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INTRODUCTION

Modern weapons systems often require pattern recognition devices and
algorithms. The three-layer neural network--consisting of input layer, hidden
layer, and output layer-has great potential as a pattern classifier. Determining
the size of the hidden layer and computing the weights are two of the primary
design problems associated with layered networks. This report considers only
piecewise linear networks; that is, networks with piecewise linear transfer
functions. General introductions to layered networks appear in References 1 and
2.

Using linear algebraic methods, we determine a lower bound on the number
of hidden neurons as a function of the input and output dimensions and of the
number of pattern prototypes. Appropriate weights for matching the desired
input/output pairs are constructed.

The network of interest is called a (d,L,m) network, where

d = dimension of the input space (number of input nodes)

L = dimension of the intermediate space (number of hidden neurons)

m = dimension of the output space (number of output nodes).

The network transfer function is denoted FW, where W is the 'weight vector.'
Actually, W consists of two matrices A and B and two vectors a and b.

AisLbyd, aisLby I

B is m by L, b is m by I

A+x) =Ax + a for x c R(d)

B+(u) = Bu + b for u e R(L)

A+ R(d) -- R(L)

B+:R(L) - R(m).

A+ and B+ are affine :ransform ztiors, -;vilc A a.a% E arc linear. The weight
vector W can be considered a member of R(W), where
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w = dL + L+ Lm +m,

the total number of entries (parameters) in A, a, B, and b. A typical weight
initialization task involves finding a W E R(w) for which

Fw(xj)= yj for 1 <j < N,

where the (xj, yj)'s are desired input/output pairs.

In Reference 2 it is shown that one cannot find such a W for 'general' families

of N input/output pairs when

N > w/m = L + I + (dL + L)/m. (1)

For example, the number of general pairs for which the solution vector W exists
in a (20, 30, 5) network is at most 157. The Inequality I holds for general
sigmoidal neuron transfer functions.

This 'dimensional bound' on the number of general input/output pairs that a
layered network can accommodate follows from comparing the space of output
sets with the weight space. The space of all possible N-tuples Y = (Yl, Y2 ..... YN)
of desired outputs has dimension inN. For a fixed N-tuple X = (x1, x2, ...- xN) of
inputs, the set S(X) = {FW(X) : W e R(w)} of all output images of X must cover the
mN-dimensional space of possible outputs. In the presence of appropriate
hypotheses regarding the neuron transfer function it follows that

w > iN.

That is, the weight space, which is the domain of the function
F(X) : W - FW (X), must hive dimension at least as great as that of the range,
R(mN), which is the space of N-sets of outputs. It follows that

N< w/m .

It is shown in Reference 3 that the (d,L,m) network can accommodate at least
d+l input/output pairs when d > L > m and at least L+I pairs in any case. For L >
3m/2, the algorithm described in Section 3 allows one to raise the lower bound
on the number of input/output pairs to d + L - 1.

2
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BACKGROUND AND NOTATION

The piecewise linear neuron transfer function p is defined by

-1 for t<-1

p(t)= t for -1<t<1I

1 for 1 <t

The network transfer function satisfies

FW(x) = B p(L) (Ax + a) + b.

Equivalently,

FW = B+ o p(L) o A+,

where p(L) is the extension of p to R(L),

p(L)(u) = (p(ul), p(u2), ..., p(uL))T

u = (u1, 112, ..., UL)T ,

and o denotes function composition.

The following definitions from affine and linear geometry are useful.

Affine space. H is a k-dimensional affine subspace of R(d) provided
H = H0 + a, where a c R(d) and H0 is a k-dimensional linear subspace of R(d);
i.e., H must be a translate of a k-dimensional linear subspace.

Affine equivalence. Two ordered k-subsets X and Z of R(d) are affine

equivalent provided there is an invertible affine mapping

A+ :R(d) R(d)

for which A+(xj) = A+(zj) for I < j < k.

Affine generation. For a finite subset,

X = (xi. X2, ..., Xk}

of R(d), the affine subspace generated by X, denoted <<X>>, is defined by

<<X>> = [ ljJj : 3j = 1}

3
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General position. A subset X of R(d) is in general position provided every
k-subset S of X generates a (k-1)-dimensional affine subspace of R(d) for
I < k < d+1.

Convexity, A subset C of R(d) is convex provided Xx + (1 - X) y e C whenever x,
y e C, and 0 < X < 1. Equivalently, a set is convex if it contains every line segment
joining two of its members.

REMARKS. The affine subspace of R(d) generated by the set X = lxI, x2 ... , Xk) is
also equal to < X0 > + xk, where X0 = {xl, xk, x2 - Xk .... Xk-1 - xkl and < X0 >
denotes the linear subspace generated by X0.

The close relationship between convexity and affine generation should be
noted. The convex hull of a subset X of R(d) is defined by

Hull(X) = { T,. xjXj : I•a• = I and all aj 2t 0}

Thus, the convex hull is that part of the affine subspace determined by non-
negative coefficients. The affine subspace generated by X is the intersection of
all affine subspaces containing X. Similarly, the convex hull of X is the
intersection of all convex sets containing X.

The importance of affine geometry and affine equivalence stems from the fact
that each layer of weights defines an affine transformation. Thus, if there exist
weights that map the inputs X = {xi} into the outputs Y = {yi}, then there also exist
weights for the pairs in X', Y' whenever X' is affine equivalent to X and Y' is affine
equivalent to Y.

A basic result from convexity theory, which we state here without proof, is

RADON'S THEOREM. If X is a set of d+2 points in general position in R(d),
then there is a unique partition X = S U T of X into two proper, disjoint subsets
such that Hull(S) n Hull(T) # €.

PROJECTIONS OF FINITE SETS

The network transfer function FW of a (d,L,m) network consists of two affine
mappings with a piecewise linear truncation (or squash) in between. The output
of the hidden layer is the result of the affine mapping x -• Ax + a followed by the
L-dimensional truncation p(L). Thus, the ith coordinate u(i)(x) of the
intermediate output is given by

u(i)(x) = p(Ai x + ai),

4
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where Ai is the ith row of A and ai is the ith coordinate of a. The mapping u(i)
R(d) -4 R is constant in each of the half-spaces D- and D+, where

D= {x Ai x + ai < -1}

D+= (x A x + ai> 1}

In the infinite strip Do = R(d)\(D- U D+),

u(i)(x) = Ai x + ai.

Thus, the mapping u(i) is piecewise affine on R(d), with its three affine parts
determined by the affine projection x -+ Ai x + ai.

The following lemmas provide helpful tools for constructing the affine
mappings required in a piecewise linear network.

LEMMA 1. If S = {sj} is a set of d+1 points in general position in R(d) and x = (zj) is
a vector of d+l reals, then there exists a unique affine functional
x -- f(x) = a x + a, satisfying f(sj) = zj, 1 <_j d+l. Here a is a d-dimensional
row vector and a is a real scalar.

PROOF. Let tj = sj - Sd+ I and vj = zj - Zd+ I for I < j < d. Now let

T = [t1, t2, .... td]
and

v = (v1, v2, .... vd)

Since S is in general position, the tj's form a basis. Thus, T is nonsingular and
the equation yT - v has a unique solution y = a in R(d). Then the desired affine
functional is f(x) = ax + a, where a = zd+1 - asd+l. Uniqueness of f also follows
from the nonsingularity of T.

Lemma 1 is the affine version of the fact that the linear functional mapping d
independent vectors in d-space onto a prescribed set of d numbers exists and is
unique.

LEMMA 2. Suppose X is a finite set in general position in R(d), S = [s, s2 .... Sd) is
a d-subset of X, K is a positive real, and z = (zl, z2, ..., zd) is a real d-vector. Then
there exists an affine functional f : x -+ ax + a, satisfying

f(sj) = zj, for I < j < d
and

I f(x) I ;> K, for x e XIS

5
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PROOF. First note that the result is trivial if X = S. For " • S, X\S is nonempty, and
we let x0 be a fixed member of X\S. Next, we apply Lemma I to the (d+l)-set
{x0} U S twice: we first obtain the affine functional g satisfying

g(sj) = zj for 1 <j < d

g(xo) 0

and then obtain the affine functional h satisfying

h(sj)= 0 for I <j < d

h(xo) = 1

The desired affine functional is f = g + Mh, where

K K+lIg(x), I

M = max {K: X IE X\ S}M~~max I h(x) I x• \

Note that h maps all d members of S into 0. However, h is not the zero-mapping
since h(x 0 ) = 1. It follows that the kernel of h is the hyperplane H0 containing S.
Since X is in general position, no members of X (other than those in S) lie in H0 .
Thus, h(x) t 0 for all x E X\S and M is well-defined. The summands g and Mh of f
have the following properties:

g maps the members of S into the desired outputs

Mh spreads all the members of X\S away from 0 while preserving the
desired values g(sj).

Repeated application of Lemma 2 to the L real outputs of the hidden layer
allows one to send some inputs to the comers of the unit cube while placing the
others at arbitrary locations in the unit cube. The combinatorial configuration of
inputs in R(d) determines how the points in X\S are separated by the hyperplane
through S. This technique is best understood by analyzing the following
examples.

EXAMPLE 1. We consider a (3,3,2) network acting on five points in R(3). Let X =

lxI, x2, x3, x4, x5} be a set of inputs in general position in R( 3) and let Ext(X) be
the set of extreme points (vertices) of Hull(X). At least one of the ten segments
joining pairs of points from X meets the interior of Hull(X). More precisely, if
I Ext(X) I = 4, then there are four such interior segments, while there is only one
if I Ext(X) I = 5. (This follows from Radon's Theorem as stated in the previous
section.)

Without loss of generality we may assume that {x4, xs) bounds an interior
segment of Hull(X). Figure 1 shows two different configurations of five points in

6
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R( 3) with {X4, x5} an interior segment. Choose a basis {bl, b2, b3} for R( 3) with
b= X4 - x5. Let Q R(3 ) --, R( 3 ) be the linear transformation defined by

0 forj = I

Qbj =

b forj= 2 or 3

x4

Xl x 3

1(a) 5

X2

X 5

Xl x4

1 (b) x 3

FIGURE 1. Two Configuratins in
3-Space With (x4, x5) an Internal Edge.

7
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and let qj = Q xj. The mapping Q is a rank 2 mapping from R( 3 ) onto the two-
dimensional subspace Range(Q). The four points q1, q2. q3, q4, are distinct
while q5 = q4. Moreover, since {x4, x5J bounds an interior segment in Hull(X), q4
must lie in the two-dimensional interior of HulI({q 1. q2, q3, q4)). It follows that
q4 lies inside the triangle bounded by {ql, q2, q3,]. Figure 2 shows the
configuration of q's in R( 2 ). The purpose of analyzing the image of X under Q is
to select hyperplanes in R( 3 ) for application of Lemma 2. The three lines in
Range(Q) joining q4 to q1, q2, and q3 correspond to the three planes in R( 3 )
determined by the triples {Xl, X4, x5,J, (x2, X4, x5}, and {x3, x4, x5}. The position
of q4 relative to {ql, q2, q3) determines how the three hyperplanes partition the
remaining points. Indeed the partitions by the hyperplanes are identical to
those of the lines in Range(Q). Let Li denote the line through qi and q4 and let Hi
denote the plane through xi, X4, and x5, for I < i < 3. The plane Hi separates the
remaining two x's in R( 3) if and on]-, if the line Li separates the remaining two q's
in Range(Q). Therefore, each plane Hi separates the remaining two points in
R( 3). Moreover, this fact is a consequence of our choosing an interior segment to
define Q. Choice of an exterior edge to define Q would have resulted in only one
of three hyperplanes separating the remaining two points. This geometry forms
the basis for Example 2.

L3 ql

FIGURE 2. Projection Into Plane
For Example 1.

Lemma 2 allows us to define an affine mapping Ai corresponding to the plane

Hi, 1 < i < 3. In each case, we select the values on the triple S to lie in the interval

[-1,11 and set the lower bound K = 1. Thus, of the five outputs uij = p(Ai (xj)), 1 <

j <_ 5, of the ith hidden neuron, 1 <_. i S_3, three may be placed arbitrarily in

8



NAWCWPNS TP 8071

T
[-1,11, while the other two must be -1 and 1. Table I lists the outputs uj = (uij,

u2j, u3j), I <.j < 5 at the hidden layer.

TABLE 1. Coordinates of uj
for Example 1.

j uj

(ull -1 )T

2 (1 u22 -)T

3 (-1 1 u33 )T

4 (u14 U24 u34)T

5 (u15 u25 u35)T

The nine variables uij in Table I can be independently chosen in the interval
[-1,1]. This provides considerable flexibility in positioning the imr.ages uj of the
five inputs at the hidden layer so as to facilitate the final mapping into the
desired outputs yj. Figure 3 shows the five u's in R( 3 ). The points ul, u2, and u3
lie on edges of the cube. This follows from the fact that each of them has one
variable coordinate, as shown in Table 1. Similarly, u4 and u5 each have all three
coordinates variable, which allows them to be placed anywhere in the cube.

9
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U1  U3  0 0

U4  U5

(--)(--)

FIGURE 3. Five Points uj of Example I in the 3-Cube;
u4, u5 Can Be Anywhere.

EXAMPLE 2. Again, we consider a (3,3.2) network acting on the set X = (xi, x2, x3,
x4, x5) in R( 3). At least six of the ten segments joining pairs of points of X must
be edges in the boundary of Hull(X). In this example, we assume that (x4, x5)
determines an exterior edge. Defining bj, qj, and Q as in Example I makes q4 an
extreme point of the boundary of Hull(ql, q2. q3, q4). It follows that only one of
the three lines through the pairs (ql, q4), (q2, q4), and (q3, q4) separates the
remaining two q's. We may assume that (q2, q4) is the line. Let H1 be a plane in
R( 3), which intersects Hull(X) only in the line joining x4 and x5. Such a plane
exists because (x4, x5) is an exterior edge of Hull(X). Next, we let H2 and H3 be
the planes in R(3 ) through (XI, x4, x5) and (x3, x4, x5), respectively. The plane Hj
corresponds to the line Lj; the three lines Lj are shown in Figure 4.

+

Applying Lemma 2, we again obtain a mapping Ai corresponding to the plane

14H: I < i < 3. Table 2 shows the five outputs uj of the hidden layer, where

uij = p(A (xj)), 1 <._j <_ 5, as in Example 1.

10
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fq3
L3

FIGURE 4. Projection Into Plane of
Example 2.

In this geometry, eight variables uij in Table 2 can be chosen independently
in the interval [-1,11. Figure 5 shows the five u's in R( 3 ): u2 lies at the comer
(1, 1, -1)T; ul1 and u3 lie on edges; and u4 and u5 can be anywhere. A critical
feature of this geometry is that ul, U2, and u3 can be placed arbitrarily close
together by letting u21 approach I and u33 approach -1.

TABLE 2. Coordinates of uj
for Example 2.

j uj

1 (1 u21 -1)

2 (1 1 -l)T

3 (1 1 u33)

4 (u14 u24 u34)

5 (u15 u25 u35)

11
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0 0 u3

U4 U5

U2

U1

FIGURE 5. Five Points uj of Example 2 in the 3-Cube;
U4, u5 Can Be Anywhere.

WEIGHT ASSIGNMENT ALGORITHM

The geometry of Example 2 is the basis for the algorithm discussed in this
section. We first present a brief description of the algorithm. Next, the
algorithm will be applied to example 2, and finally the general algorithm will be
described in detail.

Suppose that d, m, and N are given, i.e., we require a mapping from R(d) to
R(m), which accommodates N given input/output pairs. The first task is to choose
L. The following cases arise when considering how large L must be.

Case 1. N<d+l.
Let L = min [d, m].

Case 2. d + 2 <N <_ d + 3m/2 - 1.
Let L 3n, with n =Em/21.

Case 3. d + 3m/2 < N and m > 2.

Let L = 3n, with n =[(N- d + 1)/31.

Case 4. d + 3m/2 < N and m = 1.
Let[ = min [L1 , L2], where L1 = 3n, with n =(N - d + 1)/3, and L2 =

12
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In Case 1, N is small enough to employ the methods of Reference 3. The
algorithm presented here is intended for Cases 2, 3, and 4. When L2 < LI in Case
4, a method presented in Reference 4 is used. In Cases 2, 3, and 4, the
inequalities

N <d+L-1 I

and

3 m < 2L

both hold. These are the only requirements for the algorithm.

L = 3n in both Cases 2 and 3. If 3m < 2L, we increase m to 2L/3, adding new
coordinates to each output while maintaining general position in R(m). Likewise,
we add new input/output pairs, if necessary, to achieve N = d + L - 1. These
modifications enable us to assume that N = d + L - I, L = 3n and m = 2n. In the
presence of these assumptions, the input to the algorithm consists of

(1) Network parameters d, L, m, with L = 3n

(12) Set X of N input points in general position in R(d), N = d + L - 1

(13) Set Y of N desired outputs in general position in R(m).

We assume, of course, that yj is the desired output for xj. Hence, we seek a set W
of weights for the (d, L, m) network satisfying

FW(xj) = yj for 1 _j < N .

The algorithm proceeds as follows. First one must determine a facet of a facet
of Hull(X); i.e., a subset S of X for which there exists a facet F of X satisfying S c F,
and ISI = d - 1. A facet F of X must be a d-subset, so a facet of F must be a
(d-1)-subset. In Figure l(a) all of the pairs of points except (x4, x5) are facets of
facets. For example, (x1, x2, x4) is a facet of Hull(X) and (xI, x2) is a facet of (x1,
x2, 4).

Assume, without loss of generality, that

S = (x3n + 1, X3n +2 ...2 xN).

Let G be the (d-2)-dimensional hyperplane through S and let P be the 2-
dimensional linear subspace of R(d) perpendicular to G. Let Q be the orthogonal
projection from R(d) to P. Q maps S onto a single point s in P.

Since S is a (d-2)-face of Hull(X), there is a hyperplane HO through S (which
must contain G), which does not separate X\S. HO intersects P in a line LO
through s, which does not separate QX\JsJ in P. Thus, there is a linear ordering

13
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on the members of QX\fs) determined by the angles between LO and the vectors
Qxj - s in P. We assume that (xi, x2 .... XL) is the linear order. It should be noted
here that a cyclic ordering is always induced on a set in the plane by specifying a
center point. It is only when the center point is an extreme point of the hull that
the 'endpoints' are uniquely defined.

The significance of the linear ordering is the following. The hyperplane Hj
through {xj) U S decomposes X\(xj} U S) into

{xl, x2 .... xj-1} U {xj+l, xj+2 .... XN-d+l)

for 1 j• N - d + 1.

Each of the hyperplanes H3 , 0 <j < N - d + 1, yields an affine functional via
Lemma 2. Acting on the N points of X with these functionals and 'squashing'
gives the N - d + 2 coordinates for each of the N points shown in Table 3. The
image of Xj in (N - d + 1)-space is uj. These points can be considered the output
at a hidden layer containing N - d + 2 neurons. Those coordinates that can
assume any value in [-1, 11 are marked '*'.

Our algorithm does not use all of the N-d+2 columns in Table 3 as neuron
coordinates at the hidden layer. The appropriate array of coordinates is
constructed by deleting columns numbered 3k-I, 1 <_ k < n, and duplicating the
columns numbered 3k, 1 < k < n-I. This leaves an array with L columns
corresponding to the L hidden neurons. One additional modification is
required. The variable entry in one member of each pair of duplicated columns
is fixed. The effect of this construction is the clustering of triples of outputs at n
corners of the cube, n = L/3. The transpose of the L by N array of hidden layer
coordinates is shown in Table 4 with the columns relabeled I to L. The rows are
partitioned into triples to illustrate the clustering.

14
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TABLE 3. Coordinates of X in (N-d+2)-Space.

T
uj

H0 HI H2 H3  H4  HN-d-1 HN-d HN-d+l

1 1 * -1 -1 -1 -1 -1 -1

2 1 1 * -I - -1 -1 -1

3 1 1 1 * -1 -1 -1 -1

4 1 1 1 1* -I -1 -1

N-d 1 1 1 1 1 1 * -1

N-d+l 1 1 I 1 1 1 1 *

N-d+2 * * * * * * * *

N-d+3 * * * * * * * *

N-1 * * * * * * * *

N * * * * * * * *

*Can be anything in [-1, 1].

15
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TABLE 4. Coordinates of X in L-Space.

Tuj

2 3 4 5 6 L-2 L-1 L

1 1 * -1 -1 -I -1 -1 -1 -1

2 1 1 -1 -1 -1 - -1 -1 -1

3 1 -1 1 -1 -1

4 1 1 1 1 -1 -.

5 1 1111 -1 -1 - 1 -1

6 1 1-1 11-1

L-31 1 1 1 1 . . -1 -1 -1

L -2 1 1 1 1 1 1 . . . 1*-1

L-2 1 1 1 1 1 1 . . . 1 1 -I

L 1 1 1 1 1 1 . . 1 1 *

L+1 * * * * * * * * *

L+2 * * * * * * * * *

N-I * * * * *1 *

N * ** * -.

*'Can be anything in [-I, 1].

Next, we replace every * in entry (3k-2, 3k-i) with the value I - 8, 0 < 8 < 1.
Similarly, the * in entry (3k, 3k) is replaced by -1 + 8. The rows of the resulting

array are denoted uT (8). The following equations now hold among the uj(8):
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3k-1I 3no3k+l

I I I iU 3 k -1 ( 8 ) = 0( 1 , 1 . .. . 1 , - 1 , - 1 . . .. - ) T

U3k-2( 8) = U3k4 -"e3k-1

U3k( 8 ) = u3k- I + Se3k

where u3k-1 = u3k-1(1) and ej is the jth elementary vector,

j-1 L-i
I I I I

ej = (0, 0, ..., 0, 1, 0, 0, ..... )T

As 8 approaches 0, each of the uj(8) approaches one of the comers u3k. 1 The
following decomposition of R(L) is critical to the algorithm:

R(L) = U + E,

where (u2, u5. ..., U3n-1) is a basis for U and (e2, e3, e5, e6, .... e3n-1, e3n) is a
basis for E. Here we let u3k-.1 = u3k-1(8 ), since u3k-1(8 ) is independent of 8, 1 < k
< n. For all 8 > 0, the uj(S)'s form a basis for R(L). Therefore, there exists a linear
transformation T(8 ) that maps every uj(8) into yj, I <_j <_. 3n. T(8) decomposes
naturally into the following sum:

IT(8)=T1 +-6 T2•

The summands T1 and T2 are defined by

U3k-I Y3k-I

T, : e3kI 0 for 1 S<k_<n

e3k "- 0

U3k-l --4 0]

T2 : e3k-I -" Y3k-1--Y3k-z! forI<k<n.

e3k - Y3k - Y3k-1

Of course, the objective of the algorithm is to enable a mapping that also sends uj
into yj for 3n+l < j < N. The d-1 remaining points uj can be placed anywhere in
the L-cube. Thus, it suffices to choose 8 so as to guarantee a preimage in the
L-cube for every yj, 3n+1 < j < N.

17
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Since the yj's are in general position in R(m), the differences Y3k-2 - Y3k-1 and
Y3k-1 - Y3k, I < k < n, are linearly independent. It follows that rank (T2 ) = m =
2n. Thus, the minimum singular value of T2 I E is positive:

a= 0 (T2IE)>0
mm

From this it also follows that

I1T2v11>_aI1v11forallvc E

We choose 8= a/max [if yj II). This choice of 8 yields a transformation T(8) that
J

admits preimages in the L-cube for all yj, 3n+l <j < N. Indeed preimages exist in
the intersection of E with the L-cube.

For 3n+1 < j<:. N, choose uj e E such that T2 (uj) = 8yj. This is possible since

T2I E is a bijection E -4 R(m). We have

I1 1 yj II = II T2(uj) II >_ I! Uj II

From this it follows that

II uj It < • yj 1 .<

Thus, uj lies in the L-cube. Finally for 3n+l, < j N,

IT(8)(uj) =(TI + - T2)(uj)

=-& T2(uj) = yi .

In summary, the determination of the weights proceeds as follows:

(1) Inputs

(1.1) d, L, m satisfying N = d + L - 1, L = 3n and m = 2n.

(1.2) N pairs (xj, yj). The sets X = {xj} and Y = {yjJ are in general position in
R(d) and R(m), respectively.

(2) Find a facet F of Hull(X) and select a (d-1)-subset S of F. Let G be the
(d-2)-dimensional affine subspace through S and let P be the 2-dimensional
linear subspace orthogonal to G. Let Q denote the projection of X onto P. The
entire set S projects ontoapointsinP. Thus, IQ I= N- d+ 2= 3n + 1. Moreover,
s is an extreme point of Hull(Q) in P. Let K be a directed line through s that does
not separate Q\(s}. For each q in Q\fs), the vector q - s makes some angle e(q)
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with K, 0 < 0(q) < n. This orders the q's. Relabel the pairs (xj, yj) so that S =

{X3n+l, X3n+2, ..., XN) and O(ql) < 0(q2) < ... < 0(q3n).

(3) Determine the transformations Tj and T2 satisfying

TI +T2 : uj ---> Yj ,lI< j <3n

T1IE=0andT 2 1U=0.

Compute the minimum singular value, o, of T 2 I E and set Q=0/max [11 yj II].
J

(4) Compute the preimage uj £ E of 8yj under T2 for 3n+l <_j<. N:

uj = S(T2 I E)'lyj

for 3n+l <j < N. At this point all of the uj's are known. For I -<j < 3n, they are
the uj(S)'s.

(5) Finally, compute the 3n affine functionals fi (guaranteed by Lemma 2) that
map the xj's into the uj's. The first layer of weights is determined by the fi's,

I
while the second layer is determined by T1 + -5T 2 .
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