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Approximation orders of
and

approximation maps from
local principal shift-invariant spaces

AMos RON

1. Introduction

Let S be a function space consists of complex (or real) valued funictions defined on 111". We
say that S is shift-invariant (SI. for short) if S is invariant under all integer translations (referred
to hereafter as shifts), i.e.,

il1: Vo C/I" (f ES ;z f(.-o)CS).

In this paper we consider SI spaces which are subspaces of
LP := L'(lRd),

for soni 2 < p K: x. The simplest type of shift-invariant spaces is the PSI space ("P' for
"'pr*::.ipa' wvhich is tile case when 5 is closed (iusiially in tile unoderlying p- norm. blit sonwic 111,:

i. a 'vcalker topology; and the shifts of a sirile function i (=the generator) are fundta..,1l
ii .5 Approxiination ftoin PSI :ind other shift-invaria nt spaces is pertinent to ther theorv a:o:

;I, n M;i-tons Of several sulhareas of analysis, and in particular to Multivariate Spline's. Radial B;I-is
.Ap":oxitnation. •Xihelerzs and Samnpling TheorY.

In man. actiial approxiniations, tile SI space S is refinc'd to yield another approxiiiating
spice f. witi. presuiiiably. better approxiniation properties. T':e standard (known as stationary!
refi rerlient is by scIalinig, that is. Sh is obtained by dilating the functions in S:

Sh =rrqS := {crhf :f(/h) : f E S}.

Sometimes (cf. [DR]) it is necessary t ) refine S by means other than dilation.
Th ; 5ic w ay for measuring the iapproximnation "'power" of S is via the tool of approJrmation

Orl,-. ronahly speaking, the colIectl,,i, of spaces5 { S,,}h>o is said to provide approximation
order k > 0. if, for all sufficiently smooth f,

dist(f, Sh) = O(hk).

HeI,-e. (ist is Iieasure(l by the relevant p-norm or one of its relatives (a Sobolev norm. a local p-norni.
e,!.- For snore, tinie, the analvsis of approximation orders of PSI spaces was largely domninated
bv the Stranr,.-Fix conditions, [SF]. These conditions assert that. if S is generated by a compactly
supporteid o, if o(O) A 0. and if the scale {Sh }h is stationary. then the approxiniation orders provided
by , S.% }, are ileterrniniid by the order of the zero ; has at each of 27r2d\0. The standard method for
converting the inforrmation about these zeros into approximation order results is the polynomial
reproduction / quasi-interpolation argument; (cf. the book [C], the survey [B]. and the
references therein). However, several important PSI spaces that were introduced and studied in
rerecent years do not satisfy the requiremnents imlposed above on the PSI space. One difficulty arises
in the area of radial basis functions, since there the typical generator 0 is not compactly supported.
A totally different, difficulty arises in the area of box splines: while the box spline is compactly
so oport ed, its corresponding {ISi,1 is not a stationary one (unless the generator 0 is a polyn rinal
box spi ine). T'he attempts to cover those caLses by generalized quasi-interpolation arguments led
to some reniarkable achievemients, but did not solve the problem in its entirety. In retrospect, it
seems that the quasi-interpolation approach fails to realize the approximation order of general PSI
spaces. a fortiori of general SI spaces.



Newx ap proaches that ci rcumiivenlt q iiasi- in! i'rpo4 a tion iixwe re ent ly dev. h pt' I ii, 'BR2] q,
and [B1DP11 q] = 2). Whleh the two miethods differ inl the apllromitiiatioil, ,Chelnit Iley tinplta a>
well asý in their error aniaivs is. hiex boLIl pefr~lbr the enltire err-or anlysis onl thc Faa:mrjt dl:~nr,ý;
hetnce, ill turii n avoid the( imilos ion of deecay ra, es on the generator ~iAlso, uiitlortaitlv. ooth
4'ci iac'eriitations do nlot require { ~}~to he statioiiarv. ai.furt herinort. [113D%11;i even di1sneise

wihhe re~laivassuiniptloli . 5 0 0. Extenlsive discuisixi15 of the yarimi.s apphclictionlis 'f tin'

tt'i:.' ot [BR132 andI [13DB 1 to radial function approimiiation canl lbt foniid inl <3 ofB2}at
J-.! Furtvev.mI!her diseulýsion of tile literatlore cani be found inl `3.2.

Il the preOýent pap~er. WerVsi PSI spaces geiierateld bY coimpactly >nlpportel flincft jot> surh'

xxt0 o~edlocal in [1`31)1332h. Priiiiriiv. we anim at estahlisihing rtsh nthe c oi~ro

0:,:c:- 01i''~ ,ln Iroviduiig explicit adpr approximaltionl tileiit mht rcalljt' tlli;l! iwtii

I 'n li~ hnus litre withi rispoct to bix Splinie spinesý art' a>ý follow>':
'I \Wt !ýtriniiw evattlv, in Theori-n 3.11 the applroximiio~ttn oridr of ho., -lllint' c~ si

,hr L -niorni. Ini no norni has suclh re-out beein known h)tfore. alrhlitilioll for p) xcan
viyco-v to the niark. We al-al snow that the saturation class is trrivial cf. Theorem 3..

W \e p)rselelt ýin l. anl explicit ap~proximation sclneilie ill the fortil

Mtid.Ii. itSý a Ilnat t-t otft 1t. mailitaiil Tit, l aie ail';pproxuima~tioni order inl L,-iornis.2 < 'p <
liooritn 3.13 . The reilsalso apply t~o thie L,-c-asv. if a nuihi siioot hiwss coili1 i l il~ ino'

o: -7.4. wirli .4 the Wicitier ali'o'ort
Wl' dievelop a new error allndvsis mnethod which differs froii thei two of [I3B2] md ýB 1131)

W o1 mid0 of thatt app~jrO;Lh. we htov. that for 2 < p) < -, iwitl S011 sonic oi~itinal sino dlii>>

con!ýtion'ut rewlnreti of the hox :iplinev o.. ill the p cil:tase tim.' approximiation seileotne ulsed providft-

l'''i''''i approximiationi tom functions and their ulerivativet' Thieore'm :3.17,
\ I ,> of thet anal sis;ý that is developed to do(al withi box spline spaces was found to apply

'Ia local PSI spaces. Due' t~o that reason, we first present. iii 112. resuilt>, that co1"iiceri

-!liol tollers of load~ [' 1)j S , II spuoes anti aply these results;. iii YI,. to ¶lthe hox >plmv~
1; otof the proof>, are collected ii ll ,4

a. ~...e t ngtilt- p rest'iit pap er. I rt ceive I a prep rinlt of 1Kv ria/.is' paprK].Th
K r d '''l, pailet imfla Theei t hs orsdrd it

I h aswt inim rliiri otoe(osilri ntepres4ent paper. arid to a liumite'd
1! 1,ipiovs > i Ii; II al1 ~ 1\ ti pI pe1;11 rs iniivoke thIle ap1)p rlx Ii iuil Lt 1olli Sc Iietili ( O()f [ F

1 "'; j- t))th Pimptt arplv tilt'Iaitil-lil thermet)'ii. How('vr. tile( foc; of t lie two ppr
'at r ilil dffernt. eine th 11v seemii to bie voiniplimetiit'ittv o1n1e to the )t her. [1k] focuses onl

fd-ol'Itrfitrwiit'nts. au0d ittt'iiipt, itoImpose a liiiias possible deca ' cond~ition ftegnmo

f.- Tho'.rtjrrt a -iihntaiitial effort is devoted t here to provinig that variouis couistriicteti iil)roxtliantsý
af ýIeel tltk(i'n from tit'( tmnldcrlvung PSI "space. Tilet pilper [1K] suiweeds in providuing satisfactory

nn-al-o to Lpnormls we'p <2. its class of simoothi functiotis is less restrictive than here, anti
it '-ileidStrarig-Fix-likev rcliditiotus similar to those derivedl in [13131111. Tile pre'senit paper -

r4' oil11 box s pl iil ýi" pacet. lit'11.4 avo ids oil th ol'(lit harl1( quetst ions1 of dea rate (o tf tilt, generator.
h11 lled- on) tile othe 1at and iw tt,d with miori-statioriaryv refineirmerits. Also. wte prisetit hetre' rtestults ~
0l1ll'i iiloi approtxlimaitiont ito functions atnd dt'rivatives.. a topic which was nolt conideiitredt ill

[11alld I fi nailv, tour. r'ýIiltts apply to p a as wtell ([1K] relies oui thie Nlicilifin imtiltiimlit'r thetoremi.
hknee thudas wkith1 1 < -x).

Notatlionts: we't lilly already ivst't thet nottat ion ,rj for the dilationr ope'rlator

(7,f p- f(/1h)-



Norms of vectors x E 1R11 are denoted by xjIr, namely.

d
1IPl := (F_ 1XjIP I/p,

j=1

with the default notation !x1 := lxl2. The function

"wih cl is Iselid extensively ill the paper, is den oted by (the essentially setf-und,,rstoo t notation'

I.

For 0 4_, the notation 0 o stands for the exponential function

Ul :te otherwise stated!, all domains of funictions in this paper are taken to be 111". Thu>, L,

Lp 11 iZ S' = 3' 11 lithe s-pace of all d-di mensio ial coi tplex-vahued tenipered (list ribiu tions
lV~'.:, Il'U IIi the Sobolev space of all functions whose derivatives up to order k are in L ?. en

WVe Use abbreviate
!if:1P := 1ýfllt•-

2. Approximation from local PSI spaces

Our mmod(l is as follows. We are given an indexed set , := {jh }h C L,. The to,'uat! ;asslluliption

I; rvmearns that each 0o is supported inl solne boinllded, h-indepenrlent d(1main Q, butt while
such an ass Imption holds indeed in the box splinf, case, we (1o not neAd it here. WCe only assiline
that each oh is compactly si ipporteL. Regardless of the value of p. we define, for any co(mpactly
suIpported vo. the PSI space S( ) to be the infinite span of the shifts of O:

s(o) := { Z (.-
aE~a

The convergence of the infinite sums can he taken pointwise. since the sum is actually finite on
coti);wct dornains. No a-priori growth condition is imposed on the coefficients Ac(a-) Al
thouigh this definition slight ly deviates fromn the one given in the introduction (our space is not
a sub.,pace of L,. nor S(o) - L, need be closed), that difference would not matter in subsequent
(liscuissiolls.

The scale of spaces {Sh}h is ebtained by dilating the PSI spaces S(Oh):

Sh := {ulhf = f(-/h) : f E S(Oh)},

and the approximation orders provided by {6h}h is concerned with the rate of decay of

(2.1 dist,(f, Sh) :z infI5f1-s,! : s E Sh

as h ON.More precisely. we say that {((h}h provides approximation order k. if for every f in some
snoothin-ss space Vk andI small enough h,

dist,(fS ) <- roris3 t hkI3



with if 11,,.k. soine normn of f. The scale {Sh jh is stationary if ot = Oh for all It, it'. ill Such a
caIse. 150h , are all dilates of one: basic PSI space S(o)~.

The space I P~k of *'sinooth enough" test furictions is definedI a-i follows. For two conjiugate
exponients I < q •ý p < oc. andi k > 0.

.)~~~ *1 I { f If := 11(l + 1,I)kfL .JKx

Note that, for anl integer k. the Haiusdorff-Yourig Theoremi imnplies1 thalt I' k is ('Ollti'lusllvl~ embe)d-
(tied inn)o thle Soe pace 11

G iveni f E Vk. wese an~ aipp~~roxint for f fromr S,,. Sinice Si, is t he 12-tIihite of 5i we
Cndxl~e h :ippor'nlilan fo f ill termns of allon elent .

4
k, f) E S(C@t, 1. ix..apoxmir f hrý

(T;, .l, ~f ' 40k f is riecsar. a p~ossibkl iuhifite', linear conirbination of the shifts of WIV
obtain the coethivieits inl this coimbinar inn as the restrictionl to Z7 of a con: timnnlons ill fict, e:

tuc~ori Ju, . In suminairy. we app)roxinate f by ,4~() where

2-3 A ! ý7 , (f.

1!1' ' part( : car dotails of ou1r ap proxi mianionT sche rie rely onl t he c-i o ice( of thet i inaps

f

\ irns Wit. the' es17lt., beiowv onl approximiation ordeors req~ui e four 'omiir itio,,z of the inaprm
!!i anue collection t hat s -atisfies these four properties, ýxvill iio here. Three of these cent(I"Ttloll"

artt l!'1po. nalet Of thev specific approximaition order we are aft er, antI are listedi now.

(2.4) Conditions required fromi the maps {JS~h:
a iEach 4, is a dJilation followýed bv convolution. that is

ELath A ;is funimtionl suipportedl inl someif h- hollependen olit tneihbohn 7]"-

For seine( 111 > 0- {f,, h<h,, 41r0 liiformly l)OY d on B 'line" ili IR)

Note that wve to nrot iiliptwse smroothness conditions on Th,. and therefore J1, T1e04i '10t to tlitalt

L '1rim tsiif.Hwever. f ov,J .1, }, are uniformii bounded etlloniorpiiisris onl each I*,

Theoremi 2.6. Let 2 < p K: x he given and Iet q bo its conjugate, expollent. Fonr k > 0. ],,, V. be
as ini ' .2 Let {~ 'n; b , e a farulde of cornpactly supported fuinctitms, andi B all oii-;*e,t.hered
Assuutn that the coil( -.-tit a of sequences

nkh:(2-,, Z\0) 3 13 ~(h ± 4_~ ( + ItIL(1) < ho.

hos in fq(2-,W'71\\O and is hounrded there,. Suppose that (ip, }a<h,, SatiSfly ColtlitionS (ai), (h) anld Wc
of (2-4) (with resI5pect to the present B), antd, in addition,

Sil 1i .I)-k(l 7'T )11[, ) K .~
h _(p)

L'ot, 4, be defined bY (2.3). Then:

4



Proof. cf. §4.1.4

We remark that the proof of Theorem 2.6 provides thle following boundi ol tile error:

1lf - o>LAh(f)IIL,(1J)

-111 c4At,~fp (I!ThlI]L-(B3) ink hlij (2,Z&d\O) + -jk(I Oh Tht) H L B,4 0(1)1

withn the ot 1) fexpressionl alay ounded by L. decýays to 0 with h . and otherwj..e (lpen(Is only.N oil
f ,p1. k- and B, and with, consýt depending only (,ii p. Therefore. asumning that B i- fixd oi'- ~
try, to chooeV Jh, such that t~he stun ljh j_13Zik~~~ 1111 4- 1 , ,-

A natlural choice for A is given by Th : \/0,. with '~a characteristic funtionm of sonio
I)- :tiejgnlorliood B. In this case (h --- ki)-k( 1 - ,T ) vanishes on B, hence, condition (di inl the

he rem ~:ai holds,, The only condition that needs to he checked then is condition (c i. viz., the
uniform h)ound(hiC(1t0 0f { 15. whic:h ainsoiits to thle uniformi boundedness away of zero of
Hen:'ce we have:

Corollary 2.8. Assume that the Fourier transfoirms of the ihnmilcv ob = {o5j~, ~ Of pc
utpte lfimctiof5 ~ire unifiormliv hounded awav from (1 On Some orpi-mneigphborihood D- Then.

Ior cer~ ev ery k . and] h < h,),

diStplF.Sh) !5 co-t hk'jf! pk('IMk hI9..dQ ± o(1)). Vf E

with 11 1 tO '5 definied as in Theorem 2.6. with const independent of k and f, the o(Ii) exp~ression
hounided bw I . and with q the conjug-ate of p. Hence, {ots h provides aOppro.Yina tioji order no
smnaller than k whenever { mk~h I,(2.7/d\o) }h are uniformlyý bound.-ed for suffiluentiv smiall 1h.

In or Yer for this corollary to be useful in the derivation of approximation orders we neeý,d to
flind cnlditiuns- '.vhich gumrantee thle bounriedness oft the seqilefl('e, { tilk~h } Ill thle TlCXt S('(ti~ll. we(

itill ,.ee hmv thisý is done, in the case of box splines. At present, we note that the essential part in tile
h'elndlefluless aLssu Pt ionl Of I in kS }a is thle poinltwýise boundlC(111e5. that is. for every J 2-, T\
the fota

h - 11(h + 1_1)k O( +~ 3 )iIL_(B). ht < h

stiloiiil he ijoirided. and the b)ound should be uniform in I3 The fact that we assume more than
tita pointwise houndedness in the theorem. is duie to the technical details of the proof, and, in
mosýt practical examples is translated to smnoothniess conditions on i ,l Note also that in the
stationlary Case. Oh does, not change with h,. and the pointwise boundedness; condition thus can be
easiily seenl to be equivalent to '0 having a k-order zero at each of 3 E 2rwd'\0

U~nder additional smoothness conditions On f~h}A, thle approximants (.Ah(f)}h canl Ie shown
to approximate f in Sobolev normns as well. We me'ntioni that such results (concerning simu tlt aneous
alpproximiat ion From SI spaces) are a rarity, especially since there is no standlard way to derive them
from quasi-interpolation arguments. The most notable exception is [SF1 that states such results in
the( L ,- and I -nTorm (for the stationary case). an(! proves the L2-statement.

Theorem 2.9. Adopting~r thle notations and ass umpt ions of Theorem 2.6, assume, in addlition, that
for somne positive intvge~r r < k, the sequences

kh:(2-,7Z"\O) D3 ý- L/3I~II(h +I 1-1) +~( h-I)I~n, f < ho

5



lie in t'q( 2-r7Z"t \0) arid art, inifornilv bounded there. Thenl.

IV- Oh( Ai 1 f ))1W; < ('oli~tp,. 1flP.kh -

Proof. cf. §4.1.4

3. Approximation from box spli-ne spaces

3.1. Statment of the problem and its L.-solution

To I efiriv a bo)x spl iine, we let E be ait raioua(1 matrix of d rows a' ii ni is alIso iti tshbr'I h.
mitI: iset of its cohlifmns (C }"E. with eiwoh cohlumni ' C :- (referred to sonletiun-its as a directil)i"
ossumedl to be a non-zero vector. The matri-x Eis a~ugmented by at row vector A A- 47 0-
tic resulhed matrix. deiiotedi lv -HA j.is uisedl to define the box splrine -1! :=~ wh-cfo:r

tranisforni is

A -ic

Ili t"'ef0ler l Al1 is at ('0u1poet v sutp potted mecasu re (defined( on 113R'. but III)Of a~ssinniin jg t hat

3.2; rank H= d

11s .VP ;wa l vOs do hieenat' er It( bo heh pl lie is a holm1l"'ied1 coimipactlv sup p ott edpiewj-e 0 on

p0 lv rio m iai E.C: m ne olm I sup potet Iin thie zollot ope

Pofbjro 0(0101 box spriows correspond to time choice A 0. Exponential D-spliues are Obtained when
d =I and Ic = 1. all c - Teinsor splines are Obtained wheniever all the directions are statiidardl liniT

ec~torKý The box splinie is Positive inl tire interior of Z= wheuiever A is real-valued.
%\"' defilme time scl(Sh }h Of box sj~lilie s1);Il('e. For this. we fix -Al (i.e.. fix H andl A., and

hn.for at given rehn~enlietit pitranrieter h > 0, the box splinfe Al,, as

J/h := Air hA

r~ ho re- of the (definlit ion is as in the( introduction. i~.eS := 02hS( A!1h1. Our space of --test
funetioc< rwnlaimis the( TpacO defined in (2.2).

S1 1 cev the hlde~lr of spaces { 5 h Ih is dletermnined(l s soon as Al1 is chosen (in affect, as sooli as
aild1( A are chiosen . we refer to the relevant app~roximiation orders as provvded by Al1. rat her thian

prvrel 0 } r lh hhiS s'Satelby the( h 7-i-shifts of the dilattedl fjiot ion
0  I Furt hermuore. in case A = 0,Alp, = A!. all h, and the scale {Sh, } becomles stat iona~ry.

Thie mo1t1ivat ion behind the. particular definition of Sh iii the noti-StatiOnarv' ease, is trhat, While Sh
bimicotis i tiVariaut, Under fller and finter shifts as h -~ 0, the functions in S,, are alwaYs piecewisev
in sori ni fin ito-din ime s i onal hi-i rid oper11(10tit space R (of exponrential- polv 'no 10iais.

WCe hiave sepri in the last section t hat alppr-oxilmat ion orders front PSI spacues c-an be undertomd
1tin ti of the, behaviour of the various generators arounld 2 rZZ1\0. Ini the box spline case, however,

-,Ili ii r('>]l~ts carnnot be -onleýjlred as satisfictory: th~e i1iitIneihatlV atvailable informai~tion i 01 thme box
stmeis I lie rital rix (B.ý A). andl therefore wve wkis t,,- ihara('terize the app)roximlationi oriltr of box

zýlplilii space1s ini tho~se terms: thatt is. given k > 0, ev neved to find all (,A) whose corresponding
box- spli ne Af) rovide~s arti approximrationi order k.

F-or the L2-normn, we. provide ill thii paper the follhwing compijlete answer to the above p)roblarn.

6



Theorem 3.4. The L2-approximation order provided by the box spline M-,A, is the number

(3.5) k'(---) := min{#K 1 3 : /3 E 2 1'TZd\ 0 },

with

(3.6) K•: •-: ýE-: -PE 27'2Z\0}.

In particular, the approximation order is independent of A.

Proof. cf. §4.3. 4

Note that for p = 2 and integer k, V2 ,k = Wk, and hence the above stated approximation
orders apply to the entire Sobolev space.

We will also show that the saturation class associated with the above problem is trivial. Pre-
cisely, we have:

Theorem 3.7. Let {Sh}h be the box spline space scale associated with a box spline M--.. Let
k:= k'(E), and let f E 1 k\{0}. Then, for every sequence hj - 0,

dist 2 (f, Sh,) j o(hk).

Proof. cf. §4.3.

The definition of k'(-) is entirely in terms of the matrix E (i.e., does not require any information
on the underlying box spline M-.), and, moreover k'(-) can be computed by a finite algorithm.

In the important special case when - is an integer matrix Theorem 3.4 implies the following
(known) result:

Corollary 3.8. Assume that E is an integer matrix. Then the L 2-approximation order provided
by the box spline M-- , is

(3.9) k(-) := min{#X : X C F, rank('\X) < d}.

Here and hereafter, X C 2 means that X is obtained from'- by the deletion of some columns,
and #X is the number of columns in X.

" Proof. In view of Theorem 3.4, it suffices to show that, for an integer matrix ---, k'(-) =
k(-). Let ý E -. Since ý is integer, ý •/3 E 27r2Z for every /3 E 21r2Zd\0, hence KO of (3.6) can
equivalently be defined here as

(3.10) K ={ E'-: i4/3 0}.

Thus, (2\K#) Tp = 0 and hence rank(-\Ka) < d. This show that k(=) < #K3, and consequently
k(E) _• k'(7). The reverse inequality does not require the integrality of-, but only its rationality:
assume that, for some X C -, rank(-\X) < d. Since'E is a rational matrix, (E\X) is rank-deficient
if and only if there exists a non-zero integer vector a perpendicular to all ý E (:\X). In view of
(3.6), we have K 2 c.z, C X, and hence k'(-) _< #K 2 ,, :5 #X. It follows that k'(E) < k(-).

7



3.2. Further literature discussion

Now that the two numbers k(4) and k'(') are introduced and their connection to approxima-
tion orders is revealed, we are able to discuss the history of the problem in further detail. In this
regard, it seems instructive to separate the discussion of the polynomial box spline case (A = 0) from
the general exponential case. As mentioned before, the problem of the former case is stationary, i.e.,
the spaces {Sh } are all obtained from the original space S(M) by dilation, and there is a variety of
papers (including, but not restricted to, [SF], [DM1,2], [BJ], and [JL]) which treat such setting for
a general compactly supported 0, and links restrictive (hence stronger) notions of approximation
order (known as "controlled" and "local") to the polynomials in S(M). Further, more recently,
it was shown in [R2] (L_-norm) and [BDR1] (L2-norm) that whenever € is compactly supported
and 0(0) 0 0 (which is certainly the case for a polynomial box spline 0 = Al) the polynomials
in S(M) characterize the unconstrained approximation order (i.e., the one defined and analyzed
in the present paper). Thus, at least in essence, the characterization of the approximation order
provided by a polynomial box spline amounts to the identification of the polynomials in S(M).
These polynomials were characterized by de Boor and DeVore in [BD] for the three-directional
polynomial box spline (d = 2, A = 0, ýT E {(1, 0), (0, 1), (1, 1)}, Vý E EE) which were also introduced
there. Polynomial box splines associated with a general integer S were introduced and studied
Iy ,de Boor and IHhilig in [BHI, with the identification of the underlying polynomial space being
among the highlights of that paper. The abstract argument provided in [BH] for the conversion
of the knowledge on the polynomials into lower bounds on the approximation order has become
a standard tool since then. Another proof of that result is included in the subsequent work of
Dahmen and Micchelli, [DM1]. The characterization of the approximation order of a polynomial
box spline associated with a general'-- was only recently established in [RSJ, where, again, the main
result is concerned with the identification of the polynomials in S(M).

Exponential box splines were introduced in [R1], and that paper also contained the first result
on their approximation order (showing that for A C IR and an integer ZE, the approximation order
in the L,_,-norm is at least 1). The first comprehensive discussion of approximation orders for
exponential box splines is found in [DR], where, for general A but integer --, k(--) was proved to be
a h)wer bound on the L•-approximation order. (It was further shown there that the exponential
reproduction argument cannot provide better bounds). The extension of these results to p < 0o

was done by Lei and Jia in [LU], where, in addition, the local structure of the spline space was used
to provide matching upper bounds (Thus, Corollary 3.8 is [LJJ's).

As already alluded to before, all the aforementioned results employed the quasi-interpolation
argument: first, the space H(M) of all exponential-polynomials (polynomials, if A = 0) in f-hSh is
computed (either explicitly or as the kernel of explicit differential operators) and then the approx-
imation power of H(M) around the origin is studied. This local approximation order of H(M) is
then converted to lower bounds on the approximation orders via the quasi-interpolation argument
(for this argument, in the exponential case, see [DR], (Li], [R21, [BR1] and [CW]). However, in
contrast with the stationary case, there is no general theory that can be applied to the exponential
box spline to show that the lower bounds obtained by quasi-interpolation are the best approxima-
tion orders. Indeed, we draw (in §3.3) an example of a box spline Al (necessarily with a non-integer
Sand a non-zero A) such that k'(S) = 1 while the corresponding H(M) is trivial. We stress,
however, that examples of this-type are the exception rather than the rule.

The only reference that we are aware of which treats the approximation order provided by M-E,\
for a rational H- and general A is [BR2], where approximation in 0o-norm is considered. The ap-
proach in that paper is based on the theory for Leo-approximation orders developed there, a theory
which indeed circumvents quasi-interpolation. Theorem 3.13 is similar to its Leo-counterpart from
[BR21, with one important difference: while the results of [BR2] require some minimal smoothness
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conditions of the basis function under consideration (here the box spline M), hence exclude box
splines of low smoothness, no such exclusion exists in L2-analogous results from [BDR1]. We will
elaborate on this point in the next subsection, since Theorem 3.13 and its proof provide a better
understanding of the nature of the smoothness restriction on M which was required in [BR2].

3.3. Approximation orders of box spline spaces in Lp, p > 2

In order to derive approximation orders for box spline spaces we invoke Theorems 2.6 and 2.9.
For that task we need first to-find, for the given box spline scale {Oh = Mh}h, corresponding maps
{10, 1}h that satisf, the four requirements specified in Theorem 2.6. Upon completing that part, we
will turn our attention to the main problem: identifying the largest integer k for which the uniform
boundedness of the sequences {mk,h}h is satisfied.

Lemma 3.11. Let {Mh}h be any box spline scale, and let X be the characteristic function of a
0-neighborhood B. Then, for sufficiently small B, the operators

Jh : f ý" (Xo'l/hf/M1'"h)v

satisfy the four requirements of Theorem 2.6.

Proof. .1h certainly has the form required in (2.5), with Th = x/Mh. Condition (b) there
can be satisfied by ensuring supp y C [-Hr.. irJ. Condition (d) (listed in Theorem 2.6) holds, since
on B := suppX, 1 - ,M1hTh = 0. It remains to deal with condition (c) of (2.4). For that, we first
observe that since

Mhew = (hAg -t'w)t dt,

11,h}h converges uniformly on suppx to

10 e(-i'C')t dt,

and this latter expression is bounded away of zero on, say, [-fr..irJd. Thus, for sufficiently ho,
{Th -= X/M1h}h<ho are uniformly bounded, as required. 4

In order to deal with the essential requirement of Theorem 2.6, that is the uniform boundedness
in tq(2-,r2Zd\0) of the sequences {mk,h}h, we will prove the following:

Lemma 3.12. Let {ANh}h be a box spline scale generated by M = M-.N, and let Mo be the
corresponding polynomial box spline, i.e., Mo = ME,o. Given an origin-neighborhood B C [-ir..7r]d,
define, as in Theorem 2.6,

mk,h : (27r2Zd\O) 1 /3 ' II(h + •.I)k~h(. + fP)IIL.(B).
If, for 1 q < co, Mo E Lq(]Rd), then, for small enough ho, the sequences {mk,h}h<ho are uniformly

bounded in tq(27rTZd\0), for k := k'(').

Proof. cf. §4.2.

With the aid of the two last lemmas, we establish the following theorem:
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Theorem 3.13. Let (Afh}h be the box spline scale associated with the box spline M
Consider the approximation maps

f hAh (f
with

aE2•d

where

and ,X is the support function of some origin-neighborhood B C [-7r.. 7r]d. Then, for k k'(=-),
and "2 < p < oc,

IIf - OrhAh(f)Ijp -< constpllfllp,khk,

for every f E t",. and every small enough h. The result is valid for p = 00, as well, provided that

,\o E L L, with MA = Af-,o the associated polynomial box spline.

Proof. The claim of the present theorem with respect to p = oo follows by an application
of Lemma 3.12 and Lemma 3.11 to Theorem 2.6. The same is true also for 2 < p < oo, as soon as
we show that for such p, Mo necessarily lies in Lq. Since we assume that the rank condition

rank- = d

holds, we can find a d x d invertible submatrix X C E. Then

Mo = MI * M 2 ,

with M1I := MAyo and A12 = M(-\X),o. The trivial bound

I fje-j'=t dtj <_ 1, ý, w E Rd,

proves that ý E Lo, for any polynomial box spline 0, and therefore .l-2 E Lo. Consequently, it
sitfices to prove that M1 E Lq. By applying a linear change of variables, we may assume without
loss that X is the identity matrix, and thus MA becomes the tensor product of the univariate
function

W f e-"'t dt = --

which lies in Lq(IR) for q > 1. It follows that MI, hence also M0 are in Lq(lRd). 4

As mentioned in the introduction, results similar to Theorem 3.4 were derived in [BR21, but
with respect to oo-norm. It is shown there that the L,,-approximation order provided by M is
always bounded above by k'(=), and this bound is proved there to be the exact approximation
order under the additional assumption

(3.14) E 17I i"- < 0:.

In comparison, Theorem 3.13 requires the more verifiable condition Mo E L, (which is shown to
imply (3.14)). For example, the latter condition is satisfied whenever E can be partitioned into two
matrices E = X U Y both of rank d. Indeed, the full rank assumption on X and Y implies that
Mx,o, Mfyo E L 2, and hence their convolution product M-,o is in the algebra A := {f : f E L 1}.
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Example 3.15. Let d = 2. Then one easily checks that E can always be partitioned into two
matrices of rank 2 unless T: = X U {Q} with X is a rank-1 matrix, or. in ternis of Il j wf- (39 q if
and only ifA CE = 1. As observed in the proof of Corollary 3M8 k'(-) S A'E hence in such a ca-e
VE B { 0. 1} Now. if k() = 0. then. siflc the L,-approximration order is proved i:: U3R21 to
he hin td a hoyv by k'E). we nm'Inhv .d at M p rovids approiimat io orvler 0. Thier nie the
only oivariate box splinets whose ..- approximation order cannot be decid directly by the repilts

here are those a.ssociatod with a matrix E that satisfies k(-) = k'(-B = 1.

Umexr, we uant to show. with the aid of an example. that the approximatmo ordr qF-; van
exmend in times the local approximation order of the space H1 M) (Af. third paragmraph of 113.2

Example 3.16. Let d = "2

E= 1!/2 0 1 /2 1 1/ 2 1/2
0 1/2 1/2 1/2 1 -V2/

an! \ rot o he determined. It is easily verified that k(," = 1 < WlE) 5. and hence. by Theortim
A. ;. ai in On- of the previous example. the L,-approximation order prvided by .a- is 1. for
01"'..v 2 p . and regardless of the choice of A), The choice A = 0 heati> to a stat niariy

. Seli approxi-wmathion order I must then imply that the shifts of - 1 E- partitioi tho
e.. C;11an verify, with the aid of Poisson'- sninnmation formula, from the fact that

E.o( 2J3E = , E .

on -he ohor haMnu. for a ge'ueric choice of A,. Hli.1) = 0V. This tan be provd as folnows: if HN 31
is nout-rivial. then by Lemma 3.1 of [BAR itR contains an expontential - -,0 . The frequency
it) of thiat exponeential must :;atisfv the followin1 ý two conditions:

k, , , Vri , 0. for some 2 x 2 2X C of rank 2 ; and-, I . ,,fo 0- 2,7 3) = 0. 3 E •Z2\0. (cf. [R1:,41 for (a) and [BRI:§21 for (b.)

"II .et, tht, the a li, ISa anr (hi can hold onhl in exceptional circumistaics, we proncet I as fMwlows:
z-, K hOw aWv _.. and A\X This determines a unique 0 (sye (a) abone. We now try to define
A",. ' 'E. H,, 4othat hb) above is valid. For that, one verifies first (directly) that, regardless of the

ý;,- inl i choice of the 2 x 2 X C H. M.\.,x can vanish only on a subset of some proper suhattice
C2 i )f 2r(-'. Selecting .3 e 2r2\{0} in the complement of this subattice. (h) above implies the
exi-t'once of 1 E E\- such that fot ' -9 (M"J")t dt - 0% or, equivalently.

A¾ - iý • (9 + 3) E 2,rM.

TriV shows that on(e of ,\, E -H must be chosen from the countable set -,, . (0 + 2 27). and
there rfore, en erically, H(.1!) {0}, as claimed.

Finally. we state our result concerning simultaneous approximation.

Theorern 3.17. In the notations of Theoremn 3.13. and for 2 S p < oc,

[If - 'hmAh(f)Ikw; < constp, hk -"1fIIP.k,

for P,,r- f e Q, ovor~v small enough h, and everv integer r < k. The sane holds for p = ,c,
provided thaot .11 Ii and all its derivatives up to order r inclusive lie in the Wienir algebra .4 (or. •

eq"ieulentl. . r A,! E L I.)

Proof. cf §14...
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4. Proofs

4.1. Proofs of Theorems 2.6 and 2.9

The approximation maps (.41, }J that we employ are intimately related to those used in [BR21.
In fact, the latter, albeit a special case of the present schemes. seem to be their most natural choice.
InI contrast. the error analysis of [BR2] cannot be adopted here: that analysis makes nse of the
opt imal approximation to the exponential functions

0~ : X ,-- C'O° r, 0 '2 f Id

of [321. anld svnthesize those op)tiiuil approximations on the Fourier domain to vield optimal
approxll na)t Ihn to other smooth functions. However. wheln p < .-, the abovr ,xpo|itmmt mals are •o•t
i i LP any more, hence the [B(.12[ approach cannot go through. Jnzitead. we iise here the following
ide tity

',4 1 'S-" ..- t.flg!, Z ; c* (e3 l.

,IEVZ 3E27r•2V

which ;S' val;id for any comiactl' v s'ipported distribution i" provided that g is sufficient l sm,•til.

, E C- ,•,f. Theorem 2.6 of [RS],. The convergence of the right hand side of 4.1, is vali'l
II to pology of tempered listributiotis a•nd in most circumstances. in muchu stron:ger roptodog its
providetd that . and all its derivatives grow no faster than polynomially It a .

Proof of Theorem 2.6. Fix 2 < p < x. and let f G IX,.k. We try to estimate the error

(4.2) i!j - uh(A,(f));Ip = h"41171 /hf- Ah(f)jj,.

with the right hand side in (4.2) obtained from the left hand side by scaling. Invoking (4.1) with

respect to Ajf) (i.e. with g := -l(f) and .' := 0th). we obtain that

K!,'I/hf - .4Ah(f)I' =1Ki f 6h * hf) Z (b,)
i3E'2-7rZd\O(4.3)

<_ir/hf - Oh *h+(f)lP + I 6 * ,.1,,(

We estirmate each of the two terms in the last line of (4.3) with the aid of the f[ausdorff-Young
inequality:

(4A) IVf ! <- constpllflq, 1/p + 1/q = 1,

valid for 2 < p < x. provided that fE L,(IRd).
We first estimate in the proposition below the second term in the second line of (4.3) For

later use, we derive that estimate in a slightly more general setup than needed here.

Proposition 4.5. Lent u. be somo .se'q urie defined on 2rrý7Zd\( and hving (at most) poyinornial
growth. Then, in the notations of Theorem 2.6, and umder the assiunptions there,

h'tl"(l • u'w('3)0, * (,Ilh(f) ),Ip < const hkIlf lp.k 11 lk,,Ai'l14 (Th71d\O).

OE2ýZ1\O
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Proof. There is nothing to prove in case ]rnk.howlic 2 zzd\O) = X. Otherwise, by (4.4) it
suffices to bound

(4,6) h",'p i( W •,(3)Oh (ejh(f)))-^N• = h"IP11 Y w,(-•&,"). J; .D[•
JE2'rlZ'\O JE2%TZ

4
\0

jThe justification for the term-by-term application of the Fourier transform is given in the sequel

Substituting h-'f,/h)Th for ,)f!) (cf. (2.5)) we obtain from (4.6) the equivalent expression

-47 h-t''1K, Z u.(-3)f((. - 3)/h)Th(. + 3U,"

JE2TZ27\O

Here. the infinite sum in the above expression trivially converges (since supp Th C B C - .

and the limit is supported in (2. \0) ÷ B. Also, since the weights {(0.;}} are of poyniiomial
growth, the convergence holds in S'. In retrospect. this justifies the tert-by-rerm application of
the Fourier transform in (,.16), as well as the changing of the order of summation and multiplication
hY :), is the, display afterwards.

We fix c r 2-r2Z"\\(, and compute that

I-, + ,(-.if((.+ 3) /h)TfI + 3)bj'., ý + ;

tvýý' 10hf ( "- o)/h)Th(. - ) -

K C((k)) 11(h 4- 11(B) 4_ h + )-k +

- ,d--,q.(''',.r.,)q ii,,Th),<( d, tt(1- + t•' 0 .1 ,,B /,. Q'<, + .i)-k ,{ + .::![ <.,

Summing over all o E 27g'\0 and using the uniform boundedness of {Th } we obtain the bound
- .7 - q I '

u,(,-3)(( + ,3)!h)T.(. + 3Lq1IR.) < const ",kq t fp,',k* -17k.,, ,
3c2r:' \o

and the required result follows.

In view of (4.2), (4.3) and the claim of the last proposition for the choice u,w= 1, the proof of
Theorem 2.6 is reduced to the study of the first term on second line of (4.3). Here we have, for
Somne positive const,

constllal/hf - Oh * J5(f)I)l <_

(4.8) Il'hi-jf - ,h,. (f)[i,!q I< l /' .f(l - ,,Th)!L,(1 + IIl/hf"I'I lt,(,,\B),

with the first inequality by (4.4) and the second equality because Jh(f) = Thal/df and Th is

supported in 3. Changing variables, the term IIal/hf1'1L,(l'\8) can be bounded as follows:

tl • 1/h7-fjjj ., iRd\B ýI -- 1,-'l7hfll ,,<jR1\ 3m

"=h -d-dq 1 L,(•lR\(B/h))

<SIt- /p( + c/h)) kI(1 + '1).flLq([d\(B/I1)) = h-d/Phk jfIj,k o(1),
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with the o(1) expression uniformly bounded in h and f E 1
'.k. As for the other term in (4.ýI.

IdG/hf(1 -- ohTh)h 3 < I(h ± I-)ko [3i / ±• H )-( - ThT L 'L.ý13

By assumipt ion (d), 1(h Ii , - Th) k, (B) is bounded independently of h. while a change of
variables yields

Ih 1/-•fr L, i B) h-1h + I)kahfTLU L,(13) I +), i)/H. F < h k- d/fj j

Thus, we have shown that each of the two terms in the last line of (4.3) is of order 0O.h , and
the claim of Theorem 2-6 then follows. 4

Proof of Theorem 2.9. The proof of Theorem 2.9 closely follows that of its special case. The-
orem 2.6. We thus only outline the proof. emphasizing parts of the proof that deviate from Their
counterparts in Theorem 2.6.

\We let P e H, be a homogeneous polynomial, and P(D) being its associated constant-
coefficient differential operator. We want to establish the bound

i4.9• Hp.D)(f -_hAh(f))[!, <const h l!._if p.k ,hi.r

Suct1h an estiillnae leads to the desired result. since we mav range P over sort fixed hommInoeous

basis for lr. Here, coust should be independent of h and f, but mav depend on P. p. and r.
For the proof of (4.9). we consider

P(D)(f - ahAh(f)) = P(D)f - h- eg PO-hP(D)Ah(f).

By (4.1) (with tý' := Oh and 9 Jh(f)),

(4.10) P(D).-Ij(f) ý P(D) Y 6h - (e 3 .Jh(f)) Z * (P(D)(ej.,a(f))).
3E'27&" 3E 2r7 LW1

with the changing of order of summation and differentiation justified by the S'-convergence of the
sum. The term corresponding to 3 = 0 is Oh * (P(D)Jh(f)) = hIe"" PPh * Jh(P(D)f), and we first
e'st itnate

P(D)f - Oa(Oh * ,Ih(P(D)f)).

Since f E I'V.k, P(D)f E tp.k-de p, and hence the proof of Theorem 2.6 yields that for small
enough h we have

IIP(D)f - -h(¢h * Jh(P(D)f))flp :ý , konsth*-de-g PI P(D)ft11,._deg P.

It remains to bound the expression

OZ h * P(D)(eu3Jh(f)).

Here, we fix :3 i 0, and expand

P(D),(e.ph(f)) = -. (D"P)(D)(eB) DaJh(f) e, . (D'P)(i3) D'Jh(f),
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and use summation by parts (allowed, since the range of a is actually finite, and since, for any fixed
a, the Fourier transform of the various #-summands have pairwise disjoint supports) followed by
the triangle inequality to estirhate the norm of that part as follows:

II 2. Sh* P(D)(eOJh(!))llp
OtE2wIZd\O

(4.11) (DcP)(iO)Oh * (eO(D*Jh(f)))lp

1a>O 6E21r7Zd\O

=E-Z I11 E (D*P)(i/3) Oh * (eoJh(D~f))lil
0_>O f OcilrZd\O

Invoking Proposition 4.5 with w(13) := w.(,3) := (D"P)(i3) (and with f, k replaced by Daf and
k - Iail respectively), we obtain that

hie"'ll (D"P)(i#)ph *(eOJA(D*f))llp=-

PE27r~d\O(4.12)k h(412ll WaUJ(tM)h *(eoJh(Daf))Ilp < consthkllJDfllp,k-.1i, llmk,hwall1q( 2,Zd\O).

OE2i71d\O

Since (i): the actual range of a in (4.11) is finite (loli •_ degP), (ii): IID"flip,k-1II, < IIlf Ip,k, and
(iii): I(D0P)(i3)I < constl613', we derive from (4.11) and (4.12) the inequality

II Z 'h * P(D)(eOJh(f))llp < consthkllfllpkllmn.hIllt,( 2wzd\o),
OE2rZd\O

from which (4.9) follows. A

4.2. Proof of Lemma 3.12

Given /3 E 2 7r2\0, our first goal is to estimate IMh (w +.8)1, for small w. Initially, this is done
without using the assumption M, E Lq. We consider, one by one, the factors

/' I
(4.13) I e(h c-i(w+#))t dtl

that form IMhl. For this, fixing . E 27r2"\O, we partition E according to the behaviour of their
corresponding factors into three groups: the firs( of which is K, (cf. (3.6)) and the other two are
defined as follows

o• := {• : e.3= o}.

Case I: E O0i. In this case, for sufficiently small h, we have

I e (hAfi'(w+$t dtl < 2.
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Case II: S E L3 . Here we use the estimate

(4.14) f e(h't-,•(,+)))t dtj < JhA 3 - (aa +

valid for all ,. and sufficiently small h. The rationality of - implies the existence of ri E 2Z such
that r7: is integral, and thus we have 15 ' 31 Ž 2r,/n. and (4.14) shows that for sufficiently small h
and <0 c

with c depending only on -.
Case III:c E K3. In this final case, we write

S te•~~~h,'-z4 (ý+3) - 11 e -' -1
(4.15; I v\. e(•x-'-.{('' t j~ e5 ''~ -dtj =I

The denominator in the right hand side of (4.15) can be estimated as in the previous case. whilv
thw n:mierator, for sufficiently small h and !",;. can be bounded by c(h + . hence we obtain in
this case the estimate P e(hA•'-z{At dtl < c' (h +KI!___)

1- jý -31

Combining these various estimates we obtain that. for 4" in some h-independent neighborhood
of the origin, for h sufficiently small and for some (h.,'. 3)-independent const.

(4.16) !A-'(U + 3)1 _< const(h + 1ý,;J)#K3 fJ " .31-' < const(h + 1,k)k'(-) fJ !3r-"

ýEKjULj ýe K 3 uLj

the second inequality since k'(=_.) < #K3 for every 3 E 2r,2d\0.
For later use. we record this intermediate estimate:

Proposition 4.17. Let ({f , },h be a box spline scale associated with - and A. Then, for k := k'(_).
for some origin-neighborhood B, for sutficient4y small h, and for some (h. 3)-independent const we
have

mk~h(!.) := 11(h + I ') fh(• + 3 )iIL-(B) <- const rl 1" 31-
ýEKjULj

To complete the proof of Lemma 3.12, we need to show that the sequence

ýEKjuLO

is in gf(2-d\0), whenever S!0 E Lq. A slightly more general assertion is proved in the following
proposition.

Proposition 4.18. Assume that, for the polynomial box spline ,10 and for some r > 0, 1-V'.0 E
Lq. Then

(1.19) Z I f-i 1 •- < C.
I3C2.TZd\0 ~E K, U L
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Proof of the Proposition. Choose w E ]Rd that satisfies the following conditions:
(a) For every ý E ,.w is not 2%-rational.
(b) The series

(4.20) Z I ( +'3)I"

converges.
(c) M• ( + O)I -< 21•. 01, ý E 'E, 0 E 27r2Zd, '3. 0.

It is clear that the set of points w E IRd that violate (a) is of measure 0. Also, because
I'1,o E Lq(IRd), the series

Z IW + 0rq3A10(W + M)1I
O3E2ir7Ld\O

converges a.e. on [-7r.. 7r]d' implying thereby the a.e. convergence of (4.20). On the other hand,

because E E is rational, inf{IC - 03 1 3 E 27'2zd\0, 6. -0} > 0, and hence condition (c) is
satisfied by all small enough w. This proves that there is w that satisfies all the above conditions.

The rationality of '- implies that for any fixed C E -- the range of the map

(2r2Zd\)3 - 1

is finite, and, because of condition (a), this range does not contain 0. Condition (a) also implies

that f1 e-i` t dt 6 0, for all ý E EE. Thus, we obtain from condition (c) the estimate

= o dti lI I . (w+/) 11
(4.21) CE+s -EKOuL1

> const J- I- 1"
4EKouLO

Condition (b) then implies the desired result. 4

4.3. Proofs of Theorems 3.4 and 3.7

The positive statement in Theorem 3.4, i.e., that the approximation order provided by M--,\

(to functions in V2 ,k,(-) = W (-)) is at least k'(-=), follows from Theorem 2.6 when combined with

Lemma 3.11 and Lemma 3.12. Indeed, we only need to verify that the requirement Mo E L2 (needed

for the application of Lemma 3.12) holds. That was proved in Theorem 3.13, but, as matter of

fact, also follows directly from the fact that Mo E L2 .
The negative statement of Theorem 3.4 will follow from Theorem 3.7. Indeed, Theorem 3.7

provides k'(--) as an upper bound on the approximation order (and in the strongest possible sense).
Therefore, only Theorem 3.7 requires a proof.
For that proof, we need to borrow some of the general tools and results developed in [BDR1].

We remark that the definition of the PSI space S(O) in [BDR1J differs from the one given here:
it is defined there as the L 2-closure of the algebraic span of the shifts of 0. However, as Theorem

2.13 of [BDR1I asserts, S(ok) fl L 2 of the present paper is dense in S(O) of [BDR1], hence the two

spaces share the same approximation orders, and to the same functions.
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We first define for every h > 0

N\:= M *h

Note that

Nh = - h'

Because of the rank assumption (3.2). _h E L2, and therefore Nh (which is clearly compactly
supported) is continuous, as any convolution product of two L..-functions is. We make a sttbstantial
use of the symbol Nh of Nh defined as

A standard application of Poisson's summation formula shows that

Nh + .\(3) = Y3 1.s(- + .3)12.

Y\+ ý = 0).

The LU-approximation orders provided by A- are determined [BDR1], by the behaviour around
the origin of the functions

(4.22) A5 := (1 - V,/N) / 1', h > 0

(here, 0/0, is defined as zero, but in any case, Nh,1 as a trigonometric polynomial. van:shes u-v o
a null-set). Note that -k5 is non-negative and bounded bv 1. The precise result that we need here
follows from Theorem 2.20 and Corollary 3.10 of [BDP1], and reads as follows:

Result 4.23. Let f E 102 . Let {((h}1h be a subset of L2. Then

(4.24) dist 2 (f, Orh(S(6h))) o(hk)

onl] if

h-d/ 21l,\1AhhfIL2 (B) = o(h'),

on 9.,xm, origin-neighborhood B.

We next attempt to replace Ah in this result by simpler expressions. It is clear that we might
replace Ah by (Nh - ?ih)1/2 in case the ratio

1/2

is bounded around the origin by h-independent positive constants. For this we need the following
lemma, in which we make use of the fact that every Nh, and in particular NO. is supported in the
svrrnmotric region Z-u(-=) = Z- - Z, (which follows from the fact that M(-) = _-. cf. (3.3)

for the definition of Zr).
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Lemma 4.25. Nh, -o No uniformly and hence Rh -- No in any p-norm, 1 < p 5 oo.

h 0

Proof. The first claim easily follows from the distributional definition of box splines (cf.
e.g. Definition 2.1 in [RI]. More specifically, one can apply to Nh - No the argument used in the
proof of Lemma 5.1 in [DRI). The second claim follows from the first, since all Nh are supported
in the same compact domain ZE - Z-=.

Thanks to Lemma 4.25, we know that {Nh}h are uniformly bounded around the origin, hence
may replace {Ah}h in Result 4.23 by

(N _ ( + ))12
OE27r2Zd\O

Thus, if, for some f E IV2, dist 2 (f, ah (S(¢h))) = o(hk), then we must have, for every E 21r2Zd\0,

h-d/ 2 II-)h(_ + 1)ohfIIL2 (B) = o(hk),

which implies by scaling that

(4.26) II'1,(h" +/)fIIL2(h-'B) = o(hk).

Let /3 E 2 -,'rd\0 be chosen with #K3 = k. Since f E L2 ', it is supported on a set of positive

measure, and therefore, for sufficiently small 6, the set

A, :=E{EnRd: IA(-i.I ý >, VýE}

has a positive measure intersection with suppf. We fix such c, and we let Q2 be any bounded
measurable subset of A, for which If 1]L,(n) > 0.

A straightforward computation shows that, for any 0 E IR' and • E -\K•(-),

(4.27) e(hA(-iC,(hO+3))t dt e-.'.jt dt 54 0,

uniformly. Further, for ý E K3, we get that

h1IjI e (hAi(h+.))t dtj I h 0 const > 0, VO E Ac,

with the convergence being uniform on compact sets, hence on f. Thus, for small enough h0 ,

P1
inf{h-1 f e(hAf-i4(hO+j))tdtI : 0 E 11, h < h0 } > 0, Vý E KO.

This, together with (4.27), implies, with

rh := inf{jMh(hO +O)l: 0 E 11},

that, for small enough h,

h-krh = h-k inf{ Ji e(hAc-if'(h+))t dtl : 0 E fl} > const > 0.
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Thus, by (4.26).

o(h k) = 13!(h"- +3)hL2t(n) ý! Ilf!Lj2.()rh > constljjfjL.,Q~h k'

a contradiction to the fact that If IL(M * 0.
This completes the proof of Theorem 3.7. and thereby the proof of Theorem 3.4.

4.4. Proof of Theorem 3.17

The proof invokes Theorem 2.9 for thie choice oh := .11h. Thus. we neod to verify that for an
intper r < A- twith k k'(-=)). the sequences

k.h : (2-rZZ"\0) • 3 3J1'1(h +.klf( + 3 )iIL. h < h,)

lie in in Y27:'i () and are bounded there.
For that. we first invoke Proposition 4.17 to conclude that

TO.h(: .' - constI.3 f 17 ', 31-
'EKjuL

Th',refore. by Proposition 4.1S. the uniform boundedness of {rnkh}h in f,.(27Zd \0( is implied by

hie o(dition I A,, E L,. For p = x (i.e., q = 1) this latter condition is assumend in the present
he,,r,:!i. \ý'o nr',, h,,re the validit, of the condition for o > 1.

We first observe that the condition the condition '..[ is equivalent to the statement: -for
e;aCIh homogeneous polynomial P of degree r. (P(D)1I0 rE Lq. Here. r < k'E) - 1 < kiEJ -

cf. The proof of Corollary :3.8). On the other hand, it is known. [BH]. that for any polynonial P
of degree < k(-=). P(D).A10 can be written as a finite sum

(4.2S) Zcx -x( -ax),
x

where each X in the above sum is a submatrix of 7 of full rank d. where c_ are some coefficients,
o.-,( ;- M."', and 11.v = Mv~ is the polynomial box spline defined by X. Since each X above

satisfies rankX = d, then, as established in the proof of Theorem 3.13, .11 E L. for every
q > 1. Therefore, the Fourier transform of the sum in (4.28) is in Lq, namely. (P(D)M ')-E Lq.

Consequently. ,Mo E Lq.
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