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1. Introduction
Let S be a function space consists of complex (or real) valued functions defined on RY. We
sav that § is shift-invariant (S1, for short) if S is invariant under all integer translations (referred
to hereafrer as shifts), te.,

(1.1 VaeZ' (fe§S &= fl--al€S).

In this paper we consider SI spaces which are subspaces of d
L py d
Ly, = Ly(IR").

for some 2 € p < x. The simplest type of shift-invariaut spaces is the PSI space ("P” for
sprincipal”; which is the case when S is closed (usually in the underlying p-uorm. bur sometimes
in a weaker topologyy and the shifts of a single function o {=the generator) are fundamenral
i 5. Approximation from PSI and other shift-invariant spaces is pertinent to the theory and
appiirations of several subareas of analvsis, and in particular to Multivariare Splines. Radial Basis 1
Approximation. Wavelets and Sampling Theory.

In many actual approximations. the SI space S is refined to vield another approximating
space S, with, presumably. better approximation properties. T:e standard (known as stationary
refinement is by sealing, that is. Sy is obtained by dilating the tunctions in S:

Sh=a.5:={onf:=f(-/h): feS} 1

Sometimes (cf. [DR}) it is necessary to refine § by means other than dilation.

The besic way for measuring the approximation “power” of S is via the tool of approrimation
orders. Roughly speaking. the collectivi of spaces {Sy}nso is said to provide approximation
order £ > 0. if, for all sufficiently smooth f, 1

dist(f, Sp) = O(h*).

Hereo dist is measured by the relevant p-norm or one of its relatives (a Sobolev norm. a local p-norm.
ere.). For some time, the analvsis of approxtmation orders of PSI spaces was largely dominated
by the Strany-Fir conditions, [SF]. These conditions assert that. if S is generated by a compactly
supported o, if «5(0) # 0. and it the scale { Sk} is stationary, then the approximation orders provided
by { Sy }a are determined by the order of the zero ® has at each of 27rZ2*\0. The standard method for
converting the information abont these zeros into approximation order results is the polynomial
reproduction / quasi-interpolation argument; (cf. the book [C], the survey {B]. and the
references therein). However, several important PSI spaces that were introduced and studied in
recent years do not satisfy the requirements imposed above on the PSI space. One difficulty arises
in the area of radial basis functions, since there the typical generator ¢ is not compactly supported.
A totally differen: difficulty arises in the area of box splines: while the box spline is compactly
supported. its corresponding {Sy}y is not a stationary one (nuless the generator ¢ is a polynomaal
hox splinej. The attempts to cover those cases by generalized quasi-interpolation argumnents led
to some remarkable achicvements, but did not solve the problem in its entirety. In retrospect, it
seems that the quasi-interpolation approach fails to realize the approximation order of general PSI
spaces, a fortiori of general SI spaces.




New approaches that circumvent quasi-interpolation were recently developed in [BR2) (p = x
aud {BDR1] (p = 2). While the two methods differ in the approximation scheme they employ as

i

well as in their error analvsis. they boil perform the entive ervor avalysis on the Fourter dormain,
henee, In turn, aveold the imposition of decay rates on the generator . Aiso. importantiv, borh
characrerizations do not require {s,,},l to be stationary. amd. furthermore. [BDRI1] even dizspense
with the regularity assumption o103 # 0. Extensive discussions of the various applications of the
airs of [BR2] and [BDRI} to radial function approximation can be found in %3 of [BR2} and
R rvspwr;wl\: Further discussion of the literatnre can be found in §3.2.
[n the present paper. we revisit PSIspaces generated by compactly supported funetions csuch
spaces were coined local in [BDR2P. Primarily. we aim at establishing results on the appre
ovder of hor splrne spaces, and providing explicit approximation schemes that realize thay order,

Sirigr
nion

Tie main findings here with respeet 1o box spline spaces are as follows:
vt W derermine exactly {in Theorem 3.4) the approximation order of hos ~pline spuces in
« Ls-vorm. In no norm has such result been known before, although, "«)r p o= [BR2] came
very close to rhe mark. We also show rhat the saturation class is trivial (ef I'Iwm*m 3.7
© We present tin 53.35 an expliclt approximation scheine in the form

Z o —aiJfiia).

acZ !

ror A SNty choscn convol

PN Ty o pmeenm - 1 PO B PO MU 1 G- TR ot
tionoperttor ToWo oroes b 2 schicine vealizes the Lo-approXinaiion

L
nrder. and. as @ omatter of fact, maintain the same approximation order in Ly-norms. 2 < p < x
cTheorem 3.13 .0 The resulrs also apply to the Lcase. if 4 mild smoathness condition 1= imposed
on 2 f Ao with A the Wiener algebrat.

We develop a new error analvsis method which differs from the two of [BR2} and {BDR1L
With rhe aid of that approach, we show that for 2 < p < ~ (with some additional smoothness

ons required of the box spline o, in the p = x¢ case) the approximation scheme used provides

comd
Iraneous approximation to functions and their derivatives {Theorem 3,175,

Most of the analysis that is developed to deal with box spline spaces was found 1o apply
o to general local PST spaces. Due to that reason. we first present. in §2. results that coneern

approxinmtion orders of local PSTspaces. and only then apply these results. in B30 to the box spline

1

1
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Mozt of the proofs are collected in §4.

Somn alter completing the present paper, I received a preprint of Kyvriazis” paper [K]. The
per (K] deals with similar problems to those considered in the present paper. and to a limited
exent emplovs similiar analvsis (primarily. both papers invoke the approximation scheme of (BR2}
ard aizo borls paper applv the Hauzdorf-Young theorem), However, the foet of the two papers
seern to be gniite different, henee they seenn to be ('()mplf*uwnmn one to the other. [K] focuzes an
stationuwry refinements, and attempts to hmpose as mild as possible decay condition of the generator
o, f‘w'rv' ore. a substapual effort is devoted there to proving that various constructed approximants
are indeed raken from the underlyving PSI space. The paper [K] suceeds in providing satisfactory
Tesylts .11 =0 to L, norms where p < 2, its class of sinooth funetions is less restrictive than here, and
it established Strang-Fix-like conditions similar to those derived in [BDR1j. The present paper
focnses on box spline space. henece avoids on the one hand questions of decay rates of the generator.
bur needs on the other hand o deal with non-stationary refinements. Also. we present here resalts
on stnnltaneons approximation to functions and derivatives, a topic which was not considered in
W] and, finallv, onr results apply to p = ~, as well {({K] relies on the Michiin multiplier theorem.
henee deals with p < ).

Notations: we have already used the notation sy, for the dilation operator o

on: [ fl/R). = S
g Lty g
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Norms of vectors » € RY are denoted by [rlp. namely.

d
lrly = O L, )2,
=1

with the default notation |x{ := }.r|2. The function

z— |zl
which is used extensively in the paper, is denoted by (the essentially self-understood notation}
I
For 8 € €%, the notation ¢y stands for the exponential function

8-

egtw— &
. o . . . N . 1
Uniess otherwise stated. all domains of functions in this paper are taken to be R Thus L, =
L, R &
W=
We alse

S'tR*Y) ithe space of all d-dimensional coiplex-valued tempered distributions ;.

xj R* i {the Sobolev space of all functions whose derivatives up to order k are in L1, ete.
abbreviate

e = HfllL,-
2. Approximation from local PSI spaces

Our model is as follows. We are given an indexed set & := {0y} C L,. The lovality assumprion
ustally means that each op is supported in some bonnded. h-independent domain Q. but, while
such an assnmption holds indeed in the box spline case. we do not necd it here. We only assume
that each op 15 compactly supported. Regardless of the value of p. we define, for any compactly
supported o, the PSIspace S{o) to be the infinite span of the shifts of ¢

Sto) = { Y o( — a)e(a)}.
aeZ

The convergence of the infinite sums can be taken pointwise. since the sum is actually finite on
compact domains. No a-priori growth condition is imposed on the coeficients {cla)} ez Al
thongh this definition slightly deviates from the one given in the introduction (our space is not
a subspace of Ly, nor S(o) 1N L, need be closed), that difference would not matter in subsequent
discussions.

The scale of spaces {Sy}s is cbtained by dilating the PSI spaces S(#4):
Sp={onf = f(:/h): fe€ S(on)},
and the approximation orders provided by {é}5 is concerned with the rate of decay of
(2.1 disty(f. Sh) = Inf{}}f — sll, : s € Si}

as h — 0. More precisely. we say that {¢s}s provides approximation order k. if for every f in some
stogothness space V), ¢ and small enough A,

dist,(f, Sn) < const RN fllp k.
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with §f!,% some norm of f. The scale {Sptn is stationary if o = ¢ for all A, R, In such a
case. { Sk ta are all dilates of one basic PSI space S(o).

The space 1}, ¢ of "sinooth enough”™ test functions is defined as follows. For two conjugate
exponents 1 < g < p<oc,and k>0,

2.2) Vo o= {F 0 Il = I+ DR Fll g omey < ).

o

Note that. for an integer k. the Hausdorff-Young Theorem implies that 1y ¢ is contimiously embed-
ded into the Sobolev space 1.

Given f € V5 &, we seek an approximant for f from S, Siace Sy is the h-dilate of Sty we
can define the approximan for fin terms of an element 451 f) € S{os . Leo approximare £ by
Tl ALy AUy s, neeessarily, a tpossibly infinice) Hnear combination of the shifts of . We
obtain rhe coetficients in this combination as the restriction to Z% of a continuous tin fact. entire]
function Jui /0. In summary. we approximate f by ap Ap(f), where

ERY Al fr =Y onls = a)u(fita.

Thus. the particnlar details of our approximation scheme rely on the choice of the maps
F o £,

As itorurns out, the results below on approximation orders require four conditivas of the maps
{15, andany collection that satisfies these four properties will do here. Three of these conditions
are indepeondent of the specific approximation order we are after. and are listed now.

[y

(2.4) Conditions required from the maps {J, }x:
a) Each Jp, is a dilation followed by convelution. that is

()
(2.5; TPy = (Thon )Y

by Each T, ts a function supported in some h-independent origin-neighborhond B C [-= .. =¢
fer For <ome by > 0. {Ty }hen, are uniformly bounded on B {henee on RY).
Note that we do not impaose smoothness couditions on Ty, aud therefore J, need not 1o map
L, ino izself. However. {o4.J, }s are uniformly bounded endomorphisms on each 1, 4.
Theorem 2.6. Let 2 < p < ¢ be given and let ¢ be its conjugate exponent, For k > 0 et U, be ,
as in {2.2). Let {on}n be a familv of compactly supported functions, and B an origin-neisiborhaod.
Assume that the collection of sequences

men  (20ZN0) 3 B (b + D70+ Dllpmy. k< ho.

lies in £,(22ZZ*\0) and is bounded there. Suppose that {J bhen, satisfy conditions {a), (b) and () ’
of (2.4) (with respect to the present B), and, in addition,

I sup fi(h + )75 (1 - @Th)HLV(m < o¢.
h<hy
Let Ay be defined by (2.3). Then: ’

1f = on(AnlN 1, may < const o flipk. f € Von

4




Proof. cf. §4.1. [ Y

We remark that the proof of Theorem 2.6 provides the following bound oun the error:

W —ondn(HlL,mey <

{2.7) const B Fllpx (1Tl L ey lmialle,eezevoy + 1A + 107K ~ 6aTaliL, (s, + (1)),

with th(‘ o(1) expression always bounded by 1, decays to 0 with h. and otherwize depends only on
f.pokand Bl and with coust depending only on p. Therefore, assuming that B is fixed. one might
Iy to (.h()().\t’ Jy such that the sum HT),,}[’x{};;,‘,nl}\.‘h'%,-43'37;2-1\15, + i!"l + H)‘k(l =, Te )y e 18

minimized.
A natural choice for Jy is vi\'en by Th = \/on. with Y a characteristic function of zome
O-neighborhood B. In this case D71 ~ 04 Ty) vanishes on B. hence condition (d; in the

rheorem rrivially holds. The ()nly c.ondmon that needs to be checked then is condition {¢). viz.. the
uniform boundedness of {T,}. which amounts to the uniform boundeduess away of zero of Lo
Hence we have:

Corollary 2.8. Assume thar the Fourier transforms of the familv @ := {0y} cn, of compactly
supparted funetions are untformly bounded away from O on some origin-neighborhood B Then.
foreverv 2 < p < x.oeverv k> 0 and b < by,

dist, (f. S4) < coret R*Y £l x( imealls iozzao) +0(1)). Yf €4

with {my 5} defined as in Theorem 2.6, with const independent of k and f. the o{1} expression
bounded by 1. and with q the conjugate of p. Hence, {04 }n provides approximation order no
smaller than k whenever {{img ally (2-z4\0)}n are uniformly bounded for sufficiently small h.

In order for this corollary to be useful in the derivation of approxination orders we need to
find conditions which guarantee the boundedness of the sequences {mg p}a. In the next section. we
will see how thisis done in the case of box splines. At present, we note that the essential part in the
boundedness assumption of {myg p}s is the pointwise boundeduess, that is. for every 3 € 227240
the function

b= fl(h + )7 0n(- + )l sy, k< ho

shonld be bounded, and the bound should be uniform in 3. The fact that we assume more than
that pointwise boundedness in the theorem, is due to the technical details of the proof, and. in
most practical examples is translated to smoothness conditions on {@,}n. Note also that in the
stationary case, @p does not change with £, and the pointwise boundedness condition thus can be
easily seen to be equivalent to @ having a k-order zero at each of 3 € 277Z%\0.

Under additional smoothness conditions on {4}, the approximants {4;(f)}s can be shown
to approximate f in Sobolev norms as well. We mention that such results (concerning simultaneous
approximation from SI spaces) are a rarity, especially since there is no standard way to derive them
from quasi-interpolation arguments. The most notable exception is [SF] that states suck results in
the Ly- and L-norm (for the stationary case). and proves the Li-statement.

Theorem 2.9. Adopting the notations and assumptions of Theorem 2.6, assume. in addition. that
for some pasitive integer v < k, the sequences

myp o (272Z2°\0) 3 8 = B + D)% on(- + By, b < ko

5




Lie in £,(2% ‘1\0) and are uniformlyv bounded there. Then.
if = on(An(f))
Proof. cf. §4.1. a

i - k-
W, < consty, f fllp "7

3. Approximation from box spline spaces

3.1. Statment of the problein and its L;-solution

To define a box spline, we let = be a rational matrix of d rows which is also considered wx the

mnltiset of itz columnns {}eez. with each column € € Z (referred to sometimes ax “a direction™ ix

aszitmed to be a non-zero vector. The matnix = is qugmented by a row vector N = Az € 7, and
the resulted marrix. denoted by {Z.A). is used to define the box spline 3/ ;= 1/z \ whose Fourier
rransform Is

A =18 o

— et TN ]

(3.1 M =1] : .« &R

Ae ~ i€ w

fez %

I general M is a compactly supported measure defined on RY. but upon assuming that
3.2 rank= = d ’

fas we alwavs do hereafrer ), the box spline is a bounded compactly supported piceewise-exponentiii

polvnomial function supported in the zonotope

== {Ztef: t_sé[o..
£e= 4

N
1)

(3.3

Polynomual boxr splines correspond to the choice X = 0. Exponential B-splines are obtained when
d =1 and & = 1. all £. Tensor splines are obtained whenever all the directions are standard unit
veetors. The box spline s positive in the interior of Z= whenever A is real-valued.
We now define the scale {5y}, of box spline spaces. For this. we fix M (fe. fix T and \). and
define, for a given refinement parameter £ > 0. the box spline My as »

;‘[h = A‘IE.;“\,

The rest of the definition is as in the Introduction. Le., Sy = 0, S5( ). Our space of “test
functions” remains the space ¥, ¢ defined in (2.2).

Sivee the ladder of spaces {8y}, is determined as soon as M is chosen (in affect, as soon as ’
= and A are chosen ). we refer to the relevant approximation orders as prowided by M. rather than
“provided by {Mp}7. Note that each Sy is “spanned” by the hZ%shifts of the dilated function
ap My, Furthermore. in case A = 0, My = M. all k. and the scale {S,}, becomes stationary.
The motivation behind the particular definition of Sy, in the non-stationary case. is that. while Sy
becomes fuvarant ander finer and finer shifts as & — 0, the functions in S, are always piecewise
in some finite-dimensional h-independent space H (of exponential-polynomials).

We have seen in the last section that approximation orders from PSI spaces can be understood
in terms of the behaviour of the varions generators around 27Z2%\0. In the hox spline case. however,
snuch resilts cannot be considered as satisfactory: the immediately available information on the box
soline s the marrix (2, 4), and therefore we wish to characterize the approximation order of box
spline spaces in those terms: that is. given & > 0, we need to find all (2, A) whose corresponding »
hox spline Mz provides an approximation order &.

For the Lo-norm, we provide in this paper the following complete answer to the above problem.

6




Theorem 3.4. The Ly-approximation order provided by the box spline Mz, is the number

(3.5) K'(Z) := min{#Kj : B € 2xZZ%\0},
with
(3.6) Kg:=Ks(E):= {6 €Z: £- 8 € 2rZ\0}.

In particular, the approximation order is independent of \.

Proof. cf. §4.3. A

Note that for p = 2 and integer &k, Vo, = W2", and hence the above stated approximation

orders apply to the entire Sobolev space.
We will also show that the saturation class associated with the above problem is trivial. Pre-

cisely, we have:
Theorem 3.7. Let {Sn}n be the box spline space scale associated with a box spline Mz, . Let
k= k'(Z), and let f € WF\{0}. Then, for every sequence h; — 0,

Jj—oo

distz(f, Sn,) # o(h5).

Proof. cf. §4.3. A

The definition of k'(Z) is entirely in terms of the matrix = (i.e., does not require any information
on the underlying box spline M= ), and, moreover k'(Z) can be computed by a finite algorithm.
In the important special case when = is an integer matrix Theorem 3.4 implies the following

(known) result:

Corollary 3.8. Assume that = is an integer matrix. Then the Ly-approximation order provided
by the box spline Mz is

(3.9) k(Z) := min{#X : X C Z, rank(Z\X) < d}.

Here and hereafter, X C = means that X is obtained from = by the deletion of some columns,

and #.X is the number of columns in X.
Proof. In view of Theorem 3.4, it suffices to show that, for an integer matrix =, k'(Z) =
k(Z). Let £ € =. Since £ is integer, § - 3 E 2772 for every 8 € 2nZZ%\0, hence Kj of (3.6) can

equivalently be defined here as
(3.10) Kg={(€Z: £-B+#0}.

Thus, (E\K3)TB = 0 and hence rank(Z\K) < d. This show that k(=) < #Kj, and consequently
k(Z) < k'(Z). The reverse inequality does not require the integrality of =, but only its rationality:
assume that, for some X C Z, rank(Z\X) < d. Since = is a rational matrix, (Z\X) is rank-deficient
if and only if there exists a non-zero integer vector a perpendicular to all £ € (ZE\X). In view of
(3.6), we have Korq C X, and hence k'(Z) < #Koxa < #X. It follows that k'(Z) < k(Z). '

7



3.2. Further literature discussion

Now that the two numbers k(Z) and k'(Z) are introduced and their connection to approxima-
tion orders is revealed, we are able to discuss the history of the problem in further detail. In this
regard, it seems instructive to separate the discussion of the polynomial box spline case (A =0) from
the general exponential case. As mentioned before, the problem of the former case is stationary, i.e.,
the spaces {Sp} are all obtained from the original space S(M) by dilation, and there is a variety of
papers (including, but not restricted to, [SF], [DM1,2], [BJ], and [JL]) which treat such setting for
a general compactly supported ¢, and links restrictive (hence stronger) notions of approximation
order (known as “controlled” and “local”) to the polynomials in S(M). Further, more recently,
it was shown in [R2] (Lx-norm) and [BDRI1] (Lj-norm) that whenever ¢ is compactly supported
and ¢(0) # 0 (which is certainly the case for a polynomial box spline ¢ = M) the polynomials
in S(M) characterize the unconstrained approximation order (i.e., the one defined and analyzed
in the present paper). Thus, at least in essence, the characterization of the approximation order
provided by a polynomial box spline amounts to the identification of the polynomials in S(M).
These polynomials were characterized by de Boor and DeVore in [BD] for the three-directional
polynomial box spline (d = 2, A =0, £T € {(1,0),(0,1),(1,1)}, Y€ € =) which were also introduced
there. Polynomial box splines associated with a general integer = were introduced and studied
by rle Boor and Hollig in [BH], with the identification of the underlying polynomial space being
among the highlights of that paper. The abstract argument provided in [BH] for the conversion
of the knowledge on the polynomials into lower bounds on the approximation order has become
a standard tool since then. Another proof of that result is included in the subsequent work of
Dahmen and Micchelli, [DM1]. The characterization of the approximation order of a polynomial
box spline associated with a general = was only recently established in [RS], where, again, the main
result is concerned with the identification of the polynomials in S(M).

Exponential box splines were introduced in [R1], and that paper also contained the first result
on their approximation order (showing that for A C R and an integer =, the approximation order
in the L-norm is at least 1). The first comprehensive discussion of approximation orders for
exponential box splines is found in [DR], where, for general A but integer =, k(Z) was proved to be
a lower bound on the L-approximation order. (It was further shown there that the exponential
reproduction argument cannot provide better bounds). The extension of these results to p < oo
was done by Lei and Jia in [LJ], where, in addition, the local structure of the spline space was used
to provide matching upper bounds (Thus, Corollary 3.8 is [LJ]’s).

As already alluded to before, all the aforementioned results employed the quasi-interpolation
argument: first, the space H(.\M/) of all exponential-polynomials (polynomials, if A = 0) in N, S}, is
computed (either explicitly or as the kernel of explicit differential operators) and then the approx-
imation power of H(Af) around the origin is studied. This local approximation order of H(M) is
then converted to lower bounds on the approximation orders via the quasi-interpolation argument
(for this argument, in the exponential case, see [DR], [LJ], [R2], [BR1] and [CW]). However, in
contrast with the stationary case, there is no general theory that can be applied to the exponential
box spline to show that the lower bounds obtained by quasi-interpolation are the best approxima-
tion orders. Indeed, we draw (in §3.3) an example of a box spline M (necessarily with a non-integer
= and a non-zero A) such that k'(Z) = 1 while the corresponding H(M) is trivial. We stress,
however, that examples of this type are the exception rather than the rule.

The only reference that we are aware of which treats the approximation order provided by Mz )
for a rational = and general X is [BR2], where approximation in oco-norm is considered. The ap-
proach in that paper is based on the theory for L,-approximation orders developed there, a theory
which indeed circumvents quasi-interpolation. Theorem 3.13 is similar to its Loo-counterpart from
[BR2], with onc important difference: while the results of [BR2] require some minimal smoothness

8



conditions of the basis function under consideration (here the box spline M), hence exclude box
splines of low smoothness, no such exclusion exists in L,-analogous results from [BDR1]. We will
elaborate on this point in the next subsection, since Theorem 3.13 and its proof provide a better
understanding of the nature of the smoothness restriction on M which was required in (BR2].

3.3. Approximation orders of box spline spaces in L,, p > 2

In order to derive approximation orders for box spline spaces we invoke Theorems 2.6 and 2.9.
For that task we need first to find, for the given box spline scale {¢p = M}, corresponding maps
{Jn}n that satisfy the four requirements specified in Theorem 2.6. Upon completing that part, we
will turn our attention to the main problem: identifying the largest integer k for which the uniform

boundedness of the sequences {my s }» is satisfied.

Lemma 3.11. Let {M,}n be any box spline scale, and let x be the characteristic function of a
0-neighberhood B. Then, for sufficiently small B, the operators

Jn i [ (X0 nfIMR)Y

satisfy the four requirements of Theorem 2.6.

Proof. Jy certainly has the form required in (2.5), with T}, = x/flz. Condition (b) there
can be satisfied by ensuring supp x C [=7..7]?. Condition (d) (listed in Theorem 2.6) holds, since

on B :=suppy, 1 — MpT, = 0. It remains to deal with condition (c) of (2.4). For that, we first

observe that since )
Maw) =] / elhAe=iEw)t gy
Ik

{m}h converges uniformly on supp x to

1
IT [ et-iesra
0

§e=

and this latter expression is bounded away of zero on, say, [~=..m]%. Thus, for sufficiently ho,
{Th = x/Mn}n<n, are uniformly bounded, as required. | &

In order to deal with the essential requirement of Theorem 2.6, that is the uniform boundedness
in £,(27ZZ*\0) of the sequences {mg 4 }x, we will prove the following:

‘Lemma 3.12. Let {M}s be a box spline scale generated by M = Mz ), and let My be the
corresponding polynomial box spline, i.e., My = Mz . Given an origin-neighborhood B C [~n..7]¢,
define, as in Theorem 2.6,

"

M 2 (20Z\0) 3 B> [|(h + ) Ma(- + Bl 1. (8)-
If, for1 < q < o0, My e Lq(le), then, for small enough hg, the sequences {m n}n<n, are uniformly
bounded in £,(2rZZ%\0), for k := k'(Z).
Proof. cf. §4.2. ' 3

With the aid of the two last lemmas, we establish the following theorem:

9



Theorem 3.13. Let {M,}, be the box spline scale associated with the box spline M := Mz )
Consider the approximation maps
f = anAn(f),

with
= Y My(- = a)Jn(f)a),

acZZd

where

Jn(f) = (xF/Mp)Y,
and x is the support function of some origin-neighborhood B C [~=..n]¢. Then, for k = k'(Z),

and 2 < p <o,
If = anAn(F)llp < constyl| fllp k",

for every f € V, . and every small enough h. The result is valid for p = oo, as well, provided that
My € Ly, with My = M=o the associated polynomial box spline.

Proof. The claim of the present theorem with respect to p = oo follows by an application
of Lemma 3.12 and Lemma 3.11 to Theorem 2.6. The same is true also for 2 < p < o0, as soon as
we show that for such p, Mo necessarily lies in Ly. Since we assume that the rank condition

rank=Z =

holds, we can find a d x d invertible submatrix X € Z. Then

Mg = M, » M,

with My := Mx o and M, = M(=\x)0. The trivial bound
1
[ / e"¥vtdgy <1, £welRY,
0

proves that ;‘; € Lo for any polynomial box spline ¢, and therefore 1\72 € L. Consequently, it
suffices to prove that M, € L,. By applying a linear change of variables, we may assume without

loss that X is the identity matrix, and thus M; becomes the tensor product of the univariate

function .
LI l1-e™¢
W e..:wt dt = —_—
0 w

which lies in Lo(IR) for ¢ > 1. It follows that M\l, hence also My are in Lq(IRd). [

As mentioned in the introduction, results similar to Theorem 3.4 were derived in [BR2], but
with respect to oo-norm. It is shown there that the L,,-approximation order provided by M is
always bounded above by k(Z), and this bound is proved there to be the exact approximation

order under the additional assumption

(3.14) o II k-8 <

BEZA\0 EEZ,£-B#0

In comparison, Theorem 3.13 requires the more verifiable condition A?o € Ly (which is shown to
imply (3. 14)) For example, the latter condition is satisfied whenever = can be partitioned into two
matrices = = X UY both of rank d. Indeed, the full rank assumption on X and Y_implies that
Mx 0, My, € L2, and hence their convolution product M=z is in the algebra A := {f f e L)}

10



Example 3.15. Let d = 2. Then one easilv checks that = can alwavs be partitioned into two
matrices of rank 2 unless = = Y U {€} with X is a rank-1 matrix, or, in terms of k(=) (¢f. (3.01, if
and only if £&(Z) = 1. As observed in the proof of Corollary 3.8, k(=

=) < kiZ0 hence in such a case
k7 Z0 2 {0.1]. Now. if #(Z) = 0. then. since the [ -approximation order is proved in [BR2] to
be bouaded above by A2} we conclude | at M provides approximation order ). Therefore. the
oniy bivariate box splines whose x-approximation order cannot be decided directly by the resulrs
here are those associated with a matnx = that satisfies K(Z) = K(Z) = L.

Next. we want to show. with the aid of an example. that the approximation order &/
exceed in times the local approximation order of the space Hi M) (cf. third paragraph of 33,24

Jvan

Example 3.16. Let = 2,

and A vet o he derermined. Ivis easily vertfled that #(Z) = 1 < ktZ) = 5. and hence. by Theorem
: in view of the previons example, the Ly-approximation order provided by Mz y ix 1. for
evere 20 p <l x fand regardless of the choice of A}, The choice A = 0 leads 1o a stationary

~rtion. and the approximation order 1 must then fmply that the shifts of Mz, partition the
unitvs s one ean verifve with the aid of Poisson’s summation formula, from the fact that

Mzyl273) =83, JezZh

Qu ~he other hand. for a generic choice of A H{M ) = {0}, This can be proved as follows: if Hi M
is non-trivial. then by Lemma 3.1 of [BAR]. it contains an exponential « — ¥ = The frequency
# of that exponential must satisfy the following two conditions:

f Ay =i XTH =0, for some 2 x 2 X C S of rank 2 ; and

he Mz a6 =223 =0, 3€ZN0. (cf. [R1:54] for (a) and [BR1:52] for (b))

Tor<ee thar the above fa) and (b) can hold only in exceptional circumstances, we proceed as follows:
we fivgthe above Z0 X and Ax. This determines & unique # (see (a) above). We now try to define

=, so that (b} above is valid. For that, one verifies first (directly) that, regardless of the

N o o
A 5 =

specific chojee of the 2 x 2 X C Z0 My, can vanish only on a subset of some proper sublattice

Ly of 22Z2°. Selecting 3 € 27Z7\{0} in the complement of this sublattice. (b} above implies the
. — U N -t .

existence of £ £ 23X such thar fn ePe=18 0+t gt =, or, equivalently.

N — i€ - (6 + 3) € 27 7L

This shows that one of A\, € € = must be chosen from the countable set ¢ - (8 + 2:72%). and
thererfore, enerically, H(A) = {0}, as claimed. &

Finally, we state our result concerning simultaneous approximation.

Theorem 3.17. In the notations of Theorem 3.13, and for 2 < p < o0,

I1f = onAn(llw; < consty A5 7l flly

for every f e 3, ¢, every small enough b, and every integer v < k. The same holds for p = x|
provided thar My and all its derivatives up to order r inclusive lie in the Wiener algebra A (or.
equivalently, |- |"Mg € Ly.)

Proof. ef 1.4 [
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4. Proofs

4.1. Proofs of Theorems 2.6 and 2.9
The approximation maps {4, }a that we employ are intimately related to those used in {BR2].
In facr, the latter, albeit a special case of the present schemes. seem to be their most natural choice.
In contrast. the error analysis of [BR2] cannot be adopted here: that analysis makes use of the
optimal approximation to the expounential functions

€5 0 — 7 geRY

of [R2]. and synthesize those optimal approximarions on the Fourier domain to yield optimal
approximacion to other swooth functions. However, when p < x the above exponentials are not
in L, any more, hence the [BR2] approach cannot go through. Instead. we nse here the following
identity

(4.1 S« vio—algla) = Z vxlesgl
a€Zt RIPEY/AL

which iz valid for anv compactly supported distribution v provided that g is sufficiently smooth.
sav. g € C(IR*) (cf. Theorem 2.6 of [RS]). The convergence of the right hand side of 14,17 is valid
in the topology of tempered distributions fand in most eircnmstances. in much stronger ropologies:,
provided that g and all its derivatives grow no faster than polynomially at x.

Proof of Theorem 2.6. Fix 2 < p < . and let f €1, ;. We try to estimate the error

(4.2) 1f = an(An( Dy = hYPloy nf — An(Hp.

with the right hand side in (4.2) obtained from the left hand side by scaling. Invoking (4.1) with
respect to Axlfi (e, with g := Jy(f) and ¢ := o,). we obtain that

Haynf = Ay =lounf —enx Jlfy = Y baxlesdal ),

(13 Be2rZa\0
(4.3
Sloynf =onr T H)lp+1 D on = (eadalfNlip.
Je2=2Z%\0
We estimate each of the two terms in the last line of (4.3) with the aid of the Hausdorff-Young ’
inequality:
(4.4) 1fllp < constylifle Lp+1/g=1,
valid for 2 < p € ¢, provided that fe LQ(IR"). »
We first estimate in the proposition below the second term in the second line of (4.3} For
Jater use. we derive that estimate in a slightly more general setup than needed here.
Proposition 4.5. Let w be spme sequence defined on 2272\0 and having (at most) polvnomial
growth. Then, in the notations of Theorem 2.6, and under the assumptions there,
M

RY2 N wlB)on x (egJw(IN]lp < const B fllp allminiwlle,zezavor-
B€2xZA\O
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Proof. There is nothing to prove in case |{{my pwlly, (2.z4v0) = 3. Otherwise. by (4.4} it
suffices to bound

(4.6) R ST w(don < (es (A Nl = A4 ST w(=Aondi (N + D,

Jem 20 3€EAN0

{ The justification for the term- b\ -term application of the Fourier transform is given in the sequel:.
Substitnting A -d £ /h)Ty, for ]h( {cf. {2.3)) we obtain from (4.6) the equivalent expression
1 I

(47} R on Y w(= U+ 3/ RTal+ Dl
3€27ZN\0
Here. the infinite st in the above expression trivially converges {since supp Ty, € B C [~7._ =4},

and the limit is supported in (252Z“\0) + B. Also. since the weights {mw(.J1} are of polvnomial
growth, the convergence holds in 8'. In retrospect. this justifies the term-bv-term application of
the Fourier transform in (4.6}, as well as the changing of the order of summation and multiplication
by o4 is the display afterwards.

We fix a € 272Z*\0. and compute that

lon Y w(=NFIl+IMTul + N (5,
NISEY/ AN

wiion fl — al /R Th(- — a)nq

i

(a+B)

1A

(o) TalE oy IR+ FDRFC/RNG oy Hh + )% 0n( + )i} g,

= R () TRl oy I+ EDE AL gy IR+ FD750R # )]y

Summing over all a € 27ZZ%\0 and using the uniform boundedness of {7} we obtain the bound

-~

/r“{zB,. Z w{=Nfl + 3/ Th!- + J”iL (R < const k¥ Hf; Mrg pul] [ (20 Z1\0)
Be2=Z\0
and the required result follows. -

In view of (4.2), (1.3) and the claim of the last proposition for the choice w = 1, the proof of
Theorem 2.6 is reduced to the study of the first term on second line of (4.3). Here we have. for
some positive const,

constiloynf — ¢n * Ja(F)llp <

(4.8) Hffn/hf AT llg < Hal/hf(l - ¢hTh)“1,,(B) + “UIIthL (RA\ B

with the first inequality by (4.4) and the second equality because J:G‘) = Tho;’/:f and Ty is
snpported in B. Changing variables, the term ]IU;;f‘ILq(md\B) can be bounded as follows:

l|ﬂx/;{f|11,q{utd\3) r~"’/”dH”thHz.q(md\fs)
=’1_dM/q“f“L,(W\(B/h))
h=P(1 + e/h)7F|I(1 + D* il reaveaymy = h=4P K| flip.k o(1),
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with the o(1) expression uniformly bounded in h and f € V4. As for the other term in (4.3).
L e— -~ ‘ kT
flounf(l = onTllg, 8y < MR+ D%y fllL sl + 1D 751 - on T L B

By assumption {d), Jf(h +])~*(1 ~ OA;.T;I)[!LM'B; is bounded independently of k. while a change of
variables yields

iR . d o . nk=dy/ Lok Fn k—d/piy so
Ith + 1h¥5oy, )fll,ke =h™Yh + [ DrPonfllo,imy = FHRIL+ D) Fhe, s SRETYPfi i

Thus. we have shown that each of the two terms in the last line of (4.3) is of order O(h*~ 4P}, and
the claim of Theorem 2.6 then follows. r'y

Proof of Theorem 2.9. The proof of Theoremn 2.9 closely follows that of its special case. The-
orem 2.6. We thus only outline the proof. emphasizing parts of the proof that deviate from their
counterparts in Theorem 2.6,

We let P ¢ I, be a homogeneous polynomial. and P{D) being its associated constant-
coetficient differential operator. We want to establish the bound

EXIN WPIDY(f = ondAn(f)Mp < const B8 P Fi limy 0

Such an estimarte leads to the desired result. since we mayv range P over some fixed homogeneous
basis for [1.. Here, const should be independent of & and f, but mayv depend on P. p. and r.
For the proof of (4.9). we consider

P(D){(f - anAn(f)) = P(D)f — k=85, P(D) A ( f).
By (4.1) (with v := ¢y and g := Ju(f)),

(4.10; P(D)AL(f) = P(D) Z on ¥ (esJy(f)) = }: on * (P(D){(e3Jn(f))).

3e2=2H KIVEy/Ad

with the changing of order of summation and differentiation justified by the S'-convergence of the
sim. The term corresponding to 3 = 0 is ¢p * (P(D)Ji(f)) = k48 oy, « J,(P(D)f). and we first
estimate

P(D)f = on(on « Ju(P(D)f)).

Since f € Vix. P(D)f € V,k-degp, and hence the proof of Theorem 2.6 yields that for small
enough A we have

([P(D)f = on(dn * Jn(P(D)f)lp < consth* 9 PIP(D) fll, k—deg p-
It remains to bound the expression

Y. énxP(D)esn(f)).

Be2n ZA\0

Here, we fix 3 # 0, and expand

PD)ealn( ) = 3 = (D*PY(D)eg) DUn() = e, 3 = (D*PYi) D™Ja(f).

a>q a0
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and use sun}ma.tion by parts (allowed, since the range of « is actually finite, and since, for any fixed
Q, the. Founfzr transform of the various S-summands have pairwise disjoint supports) followed by
the triangle inequality to estimate the norm of that part as follows:

I3 én*P(D)esn(N

Be2xZ4\0

1 o . o
(4.11) s% EMBGE‘\O(D P)(iB) ¢n * (ea(D* (I,

hlah )
=2l 32 (D°P)iB)gn * (g (D),
a20  Be2rZ\0
Invoking Proposition 4.5 with w(8) := wa(8) := (D*P)(iB) (and with f, k replaced by D*f and
k — |al, respectively), we obtain that ,

el 3" (D*P)(iB) ¢n * (g Jn(D* f))ll, =
Be2rZA\0

RIS wa(B)gn * (eaJa(D* F)llp < consth*|| D fllp k-l Mk swalle, (2ez410)-
BE2RZI\O - _

(4.12)

Since (i): the actual range of « in (4.11) is finite (la]; < deg P), (ii): 1D fllp.k-ta), < Ifllp.k, and
(iii): |(D*P)(iB)| < const|B|", we derive from (4.11) and (4.12) the inequality

I D" én=P(D)eadn(Nllp < consth*||fllpkllmf alley2ezér0)s
Be2xZ4\0

from which (4.9) follows. [ )

4.2. Proof of Lemma 3.12

Given 8 € 2nZZ%\0, our first goal is to estimate Im(w + B)|, for small w. Initially, this is done
without using the assumption My € L,. We consider, one by one, the factors

1
(4.13) | / e(PAE—it-(u+ANE gy
: 0

that form ImL For this, fixing 8 € 2xZZ%\0, we partition E according to the behaviour of their
corresponding factors into three groups: the first of which is Kz (cf. (3.6)) and the other two are
defined as follows

Lg:={£€Z: {-BE 7},

Opg:={E€=: £-=0}.

Case I: £ € Og. In this case, for sufficiently small k, we have
1
l / e(hre—ik-(w+B))t dt| < 2.
()}
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Case II: £ € L. Here we use the estimate

3
{hAe — i€ - (w+ 3|

1
(4.14) !/ P et gy <
0

valid for all « and sufficiently small A. The rationality of = implies the existence of n € ZZ such
that nZ is integral, and thus we have 1€ - 3] > 27/n, and (4.14) shows that for sufficiently small &
and »

|/ (h\£~l£<w+~’) dt < -

13 Jf
with ¢ depending only on =.
Case ITI: £ € K. In this final case, we write
1 e—tE-{w+ -0
(415) ;/ ATt gy lehAe 16 lerd) _ 11 _ |eh/\5. e | -

The denominator in the right hand side of (4.15) can be estimated as in the previous case. while
the numerator, for sufficiently small A and |, can be bounded by c{h + j«|}, hence we obtain in

this case the estimate
hAg—1€-wit , (h iwn
! / ¢! dt] < ¢ .
ST

Combining these various estimates we obtain that. for « in some h-independent neighborhood
of the origin, for A sufficiently small and for some (A, »..J)-independent const.

(4.16) {Mu(w + 3)] < const(h +|w)#Fo [T 1e- 817" const(h+ W@ ] 1g- 310
EER ULy geK sl

the second inequality since k'(Z) < #R; for every 3 € 27Z2%\0.
For later use, we record this intermediate estimate:

Proposition 4.17. Let {1, }, be a box spline scale associated with Z and X. Then, fork := k'(Z
for some origin-neighborhood B, for sufficiently small h, and for some (h. 3)-independent const we
have
me () = [[(h+ 1 )M+ B)llonmy Sconst [ 1€-3170
§ER ULy

To complete the proof of Lemma 3.12, we need to show that the sequence

o= [[ le-Am Be2azmo

§eKauly
is in £,(27ZZ1\0), whenever My € Lq. A slightly more general assertion is proved in the following
proposition.

Proposition 4.18. Assume that, for the polvnomial box spline My and for some r > 0, §~}':\A[[, €
L, Then
a ;

(4.19) S ] k8t <o

BEZLANO E€K3ULy
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Proof of the Proposition. Choose w € IR? that satisfies the following conditions:
(a) For every £ € Z, € - w is not 2x-rational.
(b) The series

(4.20) S 18I Mo(w + BT

penZi\0

converges.

(c)
€-(w+P) <206, E€E, fe2nZ?, B-£#0.
lt is clear that the set of points w € IR? that violate (a) is of measure 0. Also, because
|-|" Mg € L,,(IRd), the series
S w+ B Mo(w + B))
Be2xZ4\0 .

converges a.e. on [—m..w|%, implying thereby the a.e. convergence of (4.20). On the other hand,
because £ € = is rational, inf{|€ - 8] : B € 2xZ%\0, £ -8 # 0} > 0, and hence condition (c) is
satisfied by all small enough w. This proves that there is w that satisfies all the above conditions.

The rationality of = implies that for any fixed £ € Z the range of the map

(2xZZ9\0) 3 B — e~ WHh)

is finite, and, because of condition (a), this range does not contain 0. Condition (a) also implies
that fol e~iéwtde £ (), for all £ € Z. Thus, we obtain from condition (c) the estimate

. 1 -i§-(w+8) 1
iw+8) =[] |/ ety ] ||
0 - (w+8)
(4.21) £€€0;s §EKgULy
> const H 1€ - 8|71
E€EKgULg
Condition (b) then implies the desired result. '

4.3. Proofs of Theorems 3.4 and 3.7

The positive statement in Theorem 3.4, i.e., that the approximation order provided by Mz )
(to functions in V3 x«(z) = Wzk '(E)) is at least k’'(Z), follows from Theorem 2.6 when combined with
Lemma 3.11 and Lemma 3.12. Indeed, we only need to verify that the requirement ffo € L (needed
for the application of Lemma 3.12) holds. That was proved in Theorem 3.13, but, as matter of

fact, also follows directly from the fact that My € L.
The negative statement of Theorem 3.4 will follow from Theorem 3.7. Indeed, Theorem 3.7

provides k'(Z) as an upper bound on the approximation order (and in the strongest possible sense).

Therefore, only Theorem 3.7 requires a proof.
For that proof, we need to borrow some of the general tools and results developed in [BDR1].

We remark that the definition of the PSI space S(¢) in [BDR1] differs from the one given here:
it is defined there as the Ljy-closure of the algebraic span of the shifts of ¢. However, as Theorem
2.13 of [BDR1] asserts, S(#) N Ly of the present paper is dense in S(¢) of [BDR1], hence the two
spaces share the same approximation orders, and to the same functions.
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We dirst define for every A >0
N o= My + Mu(—-).
Note that e .
Nu =ML

Because of the rank assumption (3.2), M, € L,. and therefore N, (which is clearly compactly
supported) is continuous, as any convolution product of two La-functions is. We make a substantial
use of the symbuol N, of .V, defined as

’\7, = Z Npy(ae_,.

/A

A standard application of Poisson’s summation formula shows that

Fe T Beens T e

3€2=7" €Y

Thus. we see that .V, is a non-negative trigonometric polynomial. and. further. .ﬁ{y; = 0 onlv if
_{',\:,_{_l/'f = {).

The L;-approximation orders provided by M are determined [BDR1]. by the behaviour around
the origin of the functions

(4.22) Moo= (1= Na/ VY RS0

{here, (/0 is defined as zero, but in any case. :V';, as a trigonometric polynomial, vaniches v.ly on
a null-set). Note that \ is non-negative and bounded by 1. The precise result that we need here
follows from Theorem 2.20 and Corollary 3.10 of {BDR1], and reads as follows:

Result 4.23. Let f € W§. Let {on}s be a subset of Ly. Then
(4.24) distz(f, oa(S{#4))) = o(h¥)
onlv if R

R Aonflleacmy = o(h*),
on sume origin-neighborhood B.

We next attempt to replace A in this result by simpler expressions. It is clear that we might
replace Ap, by (V, = ¥,)¥/? in case the ratio

is bounded around the origin hy h-independent positive constants. For this we need the following
lemma, in which we make use of the fact that every Ny, and in particular Ny. is supported in the
syminetric region Zzy(_3) = Zz — Z= (which follows from the fact that M(—-) = M(-E).X? cf. (3.3)
for the definition of Z=).
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Lemma 4.25. Nhh—>0No uniformly and hence IV;, - NB in any p-norm, 1 < p < oo.

Proof. The first claim easily follows from the distributional definition of box splines (cf.
e.g. Definition 2.1 in [R1]. More specifically, one can apply to N, — N, the argument used in the
proof of Lemma 5.1 in [DR]). The second claim follows from the first, since all N, are supported
in the same compact domain Z= - Z=. 'Y

Thanks to Lemma 4.25, we know that {N;}h are uniformly bounded around the origin, hence
may replace {Ap}s in Result 4.23 by

(N =N 2= S IMa(-+ B2
BeE2xZAN0

Thus, if, for some f € W, dista(f, on(S(#s))) = o(h*), then we must have, for every 8 € 27Z24\0,
= Mo(- + B)onfllLace) = o(h¥),

which implies by scaling that |

(4.26) IMa (k- +B)fllach-18) = ofk¥).

Let 3 € 27ZZ9\0 be chosen with #K3 = k. Since fe L, it is supported on a set of positive
measure, and therefore, for sufficiently small ¢, the set

Ac:={weR?: |\ —if-w| >¢, VE€Z}

has a positive measure intersection with suppf. We fix such ¢, and we let Q be any bounded

measurable subset of A, for which ||f||L,(n) > 0.
A straightforward computation shows that, for any 8 € IR® and £ € E\K3(Z),

! 1
(4.27) / remie oo gp — [Cont a2,
o —

uniformly. Further, for £ € Kz, we get that

1 e
h“l e(hre—i6-(hO+B))t dt' — I—A—E—-—lf——gl > const >0, V@€ A,
0 h—0 §-8

with the convergence being uniform on compact sets, hence on Q. Thus, for small enough h,,
1
inf{h~?| / ehre=iC(RO+M G| . 9 Q, h < ho} >0, VEE€E K.
(]
This, together with (4.27), implies, with
rh = inf{{Mr(hO + B)| : 0 € Q},

that, for small enough h,

1
h=*rn = R *inf{] ] |/ e(hAe—it-(hO+80t 4] . 9 € Q) > const > 0.
¢ez VO
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Thus. by (4.26),

-~

olh*) = | My (k- +3) Fll sy 2 1 FllLayra > constfifll L, kb

a contradiction to the fact that Hf”L?(m # 0.
This completes the proof of Theorem 3.7, and thereby the proof of Theorem 3.4. 'y

4.4. Proof of Theorem 3.17

The proof invokes Theorem 2.9 for the choice ¢, := M, Thus. we need to verify that for an
integer r < k {with & := k'(Z)). the sequences

M (27ZA0) 3 3 R+ )T + Dl < b

{ie in i'q;'Z:Z’i\,‘O) and are bounded there.
For that. we first invoke Proposition 4.17 to conclude that

m} .3 < const{ 3] H TRE
SER UL

Therefore. by Proposition $.13. the uniform boundedness of {m] , }4 in [,,&_'Z:Z“’\O) ix implied by
the condition ﬁ-;r.\T.) € L, For p=x (ie.. g = 1) this latter condition is assumed in the present
theorem. We nrove here the validite of the condition for q > 1.

We first observe that the condition the condition [-[7V, is equivalent to rhe statement: “for
each homogeneous polynomial P of degree r. (P(D)Mp) € L,.” Here. r S K(Z) -1 < k(Z) ~ 1
tef. the proof of Corollary 3.8). On the other hand, it is known. [BH]. that for any polynomial P
of degree < k{Z)., P(D)M, can be written as a finite sum

[4.2%) ZCX-'”X(' —-ax),
X

where each .U in the above sum is a submatrix of = of full rank d. where cx are some coeflicients,
nx & R and My = My 4 is the polynomial box spline defined by X', Since each X above
satisfies rank X' = d, then. as established in the proof of Theorem 3.13, '\/I\\ € L, for every
q > 1. Therefore, the Fourier transform of the sum in (4.28) is in L4, namely. (P(D)My)Y € L.
Consequently, [-ir;{[\o €L, L)
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