory
suggests that thermal neutron induced clean fission of subactinide elements can
be accomplished by placing the potential nuclear futl in a y ray field whose
energy (frequency) is determined to correspond to the giant dipole resonance
frequency of the subactinide fuel element, and whose power density is adjusted
until the internal phase angle of the atomic number attains a critical -ulue at
which point the fuel nuclei are in a state for which clean nuclear fission is
possible. Because the fuel element to be fissioned has a relatively low atomic
mass number, such as 63Cu for example, the fission products will also be rela-
tively light elements which are in or not far removed from the valley of beta
stability and therefore are either not radioactive or are low level beta, alpha,
and neutron emitters. These lighter than actinide nuclei cannot be used as f .'S
in conventional reactors.

An outline of this paper is as follows: Section 2 introduces the concept
of complex atomic numbers and complex atomic mass numbers and investigates their
addition laws and time dependence, Section 3 considers the radioactive decay of
nuclei located in an electromagnetic field, Section 4 develops a liquid drop
model type of nuclear mass formula for nuclei in an electromagnetic field, Sec-
tion 5 investigates the effect of an electromagnetic field on the spontaneous
and thermal neutron induced fission condition for nuclei and demonstrates the
possibility of clean fission in lighter than actinide nuclei, Section 6 studies
the final state energy cc .ditions for the clean fission of nuclei lighter than
the actinides but heavier than 56Fe, Section 7 presents numerical calculations
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Combining equations (11), (18), (19) and (25) gives

dM/dt = JM cos Ott sec BMm cos 6M exp(j<Mt) (26)

= I COS Ott csc cMM Cos aM exp(jDMt

= (IM + J2) 1/2 cos Ott cos OM exp(jDMt)

where now

tan a = MM 4/J1M (27)

with

= tan aH dmmdt + r/H tan a dH/dt (28)
Hmm

J = (I - tan 6 tan a Hm)dm/dt - m/H tan 61 tan a dH/dt (29)

where
H

tan a H ma M/am (30)

mm

tan am = H /3H (31)
HH M

Equation (26) is equivalent to equation (13).

Consider two complex magnetic quantum numbers which can be written as

= M1 exp(j8Ml) = m1 cos 8MI exp(JS1 l) (32)

M2 - 2 exp(j8M2) = m2 cos 61M2 exp(j63M 2 ) (33)

where the following integer addition law is always true

m - mI + m2  (34)

where m, mI and m2 = 0 , ±I , ±2 , ±3 , Then the addition law for the complex
magnetic quantum numbers is written as

M w= M +M2 (35)

where

R" M exp(JSM) f m cos 01M exp(j 0M) (36)

where the unknown quantities W and OM are given by 5 6

W = -m/2[1 + (1 - 4f 2 ) 1 /2] + mI cos 2 8eMI + m 2 Cos2M2 (37)
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of the y ray photon energy and flux density that are required to catalyze the
clean fission of subactinide nuclei and gives examples of clean fission nuclear
reactions, finally Section 8 presents design concepts for a y ray catalyzed
thermal neutron induced clean fission nuclear reactor.

2. ATOMIC NUCLEI WITH BROKEN INTERNAL SYMMETRIES. This section considers
the broken internal symmetries associated with the atomic number, neutron number
and atomic mass number of nuclei that are located in an electromagnetic or grav-
itational field.

A. Complex Atomic Number, Neutron Number and Atomic Mass Number.

It is assumed that the integer quantum numbers Z, N and A are analogous to
the magnetic quantum number Iml and occur in a solution to an azimuthal portion
of a wave equation in internal space. 5 6 Then by an argument similar to that for
the complex number magnetic quantum number it follows that the atomic number,
neutron number and atomic mass number are complex numbers in an internal space
and can be written in a form similar to that of the complex magnetic quantum
number F1' in equation (6) as follows5 6

z= z exp(j6z) = Z cos 0z exp(je ) (40)z z

n= n exp(jen ) = N cos 0n exp(jO n) (41)

a exp(j a) = A cos ea exp(jQa) (42)

where the complex number azimuthal angles corresponding to the quantum numbers
z , fi and a are written, in analogy to the azimuthal angle of real space given in
equation (3), as follows

Oz = 0z exp(jz On = n exp(je 0a = 0a exp(JeQa) (43)

where Oz; ' On and O•a are the internal phase angles of the complex number azi-

muthal angles in the internal space of nucleons. 5 6 The wave equations in inter-
nal space are written, in analogy to the complex number azimuthal equation of

Reference 56, as

d 2 T/d4•+ +2z = 0 (44)
Z z z

d 2 /d$2 + H2n = 0 (45)
n n n

d2- -/d 2 +2- = 0 (46)
a a a

The nuclear wave function has a form which is analogous to the azimuthal
wave function of the central field problem with a broken internal symmetry of
the azimuthal angle and is written as

z T n a exp[i(ZT z + niýn + aT a] (47A)
6z n a
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whereas the azimuthal wave function of the central field problem with broken

internal symmetries is written as 6

S- C exp(iM4 ) (47B)

Strictly speaking i, fi and i correspond to M' of equation (6). The measured
values of the angles that appear in equation (47A) are given by

ozm = 0z Cos 0Oz Onm 0 n Cos 6 n Oam = 0a cos 0 a (48)

If the wave function is to remain unchanged under the tranformations

0zm - 0zm + 2f Onm 0 -nm + 2n *am - 0am + 21 (49)

then the argument in equation (47A) must be a real number

oZz = z4 0z + Oz M 0 (50)

non = 8on n + 8 n = 0 (51)

aa =aa ea + a =0 (52)

By writing the complex quantum numbers Z , and 5 as

S= zR + jzI = z(cos 0z + j sin 6z ) (53)

i = nR + jn = n(cos On + j sin On) (54)

5= aR + jai = a(cos Oa + j sin ea ) (55)

and the complex number azimuthal angles associated with z, n and a as

Oz = OzR + JOzl = Oz(cos 6Oz + j sin 8 z) (56)

On = OnR+ JOn c = On(Cos 6 n + j sin0 on) (57)

#a = 4aR + JOal =' a(cos eOa + j sin 6 a) (58)

it follows that

Zoz M ZRozR - YZli + J(Zl4zR + ZR4 zi) (59)

,-n = n RnR - n nI + J(nl~nR + nRon) (60)

aoa = aR*aR - a,4aI + j(alaR + ar.aI) (61)

If the imaginary parts of equations (59) through (61) are zero, as they must be
if equations (50) through (52) are valid, then
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zi z I ZOzR /Z R nl n 1- nl/nR R 0al a I aaR /aR (62)

Substituting equation (62) into equations (59) through (61) gives

-z =(z 2  2 / 2 2z/ZR 2 /Z (63)
R I zR/R =R R zm R

hn- = ( 2 + n2)0nR/nR n 20R/nR n 2n2/n (64)
n R I nR R ~nRR nm (64

aa- (aR2 ~2), 2•aRa 2¢ am/65)

SR I aRR aR R am (65)

Therefore the argument in equation (47A) is linear in ezm r •nm and 4am

If the wave function in equation (47A) is to remain unchanged under the
transformations in equation (49) it follows from equations (63) through (65) that

2 n2  2
z /Z n InR 2 / a /ar = A (66)

where Z , N and A are integers. In analogy to equations (5) and (7) for the mag-
netic quantum numbers, the combination of equations (66) with equations (53)
through (55) gives

z = Z cos 6 n = N cos n a = A cos e (67)z n a (7

6z = - e z 6 n - e8n ea = - (68)

and therefore in analogy to equation (6)

z = Z cos 0z exp(j z) = Z Cos 0 z exp(-je z) (69)

n N cos 0n exp(jO n) = N cos 08n exp(-J8 n) (70)

a = A cos 0a exp(ja ) = A cos 0 a exp(-j 0a) (71)

Sometimes it is convenient to consider the terms

1z - cos az exp(jOz) - cos e8z exp(-J)Oz) (72)

in - Cos en exp(jOn) - cos 8 n exp(-j8On) (73)

la a cos Ba exp(J a) - cos 8 a exp(-JO a) (74)

Then equations (69) through (71) become

i - Z! ii - NT n i A-1" (75•)
z n a

The real and imaginary parts of equations (69) through (71) are written as
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ZR - Z Cs20z - Z cos 2 Oz (76)

S- N cos 2 8n = N cos 2 %O n (77)

aR A cos2a = A cos 2eOa (78)

zI = Z cos Oz *in 6z - - Z cos 6 sin 6 (79)

nI M N cos en sin 6n = - N cos 00n sin eon (80)

a, M A cos 8a sin Ga = - A cos eOa sin 6¢a (81)

All of these results follow from the periodicity of the wave function in the
variables e. , Onm and ýam

The law of addition for the complex atomic number, complex neutron number
and complex atomic mass number must be analogous to the form of the addition
law for complex magnetic quantum numbers given in equation (35), so that

W + i =i + R (82)

or

W+Ala = ZIz +NIn (83)

subject to the integer relation of the universal law of baryon number conserv-
ation

A - Z + N (84)

In equation (82) the known quantities are Z, 8O , N and 8 n . The value of A is
immediately obtained from equation (84) while the quantities W and ea are ob-
tained by noting that equation (82) can be rewritten as

W + A cos26 - Z cos2e + N cos2e (85)
a z n

A cos e sin e - Z cos 8 sin 0 + N cos n sin e (86)a a z z n n (86

From equations (85) and (86) it follows that

W - - A/2[1 + (1 - 4f2)1/2] + Z cos2e + N cos2n (87)z n (7

Cos2 - 1/2[1 + (I - 4f 2 ) 1 / 2 ] (88)

f A-AI(z cos e sin e + N cos e sin en) (89)z z n4
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which have the same form as equations (37) through (39) for complex magnetic
quantum numbers. For small internal phase angles ez 1, 0 and en ^ 0 , it fol-
lows that f ' 0 , W 1, 0 and Oa . 0 . In this case the function W can be ne-
glected to a first approximation in nuclear physics calculations as, for exam-
ple, in the determination of the valley of beta stability which is done in
Section 4. If the approximation Oz n, en is assumed then

f \ cos 8 sin e (89A)z z

For small values of 6z en equation (89A) becomes f ,, ez , and equation (88)
gives 8a r 6z and therefore for small internal phase angles the following ap-
proximation is valid

e "s o %e (89B)
z n a

Equation (88) shows that 6a 6 a(z , en, Z , N) so that ea is not an independent
variable. For simplicity it will sometimes be assumed that ez - ez(Z,H) ,
an = an(N,H) and ea = ea(Z,N,H) "' ea(A,H) , where H - strength of an externally
applied field such as a magnetic field component of an applied electromagnetic
field.

B. Time Variation of the Complex Atomic Number, Neutron Number
and Atomic !ass Number.

This subsection considers the time variation of i, 5 and 5 for two physical
cases: the first is associated with changes of Z, N and A by radioactive trans-

mutations in a constant magnetic field, and the second case is associated with
the time variation of the magnetic field for fixed values of Z, N and A. Equa-
tions (40) through (42) give

di/dt = cos tt (dz/dt + jzd z/dt)expfj(8z - e -tt)] (90)

dn/dt = cos 8 t (dn/dt + jnd n/dt)exp[j(n - et - 8t)] (91)

dg/dt = cos tt (da/dt + jade a/dt)explj(e - 8t - att)] (92)

wierc ýtt is given by equation (10). It is assumed that 8z , en and ea are
functions of an applied electromagnetic field so that for simplicity

6 =e (ZH) 8 -= n(N,H) e -e (A,H) (93)
z z n n a a

where H - magnitude of a static magnetic field or the -!rplitude of the ukagnetic

field component of an electromagnetic field. Actually the precise value of 0a

is given by equation (88). The magnetic field H is chosen as a descriptive

value of an electromagnetic field because in Section 7 a comparison is made of

the effects of a static magnetic field and an electromagnetic wave field on the

clean fission process in nuclei, and the field strength H is a common variable

of description for the two fields and can serve as a means of comparison.

For the case when Z, N, A and H are all time dependent the application of

the chain rule for derivatives gives
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dez /dt - ez /8Z dZ/dt + 0z /3H dH/dt (94)

dn /dt - e n/aN dN/dt + aen/aH dH/dt (95)

d a/dt - 36a /A dA/dt + H8a /3H dR/dt (96)

Combining equations (67) with equations (90) through (96) gives

dl/dt - cos 8tt (B zdZldt + Cz dH/dt)exp(j(e. - 8t - 8t)] (97)

di/dt - cos tt (BndN/dt + Cn dH/dt)exp[J(en - - 8tt)] (98)

dg/dt - cos 8tt (B adA/dt + Ca dH/dt)exp[j(0a - 8t - 8t)] (99)

where

Bz = cos ez + Zez /DZ exp[j(w/2 + 8 Z)] (100)

B - cos e + N3en/3N exp[j(i/2 + 8n)] (101)
Bn- nn n

Ba - cos 8a + ASa /aA expfj(n/2 + 8 a)] (102)

Cz m Zae fzH exp[j(n/2 + z)] (103)

Cn - N3n naH exp[J(1r/2 + e )] (104)

Ca - ANa /aH exp[j(i/2 + 8 a)] (105)

Two special cases are of interest.

Case a. Constant Magnetic Field.

This case corresponds to radioactive transmutations or nuclear reactions
in a constant magnetic field. For this case equations (97) through (99) give

(di/di)11 W cos tt BzdZ/dt exp(J(8z - et - 8t)] (106)

(dc/di)H W Cos 8 tt BndN/dt exp[j(en - Ot - Ot)] (107)

(di/di)H - cos att ;adA./dt exp[j(e a - 8t - it)j (108)

For this case the actual size of the nucleus is changing.

Case b. Constant Z. N and A.

This case corresponds to internal phase changes in a fixed nucleus in the
presence of a time varying electromagnetic field. Equations (97) through (99)
then give
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(di/dt)z M Cos ait CzdH/dt exp[J(Oz- - - atd] (109)

= cos att Zez /aH dH/dt exp[j(it/2 + 26 -e t - tt)]

(dE/dt)N M cos at Cn dH/dt exp[j(0n - - att)] (110)

- cos Ott NaO n/8 dHl/dt exp(j(ra/2 + 26 - 6t - 1tt)]

(di/dt)A - cos 0tt EadH/dt exp[j(Oa - 0r - 8 td] (111)

a Cos Ott Aa a /9H dH/dt exp[j (i/2 + 26 a - St - Ott)]

Case b corresponds to the decay of nuclei through internal phase changes associ-
ated with a time varying magnetic field, and is considered in detail in Section 3.

The time derivatives of i, R and 5 given in equations (97) through (99)
can also be written in a more general form involving only one exponential term
by noting that equations (40) through (42) give

di/dt - cos 6it sec azz dz/dt exp(j4 zt) (112)

M cos Ott csc zz zd6 z/dt exp(J )zt

- sin 0tt sec 0gg t- dz/dOt exp(J$ t)

- sin 0 tt csc o zz z/t de g/dO t exp(P~zt)

dfi/dt - cos 0it sec Bnn dn/dt exp(j4n ) (113)

"Mcos Ott csc Bnn ndOn/dt exp(J1nt)

"- sin tt sec 0nn t-ldn/dOt exp(J nt)

- sin ott csc nn n/t de n/det exp(Jnt)

dg/dt - cos att sec 80a da/dt exp(J at) (114)

- Cos 0tt csc 8aa adO a/dt exp(J at)

- sin 8tt sec Baa t- da/dOt exp(JOat)

- sin 8tt csc Ban a/t dOn t exp(JOat)

where Ott is given by equation (10), and where
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tan zz - Zaez/az tan 8 - n36n/an tan aaa = a sea/3a (115)

$zt =8 z + 8zz - Ot - 8tt (116)
S- +8 - -8t (117)

0nt Mn +nn t- tt

tat M ea + -aa t - 8tt (118)

The derivatives dz/dt, dn/dt and da/dt are evaluated using equation (67) as
follows

dz/dt = dZ/dt cos 8z - Z sin 0z d z/dt (119)

- dZ/dt(cos 8z - Z sin oz ae /3Z) - Z sin 6 06 z1H dH/dtzz z z

dn/dt - dN/dt cos 8n - N sin 6n dO n/dt (120)

- dN/dt(cos 6n - N sin en 0n /aN) - N sin 8n a0n /H dll/dt

da/dt = dA/dt cos 8 - A sin oa dOa/dt (121)

- dA/dt(cos 0 - A sin ea 3e0/A) - A sin 8a 36a /H dH/dt

These derivatives appear in equations (112) through (114).

Combining equation (67) and equations (112) through (115) gives for the
case where both H and Z, N, A are varying

di/dt - Jz cos att sec azz cos 6z exp(jDzt) (122)

= Iz cos Ott csc azz cose z exp(J zt)

M (I2 + J2 ) 1/2 COs a COs 8 exp(J0zt)

di/di - Jn cos Ott sec nn. cos 8n exp (jtnt (123)

- In Cos Ott csc ann cos en exp(jtnt)

W (I2 + J2)1/2 cos B cos O exp(Jn)
n n tt n nt
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d•/dt = Ja- cos 0tt sec 0aa cos 6a exp(J at) (124)

I a cos att csc aaa cos Oa exp(JOat)

= (12 + j 2 )I/ 2 cos a cos a exp(J )
a a tt a at

where

tan 8zz I z/Jz tan 8nn g In/Jn tan 6aa la/Ja (125)

= tan H dZ/dt + Z/H tan a dH/dt (126)Iz =z tang

In = tan aNH dN/dt + N/H tan aNU dH/dt (127)

i = tan a( dA/dt + A/H tan a A dH/dt (128)
a AA RH

Jz =( - tan e tan a z)dZ/dt - Z/H tan 6 tan Z dH/dt (129)= z z aHH

(1-tan 8 tan HN)dN/dt - N/H tan 6 tan a dH/dt (130)
n =n aNn R

Ja = ( -tan 6 tan a HA)dA/dt - A/H tan a tan a A dH/dt (131)

a a AA a HR

and where

tan a = Zae /aZ tan a H N3n IaN tan H . Aae0 aA (132)
az n Oa

tan a = H36z/fH tan aN H3e /3H tan aA - Hae /aH (133)HH z H n H a

Two special cases are of interest, for application to nuclear reactions
and transmutations and which can be experimentally verified.

Case a. External Radioactive Decay in a Constant Magnetic Field.

For this case it follows from equations (125) through (133) that

IH tan H dZ/dt (134)z = ZZ

1H = tan H dN/dt (135)
n -aNN

I Ha tan aH dA/dt (136)
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Jz = ( -tan 6 tan azH )dZ/dt (137)z z ZZ

JH (I - tan n tan a H dN/dt (138)

jH (1 - tan G tan a H(139)a a AA

tan z = IzJ = tan a (I - tan 8 tan azzH )- (140)

tan a = I /J Hf- tan H - tan G tan aNH 1 (141)

ta H H H H H -)
tan a I H/JaH =tan a ( - tan a tan H -1 (142)

Z = N A =""HH r/2 1 tH . t/2 - 7/2 (143)

From equations (106) through (108) and (122) through (143) it follows for
constant H that

H H H(di/dE)H = z cos att see zz cos 8z exp(j3zt) (144)

M IH Cos ý cscs 8H C e(jtH
z tt zz z zt
H• 2 2]1/2
H( )2 + (j H) cos % cos O exp(jzt)
z z tt z

(dii/di)H = jH cos sec a cos 8 exp(J8 ) (145)
H nt nn n nt

= IH Cos csc aH H
n c tt nn cos n exp(jnt)

-[((1H1)2 + (JH)2]1/2 Cos exp(JH)
n n tt n nt

(di/dE)It M jH cos sec 0aH cos a exp(jOa) (146)
aa cost cca t)

a IHa Cos 0t csc 8Ha HCos 0a exp (j(DHat)

a tt aa. a at
[ (aH)2 + (JHa)2]1/ 2 cos a C exp(jOH
[ astcos aa at

where
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0H = +H
40 HtW +a - e - a (147)
zt z zz t tt

0Ht = + 8H _- a (148)nt n nn "itt

8H - a +aH _ e -8 (149)

at a aa t - t

Simple algebra shows that equations (106) through (108) are equivalent to equa-
tions (144) through (146).

Case b. Internal Phase Radioactive Decay due to a Time Dependent
Magnetic Field.

This case corresponds to constant values of Z, N and A. Equations (125)
through (133) give

tan OZ - cot 0 Z + n/2 (150)
zz z zz z

tan 8N = - cot 8 a N -n + i/2 (151)
nn n nn n

tan 8A - cot 8 $A =8 + 7r/2 (152)
aa a aa a

8Z = sec e csc 8N - sece8 csc aA = see 0 (153)
zz z nn n aa a

se 8z = - csc 8 sec aN - - csc 8 sec a - - csc e (154)
zz z nn n aa a

H . H12

ZZ w/2 aNN = r2 a A w/2 (155)

z z
Iz Z/H tan a dH/dt (156)z

I N/H tan aN dH/dt (157)
n A

I A A/H tan a A dH/dt (158)
a HH

z
JZ - Z/H tan 0 tan o dH/dt (159)

JN - 1/1 tan e tan d•l/dt (160)

JA - A/H tan a tan at A dH/dt (161)

For constant Z, N and A it follows that
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[(I )2 + (J)211/2 . Z/H tan a sec e dH/dt (162)
Z Z HH

= Z 3Oz /H sec 0z dH/dt

N + .N 2 112 ~ a N
[(IN) + ( n)2]/- NIH tan a sec 8n dH/dt (163)

= N 3en/aH sec en dH/dt

A( A)2 + (a)2 11/2 A/H tan aA sec 8 dH/dt (164)
aaHH a

SA Ia aH sec 6a dH/dt

Combining equations (122) through (124) and equations (162) through (164) gives
for Z, N and A fixed

(di/dE)z = cos 0tt Z(dO z/dt)z exp[j(w/2 + 26 -- - atd] (165)

= cos ait Z 3z/ H dH/dt exp[j(7r/2 + 2%z - 6t - Btd]

(di/di)N = cos 6tt N(dO n/dt)N exp[j(Tr/2 + 26n - at - att)] (166)

= cos att N H0n/3H dH/dt exp[j(•r/ 2 + 20n - 6t - attd]

(dg/di)A = Cos a t A(dOa/dt)A exp[j(7r/2 + 26a - - Btt] (167)

- cos 8it A 38a/aH dH/dt exp[j(t/2 + 2ea -6 t - td)]

Internal phase radioactive decay in a time varying electromagnetic field is
treated in Section 3.

C. Dependence of the Internal Phase Angles on Z, N, A and H.

The following material is a simple way if relating the inte'•nal space
phase angles ez, en and Oa to the strength of an applied electromagnetic field.
It has been assumed that the complex atomic number 2, neutron number ii and
atomic mass number 5 arise from solutions of the azimuthal equations (44) through
(46) so that ez P on and 0a are given by equation (68). Then if it is assumed
that the internal space phase angles ez , 80n and e•a of the complex number az-
imuthal angles *z , in and *a corresponding to 'i, H and T as given in e-'.tion
(43) are proportional to the internal phase angles 0a of the complex number
cartesian coordinates 6, where a - x, y, z with 0a - ex - ey - ez , it follows
that
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ezz - = - Wz 6a (168)

a = - O n =-wO (169)Sn *n

6 a e : a (170)ea = )C a a a(10

where wz ' n and wa = constants whose values may be taken to be of the order of
unity as a first approximation. The internal space phase angles of the complex
number cartesian coordinates are related to the internal space phase angle of a
magnetic field by5 7

el = - 6 - 6t (171)

For free particles the relation Oa = 26t is valid so that

8 - 38t = - 3/26a (172)

and therefore

6 = - =ýz = 2/3w e a (ZA)e6 (173)

8 =- n = 2/3w 611 a (ZA)OH (174)

6a = - 6a = 2/3w •a6H a (ZA)6H (175)

At the fission condition, equations (473), (487) and (488) give

a a(Z,A) ,. 2a z(Z,A) (176)

The constants az(Z,A), an(Z,A) and aa(Z,A) are of the order of unity to a first
approximation so that at incipient fission

az r aH 6n • EH 0a \ 2eH (177)

and in general to a first approximation near the valley of beta stability

6 eH n UH 6 a 6 "H (178)
z H n Ha H

Therefore the internal phase angles of the atomic number, neutron number and
atomic mass number can be controlled by applying an electromagnetic field whose
internal phase angle of the magnetic field component 8R is determined by the
strength of the applied electromagnetic field.

It is expected that the value of OH will depend on the field strength of
the applied electromagnetic field and can be represented as a power series as
follows

=H(H) - eH(0) + hIH + h 2H + 2 .. (179)
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For practical calculations it will be assumed that OH(o) % 0. Combining equa-
tions (173) through (175) with equation (179) gives

6z = 0zo + a z(h H + h2 H2 + " ") (180)

O -e8 + (hiH+h2H2 + .-- ) (181)
n no n 1 2

ea co a (hH + hH2 + "'') (182)

where
ezo a zeH(O) 8no- a n H(0) a - 0 H(O) (183)

where zo , no and 6ao = intrinsic phase angles of the atomic number, neutron
number and atomic mass number for zero value of the applies electromagnetic field.
For practical calculations

So - 0 to 0 0 e , 0 (184)zo nto ao

The magnetic field strength H can refer to either a static magnetic field or the
magnetic field component of an electromagnetic wave such as in the case of y rays.

The following nuclear magnetic internal phase angle compliance coefficients
can be defined

CH(Z,A) = a6z/aH - az(h1 + 2h 2 H + 3h 3H2 + .) (185)
M CH + H H 2

Ozo CCzIH+Cz 2  +-'

Cn(ZA) - a6n/DH - ca(h1 + 2h 2 H + 3hH 2 + . (186)

M CH + H H 2
Ono OnI + n2

C Ha(ZA) - ae /3H - aa(h1 + 2h 2H + 3h 3H2 --- ) (187)

C cH + CH H+CH 2+

eao Oal + a2

where

CH - ah H 2ah H C 3ahOzo zI Ozi zC2 z2 z3 (188)

CH0 H anh CnH = 2 nh2  C n2 - 3anh 3  6)Ono n I ~~OnI n2 2 n3

C ihCHR -2a h C -'3ah(10eao al a0a 2 a2 oa2 - 3 (190)

Combining equations (180) through (182) with equations (188) througa (190) gives
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e - 6 + C H + 1/2CH H2 + 1/3CH H3(191)zo2 + "'" (19)2

8 8 H OH H2 +/3H H3
8 - n + C H + 1/2C H n2 + 1/3C H H '- + (192)* no Ono Oni en2

"o - 6 + CH H + 1/2CH H 2 + i1 3 C Ha3 + (193)*a ao ao Hal Oa2

where zo n. 0 , 8no x, 0 and 6., - 0 and can generally be neglected.

Equations (191) through (193) can be combined with equations (97) through
(111) to calculate di/dI , dfi/dE and di/dI in terms of the applied electromag-
netic field. Combining equations (132) and (133) with equations (191) through
(193) gives

tanH . zae /az + zac Hz oZ H + 1/2ZZC H /aZ H2 + **" (194)
zz zo zo zi

tan H - N3•3n/N + NaCH /3N H + 1/2NC H/13N H2 + ... (195)
Im no no ni

tan H . A a/3A + AaCHo/A H + 1/2ABCHa/aA H2 + **. (196)
cAA ao ao al

ta nzo z2 + ) (197)

tan N H . H(CoH + H H+ CH 2+ (198)
'HR Ce - n ent O.

tan a A . HC H C+ H H+CH H2 +.-.) (199)
H• Oa B( o Oal ea2

The expressions in equations (194) through (199) can be inserted into equations
(122) through (167) to calculate du/dE , df/dt and du/dE in terms of a strength
parameter H of the applied electromagnetic field. For example, in the case of
nuclei with fixed values of Z, N and A the effect of a changing magnetic field
is obtained from equatiorns (150) through (152) and (165) through (167) to be

z Wz38 /aH)Z exp(J(2 0 + w/2)] - ZCH exp(j(6 + 8z)] (200)(z/z e 2 z

(aM/M)N N(aen/a•) exp(J(20 + w/2)] - NC n exp[j(Bn + 0N)] (201)

(a,/aH)A - A(a3 /aH)A exp[j(20 + w/2)] - ACH exp[J(Ba + ) (202)

The previous equations are all exact.

For simple estimatious of the effects of an electromagnetic field, the
following simple linear approximations can be made by dropping all nonlinear
effects of the electromagnetic field in the magnetic compliance coefficients
in equations (191) through (193)

'% CH H 0 'u CH H 8e n C H (203)
z 8zo n Ono a eao
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It is often convenient to invert equation (203) as

H 8 KH e H ^ K H n H nK eK (204)Ozo z Ono n Oao a(24

where the nuclear magnetic internal angle stiffness coefficients are given by

KH H -1 KH = H -1 KH H 1 (205)Ozo (Czo) Kno (Ono eao ao

Generally it is more convenient to use the magnetic induction field B in cal-
culations so that the following corresponding nuclear magnetic compliance and
stiffness coefficients are defined by

a CB B O %CB B 0 B (206)
z Ozo n Ono a 0aoB

and their inverses

B KB K e  B oB 0 (207)ezo z Ono n 6ao a

where

KB B -K B B- 1 BKezo = (C 0 no) Kno (Cn) 1% ( (208)

In most cases the higher order terms in equations (185) through (187) and (191)
through (193) can be ignored so that the subscript "o" can be dropped and the
following are taken to be exact relationships

0 H H = H
0 -C H 06- CH H 0 = C HH(29z ez n On a 6a (209)

H 0 KH 0 H -K 0K H = KH a (210)
Oz z On n Oa a (210)

o. C B B a-=CB B 0 = CB B (211)
z Oz n On a ea

B = KB e B =ICKB 6 B = KB e (212)Oz z On n Oa a

where

H = (C-1 H H H H 1 (213)
eBz - z (Cnt Kn 6 C)a O Ca)
B (CBz)- B B -1 B B -1

K0  - -(C) K e (COa) (214)

3. RADIOACTIVE DECAY OF ATOMIC NUCLEI IN AN ELECTROMAGNETIC FIELD. This
section considers the radioactive decay of an assemblage of identical radioac-
tive nuclei located in an electromagnetic field, or other external field such
as gravity, which induces internal phase angles to the number of nuclei and the
total number of constituent nucleons contained within the nuclei and to the
atomic mass number of each nucleus. The addition law is developed for the com-
plex total nucleon number, complex number of atomic nuclei and complex atomic
mass number.
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A. Addition Law for Complex Total Nucleon Number, Complex Number
of Atomic Nuclei and Complex Atomic Mass Number.

Consider a system of atomic nuclei in an external electromagnetic field.
The presence of the electromagnetic field requires that particle number be re-
presented as a complex number in an internal space. Therefore the complex num-
ber of total nucleons (protons and neutrons within the nuclei), the complex
number of atomic nuclei and the complex atomic mass number are written as

n -N exp(j (215)n n bNn)

N - N exp(jie) (216)

5 = a exp(j a) (217)

where Nn , Nn and eNn - complex number value, magnitude and internal phase angle
of the total number of nucleons situated within all of the atomic nuclei; N , N
6 N = complex number value, magnitude and internal phase angle of the number of
atomic nuclei; and as before a , a and 8 a - complex number value, magnitude and
internal phase angle of the atomic mass number of each nucleus. In analogy to
equation (67) the magnitudes that appear in equations (215) through (217) are
written as

Nn = nn cos 6Nn (218)

N = n cos 6N (219)

a = A cos 8 (220)
a

where nn = integer number of total number of nucleons within the atomic nuclei,

q = integer number of atomic nuclei, and as before A - atomic mass number which
by definition is an integer. These integer numbers satisfy the equation

T = nA (221)n

whi:h represents the fundamental law of baryon number conservation which is
universally valid. The measured nucleon number, nuclei number and atomic mass
number are given by the real parts of equations (215) through (217) respectively

Nnm = n Nn Nm N n am - A cos28a (222)

and are not integers.

In analogy to equation (82) which applies to a single nucleus the addition

law for the complex total nucleon number is given by

W' + N - na (223)
n

which is subject to the validity of equation (221). The component equations of
equation (223) are
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W + rn Cos2Nn = nA cos2e a (224)

nn cos 8 Nn sin eNn = nA cos a sine (225)

which are two equations for the two unknown quantities W' and 6Nn . It is easy
to show that the solutions to equations (224) and (225) are

Cos2 Nn - 1/2[1 + (1 - 4f' 2 ) 1 /2] (226)

W' -nA(cos28a - cos 2Nn) (227)

= hlA{cos 2 Ba - 1/2[1 + (I - V,2) 12]}

where

f' =Cos 8a sin e (228)
a a

where ea is assumed to be a known function of the applied electromagnetic field
strength. The internal phase angle eN of the number of atomic nuclei is also
assumed to be a known function of the external electromagnetic field strength.
Equations (218) through (220) can be used to determine Nn , N and a in terms of
the electromagnetic field strength H. The baryon number conservation equation
(221) is a universal law which is valid whether or not an electromagnetic field
is present.

B. Radioactive Decay of Nuclei in the Presence of an Electromagnetic Field.

Radioactive decay of heavy elements has been studied for many years. 5859

This section considers the radioactive decay of heavy elements located in an
external electromagnetic field. The generalization of the standard radioactive
decay law for elements is written as

dl/dt - - T& (229)

where N - complex number of atomic nuclei and X = complex number radioactive
decay constant which can be written as

S- X exp(j6X) (230)

From equations (216) and (219) it follows that N can be written as

S= n Cos eN exp(JON) K = n Cos 8N (231)

The time derivative of equation (231) can be written as
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dg/di - cos 0tt sec 8NN dN/dt exp(J4ýt) (232)

= Cos Ott esc 8 NN N d6N/dt exp(J¢Nt) (233)

- sin 8tt sec 8NN t-I dN/dOt exp(jDNt) (234)

= sin tt csc aNN N/t deN/dOt exp(jlý ) (235)

where

tan aNN = Nae•N /N (236)

DNt = ON + aNN - St - 0it (237)

Then the law of radioactive decay of elements given in equation (229) can be
written in any of the following forms

cos att sec 8aN dN/dt A-AN (238)

cos att csc aNN d0N/dt = - X (239)

sin 8tt sec 8NN t- dN/d6t -N (240)
-1

sin tt csc aNN t d6Nf/det = X (241)

combined with the following phase angle relationship

P 0t = e X + ON (242)

Combining equations (237) and (242) gives

a NNX - t - Ott = OX (243)

The derivative dON/dt that appears in equation (233) is written as

dON/dt - •eK/an dn/dt + D6NK/H dH/dt (244)

whereas the derivative dN/dt that appears in equation (232) is obtained from

equation (231) to be

dN/dt = dn/dt cos 0N - n sin eN d6N/dt (245)

- dn/dt(cos 0 - n sin 0I ao K3n) - n sin 0N ae K/H dH/dt

Equations (238) through (243) give the general forms of the law of radioactive
decay of elements in the presence of an external field.

An additional form of the law of radioactive decay can be obtained by
noting that in an analogous fashion to equations (122) through (124) the time
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derivative dI/dE that is required in equation (229) can be obtained from equa-
tions (232), (233), (244) and (245) to be

dN/d-t = cos Stt sec SNN cos 8N JN exp(j? t) (246)

tt N N N Nt
incos8Bt csc 8 NN cosO TN INepj~)(247)

= o t o N (IN + j•I/ exp(iSNt) (248)

where

IN tan a dn/dt + n/H tan aHH dH/dt (249)

J (I - tan 8 tan a H)dn/dt - n/H tan 0 tan a dH/dt (250)NN nn N HIl

tan aNN = NaON/aN = IN/JN (251)

tan aTH = n36N//an (252)

tan = HoI /;H (253)tan N

Then equation (229) can be written as

cosS~cOSON 2 2 1/2(24Cos tCos a (I• + • exp(jDN) (254)

= - X cos 8N exptj(O6 + )

which gives the radioactive decay law as

cos a (1N + 2 = _n (255)

and equations (242) or (243) for the phase angle relationship. Equation (255)
is equivalent to equation (238) as can be seen from equations (245) through
(248).

At this point the standard law of radioactive decay can be regained when
6K - constant , Ot - 0 and 5 tt - 0 in which case equations (229), (232), (245)
and (254) reduce to

cos 8M dn/dt exp(JeN) - - os 8N exp[J(eN + ed)] (256)

which gives the standard law of radioactive decaySS, 5 9

dn/dt - - -n Oe M 0 (257)

which corresponds to incoherent radioactive decay of atomic nuclei. This
limiting case can also be obtained from equations (246) through (255) by
noting that
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ONN = 0 aH = 0 =0 (258)

nn HH

IN - dn/dt IN = 0  (259)

and equations (255) and (243) become equation (257) which is the standard equa-
tion for incoherent radioactive decay.

For the case of a static magnetic field, equations (249), (250) and (255)
reduce respectively to

H H
I H tan a dn/dt (260)H nH

J 1 = 0 - tan 6 tan a H)dn/dt (261)

Y cos Btt dn/dt -- An (262)

where

Y = [tan2 aH + (-tan e. tan anH) 21/2 (263).

Equation (262) can be rewritten as

dr/dt = - A'n

where the effective decay constant is given by

A' - AY-1 sec 6tt (265)

Therefore the effective radioactive decay constant is predicted to be an in-
creasing function of the strength of an applied static magnetic field. The
phase angle condition for this special case is obtained by first noting that
from equation (251) it follows that for H - constant

nH (-tan 8 tan nH - 1 (266)
NX Nni IN nnr

and equation (243) gives the phase angle condition as

eM H _ - - a (267)
Mx SNt tt

where eX - internal phase angle of the radioactive decay constant for atomic
nuclei in a constant magnetic field.

C. Coherent Radioactive Decay of Atomic Nuclei.

Consider now the case when n - constant which corresponds to a radio-
active decay where the integer number of atomic nuclei remains constant and
only the internal phase angle 8N changes due to the presence of a time de-
pendent electromagnetic field. For n - constant equations (249) and (250) give
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in n/H tan n dH/dt (268)

Jn - n/H tan N tan n dH/dt (269)N N29)

while equation (251) gives for n - constant

tan On . - cot 6 0 n .1T/2 + e+ (270)
MN N (270

Then equations (253), (255), (268) and (269) and equations (243) and (270) be-
come the following internal phase radioactive decay equations

cos Ott sec eN dGN/dt - - A (271)

, X W/2 + 6 N - t - Ott (272)

n _ et
=N t tt

where Ott is given by equation (10). Equations (271) and (272) can also be
derived directly from equations (229) and (231) by noting that for n - constant

dl/dE n cos 0tt deN/dt exp[j(r/2 + 2eN - et " Ott)] (273)

I cos 0tt sec 6N d/dt exp[j(v/2 + 6 - et - Ott]

and

dR - ndeN exp[j(lr/2 + 2eN)] IdNI - ndON (274)

- JndON exp(J2eN)

- JR sec eN deN exp(jieN)

- I sec eN dON exp[j(ir/2 + ON)]

Equation (274) represents the coherent form of change of the special type of
complex number given in equations (216) and (219). Equations (271) and (272)
are coupled simultaneous differential equations that determine 8N and et
Thus for slowly changing values of Ot equation (272) can be written as

e, X M/ 2 + eN - et - taet/at (275)

which is an approximate equation.

The solution to the coupled internal phase radioactive decay equations
(271) and (272) is in general not simply obtained and can only be done exactly
by numerical methods on a computer. Some insight can be obtained, however, by
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assuming that Ot(t) is a known function and solving equation (271) for ON
Simple integration of equation (271) gives

0 0
(sec N + tan GN)/Msec O6 + tan 6N) = exp[- Xg(t)] (276)

where

g(t) f sec att dt (277)
0

and where ON = ON for t = 0 is an initial condition. For t ÷ • it will be
assumed that g(t) - so that for this limit

seceN + taneN -o (278)

which gives

6 N f-/2 (279)

From equations (272) and (275) it follows that the asymptotic values of et are
given for t - • by

e =- t -Btt (280)

""- - tao t/at

So that for t -÷ the following approximate equation is valid

.et -X + c/t (281)

where c = constant. Therefore for t - it follows that Ot- - . Therefore
for a system of radioactive nuclei that is decaying by changes in the internal
phase angle of the nuclei number for a fixed integer number of nuclei, the
equilibrium value of 6t that is obtained after a long period of time is given
by et - - ex . Chemical reactions obeying the mass action law can also occur by
changes in the internal phase angles of the reactant species numbers.

4. NUCLEAR MASS FORMULA FOR ATOMIC NUCLEI IN AN EXTERNAL ELECTROMAGNETIC
OR GRAVITATIONAL FIELD. Nuclear mass formulas are important tools for investi-
gating nuclear structure and nuclear processes such as fission and the neutron
and proton capture by atomic nuclei."' 6 7 The Weizsacker-Bethe liquid drop
mass formula was developed years ago to represent nuclear masses by combined
classical and quantum mechanical techniques.'6-67 This section develops a
broken symmetry form of the liquid drop nuclear mass formula that is required
to investigate the clean fission of lighter than actinide nuclei by thermal
neutrons in the presence of a y ray field that is considered in Sections 5
through 7.

A. Complex Number Nuclear Radius for Subactinide Nuclei.

The concept of a nuclear radius enters directly into the derivation of
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the liquid drop type of nuclear mass formula. The simplest nuclear radius
formula is60-67

R = bAI/ 3  b = 1.2 x 10-15 m = 1.2 fm (282)

In an external field the nuclear radius must be represented by a complex num-
ber in an internal space. The complex number generalization of equation (282)
is written as

R R exp(JOR) Sal /3 (283)

where b - b exp(J~b) = complex number constant and 9 - complex number atomic
mass number given by equation (42). Combining equations (217), (220) and (283)
gives for subactinide nuclei

S- bA1/ 3  cos1/36a exp[j(Ob + 6a/3)] (284)

R = bA1/3 cos 1/3a 8R = 0b + 0a/3 (285)

The measured nuclear radius is given by the real part of equation (284)

Rm = R cos 0R = bA1/ 3 cos 1 /3a cos(Ob + 0a/3) (286)

Equation (286) can be rewritten as

R - b'A1/ 3  (287)m

where for subactinide nuclei

b' = b cos 1/38a cos(eb + Oa/ 3 ) (288)

The effective radius constant b' decreases with increasing strength of the ap-
plied gravitational or electromagnetic field. For the relatively weak gravi-
tational field of the earth the internal phase angles are very small and there-
fore for this case

"b' I b ", 1.2 fm (289)

For strong gravitational or electromagnetic fields b' is given by equation
(288) with b - 1.2 fm and b' < b .

B. Binding Energy of Atomic Nuclei Located in an Electromagnetic
or Gravitational Field.

The standard expression for the binding energy B of a nucleus (Z,A) is
given by the liquid drop model as60-67

B - Ev - ES - Ec - Esym + Epair + Eshell (290)

- aA - yA - 6Z_ A2/A - 8(N - Z) 2/A + Epair + Eshell
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where Ev , Es , Ec , Esym , Epair and Eshell - volume, surface, Coulomb, sym-
metry, nuclear pairing and nuclear shel'. energies respectively, and where a ,
y , 6 and ý = volume, surface, Coulomb and symmetry energy coefficients respec-
tively, and where from equation (84) it follows that N - Z = A - 2Z . The
average binding energy per nucleon c - B/A is written as 6 0 - 6 7

S 
-Es c sym pair Eshell (291)

a y) - /A1/3 - 6z2/A4/3 - 8[(N - Z)/A]2 + Cpair + Cshell

where Ev , Cs s Cc P Csym P cpair and Eshell - average volume energy per nu-
cleon, average surface energy per nucleon, average Coulomb energy per nucleon,
average symmetry energy per nucleon, average pairing energy per nucleon and the
average shell energy per nucleon respectively. More complicated forms of the
nuclear symmetry energy have been considered by including the effects of the
nuclear bulk modulus. 8 However, in this paper only the simple WeizsMcker-
Bethe form given in equation (291) is considered.

For a nucleus in the presence of an electromagnetic or gravitational field
the complex number nuclear binding energy is written as

v - Es - Ec sym + pair + Eshell (292)

g -_i 2/3 _ -62/5/3 _ (n _ z)2/, + Epair + Eshell

where i , f and a are-given by equations (40) through (42) respectively, Ev, Es
Ec Esym, Epair and Eshell = complex number volume, surface, Coulomb, symmetry,
pairing and shell energies respectively, and where F , y , ' and 8 - complex num-
ber volume surface, Coulomb and symmetry energy coefficients respectively. The
mass formula coefficients are represented as

Ft= a exp(jO ) = y exp(je Y) (293)

6 - 6 exp(jO 6) 5= exp(ja) (294)

Epair = Epair exp(j8Epair) Eshell - Eshell exp(JO Eshell) (295)

The average complex number binding energy per nucleon Z is written as

Sv E s - Fc - Esym + pair + ishell (296)
--- /3 -2 /32+

a //3 - _ _ 4/jpair +shell

where iv , s s ,c , Fsym , Epair and ýshell , complex number average volume.
surface, Coulomb, symmetry, pairing and shell energies per nucleon respectively.

The complex number neutron excess that appears in the symmetry energy
terms in equations (292) and (296) is written as
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= exp(jO) =i- = W + • - 2i (297)

where H, i and i are given by equations (40) through (42) and are related by
equation (82). Then for subactinide nuclei

ý2 2 2= n + z - 2zn cos(n -n z ) (298)

N2 Cos 2 + Z2 cos 2 - 2ZN cos B cos n cos(en - 8 )n ZZ n n z

tan - (n sin Bn - z sin z )/(n cos 8n - z cos e ) (299)

"(N cosB n sin 6 - Z cos B sin 0z)/(N cos 28 - Z Cos28 )Z n z

For the approximation 0z '.. On , which is valid near the valley of beta stability,
it follows from equations (298) and (299) that for subactinide nuclei

"", n - z - N cos 0 - Z cos 8 "' (N - Z)cos B (300)n z z

n' Bz a n (301)

Combining equations (296) and (297) gives
- - 1 ?•/3 - 2/-4/3 _(/)2 + Epair + Fshell (302)

From equation (297) it follows that the following approximation is valid for

W - 0 in the subactinide elements

&/g - &/a exp[J(B6 - Ba)] (303)

"" I - 2i/i

,,u I - 2(Z cos z)/(A cos 6a) exp[j(z - 0a)

Combining equations (302) and (303) gives the following approximation

- - --/1 1/3 -- 2-/4/3 _ 8(, - 21/j)2 + - + F (304)
par shell(34

which is an approximate form of the exact equation (302).

Equation (292) can be written for the subactinides as

B A •A cos Ba exp[J(Sa + ea )] - yA2/3 cos 2/3a exp[j(0y + 2/3 a, 1 (305)

- 2Z2A-1/ 3 cos 2  cos-1/ 3ea exp[j(B6 + 28 - 1/ 3 0a)]

- 2A- ICos- 1 8a exp[j(B8 + 2e, - a )]

+ Epair exp(JSEpair) + Eshell exp(J Eihell)
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As an approximation the phase angles of the terms in equation (305) are taken

to be equal

eB a a + 6 a 0 + 2/3a (306)

S6 + 2e -1/38 a e8 + 28 -z a a

6 Epair 0 Eshell

Then the magnitude of the binding energy is obtained from equation (305) to be

B., aA cos 0a - yA2/3 cos 2/3a - 6Z2A-1/3 cos2Oz cos- 8/3a (307)
2-1 1 +

-82A-I Cos a pair Eshell

Equation (88) gives 6a = ea(ez,On,Z,A) so that in all further calculations it
should be understood that 6a is not really an independent variable. The approx-
imation 8z - an allows equation (307) to be written as

B , aA cos 6 - yA2/3 cos 2/3 - 6Z2A-1/3 cos 2 cos- /3a (308).a a z a

2- 2 -21- (N - Z)2A cos8 cos + E +z a pair Eshell

The further approximation Oe n- 6z \, en \ ea allows equation (306) and (307) to
be written for the subactinides as

0B a +8 a- + 2/30 a309)B a y a

086 + 5/3 "0 a a a

SEpair ' aEshell

B a cA cos 6 - yA2/ 3 Cos2/3e - 6Z2A-1/ 3 cos 5 / 36 (310)a a a(30

- a(N - Z)2A-1 cos 6 + E +a pair Eshell

which are valid in the valley of beta stability.

Eaczh term in the expression for the binding energy and average binding
energy per nucleon will now be considered separately with the exception of the
nuclear pairing and shell effects which are more complicated and are not con-
sidered in this paper.

a. Volume Energy Term for Subactinide Nuclei.

The volume energy terms are written as
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S - a- =aa exp[J(O + e )] (311)v a(3)

- aA cos ea exp[j(Oa + 8a)]

Ev - E- exp(J6a) (311A)

The volume energy per nucleon U describes the energy per nucleon of infinite
nuclear matter but evaluated at the central density of a nucleus. 6 0 -6 8  The
following complex number generalization of a simple density dependent expression
for & can be used 68

S"bk --b3 + Skic+ a (312)2 c 3 c 5 c ex

where

b2 - b2 exp(J6b 2 ) b3 " b3 exp(jeb 3 ) (313)

b5 M b5 exp(Jebs) aex - aex exp(JO aex) (314)

where aex = complex number exchange energy term, and where ic = complex number
fermi wave number which is related to the complex number central density of a
nucleus. The complex particle number density at the center of a nucleus is
gl ien by the following generalization of the standard scalar result5 6

6 = 2/(3n 2)k3 (315)c c

where

Sc c nc exp(JOnd c - k exp(JOkc) (316)

nc - 2/(3w2 )k 3  0 - 36 (317)c nc icc

where kc 6 1.35 fm-I . The values of a and e. can be obtained by taking the real
and imaginary parts of equation (312) as follows

" " cos a W b k 2CcOWk 2 cc bk 3c cos(eb3 + 3 8cc) (318)

+ 5c bb5 +5kc)+ cos e++ C

" sin ea 2 b kc2 sin(eb2 + 20kcc - b 3k 3 sin(b 3 + 3 8kc) (319)

+ b k5 sin(b + 50 + a sin 6
5 c b5 icc ex ciex

In general eb2 " 0
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b. Surface Energy Term for Subactinide Nuclei.

The surface energy terms are written as

Es = 2/3 ya2 3 exp[J (t + 2/38a)] (320)

= yA2/3 cos 2 / 38a exp[j(8 + 2/38 a)]

Z -/g /3 . ya-1/3 exp(j(S - 1/ 3 8a)) (321)

= YA- 1 / 3 cos- 1/3oa exp(j(O - 1/3e a)]

The complex number surface energy coefficient can be written as the following
generalization of the scalar result 6 8

-2 -3 -5 (22S 2 2 - 3k + 3 5"C + 7ex (322)

where

C2 = c2 exp(j6c 2 ) Z3 - c3 exp(j8c3 ) (323)

c5 = c5 exp(j8c5 ) -ex - Yex exp(j yex) (324)

where kc is related to the complex particle number density at the center of a
nucleus by equation (315), and where -ex - exchange energy term for the nuclear
surface. Formally one can calculate y and By by taking the real and imaginary
parts of equation (322) as follows

Y cos M c 2 k2 cos(8 2 + 2 ekc 3 cos(e3 + 3kc) (325)

2c c 3k co( +c38 )(25

+ c k5 cos(ec5 + +6 +eY cos 8
5 c c5 c ex yex

y sin 2y M c k2 c2 +2kc+ - c3k c sin(ec3 + 30 kc) (326)

+ C k5 sin(c + 5e + y sin 6
5 c c5 Sk)+Y ex inG

from which y and e are easily obtained.

c. Coulomb Energy Term for Subactinide Nuclei.

The complex number Coulomb energy terms are written as

-,2/71/3 a 2- 113(37
c W L 6zI a exp[j(8 6 + 28z - 1/38a)] (327)

- 6Z2 A71/3 cos 28z cos-/3 8a exp[j (86 + 2ez - 1/38a)]
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S3Z2/a4/3 . 6z2a-4/3 exp[j(06 + 2e - 4/3ea)) (328)

= 6Z2 A-4/ 3 cos 2az cs-4/3O a exp[j(06 + 2ez - 4/36a)]

The complex number Coulomb energy coefficient can be written as a generalization
of the scalar result 6 8

S= 3/5(e 2 /E) - 0.863/b MeV (329)

- (0.863/1.523)ic MeV

where b f complex number radius parameter defined in equation (283). Equation
(329) is equivalent to

6 - 0.863/b - (0.863/1.523)kc MeV (330)

06 6 -= b - 8kc (331)

For simplicity it will be assumed that the wave number kc of the central density
of an atomic nucleus is approximately equal to the wave number of infinite nu-
clear matter kF , so that

kc % kF i 1.35 fm&I (332)

but in fact k. is slightly larger or smaller than kF due to Coulomb and surface
forces.

6 8

d. Symmetry Energy Term for Subactinide Nuclei.

The complex number symmetry energy terms are written as

Esym - 22/i . Bg2a-I exp[J(8 + 2e - a)] (333)

" E2 A-1 cos-10a exp[j(B + 28e - aa)]

sym 8( ) o 8 exp[j(8B + 28 2e a)] (334)

M O2A72 cos-2 8a exp[J(8 + 2e - 2e8)]

a a8 & a

where , • and 8e are given by equations (297) through (299) respectively.
Equations (333) and (334) can be simplified by assuming the approximation
ez , en , then equations (298) and (299) give

n(N - Z)cos 8z e E ez (335)

and equations (333) and (334) become
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2 -I -I1 2 + -(36Esym 6(N - Z)2A Cos-ea Cos26z exp~j(88 z+ 2ez - ea)] (336)

Fsym %8(N - Z)2A-2 cos- 2a cos2 z exp[Jj(e6 + 2z - 2 8a)] (337)

As a further approximation let 6z "' On % ea , which follows from equation (88)
for small values of 6z O 6n , then equations (336) and (337) become

2 -1Esym %f(N - Z)2A cos ea exp[j(0a + 8a)) (338)

Fsym 8(N - Z)2A-2 exp(je8) (339)

Equations (338) and (339) are valid in the vicinity of the valley of beta sta-
bility where 6z % en % ea .

The complex number symmetry energy coefficient can be written as a gen-
eralization oi a corresponding scalar form as follows 6 8

8 K= _- ek + ebk5 + e (340)2 c 3 c 5 c ex

where

e2 = e 2 exp(jge 2 ) e3 = e 3 exp(jGe 3 ) (341)

e5 = e5 exp(j eb) $ex m 8ex exp(j6 ex) (342)

where Sex = complex number exchange energy contribution to the quadratic sym-
metry energy coefficient. The values of 8 and 88 can be determined from the
real and imaginary components of equation (340) which are given by

a Cos e fi ek2 coS(e2 + 20 e k coS(e + 3k (343)
$cs =e c e2 kc 3 c e3 3 kc~ 33

+ ek 5 cos(e 5 + 5k) + 5ex cos 8

8 sin 8 . e2k sin(2 +28) - ek sin(e + 3 ) (344)

+ e k' sin(e + 58) + sin 6
5 c e5 kc ex aex

In general 8 e2 = 0 because this term arises from the kinetic energy of a non-
interacting Fermi gas, however 8e3 # 0 and 8e5 0 0 because the cubic and fifth
order terms arise from nuclear potentials that are complex numbers. In more
complicated forms of the nuclear mass formula the symmetry energy is separated
into volume and surface components. 6 8

C. Measured Binding Energies of Subactinide Nuclei Located
in an External Field.

The real and imaginary parts of equation (292) are given by
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B cos B0 aA cos 0a cos(ea + 0a) - yA2 / 3 Cos2/3ea cos(e + 2/36a) (345)

- Z2A-1/3 cosO2 cos- /3e cos(e0 + 26 - 1/36 )

a - 2 A- 1 cos-1Oa cos(08 + 2 6z - 8a)

+ Epair Co 0 Epair + Eshell cos eEshell

B sin 0B 0 0 cos 0a sin(0a + 6a) - yA2/3 Cos2/3ea sin(e + 2/3ea) (346)

- 6z 2 A-1/ 3 c°S20 1cs-1/3 0a sin(e0 + 2ez - 1/30a)

- S&2A-1 cos- 0a sin(08 + 2E& - 0a)

+ Epair sin 0Epair + Eshell sin eEshell

Equations (345) and (346) immediately determine B and 6B . The measured binding
energy is just the real part of the complex number binding energy, so that

Bm =aA - y A2/3 _6Z 2 A-I/ 3  & 2 A-1 + Em (E3
m M= M m m pair shell (347)

where for subactinide nuclei

a = a cos 0 cos(0 + e) (348)
in a a a

Ym = YcCs2/30a cos(y + 2 / 3 ea) (349)

6 = 6 cos 20 cos-1/3ea cos(e6 + 20 - 1/30a) (350)

a, - 8 Cos 10e cCOW + 20 - 8 (351)
z a z a

where F- F.(Z,N,Oz,en) and is defined by equation (298), and ý = 6(ZN,Ozlen)
is defined by equation (299). The internal phase angle Oa is given by equation
(88) to be ea = -a(ZN,Oz'6n).

If the approximation 0 x, ez , en is assumed, then the approximations in
equations (335) and (336) allow equation (347) to be written as

BmM a A - yA 2/3 _ 62 A-1/3 (N - Z)2A + Em E m(352)" m - m - pair shell

where now

aCs 2BcoSez cos-1 a cos(e0 + 26z - 6a) (353)
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If the further approximation e• e 8z e 0a is made, then equation (352) is the
measured binding energy with

am - a cos Ba cos(0a + 0a) (354)

Ym a Y cos 2 /3 a cos(ey + 2/36a) (355)

6m= 6 cos 5 /30a cosW( 6 + 5/ 3 ea) (356)

8m = a Cos Ba cos(W0 + 0a) (357)

which are useful for nuclei near the valley of beta stability. The measured
values of the symmetry energy coefficients are6 0 '6 1

am - 15.5 Ym - 17.2 6 - 0.698 8m - 23.3 MeV (358)

Equations (354) through (357) show that

a < a Ym < Y 6 < 6 8 < a (359)
mm m m

The values of the nuclear mass formula parameters Oz , en , ea , , 6a , Y
Oy , 6 , 06 , 8 and 8B can be obtained by fitting the real part of the complex
number binding energy given by equation (347) to the measured values of the
atomic masses of the elements. A simplified procedure uses the approximation
"ez % en and equation (352) for the fit to atomic masses. Expressions for the
atomic masses of the elements will now be considered.

D. Masses of Atoms Located in an Electromagnetic or Gravitational Field.

The conventional relationship between atomic mass and nuclear binding
energy is written as61

M - ZmH + Nm - B (360)

where M - atomic mass of an element, mH - mass of hydrogen atom and mn - neutron
mass. In the presence of an external field the atomic mass is a complex number
in an internal space and is given by

R - 'mH + fimn - B (361)

where the complex number atomic mass is written as

R - M exp(jBeM) (362)

Using equations (76), (77), (79) and (80) allows the real and imaginary parts
of equation (361) to be written as
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M cos eM = G (363)

M sin OM = F (364)

where for subactinide nuclei

F - mHZ cos 6z sin Oz +mNcos e sin O - B sin OB (365)

G - mHZ cos28z + mnN cos2en - B cos 0B (366)

Equations (363) through (366) can be used to obtain M and OM as

tan OH M F/G (367)

M2 - F2 + G2  (368)

= B2 + 21Z 2cos2H + m2N2 cos26mHz n n

+ 2%.mnZN cos Oz cos en cos(8z - en)

- 2mlBZ cos 8z cos(0z - OB)

-. 2m nBN cos 0 cos(en - 6 B)

The measured atomic mass is given by equation (363) which can be rewritten as

M = mHZ cos20 + mN cos26 - B (369)mz n n m

The approximation ez n 6n " 6 combined with equations (361) through (369) gives

8z n B8M • z *, 6 n ý. eB (370)

M ". (mHZ + mtn N)cos 6z - B (371)

M (mZ + mnN)cos26 - B (372)
m H- Z~n cose

where 6a is given by equations (88) and (89A) within this approximation. Note
that M , Mm and 6 vary with the strength of the applied electromagnetic field
because Oz M z(H in equations (370) through (372), but the following intrin-
sic mass is a constant independent of the applied electromagnetic (or gravita-
tional) field

mHZ + mnN = constant (373)

and represents the universal law of the conservation of rest mass and baryon
number. For the case Oz n en "' ea % OB the mass relations in equations (370)
through (372) become for subactinide nuclei
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aM e a (374)

M • (mHZ + mnN)cos ea - B(Z,N,ea) (375)

M m (mHZ + m nN)cos 2 ea - Bm(Z,N,Oa) (376)

which are valid near the valley of beta stability of subactinide nuclei.

The variation of the measured atomic mass and the magnitude of the atomic
mass with the strength of the external electromagnetic field can be obtained
from equations (368) and (369) by the following formulas

dMm /dH - aMm /3z d zldH + 3Mm /30n d ndH + 3M m/3a dO adH (377)

dM/dH = aM/laz dO z/dH + aM/ae dOn dH + WM/3a dO /dH (378)d zn/dn aM3 da/d38

The internal phase angle ea = 6a(Oz,On,ZN) is given by equation (88) so that
the derivative dOa/dH can be evaluated as

dO a/dH - 30 a /30z d z/dH +a 30a /3n dO n/dH (379)

Therefore equations (377) and (378) can be written as

dM mdH ( 3Mml30 z + amml/ a a /a6 z )dezdH (380)

+ (3M /30n + 3M /30a 30a/38n)dOn1dM
+(m m/en + m /a a ae a n )6n M

dM/dH - (3M/aGz + aM/ea a3a /30 z)dO zdH (381)

+ (aM/aon + aM/ae 3a /a0 n)dO n/dH

where for example equation (369) gives for subactinide nuclei

3Mm/30z - 2mHZ cos Oz sin - -9Bm/38z (382)

aMm/3n -- 2mnN cos 0n sin On - 3Bm/a0n (383)

3M m/3a - aB mla.a (384)

where Bm is given by equation (347).

For the approximate case 0z m, On ' ea , which follows from equation (88)
for small arguments, it follows that

dM mdMH - dM m/d8a dO adMH (385)

dM/dH - dM/dOa dO a /dH (386)

503



where equations (375) and (376) give for ez en n ea and for subactinide nuclei

dM m/d6a = - 2 (mHZ + mnN)cos ea sin 8a - dm/d'a (id87)

dM/da = - (mHZ + mnN)sin 8 - dB/de (388)a i- 1 a a

where the approximate value of Bm given by equations (352) and (354) through
(357) are used in conjunction with equation (387), while the approximate value
of B given by equation (310) is used in conjunction with equation (388). There-
fore from equation (352) and within the approximation Oz '%, 8n "% ea , the deriv-
ative in equation (387) is given by

dBm/de = dam/dea A - dym/dO A2 /3 - d6m/d6 Z2A-1/3 (389)in a i aai a (389a

- d /d68 (N - Z)2A-I + dEa /dO + dEh /de
mn a pair a shell a

where from equations (354) through (357) for 8z "X 
8 n ^U ea in subactinide nuclei

dam/dea = -a[sin ea cos(6e + a) + cos ea sin(6e + 8a)] (390)

dYm/d0a =-2/3y[cos- /3 a sin aa cos(eY + 2/3ea) + Cos2/38a sin(0y + 2/38a)] (391)

d6m/de a - 5/36[(cos 2 /3ea sin ea cos (86 + 2/36a) + cos 5 /3ea sin(%6 + 5/38a)] (392)

dami/de a - 8[sin e cos(W8 + ea) + cos a sin(% + ea)] (393)

For the approximation ez = en = 8a , the derivative of the magnitude of the bind-
ing energy that appears in equation (388) is obtained from equation (310) to be

dB/da = sin e [ - aA + 2/3yA2/3 cos- /3e + 5/36Z2A-1/3 Cos 2/3 (394)a a a a

+ a(N - Z)2A- I + dE pair/dea + dE shell/da

From equations (387) through (394) it follows that for subactinide nuclei

dBm/dMa < 0 dB/d8a < 0 (395)

dMm/dea < 0 dM/dea < 0 (396)

For example, within the approximation Oz n' en '%, ea these equations give

dM/dea - sin 6a [%Z +4mnN - aA+ 2/3YA2/3 Cos-1/3aa (397)

+ 5/36Z2A-1/3 cos 2/38 + 8(N - Z)2A- I
a

- dEpair /da - dEshell a a
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which is a negative number because of the dominant contribution of the rest

mass terms.

E. Valley of Beta Stability for Nuclei with Broken Internal Symmetries.

Radioactive beta decays require that the complex atomic number i adjust
adjusts itself so as to minimize the binding energy of a nucleus given by equa-
tion (292) but subject to the constraints represented in equations (82) and
(84).66 Combining equations (82) and (292) gives after neglecting shell and
pairing energy effects

j -a 2a_ - g2/j1l3 - ý(g - 2i + W)2 /i (398)

The minimum binding energy condition is

ag/aal - - 23i/il/3 + 48(5 - 2i + W)/i - 0 (399)

which gives using equation (82) with W - 0

_vs _-2/3 -1
z i/2(1 + ca (400)

nV = g/2(1 + 2E9 2 / 3 )(1 + E2/3)01)

where vs valley of beta stability, and where

c - 6/(4B) c 6/(48) 0c -8 e8 (402)

For relatively small nuclei the beta stability condition is

-vs vs vs
z !/2 z a/2 8 a (403)

z a(43
nvs S/2 nvs ua/2 envs 0  (404)n a

Combining equations (40), (41) and (404) gives the beta stability condition for
light nuclei as

Zvs M A/2 Nvs . A/2 (405)

which is the standard beta stability condition for small nuclei. 6 5 Therefore
for light nuclei, the standard scalar theory given by equation (405) is valid
because s. 8- . For medium weight nuclei the following approximation to
equations (400) and (401) can be used

Zvs , g/2(l - -2/3 (406)

fve -. /2(l + ca 2) (407)

where E is given by equation (402), and where W - 0.

-vs
For heavy nuclei the exact equation (400) must be used to calculate Z
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Equation (400) can be written as

zvs = (G + jF)/D (408)
tn vs 2 21/2

tan vs -F/G z = (G2 + F2) D (409)Z

where

G - a/2 cos 0a [I + ca2/3 cos(8c + 2/3ea)] + c/2 a5/ 3 sin 8a sin(ec + 2/3ea)(410)

F - a/2 sin 8e I + ca2/3 cos(8 + 2/386)] - c/2 a5/ 3 cos 86 sin(e + 2/38 )(411)
a c a a c a

D - [I + ca2/ 3 cos(8c + 2/3ea)]2 + c2a4/3 sin2 (c + 2/38 a) (412)

Combining equations (67) and (410) through (412) gives for subactinide nuclei

G - A/2 cos 2a [I + cAo2/3 Cos2/3sa COW(c + 2/38a)] (413)

+ c/2A5/3 cos5/38a sin 8a sin(8c + 2/3e a)

F -i A/2 cos e a sin ea [I + cA2/3 Cos2/36a cos(ec + 2/36a)] (414)

_ c/2A5/3 Cos 8/3 a sin(c + 2/36a)

D = [I + cAo2/3 Cos2/3a cos(sc + 2/3 a)]2 (415)

+ c2A4/3 cos 4/3ea sin2(8C + 2/38 )

If A and 8 a are taken to be the known quantities, then equation (82) involves
five unknown quantities W , Z , N , 8z and en - The complex number equation (82)
and the scalar equation (84) supply three equations for determining the five un-
known quantities. The complex number valley of beta stability equation (399)
supplies two additional equations and so a complete solution is possible. From
equations (409) and (413) through (415) that describe the valley of beta stabil-
ity for the general case of nuclei of arbitrary size it follows that in general

evs ,evs (AOZvs , vs ( 46Vz in8zS(A'e) z = a (416)

Combining equations (67) and (409) gives for subactinide nuclei

Zvs M zvs/cos 8vs (G2 + F2)/(DG) (417)z

Nvs M A - Zvs = A (G2 + F2 )/(DG) (418)
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The value of evs is obtained exactly from equation (82) which is written in the
form

-vs w vS -vs (419)

but it is most easily obtained approximately by taking Wvs - 0 with the result

tan vs- (A cos 8 sin 8 Zvs cosV sin (A cos 2 - Cos 28 v)- (420)
n a a z z a z

where 8zv and Zvs are given by equations (409). The measured values of the atomicz
number, neutron number and atomic mass number in the valley of beta stability
are given for subactinide nuclei by

vs�ZvzS 2s VS N~vs 2sa2

Z cos28vs n cosO2vs a - A cose2 (421)m z m n m a

which are generally not integers.

Consider now the determination of the specific nucleus within the valley
of beta stability that has the greatest average binding energy per nucleon when
an external field is present. Combining equations (304) and (403) gives the
average binding energy per nucleon for nuclei within the valley of beta stabil-
ity approximately as

Evs = i _ -/y1/3 a - /4a2/3 + Zpair () + ell(5) (422)

Then the nucleus having the greatest average binding energy per nucleon after
neglecting nuclear shell and pairing effects is given by

d IVS/d = 1/37/i4/3 - 1/63/ /3 = 0 (423)

which gives approximately

igb 2Y/6 (424)

agb 2y/6 b gb -. 6 (425)

where gb - greatest binding. From equation (425) it follows that approximately

Agb cos 8gb - 2y/6 (426)a

or equivalently

Agb - 2y/6 sec(8O - e6) (427)

The conventional prediction of the most stable nucleus is59-66

Agb = 2Y/6 (428)

and therefore for subactinide nuclei
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Agb = A b sec(6 - 6 > A b (429 - 444)

The peak in the average binding energy per nucleon curve for nuclei in an ex-
ternal electromagnetic or gravitational field is shifted to a higher value of
atomic mass number than is predicted by conventional calculations, but this
effect is small if 6y - 66 . The calculadion of the nucleus of greatest aver-
age binding energy per nucleon within the valley of beta stability has been
done using the approximation given in equations (403) and (404) for which case
the nuclear symmetry energy term vanishes. An exact calculation requires the
use of equations (400) and (401) fot which the symmetry energy term in equa-
tion (304) does not vanish as it does in equation (422). The inclusion of the
symmetry energy term in the calculaLion of the subactinide nucleus of greatest
binding within the valley of beta stability is algebraically difficult and will
not be done in this paper.

This section suggests that a nuclear mass formula which is suitable for
subactinide nuclei in an external electromagnetic or gzavitational fie'd must
include complex number values of the atomic number and atomic mass number and
complex values of the volume, surface, Coulomb, symmetry, pairing and shell
energy coefficients. Nuclear properties such as neutron binding energies
and neutron capture and fission cross sections will also be complex numbers in
an internal space, and will depend on the strength of the external field because
the magnitudes and phase angles 'f all terms of a nuclear mass formula are af-
fected by the external field. The measured nuclear properties will correspond
to the calculated real values of the complex number nuclear properties. The
particular forms chosen for the complex number representations of the atomic
number, neutron number and atomic mass number refer generally speaking only
to subactinide nuclei. More precisely, the forms chosen in equation (67) refer
only to nuclei for which X 4 1 where X - fissility parameter, and this condi-
tion is generally valid for subactinide nuclei. A forthcoming paper will treat
the case X ; 1 which begins to occur in the actinides.

5. LOW ENERGY FISSION OF LIGHTER THAN ACTINIDE NUCLEI IN AN ELECTROMAG-
NETIC FIELD. This section derives the conditions required for the spontaneous
or thermal neutron induced fission of lighter than actinide nuclei (subactinide
nuclei) that are located in an electromagnetic field, determines the magnitude
of the internal phase angle of the atomic number that is required to bring a
subactinide nucleus into a state of incipient fission, and gives a simple rela-
tionship between this critical internal phase angle and the strength of the
electromagnetic field required to catalyze the clean fission of subactinide
nuclei. Under zero field conditions spontaneous or thermal neutron induced
fission occurs only in some of the actinide and transactinide elements but does
not occur in the subactinide elements. 6 9-80 Some of these heavy elements such
as 235U and 239Pu are used in conventional nuclear reactors. The possibility
of thermal neutron induced fission in elements lighter than the actinides in the
presence of an electromagnetic field will have practical applications to the
design of clean fission nuclear reactors because the fission products will be
relatively light elements which are either stable against beta decay or are only
low level beta emitters. An atomic nucleus is a quantum many-body system which
has both collective effects such as volume and surface energies, and independent
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particle motion effects such as shell structure. Both collective motion and
independent particle motion are important to the description of the fission
process. 69-0 For instance, the shell structure determines the nature of the
doubly humped fission barrier. 69-8 In this paper only the simple collective
terms such as volume, surface, Coulomb and symmetry energies are considered for
the description of the catalysis of thermal neutron induced fission in the sub-
actinide nuclei by an applied electromagnetic field which in this case must be
a y ray field.

A. Bohr-Wheeler Fission Condition for Nuclei in an Electromagnetic Field.

The standard Bohr-Wheeler analysis for spontaneous or thermal neutron in-
duced nuclear fission utilizes the fissility parameter which is defined by 6 9 -8 0

X = (Z2 /A) (K/6)-1 (445)

and the spontaneous and thermal neutr~n induced fission condition is written
for actinide nuclei as 69-80

X > I Z2 /A >, KY6 (446)

where y and 6 = surface and Coulomb energy coefficients that appear in the liq-
uid drop nuclear mass formula treated in Section 4, and where theoretiually for
spontaneous fission

K = g/h = 2 (447)

where g = 2/5 and h = 1/5 are the second order series expansion coefficients of
the surface and Coulomb energies respectively when these terms are expanded in
terms of an ellipsoidal deformation parameter. 6 9-8 0 The values of K , y and 6
along with the other mass formula parameters are determined empirically. 69-80

The values of K are different for spontaneous and for thermal neutron induced
fission, and in fact K is dependent on the energy of the incident neutrons. 6 9 -8 0

For thermal neutron induced fission6 9 -8 0

K . 1.471 (448)

Choosing y - 17.2 MeV and 6 = 0.698 MeV yields the following fission conditions
for a zero value of the externally applied field6 9-81.

Z /A > 49.28 spontaneous fission (449)

Z /A > 36.25 thermal neutron induced fission (450)

These inequalities show that, loosely speaking, only the actinides and trans-
actinides can undergo spontaneous or thermal neutron induced ftssion, but not
all of these heavy elements undergo fission. Within this group of heavy ele-
ments the more neutron rich isotopes tend to be more stable against fission,
for example 2 38U is stable against thermal neutron induced fission but 235 is
fissile. The empirical value of K that describes thermal neutron induced fis-
sion will depend on the values selected for the mass formula parameters y and 6
In general K can be taken to be a decreasing function of the kinetic energy of
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the incident neutrons. The fission criteria presented above ignore all shell
structure effects and are therefore approximate relations which show only gen-
eral behavior and for which counterexamples can always be found in the border
region between fissile and non-fissile nuclei.

The generalization of equation (446) to the case of atomic nuclei located
in an electromagnetic or gravitational field, which breaks the symmetry of the
atomic number, neutron number and atomic mass number, can be written as

Z215 > KI/ (451)

where z , a , 7 and 9 are given by equations (40), (42), (293) and (294) respect-
ively. The fission instability boundary is given by

S-2
Z21i - K713 (452)

or equivalently the two scalar fission stability boundary conditions are

z2/a - Kyi* (453)

6 = 2 .- 6o + 86 (454)a z y

Therefore in an external field the internal phase angles of the atomic number,
atomic mass number, surface energy coefficient and the Coulomb energy coeffi-
cient enter into the fission instability condition. Equations (453) and (454)
will now be solved to determine the critical value of 8z and the critical value
of the electromagnetic field strength that are required to catalyze the fission
of subactinide nuclei.

B. Critical Value of the Internal Phase Angle of the Atomic Number that
is Required for the Low Energy Fission of Subactinide Nuclei in an
External Field.

Combining equation (67) with equations (453) and (454) gives the fission
instability boundary for nuclei located in an external field as

Z21A - Ky1 cos a cos-2 e (455)a z

M Cy/ 6 cos(28 + 6 - 6Y)cos-2e

Equation (455) must be solved for 6z This can be done by noting that simple
trigonometry gives

CO (2e + 96 - 0 Y)COS- 2 e - (1 - 2 )cos(6 - e6) + 2p sin(8y - e6) (456)cos)cs(286

where

p - tan 8 (457)z

Equation (455) can then be written as a quadratic equation
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a2 + bp + c - 0 (458)

where

a = cos(6 - e6) (459)

b - 2 sin(6 - 6) 2 sin(6Y - e ) (460)

C - 61(Ky)Z 2 /A - cos(O -- 6)- y - cos(8 - 6 ) (461)

Then the critical angle for fission 6F is given byz

tan 0 F M tan(6 - 6) ± sec(e - 8)[I - 6/(Ky)Z 2 /A cos(e - 6)1/2 (462)

- tan(6 - 66) ± sec(CO - 66)[1 - X cos(87 - 66)]1/2

F
and from equation (454) the corresponding critical angle for fission 0F is given by

6F = 2e + +6 - 6 (463)
a z 6 Y

F F

The angles 6F and 6a are the critical values of the phase angles 6., nd 6 re-
spectivp.y tieat are required to bring a nucleus (Z,A) into a state •t incipient
fission.

Equation (462) is the equation for the instability boundary for the fission of
a nucleus in the presence of an external field, and is valid for

0 < Z2/A < KY/6 sec(6Y - 66) (464A)

or in terms of the fissility parameter

0 < x < sec(6y - 66) (464B)

The values of OF corresponding to x - 0 for the positive and negative modes
are given by

tan eF = tan(6 - '6- -6) (465)

Using simple trigonometric identities gives

6F±- +- 7/4 + 1/ 2 (68 - 66) (466)
zo

F F

The common value of 6F and ea for both positive and negative modes corresponding
to x sec(67 - 66) is given by

Fc 6Fc -6 (467)
z a 6

F F

The ranges of variation of e and ez for the positive and negative angle modes

subject to X 4 sec(6Y - 66) are given by
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eFc < eF < eF+ 8F- 4 8 F < eFc (468)z z zo zo z z

Fc eF < 82 F <
a a a a (469)

The condition for spontaneous or thermal neutron induced fission in an external
field is obtained from equation (462) to be for subactinide nuclei

F X < sec(ey - %6) (470)

where X fissility parameter, and where

F (1 - X 2)sec(e - 8 ) (471)

X [tan ez - tan(O7 - 86)]cos(e8 - 86) (472)

If the external field is shut off all the internal phase angles have zero values
and X - 0 and F - 1 so that equation (470) reduces to the result X - I for sub-
actinide nuclei.

As a first approximation the condition 6Y = 66 can be taken in equation
(463) and the phase angle condition for spontaneous or thermal neutron induced
fission in an external field is

F . 26 F = 28 F (473)
a z n

Combining equations (455) and (473) gives the approximate fission instability
boundary for nuclei in an external field as

Z2/A = (KY/6)(1 - tan2e ) (474)

or equivalently as

Z /A = (iy/6)[l - tan 2(e/2)] (475)
a

The condition for fission is therefore

(Z 2/A) (Ky/6) 1 I - tan2 8 (476A)

or equivalently

1 - tan2 6 X < 0 F (476B)
z z z

which follows directly from equations (470) through (472) when By - e6 . In the
presence of an electromagnetic field the fission condition is given by equation
(476B), while for a zero external field equation (446) gives the fission condi-
tion. From equations (474) through (476) it is clear that in the presence of an
external field nuclei lighter than the actinides can fission spontaneously or by
thermal neutron absorption unless this is prevented by nuclear shell effects as
will be the case for some subactinide nuclei. In general the application of an

512



electromagnetic or gravitational field tends to lead to more fission instability.
The conclusion of this paragraph that subactinide nuclei in the presence of an
external field can be fissioned by thermal neutrons depends on the validity of
the following conditions

6 -6 8 << 6 (477)y 6 z

X • tan e (478)
z

F 1- tan 20 (479)z

where the functions F and X are given by equations (471) and (472) respectively.
Equations (477) through (479) are generally true if 6Y - 66 , and therefore
F < I in equation (470).

From equation (474) it follows that the internal phase angle of the atomic
number that is required for the fission instability of subactinide nuclei is
given approximately for the positive angle mode by

tan F = [I - 6/(Ky)Z /A]1/2 (480)
z

= ( - /2

Equation (480) can also be obtained directly from the exact equation (462) by
making the approximation 6y = 66. Equation (480) can also be written as

cos 6 = [2 - 6/(Ky)Z 2/A]-1/2 (481)
z

= (2 - 1/

sin 6F = {[i - 6/(,y)Z2 /A]/[2 - 6/(Ky)Z2/A]} 1 1/ 2  (482)
z

- [(1 - X)/(
2  - X)]

Equivalently equations (480) and (473) give approximately

oF = tan- [1 - 6/(Kf)Z2/A]1/2
z

-tan -(l -x)1/2

-F . 2 tan- 1 [1 - 6/(Ky)Z2 /A] 1/2 (484)
a

- 2 tan-1(1 - X)I/2

Equations (480) through (482) are valid for By - 06 and the following range of
the fissility parameter

0 < 2/A < Ky/6 (485)
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or

0 < X - 1 (486)
F F

for which the range of values of z and 0a are

0 < 0F 4 </4 (487)z

0 < eF < Tr/2 (488)a

which correspond to the exact relations given in equations (468) and (469) re-
spectively. For small values of X the following approximations are valid

tan eF I - x/ 2  (489)z

sin eF 2-1/2(1 - X/ 4 ) (490)z

Cos 8F 2-1/2(1 + X/4) (491)
z

F
The internal phase angle of the atomic number at incipient fission 6 as given
by the approximation in equation (483) is presented in Figure 1.

C. Determination of the Electromagnetic Field Strength Required to
Catalyze Fission in Subactinide Nuclei by Thermal Neutrons.

The value of the magnetic field required to bring a lighter than actinide
nucleus to the point of fission instability is obtained from equations (209) and
(210) as

HF = 6 eF/C H = Kez H Fz (492)Fz

where 6F is given for the general case by equation (462). Therefore in generalz

H F HF(KH e - X) (493)Oz 'y ~
F

where the fissility parameter X is given by equation (445). If ez is given by
the approximate equation (483) the critical value of the magnetic field required
to catalyze fission in a subactinide nucleus using thermal neutrons is given by

HF K= Rz tan-'(1 - x) 1 / 2  (494)ez

H K H tan-1 [1 - 6 2( 1)Z2/A]1/2

so that within this approximation
HF FRH

H I H (K8 H X) (495)
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Equation (494) is valid for X ( i

The condition X < .1 generally occurs in subactinide nuclei or in the
actinides with large neutron excess, while the condition X > I generally oc-
curs in the actinide and transactinide nuclei. Equation (494) gives the mag-
netic field strength required to catalyze spontaneous or thermal neutron in-
duced fission in nuclei for which X < I except in those nuclei where nuclear
shell effects add increased stability and do not allow fission to occur. For
the case when X > I nuclei will generally fission spontaneously or by thermal
neutron induced fission without the presence of an electromagnetic field ex-
cept for those nuclei where shell effects give increased stability against
fission as for example in the case of 2 3 8U. If the value of H is very large

the magnetic field strength required to catalyze clean fission in the subac-
tinide nuclei will be too large for laboratory demonstration and practical
nuclear reactor design. In Section 7 it will be shown that the static mag-
netic field required to catalyze clean fission in the subactinide elements
is in the teratesla range and is too large for practical purposes. However, in
Section 7 it is also shown that the application of a y ray electromagnetic field
with a relatively low magnetic field vector strength can catalyze clean fission
in the subactinide elements using thermal neutrons but only when nuclear shell
stability does not prohibit the occurrence of the phenomenon.

6. FINAL STATE ENERGY CONDITIONS FOR THE FISSION OF NUCLEI IN AN EXTERNAL
FIELD. This section considers a comparison between the initial and final energy
states of an atomic nucleus that has fissioned in the presence of an external
electromagnetic or gravitational field. A fission reaction in which a nucleus
(Z,A) has split into two nuclei (Z1 , A,) and (Z 2 , A2 ) is written in the form69-80

(Z,A) - (Z 1 , A1) + (Z2 , A2 ) (496)

Then the nucleus (Z 2 , A2 ) is assumed to eject a neutron

(Z 2 , A2 ) - (Z 2 , A2 - 1) + (0,1) (497)

where in this notation (0,I) is a single neutron. In this way the general pro-
cess of nuclear fission can be represented by a nuclear transformation of the
general form given in equation (496). In an external field the nuclei repre-
sented in equation (496) are also associated with complex atomic numbers, neutron
numbers and atomic mass numbers that in analogy to equations (40) through (42)
are represented for subactinide nuclei by

z - z exp(j z) - Z cos 8 z exp(j z) (498)

- n exp(Jin) - N cos n exp(je n) (499)n 11

- a exp(j a) = A cos ea exp(jOa) (500)
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z1 Iz1 exp(JO ) z Z1 cos e exp(j Qz) (501)

n= nI exp(jO 0 = NI cos 1n1 exp(jen1 ) (502)

a 1 = aI exp(jOa) = A1 cos eal exp(jOa ) (503)

z2 = z2 z2 2 Cos 8z2 exp(j8z2) (504)

"n2 - n 2 exp(J0n2) = N2 cos 8n2 exp(JOn 2 ) (505)

a 2 ' a 2 exp(jea 2 ) = A2 cos 8a 2 exp(j0a2 ) (506)

The determination of the energy released during the fission reaction given in
equation (496) requires that all of the nine internal phase angles that appear
in equations (498) through (506) be determined, and the procedure for doing this
will now be given.

A. Determination of the Internal Phase Angles of the Atomic Number,
Neutron Number and Atomic Mass Number for the Initial and Final
States of a Fission Reaction for Subactinide Nuclei.

The nuclei involved in the fission reaction given by equation (496) are
subject to the following scalar baryon number conservation equations

A 1 Z + N A1 = Z1 + NI A2 - Z2 + N2 (507)

A = AI + A2 Z - Z1 + Z2 N - N1 + N2 (508)

In an external field the nuclei represented by equation (496) are subject to
the following complex atomic number, neutron number and atomic mass number
conservation equations similar to equation (82)

S+ W - i + - I + W ii + n a2 + a W2  = z2 + n2 (509)

S+ Wa = T1 + i2 1 + Wz i + i2 R + Wn 1 RI + 52 (510)

Equations (509) and (510) show that all of the W's are not independent, and

in fact they are subjec". to the following equation

w - w1 - w2 - w - ws - w (511)

Equations (509) and (510) can be combined with equations (498) through (506) to
yield the following twelve equations for subactinide nuclei

A cos28 + W - Z cos2e + N cos2n (512)a z n

A cos O sin 8 = Z cos O sin e + N cos 8 sin e (513)
a a z z n n(
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A1 cos2eal + W1 = Z1 cos26zl + N1 cos2 (514)

A1 cos eal sin 6al = Z1 cos eZ1 sin 6zI + NI cos Onl sin 6nl (515)

A e2 Cos2a 2 + W2 = Z2 Cos2ez2 + N2 cos2en2 (516)

A2 cos 6a2 sin 2a2 Cos 8z2 sin 2 z2 + N2 Cos 6n2 sin 6n2 (517)

A cos 2 ea + W a - A I coS2e al + A 2 Cos 2 6a2 (518)

A cos 6a sin 6a = AI cos 6al sin eal + A2 cos 6a2 sin ea2 (519)ZCs2 E Coessine2 +z Z'sCo2 2 2 (520)

z z I zl 2 cSz2

Z cos a sin a = Z1 cos l sin el + Z2 cos 2 sin e2 (521)2 2 I Z 2z22

N cos2en + Wn = Nc1 Coezn + N2 cos2en 2  (522)

N cos On sin en = NI cos eni sin enI + N2 cos en2 sin en2 (523)

where Z N A ; Z1 NJ , and Z are known quantities.

22 , 2,A

There are fifteen unknown quantities in the problem of the fission of an
atomic nucleus in the presence of an electromagnetic field:

W ,ez ,e n V 6a (524)

WI , e1 , e1  ' e (525)

W2 e z2 , n2 P 8a2  (526)

W ,W Wn , a (527)

There are fifteen equations to determine these quantities and they are: the
twelve equations (512) through (523), the two fission instability equations
(453) and (454) which determine Oz and Oa in the forms of equations (462) and
(463), and finally equation (511) which relates the various W-functions. The
values of the W's are similar in form to the functions required for the addi-
tion law of complex magnetic quantum numbers as given in equation (37), and
are written as follows for subactinide nuclei

W - - A/2[1 + (I 4f2)1/2] + Z Cos2e + N cos 2e (528)w z n
=2 1/222

W - A1 /2[1 + (I - 4f 2) os2 + Z Cos2ez + N cos 2nl (529)
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W - - A2 /2[l + (I- 4f2 )1/2] + z cos 2 0 + N 2 Cos2 n (530)
2 2W2 2 z2 N2 co n2(50

W - - Z/2[l + (I - 4f 2 ) 1/2] + Z1 cos 2 ez + Z cos 2 z2  (531)

W - - N/2[1 + (I- 4f2 )1/2] + N Cos 2 e + N cos22  (532)
nWn I ni 2 0n2

W - - A/2[1 + (I - 4f2 )1/2] + A Cos26 + A Cos2e (533)
a Wa + 1  al0 +2 a2

where

fw = A-I (Z sin 0z cosO z + N sin On cos ) (534)

f A1 AI(Zl sin z Cos 6zl + NI sin 81n cos enl) (535)

fW2 A2 1 (Z2 sin 02 cos e2 + N2 sin 6n2 Cos 8n2e (536)

fWz 1 (Z sin z Cos + Z sin e2 Cos z2 (537)

fWn N (NI sin 6n Cos 0ni + N 2 sin 0n2 Cos en2) (538)

f Wa =A-I(AI sin 8al cos 8al + A2 sin 6a2 cos Oa2) (539)

and where

Cos20a = 1/2(1 + (I - 4f )1/ 2] (540)

cos 2 0 = 1/2[1 + (1 - 4f 2 )1/ 2] (541)

Cosa2 - 1/2(1 + (1 - 4f 2 )1/ 2] (542)

c2o - 1/2(1 + (I - 4f2z 1/2 (543)

cos 2 e - 1/2[1 + (I - 4 f n2i/2 (544)

Cos 2 e - 1/211 + (1 - 4fa21/2] (545)

Therefore equations (528) through (533) can be written as

W - - A cos2a + Z cos28 + N cos 2 n (546)az n

- Z(cos2Oz - cos28a) + N(cos2n - cos2ea)
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Wi " A Cos28al + Z- I 2 2° z + N1 cos 2 8 (547)
SZI(Cos 2 Z1 - Cos 2al) + NI(Cos2 n1 - Cos2nal)

W 2 =- A2 Cos2 a2 + Z2 2 Cos 2co2n2 (548)

- Z2(cos 2z2 - cos2 0a2) + N2(cos 2n2 - cos 2 a2)

Wz Cos 2coS20z + ZI cos 2Oz + Z2 Cos2 z2 (549)
W 2-- 2  a 2 22(58

- ZI(Cos 2zI - Cos28z) + Z2 (Cos2z2 - cos 2tZ)

Wn - N cos 2 8n + N1 cos 29n1 + N2 cos28n2 (550)

, N1(Cos 2
1nt - Cos2 n) + N2(Cos28n2 - Cos2en)

Wa = - A cos20a + AI cos2Oal + A2 cos28a2 (551)2 2 2 2

= A1 (cos28al - cos28a) + A2 (cos 2a2 - cos 8a)

A comparison of equations (540) and (545) shows that

fw = f Wa (552)

and equations (546) and (551) give
W - Wa - Z cos2ez + N cos2en - A1 cos 2 (553)

Equation (473) shows that a a state of incipient fission has ea . 2ez
and therefore equation (546) gives W > 0 . In general for fission in an exter-

nal field where the internal phase angles are relatively large
W > 0 Wa > 0 W2 > 0 (554)

W < 0 W c 0 W < 0 (555)

When the external electromagnetic or gravitational, field is shut off all of
the W's have zero values. However, in reality external fields are always
present.
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B. Energy Released from Nuclear Fission in an External Field.

The Q value of a nuclear reaction is a measure of the energy released
in a nuclear fission process.61 In this paper a complex number generalization
of the standard definition of the Q value is given by

Q/c2 = M(A,Z) - M(A1 ,ZI) - M(A 2 ,Z 2 ) (556)

where as in equation (361)

M(A,Z) =m n + imH - B(A,Z)/c2 (557)

M(At,Z1 ) = H 1m + itmH - R(A 1 ,Z 1 )/c2 (558)

M(A2 ,Z 2 ) = f 2 mn + 12 mH - B(A2 ,Z 2 )/c 2  (559)

Then the Q value can be written as

Si I - H 2 )mn + (1 - 1 - z 2 )mH]c 2  (560).

+ B(AI,ZI) + B(A 2 ,Z2 ) - B(A,Z)

Using equation (510) allows eauation (560) to be written as

S= Q1 + Q2 (561)

where

Q1 = - (Wnmn + WzmH)c 2  (562)

Q2 = B(A1,ZI) + B(A 2 Z2 ) - B(A,Z) (563)

where Wz and Wn are given by equations (549) and (550) respectively.

Because Wn < 0 and Wz < 0 it follows that for subactinide nuclei

Q1 > 0 (564)

The value of Qi arises from the rest mass terms in equations (557) through
(562). The actual rest mass is unchanged in a nuclear fission process because

Nmn + ZmH - (N"mn + ZlmH) - (N2 mn + Z2 mH) - 0 (565)

which is always true because of the absolute validity of baryon number conser-
vation which for the present case is written as

Z = Z1 + Z2 N = NI + N2 (566)
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A finite value of Q1 results from the special form of the conservation law of
complex baryon numbers, which for the complex atomic number, neutron number
and atomic mass number are given in equations (509) and (510). The nonzero
value of QI does not represent a violation of the law of baryon number conser-
vation but instead is a manifestation of the broken symmetry of the atomic num-
ber and the neutron number in an external field. Note that the expression for
Q1 can be rewritten using equations (549), (550) and (562) as

QI/C2 m n [N1(Cos28n1 - Cos2in) + N2 (cos 2n2 - cos 2n)] (567)

- mH[Zl(cos 2ez - cos 2z) + Z2 (cos 2z2 - cos 2z)]

In general Q1 can be taken to be a small number and can be neglected compared
to the value of Q2 . For zero value of the applied external field QI = 0 because
all internal phase angles have zero values, and therefore Wn = 0 and Wz - 0.

The value of Q2 can be calculated by combining equations (292) and (563).
This is easily done for symmetric fission and under the approximation

z It az2 ' ez 6n I 'n2 " ne (568).

For symmetric fission equation (563) becomes

Q2 = 2B(A/2 , Z/2) - B(A,Z) (569)

Under these assumptions the value of Q2 is given by the following complex num-
ber generalization of the standard scalar result 6 1

Q2 (I - 21/ 3 )72/ 3 + (I - 2 -2/ 3 )3i 2 /al/ 3  (570)

= - 0.26a2/3 + 0.37 2/a1/3

The simple form in equation (570) results from the approximation given in equa-
tion (568). The value of Q is then written as

Q (Wnmn + WzmH)c - 0.26ya 2/3 + 0.37i2/ a/3 (571)

The measured value of Q is given by the real part of equation (571)

Qm - (Wmn + WzmH)c 2 
- 0.26yA2 / 3 cos 2 /36a cos(0y + 2/30 a) (572)

+ 0.376Z2 A -1/3 cos 2 0 cos- 3  cos(0 6 + 2 0z - 1/3ea)

Equation (572) can be compared to the conventionally calculated value of Q
which is given by 6 1

Qc= - 0.26yA2 / 3 + 0.376Z2 A-./ 3  (573)
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For the case of zero external field equation (572) reduces to equatiun (573).

A condition that determines the possibility of the final fission state
to occur can be obtained from the Q value for the nuclear fission process. 6 1

The complex number generalization of this condition is

S• (574)C

where E - complex number Coulomb potential energy of two spherical nuclei
(Z/2,A/2) in geometrical contact. This Coulomb energy can be written as a
simple complex number generalization of the standard scalar result 61

E* - 1/2eZ2(i/2)12/[b(g/2)' /3] (575)
- 21/3 28(5/3)21/3 - 0.262 &2 -1/3

2 (1/8)(533 /ri la2

where as before in equation (329)

S- 3/5e 2/b - 0.863/S - (0.863/1.523)kc MeV (576)

where b S complex number radius parameter given by equation (283). For
kc - 1.35 fm- as in equation (332) it follows that

3 - 0.765 MeV = 765 keV (577)

and e6 is given by equation (331).

Combining equations (571), (574) and (575) gives the final state fission
energy condition as

(Wnmn + WzmH)c 2 + 0.267E2/3 . 0.I116 2 /21/ 3  (578)

This equation can be used instead of the incipient fispion condition given in
equation (452) to determine 6z and ea . However because of the presence of the
functions Wn and Wz the full set of thirteen equations (511) through (523) must
be solved in conjunction with the two components of equation (578) which are

(Wnmn + WzmH)c2 + 0.26cA2/3 Cos 2/3a cos(O + 2/30a) (579)

= 0.116Z2 A-1/ 3 cos 2 e cos-1/30 cos(e6 + 20z - 1/3ea)

0.26yA22/ 3 cos 2 / 36a sin(6y + 2/36)a (580)

- 0.116Z2A71 / 3 cos 26 cos-i/ 3 a sin(6e + 26 - 1/30 a)g a za

If Wn and Wz are neglected in equation (578) then the final state fission con-
dition can be written as
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2/ = /5 = 2.36 (581)

Equation (581) is the same form as the incipient fission condition given in
equation (451) and the same form of solution for 8Fand that appears in equa-
tions (462) and (480) can now be used to determine these phase angles for the
final state fission condition. Then the remaining thirteen equations (511)
through (523) can be used to calculate the remaining thirteen functions listed
in equations (524) through.(527).

7. SUSTAINED y RAY CATALYZED THERMAL NEUTRON INDUCED CLEAN FISSION NU-
CLEAR REACTIONS. This section presents numerical calculations of the internal
phase angle of the atomic number e• that is required for the external field
catalysis of spontaneous or thermal neutron induced fission nuclear reactions
in nuclei lighter than the actinides. The corresponding strengthsof the static
magnetic field and electromagnetic wave field required to catalyze spontaneour
or thermal neutron induced fission in subactinide nucleiare also obtained. Un-
der ordinary conditions these relatively light nuclei are not fissile for inci-
dent thermal neutrons. In fact, under ordinary circumstances only some of the
actinides sustain fission by thermal neutrons, for example 235U and 2 39Pu are
fissile for incident thermal neutrons but 238U and 2 3 2 Th are not. Higher inci-
dent neutron energies will induce fission in all of the actinides, and in fact
light elements will undergo neutron induced fission for sufficiently high ki-
netic energy of the incident neutrons - the nuclei are simply blown apart. For
nuclear reactors requiring sustained fission reactions, however, thermal neu-
tron induced fission reactions are required so that at present only actinide
elements such as 235U and 239Pu can be used. The fission products of theseheavy nuclei are dangerous radionuclides.

The fission product nuclei from conventional actinide element nuclear re-
actors are radioactive because they have large neutron excesses and are far re-
moved from the valley of beta stability. The primary radiations from conven-
tional nuclear reactor fission products are beta decays, alpha decays and neu-
tron emissions which occur as the nuclei move toward the valley of beta stabi-
lity. The only way to have clean low energy fission is to have fission product
nuclei that are close to the valley of beta stability, and the only practical
way to achieve this for nuclear reactors is to have thermal neutron induced
fission in nuclei lighter than the actinides. Section 5 of this paper showed
that this is possible if the subactinide nuclei are immersed in an electromag-
netic field. Many other surprising effects occur when atoms are immersed in an
electromagnetic field. 8 1 9- 0 This section develops the electromagnetic field
criteria that are necessary for catalyzing the clean fission of relatively light
subactinide nuclei using thermal neutrons, and in particular it is shown that
a y ray field is required. The fission products of these reactions are either
not radioactive or exhibit only low level emissions. Examples of the clean
fission reactions for subactinide nuclei are presented.

FA. Numerical Values of the Internal Phase Angle ez Required for the
Low Energy Clean Fission of Subactinide Nuclei.

F
The general expression for 86 associated with the fission of a subacti-

nide nucleus (AZ) requires 6y and 86 as input parameters as shown in equation
(462). These two mass formula parameters can only be determined by fitting the
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broken symmetry form of the liquid drop nuclear mass formula given by equations
(347) and (369) to measured nuclear mass data. As this was not done, the as-
sumption 6, = e6 is made and only the approximate expression for 6F given by F
equation (483) is used for numerical analysis. Table I gives the values of 0.
required for thermal neutron induced fission. The results in Table I are cal-
culated for < = 1.471 , y = 17.2 MeV , 6 = 0.698 MeV and KY/6 = 36.25 which enters
the fissility parameter calculation in equation (445). The average kinetic en-
ergy of the thermal neutrons is Ek = 0.025 eV .

The nuclei in Table I are arranged by decreasing values of the fissility
parameter. Those actinide nuclei for which thermal neutron induced fission oc-
curs without the need of an external electromagnetic field are indicated by
zero values of 6z. The fact that there is no sharp boundary between nuclei
that can be fissioned with thermal neutrons and those that cannot shows that
the Bohr-Wheeler fissility parameter is a collective property of a nucleus and
does not completely describe the nuclear fission process because nuclear shell
effects play an important role. For a gross description of nuclear fission the
fissility parameter is adequate. Table I shows that the angle 8F is relatively
small for the actinide nuclei that require an external electromagnetic field to
undergo fission by thermal neutrons such as 23'U , 231Pa , 23SU and 232Th , so that
any experimental confirmation of electromagnetically catalyzed clean fission
would be easiest for these actinide nuclei unless strong nuclear shell effects
enter to prevent low energy fission.

B. Static Magnetic Field Required to Catalyze Low Energy Clean Fission
in Subactinide Nuclei.

The determination of the static magnetic field necessary to catalyze clean
fission in nuclei lighter than the actinides using thermal neutrons requires
values of the magnetic stiffness coefficients KB amd KH or equivalently the

magnetic compliance ..oefficients CB and CH that are defined in equations (185)
Oz ez

through (214). The values of these coefficients can be calculated by requiring
the equality of the potential energy density of elastic shearing in internal
space and the magnetic energy density of the applied field. This equality is
written as

1/2G8 2 = B2 /(2p) = 1/2jiH2  (582)

z

or as in equations (209) through (212)

= CB B B = KB 8 (583)
z ez 6z z

H He = C6 H H = K 6Z (584)z 6z Oz z

where from equation (582)

cB -1= (G)-/2 cH 1/2 (585)Cz = iz) = (u/G)(55

KB K1/2/2

Kz = (uG)1/2 Kz = (G/") (586)
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where G and u = shear modulus and magnetic permeability of an atomic nucleus,
and B and H = magnitudes of the magnetic induction vector and magnetic field
vector respectively. The values of B and H required to fission a subactinide
nucleus are then given by equations (583), (584) and (586) as

BF KB 6F 1/2 FBF =K =(Gi2) 0z (587)

HF KH eF 1/2 FHF =K =(G/w) 0 F (588)
Gz z z

so that generally if equation (462) is used for Oz

F =F
B =B ( , , ,d G,•) (589)

or more simply if equation (483) is used to calculate 6F

BF B F(x, G, ) (590)

where X = fissility parameter given by equation (445). The units of the rele-
vant physical quantities used in this analysis are given by

[HI = amp/m = coul/(m sec)

[B] = T = Wb/mr = kg/(sec coul) = 104 gauss = N sec/(m coul)

[G] = N/mr
2

[P] = kg m/coul 2 Henry/m = Wb/(amp m) = N sec 2/coul2

[Cz] = rad m sec/coul = rad m/amp

B2
IC B] = rad/T = rad sec coul/kg = rad m2 /Wb

[K H] = coul/(rad m sec) = amp/(rad m)
B2

[K zI - T/rad - kg/(rad sec coul) - Wb/(rad m 2 N sec/(rad m coul)

where T = tesla.

Equation (587) shows that the value of the magnetic induction field BF
required for clean fission depends on the value of the magnetic permeability
of nuclear matter. The value of p refers to neutrons and protons in nuclear
matter at nuclear density which corresponds to kc ', 1.35 fm- 1 . The vacuum
value of v is given by91'92

Vo = 4v x 10-7 kg m/coul 2  (591)

The value of P corresponding to nuclear matter is given by 9 1 0
9 2

p = o (1 + xm) (592)
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where the magnetic susceptibility Xm of nuclear matter is given by

Xm = n c = nc (BP + n) (593)

where nc - central nucleon number density of an atomic nucleus which is approx-
imately equal to the saturation nucleon number density of infinite nuclear mat-
ter and is given by6 0

,
6 8

n. = 2/(3T 2)k 3% 0.166 fm- 3  (594)

and BP - magnetic polarizability of the proton and an - magnetic polarizability
of the neutron which are given by 9 3' 9 4

Sp _ 8n - 3. 3 4 x 10 -4 fmi3  (595)

Equations (593) through (595) give the magnetic susceptibility of nuclear mat-
ter at nuclear density a value of

Xm = 1.11 x 10-4 (596)

so that Xm << I and equation (592) gives P ̂ . i ,and therefore the vacuum value
of the magnetic permeability is adequate for calculating the magnetic properties
of nuclear matter at nuclear density.

Equation (587) shows that the value of the magnetic induction field BF
required for the electromagnetic catalysis of thermal neutron induced clean
fission of elements lighter than the actinides depends on the shear modulus of
nuclear matter. The shear modulus of nuclear matter is easily obtained from
the value of the bulk modulus (incompressibility) and Poisson's ratio of nuclear
matter as follows95

G = 3(1 - 2v)K[2(l + v)] 1  (597)

where G v and K = shear modulus, Poisson's ratio and bulk modulus of nuclear
matter. The values of Poisson's ratio usually have a range of values 0 < v < 1/2,
so that a value v - 1/4 is adopted in this paper. The bulk modulus is given by
the following standard formula• 5

K = ndP/dn (598)

= n(2ndc/dn + k)

where n - nucleon number density, P - pressure, c - average energy per nucleon
and k = incompressibility parameter given by68,96

k= n2 d2 c/dn2  (599)

At the saturation density which occurs at the minimum average energy per nucleon
de/dn - 0 , and equation (598) gives the bulk modulus as

K - nk - n3 d 2c/dn2 (600)
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For nuclear matter with Z/N - I the following are commonly used values of tte

saturation nucleon number densi y and the incompressibility factor'68 ,96

n - 0.166 nucleons/fm3  (601)

k = 250 MeV/nucleon (602)

Equation (602) gives a relatively high value for the incompressibility factor
so that the author will not be accused of ignoring the hard facts.

Combining equations (597) and (600) through (602) gives the bulk modulus
and shear modulus of Z - N nuclear matter at nuclear density as

3 033 2

K - 41.5 MeV/fm 3 6.64 x 10 N/m2 (603)

G - 24.9 MeV/fm3 , 3.98 x 1033 N/m2 (604)

Also, at equilibrium the average binding energy for infinite nuclear matter and
for an atomic nucleus with N m Z are respectively

c 1- 15.5 MeV/nucleon infinite nuclear matter (605)

e n 8.0 MeV/nucleon atomic nucleus (606)

while the average Coulomb energy per nucleon is68

e 0.765 MeV/nucleon (607)

For purposes of comparison with chemically bound systems it should be pointed
out that the shear modulus of steel is9 5

Gsteel \' 4 x 109 N/m2 (608)

while the binding energy (electronegativity) of a valence electron of a chem-
ical element typically has a value 9

Echem 1 10 eV/electron (609)

A comparison of equations (605), (606) and (609) shows that the average binding
energy per particle in a nuclear system is about 6 orders of magnitude larger
than the average binding energy per electron in an atomic system. However, a
comparison of equations (604) and (608) shows that the bulk modulus of nuclear
matter at nuclear density is about 24 orders of magnitude larger than the bulk
modulus of a chemical compound at its equilibrium density. The very large
difference in the values of the bulk moduli of nuclear and chemical systems is
due to the large value of the nuclear matter density which enters directly into
the calculation of the bulk modulus as shown in equation (600). The values of
the nuclear binding energy, saturation density and bulk modulus actually depend
on the values of the neutron excess of nuclear matter, but this is not consid-
ered in this paper. 6 8

The magnetic compliance coefficients for nuclear matter in a static mag-
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netic field can be calculated from equations (585), (591) and (604), and the
results are

CB 1-14 1-13
Cz B. 1.41 x 10 rad/T - 8.08 x 10 deg/T (610)

CH . 1.78 x 10-20 rad m sec/coul (611)ez

where T - tesla. The magnetic shear stiffness coefficients can be calculated
from equations (586), (591) and (604) or more simply as the reciprocals of the
magnetic compliance coefficients given in equations (610) and (611) with the
result that

Kz f 7.07 x 10 T/rad - 1.23 X T/deg (612)

S19Ke 5.63 x 10 coul/(rad m sec) (613)

The values of the magnetic compliance and magnetic shear stiffness coefficients
that have been calculated refer to a static magnetic field because the shear
modulus used in these calculations, and given by equation (604), is a measure
cf Lhe static deformation of nuclear matter in internal space under the appli-
cation of a static magnetic field as described by equation (582).

The values of the static magnetic induction field required for clean fis-
sion can be calculated from equations (587), (612) and the values of eF given
by equation (483). The values of OF and B required for the clean fission of
some nuclei of interest appear in Table 1. From Table I it is obvious that
very large values, ,, 40 teratesla, of the static magnetic induction field BF
are required to catalyze clean fission nuclear reactions in the subactinide nu-
clei. These values of BF are much larger than any static magnetic field that
has been obtained in the laboratory. Typical static magnetic fields used in
particle physics experiments are about 4-6 T. 98 The highest static magnetic
field obtained in the laboratory is about 50 T.99,1 0 Therefore the predic-
tion of static magnetically catalyzed clean fission of subactinide nuclei by
thermal neutrons cannot be verified in the laboratory with present day technol-
ogy. Explosive compression generated magnetic fields have values that exceed
several kilotesla but fall far short of the 1012 tesla field required for prac-
tical clean fission reactions.1 0 1 . 10 4  The huge values of the static magnetic
field required for the catalysis of clean fission of nuclei lighter than the
actinides suggests that it is impractical to design a clean fission nuclear
reactor that uses a static magnetic field as a fission catalyst. However, the
situation is not hopeless because it is shown in the following sections that
it may be possible to catalyze thermal neutron induced clean fission reactions
in the lighter elements by using y rays.

C. Electromagnetic Wave Resonance Catalysis of Thermal Neutron Induced
Clean Fission Reactions for Nuclei Lighter than the Actinides.

The large static magnetic fields predicted to be required for clean fis-
sion reactions of subactinide nuclei using thermal neutrons can be circumvented
by using high frequency time dependent electromagnetic fields. Nature is full
of surprises, and it will now be shown that the superfluid nature of nuclear
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matter suggests that using electromagnetic waves (y rays) that are tuned to a
critical frequency for each subactinide element to be fissioned requires a mag-
netic vector component BF which is of the order of magnitude BF ', 20 kilotesla
which is much smaller in value than the static field value BF % 40 teratesla
and can be obtained in laboratory y ray fluxes (Table 2).

Consider first a static field loading on an atomic nucleus. The spring
constant of an atomic nucleus can be calculated in terms of the shear modulus,
Poisson's ratio and radius of the nuclear matter in a nucleus. A cylinder of
nuclear matter of length h and radius R has a spring constant given by9 5 ",0 5

k = EnR 2/h (614)

where k = spring constant, E = Young's modulus, R = radius of cylinder and h -
length of cylinder. The Young's modulus can be expressed in terms of the shear
modulus and Poisson's ratio as follows 9 5

E = 2(1 + v)G (615)

where v = Poisson's ratio. Now consider a cylinder whose length is taken ac-
cording to the condition that the volume of the cylinder is equal to the volume
of a spherical nucleus of the same radius

rR 2h = 4/37R3  (616)

which gives

h = 4/3R (617)

Combining equations (614), (615) and (617) gives the spring constant of an atomic
nucleus as

k = 3/27(1 + v)GR (618)

Combining equations (282) and (618) gives

k = 3/2vb(1 + v)GAI/ 3  (619)

where the effect of the internal phase angle 8 a is neglected in equation (285),
and where b = constant given in equation (282). Values of k for various nuclei
appear in Table 2.

For a damped vibrating spring the impedance is given by

S - [(k - Meff2 )2 + C2W211/2 (620)

where S = impedance, w = circular frequency of vibration of a nucleus, Meff -
effective dynamic mass of a nucleus, and C - damping constant. The effective
mass of a nucleus is given by

eff = 1/3mii A = 1/3(Zm + Nm - B/c ) (621)
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where the factor 1/3 enters equation (621) because the mass is distributed
throughout the nucleus so that the spring itself is massive.105 The average
nucleon mass that appears in equation (621) is given by

m ay Z/Am + N/Am -n /c 2  (622)

1/2(m + m) - e/c 2

S1/2(mp + man) , m p mn (623)

where c - light speed, e = average binding energy per nucleon given by equation
(291), mp - proton mass and mn - neutron mass. The dynamics calculation done
in this section neglects the effects of the binding energy on the nuclear mass
and uses equation (623) for the average mass per nucleon. The approximation
that may - constant makes the effective mass in equation (621) a linear function
of the atomic mass number and leads to simple approximate formulas for the reso-
nance frequency and energy. The damping constant that appears in equation (620)
is given by

C = nR = nbA1/ 3  (624)

where n = viscosity of nuclear matter. The value of the viscosity of nuclear
matter is obtained by assuming that it has the same value as the viscosity of
superfluid 3He namely n = 2 x 10-7 kg/(m sec). 1 0 6 The dimensions of the physi-
cal quantities that appear in equations (614) through (624) are given by

[R] - m

(b] - m

2 2
(G] = N/mi kg/(m sec2)

(k] = N/m = kg/sec
2

[S] - N/m = kg/sec
2

[Meff] = [mav] [rm [ml n kg

[C] - N sec/mr kg/sec

[-] - kg/(m sec)

[w] - Hz - sec 1

The impedance function given by equation (620) has a local minimum value at a
frequency which corresponds to the maximum vibration amplitude, and satisfies
S - k when w -0 0.

The simplest way of incorporating the dynamical response of a nucleus to
electromagnetic waves into the formalism given by equation (587) for calculating
the magnetic induction field required for the clean fission of the subactinides
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is to introduce an effective dynamic shear modulus so that in the presence of
electromagnetic waves the definition of a dynamic magnetic stiffness modulus
for an atomic nucleus is given in analogy to equations (582) and (586) by

1/2Gye 2  B' /(211) + 1/2EE' 2 B2 /(2p) = (K )2e2 /(211) (625A)z y Y y Y

K By (iGy)1/2 tesla/deg (625B)
ez

where GY = effective dynamic shear modulus which is obtained from equations

(618) and (620) as

GY 2/(3r)(1 + v)-I S/R N/m 2  (626)

In the limit of w - 0 it follows from equations (620) and (626) that GY - G ,
so that Gy is an effective dynamic shear modulus which has the correct static limit.
The ratio of interest for clean fission nuclear reactor design is therefore

= KBy/K B = (GY/G)1/2 . B /B F [(B 0 )2 + £w(E ) 2] /2/BF (627)
ez ez y yy

where Gy is a function of several parameters GY = GY(G,v,w,C,b,A) . At low
frequencies • - i. Here B' % B/r and EF' u EF1//f = BF/(2ei)1/2 are the

radiation field components required for fission.

The impedance function S for an atomic nucleus has a frequency dependence
shown in Figure 2. The ratio 1 of the magnetic stiffness coefficients given in
equation (627) also has this frequency dependence and is shown in Figure 3. The
impedance S has a minimum value at the giant dipole resonance frequency, and at

sfrequency the dynamic magnetic stiffness coefficient BY and the ratiothis feunytednmcmgei tfns ofiin e n h ai

have much smaller values than their corresponding static values. The reason for
this can be discerned from the impedance equation (620) which shows that the
giant dipole resonance frequency is given by10 5

Wr = c(k/M eff)1/2 fr = W r/(21T) (628)

where ac = model correction factor which is introduced to account for the fact
that a nucleus is not really described by a simple linear spring model. In
this paper the correction factor is chosen to have the value ac = 0.5412, but
a different choice for the value of the shear modulus of nuclear matter will
yield a different value for ac in order to agree with measured giant dipole
resonance frequencies. Combining equations (619), (620) and (628) gives

fr = ac(27) 1[9/2wb(l + v)G/mav]1/2 A-1/3 Hz (629)

where mav is given by equation (623). For atomic nuclei the giant dipole reso-
nant frequency is in the y ray region of the electromagnetic spectrum. The
value of the impedance at the giant dipole resonance frequency is obtained from
equations (620), (624) and (629) to be

S Cr w Cr = acC(k/M eff)1/2 N/IM (630)

- a cnb[9/2wb(1 + v)G/m av]1/2
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and is seen to be essentially independent of the atomic mass number A because
equation (623) shows that may is roughly independent of A . The damping con-
stant C given by equation (624) was used to obtain the result in equation (630).
The value of the dynamic shear modulus at the giant dipole resonance frequency
is obtained from equations (282), (626) and (630) to be

Gy 2/(37)(I + v) S /R N/mr2  (631)
r r

2/(3Tr)(I + v)-ILcn[9/2nb(I + V)G/m1av]/2 A-1/3

2- 1/3
a GA

where the dimensionless number a is essentially independent of A and is given by

a = (GYA 1 /3/G) 1 / 2  (632)
r

= [2/(37)(I + v)-IS r/(Gb)] 1 1 2

= {2bn 2 a 2 /[7rm G(1 + v)]}1/ 4

= [4bri 2c/(rm E)]I/4
C av

where b is defined in equation (282). The dimensionless parameter a has the
value o = 1.018 x 10-9 . Then equation (631) gives

GY/G = a 2A-1/ 3 = Sr/k (633)
r r

and combining equations (627) and (633) gives the following relationship which
is valid at the giant dipole resonance frequency

y= (/BG) 1/2 (Sr/k)1/2 aA-I/6 (634)•r =[ez/Kez r r

The values of ýr for various nuclei appear in Table 2. From equation (627) it
follows that the dynamic magnetic stiffness coefficient at the giant dipole
resonance frequency is given by

KEz = r K Oz tesla/deg (635)

= A-1/6K B
ez

The dimensionless number a is still a function of G . The values of KEY at the
giant dipole resonance frequency appear in Table 2 for various atomic nuclei,
and Table 2 shows that the values of By are significantly smaller than the
value of Kz given in equation (612).

For electromagnetic waves that are tuned to the y ray frequencies of the
giant dipole resonance frequencies of the subactinide nuclei, the required mag-
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netic induction field for the clean fission of subactinide nuclei using thermal
neutrons is calculated in analogy to equation (587) as

BF KBy 6F y 1/2  FB K F = (1G)r 0 tesla (636)y ezz r- z

=A-1/6 KB F = -1/6(I) 1/2 8F
0z z z

o-1/6 BF , 4rBF

where ýr is given by equation (634). The values of BF for selected nuclei are
given in Table I and are seen to be much smaller than the values of BF which
also appear in Table 1. The corresponding magnetic field strength of the reso-
nance electromagnetic wave required for clean fission is given by

H F = BF/v = (G/p/)1/ 2 
0F = A- 1/6 HF amp/m (637)

y y r z
.F,.2 F(E')21/2

= [(Hy ) + EhA(E ) 2

where U Vo = magnetic permeability of nuclear matter. The corresponding val-
ues of the electric field of the resonance electromagnetic waves required for
the clean fission of subactinide nuclei are given by91,92

F 1/2 F F
E = (io/o)/ H = 120nHF volts/m (638)

y Y Y

FT F- F r2Fwhere H• n Hy/2= B /(v2 )and F' F E /,• give the radiation field components.
The power density of the resonance electromagnetic waves that are required for
the clean fission of subactinide nuclei using thermal neutrons iss1'g2

PF =1/2(jjo/o) 1/2 (HF) W/m2 (639)
0 00 y

= 1/2(120rT)(BF /P )2
2 1/3 ^.

= 1/2(120w)(o 2G/P )A- (F)2
0 Z

where eF - critical internal angle of the complex atomic number given by equa-
tion (493) and corresponding to incipient fission of a subactinide nucleus.
The y photon energy required to catalyze clean fission of the subactinides can
be obtained from equation (629) to be

C = hvF = hf MeV/photon (640)y y r

where h = Planck's constant and has the value 10

h 6.626 x 10-34 Joule sec (641)

- 4.136 x 10- 2 1 MeV sec

The y ray flux density required to catalyze clean fission of subactinide nuclei
using thermal neutrons is obtained from the y ray power density given in equa-
tion (639) as follows
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F P //C photons/(sec m2) (642)
Y TY

The y ray photon number density required for clean fission is obtained from the

flux density given in equation (642) by

nF iF/c photons/mr3  (643)
Y Y

where c m light speed given by106

c - 2.9979 x 108 m/sec (644)

F F F F F FThe quantities H•. EY , Py, *E, and n. evaluated at the giant dipole resonance
frequency appear in Table 3.

The mechanical and electromagnetic quantities that are relevant to the clean
fission of subactinide nuclei depend of the value chosen for Poisson's ratio as
for example in equation (632). The value of Poisson's ratio for nuclear matter
is not known, but it is generally in the range of values 0 < v < 0.5 .9" Nega-
tive values of Poisson's ratio are possible but only in very exotic materials
and will not be considered here. Because the physical quantities calculated in
this section are not particularly sensitive to the choice of value for Poisson's
ratio, the choice V = 1/4 is made for the numerical calculations. Then the
elastic properties of nuclear matter are taken from equation (604) to be

G - 3.98 x 1033 kg/(m sec2) v = 1/4

Nuclear matter is a viscous superfluid whose viscosity is assumed to have the
same value as does superfluid liquid 3 He .106 Then the following values of nu-
clear properties are used to produce Tables 1 through 3:

0-27
may = 1.6738 x 10 kg (646)

b = 1.2 fm (647)

n - 2.0 x 10-7 kg m-1 sec- (648)

a - 1.018 x 10-9 (649)
-1

Sr= 29.17 N m (650)r

k - 28.10 x 1018 A1/3 N m-I (651)

f r 19.34 x A Hz (652)r

Ar = 15.50 A1 / 3  fm (653)
F A-1/
e - 80.0 A / MeV/photon (654)

Values of k, fr and A. appear in Table 2, while 4 appears in Table 3. The
y ray photon number density n, flux density and power density prequired
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for fission depend on Z and A through the fission angle 0F(Z,A) as shown in

equation (639). The value of the impedance at resonance Sr is independent of

A . Note that k is 18 orders of magnitude larger than Sr which corresponds to

the fact that BF is 9 orders of magnitude larger th.n BF as seen from Table 1.
FThe relatively low values of Sr and B is due to the fact that at the resonance

frequency it is the small value of the superfluid viscosity of nuclear matter
that determines the value of the impedance.

Table I gives Z2 /A , the fissility parameter X , the internal phase angle of
the proton number F8 required for the clean fission of nuclei by thermal neu-
trons, the static magnetic induction field BF required to catalyze clean fission
of nuclei with thermal neutrons, and the dynamic magnetic. induction field BF of
y rays at the giant dipole resonance frequency which is required to catalyze
clean fission of nuclei by thermal neutrons. Table 2 gives the ratio ýr of the
dynamic magnetic induction field to the static magnetic induction field required
for clean fission, the dynamic magnetic stiffness coefficient z for y rays at
the giant dipole resonance frequency, the nuclear spring constant k, the giant
dipole resonance frequency fr, and the wavelength Xr of y rays corresponding to
the giant dipole resonance frequency. Table 3 gives the dynamic magnetic field
F. of y rays at the giant dipole resonance frequency which is required to cata-

lyze clean fission in atomic nuclei using thermal neutrons, the dynamic electric
field strength EF of y rays at the giant dipole frequency required to catalyze
clean fission in nuclei using thermal neutrons, the resonant power density PF

Yof y rays required for the clean fission of nuclei utilizing low energy thermal
Fn

neutrons, the resonant y ray energy c- required for catalysis of clean fission,
the resonant y ray flux y required for clean fission catalysis, and the reso-
nant y ray photon number density n4 required to catalyze clean fission in atomic
nuclei using low energy thermal neutrons.

For clean fission nuclear reactions of the subactinide nuclei using thermal
neutrons, the y rays are used only to bring the internal phase angle of the atomic
number 6z up to its critical value 0F required for fission as described in Sec-
tion 5. The very small value of the viscosity of nuclear matter gives a small
value to the parameter a that is defined for the resonance frequency condition
by equations (631), (632) and (649). The small value of a when used in equa-
tions (636) through (639) gives the relatively low values for the electric and
magnetic fields, power density and flux of the resonant y rays that are required
for the clean fission of subactinide nuclei. Therefore immersing subactinide
nuclei in a bath of y rays that are tuned to the giant resonance frequency of
the nuclei requires only a relatively low power density of y rays to catalyze
clean fission using thermal neutrons. The low y ray intensity (associated
with GY and Sr of the nuclei) required for clean fission at the giant dipole
resonance frequency compared to the high values of the static magnetic field
(associated with G and k of the nuclei) required for fission in a static field
is related to the behavior of the nuclear impedance S given by equation (620)
and shown in Figure 2 which indicates that the impedance has a deep minimum at
the giant dipole resonance frequency. The y ray intensity required for clean
fission has a minimum value when the energy of the incident y rays corresponds
to the giant dipole resonance frequency of the subactinide element that is
chosen as a nuclear fuel. Thus thermal neutron induced fission in the subac-

535



tinides is catalyzed in the simplest way by y rays tuned to the giant dipole
resonance frequency of nuclei as given by equations (652• and (653), and whose
intensity is determined by the critical condition Oz = 6z as in equations (483)
and (636) through (639).

D. y Ray Catalyzed Low Energy Clean Fission Nuclear Reactions.

Several examples of y ray catalyzed clean fission reactions induced by
thermal neutrons are now considered. The average incident thermal neutron ener-
gy is 0.025 MeV.

Intermediate Weight Nuclei.

Examples of clean fission reactions whose fission products are low level
beta emitters are

Y + i + 59 C 21 + 37 i + y (655)
0n 2 7 Co 1 0 Ne 1 7 CI+2 0 n

Y + i + 5 8 Ni 170+ 4 Ca + 2 in + y (656)
'0 28 8 20 (656)

" o+n 6 3Cu 2 0 F + 42 Ca + 2in + 1 (657)
'0 29 9 2 00

Y + in + 6 4 Zn 2 1 Ne + 
4 2 Ca +2 in + y (658)0 30 10 20 0

Y+1 75 27 47

on + 3As - 2Mg + 2Sc + 2 in + y (659)

These fission reactions produce low level radionuclides as waste products. Ex-
amples of perfectly clean fission reactions using thermal neutrons and y ray
catalysis are

y + in + + 37C1 + 3 in + y (660)0 27 10 17 0

Y + in + 2 8Ni - 1680 + 24 0Ca + 3 0in + y (661)

The fission products of these reactions are not radioactive and can be used
for the development of clean fission nuclear reactors.

Heavy Nuclei.

The following are examples of y ray catalyzed fission reactions using
thermal neutrons whose fission products can be relatively low level radionu-87 88
clides as in the case when Rb and Sr are fissioned, but with high level
radionuclides as fission products when the heavy elements are fissioned such
as in the case of 2 38 U and 2 3 2 Th

1 8+Rb . 19 + 61CU + i2 + y (662)0 37 0 2 9C uon a 20 + 67CU

+ 1 n+ 8 Sr 2 0 F+ Cu+ 2 in + y (663)
0 38 9 29 n
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Y +in + 90Zr - 21 Ne + 6 8Zn + 2 in + y (664)

310 3 0

Y + in + 1 2 7 13 • 3 9 CI + 8 7Kr + 2 'n + y (665)

in +539 56 62

Y + 139- 6 9Rb + 2 in + y (666)
0 • 57a ÷2T2 3 7on

y + in + 5 2 Sm 6 2 Co+ Br + 2 in + y (667)o 62 27 35 0

y + in + 180Hf 8 7Br + 9Rb + 2 in + y (668)o 72 35 37 0
7 n+181 88 9

7 31Ta - 3SBr + 92Rb + 2 in + y (669)

Y+in+
2 Pb - Kr+ '1Pd + 2 in + -y (670)on 82 36K 46P 0n

y+n + 2 3 2 Th 9 4 Ru + 1371 + 2n + y (671)
o 90 37 53 0

Y + i + 238U 94 + Xe + 2 in + y (672)on 92u 38r+ 54 on

These fission reactions would not occur using thermal neutrons without the cata-
lytic effects of the resonant y rays.

Nuclear fission is a statistical process of penetration through a fission
barrier, and many other fission reactions are possible. For a sustained fission
chain reaction at least two neutrons must be produced by the fissioi, reactions.
For both intermediate and heavy nuclei generally at least one of the fission
product nuclei of these reactions is beta unstable for clean fission reactions.
Equations (660) and (661) are exceptional in that the fission products are not
radioactive. Because the fission product nuclei of intermediate weight elements
are relatively light weight nuclei close to the valley of beta stability, the
intensity of beta, alpha and neutron radioactivity of the fission products is
low level for the y ray catalyzed fission of intermediate weight elements using
thermal neutrons as, for example, in equations (655) through (659). Equations
(662) through (672) show that the y ray catalyzed fission reactions of heavy
nuclei using thermal neutrons yield fission products that are relatively high
level beta, alpha and neutron emitters because the fission products generally
have large neutron excesses. Therefore for the development of clean fission
nuclear reactors fuel elements only slightly heavier than 26Fe must be used as
shown in equations (655) through (661).

E. Photonuclear Reactions and Clean Fission for Subactinide Nuclei.

This section considers the form of the electric dipole sum rule for y ray
catalyzed thermal neutron induced fission reactions in nuclei whose fissility
parameters satisfy X < 1 . Photonuclear reactions are induced by Y ray photons
interacting with atomic nuclei. For low energy photons the process in its sim-
plest form is due to resonance fluorescence which occurs when photon absorption
by a nucleus is followed by photon emission as the nucleus decays to the ground
state. Nucleon emission and nuclear fission can occur for higher energies of
the incident y rays. At photon energies of about 12 - 20 MeV the giant dipole
resonance is excited. 6 0 -'108
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The conventional electric dipole sum rule for photonuclear reactions is

written in the standard incoherent spacetime form as follows 6 0 - 6 7', 0 8

G. = f o de = gZN/A (673)
inc

where a = photonuclear reaction cross section for incoherent spacetime, Z , N

and A = atomic number, neutron number and atomic mass number of the target nu-
cleus, and where1

0 8

S= 272 e 2h/(m c) n, 0.06 MeV b (674)
av

where the integral is taken over photon euergies up to 30 MeV. The concept of
the broken symmetry forms of the atomic number, neutron number and atomic mass

number suggests that a complex number generalization of the photonuclear reac-

tion sum rule should be written as

S= f a di = giii/9 (675)

where a = complex number photonuclear reaction cross section, G complex num-

ber integrated photonuclear cross section, and i , H and i = complex number
atomic number, neutron number and atomic mass number respectivelywhich are

given by equations (40) through (42). The complex numbers Z and G can be rep-

resented as

a= exp(je ) G =Gexp(jOG) (676)

which are complex numbers in an internal space. Equation (675) can be written as

-18

G - gzn/a gZN/A cos 6 cos e cos 1 (677)
z n a

G = + -Oa (678)

Equation (675) can also be written as

= a sec 8CE exp[J(Oo + 0 + CE )Idc (679)
0

7r/6
f ae csc 0 exp[j(O + 0 + a )JdO (680)
0 0 E aE C

where the complex number photon energy is written as

S= c exp(jO ) (681)

and where

tan 8 E = C30 /DC (682)

The component form of equations (679) and (680) are written as
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G cos . =f o sec B cos(e. + O + 6EE)dc (683)
0 55 0

7T/6

= f Us csc B cos(Oa + e + c )dE (684)o 0 5 55

G sin QG =fc sec B sin(0 + 6 +6 )d (685)

Tr/6
f as csc a sin(O + 0 + B )(.a (686)
0 C0 a 55 EE

which are generally valid equations. From equations (677) and (678) it follows that

G cos 6. = gZN/A cos 6z cos Sn cos 1  COs(z + n - a) (687)

G sin eG = gZN/A cos 0z cos en cos- 1a sin(0z + en - a ) (688)

Generally G cos 6G > 0 if Z > 0 , N > 0 and A > 0

The upper integration limit of n/6 in equations (680), (684) and (686)
arises from the conservation of momentum for the photon-nucleon interaction
which can be written as

?/c = Wc =4 (689)

where the complex number photon frequency $ and the complex number nucleon ve-
locity • are written as

S= v exp(jO ) v v exp(j0V) (690)

Equations (689) and (690) can be written as

s/c = hv/c = mv 0 =0 = 0 = 0 - t (691)V V x t(91

which are valid for the inelastic photonuclear reaction. For coherent space-
time Ox = n/3 , 8t = r/6 and Ov = v/6 , so that 0. = w/6 for inelastic photonu-
clear reactions in coherent spacetime. It should be noted that for elastic col-
lisions of photons with particles, the phase angle relation is Oc = 26v , with
the result that 0. = Tr/3 for elastic collisions in coherent spacetime.

If the photon energy is taken to be incoherent it can be represented as a
real number with 6. = 0 and aeE = 0 and equation (675) becomes

G= f a dc = gznla (692)

while equations (683) and (685) give
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G cos eG = f o cos 0 dc (693)
00Co

G sin G = f o sin O dE (694)
G 0

which are valid for incoherent photon energies. The left hand side of equations
(693) and (694) are given by equations (687) and (688). If the photon energy is
taken to be coherent with dF = j~dOE where the photon energy magnitude is given
by c = Ec = constant and where B.E = n/2 , then equation (675) becomes

ir / 6
Sj f HE dO = gEi/z (695)

0

and equations (684) and (686) become

7/6
G cos 6G =- c sin(Oa + 6 )d6 (696)

n/6

G sin 0G = ec f a cos(e + 6 E)deE (697)
0

which are valid for coherent photon energies. If 6 is independent of 6c then
equations (696) and (697) become with a = ac constant for coherent photon
energies

G cos 8G = Ec [cos(6° + n/6) - cos 8 ] (698)

G sin 6G = Ec ca [sin(8O + r/6) - sin eo] (699)

Therefore in general eG > n/2 for coherent photon energies, and in particular if
O = 0 then 6G = 1050 . This means that G cos OG < 0 for coherent photon ener-
gies. Therefore a coherent spacetime photonuclear reaction that is described
by the sum rule in equation (695) is not possible unless Z < 0, N < 0 and A < 0
in equation (687) which is a case analogous to the negative values of the ordi-
nary magnetic quantum number m .

For light nuclei in the valley of beta stability equation (178) gives

6 z 'e "\e a (700)z n a

and for this special case equation (677) and (678) become

G = gZN/A cos 8 (701)a

0G = 0 (702)

For this case equations (693) and (694) become for incoherent photon energies

gZN/A cos 2e = f a cos 6 dc (703)a

gZN/A cos ea sin ea f a sin ea dc (704)

tan 0 = a sin 68 dc)/(f a cos 0 a d) (704A)
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from which a and 8o can be obtained by inversion techniques for nuclei in the
valley of beta stability.

Consider now the case of nuclei with fissility parameters less than unity
X < I that have been brought to the condition of incipient fission by the ap-
plication of an external y ray field. For this case the internal phase angles
of the atomic number, neutron number and atomic mass number are related by equa-
tion (473) as follows

6F = 26F 8 20F (705)

a z n

and therefore equations (677), (678) and (705) give

G = gZN/A(I - tan2 ) (706)

eG = 0 (707)

From equations (685) and (707) it follows that for incipient fission

S=0 0 e 0 = 0 (708)

so that the photonuclear interaction for the case of fission must be scalar
kec = 0) with incoherent photon interactions, and equations (693), (694) and
(706) through (708) become

CO 2 F -1
f o de = gZN/A(1 - tanF) (709)
0(0

However it has been shown in equation (480) that the approximate condition for
y ray catalyzed thermal neutron induced clean fission is given by

tan 6F = (1 - X) 1 / 2  (710)
z

where X < 1 is the fissility parameter. Combining equations (709) and (710)
gives for incoherent photon interactions

f a de = gx -ZN/A (711)
0

and therefore the fissility parameter enters into the electric dipole sum rule
for y ray catalyzed thermal neutron induced clean fission reactions.

8. y RAY CATALYZED CLEAN FISSION NUCLEAR REACTOR DESIGN CONCEPTS. This
section presents design concepts for y ray catalyzed clean fission nuclear re-
actor cores whose fuel consists of elements heavier than S6 Fe but lighter than
the actinides. As explained in the previous sections the subactinide elements
cannot be fissioned by thermal neutrons under ordinary circumstances, but in
the presence of y rays tuned to the giant resonance frequency of the fuel

elements these nuclei can be fissioned by thermal neutrons. The y ray photon
number density required to fission a subactinide nucleus is relatively low be-
cause the y rays are required only to bring the internal phase angle Oz of the
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atomic number up to its incipient fission value OF given by equation (483) at
which point fission by thermal neutrons is possible. When elements heavier
than 6Fe, such as for example 6 3Cu, are used as fuel in a clean fission nu-
clear reactor, the fission products of the thermal neutron induced y ray cata-
lyzed fission reactions are neutrons and atomic nuclei which have relatively
low level radioactivity because they have smaller neutron excesses than those
of the fission product nuclei of 23 U or 239Pu which are the fuel elements of
conventional nuclear reactors.

Relatively high energy y rays with energies in the range of 10-20 MeV
are required for the clean fission of subactinide nuclei. Possible sources of
the relatively high energy y rays that are required to catalyze clean fission
reactions are

a) bremsstrahlung of electrons in matter
b) nuclei excited by collisions and subsequent giant dipole resonance

decay
c) synchrotron radiation from electrons
d) nuclear reactions
e) nuclear fission
f) y ray lasers

The possibility of using y rays from the radioactive decay of natural and man-
made radioisotropes is excluded because they generally are in the range
0.01 < CY < 10 MeV which is too low to excite the giant dipole resonance states
in atomic nuclei.

Figures 4 and 5 show two clean fission nuclear reactor core design con-
cepts in which y rays are directed to the surface of a fuel and heat exchanger
system. In this case the fuel element, such as 63Cu, is in the form of rect-
angular plates or a spherical shell which are assembled adjacent to a structure
which contains a heat exchanger. Table 3 shows that for 63Cu as the fuel ele-
ment the incident y rays must be in the range of e. = 20 MeV and have a photon
number density of at least ny = 7 x 1023 photons/m3 which is a relatively small
number density. The y rays impinge on the surfaces of the fuel element plates
and elevate the valut of the internal phase angle 6z of the atomic number of
the fuel element up to the critical value OF required for clean fission which
for 63Cu is OF - 38.50 as shown in Table 1. Then an initial source of thermalzneutrons is introduced to start the fission reaction. The fission reaction
emits two or three high energy neutrons as a fission product and these can be
thermalized by moderators to produce a self sustaining chain reaction. The
clean fission nuclear reactions are expected to occur mainly at the surface of
the fuel element plates because y rays attenuate rapidly in matter.

After an initial introduction of thermal neuzrons and an initial input
of power to activate the y ray sources the output of neutrons and power from
the clean fission reactions can be used to create a self sustaining nuclear
reactor. During operation of the reactor a portion of the power developed is
used to drive the external y ray sources. The nuclear reaction rates can be
controlled by adjusting the external y ray flux, so that the control rods of
the standard uranium fission reactors are not required to control the neutron
flux in clean fission reactors but can be retained as a safety factor. Mini-
mum shielding is required for a clean fission nuclear reactor because of the
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low level radioactivity of the fission product nuclei. Minimum shielding is
also required for high energy y rays because they are rapidly attenuated in
matter by electron-positron pair production.

9. CONCLUSION. This paper suggests that in the presence of an electro-
magnetic or gravitational field the atomic number, neutron number and atomic
mass number have broken internal symmetries and must be represented as complex
numbers of a special type. The magnitudes and phase angles of these complex
numbers are determined by the requirement that the nuclear wave function be
periodic in terms of the measured values of the internal angle coordinates
associated with the atomic number, neutron number and atomic mass number. In
the presence of an external field the number of atomic nuclei must also be rep-
resented as a complex number, and this suggests the possibility of internal
phase angle radioactive decays wherein the integer numbers Z , N , A and n remain
fixed but their associated internal phase angles are decaying with time. For
all types of nuclear reactions and decays the integer baryon number is con-
served.

A complex number form of the liquid drop nuclear mass formula can be
developed and applied to the calculation of the binding energy of atomic nu-
clei. Similarly, a complex number Bohr-Wheeler fission equation can be devel-
oped that describes the condition for spontaneous and thermal neutron induced
fission of atomic nuclei located in an electromagnetic or gravitational field.
This fission condition suggests that the internal phase angles associated with
Z ,N and A can be affected by the application of an electromagnetic field in
such a way that nuclear fission by thermal neutrons can be catalyzed by y rays
in subactinide nuclei for which the fissility parameter satisfies X < I and
which ordinarily would not undergo fission by thermal neutrons.

The catalysis of thermal neutron induced clean fission requires a) that
the frequency of the incident y rays be tuned to the giant dipole resonance
frequency of the particular subactinide element that is selected to be used as
fuel in a nuclear reactor, and b) that the incident y ray photon number density
be larger than a critical value required to make the internal phase angle of
the atomic number ez equal to a critical value 60 that is required for fission.z
This means that y rays in the range of 12-25 MeV must be used to catalyze ther-
mal neutron induced fission in the subactinide elements, for example 63Cu re-
quires 20 MeV y rays. The fission of subactinide elements will produce fission
products that have low level beta, alpha and neutron emissions, so that the
radioactive wastes from clean fission nuclear reactors will be not nearly as
dangerous as the fission waste products from conventional 235U or 2 3 9 Pu nuclear
reactors. By using intermediate weight elements such as ,9Co 58Ni or 63Cu as
fuel elements for y ray catalyzed thermal neutron induced fission, it is pos-
sible to construct clean fission nuclear reactors that have no radioactive
waste products whatsoever. Finally, the dangerously radioactive fission waste
product elements of conventional 2

3U and Pu nuclear reactors can be used
as fuel in y ray catalyzed clean fission reactors, thereby offering a useful
way of eliminating present day stored radioactive wastes.
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Table 1. Nuclear Characteristics of the 7 Ray Catalyzed Clean Fission
of Actinide and Subactinide Elements by Thermal Neutrons

Nucleus Z2 /A x 0F BF BF

(degrees) (1012 T) (10' T)

239pu 36.97 1.020 0 0 0

2333U 6.33 1.002 0 U 0

234U 36.17 0.998 2.7 3.27 1.34
2 35U 36.02 0.994 0 0 0

23I a 35.85 0.989 6.0 7.36 3.02

2 7 Th 35.68 0.984 0 0 0
238U 35.56 0.981 7.8 9.64 3.94

2STh 35.53 0.980 0 0 0
232Th 34.91 0.963 10.9 13.41 5.51
208Pb 32.33 0.892 18.3 22.51 9.41

18 1Ta 29.44 0.812 23.5 28.91 12.37
18°Hf 28.80 0.795 24.4 30.01 12.86

152Sm 25.29 0.698 28.8 35.42 15.61

139La 23.37 0.645 30.8 37.88 16.94

1271 22.12 0.610 32.0 39.36 17.87

9°Zr 17.78 0.490 35.5 43.67 21.00

aaSr 16.41 0.453 36.5 44.90 21.67

87Rb 15.74 0.434 37.0 45.51 22.01

"75As 14.52 0.401 37.8 46.49 23.05

64Zn 14.06 0.388 38.0 46.74 23.79

5SNi 13.52 0.373 38.4 47.23 24.44
63Cu 13.35 0.369 38.5 47.36 24.17
59Co 12.36 0.341 39.0 47.97 24.75

5GFe 12.07 0.333 39:2 48.22 25.10

160 4.0 0.110 43.3 53.26 34.16

14N 3.5 0.097 43.5 53.51 35.09

12c 3.0 0.083 43.8 53.87 36.23
AHe 1.0 0.028 44.6 54.86 44.33
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Table 2. Nuclear Characteristics of the 7 Ray Catalyzed Clean Fission
of Actinide and Subactinide Elements by Thermal Neutrons

Nucleus I01°O a K k fr

(102 T/deg) (1020 N/m) (1021 Hz) (fm)

2 39pu 4.086 5.026 1.744 3.116 96.19

233U 4.104 5.048 1.729 3.143 95.38

234U 4.101 5.044 1.732 3.138 95.51

235U 4.098 5.041 1.734 3.134 95.65

."31Pa 4.110 5.055 1.724 3.152 95.10

227Th 4.122 5.070 1.714 3.170 94.55

238U 4.089 5.029 1.741 3.121 96.06

22aTh 4.119 5.066 1.717 3.166 94.69

2 32 Th 4.107 5.052 1.727 3.147 95.24

2 08Pb 4.182 5.144 1.665 3.264 91.84

181Ta 4.280 5.264 1.590 3.419 87.68

18aHf 4.284 5.269 1.587 3.425 87.52

"252 Sm 4.407 5.421 1.500 3.624 82.72

13gLa 4.473 5.502 1.456 3.734 80.29

3271 4.541 5.585 1.412 3.848 77.91

9°Zr 4.809 5.915 1.259 4.316 69.46

88Sr 4.827 5.937 1.250 4.348 68.94
87Rb 4.836 5.948 1.245 4.365 68.68

71As !•.957 6.097 1.185 4.586 65.37

4Zn 5.090 6.261 1.124 4.835 62.00

58NI 5.174 6.364 1.088 4.996 60.00
63 Cu 5.103 6.277 1.118 4.860 61.68

59Co 5.159 6.346 1.094 4.968 60.34

56Fe 5.205 6.402 1.075 5.055 59.30

160 6.413 7.8F8 0.708 7.675 39.06

14 6.557 8.065 0.677 8.024 37.3C

1C 6.713 8.275 0.643 8.448 35.49

4He 8.080 9.938 0.446 12.183 24.60
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Table 3. Nuclear Characteristics of the 7 Ray Catalyzed Clean Fission
of Actinide and Subactinide Elements by Thermal Neutrons

Nucleus HF EF pF F n

( 1 0 9 amp/m) (1012 volts/M) (1022 W/M2 ) (MeV) (103 m-2 see-1 ) (1073 M-3)

239Pu 0 0 0 0 0 0

233U 0 0 0 0 0 0

23
4U 1.07 0.40 0.02 12.98 0.01 0.03

235U0 0 0 0 0 0
231Pa 2.41 0.91 0.11 13.04 0.05 0.18
22 7Th 0 0 0 0 0 0

238U 3.14 1.18 0.19 12.91 0.09 0.30
228Th 0 0 0 0 0 0
2 3Z2Th 4.39 1.65 0.36 13.02 0.17 0.58

208Pb 7.49 2.82 1.06 13.50 0.49 1.63

181Ta 9.85 3.71 1.83 14.14 0.81 2.70

'80Hf 10.23 3.86 1.97 14.17 0.87 2.90
1 52Sm 12.42 4.68 2.91 14.99 1.21 4.04

139La 13.48 3.08 3.43 15.44 1.39 4.62

1271 14.23 5.36 3.82 15.92 1.50 4.99

9°Zr 16.72 6.30 5.27 17.85 1.84 6.14
8 8Sr 17.24 6.50 5.61 17.98 1.95 6.49
8 7Rb 17.52 6.60 5.78 18.05 2.00 6.67

"75As 18.34 6.91 6.34 18.97 2.09 6.96
6 4 Zn 18.94 7.14 6.76 20.00 2.11 7.04

58Ni 19.45 7.33 7.13 20.67 2.15 7.18
6 3 Cu 19.23 7.25 6.97 20.11 2.16 7.22

5 9Co 19.69 7.42 7.31 20.55 2.22 7.40
56Fe 19.97 7.53 7.51 20.91 2.24 7.48

16o 27.18 10.25 13.92 31.75 2.74 9.13

14N 27.92 10.53 14.70 33.19 2.76 9.22

12c 28.83 10.87 15.67 34.94 2.80 9.34

"He 35.27 13.30 23.45 50.40 2.90 9.69
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THERMONUCLEAR REACTIONS IN STRONG GRAVITATIONAL FIELDS

Richard A. Weiss
U.S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. This paper calculates the rates of thermonuclear reactions in
gases that are located in gravitational fields or magnetic fields which are
sufficiently strong as to produce a partially coherent or totally coherent
spacetime state in the gases. Within broken symmetry spacetime the space and
time coordinates are represented by complex numbers in an internal space, and
therefore the single particle momentum and energy must also be represented as
complex numbers in an internal space. The variation of the space and time
coordinates and the kinematical variables such as single particle momentum and
energy can occur in two limiting ways: a) an incoherent variation in which the
magnitudes of these quantities change, and b) a coherent variation wherein these
quantities rotate in internal space with fixed magnitudes. These two extremes
in the variation of the spacetime coordinates and the kinematical variables
determine the limiting forms of the internal energy, pressure and chemical
potential of a thermodynamic system because these physical quantities are derived
from integrals of distribution functions with respect to complex number single
particle momenta or energies. The equations of state for the noninteracting
Boltzmann, Fermi and Bose gases are derived for the broken spacetime symmetry
state that is induced by a gravitational field. The complex number phase space
integrals for the particle number, internal energy and preissure are developed for
the partially coherent spacetime state of classical and quantum gases and are
then specialized to the limiting case of incoherent and coherent spacetime. The
thermonuclear reaction rates for the Boltzmann, Fermi and Bose gases are
calculated for the general case of partially coherent spacetime, and then
specialized to the cases of coherent and incoherent spacetime states. It is
suggested that the measured neutrino deficit for the sun can be explained by the
combined effects of the lowered nuclear reaction rates due the effects of the
time renormalization group equation and by a reduction in the thermonuclear
reaction rates due to a coherent spacetime state which may exist in some regions
of the interior of the sun.

1. INTRODUCTION. Element formation in stars is due to a series of
thermonuclear reactions. 1-8 The same reactions are responsible for energy
generation in stars whose light is observed and analyzed by scientists on the
earth in an attempt to understand nucleosynthesis. The types and rates of
nuclear reactions depend on the central temperature and density of stars, and
therefore the initial mass of a star ultimately determines the relative abundance
of the elements that are synthesized.1- 8 Only objects with masses greater than
0.08 Me are stars with thermonuclear reactions in their interiors. Low mass
stars with M < 1 Me remain main sequence stars that undergo hydrogen burning and
convert hydrogen to helium. 1` For stars with M > 1 Me helium burning and heavier
element burning occurs and the evolutionary outcome depends on the initial
stellar mass. For initial masses varying from 1 to 8 Me the stars can lose
enough mass to reach a white dwarf end state with a mass of about 0.6 MK and an
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interior consisting mainly of 12C and degenerate electrons. 1-8 The maximum mass
of a white dwarf is M - 1.4 MO, the Chandrasekhar limit. For stars with initial
masses greater than 8 MO it is not possible to lose sufficient mass during their
lifetimes and the cores of these stars undergo a series of contractions to higher
temperatures and densities which lead to the thermonuclear production of elements
heavier than helium and resulting finally in a core consisting of 56 Fe and
degenerate electrons. 1-8  Since 56Fe has the greatest binding energy it cannot
undergo subsequent fusion reactions and the mass of the iron core begins to grow.
When this core of iron and degenerate electrons exceeds the Chandrasekhar limit
a collapse occurs with a rapid electron capture by the protons of the nuclei
which leads to neutron rich nuclei, neutron drip and ultimately to a supernova
explosion and the possible formation of a neutron star if the remnant stellar
nucleus has a mass M < 3 MG.1"* Supernovae explosions are responsible for the
heavy element distribution in the universe. 4,9-13 The final evolutionary
development for supernova remnants with M > 3 Me results in perhaps a black hole
if classical general relativity is valid at high densities. However, quantum
gravity effects may lead to different final collapsed states, but quantum gravity
is not yet properly understood. Light elements such as deuterium, lithium and
helium were formed mainly during the big bang nucleosynthesis.1415

Supernova nucleosynthesis in stars results in a distribution of heavy
elements throughout the universe in the form of stars and planets. The measured
element abundances can be used to develop models of the thermonuclear reactions
in stars and these can be used in conjunction with laboratory measured fusion
cross sections to understand the temperature, pressure and composition of stellar
interiors. There is good agreement between measured abundances of heavy elements
and the theoretically predicted abundances based on a standard model of
nucleosynthesis. 1-10 Energy production in stars appears ultimately to an observer
on the earth as electromagnetic radiation and as particle radiations such as
neutrinos. From an analysis of these emanations the astrophysicist attempts to
develop physical models of stellar interiors that predict the luminosity and
spectrum of the photons and neutrinos emitted from the interior regions. The
observed electromagnetic emissions from stellar surfaces agree very well with the
theoretical model predictions of the stellar surface temperatures. 2 However, the
agreement between measured and predicted neutrino production is not good. Over
the past decade it has become clear that the predicted neutrino flux generated
by the standard model of nucleosynthesis is about three times larger than the
neutrino flux measured in detectors on the earth. 16-21 Several explanations of
this discrepancy have been suggested, including oscillation of supposed massive
neutrinos.16 -2 9 It is not yet clear whether the discrepancy between the measured
and predicted neutrino fluxes is due to errors in the standard nucleosynthesis
model or to some other process such as neutrino oscillations during their transit
from the sun's interior to the earth. 16 -

29

Several explanations of the experimental neutrino deficit can be given in
terms of the internal structure of stars. One idea that has been suggested is
that the calculation of the rates of processes that occur in a medium must depend
on the state equation of the bulk matter within which the processes occur. 30

,
3 1

Thus the thermonuclear reaction rates within the interior of stars must depend
not only on the values of the temperature and density of the stellar gases but
also on the state equation of the stellar material.39 0 31  The renormalized
relativistic time constant t' of a process such as a thermonuclear reaction
occurring in a real gas must be related to the unrenormalized time constant t0
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for the process, as given by a standard calculation, by the following gauge in-
variant time renormalization group equation 3,31

t -8 atl'/aE' + 3$ at'lap =a' t af a, aa'1E a' (IA)

where the gauge parameters are given by

$ T/V'(dU'/dT) a = T/V'(dUa/dT)a,, (2)

'=d/dV'(P'V-')u, aat, dV (paV,)u(3)

P a

where T = absolute temperature, V1 = volume of space in broken symmetry space-
time, U' and Ua' = renormalized and unrenormalized values of the internal energy
in broken symmetry spacetime, E' and Eat - renormalized and unrenormalized val-
ues of the energy density in broken symmetry spacetime and where P' and pa' -

renormalized and unrenormalized values of the pressure in broken symmetry space-
time. The renormalized and unrenormalized (standard) rates of a process are
given by R' = 1/t' and Ra' = 1/ta' respectively. The time renormalization group
equation (IA) is formulated to include the Minkowski metric, and generally pre-
dicts that processes occurring within a real medium run slower (t' > ta') than
the standard calculations would predict. 3 0  For an ideal gas BE = 0 and 4 . 0
so that t' = ta' . Quantized versions of the time equation (IA) have been for-
mulated which suggest that energy and pressure fields can have a time structure,
and that the rates of processes such as thermonuclear reactions can be depressed
or enhanced according to how structures of time can form within the matter in the
interior of stars.31 The quantized version of the time equation is written as31

(I - w')(t' - 8a at'/aE') + 38' at'Iap' = 0 (IB)

where w' can be a discrete or continuous eigenvalue. For an ideal gas w' - I
S= 0 and 8p = 0

Probably more than one effect is responsible for the measured neutrino
deficit, and equations (IA) and (IB) are only part of the solution. This paper
suggests an additional effect that causes another portion of the neutrino def-
icit, namely that the discrepancy between the experimental and predicted neu-
trino emission rates from the sun is also due to an overestimation of the neu-
trimo generation rate Ra' in the standard stellar models because of the assump-
tion that the stellar interior can be described by an incoherent spacetime Max-
well-Boltzmann gas. 2 It is suggested in this paper that in fact stellar inte-
riors should be described by a Maxwell-Boltzmann gas in partially coherent or
totally coherent spacetime, and that this combined with the time equations (IA)
and (IB) if interactions are considered can describe the measured neutrino def-
icit. For ideal gases the time renormalization group equations (IA) and (IB)
give R' = Ra' , and only the effects of broken symmetry spacetime contibute to
the measured neutrino deficit.

A material existing in coherent spacetime is a special case of a material
embedded in broken symmetry sparetime having partial coherence. The broken
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symmetries of spacetime can be described by writing the spacetime coordinates
as complex numbers in an internal space in the following manner 3 2

t = t exp(je ) (4)

x = x exp(j6x) = y exp(j8y) = z exp(jeZ) (5)

where 0t ,x , ey and 6z = internal phase angles of time and space. The volume
of space is written for the general case of broken symmetry spacetime as30-32

V1 = fjdýf = f sec v dV = f csc B VdeV (6)

where

tan aVV = Vaev/aV (7)

For incoherent spacetime
3 0 -3 2

vv M' =V (8)

while for coherent spacetime 3 0 - 3 2

W = •/2 V' VOV (9)

Qx = ey =ez = /3 at =7/6 (10)

Exhaustive treatments of the statistical mechanics of matter for incoherent
spacetime can be found in the literature. 33-3 This paper extends this litera-
ture by treating the statistical mechanics of ideal gases for partial and total
coherence of spacetime.

The calculation of the measured pressure and internal energy of a thermo-
dynamic system requires the solution of a renormalization group equation which
relates the renormalized relativistic internal energy and pressure to the unre-
normalized (standard) values of the internal energy and pressure by the follow-
ing relativistic trace equation 3 0- 32 ,36

U' + T(dU/dT)_ V'- 3V'd/dV'(P'V')., = Ua, + T(dU•a/dT)_ (11A)p pa'vI

where P1 and U' - renormalized complex number pressure and internal energy in
broken symmetry spacetime, and Pa' and Da' = unrenormalized pressureand inter-
nal energy in broken symmetry spacetime. If the complex number renormalized
pressure and internal energy are written as32

P' - P' exp(jp) U1' = U' exp(JB;) (12)

then the measured pressure and internal energy are given by 3 2
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"P ' = P' CosUm f U' cos a (13)

For ideal gases (for which P'V' = 2/3U') it follows from the relativistic trace
equation (11A) that 3 6

P a = j, a' (14)

The quantum version of equation (IIA) is written as 3 1

(1 - j')[U' + T(dU'/dT)PVI - 3V'd/dV'(P'V')_ ffi 0 (liB)P'U'

where ' = continuous or discrete eigenvalue. For interacting systems the un-
renormalized quantities Da' and Ta, must first be calculated, and then the rel-
ativistic trace equation (IIA) must be solved to determine U' and P' in order
to obtain the measured values of the pressure and internal energy givenbyequa-
tion (13). Equations (11A) and (lIB) are renormalization group equations that
are analogous to the time equations (IA) and (IB) respectively. For a complete
analysis equations (IA) and (IIA) or equations (IB) and (lIB) must be solved
jointly to determine the thermonuclear reaction rates in stars whose gases have
real state equations. The effects of broken symmetry spacetime appear in all
four equations (IA), (IB), (IIA) and (liB) through the variable V' . However,
in this paper ideal gases are treated and none of these four equations need be
considered because t' = ta' and U' = Ua, and the superscript "a" will be dropped
throughout this paper. Only the effects of broken spacetime symmetry on ideal
gas state equations and thermonuclear reaction rates are considered in this paper.

Consider now the velocity and acceleration of a particle located in
spacetime with broken internal symmetries. For simplicity only the radial co-
ordinate is considered but similar expressions hold for cartesian coordinates. 3 2

For spacetime with broken internal symmetries the change in the complex number
radial coordinate p and the change in the complex number time t are written as

seca dp exp(j(O0 +a )] (15)

f csc 6pp pd6 exp[J(O + 8)]I (16)

dt = sec 8at dt exp[j(Ot + 8O)] (17)

csc aPtdP exp[j(8O + 8Bt)] (18)

where

tan B t taeP/at tan p - paO /ap (19)tn ti PP

The velocity can be written as

v v exp(jev) - d5/di - d/di[p exp(Jep)] (20)
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where

V = Cos 6P sec 8 dppdt (21)

= sin csc pt dO /d (22)
tt pp p t

ey= e +a (23)O Bp -P t tt (3

For coherent spacetime

p =/ /2 (24)

so that

d5= -jd8p di - jtd80 (25)

For the coherent spacetime state it follows that

vcoh = p/t de/dep ecoh = 0 - (26)
v p t

where = internal phase angle of time that is associated with the time vari-

ation of the radial coordinate. In general each coordinate x Sy , z or r ,0 , z

or p $ , 4 has it's own internal phasa angle of time e , ey eZ or r ,0 0t or
Pti t~ t t' t' tP , 8•e~6 6t t* "

The change in velocity is written as 32

dv = sec Bw dv exp[j(Ov + 8 vv)] (27)

- csc 8w vdOv exp~j(Ov + 0 )j (28)

where
tan B. = vae /3V (29)

vV V

and therefore the acceleration is given by

a a exp(JOa) = dvldt (30)

where
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a = cos sec 6 dv/dt (31)a cs tt V

= cos 6 sec 6 d/dt(cos $ sec B dp/dt) (32)
tt v-v tt PP

= sin 6tt csc w v/t d v/dOP (33)

= sin 2 csc 6 csc 6 p/t2 dO /dop dO /do (34)
t v PP v t 0 t

= e + P -op a P (35)
a v vv t tt

=p + ý + P6 t2 (tp +O) (36)

p vv pp t tt

Equation (34) can also be written as

a - sin pcsc csc a p/t2 (de /d6P - I + d/det(p - 6t )]do /d0 (37)
pp pi vtt t t pp tt p t

For coherent spacetime equation (24) is valid and equation (29) becomes

coh 2d~d 2de
tan a = do p / - 1)/(d e/dep (38)

while from equations (24) and (35) through (38) it follows that

acoh .p/t 2 [(do /dP) 2 (do /dep 1) 2 + (d2 e /do" 2) 2]1/2  (39)
p t p t p t

ocoh e - UP + acoh - i12 (40)
a P p vv

These equations simplify further if 8P= bep + e with b < It

Bcoh 7r/2 dO2 /doep 2 = 0 dO /deP b (41)
2v t Pw p

and equation (28) becomes for coherent spacetime

di- V JdO (42)

-
v

while equations (39) and (40) become

acoh = p/t 2 jb(b - 1)! = p/t 2 b(1 - b) (43)

ecoh 8 0 - 28P (44)
a P t

because in general b • I

The single particle momentum is written as
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p exp(jO ) = my (45)p

p mV 8p ev (46)

so that equations (27) and (28) give

dp = sec 8pp dp exp[j(ep + 8 pp)] (47)

= csc 8pp pd8P exp[J(8p + 8$)jJ (48)

where

tan 8pp = pao p/ap (49)

The single particle energy is written as

e= exp(j8 ) = /(2m) (50)

so that

Sp 2/(2m) E = 26 = 2e (51)

where ev is given by equation (23). The variation of the complex number single
particle energy is then written as

d•= sec 8 £ de exp[j(C + a e)] (52)

= csC 8CE ed6 exp[j(E + ce)] (53)

where

tan 8 = E3 ela/ (54)

For a coherent spacetime state described by equations (24) and (41) it follows
that

app w /2 8BF = r/2 (55)

and

d= jpd0 dE = j~d05  (56)

where the magnitudes of the single particle momentum and energy are constants,
P = Pc and e W Cc" Equation (56) will be used in Sections 2 through 5 to eval-
uate the basic complex number integrals of the statistical mechanics of Boltz-
mann, Fermi and Bose gases for the case of coherent spacetime.

The state equations and thermonuclear reaction rates associated with the
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ideal Boltzmann, Fermi and Bose gases in incoherent spacetime are given by well
known standard formalisms.1- 3 This paper extends these calculations to the cases
of partially coherent and totally coherent spacetime that are associated with
matter in strong gravitational fields. Specifically, Section 2 considers the
determination of the chemical potential, internal energy and pressure of an ideal
Boltzmann gas that is located in spacetime with broken internal symmetries, Sec-
tion 3 studies the state equation of a noninteracting Fermi gas in a spacetime
with partial or total coherence, Section 4 treats the statistical mechanics of
an ideal Bose gas in broken symmetry spacetime, and finally Section 5 evaluates
the thermonuclear reaction rates that are expected to occur in ideal Boltzmann,
Fermi and Bose gases that are located in the partially coherent or totally co-
herent spacetime that exists in the presence of strong gravitational fields.

2. STATISTICAL MECHANICS OF A BOLTZMANN GAS IN A STRONG GRAVITATIONAL
FIELD. This section examines the statistical thermodynamics of a noninteracting
Boltzmann gas that is located in a gravitational field or other external field,
such as an electromagnetic field, that induces a broken symmetry in the local
space and time coordinates. The Boltzmann gas is important for the study of
thermonuclear reactions in ordinary stars where the nuclei can be described by
an ideal classical gas. The statistical mechanics of an ideal nonrelativistic
Boltzmann gas that is located in incoherent spacetime is exhaustively treated
in the literature. 33-35 This section calculates the chemical potential, inter-
nal energy and pressure of an ideal Boltzmann gas for the case of a partially
coherent spacetime and for a totally coherent spacetime.

A. Particle Number and Chemical Potential.

It is assumed that the number of particles ii is a complex number in inter-
nal space, like the complex magnetic quantum number M' of Reference 32, because
it represents a quantum number for a wave function that is expressed in terms
of a complex number coordinate • in internal space as follows

V= A exp(jniC) n = n exp(j ) n= exp(j8 ) (57)

where i , 5 and Z - complex number wave function, particle number and internal
space coordinate respectively. Then by the same argument given in Reference 32
for the complex magnetic quantum number M it follows that the requirement for
periodicity of the wave function gives

eZ - nC n = - 6 (58)n

The measured internal space coordinate is given by 3 2

ým = ý cos 0 (59)

The requirement that the wave function be periodic in terms of the measured
internal space coordinate gives the following condition 3 2

nC - (n/cos 0 )ým = N4m (60)
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where N = integer, so that the complex particle number can be written

n = n exp(jO ) (61)

n
= N cos 0 n exp(jO n) N cos 0 Cexp(-j0 (62)

where N = integer number of particles. Therefore

n = N cos 8 = N cos 0 (63)n

and the real and imaginary parts of the particle number are written as

nR = N cos 2n (64)

nI = N cos 0n sin en (65)

The measured particle number is then given by

n = N cos2n = n cos n (66)mn n

The quantities N and en are assumed to be known, and equations (61) through (66)
immediately determine R , n , nR , nI and nm . These equations are formally iden-
tical to the equations for the complex magnetic quantum number M and the integer
magnetic quantum number m with the correspondence n -+ R and N +-+ m if N is al-
lowed to have positive and negative integer values, or if N is allowed to have
only positive integer values these equations are homologous to the equations for
the complex magnetic quantum number R' and the integer quantum number Iml with
the correspondence R +-(4 ' and N •-+ ImI .32

The total particle number can also be written as an integral of the Boltz-
mann distribution function over the space of single particle momenta and ener-
gies. 3 3 -3 5  The generalization to the case of complex number momenta and ener-
gies is written

ii I i exp(-8Z ) (67)

4TrV'i/h 3 f p2 exp[-ap2 /(2m)]d5 (68)

= V'2n(2m) 3 / 2 /h 3 f EI/2exp(-aE)dE (69)

where V' = broken symmetry volume given by equation (6), z complex number
fugacity, h = Planck's constant, 5 = complex number momentum integration vari-
able, 8 - 1/(kT), T - absolute temperature, m = mass of particles and

= = P 2 /(2m) = complex number kinetic energy per particle which in equation
(99) appears as an integration variable. The complex number fugacity is relat-
ed to the complex number chemical potential by the following generalization of
the standard result 3 3 - 3S
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z= exp(OT) = u exp(jQ ) (70)

where i complex number chemical potential. From equation (70) it follows that

z = exp(aw cos 6 ) Zn z = ap cos e (71)

0 = 8a sin O (72)z

Inverting equations (71) and (72) gives

tan ] = 8 (Zn z)-1 (73)SJ z

S= 6-1(02 + tn 2 z)I/ 2  (74)
z

which gives the chemical potential in terms of the fugacity.

Equation (69) can be written as

n = V'fiA = V'fzA exptj(0z + 6 A)] (75)

n=V'fzA 0n = +A (76)
n z A

where

f = 2r(2m) 3/2/h3 (77)

and where

A = AR + jAI = A exp(jOA) = f .1/2 exp(-$E)d (78)

A = (4 + 4,)12 tan 6A = A/AR (79)

The single particle kinetic energy integration variable is written as

S= e exp(j8 ) (80)

which gives

dE = sec $ exp[j(C + 8cc)]dc (81)

= E csc BEE exp[j(e + $ c)]d E (82)

where

tan 8 c ea /aE (83)

Then equation (78) can be written as
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" f E 1/2 sec 8 exp(-Oc cos 6 )exp[J(3i20 - 8c sin e + B c)]dj (84)
o E

1T/3Sf 3/2 csc 86 exp(-Be cos 8 )expfj(3/28 - Be sin 6 + a )IdO (85)
f Ce C C C C

so that the component integrals become

AR j f 112 sec Be, exp(-Bc cos 8 )cos(3/28 - B sin 80 + 8c )dc (86)

= ifc 33/2" csc aC exp(-8c cos 8 )cos(3/28 - 8£ sin 6 + 8 )dO (87)f c £ E CC C

A= fI/2 sec B$c exp(-Oc cos 0 )sin(3/2e0 - 8c sin e + 5 )dc (88)

0 £ £ C C

=i-3C32csc B0 exp(-Oc cos e )sin(3/26 - Be sin e~ + a )dO (89)
0

The values of A and 8A are then obtained from equation (79). Equations (63),
(76) and (79) can be used to determine z and 6z in the following manner

z = n/(V'fA) (90)

- (N cos 8 n)/(V'fA)

= (nm/Cos 8n)/(V'fA)

8z = 8n - 8A (91)

where f is defined in equation (77), and where ii and n are related to the inte-
ger particle number N by equations (61) through (63). Finally, equations (73)
and (74) can be used to determine 8e and u respectively. The measured particle
number is given by equation (66). Note that for 8n - 0 equation (76) shows that
the fugacity can still have an internal phase angle.

All internal phase angles are set equal to zero for the caseof incoherent
spacetime. For this case equation (75) becomes

• inc
N Vfz incA (92)

incwhere from equation (78)

A i C 1/2exp(-8C)d£ - 1/2vr8-31 2 - 1/2A(kT)3/ 2  (93)

0

Then equations (92) and (93) can be used to determine Zinc . These results are
the standard equations for the ideal Boltzmann gas.33-35
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Consider now the case of incoherent spacetime when the angle of the sin-
gle particle energy is given by 6E = 61 = constant, then equations (86) and (88)
are written as

inc f / exp(-c cos e E )cos(3/2ei 8 sin 8 )dc (94)

0

= II cos(3/2e0 ) + 12 sin(3/2e )

A inc f eI/2 exp(-ac cos 08 )sin(3/26i Be sin 8 i)dc (95)

= I1 sin(3/280) - I cos(3/20 )

where

1 f e I/2.exp(-Bc cos 86)cos(ac sin 8 )dc (96)
0

12 c c1/2 exp(-Bc cos 0 )sin(Oc sin 8 1 )de (97)
0

Setting c x2 allows these integrals to be written as

f= 2 x 2 exp(-Bx2 cos 6 i)cos(Sx2 sin 6 )dx (98)
0

12" 2 x X2 cXp(-BX2 Cos ei )sin(sx2 sin 0 )dx (99)
0

These integrals are evaluated in tables of integrals with the result 37

I1 = I/2/•ta-3/2 cos(3/20i) (100)

j

12 a/228wB-312 sin(3/2e ) (101)

Combining equations (94), (95), (100) and (101) gives

inc = -3/202)

inc
A 1 0 (103)I =

so that within the approximation ec = ei . constant the internal phase angle 0i
has no effect on the values of the integrals which are now just equivalent to
equation (93) for the case when all internal phase angles are set equal to zero.

Consider the representation of the particle number and the calculation of
the chemical potential for a Boltzmann gas in a coherent spacetime state. For
a coherent spacetime state $ce - w/2 and equation (85) becomes
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-coh cohcoh,
Acoh = Acoh exp(jcA ) (104)

3/2- = 3/2. 3/2.
"= tC = 31 exp(jw) = 3/ (W + JW)

c C W c R I

Acoh 3/2W coh Ow (105)
c A W

where c - cc M constant magnitude of the single particle kinetic energy, and
where

'r/3
S= j f exp(j3/20c )exp(-6i)dO (106)

0e
7r/3

- J f exp(-8yc cos 6 )exp[J(3/2e - Bc sin 8 )]d80

iT/3
WR - f exp(-Bc cos 6C)sin(Sc sin 0 - 3/2e C)de (107)

7r/3
W, = f exp(-$ec cos 3E)cos(a0c sin 0 - 3/20 )d% (108)

0

where the j that appears ir. equation (106).results from BE, = n/2 in equation
(85) and agrees with the results in equation (56). The particle number for the
coherent spacetime state is then obtained from equations (75) and (104) to be

S-Ve vfi cohACh =n exp(jl ) (109)

- Vvefe /2 coh
V coohh

3fV /2 coW exp[J( z + O

Vf Z co coh3/2 jeoh and

where Zcoh ' Zcoh exp(jOzC) and
W - 2+ 1/2 tan Ow - /W (110)

R I I/WR

Then

n3- Vvfr/2 n 0 coh + 8 (111)
n V cf ohW n z W(l)

From equations (63) and (111) it follows that the components of the complex

number fugacity are given by

Zcoh = (N cos On)/(VOvfAcoh) (112)

- (N cos 3n)/(Ve fe /2W)
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0coh = - OW (113)
z n

Then equations (73) and (74) can be used to determine the magnitude and the
internal phase angle of the chemical potential in coherent spacetime lcoh and
oh which gives l.coh ` Pcoh exp(jOc°') . The upper integration limit of r/3

in equations (106) through (108) is obtained from equations (10), (26) and (51)
to be Or = 20v = 2 (ep - Ot) = 2(r/3 - T/6) = n/3

B. Internal Energy of Boltzmann Gas.

In the presence of an external field which breaks the spacetime coordinate
symmetry of the vacuum, the internal energy of a Boltzmann gas can be written as
the following complex number generalization of the standard scalar result33-3 5

U - U exp(JOU) 4•zV,/3 j 2 pW/(2m) exp[-8 2/(2m)Id1 (114)

= V'fiB

where

B = BR + jBI B exp(jeB) f Z/2 exp(-6)dE (115)

where the broken symmetry volume V' is given by equation (6), f is given by
equation (77), and where i is given by equation (70). For partial coherence
the integral in equation (115) can be written as

f • 12 sec 80 exp(-8c cos 08 )exp[j(5/26 - 8c sin 6 + a )]dc (116)
0 C:C C C cc

f5 C csc 86C exp(-ac cos e )exp(j(5/2O - 8a sin e + 8a )]dO (117)

and therefore

BR - f 3/2 sec 80c exp(-8£ cos 0 C)cos(5/2Oe - 8c sin e + 8 C)dc (118)o CCC£C C

= r3 5/2" csc Eý exp(-Bc cos 6 )cos(5/20 - 8e sin e + 8 )d6 (119)o c E C cc C

B1 = f C3/ 2 sec 8aE exp(-8C cos C)sin(5/2O - 8c sin 0 + 8 )dc (120)

I 35
f5/2" csc 8a exp(-ac cos 6 )sin(5/2O, - 8$ sin 0 + 8 )dO (121)
O £ Ce C

Equation (114) can be written as

U - V'fzB eu = e + eB (122)z B

where
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B = +B /2 tan + = B IBR (123)

The average kinetic energy per particle is then given by equations (75) and
(114) to be

Z av / = B/A = B/A exp[J(OB - 8AM1  (124)

Eay /n = B/A Oavl - -A (125)
avC B A

Then the real and imaginary parts of -av are given by

CR Cay cos e = (ABR AB,)/ Aj + 2 (126)

av ~ 22Ca "av sin 6a - (ARBI - AIBR)/(A + A1) (127)

where AR and A, are given by equations (86) through (89).

For the case of incoherent spacetime all internal phase angles are set
equal to zero and equation (122) gives

Uinc . VfZ incBinc (128)

where f is given by equation (77), and where equation (115) becomes

Binc . 7 c3 1 2 exp(-Oe)dc (129)
0

8 8-5/2r(5/2) - 3/4rw8-5/2 . 3/4A•(kT) 5 / 2

which is the standard result. 3 3-3 5

If the internal phase angle of the single particle energy is assumed to
have a constant value 86 - ei - constant, the integrals in equations (118) and
(120) become

inc 3/2B . f exp(-Sc cos e8)cos(5/2ei - ae sin 8 )dc (130)
R 0 C

a 13 cos(5/2e ) + 14 sin(5/28 ) (131)

B ~ ic f 3/2 epBcose)sin(5/2e8 - BC sin e )d£ 12Bin - j £ exp(-8c cosi(12
0 C C C

" 13 sin(5/28e) - 14 cos(5/28 ) (133)

where
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f =7 3/2 exp(-Be cos B 1 )cos(OE sin e )dc (134)
3 0E E

1 f E3/2 exp(-ae cos 0 1)sin(8c sin i)dc (135)

4 0

By integration by parts it is easy to show that

13= 3/2$-(I cos 6 1 -_ sin 8) (136)31 c 2

-3/4/rw-5/2 cos(5/26 ) (137)

I = 3/28-1(1 sin 8i + 12 cos 8) (138)

4 1 c 2fl

- 3/44-r-5/2 sin(5/28 ) (129)

where I1 and 12 are given by equations (100) and (101). Combining equations
(131), (133), (137) and (139) gives

B inc 3/4V/8-5/2 (140)R

incBn 0 (141)I

and it is seen that within the approximation Bc = B£ = constant the phase angle
c0 does not enter the final expression for the internal energy of a Boltzmann

gas, and the result in equation (140) is identical to that in equation (129)
for the case when all internal phase angles are set equal to zero.

For the case of coherent spacetime 8££ wr/2 and V' = vev and equations
(114) and (117) become

Sfi c -Vcoh (142)

= Vevfe 5/2'ioh

= Ve fe 5/2 Z oQ exp[(j(6°h + 0Q)

V c oh Q

uCOh . Vv f5/2 ZcQ (143)
V c coh

ocoh . ecoh + O (144)U z Q

where cc a constant value of the magnitude of the single particle kinetic
energy, and where
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-coh 5/2- = 5/2 Q
c c R +JQI) QexpJQ1

Q 2 (Q2 + Q1 )/2 tan 8 Q I/QR (146)

with
7/3

= j f exp(-acc cos 60)exp[J(5/20 - 6c sin 06)]d0O (147)
0

nr/3
QR = f exp(-Be c cos 0-C )sin(Oc C sin 6 E 5/20C)d0c (148)

Tr/3

Q, - f exp(-Bc cos 0 )cos(Occ sin 6 - 5/20 )dO (149)

The average energy per particle for the Boltzmann gas in coherent spacetime is
obtained from equation (109) and (142) to be

..coh -coh ~.coh -cob -coh
Cav /T In = B A cQ/W (150)

coh 9coh e -ecar = ecQ/W co = 0Q - 6w (151)
av c - Q v 11

ane the real and imaginary parts of the average internal energy per particle
are given by

Rcob e EQ/W cos(eQ - W (152)

=c(WRQR + WIQI)/(Wi + W1)

avcoh EQ/W sin(OQ - eW) (153)•avI c

-c (WRQI - WIQR) / (WR WI)

where W is given by equation (106), WR and WI are given by equations (107) and

(108), and where W andsOW are given in equation (110).

C. Pressure of a Broken Symmetry Boltzmann Gas.

The pressure of a Boltzmann gas that is located in a broken symmetry
spacetime, such as may be induced by a strong gravitational field, can be cal-
culated from the following generalization of a standard result 3 3-3 5

I - V'•/i[/(kT)j = V'I/3i(aF) (154)

Combining equations (75) and (154) gives immediately

R= i/V'kT (155)
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where V' is given by equation (6). Combining equations (61) and (155) gives

P = N/V'kT cos 8n exp(je n) (156)

If 6VV iE constant it follows from equation (6) that

V' = V sec aVV = VeV csc aVV (157)

so that for this special case

P N/VkT cos cVV Cos en exp(jO n) (158)

- N/(VOv)kT sin cVV Cos 8n exp(Je n) (159)

where N integer number of particles in a container. The factors cos 8VV or
sin 8VV arise from the broken symmetry of spacetime. 32 The factor cos en arises
from the assumed periodicity of the quantum mechanical wave function in the mea-
sured internal space coordinates. The real and imaginary parts of the complex
number pressure are given by

PR = N/VkT cos $VV cos 28n (160)

= N/(VOv)kT sin cVV Cos 28 (161)n

PI = N/VkT cos a Vcos 8n sin 8n (162)

= N/(Vev)kT sin Vw cos 8n sin en (163)

The measured pressure is given by Pm - PR

The incoherent spacetime pressure of a Boltzmann gas is obtained from
equation (160) with 0w - 0 and en - 0 which gives the standard result 3 3-35

P - N/VkT (164)m

The coherent spacetime form of the pressure of an ideal Boltzmann gas is obtain-
ed from equation (161) with 8w - w/2 as

Pm - N/(VOv)kT cos 28n (165)

where 8n - - 8e and e - phase angle of the internal space coordinate that is
associated with particle number. As a first approximation 8n ", 0 so that equa-
tion (165) becomes

Pm - - N/(V v)kT (166)
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for the Boltzmann gas in coherent spacetime.

3. IDEAL FERMI GAS IN BROKEN SYMMEIRY SPACETIME. This section calculates
the chemical potential, energy density and pressure of an ideal Fermi gas that
is located in a gravitational field or other external field which breaks the
local symmetry of the spacetime coordinates. The cases of partially coherent
and totally coherent spacetime are considered. These calculations may be of value
for the study of the thermonuclear reactions in stars where spin 1/2 nuclei are
the dominant reacting particle species as suggested in Section 5.

A. Complex Number Chemical Potential for Fermi Gas.

The chemical potential is determined by writing an expression for the to-
tal number of particles in terms of a sum over the complex number single parti-
cle momenta or single particle kinetic energies. The complex number generaliza-
tion of the standard scalar result is easily written as33-35

I= X [1/i exp(Ep ) + 1]-1 (167)
p

47rV'/h3 f p2{I/i exp[p2 /(2m)] + l1-Idý

= fV'f E1/2 [I/ exp(W) + l'1 de

= fV'f Z1/2[exp(ý) +1I]-ild

where f is given by equation (77) and where

= Ra - 5) (168)

where z and i are related by equation (70). The following series expansion is
used to evaluate the integral in equation (167)

[exp([) + 11- = exp(-E)[1 + exp(-_)]-1 (169)

"i (-) V-I exp(-vZ)

v-1

v(-I) -1 iv exp(-v-F)

Then equation (167) can be written as

R= fV' (-1)V1 -Z - (170)
V1 V

where

li- H% exp(JOHV) - HvR + JHv - f E1 / 2 exp(-vOF)dZ (171)

and where f is given by equation (77).
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The integral in equation (171) can be rewritten for partially coherent
spacetime as

V - fI/2 sec 6EE exp(-vaE cos 6 C)exp[j(3/26 - v•8 sin 8 + 8C )Ide (172)

Mw/3E3/2" csc 8a exp(-vae cos 6 )expfj(3/26 - v8c sin 6 + 8B )jd8 (173)

o E E

or in component form as

HvR f C 1/2 sec 8$c exp(-Vac cos 6 )cos(3/28£ - v8c sin e + 8c )dc (174)

-f33/2 csc 8 exp(-v8c cos 6 )cos(3/2e - v8e sin 8 + 8 )d6 (175)

0 £ 0

Hv, f o1/2 sec 80 exp(-V8£ cos 6 )sin(3/20 £ - v08 sin 6 + B C)d£ (176)
0

-n/ s 312C exp(-V Cos 6 )sinC3/26 - v8c sin e + 8 )d8 (177)fcsc C£ Ex(-; Eo ECsn(/8 E
0

These component terms give

H - (H 2  + H2 )1/2 tan 8HO = H /H (178)
v yR vi l V I viaR

and then equation (179) can be written as

H - fV' I (-1),-I zH exp[j(vOz + 6Hv)] (179)
V=l

Taking the real and imaginary parts of equation (179) and using equations (64)
and (65) gives

N cos 2 n *A fV' 1 (-1) v-I zVHV cos(vO + OHv) (180)
v-i-v ' v- V siZ

N cos 6n sin 6n - W (-I)V-1 zVH sin(vS + HV) (181)
v1I

where N - integer number of fermions. Equations (180) and (181) are two equa-
tions which can be used to determine z and 8z from which v and 6V can be obtain-
ed by using equations (73) and (74). Equation (180) gives the measured parti-
cle number as shown in equation (66).

The case of a Fermi gas in incoherent spacetime is obtained by taking all
internal phase angles to be equal to zero. Then equation (170) gives

N - fV [ (-1)v-I Zin H inc (182)
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where from equation (183)

Hinc = f ei/2e'p -var)de (183)
V

= 3/2 -3/2 = 1/2 r -3/2( 3/2
= (1ý) r(3/2) -1/2/ý(v5) v (T

which is the standard result for the ideal Fermi gas. Equation (182) can
be used to determine Zin_ . Following the same arguments given in equations (94)
r'Irough (103) it is easy to show thatforthecase e 8- - constant equations(.74) and (176) become

H inc i/2Ar(\)B)-3/2(14inc= (184)
vR

Hinc 0 (185)

which are independent of the angle 6e , and which are identical to equation (183)
which is valid for 8 E = 0 .

The particle number for fermicns in coherent spacetime can be obtained by
taking V' - VOV in equation (170) and by taking ace -T/2 in equations (173) and
(175) with the result

i =fVeV I (-l) v-I zv Hcoh (186)
Vo coh V

= fVev I (I)V-i zV H coh exp[j(vecoh + ecoh (187)
V coh v z Hv

where

coh E. E c .3/2E exp(j E3/2 (E + JE) (188)v c v c v Ev c vR VI

Hcoh = c3 / 2 E 8 coh (189)
V c V Hv 0Ev

where cc a constant magnitude of the single particle kinetic energy, and where

71/3

V - j f exp(j3/2e )exp(-vOF)d0 (190)

or
ir/3

E= j f exp(-vec cos E )exp(j(3/20e - VBcc sin Oc)]d% (191)

which can be written in component form as
7r/3

E\R " f exp(-v8ac cos e )sin(v~cc sin 8c - 3/2 c)dOE (192)

ir/3
Ev1 I of exp(-vBoc cos c)cos(vBc c sin 80 - 3/2 c)dec (193)

0
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E = (E2  + E2 )1/2 tan 6 E /E(R + Ev VI yR (194)

The values of Zcoh = (zcoh z coh) can be obtained from equations (186) through

(189) by writing

3 = fV6v/2 (-1),-I co V (193)
Vc 1coh V

or equivalently as

R = fVvE 3/2 1 (-1),-1 Zov exp[j( zcoh + ] (196)
V c 1cohv -Z Eo

The real and imaginary parts of equation (196) give

N cos 2 = fV6 C3/2 1 (- 1 )v-1 ZV vco(197)
n V + cEv(

N cos e sin 0 = fveC 3/2 (-1)v-1 zoh E sin(ve + E (198)
n n Vc coh V z E(V=i

coh
Equations (197) and (198) are the two equations that determine zcoh and ez for
coherent spacetime. Equations (73) and (74) can be used to determine Ucoh and
Ocoh . Equation (197) is the expression for the measured fermion number for co-
herent spacetime in accordance with equation (66).

B. Internal Energy of Fermi Gas.

For a Fermi gas located in a strong gravitational or magnetic field the

spacetime symmetry is broken and the internal energy is written as a general-
ization of the standard scalar form as follows -

U = U exp(jeU) = fV'f F3/2 [exp(Z) + i]-1 d (199)

where f and ý are given by equations (77) and (168) respectively. Using the

series expansion in equation (169) gives

fv' (-1) I V5 (200)

Sf V • -I v - I z v z 8 v
=fV (-1) Vz J exptj(vO + ] )1 (201)

where

J = JV exp(jQj)=V vR + Jl ' ii 3/2exp(-vaZ)d9 (202)

Jv y (1R 2 + 2)1/2 tan v J/JR (203)

The problem then is to determine JvR and Jvl
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For partially coherent spacetime the integral in equation (202) can be
written as

f = 3/2 sec SE exp(-vBe cos E)exp[j(5!26 - vBc sin 6E + 8e )]dc (204)

"f352csc 8 exp(-vae cos 0 )exp[j(5/26 - v•8 sin 6 + 8 )]d8 (205)

0 c S S S c

from which the real and imaginary parts are obtained as
vR o3/2 sec B exp(-v8e cos 6 )cos(5/26 - v8s sin 0 + 8 )dc (206)

0

iT/35/f e•5/2 csc a. exp(-vsc cos E)cos(5/20 - vBe sin 0 + 8c )dO (207)

0 5 £

V f 0 c 3/2 sec 8CE exp(-v8c cos e)sin(5/28C - v8e sin 8 + 8 c)dE (208)

0

ir/3 5/2 £ Esn/2 -v sn8+ dB (09f e csc a exp(-vBE cos sn52 asi6+8 d (09

These component values can be used to determine JV and Ojv by equation (203),
and then U is calculated from equation (201) in terms of z and ez which are
determined from equations (180) and (181). The real and imaginary components
of the internal energy are obtained from equation (201) as

UR =fV' l (-1)V-1 zV J cos(vz + 8j) (210)
R v 1 V Jv

U, fV' (-1) 'l z'J sin(vO + Oj) (211)

The measured value of the internal energy is given by Um - UR . The average
complex number energy per fermion is obtained from equations (170) and (200)
to be

av (-i) (-I) zH 1 (212)

whose real part gives the measured average energy per fermion as 5 avm " cavR•

The internal energy for the case of incoherent spacetime is obtained by
setting all internal phase angles equal to zero and equa. ion (201) becomes

Uinc fV ( -I Z inc. (213)v-I .ncv

where from equation (202)
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inc f c3/2 exp(-vc)d (214)
V 0

= (vO)-52 r(5/2) = 3/4AVv-52 (kT)512

Equations (213) and (214) represent the standard case for the internal energy
of an ideal Fermi gas. 33-3S A comparison of equations (183) and (214) show that

Hinc = 2/38vJinc (215)
VV

For the incoherent spacetime case with 0. O constant it followsby the same

arguments given in equations (130) through (141) that equations (206) and (208)
become

jinc = 3/(v8) 5 / 2  (216)
yR

inc.
in V 1 (217)

which is identical to the case in equation (214) that was obtained by taking
O- = 0.

The case of coherent spacetime can be obtained by taking ýEc - n/2
V' =V0v and c = cc = constant so that equation (201) becomes

coh - fVOV ()V- v -coh (218)
X ( 1 )V4 coh IV(218)

- fVv (-I)V-I zv- j coh exp[j(vecoh + ^coh (219)VV1coh V z JV

where f is given by equation (77), Zcoh and 6cOh are given by equations (197)
and (198), and where for coherent spacetime equations (205), (207) and (209)
become

co 5/2 5/2 exP(jO /2(S + JS (220)
J c S c S expC vR V

or

Scoh . C5/2S ocoh (221)
v C V Jv =Sv

where
ir/3

S - j f exp(j5/2Oc)exp(-v8•)d8 (222)
o £

M j f exp(-voc cos 8 )exp[J(5/20e - v~c Csin 8 c)]d6E (223)

ir/3
SvR = f exp(-v8 c cos c )sin(vB£c sin - 5/2e c)de (224)
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iT/3
SvI = f exp(-v8cc cos 8 )cos(vgc sin 8 - 5/28 )d8C (225)

0

and

S = (S2 + S2 )1/2 tan 8 S = /S (226)
v yR v1 Sv VI yR(26

Therefore the internal energy for-fermions in coherent spacetime can be written as

Ucoh " fV6v e5/2 I (-1),-ZcohSv (227)

so that

Ucoh fV6vC5/2 (-i)V-I z S cos(veO + ) (228)
R = Zcoh v z SVvs 1

Ucoh fVgvC5/2 (-I)v-1 Z VoS sin(vO°cob + 8S) (229)
I Z

The measured value of the internal energy in coherent spacetime is given by
equation (228), and can be a negative quantity. The average value of the in-
ternal energy per fermion in the coherent spacetime state is obtained from
equations (195) and (227) to be

-coh . -coh/R

=c (-1) Zv-hI v /[ (-I) ZS6hE c V (230)

where S and E are given by equations (222) and (190) respectively.

C. Pressure of a Fermi Gas in a Gravitational Field.

The expression for the pressure of a Fermi gas located in broken symmetry
spacetime is given by the following complex number generalization of the stan-
dard statistical mechanics expression33-35

P/(kT) - I/V' I tn[l + i exp(-SF)] (231)
P

= 41/h3 f p2 tn[1 + 1 exp(-O p)]dp (232)

- 2w(2m) 3 / 2 /h3 f F1/2 tn[l + 2 exp(-OZ)]dF (233)

It is easy to verify the following series expansion

tn[l + i exp(-?)] - L (-1)v-I iv/v exp(-vOF) (234)
V-1

Then the pressure of a Fermi gas in partially coherent spacetime is given by
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P/(kT) = f I (-I)'-i zl /H (235)

where f and Rv are given by equations (77) and (171) respectively. The result
for the pressure in equation (235) can be obtained directly by combining equa-
tion (170) with the completely general equation (154). From the general rela-
tion for the ideal gases

P= P exp(jp) 2/3U/V' (236)

it follows from equations (200) and (235) that

H = 2/38vJ (237)

Equation (235) can also be written as

P/(kT) - f (-I)-I z V/v H exp[j(v8z + eH) (238)
v=1

so that

PR/(kT) = f (-I) v-I z/v H cos(vO + ) (239)
RI V z HvV=l

PI/(kT) = f i (-,)v-I zV /v H sin(O z + 8Hv) (240)

and
tan p = P I/PR (241)

The measured pressure is given by equation (239).

For the incoherent spacetime case the pressure of a Fermi gas is obtained
from equation (235) as

inc= fkT (-I)v- ZnV Hinc (242)

v-iinc. v

2/3f (1I)v 1 zV inc

where Hn is given by equations (183) and (215), and

ainc, Hinc/( 2 / 3 8V) s 3/4v-5/ 2(kT) 5 / 2  (243)
v v

which is the standard textbook result. 33-3S

For coherent spacetime the pressure of a Fermi gas can be obtained from
equations (188) and (235) to be
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"coh/(kT) -f (-I),- I (l- Z coh (244)
-coh oh

= fE-3 /2 (-1)vl i V /vE (245)

c c• ( oh/v E Vexpj( z + 8Ev)] (246)

For a coherent spacetime the pressure is given by

-coh -2/3-coh/(VeV) (247)

and a comparison of equations (218), (220), (227), (245) and (247) gives

gcoh . 2/3,vc' (248)
V V

or

E 2/36vc S (249)v cv

or equivalently

EV = 2/38vecS eEv = 6SV (250)

Equivalently the coherent spacetime Fermi gas pressure is written as

-coh . 2/3f 5/2 (_1)v- 1  o (251)
C h Vv-i

S2/3f5/2 (-l)'-1 z VoS exp[j(vO + 8 + ) (252)
v- coh v z SvV=l

Finally, the real and imaginary parts of the Fermi gas pressure in coherent
spacetime is given by

pcoh fkTc3/ 2 1 (-1)V-1 oh/v E cos(v coh + EV) (253)
R c coh v z

- 2/3fe /2 (-l),-I zoV S cos(vecoh + ) (254)
c Icobhv z Evv-I

pcoh . fkT 3/ 2 • (-)- v1 z oh/v E sin(v coh + (Ev (255)
c V Z 2

- 2/3fe 5 /2  (-,1 )v-1 zv S si(ve cob + e (256)
vm Zoh Vz Ev

where SV and eSv are given by equation (226), and Ev and 6Ev are given by

equation (194).
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D. Zero Temperature Fermi Gas in the Presence of Gravity.

Consider now the T = 0 state of an ideal Fermi gas in spacetime with
broken internal symmetries. The complex number generalization of the standard
scalar expression for the particle number is given by 3-35

S= 41TV'/h 3 f p2 dp (257)

- 41V'/h 3 p2 sec a expfj(3p + 8 )]dp (258)
0pp p pp

= 4TV'/h 3  p csc a exp[J(38 + B )]dp (259)
0epp p pp p

where $pp is given by equation (49). Equivalently these equations can be written
in terms of single particle energy as

it fV' f E1/2dF (260)

fV' f e1 2 sec 8ac exp[j(3/2e + 8c )]dM (261)
0 C C

/33/2(2)

- fV' J E csc a• exp[j(3/26 + 8 )]dO (262)

where V' , a. and f are given by equations (6), (54) and (77). For incoherent
spacetime these integrals reduce to the standard expressions for the T - 0 Fermi
gas. For coherent spacetime with 8 pp = n/2 , ace - 1/2 , V = V8V , p - Pc
constant, and c = cc - constant it follows from equations (257) and (260) or
(259) and (262) that for internal space rotations of the momentum and single
particle energy

S- 4/37V6v/h 3  3Pc 3P 4/31Vfv/h 3 ( _ - p) (263)

- 2/3fVe F3/2j c 2/3fV3v(F/2 _ 3/2) (264)

V cc V Cc

where

-C M exp(jir/6) (265)

SC-c C exp(j r/3) (266)

Combining equations (263) through (266) gives for the T - 0 Fermi gas in co-
herent spacetime

ff - 4/3ve~p 3(J - 1)/h3 (267)

- 4/3wveV(2mC ) 3 / 2(J - 1)/h 3  (268)

- 2/3fVe c3/2(1 - (269)
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Note that for this case nR < 0 For particles with spin the above results must
be multiplied by (2s + 1) where s = spin.

The internal energy of a T 0 Fermi gas in the presence of gravity is
written as the following complex number generalization of the standard scalar
result33-35

S41TV'/(2mh3 ) f P4 d5 (270)

" 4wV'/(2mh3 ) f p sec 8 exp[j(5p + 8 )]dp (271)

Sr/6
= 4rV'/(2mh ) f p csc $ exp[j(Se + 8 )]d6 (272)

o pp p pp P

These equations can be written equivalently in terms of the single particle
energy as

U- fV' f Z3/ 2 d9 (273)

fV' 7 3/2 sec 8 exp[j(5/26 + 8 )]de (274)o E C

= fV'J E5/2 csc 8 exp[j(5/2e + 8a )]dO (275)
0 C

For incoherent spacetime all internal phase angles are set equal to zero and
equations (270), (271), (273) and (274) reduce to the standard scalar expres-
sions. For coherent spacetime with 8 M 7/2 , 8E - r7/2 , Vt - V6V , p - Pc
constant, and c - cc - constant it foYlows from equations (270) and (273) or
equations (272) and (275) that for the case of internal spacetime rotations of
the single particle momentum and energy

S2/5nVv/(mh 3) p~5 Pc - 2/5nVev/(mh 3)( - p5 (276)

Pc(26

- 2/5fVe E5/2ic - 2/5fVO (E5/2 5/2) (277)
V CC /5Ve C, c

Combining equations (265), (266), (276) and (277) gives

U 1/51rvVvp 5/(mh 3 )( - - 2) (278)

= 1/5fVOvc /2(j - V-3 - 2) (279)

For this case UR < 0 . For particles with spin these results must be multiplied
by (2s + 1) where s - spin. The average energy per particle is obtained from
equations (267), (269), (278) and (279) to be
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a U U/75 (280)

- 3/10c (j - V3 - 2)/(j - 1) (281)

= 3/10(1 + /3)c exp(jyT/6) (282)

The real part of equation (282) is given by

CavR =3/3(1 + r3)/20 ec (283)

S0.71cc

The result in equation (283) can be compared with the corresponding result for
incoherent spacetime which is eay - 3/5cF - 0.6eF where eF - Fermi energy.

4. BOSE GAS IN BROKEN SYMMETRY SPACETIME. This section calculates the
chemical potential, internal energy and pressure of a Bose gas which is located
in an external field such as gravity or an. electromagnetic field which breaks
the symmetry of spacetime and induces complex number values for the spacetime
coordinates, particle momenta and single particle energies. This requires that
the total particle number, chemical potential, internal energy and pressure must
be represented as complex numbers.

A. Chemical Potential of Bose Gas.

For a Bose gas in a gravitational field the complex number generalization
of the standard expression for the total particle number in a Bose gas is given
by

R- [ 1/i exp(0 ) - 1]-1 (284)
p p

I IV exp(-vgp) + E/(I ) (285)
poo v-i

=fVI V 3HV + V/( - i) (286)

v=i

where V' , f and RV are given by equations (6), (77) and (171) respectively.
Equation (286) can be rewritten as

R .fV, zV % exp[j(ve + eHv)] + i/(1 - i) (287)
v-i

where the fugacity 1 is defined in equation (70). The real and imaginary parts
of equation (287) are obtained using equations (64) and (65) as

N cos 2e = fV' z V cos(ve + eHv) (288)n V z V Z

+ z(cos 0z - z)l(i + z2 - 2z cos 0z)
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N cos en sin 6n = fV' zVH V sin(v6z + eHV) (289)

+ (z sin 0Z)/(1 + z 2 
- 2z cos 6z)

where N - integer number of bosons. Equations (288) and (289) can be used to
determine z and 6z from which the chemical potential components u and 86 are
obtained from equations (73) and (74). From equation (66) it follows that equa-
tion (288) gives the measured particle number.

For incoherent spacetime all internal phase angles are set equal to zero
and equation (288) becomes

N-fV IZVHinc + z 1(1 - Z. )(290)
Vul incv nic

inc
where H• is given by equation (183), and Zinc is obtained as a solution of
equation (290). Equation (290) is the standard textbook expression for the
particle number for the case of an ideal Bose gas. 3 3

-
3 5

For the case of a Bose gas in coherent spacetime with V' VOV , -c• = TT/2
and c cc = constant, it is easy to show that

CO-v -coh
n = fVv I .• ohH + Z coh /( - ooh) (291)

v=v1 ZCoh oo

M fVe c /2 G z Ev + i Mo/(l ) (292)
V C coh v coh coh

where E Vis given by equation (191). The: it follows that

N cos 2n - fV8 C3/ 2  z V E cos(v coh + e ) (293)n V C cohi V O E

+Zo(Cos ocoh 2 2z cos
co z coh coh coh z

N cos0 sin e = fVe.c3/2 c zV E sin( coh +e (294)n n V c V i coh v z Ev

+(z sine oh)/( + z2 - 2z cos )coh
coh z coh coh z

where Ev and eEv are given by equation (194). Equations (293) and (294) can be
used to determine ZcOh and ecoh and subsequently Pcoh and ecOh

B. Internal Energy of Bose Gas in a Gravity Field.

The internal energy of a Bose gas in broken symmetry spacetime is written
as the following complex number generalization of the scalar result33-35

i - fV' f F3 / 2 (exp(Z) - 11 1-d - 3/2kT Zn(I - 1) (295)
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where • is given by equation (168). Expanding the integrand by an infinite
series gives

fffV' • iJJ - 3/2kT tn(1 - ) (296)
V=I

where J• is given by equation (202). The real and imaginary parts of equation
(296) are obtained to be

ULR = fV' 1 z J cos(v8z +6 JV) -V3/2kT Y (297)

=fV' I Z'J sin(VO + ej0) + 3/2kT8y (298)
V=I

where J. and 8jv are given by equations (203), and where

1- i - Y exp(-j0Y) (299)

Y (1- 2z cos 8 + z 2) 1/2 (300)z

tan 6y = (z sin 6z)/(l - z cos 0z) (301)

The measured internal energy is given by Um = UR . The average energy per parti-
cle for the Bose gas in a gravity field is given by

Fa = U/ii (302)

where U is given by equation (296) and R is given by equation (286).

For incoherent spacetime all internal phase angles have zero values and
equations (297) and (299) give the internal energy of an ideal Bose gas as

Ui fV Iiz,•jinc - 3/2kT fn(l - zinc (303)
ic v=1 inc v n

inc
where J5 is given by equation (214), and Zinc is determined as a solutiun to
equation (290). Equation (303) represents the standard expression for the in-
ternal energy of an ideal Bose gas. 3 3 - 3 5

For coherent spacetime the internal energy is written as

UE - fV coh 3/2kT Ln(l - (304)
V V=v coh V coh

- fVevC5/2 S - - 3/2kT n - (305)
Vc coh v coh

-_coh

where Jcoh and S9 are defined by equations (220) through (222). The real and
imaginary parts of the internal energy of a Bose gas located in a strong grav-
itational field is given by
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U coh fV C.5/2 1 z v S cos(vOe:h + 8 ) - 3/2kT fn Y(306)
R v c v=1 con v z SV coh

U coh . f~ C5/2 0 VSsin(O coh + 6)+ 3/2kTo coh (307)Iv I z Y

where from equations (299) through (301)

I-- o w Y exp(-j6 coh (308)
ch coh ex(j8

Ycoh (I - 2z cos 8coh + z2  )1/2 (309)coh z Zcoh) 39

cob coh coho

tan coh (z sin ch)/(l - z cos 8 ch) (310)a coh z coh z

The measured internal energy is given by Ucoh - Ucoh
-m R

C. Pressure of a Bose Gas in a Gravity Field.

The pressure of an ideal Bose gas in a gravitational field can be imme-
diately obtained from equations (236) and (296) to be

S= 2/3f j •vj _ I/V'kT tn(l - i) (311)
V-

This expression can also be obtained from the following complex number general-
ization of the standard scalar result for the pressure of an ideal Bose gas 3 3- 3 5

P/(kT) f - 0 /12 Zn([ - i exp(-SF)]dd - 1/V ' Zn(l - 1) (312)

Then using the expression

Zn(1 -i) (-Q 2v-1 RV/V (313)

gives

P/(kT) - f 9 tv/v -v _ 1/V' Zn(1 - Z) (314)
v-i

where H" is given by equation (171). A comparison of equations (311) and (314)
shows that equation (237) is true also for the ideal Bose gas. The real and
imaginary components of the pressure are obtained from equation (311) to be

-2/3f I J cos(vO + 8ej) - I/V'kT Zn Y (315)vR / i zvJ zosJv

PI 2/3f i. zVJV sin(v z 8 j+V) + 1/V'kTy (316)

The measured pressure is given by Pm- PR-
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For an ideal Bose gas in incoherent spacetime all of the internal phase
angles are set equal to zero and equation (315) becomes

= 2/3f 0 ViZ Jnc - V- kT n(1-z (317)Pine I ncvinc) 37

ninc

where Jý is given by equation (243). Equation (317) is the standard expression
for the pressure and in fact from equation (303) it follows that33-3 5

P inc 2/3U in/V (318)

which agrees with equation (236).

The pressure of an ideal Bose gas in coherent spacetime is obtained from
equation (236) to be

-coh - 2/3ucoh/(VbV) (319)

= 2/3fc5/2 c IiohSv - (V6v) kT Zn(1 - icoh) (320)

or from equations (306) and (307)

Pcob /f 5/2 00Vcob -1
P =ý I/3fs h S Vcos(ve + 0)SV) - (Ve V) kT btnY ch (321)R c ob-S V cob

pcoh . 2/3fe 5/2 0 ZohS• sin(V coh + 6 )+ (V -)-1 kT coh (322)
I c coh v z SV V kv=l

whege S. , S, and 6Sv are given in equations (222) and (226), and where Ycoh and
e co are given by equations (309) and (310). The calculations in this section
can be applied to the Bose gas of Cooper electron pairs in a high-Tc supercon-
ductor. The totally coherent spacetime state describes the superconducting
state of a high-Tc material, whereas the partially coherent spacetime state can
be used to describe the normal state of a high-Tc superconductor.

5. THERMONUCLEAR REACTIONS IN THE PRESENCE OF GRAVITY. This section cal-
culates the rate of thermonuclear reactions of particles that exist in spacetime
that has broken symmetries due to the presence of an external field such as
gravity. The calculations will be of value for predicting the thermonuclear
reaction rates in stars where the gravitational field is sufficiently strong as
to make spacetime partially coherent or even totally coherent. The conventional
calculation of the nuclear reaction rates in stars assumes that spacetime is
incoherent. These conventional fusion rate calculations are treated extensively
in the literature so that only a brief summary of the results are given here.
The thermonuclear reaction rate Rinc is written as 1 -6

Rinc 1 n1n2<av> - nln1mp>- n ln 2 (2/m)1/ 2<ac•/ 2> (323)

where a - fusion reaction cross section, v - relative collision speed, m - re-
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2
duced mass of the two reacting species of particles, c - 1/2mv = kinetic ener-
gy of the two reacting particles in the center of mass system, and where n1 and

n2 - nuclear species particle number densities given by

=l = NI/V n2 = N2 /V (324)

By way of introduction to the problem, the thermonuclear reaction rate is eval-
uated for an ideal Boltzmann gas in incoherent spacetime with a zero external
gravitational field. For a Maxwell-Boltzmann distribution in incoherent space-
time the average value that appears in equation (323) is evaluated using equa-
tions (92) and (93) as follows?-6

Rinc = n1n2(2/m)1/2 Finc /Ainc (325)

= 1l0218/(nm)]1/2 (kT)-3/ 2 F inc

= 4rry 1n2 [m/(2nkT)I3/2 f exp(-1/2 amv2)v3 dv
0

where Ainc is given by equation (93), and Finc is given by

inc
F f nE exp(-Bc)dc (326)

0

where e - 1/2mv2

The generalization of the standard result in equation (323) to the case
of broken symmetry spacetime that is induced by an external gravity field is
written as the following complex number equation

Sa 12<av-> ffi IlR 2 /m<•p-> 1 aIR2(2/m)1/2<E 1/2> (327)

where R - complex number thermonuclear reaction rate, o - complex number thermo-
nuclear reaction cross section which is written as

a- O exp(je 0) (328)

and where ;, P and Z - complex number relative particle speed, relative particle
momentum and total particle kinetic energy in the center of mass system respec-
tively. The complex species particle number densities RI and R2 are written in
analogy to equations (61) and (62) as

n 1 nI exp(JS I) W a1/V' (329)

n2 w n2 exp(j0n2) - 2/V' (330)

where
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n = N1/V' cos 0n1 = 6n1 (331)

n2 = N2 /V' cose n2  0 = 8n2 (332)

where en, and 0 = internal phase angles of species particle numbers, N1 and
N2 - integer number of species particleo in the volume V' , and Vt - broken
symmetry space volume given by equation (6). For the case of coherent space-
time it follows from equation (9) that V - VeV so that equations (331) and
(332) give the species particle number densities as

"coh ocoh ^coh
1 N1 /(V v) cos 0nl =ni (333)

"coh 8coh coh
2 N2 /(Vv) cos 0n2 n2 n2

where en, and en2 - internal phase angles for the species particle numbers in
coherent spacetime. For incoherent spacetime all internal phase angles are
equal to zero and V' = V so that equations (331) and (332) reduce to equation
(324). The thermonuclear reaction rates for classical particles, fermions and
bosons in the presence of an external gravity field will now be calculated.

A. Thermonuclear Reactions in the Broken Symmetry Spacetime of a
Boltzmann Gas in a Gravitational Field.

For a Boltzmann gas in a spacetime with broken internal symmetries due to
gravity the complex number thermonuclear reaction rate is given by equation
(327)

<Up> = Fp/Ap F p/Ap exp[J(LFp - 0 Ap)] (335)

<I/2 F/A F/A exp[j(8F - GA)] (336)

where

Fp M f op exp[-8_ 2 /(2m)]dp (337)

Ap a f p2 exp[_$p 2 /(2m)]dp (338)

F - f UF exp(-OE)dF (339)

S- f ?1l 2 exp(-BF)dE (340)

where 0 and 9 are represented by equations (45) and (50) respectively and where
dp and dF are given by equations (47), (48) and (52), (53) respectively for the
general case of partially coherent broken spacetime symmetry and by equation
(56) for the case of coherent spacetime. Only the single particle energy inte-
grals appearing in equations (336), (339) and (340) are considered in this pa-
per. A phase space factor WV' given by equations (6) and (77) has been cancelled
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from the numerator and denominator of equation (336). The integral A that ap-
pears in equations (336) and (340) has already appeared in equations (78) and
(84) through (89). Using equations (52) and (53) allows the integral F that
appears in equation (339) to be written as

cf 73a sec 80c exp[j(20 + 6 + 8e )]exp(-BZ)de (341)
0a

f' ac sec S exp(-$e cos 0 )exp(j cc)dE (342)

= c 2 csc 06 exp[j(2 6 + e + a ) ]exp(- 6E)d(

f C C) ] (343)0

- 3' ac 2 csc 5 exp(-8c cos Oe)exp(J(D )d0o (344)
0

where

(Pa = 2e0 + ea - ac sin O + 0 c (345)

The real and imaginary parts of F are then obtained from equations (342) and
(344) as

FR = a cc sec 60c exp(-Oc cos 0 )cos (Pc dE (346)
0

c/3 2 exp(-Bc cos 8 )cos (D do (347)=f £ Ca E• c GE

0

FI = oae sec B0c exp(-Bc cos 0 )sin 1oc de (348)
0

at/3O2 csc 0 exp(-as cos 0 )sin 4o dO (349)
f cc a cc (39

from which F and 6F are determined to be

F - (F 2 + F 2 )/ 2  tan OF F/F (350)
R I I R

which are required for equation (336). The internal phase angle of the single
particle kinetic energy is distributed in the range 0 < 0C < 1/3 because for a
coherent spacetime state with B0p = n/2 and 0%t M T/2 it follows from equations
(23) and (51) that OG = 2 (GP - et) with the upper limits of ep and Ot being
6P - n/3 and Ot - 1/6 3

The thermonuclear reaction rate in a Boltzmann gas for the general case
of partially coherent spacetime is then obtained from equations (327) and (336)
as
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1 12(2/m) 12-Fl (351)

n1 nn2 (2/m) /2F/A expfj(en1 + 0n2 + aF - A)]

where A and eA are given by equation (79) and F and 8 F are given by equation
(350). The real and imaginary parts of equation (351) are given by

R = nn2(2/m) /2F/A cos(en1 + an2 + eF - eA) (352)

R= = n 1n 2 (2/m) 1 /2F/A sin(l n + e n F - eA) (353)

The measured nuclear reaction rate is given by Rm = RR. For the case when all
internal phase angles are set equal to zero the measured thermonuclear reaction
rate given by equation (352) reduces to the standard incoherent spacetime reac-
tion rate given by equation (325).

In the presence of a very strong gravity field the spacetime can become
coherent, and following equation (351) the thermonuclear reaction rate in a
Boltzmann gas is written as

-coh -coh-coh .... 1/2-coh/-coh= nI n2 (2/r) F A(354)

where ;coh is given by equations (104) through (108). and where for coherent
spacetlme with OcE r1/2 and c = = constant it follows from equations (343)
and (344) that

Pcoh. C = . (C + jC 1 ) C cC exp(J6c) (355)

where
7r/3
J f a expli(2E + 6 )]exp(-OZ)de (356)

0

it/3
j f a exp(-Bc cos B )exp[j(20 + 0 - Bc sin 0 )]de (357)

0c c e C aY c a

where ca constant, a = a(8 ) and e0 - 08(Oa) . The real and imaginary parts
of equation (357) are given by

hr/3

CR = f a exp(-aec cos 0 )sin(ac sin 6 -C - 28C)de (358)c0a £ 0

,r/3
CI- f a exp(-acc cos Oc)cos(Be sin 6 - -20 )de (359)

1 o a C £ 0 E 39

and therefore

C 2 (C2 + C2)1/2 tan 6C W CI/CR (360)

The expression for the thermonuclear reaction rate in a Boltzmann gas that is
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located in coherent spacetime is then obtained from equations (105), (354) and
(355) as

coh -coh-coh 1/2 i2 (2/r) C C (361)

= n1°hn h(2/m) 1/2C 1/2C/w exp[J coh +coh
1c (On +2,2 +0e -nW

where W , W and 6W are given by equations (104) through (110), and C, C and 8C
are given by equations (356) through (360). The real and imaginary parts of the
thermonuclear reaction rate given in equation (361) are written as

coh cobncoh 1/2 1/2 cob coh I - )•o /CWcos( 1  +On + (362)

= R1 2 (2/ n) c /n2 - W

Rcoh coh coh .... 1/2 1/2 . .^coh +coh
1 2 c nl n2 C (363)

The measured thermonuclear reaction rate is then given by Raoh - coh

If the fusion cross section is independent of O£ , it follows from equa-
tions (355) through (360) that for coherent spacetime

Fcoh = a-EcC • = (DR + jD )= oc2D expIj(8 + 6D)] (364)
c c ccRIc c cc D

where the constant fusion cross section is written as

0c = ac exp(jO oc) (365)

and where

= j f exp(j2C )exp(-8O)d 6  (366)
0

7r/3
f j f exp(-OEc cos 6 )exp(j(28 - 8Ec sin 8 )]dE

The real and imaginary components of equation (366) are given by
ir/3

D R f exp(-Occ cos 0 )sin(gcc sin 60 - 28 )d8c (367)

iTr /3
D, = f exp(-gcc cos 0 )cos(8ac sin 0 - 20C)d0 (368)

so that
S2 .21/2 tn DT

D - (D2 + D) 1/2D t RI/D (369)

Then equations (104), (354) and (364) give the thermonuclear reaction rate in a
Boltzmann gas that is located in a gravity field that is sufficiently strong as
to make spacetime coherent
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Fcoh. -coh-coh 1/2 1/2- /(0
fl1  '2 (2/m) I2° (370)

-coh-coh 3...."- hc:I n2 °chaVcD/W (371)

where D is given by equation (366), W is given by equations (104) and (106),
and where vc - coherent particle velocity which is given by

cc = 1/2mv 2 . 3/2kT Vc W (3kT /m)1/ 2  (372)
Cc c c

where Tc -_coherent spacetime temperature for a Boltzmann gas. The quantities
Dc , and W are functions of T and Tc

ac = (TT C) = 5(TT C) W -W(TTC) (373)

Equation (371) can be rewritten as

Rcoh . ,c°ohc (3kTc/m) 125/W (374)

=coh coh 1/2 (6coh +coh 8')]
1 2 oc(3kT/m) D/W expnj 1 6 n2 +a D8 -

where W and 6W are given in equation (110). The real and imaginary parts of the
coherent spacetime thermonuclear reaction rate for a Boltzmann gas is obtained
from equation (374) as

coh coh coh 1/ cobh cohR = - n2 ac(3kTc/m) n/W cos8l + 8 n2 + c + D -

coh coh coh 1/2 coh coh
R, =n 1 n2 ac( 3 kTc/m) D/W sin(0n1 +6 n2 + 8cc + 8 - W (376)

The measured thermonuclear reaction rate for this case is given by Rgoh . coh

The conventional incoherent spacetime calculation of the thermonuclear
reaction rate given in equations (325) and (326) should be compared to the co-
herent spacetime prediction of the thermonuclear reaction rate that is given in
equation (375). The coherent spacetime fusion reaction rate is expected to be
more sensitive to ambient density and temperature due to the absence of an
average of the cross section over a full range of energies that appears in the
conventional calculation in equations (325) and (326) but does not appear in
equation (375) for the coherent spacetime case. The cross section Bc(T,Tc) is
sharply peaked at those temperatures that correspond to resonance energies.
Therefore for the coherent spacetime case the energy generation rates in stars
will be high only in selected temperature zones that correspond to definite
radial distances from the center of a star. Elsewhere in the star the nuclear
reaction rates will be low.

B. Thermonuclear Reactions in Fermi Gases in the Presence of Gravity.

For a Fermi gas in broken symmetry spacetime the average quantity that
appears in the thermonuclear reaction rate formula given in equation (327) is
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evaluated using equation (167) for the complex particle number as follows

=aT12 RN/D (377)

where

f= J o[exp(F) + 1]-ldE (378)

/D f 2 -1[exp() + d 1]d (370)

where ý is given by equation (168). A factor fV' has been cancelled from the
numerator and denominator of equation (377). The series expansion given in
equation (169) can be applied to equations (378) and (379) with the result

v 1 (-1)-i v-M (380)

V1 V

= (-I) V1 zV M Vexcp(j(ve + 0M~

v= I

%= (381)
V=1

= [ (-I)V-l z H exp[j(vEz + 6 v)]

where Hv , Ht• and BHv are given by equations (171) through (178) and M. is
given as follows

R= f 6 exp(-v)dZ - M exp(JOMV) (382)

f f oc sec a8c exp(-v8c cos e )exp(jt ce)dE (383)
0

2 cscB exp(-VE cos 86 )exp(j-o )d6 (384)
0cc GeVc

where

$0 =2ec +86 v8- c sin 6 + 8B (385)

The real and imaginary components of equations (383) and (384) are

= f cc sec $ exp(-v8c cos e )cos(0 cV)dc (386)y•R ococ

n/3
- f ac, csc sc exp(-vBc COS 0 )coS( o)dOE (387)

0
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"f a7 sec 0. exp(-v~e cos e )sin(¢Ov )de (388)
0 ~M wI 3

=f cc2 csc 0 exp(-vBc cos 6 )sin((P )dO (389)
o ee e

from which it follows that

M= (M 2 +M 2 ) 1/2 tan OMG = M /M (390)
v R vi M v vi R

The thermonuclear reaction rate is then given by

R = n12 (2/m) KN/D (391)

where 'N and KD are given by equations (380) and (381). Then the real and imag-
inary parts of the nuclear reaction rate in a Fermi gas is given by

RR n'1n2 (2/m) /2KN/KD cos(OnI + On2 + 6KN - 0KD) (392)

RI = nIn2(2/m)/2 K/K sin(6 1 + + + 0KN - eKD) (393)

where

= ~* +~ 1/2 tan 6 ý KN/R (394)

1% (KDR + 1�)1/ 2  tan eKD - KDI/DR (395)

with

KNR I (-") V-1z VMv cos(vO + 6Mv (396)

v=1

v-i1z yHV cos(v8e + (398)

"v z+Gv))

KDI 1 1 (-1)V-1zVHv sin(v0z + 6HV) (399)

where Mv and 6Mv are given by equation (390), and Hv and 8Hv are given by
equation (178). The measured thermonuclear reaction rate is given by Rm - RR

Consider now the case of thermonuclear reactions in a Fermi gas that is
located in incoherent spacetime (zero gravity field). For this case all in-
ternal phase angles are zero and

<1c/2>. = nc inc (400)
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where

inc 0 ) Minc (401)
KnI = (.)-I V incv=1 ic

= V-)V1 ZincH (402)
v-I V

inc inc
where H, is given by equation (183) and M n is obtained from equation (386)
to be

M inc f ac exp(-v~c)d' (403)
0

which is similar to equation (326) for a Boltzmann gas that is located in in-
coherent spacetime. For the case of incoherent spacetime the thermonuclear
reaction rate in a Fermi gas is given by

Rinc f.fi r) (2/m) 1/2 inc/nc (404)

where n, and n2 are given by equation (324).

The thermonuclear reaction rate for a Fermi gas that is located in a
coherent spacetime state associated with an intense gravity field requires the
calculation of the following average value

oh b oh (405)

where

-cob coh coh (406)
S K32exp(j co) (406)

=J f U [exp( coh) + 11 ]dO

0
-coh coh coh (407)KD; -S exp(j (n7egn

-fZ xp(E( c ) +1] de

S• vI • coh

0

where

coh o= h( - ýcoh exp( ) (408)

A phase space factor fVO has been cancelled from the numerator and denominator
of equation (405). The 'Integrals in equations (406) and (407) can be rewritten as

-coh 0o v-1 v -coh
v-I) cob MV(49

cohv cob explj(v o + 0MJ )

vM5 z MV
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-coh G( 1 ) V-1V jcoh
I (-1) 2 coh v (410)

V=1

=I v (-l)-I ZVcov exp[jc(oo coh + ^coh

v=1 ohV z HV

-cob cob cohwhere h , oh and eHv are given by equations (188) through (194), and
is given by

-coh coh ecoh coh=M exp (j 6M ) (411)
v v MIv

.2 1/3
=Jc f F exp(-vac-)exp(j2e )dO

0

W E27/30 ~2 o exp(-v8c cos 6 )exp[j(20 + e6 - v8cc sin C)]dO

The real and imaginary components of equation (411) are give.i by
Mcoh =2 it/3

vR C c f a exp(-vOEc cos 6 )sin(v~cc sin 6 - 26 - e )dO (412)

coh 2 T/3

MVhI = .2 of a exp(-v8%c cos 6C)cos(v8£c sin 6e - 20% - Oa)de (413)

and therefore
vC~ yR +o (M-coh)2]I/2
S. (,coh) + (MI) (414)

Bcob coh- coh
tan 6 =h M I•R (415)

The component forms of equation (409) are given by
coh =-1 .v-I v Mcoh oh coh (416)

vSR = -/) Zcoh v + OMv
V=1

cob v- v cob oho.=I ('v~i ( 1) ZcobMv sin(v6ch + ) (417)

and the component forms of equation (410) are

ih W )coh coh coh
.DRI (-1)VI z VH cccos(ve +8 ) (418)%R V= Zcoh V z VHv (48
v-i

coh v-I v coh coh coh)
() cohnV sin(vB + Hv (419)

which gives

cob coh 2 21/2
[(%R +(%I(42

KD b - coh 2 +(oh) 2 1/2 (421)
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t coh coh coh (422)

tan %I = IKNR

tan 6oKh . oh _Roh (423)

Then the general expression for the thermonuclear reaction rate for a Fermi gas
in coherent spacetime is obtained from equations (327) and (405) through (423)
to be

-coh _cohbcoh (2/ 1/2coh -coh (424)= 1 r2 N2m /42S

whose real and imaginary parts are written as

coh.l coh coh, (2/m 1/ oh/ coh c 1s 0 l^coh + ecoh + KNcoh - KDcoh') (425)
ER - l n2 2y co n1  n2 KN KD

Rcoh coh coh I/ oh coh coh oh +coh _coh (/ K 2 Kl sin(Gl+ + + +KN - KD ) (426)

The measured reaction rate is given for this case by Eoh oh

.Some simplification can be made for the case of fusion reactions occurring
in a Fermi gas with coherent spacetime if the thermonuclear cross section is a
constant which is independent of the internal phase angles, and for this case
equations (411) through (415) become

-coh . a 2• (427)
V c C V

Mch C21D cos(0 + (428)"NR = C c vo cc Dv

coh 2
Mch -aeD sin(O + D) (429)
VI c c v ac Dv

Mcoh . a L2D (430)
V C C V

ecoh . +6 (431)
Mv cc Dv

where
ir/3

DV - J f exp(-vBE)exp(j26 E )do (432)

ir/3
- J f exp(-v8e cos 0 )exp[j(26 - vacc sin 6 )]d0o E E

The real and imaginary parts of equation (432) are given by
7r/3

DVR f exp(-v6cc cos 6 )sin(vcBc sin 6C - 26e)d6 (433)

ir/3
D V I f exp(-v•cc cos 0c)cos(v•cc sin 6 - 20 )d0 (434)
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from which it follows that

DV = (D 2  + D2 1)/2 tanO = D/D (435)
yR +D Dv VI yR(4)

Therefore for this case equations (409) and (410) can be written for the Fermi
gas in coherent spacetime as

-coh - 2-coh= M ac c cGN (436)

-coh 3/2-coh

S c% 
(437)

where
w -coh coh coh 0 1-1V -
G GN expjG GN I (-1) cohD (438)

V=I

acoh Gcoh ^(J coh) 1 (-1) -hE (439)
D D GD (-1 coh vu-I.

where equations (437) and (439) are obtained from equation (410) by using equa-
tion (188) where k is given by equation (190). The magnitudes and phase an-
gles that appear in equations (438) and (439) are calculated as follows

Gcoh coh 2 coh 2]i/2 (440)
N = [(GiR ) + (GNI)4

Gcoh . coh 2 _coh. 21/2 (441)
D = [(GDR ) + (DI

_coh

tan GN G -N/G (442)
GN NI/GNR

_coh

tanO .G /G (443)

where from equations (438) and (439)

coh X (-1 z D cos(v° +0vvc (444)
NR I ) Zcoh V 2 Dv

Gcoh (_) v-I v D sin(vOcoh + 6D) (445)
NI (1 Zh z Dv

coh "V-1zV cos(V0ech + 6E) (446)
GDR v-iL zcohv z Ev

coh 00 v-i V oh
GDI (-i) ZhE sin( z + 0Ev) (447)

where Dv and 0Dv are given by equation (435), and Ev and 8Ev are given by equa-

tion (194). The thermonuclear reaction rate for..a Fermi gas in coherent space-
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time is then obtained from equations (424), (436) and (437) as

-coh _coh cob .... 1/2-coh -coh
R nI 2/m) % /%448)

-cob-cob....1/2- I/2ýcohb coh
-1 2 m) , c N D

-coh-coh - -coh -coh
I L1 k2 Vc c N /D

coh coh cohb coh .jcoh +coh +coh _coh
1 2 c cGN D nv1 n2 ac GN GD )

c noh coh coh coh
w n2,el . and )n2 are given by equations (333) and (334), and

vc M coherent spacetime relative particle speed given by equation (372). The
real and imaginary parts of the complex number thermonuclear reaction rate
given by equation (448) are

cohb cob cob v Gcoh/Gcoh cos(ecob + 0 coh +0 +0 coh -coh) (449)
R 1 2 c c N D snI ni2 cc GN GD

_coh coh coh v cobh / ^cboh + ch + c + ecoh - 0cob ) (450)
1 2 l ccN D nvI n2 cc GN GD

cob cob
The measured thermonuclear reaction rate is given by Ro RR

C. Thermonuclear Reactions in a Bose Gas Located in a Gravitational Field.

For the case of thermonuclear reactions in a Bose gas situated in space-
time with gravity induced broken internal coordinate symmetries the reaction
rate formula in equation (327) requires an averaged quantity which is evaluated
using the complex number Bose-Einstein distribution as follows

.Z? 1 12> = N/LD (451)

where

.LN - LN exp(j6LN) (452)

I a F 1/2 [1/i exp((p) - 1]-(fV') 1  (453)
p p p p

= f UZ[exp(Z) - 1- 1dF (454)

LD - LD exP(J"LD) (455)

- X [1/i exp(8Ep) - 1]- (fV')- 1  (456)
pp

- f l/2[exp(ý) - 1]I dr + i(1 - z)- 1 (fv')-1  (457)

where Z and f are given by equations (168) and (77) respectively. The reciprocal
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square bracket terms in equations (452) through (457) can be expanded in a power
series in a manner similar to that in equations (284) through (286) with the
result that

N a 'R (458)

V=1

%:= a IVAV + F(I - g)-1(fv')-I (459)
val

where MR is given by equation (382) and Hv is given by equation (171). From
equations (452) through (459) it follows that

2 2 1/2
LN=(LM + LNI) (460)

LD = (LD2  + 2)1/2 (461)DR li

tan 8LN = LNI/LNR (462)

tan 6LD =LDI/LDR (463)

where
CO

'NR I z VM cos(vO + @MV) (464)

LNI a I z M sin(vez + 8M) (465)
Val

LDR z V H cos(v e + Hv) + g (466)
v-i

LI 1 zVHV sin(v6z + 6HV) + h (467)
v-i

with

g = (fV')- z(cos ez - z)/(l + z - 2z cos Z) (468)

h = (fV')-l(z sin 8 z)/(l + z2 - 2z cos 8 ) (469)

In the limit of high temperatures equations (71) and (72) show that z - I and
6z - 0 and therefore g = 0 and h - 0. Then the thermonuclear reaction rate for
a Bose gas in the presence of gravity is obtained from equations (327) and
(451) to be

1 f1f 2 ( 2 /m) 1/2 /LD (470)
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The real and imaginary parts of the thermonuclear reaction rate are given by

RR - nIn2(2/m) /2LN/LD coS(6nl + 6n2 + 0LN - aLD) (471)

RI = n1n2(2/m) 1/2 /LD sin(enI + 0n2 + 0LN - OLD) (472)

The measured reaction rate is given by Rm = RR

For incoherent spacetime the thermonuclear reaction rate of a Bose gas
is obtained by first noting that equation (451) becomes

<GE1/• inc inc (473)
LN= /LD(43

incD

where

inc= IZnM (474)

Lin V= Hn-Iinc Zic-

inc = z. + (fV') (1 ) (475)
L D =•I Inc V inc inc

V= 1

where Mvnc and ivnc are given by equations (403) and (183). Finally, the nu-
clear reaction rate for this case is obtained from equations (327) and (473) as

R inc n2(2 /m) 1/2 ncnc (476)

which is the standard result.

For thermonuclear reactions in a Bose gas in the presence of gravity that
is so strong as to make the spacetime coherent, the relevant averaged quantity
that appears in equation (327) is written as

< /2ý c -oh/coh coh coh coh coh
= / f; LN /LD exp[j(0LN - 6LD (477)

where
-coh ir/32
-h j f 2 [exp(coh) - 1] de (478)

0 C

-co i/3 3/2D j [exp(\ coh -1]-d6 + (fV V)-z coh - coh)- (479)

where Ecoh is given by equation (408). Expanding the integrands in a power
series yields

-NCOh • _.v -coh
L = V iZcohM (480)
N v1 1o
-coh . -V -cob fO_

co i~cohH + (fVv) -1coh -( coh)-1 (481)
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The component forms of equations (480) and (481) are written as

coh V coh coh coh
R iZcoh + MMos) (482)

LCOh '0 V Moh si(re,oh + ,coh)

D I" = •i~coh v sin z + V (483)

coh co V coh coh coh

.coh ^ooh

coban H v Hr oenby cqatob s (cob nd( );Zo ad^o

LR cobv z (484)

v= 1f v-Icos(vOS coh b) (46

Lg o V Hcz sin(vo + coh) + h (485)
DI 1V cohv- z h) V coh

whereM-co ,M c and 6 Mv are given by equations (411), (414) and (415); 1toh

cob Z cob z MN) coh N I
N m t and 6HV are given by equations (188) and (189); ZCOh and 6) are given by
equations (197) and (198), and where in analogy to equations (468) and (469)

9 Mfe z (Co e co - z /( + z2 -2z Cs 8 coh~ (486)
gcob V co z coh cob co2 z

LCh- ch cohoh 2]Ioh

h (fve) 1(z sin = )/(1 + 2  - 2z cos 8 )D (487)coh coh z coh z

The magnitudes and phase angles that appear in equations (477) are given by

coh cohb coh (4

[ý = (LNR + (Loh2 11(488

L cob 1 cob 2 +(L coh 2 1/2  (489)
D =[Lna ) + DI

tan Ocob cob cob (490)

tan 8LD oh L. /LDRc (491)

Then the general expression for the thermonuclear reaction rate in a Bose gas
located in coherent spacetime is given by

-coh - oh-coh . 1/2coh/ -cohR 1  fl2  (2 N) L(492)
oh coh coh .(2/) 1/2 coh coh ^coh +cob +coh 6coh)

cob 'ob co N/L cs( l + I n2 + LN LD

ýoh coh cob 1/2 cobh' ch oobh o cob +cob (494)
- 'nI n2 (2/rn) LN "LD inO 1  + i2 VLN - LD

The measured reaction rate is given by Roh . qoh .

For the case when the thermonuclear reaction cross section for a Bose gas
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in coherent spacetime is a constant which is independent of 6c , then zquations
(427), (480) and (481) gire

-coh - -2-coh
e acCC N (495)

-coh =3/2-coh -1 - )-E c C D + (fVev) zcoh~l G Zcoh (496)

where

-coh Ccoh ex coh- iv (497)
NN =N p(JcN ) Zh

v=l1

00 6 coh+e
SI z'oD exp[j(v + Dvv- Dvh~

-coh coh e . 8 oh \v - (498)

D D CD ) = °h4 
8

V=1cov

co V coh-Z ZohEv exp~jt z + vl

v~

where 5v and EV are given by equations (432) and (190). From equations (497)
and (498) it follows that

CNcoh = z VD cos(ve Oh + 6D) (499)
NR coh V z Dv

V= 1

COh N 0 Z ohDV sin(vGc~h + 0D) (500)NI z z D
v-I

ccoh . Z ohE c o sM coh + e ) (501)
DR coh v Evv-l

c Oh . z voh E Vsin(\cOh + eEv) (502)
DI chv z E

and therefore

coh coh 2 coh 2 1/2 (503)
C [(CNR ) + (CNI) 0

cCoh - (coh)2 + co /2 (504)

coh coh coh coh coh coh
tan CN . CNI /CNR tanCD 6 CDI /CDR

For the case of a constant fusion cross section 6c independent of 6. it follows
from equations (495) and (496) that for a Bose gas in coherent spacetime
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L co 2 coh _coh.
Oc~cCN cos(c +CN )

coh 2 coh coh
LI= OccN sin(0oc + eCNm (507)

coh 3/2 coh coh
L =R =c 'LD cos 'CD + gcoh (508)

coh 3/2 coh coh (509)
=I3 c Dc CD CD +coh

where gcoh and hcoh are given by equations (486) and (487). From equations
(488), (506) and (507) and from equations (489), (508) and (509) it follows that

coh 2 cohL = cCcCN (510)

coh 3 coh 2 3/2 coh coh _cohb
D = [ec(CD ) + Ec SD (gcoh cos 'CD coh s 8CD ) (511)

2 2 1/2
coh coh

Combining equations (490), (506) and (507) gives

ocoh 0 + 6 coh (512)
LN cc CN

while cob is obtained from equations (491), f )8) and (509)0LD
t coh b 3/2 coh sin 6coh b 3/2 coh C cohtan 0LD = (tc CD sin D + b o)/~c CD cos 8CD + g o) (513)

LD c DCD coh c D C oh

Then equations (492) through (494) coupled with equations (510) through (513)
give the thermcnuclear reaction rate for a Bose gas in coherent spacetime and
for a constant fusion cross section.

If tlie ground state of the Bose gas in coherent spacetime is unoccupied
due to higb temperatures then zcoh - I and coh 0 from equations (71) and

(72), so that equations (486) and (487) give gcoh - 0 and hcoh = 0 and equation
(511) becomes

Lcoh 3/2Ccoh (514)
D c D

while equation (513) gives for this case

coh cohLD =8 CD(515)
LD CD

Combining equations (493), (494), (510), (512), (514) and (515) gives the real
and imaginary parts of the thermonuclear reaction rate as
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coh _coh coh coh- coh /Cc oh (acoh + 8 coh + +8 coh 0 coh) (516)
R 1 2 c cN 'CD n n2 oc CN CD

coh coh coh coh,_coh 6coh 6coh + ^coh _coh)= l 2 vCcN /ID sin(8n +8n +8 +8c o -O CD) (517)
R '1' cecN D n1 n2 0Cc CN CD

coh coh coh coh
where C ,CN , , and OCD are defined in equations (497) through (505),
and where vc is given by equation (372).

There are three reasons for the lowered rates of some thermonuclear reac-
tions compared to the standard reaction rate calculations. The first reason is
that gravity induces a broken spacetime symmetry, and the thermonuclear reaction
cross section for coherent spacetime is evaluated at the prevailing single value
of the kinetic energy per nucleus cc so that, unless this kinetic energy is as-
sociated with a resonance value for the cross section, the thermonuclear reac-
tion rate will be low compared to the incoherent spacetime calculation of the
standard model which assumes a distribution of kinetic energies. The second
reason for the lowered thermonuclear reaction rate is the appearance of a co-
sine factor in the predicted measured values of the reaction rate. The argu-
ment of the cosine term consists of the sum of the internal phase angles of the
two reacting species particle number densities, the internal phase angle of the
fusion cross section, and the internal phase angles associated with the coherent
spacetime average of the relative speed of the interacting particles. The third
reason for the depressed thermonuclear reaction rate compared to the standard
prediction is due to the effects of a real gas state equation which enters the
renormalization group time equation given in equations (IA) and (1B).

6. CONCLUSION. It is suggested that in very strong gravitational fields
spacetime becomes coherent and that the motion in such a state occurs internally
so that the space and time coordinates, single particle momenta, and single
particle energies change coherently in that they rotate in internal space with
their magnitudes held fixed. The state equations for the noninteracting Boltz-
mann, Fermi and Bose gases are developed for partially and totally coherent
spacetime. These complex number state equations reduce to the standard ideal
gas state equations for the case of incoherent spacetime. Thermonuclear reac-
tion rates in bulk matter are lowered, compared to the standard predictions
which assume an ideal gas, by the real gas nature of the state equations of
stellar matter as described by a renormalization group time equation. These
reaction rates will also be lowered by the degree of coherence of spacetime be-
cause the values of the integrals over momentum or kinetic energy that are re-
quired to calculate the thermonuclear reaction rates are dependent on the state
of coherence of spacetime. The thermonuclear reaction rates have been evalu-
ated for the ideal Boltzmann gas, Fermi gas and Bose gas for partially coherent
and totally coherent spacetime. The lowered thermonuclear reaction rates are
due to real gas effects in the relativistic equation for time and to the effects
of the coherence of spacetime on the reaction rate integrals for the ideal
gases, and may represent an explanation for the depressed values of the measured
solar neutrino emission flux compared to predictions of the standard solar model.
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Some methods of analysis in the study of microstructure

David Kinderlehrer

Center for Nonlinear Analysis and Department of Mathematics

Carnegie Mellon University

Pittsburgh, PA 15213-3890

1. Introduction Fine scale morphology or microstructutre is Implicated in the macroscopic

behavior of many materials, but the manifestations of this are often unclear1 . We are in need of

improved methods for studying this frequently encountered situation. In this report we describe in

an expository fashion the initial developments of one such technique which has been applied in

several instances especially related to certain alloys or other crystalline materials. Good examples

where defect structures consisting of fine scale morphology are relatively simple are certain phase

transformations of displacive or structural type and the mechanical behavior of shape memory

alloys. Martensitic materials, in particular, exhibit fine twinned microstructures, often appearing as

layers or layers within layers2. Although we often refer to inicrostructure, we are confronted with

a primarily continuum phenomenon for which some authors use the term mesoscale. In these

considerations, one issue is paramount: the presence of spatially oscillatory behavior and the

means of understanding it constitutes the bridge from the fine scale to the large scale.

Crystals are idealized as materials with a high degree of configurational order. As a
consequence, the continuum energy densities ascribed to them are invariant under discrete groups
and have multiple potential wells. Such densities are not lower semicontinuous. The infimum of
energy may be obtained only in some generalized sense, while a minimizing sequence may develop
successively finer oscillations. Said in another fashion, when the material deforms owing to
change in its environment, the configurational order acts as a constraint resulting in the creation of
a defect structure, which in this case is a complicated spatially oscillatory fine structure. The limit
deformation alone need not be sufficient to characterize many of the properties of the limit
configuration.
1 Supported in part by the Army Research Office.

2 For illustrations of oscillatory behavior in alloys and other materials see [1,2,3,4.5.27.531.
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A feature of the constitutive theory under discussion is that surface energies, magnetic

domain wall energies, and similar effects are neglected, although the highly nonlinear potential well

structure for the material has a prominent role. rhus fine phase laminar twin systems and fine

phase magnetic domain structures may tend to limits of infinite fineness. The theory in this

formulation delivers useful information about variant arrangement and location as well as

macroscopic state functions like energy and stress. It is particularly useful in deciding where in the

body fine structure will arise.

At the analytical level, we apply a recently developed averaging method, briefly explained

in §2 below, which accounts for rapidly spatially varying systems and accomodates the fine scale

microstructure. A configuration which minimizes a given variational princple is described in terms

of generalized moments of the minimizing sequence, or equivalently, oscillatory statistics. The

most important property of the method is to unify energetic and kinematic considerations by

compelling the statistics to be consistent with the variational principle.

Examples of this sort of analysis served to generalize the crystallographic theory of

martensite, Ball and James [1], and to compute the relaxation of energy densities in the presence of

symmetry, Chipot and Kinderlehrer [9] and Fonseca [26]. It has subsequently played a role in

many discussions related to microstructure, eg, [2,4,5,10,12,13,14,15,25,27,28,30,31,32,

33,35,39,40,41,45,47]. A treatment of the variational foundations of this method is given in

[29,36,37,38]. Kohn [42,43] has shown how these ideas and those of relaxation in, general are

consistent with the treatment of Khachaturyan and Roitburd, eg. [34,49]. Here we shall briefly

explore two examples: a theory for highly magnetostrictive iron/rare earth alloys and a

mathematical example of evolution of fine structure. A major impetus for these investigations is to

provide a basis for the numerical computation of configurations with complicated microstructure.

A few selected results of these efforts will be reported.

2. Local spatial averages Young measures. We describe the portrayal of microstructure or

fine structure by local spatial averages or Young measures. We also explain the mechanism by

which these averages serve to unify energetic and kinematic considerations. Since this may not be

familiar to most readers, we give some examples as well. A bounded sequence of functions or

more general fields, scalar, vector, or matrix valued,

fk: Q -4 RN, k = 1,2,..., (2.1)
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may describe a spatially oscillatory structure or system in the region f. For example, if Q2 is a
cube, fo a fixed periodic function, and

fk(x) = fo(kx),

the system represents spatial oscillations modulated in some fashion by fo. A specific one
dimensional example is

fk(x) = sin 7kx, 0 < x < 1, k = 1,2,3... (2.2)

Another one is

-I i-i-I

fk(x) = k -k I < j < k, 0 < x :5 1. (2.3)
2< x <i1 ••1

The general sequence (fk) may fail to converge pointwise or even in the mean, as the
examples (2.2) and (2.4) above illustrate. This, it turns out, is characteristic of the minimizing
sequences for functionals which lack lower semicontinuity and in particular of variational problems
associated to crystalline solids in the context of finite elasticity.

The behavior of the sequence may be grasped by computing limits of averages

(a)= lim lim I-- f fk dx, (2.4)
p-4- c k -4-•*Bp I Bp(a)

where I Bp I stands for the volume of the ball of radius p. This tells us only the average limit of

the sequence, however, and does not inform us of its particular oscillatory behavior. The technical
name for this convergence is weak* convergence. To overcome this, we calculate generalized
moments. Let V4 be any continuous function and consider the sequence (,(fk)). Although this

sequence need not converge, we may ascertain, as above, a weak limit function

=(a) lim lim f J v(fk) dx. (2.5)p- ok--IoiBpI Bp(a)

The association

65(a)
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gives rise to an integral representation (a probability measure) on WI,

W(a) = (fk•(.) dva(X) (2.6)

which has the property

4t(fk) dx - 4 dx for any subset E c Q. (2.7)

This collection of measures v = (Vx )x r jj summarizes the statistics of the spatial

oscillations of the sequence. It was introduced by Young [54] to study control problems. Its first

use in differential equations is due to Tartar [50,51] who studied hyperbolic conservation laws.

They are-measures defined on the range of the sequence (fk) which depend on the point x e U

In particular, it is generdlly incorrect to suppose that the limit of a minimizing sequence

realizes the infimum of energy in a variational principle whose minimizing sequences are highly

oscillatory. The minimum energy must be evaluated using (2.6).

Examples

For example, both the sequences of (2.2) and (2.3) have f(x) = 0. On the other hand, for

(2.2),

1

,(a) = (, 0 < a <, (2.8)
-I

while for (2.3),

j(a) = •(W(-W ) + iy(l)) , 0 < a < 1. (2.9)

The oscillatory statistics of the two sequences are thus quite different.

Let us now give a simple well known example of how oscillations may arise in the

mathematical context. The first of these is the familiar Young-Zennelo tacking problem, [54]. Let
9p(X) be a double well potential with equal wells at -1 and 1 as depicted in Figure 1 and, with 0
= (0,1) an interval, set
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I(v) J(p(v') + v2) dx. (2.10)

duk
A minimizing sequence ( uk ) for this functional wishes to enjoy both -•- = + 1 for all k and

uk -+ 0 in f. The result is the generation of oscillations, with a typical minimizing sequence

given by uk with

duk in Q, (2.11)dx

with the fk defined in (2.3). The Young

measure solution of the minimization problem
is given by, cf. (2.9),

v = (8-1 + 8+1). (2.12)

In this example, oscillations are created by
competition between the two terms of the

I Z functional. In multivariable problems, side
conditions, like boundary conditions, are

-1 1 sufficient to give rise to an oscillatory structure.

Interestingly, it is difficult to decide this from a
Figure 1 A typical double well potential in one variable, computational standpoint because the additional.

competition between the grid orientation and the particular kinematics organization of the

configuration requires a sufficiently large computational domain as well as certain other features.

We are examining these issues with Nicolaides.

The propagation of oscillations, and even the convection of oscillations is an important

issue. Tartar has investigated this in some detail [52], recently introducing the H measure to

account for aspects of the frequency distribution of a sequence as well.

3. Magnetostriction A remarkable feature of ferromagnetic materials is that the single

domain state is generally unstable. Th6i constrasts with martensite, where the single variant
configuration is stable for arbitrarily large samples. In the blue phase of cholesteric liquid crystals,

the failure of stability of the uniform state relative to an array of defects is termedfnustradon. Our

theory here could be interpreted as one possible interpretation of this phenomenon at a macroscopic
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scale. The frustration in our system arises from the competition of an anisotropy energy which

demands constant magnetization strength and direction with an induced field energy which prefers

to tend to zero. A consequence of this is to promote development of a fine scale structure which

seeks to compromise the constraint of constant magnetization strength.

Certain iron/rare earth alloys display both frustration and a huge magnetostriction. There

are cubic Laves phase RFe2 (R = rare earth) compounds, for example, where magnetically

induced strains "overwhelm the conventional thermal expansion of the material", Clark [11].

TbDyFe2 (terfenol) solidifies from the melt with a complex highly mobile domains consisting of

structural domains and magnetic domains. Typical growth habits result in configurations with

parallel twinned layers, cf. Figure 2, that persist in the magnetostrictive process. We have been

studying this with a theory of magnetoelastic interactions based on the micromagnetics of W. F.

Brown, Jr. (6,7,8] and the symmetry considerations introduced by Ericksen [16-24]. For a

complete discussion, we refer to James and Kinderlehrer [321. It has some similarities with

Toupin's theory of the elastic dielectric [541. We then apply it to the equilibrium microstructure of

TbDyFe2. The primary mechanism of magnetostriction appears to be an exhange of stability of

mechanical variants under the influence of a change in the magnetic field, but we do not discuss

this in detail here.

For relatively rigid materials one may assume the free energy to depend on magnetization

alone, [30,31]. The theory in this case gives good qualitative agreement with experiment,

explaining why cubic magnets have a few large domains and why uniaxial ones have a fine

structure. Domain refinement at the boundary is also predicted when the normal to the boundary

has a suitable orientation with relative to the crystal axes, in agreement with observations.

(-211)

Figure 2. Schematic depiction of the microstructure in a sample of "bDyFe2
illustrating the herringbone structure of two sets of laminar fine structures.
Crystallographic directions are with reference to the high temperature
nonmagnetic phase.
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The variational principle is formulated in terms of a stored energy density which depends
on the deformation gradient F - M, 3 x 3 matrices, magnetization (per unit mass) m E R3 , and

temperature 0 c R. We suppose it given by a nonnegative function

W(F,m, 0) Fe M, me R3,6e R, (3.1)

subject to the condition of frame indifference

W(QFmQT,0) = W(F, m, 0), Q E SO(3), (3.2)

and material symmetry

W(FP, m, 0) = W(F, m, 0), P e P, (3.3)

where" P is a crystallographic point group.

Requiring W to depend on the deformation gradient F = Vy and magnetization m but

not on V2y and Vm indicates that any energy associated with mechanical twin walls and Bloch

walls is neglected. In this formulation, there may be infinitely fine twins or infinitely fine magnetic

domains, as we have suggested earlier. Since on a macroscopic level, the materials of interest

display highly mobile domain configurations, any wall energies need be very small. The analytical

benefit is that in the limit of infinite fineness we are able to determine rather accurately the

arrangement and location of variants within the material, although not their dimensions.

Let y denote the spatial variable and H and M denote the magnetic field and the
magnetization (dipole moment per unit volume), respectively. In the spatial configuration,

Maxwell's equations hold. In addition, material is magnetically saturated. For an appropriate

choice of units, and introducing U(y) as a potential for H,

divy(-VyU + M) = 0 in R3, (3.4)

and the field energy density is given by
1

IIH2 = -IVyUI 2 .

The saturation constraint leads to

IM I = f(0) in the body, (3.5)
p

619



where p is the density.

The domain Q is interpreted as an undistorted single crystal above the Curie temperature.
By an abuse of notation, let y(x) denote the deformation of Q to y(QŽ), assumed for the

purposes of discussion to be 1:1. Since p(x) = 1/ det Vy(x), the magnetization per unit mass

previously introduced, m = det Vy M, so the constraint (3.5) assumes the form

Iml = f(0).

We assume f(O) = 1, without loss in generality.

In this fashion we may write the virtual energy of the configuration y = y(x), m = rn(x)

in the mixed reference/spatial form

E(y,m) AW(Vy,m,O) dx + I V2U 12 dy (3.6)

subject to the constraints,

divy(-VyU + 1 m) = 0 in R3. (3.7)
det Vy

iml = I in y(Q).

From (3.7), we may also write the energy in the form

C 1'f 1 mV~ y 38
E(y,m) = W(Vy,m,O) dx + t mVy U dy (3.8)

Both for computational and analytical reasons, it is useful to express this in terms of
reference variables alone. For this, introduce u(x) = U(y(x)), so Vu(x) = VyU(y(x))F(x),
F(x) = Vy(x). With C = FTF, the constraint equation (2.9) becomes

div(-VuC-ldetF + mF-T) = 0 in R3 , (3.9)

and the saturation condition is simply

Iml = 1 in 9. (3.10)

The virtual energy of y = y(x), m = m(x) in reference form is
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E(ym) W(Vy ~m.0)dx + 1 Vu C-I.Vu det F dx, (3.11)E~ym) W(y~m0) x + 2 J

subject to (3.9) and (3.10). Analogous to (3.8), we may also write (3.11) as

E(y,m) = W(Vy,m,0) dx + 2 VumF- dx. (3.12)

The symmetry condition (3.3) induces a potential well structure on W. The arrangement

of these potential wells determines the possible fine structure. Our schema for understanding this
well structure begins by choosing for P the symmetry group of a putative high temperature non-

magnetic parent phase of the material. For example, in the case we shall consider here, P is the

cubic group of order 24: relative to a cubic basis, these are the proper orthogonal matrices of the
form P = (Pij ), Pij = t1 or 0. This is the appropriate assumption for TbDyFe2. For 0 <

T00, we assume there exists a pair (Ulml) with I ml I = 1 and U1 = U1 positive definite

satisfying

W(Ul,ml,O) -< W(F,m,O) for Fe D, ImI = 1. (3.13)

Generally, UI and mI depend on temperature. The conditions (3.2) and (3.3) imply the

existence of other minima by (2.9). Assume that the full set of minima is determined by the ,rbits

of (Ul,ml) under these actions. Thus

inf W = W(RUIH,m1 RTO) < W(F,m,O) for R e SO(3), He ?

and Fe M, Imi = 1, with (F,m) * (RU1 H,mlRT). (3.14)

The potential wells are described as

(RUt,miRT), Re SO(3),

(RU2,m2RT), R e SO(3),

(RUn,mnRT), R e SO(3),

where

{ (Ul,m1), (U2,m2), ... (Un,m.) } = [ (QU 1QT,mlQT): Q e P
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An orbit of the form (RUi,miRT), R e SO(3), will be called a variant by analogy to martensitic

transformations.

Our idea of a variational principle is to find a pair (y,m) such that

E(y,m) = inf [ E(il,jt): (%lgt) subject to (3.9) ).

However, in our situation, with the material, in essence, uniaxial, this will not be possible.
Instead we must content ourselves with this result, whose verification relies on an explicit

construction:

infE = minW IQ1. (3.15)

4. The variational context

4.1 The variational context: energetics

Consider the minimization question associated to (3.8) subject to (3.9). By choosing a

special sequence of magnetizations, one may show that

inf E(y,m) = min W I Q I, (4.1)

as discussed at the end of §3. However, because of the competition between the ,¢id energy and
the stored energy, there cannot be any pair (y*,m*) with y* aftme and

E(y*,m*) = minW I I. (4.2

We are led in this manner to consider a sequence of deformation fields and magnetization
fields (yk,mk) subject to (3.9) for which (dependence on 0 suppressed)

E(yk,mk) - mrin W I 12 I. (4.3)

and

Vyk -- Vy and mk -+ m,

where the convergence is in the sense of (2.4), or equivalently, (2.7).

The only way for (4.3) to occur is if
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W(yk,mk) - min W and I VyUk 12 dy -+ 0. (4.4)

Since

W(yk,mk) - W(x), for x - fl,

VW(x) = f W(At) dvx(A,.t)
MxS 2

we must have that the set of (A,j±) charged by v, that is the support of the measure v, is

contained in the minimum energy wells described by (3.17). In analytical terms we write

supp v c {(Ag): W(A,pt) = mrin W } = (4.5)

In addition, (4.4) provides via the constraint equation in (3.9) that

div 1 mk -- 0 in H-1 (R3). (4.6)
det Vyk

(4.5) and (4.6) place severe constraints on the possible forms of Vy and m.

4.2 The variational context: kinematics

An easy integration by parts shows that if ( yk ) is a sequence of deformation fields with
bounded derivatives, then for any minors M(Vyk) of the matrices Vyk,

M(Vyk) -ý M(Vy)

in the sense of (3.4), that is, in the weak* sense. Thus minors are special functions W(A) which

are continuous with respect to this convergence. They are, of course, the null-Lagrangians. The
Young measure relation also holds. So, in the present situation, combining (4.5) with the Young

measure representation gives

Vj(x) = A dvx(A,4) , (4.7)

adj Vy(x) = adj A dvx(AL) ,and (4.8)
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det Vy(x) = tdet A dvx(A,g), (4.9)

where adj A stands for the classical adjoint of A and det A stands for the determinant of A.

Formula (4.7) ', simply a restatement of (3.4) in this case and is included to provide a complete

list of null-lagrangians. We refer to (4.7) - (4.9) as the minors relations.

These relations place extremely strong restrictions on the nature of possible equilibrium

configurations because they assert that the limit statistics of equilibrium configurations must be

compatible with the potential well structure of the macroscopic bulk energy.

It is worthwhile pointing out that for the special case of an infinitely fine laminate supported

on two deformation gradients MI and M2, that is,

W(A) dvx(A,g) = (I-0) W(M ) + 0 W(M2), (4.10)

for some 0, 0 < 0 < 1, the minors relations imply that

M2 - M = aOn = rankone, (4.11)

and the ( Mi } may represent the deformation gradients of twin related variants with normal n. A
sequence of deformations which determines (4.10) with 0 =1 is given by2

Vyk(x) = M1 + j(1 + fk(x.n))a On, xe Q,(4.12)

where fk(t) is defined in (2.3).

Analogous formulas hold for any problem in thermoelasticity, but in magnetostriction we

also have a relation about magnetization owing to (3.12). This relation is most useful in reference

coordinates. Recall that

re(x) g •±dvx(AB). (4.13)
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The Phase Transition in TbDyFe2

w

High 0: one stable variant

Low 0: ny stable

variants; energy not convex;
oscillato y structures

Figure 3 The phase transition in terfenol.

The new relation is that

m(x)Vy-(x)-T = gLA-T dvx(A4L), (4.14)
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with

div (na(Vy)-T) = 0 in R3 . (4.15)

4.3 Application

In Terfenol-D, onset of ferromagnetism is associated with a stretch of the unit cell along a
main diagonal parallel to the magnetization. In simplified kinematics, we find a pair (Uhml)

satisfying (2.15) provided by

U1 = I +emljml and ml = lei small, (4.1)

for a suitable choice of coordinates. The other potential wells are determined by

Ui 1 + emi®mi, i = 2,3,4, with (4.2)

m2 -'-(1,-11), rn4 = M3(41,-1).

Since -mj is also an admissible magnetization, there are a total of eight potential wells.
We regard the coordinates chosen so that this represents the lower laminate in Figure 1. The upper
laminate is obtained from it by a rotation about the ml axis. Note that this is not a symmetry

operation of the original energy and, although holding invariant the well of (Uhml), gives a
different set of wells. To save space, here we discuss only the lower laminate. To properly treat
the entire system, we must introduce an inhomogeneous energy W(F,mO,x), x e Q, cf. [32].

To establish our result we wish to check that we may produce a minimizing sequence
(yk,mk) for the energy E(y,m) with the potential well structure determined by (4.1) and (4.2)

whose statistics, as determined by the "minors relations" and their generalizations, (3.13) -
(3.15), (3.20), and (3.21), deliver the observed crystallographic data, for example, of the lower
laminate of Figure 1. We are able to do this using the wells determined by (Ul,ml) and

(U2,m2).

Given any pair of transformation strains

U1 = l+ek@ k and U2 =

i1iI = 1, 4 1and k independent,

then the type I and type IH twins (or twins and reciprocal twins) have normals
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n+ = 41+42 and n- =41-ý2.

There are rotations Rt(e) and vectors a±(e) with

U1 = R+U2 (1 + a±0n±) (4.3)

In this case with •i = mi, n+ = (100) and n- = (011), in agreement with the observations of

D. Lord [44,53].

A coherent laminate may be constructed from the deformation gradients Ut and R+U2 or

from the deformation gradients UI and R-U 2, cf. also (3.16) - (3.19). We may construct a

compatible sequence of magnetizations mk with mk = ± ml in the Ul regions and mk =

± m2(R+)T in the R+U2 regions with the property that the limit average m = 0 so that

lim E(yk,mk) = min W I!Q I,

cf. Figure 2 below.

(-211

. .... .. .. . .. •. T

Figure 4. The equilibrium microstructure of a laminate with parameters
predicted by the theory. The gray arrows represent directions of themagnetization within the mechanical layers. In the UI layers they are
+ml wher mi isa (111) direction and in theshaded layers they

are ±lm 2 (R+)T where mz isa (-111) direction.

It is possible to deduce, moreover, that the only magnetization distributions consistent with
the inechanical laminate have in -- 0. One may explicitly write a Young measure solution
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V - (1-X)(5(UIlml) ++(Um) ((R+U 2 ,m2 (R+)T) + 8 (RU 2,m2(R+)T)), x e

where 0 < X < 1.

Our analysis suggests however that Figure 2 above is not the only solution and need not be

the only one the laboratory photographs show either. A laminate may also be realized with

deformation gradients U3 and RU4 which has the same appearance on an (01-1) plane. Note

that m3 + m4 11 (100). This configuration has the property that it is exactly compatible across the

(111) plane whereas compatibility of the U1 and RU2 laminate is only in the fine structure limit

and requires X. constant. Interestingly, the fine structure laminate might display greater

magnetostriction.

The computation of configurations is underway by Ma, who has successfully reproduced

hysteretic behavior in linearly magnetostrictive models. Previously, Luskin and Ma, [45], studied

the rigid ferromagnet.

5. Evolution Evolution problems for potentials which are not convex may be considered

within this framework. The basics of an existence theory were given in [40] and has been

significantly advanced by Demoulini and Walkington, in work which has not been published.

Walkington, in particular, has adapted method for computing solutions of the Young-Zermelo

problem to evolution, for reasons which will become clear momentarily.

Consider (p as ir. Figure 1, a scalar valued potential for example, and ask for a solution of

the problem, q(X) =

au
-div q(Vu) + 5F = 0 in tx(0,xA)

uiQX(O) = Uo (5.1)
uIn×(o) -0

u I •au X (0'.*) = 0

A classical solution need not exist because the equation may be backward parabolic in some

regions, but we may seek a Young measure solutions along the lines we have been discussing.

We find this solution by adapting an implicit scheme.

The functional
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I(v) = (((Vv) + -'(v - w) 2) dx, h > 0, (5.2)

is only slightly different from (2.10). Given h > 0, set tk = kh and uh,o = uo. Solve

iteratively for Young measures vh-k and underlying deformations uh-k by the minimization

procedure

J (q,(Vv) + (-uhk-1)2)dx - min (5.3)

where the competing v e Ho(Q), for example. The vh,k and uh~k satisfy

J(p + 2-!(v - uhk-1)2) dx = min, (5.4)

((x) = (p.() dvh'k(%) , with

RN

suppvhlk a IX: 4p(.) = 9 **(X)}, (5.5)

where (p** denotes the convexified (p, which is its relaxation in this situation. Moreover, it is

possible to show that

-div -h + 1 (uh~k - uhk-_l) = 0, where (5.6)

qh(x) = fNqh(%) dvh'k(,)

RN

We next assemble the vhk and uh-k, defining uh to be the linear interpolant of the
(uhk ) and Vh the piecewise constant in time measure equal to vhk in (k- 1)h < t < kh. We

obtain in this fashion a family of approximants which are "maximally dissipative" because of (5.5)

and converge to a Young measure solution of (5.1).

629



0.400

0.300

0.200

0.100

0.400

0=2O O.50 0.75 LO.D

u(x,O) = 2x(1-x)

0.,.w

0.4i00

0.3W

0.100

o.xO o.U Oro 0.75 IbO

u(x,O) =2.2x(1-x)

Figure 6 Computation of the solution of (5.6).by a Young measum algorithnL
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It turns out that the solution uh.k of
(p* the basic variational principle is the unique

solution of the relaxed problem for this
e' .principle which is strictly convex in v, but

not in Vv. Some convex analysis then tells

us that uh is unique and so is its limit u as
h -- ,h 0. The Young measure need not be

.... ~ unique.

-1 •1 This is an opportunity to study

the pure generation of oscillations in a new
Figure 5. The relaxation qp** of p plays an important context The underlying solution is known.
role in the solution of the problem. Where (p is different
from p(** is shown in dotted lines. What statistics are possible for the sequences

which generate this solution and can we compute them? How do they evolve in time? Using an
algorithm specifically designed to compute Young measures by Nicolaides and Walkington,
Walkington has computed several examples of this behavior, shown in Figure 6. Although in

these pictures, the solution decreases monotonically to its limit

J x 0< x < 0.5
u(x,oI) = 1-x 0.5 < x < 1

this is not the case for general initial values u(x,0), although the energy integral is a decreasing

function of L We refer also to their article in these proceedings.

The author wishes to thank his colleagues and coworkers, especially R. James, R.
Nicolaides, P. Pedregal, and Noel Walkington, for their assistance and advice in preparing this

account.
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ABSTRACT. Various finite difference schemes were presented in the
Ninth Army Conference on Applied Mathematics and Computing held at
University of Minnesota Super Computing Center. It is of interest to
know where classical finite element method stands against its
counterpart. Towards this goal, the finite difference equivalent is
derived by the use of Gurtin's variational principle, introduced
during mid 60s, for linear initial value problems and finite element
synthesis. The body is divided into various finite elements. Linear
temperature distribution within each element and linear temperature
variation within each time step are allowed as in classical finite
element method. The resulting equation is found to be same as one of
the finite difference equation derived earlier, i.e., equal weights
at all nodes of a 27-node element except at the center. This is not
the best one as far as accuracy, stability and nonoscillation
characteristics are concerned. A question is now posed to the
readers about consequences of liberalizing the two basic assumptions
of classical finite element method.

INTRODUCTION. The motivation for this task comes from the needs of
another project, aerodynamic heating of hypervelocity projectiles.
The transient three dimensional heat conduction model will provide a
means to determine the temperature distribution as a function of
location (three dimensions) and time for any given initial and
boundary conditions. The boundary conditions are usually obtained
from computational fluid dynamics models. There are occasions where
there is a strong coupling between convective flow and conduction.
No matter what method is utilized, all require large computer storage
and a great amount of computer time. The solution process is not
only subjected to these restrictions but also bound to blow-up, in
the middle, if proper selection of numerical techniques and accuracy,
stability and nonoscillation characteristics are not taken into
account. If a combined convection and conduction problem is
attempted in one-step, the failure in one area can lead to a losing
proposition in both areas. Therefore, a search is initiated to find
an accurate, robust and efficient numerical scheme for the solution
of transient three dimensional heat conduction problems.

*College of Engineering, Rutgers University, New Brunswick, NJ
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VARIATIONAL PRINCIPLE. Wilson and Nickel (1], following Gurtin's [2]
discussion of variation principles for linear initial value problems,
confirmed that the function T (x,y,z,t) which leads to an extreme ol
functional

1/2 • {•CpT*T +*VTK'K T - 2'ýCpTot T) dU
V

13 the solution of the followlng trai, sient heat-conduction equation:

(K*T, i) i- Cp + ?, *-

with the boundary condition K*Ti - Qi - 0

Mhere T(x,YJ,z,t) a temperature at the spatial point (x,U,z) and at time t

To - Initial temperatures

T - Gradient of T with respect to spatial coordinates

K - Thermal conductivity

f• n Iaterial density

Cp - Heat capability of the material per unit mass

t

Qi (X,Y,z,• . i (x.•.z,'t) dT-

U - Uolume

* - Convolution symbol defined as:

t
T*T . T(x,Y,zt- T (x,Y,z~n:) d'r.

0
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FINITE ELEMENT SYNTHESIS. Divide the three dimensional solid body
into I axial elements (nodes o to I in x-direction), J transverse
elements (nodes o to J in y-direction), and K normal elements (nodes
o to K in z-direction) such that step sizes are same in all three
directions. This restriction is introduced to simplify algebraic
manipulations involved in the analysis. Also, a unit step size is
assumed to simplify derivations and generalized later.

Consider the nodal point (i,j,k), in the range 0, < i < I, 0 < j
< J, 0 < k < K) as shown in Figure i. The temperature of the nodal
point will vary as a function of time, t. The temperature
distribution in a subregion is a function of spatial coordinates
(x,y~z) and surrounding nodal point temperatures. For simplicity,
linearity and the same functional distribution are assumed for all
elements. The functions f1 , f2 , f 3 ,f4,ff6, f7, and f 8 are functions
of nodal point temperatures. These are determined by substitution of
the coordinates of ncial points into the equation and by solving the
resulting simultaneous equations. The results for region II are
given on the next page.

)Z(k) 3-D Element
/T

T T t 1+ k+

vlI I

T- | 1+ 1+ 1 i k
TT

kVVI I I

T

TV Tm kir/r

Fi gure
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Region II:

T (x,y,z) = f + f2 x + f 3 y + f 4 z + f 5 xY + f6 xz + f 7 yz + f 8 xyz

f = Tijk = Tooo

f =T -T2 +00 000

f 3 = To0 o- o

f 3=T0+ T00
f4 T 000 To0-

f = T++o - T+0 0 - T0+0 + To00

f 6 =T+00 T+o-- To00o + Too-

f7 =T 0+0 -TO+- - Tooo + Too-

f 8 =T++o -T++ - T+0 0 + T+o- - To+0 + TO+-

Where the subscripts + and - denote nodes one step ahead and one-step
behind respectively. Once the temperature distribution is obtained,
anyone can derive the partial first order derivatives from the above
equation. Similar set of equations can be derived for the remaining
seven regions of the three dimensional finite element, discussed
above. It is time now to substitute all equations derived into all
three terms of functional, governing equation, and integrate over the
volume occupied by region II and take the first variation with
respect to Tijk at the new time in order to obtain the extremum of
the functional. Obtain similar results for the other regions and
combine them.

The procedures for the first and the third term of the governing
equation are same. However, double convolution symbol is involved in
the second term. Here the evaluation of the second term in the
governing equation involves integration not only over the volume (and
the use of first variation with respect to the nodal temperature,
T+ljk at the new time) but also over the time-step due to the
additional convolution symbol. Towards this goal, a linear nodal
point temperature variation is assumed within each time-step.
Summing up the results of all three terms produces the following
finite element equivalent:
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The superscripts + and o denote new time and old time, respectively,
for any time-step. e is the dimensionless parameter, Fourier number
( & At/'). The left side of this equation represents the weighted
average of time-derivatives at all nodes of a 27-node finite element
system. Of course, the weights are different depending upon the
location of the node. The right side of this equation is equivalent
to an arithmetic average of 3-dimensional Laplacian (in a particular
finite difference form) at two different times, old and new. This
particular finite difference form for representing a laplacian is not
the best one as far as accuracy and nonoscillation characteristics
are concerned [3]. The details of derivation that lead to finite
element equivalent are omitted here due to lack of space and time.
However, it is planned to publish in a journal, similar to the two-
dimensional case [4].

One can also rewrite the above equation, finite element
equivalent, in a more familiar form to the finite difference
community as shown below. All unknown nodal point temperatures are
arranged on the left side and all known quantities are shuffled to
the right side of this equation just- ike in a traditional way. The
coefficients, A through H, are different. These are not given here
due to lack of space. However, one can write them by comparison of
this equation with the above finite element equivalent.

AT+- + BT_+o0 AT + BTO. + CT.oo0 * UTo. 4

'AT+ + BY + C + + + +AT-.+. .a .. +. . 0 0. +
T T+ + ÷ 4

CT0o- DT *o CT+o +BTo. + CTo+o +aTo÷

AT + BY o•+AT.+ BT +. CT+ +oBT+o.
.. 0 +-+ +0-- +0-0 +0+

+ + +

AT + BT +AT - ET0 FT ET +

+, +",• 0 + + .. .. 0 "'S a 0 * 40- 00 *0

F1.0, + GT.0o, +FT-o. , E T°.+. + FT°+0 + ET°.++ +0 0 0 0 0 0

ATO . T * To + G o- FTooo GToo +0 0 0 0 0 0Fl . GT o *FT . ET•. *FT.o sET°.

FT ÷ +GT *FT *ET +T F ET +

S0 0 0 0 0
FT 0 .GT +0 +FT + .*ET# FT + *0ET++



OTHER FINITE ELEMENT SCHEMES. Classical finite element scheme is
discussed above. Linear temperature distribution, in space, is
allowed in addition to linear temperature variation within each time-
step. Similarly, one can also treat quadratic, cubic, etc.,
variation in space. However, analytical evaluation, similar to the
above, is almost impossible because of tedious and extensive
algebraic work and associated errors involved. Sometimes, this is
referred to in the literature as h-version finite element method.

There are three well established general approaches in the finite
element method:h-version, p-version and h/p-version. In the h-
version of finite element method, the element approximation is kept
fixed and the mesh is refined thereby adding more degrees of freedom
to improve the accuracy of the solution. In the p-version of finite
element method, the order of approximation for each element of a
fixed grid is increased thereby adding more degrees of freedom to an
existing model to improve the accuracy of the solution. In the h/p-
version of the finite element, the mesh refinement and the order of
approximation for the element is accomplished simultaneously. The p-
version of finite element methods yields a much higher convergence
rate and requires very simple models which need to be constructed
only once. For singular problems such as near freezing or melting
interfaces, the rate of convergence of the p-version is even higher
than for smooth problems. Computational benefits of hierarchical
properties result in additional saving and efficiency. The inability
of h-version to correctly simulate singular problem behavior is well
known. In such applications p-version (or h/p-version) is the only
feasible approach. As a result this newer technique has found
considerable application in modeling composite structures, large
strain and deformation.

CONCLUSIONS. Hypervelocity projectile is in the DODs critical
technology list. The task reported here directly supports this
project. Classical finite element analysis is performed on transient
three dimensional heat conduction problems by the use of variational
principle and finite element synthesis. The finite element
equivalent, derived here, appears first time in the literature. The
terms on the left and right sides are identified. It is found that
the classical finite element analysis may not be good based on
physical interpretation of terms and comparison with other finite
difference schemes especially if accuracy, stability and
nonoscillation characteristics are taken into account. Other finite
element variations which are superior at least for special problems
such as melting or freezing are also discussed if one is interested
in pursuing only finite element methodology.
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Abstract

Motion control of mechanical systems with inherent structural and joint flexibility
represents a class of nonlinear systems found in many important applications. Applications include
the motion control of machines used widely in weapons, medicine, construction, mining, and
manufacturing. Control of the tip motion (e.g., the end effector in the case of a robot manipulator
or the active end of a pointing system) in an inertial coordinate frame is the objective in most such
applications. This is the case because tasks are usually specified by the desired motion trajectory
of the tip described inertially. As such, one needs to compute and control the applied actuator
torques so that the motion of the tip will match the prescribed motion. However, a non-minimum
phase system arises when one attempts to control the motion of a mechanically compliant system
by using a measurement of the tip to control a non-collocated actuator.

The viability of a delayed adaptive inverse method for motion control of the tip of a flexible
beam is demonstrated in this paper. This method is based on an adaptive linear FIR filter which
provides a stable and close approximation to the inverse plant dynamics. Such FIR filters can be
used to control non-minimum phase systems, certain nonlinear systems, or plants of unknown
dynamics and can be implemented using real-time interrupt driven high performance computational
devices such as digital signal processing (DSP) based hardware. A least mean square (LMS) error
minimization is used to update the weight vector which forms a delayed, adaptive inverse dynamic
model of the system. By using an FIR filter to represent the inverse of plant dynamics, the
instability associated with pole zero cancellation on the right half Laplace plane is avoided when
controlling non-minimum phase systems. Properly selected values of the initial weights and of the
gain constant, gt, guarantee a bounded solution for the computed input torque. The effects of
varying parameters of the delayed adaptive inverse controller (such as the values of the initial
weights, the gain constants, and the length of delay) on the system performance are presented.
Since the method is computationally efficient, it can be used in high bandwidth applications for the
control of complex plants given only the desired and the actual measured outputs for the plant. A
simple feedback controller is used in conjunction with the delayed adaptive inverse controller to
eliminate the residual errors that would occur if using only feed forward control.

The delayed adaptive inverse controller was designed based on a model of the flexible beam
test bed located at the Armament Research, Development and Engineering Center (ARDEC). The
performance of this adaptive controller is compared with that of an H.. based loopshaping
controller. The results indicate that higher performance is achieved when using the adaptive
inverse controller if sensor noise is minimal. If not, the robust H*,, controller would be
recommended.

'Work was -i!!, supported by the Army High Performance Computing Research Center and the Productivity

Center at the University of Minnesota.
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1. Introduction

There are many tasks in which the precise motion control of a point on a moving structure is of
interest rather than the actuator's motion itself. Robot manipulators are but one example of such a
system. Each robot's actuated link can be considered to be a motor driven beam in which the
beam's tip motion must be controlled. For manipulators, tasks are specified by the desired motion
trajectory of the tip. This means that one needs to compute and control the applied torque at each
joint so that the measured motion of the tip will match the prescribed motion. Two problems arise
in this case. One, sensors for measuring tip motion have to date, been severely limited in
bandwidth; and two, given the non-minimum phase nature of such non-collocated systems, the use
of traditional inverse dynamics based control will lead to instabilities2 . The problem in our case is
further exacerbated by the nonlinear nature of the plant to be controlled. Nonlinearities here
include the inherent geometric/continuous nonlinearities and the discontinuity effects such as
backlash, stiction and friction. An exact Fourier series-based inverse method has been developed
(Yang, 1991), in which good agreement was achieved between the desired and computed motion.
However, the use of such exact inverse dynamics based formulations for the control of non-
minimum phase systems requires prior knowledge regarding the. desired motion/path boundary
conditions and can lead to instabilities due to the generation of unstable poles in the controller.

In order to address the first problem above, we have developed a sensor that can be used for
tracking the six degrees of freedom motion of an end effector. In Sorensen et al. (1989), we
described our first prototype which is capable of high bandwidth (480 Hz) measurement of the
XYZ coordinates of moving points on rigid or deformable bodies. The system, based on a laser
scanning approach, is designed in a pipeline configuration such that each sensed point's
coordinates are immediately available in registers and memory mapped into the data acquisition
CPU. Three planes of light rotate through the measurement field at constant angular velocity. By
measuring the elapsed time for rotation from fixed locations at the boundaries of the field to each of
the moving point targets, one can derive the swept anglee to each of the targets and consequently
their XYZ coordinates. In addition to being able to track each point target's motion, each target has
its own path into the CPU thus facilitating the accurate computation of (a) the six degrees of
freedom of any number of bodies each carrying at least three targets and (b) the relative motion of
the instantaneous axis of rotation between bodies. Significant improvements have been
implemented as a follow-up to the experiments described in Sorensen et al. (1989). As a result,
such sensors can now be used to characterize the relative motion of joints (e.g. transmissions) and
structural elements even when compliance is a major factor. It is now therefore possible to
continuously and simultaneously monitor the motion of one or more mobile base platforms, the
exact behavior of each of the robot joints, their motors and transmission effects, the structural
deformations of the links, and the full six degrees of freedom of the end effector (or load) using
one sensing system. This advance in technology makes it possible to consider multi-degree of
freedom end point control.

In this paper, we will focus on a method to handle the second problem mentioned earlier, that
of controlling a nonlinear non-minimum phase system. We will present a method for controlling
the tip motion of a flexible beam. In contrast to most inverse dynamics methods proposed by other
researchers, the delayed adaptive inverse method that we propose attempts to address the problems
associated with the non-minimum phase behavior of the flexible system and provides a stable and
close approximation to the inverse dynamics. Furthermore, the approach is conducive to the use of
high speed Digital Signal Processing (DSP) hardware. Most of the early research work on flexible
robot manipulators used collocated feedback methods. As such, no direct measurement was made
of the effect of compliance or other unexpected dynamics located between the actuator and the point

2 A non-minimum phase system typically arises when one attempts to control the motion of a flexible structure
using a measurement of the tip to control a non-collocated actuator.
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of interest (e.g. manipulator tip) under control. Several papers falling into this category are
discussed below.

Book et al. (1975) implemented a flexible feedback control scheme (FFC) based on a pole
shifting algorithm. Siciliano and Book (1988) applied the singular perturbation and integral
manifold approaches to control a single link flexible arm. To overcome the sensitivity of these
methods to plant parameter variations, adaptive methods were investigated. Nelson and Mitra
(1986) used on-line load mass estimation and load-adaptive optimal control for varying load
conditions. Other adaptive control methods were also proposed by Meldrum and Balas (1985).
However all these adaptive control designs involve a significant computational component thereby
limiting their application to real time control. Again these papers are limited to cases of collocated
feedback.

To obtain better performance for very flexible manipulators, Cannon and his research group
(Cannon and Schmitz, 1984; Schmitz, 1989) experimentally investigated end-point control
techniques for flexible link systems in planar motion. This was the first attempt at non-collocated
control for a flexible beam model of a manipulator using traditional control design methodologies.
Lee and Castelazo (1987) developed a non-collocated sensor-actuator scheme with non-linear
feedback to control a flexible manipulator. However, there were a number of limitations associated
with this latter group of non-collocated techniques, such as the inability to handle joint compliance
and the uncertainty associated with a model of the system.

Research on the control of systems with joint flexibility was first initiated in the 1980s. Under
the assumption of weak elasticity at the joint, Ficola et al. (1983) used the singular perturbation
approach to design a feedback controller. Khorasani and Spong (1985) extended this work by
using the invariant and integral manifold approach. A pseudo-linearization technique was proposed
by Nicosia et al. (1986) while adaptive control approaches were investigated by Tomei et al.
(1986). All these studies ignored structural compliance and cannot readily be modified to
incorporate such compliance.

Furthermore, the control methods in most of the literature mentioned above was based on an
analysis of the forward dynamics, in which the flexible link (or joint) displacements, velocities and
accelerations are determined by the specified joint torque. An inverse dynamics type of control law
based on the concept of "Computed Torque" was first applied to a cylindrical coordinate arm with
drive train compliance by Forrest-Barlach and Babcock (1986). Other such feedforward methods
followed. Asada and Ma (1989) presented a recursive inverse dynamics analysis based on a virtual
rigid link coordinate system. Tsujio (1988) suggested another approach, in which the driving force
was calculated based on the rigid manipulator, and then applied to a flexible manipulator iteratively
until it converged. None of this latter group of inverse based methods was adaptive and as such
are sensitive to parameter uncertainty. Furthermore, none took advantage of tip feedback and
suffered from the limitations inherent to systems in which direct measurement of the parameter
under control is not available.

An approach that explicitly deals with the non-minimum component of a plant was
described by Tomizuka (1987) who proposed a zero phase error tracking controller (ZPETC) to
solve a tracking control problem. This approach used a feedforward controller to cancel all closed-
loop poles and cancelable closed-loop zeros (zeros on the left-half of the s-plane). For uncancelable
zeros (zeros on the right-half of the s-plane), the feedforward controller cancels the phase shift
induced by them. Since ZPETC is based on pole/zero cancellation and phase cancellation, the
tracking performance using ZPETC is sensitive to modeling errors and plant parameter variations.
To solve the problem with unknown plant parameters and parameter variations, Tsao and
Tomizuka (1987) developed an adaptive ZPETC. The system plant is separated into a known part
(with cancelable poles and zeros) and an unknown part. A normalized least square parameter
adaptation algorithm (PAA) was used to adjust the unknown parameters used in the feedforward
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controller. However, in both cases, the results were dependent on having a good model of the
system.

Another approach for designing contrllers of non-minimum phase, linear systems is H,.. based
loopshaping (Doyle et al., 1992). This approach presents a graphical technique for designing a
controller to achieve robust performance, i.e., performance in the presence of uncertainty. The
idea of loopshaping is to shape the complementary sensitivity transfer function, the transfer
function from the reference signal to the output of the plant, in order to obtain the desired system
performance. The ideal loopshape of the complementary sensitivity transfer function is represented
by a second order system with desired response characteristics such as the amount of damping and
natural frequency. This transfer function is then incorporated, as a weighting function, into the
system model for a controller design that minimizes the induced two norm between the reference
signal and the output of the weighting function.

In this paper we examine a method based on a delayed adaptive inverse filter which eliminates
the non-minimum problem associated with inverse methods by using an FIR filter for feedforward
control. The method is based on the on-line characterization of the inverse dynamics based on an
adaptation algorithm in which a delay must be injected to ensure causality. We will demonstrate the
viability of the delayed adaptive inverse method for motion control of flexible beams. An adaptive
linear function whose weighting is adapted by the LMS algorithm was used to replace the unstable
exact inverse model. By using a FIR filter to represent the inverse dynamics, we avoid the
instabilities associated with pole zero cancellation (only zeros are possible in FIR filters) when
controlling non-minimum phase systems, and we can now take advantage of high speed
computational architecture based on the DSP chip. Furthermore, we may be able to control
complex plants given only the desired and actual output values for the plant, provided that the
control inputs are accessible. Since the method is computationally efficient, it car. be incorporated
into closed-loop controllers for position or trajectory control so that the residual errors can be
eliminated (see discussion later). It can also be applied to multi-degree-of-freedom systems.

This paper significantly expands on an earlier preliminary presentation describing the method
(Yang and Donath, 1990). A general description of the delayed adaptive inverse model is provided
in section 2. The weight vector used in this model is updated using the LMS algorithm, which is
discussed in section 3. The contents of sections 2 and 3 were presented in Yang and Donath
(1990), but they are included here for completeness. A control strategy based on the adaptive
inverse model is described in section 4. The approach, as applied to a model of the flexible beam
located at the Armament Research, Development and Engineering Center, is described in section 5.
A comparison of this adaptive inverse controller with an H,, based loopshaping controller is then
discussed in section 5.

2. A Delayed Adaptive Inverse Model

Adaptive filters are widely used in digital signal processing, such as in communications, radar,
sonar, and seismology, where a priori data information is unknown (Haykin, 1986). In a
stationary process, the algorithm starts with a set of initial conditions and converges to its optimum
solution after successive iterations. In the nonstationary case, the algorithm tracks time variations
in the statistics of the input data for a slow changing process. The application of adaptive filters to
control design can be categorized into two groups: (i) the adaptive model control (AMC) method;
and (ii) the adaptive inverse control (AIC) method. It is difficult to control a non-minimum phase
system by using the AMC method, since the control signal will have a transform with poles outside
the unit circle and will thus be unstable. However, a delayed AIC method can form stable
approximate inverse models without knowing a priori whether or not the plant is minimum phase.

In this paper, we will apply the delayed AIC method to the tip control of flexible beams, a non-
minimum phase system. An adaptive linear combiner, or nonrecursive adaptive filter, is used to
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compute the applied joint torque, which, in turn, generates a desired motion. One advantage,
among many, of the adaptive linear combiner is that it is relatively straightforward to analyze and
implement. A schematic diagram of a delayed adaptive inverse model used in the AIC method is
shown in Figure 1, where the terms, uk, dk, nk, Yk, Vk, and Ek are respectively the command

input, the command after a delay of A sample periods, the noise input, the plant output, the output
of the inverse plant model, and the error between dk and Vk. P(z) and H(z) are z transfer functions
of the plant and of the adaptive inverse model.

This inverse modeling approach, known as adaptive equalization in the communications field,
was first used in the 1960s to counter the effects of interference on communication channels
(Lucky, 1965). It can also be used to produce an inverse model of an unknown plant, which is in
some sense a best fit to the reciprocal of the unknown plant transfer function. The delay of A
samples in Figure 1 is to allow for the delay, or propagation time, through the plant and the
adaptation associated with the inverse modeling. Including such a delay generally results in a much
lower value for the minimum mean-square-error and causes the output of the converged adaptive
system, Yk, to approximate the input, uk, with a delay of A.

The mathematical description for this model can be expressed in discrete system form as
follows. The input vector of the inverse model, Y, which represents a window of L values
associated with the kth sample, is the input to the delayed inverse model (assuming nk is zero). It
can be expressed as:

( single input) Yk= Yk Yk-1 -.. Yk-L+ ]T;

( multiple inputs ) Yk = [Ylk Y2k ..Y]T (1)

for the single input case or for multiple inputs, respectively, and the weight vector, Wk, associated
with the kth sample can be expressed as Wk = [Wlk.W2k ... wLk ]T. The expression for wik (i = 1,
... L) will depend on the approach used. The elements of the input vector for the inverse model,
Yk, are considered to be L sequential sample inputs from a single input source, or L simultaneous
inputs from L different input sources in the multiple inputs case. The elements, yj (where j = k, k-
1, ... k-L+l ), of the single input vector Y, are set to zero if subscript j is equal to or less than zero
(i.e., when k < L).

The output of the inverse model, V, for a linear combination of the input vector, Yk, and
weight vector, Wk, is written as

Vky Wk _Wyk (2)

where, again, the subscript k is used as a time or sample number index. This function is the linear
combiner or weighting function.

Thus the error associated with sample k from Figure 1 is

Ek= dk Vk - dk - Y Wk dkW Yk (3)
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and the mean-square error is

SE[4] = E[d] + W E[Yk Y4] Wk- 2 E[4 YkJ Wk

=E[dtk + WT R Wk- 2 P Wk (4)

where the input correlation matrix is R = E[Yk yT], and the cross correlation column vector is P =

E~dk YT].

Our goal is to find the minimum mean-square error for the inverse model. Several adaptive
methods, such as Newton's method and the steepest descent method, can be applied to adjust the
weight vector in order to obtain the minimum mean-square-error. The disadvantage of these two
methods is that they usually require off-line gradient estimation or repetition of data in order to

compute 4 in equation (4) and its gradient, which reduces the computation speed for real time
applications. By contrast, the LMS algorithm does not require an estimate of all the above terms,
and computes the weighting function based only on instantaneous error. The details of the LMS
algorithm are described in the next section.

3. The LMS Algorithm

In Newton's method or in the steepest descent method, the gradient of E. = E[f] is esti2ated

by taking differences between short-term averages of E2. However, for the LMS algorithm, E2

itself is used as an estimate of 4k without averaging.

The error in equation (3) is

Ek = dk - yk Wk (5)

and the estimated gradient of the mean-square-error can be obtained by differentiating equation (5)

[ 2
K -- - • 2Ek " -2k Yk (6)

a2k 4 a8 k
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For many practical adaptive system applications, the system transfer function is not fully
determined and needs to be measured or estimated based on the sensed data. The slow adaptation
(compared with Newton's method) used in the steepest descent method provides a filter process
which reduces the effects of gradient measurement noise. Using the same slow adaptation as in the
bteepest descent method, the LMS algorithm's weighting update function is expressed as

wi,k+1 = wilk Vk = wi,k + 2 VLek Yk (i = 1, ... L) (7)

where p is the gain constant that regulates the speed and stability of the adaptation and has
dimensions of reciprocal input power. Equations (5) and (7) are a form of the adaptive LMK
algorithm proposed by Widrow et al. (1975). It has been pointed out by Widrow and Stearns
(!985) that for the LMS algorithm, the mean of c converges to zero as k approaches infinity

provided that the following condition is satisfied: 0 < g < 1/Irax, where rmax is the largest

element in the diagonal cigenvalue matrix of R. Increasing the gain constant, gt, tends to reduce the
number of iterations required for the LMS algorithm to reach its steady-state value, but also causes
a corresponding increase in the average square error.

Only simple numerical operations (no squaring, averaging or differentiation) are performed in
the LMS algorithm making this approach computationally more efficient than Newton's method or
the steepest descent method. Since the change in the weight vector at each iteration is based on
imperfect estimates, £-k, without averaging, the results obtained from the LMS algorithm may
include higher frequency components (i.e., noise) and will not be a perfect match with the optimal
(i.e., the case when E = 0). Usually, the more one wants to attenuate the noise, the longer the
computation time, but given the nature of the LMS algorithm, this is not a significant factor. The
expected residual error can be reduced by using closed loop control.

4. Control Based On An Adaptive Inverse Model

Based on the inverse model described in section 2 with weights adapted by the LMS algorithm,
we developed a delayed adaptive inverse model controller. The controller is designed to generate
the approximate inverse of the plant given the desired and actual outputs. For a non-minimum
phase system, some of the plant transfer function zeros are located in the right half of the s-plane or
outside the unit circle in the z-plane for the discrete (or digital) case. In such cases, the exact
inverse model (or the reciprocal transfer function) of the plant will have poles in the right half of
the s-plane or poles outside the unit circle in the z-plane. Thus, the control input of a plant
computed by using an exact inverse model will always continue to increase in magnitude with time
and be unbounded. This will lead to an unstable system which will most likely drive the system
into saturation. In order for such an inverse model to be stable, the impulse response with
adaptation weights would need to be left-handed in time, having a non-zero input and output before
the start time (Haykin, 1986). Including a delay lets the adaptive inverse model have a two-sided
impulse response, thus solving the instability problem. A delayed adaptive inverse model (Widrow
and Steams, 1985) which can be used for control of a non- or unknown minimum phase plant, as
shown in Figure 2, will give an approximated but stable system. This means that the stability of the
controller can be assured regardless of whether or not the plant is minimum phase.

The delayed adaptive inverse mode! in the right half of Figure 2 is essentially the same as that
shown earlier in Figure 1. The controller version on the left is a copy of the delayed adaptive
inverse model. The weights are computed and updated on-line for real-time implementation of the
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delayed adaptive inverse control algorithm. Although the plant transfer function in Figure 2 may
be entirely unknown, certain information regarding the plant characteristics would be useful for
selecting the number of weights and the length of delay. The number of weights should be
proportional to the complexity of the plant; the higher the order of the plant, the larger the number
of weights should be. The delay should approximate the propagation time from the input of the
plant to the output of the delayed adaptive inverse model. A general rule of thumb is to set the
delay, A, to be half of the number of weights. Once a convergent set of weights is obtained, the
delay is increased or decreased for an optimal solution.

The approaches for updating the weight vector in the delayed adaptive inverse model can be
explained using the schematic shown in Figure 3, where L is the number of weights used in the
delayed adaptive inverse model, ts is the sample period, ti is the time needed per iteration, and tc is
the time needed for convergence of the weights for a given sample set of inputs and outputs of the
plant, which is equal to the number of iterations to convergence multiplied by ti.

One approach is to update all the weights only once at each sampling time, in which case ts is
equal to ti. The number of sample periods used in this approach must of course be much greater
than the number of weights in order to achieve convergence to the desired value. After a change in
the plant's dynamic characteristics, a considerable number of sample periods (larger than the
number of weights) may be required in order to reach convergence. The second approach is to
iterate the weights using the LMS adaptation several times during each sampling time, in which
case tc is equal to or less than ts. The first approach is applicable to very high sampling rate
systems. The second approach is applicable when faster processors are available or for systems n
which the rate of convergence is faster than the sampling rate. This convergence rate will be a
function of the complexity of the plant. If the rate of convergence is slower than the sampling rate.
one can use the maximum number of iterations that are possible within the sampling period. Of
course, the permissible number of iterations within each sampling period is processor dependent.

5. Control of a Flexible Beam Unit: Simulation Results

The application of the delayed adaptive inverse method to a flexible beam unit with joint and
structural flexibility was reported in Yang (1991). It was demonstrated that the delayed adaptive
inverse method works for controlling systems with differentiable nonlinearities. In this paper,
more recent results for the delayed adaptive inverse control of a flexible beam system will be
presented. The system that we will consider here is a testbed located at the Armament Research,
Development and Engineering Center (ARDEC) to simulate the motion control problems found on
typical Army systems. A simplified schematic of the testbed is shown in Figure 4; the support and
bearing structures are not shown for clarity. A linear model of the testbed developed by Bhat
(1991) is provided in Figure 5. Elements of the block diagram model shown in this figure are
described from left to right. The first block is the torque constant of the actuating motor with

Kt = 0.89 N-m/volt. (8)

The second block represents the motor dynamics described by

6(0"60 radians/N-m, (9)
5-

where s is the Laplace variable. The third block represents the compliance and damping of the
shaft; it has the form Bs+K, where B is the damping term and K is the spring constant of the shaft.
They are
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B = 0.1663 N-m/rad-sec"1 , and K = 38 N-m/radians. (10)

The output of this block is the effective torque applied to the inertia wheel. The next block
represents a state space model of the inertia wheel and the associated flexible beam dynamics. Two
outputs of this block are the inertia wheel angular rotation and the beam's tip acceleration. The last
block is a double integrator which will yield the tip displacement in radians. Bhat's state space
model for the inertia wheel and the flexible beam was developed using finite element methods by
modeling the beam as four identical beam elements. Figure 6 shows the inertia wheel and the beam
element partitions modeling for finite element analysis. The beam element's mass and stiffness
matrices are given by

F 12 61 -12 6/1
K E 61 412 -61 212

Kel 13 -12 -61 12 -61 (11)

61 212 -61 412

- 156 221 54 -Li 1
M pA 221 412 131 -32 (12)el 420 54 131 156 -221 1L -131 -3P2 -22/ 412 1

where E, p, A, I, I are the Young's modulus, the density, the cross sectional area, the moment of
inertia, and the element length of the beam, respectively. Each segment of the finite element of the
beam satisfies the relationship (the terms in the equation are specified in Figure 6b.)

Mel () el X2) F2.(1)

-[21_ (13)Lr2

The root locus of this inertia wheel and beam model, shown in Figure 7, indicates that there are
three right half plane zeros in the Laplace domain; this information confirms that the system is
indeed non-minimum phase due to the non-collocatedness of actuation and sensing locations. A
comparison of the frequency responses of the linear model of the flexible beam derived by Bhat
(1991) from motor torque input to beam tip position with the experimental test results is shown in
Figure 8. For the analysis proposed in this paper, reasonable agreement was observed over a
range of frequencies. The performance objective to be achieved is that the tip of the beam should
accurately track a desired path with specified boundary conditions on the motion. In this study, we
will focus on the use of the accelerometer as the tip motion sensor in order to explore the limit of
this readily available sensor. The desired acceleration profile will be used as the input command,
r(t), (i.e., the desired motion) of the controller in Figure 2. Since the output of the controller is a
control torque, the adaptive inverse model is generating a characterization of the plant that can be

described as an inertial effect, i.e., T = I 0.
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The desired displacement, velocity, and acceleration trajectories are generated by a fifth order
Hermite polynomial (Forrest-Barlach and Babcock. 1986) to ensure that the desired motion of the
tip satisfies the initial and final conditions as given in equation (14).

yd(0) = yd(0) = "yd(0) - 0; yd(tf) = Ydt ; d(tf) = Yd(tf) = 0 (14)

The desired tip displacement, velocity and acceleration can then be determined from the
following set of equations which meet the constraints of equation (14)

Yd = (±t5 _15-1t t4 + LO t3 )Yal (t d~f

tf t f t f

d =L304 60 t3 +-.3t0

t f t f tf

(120 3 180 60
Yd=tf18 + Lt ) Ydl(t f) (15)

For the set of tests we considered, we arbitrarily picked a motion involving a 45 degree swing
in one second followed by a one second hold. Therefore, in the above equation (15), tf was set to
1.0 second, and yd(tf) was set at 0.785 radians. The sampling period, t., is 2.5 msec
corresponding to a sampling frequency of 400 Hz. The desired displacement, velocity, and
acceleration profiles are plotted in Figures 9, 10, and 11, respectively. The desired beam tip

motion, r(t), entering the controller of Figure 2 was set equal to "yd(tf), i.e., only the acceleration
profile was used. The number of weights used in the adaptive inverse model was 64, and the

delay, A, was 29 sampling periods. A controller design and analysis software package,
MatrixX 3, is used for the simulation of the adaptive inverse controller.

The position response of the flexible beam for the specified acceleration profile is given in
Figure 12 along with the desired position response. A delay is clearly visible. Both the
commanded and the controlled tip motion are completed in less than one second as desired. The
difference between the desired and actual displacement is shown in Figure 13. The large error
which peaks near 0.6 seconds is due to the delay used in the delayed adaptive inverse controller.
The delay (which is needed for causality) is a function of the propagation time through the plant
plus the computational effect. The motion reversal period for this system that is characteristic of
non-minimum phase systems is shown in Figure 14. This motion reversal period of 0.08 seconds,
results in an effective delay in propagation through the plant dynamics. Without this delay in the
delayed adaptive inverse controller, this adaptive approach will not converge. The computed input
torque to the plant is shown in Figure 15. Note the three characteristics of the generated controller
torque; first, there is no residual steady state torque; second, the duration of the input torque is
greater than the duration of the desired motion due to the delay; and third, there is smooth transition
at the beginning and end of the torque profile. The parameters of the delayed adaptive inverse

3 Available from Integrated Systems Inc. Santa Clara. CA.
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controller are obtained via an iterative manual optimization process: the values were determined to
work best with initial weights set at 0.015, g set at 0.075, and with 20 iterations between each
sampling period.

Although the parameters of the delayed adaptive inverse model are obtained via a manually
derived iteration approach, the parameters have predictable effects on the system response. The
gain constant, g, determines the rate and stability of the adaptation. A large value of g will shorten
the time for convergence but it may also cause instability of the controlled system. Effects of gt on
the system response are shown for three values of g. in Figure 16, It is seen from this figure that
the smaller the p , the larger the steady state error will be, since the convergence of the weights are
slower for small values of g. As expected, a large value of g. made the system response unstable.
In this case, this occurred when g. was increased to 0.076.

In Figure 17, three responses are plotted for various values of the initial weights. The steady
state error increased for larger values of the initial weights. In our simulations, the system
response became unstable for initial weights greater than 0.0156 for this system. Therefore, the
initial weights should be chosen iteratively to optimize the system response so that the control
error, Ek, (see Figure 1) is minimized within the iterations performed during each sampling time
periods.

As discussed earlier, the number of the delay periods used in the delayed adaptive inverse
method reflects the propagation time from input to output of the plant; and the general rule of
thumb is to set the number of delay periods to be half of the number of weights. Afttv iterative
simulations, a delay of 29 sampling periods (in our case, the delay equals to 29x0.0025 seconds or
0.0725 seconds) was found to be optimal for our 64 weight FIR based controller. As shown in
Figure 18, the larger the delay, the larger the steady state error of the system response. The system
became unstable when the delay was reduced to 28 sampling periods. This result indicates that the
propagation time of the flexible beam system must be greater than 28 sampling periods.

A residual error remains after the one second settling time (see Figure 13). This is because the
adaptive inverse method is supposed to only yield an approximation of the inverse plant dynamics.
A feedback control loop can be incorporated into the delayed adaptive inverse approach as shown
in Figure 19 in order to remove the residual error in the system response. A linear feedback
controller could be used for this purpose since the amount of residual error is small in magnitude.
To illustrate this point, a simple proportional gain was used as a feedback controller to eliminate the
error ripples of Figure 13. The position response is plotted in Figure 20. The error between this
response and the desired value is shown in Figure 21. Although it is not clear from the figure, the
steady state error has been reduced by 64%.

We designed an H,,. based loopshaping controller using the methodology described in Doyle et
al. (1992) for controlling the tip motion of our flexible beam (i.e., the plant described by Figure 5
and equations (8) through (13)). We used the Robust Controller Toolbox in MatrixX for the
controller design. For comparison purpose, no uncertainty was considered in designing the
controller, i.e., only the nominal performance was considered. In an attempt to obtain the position
response shown in Figure 9, an initial design specification for determining the ideal complementary
sensitivity transfer function for loopshaping was formulated as a settling time of one second with
critical damping for a step input. However, an optimal controller was not obtained since this
specification was too stringent and not achievable. Therefore, the design specification was relaxed
to a settling time of one second with an overshoot of less than 20% of the steady state value for a
step input The resulting H,,. based loopshaping controller is fourteenth order, as a result of the
order of the system (which is twelfth order) and the order of the weighting function (which is
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second order). The step response of the system with the H,.. based loopshaping controller is
shown in Figure 22. The design specification was met, but an undesirable oscillation appeared
which lasted for up to six seconds. The motion response of the flexible beamt tip using this H*
based loopshaping controller with the desired input (fifth order polynomial) as shown in Figure 9
(which represents the desired displacement profile) is given in Figure 23. Comparison of this
response with the response of the system with an adaptive inverse feedforward combined with the
linear feedback based controllers as shown in Figure 20 (and repeated in Figure 23 for comparison
purpose) shows that the settling time has grown to 3 seconds. It would seem that the adaptive
inverse controller with a proportional controller results in superior performance. However, it is
important to note that the superiority of the delayed adaptive inverse controllers over H.. based
loopshaping controllers is only demonstrated for nominal performance and not for robust
performance. In fact, in the presence of measurement noise (we considered both 5% and 10% of
the maximum torque input applied additively at the plant input), the H** based loopshaping
controller yields a stable response (similar to the response shown in Figure 23) while the delayed
adaptive inverse controller results in an unstable system response. It is therefore imperative that
high quality measurements be available when using a delayed adaptive controller.

6. Conclusion

The work described here presents the development of a delayed adaptive inverse method which
may facilitate the closed-loop control of a flexible beam. An adaptation of a linear combiner was
achieved by using the LMS algorithm to find a best fit to the reciprocal of a given plant transfer
function. A copy of this delayed adaptive inverse model was used to compute the necessary
torques required to control the non-minimum phase system as shown in Figure 2.

The simulation results for the system show that the applied torque is bounded and that one can
achieve reasonable nominal performance as long as the sensing is of high quality. Comparison of
the two system responses, one with adaptive inverse feedforward and linear feedback controllers,
and one with H,, based loopshaping controller, shows that the first system has better response
characteristics. Although the delayed adaptive inverse method works for nonlinear systems, in this
preliminary study a linear system was used to demonstrate the performance of the delayed adaptive
inverse controller so that the result could be compared with that of an H** based loopshaping
controller, which is applicable to linear systems only. Both the delayed adaptive inverse
controllers and the H** based loopshaping controllers ought to be able to handle model uncertainty.
This will be a subject for future investigation.

Since there were no squaring, averaging or differentiating operations in the LMS algorithm
(the main computational element of this approach), the delayed adaptive inverse method proposed
here is computationally efficient. The on-line approach for updating the weights described in
section 4 updates all the weights iteratively 20 times per sampling period (a not unreasonable
expectation for a high performance system, which in our case iterates 20 times every 0.0025
seconds.

The delayed adaptive inverse method uses only knowledge of the desired values for the output
(specified as an input r(t) in Figure 2) and the actual plant output measurements in order to
determine the control input, u(t), to the plant. This method can be applied equally well to linear
systems, systems with differentiable nonlinearities, or even unknown plants as long as a control
input can be applied and the plant output can be measured. The question of handling systems with
non-differentiable nonlinearities such as backlash, hysteresis, friction, etc. is still an open one and
needs to be addressed further.
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Abstract

A preliminary p-synthesis controller for the Army's ATB-1000 test fixture is de-
signed and analyzed. For comparison, two SISO controller designs are also described.
The test fixture is pattered after the Apache helicopter's 30 mm gun and has tunable
nonlinearities which may be representative not only of the nonlinearities of the gun,
but of other mechanical systems as well. The models of the test fixture which were
available at the time of the work are also described. The goal in pointing the gun is
to reduce dispersions of fired gun rounds on targets. The resulting ;-synthesis de-
sign, when connected with a nonlinear simulation, exhibited limit-cycle behavior of
unacceptable amplitude. The unacceptable performance is due to the nonlinearities
and, in future work, would be improved upon by frequency domain trade-offs during
the synthesis step.

1 Introduction
For proper overall functioning of most of the Army's weapons systems, specific subsystems
demand high precision control. For example, a guided munition system may be fitted
with laser systems for ranging and/or targeting. Both of the laser subsystems call for
accurate pointing control systems. These are in addition to the high performance guidance
and control of the munition itself. Tank and gun systems require stabilised platforms
from which rapid firing and re-targeting occur. Stabilized platforms are also necessary
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for antenna systems and video camera systems which are envisioned in future battlefield
scenarios. Oftentimes, the accuracy of these control laws is limited by the mechanical
system itself, for example, dead zones in gear drives, or friction in bearings.

The Army Research Office has built a laboratory fixture to study control laws for
problems that are dominated by "hard" nonlinearities. Example nonlinearities in this
group are saturations, static friction effects, and gear backlash. The fixture, the ATB-
1000, is patterned after the Apache helicopter gun, and has built-in tunable nonlinearities.
It is ideal for studying problems in application of linear and nonlinear control law designs.

This paper offers three potential linear control designs for the ATB-1000. Section 2
briefly discusses the objectives for the design, and Section 3 describes the models available
for design and analysis. Section 4 discusses the three different designs, and Section 5
contains some nonlinear simulation and linear analyses for one of the designs. Finally
Section 6 summarizes the work.

2 Requirements

The ATB-1000 is a test fixtuic patterned after the Apache's 30 mm gun. The basic
goal for this weapon is to reduce dispersion of its rounds on targets. So the objective
for the ATB-1000 is to minimize the barrel pointing angle deviation from a commanded
value in the presence of platform motion (simulated with disk motion), gun firing-induced
transients (simulated with a solenoid), and mechanism nonlinearities (simulated with ad-
justable backlash and friction). The laboratory fixture (see Figure 1) is outfitted with a
laser arm to accurately measure the barrel tip position and hence experimentally deter-
mine performance. There are also disturbance levels and ranges of parametric nonlinearity
adjustments that are part of the requirements.

3 Models

In practice, the development of a successful control system design is highly dependent on
obtaining representative models of the system to be controlled. The models are a direct
input to the control law synthesis and analysis steps in the development process. Models
and modeling data come in many different forms, and different types of models are used for
different purposes. Two distinct models of ATB-1000 test fixture were examined as part of
this preliminary control design effort. These two models will be described and compared
in this section. Some discrepancies between these two models have been identified and it
will be necessary to resolve them for future studies.

During the summer of 1991, modeling data was received and analyzed from the Army
Research Office. The modeling material consisted of MatrixX block diagrams, tables con-
taining definitions, scale factors, sign conventions, units, signal size information, and linear
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models for the truncated finite element model of the barrel (with 8 states) and a 27th order
identification model. This section will refer to an analytical model and an identification
model. The analytical model is based on the block diagrams, tabular data, first principles
of dynamics, and includes four relay-type nonlinearities and two deadband-type nonlinear-
ities. The identification model is a linear model whose inputs and outputs are a subset of
those in the analytical model.

The MatrixX block diagrams and the tabular data were used to generate a linear model
and a nonlinear simulation using Honeywell computer tools. The linear model treats the
deadband as a unity operator which neglects backlash, and the relay as a zero operator
which neglects friction. The linear model was then examined in terms of its poles, transfer
function zeros for certain inputs and outputs, and time and frequency responses. There are
degrees-of-freedom for the disk translation and rotation in a plane, motor rotation, inertia
wheel rotation, laser arm motor rotation, laser arm rotation, and three elastic degrees of
freedom for the gun barrel (simulated with a rod attached to the inertia wheel).

The linear open loop model consists of two physical systems: the disk, inertia wheel,
and rod system, and the laser arm system. There is a motor associated with each system.
There are five pairs of open loop poles at the origin (because friction is neglected) associated
with the rigid body degrees-of-freedom. There are two pairs of complex poles associated
with the compliances in both systems, and there are three pairs o, complex poles associated
with the gun barrel resonances with small damping ratios.

The plant transfer function between the control motor torque and the barrel point-
ing angle can be regarded as a double integrator (at frequencies below 10 rad/sec) with
disturbances (from disk motion) and some high frequency elastic modes. The nonlinear
simulation was executed with different test inputs to assess its behavior.

An identification (ID) model was obtained in a state space format with seven outputs,
one input, and 27 states. The outputs are torque motor resolver, backlash resolver, disk
velocity, quadcell output, strain gauge #1, strain gauge #2, and torque motor tachometer,
the input is the control motor torque, and the 27 states are not physically defined but the
linear ID model fits the data from the identification experiments. This model was compared
to the analytical model in terms of poles, frequency response, and time histories.

The ID model shows more open loop damping e.g. CzD=0.07 versus C,,v---0.01
for the first elastic mode (near 31 rad/sec) and Cin-=O.15 versus C.,W-.is'=0084 for the
shaft compliance mode (near 55 rad/sec) between torque motor and inertia wheel. The
low frequency behavior of the ID model shows a slope of -1 on a Bode gain plot versus
the slope of -2 in the analytical model, because friction is present in the identification
experiment, but neglected in analytical model. In addition, the low frequency accuracy of
the ID model is limited by the length of time used for the identification experiment. Thus
the ID model is not close to the analytical model for frequencies below 10 rad/sec. Except
for the poles and low frequency asymptote, the ID and analytical models agree for torque
motor resolver, backlash resolver, and torque motor tachometer outputs. On the other
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hand, the ID and analytical models for strain gauge #2 show 180 deg phase discrepancies,
and the the quadcell output does not show close agreement at any frequency.

For future design work, it will be necessary to resolve these discrepancies before closed
loop testing can be performed. The ID model was utilized (despite these discrepancies)
for demonstration of the A-synthesis design methodology. Actually a balanced realization
of the ID model was truncated to twelve states for the A-synthesis design. The analytical
model was utilized to develop alternate control laws with classical approaches. One of
these classical alternates uses motor tachometer feedback, and the other has lead and
notch compensation of the inertia wheel position. The next section discusses each of these
three designs.

4 Control Law Design

In this section a preliminary design effort for the ATB-1000 test fixture will be described
in detail. The design is incomplete, but adequately serves as a starting point for future
work. To limit t-Le scope of the preliminary effort, the "hard" nonlinearities were :eglected
for the control synthesis. However closed loop simulations were carried out where the
nonlinearities were included. These preliminary simulations showed that the nonlinearities
are significant and it will be necessary to include them in future designs. 1,L this preliminary
look at control law design, three design approaches were considered. Two approaches were
SISO and one was multivariable e-synthesis. The SISO designs are of interest because
they correspond to minimal sensor requirements. The A-synthesis approach is of interest
because the nonlinearities are accounted for by treating them as bounded operators.

The control problem is to point the gun barrel in the face of disturbances. For the
demonstration design presented here, the pointing was quantified in terms of the quadcell
output and only the solenoid disturbance was included in the design objective. Model
uncertainty was incorporated with a multiplicative perturbation at the torque motor loca-
tion. Sensor noise was also included in the formal 1-synthesis problem statement. More
detailed designs would incorporate frequency domain weighting transfer functions, which
act as linear bounds for the effects of the six system nonlinearities. Requirements would
also be defined and incorporated for actuator activity and physical limitations.

It was necessary to append a solenoid disturbance input (which simulates gun firing)
to the ID model. This was done by selecting a constant gain matrix from the frequency
response of the analytical model near the first elastic mode freq'iency. This is an approx-
imation used for expediency during this preliminary design. In a more detailed design
effort, the effect of the disturbance input on the equations of motion would be included
more carefully into the state-space matrices for the interconnection structure used for j-

synthesis.
It is worth noting that the gun stabilization fixture is sim'lar to a particular elastic
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structure control problem which has received a large amount of attention in the control
and modeling literature. In addition, experimental studies have been performed at various
laboratories [3, 2]. The problem is that of rotating disks (at least two) that are connected
with rods that are elastic in torsion. These studies motivated the first design.

Colocated SISO Design One of the SISO designs was for colocated feedback between
the torque motor resolver and the motor torque. This choice was motivated by the knowl-
edge that under certain assumptions regarding a lower bound for inherent structural damp-
ing, and sufficiently high bandwidth sensors, computers, and actuators, such a mechanical
system can be robustly stabilized with colocated sensors and act uators even in the pres-
ence of some significant nonlinearities. When the sensor and actuator are not colocated,
robust stabilization 9s, in general, more difficult to achieve due to limitations imposed by
non-minimum phase aspects. [4, 5, 1]

The reduced order ID model was utilized to determine the feedback compensation.
Recall that the transfer function has a 1/s shape below 10 rad/sec in the case of the ID
model. Thus a pure gain can be selected to set the unit loop gain crossover at 10 rad/sec
as a preliminary design choice. Higher frequency resonances are stabilized because of the
colocation and the assumptions about inherent damping, sensors, and %ctuators. A higher
crossover could be considered but this would require more accurate modeling of even higher
frequency elastic behavior and tighter requirements on sensors and actuators. A pure gain
feedback between motor position and motor torque would not be stabilizing if connected
to the analytical model because it has a 1/s2 shape below 10 rad/sec as discussed above.

Noncolocated SISO Design The other SISO design was developed with the analytical
model for noncolocated feedback between the inertia wheel encoder and motor torque. In
this case a lead compensation element was employed to create a unit loop gain 'rossover
at 10 rad/sec. In this case, some of the higher frequency resonances are destabilized by
the noncolocated feedback. To prevent this destabilization, notch filters were included for
the first elastic mode and the compliant mode between the motor and inertia wheel. This
design approach is of interest (as compared to the colocated design) because the colocatvd
motor position is not as closely related to the pointing angle as is the inertia wheel. This
design also has value as a further comparison against the /A-synthesis design.

Mu-Synthesis Design The A-synthesis design approach is multivariable and is cast
in terms of the interconnection structure shown in Figure 2. There is a multiplicative
perturbation at the torque motor location represented by A and the input v, and output
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zj. There is a performance output called e, which is the quadcell output passed through
a weighting function. The external inputs are sensor noise and the solenoid disturbance.
There is also the torque motor input and the seven sensors to close the feedback loop with
the compensator K.

The interconnection structure includes weighting transfer functions for uncertainty
bounds, performance requirements, and disturbances. The uncertainty was modeled as
a multiplicative perturbation and was bounded with a third order Butterworth filter hav-
ing break frequencies at 20 and 300 rad/sec and a high frequency gain of 675. This can
be interpreted as 20% model error below 20 rad/sec and 67,500% model error above 300
rad/sec. The pointing requirement is included by weighting the quadcell output with a
low pass transfer function 360ki + 10)/(32 + 84. + 602). This has unit steady-state gain,
so outputs of less than 1 volt would be acceptable. The seven sensor noises are weighted
with the constant value of 0.01, so this corresponds to either volts or counts depending on
the sensor. Finally, the solenoid disturbance is weighted with a low pass transfer function
0.3/(j + 10), so inputs of 0.03 volts are expected. The weightings were not carefully related
to the hardware in this preliminary design demonstration. This relationship should be
more carefully addressed to better account for known hardware characteristics. In particu-
lar a weighting for the disturbance would take into account the duty cycle of the solenoid.
Additional inputs and outputs as well as weightings could be utilized to represent the
nonlinearities which have not been accounted for in the preliminary design.

The state space solution to the HOO control synthesis problem was used to find a feed-
back compensator K. This compensator has as many states (18) as the interconnection
structure and it was possible to reduce the compensator order by residualization to 16
states. The closed loop transfer function is denoted by M and connects the inputs: vi,
solenoid, and sensor noise to the outputs: zi, and quadcell.

The next step in the p-synthesis design was to introduce D-scales to properly account for
the model uncertainty and performance variable response to external inputs. A constant
D-scale=3 was employed because a dynamic D-scale ivas not deemed necessary in this
preliminary design. The D-scale was incorporated by multiplying zi by 3 and dividing
v, by 3 (i.e., DMD-1 ) and a new interconnection structure P was established. The Htm

problem was then re-solved for the compensator K and the iterations were terminated.
Detailed analyses of this compensator appear in the following section.

5 Analyses

The p-synthesis results are graphed in Figure 3. There are five plots of Bode magnitude
versus frequency. The top curve is relatively flat because it is the maximum singular valve
of the closed loop interconnection structure (&[M]), and H- optimization makes its peak
value as small as possible. The next curve down is the structured singular value, j[M],

678



.100"

-9 /E/
U,6

___e1/

LU

aT I -T7

Emmr- 0

I 679



and is necessarily less than or equal to the upper curve, since &[M] is a theoretical upper
bound for A[M]. There is a low frequency difference between the structured and maximum
singular values, which indicates that performance improvements are possible by further
D-K iteration and frequency dependent D-scales.

The next two curves in Figure 3 correspond to robust stability and nominal perfor-
mance. Theoretically these curves are less than or equal to the structured singular value
and this is consistent with the numerical results. The robust stability curve is relative to
to the defined multiplicative perturbation, and dominates 1[M4] at higher frequencies. The
robust stability curve can be further interpreted as the weighted complementary sensitiv-
ity, where the weighting is the bound for the multiplicative perturbation. The nominal
performance curve is the maximum singular value of the transfer function matrix between
the weighted quadcell and the external inputs including the weighted solenoid disturbance
and sensor noise. This curve dominates [4M] at low frequencies and can be further in-
terpreted as the weighted sensitivity. The lowest curve in the figure corresponds to the
weighted quadcell response due to sensor noise. This is more than an order of magnitude
less than /[M], so the quadcell/sensor noise path does not have much influence on the
optimal design.

Further analyses of the j-synthesis design were carried out to assess closed loop poles,
input and output loop properties, and time response to solenoid disturbances. The closed
loop poles indicated closed loop stability and damping improvements for the first elastic
mode (CcL = 0.12 versus COL = 0.08) and compliant mode (CCL = 0.21 versus COL = 0.14).
Gain and phase margins for the SISO loop transfer function at the torque motor actuator
location were evaluated. The lowest frequency unit gain crossover occurs at 5.8 rad/sec
with a phase margin of 81 degrees. The phase margins surrounding the first elastic mode
frequency are larger than 43 degrees. All gain margins are larger than 7 db. These are
considered good margins with respect to model uncertainty at the actuator location.

The linear closed loop system was simulated with the disturbance model used for the
A&-synthesis design. This disturbance model is a constant gain matrix between the solenoid
and the measurements including the quadcell output. Thus this model is only accurate near
the first elastic mode frequency and is not accurate at low or high frequencies. The distur-
bance input was a 10 Hz sequence of 10 msec, 1 volt pulses. (See Figure 4a.) The quadcell
output response is dominated by the the compliant mode because the pulse frequency is
close in proximity to the compliant mode frequency. The quadcell output during the 10
msec solenoid firing is not accurate, so disregarding these portions of the response, the
quadcell output shows a residual oscillation near the compliant mode frequency with less
than 3 volts peak.to-peak. (See Figure 4b.) This is not considered satisfactory performance
and the interconnection structure should be further refined to improve the performance by
making better tradeoffs with the weighting functions.
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6 Summary

A preliminary p-synthesis control law design and some associated analyses have been car-
ried out for the ATB-1000 test fixture. Two other SISO controllers were designed for
comparison, but only the description of the designs appear here. The i-synthesis design,
when simulated with a nonlinear model of the test fixture, exhibited unacceptable limit-
cycle behavior. In future work, the limits to achievable performance will be established by
quantifying the key tradeoffs in terms of p and plots like Figure 3. It is expected that he
performance will be improved but still limited, for example, by a certain nonlinearity or
a particular pulse frequency. The p-synthesis methodology is well-suited for sorting out
such issues.
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ABSTRACT

In this paper we introduce a new, model based, nonlinear control method, referred to as
the Trajectory Pattern Method. The Trajectory Pattern Method is based exclusively on the
desired behavior of the system. We show that this method is robust, allows for long term
planning, and can be used to adaptively control systems with parameter uncertainty.

1. INTRODUCTION

The Trajectory Pattern Method is a new inverse dynamics based controller. The object
of this paper is to explain the Trajectory Pattern Method and to show some of its potential
applications in control of nonlinear systems. Such inverse dynamics based controllers have
been extensively applied to the tracking control of robot manipulators and other similar
nonlinear dynamics systems [1-3,13-15]. One major drawback of the presently available
model based controllers is their high sensitivity to the model parameter inaccuracies and
variations. In order to overcome this problem, a number of learning and adaptive control
schemes [16,17] and parameter identification and calibration algorithms have been developed
to compensate the effects of model parameter uncertainties [18-211. Here, no attempt is made
to present a comprehensive review of the literature.

The authors have been developing the Trajectory Pattern Method [1-3] over the past three
years. To date, this method has been applied to the study of the inherent characteristics of
the nonlinear dynamics of manipulators [4-51; the problem of manipulator type synthesis for
minimal high frequency vibrational excitation [6]; the study of the effects of the payload on
the vibrational excitation during motion [7]; trajectory synthesis for robot manipulators for
minimal vibrational excitation due to the payload [121; the trajectory synthesis for minimal
residual vibration of the tip motion of a high speed positioning machine with structural
flexibility [8], a flexible beam [9], a system with joint and structural flexibility [10]; to a
system with joint flexibility for minimum attainable time and minimal residual vibration
[11]; and the tracking control of robot manipulators [1].

In this paper, we develop the basic structure of the Trajectory Pattern Method. The
emphasis is on systems described by finite dimensional ordinary differential equations. The
robustness in the presence of full and partial control is discussed. The approach can accom-
modate holonomic and nonholonomic constraints. In section 3, we apply this methodology to
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develop nonlinear adaptive and efficient model parameter uncertainty compensation schemes.
A rigorous theoretical treatment of these topics will be presented in a forthcoming paper [221.

2. TRAJECTORY PATTERN METHOD

In this section we present the Trajectory Pattern Method in some detail. We show that
it is a comprehensive method for motion planning and control with open and closed loop
control.

We restrict ourselves to those systems whose control is determined by ordinary differential
equations. For the sake of simplicity, we only consider mostly second order systems. We first
consider the case of full control.

Full Control

Consider a second order, fully coupled, differential control system on a configuration
space C which is an open subset of R":

A(x,±) + B(x, i) = u

u is in the input-space Rn. The state space S for this system is C x R . We assume that
A and B are smoothly varying and that for each (x,;i) E S, A(x, d) is an invertible n x n
matrix.

Examples of such differential control systems are rigid robotic systems with actuators at
all the joints. Here u is the vector of torques delivered at all the joints and the differential
equation represents the balance of dynamic forces and applied forces. If the torque is de-
livered through a DC engine and is controlled by a voltage to the engine, then the voltage
determines the rate of change of the torque and by differentiating the balance equation we
obtain an equation of degree 3, in terms of the voltage control. The Trajectory Pattern
Method extends to higher degree equations in a self-evident manner.

The Trajectory Pattern Method is a generalization of the the computed torque method,
which we briefly recall. Given a trajectory f(t) in the configuration space C. Define the
control u(t) as:

u(t) = A(y(t),4(t)) (t) + B(-y(t), 4(t))

Then if
(Wt0), t0o)) = (f(t0), (to))

and x(t) is defined as the solution of the open loop control:

A(xi>i + B(xi)) = u(t)

then
z(t) = 1(t)

The main idea of the Trajectory Pattern Method is that if one has a family of trajectories
which accounts for all the different initial conditions, then, by applying computed torque,
the system will follow for any initial condition one trajectory in the family. Usually, these
trajectories are chosen so that the end condition represents a desired state of the system.
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Definition: A trajectory pattern 0(a, t) over a time interval [to, t1 ) with trajectory

parameters a in the space P is a smooth map:

S: P x [to, t1) --+ C

so that for all t E (to, t1 ), the map:

a -- 4(a,t) = (O(at),8tO(at))

is a diffeomorphism between P and S.

Remark: For an nth order system one would consider the map

a --- D(a,t) (¢(a,t),Og4(a,t),.

Examples:
1. C = R',S = P = R' x I,

0((al,a 2),t) = at 2 + a 2 t3

on the time interval [-1,0). Then

S(a1,a 2, t) = 0 at

All trajectories pass through 0 at time 0, with zero velocity. V, e sketch a few of these patterns
for dimension n 1 in Fig. 1.
2. C = R ,S = P = R" x R'n,

((ala2), t) = asin(7rt) + a 2 sin(2 rt)

on the time interval [-1/2,0)

O~al a2 t) sin (7rt) sin(2 r t) a
ir (ast, at, 2t)o( rt

All trajectories are periodic and pass through 0 at integer times with varying velocity, see
Fig. 2.

In general, for motions that must satisfy a certain number of end conditions, an appro-
priate trajectory pattern is readily selected. Such a trajectory pattern can be additionally
selected on the basis of some optimality criterion.

Given a trajectory pattern 0'. It defines a control u%(x, i, t) in the following manner:

uO(Xi,t) = A(x4,)O8t2(a(t),t) + B(z,i)

where a(t) = t-'(x(t),z(t),t).

The open loop control system defined by the trajectory pattern 4' is the following:

A(x,.ii + B(zi) =
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Proposition: Given any initial condition

(x(to),:i(to)) E S

The solution x(t) of the control-system defined by 0 is the trajectory 0(a(to), t), where the
parameter a(to) equals:

a(to) = f-I(X(to),..,x(k-1)(to),to)

Proof: The solution x(t) satisfies the differential equation:

i = 0?20(a(t),t)

The trajectory 40(a(to), t) satisfies this differential equation and has the same initial con-
ditions at time to. Therefore by uniqueness of solutions to differential equations, x(t) =
0(a(t0), t). Q.E.D.

Remark: Observe that another way of stating this proposition is that the parameter
a(t) are constant and solely determined by the initial condition.

Example: Consider the simplest control equation:

Ai =u

Consider trajectories:
q0(al, a2,t) = a t + a2 t2

Then the map 0(al, a2, t) equals:

a, t+ a2 t2• t t2)(,

Therefore: (t) = 0-1(X'it) = (4 _ - )
X+ P~.

and
uO(Z, ,t) = 2Aa 2(t) = 2A(:21 +

The open loop control equation is then:

Ai =2A(72 + -

i.e.

its solutions are linear combination of the functions t and t2.

Robustness
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We are considering systems that are accurately modeled by the equations of motion. In
that case, these equations of motion still depend on system parameters such as physical
parameters (masses, lengths, etc.). The previous discussion then represents the ideal case:
the system parameters, i.e., A and B are known exactly. The first question then is how to
define the controls if the parameters are known only up to some accuracy and to determine
the robustness of this method. In the simplest implementation of the Trajectory Pattern
Method we attempt to control the real system (A, B), using as control the Trajectory Pattern
Method control for an approximate system (A, B). This means that given the trajectory
pattern 0, define the control uk(x, i, t) as:

UO(x, i, =' A(x, t)O(a(t), t) + b(x, i)

Then one obtains as open loop control for the real system:

A(r,.i); + B(x,.i) = A(x, iA2)9(a(t),t) + [(xi,)

We now explain why this method is robust. We know the solution of this system exactly
when A = A and B = b, namely the trajectory pattern trajectories. By continuous
dependence on parameters of solutions to differential equations, we conclude that for any
compact time interval and any compact set of initial conditions, the solutions to this system
are close to the trajectory patterns provided (A, B) and (A, B) are sufficiently nearby on a
neighborhood of the region traversed by the patterns starting in this compact set of initial
conditions during the time interval.

The previous robustness results are not so useful when the system runs for a fairly
long time, since errors tend to build up (long term memory). Such effects need particular
consideration if one wishes to regulate a system. We now discuss particular trajectory
patterns which tremendously reduce the build up of long term errors and which are moreover
useful when careful aiming is necessary. Those patterns focus on particular end conditions.

We say that a trajectory pattern 0(.,t) on the time interval [to, ti) focuses at time ti if
and only if the map D(a, ti) is well-defined and has lower dimensional image.

We present examples of such focusing patterns in dimension n:
1. 0(al,a 2, t) = xo + a, t + a2 t2 . This pattern focuses so that at time t = 0 all the
trajectories pass through x0 , with variable velocity.
2. O(al,a 2,t) = Xo + vot + a, t2 + a2 t3. This pattern focuses at time t = 0 to the point
(xo,Vo), i.e. all trajectories pass at time t = 0 through the point x0 with velocity vo.
3. 0(al,a 2, t) = Xo + al sin(t) + a2 sin(2t). This pattern is periodic and focuses at time
t = n7r to the point xo.

It is an interesting fact that the property of having focusing trajectories is robust for the
Trajectory Pattern Method:

Given a control system (A, b) and a trajectory pattern which at time t = to focuses to a
region. Given a compact set of initial conditions then if (A, B) is sufficiently close to (A, b)
all solutions of the control-equations with initial conditions in the compact set focus at time
to to the same region.
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In particular, if the trajectory patterns focus on point, the trajectories of (A, B) focus on
the same point. Moreover, if the trajectory patterns focus periodically, so will the trajector-is
of(A, B)

The mathematical explanation of this phenomenon resides in a careful study of 0te so-
lutions to the singular differential equation. We will illustrate this on a nonlinear scalar
example with constant leading coefficient. Consider control systems of the form:

A i + B(x,i) = u

Assume that (A, B) have nominal values (A, b) and assume that we use as trajectory
pattern:

O(al, a2, t) = a, t2 + a2 t3

i.e., the goal is to be at time t = 0 at the origin with 0 velocity. Then
*4± 6x-

uO(xt) = A(T - ) + b(,)

The open loop control system given by the Trajectory Pattern method is then:

A± = A( --- T-) + b(xi) - B(x,i)

This differential equation is singular at t = 0 and the leading order is determined by the
linear singular differential equation:

4± 6x
Ai = A(4t .t )

Its indicial equation for solutions of the form I' is the quadratic equation:

Ap(p - 1)= A(4p - 6)

If A = A, the solution are Pi = 2 and p2 = 3 (as should be the case). Consequently,
when A/A is close to one, the roots pi and p2 are close to 2 and 3. But then for the original
equation all solutions (x(t), ±(t)) which are for t near zero close to the point (0, 0) actually
pass through (0, 0) and x(t) goes to zero at least as fast as:

tP1 or tP1 ln(t)

Remark: If Pi < 2 then 1(t) may become unbounded as t --+ 0 and forces become un-
bounded. This can be fixed by choosing the trajectory patterns so that also the acceleration
vanishes at t = 0. For instance:

40(a,,a2,t) = al t3 + a2 t4

Then the roots will be close to 3 and 4.
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Constraints

We next illustrate the TrajecL -y Pattern Method in the presence of constraints. There
are basic:tly two kinds of constraints. Holonomic and nonholonomic constraints which give
relations between the variables in the state-space and lessen the dimension of the state-space.
We will discuss these briefly at the end of this section. The constraints we consider first are
those which reduces the dimersion of the input-space. Such constraints can for example
occur in vibrational systems with finite dimensional models due to the absence of actuation
in some degrees of freedom. Here the segments are divided in small segments which are
considered to be rigid. At most of the joints between these segments one cannot exert any
actuating torque. The joints then fall into the two classes: ones where one can exert torque
and the ones where one cannot. The dimension of the input-space is then less than the
dimension of the configuration space.

We assume that the equations are again second order, but that the control vector u is of
lower dimension than the configuration space:

A(x, i) + B(x, ) = )
Here u is in the m-dimensional input space. Let us assume that the configuration space
C = R'. We then write any vector x E C in terms of its m-dimensional component xi and
its n - m -dimensional component x2 :

X=(X1
(X2)

We then have the constraint equation:

A2,1(X)9,i) 1 + A2,2(X, i)i 2 + B2(X, i) = 0

Contrary to the previous case the actual construction of trajectories is a problem. If we now
assume that the matrix A2,2 is invertible, then this constraint equation can be considered as
a differential equation for X2 in terms of (xl(t), il (t)), which can then in principle be solved
for X2(t). Therefore, given a trajectory x,(t), and initial conditions (x 2 (to), i 2(tO)), then the
required computed torque for the system to follow the trajectory xz(t) is:

u(t) = Al,,(x(t),i(t))i,(t) +,A,.2(X(t),i(t))i2(t) + Bi(x(t),i(t))

For the implementation of the Trajectory Pattern Method, two related issues need to be
addressed. The first is that one may also wish to control the motion of X2(t). The second is
that it is in general impossible to exactly, let alone algebraically, determine x2(t), given x1(t).
however, within many classes of systems, approximate explicit solutions can be obtained
using algebraic techniques. There is always a trade off between the length of the time interval
over which the solution is approximated and the degree of accuracy of the approximation.

In most cases of interest, the constraint equation is predominantly linear in X2, because
X2, the "uncontrolled" variable should be kept small. If that is really impossible, most
engineering designs would in fact add more actuators. If the constraint equation is linear,
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the Trajectory Pattern Method then proceeds by algebraically solving it. If for instance
x1 (t) is given as a Fourier-series with a fixed period, determine the Fourier-series expansion
of x, using the same period. The effectiveness of such a procedure for practical Durposes
depends on to what extent this algebraic procedure can be numerically implementei. Since
the structure of the model equations is known, in many instances this can be done in real
time [10]. Granted this procedure, the motion of X2 can then be controlled by choosing
trajectory patterns for x,.

Of course, if the constraint differential equation has constant coefficients, explicit formulae
for X2 in terms of x1 are easily obtained.

In the case of holonomic and nonholonomic constraints, again one has to synthesize trajec-
tories that satisfy these constraints. The method of choice is direct elimination of extranleous
variables if possible. Otherwise, one can make local approximations using techniques such
as implicit differentiation.

3. ADAPTIVE PARAMETER BASED UNCERTAINTY SCHEMES

Consider a class of second order differential control systems with full control:

A(x, ,p) i + B(x, i, p) = u

Here we assume that the parameter p ranges over a finite dimensional space of system
parameters: masses, lengths, moments of inertia etc. In particular, the exact value of the
parameters is usually not known and the object is to devise adaptive control schemes that
compensate for this uncertainty. There are two types of approaches to this. I he first type
consists of devising a learning scheme which continuously makes best guesses for the values
of the parameter. Such schemes are usually based on the observation that if we take any
time-interval (to, t1l on which we assume that the values of the parameters do not change
and give any input u(t), then the values of the parameters can be determined/ estimated by
observing the resulting motion x(t). If we assume that the differential equation .pends on
the parameters in an algebraic manner this leads to algebraic equations which can be solved
to give parameter values which are consistent with the observed motion.

This approach can be implemented in the Trajectory Pattern Method as follows. Assume
a nominal value P for the parameter and consider a given trajectory pattern 0(a, t). T'o
distinct situations are usually encountered: regulation and tracking. By regulation we mean
that eventually we want an end goal to be achieved. We assume that the trajectory patterns
have these end goals and the object then is to make the trajectory parameters corst;.nt. By
tracking we mean that a specific trajectory pattern described by trajectory parameter a(O)
needs to be followed.

First consider the case of regulation. Apply Trajectory Pattern Control with

A(x, i) =A(--, )

B(x, i) =B(xi,

If we now monitor the motion x(t) and compute the trajectory parameter a(t) then we have
to consider two cases. The first one is that a(t) is constant. In that case the system follows
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the predesigned trajectory and even if p $ iP there is no reason for action. The second
case is that a(t) does vary. Then certainly p 5 P and one has to determine values for p
which are consistent with the observed variation in a(t). If a(t) depends algebraically on
(z(t), i(t)) then one again obtains algebraic equations for the parameter p. If these equations
can be solved quickly, the nominal value j for p can be replaced by a more accurate value.
Giving the corresponding trajectory control then results in the actual trajectories to be
followed. This scheme is usually too optimistic because of measurement errors as well as the
complexity of the algebraic equations. Therefore this scheme needs to be combined with an
updating method for ý, for instance, based on Newton's method. The main point here is
that a(t) = a(t,p,p) and we want that a(t) to tend to a constant, i.e.

ata(tpP)=0, 8a(tp,P) = 0..

Now explicit equations can be obtained for:

(9ta(t,p,pf), 9t'a(t,p,P) ...

in terms of p and P. If we divide the time interval in small enough intervals [ti., t,] and
choose a sequence of updates P3(i) constant in the i-th interval, we can determine an equation
for P(i + 1) from:

Ota(ti) = a8t a(ti, k(i),A0(i))(f3(i + 1) - At())

Here the left-hand side is explicitly measured, while the partial derivatives with respect to
p have to be computed analytically. More equations can be obtained by taking higher time
derivatives. For the case of tracking, these equations are supplemented by the requirement
that a(t) tend to a(0).

The major advantage of the Trajectory Pattern Method in this application is that the
structure of these equations is determined in advance. Therefore the equations are available
in exact form and do not introduce numerical errors during computation, and is available
tor automated control in preprocessed form.

The other approach is based on the following idea, which we illustrate by its first order
scheme. Again assume a nominal value fi for p and assume that P is close to p: p = •3 + Ap.
Choose a trajectory pattern 0 and apply as control:

u = u, + Au

Here A u still needs to be determined. The basic idea is that if we choose A u to be zero in
an initial'time interval, we can learn the error A p, by comparing the actual path x,, and the
desired trajectory pattern Xd. We now design A u on the remainder of the time-interval by
planning that the error between the actual path and the part tends to zero in a prescribed
manner and use computed torque.

Remark: In the previous approach we chose to update p to 0 + Ap and apply the
trajectory pattern control. In both approaches, a practical way to determine Ap is from Aa.

We will illustrate this technique in a nonlinear example with constant coefficients:

Ai + Bxi + Cx = u
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Given the initial conditions, the trajectory pattern 0 selects our desired trajectory Xd(t).

Assume that the nominal values for the parameters (A, B, C) are (A, b, 0):

A = A + AA, B = b+AB, C = 0 + AC

Denote at any time the actual trajectory by x,(t) and the error by e(t):

e(t) =X(t) - Xd(t)

if we write u as uo + Au then we obtain the linearized equation:

AAid + ABXi + AC Xd + A + 2B id i + Ce = AU

In the beginning of the motion we set Au = 0. By observing x,(t), we compute e(t) and
compute (AA, AB, AC). Now choose for the remainder of the time interval a trajectory
pattern for e(t). Then this equation determines the adaptive feed-back Au(t).

The system in this example:

Ai + Bi 2 + Cx = u

has some additional structure. If x is given by a Fourier-series of size N with frequency w:

+N

x(t) = • xexp(inwt)
-N

then u(t) is given as a Fourier-series of size 2 N.

Consequently, if Xd(t) is given as a Fourier-series of with N and we plan e(t) to be also
a Foarier-series of width N then also Au(t) is given as a Fourier-series of width 2N.

4. DISCUSSION

In this paper we have demonstrated the basics of the Trajectory Pattern Method. I.
is a feed-forward method and is based on a accurate knowledge of the system and on the
designers choice of desired trajectories. We have shown that robust long time control and
accurate aiming is possible using focusing trajectories. We also showed that the Trajectory
Pattern Method extends so as to incorporate parameter uncertainty compensation schemes.

For practical implementations of this method one has to consider the effects of small
delays in the control. Such delays occur because measurements have to be made and com-
putations have to be performed. We mention briefly to what extent the method is robust
also for small time-delays. LFrom the theory of smooth differential equations with delay,
it is known that as the delay tends to zero, solutions converge to the differential equation
with delay zero. Therefore, the Trajectory Pattern Method is also robust for small enough
time delays except in the neighborhood of focusing points, where the differential equation
becomes singular and very near by the focusing point, the control after delay may well point
in the opposite direction of what is desired. Near such forusing points the system behaves
linearly and the control can be switched to simple linear controls such as PID control.

692



A successful implementation of the Trajectory Pattern Method generally has a strong
computational component. This explains why this method was only recently developed. A
careful selection of the trajectory patterns tremendously reduces the on-line computational
component [1, 3, 8, 10, 12].
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Figure 1: The trajectory pattern 0((al, a2 ),t) = a, t2 + a2 t3

Figure 2: The trajectory pattern 4((al, a2), t) = a, sin(r t) + a2 sin(2 r t)
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Visualization of Dynamic Soil-Structure Interaction Analysis
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Introduction

Advances in computer technology have enabled scientists and
engineers to analyze increasingly sophisticated problems.
Supercomputer access has made three-dimensional (3D) finite element
modeling a tenable approach to problems once simplified to one or
two dimensions for computational purposes. Such refinements in
computational methods have compelled the technical community to
perform prototype testing of more complex problems for the purposes
of validating these computational methods. A major obstacle to
overcome in this process is the inability absorb large amounts of
output from analyses of complex 3D problems. Visualization
techniques, which are able to graphically display analytical output
in a concise manner, have become absolutely necessary for
effectively handling these analyses. The U.S. Army Corps of
Engineers Waterways Experiment Station (WES) has been actively
employing state-of-the-art visualization techniques in support of
its research mission. This paper discusses a few areas in which
visualization techniques have proven beneficial in projects
sponsored by the U.S. Department of Defense, Defense Nuclear Agency
(DNA) and also discusses details of visualization hardware and
software utilized for these analyses.

Backqon

DNA supports research concerning the responses of structures
to dynamic loads caused by nuclear detonations. This research
typically involves high pressure blast loading, soil-structure
interaction, nonlinear deformations and failure mechanisms such as
buckling. Results of DNA-sponsored research have led to an
improvement in the ability to analyze these types of problems,
however, certain structural response phenomena have not been
satisfactorily analyzed by even the most complex finite element
codes. There will continue to be a need for research to improve
computational methods in many areas of complex structural response.

WES has been active in analytical projects for DNA which
address theix interests in structural response phenomena. This
research has included a high precision test program so that the
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response of test structures could be used to assess the accuracy of
the finite element calculations. Visualization methods have proven
very beneficial and in some cases indispensable for 3D finite
element analysis of these problems. Visualization methods have
become, and will become even more so, an integral part of the
analytical process.

Visualization Technigues

Visualization techniques are graphical means of displaying
large amounts of data in a manner that can be easily and accurately
irtterpreted. Techniques such as rendering and animation lend
themselves very well for displaying complex 3D finite element
models and dynamic analyses involving the interaction of moving
parts. Many innovative visualization methods have been advanced in
recent years. Coupled with a graphics workstation, visualization
methods can dramatically improve post-processing activities of
computer analyses using finite element methods. In the following
sections several benefits of using up-to-date visualization
techniques are discussed. Unfortunately, because visualization
methods are primarily in color, visual examples of these methods
could not be included in this paper.

Increased Efficiency

The use of advanced color graphics to display data can
substantially reduce the time required to understand analytical
results allowing the researcher to more thoroughly address the
problem at hand. This is especially true for analytical methods
which produce considerable output. In a 3D analysis of a complex
dynamic soil-structure interaction problem on a supercomputer,
finite element models typically contain less than 60,000 elements
to keep runtimes reasonable, i.e. less than 10 cpu hours. Computer
runs such as this can produce data dump files which total several
gigabytes. Using older post-processing methods a researcher would
have to ignore much of this output and limit post-processing to a
few chosen areas and time states. Older methods, for example black
and white strain contour lines overlaid on a view of the finite
element mesh, must often be examined meticulously just to see
trends in an analysis. Advanced visualization methods, using color
fringing to represent the same data, allow the researcher to see
trends without getting lost in details. Because it is easier to
spot trends, better understanding of the performance of the model
as a whole is attained.

With improved efficiency, it is not necessary to impose
constraints that limit post-processing to a few specified model
locations and points in time simply because it is too cumbersome to
interpret results. It takes only one glance to see the color coded
location of peak response of the model and a second glance at the
color bar to know the value. For complex geometry and responses,
older methods of data processing can require several minutes of
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examination just to find the locations of peak response. It is
obvious that as analytical methods advance to address more complex
problems, the improved efficiency attainable with advanced
visualization techniques will be a necessity.

Improved Modelinci

A better understanding of the performance of a model enhances
efforts to improve the model. A benefit of advanced visualization
is the ability to recognize modeling errors or the effect of
modeling techniques used to simplify the problem. For example,
often analysts purposely increase element size at model locations
away from points of interest in order to reduce the problem size
and decrease run time. In the finite element code DYNA3D
(Reference 1) this change to coarser meshing can be achieved using
a tied surface between the regions of fine meshing and coarser
meshing without using transition elements. Before using advanced
visualization the effect of this technique on the model performance
was never fully appreciated. In problems involving shock waves
passing through soil the shock front was significantly smeared and
distorted at the location of the mesh discontinuity and in regions
of coarser meshing. The degree of smearing and distortion was
easily visible in color fringe plots of soil stress. Using older
visualization methods the effect of this meshing technique did not
stand out in the results. This experience highlighted the
importance of ensuring that such mesh discontinuities are located
well away from points of interest.

Improved Visualization

As the name implies, advanced visualization methods help an
analyst to visualize the subject of an analysis and the phenomena
involved. This is especially helpful in a dynamic analysis which
includes large deformations and structural interaction between
different parts. Animation is a great tool for checking model
performance and observing how the model simulates the physics of a
problem. Without animation one must mentally reconstruct the
sequence of events leading up to the final results. Looking at
individual frames from a dynamic analysis provide much information
for doing this but putting these frames into motion yields much
more. Animation allows one to visualize the time dependent aspect
of data in a dynamic analysis. Phenomena such as buckling and
vibration can be assessed intuitively because animation plays back
the data in a natural format. There have been several occasions in
which animation answered questions that had been left unanswered by
examining analytical results in a piecemeal fashion.

Improved Communication

Visualization methods facilitate better transfer of
information in the technical community. One of the most difficult
jobs for the analyst is to share information with someone who is
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not familiar with the details of an analysis. Advanced
visualization can present a large amount of information in a manner
that is concise and not visually overwhelming. It therefore,
requires much less effort to understand a concept or a
calculational result.

Visualization methods at WES

At WES, structural engineers from the Structural Mechanics
Division (SMD) are assisted in developing methods to visualize
analytical results by an interdisciplinary visualization team of
computer scientists and engineers within the Information Technology
Laboratory (ITL). In the following sections an example of how
visualization methods were developed and/or modified for a specific
DNA project will be described in detail. The project involved a
DYNA3D finite element analysis of a dynamic soil-structure
interaction and included large deformations and buckling of a
buried structure. The nature of the problem required a detailed
structure and a large island of soil. The resulting finite element
model was relatively large, approximately 50,000 nodes, and
required from 2 to 4 hours of CPU time to run on a Cray Y-MP at
WES.

The initial goals of the visualization were loosely defined.
Clearly, the project demanded some type of finite element
compatible program capable of handling time-dependent data. In
addition, the engineers desired a visual product that could serve
as both an effective workroom tool as well as a means of obtaining
presentation quality graphics.

The visualization team explored several alternatives in an
effort to satisfy this confluence of goals. The first option
explored was attempting to run DYNA3D on a graphics workstation.
However, the extent of the DYNA3D data both in the number of files
needed (two files per state dump with 50 state dumps) and the size
of the files (approximately 3.6 megabytes each) made this approach
untenable. As limitations with other alternatives continued to
surface, it became apparent that a distributed computing
environment was essential to gain the computational power, disk
capacity, and graphics capabilities necessary for the task. Multi-
Purpose Graphics System (MPGS), a software package produced by Cray
Research Inc., emerged as the candidate addressing the largest
number of the project's requirements. Residing on the
supercomputer and a local graphics workstation, MPGS provided the
distributed computing environment deemed requisite for the project.
Further, because it makes no assumptions about the geometry, the
software can be used with a variety of computer programs, including
those for finite element analysis.

Hardware Configuration

The hardware required to visualize the finite element analysis
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consisted of two distributed components, a Silicon Graphics
workstation and a Cray Y-MP supercomputer, both located at WES in
ITL. The workstation and the supercomputer shared the
computational workload via MPGS to produce the 3D graphical images
for animation. Two 25-MHz MIPS processors enabled the workstation
to perform the local graphics manipulations: the workstation
display has a resolution of 1280 by 1024 pixels with 24 bit-planes
of color. The workstation and the supercomputer communicated over
a standard Ethernet network connection using TCP/IP; MPGS uses
sockets to move data between the workstation and the supercomputer.
These network connections permitted compute-intensive tasks to be
performed on the supercomputer and the results downloaded to the
workstation from within M2GS.

Software Issues

Data Format

MPGS can process up Lo three categories of data for
visualization. First, the requ. red geometry data describe nodes,
lines, elements, and solids. The geometry data,- which may comprise
several files, represent only the initial geometry of the
structure. The optional scalar data -ontain multirle scalar data
for each node. The optional vector data contain one 3D vector
value for each node. For time-dependent scalar or vector data,
multiple files are necessary, each representing a state dump of
output data.

The DYNA3D binary data files requiring translation to MPGS
format, each approximately 3.6 megabytes in size, contain first a
time stamp and control information, then the geometry data. The
time-dependent data follow, including nodal coordinates, and scalar
values. Multiple time-dependent data sets cannot be contained in
one file. For each new state dump, DYNA3D opens a new file and
writes the nodal and scalaz data for that state dump.

Data Translation

Cray Research Inc. furnishes software that translates DYNA3D
data files to suitable MPGS format. Specifically, three
translators generate the geometry, scalar, and vector data files,
respectively. The Cray Research translators, however, addressed
only limited cases and required two principal modifications (Figure
1). First, each translator was modified to read and convert DYNA3D
data residing in multiple files. Second, each of the scalar and
vector translators processed only brick elements, neglecting shell
and beam elements. Both translators were modified to also process
shell elements. Enhancements to support beam elements are
currently being pursued.
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VISUALIZING MISTY PORT - HARDWARE AND SOFTWARE COMPONENTS
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Figure 1 Hardware and Software Components
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Viewing Model Results

Once the initial geometry was obtained, it became necessary to
isolate specific parts of interest to the animation and analysis.
As detailed, MPGS allows multiple element types with attributes
tied to each part. Exploiting this feature to "turn off" all
elements except those representing the structure permitted
deformations and stresses to be viewed clearly. To view
deformations, time-dependent displacement computations were
performed on the supercomputer, converted to graphical elements,
and downloaded to the workstation via the built-in MPGS
communications features.

To further examine geologic influences on the structure,
vertical, horizontal, and shear stress contours were computed and
rendered. Tha rendering of the stresses illustrated problems with
tied surfaces connecting zones of fine discretization with coarse
discretization in the soil adjacent to the structure. The
information led to rediscretizing the soil-structure system and
moving the tied surfaces away from the structure. This resolved
problems with the buckling of the structure due to approximations
associated with the tied surfaces. In other analyses,
visualization has similarly proven useful not only for interpreting
results but also for highlighting problem areas with the finite
element model.

Conclusicns

Through the cooperative endeavor, the structural engineers
realized many of their goals, some initially unarticulated.
Examination of deformed shapes and stresses from the analysis in a
dynamic presentation provided details of soil-structure interaction
which had never been visualized before. Visualization provided the
opportunity to see the characteristics of shear friction between
the soil and the structure and the role of the soil in determining
the buckling mode of the structure. This demonstrates that complex
structural systems can be more easily solved when visualization
tools are provided to assess numerical models and analytical
results.
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ABSTRACT. The trajectory of an artillery projectile can rarely be
characterized by a single set of meteorological measurements (MET Message);
however, current practice is to use a single MET message to derive the final
aiming adjustments necessary to hit the target. Examining the meteorological
effects upon projectiles dynamically through modeling allows a better
understanding of the probability of hitting the target the first time. A
criterion is developed for utilizing multiple MET messages and applying a solo
MET message at particular projectile trajectory locations to obtain a high
probability of success. The Advanced Battlefield Environment Artillery Model
(ABEAM), a U.S. Army Atmospheric Sciences Laboratory version of the U.S. Army
Ballistic Research Laboratory General Trajectory (GTRAJ) model, is the
advanced model environment for developing this examination. ABEAM is used in
prototyping new artillery meteorological techniques for current and future
artillery systems. Preliminary results reveal significant aiming adjustment
differences computed from a proposed MET correction and the current MET
doctrine. Since multiple MET messages allow a more realistic description of
the battlefield atmosphere, the proposed methodology can significantly improve
the accuracy of artillery predicted fire.

INTRODUCTION. For each mission the field artillery has to quickly
respond with accurate, massed, and surprise fire. A highly efficient fire for
engagement at extended ranges demands a modern artillery fire direction. The
U.S. Army Atmospheric Sciences Laboratory (ASL) is using applied mathematics
and innovative computing algorithms to demonstrate the possible artillery
predicted fire accuracy improvement. This note presents a brief description
of a modern meteorological (MET) adjustment technique; artillery accuracy
comparisons; MET scenario results; and simulated paired statistics of
significant accuracy improvements.

The current MET aiming adjustment for predicted fire applied to aiming
future extended target ranges is not sufficient most of the time. Since the
atmospheric conditions are not homogeneous along the projectile trajectory,
the current method of adjusting artillery fire with MET data collected from a
dedicated station is no longer valid. With these extended ranges the expected
MET bias increases and continues to be a major contributor in the total
artillery error budget (see Lillard et al, 1990). The lengthening flight time
has significantly increased the unit MET corrections. To continue accurate
artillery fire capability at the new ranges an improved MET final aiming
adjustment is required. ASL is researching new procedures for allowing a more
realistic battlefield atmosphere into the artillery fire direction center. A
module that allows multiple MET message inputs and solo message application at
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particular trajectory portions was incorporated into the U.S. Army Ballistic
Research Laboratory GTRAJ model. This modification provides an advance model
environment for testing the worth of proposed MET adjustment techniques. The
new configuration, the ABEAM was validated and tested by Blanco and Edwards
(1991).

The Project PASS (Prototype Artillery Subsystem) field data (see Blanco
and Traylor, 1976) is utilized for the testing of proposed MET adjustment
procedures. Because of time constraints only 2 of the 20 data days are used
to present results from the proposed MET adjustment as compared to the current
MET correction. These 2 selected data days contain the most variable weather
conditions. A preliminary conclusion presents the expected artillery accuracy
improvement afforded by proposed multiple MET messages and selection of a solo
MET message along the launch, apogee, and target projectile flight location.

MODERN ARTILLERY MET ADJUSTMENT. In aiming artillery the fire direction
center converts weapon and target location into firing data and utilizes a
ballistic simulation model that requires MET data input for the final firing
angles solution. A single computer MET message (KETCH) provides the
atmospheric description. The header in figure 1 identifies the MET station
location and the body lists values for the following MET parameters-wind
direction, windspeed, virtual temperature, and atmospheric pressure., The raw
MET data are averaged into horizontal, vertically layered computer zonds
listed on the first column. The last computer zone is line number 26 with the
bottom and top at 19 and 20 km above the surface. The current fire direction
application assumes that the computer MET message data is horizontally
homogeneous along all portions of the projectile trajectory. This is not a
valid assumption, especially at extended ranges.
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Figure 1. Artillery computer MET message.

Note that there are specific MET effects along different portions of the
projectile trajectory. For example, a rocket assisted round or a thrusting
rocket require a tailored launch cross wind adjustment. This effect is
propagated throughout the whole flight time, but the interaction takes place
during initial motion and burnout time - the launch portion. The time from
burnout to the warhead event defines the coasting portion. And the time from
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the warhead event and impact defines the target area. Depending on the
relative MET station location and the wind flow, the dedicated MET message
may not be representative of the launch, coasting, or target area MET. For
this reason the artillery needs a modern MET message that can provide more
realistic data along these trajectory portions.

Using the standard munitions aerodynamic coefficient tables extended to
Mach 5 (see Lieske, 1990) to represent future artillery capability, the GTRAJ
model was utilized to compute four projectile trajectories. Figure 2 details
the projectile position at a 2-sec flight time interval. The apogee or
coasting area for the 15-km trajectory is defined as that portion above the 2
km where the projectile spent over 20 sec flight time. Approximately one-half
of all extended range trajectory flight time is spent in the apogee portion.
For the coasting rocket or shell the most important MET observations are
required between the preapogee and postapogee portion. Normally, windspeed,
the major MET contributor, is at a maximum for the trajectory durig apogee;
thus, the MET effect has its best chance to deviate the projectile away from
the initial aim point at this apogee portion. And for the accurate delivery
of submunitions the fire direction must use realistic target area MET.
Parachute-delivered submunitions, chemical warheads, and wind gliding warheads
require accurate wind measurements in the target area.

1/2 of flight tme spent In apogee portion
14-

t

kM 4 ...... ..

0 20 40 60 80 100 120
Flight Time (eec)

Rnmgft

1- km - 4 -2 km -*-- 36 km 46 km

Figure 2. Long range artillery trajectories.

Centralizing all available battlefield METCM and tailoring a-METCM for a
particular trajectory portion provides a more realistic atmospheric
description. The fire direction center can receive multiple computer MET
messages and select the most representative for application at the different
portions of the trajectory. This procedure may be automated in the fire
direction center or manually performed by its operator. The same North
Atlantic Treaty Organization (NATO) standardized format is used and the only
change is to report all available METCMs to the fire direction center and
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follow criteria in s acting an appropriate solo METCM for the corresponding
trajectory portion.

ARTILLERY ACCURACY COMPARISONS. The worth of the proposed MET aiming
techniques can be evaluated through statistical analysis of simulated and
actual impacts. Figure 3 identifies a self-propelled howitzer and a target
location normalized impact. The solid line ellipse represents the accuracy
and MET day-to-day dispersion afforded by simulated no MET corrections. This
procedure of using the standard MET conditions to represent current conditions
is known as the "cold stick" method. In this case the bias errors (largest
displayed) represent the total uncorrected MET effect. Method A represents
the actual surveyed MET bias errors afforded by the current doctrine. If the
dedicated METCM was. representative of what the shell experienced, then the
dashed line ellipse would be centered about the target with only the MET day-
to-day and hardware precision dispersion. Method B represents the simulated
improvement afforded by using MET data that is more representative of the MET
experienced by the projectile as it traverses through the different portions
of its flight trajectory. The smallest bias errors are not zeroed because of
the always present time staleness and space displacement between the MET
measurement and projectile location. However, the MET day-to-day precision
error is significantly improved because the proposed technique consistently
reduces the MET bias.
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Figure 3. Expected MET effects on artillery fire.

By modifying the above methodology one can extract the same comparison
analysis while only using simulated results; however, there are no absolute
target misses. The paired differences between methods A (doctrine) and B
(proposed) are the statistics required. Through simulation one can locate the
gun position and target location so that the projectile trajectory apogee
traverses through an area where actual measurements are recorded. An
experiment is then designed to compare simulated impacts using a single METCM
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and simulated impacts using a solo KETCM at the launch, apogee, and target
trajectory portions.

Schematically, figure 4 represents the procedure followed in deriving
these impact dispersions. For a given MET scenario the single METCM and ABEAM
multiple messages are inputs to the GTRAJ model for deriving a pair of
simulated impacts. Available replicates for each scenario are averaged to
represent statistical results. If the paired differences are small then the
single METCH is representative of the three launch, apogee, and target areas.
This was not experienced as stated in the following sections.

-now SINGLE
S+IMET STATION

BRL AIMING
GTRAJ SOLUTION

SMS 5SUS IM FSMS5M

Figure 4. Schematic chart for accuracy comparisons.

MET SCENARIO RESULTS. During November and December 1974 a comprehensive
ballistic MET field experiment was completed at White Sands Missile Range, New
Mexico. Simultaneous rawinsonde data was collected (see D'Arcy 1977), and all
the data is formatted in the NATO METCM format (see Field Manual FM 6-16,
1983). Figure 5 identifies the location of the 10 MET stations with a star.
During this experiment actual firing was aimed and fired on a 14-km target
range. The selected MET scenario involves only five MET stations
simultaneously releasing rawinsonde balloons to achieve a multilocation model
of the MET effects for an example battlefield environment.

Through simulation one can relocate the gun position and identify a
target such that the simulated apogee flight will traverse over a measuring
station. For example, figure 6 presents the MET scenario for the five
simultaneous rawinsonde releases and a simulated 18-km range firing. At this
target range the apogee is less than 3 km above the surface. The concatenated
arrows represent the 1015 wind conditions at each of the six artillery
computer zones included under the projectile's apogee. This top view displays
the balloon drift and the gun/target line of fire. Each arrow represents the
wind vector at th6 line number listed in figure 1.
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Figure 5. Field experiment at White Sands Missile R.ange, New Mexico.
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Figure 6. Space displacement MET effects.

The current doctrine is represented by superimposing the WAR (site on
Martin Luther King Road, formerly War Road) METCM (dedicate station) along the
flight trajectory. Data from zone I is applied at the launch and target areas
because of the atmospheric homogeneity assumption. As stated in the above
section the most important trajectory portion for a coasting shell is the
apogee. Comparing the apogee (line 6) wind vector from WAR and TSX (tower
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site) MET stations reveals a better understanding of the space variance effect
between-simultaneous wind measurements. Following the current doctrine the
gun is aimed with WAR data, but the shell experienced data measured at TSX.
TSX reports a total crosswind vector at apogee, while WAR reports both cross
and range wind components. The largest expected miss is along the range
because current doctrine required a higher quadrant elevation to compensate
for the WAR reported head wind. In reality there was no head wind at apogee;
therefore, the current method of aiming involves a long miss in the range, and
since the WAR crosswind does not match the TSX cross wind there is a left
miss in the cross component. So even with real time data because of space
separation between the measurement and the point of application there will be
an expected error. The lengthening of the apogee flight time will continue to
increase expected errors because the atmosphere is not always homogeneous.

The time staleness between the MET measurement and the time of
application presents the largest expected error. Figure 7 displays the
concatenated arrows for the 1415 wind conditions except for the data collected
at the dedicated WAR station. For some battlefield constraint the gun is now
aimed and fired using the 1015 data or with a 4-hr old METCM. Comparing these
results with those from figure 6 reveals that for this time span the wind
profiles shifted from westerly to northerly direction (blowing from). Examine
the wind vectors at line 6, the apogee of our simulated firing. The gun is
aimed with the same WAR cross and range wind components described in the above
scenario. However, in this case, the wind experienced by the shell is more in
the range component and less in the cross component. Both WAR and TSX station
report a head wind for the range component, but for the cross component they
report significantly different winds. By simulating impacts using these
METCMs, one can define the value of expected errors.
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Figure 7. Time staleness met effects.
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SIMULATED PAIRED STATISTICS. The artillery aiming MET effects due to
space and time variabilities have been presented with no assigned accuracy
errors results. Since this note presents no actual firing comparisons, only
statistical results can be reported. Following the above description and only
using the 2 most variable weather days of the 20 data days a set of replicates
was defined. The 2 days contain five and four simultaneous releases every 2
hours. For the space variability there are nine replicates for firing from
WAR over TSX towards SMR (small missile range). In representing the
statistical sample for the time staleness variability, one needs to pair the
results from these nine replicated into 2- and 4-hr old staleness. The total
2-hr stale paired results are 4 and 3 for each corresponding day. Similar
results for the total 4-hr stale paired results are 3 and 2. Table 1 lists
the paired statistics comparing simulated impacts using the current doctrine
of a single dedicated MET station (WAR) and the proposed multiple METCMs
applying only selected solo METCM at the critical trajectory portions (launch-
WAR, Apogee-TSX, and Target-SMR).

TABLE 1. PAIRED STATISTICS BETWEEN DEDICATED AND PROPOSED METCM.

MET SPACE VARIABILITY EFFECT

BIAS(m) FLIGHTS SIGMA(m)
Range Cross n Range Cross

0 hrs 93 37 9 149 43

MET TIME VARIABILITY EFFECT

2 hra 293 102 7 204 86

4 hrs 375 156 5 312 159

With an increase in replicates, the statistical results (especially the
event to event sigma results) will stabilize and be more representative of a
general conclusion. However, from these preliminary results one can summarize
a trend in variability and a relative accuracy effects between space
displacement and time staleness. The 100-m rms space bias for an 18-km target
range is too much of a difference to ignore in aiming artillery. These
results represent real-time MET corrections and demonstrate that a significant
improvement is very possible. The 310-m rms time bias for 2-hr staleness is
also not acceptable in aiming artillery. Battlefield data must be centralized
and fused into improved and modern MET correction techniques. The 406-m rms
time bias for 4-hr staleness is definitely not acceptable. Current MET aiming
adjustment can be significantly improved.

S . ASL is performing applied mathematics and developing computing
algorithms that allow dynamic simulated examination of meteorological effects
upon projectiles traversing through a battlefield atmosphere. Since only
software product improvements are required, the-artillery MET aiming
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adjustment can significantly be improved, thereby enhancing the first-round-
hit probability. ABEAM is the advanced model environment used to examine new
artillery MET correction techniques.

Preliminary results demonstrate the expected MET space and time
variability effects on aiming extended range artillery. Paired statistics
between the current doctrine and the proposed technique contain too much of a
difference. These statistics are summarized as follows: 100 m for space
variability, and 310 m (2-hr stale) and 406 m (4-hr stale) time variability.
The atmosphere is not homogeneous, especially along the extended artillery
firing ranges. If the U.S. Army wishes to continue with accurate and
effective artillery fire at these new ranges, the current method of adjusting
for nonstandard MET conditions needs to be improved. ASL is investigating
several possibilities, and this note describes a model development quantifying
the expected MET errors. More replicates to increase the statistical sample
size will be defined using all 20 PASS data days.

In conclusion, all battlefield METCM need to be centralized. Data fusion
and tailoring for launch, apogee, and target area applications need to be
investigated. Analytic functional approximations, optimum interpolation, and
mesoscale modeling can be used to define a solo composite METCM. More
frequent battlefield MET measurements are needed. Artillery balloon-borne
sensor data need to be augmented with remote sensor data.
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Abstract

Techniques for visualizing scientific data have advanced remarkably in recent years.

These techniques remain inadequate, however, for interpreting certain classes of prob-

lerns, such as those including multivariate or complex, time-dependent data. In addition

to the requirements of existing problems, the scope and size of problems in the near fu-

ture will extend into the teraflop range, demanding innovative solutions for interpreting

results. Investigations of two experimental technologies for data interpretation, virtual

reality and data sonification, are presented in this paper.
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1. Introduction

The traditional scientific computing environment consisted of a large mainframe computer

or supercomputer supporting a substantial user base, connected via dial-up asynchronous

lines and dumb terminals. Typically, large simulation programs were run in batch mode.

To some extent, this model continues to exist due to the high cost of the central resources.

Enhancements to this environment, however, have significantly extended the capabilities

available to modern users.

Communications are faster and more reliable. Dial-up lines have been replaced by

higher bandwidth networks. Ethernet, with a bandwidth of 10 megabits per second, and

Transmission Control Protocol/Internet Protocol (TCP/IP) are the current standards for

interconnecting systems [9, 101. Distributed computing and scientific visualization require

even higher transmission capacities. These requirements are being met with a combination

of new networking architectures, protocols, and transport media. For example, the fiber

distributed data interface, FDDI, is replacing Ethernet due to its bandwidth of 100 megabits

per second.

Workstations have supplanted dumb terminals on the researcher's desktop as a means

of interacting with the central computer. The workstations vary from personal computers

to high- performance graphics workstations. These systems possess significant computa-

tional and storage resources which rival those of first generation supercompiters. Now,

client/server applications and distributed computing environments allow clusters of these

systems to work together to solve large, complex problems.

Such an environment, in addition to making large numerical simulations computation-

ally feasible, has fostered the development of more sophisticated techniques necessary for

interpreting simulation results. Visualization software, integrating the computational power

of supercomputers with specialized graphics hardware, has extended the set of interpreta-

tion tools available to the researcher. Two-dimensional line contours have been expanded to

surfaces. Surfaces may have constant value (iso-surfaces) or may be shaded, displaying mul-

tiple values using a continuous range of colors. In addition, researchers can ecamine vector

data using particle traces or through time-dependent animations on their workstations.

Clearly, the interpretive techniques reviewed above represent a significant advancement

beyond methods available only five years ago. Nonetheless, certain classes of problems re-

quire interpretive solutions for which current techniques remain inadequate. Examples in-
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clude studies with multivariate data as well as complex time-dependent problems. Research

indicates that technologies engaging a fuller realm of human perception, incorporating such

senses as hearing and touch as well as sight, can be effective for interpreting these classes

of problems [141. In addition to the requirements of existing problems, the scope and size

of problems in the near future, extending into the teraflop range, will demand innovative

solutions for interpreting results. The remainder of this paper examines two experimental

technologies for data interpretation, virtual reality and data sonification, and discusses the

results of our investigations.

2. Experimental Data Interpretation

2.1. Virtual Reality

Virtual reality has generated profound interest in the technical community for its potential

in analyzing scientific data. Employed for such a purpose, it seeks to engage the researcher

more fully in the interpretive process, allowing interaction with the data through viewing,

touching, and actually moving in the physical space or "world" of the data. While the

technology is receiving a great deal of attention presently, certain concepts embodied in

virtual reality date back to the 1960's when Ivan Sutherland developed the first head-

mounted display system [241.

The original head-mounted display consisted of a helmet containing a pair of CRTs with

left-eye and right-eye views, adjusted by computer according to the user's head movements.

Researchers at NASA Ames Research Center refined the head-moumted display to use liquid

crystal displays (LCDs) and electronic sensors, making it practical and affordable [8).

Two companies exemplify the commercial viability of virtual reality, VPL Research Inc.,

and Fake Space Labs. The companies utilize similar hardware configurations but with some

variation. VPL has chosen to use the head-mounted display in their EyePhone System. The

display employs two color LCDs with a pixel resolution of 360 x 240. Motion is detected

by the 3Space Isotrak Sensor System developed by Polhemus Navigation Sciences [27]. The

3Space system contains two components, a source and a sensor. The source generates two

hemispherical electromagnetic fields, each of which has a radius of approximately 33 inches.

The sensor, mounted on the headset, continuously transmits its spatial location to an A/D

converter, which then transmits this information to the computer.

The Binocular Omni-Orientation Monitor (BOOM) system offers an alternative to the
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VPL head-mounted system. Manufactured by Fake Space Labs, the BOOM is an extension

of a prototype developed at the NASA Ames View Laboratory [4]. The BOOM supports

two small CRTs, each with a pixel resolution of 720 x 486, on a counterbalanced yoke

attached through six joints to a base. The apparatus uses optical encoders located in the

joints to determine spatial position and orientation.

A VPL DataGlove is used in both systems as the means for directly interacting with the

virtual world. The DataGlove provides two types of information. First, spatial information

is generated using a Poihemus 3Space Isotrak system, described above. Second, information

concerning the hand, ie. gestures, is determined through the attenuation of light transmitted

along custom optical fibers which span the length of each finger on the glove. These fibers

are quite sensitive, so that even such precise gestures as American Sign Language can be

accurately transmitted to the computer.

2.1.1. Working with Virtual Reality: Observations

Although the VPL EyePhone System and the Fake Space Labs BOOM system share cer-

tain rimilarities, they differ notably in several respects, particularly the display technology

and the software interface for creating virtual worlds. The ensuing discussion presents a

comparative analysis of the two systems, based on our experiences. A report on the focus

of current efforts as well as comments on future directions conclude the discussion.

2.1.2. Hardware Configuration

The display technologies of the two virtual reality systems present a distinct choice to the

potential user. The VPL system offers the authenticity of color, while the BOOM provides

increased detail due to the higher resolution display. For simulation, color is a necessary

component of realism. Conversely, data interpretation benefits from the higher resolution.

Eventually, high resolution color displays will be cost-effective when virtual reality becomes

generally available and economies of scale can be achieved. One must also consider the

advantages of the VPL head-mounted display versus the counterbalanced viewing apparatus

of the BOOM. The headset imparts a feeling of being immersed in the virtual world, whereas

the BOOM is more accessible for scientific data exploration.
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2.1.3. Software Interface

More significant than the differences in the two display technologies are the dissimilarities

in the software interface for creating virtual environments. The VPL system provides a

program called Swivel to create virtual worlds [221. Essentially a drawing program, Swivel

allows the user to create objects and place them in the virtual world, with dimensions of

1000 x 1000 x 1000 units. Individual constraints and relationships between objects can be

specified. Though it is possible to detect collisions between objects, interference checking is

not automatic; hence, creating solid, impassable objects requires explicit testing for collision.

Posing another restriction, Swivel provides no translators for importing models, such

as CADD. For these cases, the user must completely reconstruct the model, using Body

Electric, a programming language specific to Swivel [3]. Externally developed codes can-

not be linked into the system. Consequently, the VPL software provides a rather closed

programming environment.

No software is provided with the BOOM. Working code can be obtained, nonetheless,

from various organizations which have a BOOM. In general, such software is based on

functions originally developed at NASA Ames [4]. These functions read information from

the headset and the DataGlove and control the stereo mode of the display. This relatively

low level of functionality allows total flexibility for creating virtual worlds: functions for

displaying the desired data must be externally developed. This makes it possible to view

essentially any type of data which can be drawn on the computer, including numerical

simulation results, physical or CADD data. Thus, the BOOM provides a more open, flexible

programming environment than that offered by the VPL system.

2.1.4. Applications of Virtual Reality

Our goal is to apply virtual reality to the problems associated with data interpretation.

These problems differ from those for simulation in which realism, in the realm of the virtual

world, is the dominant requirement. Employing virtual reality to analyze data should enable

the researcher to perceive the data in new ways, discerning structure that is difficult, if not

impossible, to detect using traditional computer displays.

To date, we have created three models for examination using the BOOM. The first

project entailed importing a three-dimensional finite element model of steady-state flow

through a channel. For the second project, a volume model was created using data col-
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lected from accelerometers buried in soil. Finally, the flight of a projectile was examined.

Each of the projects involved differing types of data, yet in each, a need existed for the

scientist to interact with the model. For example, in studying flow through the channel, it

is difficult, using two-dimensional displays, to observe the helical flow patterns that develop

in the curves. Employing particle traces in virtual reality, these details can be more readily

observed.

Our attitude towards the use of virtual reality for data interpretation remains ambiva-

lent. Virtual reality provides an intuitive model for moving around in a three-dimensional

world. However, visualization techniques must be adapted to facilitate exploring the data

from a perspective of immersion in the virtual world, rather than the conventional approach,

wherein the researcher is positioned outside that world. New paradigms must be developed,

similar to the shift involved in parallel versus sequential programming.

2.2. Data Sonification

Researchers have been interested in the applications of sound in computer technology for the

last decade. Interest in the area has increased as sound synthesis techniques have improved,

making it possible to produce digital audio signals in real time. Much of the initial research

in the area was motivated by the need to employ sound in the development of computer-

human interfaces for the visually impaired [16]. Subsumed within this larger goal was the

desire to use sound to interpret data, also called data sonification. However one chooses to

categorize the research, the literature indicates common issues to be addressed and shared

findings upon which to draw to effectively employ sound in computer-human interaction.

Among the fundamental issues which emerged from the initial investigations, it became

evident that the human auditory system possessed unique attributes which could be used

more fully in developing the computer-human iriterface [1]. First, analagous to its visual

counterpart, the human auditory system can perceive certain physical dimensions of sound,

such as pitch, volume, and duration. These lower level physical dimensions can be isolated

and manipulated to present information similar to the way in which the visual attributes of

an object such as shape, size, or color may be used [1, 5]. Secondly, at a higher level, human

hearing represents a continually open channel and can thus function in the background,

detecting information without requiring full conscious attention [131. Audio cues have been

used for some time to develop auditory warning systems which monitor aircraft or nuclear

power plants.
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Early studies also revealed that certain kinds of information are possibly better un-

derstood aurally than visually, such as time- varying, logarithmic, and multivariate data

[1, 19, 26]. Finally, initial research demonstrated that any efforts to employ sound in

computer-human interaction m- .. address certain fundamental questions: What are the

most appropriate mappings of information to sound and how can these mappings be deter-

mined? Also, how do human auditory and visual perception interact and how can this be

maximally used to convey information [16, 18]?

2.2.1. Current Sound Technology

Lack of necessary hardware was a genuine impediment to early research efforts involving

computer-generated sound. As sound synthesis techniques have improved, the applications

of sound in computer technology have accelerated. This section briefly reviews current

technology for generating computer-synthesized sound.

The Musical Instrument Digital Interface or MIDI, is a standard adopted by the music

industry for interfacing electronic sound synthesis and processing equipment to computers.

MIDI can be described as something akin to the printer language Postscript [201. However,

instead of sending page-description instructions, MIDI conveys music-description signals

to a synthesizer. The standard has made a wider range of equipment available to the

researcher.

It should be noted that prior to development of MIDI synthesizers, some experimentalists

performed sound synthesis in software [171. The early sound synthesis languages (Music

N languages) were modular and flexible, but could not produce sound in real time [15].

MIDI synthesizers overcame this limitation, implementing the sound synthesis algorithms

in hardware to produce digital audio in real time. However, because the hardware is pre-

programmed, MIDI synthesizers alone do not offer the flexibility of software synthesis and

require additional software and hardware components to perform experimental research.

Digital signal processors (DSPs) offer another alternative for sound synthesis. DSPs are

microprocessors specifically designed for high-speed digital signal processing operations.

Implementing the sound synthesis algorithms in software to be executed on one or several

DSPs in parallel can yield the flexibility of software synthesis and the real-time response of

MIDI synthesizers.
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2.2.2. Current Data Sonification Research

Current research efforts have attempted to address the various issues raised in the ini-

tial investigations. In one such project, researchers at the National Center for Supercom-

puter Applications have employed a sound specification system to test the effectiveness of

sonification in assisting researchers to analyze complex data [7]. The research team ex-

plored the problem of generating optimum data-to-sound mappings by testing what they

term both "abstract" and "data-related" mappings. To realize the goals of the project,

the investigators employed a sound specification system to analyze data sets from selected

NCSA-produced scientific visualizations. The sound specification system incorporated both

a general-purpose hardware component and an object-oriented software component. The

project culminated in the production of sonifications which augment the selected visualiza-

tions. Results of the project indicated the significance of cognitive factors in determining

effective data-to-sound mappings. The investigators point out, however, that more thor-

ough exploration and testing of data mappings is required to develop sonification as a data

interpretation technique [7].

Researchers at the University of Lowell have examined the effectiveness of sound in mul-

tivariate data interpretation, particularly the interaction between visual and aural percep-

tion in the interpretive process [14]. The project has entailed construction of an exploratory

visualization tool, Exvis. The tool seeks to exploit the human ability to perceive texture,

both visually and aurally. The developers argue that a texture, made up of numerous dis-

criminable elements, permits deliberate analysis of individual elements, yet also, without

requiring deliberation, provides an overall impression of the data [14]. Each data sample

is represented visually by a stick-figure graphical unit called a glyph or "icon" [14]. The

data parameters determine the attributes of an icon, such as the size or position of its parts.

Variations in shape, size, spacing, or orientation create textural gradients or contours, which

indicate to the viewer structures of potential significance in the data. Each icon has auditory

as well as visual attributes. An icon may generate a single tone or other sound, depend-

ing on values assigned to its attributes. Multiple icons sounding simultaneously produce

auditory textures similar to visual textures.
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2.2.3. Applications of Sound Technology

Comparing the two studies, the NCSA project adopted a more general focus by employing

a sound specification system to manipulate audio attributes. Combining such an approach

with the Exvis emphasis on multivariate data appears to be optimal for employing sound

to interpret complex data. Presently, we are in the initial stages of investigating a sound

specification system and possible data mapping techniques.

Several studies are being evaluated for the application of data sonification techniques.

Those involving multivariate data sets from both physical and numerical systems appear

particularly well-suited. Examples include the Chesapeake Bay study and groundwater

investigations: employing sound while moving through three-dimensional vector and scalar

fields could yield valuable insight. A final application would be the development of user

interfaces to scientific programs for the visually impaired.

3. Conclusions

Scientific visualization has extended the boundaries of traditional graphics. Nonetheless,

new methods must be developed which address the interpretive requirements of more com-

plex, time-dependent systems. This paper has examined two possible technologies, virtual

reality and data sonification. Each offers potential benefits not offered by conventional

methods. Through ongoing studies, we expect to determine the viability of these technolo-

gies for exploring scientific data.
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1. INTRODUCTION
There were three major goals of this paper. The first was to utilize the massively parallel

Connection Machine, CM, for computation of flow about Army projectiles and missiles using a zonal
code. Multi-zone grids on the order of several million points have been used to model real-world
three-dimensional geometries with discontinuities. This allows breaking up of a complex
computational domain into blocks of simple grids. Overlaid multi-zone grids were considered for the
study. Since the quality of the grid hac, a direct impact on the quality of the solution, the grid is a
dominant factor.

We have also retained the complex boundary conditions associated with practical applications. In
particular, the boundary conditions were neither simplified nor hard coded inside the code for
computational efficiency. They are set up in modular blocks that make it easy to use the same code
for a variety of applications.

Our second goal, again emphasizing practical applications, was to compare performance of the
whole application to the code kernel. The importance of the communication overhead on the CM, and
communications issues related to the single-zone grid with multi-zone applications are addressed.

Our third goal was to demonstrate the usefulness of a remote visualization capability developed in
conjunction with the massively parallel computations. Applications involving millions of grid-points
on a remotely located CM require the transfer of enormous amounts of data to a local machine for
visualization. This requires special consideration when one is interested in capturing real-time
dynamic or unsteady behavior of the flow solution.

2. CONNECTION MACHINE
The CM is a single instruction multiple data (SIMD) parallel computer. A full size Connection

Machine of this class has 65,536 ( =21s ) bit serial processors, 16 processors to a chip. The chip also
contains router circuitry for inter-processor communication. The CM has one floating-point chip for
every 32 processors. A "node" consists of two processor chips, a floating, point chip and memory.
Thus a full size CM has 2048 nodes. The CM located at the Army High Performance Computing
Research Center (AHPCRC, Univeristy of Minnesota) has 1024 nodes or 32,768 bit serial processors.

Because of the SIMD nature of the CM it is not possible to overlap computation with
communication. Thus communication, if not implemented properly can significantly degrade the
overall performance. The CM has a regular grid communication feature within its hypercube
topology. This grid or "NEWS" communication is designed in such a way that grid neighbors are
assigned to hypercube neighbors in the communication network. This allows every processor, in
parallel, to pass data to its neighbor, all in the same direction. Since in our finite-difference
application the communication pattern is regular, we have used the above described grid
commmunication in the code. The cost of grid communication is typically very competetive with the
cost of the basic arithmetic. On the other hand, random access or long-distance inter processor
communication is far more expensive than regular grid commniinication. Although it is possible to pass
data from each node to all four neighbors simultaneously, using a special micro-coded communication
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primitive, this has not been explored because it is not considered a general purpose feature at the
present time.

The CM located at the AHPCRC has 128 Kbytes of memory per processor for a total of 4 Gbytes
of memory. It has a SUN front end, consisting of two 4/490 systems, to provide compiles, loads and
communications. It also has a 10 Gbyte parallel data vault storage system which provides disk storage
accessible at a rate of 24 MBytes/second. This consists of 42 SCSI disks operating in parallel and the
special software libraries and utilities needed to use the system.

3. NAVIER-STOKES ALGORITHM
Since the architecture of the SIMD CM is well suited for an explicit type method, an explicit

multi-stage finite-difference method has been adopted [Ref. 1]. The code solves Navier-Stokes
equations in generalized coordinates with no thin layer assumption. The three-dimensional Navier-
Stokes equations in generalized curvilinear coordinates can be found in [Ref. 1). We can write the
equations as:

aQ + a(E- S + O(F- T) + OG- R)

where Q is the vector of the conserved variables, E, F, G are the inviscid flux terms and S, T, R are
the viscous terms. The code is capable of performing both steady and unsteady computations. For
steady flows, a local time stepping convergence acceleration scheme is used.

We have added adaptive artificial dissipation terms to the equations. These terms are required to
damp out high frequency oscillations associated with the odd-even decoupling in central-difference
schemes. Also, the artificial dissipative terms are required to capture shock and contact discontinuities
without undesirable oscillations. An adaptive blend of second and fourth differences has been used for
artificial dissipation. The dissipation terms have been improved by a directional eigenvalue scaling
[Ref. 2] which has been found effective for highly stretched grids in both inviscid and boundary
layer/wake regions.

For a time accurate solution, the explicit scheme requires a limited time step size that must be
determined by the numerical stability criterion of the scheme. The time step size is normally
determined such that the Courant-Friedrichs-Lewy (CFL) condition is a minimum over all grid cells.
However, convergence to the steady state solution can be accelerated by sacrificing the time accuracy
of the scheme and advancing the solution at each cell in time by the maximum possible local time step
in that cell. Local time stepping is also well suited for parallel processing because it allows concurrent
computation of the time step size in all cells and avoids long-distance communication. The code
allows the use of multi-zone overlaid grids. The multi-zone grid has the potential to reduce the grid
generation complexities and to improve the quality of the grids associated with complex body
geometries. Since the application involves grid points of the order of millions, the grid must be saved
on the data-vault, a mass storage device, for fast parallel I/O in the code. If the grids and solution
fields are not saved on the data-vault, the I/O time will be prohibitive for both visualization and
application.

For simple body shapes, such as a body of revolution, the grid generation has been carried out on
the CM itself and grid files have been saved on the data-vault. For complex body shapes requiring the
use of a more involved grid generation code, grids have been generated on a local machine and the
binary grid files transferred to the CM. These grids are placed on the data-vault by a pre-processing
code on the CM using different file names for each grid zone.

The solution process requires the computation of flux vectors that includes artificial dissipation
from the dependent variables. This can be done concurrently for all interior grid points in a given
zone. In the case of a multi-zone grid, the above process is carried out for each zone until all zones are
finished. Then the solution vectors are obtained by solving the first stage in parallel for all interior
points of a given zone. Again the process repeats for any additional zones. Next, appropriate
boundary conditions are updated, each in parallel. The major concerns when applying the complex
boundary conditions, which take longer, is that processors representing interior grid points do not
participate in any useful work. Thus boundary conditions must be carefully considered. The inter-
zone data exchange is done next for overlaid zones. Since each grid zone is separately mapped on the
CM, involving different sizes, a substantial amount of long-distance communication may be involved in
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the exchange process. Although no computation is involved in this exchange process, the
communication over-head is impressive. This cycle repeats for the next stage. Variants of this cycle
can be explored by applying boundary conditions and/or inter-zone exchanges less frequently in each
stage, to achieve better performance.

4. FLOW APPLICATION
Depending on the application, the computational domain consists of either a single-block or a

multiple-block grid. Each block consists of a large number of grid points. For code implementations,
the CM has been configured as a 3-D grid with one (virtual) proressor per grid point and each
processor connected to its nearest neighbors. The code was designt•. in such a way that that each
grid-block has its own local variables. This approach allowed us to map each grid block on the entire
CM. Each grid block should contain a sufficient number of grid points (in multiples of the physical
processors) to give a high virtual processor ratio for efficient computation. That is, each physical
processor will process several grid points of a single block grid. Thus for a multi-zone grid, storage
requirements per physical processor can become very large.

The inter-processor communications for each grid block is relatively efficient because of the
previously mentioned dedicated "NEWS" network. Applications involving multi-block grids typically
have grid blocks of different sizes. Thus there is substantial "long-distance" communication involved
in inter-block data exchange. This is one of the major issues involved in comparison of a multi-block
application with a single-block application. Hence, long-distance interprocessor communication is the
first important issue. Because the CM is SIMD, it is not practical to overlap computation with the
required interprocessor communication and thus the overhead generated by communication has a
direct effect on performance.

During the computation of boundary conditions, un-needed processors will not be performing useful
work. Since our goal is to maximize the rate of. useful computations, the implementation of boundary
calculations is the second important issue.

For some applications, the boundary stencil can be made part of the interior stencil by using an
array that has desired factor values on the appropriate boundaries and interior factor values
corresponding to the physical position in the computational field. The overhead imposed by the
inclusion of additional terms when solving the interior and boundary points simultaneously is
relatively small on the CM. Hence the application of difference stencils to virtual processors
representing boundary points can be performed concurrently with interior points. Also the Dirichlet
and periodic type of boundary conditions are easy to implement on the CM. For many applications,
the type of boundary conditions required is rather complex. There is little or no similarity in the
difference stencils between the interior and boundary points. This is because of the nature of the
boundary conditions or higher order approximations applied to the boundary conditions. Also, the
boundary conditions are evaluated after the interior points have been updated. Thus depending on the
type of boundary conditions, separate evaluation of boundary conditions impose an overhead on a
SIMD massively parallel architecture that mostly depends on the type of application involved and the
complexity of the boundary condition. Although all boundary points in a given boundary condition
can be executed in parallel, still a large ratio of virtual processors might not be doing useful work. So
the type of applications and the type of boundary conditions used play an important role in comparing
performance with other machines.

A number of applications have been computed to validate the accuracy of the Zonal code on the
CM. Both 2-D axisymmetric and 3-D flows have been solved and compared with the experimental
data and results from Cray computations. The parallel processing effort at BRL was initiated in late
1983 with the acquisiiton of a 64 processor Denelcor HEP MIMD machine which provided an initial
platform for numerical experiments with parallel algorithms. Some of the techniques implemented in
the Connection Machine code, such as multi-zone data exchange, local variables for each zone, and
data management were delt with experimentally on that computer. Also programming experience
with the Cyber-200 series using explicit vector directives contributed to the CM code, because it had
many directives similar to CM Fortran. With the availability of the Crays, the code has been
validated and applied to real world problems. The code has consistently sustained a parallel efficiency
of about 98% for 3-D applications on 4 and 8 processor Crayi [Ref. 31.

We have tried to satisfy our primary aim of performance by using efficient numerical schemes and
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simple data management based on modular building blocks for flexibility. The code has been written
from scratch for the CM, working with one module at a time in order to simplify the development and
enhance portability. Once the blocks are identified and the parallel directives are implemented, then
an efficient code is developed by putting these modules together in an appropriate way. Thus we have
been able to port the parallel code efficiently from one computer to another [Ref. 4]. The code has
modules that are capable of computing aerodynamic forces and coefficients such as drag and pitching
moments acting on the body. These coefficients along with the surface pressure distribution and
velocity profiles (when available) are compared with the experimental data.

We now mention some of the application studies that have been performed using the zonal code.
All of the following studies used multi-zone (block) grids involving 2 to 15 zones. The effects of
projectile nose bluntness has been reported in [Ref. 1]. References [51 and [6] present detailed
discussion on studies of spike-nozed HEAT (High Explosive Anti-Tank) projectiles. The non-steady
behavior of the flow is interesting and real-time visualization may provide more insight of the flow
behavior. The viscous flow computations have been performed to study missiles with delta wings at
various angles of attack [Ref. 7]. The formations of leading edge vortices and their effect on the wing
pressure distribution has been investigated. The projectile with a cylindrical wrap-around fin, which
allows efficient use of the available space, has been investigated in [Ref. 81. Computations for a fully
integrated engine including inlet, combustor and nozzle for the National Aerospace Plane or X-30 are
described in [Ref. 9].

In the remainder of this section we show a sampling of flow computations that has been performed
on the CM at the AHPCRC using the zonal code. First we consider the Army M549 artillery shell.
This is the 155mm projectile with a flat nose and a flat base. Our interest is in the computation of
supersonic flow and determination of static aerodynamic coefficients. Because of the sharp edged
configuration at the nose-forebody junction and at the boattail-base junction, a three zone grid has
been used. The 3-zone grid for the M549 is shown in Figure 1.

The projectile shape consists of a flat nose, forebody section of ogire and cylinder and aftbody
section of the boattail and flat base. The zonal grid preserves the actual corners in the nose and base
area. The zonal grids are overlaid by a single cell with the neighboring grids without any mismatch
and thus inter-zone boundary conditions only require data transfer at the interfaces. A non-reflecting
boundary condition was imposed on the outer boundary [Ref. 1]. This approach allows setting of the
outerfield close to the body. From the computational point of view, it allows the removal of a
relatively large number of grid points from the outer region for supersonic flow computations. This
enables us to save memory space since the memory is proportional to the total number of grid points.
On the Cray computers, the eliminated grid points result in decreased computation time. However,
the computation involved in non-reflecting type boundary conditions is relatively more involved than
simple free-stream type boundary conditions. The overhead imposed by complex boundary conditions
is relatively low on Crays compared to the CM.

For Mach = 1.5 and a 30 angle of attack, the solution clearly shows the asymmetry in the shock
wave in the nose area, the region of over-expansion and recompression [Figure 2]. Notice that the use
of non-reflecting boundary conditions allow the shock to pass through the outer boundary. A sequence
of frames from the visualization of the computed flow fields reveals unsteady vortex shedding with
vortices being formed and shed in the wake which raises questions about dislocation of events. Thus
real-time visualization has opened up an area that needs further investigation. It is interesting to note
that unsteady flow behavior has been reported in [Ref. 5] and [Ref. 61 which was not previously noticed
in experiments. As the Mach number is increased, the recirculation region becomes entrapped in the
base area. Again the real-time visualization may prove a key element in this type of study.

Two three-zone grids have been used in this study. The grid dimensions used for the first grid are
(30x94x39), (249x65x39) and (120x46x39) respectively. The second three-zone grid has dimension size
of (32x128x64), (256x128x64), and (128x64x64). The performance of the entire code for the M549 on
the CM with 32K procesors or 1048 nodes is about 1400 Mflops. This compares to performance of the
same application on a Cray-2 at 90 Mflops using a single procesor and 340 Mflops on using four
processors. A Cray-2 was used because of the large memory required for the 3-D applications.

The entire M549 application, including various boundary conditions and inter-zone
communications takes about 12 sec/interation on a 32K processor machine. The detailed breakdown
of the timing reveals that the code spends about 4 sec/iteration solving the kernel (interior grid points)
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and 8 sec/iteration applying the boundary conditions including zonal interface data transfer (or
working on the boundary points). As discussed previously, the work involved on the boundary can
impose impressive overhead. So there can be a huge gap when comparing the performance of the
kernel with the performance of the entire code. In our case inter-zone comunication has turned out to
be one of the most expensive operations on the CM because of the long-distance communication
involved. Still, the performance of the M549 application on the CM is very encouraging and more
importantly there is room for future applications that involve larger grids. It is not difficult to come
up with applications involving single-block grid and simple boundary conditions that can be executed
concurrently with the interior points and obtain much better performance than what we hayv obtained
for the M549 application. We are focusing on the issues that we encountered while keeping the code
flexible and practical enough for a variety of applications.

We have performed 3-D flow computations on the CM for the U. S. Army Missile Command
(MICOM). A missile configuration associated with a sled test flow field has been considered [Ref. 101.
The missile configuration has been gridded using a single zone grid of 256x64x64 [Figure 3[. The high
Reynolds number computations have been performed for the Mach 1.9 case at a 0' angle of attack
[Figure 41.

An application involving a little more complex body shape is shown in Figure 5. This is the full
F-15 aircraft configuration. Because of the body shape, the multi-zone gridding of this configuration
is more involved and three institutions have been involved (National Science Foundation -
Engineering Research Center, McDonnell Douglas Corp. and the U. S. Air Force) [Ref. il[. Once the
grid has been obtained, the computations about the entire aircraft configuration have been carried out
using the Zonal code on the CM. The surface pressure distribution for F-15 at Mach = 1.5 and a 0'
angle of attack is shown in Figure 6. A more interesting area of research would be to make a video
similar to the M549, capturing a series of flow frames involving an aircraft maneuvering such that roll
or pitch are changing. The visualization capabilities discussed in the next section may prove an
indispensible tool for the above mentioned study. A detailed discussion of the F-15 results will be
documented in an appropriate future report.

5. VISUALIZATION
Visualization of flow data demands rendering laise quantities of data which will rcquire

improvements to the traditional techniques. While machines like the CM have attached frame buffers,
these machines are typically located at a remote site making it desirable to transfer the data to a local
machine for visualization. The massive amount of data makes it difficult to transfer files, particularly
to different architectures or workstations with modest disk capacity.

One approach is to transfer the data to a local machine with sufficient disk capacity and do the
visualization almost entirely in software. This allows the visualization to be accomplished on
machines without special graphics hardware. If the transfer and visualization steps are sparated, the
computation, visualization, and storage can happen concurrently, and each process can be performed
on the most appropriate architecture.

For these reasons, the visualization of flow data from the Connection Machine has been broken into
two steps: 1) Transferring the data [Ref. 13[ and 2) Oisplaying and manipulating images. To allow
flexibility in choosing the platforms for transfer and visualization, both steps are portable; relying on
no special hardware or architecture specific software.

Each timestep of the Navier-Stokes calculation produces several scalar vt!ues at each grid point
(density, X, Y, Z momentum and energy). Every tenth timestep is dumpned to a file on the Data Vault.
The filename, along with the size, shape, and normalizing values is written to a shared memory
segment queue on the front-end processor. The Zonal code is then free to resume processing, resulting
in a minimal impact on code performance.

A separate process, on another quadrant, reads the information from the shared memory queue,
opens the Data Vault file, reads it into the CM, and normalizes the data. Then using RdT, a data
transfer library, selected planes are transferred to a local processor. The data is transferred in
eXternal Data Representation (XDR) format, developed by Sun Microsystems [Ref. 12] and stored on
the local machine in host binary format. Once on the local machine, the data is visualized in an XiI
window using ShAYD, a collection of hardware independent routines that is used to visualize
curvilinear, multi-zone grids and their scalar values. Since all of the rendering is done in software,
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massive grids can be handled, one small section at a time, to produce a final image. Each scalar value
is mapped to a hue and a light source can be optionally applied. The hue is interpolated across each
polygon and used, along with the light value, to produce either an value in the X1I color map or a 24
bit RGB value. The 24 bit ouoput is used to produce videos of many timesteps.

6. SUMMARY
A paralh. multi-zone, three dimensional, Navier-Stokes code has been developed on the

Connection Machine CM for computing steady and unsteady flows. Results are presented which
clearly demonstrate that real-world applications in one area can be handled efficiently on this
massively parallel architecture. The applications also demonstrate the viscous flow computations at
high Reynolds number. The graphics capabilities developed in conjunction with the parallel
computation are very useful for visualizing the flow and debugging the computation.

The performance of the algcrithm results more from simplicity and data managment than from
sophisticated numerics. We have highlighted issues that we encountered in addressing real-world
applications on the CM machine. There can be a big gap in the performance of different applications
depending on the type of boundary conditions and long-distance communications involved.

The basic theme of the research effort is simplicity. By putting simple modules together in an
appropriate way and avoiding unnecessary complexity (the law of "diminishing returns"), we have
produced a useful and efficient algorithm on the massively parallel architecture.

734



7. FIGURES

0 MN

Figure I

7 3



... ... ... ........

*oo
...........

0 :.:..........

Q.....

Fiur

/73



Figure 3

737



Figuzre 4

738



Il

Figuire <

739



k.-; . ...!.:I::• . .... .

i i i i i i ! . ...... .. . ... .. ....... .. ........ ... ..

7z.i@ii~ii

" W........... INi iiiii:iiii•;!i'•:•s !r;•~~•• ;••'

!~ ~ ~ ~ ~ ~ ~~~~~~Fgr 68:;:::::: ::.:r:;..::!}£!{!!1••{!i!!••!.

S... "'-.'-i.,-,, • ,: " 3::i-! ! " ;;:i::i~.7 40;;:



8. REFERENCES

(1) Patel, N. R., Sturek, W. B. and Smith, G. A., "Parallel Computation of Supersonic Flows Using a
Three Dimensional, Zonal, Navier-Stokes Code", BRL-TR-3044, November 1989.

(2) Swanson, R. C. and Turkel, E., "Artificial Dissipation and Central Difference Schemes for the Euler
and Navier-Stokes Equation", AJAA 8th Computational Fluid Dynamics Conference,
Honolulu, Hawaii, June 1987.

(3) Patel, N. R., Sturek, W. B. and Hiromoto, R. E., "A Parallel Compressible Flow Algorithm for
Multiprocessors", Applications of Parallel Processing in Fluid Mechanics, Fluids
Engineering Division, Vol. 47, ASME, June 1987.

(4) Patel, N. R., Sturek, W. B. and Hiromoto, R. E., "A Parallel Numerical Simulation for Supersonic
Flows Using Zonal Overlapped Grids on Common and Distributed Memory
Multiprocessors", International Conference of Applications of Supercomputing in
Engineering, Elsevier, Amsterdam, 1989, pp. 89-104.

(5) Mikhail, Ameer, A., "Spike-Nosed Projectiles: Computations and Dual Slow Modes is Supersonic
Flight", AIAA paper 89-1820, June 1989. (Also published in the Journal of Spacecraft and
Rockets, vol. 28, No. 4, July-August, 1991, pp 418-424. Also BRL-TR-3140, August 1990.)

(6) Mikhail, Ameer, A., "Spike-Nosed Projectiles With Vortex Rings: Steady and Non-Steady Flow
Simulation", AIAA paper 91-3261, September 1991. (Also accepted for Journal of
Spacecraft and Rockets, Also BRL-IMR-962, April 1991.)

(7) Edge, H. L., Private Communication, BRL, June 1990.

(8) Edge, H. L., "Computation of the Roll Moment Coefficient For a Projectile With Wrap-Around
Fins", BRL-IMR-969, October 1991 (Also Proceedings of the Army Science Conference,
June 1992).

(9) Patel, N. R. and Edge, H. L., "Computations of Integrated Inlet-Combustor Flows for the National
Aerospace Plane Engine", BRL-JMR-958, February 1991.

(10) Soni, B. K., "Sled Test Flow Field", MICOM Technical Report no. 5-31915, 1992. (Also Private
Communication.)

(11) Soni, B. K., et al, Private Communication, March 1992.

(12) "Networking on the Sun Workstation", Sun Microsystems, Mountain View, CA.

(13) Clarke, J., "Remote Data Transfer (RdT): An Interprocess Data Transfer Method for Distributed
Environments." BRL-TR-3339, May 1992.

741



APPLICATION OF FINITE ELEMENT, GRID GENERATION, AND
SCIENTIFIC VISUALIZATION TECHNIQUES

TO 2-D AND 3-D SEEPAGE AND
GROUNDWATER MODELING

Fred T. Tracy
Information Technology Laboratory

US Army Engineer Waterways Experiment Station
Vicksburg, MS

and

Camille A. Issa
Associate Professor of Engineering Mechanics

Department of Aerospace Engineering
Mississippi State University

Mississippi State, MS

ABSTRACT

The flow of groundwater in the vicinity of certain critical military arsenals is
of increasing importance because of environmental impact. Further, there are many
techniques used in military applications that can be used to solve problems in other
disciplines (knowledge transfer). Therefore, this paper describes new advances in the
computational modeling of groundwater and seepage using the finite element method
(FEM) in conjunction with tools and techniques typically used by aerospace
engineers. First, an extension of the technique of generating an orthogonal
structured grid to automatically generate a flow net for two-dimensional problems
is presented. Second, a complete implementation of a three-dimensional (3-D)
seepage/groundwater model is described where (1) grid generation is accomplished
using the Egein Arbitrary GQeometry ImpLicit Euler (EAGLE) program developed
by Eglin Air Force Base and Mississippi State University, (2) the seepage and
groundwater analysis for either confined or unconfined flow, homogeneous or
inhomogeneous media, and isotropic or anisotropic soil is done with no restriction
on the FE grid or requirement of an initial guess of the free surface for unconfined
flow problems, and (3) scientific visualization is performed using the program Flow
Analysis .Solver Toolkit (FAST) developed by NASA Ames. Special emphasis is
placed on the proper development of boundary conditions at exit faces and wells for
unconfined flow or unsaturated flow problems, which are often done incorrectly.
Finally, examples showing both generated flow nets for 2-D problems and results for
3-D applications are presented.
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INTRODUCTION

The modeling of seepage under dams and groundwater flow in aquifers is of
significant interest. This becomes even more important in our modem times with
increasing interest in the flow of pollutants. The unsolved environmental issues
regarding our hazardous and toxic waste problems must be resolved, and significant
resources must be placed on this effort. Some military bases are contaminated with
hazardous waste that has entered the groundwater domain. A groundwater model
that takes into account contaminant flow is therefore critical. The state of the art
has advanced in various ways over the years to achieve better and better solutions.
However, of unusual occurrence is the application of the tools that engineers in one
discipline have developed to problems of other disciplines. What is said is, "We don't
do it that way." Because of the authors' diverse background, a unique feature of the
work in this paper is that the tools developed by structural and aerospace engineers
are applied to a problem typically addressed by others.

Difficulty of Problem

One profound aspect of seepage and groundwater flow is the problem of
modeling flow through materials of significantly different characteristics
(permeabilities, hydraulic conductivities, etc.). This is compounded when unconfined,
unsaturated, or multiphase flow exists. One example of this is an earth dam with a
relatively impervious clay core and a highly pervious drain installed around it. The
rest of the dam is composed of moderately porous material. Figure 1 shows an
example with the soil properties given in Table 1.

IC77

Figure 1. Zoned earth dam
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PERMEABILITIES, FT/MIN..... . ............... ...................... ............. ............ 1........ ..... ..... .................. ] ............. ..... ... ........................... .......
Soil Material kk2Angle, deg

1 Rock 9.3(1072) 1.7(10.2) 140

2 Sand 9.8(10.2) 2.0(10-2) 0

3 Drain 9.8(10.2) 2.0(10.2) 0

4 Shell 9.8(10"1) 9.8(10-') 0

5 Random 9.8(10"3) 9.8(10-3) 0

6 Core 9.2(10") 2.0(10.) 0

7 Random 9.8(10.) 9.8(10.3) 0

8 Grout 9.8(10.3) 2.0(10-3) 140

Table 1. Material properties

COMPUTER GENERATED FLOW NETS

The graphical construction of flow nets by hand to compute the quantity of
flow, exit gradient, etc. is a standard engineering tool of soils engineers. However,
these are extremely tedious to construct by hand because equipotential lines and flow
lines must be drawn in such a way that curvilinear squares result. One significant
aspect of this research effort is that numerical grid generation techniques of
aerospace engineers used to generate an orthogonal grid (Thompson, Warsi, and
Mastin 1985) can be extended to construct a flow net for various boundary conditions
using the Cauchy-Riemann Equations (Crowder and McCuskey 1964). This section
shows how the FEM has been successfully applied to generate flow nets with
emphasis also given to differences in approach from previous work. The major
advantage of the techniques described in this section is that they improve the quality
of the resulting flow nets.

Governing Equations and Basic Approach

The total head or potential 4 for a homogeneous, isotropic medium for 2-D,
steady-state flow satisfies Laplace's equation as follows:
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ax 2  4y 2

The stream function 4 also satisfies Laplace's Equation,

t + & * o (2)
ax2 ay2

Therefore, a complex potential 4 exists as follows:

40 -d)

Since O and * are conjugate hannonic functions, the Cauchy-Riemann equations now
hold.

__- _- _ or €=-- ).
ax ay

(3)

or 4Y=
C ax

It should be noted here that the stream function is often defined as a velocity-type
term. However, in this work it is a gradient-type term. That is, * is defined by

= 0.dy - 4'dx

as compared to

=f, udy - vdx

where u is the x component of velocity, and v is the y component of velocity.

For a point on the curve C, a local tangent-normal (T-N) coordinate system
can be established as shown in Figure 2. Equation 3 for this system then becomes
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NC

Figure 2. T-N coordinate system

(4)

A property of such functions is that constant lines of are orthogonal to
constant lines of 4r. The flow net consists of 6 = constant lines and * = constant
lines constructed in such a way that the resulting picture consists of curvilinear
squares. The concept of automatically generating the flow net is fairly
straightforward and involves the following three steps:

a. Compute total head. Perform a normal FEM solution determining the total
head h (same as potential 4) at each node and the quantity of flow, Q,
passing through the system. Also compute the shape factor, f, from

0 = k(hu - hd)f (5)

where hu is the upstream head, h, is the downstream head, k is the
permeability, and f is the shape factor.
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b. Compute stream function. Determine the boundary conditions for the
stream function using Equation 4 and perform a second FEM solutior, to
obtain values of *r at each node.

c. Contour results. Contour the two sets of data to construct the flow net.
The intervals for each are determined using the shape factor which, by
definition, is

f_ = (6)

where N. is the number of equipotential drops, and Nt is the number of
flow paths.

Earlier work (Christian 1980a, 1980b, 1983; Aalto 1984; Christian 1987)
determined the boundary values for the stream function solution (step 2) numerically,
whereas in this work a more fundamental technique is used. Here, the
Cauchy-Riemann equations are used to determine the correct boundary conditions.

Dupuit's Problem

The procedure will now be applied to Dupuit's problem which is unconfined
flow in an earth dam with vertical sides (Figure 3). Line segment AB is impervious,
line segments AF and BC have constant head specified, and line segment CD has the
boundary condition

Y =(7)

The position of the free surface (FD) must be determined from the FEM solution.
Once determined, line segment FD becomes a flow line and is treated exactly like
an impervious boundary. Also, the region above the free surface (triangular region
FDE) is not used for the second solution. Rather, a new grid with the phreatic
surface being a new boundary is used. We will now determine the * boundary
conditions.

On the 4, = H1 and 4, = H2 boundaries

40. = 0

since H1 and H2 are constants. But from Equation 4
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Figure 3. Dupuit's problem

So the new boundary condition is

g1N = 0 (8)

On the impervious boundaries no flow enters, so the normal component of
velocity, VN, is zero. Thus, using Darcy':7 Law for a homogeneous, isotropic medium,

v= -kO = 0

it follows that
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N= 0

Applying Equation 4 to the above equation yields

=-4 0 = o

or

=0 (9)

Now

d* = •rdT+ *N dN

Substituting Equation 9 into the above equation and noting that dN = 0 on the
boundary gives

dW=0

or

f= constant

The total amount of stream function can be shown to be

f(hu - hd) (10)

reot"1 = k

Therefore, apply the boundary conditions as follows:

on AB (11)
= *2 = *l + 'toea1 on FD

where 4, is an arbitfary constant set big enough so the FEM program has a confined
flow condition when computing stream function.

On the boundary CD, Equation 7 is insufficient information to determine the
new boundary conditions. Therefore, the normal component of discharge velocity VN
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is first computed for each node on the boundary CD with vN at D being zero. It is
assumed that points C and D are node points, and there are intermediate node
points I and J (I is closest to C) as well. Then for each node,

VN=

VN (12))-k

A piecewise linear assumption for VN (and therefore WT) yields

1J = -+(*Tz + *dJ) (T' - T1 ) + (13)

Start I at point D and process consecutive nodes using Equation 13 until point C is
done. The boundary conditions are now fully determined for the stream function
calculation.

"The above formulation is not restricted to Dupuit's Problem but can also be
applied to a wide variety of quadrilateral-type earth dams. The only restriction is
that the problem should have the five basic boundaries of impervious base, specified
headwater and tailwater, free surface, and surface of seepage. Figure 4 shows the
results for Dupuit's Problem where by Figure 3, AB = AF = 100 ft, and BC = 20 ft.
Figure 5 shows the computer generated flow net for an earth dam.

SURFACE OF SEEPAGE BOUNDARY CONDITIONS

The free surface (MD in Figure 3) and the exit point (point D) must be
determined by an iterative process, and the boundary conditions along CDE are often
done incorrectly. What is typically done is a no-flow boundary condition is imposed
along the entire boundary. This is incorrect because water must be allowed to exit
along CD. So each iteration for the free surface must also include the following
switches for all surface of seepage nodes:

a. Impervious node. If the pressure is greater than zero, switch the node to
a specified head node.

b. Specified head node. If the flow Q is not flowing out, switch the node to
an impervious node.
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2-D SEEPAGE PACKAGE

A 2-D FEM seepage program with boundary conditions implemented correctly
and with the flow net capability has been written and incorporated into a 2-D
seepage package which contains (1) grid generation, (2) analysis, and (3)
postprocessor capability. A PC version has been widely distributed and is available
from the authors.

3-D MODEL

A 3-D seepage and groundwater model was created from the 2-D FEM
program. Structured pieces of the 3-D grid for a problem are generated by EAGLE
(Thompson 1987, Thompson and Gatlin 1988a, 1988b, 1988c) which has extensive
algebraic grid generation capabilities, as well as state of the art elliptic smoothing
capabilities. A program was then written to apply boundary conditions to individual
blocks, combine blocks, and apply bandwidth minimization to preserve the element
numbering. By decoupling the geometry into blocks, grid generation and boundary
condition application is much less complicated. Also, the running time for solving
the system of nonlinear equations can be significantly reduced by using a structured
multi-block system. Further, the original structure can be preserved to output results
in the Flow Analysis Solver Toolkit (FAST) (Bancroft, Kelaita, McCabe, Merritt,
Plessel, Globus, and Semans 1991) format for scientific visualization.

Scientific Visualization Examples

The problem of two partially penetrating wells in a rectangular aquifer (Figure
6) bounded by a river and three impervious boundaries will first be given to show
how groundwater can be visualized.

Am analytic solution to a partially penetrating well (Figure 7) of thickness t,
penetration b, well radius r, permeability k, and flow Q has been partially described
(Muskat 1946), and the complete solution will now be given. First, define

2 tv

S= _Z (14)2 tw

P _ b
S~2 t.

where (r, z) = (0, 0) is located at the top of the aquifer and at the center of the well.
Next, define the function
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Figure 6. Two wells in an aquifer
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Figure 7. Partially penetrating well
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Z(s, y) - 1 (15)

n-0 (n + As

For small values of a,

0 r. c 0.5

the total head, 0, becomes

0 = qj- logr(i + + p)r(1 - C + p)
r{ O - - P)r(i + c - p)

+ iog_ + + + ¢2 + ( + pC)2
-_ 3 + +. -( 1_ )2

(16)+2
- -[Z(2, 1 - - 1) -z(2, 1 - + (1)

4

+ Z(2, 1 + Z- 1) -Z(2, 1 + + 3)]

+ 0(U 4 ) }

q is a flux density given by

q (17)
4nkb

For the remaining larger values of a

-4q[Y n, (2nwa) cos(2nnC) sin(2nwp)
n.1

(18)

+ plog

where Ko(x) is the modified Bessel Function of the second kind. For relatively large
values of x (Press, Flannery, Teukolsky, and Vetterling 1989),
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%(x) e -c

Thus, an implementation of Equation 18 requires relatively few terms.

An infinite series of images, the first eight being shown in Figure 8, is now
used to determine the solution. If a well is located at (xo, Yo) and the top of the

+0 +

S-0 "0

Figure 8. Image wells

aquifer is at z, then use

SO(x o) 2 + (y- yO) T

{ L (ze - z)2h

in Equations 16 and 18.
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The above solution was done using 29 image wells on a large algebraic grid
of 21,266 nodes and had a maximum percentage error of 5.3 percent. Actually, some
of this error is attributed to the truncation in the number of image wells and some
is due to numerical imperfections. It seemed plausible that this grid could be
significantly reduced in size by applying the elliptic grid generation techniques of
EAGLE to get close to the same result. A smaller elliptic grid of 13,266 nodes
yielded a maximum percentage error of 5.7 percent which substantiates the
hypothesis.

Figure 9 shows a K level shaded contour plot of potential for one of the wells
with the highest potential being at the river (white) and the lowest potential being
at the wells (black). Figure 10 shows several I level surfaces with shaded contour
plots of potential. Figure 11 shows an isolevel plot, and Figure 12 shows a particle
trace plot of flow from the river to the wells. One surprising result is that the left
most flow line skips the smaller well and goes for the bigger one.

An extension of the first example is unconfined groundwater flow in a part of
an aquifer (Figure 13) with a river, three partially penetrating wells, and a slurry
trench (EF). Here, 16 subregions (13 going the full depth of the aquifer and 3 being
below the partially penetrating wells) are used. Figure 14 shows a shaded contour
plot of total head for this problem with the river painted dark for visualization
purposes. It is interesting to see the effect of the impervious slurry trench on the
head distribution.

CONCLUSION

The techniques and tools developed by aerospace engineers can be extremely
helpful in groundwater flow problems. Also, visualization techniques are an essential
and valuable tool for understanding and validating the results. An area of future
research is the application of finite volume techniques used to solve aerospace
problems being applied to multiphase flow of groundwater with contaminant
transport.
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Figure 9. K level shaded contour plot

Figure 10. 1 level shaded contour plot
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Figure 11. Isolevel plot

Figure 12, Particle trace plot
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Figure 13. Part of an aquifer

Figure 14. Shaded contour of total head
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