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Abstract

Vortex-induced forces and consequent vibration of long cylindrical structures are important
for a large number of engineering applications, while the complexity of the underlying
physical mechanisms is such that this is one of the canonical problems of fluid mechanics.
In the case of a marine tubular exposed to a shear flow, the situation is particularly difficult
since the vortex shedding force varies in frequency and magnitude along the length of the
structure, causing the response at any point to be amplitude-modulated in space and time.

In this thesis, the focus is on the measurement, via forced-oscillation experiments. of the
vortex-induced lift and drag forces acting on circular cylinders undergoing sinusoidal and
amplitude-modulated oscillations. Basic concepts on vortex formation and vortex-induced
vibrations, a review of the existing literature, and details of the experimental apparatus and
data processing methods are all introduced early in the thesis. A comprehensive program
of stationary and sinusoidal oscillation tests is presented. Several novel properties are
described. among them the role of the lift force phase angle in causing the amplitude-limited
nature of VIV, and use of the lift force “excitation region” in contrast with the often-quoted
but quite different lift force “lock-in region”. Next, a comprehensive data error analvsis.
and a simple VIV prediction scheme are described. New data on amplitude-modulated
oscillations are presented, with an analysis of the behavior of the fluid forces in response to
beating excitation. Finally, the concept of control of the mean wake velocity profile via the
control of the major vortical features is explored, with the possible applications being the
reduction of the in-line wake velocity and the alteration of the wake signature. The thesis
concludes with the principal findings of this research as well as suggestions for future work.
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Chapter 1

Introduction

1.1 The phenomenon of vortex shedding

One of the classical open-flow problems in fluid mechanics concerns the flow around a cir-
cular cylinder, or more generally, a bluff (i.e. non-streamlined) body. At very low Reynolds
numbers (based on cylinder diameter) the streamlines of the flow are perfectly symmet-
ric: coincidentally, they resemble the solution obtained from inviscid potential flow theory,
although the viscous effect predominates. As Reynolds number is increased. at first, two
attached vortices appear behind the cylinder, and grow in size with Reynolds number. As
the Reynolds number increases further, the wake becomes unstable. The boundary layers
on either side of the cylinder separate and discrete vortices are formed in the near wake
region behind the cylinder. New vortices form alternatelv from either side of the cylinder
and move downstream, generating a periodic asymmetric flow, which is the celebrated von
Kdrmdn vortez street. Figure 1-1, from the cover of Van Dyke’s photographic collection
[13], is an example of a laminar vortex street revealed via flow visualization.

From a historical perspective, the first known observations of the formation of eddies
due to a flow obstacle are attributed to Leonardo da Vinci during the Renaissance period.
(See the excellent work by Lugt [42] for a more complete historical discussion.) The sys-
tematic study of cylinder wakes did not commence until the end of the nineteenth century,
when Strouhal and Rayleigh began investigations into the production of “Aeolian tones”
generated by wires in a wind. Strouhal demonstrated that the frequency of these tones was

proportional to wind speed divided by wire thickness, and the constant of proportionality
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Figure 1-1: Laminar vortex street behind a circular cylinder at Re = 140. Photograph by
S. Taneda, from Van Dyke (1982).

in this relationship came to be known as the Strouhal number. In 1908, Bénard associated
the production of the Aeolian tones with vortex formation; and this advance was followed
in 1912 by von Karman’s suggestion of the stable, staggered arrangement of vortices which
now bears his name (except in the French literature where it carries the name of Bénard).

In the last three-quarters of the century. a very large number of researchers have investi-
gated the phenomena associated with vortex shedding and vortex-induced vibrations: some
of the important references will be mentioned later in this chapter. A few of the important

features that have resulted from these investigations are briefly summarized below.

Strouhal number. The Strouhal number § mentioned above is defined as

fsd
U

S = (11)




where f; is the frequency of vortex shedding. {7 the free-stream flow veloeits. aud d the
diameter of the body under consideration. It has been found that the Strounal number is
a function of Revnolds number for any given bodv cross-section. For the case ol a circular
cvlinder, Figure -2 shows that the Stroubal number iz approximately constant at 0.2 for a

wide range of Revnolds numbers.
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Figure 1-2: The dependence of Strouhal number on Reynolds number for a circular cylinder,
from Blevins (1990)

Vortex-induced forces and vibration. Bluff body vortex shedding might well be rel-
egated to the status of a scientific curiosity were it not for the profound engineering conse-
quences of vortex-induced vibrations. The alternate shedding of vortices in the near wake
causes fluctuating velocities and pressures in the vicinity of the cvlinder. which in turn cause
oscillating lift and drag forces to be imposed on the body. The oscillating lift forces are
predominant. and if the body is free to move. it responds to the oscillating lift and vibrates
in a direction transverse to the ambient flow. These vibrations are referred to variousiy as
“vortex-induced vibrations”, “VIV”, “vortex strumming”, or “cable strumming” (if a cable
is involved). An important feature is that the oscillations do not grow indefinitely. but are
amplitude-limited to about one diameter. Thus, in an engineering sense. vortex-induced
vibrations do not produce catastrophically large oscillation amplitudc:. but rather have an

important effect on the fatigue life of the structure.
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Lock-in. The phenomenon of “lock-in”, also called “synchronization” or “wake-capture™,
is an interesting observation from the study of vortex shedding. If a body experiences
vortex-induced vibrations as mentioned above, the motion excites a second mode in the
wake that competes with the natural Strouhal shedding process. The interaction between
the “natural”, or Strouhal frequency and the “forced”, or body motion frequency is nonlin-
ear; when the two frequencies are close together, the body motion can take control of the
shedding process in an apparent violation of the Strouhal relationship. The frequency of
vortex shedding then collapses onto the oscillation frequency of the body: the strength of

the shed vortices, transverse lift force, anc body response can all greatly increase.

Several comprehensive reviews exist that cover vortex shedding and associated phenom-
ena in considerably more detail. Some of these reviews are referenced in the literature

survey section that appears later in this chapter.

1.2 Vortex shedding and marine cables: the problem at

hand

The properties and consequences of flow around circular cylinders, as introduced in the
previous section, find a special application in the analysis of long marine cables used in
towing and mooring situations. The extremely large aspect ratio and flexible nature of
these structures make them particularly susceptible to vortex-induced vibrations. From
both design and operational points of view, it is important to be abie to predict the forces
(primarily the drag) acting on the cable, as well as its resultant configuration and motions.
Although a value of 1.20 i widely accepted as the mean drag coefficient C'p_ for tie case
of flow normal to a stationary circular cylinder, it is also well known that any motion of
the cylinder can significantly alter the flow pattern and amplify the vortex-induced forces.
In the case of marine cables, this means that the selection of the proper drag coefficient
remains a contentious issue.

Due to the complexity of the hydroelastic cylinder/wake problem, theoretical models
remain incomplete, and numerical solutions are as yet not feasible except for verv low
Reynolds numbers. As a result, most of our knowledge of circular cylinder flows is derived

from physical experiments conducted over the last several decades. Both free-oscillation
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tests (in which an elastically-mounted cylinder is exposed to a flow and allowed to vibrate)
and forced-oscillation tests (in which a cylinder is mounted in a flow and driven externallv)
have been conducted by generations of researchers. The first type of experiments had as
their objective the measurement of displacement response. and the second focused on the
measurement of the hvdrodynamic forces. In addition. in both types of tests, other quan-
tities have been measured as well, such as surface pressure or wake-velocity measurements,
flow visualization, etc. The accumulated results have given us reasonably good insight into
the behavior of bluff bodies oscillating in a flow, with one important limitation; almost al}
of the tests reported thus far have been for pure harmonic oscillations.

In the case of rigid structures exposed to uniform flow, vortices are shed harmonically
into the wake and the assumption of a pure sinusoidal response is reasonablv valid: however.
in the case of marine cables and other similarly long structures exposed to shear flow, this
assumption is questionable. Due to the combined effect of varying ocean currents and the
static angle of the cable, the normal velocity varies along the cable length. As a result, if one
assumes that the sheared current is suddenly “switched on”, it must be expected that the
flow sets up a vortex-induced loading that is “local”, in that the frequency and magnitude
of te loading is constant only over a very limited extent. For a cable longer than a few
hundred meters, the hydrodynamic damping is such that the end conditions are not felt over
most of its length, and the cable responds primarily as one of infinite length. This results
in a large number of participating natural modes, and the cable responds at everv point
along its length primarily to the local forcing at that point and a small ncighboring region.
In fact, employing the concept of natural modes offers no additional insight. Instead. it
is better to view the cable response as traveling waves caused by distributed excitation:
these waves are damped out as they move away from the source that produced them, but
affect substantially the cable motion at neighboring points. The net result of this scenario
is that each point on the cable has a motion that is not simple harmonic, but rather is
amplitude-modulated in both space and time.

The presence of such large scale amplitude modulations in the stramming behavior
of marine cables has been noticed and commented on in the past by several researchers,
for example see Alexander (1] or Kimm [36]. The first detailed observations reported in
the public literature were made via a full-scale experiment conducted by the Woods Hole

Oceanographic Institution and reported by Grosenbangh ¢f al. [28. 27] and Yoerger ¢t al.
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[99]. Regular beating patterns were observed in the cable motion. characterized by two
primary peaks in the power spectra. The period of the beats varied along the length of
the cable, and could be related to the current shear prevalent at the corresponding depths.
In addition, the overall drag coefficient for the cable was calculated at different instants
of time, and was shown to be less than the values commonly assumed for pure harmonic
oscillations of equivalent amplitude.

Consequent to the above full-scale tests, Engebretsen {14] and Howell [31] attempted
to simulate the beating motions of the cable using a Green’s function approach, with the
response at any point reing the superposition of responses due to varving point Inads along
the cable. The use of force coefficient magnitude and phase data from standard harmonic
results proved to be inadequate, and the authors had to resort to randomly distributed
phase angles in order to obtain reasonable results. In related research. Triantafvliou and
Karniadakis {79] used a direct Navier Stokes simulation code to numerically simulate, at
low Reynolds number, the flow around a circular cylinder undergoing amplitude-modulated
motion. They were able to demonstrate that the beating motion caused the lift and drag
forces, expected on the basis of sinusoidal results, to be modified in unpredictable ways,
and they concluded that sinusoidal test data could not be applied. in a linear superposition
sense, to calculations or simulations of beating motion.

" The previous paragraphs have attempted to lay out a flow of logic that is summarized

as follows:

o the bulk of our knowledge of vortex-induced loads and body motions comes from

laboratory experiments with harmonically oscillating cylinders:

o marine cables and similar structures of extreme aspect ratio exposed to shear flows

respond with complex. amplitude-modulated vortex-induced vibrations; and

e pure harmonic results cannot be applied directly to calculations involving beating

motions.

Thus, there emerges a need for new data quantifying the vortex forces on cylinders un-
dergoing amplitude-modulated motion, and/or new methods to accurately extrapolate the
existing data to these more complex cases.

The experiments described in this thesis have as their primary purpose the presentation
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of new data and methods for the beating motion mentioned above. We have attempted to
extend the classical forced-oscillation experimental approach by driving a circular cylinder
with double-frequency beating motion in the presence of a cross-flow, and measuring the lift
and drag forces acting on the cylinder. Our data is presented with comparison to sinusoidal
test results taken with the same apparatus. (Many of our sinusoidal results represent new
findings in themselves and have been presented in some detail.) In the context of related
research, our efforts lie in between the full-scale sea tests of Grosenbaugh et al. {28, 27} and
the low-Reynolds number computer simulations of Triantafyllou and Karniadakis {79].

Before concluding this section, two points must be made about the experiments de-
scribed herein.

Firstly, our experiments do not bear anyv resemblance to shear-flow tests conducted by
Maull and Young [45], Mair [43], Stansby (73], or others of that period. In those tests.
the researchers subjected small aspect ratio fixed and harmonically vibrating cylinders to
axial shear flows and recorded their findings with respect to vortex-shedding in “cells”,
cell length, and base pressure variation. Although a principal motivation for our present
efforts is the effect of axial shear in the flow incident on a cable, we make the important
simplification that we study the forces on a small local section of the cable over which the
flow is essentially uniform. We thus attempt to isolate the effects of amplitude-modulated
body motion in a local or “two-dimensional™ manner.

Secondly, it will be noticed that in all of our experiments, the test cvlinder is exter-
nally forced. Much has been written in the literature about the relative advantages and
disadvantages of forced- versus free-oscillation experimental methods, and for the general
case, there is little to add to the discussion. However we believe that in the case under
study, forced experiments are the correct approach. Since the response of the cable at any
given location is determined by both the fluid forcing at that location as well as structural
interactions along the cable, it is possible for that response to contain spectral components
that would normally have been damped out by the flow at that location. Put differently,
it is possible for energy to be extracted by the cable from the fluid at one axial lacation,
transmitted via the cable to a different axial location, and lost to the fluid {damped out)
there. In the absence of extensive full-scale tests or expensive, large-scale experiments, it
would appear that the only viable way of recreating such a scenario is through a systematic

forced-oscillation experimental schedule.
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1.3 Chronology of this work

Efforts to conduct experiments along the lines of those described in this thesis commenced
shortly after the results from the full-scale sea trials became available, in the Fall of 1987.
The first experiments were conducted during July 1988, using a vertically mounted cylinder
(2.54 cm dia., 30 cm length) in a current flume at the Coastal Research Laboratory of the
Woods Hole Oceanographic Institution. A computer controlled motor driving a lead-screw
positioning table was used to provide the beating oscillations, and lift and drag forces were
measured using strain gages. While conducting the experiments, problems were experienced
with the operation and calibration of the strain gages. Several runs were conducted and the
data recorded, but data processing efforts were hampered by the lack of reliable calibrations.
and the collected data were abandoned.

Learning from the successes and failures of our first effort, a second set of experiments
was conducted during January and February of 1990. The venue was shifted to the newly
refurbished Ocean Engineering Testing Tank at the Massachusetts Institute of Technol-
ogy. The motor and lead-screw mechanism were retained, but force measurement was
accomplished with a highly accurate and mechanically stiff piezoelectric force sensor. A
horizontally mounted cylinder (2.54 cm dia., 60 cm length) was used. Results from this
set of experiments [21. 20] were presented at the ISOPE-91 conference held at Edinburgh,
U.K., during August 1991.

The bulk of the results presented in this thesis are based on further experiments con-
ducted at MIT during February 1991 and January 1992, using a setup similar to that used
in 1990. Many improvements were made to the apparatus, and the experimental method
was largelv automated. Thus it became possible to test a greater varietv of parameters and
with a higher resolution than before. Some of these newer results have been published in

Gopalkrishnan et al. [19)].

1.4 A review of the literature

1.4.1 Forced-oscillation force-measurement experiments

Ever since the systematic investigation of vortex-shedding was started by Strouhal and

Raleigh in the late nineteenth century, a large body of knowledge has been accumulated.
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Any investigation in this field would be incomplete without a careful survey of the exist-
ing literature. Since our work is an extension to the forced-oscillation, force-measurement
experiments conducted in the past, we will focus our review on important contributions in
this particular area. The following paragraphs cite research material in an approximately

chronological fashion.

Bishop and Hassan. Our review begins with the seminal work of R.E.D. Bishop and
A.Y. Hassan, published during 1964 in a pair of papers, “The lift and drag forces on a
circular cylinder in a flowing fluid” [5] and “The lift and drag forces on a circular cylinder
oscillating in a flowing fluid” [6]. With these papers. Bishop and Hassan were the first
to report on a comprehensive treatment of force coefficient measurements on stationary
and oscillating circular cylinders. They used a 1 in. dia., 5 in. long cylinder mounted
horizontally to a skotch yoke mechanism in a water channel. Forces were measured on
a 3 in. center section by means of strain gages, which could be arranged to measure
either the lift or the drag force. The first paper [5] sets out the basic definitions and
characteristics of vortex-induced forces; and contains values of Strouhal number S, lift
coefficient C, mean drag coefficient Cp,,, and oscillating drag coeficient Cp, for stationary
cylinders at various Reynolds numbers 3,600 < Re < 11,000. The second paper [6] contains
measurements of the force coefficients acting on the cylinder forced to oscillate sinusoidally
transverse to the flow. The authors report on the wake synchronization phenomenon and the
changes in the magnitudes of the forces and phase angles as the cylinder-oscillation frequency
traverses the natural Strouhal shedding frequency. That their work was of high quality is
evident in that Bishop and Hassan report on phenomena that other researchers would give
prominence to only in later years; phenomena such as hysteresis, frequency demultiplication.
and the modification of the “critical nondimensional frequency” as a function of oscillation
amplitude.

Two ma jor drawbacks exist in these papers. Firstly, the bulk of the data on lift and drag
forces are given in the form of “arbitrary units”, and thus can be used only for qualitative
comparisons. Secondly, and perhaps more importantly, the method used to deduce the
lift coefficient magnitudes from the total measured lift force is questionable. For forced-
oscillation experiments of this nature, the total force measured in the lift direction consists

of the sum of inertial force due to the cylinder mass. inertial force due to the “added mass™
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effect of the water, and the vortex-induced lift force (which may itself have components
in the inertial (acceleration) and velocity directions). The first of these components, the
inertial force in air, is relatively easy to subtract. However, since the added mass of water
does not necessarily remain constant with cylinder motion or fluid flow, the second inertial
component is harder to determine. Bishop and Hassan have assumed that the added mass
of water does not change with flow velocity; they subtract the inertial lift force measured in
still water from the total force measured in flow for each oscillation run. Most researchers
today do not attempt to remove the added mass force, and instead treat the sum of this
and the vortex-induced force as one holistic fluid force that has both inertial and velocity

components.

Toebes et al. Several experiments relating to the vortex-induced forces on cylinders of
various cross-sections were conducted during the mid-1960’s by Prof. G. H. Toebes and his
group at Purdue University, and one of the publications that resulted is reference {60] by
Protos, Goldschmidt, and Toebes. This work describes the results of lift force measurements
made on circular and triangular cylinders forced to oscillate at small amplitudes in a flow of
Reynolds number 45,000. Only the lift forces were measured. The authors present results
for the lift coefficient calculated in a manner similar to that of Bishop and Hassan, with the
improvement that actual physical values are given. A valuable contribution is in showing
the importance of the phase angle between the lift force and the cvlinder motion, in the
context of determining the sign of the energy transfer between the cylinder and the fluid

(whether exciting or damping).

Jones, Cincotta, and Walker. The large majority of experimental results available in
the literature relate to flows around cylinders that have Reynolds numbers in the range
of a few hundred to a few thousand. The report by Jones et al. [34] presents results of
tests conducted on a 3 ft. dia. cylinder forced to vibrate in Reynolds numbers up to 1.9
x 107 and Mach numbers up to 0.6, with the motivation being to study the response of
Saturn V rockets to wind gusts while on the launch pad. Air and Freon were used in a
closed circuit wind tunnel at the NASA Langley Research Center, with a massive hydraulic
shaker assembly employed to provide the oscillations. Values of lift and drag coefficients and

Strouhal number are given as functions of Reynolds number, Mach number, and oscillation
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amplitude and frequency. The trends of lift coefficient against nondimensional frequency
are qualitatively very similar to our own results, a very interesting observation given the

huge difference in Reynolds number regime.

Mercier. One of the most comprehensive sets of forced-oscillation experiments was con-
ducted by John Mercier at the Stevens Institute of Technology during the early 1970s, and
reported in his doctoral thesis “Large Amplitude Oscillations of a Circular Cylinder in a
Low-Speed Stream” [47]. The author conducted tests on cylinders forced to oscillate both
transversely as well as in-line to the flow in a recirculating water channel. Most of the
results are for the range 4000 < Re < 8000. with amplitude-to-diameter ratios A/D up to
three. The experimental method used was rather “modern”, in that the force measurements
were recorded on magnetic tape, and later digitized and analyzed on a digital computer for
Fourier series coefficients and the like. A variety of graphs are presented for mean and
oscillatory drag coefficients, lift force magnitudes and phase angles, and lift force drag and
inertia coefficients, as functions of reduced velocity and amplitude of oscillation. Several
oscillograph time traces are also provided to illustrate the variety of lift and drag waveforms
observed.

Mercier’s thesis was and remains unique in several ways. He was the first researcher to
conduct tests on cylinders oscillating in-line with the flow, and to give results for the large
mean drag amplification seen for these cases. Prior to our own work reported herein. he
appears to have been the only researcher to report on the very large values of oscillatory
drag coefficient that arise for certain ranges of transverse oscillation. He was also one of
the first to attempt to combine force measurements with flow visualization of the vortex

formation in the cylinder wake, although his efforts in this were not very successful.

Sarpkaya. For practical design applications or estimation of vortex-induced forces and
body response, the most complete set of data available is due to Turgut Sarpkaya, as
reported in [65] and summarized in [64). The purpose of Prof. Sarpkaya’s work was to
conduct forced-oscillation cylinder experiments and use the measured force coefficients to
predict the amplitude response of an elastically mounted cylinder subjected to a uniform
flow. His experiments were performed in relatively narrow recirculating water tunnels, using

very low aspect-ratio circular cylinder models (L/D = 3). The Reynolds number of the flow
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was varied in the range 7,000 < Re < 11,000. and lift and drag forces were measured using
strain gages. In addition to a great deal of valuable experimental data, both references cited
above contain excellent discussions of the hydrodvnamic and structural issues involved.
such as Strouhal number, correlation length. added mass, damping coefficient, and natural
frequency.

Sarpkaya formulates the lift force, on the basis of a first-order series expansion of Mori-
son’s equation, in terms of an inertial coefficient C,. (component of lift in phase with
cylinder acceleration) and a “drag” coefficient Cy (component of lift in phase with cylinder
velocity). Curves of these force coefficients (normalized with respect to the amplitude of
the cvlinder velocity, as well as with respect to the freestream flow velocity) are presented
as functions of oscillation amplitude and reduced velocity (reciprocal of nondimensional
oscillation frequency). These data were then used in a linear equation of motion in order to
predict the maximum amplitudes of vibration of an elastically mounted, linearlv damped
cylinder. Good agreement was found between these predictions and the experimental data
of Griffin and Koopman [25].

In addition to the lift force coefficients, Sarpkaya presents results for the mean drag co-
efficient plotted against nondimensional oscillation frequciicy, with each curve representing
a particular value of amplitude ratio A/D. These curves (Figure 1-3) dramatically illustrate
the amplification of mean drag at frequencies near the Strouhal shedding frequency.

One significant omission in Sarpkaya'’s work appears to be the lack of quantitative in-
formation regarding the oscillating component of the drag force. The author asserts that
the magnitude of the oscillating drag force in no case exceeds 7% of the mean drag, a state-
ment which contradicts the results in Mercier’s thesis [47] as well as our own measurements.
He does mention, however, that the oscillating drag force increases sharply after a certain

critical value of oscillation frequency.

Schargel. As mentioned earlier in the introduction, the great majority of experimental
results reported thus far have been for the case of cylinders oscillating with pure harmonic
motion. To the best of our knowledge, the only laboratory-scale experimental program that
focused on random cscillations was that conducted by Robert Schargel at MIT and reported
in his M.S. thesis [68]. Schargel used a massive Briiel and Kjaer electromagnetic vibration

exciter mounted over a water tunnel to cause a 0.5 in. dia. circular cyvlinder to ascillate
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Figure 1-3: Mean in-line drag coeflicient versus nondimensional frequency; from Sarpkaya
(1977)

transversely to the flow. The electromagnetic shaker tracked an input signal which could be
provided by a custom built pseudorandom noise generator, with its output suitably band-
pass filtered. Only the drag force was measured, with tests conducted in the range 4,000 <
Re < 7,000, and 0.05 < Apaps/D < 0.38. Also evaluated were the drag coefficients for
pure harmonic oscillations, of comparable RMS amplitudes, using the same apparatus with
a sinusoidal signal generator providing the tracking signals. Schargel’s resuits are presented
in the form of plots of drag coefficients against nondimensional oscillation frequency (center
frequency in the case of random oscillations). The principal conclusions are that the random
oscillations cause a “smearing out” of the sinusoidal drag force peaks (to result in “plateau”
values); and that these plateau values for the random oscillations were generally lower than
the peak values for the corresponding sinusoidal oscillations.

In a later report (69], Schargel and J. Kim Vandiver reported on wake velocity measure-
ments made behind the randomly oscillating cylinder, using a noninvasive laser Doppler
anemometer. For pure harmonic oscillations in the lock-in regime. they found that the

cylinder motion and wake velocity were strongly correlated, as was to be expected. A small
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degree of randomness was sufficient to reduce this correlation, and a broadband cylinder
motion virtually eliminated any motion-velocity correlation. From these observations, and
the reduction in the drag coefficient mentioned above, the authors concluded that lock-in
was a relatively fragile process, that could be interrupted by frequency components not at

the lock-in frequency.

Alexander. A limited number of forced-oscillation experiments were conducted by C. M.
Alexander (1] at the Scripps Institution of Oceanography, and are reviewed here principally
because the author attempted to combine in-line as well as transverse excitation of the test
cylinder. Alexander’s motivation was very similar to our own, i.e. the characterization of
the vortex forces on, and the motions of, an oceanographic cable of large length to diameter
ratio. An ingenious test apparatus was designed that could impress a “figure-8” motion
on a cylinder suspended in a towing tank. Several tests at different towing velocities were
conducted, but unfortunately, the oscillation frequencies were selectea such that only a
single nondimensional frequency of 0.18 was tested. In addition, a severe drawback was
that oscillation amplitude was not separately controllable, but rather depended on the
oscillation frequency. Alexander reported a constant value of drag coefficient Cp = 1.8, but
his results must be regarded as inconclusive due to the difficulties noted above. However,
the descriptions of his apparatus could provide a convenient starting point for any researcher

attempting to combine forced in-line and transverse oscillations.

Staubli. One of the more recent investigations along the “classical” lines of Bishop and
Hassan, Mercier, and Sarpkaya, was conducted in the early 1980s by Thomas Staubli of the
Swiss Federal Institute of Technology, and reported in his thesis [73] and a related paper
{74]. Staubli’s work was essentially similar to Sarpkaya’s efforts mentioned above, although
his Reynolds number was somewhat higher ( Re ~ 60,000). The lift and drag coefficients
on an oscillating cylinder were evaluated experimentally, and then used to predict the
response of an elastically mounted cylinder. Generally good agreement was achieved with
the experimental data of Feng {16], including the observed hysteresis effects.

Staubli’s work is important on two counts. Firstly. his experimental apparatus and
methods were well conceived, especially his use of sensitive quartz piezoelectric force trans-

ducers to measure the induced forces. Secondly. his treatment of the lift forces emphasizes
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their magnitude and phase angle (with respect to cylinder motion). rather than the “in-
ertial” and “drag” components of Sarpkava. Figure 1-4 shows the author’s 3-dimensional
curves of lift coefficient magnitude Cro and phase 6 as functions of nondimensional oscilla-

tion frequency Sp and amplitude ratio f . It is important to note that the two approaches of

Figure 1-4: Lift coefficient magnitude Cyo and phase ¢ as functions of nondimensional
oscillation frequency Sp and amplitude ratio £; from Staubli (1983)

Staubli and Sarpkaya with regard to the lift forces are essentially similar, and can easily be
derived from each other. However, an emphasis on force magnitude and phase angle makes
it easier to relate the changes in the lift force to the wake dynamics and vortex shedding
patterns, thus contributing to an understanding of why these changes occur. A great deal

of our own approach in this thesis is based on Staubli’s contribution.




Moe and Wu. We have seen in the above paragraphs that Sarpkaya [65, 61] and Staubli
[75, 74] have each measured the fluid forces via forced-oscillation experiments, and compared
predictions based on these measurements to data from free-oscillation experiments available
in the literature. Differences between the predicted values and the free-oscillation data
could in part be due to the fact that the forced- and free- data were collected by different
researchers under different circumstances. An important effort to conduct both forced-
and free-oscillations tests with the same apparatus has been undertaken at the Norwegian
Institute of Technology, with preliminary results reported by G. Moe and Z. J. Wu in [49].
The authors used an apparatus wherein a circular cylinder was suspended on springs so
as to allow elastic vibration in both transverse and in-line directions; the cylinder could
also be clamped in place and/or forced to vibrate transversely. Thus four distinct types of

experiments could be conducted, with the cylinder being
1. free to vibrate both transversely and in-line
2. clamped in-line but free to vibrate transversely
3. clamped in-line and forced to vibrate transversely
4. free to vibrate in-line and forced to vibrate transversely.

Local lift and drag forces were measured with two ring-type force transducers, and results
are presented for the different types of oscillation.

A very important result from this paper is the authors’ explanation for the observation
that free-oscillation tests conducted in the past have predicted much wider lock-1n ranges
than have forced-oscillation experiments. Moe and Wu report that during their free tests.
the in-water natural frequency of the oscillating cylinder varied by as much as 50% through
the lock-in range, presumably due to strong variation of the added mass component. Re-
duced velocities calculated on the basis of a single natural frequency are thus in error, and
falsely indicate wide lock-in regions. If reduced velocities were calculated on the basis of
an “instantaneous natural frequency”, the authors show that the resulting lock-in range is
much narrower and closely resembles forced-oscillation data. It is interesting to note that
this variation of natural frequency has also been observed by Vandiver in his analysis of

full-scale experimental data [88].
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1.4.2 Other references

In the preceding pages we have surveyed several of the important contributions in the area
of forced-oscillation force measurement experiments on circular cylinders. This, however, is
but a single method used to study the problem of vortex-induced vibrations. Experiments
have been conducted to study several other aspects of the cylinder/wake problem, such as
pressure distributions. the effects of end conditions, shear flows, turbulence, surface rough-
ness, Reynolds number, aspect ratio, proximity to other bodies, etc. Empirical models have
been constructed (with varying degrees of success), and various inviscid schemes formulated
in attempts to simulate the flow. In addition, recent theoretical advances in the area cf
wake stability have contributed to our understanding. For further information on any of
these topics the reader is urged to refer to such comprehensive reviews as Blevins (7], King
[37], Sarpkaya [66], Bearman [4], Griffin {23, 24], or theoretical contributions such as those
of Triantafyllou et al. [80, 81} or Karniadakis and Triantafvllou [35].

In addition to measurements of such properties as fluid-induced force and pressure.
experiments designed to visualize the flow in the cylinder wake have also been very important
to our understanding. The nature of the oscillating lift and drag forces. and the manner in
which they vary with cylinder oscillation, can be related to the patterns of vortex shedding
that develop in the wake. It has been found that the classical Kirmdn vortex street (with
a staggered array of single vortices) is but one of a variety of “modes” that the wake
can sustain under different conditions. Before closing this chapter, we shall briefly review
the work of two sets of researchers in this area of cylinder vortex patterns. Additional

information may be found in the recent and very comprehensive review of Coutanceau and

Defaye [11].

Williamson and Roshko. A particularly novel set of flow visualization results was re-
ported by C.H.K. Williamson and A. Roshko in their paper “Vortex Formation in the Wake
of an Oscillating Cylinder” [95]. The authors used aluminum particles on the surface of
water in a towing tank to visualize the wake behind a vertically oriented cylinder. A wide
range of oscillation frequencies and amplitudes (up to five times the diameter) were tested.
in the Reynolds number range 300 < Re < 1000. The authors’ principal hypothesis is that

the acceleration of the cylinder causes the formation of four regions of vorticity per cycle,
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instead of the t1wo that were previously subpposed ta oceur. Dependine on the o-citlanion
amplitude and frequency, these four regions of vorticity combine to form different vortex
patterns in the near wake. which are classified variously as 28, 2P. 2P +28 etc.. where §

denotes a single vortex and P a pair of vortices. Figure 1-5 shows some of these vortical
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Figure 1-5: Map of vortex synchronization patterns near the fundamental lock-in region:
from Williamson and Roshko 1988)

patterns and the regions of oscillation wherein they occur. As the schematic diagrams show,
the 25 mode corresponds to the classical Karman wake with two vortices per cvele of oscil-
lation. The 2P mode corresponds to a pattern with two pairs of vortices per cycle. arranged
in a staggered fashion on each side of the wake centerline. The P+S mode is an asvmmetric
pattern with one pair and one single vortex per cycle. tor low wavelengths (high frequen-
cies), coalescence of the near wake vortices can occur to form large scale vortices which may
themselves be organized in either a 25 or P+S mode. Note that the X-axis on this figure is
in terms of the mormalized wavelength™ A\/d (= UT/d). which is more commonly known
as the reduced velocity Vg.

As mentioned previously. the classification of various wake vortex patterns assumes
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immportance when used to explain the variation of the hydrodynamic forces acting on the
cvlinder. Williamson and Roshko use their data to advance plausible explanatons for the
variations in lift force magnitude and phase as measured by Bishop and Hassan [5, 6]. As

we shall see later, some of our own data are compatible with these patterns as well.

Rockwell et al. For several years. Professor Donald Rockwell and his associates at Lehigh
University have conducted flow visualization studies on cylinders of various cross-section
undergoing various types of oscillation; we shall mention but two of the several publications
that have resulted from this work.

Ongoren and Rockwell [53] report on experiments conceptually similar to the work of
Williamson and Roshko, designed to visualize the “flow structure” behind an oscillating
cylinder. They used a single amplitude ratio of 0.13, but tested circular, triangular, as well
as square cylinder cros.-sections. At this small amplitude no evidence of 2P or P +§ patterns
were found, although the authors report a sharp change in the timing of vortex formation as
the cylinder frequency traversed the natural shedding {requency. An interesting point was
that this change in timing, or jump in phase, was detected for the circular and triangular
sections but not for the square section, thus indicating the importance of aft-rhody shape
in determining the wake pattern.

More recently, Nakano and Rockwell [51] have performed visualization and wake velocity
studies on the wakes of cylinders undergoing amplitude- and {requency-modulated sinusoidal
oscillations. Various combinations of carrier frequency f. and modulation frequency f,,, were
tested, and the authors report on the different vortex patterns detected. In many ways it
would appear that this work is the flow visualization counterpart to our own experiments
reported herein, although the context and motivation are considerably different. Further
comparisons between our force measurements and the visualization and velocity data of

Nakano and Rockwell will be made in Chapter 5.

1.5 A preview of the chapters that follow

This thesis has been organized into seven chapters. The introductory material and literature
survey presented thus far comprise the first chapter. The conients of each of the following

chapters are briefly summarized below.

39




Chapter Two contains extensive descriptions of the experimental apparatus and svstems.
as well as the data processing techniques and important formulations used in the succeeding
material.

Chapter Three presents the results of our stationary and sinusoidal oscillation tests. The
use of “contour maps” to depict the variation of force coefficients with oscillation amplitude
and frequency is introduced. Novel results on the behavior of the lift force phase angle
and oscillating drag force are discussed. The concept of the lift force “excitation region” is
compared to the quite different lift force “lock-in region”.

Chapter Four surveys some of the important considerations in the application of our
data. These include a comprehensive error analysis, a simple VIV prediction scheme. and
the results of some tests on typical “real-world™ cross-sections that are often idealized as
circular cylinders.

Chapter Five presents our beating oscillation data. The measured results of the lift and
drag force coefficients are illustrated and then compared to the sinusoidal results. Methods
of extrapolating these sinusoidal results to the beating case are discussed. The re: onse of
the wake to beating excitation is investigated via time-domain analyses of our data.

Chapter Six investigates a novel concept: the alteration of the mean wake velocity profile
via the control of the major vortical features. Results of experiments are presented wherein
an oscillating foil is placed in the wake of circular and D-section cylinders. One application

of this research is the reduction of the mean in-line wake velocity.

Finally, Chapter Seven presents the principal conclusions of this research. The major

benefits and shortcomings are highlighted. Avenues for future work are suggested.
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Chapter 2

Experimental and Data

Processing Methods

2.1 Preliminary remarks

In this chapter we shall set forth the experimental and data reduction methods by which
we obtained our results. In particular, we shall provide an extensive description of our
physical apparatus and the various proving tests and calibrations undertaken. This is done
with two motives: firstly, to establish the reliability and accuracy of our data, and secondly.
because much of the difficulty in interpreting the data available in the literature stems from

an inadequate knowledge of the conditions under which they were acquired.

2.2 The experimental system

2.2.1 General description

Our experiments were conducted at the newly refurbished Testing Tank facility of the
Department of Ocean Engineering at the Massachusetts Institute of Technology. The tank
consists of a 30 m long rectangular channel, equipped with an overhead towing carriage. Our
test model was a polished aluminum cylinder, 2.54 ¢m in diameter and 60 ¢m in length.
installed in a streamlined yoke. which was in turn suspended from the towing carriage.
The yoke was oscillated vertically, transverse to the towing direction, using a lead-screw

assembly driven by a microprocessor-controlled servomotor. The lift and drag forces acting
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on the cvlinder were measured simultaneousiv. and recorded in digital form by a PC-class

computer. The vertical motion of the yoke was measured and recorded as well. Figure 2.

1 is a diagram of the experimental apparatus used. Detailed descriptions of the various

experimental components and procedures are contained in the subsections that follow.

vertical drive

motor ~ >
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LVt g assembly
(position measurement) T
S
direction side supports
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v _/ end plates
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Figure 2-1: The experimental apparatus used in the Testing Tank.

In terms of experimental “strategy”, most of the results reported in this thesis pertain to

tests conducted at a towing velocity of 0.4 m/s, corresponding to a Reynolds number (based

on cylinder diameter) of approximately 10,000. This towing velocitv was selected to give

the best compromise between the conflicting requirements of force measurement (larger

velocities leading to larger and more easily measured forces) and experimental accuracy

(smaller velocities leading to longer experimental run times in the limited tank length).

Each experimental run lasted for 75 seconds. during which time the force transducers were

switched on and data was acquired. A 10 second initial zero period was followed by a 5
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second allowance for carriage motion transients, a 50 second cylinder oscillation time, and a
10 second final zero period. Figure 2-2 illustrates the drag force trace for a typical sinusoidal
oscillation (in this case, with amplitude Yp/d = 0.50 and frequency fo = 0.203), and shows

the various times comprising the test. A total of about 3,000 runs were conducted.

drag force in Newtons

0 10 20 30 40 50 60 70 80
time in seconds

Figure 2-2: A typical experimental run (drag force trace}.

2.2.2 Testing tank and carriage

The Ocean Engineering Testing Tank at MIT is the latest incarnation of the venerable
Ship Model Towing Tank, first commissioned in 1950. The basic tank remains the same,
consisting of a rectangular water channel of dimensions 30 m long x 2.6 m across. The
depth of the water in the tank is variable up to a maximum of about 1.8 m, but for these
experiments the depth was maintained at 1.3 m. In recent years, the towing carriage and
drive systems have seen a complete refit. The present carriage consists of a 1.8 m long
aluminum box-beam structure rolling via Polyurethane skateboard wheels on a cylindrical
stainless steel overhead rail. An outrigger arm from the box-beam structure rides on a

secondary rail along the wall of the tank, and serves to stabilize the carriage. The carriage
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drive system consists of an endless steel tape that loops over two flywheels at each end of
the tank, and is connected to the rolling box beam. A pulley and weight system maintains
tension in the steel tape. An AC induction motor located at one end of the tank provides
the moﬁive force, and is in turn controlled by a closed-loop microprocessor based device. All
carriage functions are controlled and monitored from the main laboratory office overlooking
the tank; setting the carriage speed involves merely entering the desired value (in knots)
on a numeric keypad. In addition, the microprocessor controller can be interfaced to a
PC-class computer, and thereby all carriage functions can be controlled via user-written
software. The drive carriage system is capable of speeds between 0.2 and 8.00 knots. In the
range of interest to us (1 knot and less), the calibrated speed error was less than 0.2%, and

there were minimal vibrations.

2.2.3 Test models, yoke, and oscillating system

The test cylinder used in the majority of these experiments was a polished aluminum tube
of 2.54 cm diameter, 60 cm length, and 0.24 kg mass. The cylinder was plugged at both ends
to keep out the water, and was suspended from the yoke structure by means of stainless
steel pins embedded in the end plugs. The yoke structure consisted of two streamlined
aluminum sections welded together via a box-beam at their upper ends, to form an inverted
“U” shape. Rectangular end-plates extending five diameters downstream were designed
according to Stansby’s specifications {72}, and mounted to the lower ends of the yoke arms.
One of these arms contained the force transducer used to measure the loads acting on the
model, while the opposite arm contained a “dummy” spacing block similar in size to the
force transducer. The cylinder specimen to be tested could be assembled in the yoke by
momentarily spreading apart the yoke arms, so allowing the model to “click” into place. A
very small annular clearance of less than 1 mm was maintained between the cylinder and
the end-plates.

The apparatus described above was specifically designed with the objective that several
different cylinder models could be tested with the minimum of retooling effort. Chapter 4
describes the resulis of tests conducted on models of a “haired-fairing” cable, a six-strand
wire rope, a chain, and an oil production riser. All of these models had identical lengths

and end fittings, and similar diameters and masses. The haired-fairing cable model was
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[ Model L Construction 1 Diameter (cm) ] Mass (kg)j

Cylinder Aluminum 2.54 0.24
D-Section Wood/Epoxy 5.08 0.37
Wire Rope Carbon-fiber 2.70 0.32
Chain Aluminuaia 2.30 0.23
Riser Aluminum 2.54 0.37
Haired-fairing | Aluminum/Kevlar 3.05 0.56

Table 2.1: Details of the various models tested in the oscillating apparatus.

constructed with an actual sample of the haired-fairing cover wrapped around an aluminum
tube. The wire rope model consisted of carbon-fiber reinforced plastic, and was made from
a mold of an actual specimen of steel wire rope. The chain model was constructed from
lightweight aluminum chain welded at the links to provide a single, stiff structure. The riser
model consisted of the original 2.54 ¢m aluminum tube, with two smaller 0.635 cm tubes
arranged in a diametrically opposed fashion so as to represent “kill” and “choke” lines.

Table 2.1 summarizes the pertinent details of the models built for the oscillating apparatus.

Vertical oscillations of the yoke structure were obtained with the use of a LINTECH lead-
screw positioning table, of total stroke length 17.8 cm. The base of this device was mounted
vertically on the test tank carriage, with the yoke in turn bolted to the movable plate. The
lead-screw was driven in a reciprocating manner by a SEIBERCO H3430 Sensorimotor,
which was selected after a careful survey of the available motor products. A program was
developed to calculate the desired motor characteristic (torque versus speed curve) for the
maximum desired oscillation amplitude and frequency, considering such factors as inertial
loads, fluid drag, gravity, etc. An unanticipated outcome from these calculations was that
the limiting factor in motor capability was the rotor inertia of the motor, with the result that
larger motors were not necessarily more suitable for our application. The Sensorimotor was
selected so as to combine the benefits of step motors (high torque in a small package) with
those of DC servo motors (high speeds and acceleration, and inherent closed-loop control).
Figure 2-3 shows the calculated torque versus speed curves for the design condition (3.05
cm amplitude, 5.6 Hz frequency) as well as the manufacturer’s motor characteristic for the

SEIBERCO H3430.
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Figure 2-3: Design torque versus speed factors and the manufacturer’s curve for the
SEIBERCO H3430 Sensorimotor.

Control of the SEIBERCO motor was straightforward since its microprocessor based
servo controller was custom-built by the manufacturer so as to track an analog input signal,
with a given signal voltage corresponding to a particular absolute position of the motor
shaft. Thus oscillations of any shape could be achieved simply by supplying the desired
(appropriately scaled) waveform to the motor controller. In our implementation, the desired
position waveform was calculated in real time by an NEC Powermate 286 PC-class computer
(located in the laboratory office) from an initial user-specified set of parameters, generated
with the help of an onboard 12-bit D/A converter, and communicated to the motor via the
tank’s data cable. The “master” program used to generate the waveform was developed by
this author, and in addition to motion control, provided the main timing sequence for all

experimental operations such as carriage motion switching and data-acquisition triggering.
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2.2.4 Force and motion sensors

The lift and drag forces acting on the model were measured using a highly accurate ana me-
chanically stiff piezoelectric force transducer. borrowing this concept from the experimental
work of Staubli {74, 75]. The specific sensor we used was a KISTLER Model 9117 3-axes
force vransducei, coastructed from queortz piczeelectric material that builds up an ejectrie
charge in response to an externally applied force. The sensor was connected via specially
developed low capacitance cables to a charge amplifier, which converted the electrical charge
to a conveniently measurable analog voltage. The Model 9117 is designed to measure force
along 3 axes; for our experiments we utilized two of these to measure the lift and drag forces.
The principal advantage of such a transducer is that unlike strain-gage-based devices. there
is no physical displacement (strain) in response to the applied forces. Hence the transducer
can be used in a relatively rigid assembly to measure a relatively small force, and natural

frequencies of the test apparatus can be kept well above the range of interest.
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Figure 2-4: The force sensor assembly and model attachment.




Piezoelectric force transducers are expensive, delicate devices, and great care was re-
quired in the utilization of the KISTLER 9117. Electrical insulation was of paramount
importance, and hence we carefully waterproofed the entire length of the sensor leads with
a combination of silicone RTV compound and shrink-wrap tubing. Prior to installation in
the voke, iie walerproofed seusui was repeatedly tested by submercion in 1 m of water for
periods up to eight hours; no deterioration in performance was detected. The 9117 was
installed in one of the yoke arms, rigidly bolted in place. Figure 2-4 is a diagram of the
force transducer assembly, and shows details of the model attachment as well.

Following the assembly of the KISTLER 9117 in the yoke and the installation of the
model, extensive static calibrations were carried out in both drag (X) and lift /Y divections
by hanging known weights from the center of the model. The remarkable linearity of the
sensor is demonstrated by the typical calibration curve shown in Figure 2-5. In addition to
static force calibration, the spatial linearity of the assembly and the dynamic characteristics
were also determined. Known weights were attached at various points along the length of
the cylinder, and the measured force compared with the calculated reaction force assuming
linear simply-supported beam behavior. The deviation from this ideal behavior was found to
be less than 1.5% over the range of loads expected. Dynamic oscillation tests were conducted
in air at typical frequencies and amplitudes of interest, and the frequency response of the
force sensor / charge amplifier system was verified to be unity in this range.

Force calibrations as outlined above were carried out prior to the experimental runs.
While the experiments were in progress, the behavior of the system was monitored by
conducting stationary drag tests at periodic intervals. The results of these “wet calibrations”
indicated that there was no calibration drift with time. Further details are provided in
Chapters 3 and 4, in the sections on stationary results.

In addition to the lift and drag forces, a third data channel was utilized to record the in-
stantaneous displacement of the cylinder yoke. A SCHAEVITZ Linear Variable Differential
Transformer (LVDT) Model HR 3000, with a linear range of £ 7.62cm was used to measure
the displacement. The response of the LVDT was calibrated both on the laboratory bench,
against a finely graduated scale, as well as after installation, using the vertical lead-screw
actuator to move known distances. In order to test the dynamic phase characteristics of
the LVDT, a contact switch was rigged so as to provide a momentary pulse when the yoke

was at the top-dead-center while oscillating at a given amplitude. By comparing a train
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Figure 2-5: A typical static force calibration curve.

of these pulses with the output of the LVDT, it was verified that the device provided an

accurate representation of the oscillation over the desired frequency range.

2.2.5 Signal conditioning and data acquisition

Both the KISTLER force transducer and the SCHAEVITZ LVDT were operated with their
respective dedicated signal conditioning devices, the charge amplifiers (KISTLER Model
5004) in the case of the force transducer, and a detector/amplifier model ATA 101 in the
case of the LVDT. These amplifiers were located on the test tank carriage, so as to be as
close as possible to the sensors. The high level analog voltages output from the amplifiers
were sent back to the laboratory control room, through the test tank data cable connecting
the control room to the carriage. From the data cable termination in the control room, the
signals were passed through a set of precision matched lowpass analog filters so as to prevent
aliasing. The filters used were built from FREQUENCY DEVICES 4-pole butterworth
lowpass modules with a cutoff frequency of 100 Hz, and specifically rigid tolerances on

phase- and amplitude- matching.
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Following the analog filtering stage, the signals were led to an HP> Vectra ES/12 PC-
class computer equipped with a COMPUTER BOARDS type CIO-AD16 analog-to-digital
accessory plug-in board. A COMPUTER BOARDS type CIQ-SSH16 simultaneous sample
and hold front end accessory package was used with the plug-in board so as to avoid any
contaminating channel-to-channel phase shifts. A commercially available software package,
STREAMER, was used to perform the A/D conversions and “stream” the data directly to
the hard disk of the ES/12. Each data run lasted for 75 seconds, during which time each
channel was sampled at 500 Hz. As mentioned in section 2.2.3, the triggering for each run
was controlled by the “master” program running on a separate computer.

In addition to the computer-based data acquisition system, an HP 54501A digital storage
oscilloscope was used during the experimental setup and actual runs to monitor the signals

at various locations in order to ensure proper operation of the different components.

2.2.6 Miscellaneous system effects

With the yoke assembled to the carriage and the model mounted in the yoke, the natural
frequency (in water) of the overall system was determined. Spectral analysis of the measured
forces was performed while the carriage, yoke and test specimen were repeatedly excited
with a rubber mallet. This revealed that the principal natural frequency component of the
structure was at 110 Hz, well out of our region of interest. Other spectral components were
detected as low as 17 Hz, but these were 3 to 4 orders lower in magnitude, and spectral
analysis of actual experimental data showed no effect from these lower structural frequencies.

In order to evaluate the effect of water flowing up and down inside the yoke arm sup-
porting the force transducer, as well as the dynamic effect of the transducer mass, a number
of runs were conducted in still water with the model removed. These tests revealed that
there was, in fact, a substantial spurious force contribution from these effects. Tests at
various amplitudes and frequencies indicated that this extraneous force was entirely in the
inertial lift direction, and could be represented very well as an additional “virtual mass” of
0.188 kg. Thus this value was taken into consideration in the calculation of an additional
inertial force to be subtracted from each lift force trace during post-processing.

Due to the fact that the KISTLER piezoelectric force transducer used in the experi-

mental setup was essentially a dynamic measuring instrument, the mean drag force traces




exhibited a small, vet definite, drift. To correct for this effect. careful zero measurements
were taken at both start and finish of every run. These zero measurements were utilized

during post-processing to evaluate the drift and compensate for it.

2.2.7 Flow considerations
End effects

In order to avoid three-dimensional effects stemming from the finite length of the cylinder.
thin aluminum end-plates of dimension 21 cm square were installed at the ends of the model.
The end-plates were structurally attached to the yoke, with a small annular gap maintained
between the plates and the cylinder, so as to not interfere with the measurement of the
fluid forces. As mentioned in section 2.2.3. the end-plates were asymmetric fore-and-aft,
extending about three diameters upstream and about five diameters downstream of the
model.

In order to evaluate the efficacy of the end-plates in maintaining two-dimensionality of
the flow, runs were conducted to measure the stationary (no cylinder oscillation) mean drag
with and without the end-plates. The removal of the end-plates caused a 20% decrease in
the mean drag coefficient, consistent with the conclusion of Stansby [72] that an increase
of the (negative) base pressure occurs when the two-dimensionality of the flow around a
circular cylinder is destroyed. With the end-plates installed, the stationary mean drag

coefficient was constant at a value near the classical 1.20.

Free-surface effects

During these experimental runs, care was taken in the selection of the carriage towing
speeds and yoke oscillation amplitudes to avoid the effects of free-surface interactions. In
a series of tests conducted during 1990 in connection with oscillating hydrofoils {85}, force
measurements and visual observations were used to evaluate the regions of significant free-
surface wave effects. The towing speed and vertical motions used in the present investigation
were well below the critical ranges found earlier.

Bishop and Hasgsan [5] have used the criterion that the maximum Froude number
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be much less than unity. for free-surface effects to be neglected. Here Upar is the maximum
flow (towing) velocity, ¢ the acceleration due to gravity, and h,,,, the minimum depth of
submergence of the model. In their experiments, F,,,, was calculated to be 0.375. which
Bishop and Hassan felt was sufficiently low. In our experiments, the maximum Froude

number [, ., was 0.18]. so we are indeed justified in neglecting the effect of the free-surface.

Blockage effects

“Blockage” refers to the fact that the force coefficients measured on a cylinder model in
a finite body of water is different from the values expected in an infinite stream. due to
the presence of the walls of the channel around the model. Empirical blockage corrections
are applied to the measured forces, and these corrections are a function of the equivalent
blocking ratio d/h, or the ratio of the cylinder diameter to the total depth. In our case,

this blocking ratio was only of the order of 2%, and so no corrections have been applied.

2.2.8 Overall accuracy of the experimental apparatus

In order to evaluate the error bounds on our data, it would be desirable to estimate the
accuracy of the experimental apparatus, and hence the accuracy of the raw data. However.
due to the large number of variables involved, such a value is impossible to determine.
Each of the individual components in the experimental system described in the preceding
sections has a nominal error bound which is usually 1-2%, and in no case exceeds 5%. The
manner in which these combine to give an overall system error bound is unknown, and
thus the overall system accuracy cannot be calculated from a knowledge of the individual
component specifications. This situation has not changed much since the days of Bishop

and Hassan (5], when they said:

“It would be extremely difficult, and probably not very sensible. to specify
an overall accuracy, since this depended on so many factors. Thus it depended
on the accuracy of hvdraulic measurements, of the transducer-amplifier-pen
recorder system, of the blockage correction, the evenness of fluid flow. varia-
ticus in velocity along the cylinder, variations in the speed of the driving motor.
length of oscillograph record used and on several other factors. The difficulty

has been experienced by all the workers already mentioned; it can only be said
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that due care was taken in the design of the apparatns. and in makine and

recording the results.”

In fact, we did carry out an error analvsis based on the statistical propertios of the data
spread and comparisons with published literature, this analvsis is given in Chapter 4. As
noted in that chapter. the overall precision of our data was of the order of 3-2% . and the

overall accuracy was of the order of 10-15%.

2.3 Formulation and definitions

As mentioned rarlier, our experiments are essentiallv an extension to the pure harmonic
tests conducted in the past. As such. the mathematical statements and definitions formu-
lating the problem are straightforward. The essential equations are developed here, with

refinements and additional details provided as necessary in later chapters.

2.3.1 Stationary cylinder

For a stationary cylinder exposed to a flow, vortices are shed at the Strouhal frequency f,
given by the relation

SU
fs - —"2—

where U is the velocity of the flow and d is the diameter of the evhinder. Tle Stronhal
number §, is essentially a nondimensional frequency approximately equal to 0.2 over the
Reynolds numbers of interest to us. Due to the vortex shedding, the cvlinder experiences
an oscillating lift force at the frequency of shedding, an oscillating drag force at twice the

frequency of shedding, and a mean drag force. Thus the lift force is given by

L= Lysin(2x [t + &) {(2.2%
and the drag force by
D= Dy + Dysin(27(2f ) + ¥5) (2.3

where L; and D are the magnitudes of the oscillating Strouhal lift and drag forces respec-
tively, D,, is the magnitude of the mean drag force. and . and v are arbitrary phase

angles. Each of the force components can be nondimensionalized in the usual manner by
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the dynamic pressure head factor 3pldli? twhere p is the density of water. and ! is the

length of the cylinder) to give the associated force coeflicient. Thus

L
CL. = 773
and the mean drag coetficient is
Do
CDp = 5=
3pldU?
and the oscillating drag coefficient is
D
Cp, = ———
1pldU?

2.3.2 Sinusoidal cylinder oscillations

the hift coefficient s

(2.4)

(2.6}

When a cylinder responds with or is externally subjected to sinusoidal osciliations. the

body motion introduces an additional frequency component in the wake that competes

with the Strouhal frequency. Depending on the amplitude and f{requency of the cylinder

oscillations, the wake response may be locked-in, a state wherein the cylinder motion controis

the shedding process and the Strouhal frequency disappears. In general, however, the forces

experienced by the body will have components at both the Strouhal and body osciliation

frequencies. Thus if the body oscillation y(?) at the frequency fy is given by

y(1) = Yosin(27 fot)

we may model the lift force by

L = Losin(27 fol + 0g) + Lssin(2x fit + ¢;)

and the drag force by

D = Do+ Dysin{2n(2fo)t + o) + D, sin(27(2f ) + ) {(2.M

where Lo and Dy are the magnitudes of the oscillating Lft and drag forces at frequen

cies fu and 2fy respectively. For our purposes, we shall ignore the Strouhal components

Losin(2z fit + &,y and D sin(27{2f )1 + ) in equations 2.8 and 2.9

Ea

There are two reasons



by which we may justifv this omission; firstly. we are interested in the response of the cable
that is “locallv locked-in” everywhere, and hence these Strouhal components disappear:
secondly, since there is no body oscillation at the frequency f, these components do not
participate in any power transfer between the body and the fluid. It may be argued that
if the Strouhal lift force L, exists and is of sufficient magnitude, the cable may begin 10
respond to both the frequencies f, as well as fo; the counter to this argument is that this
scenario is precisely a case of the beating oscillations that will be treated next.

Equations 2.8 and 2.9 thus give us the following force coefficients in addition to the

mean drag coefficient of Equation 2.5:

. Lo .
Cry = “——“%pld[]? (2.10)
and
Dy .

In the case of the lift coefficient, the phase angle ¢ between the lift force and the body
motion is crucial in determining the precise action of the lift force; whether it acts to exciwe
or damp the body motion, and the magnitude of the inertial force or “added mass™ effect.

The component of the lift coefficient in phase with bodv velocity, given by

Crv, = Cr,sin oy (2.12)

determines the exciting or damping effect. Positive values of (', v, denote an exciting effect.
or power transfer from the fluid to the body, while negative values denote a damping eflect.
or power transfer from the body to the fluid. Likewise. the component of the lift coefficient

in phase with body acceleration, given by

Cr_ap = Cry(— cos do) (2.13)

determines the inertial added mass force; with positive values of Cp_4, denoting negative
added mass and wvice rversa. [t should be noted that the coefficients Cp v, and Cy_a.
are precisely the negative of the coeflicients Cgp and .y, derived by Sarpkava from a

consideration of the Morison’s equation for the forces acting on an oscillating cyvlinder [65].




Further details on the derivation and use of these coeflicients are given in Chapter 3.

In the case of the oscillating drag, the coefficient Cp, at the frequency 2fy is often very
small, and comparable in magnitude to other frequency components of less ohvious origin.
Thus several researchers have found it convenient to express the oscillating drag force in
term of the RMS value of the fluctuating drag, thus leading to a coefficient Cp,,, . instead
of Cp,-

In addition, it should be noted that the body oscillation frequency fo (expressed in
Hz) is conveniently nondimensionalized in a manner analogous to equation 2.1 defining the
Strouhal frequency. Thus

foU
= — 2.14
fo 7 (2.14)
where f, is the nondimensional oscillation frequency. The reciprocal of fy is equivalent 1o
the reduced velocity Vg, commonrly used in studies of flow-induced vibrations.
2.3.3 Beating cylinder oscillations

The simplest case of amplitude-modulated cylinder oscillations is dual-frequency beating.
which can be expressed in two mathematically equivalent ways. The first is a superposition

of two sinusoids at different frequencies fi and f; (hence the term “dual-frequency beating™):
y(t) = Yy sin(27 fit) + Y, sin(2x fot) {2.13)

If Y, = Y3, the above equation 2.15 can be written as the product of a rapidly varyving sinu-
soid at the “carrier frequency” f. modulated by a slowly varying sinusoid at the “modulation
frequency” f,, as

y(t) = 2Y7 sin(27 fct) cos(2x fint) (2.16}

The frequency components in the above equations 2.15 and 2.16 are related to each other

as follows:
fe= é-?;i (2.17)
- fz;fl 18]
N = fo= o (2.19)




fa=fot fn (2.20)

The rate of modulation is expressed in terms of the modulation ratio. which is defined here
as the ratio of unity to “the number of oscillations at the carrier frequency contained in one

beat packet”. Thus if the modulation ratio is equal to 1:N, N is given by

1 fe
N = _2.}:: (2.21)

As an aside, it may be noted that the waveforms defined by equations 2.15 or 2.16 are
referred to in electrical engineering parlance as examples of “Suppressed Carrier Amplitude
Modulation”, or SC-AM. Details of the creation, manipulation and use of such waveforms
may be found in basic Signals and Systems texts such as the one by Siebert {70].

For a cylinder oscillating with a waveform given by equations 2.15 or 2.16, the challenge
is to define the induced lift and drag forces in terms of force coefficients that are consistent
with experimental observations, and in addition, can be estimated from available sinusoidal
data. As we shall see, meeting these two requirements, especially the second, is often not
possible.

In the case of the lift force acting on a beating cylinder, a straightforward extrapola-
tion of equation 2.8 to the dual-frequency situation gives the following expression for lift
coefficient:

Cp = Cp,ysin(27 fit + 01) + Cp, sin(27 fot + ¢2) (2.22)

where we have already performed the nondimensionalization with 1pldli? and ignored the
Strouhal term in accordance with the discussion in the previous section. The phase angles
¢1 and ¢, determine the components of Cr, and Cp, in phase with cylinder velocity and
cylinder acceleration, yielding two exciting/damping coefficients C_y, and Cf_y,, and two
inertial coefficients Cf,_4, and Cp_4,, in a manner exactly equivalent to equations 2.12
and 2.13. As we shall see, it turns out that these lift coeflicients and phase angles at the
frequencies f; and f, are very difficult to estimate from pure sinusoidal data. In order to
simplify the position by reducing the number of variables involved, we can define “equivalent
lift coefficients™ C'_y, and Cy_4, at the carrier frequency f., based on equating the time-
averaged power transfer and inertial force. More details on these coefficients will be given

in the chapter on beating oscillations.




In the case of the beating drag force coefficient, an extrapolation of equation 2.9 gives

the following expression for Cp:
Cp = Cp,. + Cp, sin(4x fit = wy) + Cp, sin(47 fot + ¥) (2.23)

where, as before, the nondimensionalization has been carried out and the Strouhal terms
ignored. As it happens, an examination of the experimental data indicates that in addition
to the oscillating drag coefficient components Cp, at frequency 2f, and Cp, at frequency
2f2, there is a strong oscillating component at the modulation frequency fn. The multi-
plicity of frequency components also indicates that the use of an RMS coefficient Cpg,, s to

quantify the fluctuating drag may be vseful.

2.4 Data processing

As mentioned in section 2.2.5, the lift and drag force traces and cylinder motion trace were
sampled at 500 Hz each by an HP Vectra ES/12 computer equipped with an analog-to-
digital conversion board. The software used to accomplish this conversion stored the data
in binary form on the hard disk of the ES/12. From here, the next step was to transfer
the binary data files to a larger and more capable computer, either the laboratory’s HP
Vectra RS/20C 386 or HP Vectra EISA 486. All of the binary data files were backed up
onto magnetic tape for precautionary storage prior to processing.

The first stage in data reduction involved translating the binary data to ASCII numbers;
this was accomplished with software accompanying the data acquisition package. The ASCII
files were then passed through a digital time-domain noncausal lowpass filter in order to
remove unwanted high frequency noise. This filter consisted of a Finite Impulse Response
sinc function convolved with the input data according to the algorithm used by Triantafyllou
[82]. The FIR parameters were calculated to provide a cutoff frequency of 2.2f, where f,

the “significant frequency” was one of the following:
1. The (estimated) Strouhal shedding frequency f; for stationary runs.
2. The externally imposed oscillating frequency fo in the case of sinusoidal oscillations.

3. The higher of the two component frequencies, fz, in the case of beating oscillations.




Time-domain rather than frequencyv-domain filtering was employed because of the length of
the data traces involved. and the filter resolution desired. Following the lowpass filtering.
the data records were resampled at the lower sampiing rate of 160 Hz in order 10 reduce
storage and processing requirements.

Beyond the above initial data reduction. all further processing was accomplished using
the software package MATLAB. Extensive batch programs and MATLAB functions were
created so as to provide for semiautomatic processing with the minimum of subjective
decision making. Some of the important steps in the data processing are detailed in the

following paragraphs.

Calibration. A function was written to determine automatically whether data files loaded
into MATLAB were pre- or post- calibration. and based on this decision, to calibrate the
records according to the calibration values determined as in section 2.2.4. During this
process, the data were also “de-trended” (to remove any sensor drift), and the mean zero

values subtracted.

Lock-in determination. In order to determine whether or not a given cylinder oscillation
led to lock-in, and to provide a qualitative understanding of the induced forces. power
spectra of the data traces were calculated. In each case, a single 4096 point Fast Fourier
Transform was used, with Hanning-window tapering employed to reduce spectral leakage.
Since this method was not used to determine quantitatively the force coefficients. no further
attempt was made to optimize the spectral estimation technique, nor to estimate the errors
involved. In addition to power spectra, time-domain histogrammic analysis was used in a
few cases to determine the lock-in behavior. Thus the points of upcrossing of the motion
and lift force traces were determined, and histograms were created of the “instantaneous”
frequencies. Further details on these methods are provided in Chapters 3 and 3, in the

sections on histogrammic analysis.

Removal of inertial force. Prior to the calculation of the oscillating lift coefficient
magnitude and phase angle, we subtracted the {in air) inertial force of the test cyvlinder
from the lift force time trace. The inertial force trace was calculated by performing a

double-differentiation of the motion (LVDT) signal to obtain the cylinder acceleration. and




then multiplying this acceleration trace by the cylinder mass in air. \ centered. difference
scheme was used to perform the differentiation. The lack of extraneous noise in tic motion
time traces (after the digital filtering step) allowed the double-differentiation to take place

reliably and accurately.

Oscillating force coefficients. Quantitative determinations of the oscillating force coef-
ficients and phase angles were made via individual Fourier-coefficient analyses. From basic

Fourier series theory, a waveform z(t) can be represented as a series

20 o0
x(t}zao-}—Zan cos (21;”> +ansin (31;31) (2.24)
nz=1 n=1

where the coeflicients ay. ¢, and &, are given by

1 47
= 2.25
ag T/(; z(t)dt (2.25)
2 (7 2nnt ,
an = _Y:/o z(t) cos ( 7 ) dt {2.26)
2 (T . [ 2mnt e
ban\/() .’E(t)Sln( T )dt (220)

In our case, one example is the lift force for sinusoidal oscillations, which. by expanding the

first term on the RHS of equation 2.8 can be written as:
L = Lo cos(éo)sin(2x fot) + Lo sin(¢g) cos(27 fut ) {2.2%)
By constructing reference sine and cosine waveforms with period

T=— (2.29)
fo

we can readily identify the quantity (Lo cos(dg)) with the coefficient b; given by equation
2.27, and the quantity (Lgsin(¢g)) with the coefficient a; given by equation 2.26. Thus if

we calculate @y and b;. we can find Lo and ¢¢ from

Lo = \/(1,% + b"l2 (2.30)
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and

Oy = arclan (ﬂ) (2.31)

0
Note that it is not necessary for the reference waveforms to have zero phase relative to the
cylinder motion: if we carry out the above procedure for the motion trace as well as the lift
force trace, we can readily find the actual phase angle ¢y as the difference between the phase
angles calculated between the lift force and the reference, and that calculated between the
motion and the reference.

In determining the oscillating force coefficients and phase angles according to the pro-
cedure outlined above, a key factor was the number of cycles of the waveform over which
the integrations given by equations 2.26 and 2.27 were carried out. Ideally, one would have
liked to have performed these evaluations over as many cycles as possible. but in practice
it was found that very small errors in frequency led to unacceptably large errors in the
calculated coefficients. Thus a “time-gating” method was devised whereby the coefficients
were calculated over a smaller number of cycles and averaged over as many gates as were
available in the trace. A gate length of 20 cycles was found to give good results with both
the harmonic and beating data traces. In passing, it should be noted that this time-gating
Fourier series analysis was verv similar to that performed by Mercier [47] in the analysis of

his data.

Mean drag coefficient. The mean drag coefficient for each record was estimated by
calculating the mean value of the drag force trace. relative to the zero values established at
the start and finish of each run. As mentioned in section 2.2.6, these zero values were used
to subtract out the drag force drift over the length of the data run, prior to the calculation
of the mean drag coefficients. In the calculation of the mean drag value. care was taken to
average the data over an integer number of oscillation cycles (or beat “packets™. in the case

of amplitude-modulated data).

61




2




Chapter 3

Stationary and Sinusoidal

Oscillation Tests

3.1 The purpose of these tests

One of the principal frustrations besetting the researcher investigating vortex shedding
phencincna is the scusitive dependence of measurable quantities on the experimental con-
ditions. Thus the values of lift and drag force coefficients, pressure coefficients, and vortex
shedding frequency all depend on experimental factors such as aspect ratio ({/d. where [ is
the length of the model and d its diameter), end conditions. blockage ratio (d/H . where H
is the transverse dimension of the test facility), surface finish of the model, and so on. As a
result of this situation, several researchers have spent a great deal of effort on attempts to
quantify the effects of these experimental factors; this is not an undesirable research goal in
itself, but is not one that is directly connected with the basic problem of vortex shedding
and vortex-induced vibrations. In our case, we decided to conduct a thorough investigation
of stationary and sinusoidal oscillations in order to provide a basis for comparison that
could be used to relate the more ambitious beating motion program (conducted with the
same apparatus) to standard sinusoidal results available in the literature. As we proceeded
with our sinusoidal tests. it became clear that we had noticed and interpreted certain f{ea-
tures of the vortex-induced forces that had not been reported in the literature thus far.
Hence, we believe that our sinusoidal results include novel findings, in addition to providing

experimental “ground-truthing” of the amplitude-modulated results.
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3.2 Stationary results

Tests were conducted to measure the lift and drag force coefficients and the natural Strouhal
shedding frequency on the stationary (non-oscillating) model cylinder towed through the
water. In addition to the scientific benefit of this data, the stationary runs proved to bhe
a valuable way of monitoring the performance of the experimental apparatus and systems,
while the apparatus was in the water. One or two of these “wet calibrations™ were conducted
at the start and finish of each day’s experimental schedule, and as presented in Chapter 4,

the accumulated results provided a strong boost to our confidence in the overall process.
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Figure 3-1: Power spectrum of a typical stationary lift force trace.

Data processing for the stationary runs was relatively straightforward. After initial
data reduction (consisting of translation of the raw binary data to ASCII, lowpass filtering,
decimation, and calibration), a spectral analysis was performed on each lift force time trace
in order to determine the natural shedding frequency. The MATLAB routine “spectrum”
was used to perform a 4096-point FFT with Hanning-window tapering. A power spectrum
for a typical lift force trace is shown in Figure 3-1, where the sharp peak in the spectrum

(over 3 orders of magnitude above the background noise) is identified with the natural
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shedding frequency. The average nondimensional natural shedding frequency (Strouhal
number) calculated from 122 stationary runs was found to be 0.1932. with a standard
deviation of less than 1%.

In addition to the Strouhal number, the magnitudes of the mean and oscillating drag
coefficients and the oscillating lift coefficient were estimated from the time traces. The
mean drag coefficient Cp,, was calculated as being the (normalized) difference between the
mean value of the drag force during the run period and the mean value during the final
zero period. Figure 3-2 shows a histogram of the mean drag coefficient obtained for all the
stationary realizations. This figure can be approximated as a normal distribution. with a
mean of 1.1856 and a standard deviation of 0.0315, or under 3%. To compute the oscillating
lift coefficient Cy,,, the experimentally obtained natural shedaing frequency f, was used to
generate reference sine and cosine waveforms which were then used to estimate the Fourier
coefficients of the lift force. a5 outlined in Chapter 2. Figure 3-3 is a histogram of the
oscillating lift coeflicient magnitude for the stationary runs; this can also be modeled as
a normal distribution (mean 0.3842, standard deviation 0.0873), but with a much larger
spread than that for the mean drag coefficient. In addition to Cp_, and Cr,. the oscillating
drag coefficient Cp, was evaluated in a manner similar to the above. using twice the natural
shedding frequency. Table 3.1 summarizes the results for the stationary (smooth circular)

cylinder.

S Cp,. Cr, Cp,
Mean | 0.1932 | 1.1856 | 0.3842 | 0.0215
o 0.0014 | 0.0315 | 0.0873 | 0.0076

Table 3.1: Summary of results for the stationary circular cylinder: Re = 10.000

The explanation for the relatively large scatter of the oscillating lift and drag force
coefficients, compared to the scatter of the mean drag coefficient, was found to be that
these oscillating forces (integrated over the length of the model) were more sensitive to the
three-dimensionality of the flow than was the mean drag force. It is well established that
the correlation length of vortex shedding (the length over which the shedding process could
be considered ta he two-dimensional) for a stationary circular cylinder is of the order of

3 to 5 cylinder diameters (Blevins [7]). In our case, the aspect ratio of our models was
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Figure 3-2: Histogram of the mean drag coefficient; stationary runs.
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approximately 24, so the vortex shedding process for the stationary rans conld not lave
been fully correlated along the model span. Fienres 3-4 and 3-5 show time segmenss of
typical stationary drag force trace and the corresponding lift force trace. The secments huve
been chiosen to include a few seconds of run data and a shorr bit of the final zero period.
It is clear from Figure 3-4 that the oscillating drag force appears as relatively smadl ~cale
fluctuations superimposed on the mean drag. The three-dimensionality of the How appears
as random. low-frequency modulations. which do not have a significant impact on the value
of the mean drag. By contrast. Figure 3-5 shows that these random three-dimensional
modulations have a relatively large effect on the amplitude of the oscillating Hift force. The
natural Strouhal shedding frequency is clearly evident: how wver the amplitude of the Lft
force at this frequency is widelv scattered. Ay we shall see later in this chapter, foreed
oscillations of the model cvlinder near the natural Strouhsl frequency have the effect of

dramatically reducing the random fluctuations of the oscillating vortex-induced forees.

3.3 Forced sinusoidal oscillations

Tests involving forced sinusoidal oscillations of the model cvliinder were condnciod at a
large number of frequency and amplitude combinations. Fiftv-one values of nondinmensional
oscillation frequency fy (= fod/U) ranging from 0.05 to 0.35 were selectod =0 as to bracket
the natural Strouhal number. The actual oscillation frequencies fy were in the rance from
0.80 Hz 10 5.33 Hz. Each of these 51 oscillation frequencies were tested at 6 nondimensional
amplitude ratins Yo/d from 0.15 to 1.20. vielding actnal oscillation amplitudes raneine from
0.381 cm to 3.048 cm. As mentioned in earlier chapters, the high degree of automation and
reliability of our experimental apparatus and procedures enabled us to test this refatively
large parameter space in a relatively timelv fashion,

As in the case of the stationary run data. the analysis of the sinusoidal oscillation
data consisted of nitial data reduction followed by further analysis using MATLAB. As
before, the mean drag coeflicient was caleulated as the difference hetween the mean valne
of the drag force trace during the run period and that during the final zero period. suitably
nondimensionalized. Using the {known) external oscitfation frequeney. reforence sine and
cosine waveforms were created and used to calculate the maenitndes of the osciilating Lift

and drag forcos. ([ A mentioned in Chapter 2. the oscillating foree coeflicients at the Stronhal
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shedding frequency were not considered.) The phase angle of the oscillating @ifr force with
respect to the externally imposed oscillating motion was calculated as the difference between
the phase angle of the lift force (with respect to the reference sine waveform) and the phase
angle of the motion (with respect to the same reference sine waveformj. As described in the
later sections of this chapter {Sections 3.4 - 3.7), certain of the sinusoidal oscillation cases
were reprocessed using additional techniques.

In all of the data processing. several methods were used to minimize the risk of error. A

comprehensive analysis of the errors in our data and results is presented in the next chapter.

3.3.1 Results for amplitude ratio 0.30

In order to illustrate the principal effects of sinusoidal oscillations, results are presented first
for the moderate amplitude ratio of 0,30.

The variations of the mean drag coefficient Cp and the oscillating drag coefficient C'p,
against nondimensional oscillation frequency Jo for Yo/d = 0.30 are presented in Figure 3-6.

At low oscillation frequencies. the mean drag coefficient is near the stationary cvlinder value
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Figure 3-6: Mean and oscillating drag coefficients: sinusoidal oscillations: Yo /d = 0.30.
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of 1.20. A sharp amplification peak occurs at a nondimensional frequency of 0.17. =iightly
below the natural Strouhal frequency of 0.20. There is evidence of a second amplification
peak near a frequency of 0.35. The oscillating drag coefficient ('py, is less than 1077 of the
mean drag coefficient at the lowest oscillation frequencies. but rises rapidly at the higher
end.

The behavior of the lift force for the same amplitude Y,/d = 0.30 is illustrated in
Figures 3-7 and 3-8. Figure 3-7 shows the dependence of the magnitude of the oscillating
lift coefficient on oscillation frequency. At low {requencies, this lift coeflicient magnitude is
very small. but rises sharply and peaks (at a frequency of 0.18) due to resonance between
the imposed oscillations and the natural Strouhal shedding process. As seen in the previous
drag coefficient illustration, this resonance occurs at a nondimensional frequency slightly
below the stationary Strouhal number. At higher frequencies the lift coefficient magnitude
begins a steady rise, with the increase in this range being attributed to the effect of added
mass. The behavior of the phase angle of the oscillating lift force is illustrated in Figure 3-8,
where as defined in Chapter 2. this phase angle ¢ is the angle by which the oscillating lift
force leads the imposed oscillating motion. The importance of the lift force phase angle
is that it determines the sign of the power transfer between the cylinder and the fluid.
Values of ¢g in the range 0 < 0g < +7% correspond to power transfer from the fluid to the
cylinder. i.e. the cylinder could get excited into motion by the fluid flow. For an oscillation
amplitude Yy/d = 0.30. the phase angle is between 0 and +7 for the frequency ranges
0.125 < fo < 0.182 and 0.223 < fo < 0.271. These ranges define the primary and secondary
excitation (resonant) regions respectively.

While the previous paragraph illustrated that the phase angle &g could be used 10 find
the sign of the power transfer between the fluid and the cylinder. the magnitude of this
power transfer depends on both the phase angle as well as the lift coefficient magnitude.
Specifically, the power transfer between the cvlinder and the fluid is determined by the inner
product of the lift force vector with the cvlinder velocity vector. If the cylinder motion s
given by y{1) = Yosin(2x fof) and the total lift force by L(f) = Losin(27 fot 4+ op). then the

sower transfer £(1) will be given by
r .
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= 2 foYuly sizl(cb())cos“’(hfgt) + 27 foYo Lo cos{op) sin( 27 fut ) cos(2x fut) (3.1)
The average value of the power transfer {over one or more cvcles of oscillation) is given by

(PY = 27foYy Lo————/ sm (G0) cos? (27 fot) + cos(p) sin(27 fot COS(Q«‘x‘fo’)} dt

1
= QFfQYQLo {-2- Sin(@o)}

I

1 .
7 foYo {§p1dU2CL_vo} (3.2)

where T} is the period of oscillation corresponding to the frequency fo, and n is an integer
number of cvcles. The nondimensional coefficient C_v,, which determines the magnitude

of the power transfer. is the lift coefficient in phase with cvlinder oscillation velocity. i.e

Lo Sin(OO)

%pldUz = CLo Sin(Oo) (33)

Crv, =

The variation of C_y, against nondimensional frequency fo for the amplitude ratio
Yo/d = 0.30 is shown in Figure 3-9. Positive values of this coefficient denote positive
power transfer to the cylinder, i.e. the cylinder extracts energy from the fluid. This power
transfer serves to amplifv the motion of the cylinder. As we shall see shortly. increased
cylinder motion amplitude causes a reduction in the value of Cp_v,, leading to eventual
limit-cycle behavior of the cylinder oscillations. From Figure 3-9, the primary positive range
of Cp_v, (0.125 < fo < 0.182) delineates the primary resonant region of the cvlinder-wake
interaction.

An analysis similar to Equations 3.1 - 3.3 can be performed to determine the added
mass effect of the vortex-induced lift force. As we discussed in Chapter {. early researchers
(Bishop and Hassan [6]. Protos et al. [60]) assumed a constant added mass coefficient (from
potential flow theory) to account for the inertial component of the lift force. This. however,
is an incorrect assumption, since the added mass coeflicient varies with cvlinder oscillation
(Sarpkaya [65]). The correct value of the added mass (as a function of oscillation frequency
and amplitude) must be determined by calculating the component of the measured Lift

coefficient in phase with cylinder acceleration.
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Figure 3-9: Lift coefficient in phase with velocity; sinusoidal oscillations: Yp/d = 0.30.

Using our previous formulations, the cylinder acceleration is given by

d? 2 .
aﬁy(f) = — Yo (27 fo)” sin(27 fot) (3.4)

Hence, the component of the lift coefficient in phase with acceleration. which then deter-

mines the magnitude of the added mass effect, is given by

_ Lo(—cos{¢n))

Cr_a, = %pldU’ = —Cp, cos{dp) {3.5)

The magnitude of the added mass, M,,, is given by the total lift force in phase with

acceleration divided by the magnitude of the acceleration, i.e.

%p[(lU?CL_AO

My, = :
T Yo(2rfo)?

(3.6)

The conventional method of representing the added mass of a body is via an added mass




coefficient Cay,, written as a fraction of the displaced mass of the surrounding fuid. i.e.

, Ma y -
C’Mg = /)VD {3.7)

where V is the volume of the body in consideration (and hence the volume of the displaced
fluid). Some algebraic manipulations of Equations 3.6 and 3.7 finally yield the following con-
venient representation of the added mass coefficient (in terms of C'p_4,, and nondimensional

frequency and amplitude ratio):

1 Cr_a,

S 4 25U (3.8)
273 (Yo/d) f3

Capy =

Plots of the lift coefficient in phase with acceleration C'p_s,. and added mass coefficient
C,, for the amplitude ratio 0.30. are shown in Figures 3-10 and 3-11. These coefficients
illustrate that there is a sharp variation of the inertial fluid force in the vicinity of the
resonant point. From Figure 3-11, it is seen that the classical value of unity for the cylin-
der added mass coefficient is true only for frequencies of oscillation that are high relative
to the shedding frequency, i.e. at low values of reduced velocity Vg (= 1/fo). At low
nondimensional frequencies (high reduced velocities), the effective fluid inertial force must
be represented by a negative added mass coefficient. Thus it is clear that ('aj, cannot be

assumed to have a constant value.

3.3.2 Results for other amplitude ratios

In the previous section, a detailed set of results were presented for the constant amplitude
ratio of Yp/d = 0.30, with the intention of illustrating typical sinusoidal results in some
depth. In total, five additional values of amplitude ratio were tested. Yo/d being 0.15. 0.50.
0.75, 1.00. and 1.20. As can be readily imagined. the graphical depiction of the results
for all of these amplitude ratios is very confusing when plotted together in graphs such
as Figures 3-6 - 3-11. Hence we opted to show the variation of the combined sinusoidal
results by using contour “maps”, presented in Figures 3-12 throngh 3-16. In these plots.
the X axis corresponds to the nondimensional oscillation frequency fo and 1he Y axis to
nondimensional amplitude ratio Yy/d, with the contour lines depicting lines of equal force

coefficient magnitnde. The numbers marked on the contour lines represent the values of
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Figure 3-10: Lift coefficient in phase with acceleration; sinusoidal oscillations; ¥, /d = 0.30.
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Figure 3-11: Added mass coefficient: sinusoidal oscillations; Yo /d = 0.30.




Figure 3-12: Contours of the mean drag coefficient: sinusoidal oscillations.
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Figure 3-13: Contours of the oscillating drag coefficient: sinusoidal oscillations.
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Figure 3-14:

Contours of the lift coefficient in phase with velocity; sinusoidal oscillations.
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Figure 3-15: Contours of the lift coefficient in phase with acceleration: sinusoidal oscillations.

ones spmupdwe

IRl

l <r
T T T T T T T =
v
4 e
<
| -
1<
>y
v
joi 2
< Q
i g
g
B
et
' {8
s 8
[25]
=
Q
1 £
v ]
o o=
Py Q
l 12
l . v
1<
p——
l , N’
L 1 1 | i | L -
<t ! - o et s ™ <
— — o o o <




Figure 3-16: Contours of the added mass coefficient: sinusoidal oscillations.

U2

1 1 l 1 {
< ! - < o <, o
- - S = S <

ones opnyjdwe

80

0.4

oy

0.1 0.15 0.2 0.25

0.05

nondimensional frequency




the relevant coetlicient wlong the specified linea, Facle fivure comons resuite tor ail of

the sinusoidal tests conducred. fe. cach figure represeuts datia colected ot S0 deorete

frequencies and 6 discrete amplitude ratios, for a total of 300 dava pornte. Noattenyt b

been made to stooth the data in any way, and simple linear iaerpolation hae heon ased
:

between data points in order to generate the contour plots. A brief descnption of cach

contour piot follows.

Mean drag coefficient. Contours of the mean drag coefficient <y, are presented in

Figure 3-12. The amplification of the mean drag in the primary resonant region 015 «

SR

j:U < 0.08) is elearly seen, with a ¢'p ) value of about 2.60 for an awplitnde ratio of 1.00.
A secondary amplification peak can be discerned (at frequencies near 00325 for moderate
oscillation amplitudes. but fades away for very small or very large monons, Drag coctiicient
values for other combinations of osciilation frequeney and wwplitude are easily obtsined
from the figure. It should be noted that while these contour maps have not been presented
in the past, our nnderlying mean drag results are similar to those of Sarpkava 670 and
Mercier [17].

Oscillating drag coefficient. Results for the oscillating drav cooflicient 7, are pre-
sented in Figure 3-130 At Jow oseillation amplitudes and/or frequencies, the magnitude of
Cp,, s very small. agreesing with the conventional view that the oscillating drag foree gs
about 107 {or lessy of the mean dray foree 65, 37, Voo This as vol alwais trae DA high
oscilfation waplitades and freguencies, the oscillating drag coetlictent wie foand 1o be s
Jarge as ~.0. ie. several times the magnitude of the mean drag cootlicient. A mare detailed
Jook ar these remarkable pesnlts, as well as other facets of the oscillating drae foree, s
pre: ented 1noa later ~ection of this fim;}f«vr,

[ift coefficient in phase with velocity. Figure 3 11 shows contours of the Lt coefhis
cient iy phase with oscillation velociiv, €7 10 The thick black Bne marked on the haure
correspotds 1o the sero contoinn. beo the separation hetween postine (oxetne and nega
trive tdampries vabies of the conthionr The pritnary and —ocomdar ot oan (e ant

Fegrialis et Ceg iy o wee with the prritnary oNCR alian sedion ceptetod Oiciingd 4 Lo e

. 1 Gy \ . . -
~jenal ?r'w;w*ru’ Soob abiont 007 el extendine 1oy, PRI Attt potne e ot iy




With increasing amplitude (in the resonant region). 7y, decreases and finaslly becomes
negative. The significance of Figure 3-14 is that it contains practically all of the fuid force
information required 1o make an accurate prediction of the vortex-induced response aruph-

tude in a typical VIV problem. The use of such contours in making response predictions

will be explained in Chapter 4.

Lift coefficient in phase with acceleration. Figure 3-15 shows contours of the lift
coefficient in phase with oscillation acceleration, CL_a,» and Figure 3-16 shows contours
of the related added mass coefficient. Chrr,. s before, the thick black line marked on the
figures corresponds to the zero contour. showing the transition from positive 1o negative
values of the coeflicients. A remarkable resuit is that althongh the zero transition occurs
very rapidly. the frequency at which this transition takes place is only verv weakly dependent

on amplitude.

[t will be noticed that results for the lift coefficient magnitude and phase angle were not
presented in the form of contonr maps. The lift forre phase angle was found to behave in
an unexpected manner got amenable to presentation via a contour plot. and the Hft force
magnitude information is not useful without the accompanving phase information. lustead
of magnitude and phase plots, the lift force corfficients in phase with velocity and in phase

with acceleration were computed directly and presented here. A detailed diseussion of the

behavior of the lift phase angle is contained in the next section of this chapter.

3.4 The behavior of the lift force phase angle

We have seen incearlier sections that the phase angle betwoen the Ut force aid the evhader
motion i~ very impottant in determining the precice action of the Lft force. o particular,
if the wotion is expressed as gt} = Yostne2z foty the WD foree can be written as L)
Lo sini 27 fot 5 op). where oy ds defined as the anele by which the Bt force vecror teads the
motion vector: this angle then deternmines whother the Bt foree is o restimg or dampug
Fignre 3007 shows this coneept fua eraphical manner T thic haure, 1o ovlinder
oscillation and Gt foree are represented by secrors that rotate Gnan ant o fochs o dinection o

around the ortein at an angular velooity of 2o fut. U elecrrival enginerninge parbance, sk
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Figure 3-17: Vector diagram of the cylinder oscillation. velocity and acceleration: and
vortex-induced lift force.

vectors are called phasors.) If we choose (arbitrarilv) the motion vector to lie along the
positive X axis. then the oscillation velocity vector (being the derivative of the motion) lies
along the positive Y axis, and the oscillation acceleration vector (being the derivative of
the velocity) lies along the negative X axis. The lift force is some arbitrarv vector with a
phase angle measured in an anticlockv.ise direction from the positive X axis.

From Figure 3-17. the importance of the phase angle is clear. If the phase unale lies in
the range (0 < 0g < +7. the component of the lift force in phase with cvlinder velocity is
positive. Thus there is positive power transfor from the fluid to the evlnder. and vortex.
shedding acis to excite the cylinder vibrations. On the other hand. if the phase angle Lies in
the range += < oy < +2r (or alternatively —= < o < 01 the component of the Lift forer

in phase with cvlinder velocity is negative: there is necative power transfer from the fluid




to the cylinder. and vortex-shedding acts 1o damp the eviinder vibrations.

For each of our sinusoidal tests. the phase angle oy was caleulated as the difference
between the phase angle of the Lift force (with respect to our reference sinusoid; and the
phase angle of the cyvlinder motion (with respect to the same reference sinusoid). Figures 3-
18 and 3-19 illustrate the phase angle data for “small”™ and “large™ oscillation amplitudes
{with the classification based on the observed behavior).

For the amplitude ratios of 0.15. 0.30 and 0.50, {the “small”™ amplitudes) the varation
of phase angle is shown in Figure 3-18. While there are differences in the behavior for the

different amplitudes. there is strong similarity as well. At low frequencies of oscillation.
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Figure 3-18: Variation of phase angle with nondimensional frequency for “small” amplitude
ratios (.15, 0.30 and 0.50.

the phase angle in all thiree cases is about —%7. As the frequency is increased. the phase
becomes more negative, until it reaches —7 and “wraps-aronnd™ 1o + = e, from lagging
one cvele of oscillation. the 1ift force vector can be considered as feadng the next suecossive
evele. With further increase in the frequency (near the natural Stronhal ~heddine value).
i

the phase angle transits rapidly from 4+ 1o 0 through the exciting region: this range of
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Figure 3-19: Variation of phase angle with nondimensional frequency for “large™ amplitude
ratios 0.75, 1.00 and 1.20.

frequency then defines the excitation or resonant region. At high oscillation frequencies the
phase stabilizes at a little less than 0 radians.

For the “large” amplitude ratios of 0.75. 1.00. and 1.20. the variation of phase angle
is shown in Figure 3-19. While the results for the individual amplitudes in this figure are
comparable with each other, the behavior for these large amplitudes is quite different from
the small amplitude behavior of the previous paragraph. At low oscillation frequencies.
the phase angle is once again about ‘32: radians, and at high escillation frequencies too,
the phase angle is once again a little less than 0. However. the rapid transition of phase
(near the Strouhal frequency) is in the opposite direction. Instead of reaching —= and then
wrapping around. the phase moves towards zero by becoming less negative with increasing
frequency.

The difference hetween the “emall™ and the “large”™ amplitude behavior of phase angle
is easily visnalized in Figure 3-20. Like Figure 3-17. Figure 3:20 5 a vector diagram of

the 1ift force refative to the evlinder oscillation, velocity, and acceleration veetors. At fow
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Figure 3-20: Vector diagram showing “small” and “large™ amplitude phase transition be-

Loviar,

frequencies. the lift force vector is in the third quadrant. aud at high frequencies. the lift
force vector is in the fourth quadrant. In either case, the lift force has a damping effect.
For “small” amplitudes, the lift vector transits from the initial (low frequency) state to
the final (high frequency) state in a clockwise fashion, i.e. it transits through the exciting
region. For “large” amplitudes, the lift vector transits from the initial to the final state in
an anticlockwise fashion, i.e. it remains everywhere in the damping region. (This is not
strictly true for all amplitudes. since for the amplitude ratio of 0.75. a small excursion of
the phase angle into the exciting region is seen at the end of the rapid transition range: see
Figure 3-19.)

Needless to sayv. we found these results for the phase angle very interesting, in part due

to their novelty. Prior to our data, the most compiete results for the lift foree phase angle

~f




were due to Staubli [74. 75]. illustrated in the three-dimensional view of Figure 1-1. That
figure shows that the variation of phase is in one direction for all amplitudes of oscillation.

in direct contradiction to Figures 3-18 and 3-19. Staubli does say, however, that

“The measured area is displayed with full lines ...additional points (inter-
rupted lines) have been estimated in order to complete the picture over the

whole area.” [74]

Close examination of Figure 1-4 reveals that Staubli's full lines (actual data) are only for
relatively low oscillation amplitudes. and the observed behavior has been extrapolated to
higher amplitudes. Our data suggests that this extrapolation may have been incorrect.

In order to check that our results were in fact correct and not due to some obscure
artifact of the Fourier-component data processing method. we devised a time-domain scheme
to calculate the lift force phase angle. This algorithm found the time points of upcrossing
of the lift force time trace and calculated the time difference. and hence the phase angle.
relative to the nearest upcrossing of the corresponding LVDT motion time trace. All of the
sinusoidal test data were processed with this time-domain scheme. which verified that the
phase angles from the harmonic analvsis were indeed correct. For example. Figures 3-21 and
3-22 show the phase angle variation calculated by both the frequency-domain as well as the
time-domain algorithms for the amplitude ratios Yy/d = 0.50 and Y,/d = 0.75 respectively.
Good agreement is seen between the two methods. and such agreement was observed for all
of the amplitude ratios tested. In addition. it may be noted that later sinusoidal oscillation
experiments with very fine frequency resolution (conducted in our laboratory as part of an
oil-industry sponsored }oint Industry Project {84]) also revealed very similar phase angle
variations.

The physical significance of the different phase angle trends for the “large™ versus the
“small” oscillation amplitudes (the “phase flipping” behavior) is that it provides an ex-
planation for the self-limiting nature of vortex-induced vibrations. It is well known that
the exciting lift coefficient (the lift coefficient in phase with velocity, €7y, ) decreases as
amplitude increases, and finally becomes nesative ar a limiting amplitude of about one
diameter (Griffin and Ramberg [26]. Sarpkava [65]. and our results of Figure 3-14). This
observed cessation of the exciting force has heen explained as being due to a breakdown of

the Karman vortex street at large amplitudes (Blevins [7]). Meanwhile. the low Revnolds
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number flow visualization results of Ongoren and Rockwell [53]. as well as Williamson and
Roshko [95], indicate that the sharp variatior in phase angle near the Strouhal frequency
is brought about by a change in rthe phasing of the vortex shedding process relative to the
motion of the cylinder. It is reasonable to suppose. therefore. that our observed “phase-
flipping™ behavior is due to a similar change in the phasing of the vortex shedding process
due to a change in oscillation amplitude. Thus the vanishing of the exciting lift coefficient
(leading to limit-cycle behavior of the oscillations) might well be due to a simple change in
phasing of the vortices rather than a complete breakdown of the vortex street.

An argument based on the observed limit-cvcle behavior of the exciting lift coefficient
can also be used to demnnstrate wiat Staubli’s extrapolation of the phase angle variation
(Figure 1-4) must be incorrect. If in fact the phase angle traverses through the exciting
region (0 < &g < +7) for all amplitudes of oscillation. then there must exist a range of
frequencies, however small, within which the exciting lift coefficient remains positive, and
the cylinder oscillation amplitude grows indefinitely. Since this is not the case with VIV,

one must conclude that the phase angle variation depicted by Staubli is in error.

3.5 The behavior of the oscillating drag force

3.5.1 Large amplification at high oscillation frequencies

In Figure 3-13 we saw that the oscillating drag coefficient ("p, was found to attain very
large values at high oscillation frequencies and amplitudes. While this amplification is
not significant in the primary resonant region and is unlikely to play a role in most VIV
situations, it is important to be able to predict the oscillating drag should the need arise
(as it would, for example. if high frequency structural oscillations are caused by some
other mechanism). A particularly interesting way of illustrating the ('p, amplification
phenomenon is by plotting together both the mean and oscillating drag coefficients for a
typical large amplitude of motion. say Yo/d = 0.75. Figure 3-23 shows both (', and Cp,
for this amplitude. From the figure. the sharp increase of the oscillating drag { for frequencies
above the resonant range) is clearly seen. For frequencies above about 0.21, the amplitude
of the oscillating drag force czceeds the mean drag level, at the highest frequencies tested
the oscillating drag was found to be more than twice the mean drag.

This huge increase of the oscillating drag force is no less dramatic when visualized in
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Figure 3-23: Mean and oscillating drag coefficients for amplitude ratio 0.75.

the time domain. Figures 3-24 and 3-25 show time segments of two different drag force data
traces, purposely chosen to include a few seconds of run time and a few seconds of the final
zero period. Figure 3-21 shows the drag force measured for sinusoidal oscillations at an
amplitude ratio of 0.75 and a nondimensional frequency of 0.132: i.e. at a frequency below
the resonant frequency. The oscillating drag force appears as relatively small fluctuations
about the mean drag value; one could use the figure to directly estimate D,, ~ 2.0 N and
Do = 0.3 N. As an example of a case above the resonant frequency, Figure 3-25 illustrates
the drag force at the same amplitude ratio and a nondimensional frequency of 0.285. The
tremendous increase of the oscillating drag dominates the figure. The mean drag could be
estimated as D,, = 3.0 N, a slight increase over the previous value. but the oscillating drag
is now Dg = 4.0 N {(compared to 0.3 N previously), an approximately 13-fold increase !
References can be found in the literature to unexpectedly large observed values of the
oscillating drag coefficient, but very little guantitative data exists. For example, Sarpkaya

[65] (who does not provide any numbers for the oscillating drag coefiicient) reports that:

“[For constant amplitude ratio and flow velocity] the frequency of the oseilla-
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tions was graduallv increased ... and the resulting in-line force was continously
recorded ...the in-line force increases rapidly but with very little oscillations
superimposed on it. As soon as the frequency of oscillations nears the Strouhal
frequency, the amplitude as well as the frequency of the force oscillations in-

creases.”

The most complete data for Cp, prior to our results were from Mercier [47]. He reports

that:

“The magnitudes of [oscillating drag] forces become unanticipatedly large.
especially for large amplitudes of oscillation and values of reduced velocity. [Vg].

below that corresponding to the critical frequency.”

Mercier presents a plot of Cp, versus Vg for several amplitude ratios of oscillation. but
the highest value of Cp, he measured was about 2.50, well below the maximum values
that we recorded. On the basis of the above references, it is reasonable to view our results
(particularly Figure 3-13) as an important set of quantitative data verifying and extending
previous reports on the amplification of the oscillating drag coefficient.

While this amplification behavior of the oscillating drag is an interesting result. the
origin of the phenomenon is less obvious. From dimensional con<iderations. it is reasonable
to expect the oscillating drag (and lift) forces to be proportional to the square of the
tangential velocity of the separating boundary layer, which in turn scales approximately 2<
the frequency of oscillations (for constant amplitude). Thus it is reasonable to expect large
force magnitudes at large oscillation {requencies, although the precise cause (in terms of
the vortex shedding process) is as yet undetermined. Instantaneous measurements of the
velocity field in the near wake are required to resolve this issue. It is also important to note
that in-line (drag direction) oscillations of the test cylinder might well serve to change the
measured drag forces appreciably. Such in-line oscillations are not currently feasible with
our apparatus, but they have been done elsewhere in different contexts (Moe and Wu {49].
Alexander {1]). It is suggested that an investigation into the causes of very large oscillating

drag forces would prove .o be a worthwhile future rescarch endeavor.




3.5.2 Higher harmonics of the oscillating drag

During manual data processing of some of the experimental runs {carried out as part of
the initial system verification process). it was noticed that a few of the drag force rraces
{particularly those corresponding to large amplitude motions) contained appreciable higher
harmonic components. For example. Figure 3-26 shows time segments of the motion (LVDT)
and the drag force traces for the sinusaidal oscillation case of amplitude ratio Yy/d = 0.75,

and frequency fo = 0.157 (in the resonant region). Harmonic components higher than

O.M r T Y A . L4 {
1
E 0.02+ —’
2 !
Z of -
=
& 002} -
i
-0.04 |
32 358
5 H
!
é 4 - 4
3
é 3r N
< 2k .
I 1 A 1 1 L L
32 325 33 335 34 345 a5 355

time in seconds

Figure 3-26: Time segments of the motion (LVDT) and the drag force: Yo/d = 0.75: fo =
0.157.
the expected second-harmonic are clearly seen in the drag force. Mercier [47] had briefly
mentioned a similar observation but had not investigated the matter further. We decided
to pursue the phenomenon and computed the first four harmonics of the oscillating drag
force for each of the three highest amplitudes of oscillation.

To carry out this analysis, the sinusoidal oscillation runs for amplitude ratios 0.75. 1.00
and 1.20 were reprocessed from the raw data. A modified filter program was used so as to

lowpass filter the data at a cutoff frequency of 4.4 multiplied by the oscillation frequency
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{i.e. to preserve information up 1o and including the fourth bavmonicy. The toral drag

coefficient {nondimensional drag forcel was now modeled as

(“Dwml = ("i'[)m +

C'py_y sind 2 folt + o) + Cp,_, sin 274 2foit vyl -

Cpo_s SINE27(3 o)t + voa)+ Cp,_, 10274 folt + Vo) (3.9)

where Cp,, is the mean drag coefficient (as before), Cp,_, , are the oscillating drag co-
efficient magnitudes at the first four harmonics of the oscillation frequency (fo. 2f. 3fy
and 4fy) respectively. and ¥g_,.; are arbitrary phase angles. Note that by our previous

definition of the oscillating drag coefficient {Equation 2.9). we have

Cpy = Cpy s (3.10)

The coefficients Cp, , , were computed using a modified version of the previously de-
scribed MATLAB routine. The variation of Cp, ,, Cp,_,, and Cp,_, with oscillation {re-
quency for amplitude ratios 0.75 and 1.20 are plotted in Figures 3-27 and 3-28. (The first
harmonic Cp, , was found to be of small magnitude everywhere and co has heen omitted.)

From Figures 3-27 and 3-28, the following features can be clearly seen:

o The oscillating drag is dominated by the conventional second-harmonic component.

Cpg_s-
e The third-harmonic component C'p, . is amplified at high osci'lation frequencies.

o The fourth-harmonic component 'p, , is amplified in a region near the resonant

frequency range, but is reduced at high frequencies.

The importance of these features of the behavior of the oscillating drag force is that they
can be directly related to the vortical patterns in the wake. Recall that the conventional
vortex street is formed with two vortices shed per cyvcle of eylinder oscillation. Each vortex
causes one cycle of variation of the in-line velocity in the near wake of the cvlinder. which
then translates directly to one cycle of variation of the in-line drag force. Thus. two vortices
(or one vortex pair) per cycle of evlinder oscillation corresponds to an oscillating drag foree

at twice the frequency of oscillation. By the converse argument. a drag force found to be
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oscillating at the Nth-harmonic of the oscillation {requency implies that .V vortices are
formed in the wake per cyvele of motion.

Based on the preceding explanation, Figures 3-27 and 3-28 are in agreement with the
findings of Williamson and Roshko [95] regarding vortex synchronization patterns in a
circular cylinder wake. As we saw in Chapter 1 (Figure 1-5). the authors observed different
vortex patterns in the wake depending on the cylinder oscillation amplitude and frequency.
These patterns were classified variously as 25, 2P, P+8S, etc., with S denoting a single vortex
and P denoting a vortex pair. At amplitudes of oscillation of about one cylinder diameter
and low frequencies (high wavelength), Williamson and Roshko were unable to detect any
definite vortex pattern. consistent with the low values of oscillating drag that we measured in
that range. For frequencies near the natural Strouhal frequency, they observed the 2P mode
of vortex formation (four vortices per cycle). consistent with the amplification of the fourth-
harmonic that we detected. For high oscillation frequencies, they observed an asymmetric
P+S mode (three vortices per cycle), corresponding to our measured amplification of the
third-harmonic of the oscillating drag.

An important fact in all of this is that while Wiiliamson and Roshko conducted their
experiments at Reynolds numbers between 300 and 1000, our Reyrolds number was constant
at about 10,000. While the previous authors did not study the possible effect of Reynolds
number on their visualized vortex formation patterns, we believe from our results that those
patterns are indeed representative of the wake modes to be found over a large Revnolds

number range.

3.6 Lock-in behavior and excitation

A phenomenon that researchers have extensively studied in the past is that of “lock-in",
sometimes called “wake-capture”. When the externally imposed cylinder oscillation fre-
guency {or structural natural {requency, in the case of free oscillations) comes within a
certain range of the Strouhal shedding frequency, there is an apparent breakdown of the
Strouhal relation (Equation 1.1). The shedding process then collapses onto the cylinder
vibration frequency, and this is commonly accompanied by increased vortex strength. in-
creased correlation length, and a reduction of random irregularities in the vortex-induced

forces. Information on experimentally determined lock-in ranges is widely available, for
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example see Bishop and Hassan {6] or Stansby {73]. Recent numerical investigations into
the phenomenon (Karniadakis and Triantafyllou [35]) have revealed that the transition
from the nonlock-in state to the lock-in state or vice versa takes place in a continuous but
rapid manner, and that a chaotic response of the vortex wake can develop at the lock-in
boundaries.

For purposes of comparison and in order to establish the lock-in boundaries for our
cylinder model, we conducted a spectral analysis of each lift force data trace. A MATLAB
routine was written that performed the computations and sent the results in a graphical form
directly to a printer: these hardcopy results were then scarned visually to determine under
what conditions the natural shedding frequency disappeared in favor of the imposed cylinder
frequency. For example, Figure 3-29 iﬂustrates the calculated motion (LVDT) and lift force
spectra for four tests at amplitude ratio Yy/d = 0.50 and different oscillation frequencies.
In this figure, the subplot columns are organized into motion spectra (left column) and lift
force spectra (right column), while the rows correspond to different frequencies. The top row
contains the spectra for the test conducted at a nondimensional frequency fy = 0.107; the lift
force clearly contains components at both the oscillation frequency as well as the Strouhal
shedding frequency: this is an example of nonlock-in. The two intermediate rows represent
data collected at nondimensional frequencies of 0.168 and 0.203; the lift force spectra contain
components only at the respective oscillation frequencies, and hence these plots illustrate
lock-in. The fact that lock-in occurs over a finite range of frequencics is dcmonstrated by
the two different realizations. Finally, the last row represents data collected at a frequency
of 0.254. In this case, the natural Strouhal shedding component has reappeared in the lift
force spectrum, showing that the oscillation frequency is now above the lock-in range: here
again is an example of nonlock-in.

By repeating the data analysis steps associated with Figure 3-29 for a large number
of frequency and amplitude combinations, we constructed a picture of the overall lock-in
region, shown in Figure 3-30. For each of the amplitude ratios ronsidered, the asterisk
marks the observed lock-in boundary, i.e. the transition from lock-in to nonlock-in or vice
versa. A dashed line has been drawn through the asterisks as a visual aid. For {requency
and amplitude combinations within the lock-in boundaries (the region marked “lock-in"),
vortex shedding occurs only at the oscillation frequency. Outside the lock-in boundaries

(the regions marked “nonlock-in”), both the oscillation trequency and the natural Strouhal
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Figure 3-29: Motion and lift spectra for Yojd = 0.50 and four oscillation frequencies.
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Figure 3-30: Experimentally determined lock-in region for sinusoidal oscillations.

frequency can be detected in the wake. It should be noted that the determination of the
lock-in boundaries became increasingly difficult at higher oscillation amplitudes.

Our experimentally determined lock-in region of Figure 3-30 is not dissimilar from widely
available published results [6, 7, 47, 50. 73], but it is very important to distinguish this lock-in
region from the ezcitation region. The latter refers to the range of frequency and ampli-
tude combinations over which self-excited oscillations are possible, and is obtained directly
from the zero contour of Figure 3-14. The excitation regions (primary and secondarv) are
illustrated in Figure 3-31, where the notations “power +” and “power -" are used to denote
the regions of positive power transfer (excitation) and negative power transfer (damping)
respectively. Also marked on Figure 3-31 are the asterisks dennting the lock-in boundaries
seen earlier. It is readily apparent that lock-in. which is determined by frequency considera-

tions, is not at all the same thing as excitation. which is determined by phase considerations.
Depending on the valnes of parameters such as the structural natural frequency. ambient

flow velocity, ete | it ic sptively possible for a cylinder to exhibit vortex-induced vibrations

without the wake being synchronized to the structural oscillations. Such behavior has been
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Figure 3-31: Excitation and lock-in regions for sinusoidal oscillations.

suggested by the laboratory work of Moeller [50], and Van Atta and Gharib {86]. and has
recently been confirmed by experiments on lightly damped cylinders conducted by Vandiver
et al. [87].

While the lock-in phenomenon is a fascinating feature of the vortex shedding problem.
knowledge or estimates of the lock-in boundaries do not provide any information on the
exciting or damping effect of the lift force. The excitation phenomenon is far more useful
from the point of making engineering response predictions. We believe that the two concepts

of lock-in and excitation have been confused in the literature.

3.7 Time-domain analysis of the wake response

In Section 3.4 we mentioned that a time-domain upcrossing analysis was used to verify the
behavior of the lift force phase angle. This time-domain method was extensively modified.
refined and used ir the analysis of beating records, to be presented in Chapter 5. In the
process of verifying the analysis method, we found it useful to process our sinusoidal runs

in the same manner. We discovered that the time-domain method was often better than
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the frequency-domain method (presented in the previous section, as in Figure 3-293 for the
detection and classification of the response niodes of the cyvlinder wake.

From their numerical study of a vortex wake subjected to external forcing, Karniadakis
and Triantafyllou [35] concluded that three typical wake response modes could be detected.

These were:

1. Periodic nonlock-in, which is identical 1o the unforced natural shedding process. The

external forcing (cylinder oscillations) is such that the wake does not “feel™ this forc-
ing.

2. Quasiperiodic nonlock-in, which is due to interaction between the ratural shedding
frequency and the forcing frequency. For certain values of the forcing. this could lead

to a chaotic state of the response.

3. Periodic lock-in, which is the classical "wake-capture” mode. The external forcing

controls the vortex shedding process and the natural shedding frequency disappears.

Karniadakis and Triantafyllou termed the boundary between the first two modes the “re-
ceptivity boundary” (i.e. outside this boundary the wake is not receptive to tne external
forcing) and the boundary between the second and third modes the “lock-in boundarv™. As
we saw in the earlier section, an analysis of spectra was sufficient to distinguish between
nonlock-in and lock-in, but not sensitive enough to further discriminate between tvpes of
nonlock-in, i.e. to capture the receptivity boundary.

Figures 3-32, 3-33, and 3-34 illustrate some results of our time-domain processing: we
have purposely chosen two of the same cases of Figure 3-29. Each of these figures consists
of several subplots. The first two subplots ifrom the top) are time traces of the motion
amplitude ratio and normalized lift coefficient magnitude respectively. The time points
corresponding to each upcrossing of each of the time traces were determined. and then
used to calculate the “instantaneous” periods (and hence “instantaneous frequencies™) of
lift and motion and the “instantaneous” phase angle between the lift and the motion. (The
term “instantaneous” is used within quotes to denote the values of frequency or phase angle
calculated from one upcrossing to the next. i.e. over one cycle of oscillation.) The third
subplot shows the variation of the “instantaneous” phase angle with time. Finally, the

fourth and fifth subplots (at the bottom) depict histograms of the calculated motion and
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Figure 3-32: Time-domain processing applied to Yy/d = 0.50, fo = 0.107.

1 .
_1 J — | J L
50 52 54 36 58 60 62
time in seconds
2 T . T
_2 __) 4_ 4 i 1
50 52 54 56 58 60 62
time in seconds
I Tox f
b . 4
2 W A
B X : x
N : x B X
50 52 54 56 58 60 62
time in seconds
15 motion-freque'ncy histolgr_am 8 liftl-frequenqy histogrlam
6 o .
10} :
4 J
5 - .
2 -
0 ‘ 4 4 0 é {- ‘ +
0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 04

102
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Figure 3-33: Time-domain processing applied to Yy/d = 0.50. fo = 0.152,
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Figure 3-34: Time-domain processing applied to Y,/d = 0.50. fi, = 0.203
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lift frequencies, plotted using 30 bins between fy = 0.05 and fy = (.35.

Figure 3-32 shows the case of sinusoidal oscillations at an amplitude ratio Yy,/d = 0.50
and a nondimensional oscillation frequency f, = 0.107. From the time traces of the motion
and the lift coefficient, it is clear (hat the wake vortex shedding frequency (lift) is not the
same as the external forcing frequency {(motion). Some amplitude-modulation of the lift
force trace is seen, but this is not dissimilar to the purely stationary {unforced) case. as
in Figure 3-5. The plot of phase angle against time shows the variation. characteristic of
a phase calculation between waveforms of diffecent (constant) frequencies. The frequency
histograms reveal that while the motion ha- a constant frequency near 0.10. the lift force
has “instantaneous” frequencies in a band around the natural Strouhal shedding value of
0.20. One concludes that the wake does 1 >t feel the effect of the cylinder oscillations. and
hence this is an example of periodic nonlock-in.

At the same amplitude ratio and a slightly higher oscillation frequency. Figure 3-33
illustrates the results for fo = 0.152. In this case, the lift force trace is clearly irregular in
nature, and the phase angle is widely scattered. One is tempted 1o use the word “chaotic”,
although a convincing demonstration of chaos in a mathematical sense requires far longer
time traces than are showrn lere. The frequency histograms show that while the motion is
a single-frequency oscillation ai fo & 0.15. .he lift force fluctuates randomly between tae
cylinder oscillation fraqnency and the natural Strouhal frequency. Because of competition
between these two components. the resulting wake response is irregular: this is an example
of quasiperiodic nonlock-ir

The third situation of periodic lock-in is depicted by Figure 3-34. There is a dramatic
change in the nature of the lift force trace. which now appears as almost a pure sinusoidal
waveform at the same frequency as that of the motion. The phase angle assumes a constant
value with little variation. and the histograms show negligible scatter of the “instantaneous™
frequencies of either the motion or the lift.

A large number of cases at different oscillation amplitudes and frequencies were ana-
Iyzed as above by the time-domain method. The lower receptivity and lock-in boundaries
(at frequencies below the Strouhal number) were easy to identifv. The upper boundaries
(at frequencies above the Strouhal number) were less clearly distinguishable, »wing to the
increasing “saturation effect” of the inertia: component of the lift force. Figure 3-35 is

a wake response state diagram, and illustrates the regions of amplitude and frequency
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Figure 3-35: Wake response state diagrams from time-domain processing.

corresponding to periodic nonlock-in, quasiperiodic nonlock-in, and periodic lock-in. The
Jock-in boundaries (shown by asterisks connected by solid lines) were almost identical to
those found earlier (Figure 3-30). Only the lower receptivity boundary could be determined
(shown by circles connected by a dashed line). Although Karniadakis and Triantafyvllou [35]
do not provide any guantitative information on the locations of the lock-in and receptivity
boundaries, Figure 3-35 confirms their findings in a qualitative sense. The wake response
states depicted here are typical of the situation below an oscillation amplitude of about
one diameter; above this range, more complex periodic states are likelv (Williamson and
Roshko [95], and Section 3.5.2).

It should be noted that transition from one wake state to another acro s the lock-in
or receptivity boundaries can occur by a change in the oscillation amplitude at constant
frequency. Early in our experimental schedule, we conducted a few tests of sinusoidal
cylinder motion with slow linear variation of the amplitude; the sbject being to accumulate
a large quantity of data in a short time. These tests were later abandoned due to difficulties

with data processing; however some of the runs illustrate the different wake modes clearly.
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Figure 3-36 is a typical example, showing the normalized motion and lift force time traces
for oscillations at frequency 0.132 and amplitude increasing from approximately 0.20 to
0.70 in a duration of about 23 seconds. Imitially, up te - time of about 33 seconds. the
lift responds at a frequency higher than the imposed oscillation frequency: this is periodic
nonlock-in. From about 33 seconds until about 47 seconds. the lift trace has a very irregular
form corresponding to quasiperiodic nonlock-in. Finally, from a time of about 47 seconds
until the end of the record, the lift shows signs of stabilizing at the oscillation frequency:
this range corresponds to the beginning of periodic lock-in. We do note that the transition
amplitudes (the amplitudes at times 33 and 47 seconds) correspond only roughly with the
state diagram of Figure 3-35. we attribute this to the possible “memory™ effect of the
amplitude variation. as well as the difficulty of accurately classifving the wake response at

high oscillation amplitudes.

107




10N




Chapter 4

Error Analysis and Application to
VIV Predictions

4.1 Preliminary remarks

In this chapter we shall survey some of the important considerations regarding the appli-
cability of our experimental data to both scientific and engineering situations. The most
important consideration is, of course, an error analysis, which studies the extent to which
our data truly represents the variable or phenomenon being measured. In addition. while
it is not the purpose of this thesis to develop a comprehensive VIV prediction algorithm.
we shall present some general principles involved in the application of our data to such pre-
dictive calculations. We shall also study cross-sectional effects. i.e. we shall investigate the

vortex-induced forces on a variety of “real-world” structural cross-sections that are often

represented as smooth circular cvlinders. but in fact mav not be so.

4.2 Error analysis

4.2.1 Introduction

In experimental studies such as ours, the risk of svstem errors is always present. In general.
there are two types of errors that could arise from flaws or limitations of the experimental
method: systematic errors, which affect the overall accuracy and cause a consistent deviation

of the measured data from the true values: and random errors. which affect the overall
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preciston: and set a limit to the repeatability of the experimental realizations. Syvstematic
errors are not easy to detect, since one requires an a priori knowledge of the true value of
the variable in consideration. Random errors can be identified by a statistical analvsis of
a number of measurements, but in general are impossible to separate {from the underlying
properties of the random distribution of the physical quantity being measured. In this
section we shall use a variety of techniques in an attempt to quantify both the systematic
and random errors introduced by our experimental system.

In Chapter 2, we saw that great care was taken in the selection and operation of each
component of the experimental apparatus: but an overall system accuracy was impossible
to obtain from a knowledge of the individual component specifications. During the data
processing stage. several methods were used to minimize the introduction of additional

error. For example:

e The majority of the processing took place via the use of large batch programs set up

to execute automatically, with a minimum of subjective decision making.

o In the process of initial setup and verification of the experimental apparatus, the
accuracy of the lead-screw and motor system in reproducing desired oscillation am-
plitudes and frequencies was investigated. It was found that the oscillation frequency
was extremely accurate to 0.01%, but the oscillation amplitude was accurate only to
about 5%. As a result. the actual realized oscillation amplitude was calculated for
each data set, and based on the ratio of this value to the desired amplitude. a small
linear correction was applied to the calculated force coefficient magnitudes. The cal-
culations were flagged for manual investigation if the amplitude error exceeded 5%.

and were abandoned entirely (and the run repeated) if the error exceeded 10%.

e In order to avoid the accumulation of errors due to frequency, a “time-gating” pro-
cedure was developed so that the oscillating force coefficients were calculated over
successive gates of length 20 cycles each, and the values obtained for the different

gates averaged.

¢ In the case of the mean drag force, the final zero period was chosen to provide the
baseline value since it was found that large force transients on carriage start-up inter-

fered with the accurate recording of the initial zero period. Care was taken to ensure
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that the mean value of the drag force during the run period was calculated over an

integer number of oscillation cycles.

As we shall see, the combined effect of all of the above error control procedures was that

we can rightfully claim a high degree of confidence in our data.

4.2.2 Wet calibrations and long-term stability

In Chapter 3, we presented results for several runs conducted with the model cylinder held
stationary, in what we termed “wet calibrations”. Figures 3-2 and 3-3 of that chapter
showed histograms of the mean drag coefficient and oscillating lift coefficient respectively
for the stationary runs: we saw that these data formed well-defined normal distributions
with standard deviations of the order on 3% of the mean in the case of thc mean drag. and
23% of the mean in the case of the oscillating lift.

Figures 4-1 and 4-2 illustrate the same data plotted against sequential event indices
along the X axis. The realizations of the mean drag coefficient (Figure 4-1) appear randomly
distributed about a value between 1.10 and 1.20, while the realizations of the lift coefficient
(Figure 4-2) are scattered primarily between 0.30 and 0.50. The important point to be
made from these figures is the excellent long-term stability of our experimental system. The
122 realizations shown here spanned a period of about 16 months, during which time the
apparatus was dismantled. stored. reassembled, and re-calibrated on at least four occasions.
There is no evidence that these operations caused any significant drifts and/or “DC-offsets”
in the measured data. Least-squares straight line curve-fits through the data points revealed
long-term variations of only 0.34% in the mean drag data and 1.24% in the lift data,

providing indirect evidence of the lack of systematic errors in our method.

4.2.3 Statistical properties of the sinusoidal data

We investigated the statistical distribution properties of our sinusoidal data in two ways:
we calculated the data spread within each experimental run, and we conducted a number of
runs at constant oscillation amplitude and frequency in order to find the data spread across
several runs of the same type.

Earlier in this chapter, as well as in Chapter 2, we saw that all of our experimental data

traces were divided into “gates™ of 20 oscillation cycles each. and the various results calcu-
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Figure 4-1: Realizations of the mean drag coefficient; stationary runs.

lated for each gate and finally averaged. For the purposes of error analysis, our MATLAB
processing routine was modified so as to record the maximum and minimum values of the
force coefficients calculated for the different gates within each run. These maximum and
minimum values were then taken to represent the data spread of the corresponding coeffi-
cient for that particular run. For example, Figures 4-3 and 4-4 show the results for the lift
coefficient magnitude (amplitude ratio 0.15) and the lift coefficient phase angle (amplitude
ratio 0.50) respectively, together with the corresponding maximum and minimum values
plotted in the form of error bars. It is clear from these figures that the data spread across
the different gates for each of the values remained consistently small, except in regions of
rapid variation of coefficient magnitude or phase angle. Similar results were obtained for
the various lift and drag force coefficients for these and other amplitude ratios. It should be
noted that while this spread analysis is not rigorous in a statistical sense (since the number
of gates within a particular run was not constant but varied from 2 at the lowest oscillation
frequencies to 13 at the highest oscillation frequencies), it does provide some idea of the

variability of the data.
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Figure 4-2: Realizations of the oscillating lift coefficient; stationary runs.

In addition to the spread of the data within each run, we selected (arbitrarily) one partic-
ular oscillation amplitude and frequency combination for further analysis. Thus 36 complete
sinusoidal oscillation tests were conducted at a nondimensional frequency fo = 0.203 and
an amplitude ratio Yp/d = 0.75. Values of the mean and oscillating drag coefficients and
the lift coefficient magnitude and phase angle were calculated and histograms constructed
from the results. Figure 4-5 shows the histogram of the mean drag coefficient results: it can
be approximated by a normal distribution. with a mean of 1.961 and a standard deviation
of the order of 1.6% of the mean. Figure 4-6 illustrates the histogram of the lift coefficient
magnitude for the same runs: this appears as a skewed normal distribution with a mean
of 3.095 and a standard deviation of the order of 1.8% of the mean. While the asvmmetry
of Figure 4-6 could point to an insufficient number of realizations (or could possibly reflect
the underlying characteristics of the lift force distribution), the important fact is that the
total data spread across the 36 individual realizations is remarkably small. Results for the
oscillating drag coefficient and lift force phase angle data were similar to Figures 4-5 and

4-6: the net conclusion was that the precision of our experimental process was excellent.
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Figure 4-3: Lift coefficient magnitude for Yp/d = 0.15, with error bars.

4.2.4 Comparisons with published results

The previous paragraphs demonstrate that our experimental apparatus and analysis meth-
ods produced highlv reproducible data (i.e. low random errors), but they do not conclusively
show that our results accurately reflected the actual physical phenomena (i.e. low system-
atic errors). Fortunately, a great deal of data has been accumulated over the years on the
vortex-induced forces acting on sinusoidally oscillating cylinders, and this data provides a
convenient standard for the results from our apparatus. (As we mentioned in Chapter 3.
the original rationale for our sinusoidal oscillation tests was that we could use these as a
means of relating the beating oscillation data to standard sinusoidal results available in the
literature.)

In the case of the mean drag force, the variation of the resonant mean drag as a function
of oscillation amplitude is commonly available. This is the maximum value of the drag co-
efficient (at a given amplitude) over all oscillation frequencies in the vicinity of the resonant
Strouhal number, and is commonly given in terms of the ratio of the resonant drag coef-

ficient (with oscillations) to the stationary drag coefficient., i.e. Cp /Cp

ozcillations Mitationary
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Figure 4-7 illustrates this drag amplification ratio as a function of oscillation amplitude
ratio for sinusoidal oscillations, with data from various sources (Reynolds numbers in the
range 5,000 < Re < 60,000). Individual data points are marked with numerals “1”, “2”,
etc. identifying their origin; the dashed line shows a curve-fit through data from various
sources, including field experiments on marine cables (Vandiver [89]. Kim [36]). A large
scatter in the data is seen, illustrating the strong influence of different experimental condi-
tions. Qur present data, identified by “MIT”, are clearly in the middle of all the scatter,
and the maximum deviation from Vandiver’s curve-fit is only of the order of 10%.

In the case of the oscillating lift coefficient, fewer sources are available. and the data
are not always comparable. For instance, many researchers quote only the measured lift
coefficient magnitude (or RMS value), which conveys very little useful information without
knowledge of the associated phase angle. Even those sources that do include both lift
magnitude and phase information often use different sign and angle conventions, and direct

comparisons are difficult. We shall compare our lift coefficient results to those of Sarpkaya

[65] and Staubli {75].
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Figure 4-7: Drag amplification ratio as a function of amplitude ratio, various data sources.

Figures 4-8 and 4-9 show plots of our lift coefficient components in phase with (negative)
acceleration and (positive) velocity respectively for the constant amplitude ratio of 0.15,
compared to Staubli’s coefficients Croc and Cros for the amplitude ratio 0.11 [75]. The
X axes in all the plots represent nondimensional frequency. Staubli’s sign convention is
such that his Croc is equal to the negative of our Cy_u,, while his Cros is identical to
our Cp_v,. In addition, he uses the notation Sy for the nondimensional frequency and €
for the nondimensional amplitude ratio. From the figures, it is clear that the variations of
~CL_4, and Cy_y, with frequency compare very well to the variations of CLOC‘ and Cros

respectivelv. The small differences that do exist could well be due to the differences in
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Figure 4-8: Comparing our
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Reynolds number or oscillation amplitude.

Figures 4-10 and 4-11 show plots of our results for —(’p_4, and =’y _y,. compared
to Sarpkava’s coefficients Cnp and Cgp respectively [65]. All the data were collected at
the amplitude ratio 0.50, and are displayed against the nondimensional reduced velocity
Ve (= l/fg). Sarpkaya’s angle convention is such that his coefficients are precisely the
negative of ours, i.e. Cpp = —Cp_a, and Cy, = —Cy_v,. and he favors reduced velocity
rather than nondimensional frequency as the indepencent variable. From Figure 4-10. the
variation of ~Cp,_a, compares very well with the variation of C,,y. except for a shilt of
the X axis. A careful look at Figure 4-11 shows that while the data for —C_y, and Cyp
look quite different, the main features of the excitation/damping trends are preserved. with
the exception again of a shift in the reduced velocity axis. The differences between onur lift
coefficient data and Sarpkaya's are likely due to the large difference ir the aspect ratios {(and
hence end conditions) of the models tested: we had an aspect ratio of 24 versus Sarpkayva’s
aspect ratios of between 3 and 11 (different models). The Reynolds numbers of the different

experiments were all in the range 7,000 < Re < 11,000.

4.2.5 The “bottom line”

QOur analysis of the errors in the results obtained with our experimental apparatus and
methods, as developed in the preceding paragraphs. eventually led us to the following

summary conclusions (the “bottom line”):

e The experimental system and analysis procedures were capable of producing high pre-
cision, highly repeatable data. Conservative estimates of the random errors obtained
would be of the order of 3-5% for the mean drag data and 5-%% for the oscillating

drag and lift data.

o The data obtained compared favorablv with other established results, indicating that
systematic errors were also low. A precise estimate of the absolute accuracy is difficult
to obtain, but our best indications are that this does not exceed 10-15%. Given
the strong sensitivity of the vortex-shedding phenomenon to the prevalent physical
conditions, we believe that few researchers can rightfully claim a higher accuracy for

their experimental data.
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4.3 Applying our data to VIV predictions

4.3.1 General principles

From an engineering perspective, the primary purpose of conducting laboratory-scale ex-
periments such as ours is to be able to predict the full-scale VIV response of structures
in the ocean. The variable of interest changes with the circumstances. For example, in
the case of an oil production or exploration riser exposed to current or wave action, one
would be interested in predicting the frequency and magnitude of the induced oscillations
so as to estimate the fatigue life of the riser, and also the mean drag force so as to esti-
mate the static stress levels. In the case of an oceanographic towing (or mooring) cable, the
VIV-amplified mean drag force determines the static configuration and the expected towing
(or mooring) tension in the cable. In the case of a mooring line connecting to an acoustic
transponder or array, knowledge of the amplitude and frequency of the vortex-induced cable
strumming could be critical, as the vibrations could affect the acoustic measurements. In
all of these cases, one would like to use the existing database, combined with some suitable
mathematical model, to estimate the expected motions and forces.

In most situations, VIV response predictions involve two stages:

1. Estimating the oscillation frequencies and amplitudes from a knowledge of the flow

configuration, using available lift coefficient data.

2. Estimating the static mean drag coefficient as a result of the oscillations found in the

first step.

In general, the process could be iterative, since the mean drag force could act to change the
static configuration and hence the flow around the structure. A VIV predictive algorithm
has three essential components: a structural model, a fluid model (that interacts in some
way with the structural model), and a solution technique. For the fluid model, one would
ideally like to solve the time-dependent Navier-Stokes equations in the presence of the body
motion; out of this analysis should emerge the frequency and magnitude of the fluid forcing.
Unfortunately, theoretical and/or numerical solutions of the Navier-Stokes equations are
available only for simplified cases or very low Reynolds numbers, and one has to resort to
physical experiments to obtain the required data. In between direct Navier-Stokes solutions

and physical experiments is a class of “wake-oscillator™ models (Hartlen and Currie [30],
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Skop and Griffin {71], Iwan and Blevins [32. 7]}, that purport to depict the behavior of
the vortex wake as a nonlinear Van der Pol or Rayleigh oscillator. Most of these models,
however, are phenomenological coustructs that do not stem from the underlying physics
(Sarpkaya [66]), and hence need to be calibrated against experimental data themselves.
Thus, forced-oscillation results such as ours could be used directly as the hydrodynamic
input to a general VIV prediction scheme, or indirectly through a phenomenological model.

A question that commonly arises is how one might justify the use of externally forced
experimental data to predictions of vortex-induced vibrations, since the latter are self-
excited (free) oscillations. In principle, forced-excitation tests on roulinear systems cannot
be used to infer any general conclusions about the corresponding free-oscillation behavior.
In the specific case of vortex-shedding, Surpkaya [66] and Bearman {4] have pointed out
that forced-oscillation tests tend to obscure the intricate effects of the flow history on the
development of VIV, and can be used only if and when a stable, steady-state oscillation
is reached. Notwithstanding the above difficulties, practical experience shows that useful
results may be achieved (perhaps surprisingly so!) with the use of forced-oscillation data.
For example, Staubli [74] has shown that the hysteresis effects seen in some free-oscillation
tests can be replicated by simulations using forced-oscillation data, and Moe and Wu [49]
have shown that the lock-in regions predicted by free- and forced-oscillation tests are very
similar if the variation of added mass is taken into account. In the next subsection we shall
show that our forced-oscillation data. used in a highly idealized model. can be used to make

VIV predictions that are reasonably accurate.

4.3.2 A simple method of estimating response

Consider a very basic structural model consisting of a spring-mounted rigid cylirder with
viscous damping, as shown in Figure 4-12. The cylinder is exposed to a uniform flow of
velocity U and is constrained to move perpendicular to the flow. From elementary vibration

theory (Rao [61], Blevins [7]), the equation of motion of the cylinder is

2
y dy
‘n’l;sz“ + 2manEt- + ky = F()(i) (41)

where y is the dynamic displacement of the cylinder, m is the cylinder mass per unit length,

¢ is the structural damping factor. k is the spring constant, and Fy is the fluid forcing
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Figure 4-12: Simple structural model of a rigid cylinder.

term. Oscillations of the cylinder take place due to the constant interchange of kinetic
energy (governed by the mass) and potential energy (governed by the spring constant): the
frequency of these oscillations being the natural frequency w, = \/k/m. The overall level
of energy in the system oscillations is determined by a balance between the damping term
and the fluid forcing term (more correctly. the component of the fluid forcing in phase with
the oscillation velocity). If the work done due to fluid forcing exceeds the work done due
to damping. the amplitude of oscillations tends to increase, and vice versa. The amplitude
is a constant when the forcing exactly balances the damping.

Let us suppose that we are interested in the worst possible case. i.e. the situation
wherein the maximum fluid excitation occurs at the same frequency as the structural natural

frequency. If the oscillations of the cylinder at its natural frequency are given by
y = Yo sin(27 fut) (4.2)

where f. = wn /27 is the natural frequency in Hertz, and Y, is the amplitude of oscillation,

then from our forced oscillation tests. we know that the fluid forcing term (per unit length)



will be given by

i . .
Fo—= §de2 {CLvpln cOs(27 frt) = CL_agln sin(27 frt)} (4.3)

where the lift coefficients C_v,|» and C_a, | (at resonance) are functions of the nondimen-
sional natural frequency f, and the nondimensional amplitude ratio ¥,/d, and other terms
have their usual meanings. For the worst case scenario noted above, we will assume that the
fluid resonant frequency, equal to fy, is that value of nondimensional oscillation frequency
fo at which there is a peak in the value of Cr_v,- The appropriate values of fr, CL Velns
and Cp_a,|n can be read off from the contour maps of Figures 3-14 and 3-15; Figure 4-13
shows the variation of these quantities with the nondimensional resonant amplitude ratio
Y./d.

In order to predict the value of the oscillation amplitude Y,, we need to consider the
action of the forcing terms of Equation 4.3. We notice that the term —Cp_g,|n sin(27 fut) is
in phase with the acceleration term m%} in Equation 4.1, for y = Y, sin(27 ft). Hence (as
expected), the action of the coefficient Cf_g4, is to cause an added mass effect and modify
the natural frequency 27 f, = /k/m. If we are still interested in the worst case situation,
we can assume that the flow velocity is tuned in such a manner so as to counteract any
detuning effect of the added mass, i.e. the flow resonant frequency is still identical to the
structural natural frequency, including added mass. In that case the oscillation amplitude
is a result of a balance between the damping term of Equation 4.1 and the Cp_y; term of
Equation 4.3, i.e.

QmC(Zan)% — é;odU:’C'L_v0 In cos(2m fpt) {4.4)

where the symbol < has been used to denote “in balance with”, and thc term m on the

LHS now includes added mass. Substituting y = Y, sin(27f,t) and U = fnd/f,,, we get

242
2m(27 fp) Yo(2m fr) cos(2m fl) &= - d f2 Voln cOs(27 fnt) (4.5)
Canceling common terms and rearranging others, we have
2m 27r n
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Figure 4-13: Resonant nondimensional frequency f,, and lift coefficients Cr_y,|» and Cr_a,ln
against resonant amplitude ratio Y, /d; smooth circular cylinder.
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The term within the curly braces {...} on the LHS of Equation 4.6 is referred to as
the “response parameter” Sg [65, 88] or the “reduced damping” 2rS%k, [7, 26]. and is
commonly used as a parameter governing the VIV response of structures. (1t is essentially
a product of the mass ratio (including added mass) and the structural damping ratio of
the model.) Although the indiscriminate use of S in such calculations has been recently
criticized (Vandiver (88], Zdravkovich [101]). its use in our simple model (under complete

synchronization) is valid. We are thus left with the very simple relation

Y.
25@-—(;— <= CrL wln (4.7)

where, for any given value of S¢, the resonant oscillation amplitude occurs when the quantity
on the LHS of Equation 4.7 (the damping) equals the quantity on the RHS (the excitation).

Figure 4-14 demonstrates Equation 4.7 in a graphical manner. Shown here is the vari-
ation of C_y,|. against Y, /d (from Figure 4-13), together with several lines of 255Y./d
for different values of Sg. The mean value of the lift coefficient for the stationary runs
has been taken as the zero value of Cy,_y,|,. For each value of the response parameter Sg,
the resulting oscillation amplitude is given by the intersection of the corresponding straight
line with the curve for Cr_v,|n. The performance of this simple predictive scheme is shown
on Figure 4-15, from Griffin [24], which illustrates the variation of 2Y,/d against S for
a wide range of free-oscillation results from various field and laboratory experiments on
circular cylinders. The legend for the various data points is available in references [24] and
[26]. Our results for 2Y, /d for the different values of Sg from Figure 4-14 are illustrated
on Figure 4-15 by intersecting horizontal and vertical arrows; the arrowheads point at the
obtained results. Clearly, our simple predictive scheme gives results that lie within the
experimental scatter.

Several points must be made about this prediction method and its results.

Firstly, it will be noticed from Figure 4-14 that the success of this scheme depends
on the amplitude-limited nature of the ezciting lift coefficient C_v,; this fact ensures that
a balance is obtained between the exciting force and the damping force for all values of
the response parameter. The negative slope of the lift coeflicient curve corresponds to
hydrodynamic damping, which in this case has been taken into account automatically in

the exciting (RHS) term. It is clear that even if the structural damping term is zero. the
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Figure 4-14: Graphical illustration of the simple predictive scheme 256Y,/d < C L.Voin
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oscillation amplitude does not increase indefinitely, but is limited to about one diameter.
Secondly, a glance at Figure 4-15 leads inevitably to the following question: since the
results from field and laboratory experiments follow such a clear trend, why not use a curve-
fit through these data to make VIV predictions instead of using our scheme? In fact such
curve-fits have been proposed for just this purpose; for example, Griffin and Ramberg [26]

have
Y, 1.29
2 = 4.8
d [1+0.4356P% (48)

Other similar expressions can be found in Blevins [7]. The important point is that the
data in Figure 4-15 (and leading to Equation 4.8) are for smooth circular cylinders only.
The method we have illustrated, using a few relatively straightforward forced-oscillation
experiments. is applicable to any cross-section (square, triangular, or circular with a vortex
suppression device) for which free-oscillation test data are not readily available, or would
be difficult to obtain.

Thirdly, a note regarding the novelty of our scheme. The principle of the oscillation
amplitude being determined by a balance between excitation and damping is well known,
and has been used by several researchers (Moeller [50], Vandiver [90, 88|, Every et al.
[15], and others). The phenomenon of the amplitude-limited lift coefficient (in phase with
velocity) has also been widely published (Blevins [7], Griffin and Ramberg [26], Sarpkaya
[65]). It is therefore surprising that to the best of our knowledge, the combination of these

two concepts has not appeared in the literature thus far (in the simple form outlined here).

4.3.3 Long tubulars in shear flow

In the previous section, we illustrated a very basic prediction scheme utilizing a rigid cylin-
der, obeying a simple harmonic equation of motion with linear damping, performing pure
sinusoidal transverse oscillations in perfect synchronization with the two-dimensional vor-
tex shedding due to a uniform flow. In the real world, such ideal conditions rarely exist.
A problem of particular concern to offshore and oceanographic engineers is that of a long.
flexible cylinder in sheared flow. From a structural standpoint, the simplest equation of
motion for such a problem is that of a string under tension, and involves both a time and
space dependence. Other considerations such as bending stiffness, elasticity, spatiallv vary-

ing properties, and large-amplitude nonlinearities may or may not be taken into account.
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From a hydrodynamics standpoint. the difficulty is that the vortex-induced excitation varies
in magnitude and frequency along the length of the structure. Depending on the length
of the cylinder and the degree of shear in the flow, the strusture may undergo relatively
broadband, multimode. beating oscillations. Such behavior has been observed in the field
by Alexander (1], Vandiver [90, 88], Kim [36], Grosenbaugh [28, 27]. and others.

Figure 4-16 illustrates the hydrodynamic difficulties noted in the previous paragraph.
Shown here is a long cylinder (e.g. a tow cable), with a curved static configuration, in
a linearly varying shear current. Due to the length of the cable, structural perturbations
could be damped out before they reach the end points, and hence the cable could respond
as one of infinite length. Each point on the cable responds primarily to the local vortex-
induced forcing. Traveling waves of the corresponding local frequency are radiated out from
each point in both directions along the cable. These waves are damped out within a few
wavelengths, but are sufficient to affect the oscillation at neighboring points. As a result,
the net oscillation at any given point along the cable consists of the local forcing frequency
as well as contributions due to different frequencies from adjacent sections of the cable. At
the bottom of Figure 4-16 is a time trace of the displacement at a point on a long vertical
tow cable in a sheared flow, from reference {27]. It is clear that the cable oscillations are
not purely sinusoidal, but rather resemble an amplitude-modulated. or beating, waveform.

Several attempts have been made in the last decade to develop algorithms for VIV
predictions in sheared flows. Various modal superposition techniques have been developed
with varying degrees of sophistication and success, for example see Whitney and Nikkel
[93], Patrikalakis and Chryssostomidis (58], and Vandiver’s group at MIT (Vandiver [90],
Kim {36], Chung [10], Capozucca [8]). The algorithms developed by the latter group have
achieved widespread industry acceptance. Examples of simulations attempted in the time
domain include the work of Nordgren [52], Howell [31], Dong and Lou [12], and Hansen
et al. [29] (this latter effort being unusual in that a numerical random vortex method has
been integrated into the algorithm to provide the hydrodynamic loading). In addition to
the above simulation techniques, a recent closed-form quasi-theoretical solution, assuming
infinite cable behavior. has been developed by Triantafvilou [83, 84].

All of the algorithms listed above utilize different solution techniques, ~nd the details
and assumptions surrounding the structural and hydrodynamic models differ as well. In

essence, however, the hydrodynamic calculations in most of the cases are based on the

131




Figure 4-16: Illustrating a long flexible cvlinder in sheared flow.
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same principles. Required as inputs are models (in general nonlinear) for three fluid force
coeflicients in the transverse direction: an exciting or “lift” coeflicient, a damping or “drag”
coefficient. and an added mass coefficient. (Care must be taken to distinguish this ~drag”
coefficient, which provides damping in the lift direction, from the nican drag coefficient
Cp,, which expresses the mean force in the drag direction.}) All of these inputs can be
estimated from our forced-oscillation data. The added mass coefficient as a function of
oscillation frequency and amplitude is given directly by Figure 3-16. Both the “lift” and
“drag” coefficients act in phase with oscillation velocity, and hence are contained in our
contours of Cr_y,, Figure 3-14. The net effect is either exciting or damping depending on
the sign of Cy, v,. If separate exciting and damping coefficients are desired (e.g. to satisfy
the solution method), it is possible to fit a particular model for one of the coefficients to the
data and to consider the residual as the variation of the other coeflicient. Once the predicted
oscillation amplitude is obtained from the algorithm, our contours of Cp,, (Figure 3-12)
can be used directly to estimate the mean drag force.

The significant issue that remains is the effect of the multifrequency beating oscillations
on the hydrodynamic force coefficients. Since vortex shedding is a highly nonlinear pro-
cess, there is no reason to suppose that the force coefficients from sinusoidal tests can be
applied to beating simulations in a linear superpusition sense. In fact, Triantafyllou and
Karniadakis [79] have shown via numerical simulations that beating osciliations cause the
force coefficients to be modified in unforeseen. nonlinear ways. It is an important part of

this thesis to determine the force coefficients on typical beating oscillatiors. and we shall

address this issue in the next chapter.

4.4 Cross-sectional effects

4.4.1 Preliminary remarks

It is well known that the cross-sectional geometry of a prismatic cylinder plays an important
role in determining the nature of the vortex shedding and the vortex-induced forces acting
on the cvlinder. Stationary Strouhal numbers for a wide variety of noncircular cross-sections
(as well as references to more information) can be found in Blevins [7]. Typical research
on noncircular sections has focused on geometries such as flat, rectangular, triangular. half-

circular. etc. Much less is known about the vortex-induced forces on sections that are
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nominally circular but in fact may now be so. such as a typical braided wire-rope section, or
a conventional bare riser section with satellite kill- and choke- lines. Most of the results of
tests conducted on such sections are confidential information that have no been published
in the open literature.

In the following subsections, we shall present results of forced oscillation tests conducted
on four noncircular models: a wire-rope, a chain, a typical production riser, and a haired-
fairing, all at Reynolds numbers of approximately 10,000. It should be stressed that the
intention is not to produce a catalog of commercially useful data, but rather to illustrate
some of the important techniques and pitfalls in the application of our experimental data
to real-life situations. Mos’ of the results presented shall be of the lift coefficient in phase
with velocity. Cr_v,, since it is this coefficient that most accurately signals the presence or
absence of VIV.

Figure 4-17 illustrates the cross-sectional and flow geometries of the models tested.

Table 2.1 of Chapter 2 summarized the construction details of these models.

4.4.2 Defining an “effective diameter”

One of the most common structural compcaents in oceanographic or offshore engineering
situations is the stranded or braided wire-rope. Such a wire-rope is commonly regarded
as a circular cylinder for the purposes of VIV computations, with little effort given to
establishing the validity of this assumption. In this subsection we shall show that a typical
wire-rope section can in fact be treated with circular cylinder data. as long as a proper
“effective diameter” is chosen in the computations.

Sinusoidal oscillation tests with a 2.70 cm diameter 7-strand wire-rope specimen (Fig-
ure 4-17) were carried ou. at a constant amplitude ratio Yo/d = 0.30 and a range of oscilla-
tion frequencies. Figure 4-18 illustrates the behavior of the mean drag coefficient Cp,, and
the exciting lift coefficient Cf,_y, for the wire-rope section (open circles), together with the
corresponding data for the smooth circular cylinder (solid lines). In a qualitative sense, the
behavior of the vortex-induced forces in the case of the wire-rope are similar to the behavior
in the case of the cylinder. Quantitatively, it is clear that the resonant v. ~tex peak for the
wire rope occurs at a higher oscillation frequency, and the magnitude of the peak forces are

lower.
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Figure 4-17: Cross-sectional and flow geometries of the models tosted.
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Figure 4-18: Cp,, and Cp_y, for the wire-rope, Y5/d = 0.30, and circular cylinder data.

The occurrence of a higher resonant frequency and lower peak forces both lead to the
same conclusion: if the wire-rope is to be modeled as a circular cyvlinder. then the length
scale (here the outer diameter) used in the normalization (in the numerator for the nondi-
mensional frequency, and in the denominator for the force coefficients) was probably too
high. Figure 4-19 illustrates the same data as Figure 4-18, now nondimensionalized with
an effective diameter 77% of the outer diameter, or 2.08 cm. It is clear that the wire-rope
data in *his case (crosses) more closely track the circular cylinder data (solid lines). While
certain differences remain (e.g. the wire-rope data show no sign of a second harmonic reso-
nance), it can be argued that VIV predictions for this particular section can be made using
circular cylinder data. as long as the wire-rope is treated as having an effective diameter of
the order of three-quarters of its outer diameter.

It is important to point out that the concept of an effective diameter can only be
applied to certain cross-sections that behave qualitatively like a circular cyvlinder. Tests
were conducted with a chain model (Figure 4-17) of outer (link) diameter 2.30 cm, at the

same amplitude ratio of 0.30. Figure 4-20 shows the behavior of Cp,_, and Cp_v;, for the
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Figure 4-19: Cp,, and Cp_y, for the wire-rope. effective diameter 77%, and circular cylinder
data.

chain section (open circles), compared to the circular cylinder results (solid lines). No
vortex-induced resonance of any form can be detected. Due to the open geometry of the
chain, vortex-shedding does not take place in the same manner as for the circular cyvlinder
or wire-rope, and the chain “lies dead in the water”™. The concept of effective diameter is

not applicable.

4.4.3 Multiple cylinder interference effects

In the previous subsection we showed that for certain cross-sections, an “effective diame-
ter” can be defined for the purpose of VIV computations. In the case of a multiple cvlinder
bundle such as a typical production riser, care must be taken to account for possible inter-
ference and shielding effects, which can be quite dramatic. It has been well known for a
number of years that complex vibratory phenomena can occur in banks of multiple cylin-
ders, such as those used in heat exchangers. Recently, Zdravkovich {100] has reviewed the

similarities and differences between heat exchanger banks and offshore riser configurations,
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Figure 4-20: Cp,, and Cr_y, for the chain, Y5/d = 0.30, and circular cylinder data.

with a view towards compiling the relevant heat exchanger data which are applicable in
the marine situation. A type of multiple cylinder arrangement that does not occur in heat
exchangers is the “satellite” production riser configuration, where a large central tube is
surrounded by smaller cylinders (e.g. kill- and choke- lines). Usually, such satellite bundles
are held together by flange plates [48] and hence the riser section can be considered as a
single structure for the purposes of response computations.

In this subsection, we investigate the behavior of a typical production riser section. where
for simplicity {and to illustrate the effects of flow angle) we have modeled a central cylinder
with two smaller cylinders arranged diametrically opposite each other (Figure 4-17); we
call this arrangement our “typical riser”. Experimental data (from f{ree-oscillation tests) on
more complex multiple tube arrangements have been presented by Moe and Overvik [48],
Overvik and Moe [56], and Price et al. [59], among others.

Sinusoidal oscillation experiments were conducted with our riser model at a number of
nondimensional frequencies and a single amplitude ratio of 0.30). The diameter of the central

cylinder was used in the nondimensionalization of the oscillation frequencies and measured
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Figure 4-21: Cy_y, for the riser at 0°, Yy/d = 0.30, and circular cylinder data.

forces. Three different flow angles were tested, 0° (satellite cylinders in-line with the flow),
90° (satellite cylinders on a diameter transverse to the flow), and 45° (satellite cvlinders on
a diameter inclined to the flow).

Figuie 4-21 shows the results for the lift coefficient in phase with velocity. Cr_v;. for
the 0° configuration: the riser data is marked with open circles and compared to the corre-
sponding bare cylinder data marked by a solid line. Apart from the absence of a secondary
excitation region. the values of the lift coefficient for the riser in this configuration is very
similar to the cylinder data.

Figure 4-22 illustrates the variation of C_y, for the 90° configuration. also compared to
the circular cylinder data. A dramatic increase is seen in the width of the excitation region.
together with an increase in the peak magnitude of the exciting lift coefficient. These data
appear to indicate that vortex-induced oscillations of the riser exposed to flow from this
angle would be considerably more severe than for the bare cylinder.

Figure 4-23 shows the C_v, data for the intermediate flow angle of 45°. The results are

quite unexpected: instead of being an intermediate solution between the data of Figure 4-21
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Figure 4-22: Cy_y, for the riser at 90°, Yy/d = 0.30, and circular cvlinder data.
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Figure 4-23: Cp_y, for the riser at 45°, Yy /d = 0.30, and circular cvlinder data.
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and the data of Figure 4-22, the present values show no sign whatsoever of vortex excitation.
The lift coefficient in phase with velocity is negative for all values of oscillation frequency,
indicating complete suppression of vortex-induced motions.

Further experimental tests were carried out as a check on the accuracy of the previous
results. For each flow configuration, the value of the oscillation frequency corresponding
to the resonant peak in the Cy_y, data was determined. Tests were conducted at these
(constant) frequencies and six amplitude ratios, in order to determine the amplitude de-
pendence of the exciting lift coefficient in each case. Figure 4-24 shows the results of these

tests compared to the circular cylinder data (from Figure 4-13). Stationary (nonoscillating)

hft coefficient_velocity

_3 1 l 1 x 4 J 4

0 0.2 04 0.6 0.8 1 1.2 1.4

nondimensional amplitude ratio

Figure 4-24: Variation of Cr_y,|. against amplitude ratio for the riser at different angles,
and circular cylinder data.

tests were conducted to provide the values at zero amplitude. These results are consistent
with the previous data of Figures 4-21 ~ 4-23: the 0° data are similar to the bare cylinder,
the 90° data predicts slightly larger amplitudes of oscillation. while the intermediate 45°
configuration is almost completely damped.

The data from our riser tests. especially those corresponding to the 45° flow angle,




indicate a result of interest to scientists and practicing engineers alike: the vortex-induced
oscillations of a cylinder can be controlled by the strategic placement of just one or two
smaller cylinders in the near vicinity. Strykowski and Sreenivasan [76] have shown recently
that for small Reynolds numbers, the vortex shedding behind circular cylinders can be
suppressed entirely by positioning a second. much smaller, cylinder in the near wake of the
main cylinder. Figure 4-25 illustrates a few instantaneous streamline patterns from their
numerical computations. The top frame shows the natural vortex shedding state of the
main cylinder. In the second frame, at a nondimensional time-step of zero, a “control”
cylinder (having a diameter one-seventh the diameter of the main cylinder) is introduced
slightly behind the main cylinder and to one side of the wake centerline. As the rest of
the frames illustrate, vortex shedding is suppressed within a few time-steps and remains so
for all time. Strvkowski and Sreenivasan were able to achieve similar results from physical
flow-visualization experiments as well, and argued that the observed results were due to a
modification of the stability properties of the main cylinder wake due to the presence of the
control cylinder. Given the similarity between the position of the control cylinder in the
above results and the position of the aft sateilite cylinder in our runs at the 45° flow angle,
there is reason to believe that the absence of positive values of the exciting lift coefficient
at that flow angle has a similar physical origin.

What, therefore, are the implications of our results on full-scale VIV predictions for riser
bundles? Given the large qualitative differences between the riser data at certain flow angles
and the circular cylinder data, it would appear that separate tests would be required for each
riser configuration under study. Since the nature of currents in the ocean is omnidirectional,
it is clearly impractical to collect and use data at well-defined flow angles. It may be
necessary to conduct experiments for several flow angles and use the “worst” data in the
computations to be assured of a conservative result. If the problem involves the design of a
new riser bundle, experiments should ideally be conducted early in the design stage so as to
achieve a configuration with optimum vortex-cancellation characteristics. Such an approach
has been attempted by Johnson and Zdravkovich [33], who measured the stationary lift and
drag coefficients on several riser models to determine the configuration having the smallest
force coefficients. As we shall see in the next subsection, small stationary force coefficients
do not necessarily imply correspondingly small dynamic force coefficients. The design of

optimum riser bundles should include dynamic oscillation experiments as well,
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Figure 4-25: Suppression of vortex shedding using a “control” evlinder. from Strykowski
and Sreenivasan (1990).
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4.4.4 Evaluating a vortex-suppression device

In the previous subsections. we focused on the applicability of our circular cvlinder data to
practical situations. In the following paragraphs, we shall consider an important application
of our forced-oscillation experimental methods taken as a whole: the evaluation of vortex-
suppression devices.

It is well known that prevention or reduction of vortex-induced oscillations can be at-
tained through the use of add-on devices that suppress or disrupt the formation of the vortex
street {7]. Commonly used are such devices as helical strakes, axial shrouds, and splitter
plates. A very comprehensive review of vortex-suppressior. means has been published by
Zdravkovich [102], who noints out that most of these devices have been developed through
ad-hoc tests conducted by different researchers: almost all of these tests have involved
stationary or free-oscillation experiments. Reliable, quantitative comparisons of different
devices are difficult to obtain because the vibratory response of each model depends very
much on factors such as stiffness and damping of the supports, mass of the model, aspect
ratio, free-stream turbulence, etc.. It is our belief that a program of forced-oscillation exper-
iments using a well tested system (which also allows for interchangeable models) would be an
excellent way to overcome several of these problems and to obtain comparative assessments
of the effectiveness of various vortex-suppression devices.

To demonstrate the use of our system for such a purpose, we conducted tests on a
model of a cable equipped with a “haired-fairing”. The fairing consisted of three equally
spaced rows of fine nylon thread (the “hairs”), woven into the kevlar surface sheath of a
cable. When immersed in a flow, the hairs are designed to trail aft and apparently interfere
with the formation of the vortex street. Figure 4-17 illustrates the geometry of the section:
additional details were furnished in Chapter 2.

Several nonoscillating tests were conducted first to establish the values of the stationary
force coefficients and Strouhal number. These results are summarized in Table 4.1. The

forced-oscillation test program consisted of runs conducted at 16 discrete frequencies and 3

S Cp,, Cr, Cp,
Mean | 0.1406 | 1.5957 | 0.0344 | 0.0043

Table 4.1: Summary of results for the stationary haired-fairing model.
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discrete amplitude ratios, for a total of 48 tests. The data collection and analysis procedures
were identical to those followed for the circular cylinder, explained in Chapters 2 and 3.
Contour maps were created of the lift and drag force coefficients, in analogy with Figures 3-
12 - 3-16. The contours of the exciting lift coefficient Cr_y,, and the mean drag coefficient
Cp,, for the haired-fairing are presented in Figures 4-26 and 4-27 respectively. As before,
the thick black line marked on Figure 4-26 corresponds to the zero contour, and marks the
extent of the primary excitation region. No secondary excitation region is seen.

In analogy with the method developed for the circular cylinder in Section 4.3.2., the
exciting lift coefficient data of Figure 4-26 can be used to estimate the VIV response of
the haired-faired cable for different structural damping levels. Figure 4-28 shows the peak
(resonant) values of the lift coefficient, Cp_y; |, against the amplitude ratio of oscillation;
also shown are the damping force lines 25¢Y, /d for various values of the response parameter
S¢. The response amplitudes at these values of Sg correspond to the intersections between
the damping lines and the curve for Cy_y, |.. Figure 4-29 illustrates the response amplitude
predictions for the haired-fairing compared to the same experimental data of Figure 4-15; as
before, our predictions are shown by intersecting horizontal and vertical arrows. It is clearly
seen that the haired-fairing indeed succeeds in reducing the amplitude of the vortex-induced
oscillations of the smooth cylinder; the reduction is about 60% at low values of the respo~se
parameter, and up to 85% at high values of the parameter. Although no free-oscillation
test results for this particular haired-fairing were available for purposes of verification, the
predicted percentage reduction of amplitude was of the same order as some of the good
vortex-suppression devices reviewed by Zdravkovich [102].

In addition to demonstrating the use of our experimental system as described in the first
paragraph of this section, our results for the haired-fairing also indicate the importance of
dynamic oscillation tests in VIV predictions. Consider the stationary haired-fairing results
of Table 4.1 compared to the stationary smooth cylinder results of Table 3.1 in Chapter 3.
The stationary lift coefficient of the haired-fairing is about one-tenth that of the smooth
cylinder, and the mean drag coefficient is slightly larger. One would be tempted to conclude
that the addition of a haired-fairing would reduce vortex-induced oscillations of a smooth
circular cylinder tenfold, at the expense of a 35% increase in the mean drag force. These
conclusions would be quite wrong! Our dynamic tests (Figures 4-28 and 4-27) predict that

for negligible structural damping, the haired-faired cable would respond at an amplitude
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amplitude ratio

Figure 4-26: Contours of the lift coefficient in phase with velocity; haired-fairing.
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4-27: Contours of the mean drag coefficient; haired-fairing.
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ratio of about 0.40 and a nondimensional frequency of 0.147, causing an {amplified) mean
drag coefficient of about 2.10. The corresponding results for the smooth cylinder (Figures 4-
14 and 3-12) are an amplitude ratio of about 0.90 at a nondimensional frequency of about
0.175, causing an amplified mean drag coefficient of about 2.40. Thus the dynamic results
for the haired-fairing predict a much smaller reduction of amplitude than do the stationary
results, but with the added bonus that the effective mean drag force is slightly reduced
as well. The importan.e of measuring dynamic force coefficients for the purposes of VIV

predictions cannot be over-stressed.
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Chapter 5

Beating Oscillation Tests

5.1 Introduction

5.1.1 Background

In previous chapters we have introduced the need for tests with amplitude-modulated os-
cillations. Section 4.3.3 and Figure 4-16 illustrated the situation with long tubulars in
shear flow, and the resulting beating oscillations at any point along the cylinder. A seg-
ment of actual data from a field experiment [27] was included in Figure 4-16, showing the
amplitude-modulation of the cylinder displacement. Such a time-varving nature of the re-
sponse amplitude is a result of the participation of multiple frequencies at everv spatial
location along the tubular.

In the interest of simplicity of the experimental procedures and analysis methods, we
decided to investigate the fundamental properties of the vortex-induced forces acting on
cylinders undergoing amplitude-modulated oscillations by limiting the excitation to regu'ar.
dual-frequency beating. Thus, we do not claim to reproduce exactly the oscillations observed
in the field; rather, we hope to extend our understanding of this complex phenomenon
by making the transition from single-frequency pure sinusoidal motion to regular beating
motion.

In Section 2.3.3, we introduced the essential mathematical definitions and formulations

for beating motion. Dual-frequency beating can be expressed as the sum of two sinusoids
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at different frequencies f; and f; as:

y(t) = Yysin(27 fit) + Yo sin(27 ft) (5.1}

If the frequencies f; and f, are held constant and the amplitudes Y, and Y, are varied,
a number of waveforms of constant modulation ratio (relating to frequency) but varying
modulation depth (relating to amplitude) are attained. For example, Figure 5-1 illustrates

the waveforms obtained for the cases f; = 1.0, f, = 1.2, Yy = 1.0, and Y; varying as

(100% + 30%) beats

[

2 100*%3 sine

'
(3]
1
[ 28]
b

2 (100% + ’ZO%) beats

0 5 10 10

Figure 5-1: Waveforms at constant modulation ratio and varyins modulation depth.

0%, 30%, 70%, and 100% of Y;. Notice that the modulation ratio, or the size of the beat
“packet” in terms of the number of rapidly varying cycles, is a constant; on the other hand
the modulation depth, or the amount of narrowing of the amplitude envelope, varies. Notice
also that the total peak amplitude of the waveform is given by the sum ¥ + Y;. If we were
now to hold the amplitudes Y; and Y; constant and vary the frequencies f; and f;, the
result will be a number of waveforms of constant modulation depth (and peak amplitude},
but varying modulation ratios. For example, Figure 5-2 illustrates the waveforms obtained

for the cases Vi = Y, = 0.50, f; = 1.00, and f, = 1.05, 1.10, and finally 1.33. A pure
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Figure 5-2: Waveforms at varving modulation ratio and constant modulation depth.

sinusoidal waveform is also illustrated for comparison.

If the amplitudes Y, and Y, are equal (as in Figure 5-2), then Equation 5.1 can be
written as the product of two sinusoids at the “carrier frequency” f. and the “modulation
frequency” fm as

y(t) = 2Y] sin(2x f.t) cos(2m ft) (5.2)

where the frequencies f., fm, f1, and f; are related to each other by Equations 2.17 through
2.20 in Section 2.3.3. The modulation ratio, or the ratio of unity to “tlie number of oscil-

lations at the carrier frequency contained in one beat packet”, is then given by

Modulation ratio = 1:(2';;) (5.3)

The beating experiments reported in this thesis were all conducted at 100% modulation
depth, i.e. with amplitudes Y¥; = ¥;. Six nondimensional peak amplitude ratios, 2Y1/d,
were chosen between 0.15 and 1.50. Three modulation ratios of 1:20 (“slow” modulations),

1:10. and 1:3 (“fast” modulations) were tested. {More precisely. the values of f. were chosen
P \ 2
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to be (f1 + f1/20), (/1 + f1/10), and (fr + [1/3). vielding actual modulation ratios 1:20.5.
1:10.5, and 1:3.5). The above tests were repeated for 36 sets of values {f,, f2} such that the
carrier frequency f. = (fy + f2)/2, when nondimensionalized as fe = f.dJU . varied between
0.05 and 0.25.

Before proceeding further, it would be useful to discuss the questions that we seek to
answer about beating motion. From an engineering standpoint, the primary issues concern
the behavior of the vortex-induced lift and drag force coefficients in the presence of beating
motion: how the force coefficients vary with amplitude, frequency, and modulation ratio:
the implications for VIV calculations; and whether or not sinusoidal results can be extended
to the beating case. From a scientific standpoint, one would be interested in exploring the
response of the cvlinder wake to beating excitation, or in other words the interaction between
the natural (absolute) wake instability and the time-varying cylinder motion amplitude
(the external forcing). A subtle but important question that presents itself concerns the
amplitude to be used to characterize a beating waveform: whether this should be the peak
amplitude 2Y;, the component amplitude Y}, or the RMS amplitude Ygars (= Y; for dual-
frequency beats). We shall attempt to resolve these and other related issues in the sections

that follow.

5.1.2 A summary of related research

Prior to our work. very little general attention has focused on the vortex-induced forces on
cylinders undergoing beating motion. In this subsection we shall summarize the existing

literature on the subject.

Triantafyllou and Karniadakis.r Simulations of the flow around cylinders undergoing
beating oscillations have been conducted by Triantafyllou and Karniadakis {79] and Tri-
antafyllou [78]. using a numerical spectral element method. The prescribed cvlinder motion
was a regular dual-frequency waveform given by

(1) = Y sin(27 fot) sin(27 [, 1) (5.4

where 7(t) was the instantaneous displacement, Y the peak amplitude of motion. and f,

and f,, the frequencies of the “fast” and “slow™ motions respectively. (The notation of




Equation 5.4 is identical to that of Triantafvllou and Karniadakis [79]. In terms of cur
notation in this thesis, () = y(t), Y = 2Y,. and f, = f..) The frequency f, was chosen to
be the natural Strouhal frequency of the vortex shedding, the modulation ratio was fixed
at 1:2.5, and two amplitude ratios were tested: 0.63 and 1.26. The Reynolds number of
the simulations was 100. Time trace segments of the lift and drag forces calculated in each
of the cases were presented, and compared to results obtained for the cylinder undergoing

harmonic (pure sinusoidal) oscillations. The principal findings reported by the authors were:

1. The frequency content of the vortex-induced forces was considerably richer during the

beating motion as compared to the sinusoidal motion.

2. In the y-direction (lift) the amplitude of the vortex-induced force was about the same

in the modulated as in the harmonic case.

3. In the x-direction (drag), the modulated motion caused a significant decrease of the

average drag force and a significant increase of the fluctuating drag force.

Owing to the above findings, Triantafyllou and Karniadakis eventually concluded that clas-
sical harmonic results could not be used in situations where beating was present, and that
measurements from physical tests with amplitude-modulated cylinder vibrations were re-

quired.

Nakano and Rockwell. Low Reynolds number flow visualization studies of the wake be-
hind a circular cylinder undergoing amplitude-modulated oscillations have been conducted
by Nakano and Rockwell {51] at Lehigh University. These tests were carried out from the
point of view of “active wake control”. with the aim of altering the various forcing param-
eters {frequency, amplitude, modulation ratio, etc.) and classifying the different possible
states of response of the wake. The authors used a hydrogen bubble flow visualization
technique in a free-surface water channel, with a cylinder Reynolds number of 136. The
cylinder was forced by a computer-controlled traverse table system, similar in concept to

our own lead-screw oscillation mechanism. The cylinder motion had the form

y(t) = — <%) (1 = cos(2r fint)] sin(27 f.1) (5.5)
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where f,, and fe were the modulation and excitation (carrier) frequencies respectively, and
Y. was the peak amplitude of motion. (In this case, the notation of Equation 5.5 cannot
be expressed directly in terms of our notation; see the discussion later in this section. Y, is
similar to our 2Y}, and f. and f, are similar to our f. and 2 f, respectively.) The frequency
fe for most of the runs was fixed at 95% of the natural Strouhal frequency so as to provide
for slight detuning, and a range of values of fn./f. and Y./d were considered. Images of
the cylinder wake were recorded on a high-speed video system, and then classified into a
number of categories of deterministic vortex patterns. Four basic patterns were found for

amplitude-modulated excitation, consisting of the following:

1. fn periodic with f. lock-in: In this pattern, the vortices are formed at essentially the
same instantaneous phase (relative to the cylinder displacement) from one f. cycle to
the next. Further, this pattern of vortex formation is periodic at frequency fn, (i.e.

it repeats in every beat packet).

2. fm periodic with f, nonlock-in: Here, the near-wake vortical structure is periodic with
each f, beat packet but is not locked-in to each f. cycle; i.e. the vortices are not
formed at the same instantaneous phase. Indeed, the observed patterns suggest a
time-varying phase modulation of the vortex shedding process relative to the cylinder

displacement, periodic at frequency fn.

3. 2f periodic with f. nonlock-in: This is essentially a period-doubled version of the
previous pattern. The vortices do not exhibit lock-in during each f. cycle, and the
pattern does not repeat from one f,,, cycle to the next. However, essentially identical
patterns are formed between times 0 < { < 2/ f,, and times 2/f,, <t < 4/ fm (and so

on for every two fn, cycles), indicating a period-doubling effect.

4. fm periodic with f. nonlock-in; mode (n + 1): Similar to Pattern 2 above, an fi,-
periodic phase modulation of the near wake structure is observed, with the difference
that an extra pair of vortices is observed during each f,, beat packet {compared to

the number of cylinder oscillations at f, during the beat packet).

Nakano and Rockwell conducted a number of such experimental runs to determine the
ranges of the parameters f, /f. and Y. /d corresponding to each of the observed wake pat-

terns; Figure 5-3, from their paper [51], illustrates these response state ranges.
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Figure 5-3: States of response of near-wake as a function of dimensionless modulation
frequency fm/f. and amplitude Y./d at f./f, = 0.95; from Nakano and Rockwell (1991).

It should be noted that the amplitude-modulated cylinder excitation used by Nakano
and Rockwell differed from the type of waveform used by us and by Triantafvilou and

Karniadakis (79, 78]. Equation 5.5 can be written in the alternative form

y(t) = —}—;——sm (27 (fe = fm)t) — %—sm(%’_fet) + YTsm 27(fe + fm)t) (5.6)

We notice that this corresponds to the superposition of three sinuscids at frequencies f,,
(fe— fm). and (fe+ fm). This difference in the imposed waveforms implies that comparisons
between the results of Nakano and Rockwell and our own research should be made in a
qualitative sense only. In passing, it may be noted that the ratio of unity to the number
of carrier frequency oscillations contained in one beat packet, previously defined as the

modulation ratio, is in this case given by

Modulation ratio = 1:(}]}—) (5.7)




(Nakano and Rockwell have used the reciprocal quantity f.,/fe to characterize their exper-

iments.)

Gopalkrishnan et al. As we mentioned in Chapter 1, results from a preliminary set of
our beating oscillation experiments were published in Gopalkrishnan et al. {21. 20]. Rather
than describe those experiments in detail, we shall summarize the key findings.

Experiments were conducted using procedures very similar to those reported in this
thesis, using an excitation of the form given by Equation 5.1. The amplitude ratio Y;/d
was maintained at 0.15, while the amplitude ratio Y2/d was increased from 0% of ¥, to
100% of Y;. The modulation ratio was fixed at 1:5, and 10 sets of frequencies { fi, f2} were
tested. Thus these were experiments to determine the effect of varying modulation depth at
constant modulation ratio.

Owing to the relative sparcity of the testing grid, definite distributions of the beating
force coefficients could not be determined. However, the following general conclusions were

reached from an analysis of the data:

1. The presence of a second frequency component (beating) caused the lift force coef-
ficients to be smaller than the pure sinusoidal values. The influence of the beating

motion clearly increased with increasing modulation depth.

2. Beating caused a reduction of the mean drag coefficient and an increase of the RMS

osciilation drag coefficient.

From these results, we were encouraged to pursue the matter further and conduct the
experiments that are reported in this chapter. We decided to investigate the influence of
varying amplitude and modulation ratio. Since the effects of beating seemed to be maximum
at maximum (100%) modulation depth, this parameter was not varied during the present
experiments. Owing to improvements and automation of the experimental and analysis

procedures, a far denser testing grid was successfully completed.
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5.2 Force coefficient measurements

5.2.1 Mean drag coefficient

The mean drag coefficient Cp,, for the beating oscillation data was calculated in a man-
ner similar to the stationary and sinusoidal oscillation tests, as the (nondimensionalized)
difference between the mean value of the drag force trace during the run period and the
value during the final zero period. Not unexpectedly, (given the conclusions of Triantafyllou
and Karniadakis [79, 78] and our own previous experiments [21, 20]), the principal result
was that the presence of beating reduced the peak amplification of the mean drag. For

example. Figure 5-4 shows the variation of Cp,, with nondimensional frequency for sinu-

pure-sine and 1:20 beats
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Figure 5-4: Cp,, for beating motion with 2Y; /d = 0.75 (open circles), and for peak-matched
sinusoidal motion (solid lines).

soidal oscillations (solid lines) and beating oscillations (open circles) of amplitude ratio 0.75.
Note that for the sinusoidal data, the amplitude ratio Yp/d = 0.75 and the nondimensional
oscillation frequency fo are well defined; for the beating oscillations, the data correspond

to the peak amplitude ratio 2Y;/d = 0.75 and the nondimensional carrier frequency f(.
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Figure 5-5: Cp,, for beating motion of RMS amplitude ratio Yaams/d = 0.53 (asterisks),
and for RMS-matched sinusoidal motion (solid lines).

From Figure 5-4, it is clear that the presence of beating significantly reduces the mean drag
force. The data for the 1:20 and 1:10 beats (relatively slow modulation) are similar and
show a reduction and associated widening of the Cp,, amplification peak. The data for the
1:3 beats (relatively fast modulation) shows a “plateau” or “double peak” behavior of the
mean drag, consistent with the observations of Schargel [68, 69] in his analysis of (relatively
broadband, hence rapidly modulated) random cylinder oscillations.

The reduction of the mean drag as illustrated in Figure 5-4 could perhaps be explained
as being due merely to the fact that the beating input oscillations have the same peak
amplitude as the sinusoidal oscillations (“peak-matched”), and hence have a smaller RMS
amplitude and lower input power. In fact. it would appear that the presence of beating
causes a reduction of the peak mean drag coefficient even if the RMS of the input motions
are the same. (See also Gopalkrishnan et al. [21, 20}). This phenomenon is illustrated
in Figure 5-5, which depicts the same sinusoidal Cp,, data as the previous figure (peak

amplitude ratio = 0.75. RMS amplitude ratio = 0.53) (solid lines), compared here to the
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Figure 5-6: Motion and drag for a typical 1:10 beating case; fc = 0.160, 2Y;/d = 0.50.

results obtained for beating motions having the same RMS oscillation amplitude (“RMS-
matched”) (asterisks). While in an overall sense the beating mean drag coefficients are now
much closer to the sinusoidal data, it is seen once again that the peak values predicted from
the sinusoidal results are not observed. The fast modulation data (1:3 beats) again exhibit
a double-peaked behavior, but the locations of the Cp,_, peaks are quite different from the
sinusoidal case.

From the preceding observations, it would seem that the values of the beating mean
drag coefficient cannot be obtained directly from sinusoidal data, and that one must seek
other models to achieve such predictions. An attempt along these lines (first suggested by
Triantafyllou [78]) is to consider the “instantaneous mean drag coefficient” of a beating
oscillation waveform as being a quasistatic, nonlinear process dependent on the instanta-
neous oscillation amplitude. For example, Figure 5-6 illustrates a typical set of amplitude-
modulated data, showing time-trace segments of the cylinder motion and corresponding
(normalized) drag coefficient for a waveform of 1:10 modulation ratio, peak amplitude ratio

2Y1/d = 0.50, and nondimensional carrier frequency f. = 0.16. If we define the “instanta-




neous mean drag coefficient” CB‘;": as the average value of the drag coefficient calculated over
one carrier frequency cycle, Figure 5-6 suggests that this instantaneous drag rises and falls
with the envelope of the beating motion, taking on the appearance of a rectified sinusoid.
To arrive at the model, we assume that the value of this instantaneous mean drag coefficient
is equal at all times to the value of the mean drag coefficient for a pure sinusoidal oscilla-
tion having the same instantaneous oscillation amplitude. The resultant beating mean drag

coefficient is then the “average instantaneous mean drag coefficient”, and is given by

Cp,. = C}s‘sm‘ = Cp.o+(Cp,. s —CDpno) (5.8)

where Cp,, , has been used to denote the stationary mean drag coefficient (a constant),
Cp,,_s to denote the sinusoidal mean drag coefficient (a function of oscillation amplitude
and frequency), and the overline symbol denotes an average taken over all the instantaneous
amplitudes of the beating input. If now the sinusoidal mean drag is considered to be a linear
function of oscillation amplitude (a reasonable approximation, see Figure 4-7), F;uation 5.8
can be simplified to depend only on Cp,, ; and the mazimum value of Cp,, g, i.e. the value
of Cp,, ; at the peak amplitude of motion. The expression for the beating mean drag then
is

m

vy 2
Cp, = CB = Cp.,+ =(CB2 ~ Cpaso) (5.9)

where the factor 2/7 appears as the average value of a rectified sinusoid.

Values of the beating mean drag coefficient Cp, were computed according to Equa-
tion 5.9 for all of the amplitude-modulated cases and compared to the actual measured
values. It was found that the quasistatic model gave excellent results for the slow modu-
lation cases, but was inaccurate for the fast modulations. Figure 5-7 shows the measured
mean drag coefficient for beating oscillations with 2Y;/d = 0.50 (open circles), compared
to the results calculated according to the above model (dashed lines); the validity of the
model for slow modulations is clearly seen.

For the fast beating cases (1:3 ratio), it was found necessary to develop an alternative
model not based on a quasistatic analysis. The characteristic double-peaked Cp,, results
obtained for the 1:3 ratio beats suggested a linear addition behavior. Hence. a model

was devised that consisted of the linear superposition of the sinusoidal drag amplification
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Figure 5-7: Results from the quasistatic Cp,, model (dashed lines) and measured data
(open circles); beating motion with 2Y; /d = 0.590.

results for each of the two spectral components comprising the beating waveform. Thus, for
a particular beating input consisting of components at amplitudes and frequencies {Y}, fi}
and {Y3, f2}, the corresponding sinusoidal mean drag coefficients Cp,._s, and Cp,, ,, were
found (from, for example, Figure 3-12) and added to give the beating mean drag coefficient

according to
Com = CDpo+(CDp sy = CDmis) +(CDp_s, = CDpso) (5.10)

Values of Cp,, by this alternative method were calculated and found to give gond results for
fast beats of moderate amplitude ratio. Figure 5-8 shows the measured mean drag coefficient
for beating oscillations of peak amplitude ratio 2Y;/d = 0.30 (asterisks), compared to the
results calculated according to the linear superposition model of Equation 5.10 (dashed
lines); the 1:3 ratio beating results show fairly good agreement.

The primary purpose in devising the models discussed above was to evaluate the behavior
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Figure 5-8: Results from the linear Cp,,, model (dashed lines) and measured data (asterisks):
beating motion with 2Y;/d = 0.30.

of the beating mean drag coefficient for different modulation ratios. In situations with fairly
regular beating motions, the measured data could be used directly to estimate the mean
drag force. Figures 5-9 , 5-10, and 5-11 are contour maps of the measured values of Cp,,
for modulation ratios 1:20, 1:10, and 1:3 respectively. As before, the frequency axis refers
to the nondimensional carrier frequency fc, while the amplitude axis refers to the peak
amplitude ratio 2Y;/d. It can be seen from Figures 5-9 and 5-10 that the drag coefficient
results for the 1:20 and 1:10 beats are rather similar. The contour map for the 1:3 ratio
beats (Figure 5-11) shows a double-peak behavior that may be discerned at low amplitudes.

while a flatter “plateau” behavior is seen at higher amplitudes.

5.2.2 Oscillating drag coefficients

Analysis of the oscillating drag coefficients proved 1o be less straightforward than that of
the mean drag coefficient, as presented in the preceding paragraphs. Two problems had to

be considered: first, preparing (and verifying) a2 model to represent the beating oscillating
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drag force; and second, evaluating the coefficients required in the model.
In the case of a pure-sinusoidal oscillation at frequency fo, the oscillating component

Cp of the total drag coefficient Cp was given by
Cp = Cpy sin(27(2 o)t + o) (5.11)

where Cp, was termed the oscillating drag coefficient. and represented the magnitude of a
sinusoid at twice the frequency of the input oscillations. (The natural Strouhal component at
frequency 2 f; has not been included.) By a direct extrapolation of Equation 5.11, one would
expect the oscillating drag in the case of a beating input waveform containing components

at frequencies f; and f; to be given by
6’}3 = Cp, sin(2z(2fi )t + vy) + Cp,sin(2x (2,1 + v;) (5.12)

Values of the coefficients Cp, and C'p, were extracted from the beating data using a method

analogous to that used in the sinusoidal case: the known frequencies 2f; and 2, were used
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to menerate reference sine and cosine waveforme which were thep ysed to estimate the
appropriate Fourier coefficients of the drag force traces. using a 20-cycle time-gating pro-
cedure. For example, Figure 5-12 shows the coefficients Cp, and Cp, (circles and crosses,
respectively) for beats of individual component amplitude Y;/d = 0.50 (peak amplitude

ratio 2Y;/d = 1.00), compared to the coefficient Cp, (solid lines) for sinusoidal oscillations

pure-sine and 1:20 beats pure-sine and l:' 10 beats
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Figure 3-12: Cp, and Cp, for beating motion with Y¥;/d = 0.50, and Cp, for component-
matched sinusoidal motion.
of comparable amplitude Yy/d = 0.50 {“component-matched”). The frequency axis refers
to the individual (nondimensional) frequency components fi and f; for the beating oscilla-
tions and Jfy for the sinusoidal case. For fast modulations (1:3) ratio, the beating coefficients
closely follow the sinusoidal result; considerable deviation occurs at slower modulation ra-
tios.

To check whether the model of Equation 5.12 adequately represents the beating oscil-
lating drag, we calculated the RMS oscillating drag coeflicient from the coefficients Cp,

and Cp, and from the actual data traces as well. If Equation 5.12 were accurate, then by
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algebraic manipulation

2 C'Ql C2 51-
Chus = V(C0') = |34 + 3 (5.13)

Values of Cg‘:;ls calculated from Equation 5.13 were compared to values of Cpg,,s com-
puted from the time traces of the drag force: Figure 5-13 illustrates the comparison for

beating oscillations of peak amplitude ratio 2Y;/d = 0.75. The calculated values are a good
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Figure 5-13: Cp,,,s calculated from from actual data, as well as C
beating motion witi 2Y7/d = 0.75.

deal lower than the measured values, with the difference increasing with the rapidity of the
beating oscillations. Clearly, the beating oscillating drag force contains spectral components
in addition to those of Equation 5.13.

A look at the time traces of Figure 5-6 of the previous subsection points to an obvious
additional source of oscillating drag: the rise and fall of the drag force trace with the envelope
of the beating motion. As a first step, this fluctuation can be modeled as a sinusoid at twice

the modulation frequency. i.e. at a frequency f; — fy (see Equation 2.18). This gives for
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the total oscillating drag coeflicient

——

Cp = Cppoesin(27(f2 = fi)t + Ymod) +
Cp, sin(2r(2fi)t + ¥1) + Cp, sin(2x(2f2)t + ¥2) (5.14)

where the coefficient Cp__, expresses the magnitude of the low-frequency oscillatory drag.
Values of Cp,_, , were extracted from the beating drag traces, and in addition, were calcu-
lated via a simple quasistatic model derived from the same assumptions as the quasistatic
model for the beating mean drag coefficient discussed in the previous subsection, i.e. the
drag coefficient is assumed to fluctuate between the stationary mean drag coefficient and

the sinusoidal mean drag coefficient at the peak amplitude of motion. Thus

Dmod

c 1
Chmea = 5(Chat ~ CD o) (5.15)

where the notation is as used previously. Figure 5-14 compares the experimentally deter-
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Figure 5-14: Measured values of Cp__, (crosses) and results from quasistatic model (dashed
lines); beating motion with 2Yy/d = 0.75.
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mined values of Cp,_,, (crosses) to the results from the quasistatic model (dashed lines) for
beating oscillations of peak amplitude ratio 2Y;/d = 0.75. We see that the magnitudes of
Cp,,..q 2re, in fact, very substantial: the quasistatic model proves to be adequate for slow
modulations, but fails to predict Cp__, accurately for fast modulations.

To check the validity of Equation 5.14, we once again calculated the RMS oscillating
drag coefficient from the individual oscillating drag coefficient magnitudes. By manipulation

of Equation 5.14, Cp,,, s is now given by

’ —2 02 C2 CZ
Chuus = V(Cp) = \/ Pret f b =22 (5.16)

Figure 5-15 compares values of the RMS oscillating drag coefficient calculated according

to Equation 5.16 with the corresponding values extracted from the actual data traces.

for beating oscillations with 2Y;/d = 0.75. This time, we see that the calculated values

cale.’

Bmas closely follow the actual values at low frequencies, but fall off in magnitude at higher
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frequencies. The difference between the actual Cp,,,, and the calculated values increases
with the rapidity of the modulations, and indicates that while we have now accounted for
the bulk of the oscillating drag, yet additional frequency components are present as well.
Figure 5-16 shows the power spectrum of the drag force for a typical high frequency 1:3
beating oscillation, in this case with amplitude ratio 2Y; /d = 1.00, nondimensional carrier
frequency fc = 0.279, and actual component frequencies f; = 3.760 Hz and f, = 5.013
Hz. The oscillating drag components Cp, at frequency 2f,, Cp, at frequency 2f;, and
Cp,,... at frequency f, — f are clearly visible, but additional sum-and-difference frequency

components are present as well.
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Figure 5-16: Power spectrum of a high frequency, 1:3 ratio, beating drag force trace.

To summarize the analysis thus far: the beating oscillating drag force contains significant
spectral components at frequencies 2f;, 2f,, and f, — fy, where f; and f, are the frequencies
of the input components. The oscillating drag coefficients at the above frequencies, Cp,,

Cp,, and Cp respectively, are difficult to estimate (all at once) from sinusoidal data.

mod

The coefficients Cp, and Cp, are similar to the sinusoidal results for fast modulations

(Figure 5-12), while the coeflicient Cp_ . can be obtained via a quasistatic model for slow
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Figure 5-17: Contours of Cp,,,.; 1:20 beating motion.

modulations (Figure 5-14).

From the foregoing discussion, one is led to the conclusion that the simplest way of
quantifying the beating oscillating drag would be use the RMS drag coefficient Cpg,,<
directly. An interesting fact that we notice is that the magnitude and variation of Cpg,,
appear almost independent of the modulation ratio. Figures 5-17, 5-18, and 5-19 show the
contours of the measured RMS oscillating drag coefficient for 1:20, 1:10, and 1:3 beating
oscillations respectively. If the experimental data scatter is ignored (these contours have not
been smoothed), we see that Cp,, . depends only very weakly on the rapidity of the beats.
It is left to a future investigation to determine whether or not this is merely a fortuitous
coincidence.

Before closing this subsection. it should be noted that the RMS oscillating drag coef-
ficient for beating motions is, in general, higher than the corresponding RMS coefficient
for sinusoidal oscillations. For example, Figure 5-20 depicts the measured values of Cliponrs
for beating oscillations of peak amplitude ratio 2Y;/d = 0.75 (open circles), compared to

the Cp,., . data obtained for pure sinusoidal oscillations of equal RMS input amplitude
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Figure 5-20: Cppg,,s for beating motion with 2Y;/d = 0.75 (open circles), and for RMS-
matched sinusoidal oscillations (solid lines).

(“RMS-matched”) (solid lines); the increase due to the beating motion is evident. Our
drag data therefore confirm the numerical findings of Triantafyllou and Karniadakis [79, 78]
mentioned earlier, i.e. the presence of beating causes a simultaneous decrease of the mean

drag force and an increase of the oscillating drag force.

5.2.3 Oscillating lift coefficients

As in the previous subsection on the oscillating drag coefficients, our first attempt at the
analysis of the beating lift forces involved a direct extension of the classical sinusoidal
formulation. From Chapter 2 (Equation 2.22), we see that this approach gives. for a beating

excitation of the form of Equation 5.1. a lift coefficient according to:

Cr = Cr,sin(2xfit + o1} + Cp, sin(27 fot + 03) (6.17)

|
|
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where Cr, and Cp, are the magnitudes of the lift co~flicient components at the input fre-
quencies fy and fo respectively, and the angles ¢, and ¢, represent the phase differences
between the lift components and the corresponding motion {input) components. The coef-
ficients Cp, and Cr, and the phase angles ¢; and ¢, were extracted from the beating data
using the Fourier techniques outlined in Chapter 2. For example, Figure 5-21 illustrates the
values of C,, and Cp, (circles and crosses respectively) obtained for a beating waveform of

relatively small individual component amplitude Y, /d = 0.15, compared to the sinusoidal
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Figure 5-21: (', and (', for beating motion with Y;/d = 0.15, and Cp, for component-

matched sinusoidal motion.

coefficient Cr,, (solid lines) for oscillations of component-matched amplitude Yp/d = 0.15.
To show that the beating lift force does indeed consist primarily of the two components

of Equation 5.17, we calculated the RMS oscillating lift coefficient from the expression

Cc: C}
Chrae = VICH) = |+ 5 (18

as well as directly from the beating lift force data traces. Figure 5-22 shows the C‘,‘f‘;‘;‘“

values calculated from the individual components (open circles) compared to the Cp,,,.
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Figure 5-22: Cp,,,s calculated from from actual data, as well as C
beating motion with 2Yy/d = 0.75.

values computed directly from the data (asterisks), for beating oscillations of peak amplitude
2Y;/d = 0.75. We see that there are only small differences between the two sets of data.
except for a small peak of unknown origin. near a nondimensional frequency of 0.10, in
each of the actual Cr,,; data-sets. Nonetheless, the dual-frequency beating model of
Equation 5.17 would appear to be a good one, independent of the modulation ratio. To make
the point further, Figure 5-23 shows the lift force power spectrum for the same experimental
run related earlier to Figure 5-16: a beating motion with modulation ratio 1:3, amplitude
ratio 2Y;/d = 1.00, and component frequencies f; = 3.760 Hz and f, = 5.013 Hz. The
lift force is dominated by the components at the input frequencies f; and f;. (Note the
contrast to the drag force power spectrum (Figure 5-16)).

From the previous paragraph, we conclude that a cylinder undergoing duval-frequency
beating motion sustains a vortex-induced lift force which may also be approximated as a
dual-frequency beating oscillation, of the form given by Equation 5.17. (We shall investigate

the limitations to this model in a later section.) The problem that arises. however_ is that
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Figure 5-23: Power spectrum of a high frequency, 1:3 ratio, beating lift force trace.

the coefficients that characterize the lift force oscillation, Cy,, Cp,, ¢1, and o, are not easy
to estimate from available sinusoidal data. From Figure 5-21, we see that the presence of
a second frequency component in the input motion alters the value of the lift coefficient
at both frequency components. Figure 5-24 illustrates the variation of the phase angles &,
and ¢, (circles and crosses, respectively) for beating oscillations of individual component
amplitude Y;/d = 0.50, compared to the component-matched sinusoidal results (solid lines).
We see that the phase angles too are substantially modified from the sinusoidal data. We
found that the effect of beating on the lift coefficient magnitudes and phase angles incrcased
with oscillation amplitude, and at the higher amplitude ratios the beating data bore very
little resemblance to sinusoidal results. A further drawback to the dual-frequency spectral
model of Equation 5.17 is that the model cannot be related directly to the vortex dvnamics
in the wake of the cylinder, since there is no evidence to suggest that vortices are shed at
two distinct frequencies.

From all of the above remarks., it would appear advantageous to simplify the position

by reducing the number of variables involved, and to seck a single parameter that would
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Figure 5-24: ¢ and ¢, for beating motion with Y7 /d = 0.50, and ¢¢ for component-matched
sinusoidal motion.

express the magnitude and effect of the lift force for the entire beating waveform. One
candidate would be the RMS oscillating lift coefficient Cp,,, s, which has been widely used
in the past. particularly in connection with field experiments [7]. In most cases however,
the calculation of 7y, ,,. does not include any information about the phase angle. and so
must be viewed with great caution. Without phase angle information. there is no way of
knowing whether the action of the lift force is exciiing or damping, and hence the utility of
such data is enormously diminished.

In order to express both magnitude and phase angle information in a simplified manner,
we proceeded to define two “equivalent lift coefficients™ Cp v, and ('p_4_ at the carrier
frequency f.. to quantify the net magnitudes of the beating lift force in phase with cvlinder
velocity and in phase with cylinder acceleration respectively. These coefficients are defined

bv direct power transfer and inertial fcice calculations as:

City, 3
Cryv = ig:’:ﬁ‘::) (A.19)

o Ve(alt) gl
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and

3(’(’)‘1(” 15.20)
Nz

L., (ult),y(1))

where Cp(2) is the total lift coeflicient, pit) is the evlinder velocity calculated directly
from the cylinder motion, (1) is the cylinder acceleration calculated similarlv. and (. .)
denotes the appropriate cross- or auto-correlation at zero lag. In the case of pure sinusoidal
oscillations, Equations 5.19 and 5.20 revert to the original definitions of (' v, and € _4, as
Cr, sin(¢g) and —Cpr, cos(go) respectively (see Equations 3.3 and 3.5). For dual frequency
beating oscillations, some algebraic manipulations of Equations 5.19 and 5.20 vield (keeping

in mind that in our case ¥} = 13)

27 [iY1Cp, sin(o1) + 27 LY, sin(o2)

Crv. = : (5.21)
27}’(7\/?}‘]
and
—472 f2Y,Cp, cos(@y) — Ant f2YLC 1, cos(y) .
fiViCp, cos(oy) [3Y2C, cos(¢, (529,

Cra, = WL
42 (,2\[2)1
Stated in words, the equivalent lift coefficients 'y v, (and C;_4,) are those coeflicients
which, “when applied to a sinusoidal waveform at frequency f. and of the same RMS input
amplitude as the beating waveform, vield the same RMS output power (or inertial force)”
Values of the above equivalent coefficients were calculated for all of our beating experi-
mental runs. Figures 5-25, 5-26. and 5-27 are contour maps of the equivalent lifi coefficient
in phase with velocity for beating oscillations of modulation ratio 1:20. 1:10. and 1:3 respec-
tively. As in the case of the the sinusoidal coeflicient (77 v (Figure 3-140. positive values of
Cr_v, denote an ezciting effect of the lift force on the cvlinder oscillations. wiiie negative
values dencte a damping effect. The thick black lines marked on the fignres correspond to
the zero contours, defining the primary and secondary excitation regions. Campared to the
sinusoidal contours of Figure 3- 14, the primary excitation regions for the beating oscillation«
have grown in extent, essentially in the amplitude direction. For each of the modulation
ratios. the secondary oxcitation region remains onlv in vestigial form. The extent of the
excitation region along the frequency axis is < on toincrease with the rapidity of the beats:
a distinct double-peak offect i seen for the 113 ratio oscillations.
Contour maps of the equivadent bt coetiicient in phase with acceleration are presented

in Figures 5-28, 529 and 5 30 for beats of modulation ratio 1:200 1:10 and 1:3 respectivels
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As before, positive values of C1_4, denote negative values of inertial added mass, and vice

versa. The thick black lines on the figures correspond to the zero contours. The beating

results are remarkably similar to the sinusoidal C';_,, contours of Figure 3-15.

5.3 Analysis of the wake response
5.3.1 Preliminary remarks
surements for beating oscillations. Most of our presentation reflected a direct extension of

the sinusoidal force coefficient formulations. and was not necessarily linked to the underly-

ing wake dynamics for a beating cylinder. Some light has been shed on the beating wake

dynamics from the low-Reynolds number flow visualization work of Nakano and Rockwell

(51). In our case, we found it useful to perform time-domain processing on our beating force

| ' In the previous few subsections, we discussed the results of cylinder force coefficient mea-

records so as to detect and classify various types (“modes”) of wake response.
The essential features of our time-domain analysis method have been introduced in
Section 3.7 of Chapter 3. For every data set analyzed, the time points corresponding to

each upcrossing of the motion and lift force time traces were determined. and then used to

calculate “instantaneous” frequencies and phase angles. Results of this processing method
were displayed and printed grap..cally, consisting of plots of the normalized motion and lift
coefficient time traces. instantancous phase angles, and histograms of the calculated motion
and lift frequencies.

For the beating oscillations tested, several different wake modes were identified. In the

following section, we shall discuss each of these wake modes, along with a typical example

5.3.2 Classification of wake response modes

The majority of the beating runs analyzed were found to fall into one of four response
types: periodic nonlock-in. frequency switciing, random phase modulations, or perodic phase
modulations. The precise behavior in any single case depended on the carrier frequency. the

amplitude ratio, and the modulation ratio.

15]

. of each from the time domain processing.




Periodic nonlock-in. Figure 5-31 illustrates a typical example of periodic nonlock-in,
in this case for a beating oscillation of peak amplitude ratio 2Y,/d = 0.15, nondimensional
carrier frequency f. = 0.144, and modulation ratio 1:10. As in the case of sinusoidal
oscillations (Figure 3-32 of Chapter 3), this mode corresponds to the unforced response of
the wake, which does not “see” the external forcing. It is clear from the time traces that the
vortex shedding frequency (lift) is not the same as the external forcing frequency {motion);
the frequency histograms reveal that while the motion frequency is centered near 0.15, the

lift force frequency is near the natural Strouhal value of 0.20.

Frequency switching. A very interesting mode observed in some of the time traces
was that of frequency switching, illustrated in Figure 5-32. The specific data set in the
figure refers to a 1:20 ratio beating motion with 2Y;/d = 0.75 and fe = 0.1302. The
instantaneous frequency of the lift force time trace is not constant, but appears to fluctuate
between two distinct values. The histograms reveal these two values to be the natural
Strouhal shedding frequency, and the imposed external carrier frequency. The switching
behavior convincingly demonstrates the nonlinear dependence of the vortex-induced {orce
phenomena on the oscillation amplitude envelope: when the amplitude envelope is above
some threshold value. the lift force frequency locks on to the externally applied frequency.
while below the threshold value the wake responds in an unforced manner (with natural

Strouhal oscillations).

Random phase modulations. Figure 5-33 illustrates the mode corresponding to ran-
dom phase modulations, specifically beating oscillations with modulation ratio 1:10, am-
plitude ratio 2¥;/d = 0.50, and carrier frequency f. = 0.1547. In this case. the lift force
time trace is very irregular, and bears no apparent relationship to the motion time trace.
The motion histogram is tightly centered around the carrier frequency. while the lift force
histogram shows a broadening effect. This mode is analogous to the case of quasiperiodic

nonlock-in for sinusoidal oscillations { Figure 3-33).

Periodic phase modulations. The most ordered of the four common modes was that
of periodic phase modulations, illustrated by Figure 5-34, pertaining to the specific case of

1:10 ratio beats with 2¥;/d = 0.50 and fp = (1.208, The lift force trace now resembles a




Figure 5-31: An example of periodic nonlock-in: 1:10 beats with 2Y;/d = 0.15, f. = 0.144.
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Figure 5-32: An example of frequency-switching; 1:20 beats with 2Y,/d = 0.75. f. = 0.1302.
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Figure 5-33: An example of random phase modulations; 1:10 beats with 2Y,/d = 0.50.
f. = 0.1547.
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Figure 5-34: An example of periodic phase modulations: 1:10 beats with 2Y,/d = 0.50,
fe = 0.208.
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well-formed beating oscillation, and the instantaneous phase angles have taken on a periodic
variation. with a pattern that repeats itself for every beat packet. Both the motion and lift
frequency histograms are relatively tightly centered around the carrier frequency. As we

shall see, for the most part. this mode takes the place of sinusoidal lock-in.

All of our beating data were processed by the time domain method, and the results
were assembled into wake response state diagrams, as done in the case of sinusoidal oscilla-
tions. Due to limitations of the processing method, the modes were difficult to identify at
nondimensional carrier frequencies f. below 0.10 and above 0.25, and peak amplitude ratios
2Y1/d above 1.00. Within these constraints. however, the wake-response diagrams provide
an excellent view of the behavior of the beating vortex-induced forces. Figures 5-35 and
5-36 are the response diagrams for 1:20 and 1:10 ratio beats respectively. and are seen to
be quite similar. At very low (or high, presumably) frequencies, the wake does not feel the
effect of the forcing and responds with periodic nonlock-in. As the frequency approaches
the natural Strouhal value. the response mode changes to frequency switching, and then to
random phase modulations. Within a certain range of frequencies bracketing the Strouhal
number, periodic phase modulations are observed. The overall shapes of the wake-response
diagrams are not dissimilar from the sinusoidal result, Figure 3-35.

For the fast 1:3 beats. a far richer distribution of wake responses was found. as illustrated
in Figure 5-37. The most striking feature of Figure 5-37 is a distinct “dual™ behavior,
with two regions of periodic phase modulation surrounded by regions of random phase
modulation and periodic nonlock-in. In addition, while no systematic frequency-switching
was detected, a unique mode was found wherein the lift force exhibited beats at a modulation
ratio of 1:7. or twice the externally imposed ratio. This “period-doubling™ bebhavior is
illustrated in Figure 5-38. which shows the time-domain processing results for the case of
1:3 beats with peak amplitude 2Y7/d = 0.30 and carrier frequency f. = 0.181. The beat
packets of the lift force time trace are clearly twice as long as the beat packets of the motion
time trace, and the doubling effect is reflected in the variation of the phase angle as well.
[t should be borne in mind. however. that the inherent mathematical modulation period
of our bheating input consists of two heat packets, not one. (From Equation 5.2, the first
beat packet occurs during the first half-cycle of the modulation sinusoid cos(2x f,.t). and

the second beat packet occurs during the second hall-cvele.) | he bt Joree wavetorm during,
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Figure 5-37: Wake response state diagram for 1:3 beats.

the “period-doubling” mode thus does not truly double the modulation period. but alters

the shape of the lift force response within one modulation period.

5.3.3 Comparisons with published results.

In Section 5.1.2, we discussed the results of Nakano and Rockwell [51], who studied the states
of response of the wake behind a beating cylinder at low Reynolds numbers. Although the
methods and waveforms used by those authors differed from ours. it is useful to compare
the wake response modes that we observed ({from force measurement time traces) with their
data (from vortex flow visnalization).

Of the wake response modes observed by Nakano and Rockwell, none of our time traces
exhibited the f,, pertodic with f. lork-in behavior. The instantaneous phase angles ralcu-
lated in every one of our cases showed at least a slight periodic modulation, and not once
assumed a constant value associated with pure lock-in. The lack of lock-in in our mea-

surements could perhaps be related to the difference in Revnolds number regime and hence

turbulence effects.

1x9




Figure 5-38: An example of “period-doubling™: 1:3 beats with 2Y,/d = 0.30. foo= 0%
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Nakano and Rockwell's mode f,, periodic with f, nonlock-in corresponds well with our

“periodic phase modulation”. Their words

“a time-varying phase modulation of the near-wake structure, relative to the

cylinder displacement”

could be used to describe our data too. The authors do not make any mention of a “random
phase modulation” mode, but perhaps they treated it as a special case of the same general
type. Their mode f,, periodic with f, nonlock-in, mode (n + 1) could perhaps be a version
of our “frequency-switching”™ — the extra pair of vortices they observed in the visualization
being perhaps associated with shedding at the (higher) Strouhal frequency for a part of the
modulation cycle.

As for the “period-doubling” mode for fast modulations, Nakano and Rockwell observed
a similar pattern which they termed 2f,, periodic with f, nonlock-in. Thev emphasized the
importance of this mode, which they believed to represent a subharmonic bifurcation of the
flow system revealing a route to turbulence in the wake. We have indicated earlier that
the mode we observed is not truly a “period-doubling”, since the fundamental modulation
period of our waveform spans two beat packets. not one. We cannot say. therefore. whether
our observations indicate an underlying feature of the beating wake (similar to Nakano and
Rockwell’s pattern), or stem merely from an artifact of our input forcing.

In conclusion, while obvious differences exist between our results and the previous data
of Nakano and Rockwell. the basic observations are consistent. A variety of vortex patterns
are seen to exist in the wake of a cylinder undergoing beating oscillations. depending on the
oscillation amplitude, frequency. and modulation ratio. Some of these patterns (particularly
the frequency-switching mode) illustrate the nonlinearity of the vortex shedding process, and
indicate that great care must be exercised in the conduct and interpretation of traditional

processing methods applied to the measured force signals.

5.4 Discussion and Summary

In this chapter, we have investigated the behavior of the vortex-induced lift and drag forces
acting on cylinders undergoing simple, dual-frequency amplitude-modulated oscillations.

Such amplitude-modulated, or beating oscillations occur in the VIV response of long flexible
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cylinders in sheared flows, and we believe that our work is a useful addition 10 the limited
literature on the subject.

In the case of the vartex-induced drag force, the presence of beating causes a reduction
in the magnitude of the mean drag coefficient from established <inusoidal values. For slowly
varying beating oscillations, the average mean drag varies with the instantaneous amplitude
of the cylinder motion, and can be well predicted by a quasistatic application of sinusoidal
data. For fast beating oscillations, this quasistatic analysis is not valid, and a linear su-
perposition model gives reasonable results. The beating oscillating drag force consists of
several linear and nonlinear spectral components, and is difficalt to predict from sinusoidal
data. An RMS description of the oscillating drag coefficient is useful.

In the case of the vortex-induced lift force, we defined “equivalent lift coefficients” Cy,_y,
and Cp,_a. to express the net influence of the lift force in phase with cylinder velocity and
acceleration respectively. On the Cp v, contour maps. the principal effect of beating is
a “lengthening” of the primary excitation region from a limiting amplitude of about 0.85
(sinusoidal oscillations. Figure 3-14) to about 1.10 (beating oscillations, Figures 5-25 - 5-27).
The Cj,_4. contour maps for beating motions remain rather similar to the corresponding
sinusoidal data.

Time domain upcrossing analysis of the motion and lift force time traces reveal a number
of different patterns, or modes, in the wake of a beating cylinder. Particularly interesting
among these is a “frequency switching” behavior illustrating the dependence of the vortex-
shedding process on the envelope of the oscillation amplitude. Pure lock-in behavior was
never observed; at carrier frequencies close to the natural Strouhal number. the lift force
sustains a regular phase modulation that repeats from one beat packet to the next. The
absence of lock-in for beating oscillations, but the presence of very definite excitation regions
in the Cr_y, contour maps, once again emphasizes the difference between the “lock-in” and
“excitation” concepts discussed in Chapter 3. The periodic phase modulation behavior
provides an explanation for the lengthening of the excitation contours mentioned in the
previous paragraph — from the phase variation of Figure 5-34, it is clear that the cylinder
sustains a periodic alternating damping and excitation as the envelope of the motion rises
and falls, with the net result being that the peak amplitude of motion could be higher than
for the purely sinusoidal case. Given that the lift force time traces for only this periodic

phase modulation behavior look like regular beating signals, it would appear that the dual-
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frequency lift model of Equation 5.17 is strictly valid only for this range of oscillation
parameters.

A general observatior from all of our force coeflicient measurements and time-domain
analyses is that the slow (1:20 and 1:10) beating oscillations behave in a nonlinear quasistatic
fashion, while the fast (1:3) beats behave more in a linear superposition fashion. A possible
explanation for this could be that the rapid beats do not allow the wake enough time to
adjust to the instantaneous envelope amplitude, thus giving a more linear appearance to
the measured force coefficients. In any case. we found that the peak amplitude of motion
2Y,/d was more descriptive than the component amplitude Y;/d for the slowly varving
modulations, and vice versa for the rapid modulations.

Numerous opportunities exist for the application of ocur beating data to engineering
predictions of VIV in actual structures. In situations where reguior beating motions are
expected or known to occur. the lift coefficient contour maps of Figures 5-25 - 5-27 can be
used with a simple “energy balance” mod>:] {as described in Chapter 4) to predict response
amplitudes. The drag coefficient contour maps of Figures 5-9 - 5-11 and Figures 5-17
- 5-19 can be used directly (or with appropriate interpolation) to predict the mean »nd
RMS oscillating drag forces. Application of the measured lift coefficient data in a more
formal predictive model depends on the specific details of the model; for instance, the
recently developed algorithm of Triantafyllou [83, 84] uses sinusoidal data in a time-don:ain
calculation to simulate beating behavior, and does not use measured beating data for this
purpose. On the other hand, efforts are under way at MIT (Tjavaras, [77]) to extend the
sinusoidal wake oscillator concept (Hartlen and Currie [30], Skop and Griffin [71]) to beating
oscillations. and it is expected that our data will provide a valuable means of calibrating

such a model.
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Chapter 6

A Paradigm of Vorticity Control:

Cylinder-Foil Vortex Interaction

6.1 Introduction

6.1.1 Preliminary remarks

In previous chapters, we have studied the vortex-induced forces acting on cylinders forced
with sinusoidal and amplitude-modulated oscillations under a variety of different forcing
conditions. The focus thus far has been on studying the integrated forces acting on the
cylinders (due to the engineering importance of these forces), rather than the detailed
structure of the flow that causes the forces. We now turn to the study of the vortical
structures behind a cylinder. with particular emphasis on ways to control these structures,
and to reveal in the process the principal governing mechanisms. In order to focus our
efforts, we shall study the interaction between the vorticity generated by a bluff cylinder
and that generated by an oscillating hydrofoil operating in the wake of the cylinder. Two
practical applications of this research are drag reduction through vortex repositioning. and
signature reduction through vortex annihilation (or equivalently, flow enhancement through
vortex reinforcement when, for example, vigorous mixing is desired). In order 1o investigate
these ideas, we shall employ newly-developed flow visualization experiments as well as an

extended form of our force measurements.
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6.1.2 Background and motivation

It is well known that the characteristics of the Kdrmdn vortex wake behind a stationary
or oscillating bluff body are related to the drag force acting on that body. The Karman
vortices, through their arrangement and direction of rotation. are intrinsically connected
with a wake velocity that is opposite in direction to the free-stream velocity. This leads to
a time-averaged “velocity defect” profile, which from momentum considerations. is related
to the drag force experienced by the body. Recent theoretical advances in the area of bluff
body wake dynamics (Triantafyllou et al. [80]) show that the formation of the Karmdn
vortices is in fact due to an absolute instability of the time-averaged velocity profile in the
wake, indicating that the vortex street and the velocity defect profile are intricately linked
to each other.

From flow visualization experiments. we know that the cylinder wake can assume (or
be transformed into) a variety of vortex patterns or “modes™. In Chapter 1. we reviewed
the work of Williamson and Roshko {95], -.nd of Ongoren and Rockwell [53]. Both papers
showed that the vortex patterns in the wake of a circular cylinder vndergoing sinusoidal
oscillations could vary widely, depending on the amplitude and frequency of the oscillation.
In the preceding chapter, we have reviewed the results of Nakano and Rockwell [31], who
studied the different vortex modes in the wake of a cylinder undergoing beating oscillations.
In addition to the case of a single cvlinder undergoing different types of oscillations. we know
that interaction effects between multiple cvlinders can cause a whole new range of vortex
patterns — the work of Strykowski and Sreenivasan [76], and Johnson and Zdravkovich [33]
can be cited as examples. Several of our own force measurements (Chapters 3, 4. and 5)
support these flow visualization results.

A hydrofoil oscillating with some combination of linear translation (heave) and rotation
(pitch) produces a vortex wake as well. (We employ the word wake in a liberal sense since
the flow may in fact be a jet.) Under certain conditions of oscillation, the foil vortex wake
closely resembles a bluff body Kdrman street, but with reverse rotational direction of the
vortices: this flow is associated with an average velocity profile in the form of a jet. causing
a net thrust force on the foil. Figure 6-1 illustrates the {typical) vortex streets behind a bluff
body (cylinder) and an oscillating foil, together with the associated mean velocity profiles.

A number of researchers have studied oscillating foil thrust generation. Experimental
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Figure 6-1: The vortex wakes of a bluff body and an oscillating foil.

L] ol

investigations (primarily flow visualization) have been conducted by Oshima and Oshima
[55]. Oshima and Natsumi [54]. Freymuth [17. 18]. and Koochesfahani {3%]. Linear and
nonlinear inviscid theories have been presented by von Karméan and Burgess {92]. Lighthill
[40. 39, 41}, Chopra. [9], and Wu [96, 97, 98]. A basic limitation of inviscid theory is that
the Kutta condition at the foil trailing edge. derived from steady-state foil operation. may
become invalid in unsteady flow — for example. Frevmuth [18] has shown that under certain
conditions of large oscillation amplitude, dyvnamic stall occurs and the vortices generated
at the Jeading edge may be used to advantage in producing large thrust forces. In a recent
advance, Triantafvilou et al. {83} have demonstrated the importance of accounting for

the vortex wake dvnamics behind an oscillating foil. In analogv with the flow behind a
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bluff body. the preferred frequency of vortex formation observed in the wake of a foil can
be predicted by a linear stability analvsis of the average velocity (jet) profile. and this
frequency is also the frequency of optimal thrust generation. Triantafvllou «f al. found
that this preferred frequency fg, when nondimensionalized by the average forward velocity
U and the excursion of the foil trailing edge (double amplitude) h, led to a foil “Strouhal
number” of about 0.30.

frh

Experimental results and data from fish observation confirmed that optimal foil efficiency
is in fact achieved in the range 0.25 < S¢ < 0.35.

An interesting phenomenon that seems deserving of further investigation is the inter-
actiou between the vortex street generated by a bluff cylinder and the vortices generated
by an oscillating foil operating in tiie wake of the cylinder. This idea owes a great deal
of its motivation to the experimental work of Rosen [63], who visualized the flow around
swimming fish. (Rosen studied small tropical fish, Brachydanio albolineatus, as well as
dolphins.) Due to the poor reprcduction quality of Rosen’s pictures, we have chosen not
to show any of them in this thesis; nonetheless the conclusions reached from the pictures
and the accompanying text have no ambiguity. Rosen showed that the main forebody of a
swimming fish generates drag vortices initially arranged in a staggered. Kirman-like fash-
ion. The undulating motion of the fish afterbody and tail positions these upstream vortices
so that they all lie on a single line in the wake of the fish. The vortices generated by
the tail appear to merge with the upstream vortices, and do not disturb the straight-line
configuration. Vortices positioned on a single line represent a flow intermediate between
the drag and thrust flows of Figure 6-1. and are associated with a uniform average velocity
profile causing neither thrust nor drag. The motion of the fish tail, therefore, brings about
a repositioning of the drag vortices. and hence presumably a drag reduction. The merging
of the cylinder and foil vortices could lead to a reduction {or enhancement) of the wake
signature. The question then arises as to whether similar behavior can be detected in the
case of a discrete cyvlinder / foil tandem arrangement.

Figure 6-2 illustrates and summarizes our experimental investigation. The upstream
cylinder is used to generate a Kirman vortex street in the usual manner. The downstream

ascillating foil and its vortex wake interact in some manner with the cvlinder vortices. We
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Figure 6-2: Illustrating the concept behind our experimental investigation.

wish to investigate the manner in which this interaction takes place. and whether or not
the final vortex pattern produces a reduced in-line wake velocity (indicating a reduction in
in-line drag force on the combined system).

The implications of our tandem bluff body / oscillating foil concept go bevond that
of wake reduction. From a fluid mechanics standpoirt. what we seek to achieve is an
alteration of the mean flow properties via an alteration of the main vortical features. and
thus our experiments have important flow control ramifications. And while this thesis is not
concerned with biofluidmechanics. our experiments can be considered to be an abstraction
of the fundamental mechanism of fish swimming, and hence may provide important insight

to those who study aquatic animal propulsion.

6.1.3 The parameters of the problem

The complexity of the tandem cylinder/foil configuration is such that there are a great
many independent parameters governing the phvsical apparatus and oscillation scheme. In
this subsection. we shall consider these parameters and discuss our attempts to reduce their
number to a manageable level.

Although a stationary bluff cylinder generates a Karman vortex street. it is desirable to

oscillate the cylinder so as to generate a stronger and more uniform vortex wake. Thus the
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cylinder (of diameter d and length [) may be forced with a motion described by
yolt) = Agsin(2x fot) (6.2

where yo(t) is the instantaneous displacement, Ac is the oscillation amplitude. and fe s
the oscillation frequency. The foil, of chord length ¢, is placed a distance s behind the
cylinder and subjected to a combined translation (heaving) and rotation {pitching} motion.

The heave motion may be described by
yrlt) = Apsin(27 fpt + o) (6.3

where yr(t). Ar, and fr are the displacement. heave amplitude, and frequency respectively
of the foil oscillation, and v’ is the phase angle between the motion u! the foil and that of
the cylinder. The pitching motion of the foil. at the same frequency fr and about a pivor

peint p from the leading edge, may be described by
(1) = Opsin(27 frt + ¥ + @) (6.4)

where 85 is the pitch angle amplitude and ¢ represents the phase angle between the pitching
and heaving motions of the foil. The system operates in a flow of free-stream velocity [’
obtained in a fluid of kinematic viscosity v.

Performing a dimensional analysis, we arrive at the following independent dimensionles-

paiameters affecting the problem:
Reynolds number: Ud/v.

Length parameters: Geometric ratio ¢/d. cvlinder amplitude ratio A.-/d. foil amplitude

ratio Ar/d, separation length s/d. model aspect ratios {/d and {/c. foil pivot point

ple.

Angle parameters: Pitch amplitude 6. phase angle between foil heave and cvlinder heave

0. phase angle between foil pitch and foil heave ¢

Frequency parameters: Cylinder Strouhal number fed/U, foil Strouhal number fph /1.

where h &~ 2\//1}; + (¢ — p)?6? is the double amplitude excursion of the trailing edgc.
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Note that other alternative nondimeunsional groupings mayv be formulated: we seek merelv
to illustrate the large number of variables (degrees of freedom ) involved in the experimental
setup.

in order to sunplify the a..» .atus and proceed with the experiments i a Uinely lashion,
we applied our judgment to select appropriate constant values (or limited ranges) for several
of the above parameters and remove them as variables. Qur reasoning is cutlined in the
paragraph. ".elow.

In the case of the Reynolds number, it is well known that a turbulent shear flow is only
weakly dependent on variations in Re. For each of our experimental setups. we selected one
value of Re in the turbulent subcritical regime: = 550 for the flow visualization experiments
and = 20,000 for the force measurement experiments.

Initially, one cylinder and two foil models were fabricated, giving us foil chord to cylinder
diameter geometric ratios ¢/d of 1.00 and 2.00. Most of our tests were performed with the
larger foil (¢/d = 2.00). since preliminary visualization experiments showed that the smaller
foil (¢/d = 1.00) produced very weak vortex interactions.

Three values of cylinder oscillation amplitude ratio were selected to ensure sirong lock-in
vortex shedding, these were A¢/d = 0.500, 0.667, and 0.833. A major simplification of the
experimental apparatus was obtained by using a single heaving mechanism to oscillate both
the cylinder and the foil: this resulted in identical cvlinder and foil oscillation amplitudes
and frequencies, and a value of zero for the phase angle v Since v was fixed. the separation
length ratio s/d was made highly variable (21 discrete values between 1.5 and ~.01 50 as to
alter the phase of encounter between the foil oscillation and the upstroam vortex street.

Fixed values were chosen for the model aspect ratios and foil pivot point. from the point
of view of experimental convenience. The cvlinder aspect ratios //d were 5.33 for the flow
visualization experiments and 12.00 for the force measurement experiments. while the foil
aspect ratios I/c were 2.67 for the flow visualization experiments and 6.00 for the force
measurement experiments. The foil pivot point ratio p/e was chosen to be 0.33 1n all cases
(from the leading edge).

The design of the foil pitching oscillator used in the flow visnalization experiments was
such that it allowed the following discrete values of pitch amplitude €: 0, 7. 152, 307, 457,

and 60°. Of these allowable values. most of our runs were conducted with # a1 157, 30°. or

45°.
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Based on earlier experiments (Triantafvlou «7 al {851 and fish ohservation dati (Rosey
[63]). the phase angle ¢ between the foil pitching and heaving motions was fixed at 90v.
As mentioned earlier. the phase angle v between the foil and cvlinder heaving motions was
fixed at " due to experimental considerations,

In order to ensure strong lock-in vortex generation. the experiments were conducted at
cylinder Strouhal numbers in the range 0.17 < fed/U < 0.23. As noted earlier. the foil
oscillation frequency fr was the same as the cylinder oscillation frequency fe; hence the
selection of the cylinder Strouhal number determined the value of the foil Strouhal number.

Eventually. as a result of the simplifications noted in the above paragraphs, onr experi-
ments were conducted with different combinations of the following parumeters: amplitude
ratio Ac/d. Strouhal number fc/d. pitch amplitude 8. and separation length s/d. As we
shall see in the following sections. the separation length ratio s/d turned out to be a very

important variable.

6.2 Flow visualization experiments

6.2.1 The Kalliroscope tank

In order to conduct flow visualization experiments with 2 minimum of dedicated equipment.
we found it convenient to use a commercially available product called “Kalliroscope™ fluid.
Thuis fluid (which we shall abbreviate to “K-fiuid”) is a very dilute colloidal suspension of
organically derived guanine flakes in water. The guanine flakes have a tvpical dimension
of 6 x 30 x 0.07 pm — thus theyv are very small and have a highly anisotropic shape.
Although the specific gravity of guanine is about 1.62. the observed sedimentation velocity
of Kalliroscope flakes in water is only about 0.1 cm/hour [44]. We added a blue-colored
aqueous dye to the water to aid in the visualization: the overall effect of the flakes and
the color being to make the K-fluid resemble several popular brands of detergent liquid. A
number of experimenters have conducted flow visualization tests with K-fluid: we urge the
reader to refer to the paper by Matisse and Gorman {44] for further details.

It is important to consider the action of the K-fluid suspension when subjected to a
flow; i.e. the manner by which the flow visualization is obtained. Gorman and Swinney {22]
used K-fluid to visualize the onset of turbulence in the Tayler-Coutte system. and stated

that the Kalliroscope platelets “align with the flow™. The authors also reported that the
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intensity of the scattered light measured with their K-fluid apparatus had the same features
as velocity measurements using a laser Doppler velocimeter, and that the influence of the
suspension on the properties of pure water was less that 0.1 %. Savas [67] performed 4
general stochastic analysis ol the motion of Lhin, ellipsoidal particies 1 Viscous Hutd, will
a view towards predicting the observed light field in flow visualization experiments. He
concluded that in the presence of a shear flow, the flakes align themselves to be parallel 10
the stream surfaces, which are thus revealed in the visualization. Savas showed that this
technique of using small suspended particles is particularly unsuitable for visualizing flows
involving small amplitude perturbations to backgrounds with high shear. e.g. Tollmien-
Schlichting waves in a boundary layer. We infer from his analysis that the K-fluid is well
suited for visualizing vortex flows, which are large-scale, high shear perturbations over
uniform background flows.

In order to utilize the K-fluid. we constructed a separate, much smaller analog of the full-
size towing tank. The original “k-tank” (as we shall refer to it) consisted of a rectangular
Plexiglas structure of dimension 2.44 x 0.15 x 0.15 m; .he tank was later replaced by a
broader version of dimension 2.44 x 0.60 x 0.15 m. A small, belt-driven “carriage™ was
constructed to ride over the K-tank, supported rigidiy by linear ball bearings on one side
and a single cam follower on the other side. '\ DC motor was employed to provide the
motive force to the towing belt. and allowed constant carriage velocities of up to 0.15 m/s.
An ingenious oscillation mechanism. inspired by the experimental apparatus of Frevmuth
[18], was designed and implemented by Barrett [3]. Figure 6-3 is a schematic ill:stration
of this mechanism, which allowed for both translation (heaving) and rotation {pitching)
motions to be provided by a single DC motor. Independently adjustable settings provided
for a heave amplitude of up to 3.81 cm, a pitch angle amplitude of up to 60”. and an
oscillation frequency of up to 0.35 Hz. A number of values of phasc angle © could be set:
we used only the setting of 90°. The oscillation mechanism was installed on the towing
carriage such that the cylinder and foil models were suspended vertically into the K-fluid.
via a mounting assembly that provided for close control of the separation length between the
models. The K-tank was illuminated by diffuse lighting from aoverhead fluorescent sources.
A high-resolution black-and-white video camera was mounted on a tripod bolted to the
carriage. enabling video recordings of the wake patierns to be obtained from a frame of

reference moving with the carriage. Still photographs of the wake could be obtaired in two
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Figure 6-3: The oscillating mechanism used in the Kalliroscope-tank.

ways: by taking photographs of a2 TV monitor while playing back the video recordings. and

also by directly using a 35mm still camera bolted on to the carriage tripod.

6.2.2 Initial experiments

Our flow visualization tests started on a disappointing note -— after a number of trials, it
became apparent that some modifications would be required to the apparatus. The principal

difficulties that we encountered were the following:

e The presence of the foil in the wake of the circular cvlinder always disrupted the lock-
in vortex shedding from the cvlinder. so that a strong and uniform upstream vortex
street was not attainable. This behavior was a problem since it was our intention to
study the vortex interaction between the cylinder and the foil. not to suppress the

cvlinder vortex street.
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e QOuroriginal K-tank was found to be too narrow for the size of models tested. The large
blockage ratio caused a distortion of the cylinder and foil vortex streets, preventing a

proper interpretation of the wake behavior.

In order to overcome the above difficulties, two modifications were made. A new. wider,
Plexiglas structure was acquired and installed as the Kalliroscope-tank. Fortunately, the
modular nature of the towing carriage and oscillation mechanism allowed for a minimum
of new parts required in order to implement the changeover. Blockage phenomena with the
new tank were not detected.

To avoid the disruption of the vortex shedding by the presence of the foil in the wake,
we evaluated a D-section (half-circular) bluff cylinder as our upstream Karman vortex gen-
erator. Little information exists in the literature on the behavior of vortex-shedding from
a D-section cylinder, so we first conducted a number of stationary (nonoscillating) tests
with the D-section alone. We towed the model at different speeds through the K-fluid and
counted the vortices shed over a given distance in order to determine the Strouhal number.
Figure 6-4 shows that the behavior of the Strouhal number versus the Reynolds number for
the D-section cylinder was found to be very similar to the corresponding behavior for the
circular cylinder (see Figure 1-2), — the net result being that we could use the D-section in
place of the circular cylinder with no changes to our selected oscillation parameters. Tests
with a D-section and hydrofoil tandem arrangement proved that the D-section indeed per-
formed its intended role of generating strong drag vortices without disruption due to the
presence of the foil. An additional unanticipated benefit of the D-section was that the phase
of the vortex shedding (relative to the cylinder oscillation) was found no longer to depend
on the oscillation frequency (in a small range bracketing the Strouhal number): i.e. the
frequency was no lorger an important variable parameter. All of our further experimental

runs were successfully conducted at a single cylinder Strouhal number of 0.20.
6.2.3 Successful experiments

The testing schedule, and results

Following our modifications of the flow visualization apparatus, tests were conducted at a
regular testing “grid” consisting of three heave amplitude settings, three pitch amplitude

settings, and twenty separation lengths. For each combination of heave and pitch amplitude.
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Figure 6-4: Measured Strouhal number versus Reynolds number for a D-section cylinder.

we calculated the apparent foil Strouhal number Sg (Equation 6.1) as well as the apparent
foil angle of attack a, given by

a = tan”! (2%15&) -6 (6.5)

We have used the term “apparent” since the actuzl flow velocity at the foil is unknown; the
free-stream velocity U has been used in the calculations. We originally wished to concentrate
our tests at foil Strouhal numbers Sg ~ 0.30, and small angles of attack o < 15°. As it
turned out, we achieved very similar results for several of the values of Sg and a. Table 6.1
lists the heave and pitch amplitude combinations that we attempted; each entry of the table
was repeated for 20 separation length settings.

Upon conducting the tests and reviewing the video recordings, we found that the oscil-
lating foil did indeed have a strong effect on the cylinder vortex street. In many cases, the
foil achieved a dramatic repositioning of the Kirmdn vortices. with the mechanism of this
repositioning apparently being a suction ehiect as the vortices passed over the leading edge

of the foil. In some situations. this repositioning effect was only temporary. as the vorticity
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[ Number [ Heave (Ac/d) { Pitch (H)T.S‘eroulzal # (Sk) { Angle of attack (o) ]

1 0.500 15° 0.246 +16.86
2 0.500 30° 0.354 +01.86
3 0,500 ! 4K° 0483 ! —-13.14 J
4 0.667 15° 0.302 +24.65
S 0.667 30° 0.395 +09.65
6 0.667 45° 0.509 —05.35
7 0.833 15° 0.358 +31.01
8 0.833 30° 0.441 +16.01
9 0.833 45° 0.550 +01.01

Table 6.1: Heave and pitch amplitude combinations tested.

generated by the foil and the (repositioned) cylinder vortices interacted in such a manner as
to quickly re-establish a drag configuration in the wake. However, we did find three distinct
(and repeatable) modes wherein “beneficial” interaction occurred, in that a net reduction
or elimination of the in-line wake velocity was achieved. We labeled these modes (reflecting

the sequence in which we found them):
1. Vortex pairing.
2. Destructive vortex merging.
3. Constructive vortex merging.

Figure 6-5 shows the various parameter combinations at which the above modes were found.
The X-axis of the figure refers to the spacing or separation length, and the Y-axis lists the
heave and pitch combinations of Table 6.1. The occurrence of a mode is indicated by the
number of the mode in parentheses. A number followed by an asterisk indicates that the
corresponding mode was observed in a less clearly discernible fashion. Figure 6-5 shows that
the spacing s/d was found to be the most important parameter, and for certain combinations
of heave and pitch, it was possible to achieve more than one mode by varying s/d suitably.

In the paragraphs that follow, we shall describe each of the three modes in detail.
illustrating our findings with appropriate photographs of the wake, and accompanying ex-

planatorv diagrams.
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Figure 6-5: The locations of the three interaction modes observed.

Mode 1: Vortex pairing

In the “vortex pairing” mode, each cylinder vortex pairs up with a foil vortex of the opposite
sign; the resulting sets of counter-rotating vortex pairs slowly drift away from the centerline
of the wake. The orientation of the vortex pairs is such that there is little or no induced
in-line wake velocity (i.e. in the direction of the free-stream velocity).

Vortex pairing is illustrated in Figures 6-6 and 6-7. The figures show a sequence of
photographs of the wake taken at instants of time approximately 7'/4 apart, where T =
1/fF is the time period. of the oscillation. The photographs focus on the region of the
wake surrounding the oscillating foil, and show the vortex patterns both upstream and
downstream of the foil. The direction of towing is from left to right, giving an equivalent free-
stream velocity from right to left. Hand-drawn figures of the vortex positions accompany
the photographs, and are useful in understanding the mechanism of the vortex pairing
phenomenon. In all of the drawings. the cylinder’s Karman vortices (coming from upstream)
are labeled with alphabets (A, B, C. etc.), while the foil vortices are labeled with numerals

(1, 2, 3. etc.).
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We start our explanation with Figure 6-6. which illustrates the instants I and I of the
cycle. During instant I, the foil is at the boitom of its heave stroke. To understand the
mechanism, we concentrate on cylinder vortices C, D, and E, and foil vortices 3 and 4. In
the first view, cylinder vortex C has been moved down from its upstream position (aue Lo
foil suction), while foil vortex 3 is in the process of formation. In addition, the foil has just
encountered cylinder vortex D near the leading edge.

View II of Figure 6-6 shows an instant T/4 later, when the foil is at the centerline,
moving upwards. Foil vortex 3 has been shed into the wake, and cylinder vortex C is being
rolled off the trailing edge as well. Cylinder vortex D is now “trapped” by the foil suction
and is moving upwards from its ariginal position.

Figure 6-7 illustrates instants III and IV of the vortex pairing cycle. View III shows an
instant of time 7'/4 later than view II of the previous figure, and the foil is now at the top
center of its heave stroke. Cylinder vortex C has separated from the trailing edge of the foil,
and is now paired with foil vortex 3 of the opposite rotational sign. Foil vortex 4 is in the
process of formation from the trailing edge, while cylinder vortex D has been successfully
repositioned by the suction of the foil.

View IV of Figure 6-7 shows the final instant of the sequence. Tt~ foil is at the centerline,
moving down. Foil vortex 4 has been shed from the trailing edge, and cylinder vortex D is
being swept backwards to pair with vortex 4. Downstream of the foil. the vortex pair 3-C
is convecting slowly away from the wake centerline, and there is no induced wake velocity
in the in-line direction. Just upstream of the foil, vortex E is trapped by the foil suction
and is moving downwards; at an instant T/4 later it will assume the position of vortex C

of view I (Figure 6-6) and the cycle will continue.

Mode 2: Destructive vortex merging

The previous mode of vortex pairing illustrated a type of behavior wherein the Karman
vortices from the cylinder and the vortices created by the foil had approximately the same
circulation strengths, enabling them to form counter-rotating pairs on an equal footing (i.e.
without domination by one source of vorticity). In most of the cases. however, the vortices
generated by the foil were substantially stronger than the cylinder vortices. Mode 2 is the

situation of “destructive vortex merging”, wherein the cylinder vortices are repositioned
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and then absorbed into the foil vortices of opposile rotational sign. The resulting merged
vortices lie on a single linc *n the wake, and there is no induced in-line wake velocity.

Destructive vortex merging is illustrated by the sequence of photographs and drawings
in Figures 6-% and 6-Y. As before, each figure contains two photographs taken at instants
T/4 apart in time, for a total sequence of four views. Cylinder vortices are labeled with
alphabets, while foil vortices are labeled with numbers. The free-stream velocity is from
right to left.

We start with view I of Figure 6-8, where the foil is at the bottom center of its heave
stroke. We concentrate on cylinder vortices C, D, and E, and foil vortices 3, 4. and 5.
The strong vortex off the trailing edge in view [ is foil vortex 3. Cylinder vortex C is just
discernible below vortex 3, and is about to be merged into it. Cylinder vortex D is below
the leading edge of the foil.

View II of Figure 6-8 shows th» situation at an instant of time T/4 later; the foil is
now at the centerline and moving up. The foil vortex 3, which has merged and destroyed
cylinder vortex C, is now well into the wake. Foil vortex 4 is being formed at the trailing
edge, while cylinder vortex D is trapped below the trailing edge and is being repositioned
upwards. In addition, the foil is about to encounter cylinder vortex E near its leading edge.

The sequence is continued in Figure 6-9, which contains views III and IV. View III, at
a time T'/4 after view II, shows the foil at the top center of its heave motion. Foil vortex
4 is prominent behind the trailing edge; cylinder vortex D can be seen just above and in
front of vortex 4. Cylinder vortex E is now above the leading edge of the foil: t is partly
obscured by the shadow of the foil in the photograph.

Finally, view IV of Figure 6-9 shows the foil at the wake centerline. on its wav down.
Vortex 4 (which now includes the merged cylinder vortex D) is well into the wake. Foil
vortex 5 is in the process of formation, while cylinder vortex E is being repositioned by the
foil suction. The merged vortices 3(C) and 4(B) lie on a single line in the wake (this is
clearest in views I and IIT). While there is substantial turbulence in the wake, there is very

little in-line velocity.
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Figure 6-8: Wake interaction mode 2: Destructive vortex merging. Views | and 1.
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Mode 3: Constructive vortex merging

Our flow visualization showed that there were two types of vortex merging behavior - the
merging of vortices of opposite sign described as mode 2. as well as the merging of vortices
of the same sign. We termed this second type (the third mode, overall) “constructive vortex
merging”. The sequence of photographs and associated drawings of Figures 6-10 and 6-11
illustrate mode 3, with the vortex labeling convention and flow direction as before.

The first two views are contained in Figure €-10. We shall concentrate on the cvlinder
vortices (B), C, and D, and the foil vortices 2, 3, and 4. View I illustrates the situation
with the foil at the bottom of the heave stroke. Clearly visible in the wake is the foil vortex
2, into which has already merged the cylinder vortex (B). (Parentheses are used to denote
a vortex which is no longer visible as a distinct entity.) Cylinder vortex C is located above
the foil.

View I of Figure 6-10 shows the pattern at a time 7/4 later. The merged vortex 2(B)
has moved downstream into the wake. Fouil vortex 3 is forming at the trailing edge of the
foil, which is now at the centerline and moving up. Cylinder vortex C is being swept back
over the foil, and will eventually merge with vortex 3. Cylinder vortex D is as yet too far
away to be affected by the suction of the foil.

The sequence is continued in views III and IV of Figure 6-11. View III shows the foil at
the top center of its heave stroke. Foil vortex 3 has grown in size to the point that it has
absorbed (merged) the cvlinder vortex C. The combined vortex 3(C) is clearly on the same
straight line as the previous merged vortex 2{B). which is still visible downstrean:.

The final photograph, view IV, shows the foil at the centerline and moving down. The
merged vortex 3(C) is well into the wake. From the trailing edge. foil vortex 4 is just
forming. Cylinder vortex D is being swept brck below the foil, to eventually merge with
vortex 4. Cylinder vortex E is as yet unaffected by the foil; during the next half-cvcle it

will be swept back to merge with the next foil vortex. and so on.

6.2.4 Conclusions from the flow visualization experiments

In the previous paragraphs, we have discussed in some detail three wake modes observed
during the flow visualization tests. The oscillating foil acted (in most cases) 10 reposition

the cylinder vortices, as well as generate strong vorticity of its own. The three modes




Figure 6-10: Wake interaction mode 3: Constructive vortex merging. Views [ and II.
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discussed above were those cases wherein the interaction between the foil and eviindor
vortices was such as to result in little or no visible flow velocity in the wake: i.e. these were
the *successful” modes.

The most impertant variabie parareter govering tie outcome m the wake was 1ouitu to
be the separation distance s (or the separation ratio s/d). For certain combinations of heave
and pitch amplitudes, it was possible to achieve all three modes by varying the separation
distance suitably. Of the three modes, “vortex pairing” was the most sensitive and difficult
to reproduce. “Destructive vortex merging” and “constructive vortex merging”~ were found
to be robust and repeatable modes.

The photogrz phs of Figures 6-6 through 6-11 focus closely on the patterns immediately
upstream and downstream of the oscillating foil. but do not show the evolution of the wake
at greater downstream distances. Figure 6-12 addresses this shortcoming by including three
photographs of the wake downstream from the foil. Photograph A of Figure 6-12 shows
the wake when the foil is actually not present — i.e. it shows the bluff body Karman
wake behind the D-section. The familiar, staggered arrangement of vortices gives rise to a
substantial in-line velocity in the wake that “follows” the cylinder. {On the photograph. the
wake velocity gives the appearance of an elongated whitish region between the vortex rows.)
Photograph B shows the wake during the “vortex pairing” mode. The counter-rotating
pairs of cylinder and foil vortices are seen to be nearly parallel to the wake centerline. The
absence (at least visually) of an in-line wake velocity is quite marked. The vortex pairs
slowly convect away from the wake centerline. but do not acquire anv noticeable in-line
motion. Finally, photograph C shows the wake during the “constructive vortex merging”
mode; the situation for the destructive merging mode is actually rather similar. The merged
vortices are seen to all lie on a relatively straight line in the wake. While the visualization (in
this still photograph) is rather confused due to the relatively high amount of turbulence. it
appears that an in-line velocity does not exist. {The videotaped segment clearly supported
this {ast observation.) It should be noted that a disappearance of the visible wake in such
flow visualization tests does not necessarily prove that the wake is completelyv absent. and
velocity measurements are required to confirm the situation. Nonetheless, it dces appear
that the three modes described in the last subsection do reduce the in-line wake velocity,
and hence presumably the in-line drag force.

What of the reduction or enhancement of the wake signature due to the merging of the
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Figure 6-12: Photographs of the wake downstream of the oscillating {oil.
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cylinder and foil vortices? From the visualization. it was clear that Mode 2 involved a de-
structive merging of oppositely-signed vortices, and presumably a weakened resulting vortex
street; while Mode 3 involved a constructive merging of like-signed vortices and therefore a
strengthened vortex street. However, due to the absence of velocity measurements. quanti-
tative calculations of the vortex strengths were not possible, and the results of the merging
behavior must be considered inconclusive.

Also inconclusive was the question of the energy costs required to bring about the in-line
drag reduction, or in other words, the efficiency of the foil. In all our tests, the foil generated
substantial vorticity, indicating a substantial input of energy. From the flow visualization.
it was not possible to make any quantitative estimates of the work input from the foil.

To summarize, our conclusions from the flow visualization tests were the following:

e An oscillating foil acting in the wake of a bluff body can achieve a repositioning of

the bluff body’s Kdrman vartex street.

e Due to interaction between the repositioned Karméan vortices and the foil’s own vor-
ticity, a reduction of the mean in-line wake velocity can be achieved. This reduction of
the in-line wake velocity is likely to lead to a reduction of the in-line drag force on the
combined system. The efficiency of this drag reduction process cannot be determined

from flow visualization tests.

e Some of the interaction modes involved a constructive or destructive merging of the
cyvlinder and foil vortices, leading presumably to an enhancement or reduction of the
wake signature. The precise behavior (in a quantitative sense) could not be determined

from the visualization.

6.3 Force measurement experiments

6.3.1 The apparatus and methods

In order to complement our flow visualization investigation of the tandem cvlinder/foil
system. we designed a series of force measurement experiments in the main testing tank
facility. The requirements for our experimental apparatus were daunting. even with the
reduced set of variable parameters as discussed in Section 6.1.3. We now desired the ability

to oscillate a cyvlinder and a foil model in heave. and rotate the foil model in pitch
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while towing the apparatus forward at a constant velocity. At least seven quantities had
to be measured — lift and drag forces on the cylinder, lift and drag forces and torque on
the foil, the heaving motion (identical for both models). and the foil pitching motion. In
addition, the spacing (separatiou iengtii) between tiie cyiinder and toil modeis had 1o be
highly adjustable.

Although these force measurement tests were conceptually just an extension to our pre-
vious cylinder tests, all of these new requirements necessitated an entirely new apparatus.
After reviewing a number of possibilities, we opted for a “double-yoke” structure. Figure 6-
13 illustrates this apparatus, which consisted of two inverted-U “yokes” pivoted at their
upper ends. The forward yoke carried the fixed cylinder (D-section) model in a manner
identical to the original apparatus. while the aft yoke carried the rotating foil model con-
nected via a chain and pulley arrangement to a second (smaller) SEIBERCO motor that
provided the pitching oscillation. (The aft yoke was similar in many ways to the apparatus
used by Triantafyllou et al. described in [85].) Each yoke could be rotated at the pivots
and held in position at any angle; thus adjustments to the separation length ratio s/d were
achieved by rotating both yokes through equal and opposite angles either inwards (towards
each other) or outwards (away from each other). Vertical oscillations of the entire assem-
bly were obtained with the same SEIBERCO motor and leadscrew table combination used
earlier. It should be mentioned that the double-yoke design owed a great deal to the efforts
of Barrett [3].

Given our excellent experience with the piezoelectric force transducer used for the cvlin-
der experiments, we decided to use additional sensors of the same type. Thus the lift and
drag forces on the cylinder and foil models were measured with two KISTLER 9117 trans-
ducers, while a KISTLER 9065 was used to measure the pitching torque on the foil. Qur
original LVDT was used to measure vertical motion, and a resistance potentiometer was
employed to measure the angle of rotation. Each of the above sensors was carefully cali-
brated using known forces and displacements. The seven data signals were transmitted to
the control room, filtered. and then sampled using the same systems described in Chapter
2. An expanded version of the original experiment control program was used to provide the
tracking signals for both the heave and pitch SEIBERCOs as well as the carriage motion.
Rewritton versions of our MATLAB processing code were used to process the acquired data

off-line.
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Figure 6-13: The double-yoke force measurement apparatus.

6.3.2 Experimental results

In order to conduct the force measurement experiments in a manner as similar as possible
to the flow visualization tests, we used the same experimental “grid” as in Table 6.1. As
an initial step. tare value tests were conducted with only the cylinder (foil removed), and
then with only the foil (cylinder removed). With both models in place, we performed tests
at each of the amplitude and pitch combinations of Table 6.1 and 14 separation lengths.
The separation lengths were chosen to cover an entire wavelength of oscillation. equal in
our case to five diameters (A = U/ fc = (1/S8¢)d = 5d).

From the test data, we extracted values of the cylinder mean drag D, .. the foil thrust

(or drag) Thp, and hence the overall in-line drag force D, ~ Ts,. We defined an overall




in-line drag coefficient C§yr®! according to

Dmc - Thp

Coverall =
b 1pldU?

(6.6)
where for consistency, we have used the cylinder diameter d in the normalization of both

force quantities.

In addition to the in-line force, we evaluated the power input by the foil, given by

d dg
Pr=(Lp=D) +(Tr ) (6.7)

where Lp(t) is the lift force (time trace) on the foil, 7x(t) is the torque on the foil. and
yr(t) and 6(t) are the measured heaving and pitching motions given Equations 6.3 and 6.4.
As used in Chapter 5, the notation (...) denotes a cross-correlation at zero lag.
From the measured foil thrust force and input power, we calculated the apparent effi-
ciency 7r of the foil, given by
Ty U

nF = —P;— (6.8)

As before, we have nsed the term “apparent” since the actual flow velocity at the foil is not
known (except for the tare value tests), and the free-stream velocity U has been used in the
calculations.

All of our experimental data were processed for the above quantities, which we then
plotted as functions of the separation length s. With all the tests completed and the results

available. we found the following results were true for every combination of pitch and heave.

o The cylinder drag force Dy, did not vary appreciably from the tare value conducted

with the cylinder alone, nor did it vary much as a function of separation length.

e The foil thrust force Tj, was, in every case, considerably higher than the tare value
with the foil alone. The thrust force showed a considerable dependence on the spacing.
As a result of the foil thrust, the overall in-line drag coefficient on the combined system

was smaller than the cvlinder tare value.

e The apparent efficiency of the foil was a strong function of the spacing.

Typical examples of our results are shown in Figures 6-14 and 6-15, for the case of heave

amplitude ratio A¢c/d = Ar/d = 0.833 and pitch angle amplitude § = 45°. Figure 6-14




shows the overal] in-line drag force plotted against the separation distance (in terms of
cylinder diameters). Also on the figure are the measured tare values for the cylinder drag
(tested without the foil), and the foil thrust (tested without the cylinder). In this case
the tare vaiue of the thrust coefficient was actualiy negative, indicating that tie joi was
producing drag. With the cylinder present, the foil started producing thrust in sufficient
quantities to reduce the overall drag coefficient below the cylinder tare value, with the
reduction being a function of the spacing s. Figure 6-15 shows the apparent foil efficiency
for the same oscillation parameters, and once again, the dependence on the separation

length is clearly seen.

6.3.3 Conclusions from the force measurement experiments

Figures 6-14 and 6-15 of the previous subsection showed that the oscillating foil caused a
reduction of the overall in-line drag force on the cylinder / foil system. with the foil thrust
and efficiency being dependent on the separation length between the models. It is important
to clarify the significance of these results, in the light of our vortex interaction study.

The fact that the foil produced drag with the cylinder absent (the tare value), but
produced thrust with the cylinder present, is an interesting but not unexpected result. It
should be borne in mind that the presence of the upstream cylinder causes a reduction of
the mean flow velocity that the foil encounters, and hence the operating characteristics of
the foil (in terms of the Strouhal number and angle of attack) are quite different in the two
situations. Since the actual flow velocity at the foil is difficult to estimate (and in any case.
is not uniform), we have used the freestream velocity U in all the calculations. It could be
argued that the reduction in the overall in-line drag coefficient is simply the net effect of
the foil thrust counteracting the cylinder drag, and is neither surprising nor significant.

The importance of our results lies in the dependence of the foil thrust and efficiency on
the separation length, or spacing between the models. If no vortex interaction took place
(i.e. if the foil acted as a simple thruster), one might expect a monotonic reduction of
efficiency with increase of spacing, with the variation arising solely from the {monotonic)
alteration of the freestream velocity (the wake defect becomes smaller with distance from
the cylinder). In fact Figure 6-15 appears to indicate that there are two mechanisms at

work: an average reduction of efficiency due to the variation of the average velocity. and a
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marked peaking behavior superimposed on this average reduction. Qualitatively identical
trends were observed at all the other combinations of heave and pitch amplitudes as well.
Such a peaking behavior could only mean one thing — that the operation of the foil is
strongly affected by i1ts interaction with the upsiream harman vortex sireet. Since we had
no means of performing flow visualization together with our force measurement apparatus.
we cannot directly correlate the variation in the efficiency of Figure 6-15 with the vortex
modes discussed in the previous section. It is interesting to note, however, that the two peaks
in the efficiency occurred at spacings of about 4 diameters and 7 diameters respectively,
corresponding well with the occurrence of modes 2 and 3 respectively during the K-tank
visualization tests (Figure 6-5).

To summarize, our force measurement experiments offered the following conclusions:

o The operation of the foil behind the cylinder caused a reduction of the overall in-line
drag force on the system, consistent with the reduction of the mean wake velocity

observed in the flow visnalization tests.

e The thrust generated by the foil, and its apparent efficiency, were found to be strongly
dependent on the spacing between the models. We infer from this that the forces on

the foil depend significantly on the flow interaction with the upstream vorticity.

It is important to note that the flow visualization tests described earlier in this chapter
and the force measurement results above proved to be entirely consistent with each other.
despite the large difference in Reynolds numbers and other obvious factors. We should aiso
underscore that these experiments were performed on an exploratory basis, and we made no
attempt to fine-tune the performance of the system. The use of an oscillating foil offers an
intriguing way to alter the vortex street of a bluff body, and hence to reduce the fluid drag
force acting on that body. Researchers investigating the use of oscillating foils as propulsive

devices should carefully study the interaction of the devices with upstream vorticity.
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Chapter 7

Conclusions

7.1 The essential conclusions of this thesis

In keeping with the broad scope of bluff body vortex wake dynamics, this thesis has at-
tempted to shed light on a variety of related issues. With all of our experimental tests.
we have tried to fill in some of the vast parameter space that exists in the areas of vortex-
induced forces and vibrations — not merely in terms of raw data, but more importantly in
terms of newer and better conceptual understanding. By no means do we imply that we
have solved all the probiems in this field! The situation can be compared to an existing
brick wall representing the available knowledge on the subject that has been accumulated
over the preceding several decades; this thesis adds a layer of bricks to the wall. but the
wall is far from complete.

Given the relatively general nature of the work, it is important to summarize the essential
conclusions of the thesis. In the next section, we shall summarize each of Chapters 3 through
6 and evaluate the various contributions therein. First, however, we will state the most
important conclusions of this thesis, or in other words, the essential “message” resulting
from this research.

The most important work in this thesis is that related to the original motivation — an
investigation into the vortex-induced forces acting on cylinders undergoing beating oscil-
lations. Such beating oscillations are a fundamental response of long tubulars in sheared
flows, and to the best of our knowledge, this thesis contains the only laboratoryv-scale results

applicable to these motions. Perhaps more significant than the actual force coeflicient re-
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sults are the comparisions to pure harmonic data — that beating causes an extension to the
sinusoidal lift force excitation region, a reduction in the mean drag force, an amplification
of the oscillating drag force, and that the beating wake depends in a nonlinear fashion on
the instantaneous osciilation amplitude. It is hoped thau these resuils, colnbined with tw
other important ideas in this thesis (summarized in the next section), will help scientists
and engineers in applying available experimental data to the estimation and control of VIV

in full-scale situations.

7.2 Principal contributions of each chapter

7.2.1 Stationary and sinusoidal oscillation tests

In Chapter 3 of this thesis, we measured and analyzed the forces acting on a smooth circular
cylinder undergoing sinusoidal oscillations transverse to the free-stream (towing) velocity.
Such data is far from unique, and very similar experiments have been conducted by Bishop
and Hassan [6], Mercier {47], Sarpkaya [65], and Staubli [75]. Our original motivation in
conducting these experiments was to lay the basis for the beating tests of Chapter 5, but as

we proceeded with the tests, we began to make several novel observations. These ircluded:

The variation of the phase angle. We noticed that the phase transition behavior was
quite different for large oscillation amplitudes when compared to that for small oscilla-
tion amplitudes. This phenomenon has not been studied by anyv other researcher. and
we believe that the outstanding sensitivity and resolution of our apparatus enabled us
to capture the behavior. We believe that this “phase-flipping” phenomenon is at least

partly respounsible for the amplitude-limited nature ot the vortex-induceu ntt sorce.

The variation of the oscillating drag force. At high frequencies of oscillation. we mea-
sured very lafge values of the oscillating drag force. While this behavior has been pre-
viously commented on by Mercier [47] and Sarpkaya [65], we have greatly extended
their limited measurements. In addition, we evaluated the higher harmonics of the
oscillating drag force and showed that the overall picture was entirelv consistent with

the low Reynolds number flow visualization patterns of Williamson and Roshko {95].

The lift coefficient excitation region versus the lock-in region. Ina very important

observation, we noted that the lift coefficient excitation region (wherein a cyvlinder mayv

228




I

be excited into oscillations by the flow) is not at all the same as the lock-in region
(wherein the vortex shedding frequency is “captured” by the oscillation frequencyj. In
the existing literature, the two concepts have been used interchangeably. We showed
that excitation is determined from phase considgerationts, white lock-1n is deterinined

from frequency considerations, and it is important to distinguish between the two.

In addition to the observations listed above. many of our data analysis and presentation
techniques provide new insight. We believe that our presentation of the large quantity of
data in the form of contour maps is easier to understand and is particularly suitable for use
in computer programs. Our histogrammic analysis technique may become a valuble way

of identifying the wake response from force measurement data.

7.2.2 Error analysis and application to VIV predictions

Chapter 4 presented several important considerations in the applicability of our data to

full-scale predictions.

Error analysis. A comprehensive error analysis showed that our measurements had very

low random and systematic errors, and compared well with the existing literature.

VIV prediction. We devised a simple “back of the envelope” VIV prediction scheme using
our experimental data, and showed that this scheme gave good results which compared
favorably with full-scale measurements. Our mode] exploited the concepts of energy
balance and the amplitude limited nature of the lift force. While the basic ideas are
well established, we believe that they have not been used together in this fashion in

any other published work.

Noncircular cross-sections. We demonstrated the versatility of our apparatus and tech-
niques by conducting experiments with several noncircular bluff body cross-sections.
including a wire-rope, a chain, a simple offshore riser section, and a haired-fairing vor-
tex suppression device. By comparing and contrasting the data obtained with these
models to smooth circular cylinder results, we illustrated the importance {and ease)

of conducting dynamic oscillation tests for each cross-section of interest.
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7.2.3 Beating oscillation tests

Chapter 5 presented our data on beating oscillations, important because long tubulars in
sheared flows respond with complex. beating motions. and pure-sinusoidal data no longer
apply. We conducted amplitude-modulated tests with several different oscillation ampli-
tudes and frequencies. and three modulation ratios. While all of the data of Chapter 5

represented original findings, the most significant contributions included the following:

The behavior of the drag force. We showed (for the first time experimentally) that the
presence of beating caused a reduction of the mean drag coefficient and an increase
of the RMS oscillating drag coefficient. Our beating data, presented in the form of
contour plots, can be used directly to estimate the drag coeflicients in various situa-
tions. In addition, we evaluated the use of various schemes to extrapolate commonly

available sinusoidal results to the beating case.

The behavior of the lift force. Our analysis of the beating lift force demonstrated that
while the overall lift coefficient magnitudes remained comparable to sinusoidal data.
there were substantial difficulties in measuring and interpreting the behavior of the
lift coefficient phase angles. We defined equivalent lift force coefficients on the basis
of direct power transfer and inertial force calculations, and presented contour maps
of these equivalent coeflicients. The primary excitation region for each of the beating
modulation ratios considered was found to be larger in extent than the corresponding

sinusoidal excitation region.

Histogrammic analysis of the wake response modes. Using time-domain histogram-
mic analyses of the beating force traces, we showed that the cylinder wake could re-
spond to the amplitude-modulated excitation in any of a variety of modes. A particu-
larly interesting mode observed was frequency-switching, wherein the vortex shedding
frequency switched alternately between the impused carrier frequency and the natu-
ral Strouhal frequency, thus illustrating the strong nonlinearity of the process. The
modes we detected compared favorably with the flow visualization results of Nakano

and Rockwell [51].

Our beating force coefficient measurements and wake response analyses are expected to be

of use in a variety of full-scale situations involving long. flexible cylinders in sheared flows.
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In addition. we expect that an important application of our data will be in the culibration
of quasi-theoretical “wake-oscillator” models representing beating excitation. such as the

one currently under development by Tjavaras {77].

7.2.4 Cylinder-foil vortex interaction

In Chapter 6 of this thesis, we performed a novel vortex interaction studyv. Drawing from
fish observation data, we evaluated the concept of an oscillating foil acting in the wake of
a bluff cylinder and interacting with the Kdrmdn vortices shed by the cylinder so as to
effect vorticity control. Such control of vorticity has two important practical applications:
the reduction of the in-line wake velocity {and hence the in-line drag force) through vortex
repositioning: and the reduction or enhancement of the wake “signature™ A new flow
visualization facility, and a new “double-yoke™ force measurement apparatus were designed

and used for these experiments. We obtained the following findings:

Vortex repositioning. Via suction, the foil succeeded in repositioning the cvlinder vor-
tices from their Kdarmdn configuration. Beneficial interactions {whercin the in-line
wake velocity was reduced) between the repositioned cylinder vortices and the foil

vortices were achieved in three distinct modes.

The importance of the spacing ratio. Both flow visualization and force measurements

1

showed that the separation length ratio ~/d between the cylinder and the foil strongly

aflected the behavior of the system,

Our results from this experiment have important consequences. not the least of them being
in the area of oscillating foil propulsion. Our data showed that in the presence of incoming,
large-scale patterns. an oscillating foil mayv enhance its efficiency and thrust simply by

properly svnchronizing its oscillation with the arrival of these patterns.

7.3 Recommendations for future work

Any work of research inevitably raises as many or more guestions than it answers, and
in this final section we shall suggest various avenues of research leading from this thesis.
While our experimental apparatus and analysic methods gave ns stable and repeatable data

and proved to be eflicient and versatile to nse. there are further improvements that are
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possible. In fact, as our experiments progressed. we noted a variety of wavs to modify or
extend the system to enable newer and better testing programs. Some of our suggestions
in the paragraphs that follow relate to correcting these shortcomings and extending the
capabiiities of our apparatus, wiile others reiate to the evaluation ol promising new ideas

stemming from this work.

7.3.1 Achieving higher Reynolds numbers.

Most of the experiments in this thesis were carried out at a Reynolds number Ud/v of about
10,000. This value is well into the turbulent subcritical regime, but is still too small to he
relevant to many practical situations. Many offshore flows, for instance, involve cylinder
Reynolds numbers of 10 or higher, i.e. into the critical and supercritical regimes. It
is unclear as to the extent to which even the qualitative trends in the force coefficients
measured in subcritical flows are applicable to the supercritical case.

Due to the inherently finite length of the towing tank facility, higher towing speeds
lead to shorter (and hence less accurate) measurement durations. It is possible to increase
the Reynoids number by increasing the cylinder diameter, but this is also lii ~d by the
necessity of avoiding blockage and free-surface effects.

Are tests at higher Reynolds numbers simply not possible in this facility? We believe
that it may be possible to artificially simulate the effects of high (i.e. supercritical) Reynolds
numbers by introducing upstream flow turbulence (by towing an appropriate grid ahead of
the oscillating apparatus). It is known (Blevins {7], Barnett and Cermak [2]) that free-
stream turbulence in an otherwise low-Re flow can cause early transition of the cyvlinder
boundary layers, thus giving the impression of a higher effective Revnolds number. To be
sure, turbulence does not cause the same effects with all cross-sections (with slarp-edged
cross-sections, there is a lowering of the effective Reynolds number — see Roberson ef al.
[62] or McLaren et al. [46]), and care must be taken in the interpretation of the results.
We helieve, nonetheless, that forced-oscillation tests in the presence of turbulence will be =

useful and relatively inexpensive way of extending the capabilities of our apparatus.




7.3.2 Combined in-line and transverse oscillations.

We know that vortex shedding imposes two sets of oscillating forces on a bluff cvlinder —
an oscillating transverse lift force at the frequency of vortex shedding. and an oscillating
in-line drag force at twice the frequency of shedding. In the case of a long tubular. the
predominant response is in the transverse direction, but there is an oscillating response in
the in-line direction as well. The overall motion often resembles a “Figure-8", as has been
observed in field experiments (Alexander [1], Vandiver [91]).

Attempts have been made by other researchers to conduct laboratory-scale forced-
oscillation tests with combined in-line and transverse oscillations. but not very much is
known about the results. Alexander’s [1] apparatus proved to be unreliable, Moe and Wu
[49] have not published comprehensive results, and Pantazopoulos’ [57] data is proprietary.
With our experience in motion control systems, it should not be difficult to design and
implement an apparatus capable of these combined motions, preferably with the ability to
reproduce amplitude-modulated oscillations in both directions. A comprehensive program
of testing would then establish the extent to which the lift and drag coefficients measured
with pure transverse motions (such as those presented in this thesis) are modified due to the
additional in-line vibrations. Such information would doubtless be of great help to scientists

and engineers alike.

7.3.3 Combined flow visualization and force measurements.

It has long been the “Holy Grail” of experimental hydrodvnamicists to successfully combine
flow visualization and force measurements with the same apparatus. (The emphasis was
added in the previous sentence because many attempts have been made!) The difficulty
is that good, clear. visualization is almost always possible only at low Revnolds numbers
(where turbulence is small or nonexistent), while direct measurements with force transducers
are possible only at higher Reynolds numbers (where the forces assume sufficient magnitude
to be measurable).

The modern technique of Digital Particle Image Velocimetry (DPIV) may provide the
long-awaited solution — DPIV has been used successfully to obtain “numerical snapshots™
of the velocity field in relatively high- Re flows (Willert and Gharib [94]). A system similar

to that described in the above reference is currently under installation in our Testing Tank

233




facility. We expect to have the capability of obtaining flow visualization together with our
established force measurement techniques in the very near future.

Several of the experimental runs described in this thesis are candidates for repeat tests
with the combined force / visualization systen. It would be very enlightening to visualize
the “phase-flipping” behavior of Chapter 3, as well as to shed light on the huge amplification
of the oscillating drag force, also in that chapter. Visualization would provide excellent
clues to the lift force cancellation behavior observed during tests of the riser section of
Chapter 4. The beating wake response modes. inferred from the measured force traces in
Chapter 5, could be confirmed from the DPIV velocity fields. And finally. simultaneous use
of visualization and force measurements is exactly what is required to “tune” the operation

of the tandem cylinder / hydrofoil combination studied in Chapter 6.

7.3.4 Tests with multiple cylinders

In Section 4.4.3, we studied the vortex-induced forces on a “canonical” riser section consist-
ing of a central cylinder with two smaller satellite lines. That multiple cylinder arrangement
was assumed to oscillate as a single entity, and the forces were measured on the entire group
as a whole. A quite differert problem, which is becoming increasingly common with the
advent of deepwater oil production platforms such as TLPs, is to predict the behavior of
each of a number of separate risers groupel in close proximity. The presence of the other
cylinders is expected to alter the vortex-induced lift and drag forces acting on each cvlinder
in the group.

It is very likely that the next several years will see many attempts by researchers in
the field to design forced- and free-oscillation experiments to investigate the forces acting
on multiple cylinders. With our double-yoke apparatus as described in Chapter 6. we are
already in the position of being able to conduct a first set of such experiments with two
independent cylinders. We believe that this data will be useful in establishing a fr ~ework
for future, more ambitious tests, and will likely be very interesting to engineers in the

offshare field.
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7.3.5 Comparative evaluation of vortex-suppression devices

In many practical engineering situations, it is necessary to reduce or suppress damaging
vibrations caused by vortex shedding. In such cases, add-on devices such as splitter plates,
fairings, helical strakes, axial shrouds, and the like are often employed in an attempt to
interfere with the vortex shedding mechanism. A number of such devices have been reviewed

-

by Blevins [7] and by Zdravkovich [102]. It is apparent from these reviews that reliable.
quantitative comparisons of different vortex-suppression devices are very hard to obtain,
since most of the systems have been developed in an ad-hoc manner by different researchers.

We believe that a comprehensive program of testing of different vortex-suppression de-
vices under identical experimental conditions would be of great benefit. In Section 4.4.4, we
discussed the evaluation of one such device (the haired-fairing), via forced-oscillation tests
with our experimental system, combined with our simple energy-balance VIV prediction

scheme. Given the ease with which different models can be installed in our apparatus, con-

ducting such a coraprehensive testing program would likely be inexpensive and worthwhile.

7.3.6 Further 1esearch on vortex interaction

In Chapter 6, we showed that an oscillating hydrofoil acting in the wake of a bluff cylinder
could interact with the cylinder Kirman street so as to reposition the large-scale vortices
and change their strengths, resulting in a reduction in the in-line wake velocity (and hence
drag force). While our investigation proved the concept, we did not attempt to “tune” the
various parameters to maximize the efficiency of the foil. In particular. we noticed in our
experiments that the foil generated substantial vorticity of its own. indicating a substantial
work input. It may well be possible to optimize the foil oscillation parameters so as to bring
about the same interaction effects noticed in our tests, but with considerably less foil vortex
generation.

In order to provide greater control over the cvlinder and foil oscillations, it would proba-
bly be necessary to modify our double-yoke apparatus. We suggest that an updated version
include two independent heave oscillation mechanisms. This would enable the cvlinder and
foil models to be moved at different amplitudes. with a variable phase angle between the
cylinder and foil oscillations. Controlling this phase angle would control the phase of en-

counter of the foil with the upstream vortex street. and so would eliminate the need to
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adjust the spacing betwec.: the models.

From the experimental results of Rosen [63], it is clear that parts of the fish body (in
addition to the tail) participate in the repositioning of the Karman vortices. Thus the
most beneficial vortex interactions may take piace with a conunuous undulating suriace.
rather than a rigid oscillating foil. Such a device could be thought of as a “two-dimensional
fish”, or as an “undulating splitter plate”, or as a “magic carpet mechanism”. It would be
fascinating to design such an apparatus and conduct flow visualization (and perhaps force

measurement) experiments with it.
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Vortex-induced forces and consequent vibration of long cylindrical structures are important for a large number of engineering
l applications. For a marine tubular exposed to sheared flow, the situation is particularly difficult since the vortex shedding force

varies along its length, causing the response at any point to be amplitude-modulated.

This thesis involves the experimental measurement of the vortex-induced forces on circular cylinders undergoing sinusoidal and
amplitude-modulated oscillations. Basic concepts on vortex formation and vortex-induced vibrations, a literature review, and
experimental details are introdoced early in the thesis. A comprehensive program of sinusoidal oscillation tests is presented.
Several novel properties are described, among them the role of the lift force phase angle in causing the amplitude-limited nature of
V1V, and use of the lift force "excitation" in contrast to the quite different lift force “lock-in". Next, a data error analysis, and a
simple VIV prediction scheme are described. New data on amplitude-modulated oscillations are presented, with an analysis of the
behavior of the fluid forces in response to beating excitation. Finally, the control of the mean wake velocity profile via the control
of the major vortical features is explored, with one application being the reduction of the in-line wake velocity.
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