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3 Abstract

Vortex-induced forces an'd consequent vibration of long cylindrical structures are important
for a large number of engineering applications, while the complexity of the underlying
physical mechanisms is such that this is one of the canonical problems of fluid mechanics.
In the case of a marine tubular exposed to a shear flow, the situation is particularly difficult
since the vortex shedding force varies in frequency and magnitude along the length of the
structure, causing the response at any point to be amplitude-modulated in space and time.

In this thesis, the focus is on the measurement, via forced-oscillation experiments, of the
vortex-induced lift and drag forces acting on circular cylinders undergoing sinusoidal and
amplitude-modulated oscillations. Basic concepts on vortex formation and vortex-induced
vibrations, a review of the existing literature, and details of the experimental apparatus and
data processing methods are all introduced early in the thesis. A comprehensive program
of stationary and sinusoidal oscillation tests is presented. Several novel properties are
described, among them the role of the lift force phase angle in causing the amplitude-limited
nature of VIV, and use of the lift force "excitation region" in contrast with the often-quoted
but quite different lift force "lock-in region-. Next, a comprehensive data error analysis.
and a simple VIV prediction scheme are described. New data on amplitude-modulated
oscillations are presented, with an analysis of the behavior of the fluid forces in response to
beating excitation. Finally, the concept of control of the mean wake velocity profil via the
control of the major vortical features is explored, with the possible applications being the
reduction of the in-line wake velocity and the alteration of the wake signature. The thosis
concludes with the principal findings of this research as well as suggestions for future work.

3 Thesis Supervisor: Prof. Michael S. Triantafyllou 1coession For
FNTiS -CA&T

Thesis Supervisor: Dr. Mark A. Grosenbaugh DT1 7,,
Una•.,.n'. -..:•ed []

I Dc JU 2.on-

,, 3:_ By

Avsvt1-btilty Codes

3 DIst Special

•11•



I
I
U
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I

4 I



m n

I
U
I
n
i

II
Dedicated to the FAHl.

I
i

I
I
I

I



m I I I I I I I II m mI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
3
I
I

6 I



I

3 Acknowledgments

Having just completed my doctoral thesis. I feel like I have accomplished one of the major tasks
of my life. I turn to contemplate the five years that it took to abchieve this enterprise, and I realize
that without all of those encouraging words, helping hands, and material assistance, I would

I never have made it up this hill.

For technical vision, guidance, and support, I am deeply indebted to the members of my

committee, Prof. Michael Triantafyllou, Dr. Mark Grosenbaugh, and Prof. Kim Vandiver. This
thesis was inspired by their ideas. Both professionally and personally, I feel grateful to have had
such good supervisors.

For engineering assistance, I would like to thank Mr. Clifford Goudey of MIT Sea Grant,
Mr. William Upthegrove of the MIT Testing Tank, and Mr David Barrett, a fellow student.
Cliff's and Dave's mechanical wizardry and Bill's fabrication skills went a long way towards3 ensuring the success of my experiments. (To Bill, I owe a special debt of gratitude for all that
coffee that fueled our many long days in the laboratory!)

3 For moral support, I am grateful to my family and friends. To my parents, because without
their help I would not have been here in the first place. To my wife, whom I met and married3 during the course of my graduate woik, and who has been an endless source of strength. And
to my friends at MIT and Woods Hole, ("you know who you are") who made graduate school
not only bearable, but fun.

And finally, for financial support of the research in this thesis, I would like to gratefully
I acknowledge:

I The National Science Foundation, under grant number 0CE-8511431.

° The Office of Naval Technology, under grant number N00!4-89-C-0179

• The Sea Grant Program, under grant number NA90AA-D-SG424.

3 * The Defense Advanced Research Projects Agency, through the Office of Naval
Research, under grant number NO(X) I 4-92-J- 1726.

I Ram Gopajkrishnan
September 1992.

*7



I
I
I
I
I
I
3
I
I
I
U
I
I
I
I
1
I
I

8 1



I
U
I
I

Contents

I
1 Intr duction 21

3 1.1 The phenomenon of vortex shedding ........ ...................... 21

1.2 Vortex shedding and marine cables: the problem at hand .......... ..... 24

3 1.3 Chronology of this work ......... ............................ 28

1.4 A review of the literature .......... ............................ 28

11.4.1 Forced-oscillation force-measu remen t expemrients ........... 2..

1.4.2 Other references .......... ............................. 37

I 1.5 A preview of the chapters that follow ...... ...................... 39

2 Experimental and Data Processing Methods 41

2.1 Preliminary rernarks ........ ............................... .11

32.2 The experimental systom .......... ............................ -41

2.2.1 (Chnerai description... ............... ..................... 11

3 2.2.2 Testing tank and carriage ......... ........................ 13

2.2.3 Test models, yoke. and oscillating system ..... 44

3 2.2.4 Force and motion sensors ........ ........................ .

2.2.5 Signal conditioning and data acquisition .... ................ 49

3 2.2.f Miscellaneous system effects .............................. 50

2.2.7 Flow considerations ......... ........................... 51

5 2.2.8 Overall accuracy of the experimental apparatus ................. 52

2.3 Formulation and definitions ....... ......... ................. 53

3 2.3.1 Stationary cylinder ........ ............................ 53

2.3.2 Sinusoidal cylinder oscillations ....... ..................... 5,l

5 2.3.3 Beatin( cylinder oscillations ............................. 56

1



I

S~I
2.41 D ata processinm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. •

3 Stationary and Sinusoidal Oscillation Tests 63

3.1 The purpose of these tests .......... ............................ 63

3.2 Stationary results ......... ................................. 64

3.3 Forced sinusoidal oscillations .......... .......................... 67 3
3.3.1 Results for amplitude ratio 0.30 ...... ..................... 69

3.3.2 Resulth. for other amplitude ratios ....... ................... 74

3.4 The behavior of the lift force phase angle ....... ................... 82

3.5 The behavior of the oscillating drag force ....... ................... 89 3
3.5.1 Large amplification at high oscillation frequencies ............... 89

3.5.2 Higher harmonics of the oscillating drag ...... ................ 93

3.6 Lock-in behavior and excitation ........ ......................... 96

3.7 Time-domain analysis of the wake response ....... .................. 100

4 Error Analysis and Application to VIV Predictions 109

4.1 Preliminary remarks .......... ............................... 109

4.2 Error analysis .......... ................................... 109

4.2.1 Introduction ............. .............................. 109

4.2.2 Wet calibrations and long-term stability ...... ............... 111 I
4.2.3 Statistical properties of the sinusoidal data ..... ............... . .

4.2.4 Comparisons with published results ....... .................. 114 I
4.2.5 The "bottom line" . ......... ........................... 120

4.3 Applying our data to VIV predictions ....... ..................... 123 3
4.3.1 General principles .......... ............................ 123

4.3.2 A simple method of estimating response ...... ................ 12- I
4.3.3 Long tubulars in shear flow ........ ....................... 130

4.4 Cross-sectional effects ........... .............................. 133 3
.4.4.1 Preliminary remarks ................................... 133

4.4.2 Defining an "effective diameter"....... . ................... 134 3
4.4.3 Multiple cylinder interference effects ...................... 137

4.4.4 Evaluating a vortex-suppression device ......................... 144 3
10 I



I

5 Beating Oscillation Tests 149

3 5.1 Introduction ........................................... 119

.5-1.1 Background ....... ................................ 149

1 5.1.2 -N summary of related research ..... ..................... 152

5.2 Force coefficient measurements ...... ......................... 157

5.2.1 Mean drag coefficient ....... .......................... 157

5.2.2 Oscillating drag coefficients ...... ....................... 162

3 5.2.3 Oscillating lift coefficients ....... ........................ 172

5.3 Analysis of the wake response ................................. 181

55.3.1 Preliminary remarks ................................. 181

5.3.2 Classification of wake response modes ..... ................. 18i

3 5.3.3 Comparisons with published results ........................ 189

5.4 Discussion and Summary ....... ........................... 191

3 6 A Paradigm of Vorticity Control: Cylinder-Foil Vortex Interaction 195

6.1 Introduction ......... .................................... 195

6.1.1 Preliminarv remarks ....... .......................... 1Q5

6.1.2 Background and motivation ............................. 196

6.1.3 The parameters of the problem.. .......................... 199

6.2 Flow visualization experiments ...... ......................... 202

6.2.1 The Kalliroscope tank ...... .......................... 202

3 6.2.2 Initial experiments ....... ............................ 201

6.2.3 Successful experiments ................................. 205

6.2.4 Conclusions from the flow visualization experiments .... .... 21S

6.3 Force measurement experiments ............................... 220

3 6.3.1 The apparatus and methods ............................ 220

6.3.2 Experimental results ................................. 222

3 6.3.3 Conclusions from the force measurement experiments ......... 224

7 Conclusions 227

7.1 The essential conclusions of this thesis ..... .... ................. 227

7.2 P)rincipal contributions of each chapter .......................... 2283!I



I

7.2.1 Stationary and sinusoidal oscillation tests ........ ....... 22•

7.2.2 Error analysis and application to VIV predictions ........... ... 229 1
7.2.3 Beating oscillation tests ..... ......................... 2:30

7.2.4 Cylinder-foil vortex interaction ...... ..................... 231 1
7.3 Recommendations for future work ...... ....................... 231

7.3.1 Achieving higher Reynolds numbers ....................... 232 1
7.3.2 Combined in-line and transverse oscillations .............. .... 233

7.3.3 Combined flow visualization and force measurements ......... .. 233 1
7.3.4 Tests with multiple cylinders ...... ..................... 234

7.3.5 Comparative evaluation of vortex-suppression devices ........ ... 235 1
7.3.6 Further research on vortex interaction ...................... 235

Bibliography 237

II
U
I
I

I
I
U
I

12 3



I I

List of Figures

1-1 Laminar vortex street behind a circular cylinder at Re = 140. Photograph

by S. Taneda, from Van Dyke (1982). ............................. 22

1-2 The dependence of Strouhal number on Reynolds number for a circular cylin-

der, from Blevins (1990) ....... ............................. 23

1-3 Mean in-line drag coefficient versus nondimensional frequency; from Sarpkaya

(1977) .......... ....................................... 33

1-4 Lift coefficient magnitude CtLo and phase 0 as functions of nondimensional

oscillation frequency So and amplitude ratio ý; from Staubli (1983) ..... .. 35

1-5 Map of vortex synchronization patterns near the fundamental lock-in region;

from Williamson and Roshko (1988) ....... ...................... 38

2-1 The experimental apparatus used in the Testing Tank ................. 42

2-2 A typical experimental run (drag force trace) ........................ 43

2-3 Design torque versus speed factors and the manufacturer's curve for the

SEIBERCO H3430 Sensorimotor ................................ 46

2-4 The force sensor assembly and model attachment ..................... 47

2-5 A typical static force calibration curve. ............................ 49

3-1 Power spectrum of a typical stationary lift force trace. ................ 64

3-2 Histogram of the mean drag coefficient; stationary runs ...... ....... 66

3-3 Histogram of the oscillating lift coefficient; stationary runs .............. 66

3-4 A time segment of a typical stationary drag force trace ................ 68

3-5 The time segment of the stationary lift force trace corresponding to the pre-

vious figure .............................................. 68

3-6 Mean and oscillating drag coefficients; sinusoidal oscillations: Yoid = 0.30. 69

13



I
i

3-7 Lift coefficient magnitude: sinusoida] oscillations; Yo/d = 0.30......... .. 7

3-8 Phase angle of lift wrt motion; sinusoidal oscillations; Y,/d =0.30........71 3
3-9 Lift coefficient in phase with velocity; sinusoidal oscillations: Yo/d 0.30. 173

3-10 Lift coefficient in phase with acceleration; sinusoidal oscillations; Yo/d = 0.30. 75 3
3-11 Added mass coefficient; sinusoidal oscillations; Yo/d = 0.30 ............ 75

3-12 Contours of the mean drag coefficient; sinusoidal oscillations ......... ... 76

3-13 Contours of the oscillating drag coefficient; sinusoidal oscillations ....... .. 77

3-14 Contours of the lift coefficient in phase with velocity; sinusoidal oscillations. 78 1
3-15 Contours of the lift coefficient in phase with acceleration; sinusoidal oscillations. 79

3-16 Contours of the added mass coefficient; sinusoidal oscillations ......... .. 80 1
3-17 Vector diagram of the cylinder oscillation, velocity and acceleration; and

vortex-induced lift force ..................................... 83 1
3-18 Variation of phase angle with nonditnensional frequency for "small" ampli-

tude ratios 0.15, 0.30 and 0.50 ................................. 84

3-19 Variation of phase angle with nondimensional frequency for "large" amplitude

ratios 0.75, 1.00 and 1.20 ..................................... 85 U
3-20 Vector diagram showing "small" and "large" amplitude phase transition be-

havior ................................................. 86 1
3-21 Variation of €0 for Yo/d = 0.50 by both frequency-domain and time-domain

methods ......... ...................................... 88 1
3-22 Variation of €0 for Yo/d = 0.75 by both freqiencv-domain and time-domain

methods .......... ...................................... 88 1
3-23 Mean and oscillating drag coefficients for amplitude ratio 0.75 ........ ... 90

3-24 Time segment of the drag force; Yo/d = 0.75; Jo = 0.132 ............ ... 91 1

3-25 Time segment of the drag force; Yo/d = 0.75; Jo = 0.285............ ... 91

3-26 Time segments of the motion (LVDT) and the drag force; 1o/d = 0.75; U
fo = 0.157 ......... ..................................... 93

3-27 Higher harmonic oscillating drag coefficients; Yo/d = 0.75. ............... 951

3-28 Higher harmonic oscillating drag coefficients; Yo/d = 1.20. ........... .. 95

3-29 Motion and lift spectra for Yo/d = 0.56 and four oscillation frequencies... 98

3-30 Experimentally determined lock-in region for sinusoidal oscillations..... 99 I
3-31 Excitation and lock-in regions for sinusoidal oscillations. ............ 100

14 1



U
3

3-32 Time-domain processing applied to Yo/d = 0.50, j.o = 0.107.......... ... 102

3 3-33 Time-domain processing applied to Yol/d = 0.50, Jo = 0.152 .......... .. 103

3-34 Time-domain processing applied to Yo/d = 0.50, f, = 0.203 .......... .. 104

3 3-35 Wake response state diagrams from time-domain processing.......... ... 106

3-36 Motion and lift for increasing linear amplitude, Jo = 0.132 .......... ... 107

1 4-1 Realizations of the mean drag coefficient; stationary runs ........... ... 112

4-2 Realizations of the oscillating lift coefficient; stationary runs......... ... 113

4-3 Lift coefficient magnitude for Yo/d = 0.15, with error bars ........... .. 114

4-4 Lift coefficient phase angle for Yo/d = 0.50, with error bars .......... .. 115

4-5 Histogram of CDO; sinusoidal oscillations at Yo/d = 0.75 and j, = 0.203 . . 116

4-6 Histogram of CLO; sinusoidal oscillations at Yo/d = 0.75 and jo = 0.203. . . 116

I 4-7 Drag amplification ratio as a function of amplitude ratio, various data sources. 117

4-8 Comparing our -CLAo results with those from Staubli (1983) ....... ... 118

4-9 Comparing our CL-ro results with those from Staubli (1983) ......... .. 119

4-10 Comparing our -CLAO results with those from Sarpkaya (1977) ...... .. 121

4-11 Comparing our -CLVO results with those from Sarpkaya (1977) ....... .. 122

4-12 Simple structural model of a rigid cylinder ........................ 125

4-13 Resonant nondimensional frequency A, and lift coefficients CL-VG In and CLAk

against resonant amplitude ratio Yl/d; smooth circular cylinder ....... .. 127

4-14 Graphical illustration of the simple predictive scheme 2SGY,7 Id • C-1(_oJ 129

4-15 Performance of the predictive scheme compared to various experimental data

from Griffin (1985) ........................................ 129

4-16 Illustrating a long flexible cylinder in sheared flow ................... 132

4-17 Cross-sectional and flow geometries of the models tested............ ... 135

4-18 CD_ and CL-Vo for the wire-rope, Yo/d = 0.30, and circular cylinder data.. 136

4-19 CD. and CL_Vo for the wire-rope, effective diameter 77%, and circular cylin-

der data ............................................... 137

4-20 CD. and CLVQ for the chain, Yo/d = 0.30, and circular cylinder data. ... 138

3 4-21 CLVo for the riser at 0', Yo/d = 0.30, and circular cylinder data ....... .139

4-22 CL_Vo, for the riser at 900, Yo/d = 0.30, and circular cylinder data ...... .140

S4-23 CLVo for the riser at 450, Yo/d = 0.30, and circular cylinder data ...... .140

* '.5



I
I

4-24 Variation of CLVo11 against amplitude ratio for the riser at different angŽk,.

and circular cylinder data .................................... 141

4-25 Suppression of vortex shedding using a "control" cylinder, from Strykowski

and Sreenivasan (1990) ..................................... 143 3
4-26 Contours of the lift coefficient in phase with velocity; haired-fairing..... .. 146

4-27 Contours of the mean drag coefficient; haired-fairing ................. 146 3
4-28 The predictive scheme 2SGY,,/d = CLVjI applied to the haired-fairing. 147

4-29 Performance of the predictive scheme applied to the haired-fairing ...... .147 i

5-I Waveforms at constant modulation ratio and varying modulation depth.. 150 1
5-2 Waveforms at varying modulation ratio and constant modulation depth... 151

5-3 States of response of near-wake as a function of dimensionless modulation 3
frequency fm/fe and amplitude Y/d at flIf, = 0.95; from Nakano and

Rockwell (1991) .......................................... 155 3
5-4 Co,,D for beating motion with 2Y1 /d = 0.75 (open circles), and for peak-

matched sinusoidal motion (solid lines) .......................... 157 1
5-5 CD,, for beating motion of RMS amplitude ratio YRMs/d = 0.53 (asterisks).

and for RMS-matched sinusoidal motion (solid lines) ................. 158 3
5-6 Motion and drag for a typical 1:10 beating case; j, = 0.160W 2Y 1/d = 0.50.. 159

5-7 Results from the quasistatic CD_ model (dashed lines) and measured data 3
(open circles); beating motion with 2Y 1/d = 0.50. ................... 161

5-8 Results from the linear CD, model (dashed lines) and measured data (aster- 3
isks); beating motion with 2Y 1/d = 0.30 .......................... 162

5-9 Contours of Co,,D; 1:20 beating motion ........................... 163

5-10 Contours of CD.; 1:10 beating motion ............................ 163

5-11 Contours of Corn; 1:3 beating motion ............................ 164 3
5-12 CD, and CD2 for beating motion with Y 1/d = 0.50, and CD, for component-

matched sinusoidal motion ................................... 165 3
5-13 CO RMs calculated from from actual data, as well as Cca, from CD, and

CD,; beating motion with 2Y 1/d = 0.75 .......................... 166 3
5-14 Measured values Of CD,,, (crosses) and results from quasistatic model (dashed

lines); beating motion with 2YI/d = 0.75 .......................... 167 !

163



I
I

5-15 CDRMS calculated from from actual data, as well as froi .... Co 23 and CDmod: beating motion with 2YI/d = 0.75 ..................... 168

5-16 Power spectrum of a high frequency, 1:3 ratio. beating drag force trace . 169

35-17 Contours of CDRMS; 1:20 beating motion .......................... 170

5-18 Contours of CDRMS; 1:10 beating motion ......................... 17135-19 Contours of CDRMS; 1:3 beating motion .......................... 171

5-20 CDRMs for beating motion with 2Y1/d = 0.75 (open circles), and for RMS-

3matched sinusoidal oscillations (solid lines) ........................ 172

5-21 CL, and CL2 for beating motion with Yl/d = 0.15, and CL( for component-

3matched sinusoidal motion ................................... 173

5-22 CLRMs calculated from from actual data, as well as -" from CL and

3CL 2 ; beating motion with 2Y 1/d = 0.75 .......................... 174

5-23 Power spectrum of a high frequency, 1:3 ratio, beating lift force trace. . . . 175

S5-24 0 1 and 02 for beating motion with Y 1/d = 0.50, and 00 for component-

matched sinusoidal motion ................................... 176

S5-25 Contours of CL_VC; 1:20 beating motion .......................... 178

5-26 Contours of CLVC; 1:10 beating motion .......................... 178

S5-27 Contours of CLV,; 1:3 beating motion ............................ 179

5-28 Contours of CLAC; 1:20 beating motion .......................... 179

S5-29 Contours of CLA4,; 1:10 beating motion .......................... 180

5-30 Contours of CLA,; 1:3 beating motion ............................ 180

3 5-31 An example of periodic nonlock-in; 1:10 beats with 2Y 1/d = 0.15, f• = 0.144. 183

5-32 An example of frequency-switching; 1:20 beats with 2Yl/d = 0.75, f• 0.1302.184

S5-33 An example of random phase modulations; 1:10 beats with 2Y./d 0.50,

j, = 0.1547 ......... ..................................... 185

S5-34 An example of periodic phase modulations; 1:10 beats with 2Y 1 /d = 0.50,

f, = 0.208 ......... ..................................... 186

S5-35 Wake response state diagram for 1:20 beats ........................ 188

5-36 Wake response state diagram for 1:10 beats ........................ 188

S5-37 Wake response state diagram for 1:3 beats ........................ 189

5-38 An example of "period-doubling"; 1:3 beats with 2Y1/d = 0.30, Jr = 0.184. 190

117



I
I

6-1 The vortex wakes of a bluff body and an oscillating foil ............ ... 197

6-2 Illustrating the concept behind our experimental investigation........ ... 199 1
6-3 The oscillating mechanism used in the Kalliroscope-tank ........... ... 204

6-4 Measured Strouhal number versus Reynolds number for a D-section cylinder. 206

6-5 The locations of the three interaction modes observed ............. ... 208

6-6 Wake interaction mode 1: Vortex pairing. Views I and II ........... ... 209 1
6-7 Wake interaction mode 1: Vortex pairing. Views III and IV .......... .. 210

6-8 Wake interaction mode 2: Destructive vortex merging. Views I and II. ... 213 1
6-9 Wake interaction mode 2: Destructive vortex merging. Views III and IV. 214

6-10 Wake interaction mode 3: Constructive vortex merging. Views I and II.. 216 1
6-11 Wake interaction mode 3: Constructive vortex merging. Views III and IV. 217

6-12 Photographs of the wake downstream of the oscillating foil .......... .. 219

6-13 The double-yoke force measurement apparatus ..................... 222

6-14 Overall in-line drag force as a function of spacing. Acid = 0.833 and 9 = 45-. 225

6-15 Apparent foil efficiency as a function of spacing. AcId = 0.833 and 0 = 45'. 225

!
I
I,
!
I
I
I
Ii

/ I I I IU



I
I
I
I
* List of Tables

2.1 Details of the various models tested in the oscillating apparatus ....... .. 45

3.1 Summary of results for the stationary circular cylinder; Re = 10,000 . . .. 65

34.1 Summary of results for the stationary haired-fairing modei. .. .. .. .. .... 144

6.1 Heave and pitch amplitude combinations tested ................ .... 207

I
I
II
I
I
I
I
I

I '9| NI



II I II

I
I
I
I
I
I
I
I
1
I
I
I
I
I
1
I
I

20 1



Chapter 1

Introduction

1.1 The phenomenon of vortex shedding

One of the classical open-flow problems in fluid mechanics concerns the flow around a cir-

cular cylinder, or more generally, a bluff (i.e. non-streamlined) body. At very low Reynolds

numbers (based on cylinder diameter) the streamlines of the flow are perfectly symmet-

ric: coincidentally, they resemble the solution obtained from inviscid potential flow theory,

although the viscous effect predominates. As Reynolds number is increased, at first. two

attached vortices appear behind the cylinder, and grow in size with Reynolds number. As

the Reynolds number increases further, the wake becomes unstable. The boundary layers

on either side of the cylinder separate and discrete vortices are formed in the near wake

region behind the cylinder. New vortices form alternately from either side of the cylinder

and move downstream, generating a periodic asymmetric flow, which is the celebrated von

Kdrmdn vortex street. Figure 1-1, from the cover of Van Dyke's photographic collection

[13], is an example of a laminar vortex street revealed via flow visualization.

From a historical perspective, the first known observations of the formation of eddies

due to a flow obstacle are attributed to Leonardo da Vinci during the Renaissance period.

(See the excellent work by Lugt [42] for a more complete historical discussion.) The sys-

tematic study of cylinder wakes did not commence until the end of the nineteenth century.

when Strouhal and Rayleigh began investigations into the production of "Aeolian tones"

generated by wires in a wind. Strouhal demonstrated that the frequency of these tones was

proportional to wind speed divided by wire thickness, and the constant of proportionality

21
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Figure 1-1: Laminar vortex street behind a circular cylinder at Re = 140. Photograph by I
S. Taneda, from Van Dyke (1982).

in this relationship came to be known as the Strouhal number. In 1908, B1nard associated I

the production of the Aeolian tones with vortex formation; and this advance was followed

in 1912 by von Kirmin's suggestion of the stable, staggered arrangement of vortices which

now bears his name (except in the French literature where it carries the name of B6nard). 3
In the last three-quarters of the century. a very large number of researchers have investi-

gated the phenomena associated with vortex shedding and vortex-induced vibrations: some 3
of the important references will be mentioned later in this chapter. A few of the important

features that have resulted from these investigations are briefly summarized below. 3
Strouhal number. The Strouhal number S mentioned above is defined as

S = --i (1.1)

U
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U where f, is the frequency of vortex sheddinr. IU th, fre,-stream flow v,,oui . dd d h,.

diameter of the body under consideration. It has been found that the Strouli`al numiber i,-

a function of Rewnolds number for any given body cross-section. For the case of a circular

cylinder. Figuie 1-2 Thowts that dic: Strtiuaý niumber i- approxi~uately constauit at 0.2 for a

wide range of Reynolds numbers.
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Figure 1-2: The dependence of Stroulhal number on Reynolds number for a circular cylinder,3 from Blevins (1990)

SVortex-induced forces and vibration. Bluff body vortex shedding migh, well be rel-

egated to the status of a scientific curiosity were it not for the profound engineering conse-

Squences of vortex-induced vibrations. The alternate shedding of vortices in the near wake

causes fluctuating velocities and pressures in the vicinity of the cylinder, which in turn cause

I oscillating lift and drag forces to be imposed on the body. The oscillating lift forces are

predominant, and if the body is free to move. it responds to the oscillating lift and vibrates

in a direction transverse to the ambient flow. These vibrations are referred to variously as

"vortex-induced vibrations", "VIV", "vortex strumming", or "cable strumming" (if a cable

3 is involved). An important feature is that the oscillations do not grow indefinitely, but are

amplitude-limited to about one diameter. Thus, in an engineering sense. vortex-induced

3 vibrations do not produce catastrophically large oscillation amplitddc-, but r-ather have an

important effect on the fatigue life of the structure.
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Lock-in. The phenomenon of "lock-in", also called "synchronization` or "wake-capture",

is an interesting observation from the study of vortex shedding. If a body experiences 3
vortex-induced vibrations as mentioned above, the motion excites a second mode in the

wake that competes with the natural Strouhal shedding process. The interaction between

the "natural", or Strouhal frequency and the -forced", or body motion frequency is nonlin-

ear; when the two frequencies are close together, the body motion can take control of the I
shedding process in an apparent violation of the Strouhal relationship. The frequency of

vortex shedding then collapses onto the oscillation frequency of the body: the strength of I
the shed vortices, transverse lift force, and body response can all greatly increase.

Several comprehensive reviews exist that coler vortex shedding and associated phenom-

ena in considerably more detail. Some of these reviews are referenced in the literature I
survey section that appears later in this chapter. 1
1.2 Vortex shedding and marine cables: the problem at

hand

The properties and consequences of flow around circular cylinders, as introduced in the I
previous section, find a special application in the analysis of long marine cables used in II
towing and mooring situations. The extremely large aspect ratio and flexible naure of

these structures make them particularly susceptible to vortex-induced vibrations. From I
both design and operational points of view, it is important to be able to predict the forces

(primarily the drag) acting on the cable, as well as its resultant configuration and motions.

Although a value of 1.20 is widely accepted as the mean drag coefficient CD_ for I ire case

of flow normal to a stationary circular cylinder, it is also well known that any motion of

the cylinder can significantly alter the flow pattern and amplify the vortex-induced forces.

In the case of marine cables, this means that the selection of the proper drag coefficient

remains a contentious issue.

Due to the complexity of the hydroelastic cylinder/wake problem, theoretical models 3
remain incomplete, and numerical solutions are as yet not feasible except for very low

Reynolds numbers. As a result, most of our knowledge of circular cylinder flows is derived II
from physical experiments conducted over the last several decades. Both fre•e-oscilation
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tests (in which an elastically-mounted cylinder is exposed to a flow and ;dllo.ed to vibrate)3 and forced-oscillation tests (in which a cylinder is mounted in a flow and driven externally)

have been conducted by generations of researchers. The first type of experiments had as

their objective the measurement of displacement response. and the second focused on the

measurement of the hvdrodynamic forces. In addition. in both types of tests, other quan-

tities have been measured as well, such as surface pressure or wake-velocity measurements,

flow visuJaization, etc. The accumulated results have given us reasonably good insight into

the behavior of bluff bodies oscillating in a flow, with one important limitation; almost all

of the tests reported thus far have been for pure harmonic oscillations.3 In the case of rigid structures exposed to uniform flow, vortices are shed harmonically

into the wake and the assumption of a pure sinusoidal response is reasonably valid: however.

in the case of marine cables and other similarly long structures exposed to shear flow, this

assumption is questionable. Due to the combined effect of varying ocean currents and the

I static angle of the cable, the normal velocity varies along the cable length. As a result, if one

assumes that the sheared current is suddenly "switched on", it must be expected that the3 flow sets up a vortex-induced loading that is "local", in that the frequency and magnitude

of t':e loading is constant only over a very limited extent. For a cable longer than a few

hundred meters, the hydrodynamic dampirg is such that the end conditions are not felt over

most of its length, and the cable responds primarily as one of infinite length. This results3 in a large number of participating natural modes, and the cable responds at every point

along its length primarily to the local forcing at that point and a small neighboring region.

3 In fact, employing the concept of natural modes offers no additional insight. Instead, it

is better to view the cable response as traveling waves caused by distributed excitation:3 these waves are damped out as they move away from the source that, produced them, but

affect substantially the cable motion at neighboring points. The net result of this scenario3 is that each point on the cable has a motion that is not simple harmonic, but rather is

amplitude-modulated in both space and time.

3 The presence of such large scale amplitude modulations in the strumming behavior

of marine cables has been noticed and commented on in the past by several researchers.3 for example see Alexander [1] or nim [36]. The first detailed observations reported in

the public literatur' were made via a full-scale experiment conducted by the Woods Hole3 Oceanographic Instlittion and reported by Cr senbaiigh It al. [28. 271 and Yoerger ct al.
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I
[99]. Regular beating patterns were observed in the cable motion. characterized by two

primary peaks in the power spectra. The period of the beats varied along the length of 3
the cable, and could be related to the current shear prevalent at the corresponding depths.

In addition, the overall drag coefficient for the cable was calculated at different instants

of time, and was shown to be less than the values commonly assumed for pure harmonic

oscillations of equivalent amplitude.

Consequent to the above full-scale tests, Engebretsen [14] and Howell [31] attempted

to simulate the beating motions of the cable using a Green's function approach, with the 3
response at any point )eing the superposition of responses due to varying point loads along

the cable. The use of force coefficient magnitude and phase data from standard harmonic I
results proved to be inadequate, and the authors had to resort to randomly distributed

phase angles in order to obtain reasonable results. In related research. Triantafyllou and I
Karniadakis [79] used a direct Navier Stokes simulation code to numerically simulate, at

low Reynolds number, the flow around a circular cylinder undergoing amplitude-modulated U
motion. They were able to demonstrate that the beating motion caused the lift and drag

forces, expected on the basis of sini.soidal results, to be modified in unpredictable ways. U
and they concluded that sinusoidal test data could not be applied, in a linear superposition

sense, to calculations or simulations of beating motion. I
* The previous paragraphs have attempted to lay out a flow of logic that is summarized

as follows:

"* the bulk of our knowledge of vortex-induced loads and body motions comes from

laboratory experiments with harmonically oscillating cylinders:

"* marine cables and similar structures of extreme aspect ratio exposed to shear flows I
respond with complex. amplitude-modulated vortex-induced vibrations, and

"* pure harmonic results cannot be applied directly to calculations involving beating

motions.

Thus, there emerges a need for new data quantifying the vortex forces on cylinders un-

dergoing amplitude-modulated motion, and/or new methods to accurately extrapolate the I
existing data to these more complex cases.

The experienejot described in this thesis have as their primafry purpose the presentation I
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of new data and methods for the beating motion mentioned above. We have attempted to

extend the classical forced-oscillation experimental approach by driving a circular cylinder

with double-frequency beating motion in the presence of a cross-flow, and mea-suring the lift

and drag forces acting on the cylinder. Our data is presented with comparison to sinusoidal

test results taken with the same apparatus. (Many of our sinusoidal results represent new

3 findings in themselves and have been presented in some detail.) In the context of related

research, our efforts lie in between the full-scale sea tests of Grosenbaugh et al. [28. 27J and

3 the low-Reynolds number computer simulations of Triantafyllou and Karniadakis [79].

Before concluding this section. two points must be made about the experiments de-

scribed herein.

Firstly, our experiments do not bear any resemblance to shear-flow tests conducted by

3 Maull and Young [45], Mair [43], Stansby [731, or others of that period. In those tests.

the researchers subjected small aspect ratio fixed and harmonically vibrating cylinders to

axial shear flows and recorded their findings with respect to vortex-shedding in "cells",

cell length, and base pressure variation. Although a principal motivation for our present

efforts is the effect of axial shear in the flow incident on a cable, we make the important

simplification that we study the forces on a small local section of the cable over which the

3 flow is essentially uniform. We thus attempt to isolate the effects of amplitude-modulated

body motion in a local or "two-dimensional" manner.

Secondly, it will be noticed that in all of our experiments, the test cylinder is exter-

nally forced. Much has been written in the literature about the relative advantages and

3 disadvantages of forced- versus free-oscillation experimental methods, and for the general

case, there is little to add to the discussion. However we believe that in the case under

study, forced experiments are the correct approach. Since the response of the cable at any

given location is determined by both the fluid forcing at that location as well as structural

3 interactions along the cable, it is possible for that response to contain spectral components

that would normally have been damped out by the flow at that location. Put differently,

3 it is possible for energy to be extracted by the cable from the fluid at one axial location.

transmitted via the cable to a different axial location, and lost to the fluid (damped out)

I there. In the absence of extensive full-scale tests or expensive, large-scale experiments, it

would appear that the only viable way of recreating such a scenario is through a systematic

I forced-oscillation experimental schedule.
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1.3 Chronology of this work

Efforts to conduct experiments along the lines of those described in this thesis commenced

shortly after the results from the full-scale sea trials became available, in the Fall of 1987. 1
The first experiments were conducted during July 1988, using a vertically mounted cylinder

(2.54 cm dia., 30 cm length) in a current flume at the Coastal Research Laboratory of the 3
Woods Hole Oceanographic Institution. A computer controlled motor driving a lead-screw

positioning table was used to provide the beating oscillations, and lift and drag forces were

measured using strain gages. While conducting the experiments, problems were experienced

with the operation and calibration of the strain gages. Several runs were conducted and the

data recorded, but data processing efforts were hampered by the lack of reliable calibrations.

and the collected data were abandoned.

Learning from the successes and failures of our first effort, a second set of experiments

was conducted during January and February of 1990. The venue was shifted to the newly 3
refurbished Ocean Engineering Testing Tank at the Massachusetts Institute of Technol-

ogy. The motor and lead-screw mechanism were retained, but force measurement was 3
accomplished with a highly accurate and mechanically stiff piezoelectric force sensor. A

horizontally mounted cylinder (2.54 cm dia., 60 cm length) was used. Results from this

set of experiments (21. 201 were presented at the ISOPE-91 conference held at Edinburgh.

U.K., during August 1991. 3
The bulk of the results presented in this thesis are based on further experiments con-

ducted at MIT during February 1991 and January 1992, using a setup similar to that used 3
in 1990. Many improvements were made to the apparatus, and the experimental method

was largely automated. Thus it became possible to test a greater variety of parameters and U
with a higher resolution than before. Some of these newer results have been published in

Gopalkrishnan et al. [19]. 1
1.4 A review of the literature I
1.4.1 Forced-oscillation force-measurement experiments 3
Ever since the systematic investigation of vortex-shedding was started 1b Strouhal and

Raleigh in the late nineteenth century, a large body of knowledge has boen accumulated. I
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Any investigation in this field would be incomplete without a careful survey of the exist-

ing literature. Since our work is an extension to the forced-oscillation, force-measurement

experiments conducted in the past, we will focus our review on important contributions in

this particular area. The following paragraphs cite research material in an approximately

chronological fashion.

Bishop and Hassan. Our review begins with the seminal work of R.E.D. Bishop and

A.Y. Hassan, published during 1964 in a pair of papers, "The lift and drag forces on a

circular cylinder in a flowing fluid" [5] and "The lift and drag forces on a circular cylinder

oscillating in a flowing fluid" [6]. With these papers. Bishop and Hassan were the first

to report on a comprehensive treatment of force coefficient measurements on stationary

and oscillating circular cylinders. They used a 1 in. dia., 5 in. long cylinder mounted

horizontally to a skotch yoke mechanism in a water channel. Forces were measured on

a 3 in. center section by means of strain gages, which could be arranged to measure

either the lift or the drag force. The first paper [5] sets out the basic definitions and

characteristics of vortex-induced forces; and contains values of Strouhal number S, lift

coefficient CL, mean drag coefficient CD,, and oscillating drag coefficient CD, for stationary

cylinders at various Reynolds numbers 3,600 < Re < 11,000. The second paper [6] contains

measurements of the force coefficients acting on the cylinder forced to oscillate sinusoidally

transverse to the flow. The authors report on the wake synchronization phenomenon and the

changes in the magnitudes of the forces and phase angles as the cylinder-oscillation frequency

traverses the natural Strouhal shedding frequency. That their work was of high quality is

evident in that Bishop and Hassan report on phenomena that other researchers would give

prominence to only in later years; phenomena such as hysteresis, frequency demultiplication.

and the modification of the "critical nondimensional frequency" as a function of oscillation

amplitude.

Two major drawbacks exist in these papers. Firstly, the bulk of the data on lift and drag

forces are given in the form of "arbitrary units", and thus can be used only for qualitative

comparisons. Secondly, and perhaps more importantly, the method used to deduce the

3 lift coefficient magnitudes from the total measured lift force is questionable. For forced-

oscillation experiments of this nature, the total force measured in the lift direction consists

of the sum of inertial force due to the cylinder mass, inertial force due to Ihe "added mass"
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effect of the water, and the vortex-induced lift force (which may itself have components

in the inertial (acceleration) and velocity directions). The first of these components, the I
inertial force in air, is relatively easy to subtract. However, since the added mass of water

does not necessarily remain constant with cylinder motion or fluid flow, the second inertial I
component is harder to determine. Bishop and Hassan have assumed that the added mass

of water does not change with flow velocity; they subtract the inertial lift force measured in I
still water from the total force measured in flow for each oscillation run. Most researchers

today do not attempt to remove the added mass force, and instead treat the sum of this I
and the vortex-induced force as one holistic fluid force that has both inertial and velocity

components. I

Toebes et al. Several experiments relating to the vortex-induced forces on cylinders of

various cross-sections were conducted during the mid-1960's by Prof. G. H. Toebes and his

group at Purdue University, and one of the publications that resulted is reference [60] by I
Protos, Goldschmidt, and Toebes. This work describes the results of lift force measurements

made on circular and triangulax cylinders forced to oscillate at small amplitudes in a flow of I
Reynolds number 45,000. Only the lift forces were measured. The authors present results

for the lift coefficient calculated in a manner similar to that of Bishop and Hassan, with the I
improvement that actual physical values are given. A valuable contribution is in showing

the importance of the phase angle between the lift force and the cylinder motion, in the I
context of determining the sign of the energy transfer between the cylinder and the fluid

(whether exciting or damping). I

Jones, Cincotta, and Walker. The large majority of experimental results available in

the literature relate to flows around cylinders that have Reynolds numbers in the range

of a few hundred to a few thousand. The report by Jones et al. [34] presents results of

tests conducted on a 3 ft. dia. cylinder forced to vibrate in Reynolds numbers up to 1.9

x 107 and Mach numbers up to 0.6, with the motivation being to study the response of

Saturn V rockets to wind gusts while on the launch pad. Air and Freon were used in a

closed circuit wind tunnel at the NASA Langley Research Center, with a massive hydraulic

shaker assembly employed to provide the oscillations. Values of lift and drag coefficients and

Strouhal number are given as functions of Reynolds number, Mach number, and oscillation I
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amplitude and frequency. The trends of lift coefficient against nondimensional frequency

are qualitatively very similar to our own results, a very interesting observation given the

huge difference in Reynolds number regime.

Mercier. One of the most comprehensive sets of forced-oscillation experiments was con-

ducted by John Mercier at the Stevens Institute of Technology during the early 1970s, and

reported in his doctoral thesis "Large Amplitude Oscillations of a Circular Cylinder in a

3 Low-Speed Stream" [47]. The author conducted tests on cylinders forced to oscillate both

transversely as well as in-line to the flow in a recirculating water channel. Most of the

results are for the range 4000 < Re < 8000. with amplitude-to-diameter ratios AID up to

three. The experimental method used was rather "modern", in that the force measurements

3 were recorded on magnetic tape, and later digitized and analyzed on a digital computer for

Fourier series coefficients and the like. A variety of graphs are presented for mean and

oscillatory drag coefficients, lift force magnitudes and phase angles, and lift force drag and

inertia coefficients, as functions of reduced velocity and amplitude of oscillation. Several

oscillograph time traces are also provided to illustrate the variety of lift and drag waveforms

observed.

3 Mercier's thesis was and remains unique in several ways. He was the first researcher to

conduct tests on cylinders oscillating in-line with the flow, and to give results for the large

3 mean drag amplification seen for these cases. Prior to our own work reported herein, he

appears to have been the only researcher to report on the very large values of oscillatory

3 drag coefficient that arise for certain ranges of transverse oscillation. He was also one of

the first to attempt to combine force measurements with flow visualization of the vortex

3 formation in the cylinder wake, although his efforts in this were not very successful.

Sarpkaya. For practical design applications or estimation of vortex-induced forces and

body response, the most complete set of data available is due to Turgut Sarpkaya, as

I reported in [65] and summarized in [64]. The purpose of Prof. Sarpkaya's work was to

conduct forced-oscillation cylinder experiments and use the measured force coefficients to

3 predict the amplitude response of an elastically mounted cylinder subjected to a uniform

flow. His experiments were performed in relatively narrow recirculating water tunnels, using

3 very low aspect-ratio circular cylinder models (LID : 3). The Reynolds number of the flow
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was varied in the range 7,000 < Re < 11,000. and lift and drag forces were measured using

strain gages. In addition to a great deal of valuable experimental data. both references cited I
above contain excellent discussions of the hydrodynamic and structural issues involved.

such as Strouhal number, correlation length. added mass, damping coefficient, and natural I
frequency.

Sarpkaya formulates the lift force, on the basis of a first-order series expansion of Mori- i
son's equation, in terms of an inertial coefficient Cm (component of lift in phase with

cylinder acceleration) and a "drag" coefficient Cd (component of lift in phase with cylinder m

velocity). Curves of these force coefficients (normalized with respect to the amplitude of

the cylinder velocity, as well as with respect to the freestream flow velocity) are presented I
as functions of oscillation amplitude and reduced velocity (reciprocal of nondimensional

oscillation frequency). These data were then used in a linear equation of motion in order to i
predict the maximum amplitudes of vibration of an elastically mounted, linearly damped

cylinder. Good agreement was found between these predictions and the experimental dataI

of Griffin and Koopman [25].

In addition to the lift force coefficients, Sarpkaya presents results for the mean drag co- U
efficient plotted against nondimensional oscillation frequu;kcy, with each curve representing

a particular value of amplitude ratio AID. These curves (Figure 1-3) dramatically illustrate

the amplification of mean drag at frequencies near the Strouhal shedding frequency.

One significant omission in Sarpkaya's work appears to be the lack of quantitative in-

formation regarding the oscillating component of the drag force. The author asserts that

the magnitude of the oscillating drag force in no case exceeds 7% of the mean drag, a state-

ment which contradicts the results in Mercier's thesis [47] as well as our own measurements.

He does mention, however, that the oscillating drag force increases sharply after a certain

critical value of oscillation frequency.

Schargel. As mentioned earlier in the introduction, the great majority of experimental

results reported thus far have been for the case of cylinders oscillating with pure harmonic I
motion. To the best of our knowledge, the only laboratory-scale experimental program that

focused on random ( scillations was that conducted by Robert Schargel at MIT and reported I
in his M.S. thesis [68]. Schargel used a massive Briiel and Kjaer electromagnetic vibration

exciter mouinled over a water tunnel to cause a 0.5 in. dia. circular cylinder to oscillate I
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Figure 1-3: Mean in-pl ie drag coefficient versus nondimensional frequency; from Sarpkaya
(1977)

transversely to the flow. The electromagnetic shaker tracked an input signal which could be

provided by a custom built pseudoraidom noise generator, with its output suitably band-

pass filtered. Only the drag force was measured, with tests conducted in the range 4,000 <

Re < 7,s000, and 0.0ta < ARMSt D < 0v38. Also evaluated were the drag coefficients for
pure harmonic oscillations, of comparable RMS amplitudes, using the same apparatus with

a sinusoidal signal generator providing the tracking signals. Schargel's results are presented

in the form of plots of drag coefficients against nondimensional oscillation frequency (center

frequency in the case of random oscillations). The principal conclusions are that the random

oscillations cause a "smearing out" of the sinusoidal drag force peaks (to result in "plateau"

values); and that these plateau values for the random oscillations were generally lower than

the peak values for the corresponding sinusoidal oscillations.

In a later report (69], Schargel and J. Kim Vandiver reported on wake velocity measure-

ments made behind the randomly oscillating cylinder, using a noninvasive laser Doppler

anemometer. For pure harmonic oscillations in the lock-in regime, they found that the

cylinder motion and wake velocity were strongly correlatedl, as was io be exp•cte(l. .\ small
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degree of randomness was sufficient to reduce this correlation, and a broadband cylinder

motion virtually eliminated any motion-velocity correlation. From these observations, and 3
the reduction in the drag coefficient mentioned above, the authors concluded that lock-in

was a relatively fragile process, that could be interrupted by frequency components not at i
the lock-in frequency.

Alexander. A limited number of forced-oscillation experiments were conducted by C. M.

Alexander [1] at the Scripps Institution of Oceanography, and are reviewed here principally

because the author attempted to combine in-line as well as transverse excitation of the test

cylinder. Alexander's motivation was very similar to our own, i.e. the characterization of I
the vortex forces on, and the motions of, an oceanographic cable of large length to diameter

ratio. An ingenious test apparatus was designed that could impress a "figure-8" motion 3
on a cylinder suspended in a towing tank. Several tests at different towing velocities were

conducted, but unfortunately, the oscillation frequencies were selected such that only a 3
single nondimensional frequency of 0.18 was tested. In addition, a severe drawback was

that oscillation amplitude was not separately controllable, but rather depended on the 3
oscillation frequency. Alexander reported a constant value of drag coefficient Co P 1.8, but

his results must be regarded as inconclusive due to the difficulties noted above. However, 3
the descriptions of his apparatus could provide a convenient starting point for any researcher

attempting to combine forced in-line and transverse oscillations. 3
Staubli. One of the more recent investigations along the "classical- lines of Bishop and I
Hassan, Mercier, and Sarpkaya, was conducted in the early 1980s by Thomas Staubli of the

Swiss Federal Institute of Technology, and reported in his thesis [75] and a related paper 3
t741. Staubli's work was essentially similar to Sarpkaya's efforts mentioned above, although

his Reynolds number was somewhat higher (Re ,• 60,000). The lift and drag coefficients 3
on an oscillating cylinder were evaluated experimentally, and then used to predict the

response of an elastically mounted cylinder. Generally good agreement was achieved with I
the experimental data of Feng [16], including the observed hysteresis effects.

Staubli's work is important on two counts. Firstly, his experimental apparatus and 3
methods were well conceived, especially his use of sensitive quartz piezoelectric force trans-

ducers to measure the induced forces. Secondly, his treatment of the lift. forces emphasizes 3
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their magnitude and phase angle (with respect to cylinder motion). rather than the "in-

ertial" and "drag" components of Sarpkaya. Figure 1-4 shows the author's :3-dimerisional

curves of lift coefficient magnitude CLO and phase (b as functions of nondimensional oscilla-

tion frequency So and amplitude ratio '. It is important to note that the two approaches of
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Figure 1-4: Lift coefficient magnitude CLo and phase ¢ as functions of nondionensional
oscillation frequency So and amplitude ratio •; from Staubli (1983)

Staubli and Sarpkaya with regard to the lift forces are essentially similar, and can easily be

derived from each other. However, an emphasis on force magnitude and phase angle makes

: it easier to relate the changes in the lift force to the wake dynamics and vortex shedding

patterns, thus contributing to an understanding of why these changes occurt. A great deal

of our own approach in this thesis is based on Staubli's contribution.
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Moe and Wu. We have seen in the above paragraphs that Sarpkaya [65, 61] and Stal bli

[75, 74] have each measured the fluid forces via forced-oscillation experiments, and compared I
predictions based on these measurements to data from free-oscillation experiments available

in the literature. Differences between the predicted values and the free-oscillation data I
could in part be due to the fact that the forced- and free- data were collected by different

researchers under different circumstances. An important effort to conduct both forced- I
and free-oscillations tests with the same apparatus has been undertaken at the Norwegian

Institute of Technology, with preliminary results reported by G. Moe and Z. J. Wu in [49]. 1
The authors used an apparatus wherein a circular cylinder was suspended on springs so

as to allow elastic vibration in both transverse and in-line directions; the cylinder could I
also be clamped in place and/or forced to vibrate transversely. Thus four distinct types of

experiments could be conducted, with the cylinder being I
1. free to vibrate both transversely and in-line 3
2. clamped in-line but free to vibrate transversely

3. clamped in-line and forced to vibrate transversely

4. free to vibrate in-line and forced to vibrate transversely. I

Local lift and drag forces were measured with two ring-type force transducers, and results 5
are presented for the different types of oscillation.

A very important result from this paper is the authors' explanation for the observation 3
that free-oscillation tests conducted in the past have predicted much wider locK-in ranges

than have forced-oscillation experiments. Moe and Wu report that during their free tests. I
the in-water natural frequency of the oscillating cylinder varied by as much as 50% through

the lock-in range, presumably due to strong variation of the added mass component. Re- I
duced velocities calculated on the basis of a single natural frequency are thus in error, and

falsely indicate wide lock-in regions. If reduced velocities were calculated on the basis of I

an "instantaneous natural frequency", the authors show that the resulting lock-in range is

much narrower and closely resembles forced-oscillation data. It is interesting to note that 3
this variation of natural frequency has also been observed by Vandiver in his analysis of

full-scale experimental data 1881. 3
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1.4.2 Other references

Slit the preceding pages we have surveyed several of the important contributions in the area

of forced-oscillation force measurement experiments on circular cylinders. This, however, is

I Ubut a single method used to study the problem of vortex-induced vibrations. Eyperiments

have been conducted to study several other aspects of the cylinder/wake problem, such as

pressure distributions, the effects of end conditions, shear flows, turbulence, surface rough-

ness, Reynolds number, aspect ratio, proximity to other bodies, etc. Empirical models have

I been constructed (with varying degrees of success), and various inviscid schemes formulated

in attempts to simulate the flow. In addition, recent theoretical advances in the area cf

wake stability have contributed to our understanding. For further information on any of

these topics the reader is urged to refer to such comprehensive reviews as Blevins [7], King

[371, Sarpkaya [661, Bearman [4], Griffin [23, 24], or theoretical contributions such as those

of Triantafvllou et al. [80, 81] or Karniadakis and Triantafvllou [35].

In addition to measurements of such properties as fluid-induced force and pressure.

experiments designed to visualize the flow in the cylinder wake have also been very important

to our understanding. The nature of the oscillating lift and drag forces. and the manner in

which they vary with cylinder oscillation, can be related to the patterns of vortex shedding

that develop in the wake. It has been found that the classical Kirm~n vortex street (with

a staggered array of single vortices) is but one of a variety of "modes" that the wake

can sustain under different conditions. Before closing this chapter, we shall briefly review

the work of two sets of researchers in this area of cylinder vortex patterns. Additional

information may be found in the recent and very comprehensive review of Coutanceau and

Defaye [11].

Williamson and Roshko. A particularly novel set of flow visualization results was re-

ported by C.H.K. Williamson and A. Roshko in their paper "Vortex Formation in the Wake

of an Oscillating Cylinder" [95]. The authors used aluminum particles on the surface of

water in a towing tank to visualize the wake behind a vertically oriented cylinder. A wide

range of oscillation frequencies and amplitudes (up to five times the diameter) were tested.

in the Reynolds number range 300 < Re < 1000. The authors' principal hypothesis is that

the acceleration of the cylinder causes the formation of four regions of vorticity per cycle.
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instead of the Two thal wore previ (sjy supposed 1( oc1ur. 11)ewidiiC of tT) 1v I -Ii • f

amplitude and frequency, these four regions of vorticity conibine to form diflerent vortex 5
patterns in the near wake. which are classified variously as 2S, 2P. 21'-1 2). etc.. where S

denotes a single vortex and P a pair of vortices. Figure 1-5 shows some of these vortical 3
[,I / |.
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Figure 1-5: Map of vortex synchronization patterns near the fundamental lock-in region:

from Wilhlamson and Roshko (1988)

patterns and the regions of oscillation wherein they occur. As the schematic diagrams show,

the 2S mode corresponds to the classical K.rmin wake with two vortices per cycle of oscil- 5
lation. The 2P mode corresponds to a pattern with two pairs of vortices per cycle, arranged

in a staggered fashion on each side of the wake centerline. The P+S mode is an asymmetric

pattern with one pair and one single vortex per cycle. for low wavelengths (high frequen-

cies), coalescence of the near wake vortices can occur to form large scale vortices which may I
themselves be organized in either a 2S or P+S mode. Note that the X-axis on this figure is

in terms of the "normalized wavelength" A/d (= UTId). which is more commonlY known 3
as the reduced velocity Vtp.

As mentioned previously, the classification of various wake vortex patterns assumes 3
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importance when used to explain the variation of the hvd rodynanii" forces ,ating on the

cylinder. Williamson and Roshko use their data to advance plausible explanations for the

variations in lift force magnitude and phas, as ineasured by Bishop and lHassan [5, 61. As

we shall see later, some of our own data are compatible with these patterns as well.

Rockwell et al. For several years. Professor Donald Rockwell and his associates at Lehigh

University have conducted flow visualization studies on cylinders of various cross-section

undergoing various types of oscillation; we shall mention but two of the several publications

that have resulted from this work.

Ongoren and Rockwell [53] report on experiments conceptually similar to the work of

Williamson and Roshko, designed to visualize the "flow structure" behind an oscillating

cylinder. They used a single amplitude ratio of 0.13, but tested circular, triangular, as well

as square cylinder croso-sections. At this small amplitude no evidence of 2P or P.4-S patterns

were found, although the authors report a sharp change in the timing of vortex formation as-

the cylinder frequency traversed the natural shedding frequency. An interesting point was

that this change in timing, or jump in phase, was detected for the circular and triangular

sections but not for the square section, thus indicating the importance of afl-rbodv shape

in determining the wake pattern.

More recently, Nakano anrd Rockwell [51] have performed visualization an d 'v(ike velocity

studies on the wakes of cylinders undergoing amplitude- and frequency-modulatd sinusoidal

oscillations. Various combinations of carrier frequency f, and modulation frequincy fm, were

tested, and the authors report on the different vortex patterns detected. In many ways it

would appear that this work is the flow visualization counterpart to our own experiments

reported herein, although the context and motivation are considerablv differe•,. Further

comparisons between our force measurements and the visualization and velocity data of

Nakano and Rockwell will be made in Chapter 5.

1.5 A preview of the chapters that follow

This thesis has been organized into seven chaptrs. Th,, introductory rnateria and literature,

survey presented thus far comprise the first chapter. The coni,'Its of each of the following

chapters are briefly suminarized below.
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Chapter Two contains extensive descriptions of the experimental apparatus and ssvtens,.

as well as the data processing techniques and important formulations used in tht succeeding

material.

Chapter Three presents the results of our stationary and sinusoidal oscillation tests. The

use of "contour maps" to depict the variation of force coefficients with oscillation amplitude U
and frequency is introduced. Novel results on the behavior of the lift force phase angle

and oscillating drag force are discussed. The concept of the lift force "excitation region" is 3
compared to the quite different lift force "lock-in region".

Chapter Four surveys some of the important considerations in the application of our 5
data. These include a comprehensive error analysis, a simple VIV prediction scheme. and

the results of some tests on typical "real-world" cross-sections that are often idealized as 3
circular cylinders.

Chapter Five presents our beating oscillation data. The measured results of the lift and 5
drag force coefficients are illustrated and then compared to the sinusoidal results. Methods

of extrapolating these sinusoidal results to the beating case are discussed. The re:-,uOnse of 1
the wake to beating excitation is investigated via time-domain analyses of our data.

Chapter Six investigates a novel concept: the alteration of the mean wake velocity profile 5
via the control of the major vortical features. Results of experiments are presented wherein

an oscillating foil is placed in the wake of circular and D-section cylinders. One application 5
of this research is the reduction of the mean in-line wake velocity.

Finally, Chapter Seven presents the principal conclusions of this research. The major 3
benefits and shortcomings are highlighted. Avenues for future work are suggested. I

I
3
I
!
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Chapter 2

I Experimental and Data

I Processing Methods

* 2.1 Preliminary remarks

In this chapter we shall set forth the experimental and data reduction methods by which

we obtained our results. In particular, we shall provide an extensive description of our

physical apparatus and the various proving tests and calibrations undertaken. This is done

with two motives: firstly, to establish the reliability and accuracy of our data, and secondly.

5 because much of the difficulty in interpreting the data available in the literature stems from

an inadequate knowledge of the conditions under which they were acquired.I
2.2 The experimental system

I 2.2.1 General description

I Our experiments were conducted at the newly refurbished Testing Tank facility of the

Department of Ocean Engineering at the Massachusetts Institute of Technology. The tank3 consists of a 30 m long rectangular channel, equipped with an overhead towing carriage. Our

test model was a polished aluminum cylinder, 2.54 cm in diameter and 60 cm in length.5 installed in a streamlined yoke. which was in turn suspended from the towing carriage.

The yoke was oscillated vertically, transverse to the towing direction, using a lead-screw

I assembly driven by a microprocessor-controlled servomotor. The lift and drag forces acting

* I11
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on the cylinder were measured simultaneously. and recorded in diitaLu form by a 1.-class

computer. The vertical motion of the yoke was measured and recorded as well. Figure 2- 1
1 is a diagram of the experimental apparatus used. Detailed descriptions of the various

experimental components and procedures are contained in the subsections that follow.

vertical drive
motor

LTlead screw
Sassembly

(position measurement)

direction side supports
of (yoke)

force transducer motion f (

(inside side support) moin y (t)

-end plates

est cylinder

Figure 2-1: The experimental apparatus used in the Testing Tank.

In terms of experimental "strategy", most of the results reported in this thesis pertain to

tests conducted at a towing velocity of 0.4 m/s, corresponding to a Reynolds number (based 5
on cylinder diameter) of approximately 10,000. This towing velocity was selected to give

the best compromise between the conflicting requirements of force measurement (larger

velocities leading to larger and more easily measured forces) and experimental accuracy

(smaller velocities leading to longer experimental run times in the limited tank length).

Each experimental run lasted for 75 seconds, during which time the force transducers were

switched on and data was acquired. A 10 second initial zero period was followed by a 5 I
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I
second allowance for carriage motion transients, a 50 second cylinder oscillation time. and a3 10 second final zero period. Figure 2-2 illustrates the drag force trace for a typical sinusoidal

oscillation (in this case, with amplitude Yo/d = 0.50 and frequency Jo = 0.203), and shows3 the various times comprising the test. A total of about 3,000 runs were conducted.

4 .... ,: .........i* '*",,*

3 ............ ....... ... ... ...

Z 2 . ........ ........

.. .. .. .. ......... • .

oscillation (run)

0 .. .. .....7: .... .... ...... ..I.

initial final-1 ""z e r o ..... . ........ ............ . . . . ........ .... .. : . . . . ....... ....... .......... . ..Z e ro

0 10 20 30 40 50 60 70 80

tine in seconds

Figure 2-2: A typical experimental run (drag force trace).

I 2.2.2 Testing tank and carriage

The Ocean Engineering Testing Tank at MIT is the latest incarnation of the venerable

Ship Model Towing Tank, first commissioned in 1950. The basic tank remains the same,

consisting of a rectangular water channel of dimensions 30 m long x 2.6 m across. The

depth of the water in the tank is variable up to a maximum of about 1.8 m. but for these

experiments the depth was maintained at 1.3 m. In recent years, the towing carriage and

drive systems have seen a complete refit. The present carriage consists of a 1.8 m long3 aluminum box-beam structure rolling via Polyurethane skateboard wheels on a cylindrical

stainless steel overhead rail. An outrigger arm from the box-beam structure rides on a

secondary rail along the wall of the tank, and serves to stabilize the carriage. The carriage
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drive system consists of an endless steel tape that loops over two tlywheels at each end of

the tank, and is connected to the rolling box beam. A pulley and weight system maintains

tension in the steel tape. An AC induction motor located at one end of the tank provides

the motive force, and is in turn controlled by a closed-loop microprocessor based device. All

carriage functions are controlled and monitored from the main laboratory office overlooking

the tank; setting the carriage speed involves merely entering the desired value (in knots)

on a numeric keypad. In addition, the microprocessor controller can be interfaced to a

PC-class computer, and thereby all carriage functions can be controlled via user-written 3
software. The drive carriage system is capable of speeds between 0.2 and 8.00 knots. In the

range of interest to us (I knot and less), the calibrated speed error was less than 0.2%, and

there were minimal vibrations. I
2.2.3 Test models, yoke, and oscillating system

The test cylinder used in the majority of these experiments was a polished aluminum tube I
of 2.54 cm diameter, 60 cm length, and 0.24 kg mass. The cylinder was plugged at both ends

to keep out the water, and was suspended from the yoke structure by means of stainless

steel pins embedded in the end plugs. The yoke structure consisted of two streamlined U
aluminum sections welded together via a box-beam at their upper ends, to form an inverted

"U" shape. Rectangular end-plates extending five diameters downstream were designed II
according to Stansby's specifications [721, and mounted to the lower ends of the yoke arms.

One of these arms contained the force transducer used to measure the loads acting on the II
model, while the opposite arm contained a "dummy" spacing block similar in size to the

force transducer. The cylinder specimen to be tested could be assembled in the yoke by

momentarily spreading apart the yoke arms, so allowing the model to "click" into place. A

very small annular clearance of less than 1 mm was maintained between the cylinder and m

the end-plates.

The apparatus described above was specifically designed with the objective that several

different cylinder models could be tested with the minimum of retooling effort. Chapter 4

describes the results of tests conducted on models of a "haired-fairing" cable, a six-strand

wire rope, a chain, and an oil production riser. All of these models had identical lengths

and end fittings, and similar diameters and masses. The haired-fairing cable model was I
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Model Construction Diameter (cm)I Mass (kg)

Cylinder Aluminum 2.54 0.24

D-Section Wood/Epoxy 5.08 0.37
Wire Rope Carbon-fiber 2.70 0.32

Chain .. Muinjnaim a9. 0.23
Riser Aluminum 2.54 0.37

Haired-fairing Aluminum/Kevlar 3.05 0.56

Table 2.1: Details of the various models tested in the oscillating apparatus.

constructed with an actual sample of the haired-fairing cover wrapped around an aluminum

tube. The wire rope model consisted of carbon-fiber reinforced plastic, and was made from

a mold of an actual specimen of steel wire rope. The chain model was constructed from

lightweight aluminum chain welded at the links to provide a single, stiff structure. The riser

model consisted of the original 2.54 cm aluminum tube, with two smaller 0.635 cm tubes

arranged in a diametrically opposed fashion so as to represent "kill" and "choke" lines.

Table 2.1 summarizes the pertinent details of the models built for the oscillating apparatus.

Vertical oscillations of the yoke structure were obtained with the use of a LINTECH lead-

screw positioning table, of total stroke length 17.8 cm. The base of this device was mounted

vertically on the test tank carriage, with the yoke in turn bolted to the movable plate. The

lead-screw was driven in a reciprocating manner by a SEIBERCO 113430 Sensorimotor.,

which was selected after a careful survey of the available motor products. A program was

developed to calculate the desired motor characteristic (torque versus speed curve) for the

maximum desired oscillation amplitude and frequency, considering such factors as inertial

loads, fluid drag, gravity, etc. An unanticipated outcome from these calculations was that

the limiting factor in motor capability was the rotor inertia of the motor, with the result that

larger motors were not necessarily more suitable for our application. The Sensorimotor was

selected so as to combine the benefits of step motors (high torque in a small package) with

those of DC servo motors (high speeds and acceleration, and inherent closed-loop control).

Figure 2-3 shows the calculated torque versus speed curves for the design condition (3.05

cm amplitude, 5.6 liz frequency) as well as the manufacturer's motor characteristic for the

SEIBERCO H3430.
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Figure 2-3: Design torque versus speed factors and the manufacturer's curve for theI
SEIB3ERCO H3430 Sensorimotor.

Control of the SEIBERCO motor was straightforward since its microprocessor based I
servo controller was custom-built by the manufacturer so as to track an analog input signal,

with a given signal voltage corresponding to a particular absolute position of the motor

shaft. Thus oscillations of any shape could be achieved simply by supplying the desired

(appropriately scaled) waveform to the motor controller. In our implementation, the desired

position waveform was calculated in real time by an NEC Powermate 286 PC-class computer

(located in the laboratory office) from an initial user-specified set of parameters, generated

with the help of an onboard 12-bit D/A converter, and communicated to the motor via the I
tank's data cable. The "master" program used to generate the waveform was developed by

this author, and in addition to motion control, provided the main timing sequence for all I
experimental operations such as carriage motion switching and data-acquisition triggering.

I
I
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2.2.4 Force and motion sensors

The lift and drag forces acting on the model were measured using a highly accurate and me-

chanically stiff piezoelectric force transducer. borrowing this concept from tile experimental

work of Staubli 174, 75]. The specific sensor we used was a KISTLER Model 9117 3-axes

force .raný;Juce,, co,.•tructed from quzrtz pi'zcelectric material that builds up an ,apltric

charge in response to an externally applied force. The sensor was connected via specially

developed low capacitance cables to a charge amplifier, which converted the electrical charge

to a conveniently measurable analog voltage. The Model 9117 is designed to measure force

along 3 axes; for our experiments we utilized two of these to measure the lift and drag forces.

The principal advantage of such a transducer is that unlike strain-gage-based devices, there

is no physical displacement (strain) in response to the applied forces. Hence the transducer

can be used in a relatively rigid assembly to measure a relatively small force, and natural

frequencies of the test apparatus can be kept well above the range of interest.

Note: Test cyWrWer i removed
by a rhght sPreadlng of the side
extrmsions untl kt is cear of the
1/4 pin. Frameisassembied1/8" narrow at cynder.

Si trearrfied Alum.L spacer

Delrin ShotKulder bushing

._ /Test cyfindr

Preloadringgbolt

Ring nut
-- 1/4- Dia, pin

Ouartz sensor
1/16" thick x 6' Dia. Mum end plate

Figure 2-4: The force sensor assembly and model attachment.
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Piezoelectric force transducers are expensive, delicate devices, and great care was re-

quired in the utilization of the KISTLER 9117. Electrical insulation was of paramount I
importance, and hence we carefully waterproofed the entire length of the sensor leads with

a combination of silicone RTV compound and shrink-wrap tubing. Prior to installation in

tile yoke, Gle wLeiptufed , w- ipcatý tcstcs• ý submerfIon in 1 m of water for

periods up to eight hours; no deterioration in performance was detected. The 9117 was i
installed in one of the yoke arms, rigidly bolted in place. Figure 2-4 is a diagram of the

force transducer assembly, and shows details of the model attachment as well.

Following the assembly of the KISTLER 9117 in the yoke and the installation of the

model, extensive static calibrations were carried out in both drag (X) and lift /Y) diiC.tions

by hanging known weights from the center of the model. The remarkable linearity of the

sensor is demonstrated by the typical calibration curve shown in Figure 2-5. In addition to

static force calibration, the spatial linearity of the assembly and the dynamic characteristics i
were also determined. Known weights were attached at various points along the length of

the cylinder, and the measured force compared with the calculated reaction force assuming

linear simply-supported beam behavior. The deviation from this ideal behavior was found to

be less than 1.5% over the range of loads expected. Dynamic oscillation tests were conducted

in air at typical frequencies and amplitudes of interest, and the frequency response of the

force sensor / charge amplifier system was verified to be unity in this range.

Force calibrations as outlined above were carried out prior to the experimental runs.

While the experiments were in progress, the behavior of the system was monitored by 3
conducting stationary drag tests at periodic intervals. The results of these "wet calibrations"

indicated that there was no calibration drift with time. Further details are provided in 3
Chapters 3 and 4, in the sections on stationary results.

In addition to the lift and drag forces, a third data channel was utilized to record the in-

stantaneous displacement of the cylinder yoke. A SCHAEVITZ Linear Variable Differential

Transformer (LVDT) Model HR 3000, with a linear range of ± 7.62cm was used to measure

the displacement. The response of the LVDT was calibrated both on the laboratory bench.

against a finely graduated scale, as well as after installation, using the vertical lead-screw 3
actuator to move known distances. In order to test the dynamic phase characteristics of

the LVDT, a contact switch was rigged so as to provide a momentary pulse when the yoke I
was at the top-dead-center while oscillating at a given amplitude. By comparing a train
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I Figure 2-5: A typical static force calibration curve.

m of these pulses with the output of the LVDT, it was verified that the device provided an

I accurate representation of the oscillation over the desired frequency range.

I 2.2.5 Signal conditioning and data acquisition

3 Both thle KISTLER. force transducer arnd the SCHIAEVITZ LVDT were operated with their

respective dedicated signal conditioning devices, the charge amplifiers (KISTLER Model

I 5004) in the case of the force transducer, and a detector/amplifier model ATA 101 in the

case of the LVDT. These amplifiers were located on the test tank carriage, so as to be as

3 close as possible to the sensors. The high level analog voltages output from the amplifiers

were sent back to the laboratory control room, through the test tank data cable connecting3 the control room to the carriage. From the data cable termination in the control room, the

S~signals were passed through a set of precision matched lowpass analog filters so as to prevent3 aliasing. The filters used were built from FREQUENCY DEVICES ,4-pole butterworth

lowpass modules with a cutoff frequency of 100 Hz, and specifically rigid tolerances on

I phase- and amplitude- matching.
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Following the analog filtering stage, the signals were led to an lL1 Vectra ES/12 PC-

class computer equipped with a COMPUTER BOARDS type CIO-AD16 analog-to-digital

accessory plug-in board. A COMPUTER BOARDS type CIO-SSH16 simultaneous sample

and hold front end accessory package was used with the plug-in board so as to avoid anv'

contaminating channel-to-channel phase shifts. A commercially available software package,

STREAMER, was used to perform the A/D conversions and "stream" the data directly to 3
the hard disk of the ES/12. Each data run lasted for 75 seconds, during which time each

channel was sampled at 500 Hz. As mentioned in section 2.2.3, the triggering for each run n

was controlled by the "master" program running on a separate computer.

In addition to the computer-based data acquisition system, an HP 54501A digital storage m

oscilloscope was used during the experimental setup and actual runs to monitor the signals

at various locations in order to ensure proper operation of the different components.

2.2.6 Miscellaneous system effects 3
With the yoke assembled to the carriage and the model mounted in the yoke, the natural

frequency (in water) of the overall system was determined. Spectral analysis of the measured i
forces was performed while the carriage, yoke and test specimen were repeatedly excited

with a rubber mallet. This revealed that the principal natural frequency component of the I
structure was at i10 Hz, well out of our region of interest. Other spectral components were

detected as low as 17 Hz, but these were 3 to 4 orders lower in magnitude, and spectral

analysis of actual experimental data showed no effect from these lower structural frequencies.

In order to evaluate the effect of water flowing up and down inside the yoke arm sup-

porting the force transducer, as well as the dynamic effect of the transducer mass, a number I
of runs were conducted in still water with the model removed. These tests revealed that

there was, in fact, a substantial spurious force contribution from these effects. Tests at II
various amplitudes and frequencies indicated that this extraneous force was entirely in the,

inertial lift direction, and could be represented very well as an additional "virtual mass" of

0.188 kg. Thus this value was taken into consideration in the calculation of an additional

inertial force to be subtracted from each lift force trace during post-processing,

Due to the fact that the KISTLER piezoelectric force transducer used in the experi-

mental setup was essentially a dynamic measuring instrument, the mean drag force traces I
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exhibited a small, yet definite, drift. To correct for this etl'kct. careful zero measurements

were taken at both start and finish of every run. These zero inea-su'rments were utilized

during post-processing to evaluate the drift and compensate for it.

2.2.7 Flow considerations

3 End effects

In order to avoid three-dimensional effects stemming from the finite length of the cylinder.,

thin aluminum end-plates of dimension 21 cm square were installed at the ends of the model.

The end-plates were structurally attached to the yoke, with a small annular gap maintained

between the plates and the cylinder, so as to not interfere with the measurement of the

fluid forces. As mentioned in section 2.2.3. the end-plates were asymmetric fore-and-aft.

extending about three diameters upstream and about five diameters downstre-m of the

3 model.

In order to evaluate the efficacy of the end-plates in maintaining two-dimensionality nf

the flow, runs were conducted to measure the stationary (no cylinder oscillation) mean drag

with and without the end-plates. The removal of the end-plates caused a 20% decrease in

the mean drag coefficient, consistent with the conclusion of Stansby [721 that an increase

of the (negative) base pressure occurs when the two-dimensionality of the flow around a

3 circular cylinder is destroyed. With the end-plates installed, the stationary mean drag

coefficient was constant at a value near the classical 1.20.

SI Free-surface effects

3 During these experimental runs, care was taken in the selection of the carriage towing

speeds and yoke oscillation amplitudes to avoid the effects of free-surface interactions. In

3. a series of tests conducted during 1990 in connection with oscillating hydrofoils 185]. force

measurements and visual observations were used to evaluate the regions of significant free-

3 surface wave effects. The towing speed and vertical motions used in the present investigation

were well below the crit;cal ranges found earlier.

3 Bishop and Hlassan [5] have used the criterion that the maximum Froude number

imax 
U[rnax
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be much less than unity, for free-surface effects to be neglected. Here Um,;P,,,- is he maximum

flow (towing) velocity, g the acceleration due to gravity, and hm,, the minimum depth1 of 3f
submergence of the model. In their experiments, F,,. was calculated to be 0.375. which

Bishop and Hassan felt was sufficiently low. In our experiments, the maximum Froude 3
number Fma, was 0.181. so we are indeed justified in neglecting the ,ffect of the free-surface.

Blockage effects

"Blockage" refers to the fact that the force coefficients measured on a cylinder model in I
a finite body of water is different from the values expected in an infinite stream, due to

the presence of the walls of the channel around the model. Empirical blockage corrections I
are applied to the measured forces, and these corrections are a function of the equivalent

blocking ratio d/h, or the ratio of the cylinder diameter to the total depth. In our case, U
this blocking ratio was only of the order of 2%, and so no corrections have been applied.

2.2.8 Overall accuracy of the experimental apparatus

In order to evaluate the error bounds on our data, it would be desirable to estimate the •

accuracy of the experimental apparatus, and hence the accuracy of the raw data. However.

due to the large number of variables involved, such a value is impossible to determine.

Each of the individual components in the experimental system described in the preceding

sections has a nominal error bound which is usually 1-2%, and in no case exceeds 5%. The

manner in which these combine to give an overall system error bound is unknown, and

thus the overall system accuracy cannot be calculated from a knowledge of the individual

component specifications. This situation has not changed much since the days of Bishop

and Hassan [5], when they said:

"It would be extremely difficult, and probably not very sensible, to specify 3
an overall accuracy, since this depended on so many factors. Thus it depended

on the accuracy of hydraulic measurements, of the transducer-amplifier-pen 3
recorder system, of the blockage correction, the evenness of fluid flow. varia-

ticns in velocity along the cylinder, variations in the speed of the driving motor. I
length of oscillograph record used and on several other factors. The difficulty

has been experienced by all the workers already mentioned; it can only be said 1
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that due care was taken in tli design of hle appa-aius. a t iiiM makMI and

3 recording the results."

In fact, we did carry out an error analvsis ba;sed on the statistical proprt i,' i the, data

spread and comparisons with published literature, this analysis is tzi veilitt ( hatper 4. A.

noted in that chapter. the overall precision of our data wa;L of the order of 3--' /.. and the

overall accuracy was of the order of 10-15ý`{.

* 2.3 Formulation and definitions

3 As mentioned earlier, our experiments are essentially an extension to the purre harmonic

tests conducted in the past. As such. the mathematical statements and definitions forrnu-

3 lating the problem are straightforward. The essential equations are developed hore, with

refinemmnts and additional details provided as necessary in later chapters.I
2.3.1 Stationary cylinder

I For a stationary cylinder exposed to a flow, vortices are shed at the Strouhal froquency f,

given by the relation

fU S U (d

3 where U is the velocity of the flow and d is the diametor of the cyliml-r. I, Strou hal

number 5, is essentially a nondimensional frequency approximately ,qual to 0.2 over the3 Reynolds numbers of interest to us. Due to the vortex shedding. the cylinder experiences

an oscillating lift force at the frequency of shedding. an oscillating drag force at twice the

3 frequency of shedding, and a mean drag force. Thus tile lift force is give'n by

L = L.,sin(2:-f.t + .,) (2.21

and the drag force by D = D, + D, sii(2 r(2f,)t + 0,,) (2.3)

3 where L, and 1), are the magnitudes of the os6illating Striouliat lift anId drag forces rvspec

tively, D, is the magnitude of the mean drag force, and o, amd t ' are arbirthrary ph11ase3 angles. Each of thO force componetits can ho riondiniersisoitaIzed iMi the usual mant1r by
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the dynamic pressure head factor 1pldIi 2 (where p is the density of water. anid I i- the

length of the cylinder) to give the associated force coefficient. Thus the lift co(liicint is I

CL, = 
2'• L,

and the mean drag coefficient is
Dm

and the oscillating drag coefficient is 

U

CD. p (2.6)

2.3.2 Sinusoidal cylinder oscillations 3
When a cylinder responds with or is externally subjected to sinusoidal oscillations. the

body motion introduces an additional frequency component in the wake that compc'tes

with the Strouhal frequency. Depending on the amplitude and frequency of the cylinder

oscillations, the wake response may be locked-in, a state wherein the cylinder motion controls

the shedding process and the Strouhal frequency disappears. In general, however, the forces

experienced by the body will have components at both the Strouhal and body oscillation

frequencies. Thus if the body oscillation y(ft at the frequency So is given by

y(t) = YOsin(2 J01) (2.7)

we may model the lift force by

L = Losin(2Jrfot + oo) + L, sin(27rft + 0,) (2.s)

and the drag force by

D = D,, + Dosin(2r(2fO)t + 'o) + D, sin(27r(2f,) - t,) (2.9)

where L0 and Do are the m agnitudes of the oscillating lift and drag forces at frequ,,- I

cies So and 2fo respectively. For oor purposos, we shall ignore tOw St rouh al cormnpncet-

1,, sir(2cr f. -t + 4, and 1), sin(27r(2f, )1 I ,,, )M •iq ations 2., and 2-9. Thor,, ate, two r,, >ori
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by which we may justify this omission; firstlv. we are interested in the response of thle cable

3 that is 'locally locked-in" everywhere, and hence these Strouhal components disappear:

secondly, since there is no body oscillation at the frequency f,, these components do not

3 participate in any power transfer between the body and the fluid. It may be argued that

if the Strouhal lift force L, exists and is of sufficient magnitude, the cable may begin to

respond to both the frequencies f, as well as fo; the counter to this argument is that this

scenario is precisely a case of the beating oscillations that will be treated next.

3 Equations 2.8 and 2.9 thus give us the following force coefficients in addition to the

mean drag coefficient of Equation 2.5:

| Lo
ULo -PldU2 

(2.10)

I and

ad~pDo2 (2.11)

n c o l c C - dU2

In the case of the lift coefficient, the phase angle (PO between the lift force and the body

motion is crucial in determining the precise action of the lift force; whether it acts to excite

or damp the body motion, and the magnitude of the inertial force or "added mass" effect.

3 The component of the lift coefficient in phase with body velocity, given by

CLJo = CL, sin Ot (2.12

determines the exciting or damping effect. Positive values of C_1. denote an exciting effect.

or power transfer from the fluid to the body, while negative values denote a damping effect.

3 or power transfer from the body to the fluid. Likewise. the component of tbe lift coefficient

in phase with body acceleration, given by

CLA, = C(- COS 60 ) (2.13)

U determines the inertial added mass force; with positive values of CL_.Ao denoting negative

addo!d mass and vice( i' rsa. It should be noted that th ,e coefficients tC(l, and (Cj .,

are precisely the negative of the coefficients (C-dh and (Cm, derived by Sarpkaya from a

5 consideration of the Morison's equation for the forces acting on an oscillating cylinder [651]
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Further details on the derivation and use of these coeflicients are given in Chapter 3.

In the case of the oscillating drag, the coefficient CD, at the frequency 2fo is often very I
small, and comparable in magnitude to other frequency components of less obvious origin.

Thus several researchers have found it convenient to express the oscillating drag force in I
term of the RMS value of the fluctuating drag, thus leading to a coefficient CD,,s instead

of CDO. I
In addition, it should be noted that the body oscillation frequency Jo (expressed in

Hz) is conveniently nondimensionalized in a manner analogous to equation 2.1 defining the I
Strouhal frequency. Thus

A Uk (2.14)I
d

where 10 is the nondimensional oscillation frequency. The reciprocal of jo is equivalent to

the reduced velocity VR, commonly used in studies of flow-induced vibrations.

2.3.3 Beating cylinder oscillations I

The simplest case of amplitude-modulated cylinder oscillations is dual-frequency beating.

which can be expressed in two mathematically equivalent ways. The first is a superposition

of two sinusoids at different frequencies f' and f2 (hence the term "dual-frequency beating"): 3
y(t) = Y1 sin(27rfit) + Y2 sin(27rf 2 t) (2.15)

If Y1 = Y2 , the above equation 2.15 can be written as the product of a rapidly varying sinu- 3
soid at the "carrier frequency" f, modulated by a slowly varying sinusoid at the "modulation
frequency" fm as 3

y(t) = 2Y1 sin(2-rfct) cos(27,f,,t) 
(2.16)

The frequency components in the above equations 2.15 and 2.16 are related to each other I
as follows:

f2+ h (2.17)
2

f2 ft (2.1 S3

f= f, - f, (2.19)
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f2 = fA + fr,, (2.20)

The rate of modulation is expressed in terms of the nodulation rutio, which is defined here

as the ratio of unity to "the number of oscillations at the carrier frequency contained in one

beat packet". Thus if the modulation ratio is equal to 1:N, N is given by

1 f
N = -1 (2.21)2 f,

As an aside, it may be noted that the waveforms defined by equations 2.15 or 2.16 are

referred to in electrical engineering parlance as examples of "Suppressed Carrier Amplitude

Modulation", or SC-AM. Details of the creation, manipulation and use of such waveforms

may be found in basic Signals and Systems texts such as the one by Siebert f70].

For a cylinder oscillating with a waveform given by equations 2.15 or 2.16, the challenge

is to define the induced lift and drag forces in terms of force coefficients that are consistent

with experimental observations, and in addition, can be estimated from available sinusoidal

data. As we shall see, meeting these two requirements, especially the second, is often not

possible.

In the case of the lift force acting on a beating cylinder, a straightforward extrapola-

tion of equation 2.8 to the dual-frequency situation gives the following expression for lift

coefficient:

CL = CL, sin(27rfit + o0) + CL2 sin(27rf 2 t + 02) (2.22)

where we have already performed the nondimensionalization with lpldU" and ignored the

Strouhal term in accordance with the discussion in the previous section. The phase angles

( € and 0 2 determine the components of CL, and CL2 in phase with cylinder velocity and

cylinder acceleration, yielding two exciting/damping coefficients CLv, and CL_J 2 , and two

inertial coefficients CL-A, and CLA2, in a manner exactly equivalent to equations 2.12

and 2.13. As we shall see, it turns out that these lift coefficients and phase angles at the

frequencies fj and f 2 are very difficult to estimate from pure sinusoidal data. In order to

simplify the position by reducing the number of variabls involved, we can define "equivalent

lift coeflicients" CLVJ, and CLA, at the carrier frequency f., based on equating the time-

averaged power transfer and inertial force. More details on these coefficients will be given

in the chapter on beating oscillations.
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In the case of the beating drag force coefficient, an extrapolation of vquation 2.9 gives

the following expression for CD:

CD = CD_ + CD, sin(47hf t - Ui) + CD, sin(4Jrf2t + '2) (2.23) 1
where, as before, the nondimensionalization has been carried out and the Strouhal terms

ignored. As it happens, an examination of the experimental data indicates that in addition

to the oscillating drag coefficient components CD, at frequency 2f' and CD, at frequency 3
2f2, there is a strong oscillating component at the modulation frequency f,,. The multi-

plicity of frequency components also indicates that the use of an RMS coefficient CDR,., to

quantify the fluctuating drag may be useful. I
2.4 Data processing U
As mentioned in section 2.2.5, the lift and drag force traces and cylinder motion trace were

sampled at 500 Hz each by an HP Vectra ES/12 computer equipped with an analog-to- 3
digital conversion board. The software used to accomplish this conversion stored the data

in binary form on the hard disk of the ES/12. From here, the next step was to transfer 3
the binary data files to a larger and more capable computer, either the laboratory's HP

Vectra RS/20C 386 or HP Vectra EISA 486. All of the binary data files were backed up

onto magnetic tape for precautionary storage prior to processing.

The first stage in data reduction involved translating the binary data to ASCII numbers: 3
this was accomplished with software accompanying the data acquisition package. The ASCII

files were then passed through a digital time-domain noncausal lowpass filter in order to 3
remove unwanted high frequency noise. This filter consisted of a Finite Impulse Response

sinc function convolved with the input data according to the algorithm used by Triantafyllou

[82]. The FIR parameters were calculated to provide a cutoff frequency of 2.2f, where f,

the "significant frequency" was one of the following: 3
1. The (estimated) Strouhal shedding frequency f, for stationary runs.

2. The externally imposed oscillating frequency fo in the case of sinusoidal osciliations.

3. The higher of the two component frequencies, f 2 , in the case of heating oscillations. I

i i i i i i i i i i3



Time-domain rather than frequency-domain filtering was employed because of the length of

the data traces involved, and the filter resolution d(esired. Following the lowpass filtering.

the data records were resampled at the lower sampling rate of 100 lHz in order lo reduce

storage and processing requirements.

Beyond the above initial data reduction, all further processing was accomplished using

the software package MATLAB. Extensive batch programs and MATLAB functions were

created so as to provide for semiautomatic processing with the minimum of subjective

decision making. Some of the important steps in the data processing are detailed in the

following paragraphs.

Calibration. A function was written to determine automatically whether data files loaded

into MATLAB were pre- or post- calibration, and based on this decision, to calibrate the

records according to the calibration values determined as in section 2.2.4. During this

process, the data were also "de-trended" (to remove any sensor drift), and the mean zero

values subtracted.

Lock-in determination. In order to determine whether or not a given cylinder oscillation

led to lock-in, and to provide a qualitative understanding of the induced forces. power

spectra of the data traces were calculated. In each case, a single 4096 point Fast Fourier

Transform was used, with Hanning-window tapering employed to reduce spectral leakage.

Since this method was not used to determine quantitatively the force coefficients. no further

attempt was made to optimize the spectral estimation technique, nor to estimate the errors

involved. In addition to power spectra, time-domain histogrammic analysis was used in a

few cases to determine the lock-in behavior. Thus the points of upcrossing of the motion

and lift force traces were determined, and histograms were created of the "instantaneous"

frequencies. Further details on these methods are provided in Chapters 3 and 5, in the

sections on histogrammic analysis.

Removal of inertial force. Prior to the calculation of the oscillating lift coefficient

magnitude and phase angle, we subtracted tho (in air) inertial force of the test cylinder

from the lift force time trace. The inertial force trace was calculated by performing a

double-d(ifferentiation of the motion ( LVI)T) signal to obtain the cylinder acceleration, and
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then multiplying this acceleration trace by the cylinder ma.ss in air. .\ center,,, ,iffern(• ,

scheme was used to perform the differentiation. The lack of extraneous noise in t;,,n 3oion
time traces (after the (ligital filtezing step) allowed the double-differentiation to take place

reliably and accurately. I

Oscillating force coefficients. Quantitative determiaations of the oscillating force copf-

ficients and phase angles were made via individual Fourier-coefficient analyses. From b)asic

Fourier series theory. a waveform x(t) can be represented as a series

x(t) = ao + E a, Cos (T)+ 1:b, sin (T(2.2-1)

n=l n=l

where the coefficients ao. a, and b, are given by

ao = T x(t)dt (2.25)

an,= T x(t)cos 2 dt (2.26)

b, = 2 x(t)sin( 5) dt (2.27)

In our case, one example is the lift force for sinusoidal oscillations, which, by expanding the

first term on the RHS of equation 2.8 can be written as:

L = L0 cos(00) sin(27rf 0 t) + Lo sin(C5o)cos(2rff 0 t 1 (2.28)

By constructing reference sine and cosine waveforms with period

T 1 (2.29)

we can readily identify the quantity (Locos(6o)) with the coefficient b, given by equation

2.27, and the quantity (Losin(q5o)) with the coefficient a, given by equation 2.26. Thus if

we calculate a, and bl, we can find Lo and oo from

Lo= • + b (2.30)
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and

oo = arctan (-i) (2.31)

Note that it is not necessary for the reference waveforms to have zero phase relative to the

cylinder motion: if we carry out the above procedure for the motion trace as well as the lift

force trace, we can readily find the actual phase angle 60 as the difference between the phase

angles calculated between the lift force and the reference, and that calculated between the

motion and the reference.

In determining the oscillating force coefficients and phase angles according to the pro-

cedure outlined above, a key factor was the number of cycles of the waveform over which

the integrations given by equations 2.26 and 2.27 were carried out. Ideally, one would have

liked to have performed these evaluations over as many cycles as possible. but in practice

it was found that very small errors in frequency led to unacceptably large errors in the

calculated coefficients. Thus a "time-gating" method was devised whereby the coefficients

were calculated over a smaller number of cxcles and averaged over as many gates as were

available in the trace. A gate length of 20 cycles was found to give good results with both

the harmonic and beating data traces. In passing., it should be noted that this tirne-gating

Fourier series analysis was very similar to that performed by Mercier [47] in the analysis of

his data.

5 Mean drag coefficient. The mean drag coefficient for each record was estimated by

calculating the mean value of the drag force trace. relative to the zero values established at3 the start and finish of each run. As mentioned in section 2.2.6, these zero values were used

to subtract out the drag force drift over the length of the data run, prior to the calculation

3 of the mean drag coefficients. In the calculation of the mean drag value, care was taken to

average the data over an integer number of oscillation cycles (or beat "packets". in the case

* of amplitude-modulated data).

6
I
I
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Chapter 3I

* Stationary and Sinusoidal

I Oscillation Tests
I
3 3.1 The purpose of these tests

One of the principal frustrations besetting the researcher investigating vortex shedding

phenonaena is the sciive dcpendence of measurable quantities on the experimental con-

ditions. Thus the values of lift and drag force coefficients. pressure coefficients, and vortex

shedding frequency all depend on experimental factors such as aspect ratio (11d. where I is

the length of the model and d its diameter), end conditions. blockage ratio (d/H. where H

is the transverse dimension of the test facility), surface finish of the model, and so on. As a

result of this situation, several researchers have spent a great deal of effort on attempts to

quantify the effects of these experimental factors; this is not an undesirable research goal in

itself, but is not one that is directly connected with the basic problem of vortex shedding

and vortex-induced vibrations. In our case, we decided to conduct a thorough investigation

of stationary and sinusoidal oscillations in order to provide a basis for comparison that

could be used to relate the more ambitious beating motion program (conducted with the

same apparatus) to standard sinusoidal results available in the literature. As we proceeded

with our sinusoidal tests, it became clear that we had noticed and interpreted cc-rtain fea-

tures of the vortex-induced forces that had not been reported in the literature thus far.

Hence, we believe that our sinusoidal results include novel findings, in addition to providing

3 experimental "grou nd- truthing" of the amplitude-modulated results.
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3.2 Stationary results

Tests were conducted to measure the lift and drag force coefficients and the natural Strouhlal

shedding frequency on the stationary (non-oscillating) model cylinder towed through the 3
water. In addition to the scientific benefit of this data, the stationary runs proved to be

a valuable way of monitoring the performance of the experimental apparatus and systems.

while the apparatus was in the water. One or two of these "wet calibrations" were conducted

at the start and finish of each day's experimental schedule, and as presented in Chapter 4.

the accumulated results provided a strong boost to our confidence in the overall process.

1011

100 1
10-1 .... ..

10-21 0 -2 . . . . . . . . .i . . .... .... .... .. .. . . . . .. ' . ....... I
1I 0 -4 . ... ... . .. .. .. ... .. ... ...... .. ... ......... . .. .....

S10-5

t 10-6

10-7 I

10-8

10-9 .
0 2 3 4 5 6 7

frequency in Hz I
Figure 3-1: Power spectrum of a typical stationary lift force trace.

Data processing for the stationary runs was relatively straightforward. After initial I
data reduction (consisting of translation of the raw binary data to ASCII, lowpass filtering,

decimation, and calibration), a spectral analysis was performed on each lift force time trace I
in order to determine the natural shedding frequency. The MATLAB routine "spectrum"

was used to perform a 4096-point FFT with Hlanning-window tapering. A power spectrum I
for a typical lif. force trace is shown in Figure 3-1, where the sharp peak in the spectrum

(over 3 orders of magnitude above the background noise) is identified with lthe naturl I

641 3



II

I
shedding frequency. The average nondimensional natural shedding frequncy (Strouhad

3 number) calculated from 122 stationary runs was found to be 0.1932. with a standard

deviation of less than 1%.

3 In addition to the Strouhal number, the magnitudes of the mean and oscillating drag

coefficients and the oscillating lift coefficient were estimated from the time traces. The

mean drag coefficient CDm was calculated as being the (normalized) difference between the

mean value of the drag force during the run period and the mean value during the final

3 zero period. Figure 3-2 shows a histogram of the mean drag coefficient obtained for all the

stationary realizations. This figure can be approximated as a normal distribution, with a

3 mean of 1.1856 and a standard deviation of 0.0315, or under 3%. To compute the oscillating

lift coefficient CL,, the experimentally obtained natural shedding frequency f, was used to

3 generate reference sine and cosine waveforms which were then used to estimate the Fourier

coefficients of the lift force, as outlined in Chapter 2. Figure 3-3 is a histogram of the

3 oscillating lift coefficient magnitude for the stationary runs; this can also be modeled as

a normal distribution (mean 0.3842, standard deviation 0.0873), but with a much larger

3 spread than that for the mean drag coefficient. In addition to CD. and CL., the oscillating

drag coefficient CD, was evaluated in a manner similar to the above, using twice the natural

3 shedding frequency. Table 3.1 summarizes the results for the stationary (smooth circular)

cylinder.

I S CD, CLO CD0

Mean 0.1932 1.1856 0.3849 0.0215

o r 0.0014 0.0315 0.0873 0.0076

5Table 3.1: Summary of results for the stationary circular cylinder: Re = 10.000

The explanation for the relatively large scatter of the oscillating lift and drag force

coefficients, compared to the scatter of the mean drag coefficient, was found to be that

these oscillating forces (integrated over the length of the model) were more sensitive to the

three-dimensionality of the flow than was the mean drag force. It is well established that

the correlation length of vortex shedding (the length over which the shedding process could

be considered to bh two-dimensional) for a stationary circular cylinder is of the order of

3 to 5 cylinder diameters (Blevins [7]). In our case, the aspect ratio of our models was

3 C 5
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Figure 3-2: Histogram of the mean drag coefficient, stationary runs.
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Figure 3-3: Histogram of the oscillating lift coefficient; stationary runs.
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1
shedding frequency .v wore not considered.) The phase alile (f 1h'1 oscillatingz" iifT force with

.Hrespect to the externally imposed oscillating motion was calculated a., the diffpr,,c,, bltween

the phase angle of the lift force (with respect to tile referetice sine wavwlorm ) and the phase

angle of the motion (with respect to the same reference sine waveform A- \s describjed in the

later sections of this chapter (Sections 3.4 - 3.7). certainl of tile sinusoidal 051Cillatioll cases

were reprocessed using additional techniques.

In all of the data processing, several methods were used to minimize the risk of error. A

3 comprehensive analysis of the errors in our data and results is presented in the next chapter.

1 3.3.1 Results for amplitude ratio 0.30

In order to illustrate the principal effects of sinusoidal oscillations, results are presented first

5 for the moderate amplitude ratio of 0.30,

The variations of the rmean drag coefficient CD), and the oscillating drag coefficient CD03 against nondimensional oscillation frequency Jo for Yo/d = 0.30 are presented in Figure 3-6.

At low oscillation frequencies, the mean drag coefficient is near the stationary cylinder value
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of 1.20. A sharp amplification peak occurs at a nondiniensional frequncy of 0.17. >ightlv

below the natural Strouhal frequency of 0.20. There is evidence of a second am plification

peak near a frequency of 0.35. ' he oscillating drag coefficient ('j,, is less than i('7 of the

mean drag coefficient at the lowest oscillation frequencies. but rises rapidly at the higher 3
end.

The behavior of the lift force for the same amplitude I'O/d = 0.30 is illustra-ed inI

Figures 3-7 and 3-8. Figure 3-7 shows the dependence of the magnitude of the oscillating

lift coefficient on oscillation frequency. At low frequencies, this lift coefficient mnagnitude is

very small, but rises sharply and peaks (at a frequency of 0.18) due to resonance between

the imposed oscillations and the natural Strouhal shedding process. As seen in the provious

drag coefficient illustration, this resonance occurs at a nondirnensional frequency sIigrhtly

below the stationary Strouhal number. At higher frequencies the lift coefficient maganitude

begins a steady rise, with the increase in this range being attributed to the effect of added

mass. The behavior of the phase angle of the oscillating lift force is illustrated in Figure 3-8.

where as defined in Chapter 2, this phase angle 00 is the angle by which the oscillating lift

force leads the imposed oscillating motion. The importance of the lift force phase angle I
is that it determines the sign of the power tywnsfer between the cylinder and tt1h fluid.

Values of oo in the range 0 < 00 < +-r correspond to power transfer from the fluid to the 3
cylinder. i.e. the cylinder could get excited into motion by the fluid flow. For an oscillation

amplitude Yo/d = 0.30. the phase angle is between 0 and -, for the frequency ranges 3
0.125 < fo < 0.182 and 0.223 < Jo < 0.271. These ranges define the primary and secondary

excitation (resonant) regions respectively. 3
While the previous paragraph illustrated that the phase angle 6o could be used 'o find

the sign of the power transfer between the fluid and the cylinder, the maitiuda of this 3
power transter depends on both the phase angle as well as tei lift coefficient matinitude.

Specifically, the power transfer between the cylinder and the fluifd is determined by lhe inner 3
product of tile lift, force vector with the cylinder velocit y veclor. If the cylinder mteion is

given by y( t) = Yossin(2r fOf) and the total lift force by L(t) L lisin(2'rfot 4- :,,). thin the I
power 'ransfer P(t) will he given by:

I'(t) = L sin(2 -,fof + of)). -- {d tsimi2 wf t)}

{ ISiiirflO,•) ((1('2trf,,) - (, ,,,(Of,) sim(20rfet} 2rf,,4 w,,(2r ft I
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2irf0o•)L0r sin(Qo) cos (22r ot) + 2,7rfoYoL(u cos( o0) sini(2itfut ) cos('2frot) (3.1l

I
The average value of the power transfer (over one or more cycles of oscillation) is given by

(P) = 2rfoloLo jnTo {sin(0o)COS22(2rf0t) + cos(oo)sin(2,-o t)cos(2n fot)} dt

= 2r foYoLo { sin(6o)}

= 7rfoYo {• pdU2CLvo} (3.2) I

where To is the period of oscillation corresponding to the frequency fo, and n is an integer

number of cycles. The nondimensional coefficient CL-VY which determines the magnitude 3
of the power transfer. i: t"-e lift coefficient in phase with cylinder oscillation velocity. i.e.

Lo sin (oo)!

CLV 0 -- nt - CL, sin(oo) (3.3)jp~dU2
The variation of CL_v, against nondimensional frequency jo for the amplitude ratio

Yo/d = 0.30 is shown in Figure 3-9. Positive values of this coefficient denote positive 3
power transfer to the cylinder, i.e. the cylinder extracts energy from the fluid. This power

transfer serves to amplify the motion of the cylinder. As we shall see shortly, increased

cylinder motion amplitude causes a reduction in the value of CLU 0 , leading to eventual

limit-cycle behavior of the cylinder oscillations. From Figure .3-9, the primary positive range 3
of CLV, (0.125 < fo < 0.182) delineates the primary resonant region of the cylinder-wake

interaction. 3
An analysis similar to Equations 3.1 - 3.3 can be performed to determine the addcd

mass effect of the vortex-induced lift force. As we discussed in Chapter 1. early researchers 3
(Bishop and Hassan [6]. Protos et al. (601) assumed a constant added mass coefficient (from

potential flow theory) to account for the inertial component of the lift force. This. however. 3
is an incorrect assumption, since the added mass coefficient varies with cylinder oscillation

(Sarpkaya [65]). The correct value of the added mass (as a function of oscillation frequency 3
and amplitude) mntist be determined by calculating the component of the nwaesured lift

coefficient in phase with cylinder acceleration. I

21
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Figure 3-9: Lift coefficient in phase with velocity; sinusoidal oscillations: 1o/d = 0.30.

Using our previous formulations, the cylinder acceleration is given by

d22
W-y(t) - Yo (27rfo) sin(21rfot) (3.4)

Hence, the component of the lift coefficient in phase with acceleration, which then deter-

mines the magnitude of the added mass effect, is given by

Lo (-cos(Co))CL_4o, = l ld, = _-CL,, COS(6o) (3.5)

Ip~dU'2

The magnitude of the added mass, MAo, is given by the total lift force in phase with

acceleration divided by the magnitude of the acceleration, i.e.

MAO =PdU 2 CL- (3.6)
YOu (2rfo)2

The conventional method of representing the added mass of a body is via an added mass
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coefficient CMo , written as a fraction of the displaced ma,"a of the surroundintt fluid, i.e.

,( 37) i)

pV

where V is the volume of the body in consideration (and hence the volume of the displaced I
fluid). Some algebraic manipulations of Equations 3.6 and 3.7 finally yield the following con- I
venient representation of the added mass coefficient (in terms of CL_A0 , and nondimiensional

frequency and amplitude ratio): I
1 CLA 0C~~o (old) fo

Plots of the lift coefficient in phase with acceleration CLAo,. and added mass coefficient

CMo, for the amplitude ratio 0.30. are shown in Figures 3-10 and 3- i1. These coefficients I
illustrate that there is a sharp variation of the inertial fluid force in the vicinity of the

resonant point. From Figure 3-11, it is seen that the classical value of unity for the cylin-

der added mass coefficient is true only for frequencies of oscillation that are high relative

to the shedding frequency, i.e. at low values of reduced velocity VR (= 1/Jo). At low I
nondimensional frequencies (high reduced velocities), the effective fluid inertial force must

be represented by a negative added mass coefficient. Thus it is clear that C.11, cannot be I
assumed to have a constant value.

3.3.2 Results for other amplitude ratios

In the previous section, a detailed set of results were presented for the constant amplitude

ratio of Yo/d = 0.30, with the intention of illustrating typical sinusoidal results in some

depth. In total, five additional values of amplitude ratio were tested. Yo/d being 0.15. 0.50.

0.75, 1.00. and 1.20. As can be readily imagined, the graphical depiction of the results

for all of these amplitude ratios is very confusing when plotted together in graphs such

as Figures 3-6 - 3-11. Hence we opted to show the variation of the combined sinusoidal

results by using contour "maps", presented in Figures 3-12 through 3-16. In these plots.

the X axis corresponds to the nondimiensional oscillation friquen Mv d 1h1- Y axis to

nondimensional amplitude ratio YO/d, with the contour lines depicting lines of equal force

coefficient magnitude. The numbers marked on the contour lines represent I he values of

7 1
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Figure 3-12: Contours of the mean drag coefficient:, sinusoidal osc:illations.
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Figure 3-13: Colitours of thle oscillating drag coetficient; sinusoidal osc:illations.
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Figure 3- 14: Con1tours of the lift .)efficiellt ill phase with velocity; sinusolidal oscillations.I
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Figure 3-1.5: Contours of the lift coefficient in phase withi acce~leration- sini.isoidal oscillallions.
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Figu re 3-161: Contours of tile added mass coefficient: siniusoidal oscillations.
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I Figure 3-17: Vector diagram of the cylinder oscillation, velocity and acceieration: and
vortex-induced lift force.

vectors are called phasors.) If we choose (arbitrarily) the motion vercor to i(, aiong the

3 positive X axis. then the oscillation velocity vector (being the derivativo of the Motion) lies

along the positive Y axis, and the oscillation acceleration vector (being Ihe derivative of

the velocity) lies along the negative X axis. The lift force is some arbitrarv v4,,or with a

phase angle measured in an anticlockv-ise direction from the positive X axis.3 From Figure 3-17. the importance of the pahase angle is clear. If the pht;ts' ,-mIh lies iII

the rarige 0 < o0 < + . the component of the lift force in phase with cylinder velocitv i>

positive. Thu s tihere is positive power transfer from th, fleid 0Io the cv! inmlii. ,,!Ii wOrt ,x

sheddinrt acts to e(rit( the cylinder vibrations. On the (hier ha (. if he phoa.' 1,tie i ,es in

3 the range- - r - o, < -2-r (or aiternat ivelv -r, < o i). the componnt of *, lifi force

in pha'so with cylinder vlocilY is ne Itaiv,,: Ihere is i•,eam ye pmwr trari>Iir tk,ý :h: leulid

I :



to Ohe cvlin~de. and vortex-Shieddingr acts to) darn1 ) I lic cvltilder vibrat ioii'.

For each of' our siiuisoioal tests. the( pilase anlgle Of) W;1", Cacukllted ;1. lie, dillhren 1C(I

betwe-en thle phase anglle of the lift force I wilbi respect to ou r refe~rence ýi~iidtw ; "old Ihll

phiase angle of the cylinder [motion (with respect to the same reforence 5! hiiui ). li 3r -

l.ý and .3-19 illustrate tIIe phase angle (lata for -smlall" and lr&oscillationl alnt put udve

(with the classification based on the observed behiavior).I

For the amplitude ratios of 0.1-5. 0.30 anid 0.50. ( the "small" am phitiides) flthe variatiton

of phase angle is shown in Figure 3-18. Whi~le thiere are- differences inl the behiavioir for the

different amplitudes. 1 here, is strong si milanrit as well. At low fre(uueniciceý of ciltin
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Figure 3- 18: Varia tioin of Ph ase angle withi niondimensional freq mmcv for -. in all** a inp1it udie
ratios 0. 15, 0.30 a1iil 0.50.

thle phnase anglef inl all il ree Cases is about -. AS the [requic 1,l cvic nrea.-ýfd flithe ph a~se

1)(TOITIOS more negative. mntil it reac~hes -- ,. aiid "wralps-irolnd" 1.) -+ . i7e fromi laqqiruq

onle cycle, of silklanion, liec lift force, ve~ctor canII he considered ;I-,, N rIfI414 I Ie w uc-~ I

cyclev. With) flirt rher i nucrease IIn the freouetencl neiar Owli nat ural St roili ha 4ledd i nVaiiic
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Figure 3-19: Variation of phase angle with nondimensional frequency for -large" amnplitude

ratios 0.75, 1.00 and 1.20.

frequency then defines the excitation or resonant region. At high oscillation frequencies the

phase stabilizes at a little less than 0 radians.

3 For the "large" amplitude ratios of 0.75. 1.00. and 1.20. the variation of pha.', an;Ile

is shown in Figure 3-19. While the results for the individual amplitudes in this fimure are

3 comparable with each other, the behavior for these large amplitudes is quite ditfrvrtt from

the small amplitude behavior of the previous paragraph. At low oscillation frequencies.

the phase angle is once again about -1-L radians, and at high oscillation fr'quencies too.

the phase angle is once again a little less than 0. However. the rapid transition of phase

(near the Strouhal frequency) is in the opposite direction. Instead of reaching -7 and then

wrapping aronund. the pha-se moves towards zero by becoming less negativo with increasing

3 frequency.

The difference betweon the "'rnall'" and the "large'" ainpl itt4, td hhavior of phia.e a,,le3 is easily visualized in Figure 3-20. Like Figure 3- 17. 3'igire 3-20 ik a vv(-tor diagrain of

the lift forc,! relativo 1o 1lie cylinder oscillation, volrcity,. antId ;cclrAtion v',clors -Al low

I ,' 5.
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Figure 3-20: Vector diagram showing "'small- and -large" amplitude phase transition be-
L~v~or.

frequencies. the lift force vector is in the third quadrant. and at high frerencies. "he lift I
force vector is in the fourth quadrant. In either case, the lift force has a damping effect.

For "small" amplitudes, the lift vector transits from the initial (low frequency) state to

the final (high frequency) state in a clockwise fashion, i.e. it transits through the exciting

region. For "large" amplitudes, the lift vector transits from the initial to Ohe final state in

an antidockwuise fashion, i.e. it remains everywhere in the damping region. (This is not

strictly true for all amplitudes, since for the amplitude ratio of 0.75. a small oxcursion ofi

the phase angle into the exciting region is seen at the end of the rapid transition range: see

Fligiro 3 19.) 1
Needless to say, we found these results for the phase angle very interesti nm, in part due

to their noveltv. Prior to our data, the most compilpet results for the lift force phase angle I



I

were due to Staubli [7-1. 75]. illustrated in the three-dinionsional view of Vipure 1- 1. That3 figure shows that the variation of phase is in oil(n direction for all amuplitutides of osctillation.

in direct contradiction to Figures 3-18 and 3-19. Staubli does say, however, that

"The measured area is displayed with full lines ... additional points Iimiter-

rupted lines) have been estimated in order to complete the picture over thle

whole area." [741

3 Close examination of Figure 1-4 reveals that Staubli's full lines (actual data) are only for

relatively low oscillation amplitudes, and the observed behavior has been extrapolated to

higher amplitudes. Our data suggests that this extrapolation may have been incorrect.

In order to check that our results were in fact correct and not due to sonic obscure3 artifact of the Fourier-component data processing method. we devised a tinie-domain scheme

to calculate the lift force phase angle. This algorithm found the time points of upcrossing3 of the lift force time trace and calculated the time difference, and hence the phalse angle.

relative to the nearest upcrossing of the corresponding LVDT motion time trace. All of the3 sinusoidal test data were processed with this time-domain scheme. which verified that the

phase angles from the harmonic analysis were indeed correct. For example. Figures 3-21 and3 3-22 show the phase angle variation calculated by both the frequency-domain a,- well as the

time-domain algorithms for the amplitude ratios Yo/d = 0.50 and YJ)/d = 0.75 respoctively.3 Good agreement is seen between the two methods. and such agreement ws observei for all

of the amplitude ratios tested. In addition, it may be noted that later sinusoidal oscillation3 experiments with very fine frequency resolution (conducted in our laboratory as part of an

oil-industry sponsored Joint Industry Project [84]) also revealed very similar phase angle

3 variations.

The physical significance of the dlifferent phiase angle trends for the "large'" versus the

"small" oscillation amplitudes (the "'phase flipping" behavior) is that it provides an ex-

planation for the self-limiting nature of vortex-induced vibrations. It is well known that3 the exciting lift coefficient (the lift coefficient in plhase with velocity. (-jv, ) decreases as

amplitude increase.,, and finally becomes ntratiyve at a liniiting aniplittide of adbout one

I diameter (Griffin and( Ramberg [26]. Sa.rpkaya [651. anhd our results of liuire, 3 1-I). This

observed (cessation of the exciting force has been eXlilained as being dute to a rea kdown o'3 the Kgirnlin vortex streeti ai large am ptit des (Blevins [71). .eanwvihle. Ili h, hw !,vtnolds

I N
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number flow visualization results of Ongoren and Rockwell [53J. ait well as Willianisott and

Roshko [95], indicate that the sharp variatiop in phase angle near the Stroulhal frequency

is brought about. by a change in Ihe phasing of the vortex shedding proces. tel ative to the

motion of the cylinder. It is reasonable to suppose, therefore, that our observed 'phase-

flipping" behavior is due to a similar change in the phasing of the vortex Ihedding process

due to a change in oscillation amplitude. Thus the vanishing of the excitirng lift coefficient

(leading to limit-cycle behavior of the oscillations) might well be due to a simple change in

phasing of the vortices rather than a complete breakdown of the vortex street.

An argument based on the observed limit-cycle behavior of the exciting lift coefficient

can also be used to dem'mstrate :idi Staubli's extrapolation of the phase angle variation

(Figure 1-4) must be incorrect. If in fact the phase angle traverses through the exciting

region (0 < 60 < +-r) for all amplitudes of oscillation. then there must exist a range of

frequencies, however small, within which the exciting lift coefficient remains positive, and

the cylinder oscillation amplitude grows indefinitely. Since this is not the case with VIV,

one must conclude that the phase angle variation depicted by Staubli is in error.

3.5 The behavior of the oscillating drag force

3.5.1 Large amplification at high oscillation frequencies

In Figure 3-13 we saw that the oscillating drag coefficient CD,) was found to ittairi very

large values at high oscillation frequencies and amplitudes. While this amplification is

not significant in the primary resonant region and is unlikely to play a role in most VIV

situations, it is important to be able to predict the oscillating drag should the need arise

(as it would, for example, if high frequency structural oscillations are caused bs

other mechanism). A particularlv interesting way of illustrating the (', amplification

phenomenon is by plotting together both the mean and oscillating drag coefficients for a

typical large amplitude of motion, say Yo/d = 0.75. Figure 3-23 shows both I), and C('n

for this amplitude. From the figure. thesharp increase of the oscillating drag (for frequencies

above the resonant range) is clearly seen. For frequencies above about 0.21. the amplitude

of the oscillating drag force czcrcds the mean drag level, at the highest frequvm~cies tested

the oscillating drag was found to be more than twice the mean drav.

This huge increase of the oscillating drag force is no less dramalic when visu alized in
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Figure 3-23: Mean and oscillating drag coefficients for amplitude ratio 0.75.

the time domain. Figures 3-24 and 3-25 show time segments of two different drag force data

traces, purposely chosen to include a few seconds of run time and a few seconds of the final

zero period. Figure 3-24 shows the drag force measured for sinusoidal oscillations at an

2rnplitude ratio of 0.75 and a nondimensional frequency of 0.132; i.e. at a frequencvy bclow

the resonant frequency. The oscillating (Irag force appears as relalively snall fluctluations

about the mean drag value; one could use the figure to directly estiinate D,, - 2.0 N and

Do ; 0.3 N. As an example of a case abor' the resonant frequency. figure :8-2.5 illustrates

the drag force at the same amplitude ratio and a nondimensional frequency of 0.2.v.5. The

tremendous increase of the oscillating drag dominates the figure. The moan drag, could be

estimated as D, P 3.0 N. a slight increase over the previous value. Iliu the oscillating dran

is now Do ; 4.0 N (compared to 0.3 N previously), an approximately 13-fold increase

References can be found in the literature to unexpectedly large observed values of the

oscillating drag coefficient, but very little quantitative data exists. [-',Tr exampi,. Sarpkaya

[651 (who does not provide any numbers for the oscillating d rag coefficient ) reports Ihat:

"[For constant amplituide r;atio and flow vwlocitly the frequency of the oscilla-

""t)
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tions was gradually increased ... and the resulting int-line force was continuously

recorded ... the in-line force increases rapidly but with very littl, oscillations

superimposed on it. As soon as the frequency of oscillations nears the Strouhial

frequency, the amplitude as well as the frequency of the force oscillations in-

creases.

The most complete data for CD0 prior to our results were from Mercier [47-. lie reports

that:

"The magnitudes of [oscillating drag] forces become unanticipatedly large,

especially for large amplitudes of oscillation and values of reduced velocity. [1/1].

below that corresponding to the critical frequency."

Mercier presents a plot of CDo versus VR for several amplitude ratios of oscillation. but

the highest value of CD0 he measured was about 2.50, well below the maximum values

that we recorded. On the basis of the above references, it is reasonable to view our results

(particularly Figure 3-13) as an important set of quantitative data 'erifying and extending

previous reports on the amplification of the oscillating drag coefficient.

While this amplification behavior of the oscillating drag is an interesting result. the

origin of the phenomenon is less obvious. From dimensional consideratiois. it is reasonable

to expect the oscillating drag (and lift) forces to be proportional to the square of the

tangential velocity of the separating boundary layer. which in turn scales approxiinat.ly -

the frequency of oscillations (for constant amplitude). Thus it. is reasonable to expect large

force magnitudes at large oscillation frequencies, although the precise cause (in terms of

the vortex shedding process) is as yet undetermined. Instantaneous measurements of the

velocity field in the near wake are required to resolve this issue. It is also important to note

that in-line (drag direction.) oscillations of the test cylinder might well serve to chanae the

measured drag forces appreciably. Such in-line oscillations are not currently feasible wiih

our apparatus, but they have been done elsewhere in different contexts (Moe and Wu [1-49].

Alexander [i]). It is suggested that an investigation into the causes of very large oscillating

drag forces would prove .o be a wortlhwhile future research ondeavor.
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3.5.2 Higher harmonics of the oscillating drag

3 During manual data processing of sonie of tle exporinentia rius (carried oii a parl of

the initial system verification process). it was noticed that a few of the drag forc., irace•s

(particularly those corresponding to large amplitude motions) contained approciable higher

harmonic components. For example. Figure :-26 shows time segments of the motion LV!)3T)

3 and the drag force traces for the sinusoidal oscillation case of amplitude ratio YI'/d = 0.75,

and frequency fo 0.157 (in the resonant region). tlarmonic components higher than

0.04

I 0~.02 & 10

!I

S-0.02

"30.2 32.5 33 33.5 34 34.5 35 35,5

I5

f A A fI
Iv I Vv

32 32.5 33 33.5 34 34.5 35 35.5
time in seconds

Figure 3-26: Time segments of the motion (LVDT) and the drag force: )'O/d M0.75: =
0.157.

3 the expected second-harmonic are clearly seen in the drag force. Mercier [,171 had briefly

mentioned a similar observation but had not investigated the matter further. \We decided

3 to pursue the phenomenon and computed the first four harmonics of the oscillating drag

force for each of the three highest amplitudes of oscillation.

3 To carry out this analysis, the sinusoidal oscillation runs for amplitude ratios 0.75. 1.00

and 1.20 were reprocessed from the raw data. A modified filter pro'raMI was used so as to

3 howpass filter the data at, a cutoff frequency of 4.1 multiplied 1w tho oscillation frequnycv

1 9:1



i.e. to) preseHrve iilforritat'e) iii) l ) lo all inlcllidii lie 1 '1W ll rI hI 1 a1 t l li .'n o Ihie iol;t d rag

coefficient (nondiniersional drag force) was now miodelod as

- ) + s (2'f,, +
(?Do0 _ , sin(.27hfoJ)I/+ '-')_) + ( 'n0,;_ sin(271( 2fb)t +t cu_)

CD, - sin( 2 -, 3fo)t + U'i_:;) + CD, o, sin(2r(-tfo )t + o_ (3.9)

where CD,, is the mean drag coefficient (as before). CIo_, are the oscillatina, drag co-

efficient magnitudes at the first four harmonics of the oscillation frequency (ft. 2 fe. 3fij

and 4f 0 ) respectively, and ti'o_ .-.. are arbitrary phase angles. Note that by our previous

definition of the oscillating drag coefficient (Equation 2.9), we have

CD0  CDo_2  
(3.10)

The coefficients Cp 0 1- 4 were computed using a modified version of the previously de-

scribed MATLAB routine. The variation of CD0 , C'D0_3, and CD. with oscillation fri-

quency for amplitude ratios 0.75 and 1.20 are plotted in Figures 3-27 and 3-2S. (The first

harmonic CD,_ was found to be of small magnitude everywhere and so has been omitted.)

From Figures 3-27 and 3-28, the following features can be clearly seen:

"* The oscillating drag is dominated by the conventional second-harmonic component.

CDo_2-

"* The third-harmonic component CD0_. is amplified at high oscilation frequencies.

• The fourth-harmonic cornponent CDo_, is amplified in a reftion near the resonant

frequency range., but is reduced at high frequencies.

The importance of these featur's of the behavior of the oscillating drag force is that they

can be directly related to the vortical patterns in the wake. Recall that the conventional

vortex street is formed with two vortices shed per cycle of cylinder oscillation. Each vortex

causes one cycle of variation of Ohe in-lint velocitv in the near wake of Ihe cylindher, which

then translates directiy to one cycle of variation of the in-line drag force. Thus. iwi ror ices,

(or one vortex pair) per cycle of cvi lidor oscillation correspnd"', it) an o1sc llatin i draýa force

"It twic• the frvqjuencv of oscillatlio . c1 o n e (onvvrse argt'.•ln 'il. ;I dtri-i ff)i'' 'I1,111d to be

9 1
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Figure 3-27: Higher harmonic oscillating drag coefficients, Yo/d = 0.7.5.
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oscillating at the Nth-lharmonic of the oscillation frequency implies that N ý irtices are

formed in the wake per cycle of motion. 3
Based on the prece(ding explanation, Figures 3-27 and 3-28 are in agreement with the

findings of Williamson and Roshko [95] regarding vortex synchronization patterns in a 3
circular cylinder wake. As we saw in Chapter I (Figure 1-5). the authors observed dilferent

vortex patterns in the wake depending on the cylinder oscillation amplitude and frequency.

These patterns were classified variously as 2S, 2P, P+S, etc., with S denoting a single vortex

and P denoting a vortex pair. At amplitudes of oscillation of about one cylinder diameter 3
and low frequencies (high wavelength), Williamson and Roshko were unable to detect any

definite vortex pattern, consistent with the low values of oscillating drag t hat we measured in 3
that range. For frequencies near the natural Strouhal frequency, they observed the 21P mode

of vortex formation (four vortices per cycle), consistent with the amplification of the fourth- 3
harmonic that we detected. For high oscillation frequencies, they observed an asymmetric

P+S mode (three vortices per cycle), corresponding to our measured amplification of the 3
third-harmonic of the oscillating drag.

An important fact in afl of this is that while Wlillrzmson and Roshko conducted their

experiments at Reynolds numbers between 300 and 1000, our Reynolds number was constant

at about 10,000. While the previous authors did not study the possiblh, effect of Reynolds 5
number on their visualized vortex formation patterns, we believe from our results that those

patterns are indeed representative of the wake modes to be found over a large Reynolds 3
number range. I
3.6 Lock-in behavior and excitation

A phenomenon that researchers have extensively studied in the past is that of "lock-in",

sometimes called "wake-capture". When the externally imposed cylinder oscillation fre-

quency (or structural natural frequency, in the case of free oscillations) comes within a

certain range of the Strouhal shedding frequency, there is aii apparent breakdown of the 3
Strouhal relation (Equation 1.1). The shedding process then collapses onto the cylinder

vibration frequency, and this is commonly accompanied by increased vortex strength, in- 3
creased correlation length, and a reduction of random irregularities in the vortex-induced

forces. Information on experimentally determined lock-in ranges is widely available, for 3
96 3



example see Bishop and Hassan [6] or Stansby [73]. Recent numerical nvestigations into

the phenomenon (Karniadakis and Triantafyllou [351) have revealed that the transition

from the nonlock-in state to the lock-in state or vic:c v rsa takes place in a continuous but

rapid manner, and that a chaotic response of the vortex wake can develop at the lock-in

boundaries.

For purposes of comparison and in order to establish the lock-in boundaries for our

cylinder model, we conducted a spectral analysis of each lift force data trace. A MATLAB

routine was written that performed the computations and sent the results in a graphical form

directly to a printer: these hardcopy results were then scarned visually to determine under

what conditions the natural shedding frequency disappeared in favor of the imposed cylinder

frequency. For example, Figure 3-29 illustrates the calculated motion (LVDT) and lift force

spectra for four tests at amplitude ratio Yo/d = 0.50 and different oscillation frequencies.

In this figure, the subplot columns are organized into motion spectra (left column) and lift

force spectra (right column), while the rows correspond to different frequencies. The top row

contains the spectra for the test conducted at a nondimensional frequency fo = 0.107; the lift

force clearly contains components at both the oscillation frequency as well as the Strouhal

shedding frequency: this is an example of nonlock-in. The two intermediate rows represent

data collected at nondimensional frequencies of 0.168 and 0.203; the lift force spectra contain

components only at the respective oscillation frequencies., and hence these plots illustrate

lock-in. The fact that lock-in occurs over a finite range of frequencicý is dcmonstratcd b;

the two different realizations. Finally, the last row represents data collected at a frequency

of 0.254. In this case, the natural Strouhal shedding component has reappeared in the lift

force spectrum, showing that the oscillation frequency is now above the lock-in range: here

again is an example of nonlock-in.

By repeating the data analysis steps associated with Figure 3-29 for a large number

of frequency and amplitude combinations, we constructed a picture of the overall lock-in

region, shown in Figure 3-30. For each of the amplitud,- ratios considered, the asterisk

marks the observed lock-in boundary, i.e. the transition from lock-in to nonlock-in or vice

versa. A dashed line has been drawn through the asterisks as a visual aid. For frequency

and amplitude combinations within the lock-in boundaries (the region marked "lock-in"),

vortex shedding occurs only at the oscillation frequency. Outside the lock-in boundaries

(the regions marked "nonlock-in"), both the oscillation trequency and the natural Strouhal

I97



Figure 3-29: Motion and lift spýctra for b/d .0and four oscillationlfeufC's
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Figure 3-30: Experimentally determined lock-in region for sinusoidal oscillations.

frequency can be detected in the wake. It should be noted that the determination of the

lock-in boundaries became increasingly difficult at higher oscillation amplitudes.

Our experimentally determined lock-in region of Figure 3-30 is not dissimilar from widely

available published results [6, 7, 47, 50. 73], but it is very important to distinguish this lock-in

region from the excitation region. The latter refers to the range of frequency and ampli-

I tude combinations over which self-excited oscillations are possible, and is obtained directly

from the zero contour of Figure 3-14. The excitation regions (primary and secondary) are

I illustrated in Figure 3-31, where the notations "'power +" and ..power -" are used to denote

the regions of positive power transfer (excitation) and negative power transfer (damping)

i respectively. Also marked on Figure 3-31 are the asterisks denoting the lock-in boundaries

seen earlier. It is readily apparent that lock-in, which is determined by frequency considera-

i tions, is not at all the same thing as excitation, which is determined by phase considerations.

Depending, on the valies of parameters such as the structural natural frequency. ambient

i flcw velocity, rt- it i riAltireiy possible for a cylinder to exhibit vortex-induced vibrations

without the wake being synchronized to the structural oscillations. Such behavior has been
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Figure 3-31: Excitation and lock-in regions for sinusoidal oscillations.

suggested by the laboratory work of Moeller [50], and Van Atta and Gharib [86], and has

recently been confirmed by experiments on lightly damped cylinders conducted by Vandiver

et aL. [87].

While the lock-in phenomenon is a fascinating feature of the vortex shedding problem.

knowledge or estimates of the lock-in boundaries do not provide any information on the

exciting or damping effect of the lift force. The excitation phenomenon is far more useful

from the point of making engineering response predictions. We believe that the two concepts

of lock-in and excitation have been confused in the literature.

3.7 Time-domain analysis of the wake response I

In Section 3.4 we mentioned that a time-domain upcrossing analysis was used to verify the 3
behavior of the lift force phase angle. This time-domain method was extensively modifivd.

refined and used iP the analysis of beating records, to be presented in Chapter 5. In the I
process of verifying the analysis method, we found it useful to process our sinusoidal runs

in the same manner. We discovered that the time-domain method was often better than i

100 3



I

the frequency-domain method (presehted in Lie previous section, as in Figurt, 3-29', for tie

j detection and classification of the response hllodes of the cylinder wake.

From their numerical study of a vortex wake subjected to external forcing. Karniadakis

and Triantafvllou [351 concluded that three typical wake response modes could be detected.

These were:

1. Periodic nonlock-rn, which is identical to the unforced natural shedding process. The

external forcing (cylinder oscillations) is ýuch that the wake does not "feel- this forc-

j ing.

2. Quasiperiodic nonlock-in, which is due to interaction between the natural shedding

frequency and the forcing frequency. For certain values of the forcing, this could lead

"j to a chaotic state of the response.

3. Periodic lock-in, which is the classical "'wake-capture" mode. The external forcing

controls the vortex shedding process and the natural shedding frequency disappears.

Karniadakis and Triantafyllou termed the boundary between the first two modes the "re-

ceptivity boundary" (i.e. outside this boundary the wake is not receptive to tne external

forcing) and the boundary between the second and third modes the "lock-in boundary". As

we saw in the earlier section, an analysis of spectra was sufficient to distinguish between

nonlock-in and lock-in, but not sensitive enough to further discriminate between types of

nonlock-in, i.e. to capture the receptivity boundary.

Figures 3-32, 3-33, and 3-34 illustrate some results of our time-domain processing: we

have purposely chosen two of the same cases of Figure 3-29. Each of these figures consists

of several subplots. The first two subplots ifrom the top) are time traces of the motion

amplitude ratio and normalized lift coefficient magnitude respectively. The time points

corresponding to each upcrossing of each of the time traces were determined, and then

used to calculate the "instantaneous" periods (and hence "instantaneous frequencies") of

lift and motion and the "instantaneous" phase angle between the lift and the motion. (The

term "instantaneous" is used within quotes to denote the values of frequency or phase angle

calculated from one upcrossing to the next. i.e. over one cycle of oscillation.) The third

subplot shows the variation of the "instantaneous" phase angle with time. Finally, the

fourth and fifth subplots (at the bottom) depict histograms of the calculated motion and
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Figure 3-32: Time-domain processing applied to Io/d 0.50, Jfo 0.107.
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Figure 3-33: Time-domain processing applied to Y0 /d =0.50 fo 0.152.
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Figure 3-34: Time-domain processing applied to Yl1 d 0.50. [ 0.203
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lift frr'quencies. plotted using 30 bilus btws,,n fo :2 0.05 and fi) = 0.3!.3 Figure 3-32 shows tile case of sinusoidal ,ieciltations at an anplitude ratio 10/id = 0_50

and a nond inensional oscillation frequency f 0.107. Froni he t ith I race;, of t i•' 11ltion3 and the lift coefficient, it is clear ihat the wake vortex shedding frequency 1lift) 1s riot the

same as the external forcing frequency (motion). Some amplitude-rnodlilation of the lift3force trace is seen, but this is not dissimilar to the purely stationary (unftorced) case. as

in Figure 3-5. The plot of phase angle against time shows the variation charact,hristic of3 a phase calculation between waveforms of diffeent (constant) frequencies. The frequency

histograms reveal that while the motion ha- a constant frequency near 0.10. the !ift force3 has -instantaneous" frequencies in a band around the natural Strouhial shedding value of

0.20. One concludes that the wake does P -t feel the effect of the cylinder oscillations. and3 hence this is an example of periodic nonlock-in.

At the same amplitude ratio and a slightly higher oscillation frequency. Figurer 3-33

illustrdtes the results for 0 = 0.152. In this case, the lift force trace is clearly irregular in

nature, and the phase angle is widely scattered. One is tempted to use the word -'chaotic",3 although a convincing demonstration of chaos in a mathematical sense requires far longer

time traces than are shown here. The frequency histograms show that while the motion is

a single-frequency oscillation aL fo z 0.15. hie lift force fluctuates randomly between tae

cylinder oscillation frequency and the natural Strouhal frequency. Because of competition3 between these two components. the resulting wake response is irregular: this is an xamnple

of quasiperiodic nonlock-ir

The third situation of periodic lock-in is depicted by Figure 3-34. There is a dramatic

change in the nature of the lift force trace, which now appcý.rs as almost a pure sinusoidal

Swaveform at the same frequency as that of the motion. The phase angle assumes a constanlt

value with little variation, and the histograms show negligible scatter of the '"inst ,0l aneous'"

frequencies of either the motion or the lift.

A large number of cases at different oscillation amplitudes and frequencies were ana-3 vzed as above by the time-domain method. The lower receptivity and lock-in boundaries

(at frequencies below the Strouhal numb-,r) were easy to identify. The iupper boundaries

(at frequencies above the Strounhal number) were less clearly distinguishable, ,,wi ng to the

increasing "saturation effect" of the inertia: component of the lift force. Figure 3-35 is

Sa wake response state diagram,I and illustrates the regions of aniplitu do, aiid fr,,q ieucy
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Figure 3-35: Wake response state diagrams from time-domain proce-ssing. 3
corresponding to periodic nonlock-in, quasiperiodic nonlock-in, and periodic lock-in. The

lock-in boundaries (shown by asterisks connected by solid lines) were almost identical to

those found earlier (Figure 3-30). Only the lower receptivity boundary could be determined

(shown by circles connected by a dashed line). Although Karniadakis and Triantafyllou [351

do not provide any quantitative information on the locations of the lock-in and receptivity

boundaries, Figure 3-35 confirms their findings in a qualitative sense. The wake response

states depicted here are typical of the situation below an oscillation amplitude of about

one diameter; above this range, more complex periodic states are likely (Williamson and

Roshko [95], and Section 3.5.2).

It should be noted that transition from one wake state to another acro s the lock-in

or receptivity boundaries can occur by a change in the oscillation amplitude at constant

frequency. Early in our experimental schedule, we conducted a few lesis of sinusoidal

cylinder motion with slow linear variation of the amplitude; thb object be ing to accuinulate

a large quantity of data in a short time. These tests were later abandoned due to difficulties

with data processing; however some of the runs illustrate thO different • ,k, modes clearly. 3
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3 Figure 3-36: Motion and lift for increasing linear amplitude. f= 0.132.

Figure 3-36 is a typical example., showing the normalized motion and lift force time traces

3 for oscillations at frequency 0.132 and amplitude increasing from approximately 0.20 to

0.70 in a duration of about 25 seconds. Initially, up to I time of about 33 seconds. the

3n lift responds at a frequency higher than the imposed oscillation frequency: this is periodic

nonlock-in. From about. 33 seconds until about .47 seconds, the lift trace ha~s a very i rr,,gular

3 form corresponding to quasiperiodic nonlock-in. Finally, from a time of about 47 seconds

until the end of the record, the lift shows signs of stabilizing at the oscillation frequency:

3 this range corresponds to the beginning of periodic lock-in. We do note that the transition

ampfitudes (the amplitudes at times 33 and 47 seconds) correspond only roughly with the

U state diagram of Figure 3-35: we attribute this to the possible "'memory" effect of the

amplitude variation, as well as the difficulty of accurately classifying the wake response at

I high oscillation amplitudes.

I
I
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Chapter 4

I Error Analysis and Application to

I VIV Predictions

1 4.1 Preliminary remarks

In this chapter we shall survey some of the important considerations regarding the appli-

Ucability of our experimental data to both scientific and engineering situations. The most

important consideration is, of course, an error analysis, which studies the extent to which

I our data truly represents the variable or phenomenon being measured. In addition, while

it is not the purpose of this thesis to develop a comprehensive VIV prediction algorithm.

I- we shall present some general principles involved in the application of our data to such pre-

dictive calculations. We shall also study cross-sectional effects. i.e. we shall investigate the

U vortex-induced forces on a variety of "real-world" structural cross-sections that are often

represented as smooth circular cylinders, but in fact may not be so.

1 4.2 Error analysis

4.2.1 Introduction

IIn experimental studies such a-s ours, the risk of system errors is always present. In general.

there are two types of errors that could arise from flaws or limitations of the experimental

"method: systematic errors, which affect the overall accuracy and cause a consistent deviation3 of the measured data from the true values: and random crrors, which affect the overall
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pr)ci)sion and set a limit to the repeatability of the experimental realizations. SystematIc

errors are not easy to detect, since one requires an a priori knowledge of the true value of 3
the variable in consideration. Random errors can be identified by a statistical analyvsis of

a number of measurements, but in general are impossible to separate from the underlying I
properties of the random distribution of the physical quantity being measured. In this

section we shall use a variety of techniques in an attempt to quantify both the systernatic 3
and random errors introduced by our experimental system.

In Chapter 2, we saw that great care was taken in the selection and operation of each 3
component of the experimental apparatus: but an overall system accuracy was impossible

to obtain from a knowledge of the individual component specifications. During the data 3
processing stage. several methods were used to minimize the introduction of additional

error. For example: 3
"* The majority of the processing took place via the use of large batch programs set up

to execute automatically, with a minimum of subjective decision making. I
"* In the process of initial setup and verification of the experimental apparatus. the I

accuracy of the lead-screw and motor system in reproducing desired oscillation am-

plitudes and frequencies was investigated. It was found that the oscillation frequency I
was extremely accurate to 0.01%, but the oscillation amplitude was accurate only to

about 5%. As a result. the actual realized oscillation amplitude was calculated for 3
each data set, and based on the ratio of this value to the desired amplitude, a small

linear correction was applied to the calculated force coefficient magnitudes. The cal-

culations were flagged for manual investigation if the amplitude error exceeded 5%.

and were abandoned entirely (and the run repeated) if the error exceeded 10W. 3
"* In order to avoid the accumulation of errors due to frequency, a "'time-gating'" pro-

cedure was developed so that the oscillating force coefficients were calculated over

successive gates of length 20 cycles each, and the values obtained for the different

gates averaged.

"* In the case of the mean drag force, the final zero period was chosen to provide the I
baseline value since it was found that large force transients on carriage start-tip inter-

fered with the accurate recording of the initial zero period. Care was taken to ensure 3
110 3
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that the mean value of the drag force during the run period was calculated wvrr all

3i integer number of oscillation cycles.

As we shall see, the combined effect of all of the above error control procedures was that

3 we can rightfully claim a high degree of confidence in our data.

1 4.2.2 Wet calibrations and long-term stability

In Chapter 3, we presented results for several runs conducted with the model cylinder held

stationary, in what we termed "wet calibrations". Figures 3-2 and 3-3 of that chapter

showed histograms of the mean drag coefficient and oscillating lift coefficient respectively

for the stationary runs: we saw that these data formed well-defined normal distributions

with standard deviations of the order on 3V of the mean in the case of the mean drag, and

3 23% of the mean in the case of the oscillating lift.

Figures 4-1 and 4-2 illustrate the same data plotted against sequential event indices

along the X axis. The realizations of the mean drag coefficient (Figure 4-1) appear randomly

distributed about a value between 1.10 and 1.20, while the realizations of the lift coefficient

(Figure 4-2) are scattered primarily between 0.30 and 0.50. The important point to be

made from these figures is the excellent long-term stability of our experimental system. The

122 realizations shown here spanned a period of about 16 months, during which time the

apparatus was dismantled, stored, reassembled, and re-calibrated on at least four occasions.

There is no evidence that these operations caused any significant drifts and/or "DC-offsets"

in the measured data. Least-squares straight line curve-fits through the data points revealed

long-term variations of only 0.34% in the mean drag data and 1.24% in the lift data,

providing indirect evidence of the lack of systematic errors in our method.

4.2.3 Statistical properties of the sinusoidal data

We investigated the statistical distribution properties of our sinusoidal data in two ways:

3 we calculated the data spread within each experimental run, and we conducted a number of

runs at constant oscillation amplitude and frequency in order to find the data spread across

3 several runs of the same type.

Earlier in this chapter, as well as in Chapter 2, we saw that all of our experimental data

3 traces were divided into "gates" of 20 oscillation cycles each, and the various results calcu-
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Figure 4-1: Realizations of the mean drag coefficient; stationary runs. 3
lated for each gate and finally averaged. For the purposes of error analysis, our MATLAB

processing routine was modified so as to record the maximum and minimum values of the

force coefficients calculated for the different gates within each run. These maximum and

minimum values were then taken to represcni, the data spread of the corresponding coeffi-

cient for that particular run. For example, Figures 4-3 and 4-4 show the results for the lift

coefficient magnitude (amplitude ratio 0.15) and the lift coefficient phase angle (amplitude

ratio 0.50) respectively, together with the corresponding maximum and minimum values 3
plotted in the form of error bars. It is clear from these figures that the data spread across

the different gates for each of the values remained consistently small, except in regions of 3
rapid variation of coefficient magnitude or phase angle. Similar results were obtained for

the various lift and drag force coefficients for these and other amplitude ratios. It should be 3
noted that while this spread analysis is not rigorous in a statistical sense (since the number

of gates within a particular run was not constant but varied from 2 at the lowest oscillation 3
frequencies to 13 at the highest oscillation frequencies), it does provide some idea of the

variability of the data. 3
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In addition to the spread of the data within each run, we selected (arbitrarily) one partic-

3 ular oscillation amplitude and frequency combination for further analysis. Thus 36 complete

sinusoidal oscillation tests were conducted at a nondimensional frequency fo = 0.203 and

_ an amplitude ratio Yo/d = 0.75. Values of the mean and oscillating drag coefficients and

the lift coefficient magnitude and phase angle were calculated and histograms constructed

from the results. Figure 4-5 shows the histogram of the mean drag coefficient results: it can

be approximated by a normal distribution, with a mean of 1.961 and a standard deviation

I- of the order of 1.6% of the mean. Figure 4-6 illustrates the histogram of the lift coefficient

magnitude for the same runs: this appears as a skewed normal distribution with a mean

I of 3.095 and a standard deviation of the order of 1.8% of the mean. While the asymmetry

of Figure 4-6 could point to an insufficient number of realizations (or could possibly reflect

-- the underlying characteristics of the lift force distribution), the important fact is that the

total data spread across the 36 individual realizations is remarkably small. Results for the

I oscillating drag coefficient and lift force phase angle data were similar to Figures 4-5 and

1 4-6: the net conclusion was that the precision of our experimental process was excellent.
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Figure 4-3: Lift coefficient magnitude for Yo/d = 0.15, with error bars.

4.2.4 Comparisons with published results

The previous paragraphs demonstrate that our experimental apparatus and analysis meth-

ods produced highly reproducible data (i.e. low random errors), but they do not conclusively

show that our results accurately reflected the actual physical phenomena (i.e. low system-

atic errors). Fortunately, a great deal of data has been accumulated over the years on the 3
vortex-induced forces acting on sinusoidally oscillating cylinders, and this data provides a

convenient standard for the results from our apparatus. (As we mentioned in Chapter 3. 3
the original rationale for our sinusoidal oscillation tests was that we could use these as a

means of relating the beating oscillation data to standard sinusoidal results available in the

literature.)

In the case of the mean drag force, the variation of the resonant mean drag as a function

of oscillation amplitude is commonly available. This is the maximum value of the drag co-

efficient (at a given amplitude) over all oscillation frequencies in the vicinity of the resonant 3
Strouhal number. and is commonly given in terms of the ratio of the resonant drag coef-

ficient (with oscillations) to the stationary drag coefficient. i.e. CD, /0 .O I. .
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Figure 4-4: Lift coefficient phase angle for Yo/d = 0.50, with error L -s.

Figure 4-7 illustrates this drag amplification ratio as a function of oscillation amplitude

ratio for sinusoidal oscillations, with data from various sources (Reynolds numbers in the

range 5,000 < Re < 60,000). Individual data points are marked with numerals "1", "2",

I_ etc. identifying their origin; the dashed line shows a curve-fit through data from various

sources, including field experiments on marine cables (Vandiver [89). Kim [36]). A large

I scatter in the data is seen, illustrating the strong influence of different experimental condi-

tions. Our present data, identified by "MIT", are clearly in the middle of all the scatter,

I and the maximum deviation from Vandiver's curve-fit is only of the order of 10%.

In the case of the oscillating lift coefficient, fewer sources are available, and the data

I are not always comparable. For instance, many researchers quote only the measured lift

coefficient magnitude (or RMS value), which conveys very little useful information without

knowledge of the associated phase angle. Even those sources that do include both lift

magnitude and phase information often use different sign and angle conventions, and direct

comparisons are difficult. We shall compare our lift coefficient results to those of Sarpkaya

i [65] and Staubli [75].
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Figure 4-7: Drag amplification ratio as a function of amplitude ratio, various data sources.

Figures 4-8 and 4-9 show plots of our lift coefficient components in phase with (negative)

acceleration and (positive) velocity respectively for the constant amplitude ratio of 0.15.

compared to Staubli's coefficients CLOC and CLOS for the amplitude ratio 0.11 [75]. The

X axes in all the plots represent nondimensional frequency. Staubli's sign convention is

such that his CLOC is equal to the negative of our CLAo, while his CLýos is identical to

our CLV-0 . In addition, he uses the notation So for the nondimensional frequency and

for the nondimensional amplitude ratio. From the figures, it is clear that the variations of

-CLAo and CL-Vo with frequency compare very well to the variations of CLOC and CLOS3 respectively. The small differences that do exist could well be due to the differences in
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Figure 4-8: Comparing our -CL..Ao results with those from Staubli (1983) I
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- Figure 4-9: (,omparing our C-_tý results with those from ,taubli 1983 i
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Reynolds number or oscillation amplitude.

Figures 4-10 and 4-11 show plots of our results for -(' 1 and - (G__ -. compared

to Sarpkaya's coefficients C(2 h and Cdh respectively [65]. All the data were collected at

the amplitude ratio 0.50. and are displayed against the nondimensional, reduced velocity

V1, (= 1/jo). Sarpkaya's angle convention is such that his coefficients are precisely the

negative of ours, i.e. Cmh - -CL_4 0 and C'•,h -CL_v 0 , and he favors reduced velocity

rather than nondimensional frequency as the indepen'ent variable. From Figure 4- 10. the

variation of -CLA 0 compares very well with the variation of C,,•. except for a shift of

the X axis. A careful look at Figure 4-11 shows that while the data for -CLlb and Cdh

look quite different, the main features of the excitation/damping trends are preserved, with

the exception again of a shift in the reduced velocity axis. The differences between our lift

coefficient data and Sarpkaya's are likely due to the large difference ir tei aspcct ratios (and

hence end conditions) of the models tested: we had an aspect ratio of 24 versus Sarpkaya's

aspect ratios of between 3 and 11 (different models). The Reynolds numbers of the different 3
experiments were all in the range 7,000 < Re < 11,000. I
4.2.5 The "bottom line"

Our analysis of the errors in the results obtained with our experimental apparatus and I
methods, as developed in the preceding paragraphs. eventually ld us to the following

summary conclusions (the "bottom line"):

* The experimental system and analysis procedures were capable of producing high pre- 3
cision. highly repeatable data. Conservative estimates of the random errors obtained

would he of the order of 3-5% for the mean drag data aind 5-•%, for the oscillating

drag and lift data,

o The data obtained compared favorably with other established results, indicating that I
systematic errors were also low. A precise estimate of the absolute accuracy is difficult

to obtain, but our best indications are that this does not exceed 10- 15WX. Given

the strong sensitivity of the vortex-shedding phenomenon to ilhe prevalent physical

conditions, we believe that few researchers can rightfully cla;ni a higher accuracy for I
their experimental data.
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U 4.3 Applying our data to VIV predictions

4.1.1 General principles

From an engineering perspective, the primary purpose of conducting laboratory-scale ex-

periments such as ours is to be able to predict the full-scale VIV response of structures

in the ocean. The variable of interest changes with the circumstances. For example, in

the case of an oil production or exploration riser exposed to current or wave action, one3 would be interested in predicting the frequency and magnitude of the induced oscillations

so as to estimate the fatigue life of the riser, and also the mean drag force so as to esti-

mate the static stress levels. In the case of an oceanographic towing (or mooring) cable, the

VIV-amplified mean drag force determines the static configuration and the expected towing

I (or mooring) tension in the cable. In the case of a mooring line connecting to an acoustic

transponder or array, knowledge of the amplitude and frequency of the vortex-induced cable

strumming could be critical, as the vibrations could affect the acoustic measurements. In

all of these cases, one would like to use the existing database, combined with some suitable

S1 mathematical model, to estimate the expected motions and forces.

In most situations, VIV response predictions involve two stages:

1. Estimating the oscillation frequencies and amplitudes from a knowledge of the flow

configuration, using available lift coefficient data.

U 2. Estimating the static mean drag coefficient as a result of the oscillations found in the

* first step.

In general, the process could be iterative, since the mean drag force could act to change the

static configuration and hence the flow around the structure. A VIV predictive algorithm

has three essential components: a structural model, a fluid model (that interacts in some

way with the structural model), and a solution technique. For the fluid model, one would

ideally like to solve the time-dependent Navier-Stokes equations in the presence of the body

3 motion; out of this analysis should emerge the frequency and magnitude of the fluid forcing.

Unfortunately, theoretical and/or numerical solutions of the Navier-Stokes equations are

3 available only for simplified cases or very low Reynolds numbers, and one has to resort to

physical experiments to obtain the required data. In between direct Navier-Stokes solutions

and physical experiments is a class of "wake-oscillator" models (Iltartlen and Currie f30),

3 123
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Skop and Griffin [71], Iwan and Blevins [32. 7]), that purport to depict the behavior of

the vortex wake as a nonlinear Van der Vol or Rayleigh oscillator. Most of these models.

however, are phenomenological constructs that do not stem from the underlying physics

(Sarpkaya [66]), and hence need to be calibrated against experimental data themselvos.

Thus, forced-oscillation results such as ours could be used directly as the hydrodynamic

input to a general VIV prediction scheme, or indirectly through a phenomenological model.

A question that commonly arises is how one might justify the use of externally forced

experimental data to predictions of vortex-induced vibrations, since the latter arc self-

excited (free) oscillations. In principle, forced-excitation tests on r.oillinear systems cannot

be u;ed to infer any general conclusions about the cnr:esponding free-oscillation behavior.

In the specific case of vortex-shedding, Szarpkaya [66] and Bearman [4] have pointed out

that forced-oscillation tests tend to obscure the intricate effects of the flow history on the

development of VIV, and can be used only if and when a stable, steady-state oscillation

is reached. Notwithstanding the above difficulties, practical experience shows that useful

results may be achieved (perhaps surprisingly so!) with the use of forced-oscillation data.

For example, Staubli (74] has shown that the hysteresis effects seen in some free-oscillation

tests can be replicated by simulations using forced-oscillation data, and Moe and Wu [491

have shown that the lock-in regions predicted by free- and forced-oscillation tests are very

similar if the variation of added mass is taken into account. In the next subsection we shall

show that our forced-oscillation data. used in a highly idealized model. can be used to make

VIV predictions that are reasonably accurate. I
4.3.2 A simple method of estimating response

Consider a, very basic structural model consisting of a spring-mounted rigid cylinder with

viscous damping, as shown in Figure 4-12. The cylinder is exposed to a uniform flow of

velocity U and is constrained to move perpendicular to the flow. From elementary vibration I
theory (Rao [61], Blevins [71), the equation of motion of the cylinder is

d2 y dy
tn + 2m(w,--d + ky = Fo(t) (4.1)

where y is the dynamic displacement of the cylinder, m is the cylinder mass per unit length,

(is the structural damping factor. k is the spring constant, and Fo is the fluid forcing
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I
Figure 4-12: Simple structural model of a rigid cylinder.I

term. Oscillations of the cylinder take place due to the constant interchange of kinetic

energy (governed by the mass) and potential energy (governed by the spring constant): the

frequency of these oscillations being the natural frequency w,, = v . The overall level

of energy in the system oscillations is determined by a balance between the damping term

and the fluid forcing term (more correctly, the component of the fluid forcing in phase with

I the oscillation velocity). If the work done due to fluid forcing exceeds the work done due

to damping. the amplitude of oscillations tends to increase, and vice versa. The amplitude

* is a constant when the forcing exactly balances the damping.

Let us suppose that we are interested in the worst possible case. i.e. the situation

wherein the maximum fluid excitation occurs at the same frequency as the structural natural

frequency. If the oscillations of the cylinder at its natural frequency are given by

y = Yn sin(27rft) (4.2)

I where f, = ý,•/2ir is the natural frequency in Hertz, and Y. is the amplitude of oscillation,

then from our forced oscillation tests, we know that the fluid forcing term (per unit length)

I
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will be given by

Fo  pdU2 {1CLVb, cos(2- ft) - CLAo,, sin(2,rf,,)} (4.3)

where the lift coefficients CL-VIn, and CL-Ao In (at resonance) are functions of the nondimen- I
sional natural frequency in and the nondimensional amnplitude ratio Yn/d, and other terms

have their usual meanings. For the worst case scenario noted above, we will assume that the

fluid resonant frequency, equal to fA, is that value of nondimensional oscillation frequency

fo at which there is a peak in the value of CL V0. The appropriate values of f', CLn,,

and CL-AoIn can be read off from the contour maps of Figures 3-14 and 3-15; Figure 4-13

shows the variation of these quantities with the nondimensional resonant amplitude ratio

Yn/d.

In order to predict the value of the oscillation amplitude Y, we need to consider the

action of the forcing terms of Equation 4.3. We notice that the term -CLA.In sin(2z, fnt) is

in phase with the acceleration term rnd-t in Equation 4.1, for y = Y, sin(2f,,jt). Hence (as

expected), the action of the coefficient CLAo is to cause an added mass effect and modify 3
the natural frequency 27rf, = k/rn. If we are still interested in the worst case situation.,

we can assume that the flow velocity is tuned in such a manner so as to counteract any 3
detuning effect of the added mass, i.e. the flow resonant frequency is still identical to the

structural natural frequency, including added mass. In that case the oscillation amplitude

is a result of a balance between the damping term of Equation 4.1 and the CLVo term of
Equation 4.3, i.e. 2h'2r.-

_t 2dy• pdU Cncos2ft (4.4)

where the symbol <==v has been used to denote "in balance with", and tl.c term n? on the 3
LHS now includes added mass. Substituting y = Yn sin(27rft) and U = fndlf,, we get

1 f~d2 CV[ o(rf) 45
2rn((27rf,•) Y,(27rf,•)cos(27rfnt) €:v-pdL- LV,~o(-,t 45

2 j,2

Canceling common terms and rearranging others, we have

Ij -(27r CLVI In26 3
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Figure 4-13: Resonant nondimensional frequency I., and lift coefficients CL-v0 1, arid CL-AOIn
against resonant amplitude ratio Yl/d; smooth circular cylinder.
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The term within the curly braces {... on the LbIS of Equation 4.6 is referred to as

the "response parameter" SG [65, 881 or the "reduced damping" 27rS 2k, 17, 261, and is 3
commonly used as a parameter governing the VIV response of structures. (It is essentially

a product of the mass ratio (including added mass) and the structural damping ratio of 3
the model.) Although the indiscriminate use of SG in such calculations has been recently

criticized (Vandiver t881, Zdravkovich [101]). its use in our simple model (under complete 3
synchronization) is valid. We are thus left with the very simple relation I

2 SG -Y <== CLVOI, (4.7)

where, for any given value of Sc, the resonant oscillation amplitude occurs when the quantity

on the LHS of Equation 4.7 (the damping) equals the quantity on the RHS (the excitation). 3
Figure 4-14 demonstrates Equation 4.7 in a graphical manner. Shown here is the vari-

ation of CL_.VoIn against Y,/d (from Figure 4-13), together with several lines of 2S 0 Y,/d I
for different values of SG- The mean value of the lift coefficient for the stationary runs

has been taken as the zero value of CLVoIn. For each value of the response parameter SG, I
the resulting oscillation amplitude is given by the intersection of the corresponding straight

line with the curve for CLVo In. The performance of this simple predictive scheme is shown 5
on Figure 4-15, from Griffin [24], which illustrates the variation of 2Y'/d against SG for

a wide range of free-oscillation results from various field and laboratory experiments on 3
circular cylinders. The legend for the various data points is available in references [24] and

[26]. Our results for 2Y./d for the different values of SG from Figure 4-14 are illustrated 3
on Figure 4-15 by intersecting horizontal and vertical arrows; the arrowheads point at the

obtained results. Clearly, our simple predictive scheme gives results that lie within the 5
experimental scatter.

Several points must be made about this prediction method and its results. 5
Firstly, it will be noticed from Figure 4-14 that the success of this scheme depends

on the amplitude-limited nature of the exciting lift coefficient CL-Vo; this fact ensures that 3
a balance is obtained between the exciting force and the damping force for all values of

the response parameter. The negative slope of the lift coefficient curve corresponds to 3
hydrodynamic damping, which in this case has been taken into account automatically in

the exciting (RtIS) term. It is clear that even if the structural damping term is zero. the 3
1281
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oscillation amplitude does not increase indefinitely, but is limited to about one diameter.

Secondly, a glance at Figure 4-15 leads inevitably to the following question: since the 3
results from field and laboratory experiments follow such a clear trend, why not use a curve-

fit through these data to make VIV predictions instead of using our scheme? In fact such

curve-fits have been proposed for just this purpose; for example, Griffin and Ramberg [26]

have 1 ]3_ 35 3
Yf,, 1.29
d [1 + 0.43SG]3 3 s (4.8)

Other similar expressions can be found in Blevins [7]. The important point is that the

data in Figure 4-15 (and leading to Equation 4.8) are for smooth circular cylinders only.

The method we have illustrated, using a few relatively straightforward forced-oscillation

experiments, is applicable to any cross-section (square, triangular, or circular with a vortex

suppression device) for which free-oscillation test data are not readily available, or would

be difficult to obtain.

Thirdly, a note regarding the novelty of our scheme. The principle of the oscillation

amplitude being determined by a balance between excitation and damping is well known, 3
and has been used by several researchers (Moeller [50], Vandiver [90, 88], Every et al.

[15], and others). The phenomenon of the amplitude-limited lift coefficient (in phase with

velocity) has also been widely published (Blevins [71, Griffin and Ramberg [26], Sarpkaya

[65]). It is therefore surprising that to the best of our knowledge, the combination of these 5
two concepts has not appeared in the literature thus far (in the simple form outlined here).

4.3.3 Long tubulars in shear flow I
In the previous section, we illustrated a very basic prediction scheme utilizing a rigid cylin- -
der, obeying a simple harmonic equation of motion with linear damping, performing pure

sinusoidal transverse oscillations in perfect synchronization with the two-dimensional vor- 3
tex shedding due to a uniform flow. In the real world, such ideal conditions rarely exist.

A problem of particular concern to offshore and oceanographic engineers is that of a long.

flexible cylinder in sheared flow. From a structural standpoint, the simplest equation of

motion for such a problem is that of a string under tension, and involves both a time and

space dependence. Other considerations such as bending stiffness, elasticity, spatially vary-

ing properties, and large-amplitude nonlinearities may or may not be taken into account. 3
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-- From a hydrodynamics standpoint, the difficulty is that the vortex-induced excitation varies

3 in magnitude and frequency along the length of the structure. Depending on the length

of the cylinder and the degree of shear in the flow, the structure may undergo relatively

-- broadband, multimode. beating oscillations. Such behavior has been observed in the field

by Alexander [1], Vandiver [90, 88], Kim [36], Grosenbaugh [28, 27]. and others.

Figure 4-16 illustrates the hydrodynamic difficulties noted in the previous paragraph.

Shown here is a long cylinder (e.g. a tow cable), with a curved static configuration, in

3 a linearly varying shear current. Due to the length of the cable, structural perturbations

could be damped out before they reach the end points, and hence the cable could respond

I as one of infinite length. Each point on the cable responds primarily to the local vortex-

induced forcing. Traveling waves of the corresponding local frequency are radiated out from

3 each point in both directions along the cable. These waves are damped out within a few

wavelengths, but are sufficient to affect the oscillation at neighboring points. As a result,

3 the net oscillation at any given point along the cable consists of the local forcing frequency

as well as contributions due to different frequencies from adjacent sections of the cable. At

3 the bottom of Figure 4-16 is a time trace of the displacement at a point on a long vertical

tow cable in a sheared flow, from reference [27]. It is clear that the cable oscillations are

3 not purely sinusoidal, but rather resemble an amplitude-modulated, or beating, waveform.

Several attempts have been made in the last decade to develop algorithms for VIV

3 predictions in sheared flows. Various modal superposition techniques have been developed

with varying degrees of sophistication and success, for example see Whitney and Nikkel

1 [93], Patrikalakis and Chryssostomidis [58], and Vandiver's group at MIT (Vandiver [90],

Kim [36], Chung [101, Capozucca [8]). The algorithms developed by the latter group have

3 achieved widespread industry acceptance. Examples of simulations attempted in the time

domain include the work of Nordgren [52], Howell [31], Dong and Lou [12], and Hansen

3 et al. [29] (this latter effort being unusual in that a numerical random vortex method has

been integrated into the algorithm to provide the hydrodynamic loading). In addition to

Sthe above simulation techniques, a recent closed-form quasi-theoretical solution, assuming

infinite cable behavior, has been developed by Triantafvllou [83, 84].

3 All of the algorithms listed above utilize different solution techniques, -nd the details

and assumptions surrounding the structural and hydrodynamic models differ as well. In

3 essence, however, the hydrodynamic calculations in most of the cases are based on the
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Figure 4-16: Illustrating a long flexible cylinder in sheared flow. 3
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I
same principles. Required as inputs are models (in general nonlinear) for three fluid force

3 coefficients in the transverse direction: an exciting or "lift" coefficient, a damping or 'drag"

coefficient, and an added mass coefficient. (Care must be taken to distinguish this --drag"

3 coefficient, which provides damping in the lift direction, from the mean drag coefficient

CD,,, which expresses the mean force in the drag direction.) All of these inputs can be

3 estimated from our forced-oscillation data. The added mass coefficient as a function of

oscillation frequency and amplitude is given directly by Figure 3-16. Both the "lift" and

3 "drag" coefficients act in phase with oscillation velocity, and hence are contained in our

contours of CLV 0, Figure 3-14. The net effect is either exciting or damping depending on

the sign of C!_Vo. If separate exciting and damping coefficients are desired (e.g. to satisfy

the solution method), it is possible to fit a particular model for one of the coefficients to the

data and to consider the residual as the variation of the other coefficient. Once the predicted

oscillation amplitude is obtained from the algorithm, our contours of CD, (Figure 3-12)

3 can be used directly to estimate the mean drag force.

The significant issue that remains is the effect of the multifrequency beating oscillations

3 on the hydrodynamic force coefficients. Since vortex shedding is a highly nonlinear pro-

cess, there is no reason to suppose that the force coefficients from sinusoidal tests can be

applied to beating simulations in a linear superposition sense. In fact, Triantafyllou and

Karniadakis [79] have shown via numerical simulations that beating osciliations cause the

3 force coefficients to be modified in unforeseen, nonlinear ways. It is an important part of

this thesis to determine the force coefficients on typical beating oscillatiors. and we shall

3 address this issue in the next chapter.

4.4 Cross-sectional effects

1 4.4.1 Preliminary remarks

It is well known that the cross-sectional geometry of a prismatic cylinder plays an important

role in determining the nature of the vortex shedding and the vortex-induced forces acting

on the cylinder. Stationary Strouhal numbers for a wide variety of noncircular cross-sections

3 (as well as references to more information) can be found in Blevins [7]. Typical research

on noncircular sections has focused on geometries such as flat, rectangular, triangular, half-

3 circular. etc. Much less is known about the vortex-induced forces on sections that are

1 1.33
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nominally circular but in fact may not be so. such as a typical braided wire-rope section. or

a conventional bare riser section with satellite kill- and choke- lines. Most of the results of 3
tests conducted on such sections are confidential information that have no been published

in the open literature. 3
In the following subsections, we shall present results of forced oscillation tests conducted

on four noncircular models: a wire-rope, a chain, a typical production riser, and a haired-

fairing, all at Reynolds numbers of approximately 10,000. It should be stressed that the

intention is not to produce a catalog of commercially useful data, but rather to illustrate 3
some of the important techniques and pitfalls in the application of our experimental data

to real-life situations. Most of the results presented shall be of the lift coefficient in phase 3
with velocity. CL-Vo, since it is this coefficient that most accurately signals the presence or

absence of VIV. 3
Figure 4-17 illustrates the cross-sectional and flow geometries of the models tested.

Table 2.1 of Chapter 2 summarized the construction details of these models.

4.4.2 Defining an "effective diameter" 3
One of the most common structural compcnents in oceanographic or offshore engineering

situations is the stranded or braided wire-rope. Such a wire-rope is commonly regarded I
as a circular cylinder for the purposes of VIV computations, with little effort given to

establishing the validity of this assumption. In this subsection we shall show that a typical

wire-rope section can in fact be treated with circular cylinder data. as long as a proper

"effective diameter" is chosen in the computations.

Sinusoidal oscillation tests with a 2.70 cm diameter 7-strand wire-rope specimen (Fig-

ure 4-17) were carried ou. at a constant amplitude ratio Yo/d = 0.30 and a range of oscilla-

tion frequencies. Figure 4-18 illustrates the behavior of the mean drag coefficient CD,, and

the exciting lift coefficient CLVo for the wire-rope section (open circles), together with the I
corresponding data for the smooth circular cylinder (solid lines). In a qualitative sense, the

behavior of the vortex-induced forces in the case of the wire-rope are similar to the behavior

in the case of the cylinder. Quantitatively, it is clear that th( resonant v- -tex peak for the

wire rope occurs at a higher oscillation frequency, and the magnitude of the peak forces are

lower.

1 :H I



I ~Figure .1- 17: (,jross- sectriond a ndu~ flow ji oint rRes of' li t iio, lo el S esTed

inhuE~.Wire-rop~e

_ Chain

Ijo
I0

I~~~ Haired iin



I
I

i I
15 mean drag coeff.

0 O

0-0

0 0 0 0 0 0 0 00 0

0.5lift ffvelocity

00

o 0

00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

nondimens~onal frequency

Figure 4-18: CDm and CLVo for the wire-rope, Yo/d = 0.30, and circular cylinder data. n

The occurrence of a h:gher resonant frequency and lower peak forces both lead to the I
same conclusion: if the wire-rope is to be modeled as a circular cylinder, then the length

scale (here the outer diameter) used in the normalization (in the numerator for the nondi-

mensional frequency, and in the denominator for the force coefficients) was probably too

high. Figure 4-19 illustrates the same data as Figure 4-18, now nondimensionalized with

an effective diameter 77% of the outer diameter, or 2.08 cm. It is clear that the wire-rope

data in 'his case (crosses) more closely track the circular cylinder data (solid lines). While 3
certain differences remain (e.g. the wire-rope data show no sign of a second harmonic reso-

nance), it can be argued that VIV predictions for this particular section can be made using

circular cylinder data. as long as the wire-rope is treated as having an effective diameter of

the order of three-quarters of its outer diameter.

It is important to point out that the concept of an effective diameter can only be

applied to certain cross-sections that behave qualitatively like a circular cylinder. Tests p
were conducted with a chain model (Figure 4-17) of outer (link) diameter 2.30 cm, at the

same amplitude ratio of 0.30. Figure 4-20 shows the behavior of CD,, and Ct,_vo for the f
136 3
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Figure 4-19: CD. and CLVo for the wire-rope. effective diameter 77%, and circular cylinder
data.

chain section (open circles), compared to the circular cylinder results (solid lines). No

vortex-induced resonance of any form can be detected. Due to the open geometry of the

chain, vortex-shedding does not take place in the same manner as for the circular cylinder

or wire-rope, and the chain "lies dead in the water". The concept of effoclive diameter is

not applicable.

4.4.3 Multiple cylinder interference effects

In the previous subsection we showed that for certain cross-sections, an "effective diame-

ter" can be defined for the purpose of VIV computations. In the case of a multiple cylinder

bundle such as a typical production riser, care must be taken to account for possible inter-

ference and shielding effects, which can be quite dramatic. It has been well known for a

number of years that complex vibratory phenomena can occur in banks of multiple cylin-

I ders, such as those used in heat exchangers. Recently, Zdravkovich [100] has reviewed the

similarities and differences between heat exchanger banks and offshore riser configurations,

I3



I
I

2 - I

1.5 ynean drag~cocff.j

0 1S00 000 0 0 0

U04 0.5 0

00

00 
0 0000000A 

0 
000 

0

- 0 lift coeff velocity

-0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

nondimensional frequency

Figure 4-20: CD. and CL-vo for the chain, Yo/d = 0.30, and circular cylinder data.

with a view towards compiling the relevant heat exchanger data which are applicable in

the marine situation. A type of multiple cylinder arrangement that does not occur in heat

exchangers is the "satellite" production riser configuration, where a large central tube is 3
surrounded by smaller cylinders (e.g. kill- and choke- lines). Usually, such satellite bundles

are held together by flange plates [48] and hence the riser section can be considered as a I
single structure for the purposes of response computations.

In this subsection, we investigate the behavior of a typical production riser section. where

for simplicity (and to illustrate the effects of flow angle) we have modeled a central cylinder

with two smaller cylinders arranged diametrically opposite each other (Figure 4-17); we 5
call this arrangement our "typical riser". Experimental data (from free-oscillation tests) on

more complex multiple tube arrangements have been presented by Moe and Overvik [48],

Overvik and Moe [56], and Price et al. [59], among others.

Sinusoidal oscillation experiments were conducted with our riser model at a number of

nondimensional frequencies and a single amplitude ratio of 0.30. The diameter of the central

cylinder was used in the nondimensionalization of the oscillation frequencies and measured I
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Figure 4-21: CL_Vo for the riser at 0', Yo/d = 0.30, and circular cylinder data.

forces. Three different flow angles were tested, 00 (satellite cylinders in-line with the flow),

1 900 (satellite cylinders on a diameter transverse to the flow), and 45' (satellite cylinders on

a diameter inclined to the flow).

Figuie 4-21 shows the results for the lift coefficient in phase with velocity. CLj', for

the 0' configuration: the riser data is marked with open circles and compared to the corre-

sponding bare cylinder data marked by a solid line. Apart from the absence of a secondary

excitation region. the values of the lift coefficient for the riser in this configuration is very

similar to the cylinder data.

Figure 4-22 illustrates the variation of CL_Vo for the 900 configuration, also compared to

5 the circular cylinder data. A dramatic increase is seen in the width of the excitation region.

together with an increase in the peak magnitude of the exciting lift coefficient. These data

I appear to indicate that vortex-induced oscillations of the riser exposed to flow from this

angle would be considerablN more severe than for the bare cylinder.

Figure 4-23 shows the CL_Vo data for the intermediate flow angle of 45". The results are

quite unexpected: instead of being an intermediate solution between the data of Figure 4-21
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and the data of Figure 4-22, the present values show no sign whatsoever of vortex excitation.

The lift coefficient in phase with velocity is negative for all values of oscillation frequency,

indicating complete suppression of vortex-induced motions.

Further experimental tests were carried out as a check on the accuracy of the previous

results. For each flow configuration, the value of the oscillation frequency corresponding

3 to the resonant peak in the CL_Vo data was determined. Tests were conducted at these

(constant) frequencies and six amplitude ratios, in order to determine the amplitude de-

I pendence of the exciting lift coefficient in each case. Figure 4-24 shows the results of these

tests compared to the circular cylinder data (from Figure 4-13). Stationary (nonoscillating)

I2

1.

0 .............. .. . .. . . . ... ... ...... ..

0-.2•-10•.60.8 "1 1..2... .,-0 .5 ..... .. . . ..... .. .................. . . .. . ..

I nondimiensional amplitude ratio

Figure 4-24: Variation Of CLV0lI, against amplitude ratio for the riser at different angles,3 and circular cylinder data.

t ests were conducted to provide the values at zero amplitude. These results are consistent

Iwith the previous data of Figures 4-21 4-23: the 00 data are similar to the bare cylinder,

the 90' data predicts slightly larger amplitudes of oscillation, while the intermediate 45'

I configuration is almost completely damped.

The data from our riser tests, especially those corresponding to the 450 flow angle,3 cofgrtini los opeel1apd
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indicate a result of interest to scientists and practicing engineers alike: the vort,,x-induced

oscillations of a cylinder can be controlled by the strategic placement of just one or two

smaller cylinders in the near vicinity. Strykowski and Sreenivasan [76) have shown recently

that for small Reynolds numbers, the vortex shedding behind circular cylinders can be

suppressed entirely by positioning a second. much smaller, cylinder in the near wake of the

main cylinder. Figure 4-25 illustrates a few instantaneous streamline patterns from their

numerical computations. The top frame shows the natural vortex shedding state of the

main cylinder. In the second frame, at a nondimensional time-step of zero, a "control" 5
cylinder (having a diameter one-seventh the diameter of the main cylinder) is introduced

slightly behind the main cylinder and to one side of the wake centerline. As the rest of

the frames illustrate, vortex shedding is suppressed within a few time-steps and remains so

for all time. Strvkowski and Sreenivasan were able to achieve similar results from physical

flow-visualization experiments as well, and argued that the observed results were due to a

modification of the stability properties of the main cylinder wake due to the presence of the

control cylinder. Given the similarity between the position of the control cylinder in the

above results and the position of the aft satellite cylinder in our runs at the 450 flow angle. ,

there is reason to believe that the absence of positive values of the exciting lift coefficient

at that flow angle has a similar physical origin.

What, therefore, are the implications of our results on full-scale VIV predictions for riser

bundles? Given the large qualitative differences between the riser data at certain flow angles

and the circular cylinder data, it would appear that separate tests would be required for each

riser configuration under study. Since the nature of currents in the ocean is omnidirectional,

it is clearly impractical to collect and use data at well-defined flow angles. It may be

necessary to conduct experiments for several flow angles and use the "worst" data in the 5
computations to be assured of a conservative result. If the problem involves the design of a

new riser bundle, experiments should ideally be conducted early in the design stage so as to I
achieve a configuration with optimum vortex-cancellation characteristics. Such an approach

has been attempted by Johnson and Zdravkovich [33], who measured the stationary lift and 5
drag coefficients on several riser models to determine the configuration having the smallest

force coefficients. As we shall see in the next subsection, small stationary force coefficients 3
do not necessarily imply correspondingly small dynamic force coefficients. The design of

optimum riser bundles should include d(ynainic oscillation experiments as well. 3
1 12 I
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4.4.4 Evaluating a vortex-suppression device

In the previous subsections, we focused on the applicability of our circular cylinder data to I
practical situations. In the following paragraphs, we shall consider an important application

of our forced-oscillation experimental methods taken as a whole: the evaluation of vortex- I
suppression devices.

It is well known that prevention or reduction of vortex-induced oscillations can be at-

tained through the use of add-on devices that suppress or disrupt the formation of the vortex

street (7]. Commonly used are such devices as helical strakes, axial shrouds, and splitter I
plates. A very comprehensive review of vortex-suppressiorn means has been published by

Zdravkovich [102], who points out that most of these devices have been developed through i
ad-hoc tests conducted by different researchers: almost all of these tests have involved

stationary or free-oscillation experiments. Relable, quantitative comparisons of different

devices are difficult to obtain because the vibratory response of each model depends very

much on factors such as stiffness and damping of the supports, mass of the model, aspect I
ratio, free-stream turbulence, etc.. It is our belief that a program of forced-oscillation exper-

iments using a well tested system (which also allows for interchangeable models) would be an i
excellent way to overcome several of these problems and to obtain comparative assessments

of the effectiveness of various vortex-suppression devices.

To demonstrate the use of our system for such a purpose, we conducted tests on a

model of a cable equipped with a "haired-fairing". The fairing consisted of three equally

spaced rows of fine nylon thread (the "hairs"), woven into the kevlar surface sheath of a

cable. When immersed in a flow, the hairs are designed to trail aft and apparently interfere

with the formation of the vortex street. Figure 4-17 illustrates the geometry of the section: I
additional details were furnished in Chapter 2.

Several nonoscillating tests were conducted first to establish the values of the stationary

force coefficients and Strouhal number. These results are summarized in Table 4.1. The

forced-oscillation test program consisted of runs conducted at 16 discrete frequencies and 3 1
I I S ~ m I ICDC

Mean 0.1406 1.5957 0.0344 0.0043 I

Table 4.1: Summary of results for the stationary haired-fairing model. 3
1,14 3



I
discrete amplitude ratios, for a total of 48 tests. The data collection and analysis procedures

3were identical to those followed for the circular cylinder, explained in Chapters 2 and 3.

Contour maps were created of the lift and drag force coefficients, in analogy with Figures 3-

312 - 3-16. The contours of the exciting lift coefficient CLvo, and the mean drag coefficient

CD,,, for the haired-fairing are presented in Figures 4-26 and 4-27 respectively. As before,

3- the thick black line marked on Figure 4-26 corresponds to the zero contour, and marks the

extent of the primary excitation region. No secondary excitation region is seen.

3 In analogy with the method developed for the circular cylinder in Section 4.3.2., the

exciting lift coefficient data of Figure 4-26 can be used to estimate the VIV response of

3 the haired-faired cable for different structural damping levels. Figure 4-28 shows the peak

(resonant) values of the lift coefficient, CL_,,O],, against the amplitude ratio of oscillation;

3 also shown are the damping force lines 2SGYn /d for various values of the response parameter

SG. The response amplitudes at these values of SG correspond to the intersections between

3 the damping lines and the curve for CL_Vin. Figure 4-29 illustrates the response amplitude

predictions for the haired-fairing compared to the same experimental data of Figure 4-15; as

3 before, our predictions are shown by intersecting horizontal and vertical arrows. It is clearly

seen that the haired-fairing indeed succeeds in reducing the amplitude of the vortex-induced

3 oscillations of the smooth cylinder; the reduction is about 60% at low values of the response

parameter, and up to 85% at high values of the parameter. Although no free-oscillation

3 test results for this particular haired-fairing were available for purposes of verification, the

predicted percentage reduction of amplitude was of the same order as some of the good

3 vortex-suppression devices reviewed by Zdravkovich [1021.

In addition to demonstrating the use of our experimental system as described in the first

3 paragraph of this section, our results for the haired-fairing also indicate the importance of

dynamic oscillation tests in VIV predictions. Consider the stationary haired-fairing results

i of Table 4.1 compared to the stationary smooth cylinder results of Table 3.1 in Chapter 3.

The stationary lift coefficient of the haired-fairing is about one-tenth that of the smooth

i cylinder, and the mean drag coefficient is slightly larger. One would be tempted to conclude

that the addition of a haired-fairing would reduce vortex-induced oscillations of a smooth

3 circular cylinder tenfold, at the expense of a 35% increase in the mean drag force. These

conclusions would be quite wrong! Our dynamic tests (Figures 4-28 and 4-27) predict that

3 for negligible structural damping, the haired-faired cable would respond at, an amplitude

3 1,15
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ratio of about 0.40 and a nondirnensional frequency of 0.147, causing an (amnplified) mean

drag coefficient of about 2.10. The corresponding results for the s100ooth cylinder (Figures 4- I
14 and 3-12) are an amplitude ratio of about 0.90 at a nondimensional frequency of about

0.175, causing an amplified mean drag coefficient of about 2.40. Thus the dynamic results

for the haired-fairing predict a much smaller reduction of amplitude than do the stationary

results, but with the added bonus that the effective mean drag force is slightly reduced 3
as well. The importan.e of measuring dynamic force coefficients for the purposes of VIV

predictions cannot be over-stressed. 3
i
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Chapter 5I

i Beating Oscillation Tests
I

5.1 Introduction

5.1.1 Background

U In previous chapters we have introduced the need for tests with amplitude-modulated os-

cillations. Section 4.3.3 and Figure 4-16 illustrated the situation with long tubulars in

shear flow, and the resulting beating oscillations at any point along the cylinder. A seg-

ment of actual data from a field experiment [27] was included in Figure 4-16, showing the

amplitude-modulation of the cylinder displacement. Such a time-varying nature of the re-

3 sponse amplitude is a result of the participation of multiple frequencies at every spatial

location along the tubular.

In the interest of simplicity of the experimental procedures and analysis methods, we

decided to investigate the fundamental properties of the vortex-induced forces acting on

3 cylinders undergoing amplitude-modulated oscillations by limiting the excitation to regu'ar.

duaJ-frequency beating. Thus, we do not claim to reproduce exactly the oscillations observed

3 in the field; rather, we hope to extend our understanding of this complex phenomenon

by making the transition from single-frequency pure sinusoidal motion to regular beating

3 motion.

In Section 2.3.3, we introduced the essential mathematical definitions and formulations

for beating motion. Dual-frequency beating can be expr4,ss,,d as the sum of two sinusoids
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at different frequencies f' and f 2 as: I
y(t) = Y1j sin(27rfil) + Y2 sini(2rf.2 t) (5.1)

If the frequencies f, and f2 are held constant and the amplitudes Y1 and •2 are varied, H
a number of waveforms of constant modulation ratio (relating to frequency) but varying

modulation depth (relating to amplitude) are attained. For example, Figure 5-1 illustrates

the waveforms obtained for the cases f, = 1.0, f2 = 1.2, Y1 = 1.0, and Y'2 varying as 3
100% sine2 (100% + 30%) beats

i. .... .. .... .. . . ....

0 0I

0 10 0 10

(100% + 70%) beats 2 00% + 100%)beatsI1 1'
0- 0

-1 ........... ...

"20 5 10 2 5 10 3

Figure 5-1: Waveforms at constant modulation ratio and varyin- modulation depth. 3
0%, 30%, 70%, and 100% of Y1 . Notice that the modulation ratio, or the size of the beat

"packet" in terms of the number of rapidly varying cycles, is a constant; on the other hand I
the modulation depth, or the amount of narrowing of the amplitude envelope, varies. Notice

also that the total peak amplitude of the waveform is given by the sum Y1 + Y2. If we were I
now to hold the amplitudes Yj and Y2 constant and vary the frequencies f, and f 2. the

result will be a number of waveforms of constant modulation depth (and peak amplitude), I
but varying modulation ratios. For example, Figure 5-2 illustrates the waveforms obtained

for the cases Y1 = Y2 = 0.50, f, = 1.00, and f2 = 1.05. 1.10, and hinallY t.33. A pure
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pure sine2 1:20 beats
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Figue 5-2: Waveforms at varying modulation ratio and constant modulation depth.

sinusoidal waveform is also illustrated for comparison.

If the amplitudes Y1 and Y2 are equal (as in Figure 5-2), then Equation 5.1 can be

written as the product of two sinusoids at the "carrier frequency" f, and the "modulation

frequency" fm as

y(t) = 2Y1 sin(27rfct) cos(27rfmt) (5.2)

where the frequencies f, fin, fl, and f2 are related to each other by Equations 2.17 through

2.20 in Section 2.3.3. The modulation ratio, or the ratio of unity to "thle number of oscil-

lations at the carrier frequency contained in one beat packet", is then given by

Modulation ratio 1 : (Y2--) (5.3)

The beating experiments reported in this thesis were all conducted at 100% modulation

depth, i.e. with amplitudes Y1 = Y2. Six nondimensional peak amplitude ratios, 2 11/d,

were chosen between 0.15 and 1.50. Three modulation ratios of 1:20 ("slow" modulations),

1 :10. and 1:3 ("fast" modulations) were tested. (More precisely. the values of f,, wore chosen
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to be (f, + f,/20), (fi + f, / 10), and (fi + f1/3), yielding actuad moidulation ratios 1:20.7,.

1:10.5, and 1:3.5). The above tests were repeated for 36 sets of values {fl, f2} such that t m

carrier frequency f, = (fl + .2)/2, when nondiniensionalized as = f.d/U, varied between I
0.05 and 0.25.

Before proceeding further, it would be useful to discuss the questions that we seek to I
answer about beating motion. From an engineering standpoint, the primary issues concern

the behavior of the vortex-induced lift and drag force coefficients in the presence of beating I
motion: how the force coefficients vary with amplitude, frequency, and modulation ratio:

the implications for VIV calculations; and whether or not sinusoidal results can be extended

to the beating case. From a scientific standpoint, one would be interested in exploring the

response of the cylinder wake to beating excitation, or in other words the interaction between

the natural (absolute) wake instability and the time-varying cylinder motion amplitude

(the external forcing). A subtle but important question that presents itself concerns the

amplitude to be used to characterize a beating waveform: whether this should be the peak

amplitude 2Y], the component amplitude Yi, or the RMS amplitude YRMS (= Y] for dual-

frequency beats). We shall attempt to resolve these and other related issues in the sections 1
that follow.

5.1.2 A summary of related research I
Prior to our work. very little general attention has focused on the vortex-induced forces on

cylinders undergoing beating motion. In this subsection we shall summarize the existing

literature on the subject.

Triantafyllou and Karniadakis. Simulations of the flow around cylinders undergoing

beating oscillations have been conducted by Tria~itafyllou and Karniadakis [79] and Tri-

antafyllou [781. using a numerical spectral element method. The prescribed cylinder motion I
was a regular dual-frequency waveform given by

71(t) = Y sin(2rft)sin(27rfmt) (5.4) 1
where 71(t) was the instantaneous displacement. 1' the peak amplitude of motion, and f, I

and f, the frequencies of the "fast" and "slow" motions respectively. (The notation of I
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Equation 5.4 is identical to that of Triantafyllou and Karniadakis [79]. In terms of our

3notation in this thesis, r7(t) =_ y(t), Y _ 2YI. and f, =_ f.) The frequency f, was chosen to

be the natural Strouhal frequency of the vortex shedding, the modulation ratio was fixed

at 1:2.5, and two amplitude ratios were tested: 0.63 and 1.26. The Reynolds number of

the simulations was 100. Time trace segments of the lift and drag forces calculated in each

of the cases were presented, and compared to results obtained for the cylinder undergoing

harmonic (pure sinusoidal) oscillations. The principal findings reported by the authors were:

1. The frequency content of the vortex-induced forces was considerably richer during the

beating motion as compared to the sinusoidal motion.

2. In the y-direction (lift) the amplitude of the vortex-induced force was about the same

in the modulated as in the harmonic case.

3. In the x-direction (drag), the modulated motion caused a significant decrease of the

average drag force and a significant increase of the fluctuating drag force.

Owing to the above findings, Triantafyllou and Karniadakis eventually concluded that clas-

-- sical harmonic results could not be used in situations where beating was present, and that

measurements from physical tests with amplitude-modulated cylinder vibrations were re-

quired.

I Nakano and Rockwell. Low Reynolds number flow visualization studies of the wake be-

hind a circular cylinder undergoing amplitude-modulated oscillations have been conducted

I by Nakano and Rockwell [511 at Lehigh University. These tests were carried out from the

point of view of "active wake control", with the aim of altering the various forcing param-

I eters (frequency, amplitude, modulation ratio, etc.) and classifying the different possible

states of response of the wake. The authors used a hydrogen bubble flow visualization

technique in a free-surface water channel, with a cylinder Reynolds number of 136. The

cylinder was forced by a computer-controlled traverse table system, similar in concept to

our own lead-screw oscillation mechanism. The cylinder motion had the form

I y(t) - )[1 - cos(2rf,, t)] sin(27rft) (5.5)
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where fm and f, were the modulation and excitation (carrier) frequencies respectively, and

Y, was the peak amplitude of motion. (In this case, the notation of Equation 5.5 cannot

be expressed directly in terms of our notation; see the discussion later in this section. Ye is

similar to our 2YI, and f, and f m are similar to our f, and 2fro respectively.) The frequency

f, for most of the runs was fixed at 95% of the natural Strouhal frequency so as to provide

for slight detuning, and a range of values of fm/fe and Ye/d were considered. Images of

the cylinder wake were recorded on a high-speed video system, and then classified into a

number of categories of deterministic vortex patterns. Four basic patterns were found for

amplitude-modulated excitation, consisting of the following:

1. f m periodic with f, lock-in: In this pattern, the vortices are formed at essentially the I
same instantaneous phase (relative to the cylinder displacement) from one f, cycle to

the next. Further, this pattern of vortex formation is periodic at frequency fm (i.e.

it repeats in every beat packet).

2. fm periodic with f, nonlock-in: Here, the near-wake vortical structure is periodic with

each f, beat packet but is not locked-in to each f, cycle; i.e. the vortices are not 3
formed at the same instantaneous phase. Indeed, the observed patterns suggest a

time-varying phase modulation of the vortex shedding process relative to the cylinder

displacement, periodic at frequency fm-

3. 2fro periodic with f, nonlock-in: This is essentially a period-doubled version of the I
previous pattern. The vortices do not exhibit lock-in during each fe cycle, and the II
pattern does not repeat from one fm cycle to the next. However, essentially identical

patterns are formed between times 0 < t < 2/fm, and times 2/f m < t < 4/f, (and so

on for every two fm cycles), indicating a period-doubling effect.

4. f m periodic with f4 nonlock-in; mode (n + 1): Similar to Pattern 2 above, an fin-

periodic phase modulation of the near wake structure is observed, with the difference

that an extra pair of vortices is observed during each f, beat packet (compared to

the number of cylinder oscillations at f, during the beat packet).

Nakano and Rockwell conducted a number of such experimental runs to determine the I
ranges of the parameters fm/f, and Yl/d corresponding to each of the observed wake pat-

terns; Figure 5-3, frorn their paper [51], illustrates these response state ranges.
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I
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Ye ID
Figure 5-3: States of response of near-wake as a function of dimensionless modulation
frequency fn/fe and amplitude YlId at fe/fs = 0.95; from Nakano and Rockwell (1991).

It should be noted that the amplitude-modulated cylinder excitation used by Nakano

and Rockwell differed from the type of waveform used by us and by Triantafyllou and

Karniadakis [79, 78]. Equation 5.5 can be written in the alternative form

'I' e+ sin(2(f +fo)t) (5.6)

y(t) sin(2ir(f, - f,)t) - sin(27rf~t) + e- (

We notice that this corresponds to the superposition of three sinusoids at frequencies rh,

(fe- fm), and (fe + fm ). This difference in the imposed waveforms implies that comparisons

between the results of Nakano and Rockwell and our own research should be made in a

qualitative sense only. In passing, it may be noted that the ratio of unity to the number

of carrier frequency oscillations contained in one beat packet. previously defined as the

modulation ratio, is in this case given by

I Modulation ratio = : (ff) (5.7)

1
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(Nakano and Rockwell have used the reciprocal quantity fI/f, to characterize their exper-

iments.) I

Gopalkrishnan et al. As we mentioned in Chapter 1, results from a preliminary set of

our beating oscillation experiments were published in Gopalkrishnan et al. [21. 20]. Rather

than describe those experiments in detail, we shall summarize the key findings.

Experiments were conducted using procedures very similar to those reported in this

thesis, using an excitation of the form given by Equation 5.1. The amplitude ratio Y 1 /d

was maintained at 0.15, while the amplitude ratio Y2 /d was increased from 0% of Yi to

100% of Y1. The modulation ratio was fixed at 1:5, and 10 sets of frequencies {fl,f2} were

tested. Thus these were experiments to determine the effect of varying modulation depth at

constant modulation ratio.

Owing to the relative sparcity of the testing grid, definite distributions of the beating

force coefficients could not be determined. However, the following general conclusions were

reached from an analysis of the data:

1. The presence of a second frequency component (beating) caused the lift force coef- U
ficients to be smaller than the pure sinusoidal values. The influence of the beating 3
motion clearly increased with increasing modulation depth.

2. Beating caused a reduction of the mean drag coefficient and an increase of the RMS

oscillation drap- coefficient.

From these results, we were encouraged to pursue the matter further and conduct the I
experiments that are reported in this chapter. We decided to investigate the influence of

varying amplitude and modulation ratio. Since the effects of beating seemed to be maximum

at maximum (100%) modulation depth, this parameter was not varied during the present

experiments. Owing to improvements and automation of the experimental and analysis

procedures, a far denser testing grid was successfully completed.

I
I
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5.2 Force coefficient measurements

I 5.2.1 Mean drag coefficient

The mean drag coefficient CD. for the beating oscillation data was calculated in a man-

ner similar to the stationary and sinusoidal oscillation tests, as the (nondimensionalized)

3difference between the mean value of the drag force trace during the run period and the

value during the final zero period. Not unexpectedly, (given the conclusions of Triantafyllou

3 and Karniadakis [79, 78] and our own previous experiments [21, 20]), the principal result

was that the presence of beating reduced the peak amplification of the mean drag. For

I example. Figure 5-4 shows the variation of CD,, with nondimensional frequency for sinu-

Ipure-sine and 1:20 beats pure!-sine and 1: 10 beats

2 .o . .......... 2 .

5pure-sine and 1:0 beats

0.1 0.2 0.3 0.1 0.2 0.3

nondim. freq. nondim. freq.

__ ure-sie and 1:3 beats

0 2.5 ................ .... ................................. ....] :

0 0

0.1 0. 0.

S1.5 .. ........ ... .... .......... .. ....

0.1 0.2 0.3

nondim. freq.I Figure 5-4: CD,n for beating motion with 2Y,/d = 0.75 (open circles), and for peak-matched

sinusoidal motion (solid lines).I
soidal oscillations (solid lines) and beating oscillations (open circles) of amplitude ratio 0.75.

I Note that for the sinusoidal data, the amplitude ratio Yo/d = 0.75 and the nondimensional

oscillation frequency Ao are well defined; for the beating oscillations, the data correspond

I to the peak amplitude ratio 2YI/d = 0.75 and the nondimensional carrier frequency v.
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pure-sine and 1:20 beats pure-sine and 1:10 beats2 .5 .i ...... ..... 2 .5'- .. . "

Co I2 . .. .......... 2 -.. . . . . . . .. . . .i. . . . . . .. . .. .. . .. . . . . . . . . . . . . . .. .

0.1 0.2 0.3 0.1 0.2 0.3

nondim, freq. nondim. freq. 3
pure-sine and 1 :3 beats2.5 ....... '. .... . ........ ' .......... ........ .. -

S2 ..... ...... * - . .. 6 .

1 . ....... 5 ........ ............ ..... l .. ..................

0.1 0.2 0.3
nondim, freq.

Figure 5-5: CD., for beating motion of RMIS amplitude ratio YRMs/d =0.53 (asterisks),
and for RMS-matched sinusoidal motion (solid lines).

From Figure 5-4, it is clear that the presence of beating significantly reduces the mean drag

force. The data for the 1:20 and 1:10 beats (relatively slow modulation) are similar and

show a reduction and associated widening of the CD_, amplification peak. The data for the

1:3 beats (relatively fast modulation) shows a "plateau" or "double peak" behavior of the

mean drag, consistent with the observations of Schargel [68, 69] in his analysis of (relatively

broadband, hence rapidly modulated) random cylinder oscillations.

The reduction of the mean drag as illustrated in Figure 5-4 could perhaps be explained

as being due merely to the fact that the beating input oscillations have the same peak

amplitude as the sinusoidal oscillations ("peak- matched"), and hence have a smaller RMS

amplitude and lower input power. In fact. it would appear that the presence of beating

causes a reduction of the peak mean drag coefficient even if the RMS of the input motions

are the same. (See also Gopalkrishnan et al. [21, 20]). Thiiý phenomenon is illustrated

in Figure 5-5, which depicts the same sinusoidal CD., data as the previous figure (peak

amplitude ratio = 0.75, RMS amplitude ratio = 0.53) (solid lines), compared here to the
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Figure 5-6: Motion and drag for a typical 1:10 beating case; fc = 0.160, 2Y1/d = 0.50.

results obtained for beating motions having the same RMS oscillation amplitude ("RMS-

matched") (asterisks). While in an overall sense the beating mean drag coefficients are now

much closer to the sinusoidal data, it is seen once again that the peak values predicted from

the sinusoidal results are not observed. The fast modulation data (1:3 beats) again exhibit

a double-peaked behavior, but the locations of the CD,. peaks are quite different from the

sinusoidal case.

. From the preceding observations, it would seem that the values of the beating mean

drag coefficient cannot be obtained directly from sinusoidal data, and that one must seek

3 other models to achieve such predictions. An attempt along these lines (first suggested by

Triantafyllou [78]) is to consider the "instantaneous mean drag coefficient" of a beating

3 oscillation waveform as being a quasistatic, nonlinear process dependent on the instanta-

neous oscillation amplitude. For example, Figure 5-6 illustrates a typical set of amplitude-

I modulated data, showing time-trace segments of the cylinder motion and corresponding

(normalized) drag coefficient for a waveform of 1:10 modulation ratio, peak amplitude ratio

3 22Y1 /d = 0.50, and nondimensional carrier frequency f: = 0.16. If we define the "instanta-
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neous mean drag coefficient" C"D as the average value of the drag coefficient calculated over

one carrier frequency cycle, Figure 5-6 suggests that this instantaneous drag rises and falls

with the envelope of the beating motion, takiih3 on the appearance of a rectified sinusoid.

To arrive at the model, we assume that the value of this instantaneous mean drag coefficient

is equal at all times to the value of the mean drag coefficient for a pure sinusoidal oscilla- I
tion having the same instantaneous oscillation amplitude. The resultant beating mean drag

coefficient is then the "average instantaneous mean drag coefficient", and is given by

CDo = =int = CDo + (CDms -C o) (5.8)

where CD., has been used to denote the stationary mean drag coefficient (a constant),

CDm._ to denote the sinusoidal mean drag coefficient (a function of oscillation amplitude

and frequency), and the overline symbol denotes an average taken over all the instantaneous

amplitudes of the beating input. If now the sinusoidal mean drag is considered to be a linear I
function of oscillation amplitude (a reasonable approximation, see Figure 4-7), Fquation 5.8

can be simplified to depend only on CD,_, and the maximum value of CDms, i.e. the value 3
of CD,m at the peak amplitude of motion. The expression for the beating mean drag then

is U
CDm = D = -- CD, _s) (5.9)

where the factor 2/7r appears as the average value of a rectified sinusoid.

Values of the beating mean drag coefficient CD. were computed according to Equa-

tion 5.9 for all of the amplitude-modulated cases and compared to the actual measured

values. It was found that the quasistatic model gave excellent results for the slow modu-

lation cases, but was inaccurate for the fast modulations. Figure 5-7 shows the measured

mean drag coefficient for beating oscillations with 2Y1/d = 0.50 (open circles), compared 3
to the results calculated according to the above model (dashed lines); the validity of the

model for slow modulations is clearly seen. 3
For the fast beating cases (1:3 ratio), it was found necessary to develop an alternative

model not based on a quasistatic analysis. The characteristic double-peaked CD,_ results 3
obtained for the 1:3 ratio beats suggested a linear addition behavior. Hence, a model

was devised that consisted of the linear superposition of the sinusoidal drag amplification 3
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1.6 model results and 1:20 beats model results and 1:10 beats

o 0~
0

cP1.6-

1.2 001qJ 104. 00I . . ... . 1.2 .. 0. ....... .
S. . . . . .. . .. . .• . .. .: . . .... . .. .... 1 .. .

1. 1 .2 _ _ _ _ _ _ _ _

0.1 0.2 0.3 0.1 0 .2 0.33nondim. freq. nondim. freq.

model results and 1:3 beats

" 1.6 .o o~ ...... ... .. 4 ....- . . . .,o° . . , ? • .% ,

0., 0 0 -
0

0 0:| 1.2 ................

0.1 0.2 0.3
nondim. freq.

I Figure 5-7: R~esults from the quasistatic CD, model (dashed lines) and measured data
(open circles); beating motion with 2Y 1/d = 0.50.

results for each of the two spectral components comprising the beating waveform. Thus, for3 a particular beating input consisting of components at amplitudes and frequencies f{Y1, f I
and f{Y 2 , f2 }1, the corresponding sinusoidal mean drag coefficients CD._ , and CD-, 5 were

I found (from, for example, Figure 3-12) and added to give the beating mean drag coefficient
according to

CI CD,,, + (CDmS - CDmO) + (CD,,,-,, - CDO) (5.10)

I Values Of CD, by this alternative method were calculated and found to give good results for

fast beats of moderate amplitude ratio. Figure 5-8 shows the measured mean drag coefficientI for beating oscillations of peak amplitude ratio 2Y 1/d = 0.30 (asterisks), compared to the

* results calculated according to the linear superposition model of Equation 5.10 (dashed

* lines); the 1:3 ratio beating results show fairly good agreement.

I The primary purpose in devising the models discussed above was to evaluate the behavior
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1.8 model result and 1:20 beats 1.8 model result and 1:10 beats
1.8 ____________ 1:1.bat

1.4 ................ . ...... . 1. ......... ..4...
43 4S' .,•-a -'./"° •" ; •~~~~~~~~......-.../ .,-,'-. ......... .... , .,.

121.2 .*1 E

0.1 0.2 0.3 0.1 0.2 0.3

nondim, freq. nondim. freq.

1.8 model result and 1:3 beats

S1.68
• 1.6 ... ........ . ...... -.. . . . .

* . . . , .. t ---

1.2 - .

0.1 0.2 0.3 1
nondim. freq.

Figure 5-8: Results from the linear CDm model (dashed lines) and measured data (asterisks):
beating motion with 2Y 1 /d = 0.30.

of the beating mean drag coefficient for different modulation ratios. In situations with fairlyI

regular beating motions, the measured data could be used directly to estimate the mean I
drag force. Figures 5-9 , 5-10, and 5-11 are contour maps of the measured values of CD,,

for modulation ratios 1:20, 1:10, and 1:3 respectively. As before, the frequency axis refers

to the nondimensional carrier frequency fj, while the amplitude axis refers to the peak

amplitude ratio 2Y 1 /d. It can be seen from Figures 5-9 and 5-10 that the drag coefficient

results for the 1:20 and 1:10 beats are rather similar. The contour map for the 1:3 ratio

beats (Figure 5-11) shows a double-peak behavior that may be discerned at low amplitudes.

while a flatter "plateau" behavior is seen at higher amplitudes.

5.2.2 Oscillating drag coefficients

Analysis of the oscillating drag coefficients proved to be less straightforward than that of

the mean drag coefficient, as presented in the preceding paragraphs. Two problems had to

be considered: first, preparing (and verifying) a model to represent the beating oscillating 3
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Figure 5-11: Contours of CD,,; 1:3 beating motion. 1
drag force; and second, evaluating the coefficients required in the model.

In the case of a pure-sinusoidal oscillation at frequency fJ, the oscillating component I
CD of the total drag coefficient CD was given by

CD = CDo sin(2.(2fo) f+ t'o) (5. 1 I
where CD0 was termed the oscillating drag coefficient, and represented the magnitude of a

sinusoid at twice the frequency of the input oscillations. (The natural Strouhal component at

frequency 2f, has not been included.) By a direct extrapolation of Equation 5.11, one would

expect the oscillating drag in the case of a beating input waveform containing components,,

at frequencies f, and f 2 to be given by I
CD = CD1 , sin(27(2fi )I + VýI) + CDf2 sin(2r(2f 2 ) i V' ) (5.12)

Values of the coefficients C0), and Cf)2 were extracted from the beat ing dat a using a net hod

analogous to that. used in the sinusoidal case: the known frequen'cies 2f, and 2f2 were w-sd 3
I iG 
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t, generate reference sine and conine waveformq which wverp hoi ut -- ,a, ' ht

appropriate Fourier coefficients of the drag force traces. using a 20-cycle tilne-gating pro-

cedure. For example, Figure 5-12 shows the coefficients CDL and CD, (circles and crosses,

respectively) for beats of individual component amplitude Y 1 /d = 0.50 (peak amplitude

ratio 2YI/d = 1.00), compared to the coefficient CDo (solid lines) for sinusoidal oscillations

pure-sine and 1:20 beats pure-sine and 1: 10 beats

0 x3 .- o0 9 • o1.5 ... 5... .. . 1.5

000%t
5-4!0 1.3 - 0 .30 coo0I C

0.15.20- 0. 1 0. 0.3

nondim. freq. nondim. freq.

pure-sine and 1:3 beats

1 1 .5 . ... . ... . ... . . . . . .

U I o = first component (Cd0l)

x = second component (Cd_2)

S0 .5 . ....... ........ .. . . .. . . .
lx

0.1 0.2 0.3

nondim. freq.

Figure 5-12: CD1 and CD2 for beating motion with Y 1/d = 0.50, and CD, for component-
matched sinusoidal motion.

of comparable amplitude Yo/d = 0.50 ("component-matched"). The frequency axis refers

to the individual (nondimensional) frequency components fi and j2 for the beating oscilla-

'I tions and ju for the sinusoidal case. For fast modulations (1:3) ratio, the beating coefficients

closely follow the sinusoidal result; considerable deviation occurs at slower modulation ra-

I tios.

To check whether the model of Equation 5.12 adequately represents the beating oscil-

lating drag, we calculated the RMS oscillating drag coefficient from the coefficients CD,

and CD2 and from the actual data traces as well. If Equation 5.12 were accurate, then by

I
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algebraic manipulation I

,(= ) + 2

Values of C"" calculated from Equation 5.13 were compared to values of CD,,s cornm-

puted from the time traces of the drag force: Figure 5-13 illustrates the comparison for

beating oscillations of peak amplitude ratio 2Y1 /d = 0.75. The calculated values are a good

1:20 beats 1:10 beats I
S1.5 .................. . ......... 15 .. 2

0 0•

o o oG*

L~')0.5 0/....... 0.5 • .
.. c•d *.. c" Io

60 A0&X0~'

0.1 0.2 0.3 0.1 0.2 0.3
nondim. freq. nondim. freq.

1:3 beats 3
1.5 -

I * * = actual measured RMS value

II
I0 . .. . ..... .... .. " .. .. ...

So calculated from Cd1. Cd2

0000000)000000000M

0.1 0.2 0.3
nondim. freq. ,

Figure 5-13: CDn,,, calculated from from actual data, as well as C7d'¢ from CD, and CD.'
beating motion with 2)Y/d = 0.75. 3
deal lower than the measured values, with the difference increasing with the rapidity of the

beating oscillations. Clearly, the beating oscillating drag force contains spectral components

in addition to those of Equation 5.13.

A look at the time traces of Figure 5-6 of the previous subsection points to an obvious

additional source of oscillating drag: the rise and fall of the drag force trace with the envelope

of the beating motion. As a first, step, this fluctuation can be rno(deled as a sinusoid at wice

the modulation frequency, i.e. at a frequency f 2 - f, (see Equation 2.18). This gives for 3
l~i•,3
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I

the total oscillating drag coefficient

ED CD.,,dsin(27r(f2 - fl)t + kmod) +

5 CCD sin(2r(2f1 )t + V51) + CD2 sin(2r(2f 2 )t + 2) (5.14)

where the coefficient CDm. expresses the magnitude of the low-frequency oscillatory drag.

Values of CDm. were extracted from the beating drag traces, and in addition, were calcu-

5 lated via a simple quasistatic model derived from the same assumptions as the quasistatic

model for the beating mean drag coefficient discussed in the previous subsection, i.e. the

5 drag coefficient is assumed to fluctuate between the stationary mean drag coefficient and

the sinusoidal mean drag coefficient at the peak amplitude of motion. Thus

I Oak. Ptakp

co.U = -(CDo_, - COr_°) (5.15)

I where the notation is as used previously. Figure 5-14 compares the experimentally deter-

I 1quasistatic model and 1:20 beats 1 uasistatic model and 1:10 beats

0 .8 .... 0...... ..... ... . 0 .8 . . ......8

o 0 .6 ......... ... ..... ..... .. "o 0 .6 ... .. . .... ...
EZ I~

U 0.4 I Xki.- • 1 X.....

0 . . .. XX .. 0.2 -
-i,- Xt

I 0.1 0.2 0.3 0.1 0.2 0.3

nonkt.n, freq. nondim, freq.

quasistatic model and 1:3 beats

0.8 __.... .... ,X

S 0.6 ..................... .... X.....:.......x......5

"• 0.4..... ..

0.1 0.2 0.3
nondim. freq.

Figure 5-14: Measured values of CD,,od (crosses) and results from quasistatic model (dashed5lines); beating motion with 2Y 1/d = 0.75.
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Figure 5-15: CDRM. calculated from from actual data, as well as "D from CD, CD2

and CDmO.; beating motion with 2Y1/d = 0.75. 1
mined values of CDmod (crosses) to the results from the quasistatic model (dashed lines) for

beating oscillations of peak amplitude ratio 2Y 1 /d = 0.75. We see that the magnitudes of I
CD_,,, are, in fact, very substantial; the quasistatic model proves to be adequate for slow

modulations, but fails to predict CDmod accurately for fast modulations. I
To check the validity of Equation 5.14, we once again calculated the RMS oscillating

drag coefficient from the individual oscillating drag coefficient magnitudes. Bfy manipulation 3
of Equation 5.14, CDRMs is now given by

= (G 2 ) + _ D, + (5.16)
DM ' 2 2 2

Figure 5-15 compares values of the RMS oscillating drag coefficient calculated according

to Equation 5.16 with the corresponding values extracted from the actual data traces. I
for beating oscillations with 2Y1 /d = 0.75. This time, we see that the calculated values

C'l-', closely follow the actual vahles at low frequencies. but fall off in rnagnitudo at hitgher 1
I (iM
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I frequencies. The difference between the actual CDLMS and the calculated values increa.Ses

with the rapidity of the modulations, and indicates that while we have now accounted for

the bulk of the oscillating drag, yet additional frequency components are present as well.

Figure 5-16 shows the power spectrum of the drag force for a typical high frequency 1:3

beating oscillation, in this case with amplitude ratio 2Y 1 /d = 1.00, nondimensional carrier

frequency f, = 0.279, and actual component frequencies f, = 3.760 Hz and f2 = 5.013

I Hz. The oscillating drag components CD, at frequency 2fi, CD2 at frequency 2f2, and

CD,, at frequency f2 - f, are clearly visible, but additional sum-and-difference frequency

components are present as well.

I 101

100 L2- fl 2f_2I 1 0 ° ..... .... -... ......... i . ....................... ....................... i........ . .. . f ~ ... . . . .. . . . . . . . . .
"2fI-

1 0 .1 ... .... ... ...... ... .................. .. . .. .......... . .......... .. ................. ....... . . . . .

"• 10 -2 ... . ............

I 0

10 -4 ..... . . . .
10.3~ ~ ~ ~ ~ ~... ...................... ...

1 0 -6 . ..... . . . . . . ... . . . . . . . . . . . ..,. .. . . . . .. . . . . . . . . . ..

1 10-?,
0 2 4 6 8 10 12

frequency in Hz

Figure 5-16: Power spectrum of a high frequency, 1:3 ratio, beating drag force trace.

To summarize the analysis thus far: the beating oscillating drag force contains significant

spectral components at frequencies 2fj, 2f 2 . and f2 - fl, where f, and f2 are the frequencies

I of the input components. The oscillating drag coefficients at the above frequencies, CD,

CD2 , and CD,,Od respectively, are difficult to estimate (all at once) from sinusoidal data.

I The coefficients CD, and CD2 are similar to the sinusoidal results for fast modulations

(Figure 5-12), while the coefficient CD.,O, can be obtained via a quasistalic model for slow

169I!j(



I
U

V V

1.4-1

1.6
1 .2 ... ... .. ...... . ..

....... 0.4 L2

I- 0.
S 0. 0. 00.

0.21
0.6 ....

0. .. . 1 ....

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4I

nondimensional carrier frequency

Figure 5-17: Contours of CL)RMS; 1:20 beating motion. I

modulations (Figure 5-14). 3
From the foregoing discussion, one is led to the conclusion that the simplest way of

quantifying the beating oscillating drag would be use the RMS drag coefficient CORM',

directly. An interesting fact that we notice is that the magnitude and variation of CoRMs

appear almost independent of the modulation ratio. Figures 5-17, 5-18, and 5-19 show the

contours of the measured RMS oscillating drag coefficient for 1:20, 1:10, and 1:3 beating

oscillations respectively. If the experimental data scatter is ignored (these contours have not 3
been smoothed), we see that CDRMs depends only very weakly on the rapidity of the beats.

It is left to a future investigation to determine whether or not this is merely a fortuitous 3
coincidence.

Before closing this subsection. it should be noted that the RMS oscillating drag coef- 3
ficient for beating motions is, in general, higher than the corresponding RMS coefficient.

for sinusoidal oscillations. For example, Figure 5-20 depicts the measured values of (.'t',.• I
for beating oscillations of peak amplitude ratio 2Y 1/d = 0.75 (open circles), compared to

the Cr,,,.. data obtained for pure sinusoidal oscillations of equal RNIS input amplitude 3
170 3
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Figure 5-20: CDRms for beating motion with 2Y 1/d = 0.75 (open circles), and for RMS-
matched sinusoidal oscillations (solid lines).

("RMS-matched") (solid lines); the increase due to the beating motion is evident. Our

drag data therefore confirm the numerical findings of Triantafyllou and Karniadakis [79, 78] 5
mentioned earlier, i.e. the presence of beating causes a simultaneous decrease of the mean

drag force and an increase of the oscillating drag force. I

5.2.3 Oscillating lift coefficients 5
As in the previous subsection on the oscillating drag coefficients, our first attempt at the

analysis of the beating lift forces involved a direct extension of the classical sinusoidal 5
formulation. From Chapter 2 (Equation 2.22), we see that this approach gives, for a beating

excitation of the form of Equation 5.1. a lift coefficient according to: 3
CA = C1, sin(27rflt + ol) + C:,, sin(27rf 2 t + 02) (5.17) 5
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I where CL, and CL2 are the magnitudes of the lift colfficient COmIlponeLnts at tile input fre-

quencies f, and f 2 respectively, and the angles 01 and 02 represent the phase differences

between the lift components and the corresponding motion (input) components. The coef-

ficients CL, and CL2 and the phase angles 01 and 42 were extracted from the beating data

using the Fourier techniques outlined in Chapter 2. For example, Figure 5-21 illustrates the

values of CL, and CL2 (circles and crosses respectively) obtained for a beating waveform of

relatively small individual component amplitude Yi/d = 0.15, compared to the sinusoidal

3 pure sine and 1:20 beats pure sine and 1:10 beats

1 .5 5............................... ....... 1 .5 - ,

I •1 - °

0.5 - 0 .5 ..... ......... ........ x
! ~x.

0 0
0.1 0.2 0.3 0.1 0.2 0.3I nondim. freq. nondim. freq.

, ure sine and 1:3 beats

.... x .. o = first component (Cl_1)

X1 x = second component (C1_2)

0.5

0.1 0.2 0.33 nondim. freq.

Figure 5-21: CL, and CL, for beating motion with Y 1/d 0.15, and CLo for component-
matched sinusoidal motion.

coefficient CL0 (solid lines) for oscillations of component-matched amplitude )'/d = 0.15.

3 To show that the beating lift force does indeed consist primarily of the two components

of Equation 5.17, we calculated the RMS oscillating lift coefficient from the expression

2 C CLIccalc. j 2I + L2
-•R._ (C = -- +) (5.18)

as well as directly from the beating lift force data traces. Figure 5-22 shows the ('ca"

3 values calculated from the individual components (open circles) compared to the L
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Figure 5-22: CLaMs calculated from from actual data, as well as C"L from
beating motion with 2Y 1/d = 0.75.

values computed directly from the data (asterisks), for beating oscillations of peak amplitude

2Yl/d = 0.75. We see that there are only small differences between the two sets of data. 5
except for a small peak of unknown origin, near a nondimensional frequency of 0.10, in

each of the actual CLR,,s data-sets. Nonetheless, the dual-frequency beating model of I
Equation 5.17 would appear to be a good one, independent of the modulation ratio. To make

the point further, Figure 5-23 shows the lift force power spectrum for the same experimental I
run related earlier to Figure 5-16: a beating motion with modulation ratio 1:3, amplitude

ratio 2Y 1/d = 1.00, and component frequencies f, = 3.760 H1z and f2 = 5.013 Hz. The 3
lift force is dominated by the components at the input frequencies fi and f2. (Note th'

contrast to the drag force power spectrum (Figure 5-16)). 3
From the previous paragraph, we conclude that a cylinder undergoing dual-frequency

heating motion sustains a vortex-induced lift force which may also be approximated as a

dual-frequency beating oscillation, of the form given by Equation 5.17. (We shall investigate

the limitations to this model in a later section.) The problem that arises, however, is that 3
17-15
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3 Figure 5-23: Power spectrum of a high frequency, 1:3 ratio, beating lift force trace.

3 the coefficients that characterize the lift force oscillation, CL1 , CL 2 , 01, and 02, are not easy

to estimate from available sinusoidal data. From Figure 5-21, we see that the presence of

3 a second frequency component in the input motion alters the value of the lift coefficient

at both frequency components. Figure 5-24 illustrates the variation of the phase angles 61

3 and 02 (circles and crosses, respectively) for beating oscillations of individual component

amplitude Y 1 /d = 0.50, compared to the component-matched sinusoidal results (solid lines).

3 We see that the phase angles too are substantially modified from the sinusoidal data. We

found that the effect of beating on the lift coefficient magnitudes and phase angles incr(ased

3 with oscillation amplitude, and at the higher amplitude ratios the beating data bore very

little resemblance to sinusoidal results. A further drawback to the dual-frequency spectral

model of Equation 5.17 is that the model cannot be related directly to the vortex dynamics

in the wake of the cylinder, since there is no evidence to suggest that vortices are shed at

3 two distinct frequencies.

From all of the above remarks, it would appear advantageous to simplify the position

3 by reducing the number of variables involved, and to seek a single parameter that would
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Figure 5-24: 01 and 02 for beating motion with Y1/Id =0.50, and 400 for component-matchedU

sinusoidal motion.
express the magnitude and effect of tb e lift force for the entire beating waveform. One

candidate would be the RMS oscillating lift coefficient CLmpcs, which has been widely used
in the past. particularly in connection with field experiments [71. In most cases howeverf

the calculation Of :?••does n)t include any information about the phase an91r. and so

must be viewed with great caution. W'ithout phase angle information. there is no way of 1

knowing whether the action of the lift force is excicong or damping, and hence the utility of

such data is enormously diminished.

In order to a fxpress both magnitude and phase angle information in a simplified tmanne,

we proceeded to define two "equivalent lift. coefficients,'" C-vadCA tthcrie

frequency f, to quantify the net magnitudes of the beating lift force in phase with cylinder

velocity and in phase with cylinder acceleration respectively. fhise coefficients are defined

bm direct power transfer and inertialo W riatculationse as:

y|

( ,I 7 , f ,(•)

knwn(hthrteatino h Iftfre secigodmig and"2Vhe-nce the (utilit.x+ of

suhdaai eomosydiiise.I
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I and

where CL(t) is the total lift coflhicient, (,it t) is the cylinder v''hwitv ,alculated (4i11ci V3 from the cylinder motion, j(tf) is the cylinder acceleration calculated sinilarly, a rd (.

denotes the appropriate cross- or auto-correlation at zero lag. In the case of pure sinuoiddal

oscillations, Equations 5.19 and 5.20 revert to the original definitions of ( and C'LAo as

CL, sin( 0o) and -CLo co0((O) respectively (see Equations 3.3 and 3.5). For dual frequency3 beating oscillations, some algebraic manipulations of Equations 5.19 and 5.20 yield (keeping

in mind that in our case Y, Y2)

3 CLA = 2-.fVl(CL1 sin(l) + 2)7rf 2h"2CL• sin(0 2 ) (5.21

3 and

CL -4, -4-, 2 f, 2 CL, cos(( ) - 47r2 fN 2 CL, cos((5.22)1-,,2 fc2 r171

Stated in words, the equivalent lift coefficients Cl .v' (and CIA, ) are those coeflbcients3 which. "'when applied to a sinusoidal waveform at frequency f, and of the same RMNS input

amplitude as the beating waveform, yield the same RMS output power (or inertial force)".3 Values of the above equivalent coefficients were calculated for all of our boating experi-

mental runs. Figures 5-25,5-26. and 5-27 are contour maps of the equivalent lifi cooflicient3 in phase with velocity for heati ng oscillations of modula lion ratio I:20. 1:10. an U I :: respec-

tively. As in the case of the the sil wusoidal cowflicienl ( 'jr_ - (t. 'I-u r 3-1-1 !. po•"iv1 v %alues !

I CLv denote an exciting effect of the lift forc, on th, liecinder oscillations. w•i',e 1egat ivi,

values denote a dannpig effect. The thick black lines marked on ieo fillr,; (r), rresimod iiT3 the zero contours, defining the primary and secondary excitation ret' ons. ,Coinpared to thlf

sinusoidal contours of Figure 3- 1-4. tlie priinrarv excitation regions for I he hoatitpu1 (ation

I have grown in extent, essentiaeiv ini thlie amnplitj, directionr. For .rlh of lhe nuodulationi

ratios, the secoi dary excitation region renni'ins onily in vestigial form. Thi ,-\'wnt of Itl

excitation region along the frqioericv ais i-s ii n to increase with hlie rapiudity V , :h, ie(a :

a distinct douibl, -peak ef1T*Ct. is s4eri for t li1, 11 :,ti• scillitions.

Iiontollr niaps a of 6he equi vale,•l li , ill phiase winh act'lerailntr al p il 'i.

in Fif ig r(-;s r-28. 5-29 a1 nd 5 :i0 for heat- of niodnilai Mii r;it ii I:21!. I1 1, nid 1 : r l wecivei,!,

=I
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As before, t)ositive values of CL_A, denote negative values of inertial added mass, and UiC

I versa. The thick black lines on the figures correspond to the zero contours. The beating

results are remarkably similar to the sinusoidal CL_.40 contours of Figure 3-15.1
5.3 Analysis of the wake responseI
5.3.1 Preliminary remarks

3 In the previous few subsections, we discussed the results of cylinder force coefficient mnea-

surements for beating oscillations. Most of our presentation reflected a direct extension of

3 the sinusoidal force coefficient formulations, and was not necessarily linked to the underly-

ing wake dynamics for a beating cylinder. Some light has been shed on the beating wake

3 dynamics from the low-Reynolds number flow visualization work of Nakano and Rockwell

[51]. In our case, we found it useful to perform time-domain processing on our beating force

3 records so as to detect and classify various types ("modes") of wake response.

The essential features of our time-domain analysis method have been introduced in

Section 3.7 of Chapter 3. For every data set analyzed, the time points corresponding to

each upcrossing of the motion and lift force time traces were determined, and then used to

I calculate "instantaneous" frequencies and phase angles. Results of tHii processing method

were displayed and printed graphically, consisting of plots of the normalized motion and lift

coeffi(3:.nt time traces, instantaneous phase angles. and hi.tograrns of t•h calculated motion

and lift frequencies.

For the beating oscillations tested, several different wake modes were identified. In the

following section, we shall discuss each of these wake modes, along with a typical example

U of each from the time domain processing.

3I 5.3.2 Classification of wake response modes

The majority of the beating runs analyzed were found to fall into one of four response

Stypes: periodic nonlock-in. frequency switching, random phase miodulation,z, or pe'iWdic phase

modulations. The precise behavior in any single case depended on the -;irrier frequency, the

amplitude ratio, and the modulation ratio.

I 1•
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Periodic nonlock-in. Figure 5-31 illustrates a typical example of periodic nonlock-in.

in this case for a beating oscillation of peak amplitude ratio 2Y 1/d = 0.15, nondiinensional I
carrier frequency f, = 0.144, and modulation ratio 1:10. As in the case of sinusoidal

oscillations (Figure 3-32 of Chapter 3), this mode corresponds to the unforced response of I
the wake, which does not "see" the external forcing. It is clear from the time traces that the

vortex shedding frequency (lift) is not the same as the external forcing frequency (motion); I
the frequency histograms reveal that while the motion frequency is centered near 0.15, the

lift force frequency is near the natural Strouhal value of 0.20.

Frequency switching. A very interesting mode observed in some of the time traces

was that of frequency switching, illustrated in Figure 5-32. The specific data set in the

figure refers to a 1:20 ratio beating motion with 2Y 1/d = 0.75 and f• 0.1302. The 3
instantaneous frequency of the lift force time trace is not constant, but appears to fluctuate

between two distinct values. The histograms reveal these two values to be the natural I

Strouhal shedding frequency, and the imposed external carrier frequency. The switching

behavior cinvincingly demonstrates the nonlinear dependence of the vortex-induced force 5
phenomena on the oscillation amplitude envelope: when the amplitude envelope is above

some threshold value, the lift force frequency locks on to the externally applied frequency. 3
while below the threshold value the wake responds in an unforced manner (with natural

Strouhal oscillations). 3
Random phase modulations. Figure 5-33 illustrates the mode corresponding to ran- I

dom. phase modulations, specifically beating oscillations with modulation ratio 1:10, am-

plitude ratio 2Y 1/d = 0.50, and carrier frequency f. = 0.1547. In this case, the lift force 3
time trace is very irregular, and bears no apparent relationship to the motion time trace.

The motion histogram is tightly centered around the carrier frequency. while the lift force 3
histogram shows a broadening effect. This mode is analogous to the case of quasipcriodw

rionlock-in for sinusoidal oscillations (Figure 3-33). 3
Periodic phase modulations. The most ordered of the four conmmon modes was that 3
of periodic phase modulations, illustrated by F'igure 5-34, pertaining to the specitic case of

1:10 ratio beats with 2Y1 /d = 0.50 and J= 0.208. The lift, force trace now resemnbles a 3
IS2 I



Figure 5-31: An example of periodic nonlock-in. 1:10 beats with 2Y 1 /d 0.15, f~=0.144.
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Figure 5-32: An example of frequency-switching; 1:20 beats with 2"1/ d 0.75. fc 0.1302. 1
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Figure 5-33: An example of randomn phase modulations; 1:10 b)eats with 2Y 1/d =0.50.
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Figure 5-34: An example of periodic phiase miodulations; 1:10 beats with 21"1 /d =0.50,

=0.208.I
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m well-formed beating oscillation, and the instantaneous phase angles have taken on a periodic

variation, with a pattern that repeats itself for every beat packet. Both the motion and lift

frequency histograms are relatively tightly centered around the carrier frequency. As we

shall see, for the most part. this mode takes the place of sinusoidal lock-in.

All of our beating data were processed by the time domain method, and the results

were assembled into wake response state diagrams, as done in the case of sinusoidal oscilla-

tions. Due to limitations of the processing method, the modes were difficult to identify at

nondimensional carrier frequencies ., below 0.10 and above 0.25, and peak amplitude ratios

2YI1/d above 1.00. Within these constraints, however, the wake-response diagrams provide

an excellent view of the behavior of the beating vortex-induced forces. Figures 5-35 and

3 5-36 are the response diagrams for 1:20 and 1:10 ratio beats respectively, and are seen to

be quite similar. At very low (or high, presumably) frequencies, the wake does not feel the

effect of the forcing and responds with periodic nonlock-in. As the frequency approaches

the natural Strouhal value, the response mode changes to frequency switching, and then to

random phase modulations. Within a certain range of frequencies bracketing the Strouhal

number, periodic phase modulations are observed. The overall shapes of the wake-response

diagrams are not dissimilar from the sinusoidal result, Figure 3-35.

For the fast 1:3 beats. a far richer distribution of wake responses was found. as illustrated

5 in Figure 5-37. The most striking feature of Figure 5-37 is a distinct "dual" behavior,

with two regions of periodic phase modulation surrounded by regions of random phase

modulation and periodic nonlock-in. In addition, while no systematic frequency-switching

was detected, a unique mode was found wherein the lift force exhibited beats at a modulation

3 ratio of 1:7. or twice the externally imposed ratio. This "period-doubling" behavior is

illustrated in Figure 5-38. which shows the time-domain processing results for the case of

1:3 beats with peak amplitude 2Y 1/d = 0.30 and carrier frequency f= 0.18.1. The beat

packets of the lift force time trace are clearly twice as long as the beat packets of the motion

time trace, and the doubling effect is reflected in the variation of the phase angle as well.

It should be borne in mind. however, that the inherent mathematical mod ulation period

Sof our beating input consists of two beat packets, not one. (From E,:quation .5.2, the first

beat packet occurs during the first half-cycle of the modulation sinusoid cos(2r'f.1 t). and

the ','coil beat )I(a:l. U( c ,, d1"I" the (,c"olld hall-ivche'.) I he lill lh, cv Wa;,V'lm1 du'ring
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Figure 5-35: Wake response state diagram for 1:20 beats.
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Figure 5-37: Wake response state diagram for 1:3 beats.

the "period-doubling" mode thus does not truly double the modulation period, but alters

I the shape of the lift force response within one modulation period.

5.3.3 Comparisons with published results.

In Section 5.1.2, we discussed the results of Nakano and Rockwell [51], who studied the ýtates

of response of the wake behind a beating cylinder at low Reynolds numbers. Although the

methods and waveforms used by those authors differed from ours. it is useful to compare

the wake response modes that we observed (from force measurement time traces) with their

data (from vortex flow visualization).

I Of the wake. response modes observed by Nakano and Rockwell. none of our time tracesOf~ ~ ~ ~ ~ ~ ~ ~~~~Ti thiaersos odsosre y k n standRoket.anne ofous tli me ranlcesil

ixhibited the f, pfriodic with f, lok-in belhavior. The in stataneous ph ase angle calcu-

lated in every one of our cases showed at least a slight periodic modul ation, and not once

assumed a, constant value associaled with pure lock-in. 'The lack of lock-in in our ,,a-

surements could perhaps be related to the difference in Reynolds nurnber regime a in( hence

tur lt,,,c• ,ffercts.
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Figure 5-38: An (examiple of 'period-doublinej": 1:3 1 is with 21• /d 2.V1O, f:: (J.1•1.
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I
Nakano and Rockwell's mode f,, pcriodic with f, nodlock-in corresponds well with our

"periodic phase modulation'*. Their words

I "a time-varying phase modulation of the near-wake structure, rolativo to tho

cylinder displacement"

could be used to describe our data too. The authors do not make any mention of a -random

3 phase modulation" mode, but perhaps they treated it as a special case of the same general

type. Their mode f m periodic with fe nonlock-in, mode (n + 1) could perhaps be a version

I of our "frequency-switching" - the extra pair of vortices they observed in the visualization

being perhaps associated with shedding at the (higher) Strouhal frequency for a part of the

* modulation cycle.

As for the "period-doubling" mode for fast modulations, Nakano and Rockwell observed

3 a similar pattern which they termed 2f, periodic with f, nonlock-in. They emphasized the

importance of this mode, which they believed to represent a subharmonic bifurcation of the

5 flow system revealing a route to turbulence in the wake. We have indicated earlier that

the mode we observed is not truly a "period-doubling", since the fundamental modulation

period of our waveform spans two beat packets. not one. We cannot say. therefore. whether

our observations indicate an underlying feature of the beating wake (similar to Nakano and

3 Rockwell's pattern), or stem merely from an artifact of our input forcing.

In conclusion, while obvious differences exist between our results and the previous data

3 of Nakano and Rockwell, the basic observations are consistent. A variety of vortex patterns

are seen to exist in the wake of a cylinder undergoing beating oscillations. depending on the

5 oscillation amplitude, frequency. and modulation ratio. Some of these patterns (particularly

the frequency-switching mode) illustrate the nonlinearity of the vortex shedding process, and

indicate that great care must be exercised in the conduct and interpretation of traditional

processing methods applied to the measured force signals.I
5.4 Discussion and Summary

In this chapter., we have investigated the behavior of the vortex-induced lift and drag forces

I acting on cylinders undergoing simple, dual-frequency aniplitude-niodulated oscillations.

Such amplitude-modulated, or beating oscillations occur in the VIV response of long flexibleI
1 91
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cylinders in sheared flows, and we believe that our work is a useful addition to the fiiilted 5
literature on the subject.

In the case of the vortex-induced drag force, tie presence of beating causes a reduction I
in the magnitude of the mean drag coefficient from established 'inusoidal values. 1For slowly

varying beating oscillations, the average mean drag varies with the instantaneous amplitude 5
of the cylinder motion., and can be well predicted by a quasistatic application of sinusoidal

data. For fast beating oscillations, this quasistatic analysis is not valid, and a linear su- U
perposition model gives reasonable results. The beating oscillating drag force consists of

several linear and nonlinear spectral components, and is difficult to predict from sinusoidal I
data. An RMS description of the oscillating drag coefficient is useful.

In the case of the vortex-induced lift force, we defined "equivalent lift coefficients" CL_V I
and CL-AC to express the net influence of the lift force in phase with cylinder velocity and

acceleration respectively. On the CL-V, contour maps. the principal effect of beating is I
a "lengthening" of the primary excitation region from a limiting amplitude of about 0.85

(sinusoidal oscillations. Figure 3-14) to about 1.10 (beating oscillations, Figures 5-25 - 5-27).

The CLAC contour maps for beating motions remain rather similar to the corresponding

sinusoidal data. I
Time domain upcrossing analysis of the motion and lift force time traces reveal a number

of different patterns, or modes, in the wake of a beating cylinder. Particularly interesting

among these is a "frequency switching" behavior illustrating the dependence of the vortex-

shedding process on the envelope of the oscillation amplitude. Pure lock-in behavior was

never observed; at carrier frequencies close to the natural Strouhal number. the lift force

sustains a regular phase modulation that repeats from one beat packet to the next. The

absence of lock-in for beating oscillations, but the presence of very definite excitation regions

in the CL_V/ contour maps, once again emphasizes the difference between the "lock-in" and

"excitation" concepts discussed in Chapter 3. The periodic phase modulation behavior II
provides an explanation for the lengthening of the excitation contours mentioned in the

previous paragraph - from the phase variation of Figure 5-34, it is clear that the cylinder u
sustains a periodic alternating damping and excitation as the envelope of the motion rises

and falls, with the net result being that the peak amplitude of motion could be higher thai 5
for the purely sinusoidal case. Given that the lift force time traces for only this periodic

phase modulation behavior look like regular beating signals, it would appear that the dual- 5
192 I
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I frequency lift model of Equation 5.17 is strictly valid only for this range of osc ilati0fl

5 parameters.

A general observation from all of our force coefficient measurernents and tiiv--domnain

analyses is that the slow (1:20 and 1:10) beating oscillations behave in a nonlinear quasistatic

fashion, while the fast ( 1:3) beats behave more in a linear superposition fashion. A possible

i explanation for this could be that the rapid beats do not allow the wake enough time to

adjust to the instantaneous envelope amplitude, thus giving a more linear appearance to

3 the measured force coefficients. In any case. we found that the peak amplitude of motion

2Y1 /d was more descriptive than the component amplitude Y 1/d for the slowly varying

3 modulations, and vice versa for the rapid modulations.

Numerous opportunities exist for the application of our beating data to engineering

3 predictions of VIV in actual structures. In situations where regul.)r beating motions are

expected or known to occur, the lift coefficient contour maps of Figures 5-25 - 5-27 can be

3 used with a simple "energy balance" roodA1 (as described in Chapter 4) to predict response

amplitudes. The drag coefficient contour maps of Figures 5-9 - 5-1i and Figures 5-17

- 5-19 can be used directly (or with appropriate interpolation) to predict the rop~n -nd

RMS oscillating drag forces. Application of the measured lift coefficient data in a more

3 formal predictive model depends on the specific details of the model; for instance, the

recently developed algorithm of Triantafyllou [83, 84] uses sinusoidal data in a time-don:ain

I calculation to simulate beating behavior, and does not use measured beating data for this

purpose. On the other hand, efforts are under way at MIT (Tjavaras, f77]) to extend the

3 sinusoidal wake oscillator concept (Hartlen and Currie [30], Skop and Griffin [711) to beating

oscillations, and it is expected that our data will provide a valuable means of calibrating

3 such a model.

1
I
I
I
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Chapter 6I
5 A Paradigm of Vorticity Control:

I Cylinder-Foil Vortex Interaction
I

6.1 Introduction

6.1.1 Preliminary remarks

In previous chapters, we have studied the vortex-induced forces acting on cylinders forced

with sinusoidal and amplitude-modulated oscillations under a variety of different forcing

conditions. The focus thus far has been on studying the integrated forces acting on the

cylinders (due to the engineering importance of these forces), rather than the detailed

structure of the flow that causes the forces. We now turn to the study of the vortical

structures behind a cylinder, with particular emphasis on ways to control these structures.,

and to reveal in the process the principal governing mechanisms. In order to focus our3 efforts, we shall study the interaction between the vorticity generated by a bluff cylinder

and that generated by an oscillating hydrofoil operating in the wake of the cylinder. Two

3 practical applications of this research are drag reduction through vortex repositioning, and

signature reduction through vortex annihilation (or equivalently, flow enhancement through5 vortex reinforcement when, for example, vigorous mixing is desired). In order to investigate

these ideas, we shall employ newly-developed flow visualization experiments as well as an

3 extended form of our force measurements.

1
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6.1.2 Background and motivation

It is well known that the characteristics ol the Kdirinin vortex wake behind a stationary

or oscillating bluff body are related to the drag force acting on that body. The IKirmin

vortices, through their arrangement aad direction of rotation. are intrinsically connected 3
with a wake velocity that is opposite in direction to the free-stream velocity. This leads to

a time-averaged "velocity defect" profile, which from momentum considerations, is related 3
to the drag force experienced by the body. Recent theoretical advances in the area of bluff

body wake dynamics (Triantafyllou ft al. [80]) show that the formation of the K~irmnn I
vortices is in fact due to an absolute instability of the time-averaged velocitY profile in the

wake, indicating that the vortex street and the velocity defect profile are intricately linked I
to each other.

From flow visualization experiments, we know that the cylinder wake can assume (or 5
be transformed into) a variety of vortex patterns or "modes". In Chapter 1. we reviewed

the work of Williamson and Roshko (951, tnd of Ongoren and Rockwell [531. Both papers I
showed that the vortex patterns in the wake of a circular cylinder vndergoing sinusoidal

oscillations could vary widely, depending on the amplitude and frequency of the oscillation. g
In the preceding chapter, we have reviewed the results of Nakano and Rockwell [511, who

studied the different vortex modes in the wake of a cylinder undergoing beating oscillations. I
In addition to the case of a single cylinder undergoing different types of oscillations, we know

that interaction effects between multiple cylinders can cause a whole new range of vortex m

patterns - the work of Strykowski and Sreenivasan [761, and Johnson and Zdravkovich [331

can be cited as examples. Several of our own force measurements (Chapters 3, 4. and 5) 1
support these flow visualization results.

A hydrofoil oscillating with some combination of linear translation (heave) and rotation

(pitch) produces a vortex wake as well. (We employ the word wake in a liberal sense since

the flow may in fact be a jet.) Under certain conditions of oscillation, the foil vortex wake

closely resembles a bluff body Kdrnirn street, but with reverse rotational direction of the

vortices: this flow is associated with an average velocity profile in the form of a jet. causing

a net thrust force on the foil. Figure 6-1 illustrates the (typical) vortex streets behind a bluff

body (cylinder) and an oscillating foil, together with the associated mean velocity profiles.

A number of researchers have studied oscillating foil thrust generation. Experimental g
196 3
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I Figure 6-1: The vortex wakes of a bluff body and an oscillatirg foil.

investigations (primarily flow visualization) have been conducted by Oshima and Oshima

[55], Oshima and Natsumi 154]. Frevmuth f17. 18]. and Koochesfahani [.3S>. Linear and

3 nonlinear inviscid theories have been presented by von Kirmin and Burgess 192]. Lighthill

[40. 39, 41], Chopra [9], and Wu [96, 97, 98]. A basic limitation of inviscid theory is that

5 the Kutta condition at the foil trailing edge. derived from steady-state foil operation. may

become invalid in unsteady flow - for example. Freymuth [18] has shown that under certain

conditions of large oscillation amplitude, dynamic stall occurs and the vortices gpenerated

at the leading edge may be used to advantage i, producing large thrust forces. In a receni

advance, Triantafyllou el al. [85] have demonstrated the importance of accounting for

the vortex wake dynamics behind an oscillating foil. In analogy with tHil flow behind a
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bluff body, the preferred frequency of vortex formation observed in thw wake of' a foil canj

be predicted by a linear stability analysis of the avwrage velocity (jet) profile, and this 3
frequency is also the frequency of optimal thrust generation. Tria:itaf'vllou , al. found

that this preferred frequency fF, when nondimensionalized by the average forward velocity 3
U and the excursion of the foil trailing edge (double amplitude) h, led to a foil "Strouhal

number" of about 0.30. SF0.30 (6.1)

U

Experimental results and data from fish observation confirmed that optimal foil efficiency U
is in fact achieved in the range 0.25 < SF < 0.35.

An interesting phenomenon that seems deserving of further investigation is the inter-

action between the vortex street generated by a bluff cylinder and the vortices generated I
by an oscillating foil operating in the wdke of the cylinder. This idea owes a great deal

of its motivation to the experimental work of Rosen [63], who visualized the flow around I
swimming fish. (Rosen studied small tropical fish, Brachydanio albolineatus, as well as

dolphins.) Due to the poor repreduction quality of Rosen's pictures, we have chosen not I
to show any of them in this thesis; nonetheless the conclusions reached from the pictures

and the accompanying text have no ambiguity. Rosen showed that the main forebody of a

swimming fish generates drag vortices initially arranged in a staggered. Kiriwin-like fash-

ion. The undulating motion of the fish afterbody and tall positions these upstream vortices I
so that they all lie on a single line in the wake of the fish. The vortices generated by

the tail appear to merge with the upstream vortices, and do not disturb the straight-line

configuration. Vortices positioned on a single line represent a flow intermediate between

the drag and thrust flows of Figure 6-1. and are associated with a uniform averaae velocity

profile causing neither thrust nor drag. The motion of the fish tail, therefore, brings about

a repositioning of the drag vortices, and hence presumably a drag reduction. The incrging 5
of the cylinder and foil vortices could lead to a reduction (or enhancement) of the wake

signature. The question then arises as to whether similar behavior can be detected in the 5
case of a discrete cylinder / foil tandem arrangement.

Figure 6-2 illustrates and summarizes our experimental investigation. The upstreami

cylinder is used to generate a Kirmin vortex street in the usual manner. The downstream B
oscillatinv foil and its vortex wake interaci in some manner wih the cylinder vortices. We
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Figure 6-2: Illustrating the concept behind our experimental investigation.

wish to investigate the manner in which this interaction takes place. and whether or not

3 the final vortex pattern produces a reduced in-line wake velocity (indicating a reduction in

in-line drag force on the combined system).

3 The implications of our tandem bluff body / oscillating foil concept go beyond that

of wake reduction. From a fluid mechanics standpoirt. what we seek to achieve is an

3 alteration of the mean flow properties via an alteration of the main vortical features. and

thus our experiments have important flow control ramifications. And while this thesis is not

3 concerned with biofluidmechanics. our experiments can be considered to be an abstraction

of the fundamental mechanism of fish swimming. and hence may provide important insight

3 to those who study aquatic animal propulsion.

1 6.1.3 The parameters of the problem

The complexity of the tandem cylinder/foil configuration is such that there are a great

many independent parameters governing the physical apparatus and oscillation scheme. In

this subsection. we shall consider these parameters and discuss our aTT emits to reduce their

number to a manageable level.

Although a stationary bluff cylinder generates a harinian vortex street. it is desirable to

oscillate the cylinder so as to generate a stronger and more uniform vortex wake. Thus the

I
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cylinder (of diameter d and length 1) may he forced withi a motion de'~ribed by I
lC:(t) =A•: sint(2.frt ft) tf,2! 3

where yc(t) is the instantaneous displacement, A( is the oscillation anmplitude. and f, I
the oscillation frequency. The foil, of chord length c, is placed a distance ,s behind thc

cylinder and subjected to a combined translation (heaving) and rotation (pitchingi motioi.

The heave motion may be described by

YF(t) = Arsin(2T'fFt + i') (6.3

where YF(t), AF, and fr are the displacement, heave amplitude, and frequency respectivelY 1
of the foil oscillation, and V, is the phase angle between the motion u,, the foil and that of

the cylinder. The pitching motion of the foil. at the same frequency fl; and about a pivoi

point p from the leading edge, may be described by 3
O() = OFsin(2%, fFt + V., +6) (6.W- g

where OF is the pitch angle amplitude and 6 represents the phase angle between the pitching

and heaving motions of the foil. The system operates in a flow of free-streani velocity U

obtained in a fluid of kinematic viscosity v.

Performing a dimensional analysis, we arrive at the following independent dinwn-iond-- I
paiatneters affecting the problem:

Reynolds number: Ud/v.

Length parameters: Geometric ratio cid. cylinder amplitude ratio ./d. foil amplitud,' I
ratio A/d., separation length s/d, model aspect ratios 1/d and 1ic. foil pivot point

p/c.I

Angle parameters: Pitch amplitude 9. phase angle between foil heave and cylinder heav.,

o. phase angle between foil pitch and foil heave t'.

Frequency parameters: Cylinder Strouhal number fcdlU, foil Stroubal number fpyhil. 3
where h ,- 2VA2F + (c - p)O29 is the double amplitude excursion of the trailinig edge.
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Note that other alternative nondiniensional groupings may be formnilat,,d: w,, !wk n ilri v

to illustrate the large number of variables (degrees of freedom) involved in 1he ,xperifi IIt al

setup.

In order to siniplity the a," -atus and proceeVd with the expVrtleit.-t In a itie lash iou,

we applied our judgment to select appropriate constant values (or limited ranges) for several

of the above parameters and remove them as variables. Our reasoning is outlined it the

paragraph, dow.

In the case of the Reynolds number, it is well known that a turbulent shear flow is only

weakly dependent on variations in Re. For each of our experimental setups. we selected one

value of Re in the turbulent subcritical regime: ; 550 for the flow visualization experinients

and , 20,000 for the force measurement experiments.

In'tially, one cylinder and two foil models were fabricated, giving us foil chord to cylinder

3 diameter geometric ratios cid of 1.00 and 2.00. Most of our tests were perfornme( with the

larger foil (cld = 2.00). since preliminary visualization experiments showed that the smaller

foil (c/d = 1.00) produced very weak vortex interactions.

Three values of cylinder oscillation amplitude ratio were selected to ensure strong lock-itt

vortex shedding, these were Acid =0.500. 0.6671, and 0.833. A mnajor simlplification of the

experimental apparatus was obtained by using a single heaving mechanism to oscillate both

the cylinder and the foil: this resulted in identical cylinder and foil oscillation amplitudes

and frequencies, and a value of zero for the phase angle t'. Since I.' wa_- fixed. th, Separatioln

length ratio s/d was made highly variable (21 discrete values between 1.5 and ".() so• •- tlo

alter the phase of encounter between the foil oscillation and the upstr-ani v)orlx streeot

3 Fixed values were chosen for the model aspect ratios and foil pivot poht,. fron the .point

of view of experimental convenience. The cylinder aspect ratios I/d were 5.33 for the flow

visualization experiments and 12.00 for the force measurement experiments, while the foil

aspect ratios I/c were 2.67 for the flow visualization experiments and 6.00 for the force

£• measurement experiments. The foil pivot point ratio p/c was chosen to be 0.33 in all cases

(from the leading edge).

The design of the foil pitching oscillator used in the flow visualizalion experients wa,&

such that it allowed tlihe following discrete values of pitch amplitude 0: 0". 7"' 15". 30". .15".

and 60". Of these allowable values, most of olir runs were conductod xwit Ih (# at 15", 3(1", or

45003I '20
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Based on earlier experimenIs f Trian t afyItou t a!. f85ý ) and fis Ii osr, rvat ion daria l tose(il !

[63]), the phase angle : between the foil pitching and heaving n1otions was fixed at 90".

As mentioned earlier. the phase angle v, between the foli and cylinder heavinlg moTions wwas i
fixed at 0"' ue to experimentaJ (:OiiLItderationb. I

In order to ensure strong lock-in vortex generation, the experiments were conducted at

cylinder Strouhal numbers in the range 0.17 < fcd/U < 0.23. As noted earlier, the foil

oscillation frequency ffl: was the same as the cylinder oscillation frequency fc; hence the U
selection of the cylinder Strouhal number determined the value of the foil Strouhal number.

Eventually. as a result of the simplifications noted in the above paragraphs, our experi-

ments were conducted with different combinations of the following parameters: amplitude I
ratio Acid, Strouhal number fc/d. pitch amplitude 0. and separation length s'd. As we

shall see in the following sections, the separation length ratio s/d turned out to be a very U
important variable-

6.2 Flow visualization experiments

6.2.1 The Kalliroscope tank 3
In order to conduct flow visualization experiments with a minimum of dedicated equipment.

we found it convenient to use a commercially available product called "Kalliroscopet" fluid.

Tins fluid (which we shall abbreviate to "tK-fluid") is a very dilute colloidal suspension of 3
organically derived guanine flakes in water. The guanine flakes have a typical dimension

of 6 x 30 x 0.07 pm - thus they are very small and have a highly anisotropic shape.

Although the specific gravity of guanine is about 1.62. the observed sedimentation velocity

of Kalliroscope flakes in water is only about 0.1 cm/hour [441. We added a blue-colored I
aqueous dye to the water to aid in the visualization: the overall effect of the flakes and

the color being to make the K-fluid resemble several popular brands of detergent liquid. A 5
number of experimenters have conducted flow visualization tests with K-fluid: we urge the

reader to refer to the paper by Matisse and Gorman [441 for further details. 3
It is important to consider the action of the K-fluid suspension when subjected to a

flow; i.e. the manner by which the flow visualization is obtained. Gorman and Swinney [221 3
used K-fluid to visualize the onset of turbulence in the Tayler-Coutte system, and stated

that the Kalliroscope platelets "align with the flow;". The ant hers also reported that the 3
202 I
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5 intensity of the scat terel Iight nIlsured wIth thIIr 1K- fluid apparat uI.,> had Iw sam,' ' rý -

as velocity weasurements using a laser Doppler velocinieter. and that the influetice of tIII-

1 suspension on the properties of mire water was less that 0.1 'X. Sava.,, 1671 perf)rnd a

general stochastic ana lyss of tile l11otiOll of 61hiL, ciii {moulai partlc'im> ill a vi'oi" ildulti. ýItlI

a view towards predicting the observed light field in flow visualization experiments. lIe

concluded that in the presence of a shear flow, the flakes align themselves to be parallel to

the stream surfaces, which are thus revealed in the visualization. Sava, showed that this

technique of using small suspended particles is particularly unsuitable for visualizing flows

3 involving small amplitude perturbations to backgrounds with high shear. e.g. Toilien

Schlichting waves in a boundary layer. We infer from his analysis that the K-fluid is well

3 suited for visualizing vortex flows, which are large-scale, high shear perturbations over

uniform backgiound flows.

3 In order to utilize the K-fluid. we constructed a separate, much smaller analog of the full-

size towing tank. The original "K-tank" (as we shall refer to it) consisted of a rectangular

3 Plexiglas structure of dimension 2.44 x 0.15 x 0.15 in; .he tank was later replaced by a

broader version of dimension 2.44 x 0.60 x 0.15 m. A small, belt-driven "carriage'" was

constructed to ride over the K-tank, supported rigidly by linear ball bearings on one side

and a single cam follower on the other side. ', DC motor was employed to provide the

3 motive force to the towing belt, and allowed constant carriage velocities of up to 0.15 m/s.

An ingenious oscillation mechanism. inspired hy the experimental apparatus of Freviuth

1 [18], was designed and implemented by Barrett [31. Figure 6-3 is a schematic ill-:stration

of this mechanism, which allowed for both translation (heaving) and rotation (pitching)

3 motions to be provided by a single DC motor. Independently adjustable settings provided

for a heave amplitude of up to 3.81 cm, a pitch angle amplitude of up to 60'". and an

1 oscillation frequency of up to 0.35 Hz. A number of values of phase angle o could be svt:

we used only the setting of 900. The oscillation inechanisai was installed on til,, towing-

£ carriage such that the cylinder and foil models were suspended vertically into tih, K-fluid.

via a mounting assembly that drovided for close control of the separation length between the

Smodels. The K-tank was illuminated by diffuse lighting from overhead fluorescent sources.

A high-resolution black-and-white video camnera was mounted on a tripod bolted to Ilt,

3 carriage, enabling video recordings of the wake patierns to be obtainied from a frame of

reference moving with the carriage., Still photographs of the, wake, rold hv obtal"-ed 1) I
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Figure 6-3: The oscillating mechanism used in the Kalliroscope- tank.

ways: by taking photographs of a TV monitor while playing back the video recordings, andI

also by directly using a 35mm still camera bolted on to the carriage tripod.

6.2.2 Initial experiments
Our flow visualization tests started on a disappointing note -- after a number of trials. itI

became apparent that some modifications would be required to the apparatus. The principalI

difficulties that we encountered were the following:

e The presence of tthe foil in the wake of tihe circular cylinder always disrupted the lock-I

in vortex shedding from the cylinder. so that a strong and uniform upstream vort-ex

street was not attainable. This behavior was a problem since it was our intention to

study the vortex interaction between the cylinder and the foil. not to suppress the

cylinder vortex street.I
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* Our original K-tank was found to be too narrow for the size of niodols tested. The large

blockage ratio caused a distortion of the cylinder and foil vortex streets, preventing a

proper interpretation of the wake behavior.

In order to overcome the above difficulties, two modifications were made. A new, wider,

Plexiglas structure was acquired and installed as the Kalliroscope-tank. Fortunately, the

modular nature of the towing carriage and oscillation mechanism allowed for a minimum

of new parts required in order to implement the changeover. Blockage phenomena with the

new tank were not detected.

To avoid the disruption of the vortex shedding by the presence of the foil in the wake,

3 we evaluated a D-section (half-circular) bluff cylinder as our upstream Kirmin vortex gen-

erator. Little information exists in the literature on the behavior of vortex-shedding from

a D-section cylinder, so we first conducted a number of stationary (nonoscillating) tests

with the D-section alone. We towed the model at different speeds through the K-fluid and

counted the vortices shed over a given distance in order to determine the Strouhal number.

Figure 6-4 shows that the behavior of the Strouhal number versus the Reynolds number for

the D-section cylinder was found to be very similar to the corresponding behavior for the

circular cylinder (see Figure 1-2), - the net result being that we could use the D-section in3 place of the circular cylinder with no changes to our selected oscillation parameters. Tests

with a D-section and hydrofoil tandem arrangement proved that the D-section indeed per-

X formed its intended role of generating strong drag vortices without disruption due to the

presence of the foil. An additional unanticipated benefit of the D-section was that the phase

3 of the vortex shedding (relative to the cylinder oscillation) was found no longer to depend

on the oscillation frequency (in a small range bracketing the Strouhal number): i.e. the

3 frequency was no longer an important variable parameter. All of our further experimental

runs were successfully conducted at a single cylinder Strouhal number of 0,20.

1 6.2.3 Successful experiments

I The testing schedule, and results

Following our modifications of the flow visualization apparatus, tests were conducted at a

I regular testing "grid" consisting of three heave amplitude settings, three pitch amplitude

settings, and twenty separation lengths. For each combination of heave and pitch amplitude.
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Figure 6-4: Measured Strouhal number versus Reynolds number for a D-section cylinder. I

we calculated the apparent foil Strouhal number SF (Equation 6.1) as well as the apparent

foil angle of attack a, given by 3
a = tan- (21rAFfF) - 9 (6.,5)

We have used the term "apparent" since the actuA.l flow velocity at the foil is unknown: the

free-stream velocity U has been used in the calculations. We originally wished to concentrate

our tests at foil Strouhal numbers SF z 0.30, and small angles of attack a < 15'. As it

turned out, we achieved very similar results for several of the values of SF and a. Table 6.1

lists the heave and pitch amplitude combinations that we attempted; each entry of the table

was repeated for 20 sepaxation length settings.

Upon conducting the tests and reviewing the video recordings, we found that the oscil-

lating foil did indeed have a strong effect on the cylinder vortex street. In many cases, the

foil achieved a dramatic repositioning of the Kirmin vortices, with the mechanism of this 3
repositioning apparently being a suction ehtect as the vortices passed over the leading edge

of the foil. In some situations, this repositioning effect was only temporary, as the vorticitv 3
206 I
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N Number Heave (Acid) Pitch (9) Strouhal # (SF) Aung4 of attack (o)

1 0.500 150 0,246 +16.86
2 0.500 300 0.354 +01.86
I o0500 40 A 0.43 - 1411-

0.667 15° 0.302 +24.65
5 0.667 300 0.395 +09.65

.. [ 6 0.667 45_ 0.509 -05.35

I 7 0.833 15° 0.358 +31 .01
8 0.833 300 0.441 + 16.01
9 0.833 450 0.550 +01.01

Table 6.1: Heave and pitch amplitude combinations tested.

generated by the foil and the (repositioned) cylinder vortices interacted in such a manner as

to quickly re-establish a drag configuration in the wake. However, we did find three distinct

(and repeatable) modes wherein "beneficial" interaction occurred, in that a net reduction

or elimination of the in-line wake velocity was achieved. We labeled these modes (reflecting

the sequence in which we found them):

1. Vortex pairing.

2. Destructive vortex merging.

3. Constructive vortex merging.

I Figure 6-5 shows the various parameter combinations at which the above modes were found.

The X-axis of the figure refers to the spacing or separation length, and the Y-axis lists the

heave and pitch combinations of Table 6.1. The occurrence of a mode is indicated by the

number of the mode in parentheses. A number followed by an asterisk indicates that the

corresponding mode was observed in a less clearly discernible fashion. Figure 6-5 shows that

the spacing s/d was found to be the most important parameter, and for certain combinations

of heave and pitch, it was possible to achieve more than one mode by varying s/d suitably.

In the paragraphs that follow, we shall describe each of the three modes in detail,

illustrating our findings with appropriate photographs of the wake, and accompanying ex-

planatory diagrams.

I
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Figure 6-5: The locations of the three interac-tion modes observed.

Mode 1: Vortex pairing

In the -vortex pairing" mode, each cylinder vortex pairs up with a foil vortex of the opposite !

sign; the resulting sets of counter-rotating vortex pairs slowly drift away from the centerline

of the wake. The orientation of the vortex pairs is such that there is little or no induced I
in-line wake velocity (i.e. in the direction of the free-stream velocity).

Vortex pairing is illustrated in Figures 6-6 and 6-7. The figures show a sequence of I
photographs of the wake taken at instants of time approximately T/4 apart, where T =

1/fF is the time period, of the oscillation. The photographs focus on the region of the I
wake surrounding the oscillating foil, and show the vortex patterns both upstream and

downstream of the foil. The direction of towing is from left to right, giving an equivalent free-

stream velocity from right to left. Hand-drawn figures of the vortex positions accompany

the photographs, and are useful in understanding the mechanism of the vortex pairing I
phenomenon. In all of the drawings. the cylinder's Karman vortices (coming from upstream)

are labeled with alphabets (A, B, C. etc.), while the foil vortices are labeled wit h numerals

(1, 2, 3. etc.).
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Figure 6-6: Wake interaction mode 1: Vortex pairing. Views I and 11.
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Figure 6-T: Wake interaction mode 1: 'Vortex pairing. Views III and IV.
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We start our explanation with Figure 6-6. which illustrates the instants I and II of the

cycle. During instant I, the foil is at the bottom of its heave stroke. To understand the

I mechanism, we concentrate on cylinder vortices C, D, and E, and foil vortices 3 and 4. In

the first view, cylinder vortex C has been moved down from its upstream positioni tuc to

3 foil suction), while foil vortex 3 is in the process of formation. In addition, the foil has just

encountered cylinder vortex D near the leading edge.

3 View II of Figure 6-6 shows an instant T/4 later, when the foil is at the centerline,

moving upwards. Foil vortex 3 has been shed into the wake, and cylinder vortex C is being

3 rolled off the tratiling edge as well. Cylinder vortex D is now "trapped" by the foil suction

and is moving upwards from its original position.

3 Figure 6-7 illustrates instants III and IV of the vortex pairing cycle. View III sho'.,z an

instant of time T/4 later than view II of the previous figure, and the foil is now at the top

3 center of its heave stroke. Cylinder vortex C has separated from the trailing edge of the foil,

and is now paired with foil vortex 3 of the opposite rotational sign. Foil vortex 4 is in the

3 proceF of forma.tioýn from the trailing edge, while cylinder vortex D has been successfully

repositioned by the suction of the foil.

3 View IV of Figure 6-7 shows the final instant of the sequence. TV - foil is at the centerline,

moving down. Foil vortex 4 has been shed from the trailing edge, and cylinder vortex D is

3 being swept backwards to pair with vortex 4. Downstream of the foil. the vortex pair 3-C

is convecting slowly away from the wake centerline, and there is no induced wake velocity

in the in-line direction. Just upstream of the foil, vortex E is trapped by the foil suction

and is moving downwards; at an instant T/4 later it will assume the position of vortex C

3 of view I (Figure 6-6) and the cycle will continue.

m Mode 2: Destructive vortex merging

The previous mode of vortex pairing illustrated a type of behavior wherein the lK'rm.n

vortices from the cylinder and the vortices created by the foil had approximately the same

circulation strengths, enabling them to form counter-rotating pairs on an equal footing (i.e.

without domination by one source of vorticity). In most of the cases. however, the vortices

generated by the foil were substantially stronger than the cylinder vortices. Mode 2 is the

situation of "destructive vortex merging", wherein the cylinder vortices are repositioned
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and then absorbed into the foil vortices of opjx)site rotational sigri. ilo resulting- merged 5
vortices lie on a single iin iu the wake, and there is no induced inline wake velocity.

Destructive vortex merging is illustrated by the sequence of photographs and drawings

in Figures 6-6 and 6-9. As before, each ingure contains two plotograptis taken at instants

T/4 apart in time, for a total sequence of four views. Cylinder vortices are labeled with I
alphabets, while foil vortices are labeled with numbers. The free-stream velocity is from

right to left. m

We start with view I of Figure 6-8, where the foil is at the bottom center of its heave

stroke. We concentrate on cylinder vortices C, D, and E, and foil vortices 3, 4. and 5. m

The strong vortex off the trailing edge in view I is foil vortex 3. Cylinder vortex C is just

discernible below vortex 3, and is about to be merged into it. Cylinder vortex D is below I
the leading edge of the foil.

View II of Figure 6-8 shows tl,- situation at an instant of time T/4 later; the foil is I
now at the centerline and moving up. The foil vortex 3, which has merged and destroyed

cylinder vortex C, is now well into the wake. Foil vortex 4 is being formed at the trailing I
edge, while cylinder vortex D is trapped below the trailing edge and is being repositioned

upwards. In addition, the foil is about to encounter cylinder vortex E near its leading edge.

The sequence is continued in Figure 6-9, which contains views III and IV. View III, at

a time T/4 after view II, shows the foil at the top center of its heave motion. Foil vortex I
4 is prominent behind the trailing edge; cylinder vortex D can be seen just above and in

front of vortex 4. Cylinder vortex E is now above the leading edge of the foil: t is partly I
obscured by the shadow of the foil in the photograph.

Finally, view IV of Figure 6-9 shows the foil at the wake centerline, on its way down.

Vortex 4 (which now includes the merged cylinder vortex D) is well into the wake. Foil

vortex 5 is in the process of formation, while cylinder vortex E is being repositioned by the m

foil suction. The merged vortices 3(C) and 4(B) lie on a single line in the wake (this is

clearest in views I and III). While there is substantial turbulence in the wake. there is very !
little in-line velocity. 3

2I
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Figure 61-8: Wake Interaction nitode 2: Destructive vortex inerging. View-ý and~ 11ý
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I
Figure 6-9: Wake interaction mode 2: Destructive vortex merging. Views 111 and IV.
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I
SMode 3: Constructive vortex merging

Our flow visualization showed that there were two types of vortex merging L;',havior the

U merging of vortices of opposite sign described as mode 2. as well as the mnerging of vorti(o',

of the same sign. We termed this second type (the third mode, overall) -constructive vortex

merging". The sequence of photographs and associated drawings of Figures 6-10 and 6-11

illustrate mode 3, with the vortex labeling convention and flow direction as before.

The first two views are contained in Figure 6-10. We shall concentrate on the cylinder

vortices (B), C, and D, and the foil vortices 2, 3, and 4. View I illustrates the situation

with the foil at the bottom of the heave stroke. Clearly visible in the wake is the foil vortex

2, into which has already merged the cylinder vortex (B). (Parentheses are used to denote

a vortex which is no longer visible as a distinct entity.) Cylinder vortex C is located above

the foil.

View II of Figure 6-10 shows the pattern at a time T/4 later. The merged vortex 2(B)

has moved downstream into the wake. Foil vortex 3 is forming at the trailing edge of the

foil, which is now at the centerline and moving up. Cylinder vortex C is being swept back

over the foil, and will eventually merge with vortex 3. Cylinder vortex D is as yet too far

away to be affected by the suction of the foil.

The sequence is continued in views III and IV of Figure 6-11. View III shows the foil at

the top center of its heave stroke. Foil vortex 3 has grown in size to the point that it has

absorbed (merged) the cylinder vortex C. The combined vortex 3(C) is clearly on the samie

straight line a. the previous merged vortex 2(B). which is still visible downstream.

The final photograph, view IV, shows the foil at the centerline and moving down. The

merged vortex 3(C) is well into the wake. From the trailing edge, foil vortex 4 is just

forming. Cylinder vortex D is being swept b;.ck below the foil, to eventually merge with

vortex 4. Cylinder vortex E is a& yet unaffected by the foil; during the next half-cycle it

Swill be swept back to merge with the next foil vortex, and so on.

6.2.4 Conclusions from the flow visualization experiments

In the previous paragraphs, we have discussed in some detail three wake modes ohscrv(I

3 during the flow visualization tests. The oscillating foil acted (in most cases) to repositioni

the cylinder vortices, as well as generate strong vortirity of its own. Tbe three modesI
21"
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Figure 6-10: Wake interaction mode 3: Construictive vortex mnerging, Views I and 11.
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discussed above were those cases wherein th, interac ion bhetw#en thc foil ar vli d r I
vortices was such as to result in little or no visible flow velocity in the wake: i.e. thios were

the "successful" modes. i

"lTie miost important variable parameter go(vcrtlmig Oe outconte in tio wae , " aýlouaiu to

be the separation distance s (or the separation ratio s/d). For certain combinations of heave I
and pitch amplitudes, it was possible to achieve all three modes by varying the separation

distance suitably. Of the three modes, "vortex pairing" was the most sensitive and difficult I
to reproduce. "Destructive vortex merging" and "constructive vortex merging" were found

to be robust and repeatable modes. I
The photogrz phs of Figures 6-6 through 6-11 focus closely on the patterns immediately

upstream and downstream of the oscillating foil. but do not show the evolution of the wake U

at greater downstream distances. Figure 6-12 addresses this shortcoming by including three

photographs of the wake downstream from the foil. Photograph A of Figure 6-12 shows

the wake when the foil is actually not present - i.e. it shows the bluff body KirmAn

wake behind the D-section. The familiar, staggered arrangement of vortices gives rise to a m

substantial in-line velocity in the wake that "follows" the cylinder. (On the photograph. the m
wake velocity gives the appearance of an elongated whitish region between the vortex rows.)

Photograph B shows the wake during the "vortex pairing" mode. The counter-rotating I
pairs of cylinder and foil vortices are seen to be nearly parallel to the wake centerline. The

absence (at least visually) of an in-line wake velocity is quite marked. The vortex pairs I
slowly convect away from the wake centerline, but do riot acquire any noticeable 1n-line1

motion. Finally, photograph C shows the wake during the "'constructive vortex merging"

mode; the situation for the destructive merging mode is actually rather similar. The merged

vortices are seen to all lie on a relatively straight line in the wake. While the visualization (in

this still photograph) is rather confused due to the relatively high amount of turbulence. it

appears that an in-line velocity does not exist. (The videotaped segment clearly supported I
this last observation.) It should he noted that a disappearance of the visiblk wake in such

flow visualization tests does not necessarily prove that the wake is completel]% absent. and t

velocity measurements are required to confirm the situation. Nonetheless. it does appear

that the three modes described in the last. silbsection do reduce the in-line wake velocity.

and hence presumably the in-line drag force.

What of the reduction or enhancement of the wake signature due to the merging of the 3
21- I
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cylinder and foil vortices? From the visualization, it was clear that Mode 2 involved a de-

structive merging of oppositely-signed vortices, and presumably a weakened resulting vortex

street; while Mode 3 involved a constructive merging of like-signed vortices and therefore a

strengthened vortex street. however, due to the absence of vedocity measurements. quanti-

tative calculations of the vortex strengths were not possible, and the results of the merging

behavior must be considered inconclusive. U
Also inconclusive was the question of the energy costs required to bring about the in-line

drag reduction, or in other words, the efficiency of the foil. In all our tests, the foil generated

substantial vorticity, indicating a substantial input of energy. From the flow visualization.

it was not possible to make any quantitative estimates of the work input from the foil. II
To summarize, our conclusions from the flow visualization tests were the following:

"* An oscillating foil acting in the wake of a bluff body can achieve a repositioning of 3
the bluff body's Kirmin vortex street.

" Due to interaction between the repositioned Krxmin vortices and the foil's own vor- U
ticity, a reduction of the mean in-line wake velocity can be achieved. This reduction of

the in-line wake velocity is likely to lead to a reduction of the in-line drag force on the I
combined system. The efficiency of this drag reduction process cannot be determined

from flow visualization tests. i

" Some of the interaction modes involved a constructive or destructive merging of the

cylinder and foil vortices, leading presumably to an enhancement or reduction of the

wake signature. The precise behavior (in a quantitative sense) could not be determined 3
from the visualization.

6.3 Force measurement experiments i

6.3.1 The apparatus and methods U
In order to complement our flow visualization investigation of the tandem cylinider/foil 3
system, we designed a series of force measurement experiments in the main testing tank

facility. The requirements for our experimental apparatus were daunting. even withi the 3
reduced set of variable parameters as discussed in Section 6.1.3. We now desired the abilitY

to oscillate a cylinder and a foil model in heave, and rotate the foil model in pitch 3
22o
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while towing the apparatus forward at a constant velocity. At least seven quantities had

to be measured - lift and drag forces on the cylinder, lift and drag forces and torque on

the foil, the heaving motion (identical for both models), and the foil pitching motion. In

addition, the spacing (separation iengti) between tile cyiiiiuer and lfo niodeis had to bte

highly adjustable.

Although these force measurement tests were conceptually just an extension to our pre-

vious cylinder tests, all of these new requirements necessitated an entirely new apparatus.

After reviewing a number of possibilities, we opted for a "double-yoke" structure. Figure 6-

13 illustrates this apparatus, which consisted of two inverted-U "yokes" pivoted at their

upper ends. The forward yoke carried the fixed cylinder (D-section) model in a manner

identical to the original apparatus. while the aft yoke carried the rotating foil model con-

nected via a chain and pulley arrangement to a second (smaller) SEIBERCO motor that

provided the pitching oscillation. (The aft yoke was similar in many ways to the apparatus

used by Triantafyllou et al. described in [85].) Each yoke could be rotated at the pivots

and held in position at any angle; thus adjustments to the separation length ratio s/d were

achieved by rotating both yokes through equal and opposite angles either inwards (towards

each other) or outwards (away from each other). Vertical oscillations of the entire assem-

bly were obtained with the same SEIBERCO motor and leadscrew table combination used

earlier. It should be mentioned that the double-yoke design owed a great deal to the efforts

of Barrett [3].

Given our excellent experience with the piezoelectric force transducer used for the cylii-

der experiments, we decided to use additional sensors of the same type. Thus the lift and

drag forces on the cylinder and foil models were measured with two KISTLER 9117 trans-

ducers, while a KISTLER 9065 was used to measure the pitching torque on the foil. Our

original LVDT was used to measure vertical motion, and a resistance potentiometer was

employed to measure the angle of rotation. Each of the above sensors was carefully cali-

brated using known forces and displacements. The seven data signals were transmitted to

the control room, filtered, and then sampled using the same systems described in Chapter

2. An expanded version of the original experiment control program was used to provide the

tracking signals for both the heave and pitch SEIBERCOs as well as the carriage motion.

Rewritten versions of our MATLAB processing code were used to process the acquired data

off-line.
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Figure 6-13: The double-yoke force measurement apparatus.

6.3.2 Experimental results I
In order to conduct the force measurement experiments in a manner as similar as possible

to the flow visualization tests, we used the same experimental "grid" as in Table 6.1. As

an initial step. tare value tests were conducted with only the cylinder (foil removed), and

then with only the foil (cylinder removed). With both models in place, we performed tests

at each of the amplitude and pitch combinations of Table 6.1 and 14 separation lengths. 3
The separation lengths were chosen to cover an entire wavelength of oscillation, equal in

our case to five diameters (A = U/fc = (1/Sc)d = 5d). 3
From the test data, we extracted values of the cylinder mean drag D,, , the foil thrust

(or drag) The, and hence the overall in-line drag force Dm, - ThF. We defined an overall

2
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3 in-line drag coefficient C`oer1l` according to

=vC•an = D•c - Thr (6.6)SvldU2(G)

where for consistency, we have used the cylinder diameter d in the normalization of both

force quantities.

3 In addition to the in-line force, we evaluated the power input by the foil, given by

PF = (LF YF ) + (M d (6.7)

where LF(t) is the lift force (time trace) on the foil, TF(t) is the torque on the foil, and

I JYF(t) and 0(t) are the measured heaving and pitching motions given Equations 6.3 and 6.4.

As used in Chapter 5, the notation (...) denotes a cross-correlation at zero lag.

From the measured foil thrust force and input power, we calculated the apparent effi-

ciency ?IF of the foil, given by
7F= Ur (6.8)

As before, we have used the term "apparent" since the actual flow velocity at the foil is not

known (except for the tare value tests), and the free-stream velocity U has been used in the

3 calculations.

All of our experimental data were processed for the above quantities, which we then

plotted as functions of the separation length s. With all the tests completed and the results

available, we found the following results were true for every combination of pitch and heave.

a The cylinder drag force Dmc did not vary appreciably from the tare value conducted

with the cylinder alone, nor did it vary much as a function of separation length.

* The foil thrust force Th, was, in every case, considerably higher than the tare value

3 with the foil alone. The thrust force showed a considerable dependence on t he spacing.

As a result of the foil thrust, the overall in-line drag coefficient. on the combined system

3 was smaller than the cylinder tare value.

* The apparent efficiency of the foil was a strong function of the spacing.

I Typical examples of our results are shown in Figures 6-14 and 6-15. for the case of heave

amplitude ratio Ac/d = AF/d = 0.833 and pitch angle amplitude 9 = 45(. Figure 6- 14

223

I



U

shows the overall in-line drag force plotted against the separation distance (ii lterms Of I
cylinder diameters). Also on the figure are the measured tare values for the cylinder drag

(tested without the foil), and the foil thrust (tested without the cylinder). In this case

the tare value of tie thrust coefficient was actuaiiy negative, indicating that tile Ioil Wad,

producing drag. With the cylinder present, the foil started producing thrust in sufficient

quantities to reduce the overall drag coefficient below the cylinder tare value, with the

reduction being a function of the spacing s. Figure 6-15 shows the apparent foil efficiency

for the same oscillation parameters, and bnce again, the dependence on the separation

length is clearly seen. I

6.3.3 Conclusions from the force measurement experiments

Figures 6-14 and 6-15 of the previous subsection showed that the oscillating foil caused a

reduction of the overall in-line drag force on the cylinder / foil system, with the foil thrust

and efficiency being dependent on the separation length between the models. It is important

to clarify the significance of these results, in the light of our vortex interaction study.

The fact that the foil produced drag with the cylinder absent (the tare value), but•

produced thrust with the cylinder present, is an interesting but not unexpected result. It

should be borne in mind that the presence of the upstream cylinder causes a reduction of

the mean flow velocity that the foil encounters, and hence the operating characteristics of

the foil (in terms of the Strouhal number and angle of attack) are quite different in the two

situations. Since the actual flow velocity at the foil is difficult to estimate (and in any case.

is not uniform), we have used the freestream velocity U in all the calculations. It could be

argued that the reduction in the overall in-line drag coefficient is simply the net effect of

the foil thrust counteracting the cylinder drag, and is neither surprising nor significant. 3
The importance of our results lies in the dependence of the foil thrust and efficiency on

the separation length, or spacing between the models. If no vortex interaction took place

(i.e. if the foil acted as a simple thruster), one might expect a monotonic reduction of

efficiency with increase of spacing, with the variation arising solely from the (monotonic) 3
alteration of the freestream velocity (the wake defect becomes smaller with distance from

the cylinder). In fact Figure 6-15 appears to indicate that there are two mechanisms at 3
work: an average reduction of efficiency due to the variation of the average velocity. and a

2
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marked peaking behavior superimposed on this average reduction. Qualitatively identical I
trends were observed at all the other combinations of heave and pitch amplitudes as well.

Such a peaking behavior could only mean one thing - that the operation of the foil is U
strongly affected by its interaction with the upstream i,'aranii vortex street. Since we iad

no means of performing flow visualization together with our force measurement apparatus. I
we cannot directly correlate the variation in the efficiency of Figure 6-15 with the vortex

modes discussed in the previous section. It is interesting to note, however, that the two peaks I
in the efficiency occurred at spacings of about 4 diameters and 7 diameters respectively,

corresponding well with the occurrence of modes 2 and 3 respectively during the K-tank I
visualization tests (Figure 6-5).

To summarize, our force measurement experiments offered the following conclusions:

"* The operation of the foil behind the cylinder caused a reduction of the overall in-line

drag force on the system, consistent with the reduction of the mean wake velocity

observed in the flow visualization tests. 3
"* The thrust generated by the foil, and its apparent efficiency, were found to be strongly

dependent on the spacing between the models. We infer from this that the forces on I
the foil depend significantly on the flow interaction with the upstream vorticity.

It is important to note that the flow visualization tests described earlier in this chapter

and the force measurement results above proved to be entirely consistent with each other. 3
despite the large difference in Reynolds numbers and other obvious factors. We should also

underscore that these experiments were performed on an exploratory basis, and we made no 3
attempt to fine-tune the performance of the system. The use of an oscillating foil offers an

intriguing way to alter the vortex street of a bluff body, and hence to reduce the fluid drag 3
force acting on that body. Researchers investigating the use of oscillating foils as propulsive

devices should carefully study the interaction of the devices with upstream vorticity. 3

I
I
I
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I Chapter 7
I

Conclusions

7.1 The essential conclusions of this thesis

I In keeping with the broad scope of bluff body vortex wake dynamics, this thesis has at-

tempted to shed light on a variety of related issues. With all of our experimental tests.

we have tried to fill in some of the vast parameter space that exists in the areas of vortex-

induced forces and vibrations - not merely in terms of raw data, but more importantly in

terms of newer and better conceptual understanding. By no means do we imply that we

have solved all the problems in this field! The situation can be compared to an existing

brick wall representing the available knowledge on the subject that has been accumulated

over the preceding several decades; this thesis adds a layer of bricks to the wall. but the

wall is far from complete.

Given the relatively general nature of the work, it is important to summarize the essential

conclusions of the thesis. In the next section. we shall summarize each of Chapters 3 through

6 and evaluate the various contributions therein. First, however, we will state the most

important conclusions of this thesis, or in other words, the essential "message" resulting

from this research.

The most important work in this thesis is that related to the original motivation - an

investigation into the vortex-induced forces acting on cylinders undergoing beating oscil-

lations. Such beating oscillations are a fundamental response of long tubulars in sheared

flows, and to the best of our knowledge, this thesis contains the only laboratory-scale results

applicable to these motions. Perhaps more significant than the actual force coefficient re-
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suits are the comparisions to pure harmonic data --- that beating causes an extension to h l I
sinusoidal lift force excitation region, a reduction in the mean drag force, an arnplificatioll

of the oscillating drag force, and that the beating wake depends in a nonlinear fashion oil

the instantaneous oscillation amplitude, It ib hoped that these re.uitab, coilI)dU \•,ii kilk!

other important ideas in this thesis (summarized in the next section), will help scientists I
and engineers in applying available experimental data to the estimation and control of VIV

in full-scale situations.

7.2 Principal contributions of each chapter 1
7.2.1 Stationary and sinusoidal oscillation tests

In Chapter 3 of this thesis, we measured and analyzed the forces acting on a smooth circular

cylinder undergoing sinusoidal oscillations transverse to the free-stream (towing) velocity. I
Such data is far from unique, and very similar experiments have been conducted by Bishop

and Hassan [6], Mercier [47], Sarpkaya [65], and Staubli [75). Our original motivation in m

conducting these experiments was to lay the basis for the beating tests of Chapter 5, but as

we proceeded with the tests, we began to make several novel observations. These ii'cluded: m

The variation of the phase angle. We noticed that the phase transition behavior was 5
quite different for large oscillation amplitudes when compared to that for small oscilla-

tion amplitudes. This phenomenon has not been studied by any' other researcher, and 3
we believe that the outstanding sensitivity and resolution of our apparatus enabled us

to capture the behavior. We believe that this "phase-flipping"' phenomenon is at least 3
partly responsible for the amplitude-limited nature ot the vortex-induceui it iorce.

The variation of the oscillating drag force. At high frequencies of oscillation. we mea- l

sured very large values of the oscillating drag force. While this behavior has been pre-

viously commented on by Mercier [47] and Sarpkaya [65], we have greatly extended

their limited measurements. In addition, we evaluated the higher harmonics of the

oscillating drag force and showed that the overall picture was entirely consistent with m

the low Reynolds number flow visualization patterns of Williamson and Roshko [95].

The lift coefficient excitation region versus the lock-in region. In a very important m

observation, we noted that the lift coefficient excitation region (wherein a cylinder may 3
228 I



3 be excited into oscillations by the flow) is not at all the saine as the lck-in rewgion

(wherein the vortex shedding frequency is "captured" by the oscillation frequency). In

3 the existing literature, the two concepts have been used interchangeably. We showed

that excitation is determined ironi phase consideraiion.. wilite iock-in is ,etermined

3 from frequency considerations, and it is important to distinguish between the two.

In addition to the observations listed above, many of our data analysis and presentation

techniques provide new insight. We believe that our presentation of the large quantity of

data in the form of contour maps is easier to understand and is particularly suitable for use

in computer programs. Our histogrammic analysis technique may become a valu Jble way

3 of identifying the wake response from force measurement data.

7.2.2 Error analysis and application to VIV predictions

Chapter 4 presented several important considerations in the applicability of our data to

3 full-scale predictions.

Error analysis. A comprehensive error analysis showed that our measurements had very

I low random and systematic errors, and compared well with the existing literature.

VTV prediction. We devised a simple "back of the envelope" VIV prediction scheme using

our experimental data, and showed that this scheme gave good results which compared

3 favorably with full-scale measurements. Our model exploited the concepts of energy

balance and the amplitude limited nature of the lift force. While the basic ideas are

3 well established, we believe that they have not been used together in this fashion in

any other published work.

3 Noncircular cross-sections. We demonstrated the versatility of our apparatus and lech-

niques by conducting experiments with several noncircular bluff body cross-sections.

3 including a wire-rope, a chain, a simple offshore riser section, and a haired-fairing vor-

tex suppression device. By comparing and contrasting the data obtained with these

I models to smooth circular cylinder results, we illustrated the importance (and ease)

of conducting dynamic oscillation tests for each cross-section of interest.

2
I
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7.2.3 Beating oscillation tests I
Chapter 5 presented our data on beating oscillations, important because long tubulars in

sheared flows respond with complex. beating motions. and pure-sinusoidal data no lonrge

apply. We conducted amplitude-modulated tests with several different oscillation ampli-

tudes and frequencies, and three modulation ratios. While all of the data of Chapter 5

represented original findings, the most significant contributions included the following: 3
The behavior of the drag force. We showed (for the first time experimentally) that the

presence of beating caused a reduction of the mean drag coefficient and an increase

of the RMS oscillating drag coefficient. Our beating data, presented in the form of

contour plots, can be used directly to estimate the drag coefficients in various situa-

tions. In addition, we evaluated the use of various schemes to extrapolate commonly

available sinusoidal results to the beating case. I
The behavior of the lift force. Our analysis of the beating lift force demonstrated that 3

while the overall lift coefficient magnitudes remained comparable to sinusoidal data.

there were substantial difficulties in measuring and interpreting the behavior of the 3
lift coefficient phase angles. We defined equivalent lift force coefficients on the basis

of direct power transfer and inertial force calculations, and presented contour maps

of these equivalent coefficients. The primary excitation region for each of the beating

modulation ratios considered was found to be larger in extent than the corresponding 3
sinusoidal excitation region.

Histogrammic analysis of the wake response modes. Using time-domain histogran- 3
mic analyses of the beating force traces, we showed that the cylinder wake could r,,-

spond to the amplitude-modulated excitation in any of a variety of modes. A particu- 5
larly interesting mode observed was frequuncy-switching, wherein the vortex shedding

frequency switched alternately between the impsed carrier frequency and the nalu- 3
ral Strouhal frequency, thus illustrating the strong nonlinearity of the process. The

modes we detected compared favorably with the flow visualization results of Nakano 3
and Rockwell [51].

Our beating force coefficient measurements and wake response analyses are expected to he

of use in a variety of full-scale situations involving long. flexible cYlinders in sheared flow'. 3
230 2 :~,
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3 In addition, we expect that an important applicall on (f our dala will 1,w in t,, I.uibrhilu!

of quasi-theoretical "wake-oscillator" models iepresenting beating excitation. suich aNll,

3one currently under development by Tjavaras 177].

3 7.2.4 Cylinder-foil vortex interaction

In Chapter 6 of this thesis, we performed a novel vortex interaction study. l)rawing froii

3 fish observation data, we evaluated the concept of an oscillating foil acting iii the wak, of

a bluff cylinder and interacting with the K~rnidii vortices shed by tle cylinder so as to

effect vorticity control. Such control of vorticitv has two inIportant practical applicatiohs:

the reduction of the in-line wake velocity (and hence the in-line drag force) through vortex

I repositioning: and the reduction or enhancement of the wake "signature". A new flow

visualization facility, and a new "double-yoke" force measurement apparatus were desianed

I and used for these experiments. We obtained the following findings:

Vortex repositioning. Via suction, the foil succeeded in repositioning the cylinder vor-

tices from their Kirmi.n configuration. Beneficial interactions (wherein the in-line

3 wake velocity was reduced) between the repositioned cylinder vortices and the foil

vortices were achieved in three distinct modes.

The importance of the spacing ratio. Both flow visualization and force mleasurermenls

showed that the separation length ratio .,/d between the cylinder and the foil stron lly

affected the behavior of the system.

3 Our results from this experiment have important consequences. not the leasi of them beinz

in the area of oscillating foil propulsion. Our data showed that in the presence of incomirng

3 large-scale patterns, an oscillating foil may enhance its efficiency and thrust simply by"

properly synchronizing its oscillation with lhe arrival of these patterns.

7.3 Recommendations for future work

I Anyv work of research inevitably raises as many or more questions than ii answenrs. ad

in this final section we shall suggest varios ;avenues of research leading from thiis I hesi

While our experimental apparatus and analysis met hods gave us stable and ropealable dala

and proved to be efficient and versatile to u ,,. there ar. furlther iiniprrovnienlýs that arc,
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possible. In fact, as our experiments progressed. we noted a variety of ways to ,od(lifv or I
extend the system to enable newer and better testing programs. Some of our suggestions

in the paragraphs that follow relate to correcting these shortcomings and extending the

capabUities o0 our apparatus, whiie otiiers reiate to the evaiuation o1 iromisi ne' w iove -

stemming from this work.

7.3.1 Achieving higher Reynolds numbers.

Most of the experiments in this thesis were carried out at a Reynolds number Ud/v of about 3
10,000. This value is well into the turbulent subcritical regime, but is still too small to be

relevant to many practical situations. Many offshore flows, for irstance, involve cylinder

Reynolds numbers of 106 or higher, i.e. into the critical and supercritical regimes. It

is unclear as to the extent to which even the qualitative trends in the force coefficients 3
measured in subcritical flows are applicable to the supercritical case.

Due to the inherently finite length of the towing tank facility, higher towing speeds 3
lead to shorter (and hence less accurate) measurement durations. It is possible to increase

the Reynoi'is number by increasing the cylinder diameter, but this is also li ,,d by the I
necessity of avoiding blockage and free-surface effects.

Are tests at higher Reynolds numbers simply not possible in this facility? We believe 3
that it may be possible to artificially simulate the effects of high (i.e. supercritical) Reynolds

numbers by introducing upstream flow turbulence (by towing an appropriate grid ahead of 3
the oscillating apparatus). It is known (Blevins [7]. Barnett and Cermak [21) that free-

stream turbulence in an otherwise low-Re flow can cause early transition of the cylinder 3
boundary layers, thus giving the impression of a higher effective Reynolds number. To be

sure, turbulence does not cause the same effects with all cross-sections (with sl.arp-edged

cross-sections, there is a lowering of the effective Reynolds number -- see Ioberson c al.

[62] or McLaren et al. [46]), and care must be taken in the interpretation of the results. 3
We believe, nonetheless, that forced-oscillation tests in the presence of turbulence will be "i

useful and relatively inexpensive way of extending the capabilities of our apparatus. 3

I
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7.3.2 Combined in-line and transverse oscillations.

We know that vortex shedding imposes two sets of oscillating forces on a bluff cvlinder

an oscillating transverse lift force at the frequency of vortex shedding. and an oscillalinil

in-line drag force at twice the frequency of shedding. In the case of a long tubular, the

predominant response is in the transverse direction, but there is an oscillating response in

the in-line direction as well. The overall motion often resembles a "Figure-8", as has been

observed in field experiments (Alexander [1], Vandiver [91]).

Attempts have been made by other researchers to conduct laboratory-scale forced-

oscillation tests with combined in-line and transverse oscillations. but not very much is

known about the results. Alexander's [1] apparatus proved to be unreliable, Moe and Wu

[49] have not published comprehensive results, and Pantazopoulos' [571 data is proprietary.

With our experience in motion control systems, it should not be difficult to design and

implement an apparatus capable of these combined motions, preferably with the ability to

reproduce amplitude-modulated oscillations in both directions. A comprehensive program

of testing would then establish the extent to which the lift and drag coefficients measured

with pure transverse motions (such as those presented in this thesis) are modified due to the

additional in-line vibrations. Such information would doubtless be of great help to scientists

3 and engineers alike.

7.3.3 Combined flow visualization and force measurements.

It has long been the "Holy Grail" of experimental hydrodynamicists to S.uccMssfnf1Y combine

3 flow visualization and force measurements with the same apparatus. (The emphasis was

added in the previous sentence because many attempts have been made!) The difficulty

3 is that good, clear, visualization is almost always possible only at low Reynolds numbers

(where turbulence is small or nonexistent), while direct measurements with force transducers

3 are possible only at higher Reynolds numbers (where the forces assume sufficient magnitude

to be measurable).

3 The modern technique of Digital Particle Image Velocimetry (I)PIV) may provide the

long-awaited solution - DPIV has been used successfully to obtain "numerical snapshots"

3 of the velocity field in relatively high-Re flows (Willert an(l Gharib [l-1]). A system similar

to that described in the above reference is currently under installation in our Testing Tank

I
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facility. We expect to have the capability of obtaining flow visualization together with our I
established force measurement techniques in the very near future.

Several of the experimental runs described in this thesis are candidates for repeat tests I
with the combined force / visuaiization system. it wouid be very eliigteil g t U l iLua i/,

the "phase-flipping" behavior of Chapter 3, as well as to shed light on the huge amplification

of the oscillating drag force, also in that chapter. Visualization would provide excellent

clues to the lift force cancellation behavior observed during tests of the riser section of

Chapter 4. The beating wake response modes. inferred from the measured force traces in

Chapter 5. could be confirmed from the DPIV velocity fields. And finally, simultaneous use U

of visualization and force measurements is exactly what is required to "tune" the operation

of the tandem cylinder / hydrofoil combination studied in Chapter 6.

7.3.4 Tests with multiple cylinders 3
In Section 4.4.3, we studied the vortex-induced forces on a "canonical" riser section consist-

ing of a central cylinder with two smaller satellite lines. That multiple cylinder arrangement

was assumed to oscillate as a single entity, and the forces were measured on the entire group

as a whole. A quite different problem, which is becoming increasingly common with the

advent of deepwater oil production platforms such as TLPs, is to predict the behavior of

each of a number of separate risers groupet in close proximity. The presence of the other

cylinders is expected to alter the vortex-inquc.d lift and drag forces acting on each cylinder

in the group.

It is very likely that the next several years will see many attempts by researchers ill

the field to design forced- and free-oscillation experiments to investigate the forces acting

on multiple cylinders. With our double-yoke apparatus as described in Chapter 6. we are 3
already in the position of being able to conduct a first set of such experiments with two

independent cylinders. We believe that this data will be useful in establishing a fr "ework 3
for future, more ambitious tests, and will likely be very interesting to engineers in the

offshore field. 3

I
I
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7.3.5 Comparative evaluation of vortex-suppression devices

In many practical engineering situations, it is necessary to reduce or suppress damaging

vibrations caused by vortex shedding. In such cases, add-on devices such as splitter plates.

fairings, helical strakes, axial shrouds, and the like are often employed in an attempt to

interfere with the vortex shedding mechanism, A number of such devices have been reviewed

by Blevins [7] and by Zdravkovich [102]. It is apparent from these reviews that reliable.

quantitative comparisons of different vortex-suppression devices are very hard to obtain,

since most of the systems have been developed in an ad-hoc manner by different researchers.

IWe believe that a comprehensive program of testing of different vortex-suppression de-

Svices under identical experimental conditions would be of great benefit. In Section 4.4.4. we

discussed the evaluation of one such device (the haired-fairing), via forced-oscillation tests

with our experimental system, combined with our simple energy-balance VIV prediction

scheme. Given the ease with which different models can be installed in our apparatus, con-

ducting such a comprehensive testing program would likely be inexpensive and worthwhile.

7.3.6 Further i esearch on vortex interaction

In Chapter 6, we showed that an oscillating hydrofoil acting in the wake of a bluff cylinder3 could interact with the cylinder Kzirmgin street so as to reposition the large-scale vortices

and change their strengths, resulting in a reduction in the in-line wake velocity (and hence

I drag force). While our investigation proved the concept, we did not attempt to "tune- the

various parameters to maximize the efficiency of the foil. In particular. we noticed in our

I experiments that the foil generated substantial vorticity of its own. indicating a substantial

work input. It may well be possible to optimize the foil oscillation parameters so as to bring3 about the same interaction effects noticed in our tests, but with considerably less foil vortex

generation.

3 In order to provide greater control over the cylinder and foil oscillations, it would proba-

bly be necessary to modify our double-yoke apparatus. We suggest that an updated version3 include two independent heave oscillation mechanisms. This would enable the cylinder and

foil models to be moved at different amplitudes, with a variable phase angle between the

I cylinder and foil oscillations. Controlling this phase angle would control the phase of en-

counter of the foil with the upstream vortex street. and so would eliminate the need toI
I3-



I

adjust the spacing betwe( z the models. I
From the experimental results of Rosen [63], it is clear that parts of the fish body (in

addition to the tail) participate in the repositioning of the Kirinin vortices. Thus the

most beneficial vortex interactions may take piace with a coitainuou• ulduiaing -u ia•,:.

rather than a rigid oscillating foil. Such a device could be thought of as a "two-dimensional I
fish", or as an "undulating splitter plate", or as a "magic carpet mechanism". It would be

fascinating to design such an apparatus and conduct flow visualization (and perhaps force I
measurement) experiments with it.

2
I
I
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