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EXECUTIVE SUMMARY

Mathematical models are often used to estimate the fate and impact of organic chemicals in the
environment. Use of these models requires a variety of parameters describing site and chemical
characteristics. Aqueous solubility (S), the octanol/water partition coefficient (Kow), the organic
carbon non.alized soil/water sorption coefficient (Koc), vapor pressure (Pv), Henry's Law
constant (H), and bioconcentration factor (BCF) are considered key properties used to assess the
mobility and distribution of a organic chemical in environmental systems.

One major limitation to the use of environmental fate models has been the lack of suitable
values for many of these properties. The scarcity of data, due mainly to the difficulty and cost
involved in experimental determination of such properties for an increasing number of synthetic
chemicals, has resulted in an increased reliance on the use of estimated values.

Quantitative Property-Property Relationships (QPPRs), based on the relationship between two
properties as determined by regression analysis, are used to predict the property of interest from
another more easily obtained property. Quantitative Structure-Property Relationships (QSPRs)
often take the form of a correlation between a structurally derived parameter(s), such as molecular
connectivity indices (MCls) or total molecular surface area (TSA) and the property of interest.

Selection and application of the most appropriate QPPRs or QSPRs for a given compound is
based on several factors including: the availability of required input, the methodology for
calculating the necessary topological information, the appropriateness of correlation to chemical of
interest and an understanding of the mechanisms controlling the property being estimated.

Incorporation of QPPRs and QSPRs into a computer format is a logical and necessary step to
gain full advantage of the methodoldgics for simplifying fate assessment. A Property Estimation
Program (PEP), utilizing MClI-property, TSA-property and property-property correlations and
UNIFAC-derived activity coefficients, has been developed for the Apple Macintosh microcomputer
to provide the user with several approaches to estimate S, Kow, Pv, H, Koc and BCF depending

on the information available.




Structural information required for the MCI and UNIFAC calculation routines can be eniered
using either Simplified Molecular Identification ard Line Entry System (SMILES) notation or
connection tables generated with commercially available two-dimensional drawing programs. The
TSA module accepts 3-D atomic coordinates entered manually or directly reads coordinate files
generated by molecular modeling software. The program's built-in intelligence helps the user
choose the most appropriate QSPR based on the structure of the chemical of interest. In addition,
the statistical information associated with each QSPR in PEP can be displayed to help the user
determine the model's validity. For the regression-based modules, assessments of accuracy based
on the 95% confidence interval and estimated precision of the experimental values are also
provided along with the estimated property value.

PEP also provides a batch mode that provides users with a method for the convenient,
unattended calculation of MCIs, TSA and UNIFAC activity coefficients and the subsequent
estimation of physical properties for large numbers of compounds.

A chemical property database, containing experimental values of S, Kow, H, Pv, Koc, and
BCF complied from a variety of literature sources and computerized databases was used for
developing the MClI-property, TSA-property and property-property relationships used in PEP.
This database, which currently contains over 800 chemicals, is linked directly to PEP.

The property estimation modules in PEP are also linked directly to the Level 1 and 2 Fugacity
Models. The combination of the various property estimation methods, chemical property database,
and simple environmental fate models provides users with a methodology for predicting the
environmental distribution of an organic chemical in a multi-phase system requiring only the

structure of the chemical of interest as input.




OBJECTIVES OR STATEMENT OF WORK

The primary goal of this project was to develop a microcomputer-based decision support
system utilizing Quantitative Structure Property Relationships (QSPRs) and Quantitative Property
Property Relationships (QPPRs) to predict the physical/chemical properties of an organic chemical
which are necessary to model its environmental fate. The following specific properties were
investigated: aqueous solubility (S), octanol/water partition coefficient (Kow), vapor pressure
(Pv), organic carbon normalized soil/water partition coefficient (Koc), Henry's Law constant (H),
and bioconcentration factor (BCF).

In order to achieve the primary goal of this research, the following specific objectives were
accomplished:

1. A database of experimentally determined values of S, Kow, Pv, Koc, H and BCF was
compiled for over 800 organic compounds exhibiting a broad range of properties and expected
mobility.

2. Algorithms to calculate molecular connectivity indices (MClIs), total molecular surface area
(TSA) and UNIFAC activity coefficients were adapted/developed to run in a microcomputer
environment using SMILES notation, connection files, or coordinate files to input required
structural information.

3. Using the database described in Objective 1 and the computational methods developed in
Objective 2, a variety of QSPRs and QPPRs for estimating S, Kow, Pv, Koc, H and BCF
were developed.

4. Created a microcomputer-based decision support system that uses chemical structure
information to aid the user in choosing the most appropriate QSPR or QPPR.

5. Linked property estimation routines and property database to simple environmental fate models
(the Level 1 and 2 Fugacity Models) to provides users with a methodology for predicting the
environmental distribution of an organic chemical in a multi-phase system requiring only the

structure of the chemical of interest as input.




BACKGROUND AND SIGNIFICANCE

Mathematical models are often used to estimate the fate and impact of organic chemicals in the
environment. These models often idealize the environment as a system of connected
compartments, i.e. water, soil, sediment, air and biota. The complexity of these models range
from simple steady state models to non-steady state models which include a large number of
compartments, transport between compartments and degradation processes.

Use of these models requires a variety of input parameters which describe site and contaminant
physical-chemical and biological characteristics. Aqueous solubility (S), octanol/water partition
coefficient (Kow), the organic carbon normalized soil/water sorption coefficient (Koc), vapor
pressure (Pv), Henry's Law constant (H), and bioconcentration factor (BCF) are considered key
properties used to assess the mobility and distribution of a chemical in environmental systems.

One major limitation to the use of environmental fate models has been the lack of suitable
values for many of these properties. The scarcity of data, due mainly to the difficulty and cost
involved in experimental determination of such properties for an ever increasing number of
synthetic chemicals, has resulted in an increased reliance on the use of estimated values.
Quantitative Property-Property Relationships (QPPRs) and Quantitative Structure-Property
Relationships (QSPRs) have been used by environmental scientists and engineers to obtain
estimated values for a variety of physical/chemical properties for use in environmental fate and
assessment modeling.

QPPRs, based on the relationship between two properties as determined by regression
analysis, are used to predict the property of interest from another more easily obtained property
without a specific concern for molecular structure. Frequently, the regression expressions are
expressed in terms of the log of the two properties. Researchers have found that a number of
environmental properties can be related to one another in this manner. For example, QSPRs have

been developed to estimate S, Koc and BCF from Kow and Koc and BCF from S [i-3].




QSPRs are methods by which the properties of a chemical can be inferred or calculated from a
knowledge or the structure of a molecule. QSPRs often take the form of a correlation between a
structurally derived parameter(s) and the property of interest. For example, relationships between
structurally derived parameters, such as molecular connectivity indices (MCls) and total molecular
surface area (TSA) and properties such as S, Kow, BCF, and H have been reported.

Molecular connectivity developed by Randic” [4] and refined and expanded by Kier and Hall
[5-7] is a method of bond counting from which topological indices, based on the structure of the
compound, can be derived. For a given molecular structure, several types and order of MCls can
be calculated. Information on the molecular size, branching, cyclization, unsaturation and
heteroatom content of a molecule is encoded in these various indices [5]. MCI have been used to
predict Koc {8,9], S [1], Kow [10], H [11]} and BCFs [12].

A direct estimation of molecular surface area based on the concept of van der Waals radius,
TSA has been correlated with S, Kow, Pv and H [13-22]. Several different algorithms, requiring
the 3-D atomic coordinates of the solute molecule and the van der Waals radii of solute and solvent
molecules as input [19,23], have been developed to calculate TSA.

Group contribution or fragment constant methods are another important category of QSPRs.
The basic idea »f a group contribution method is that while there is an enormous number of
chemical compounds, both synthetic and naturally occurring, the number of functional groups that
make up these compounds is much smaller. A single numerical value is assumed to represent the
contribution of each functional group (i.e. a specified atom, a group of atoms bonded together or
structural factor) to the physical property of interest. It is also usually assumed that the
contributions made by each group are independent of each other. By summing up the values of the
various fragments or groups the property of interest can be directly calculated.

The UNIFAC (UNIQUAC Functional Group Activity Coefficient) group contribution method
[24-26] has been used by environmental researchers to estimate S and Kow [27-31]. The

UNIFAC method was developed to estimate liquid phase activity coefficients in mixtures of




nonelectrolytes [25]. In this technique, the activity coefficient is divided into two parts, a
combinatorial part which reflects the size aad shape of the molecule present and a residual portion
which depends c¢n functional group interactions. Various parameters, such as van der Waals group
volumes and surface areas and group interaction parameters, are input into a series of equations
from which the combinatorial and residual parts are calculated. Values for the group parameters
have been tabulated and can be found in the literature[25,26]. UNIFAC is specifically designed to
take into account interactions between groups and is appropriate for multiple solute/solvents
systems. UNIFAC also permits estimates to be made as a function of temperature.

In most cases, more than one estimation method is available for a particular property.
Estimation methods however, have widely varying accuracies and indiscriminate use of these
techniques can result in large errors. Selection and application of QSPR or QPPR methods
requires varying degrees of expertise that depend on the structure of & particular ~hemical of
interest, knowledge of the mechanism of the process, the extent of the database used to develop the
QSPR or QPPR and the complexity of the structural analysis required to relate structure to the
property. For example, some QSPR and QPPRs are broader than others in the range of chemicals
that are covered, and some methods have been established with a better understanding of the
mechanisms or properties involved. In many cases estimation methods are developed from
empirical or semiempirical correlations. The success of the correlation is dependent on many
factors including the type and number of compounds used in its development.

Incorporation of QSPR and QPPRs into a computer format is a logical and necessary step to
gain full advantage of the methodologies for simplifying fate assessment. A practical computerized
property estimation program, utilizing QSPR and QPPRs, should include the following attributes:
be simple and flexible to use for both experts and non-experts, irclude sufficient statistical
information regarding the development of the QSPRs and QPPRs so that the range of applicability

of such models can be evaluated, and provide an indication of the accuracy of the estimated

property.




A microcomputer based Property Estimation Program (PEP), utilizing MCl-property, TSA-
property and property-property orrelations and UNIFAC derived activity coefficients, was
developed to provide both experts and non-experts with a fast, economical method to estimate a
compound's S, Kow, Pv, Koc, H, and BCF for use in environmental fate modeling. The user can
input the required structural information for the MCI and UNIFAC calculation routines using either
SMILES notation or coordinate files (connection table or “Molfile” formats) generated with
commercially available two-dimensional drawing programs such as ChemDraw™ [45],
Chemintosh ™, or ISIS/Draw ™. The TSA module accepts 3-D atomic coordinates entered
manually or directly reads coordinate files generated by molecular modeling software such as
Alchemy HI™ or Chem3D Plus™. For property-property, TSA-property and MClI-property
modules, the user can select from either "universal” or class specific regression models. To aid the
user in choosing the most suitable regression model, the program automatically suggests the most
appropriate regression model(s) based on the structure of the compound. In addition, the statistics
associated with each model can be displayed along with the list of compounds used in developing
the model. For the regression based modules, assessments of accuracy based on the 95%
confidence interval and estimated precision of the experimental values are provided along with the
estimated property value. Additional correlation models can be easily added to PEP by the user.

A chemical property database, containing experimental values of S, Kow, H, Pv, Koc, and
BCF complied from a variety of literature sources and computerized databases was used for
developing the MCI-property, TSA-property and property-property relationships used in PEP.
This database, containing over 800 chemicals, is linked directly to PEP and provides the means for
the user to search for chemical compounds by full or partial name or synonym, to sort the
compounds by name, boiling point, melting point, - molecular weight, and the ability to transfer
to any of the propcrty estimation modules.

In addition to the physical properties, the database was recently modified to allow the user to
enter information pertaining to a compound’s persistence and toxicity. Biodegradation rates,
hydrolysis rates, photolysis rates and L.C 50 values, along with the references and comments

associated with each property, can be stored in the database.




To illustrate the potential application of PEP, the property estimation modules are linked
directly to the Level 1 and 2 Fugacity Models developed by Mackay [32]. These simple models
calculate the equilibrium distribution of an organic chemical between water, air, soil, sediment,
suspended sediment and biota phases in a user defined world. The combination of PEP and
Fugacity models provides users with a methodology for predicting the environmental dis.ribution
of an organic chemical in a multi-phase system requiring only the structure of the chemical of

interest as input. The development and use of the PEP system will be described.




STATUS OF RESEARCH EFFORT

HyperCard

HyperCard is a program that was developed for the Apple Macintosh series of personal
computers to enable novice Macintosh programmers to write user friendly computer applications.
HyperCard, which is provided with every Macintosh sold, offers graphics, information storage,
and the means to display information in a variety of formats. HyperTalk 1s a high-level,
interpreted language used to establish links between related information and perform simple
calculations within HyperCard. HyperCard also allows the programmer to create extensions of
HyperTalk in a lower level language (i.e., C or Fortran). These extensions, called external
functions (XFCN) and external commands (XCMD), greatly increase the speed of repetitive and
calculation intensive algorithms over using HyperTalk itself. XFCNs and XCMDs can also be

used to implement custom Macintosh features such as popup menus and custom dialog boxes.

Cards

Each screen of information in HyperCard is termed a card. Each card can contain graphics, fields,
and buttons. The data on a card is held in the fields, and the buttons are used 10 initiate action
procedures that operate on the data. The fields and buttons allow the standard Macintosh interface
to be used without the direct use of the cumbersome Macintosh toolbox routines. To create a user
interface the HyperCard programmer simply draws, or creates the buttons and fields. The link
between buttons, fields and cards. i done through HyperTalk scripts. A script is a set of

HyperTalk statements linked to a button, field, card, or stack.




Stacks
Cards are put together in HyperCard files called stacks. A stack can contain from 1 to 16,000

cards depending on the amount of memory each card requires. Usually each stack contains cards
that are related either by purpose or visual similarity. The movement from stack to stack is rapid

and easy to accomplish using either the standard Macintosh menus or HyperTalk scripts.

External functions and commands
Some of the custom features used to enhance PEP were implemented using commercial

XFCNs and XCMDs. Table 1 lists the commercial XFCNs and XCMDs that were used, their

creator, and action.

Table 1. The commercial XFCNs and XCMDs used

XFCN or XCMD Creator Use

popUp Adrian Freed (1989a) [42] makes a pop up menu
ShowDialog Jay Hodgdon (1988a) [40] shows a modal Dialog
Progress Jay Hodgdon (1988b) [41] shows a dialog box with

a progress pointer

The XFCNs and XCMDs that were used in PEP were created using Think C versions 4.0 and
5.0 from Symantec Corporation (1991) [44]. “Glue* routines are used to facilitate the
communication between HyperCard and XFCNs or XCMDs. HyperCard glue is furnished with
Think C. XTRA Shell by Adrian Freed (1989b) [43] was also used to develop XFCNs and
XCMDs. XTRA also contains HyperCard glue plus a simple to use set of functions that can be
called from Think C.

10




Algorithms

TSA algorithm

Total Surface Areas (TSA) are calculated using a modified version of the SALVO2 algorithm
developed by Pearlman [16]. SALVO2, a FORTRAN program designed to run on main frame
computers, was translated to the C computer language using Cobalt Biue’s [46] FOR_C translator
version 2.9 (1989). This translation enabled the SALVO?2 algorithm to be made into an XFCN and
linked directly to a HyperCard stack.

MCI calculation method

A Clanguage program was written for the calculations of the MClIs based on code described by
Frazier [35]. The algorithm currently calculates 54 (0 to 6 order) bond, valance, and path indices,
and 7 (0 through 6 order) A valence indices if the molecule contains any nitrogen or oxygen atoms.
A more detailed discussion of the MCI calculation procedure is provided in the literature review

section.

UNIFAC calculation method

The UNIFAC procedure, as described by Grain [38], was incorporated into HyperTalk scripts
and XFCNs. The group contribution factors were also taken from Grain (38} and are derived from
vapor-liquid equilibria data.

Fugacity level 1 model

The Fugacity level 1 model, described by Mackay [32, 39], was implemented in HyperTalk.
This model is used to estimate the distribution of a chemical in a user defined environment
consisting of a maximum of six compartments: air, water, soil, sediment, suspended solids, and

biota. The default compartment volumes and densities were also taken from Mackay [32].

11



The graphs which show the distribution of the chemical are drawn using routines from
GraphMaker a HyperCard stack included with version 2.0 of HyperCard. A detailed description
of the PEP implementation of the Fugacity level 1 model is provided later.

Development of QSPRs and QPPRs

The QSPRs and QPPRs utilized in PEP were developed using both statistical and intuitive
criteria. The QSPRs were first derived using the stepwise regression features in StatView II, a
statistical analysis package by Abacus Concepts Inc. (1988) [47]. The results from the stepwise
regression procedure were analyzed and the variables containing theoretical information were left in
the regression equation. The final regression equation was chosen to include both a size term and a
measure of the polar nature.

After the regression equations were chosen the final calculations of the Analysis of Variance
table and the graphs were obtained using Data Desk by Odesta Corporation (1989) [48]. Both
universal and class specific equations for each property were developed and evaluated. All of the
universal relationships and the class specific relationships that were found to be significant to the

90 percent level were incorporated in PEP.

PEP Hardware/software Requirements

PEP requires the following system configuration to run: a Macintosh Classic, LC, II series, or
PowerBook computer, with a hard disk; HyperCard 2.0 or greater software; Macintosh system
software version 6.0.5 or greater, running under MultiFinder; and a minimum of 2 megabytes of

memory (RAM), with 1000 kBytes of memory allocated for HyperCard.

PEP overview

The PEP system currently consists of four HyperCard stacks: PEP Processor, PEP Models,
PEP Help and Chemical Property Database. A flowchart illustrating the overall operation of PEP
is provided in Figure 1.

12
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Figure 1. Flow chart illustrating the overall operation of PEP

Typically, users would first look for the required property information in the PEP database. If
the information is not contained in the database, the user can then estimate the property using one
or more of the four property estimation modules provided. Choosing the most appropriate
property estimation module would depend on what information regarding the chemical is available.

The function and use of each stack in PEP will be described in the following sections.

PEP Processor

This stack, divided into four sections or modules, contains the algorithms for data input,
calculations and output of the estimated physical-chemical properties. Each stack will be described

in detail in the following sections.

MCI Module The overall operation of the MCI module is illustrated in Figure 2.
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The user interface of this module, shown in Figure 3, is designed in the form of a flow chart.

Upon entering the MCI module the user must first input the necessary structural information using

either SMILES ([33,34] notation or connection files generated from ChemDraw™, Chemintosh™,

or ISIS/Draw™, commercially available, Macintosh compatible two-dimensional (2D) drawing

programs.

SMILES is a chemical notation language specifically designed for computer use. It is a method

of "unfolding” a 2D chemical structure into a single line of characters containing the structural

information.
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Figure 3. Screen display of PEP MCI module

After the structural information is entered, MCls can then be calculated using a set of
HyperCard™ external functions (XFCN) written in the programming language C based on code
described by Frazier [35]. The MCI calculation routine in PEP calculates simple, bond and valence
indices of several types (path, cluster, chain, and path/cluster) and orders (0 through 6), if
possible, for each molecule, resulting in a maximum of 54 index values for each molecule which
can be displayed on screen and/or output to a printer. To account for non-dispersive force effects
on aqueous solubility and solubility related properties, zero through six order A valence path
indices (Ay), as described by Bahnick and Doucette [36], are calculated by PEP, in addition to the
54 indices described above. To calculate Ay indices, a nonpolar equivalent is made by substituting
C for O or N atoms. MClIs are calculated for the nonpolar equivalent and values for Ay can be

computed for each type of index by:
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Ax = Qonp - X (1)

After the MCls are calculated, they can be displayed or printed if desired and the user can then
choose which properties are to be estimated. For each property, two categories of MCI-property
relationships are displayed. MClIs property relationships, both class specific and “universal”, that
were developed in this project using the experimental values reported in the PEP property database
are preceded with the word PEP. “Universal” MClI-property relationships were developed using
all available experimental data for a given property regardless of chemical class. “Class-specific”
MCl-property relationships were developed if property values were available for a sufficient
number (10 or greater) of compounds within a particular chemical class (PCBs, PAHs, ureas,
etc.). In addition, several multi-class MClI-property correlations were developed for more broad
classes of compounds such as: halogenated aliphatics and halogenated aromatics. An example
illustrating the potential hierarchy of MCI-property relationships available to the user for the
predicting the vapor pressure (Pv) of a polychlorinated biphenyl (PCB) is shown below. There are
three MCI-property relationships, one developed using only PCBs, one using halogenated

aromatics including PCBs and one using all compound types:

log Pv = 5.814 (nc5) - 2.428 (np3) + 9.479 (PCBs)
log Pv =-1.559 (bpl) + 6.622 (Halogenated aromatics)
log Pv = -1.275 (np3) +5.261 (Universal)

Generally, the use of a “class-specific” relationship, if available, should provide the best
estimate (i.e. the estimate associated with the least amount of uncertainty).

By looking for a group of atoms and bonds that distinguish a chemical class, PEP uses the
structural information contained in the SMILES string or connection file input to aid users in
choosing the most appropriate MCI-property relationships. The number of appropriate
relationships or chemical classes that are chosen by the program, denoted with a diamond in the
popup menu, is determined by the number of different distinguishing subgroups that are found. In
addition, a summary of the regression statistics and list of compounds used to develop and evaluate

each MCl-property relationship can be displayed by clicking the “eye” or “view statistics option”
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found at the left of each regression model. Information displayed on the statistics card includes:
the MClI-property regression equation, the list of chemicals used in developing the regression
model, the standard errors of the coefficients in the regression equation, the Analysis of Variance
(ANOVA) table, the r2 value, a graph of the the predicted vs. estimated values, a graph of the
residuals vs. the predicted values, a graph of the residuals vs. the number of standard deviations
and appropriate reference. An example of the statistical information provided for each MCI-

property relationship is shown in Figure 4.

IE==—====—=———==PFP Processor
€ File Edit Go Print Misc.

STATISTICS Class: S Universal
Regraession Resuits Analysis of Variance Table
Std.
Yariable Coef. Error t Source RSS d¢e M™MSS F
Constant (0.3917 ]0.1376 }2.85 Regression |1889.176 |2 445 446
vpl -.9257 |0.0316{-29.3 Residual 1360.920 362 }0.997
avpl 1.8251 |0.104717.4 Total 1250.096[364 |3.4343
MP-25 |-0.01 -
T r2=7(1% Nobs= 365 $= 0.9985
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
b4 % 2‘|> .. 'E 2 "-.
3o R i
© w _ EERCEY 23 w _
2 f2p 9 LR
-15 -25 00 25 % -3 0 3 -15 00 15
. number of standard
experimental log S deviations

Figure 4. Example statistics card from PEP

The 2nd category of MCl-property correlations, located below the PEP relationships, were
complied from various literature sources. Clicking on the “book" icon will display the reference
and information regarding the number and type of compounds included in the correlation if it was

available in the original literature.

17




After choosing the most appropriate regression, estimates for the selected properties can be
made. As shown in Figure 5, the MCI module results card provides an estimate of the property
along with its calculated accuracy based on both the 95% confidence interval calculated from the
regression and the estimated precision associated with the experimental determination of the
property. In addition, the user has the option to search the property database for actual

experimental values if they are available for comparison.

,;W PEP Processor
& File Edit Go Print Misc. Models
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I —— stlated Pretles |

RN R 5 RIS R PR PR R RIAS S U wae 3 L0 ARG R BRI 5

Chemlcal Name. 2.2 6 6‘ tetrachlorobmhenul

Method: MCI

Regression  yjeyw |LOOK for valuesﬂ

Property *Ualue Units  Equation Used stats |YMinPropDb
| .. x|
log S_.._.-6172038 . [moles/t PEP: PCBs @ NA
logKow___542+043 PEP; PCBs @ 5.936
log Pv_._-234%1.04 PEPPCBs AU NA
log MHW_. _-1.30%£028 PEP ; PCBs €@ _; 648 dimensionless |
log Koc 3924120 L/kg PEPPCBs @ NA
lag BCF 469 +0.43 PEP . PCBs Leng NA

%¥Note: The values shown are estimated at 25°C ¢ the
95% prediction interval for the regression used.

Figure 5. Results card from PEP MCI module.

TSA module The TSA module is similar in operation to the MCI module. However, unlike
molecular connectivity, the calculation of TSA requires information describing the geometry of the
molecule in terms of its 3-D atomic coordinates. The TSA module, shown in Figure 6, accepts 3-

D atomic coordinates entered manually or directly reads coordinate files generated by commercially
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available, Macintosh compatible, molecular modeling software such as Alchemy III™ or Chern3D

Plus™,

=2

B —— PP Processr === ———"

€ File Edit Go Print Uiew
T1SA
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Figure 6. TSA module card from PEP

The TSA module is also designed to accept files generated by other hardware/software
combinations including UNIX or VAX versions of CONCORD (Tripos Associates, Inc.), a hybrid
expert system and molecular modeling software designed for the rapid generation of high quality
approximate 3-D molecular structures. In addition to the 3-D molecular structure, the user must
also input van der Waals radii for each of the atoms. A editable table of van der Waal radii,
obtained from Bondi {37] for most common atoms, is provided within the TSA module. Once the
molecular geometry and the van der Waal radii are input, TSA can be calculated using a XFCN

which was adapted from the SALVO2 algorithm developed by Pearlman [19]. This algorithm
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represents each atom of a molecule by a spherc centered at the equilibrium position of the nucleus.
The radius of the sphere is equal to that of the van der Waals radius. Planes of interseciion
between spheres are used to estimate the contribution to surface area from the individual atoms or
groups. The program computes the surface area of individual atoms or group by numerical
integration, and the overlap due to intersecting spheres is excluded from the calculation. TSA is
calculated by the summation of individual group contributions. The program also allows the TSA
of the solute molecule to be calculated after the addition of a suitable solvent radius. A more
detailed description of the TSA calculation method is provided by Pearlman [19].

After the TSA has been calculated, the user then chooses the properties of interest and a
regression equation for each using the same approach as described in the MCI module. If the
SMILES string or the connection table is also input, the most appropriate TSA-property
relationship(s) will be flagged in the popup menu. The operation of the TSA module from this
point on is identical to that of the MCI module.

UNIFAC module Like the MCI module, the UNIFAC module, illustrated in Figure 7, requires
either a SMILES string or a connection table as input. An XFCN converts the structural
information provided by the SMILES string or connection file into valid UNIFAC subgroups and
counts the number of each subgroups present. In order to break the structure into the proper
subgroups, the SMILES string or the connection file is interpreted and the information is put into a
matrix. Each row and column in the matrix represents an atom in the chemical. The matrix
contains the bond order between the two atoms that correspond to each entry in the matrix. If two
atoms are not connected then a 0 is placed in the corresponding entry in the matrix. After the
matrix is built the algorithm then "asks" specific questions about each atom, its neighbors, and
how it is connected. If the answers to a set of questions are all true then a subgroup was found,
the atoms are put together, and the matrix is reduced. The questions are then asked over again and
the next subgroup is chosen, this repeats until no more subgroups are found. The questions are
asked in a specific sequence so that the resulting subgroups are independent of the order of the

atoms in the matrix.
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Figure 7. PEP UNIFAC module.

The UNIFAC method for calculating activity coefficients, as described by Grain [38], is
implemented using both HyperTalk and an XFCN. The functional group interaction parameters,
presented by Gmehling et al. [26] and derived from vapor-liquiu equilibria (VLE), are used in the
calculation routine but can be changed by the user. After the activity coefficients are calculated they
can be displayed along with relevant intermediate values and used to estimate S and Kow by the
following expressions (Arbuckle, 1986):

Kow = (.115 yeow fyec0 2)

-S (mol/L) = 55.6 / Yoow 3
where yeow is the activity coefficient of the chemical infinitely dilute in water and yeco0 is the
activity coefficient cf the chemical infinitely dilute in octanol {27].

Property/Property Module Input for the Property/Property module, shown in Figure 8,

depends on the the properties to be estimated and the regression models used. Thus, the user must
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select the properties to be estimated and the property-property relationships (regression equations)
to be used before any input values are requested. The program keeps track of the inputs required
and provides the appropriate input fields. If available, the required properties can be imported
directly from the associated chemical property database. Information regarding the regression
statistics, if available, is also provided as previously described in the MCI module. After the
necessary properties are entered into the corresponding input fields, the properties of interest can

be estimated and the results, along with the 95% prediction interval (if the necessary data is

available) can be viewed.

IW‘ = ——— ——— PEP Processaor
& File Edit Go Prmt Uiew @ s
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boykee
X Koc [ Universal from Kow ] &>w. wBy ]
X BCF i Universal from Kow ] W, :: e -
4. Estimate
Properties
Note: All values are at 25°C » —

Figure 8. PEP Property/Property correlation module.
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PEP Models

To illustrate the practical application of PEP, an additional stack called PEP Models was
developed. This stack, which contains the algorithms for the Level 1 and 2 Fugacity Models {32],
is linked directly to the the PEP Processor, but can also be used independently.

The Level 1 Fugacity Model considers a unit world consisting of six compartments: air, water,
soil, suspended solids, sediment, and biota as illustrated below in Figure 9. The model predicts
the equilibrium concentrations of the chemical of interest in each compartment using the fugacity
approach described by Mackay (32, 39]. The model requires the input of Ky, H and BCF which
can be read directly from the PEP processor or the PEP chemical property database, if available.
In addition to the chemical specific properties, the density and volume of each compartment must
be specified along with the organic carbon content of the soil, sediment and suspended sediment.
An editable set of default values for compartment density, volume and organic carbon content, as

suggested by Mackay, is provided.

Air

-Suspénded .
Solids . ...

Soil

\ Sediment

Figure 9. Representation of Fugacity Level 1 Model compartments.
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The Level 2 Fugacity Model (Figure 10) allows for the chemical of interest to degrade in each
compartment, move by advection through the water and air phases, and be emitted into the unit
world. The rate values for each of these processes must be entered by the user. The degradation
rates for each compartment can be entered either by t1/2 values in hours or by first order reaction
rate constants in 1/hours. The advection rate data can be entered either by residence time or flow

rate and the concentration or by directly entering the mass flow rate in moles per hour. The

emission rate is entered in the units of moles per hour.

Chemical Name: 2,26,6'-tetrachlorobiphenyl
1. Input 2. Input Environmental Compartment Dalues
Property
Ualues
Lack for Compartment  Density Uolume % Orgenic
Values in 2
Prop DB kg/m? m Carbon
3. Calculate
,g—%—l% < fir .19 _1elo Distribution
lo'g H X ™ X Wwater 1000 7e6 OR
(dimensionless) | | [X] Soit 1500 9e3 2 input Fugacitgl
I susp.Soids 1500 35 4 Level 2 Data
log BCF []| | X Sediment 1500 2.1e4 4
X Biota 1000 35
Bl mdicates
value frem DB

Figure 10. PEP Models card

After the user inputs all the required information and hits the “calculate distribution™ button, the
model calculations are performed in HyperTalk and the results are presented in both in tabular and
graphical form as illustrated in Figure 11. The graphical display can be changed from bar
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(concentration of the chemical in each phase) to pie (percent of the chemical in each phase) chart
forms using the “Graph:” popup menu. The values of the distribution coefficients that were used
in the calculations are also shown on the results card. A complete description of these models has

been given by Mackay {32,39]

e PIPModes ===
&€ File Edit Go Print ' é
Fugacity Results
Chemical Name: 2,2°,6,6'-tetrachliorobiphenyl
'3“‘:33.} Conc. Graph:{Percent & |
ine
compartment mol/m’ Percent in each Compartment
Rir 91.86 9.2e-09 H
Water 2.859 4.1E-07
Soil 0917 1.0e-04 [H
Susp. Solids 0.007 2.0E-04
Sediment 4280 2.0E-04 B
Biota 0.070 0.020
Total 100.0

Values used Source
Log Koc 3.92 MCI
Log H -1.648 Dota Base
Log BCF 469 MCI

Figure 11. PEP Models results card

PEP Help

Information regarding the operation of the chemical property database and the property
estimation, models and batch modules is available in the PEP Help stack. This stack easily
accessed at any time within the PEP system. The organization and layout of each help card is

similar to that illustrated in Figure 12 for the MCI module. The user can select the topic of interest
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by clicking on the appropriate radio button and the information on that subject will be displaved in

the scrolling field.

PEP Help &

-

File Edit &

Print

Molecular connectivity developed by Rendic
(1972) and refined and expanded by (Kier and Hall,
. 1976, 1980, 1986) is a method of bond counting
® overview from which topological indexes, based on the
Q input structurc structure of the compound, can be derived. For s

iven molecular structure, several types and

QO calculate MCls grders of molecular connectivity ind%axes (MCis)
Q choose properties & |can be calculated. Information on the moleculer

regression equations |size, branching, cyclization, unsaturation, and
" . heteroatom content of a molecule is encoded in
O estimate properties these various indices (Kier and Hall, 1976).
O limitations Molecular connectivity has been used to predict
Koc (Sabljic, 1984, Sabljic, 1987, Bahnick and
Doucette, 1988), S (Doucette, 1985,

MCI Options

Nirmalakhandan and Speece, 1988a), Kow (Doucette Q

Chemical Property Database

Experimentally determined physical property data for about 800 compounds, having at least
one value of aqueous solubility (S), octanol/water partition coefficient (Kow), vapor pressure
(Pv), organic carbon normalized soil sorption coefficient (Koc), bioconcentration factor (BCF), or
Henry's law constant (H), was complied from a variety of literature sources and computerized
databases. Using this information, a chemical property database was constructed using
HyperCard™ and subsequently used for developing MCI-property, TSA-property and property-

property relationships. In addition to the properties listed above, the database includes the

26




following information: compound name and synonyms, a diagram of the 2-D chemical structure,
SMILES notation, uses, CAS number, chemical formula, molecular weight (MW), boiling point
(BP), melting point (MP), and appropriate references for each value. A built-in unit conversion
utility enables users to quickly view property values in a variety of commonly used units. The
database is directly connected to the PEP Processor stack.

The Chemical Property Database also provides the means for the user to search for chemical
compounds by full or partial name or synonym, to sort the compounds by name, boiling point,
melting point, or molecular weight, and the ability to transfer to any of the property estimation
modules. In addition, the user can easily edit exiting values, add new values or export information
to a text file or another database.

In addition to the physical properties, information describing the environmental persistence and
toxicity of specific chemicals can also be entered into the database. Placeholders for
biodegradation rates, hydrolysis rates, photolysis rates and LC50s, along with the appropriate
references and comments have been incorporated into the database. This feature was added to the
database after requests from test users, however at the time of this report no degradation or toxicity
data has been entered into the database. The chemical property database is illustrated in Figures 13
and 14.

PEP Batch

PEP Batch provides users with a method for the convenient, unattended calculation of MCls,
TSA and UNIFAC activity coefficients and subsequent estimation of physical properties for large
numbers of compounds via the PEP processor described earlier. Like the PEP Processor, PEP
Batch is divided into MCI, TSA and UNIFAC modules. Each module, as illustrated in Figure 15
for the MCI module, requires the user to select the appropriate input file (i.e. SMILES string,
connection table or 3-D atomic coordinates), choose to information to be sent to the output file (i.e.

chemical name, SMILE:s string, properties) and start the batch driver.
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Figure 13 Example card from the Chemical Property Data Base
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Figure 14. PEP database degradation properties.
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Figure 15. Example card for PEP Batch, MCI module.

The MCI and UNIFAC modules require the two-dimensional molecular structure of the
chemical to be entered using either SMILES strings or connection tables.

To enter SMILES strings into the MCI or UNIFAC batch modules, you must create a text file
containing name of the chemical and its corresponding SMILES strings in columns separated by
tabs and hard returns at the end of each row. The text file can contain additional tab-delimited
information, but the SMILES strings and chemical names must be in the first or second column.
You indicate the column order when you select the type of input. The text file can be created with
word processing or spreadsheet programs or you can also edit or create a file containing the
SMILES strings and chemical names within PEP by selecting SMILES from the “input structure
type” popup menu.

To input connection table files into the MCI or UNIFAC batch modules, you must first place

them in a single folder. Select the “Connection tables” option from the “Select Input Type” popup
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button and choose the folder that contains the connection table files using the standard “open file
dialog box that appears. Highlighting any one of the files in the folder selects all of the files in that
folder and allows you to view or delete specific files. The files can be any valid type for the MCI
module as they will be converted if possible (see MCI module helps). After selecting the input
files, click on the advance arrow located at the upper right of the card to advance to the next step.

The TSA batch module operates in the same manner as the MCI and UNIFAC modules except
that the calculation of TSA requires the three-dimensional cartesian coordinates for each atom in the
chemical of interest. The TSA batch module accepts Cartesian Coordinates or Alchemy files.
Alchemy files contain both the two-dimensional chemical structure and the coordinates. This
allows PEP to calculate the chemical’s TSA and determine the most appropriate TSA-property
relationship based on chemical class. From within the standard dialog box, you can click on any
file in a folder to select all of the files in that folder. The files will then be displayed. You can
also view or delete files.

Once the input files have been selected, the “output option” step becomes active. This allows
the user to select the properties to be calculated and any additional information that is available (i.e.
chemical name, SMILES string, MCls, TSA, or UNIFAC activity coefficients) to be exported by
to a tab-delimited text file.

After the output information is selected, the “Start Batch Driver” button becomes active.
Clicking this button brings up the standard Macintosh “save file” dialog box that allows the user to
specify the name of the data file to be exported by PEP batch and the location that the file will be

sent.

31




SUMMARY

A microcomputer program for estimating physical/chemical properties of organic chemicals for
use in environmental fate modeling has been described. The Property Estimation Program
(PEP) and associated physical property database was developed using HyperCard for the Apple
Macintosh series of computers. The PEP system utilizes both QSPRs and QPPRs to provide the
user with several approaches to estimate S, Kow, Pv, H, Koc and BCF depending on the
information available. While QPPRs have been used by both experts and non-experts for
estimating properties, one of the major limitations in using QSPRs has been the difficulty in using
the necessary software tools. The graphical interface and flow chart design of PEP leaa; the user
through a series of logical steps designed to provide even non-experts with a economical, easy to
use software system for property estimation. The structural information for the MCI and UNIFAC
modules can be input using Simplified Molecular Input Line Entry System (SMILES) notation or
connection tables generated from a commercially available two-dimensional drawing program. The
TSA module accepts 3-D cartesian coordinates entered manually or directly reads coordinate files
generated by molecular modeling software. For each property the user can select from either
"universal" or class specific regression models. The program'’s built in intelligence helps the user
choose the most appropriate QSPR based on the structure of the chemical of interest. In addition,
sufficient statistical information is provided to allow the user to determine on the validity of the
QSPRs and QPPRs utilized in PEP. Designed to make the program both practical and educational,
on line documentation is provided not only for the operational characteristics of the program but
also for the theory associated with the property estimation techniques.

The combination of the various property estimation methods, chemical property database, and
simple environmental fate models provides users with a methodology for predicting the
environmental distribution of an organic chemical in a multi-phase system requiring only the

structure of the chemical of interest as input.
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DISCLAIMER
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PEP. In no event will Utah State University or the authors of PEP be liable for direct, indirect, or
consequential damages resulting from the use of this software.




INTRODUCTION

Background

Mathematical models are often used by environmental scientists and engineers to estimate the
fate and impact of organic chemicals in the environment. Use of these models requires a variety of
parameters describing site and chemical characteristics. Aqueous solubility (S), the octanol/water
partition coefficient (Kow), the organic carbon normalized soil/water sorption coefficient (Koc),
vapor pressure (Pv), Henry's Law constant (H), and bioconcentration factor (BCF) are considered
key properties used to assess the mobility and distribution of a organic chemical in environmental
systems.

One major limitation to the use of environmental fate models has been the lack of suitable
values for many of these properties. The scarcity of data, due mainly to the difficulty and cost
involved in experimental determination of such properties for an increasing number of synthetic
chemicals, has resulted in an increased reliance on the use of estimated values.

Quantitative Property-Property Relationships (QPPRs), based on the relationship between two
properties as determined by regression analysis, are used to predict the property of interest from
another more easily obtained property. Quantitative Structure-Property Relationships (QSPRs)
often take the form of a correlation between a structurally derived parameter(s), such as molecular
connectivity indices (MClIs) or total molecular surface area (TSA) and the property of interest.

Selection and application of the most appropriate QPPRs or QSPRs for a given compound is
based on several factors including: the availability of required input, the methodology for
calculating the necessary structural or topological information, the appropriateness of correlation to
chemical of interest and an understanding of the mechanisms controlling the property being
estimated.

Incorporation of QPPRs and QSPRs into a computer format is a logical and necessary step to
gain full advantage of the methodologies for simplifying fate assessment.



PEP oOverview

A Property Estimation Program (PEP), utilizing MCl-property, TSA-property and property-
property correlations and UNIFAC-derived activity coefficients, has been developed for the Apple
Macintosh microcomputer to provide the user with several approaches to estimate S, Kow, Pv, H,
Koc and BCF depending on the information available.

Structural information required for the MCI and UNIFAC calculation routines can be entered
using either Simplified Molecular Identification and Line Entry System (SMILES) notation or
connection tables generated with commercially available two-dimensional drawing programs. The
TSA module accepts 3-D atomic coordinates entered manually or directly reads coordinate files
generated by molecular modeling software. The program's built-in intelligence helps the user
choose the most appropriate QSPR or QPPR based on the structure of the chemical of interest. In
addition, the statistical information associated with each QSPR or QPPR in PEP can be displayed
to help the user determine the model's validity. For the regression-based property estimation
models, assessments of accuracy based on the 95% confidence interval and estimated precision of
the experimental values are also provided along with the estimated property value.

PEP also provides a batch mode that provides users with a method for the convenient,
unattended calculation of MCls, TSA and UNIFAC activity coefficients and the subsequent
estimation of physical properties for large numbers of compounds.

A chemical property database, containing experimental values of S, Kow, H, Pv, Koc, and
BCF complied from a variety of literature sources and computerized databases was used for
developing the MCl-property, TSA-property and property-property relationships used in PEP.
This database, which currently contains over 800 chemicals, is linked directly to PEP.

The property estimation modules in PEP are also linked directly to the Level 1 and 2 Fugacity
Models. The combination of the various property estimation methods, chemical property database,
and simple environmental fate models provides users with a methodology for predicting the
environmental distribution of an organic chemical in a multi-phase system requiring only the
structure of the chemical of interest as input.

PEP was designed to be intuitive and user friendly. The easiest way to become familiar with
the PEP is to try clicking on the buttons and pull down menus found on each card. Any comments
or suggestions regarding impioving the operation of PEP would be greatly appreciated by the
authors.




« PEP Features

* Developed using Hypercard™ for the Apple Macintosh series of personal computers
« Cornprised of a chemical property database and four property estimation modules
» Uses standard Macintosh operations (buttons, menus, windows)
« Simple user interface based on flow chart design
* Four property estimation methods are available:
« Molecular Connectivity Indices (MCls)-property correlations
» Total Surface Area Regressions (TSA)-property correlations
* Property-Property Correlations
« UNIFAC derived activity coefficients
* PEP can be used to estimate six chemical/p hysical properties
* Solubility (S)
* Octanol-water partition coefficients (Kow)
* Henry’s Law Constant (H)
* Vapor Pressure (Pv)
+ Organic carbon normalized soil-water distribution coefficients (Koc)
+ Bioconcentration factors (BCF)
+ Universal and class specific regression models are available
* PEP uses decision support for determination of chemical class.
+ Estimates include 95% prediction interval for each regression based estimated value
» Statistical information readily available for each regression
* New regression models can be easily added
« Database contains over 800 chemicals having at least one property values
* Each chemical has at least one property and a two-dimensional SMILES string
+ Chemicals in database can be search for by chemical name, CAS number, synonym, or selected
from an alphabetized list
Property estimation modules and property database are linked directly to the Fugacity Level 1 and
2 environmental fate models
« Published and on-line documentation
* Includes PEP tutorial
+ Includes PEP Batch for estimating properties or calculating MCls, TSA, or UNIFAC activity
coefficients for large numbers of chemicals without continuous user input




+ What Do I Need To Use PEP (i.e. Hardware requirements)?

Macintosh II computer or better with

4,000 Kbytes (4 Megabytes) of usable hard disk space,

3 Meg of RAM installed,

running system software 6.0.5 or higher, and

HyperCard 2.0 software or higher installed with the size allocated to 1500 MB.

“noh W -

+ Installation of PEP
PEP is typically shipped on one 3.5 inch 1.44 Megabyte floppy disk. To install PEP:

1. Insert the PEP disk into the disk drive.

2. Drag the file PEP.sea to the hard drive that PEP is to be installed on. When the PEP.sea
file has been copied to the hard drive you can eject the disk by dragging the “PEP” disk icon to
the trash.

3. Double click on the icon of the “PEP sea” file. This will start the installation process by
first creating a new jolder called “PEP sysiem” on the hard drive and then uncompacting five
HyperCard stacks: 1) “Chemical Property Data Base”, (2) “PEP Processor”, (3) “PEP Help”,
(4) “PEP Models”, and (5) “PEP Batch” (not necessarily in that order).

4. Drag the “PEP.sea” icon to the trash and remove it from your hard drive using the “empty
the trash” command which can be found under the Special pull down menu located at the top of
the screen.

The installation process is now complete. Test the installation by double clicking on the “PEP
system” folder, then double clicking on the file “Chemical Property Data Base”. If installation was
successful the opening card of PEP will appear. If you have a problem with the installation please
contact Mark Holt at (801)750-3916 or Bill Doucette at (801)750-3178. Note: PEP can also be
sent on two 3.5 inch 800k floppy disks if requested.




General Programming Description

The PEP software system is a HyperCard™ based program that runs on Apple Macintosh
computers. HyperCard, which is bundled with most Macintosh computers sold, offers graphics,
information storage, the means to display information in a variety of formats, the ability to
establish links between related information, a high level language (HyperTalk), the ability to extend
HyperTalk by writing new commands in a compiled language (i.e. C or Fortran) and a mechanism
to transfer control to other Macintosh applications. The PEP systemn uses all these features.

HyperCard treats each screen full of information as a card and each set of related cards as a
stack. Cards can contain fields for data and buttons for action procedures to operate on the data in
the fields. This allows the standard Macintosh interface to be used without the direct use of the
Macintosh toolbox routines, greatly simplifying programming. In order to create a user interface,
the programmer simply draws, or creates the buttons or fields that are to be used. The link
between buttons, fields and cards is done through HyperTalk. HyperTalk is an high-level,
interpreted language used to establish links between related information and perform simple
calculations within HyperCard. However, large repetitive tasks and complicated computations can
be very slow if HyperTalk is used. HyperCard also allows the programmer to create extensions of
HyperTalk in a lower level language. These extensions, called external functions (XFCN) and
external commands (XCMD), greatly increase the speed of repetitive and calculation intensive
algorithms over using HyperTalk itself and can also be used to implement custom Macintosh
features such as popup menus and custom dialog boxes.

Starting the PEP Software System

If the installation of PEP (as described on the previous page) was successful, a new folder
called “PEP system”, containing five HyperCard stacks (“Chemical Property Data Base”, “PEP
Processor”, “PEP Help”, “PEP Models”, and “PEP Batch”), should appear on your hard drive.

PEP is started from the Macintosh operating system by clicking twice (double clicking) on any
one of the five stack icons, expect the PEP batch stack, shown in Figure 1. The five stacks must
be in the same folder on a hard disk. This will open the PEP Processor stack and display the
opening card shown in Figure 2. PEP can also be used by opening any HyperCard stack and then
choosing “Open” from the “File” menu and selecting the “PEP Processor” stack.




=l PEP System = 0=
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Chemical Property Data Base PEP Models @
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Figure 1. PEP stack icons.
Property Estimation Developed by:
Program (PEP) William J. Doucette
and and
Chemical Property Data Base Mark S. Holt

version 1.0

Click Here for

General :
Information/Help UNIFAC Click Here

. - for Tutorial
(First time users Module
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Figure 2. PEP opening screen.




Menus, Buttons and Icons

In Macintosh applications most cursor movements are accomplished by use of the mouse or
trackball. Action buttons are operated by positioning the “hand” cursor over the button area and
then depressing and releasing the mouse button. This is referred to as clicking. Popup and pull
down type menus are operated by positioning the hand cursor over the button and then depressing
and holding the mouse button. While holding down the mouse button move the cursor over the
desired menu item and release (Note: on slower machines such as the Mac Plus, the menu
selections may be slow to appear, but be patient, they will eventually show up.). Figure 3 shows
the steps involved in using a menu for the selection of a command. The action of moving the
mouse while holding down the mouse button is called dragging.

File Edit Print Help
0 € File Edit Print _ Help ® | & file Edit m Print_ Help
emical Property Database Chemical Property Database

Biodegradation Database Biodegradation Database
PEP PEP
TSA Modu'e TSA Module
MCI Module W
UNIFRC Module IFAC Module
Praperty Module Property Module
Opening Card Opening Card
Back Back
Nexnt Next
Previous Previous
Homne Home

§. Menu Ber before the mouse is pressed

2. Menu Bar after the mouse is pressed

3. Menu Bar after the mouse {s moved over the desired command
but before the mouse button is reteased.

Figure 3. The steps for using a menu for command selection

The PEP software system is comprised of five HyperCard stacks that are linked together by
various menus and buttons. The pull down menus, located at the top of each card and buttons
positioned at various card locations allow the user to navigate through PEP.

The File and Edit menus at the «op of each PEP card duplicate the general File and Edit menus
in Hypercard (Please refer to the Hypercard manual for complete instructions.) The Go menu
allows the user to move to the either of the four property estimation modules, the chemical property
database, the fugacity model or the batch mode.




In addition to the menu items found at the top of each PEP card, buttons, such as those
displayed below, can be found on each of the various PEP cards. Figure 4 shows each button

icon, its title and its action.

Icon _ Title Action
&y PEPIcon Shows Opening Screen of PEP
Retum Ammow  lakes you back to the card you
<:D were at prior to this one
Help Shows Help for the current card
Q Information Shows general information
€ Eye Shows the equations or statistics
& Book Shows the reference
. Takes you to the opening card of
'K:J First Card HyperCard
Pop Up Button Lets the user choose from a popup
menu list

| Action Button

Figure 4. Buttons and icons used in PEP.

Tutorial

Initiates some action or calculation

The “Click Here for Tutorial” button, accessible on the opening screen of PEP, takes the user
to the opening screen of the tutorial. As shown in Figure 5, this screen takes the form of a flow
chart depicting the overall design of PEP. Individual tutorials, available for the chemical property
database and each of the four property estimation modules, can be activated by clicking on the
appropriate button in the flow chart.” Each tutorial automatically runs the chosen component of the
PEP system while illustrating its operation in a step-by-step manner.




Find Property for
Chemical X
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Databse? °

Compare to
Estimated?

Done

Another Property!

Property /P 108
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Module

UNIFAC
Module

Yiew,
Compare
Results

Repea??

No

Figure 5. Opening screen of PEP tutorial (Flow chart illustrating overall design of PEP system).




REFERENCE SECTION

PEP Processor

The PEP Processor stack contains the algorithms for data input, calculations and output of the
physical-chemical properties estimated using MCI-Property, TSA-Property, and Property-Property
correlations and UNIFAC derived activity coefficients. The PEP Processor is divided into four
modules, one module for each of these estimation methods.

The user interface for each module is designed as a flow chart consisting of a series of
numbered steps or actions required to estimate the physical-chemical property(s) of interest. The
steps are numbered sequentially from left to right and top down. Initially, all but the first step is
dimmed. As the user completes the first step the next step will darken, indicating the appropriate
progression. However, during any step a darkened, previously accomplished step can be redone
or the selection changed. Figure 6 shows this progression of steps.

Step Step Estimate
2. 3. Prapertias

Step Staep Estimate
2. 3. Propertias

Before step 1 Step
is completed 1.

Before step 2 Step

is completed 1.
Before step 3 Step Step Step Estimate
is completed 1. 2. 3. Prapertics

After step 3 is Step
completed 1.

<+ 1 1 T

Step Step Estimate
2. 3. Properties

Figure 6. Example illustrating the use of the PEP Processor’s flow chart interface.
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MCI Module

Overview

The user interface of the MCI modaule, like the other property estimation modules in PEP, is
designed in the form of a flow chart depicting the steps that must be completed in order to use the
module. As illustrated in Figure 7 by the fully darkened MCI module card, the four steps that must
be completed before the selected physical-chemical properties can be estimated using are: (1) input
the necessary structural information for the chemical of interest using either SMILES notation or a
connection file, (2) calculate and display the MClIs, (3) select the properties to estimate and (4)
choose the most appropriate MCI-property regression model.

. PEP Processor =————-[
View ! oy

Chemical Name: 2,2,6,6'-tetrachliorebiphenyl
SMILES String: c1(Cleccec(Clcl-c2¢c(Clecec2(C) . ... .
3.Choose | 4. Choose view
Prop. Regression PEP REF
Stats
Xs | PCBs | & -
1. Input _.l 2.Cale. || RKow | PCBs | ® & |t
Structure MCls [ Py '...; PCBs J D - Properties
Bue | PCBs | -
@ K Koc | PCBs | & -
display MCH
| =B || PCBs & -

Figure 7. Screen display of PEP MCI module.
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Entering Chemical Structure

Upon entering the MCI module, only the first step in the flow chart is active as indicated by its
darkened status. The two dimensional molecular structure of the chemical of interest is needed to
calculate the MCIs. You must first input the necessary structural information using either SMILES
[33,34] notation or connection files before you can continue to the second step. Select either
option from the “Input Structure” popup button.

If you sefect SMILES, two blank lines appear, one for the chemical name (optional) and one
for the SMILES string. Once you have entered the SMILES string, click the “OK” button or the
carriage return. The SMILES string must conform to the standard set by Anderson, Veith, and
Weininger (1987) and Weininger (1988) with the following exceptions: a single bond connecting
aromatic rings must be explicitly denoted by an “-”, the SMILES string must be Hydrogen
suppressed, and the SMILES string cannot contain any “{}” or “[]” qualifiers. SMILES is a
chemical notation language specifically designed for computer use. It is a method of "unfolding" a
2D chemical structure into a single line of characters containing the structural information. For
users unfamiliar with SMILES notation, a detailed description describing its use can be found in
scrollable window directly below the SMILES string input line.

If a connection table is chosen as the input method, the standard Macintosh file selection dialog
box, as shown in Figure 8, will be used to select the file. This requires that a connection table has
already been created for the chemical of interest.

Select file
S InputDataCls

D Benzene.Rlc
D ChainwH
DY chlorobenzene

< DirectDrive...
[ tject |}

( Drive )

D TCE.alchemy
D TCE.carti

D TCE.ct.wH

D TCE.ct.woH
D TEC.ct

L ———
'm.
. .

( Cancel )

Figure 8. Standard Macintosh file selection dialog box.
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Connection tables can be generated from commercially available, two-dimensional (2D)
chemical drawing programs, such as ChemDraw™, Chemintosh™, or ISIS/Draw™, that have the
ability to save the structure as a connection table file. The connection table file must be formatted
the same as a connection table from ChemDraw (1989). An example of a ChemDraw compatible
connection table is shown in Figure 9.

Title line Example connection table
Number of Atoms .__:ﬁ’ﬂ)

Number of Connnections ... 7.62500 2.29167 0.00000 C\

762500 3.12500 _0.00000 C
X,Y,Z Coordinates .—t-— 54167 0.00000 C

(Not used) 9.04167 3.12500 0.00000 C
9.04167 00000 C { Atom
Atom Symbol —1—B33333 1.87500 0.00000 C [ Information
8.33333 1.04167 0.00000 C
9.16667 1.04167 0.00000 C
10.00000 1.04167 0.00000 C
10.83333 1.04167 0.00000 C
214 17
4 1

Atom Numbers /

Bond Type e
Not Used ~

S Connection
Information

AN Noo
AR

© o~

©ONO O

AN =2
—t ek b

pure
o

Figure 9. Example connection table.

The first data line contains the title of the chemical or any other identifier. The second line
consists of two numbers separated by a comma. The first number is the number of atoms in the
connection table and the second is the number of connections described in the connection table.
The remaining lines describe the type of atoms in the molecule and their location (atom
information) and the atoms to which they are connected (connection information). The total
number of lines depends on the number of atoms in the molecule and the number of connections.
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Atom information is contained in four columns separated by one or more spaces. Columns one
through three are the X,Y,Z coordinates of the atom (not used for calculation of MCls) and column
four contains the atom symbol (e.g. C, Cl, Br, N etc.). Connection information is contained in
four columns of whole numbers. Columns one and two contain the atom numbers of the atoms
that are connected (atoms are numbered consecutively), column three contains the b ~d type (1, 2,
3, or 4), and column four usually contains a 1 (not used). The bond type in column three can be
either “1” for a single bond, “2” for a double bond, “3” for a triple bond, or “4” for an aromatic
bond. (NOTE: The Macintosh compatible molecular modeling program, Alchemy II'™, generates
files containing connection table information along with 3D atomic coordinates. To use alchemy
files for input into the MCI module simply treat the alchemy file as a “ChemDraw Connection
Table” )

As described in the next section, MClIs are calculated from the hydrogen suppressed structure
of a chemical. Concequently, for the most efficient calculation of MCI, the connection tables
created for input into the MCI module should be created from hydrogen suppressed structures. If
the connection tables are not hydrogen suppressed PEP will automatically remove them. This can
result in a significant increase in the time required to calculate the MCls.

Calculating MClIs

As soon as the structure is entered, the second step becomes active. Clicking on the “Calc.
M(CIs” button starts the calculation of the MClIs. If the structure was entered as a SMILES string
the “mciSmile” XFCN converts the SMILES string into the proper format for the “mcichi” XFCN
which calculates the MCIs. Similarly, if a connection table was used for input the “mciConvert”
XFCN converts the connection table into the proper format. The MCls that are calculated are listed
along with the variable names in Table 1. Once the MCIs have been calculated, they can be
viewed, exported, or printed by using the “Display MCIs” button under the “Calc. MCIs” button.
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Table 1. MClIs calculated by PEP.

Variable Name MCI Title Orders calculated
np normal path 0 through 6
ncl normal cluster 3 through 6
nch normal chain 3 through 6
npc normal path/cluster 4 through 6
bp bond path 0 through 6
bel bond cluster 3 through 6
bch bond chain 3 through 6
bpc bond path/cluster 4 through 6
vp valence path 0 through 6
vcl valence cluster 3 through 6
vch valence chain 3 through 6
VpC valence path/cluster 4 through 6
Avp delta valence path 0 through 6

How PEP calculates MClIs

To calculate the MCls for a given compound, a delta (d) value are first assigned to each non-
hydrogen atom in the structure. Three d values were computed in this study: normal, bond, and
valence. Normal deltas are computed by summing the number of bonds (single, double, etc. are
counted as one bond) connected to the atom whose delta is being calculated. The bond deltas are
calculated the same as the normal deltas except the bonds were taken at their face value (single is
one, double is two, etc.) instead of each bond being equal to one. Valence deltas for each atom are
computed according to equations (1) and (2) (Kier and Hall, 1986):

dy=Zv-h 1)
dv = (Zv - W(z - Zv) @)

where dv is the valence delta, Zy is the number of valence electrons in the atom, h is the number of
hydrogen atoms bound to the atom, and Z is the atomic number of the atom. Equation (1) is used
for those atoms in the first row of the periodic chart, and equation (2) is used for all other atoms.

Once the delta values have been calculated for each atom in the molecule, simple, bond and
valence indices of different orders and types can be calculated. The order refers to the number of
bonds in the skeletal substructure of fragment used in computing the index: zero order defines
individual atoms, first order used individual bond lengths, second order uses two adjacent bond
combinations, and so on. The type refers to the structural fragment (path, cluster, path/cluster or
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chain) used in computing the index. A more detailed explanation of the calculation of MClIs can be
found in Kier and Hall (1986).

The MCI calculation routine in PEP calculates simple, bond and valence indices of several
types (path, cluster, chain, and path/cluster) and orders (0 through 6), if possible, for each
molecule, resulting in a maximum of 54 index values for each molecule.

To account for non-dispersive force effects on aqueous solubility and solubility related
properties zero through six order A valence path indices (AY), as described by Bahnick and
Doucette (1988), are calculated by PEP, in addition to the 54 indices described above. To calculate
Ay indices, a nonpolar equivalent is made by substituting C for O or N atoms. MCls are calculated
for the nonpolar equivalent and values for Ac can be computed for each type of index by:

AY = Xnp - X 3)

where Ay is the delta index, (X)np is the index for the non-polar molecule and y is the index for the
original molecule.

Choosing the Properties

After the MCls have been calculated, the third step becomes active. Select the property or
properties you would like to estimate by clicking on the check box button next to it. You can
simultaneously select all the properties by holding down the shift key and clicking any one of the
property buttons.

Choosing the Regression Models and Chemical Classes

After the properties are selected, step four becomes active and the regression models available
for each property are displayed in a popup menu. Two categories of MCI-property relationships
are displayed for each property. The first category of MCIs property relationships, preceded with
the word PEP, were developed in this project using the experimental values reported in the PEP
property database. *“‘Universal” MClI-property relationships were developed using all available
experimental data for a given property regardless of chemical class. “Class-specific” MCI-property
relationships were developed if property values were available for a sufficient number (10 or
greater) of compounds within a particular chemical class (i.e. PCBs, PAHs, ureas). In addition,
several multi-class MCl-property correlations were developed for more broad classes of
compounds such as: halogenated aliphatics and halogenated aromatics.
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The second category of MCI-property relationships displayed for each property were obtained
directly from the literature and are located below the PEP relationships, separated by a gray line, in
the popup menu. By clicking the “book” found at the left of each literature MClI-property
regression model, the coefficients 2 value and the appropriate citation can be can be displayed

To illustrate the potential hierarchy of MCI-property relationships available to the user, an
example for the predicting the vapor pressure (Py) of a polychlorinated biphenyl (PCB) is provided
below. The are three appropriate PEP-derived MCI-property relationships available to the user,
one developed using only PCBs, one using halogenated aromatics including PCBs and one using
all compound types:

log Pv = 5.814 (ncS) - 2.428 (np3) + 9.479 (PCBs)
log Pv =-1.559 (bpl) + 6.622 (Halogenated aromatics)
log Pv =-1.275 (np3) +5.261 (Universal)

Generally, the use of a “class-specific” relationship, if available, should provide the best
estimate (i.e. the estimate associated with the least amount of uncertainty). To automatically aid
you in choosing the most appropriate MCl-property relationships, PEP looks in the SMILES string
or connection file for groups of atoms and bonds that distinguish various chemical classes. The
number of MCI-property relationships or chemical classes that are chosen by the program is
determined by the number of different distinguishing subgroups that are found. For the example
shown above, the most appropriate regression model, PCBs, would be made the default equation.
The two other appropriate models, halogenated aromatics and Universal, would be denoted with a
¢ in the popup menu. If the compound entered into PEP does not fit one of the class specific
models the “Universal” equation is selected as the default. You may also choose to ignore the
regression model chosen by PEP and select your own.

MClI-property regression models are available for the following “classes” of chemicals:
Universal, Universal Nonionizable, Universal Ionizable, Alcohols, Arilines, Carbamates,
Halogenated, Aliphatics, Nonhalogenated Aliphatics, Halogenated Aromatics, PCBs, PAHs,
Phenols, Triazines, and Ureas. Examples of representative chemicals for each of the classes can
be found in the View menu. To see the structures of the chemicals click on the class name. Not all
of the classes listed above are implemented for each property. The models not available for the
properties to be estimated are dimmed in the popup menu.
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Statistics Cards

A summary of the regression statistics and list of compounds used to develop and evaluate each
MCl-property relationship can be displayed by clicking the “eye” or “view statistics option” found
at the left of each regression model. Information displayed on the statistics card includes: the MCl-
property regression equation, the list of chemicals used in developing the regression model, the
standard errors of the coefficients in the regression equation, the Analysis of Variance (ANOVA)

table, the r2 value, a graph of the the predicied vs. estimated values, a graph of the residuals vs.
the predicted values, a graph of the residuals vs. the number of standard deviations, a normal
probability plot of the residuals, the X' X inverse matrix and appropriate reference. An example of
the statistical information provided for each MCI-property relationship is shown in Figure 10.

PEP Processor

‘ File Edit Go

Prlnl

Misc

(=]

predicted

r
Y

4 4 Il
T T 3]

e

Residuals

Regression Results Analysis of Variance Table
Std.

Yarieble Coef. Error Source RSS de MSS F
Constant 10.3917 (0.1376 |2.85 Q Regression | 889.176 {2 445 446
vpl -.9257 |0.0316(-29.3 Residusl 360.920 [362 |0.997
avpl 1.8251 ]0.1047 1174 Total 1250.0961364 |3 4343
MP-25 |-0.01 - 2

Iy r<=711% Nobs = 365 S = 0.998S
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

N

_\

!
N

Residuals

-75 =25 00 25 -6 -3 0 3 -5 00 15
. number of standard
experimental log S deviations

3 n 3
T T T

Figure 10. Statistics card associated with the MCI module.

The ANOVA wable contains the degrees of freedom, the residual sum of squares, the residual

mean square, and the variance ratio (F) for regression, residual and the total source of errors.
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The X’X inverse matrix is used in PEP to calculate the prediction interval of an estimate. The
matrix is derived by pre-multiplying the X matrix by its transpose and then inverting the result.
The X matrix has a column for each variable in the regression equation and a row for each
observation used to calculate the regre:sion equation. Each row contains the value used for each of
the variables in the regression equation. For example, if the regression equation is

Yj=b0 + blXjl + b2Xj2

where j is 1 to the number of observations, Y] is the estimated values for each observation,  bi
are the regression coefficients, and the Xji are the values of the variables t sed then the X matnix is

1 X11 X12
1 X21 x22

1 Xjl  Xj2.

The resulting X’ X inverse is a square matrix with the number of rows and columns equal to the
number of variables in the regression equations.

If the QSPR or QPPR was taken from the literature only the input variables and the statistical
information provided in the original reference is included.

Estimating the Properties and Viewing the Results

Click the “Est. Property” button to calculate the selected properties. The results card displays
the estimated properties and their respective 95% prediction interval Note: 95% prediction
intervals are not available for MCI-property relationships taking from the literature. You can
return to the previous card by clicking on the “return” button at the upper right comer of the results
card. The “Go” menu can be used to move to another module. You can compare the estimate
property values with those contained in the “Chemical Property Database”, if available, by clicking
on the “Look in DB” button. Clicking this button activates a database “search by name” routine.
The name on the results card must match exactly the name in the database for the search routine to
find the compound. If a property value is not found an NA will be displayed.

Adding or Deleting MCI-Property Regression Models

Additional MCI-proj =rty regression models can be added to the PEP MCI module through the
statistics cards. Choosing the “New Stat. Card” option from the “Misc.” menu of a statistics cards

19.




V
|

while the type of statistics card that is to be added is the current card The statistics for a new
regression equation can be added to PEP b. First the new card must be titled. This title will be
used in the popup menus and on the results card. The first 28 characters of the title must be
unique. The second step is to enter the regression equation. The user will be prompted for the
number of terms in the equation, then prompted for each coefficient and the associated variable
with the dialog box shown in Figure 11. The variables which are available for that type of
statistics card will be in a popup menu for easy, consistent selection.

Choose MCI and Input Coefficient

Choose MCI : [vp0 |

Coefficient: [-2.3

Figure 11. Example dialog box for the input of new MCI-property relationships

A relationship can easily be deleted from PEP by first making that statistic card the current
card, and then choosing “Del. Stat. Card” from the “Misc.” menu. The user will be prompted to
confirm the deletion and then the regression list will be rebuilt.

Limitations of MCI-Property Regression Models

Selection of the most appropriate MCI-property relationship depends on the structure of a
particular chemical of interest, knowledge of the mechanism of the process, and the extent of the
database used to develop the MCl-property relationship. For example, some MCI-property
relationships are broader than others in the range of chemicals that are covered, and some have
been established with a better understanding of the mechanisms or properties involved.

One problem that has limited the widespread acceptance of MCl-property correlations is that the
actual physical meaning associated with the individual incices is not well understood. Frazier
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(1990) and Doucette and Holt (1991), however, have shown a strong correlation between
calculated molecular surface area and several MClIs for a variety of organic chemicals. MCI-
property correlations tend to be class specific and thus are highly dependent on the type and range
of compounds that were used to derive a particular correlation. Indiscriminate use of such models
without an examination of number and type of compounds used to develop the model can result in
considerable error.
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TSA Module

Overview

As shown in Figure 12, the TSA module is similar in design to the MCI module. However,
unlike molecular connectivity, the calculation of TSA requires information describing the geometry

of the molecule in terms of its 3-D atomic coordinates.

IW PEP Processar mg

File

Che

mical Name: 2,2.,6.6 -tetrac
SMILES String:

3.Choose
Prop.
b3S
B Kow
1. Input 2. Calc. _4
I Structure TSAs B Py
3 3 X H
A
Edit van X Koc
der Yaals @
Radii || display TAs| | X)BCF

4. Choose View
Regression PEP REF
Stats
l PCBs | & -
( PCBs ] ©® =
| PCBs | €& =
[ Helogenated Aromatics | €8> wm

[ Helogensted Aromatics

] © w-

[ Universel

] = -

5. Estimate
Properties

Figure 12. TSA module card from PEP

Three-dimznsional coordinates can be obtained from X-ray crystallography data or from
molecular modeling. Alchemy from Tripos Associates (1989) and Chem3D+ from Cambridge
Scientific (1989) are examples of Macintosh compatible molecular modeling software that allows
the user to draw a chemical structure, energy minimize the structure, and produce a file containing
the three-dimensional coordinates. The TSA module is also designed to accept files generated by
other hardware/software combinations including UNIX or VAX versions of CONCORD (Tripos
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Associates, Inc., 1990), a hybrid expert system and molecular modeling software designed for the
rapid generation of high quality approximate 3-D molecular structures.

Entering the Structural Information

To estimate properties using the TSA module, you must firsc input the necessary structural
information by using one of the three options available under the popup menu titled “Input
Structure”: (1) Alchemy file, (2) cartesian coordinates file, or (3) manually entered cartesian
coordinates. The preferred method of structural input is via Alchemy files because they contain
both the three-dimensional structure and the connection information. This information allows PEP
to calculate the chemical’s TSA and determine the most appropriate TSA-property relationship
based on chemical class. Therefore, if an Alchemy file is chosen for the input then only the file
selection dialog box will be presented for selection of the file. However, if ether of the cartesian
coordinate options are selected for input, both the standard file selection dialog box will be
presented and an opportunity to select the connection table file or enter a SMILES string will be
presented.

The format of an Alchemy file, shown in Figure 13, is similar to that of a ChemDraw
connection table discussed previously. The first line of an Alchemy file contains the number of
atoms followed by “ATOMS,” the number of bonds followed by “BONDS,” the number of
charges followed by “CHARGES,” and then the title of the file. The next set of lines contains six
columns of information for each atom in the molecule including the hydrogen atoms. Column one
contains the atom numbers, column two contains the atomic symbols, and columns three through
five contain the X,Y,Z coordinates of the atom. The set of lines describing the atoms is followed
by a series of lines containing four columns describing the bonds. The first column contains the
bond number, the second and third columns contain the atom numbers of the two atoms connected,
and the fourth column contains the type of bond either “SINGLE,” “DOUBLE,” “TRIPLE,” or
“AROMATIC.”
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Atom numbers]

Atom symbols—

X,Y,Z coordinate

not used~

Bond numbere—

Atom numbe e

Bond type~]

4 3 5 SINGLE
6 SINGLE

5 8

Number Number
of Atoms of Bonds not used title
6 ATOMS, 5BONDS, 0CHARGES, TCE
~1 C2 0.0008 0.0149 0.0048 0.0000)
—7 ( 0.0000
. 0.2713  0.0000L ,,.n
4 T811 0.0700 0.7463 0.0000[ |nformation
5CL 22442 1.0786 1.0242 0.0000
6 H 0.2306 2.0846 0.0245 0.0000,
_—1 A _2 SINGLE)
&%UBLE
3 4 SINGLE % Connection
Information

Figure 13. Example Alchemy file.

PEP accepts cartesian coordinates files having the following format. The file has one header
line indicating the number of atoms in the molecule. The rest of the lines in the file describe each
atom in the molecule. Only the first five columns of each line are used. Column one contains the
atom symbols, column two contains the atom numbers, and columns two through five contain the

X,Y,Z coordinates of the atom. An example cartesian coordinates file is shown in Figure 14.

Number

Atom
of Atoms Symbols Numbers
N Z P

Atom

XY Z coordinates

C
C
Cl
Cl
H

OO HWN

0.678864
0.661346
1.498978
1.607437
1.277542

Not used
N

T T~ 1N
| 1.658981 1.412048 0.220383 12 2

0.010635 0.004303
0.015198 0.109131

1.476791
1.456451

0.333939
0.031769

0.912277 0.055084

2 1
2 2
12 3
12 3
5 ¢

Figure 14. Example Cartesian coordinate file.
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If the option to manually enter the coordinates is chosen then a card is presented, as shown in
Figure 14, that allows the coordinates and atom symbol of each atom to be entered individually
from the keyboard. The X,Y,Z, coordinate values and atom symbols for each atom in the
molecule are entered in the appropriate labeled boxes one at a time. After the information for each
line is correctly entered the “Line OK” button is clicked. This enters the information into the
scrollable window below. This process is repeated for each atom in the molecule. When all the
atoms have been entered clicking the “Done” button will send the structural information to the TSA
module.

File Edit Go Print Misc. ¢

Fill in one atom at a time at the bottom, type Return or Tab to put
itinto the table. To Edit an entry click on the line in the table. Click
“All Done " when the table is complete.

Atom Symbol Xcoord Ycoord Zcoord
E [c | | | | {(Line 6K

1c111 <

fill Done

Figure 15. Example card for the entry of atomic coordinates.

Calculating Total Surface Area (TSA)

In addition to the 3-D molecular structure, the user must also input van der Waals radii for each
of the atoms before the TSA of the molecule can be calculated. PEP automatically enters a vai der
Waals radius for each atom using values from Pauling (1960). However, when the “Calc. TSA”
button is clicked the user has the opportunity to edit the van der Waals radii using the dialog box
shown in Figure 16.
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AtOM  Radius Default values taken from:
Symbol fi Pauling. 1960. “The Nature
of the Chemical Bond.”
C 1.7 Cornell University Press.
CL 1.8 ithaca, New York.
BR 1.95
0 1.4 ( Reset Defaults )
N 1.5
H 1.2
) 1.85 Cancel ’
P 1.9
Solvent 0.0 Enter 0.0 for Total Surface
Radius Area to be calculated

Figure 16. Dialog box for editing van der Waal radii.

This dialog box also contains a place to enter a solvent radius. If it is left at “0.0” then the total
surface area will be calculated. Some relationships from the literature require the solvent accessible
surface area to be calculated. If this is the case, the desired solvent radius can be entered.

Once the molecular geometry and the van der Waal radii are input, the “Calc. TSA” button
becomes active and TSA can be calculated using a XFCN that was adapted from the SALVO2
algorithm developed by Pearlman (1980). This algorithm represents each atom of a molecule by a
sphere centered at the equilibrium position of the nucleus. The radius of the sphere is equal to that
of the van der Waals radius. Planes of intersection between spheres are used to estimate the
contribution to surface area from the individual atoms or groups. The program computes the
surface area of individual atoms or group by numerical integration, and the overlap due to
intersecting spheres is excluded from the calculation. TSA is calculated by the summation of
individual group contributions. These areas are then imported to the “TSAs” card shown in Figure
17.
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Chemical Name: Benzene.filc
TSAs Calculated with 0.0 Solvent radius Using a 0.0
_ . Solvent Radius
atom isolated accessible isolated accessible .
*  SUM. " GHrea area volume volume total area (f*)
[ [ArC_[36317 [15391 [20580 [12027 [ |[92.348 |
2 |ArC 36.317 15.397 20.580 12.028 3
total volume (A
3 |ArC 36.317 15.382 20.580 12.023 [72 158 ( )]
4 |ArC 36.317 15.394 20580 12.027 -
s |arC |36317 [15390 |20580  |12.027 Not Using a 0.0
6 |arc |36.317 [15394 |20580 |12.026 Solvent Radius
total area (A?)
| | [Not Calc. ]
TSA A% total volume (A%)
N-TSA 0-TSA P-TSA S ArN-TSA lNOt Calc. I
10 16 |0 I[o 1B |

Figure 17. Example TSA card.

To quantify the surface area attributed to the polar portions of the molecule the surface areas of
nitrogen, oxygen, phosphorous, sulfur, and aromatic nitrogen atoms are individually separated
from the TSA and placed on the “TSAs” card. A more detailed description of the TSA calculation
method is provided by Pearlman (1980).

Choosing the Most Appropriate TSA-Property Regression Model

After the TSA has been calculated, you can display the values and/or choose the properties of
interest and a corresponding regression model using the same approach described in the MCI
module. As discussed previously, “class-specific” regression models generally yield estimates
associated with the least amount of uncertainty. If an Alchemy file is used to enter the 3D structure
information or if a SMILES string or connection file is entered along with the cartesian
coordinates, the decision support system in PEP will choose the most appropriate TSA-property
regression model(s) as described in the MCI module. The most appropriate regression model will
be made the default and a ¢ will be place next to the other appropriate class name in the popup
menu containing a list of the regressions. If no class specific regression models are available, the
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“Universal” equation will be made the default. The operation of the TSA module from this point
on is identical to that of the MCI module. Note: for solid solutes the melting point is needed to
estimate the solubility. When the “S” button is clicked, the user is prompted with a dialog box to
enter the melting point. Because the solvbility will be estimated at 25° C, only if the melting point
is above 25° C (solid solute) will the value be required. If the melting point is below 25° C it is set
equal to 25° C. At this time only the “<25° C” and “known” options are useable in the dialog box.

TSA-property regression models available within PEP are: Universal, Universal Nonionizable,
Universal Ionizable, Alcohols, Anilines, Carbamates halogenated Aliphatics, Nonhalogenated
Aliphatic, Halogenate Aromatics, Nonhalogenated Aliphatic, Halogenate Aromatics, PCBs, PAHs,
Phenols, Triazine, and Ureas. Not all models are available for each property. The models not
available for the properties to be estimated are dimmed in the popup menu. You can also view the
statistical information associated with each model by clicking on the “eye” next to the regression
equation.

Estimating the Properties

After the appropriate TSA-property relationships have been selected you can now click on the
“Estimate Property” button to calculate the estimated properties. The estimated properties and their
respective 95% prediction interval will be displayed on the results card. Return from the results
card by clicking on the “Return arrow” button at the upper right hand corner of the results card.
Use the “Go” menu to move to another module. View values in the Chemical Property Database
by clicking on the “Look in DB” button. If a property value is not available in the database, an NA
will be displayed in the property field.

Development of TSA-Property Relationships

The PEP TSA-Property relationships that were were developed using stepwise regression
techniques and the data in the Chemical Physical Data Base . The stepwise regression was stopped
when the coefficient of determination did not improve by at least 0.05 when the next variable was
added.

For compounds containing polar functional groups, the addition partial TSA terms (i.e.
nitrogen (N-TSA), oxygen (O-TSA), aromatic nitrogen (ArN-TSA), sulfur (S-TSA), or
phosphorous (P-TSA)) significantly improved the TSA-property regression models. To view the
regression information by clicking on the “eye” next to the regression title on the results card or on
the TSA card.
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Limitations of TSA-Property Relationships

A major factor in the solubilitzation process is the energy required to create a cavity in the
solvent into which the solute is placed. The energy needed for the hole formation is considered to
be proportional to the surface area of the solute. TSA has been found to be linearly related to the
logarithm of solubility for many classes of non-ionizable organic chemicals.

As with the MCI module, selection of the most appropriate TSA-property relationship depends
on the structure of a particular chemical of interest, knowledge of the mechanism of the process,
and the extent of the database used to develop the TSA-property relationship. Some TSA-property
relationships are broader than others in the range of chemicals that are covered and some have been
established with a better understanding of the mechanisms or properties involved.
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UNIFAC Module

Overview

The UNIFAC (UNIQUAC Functional Group Activity Coefficient) group contribution method
for calculating activity coefficients, as described by Grain (1990), is implemented using both
HyperTalk and an XFCN. The functional group interaction parameters, presented by Gmehling et
al. (1982) and derived from vapor-liquid equilibria (VLE), are used in the calculation routine but
can be changed by the user. After the activity coefficients are calculated they can be displayed
along with 1zlevant intermediate values and used to estimate S and K,y by the following
expressions (Arbuckle, 1986):

Kow = 0.115 yoow fyeo0 @)
S (mol/L) = 55.6 / yeow (3)

where YW is the activity coefficient of the chemical infinitely dilute in water and ¥ © is the
activity coefficient of the chemical infinitely dilute in octanol.

The operation of the UNIFAC module, illustrated in Figure 18, is considerably different than
the correlation modules previously described. To use the UNIFAC module the you must input
structural information, calculate the activity coefficients, choose then choose the properties to be
estimated. Currently the only properties that can be directly estimated using the UNIFAC module
are S and Kgy.
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Entering Structural Information

Calculation of activity coefficients via the UNIFAC approach requires that the user input the
valid UNIFAC groups that make up the chemical of interest and the number of each group present.
PEP provides the user with three options for entering the appropriate UNIFAC groups using the
popup menu under the button titled “Input Structure”: (1) hand selecting the groups from a list in

LL_\I‘
isplay Act. Coeff.

Figure 18. Example card from the PEP UNIFAC module.

HyperCard, (2) using a connection table, and (3) using SMILES.

If the connection table option is chosen, a the standard file selection dialog box is presented
where the user can select the desired connection table file. The "Struct” XFCN then uses the

connection information to dissect the molecule into its UNIFAC groups.

If SMILES is chosen as the input method, the user is then prompted to input the chemical name
and the SMILES string. The Struct XFCN uses the connection information contained in the

SMILES string to buaild the UNIFAC input string.
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When the user chooses to hand select the UNIFAC groups, a card is displayed showing the
first 37 groups as shown in Figure 19.

Main Groups

(1) "CH," (4 "ACCH, (10)O CHO (15) CNH
O CH3 O ACCH3 (11)-ccoo- O CH3NH
O CH2 O ACCH2 O CH3C00 O CHNH
OCH O ACCH O CH2C00 O CH2NH
Oc (5)O OH (12)O HCOO
(2) “c=Cc"
OcHz=cH (®OCH3H  (13)7CH 07 (16)7(C);N"
O CH=CH (DO H20 O CH30 QO CH2N
O CH2=C O CH20 O CH3N DONE
- . . QO FCH20 (17)Q ACNH2 ?
Oc=C (9) “CH,CO e o
(3) “ACH" O CH3CO O CH;\lHZ
@® 6 ACH O CH2COo
O AC O CH2NH2
O CHNH2

Figure 19. UNIFAC module card used to select UNIFAC groups.

This card is connected to two other similar cards showing the rest of the available groups. To
select a group, the user clicks on the group symbol and a dialog box will then appear to enable the
user to input the number of this group that is in the molecule. The user then continues to select
groups until all the groups that are in the molecule have been selected. When the user clicks the
“Done” button the UNIFAC input string is built and returned to the UNIFAC card. In addition,
for users familiar with the UNIFAC approach, the appropriate subgroups can also be entered
directly by simply typing the number of a group followed by a space then the symbol of the group
for each group in the chemical.

The final form of the input is “# group # group ....". The # represents the number of the
functional group in the molecule, the group is the group symbol of the functional group. For
example the UNIFAC input string for Toluene is “S ACH 1| ACCH3”, meaning five aromatic

carbons with one hydrogen atom (5 ACH) and one aromatic carbon connected to a methyl group (1
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ACCH3). The UNIFAC groups available to PEP are shown in Table 2. Remember UNIFAC
subgroups may not be available for every compound. In these cases the activity coefficient can not
be calculated using the UNIFAC.

Table 2. UNIFAC groups

Group Group Group Group
Name Symbol Name Symbol
CH2 CH3 CCN CH3CN
CH2 CH2CN
CH COOH COOH
C= CH2=CH HCOOH
CH=CH CCl CH2Cl
CH2=C CHCI
CH= Cdl
ACH ACH CcC12 CH2C12
AC CHCI2
ACCH2 ACCH3 CcC13 CHCI3
ACCH2 CccCi3
ACCH CCi2
OH OH cC4 CCi4
CH30H CH30H ACCI ACCI
H20 H20 CNO2 CH3NO2
ACOH ACOH CH2NQ2
CH2CO CH3CO CHNO2
CH2CO ACNO2 ACNO2
CHO CHO CS2 CS2
CCOO CH3CO CH3SH CH3SH
CH2COO CH2SH
HCOO HCOO Furfural Furfural
CH20 CH30 DOH (CH20H)2
CH20 I I
CH-O Br Br
FCH20 C=C CH=C
CNH2 CI""NH2 C=C
Ci.2NH2 DMSO DMSO
CHNH2 ACRY ACRY
CNH CH3NH CICC Cl-(C=0)
CH2NH ACF ACF
CHNH DMF DMEF-1
(C)3N CH3N DMF-2
CH2N CF2 CF3
ACHN2 ACHN?2 CF2
Pyridine CSHSN CF
C5HA4N
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Calculate Activity Coefficients

After the functional groups are chosen, the activity coefficients can be calculated using the
procedure described by Grain (1990) by clicking on the “Calc. Activity Coefficients” button. Once
the activity coefficients have been calculated they can be displayed, along with values from several
intermediate steps, by clicking on the “Display Act. Coeff.” button. The equations used to
calculate the activity coefficients can also be displayed by clicking the “balloon” on the “UNIFAC
Calculations” card.

Editing Parameters

The UNIFAC group values can be edited by clicking on the “Edit Parameters” button. This
will take you to an Index card containing a button for each group. To edit the value for that group,
click on the corresponding group button. To edit the Q and R values, click on the left arrow at the
bottom of the index card.

Estimating Properties

To estimate S and/or Ky click on the “Estimate Properties” button. Clicking the “eye” next to
the property will display the equations used to estimate S or Ky, The results will be reported on
the results card.

Limitations of UNIFAC Approach to Estimating S and Kyw

The use of UNIFAC is limited to chemicals that have subgroups contained in a UNIFAC data
base. If a chemical has subgroups for which no UNIFAC values are available, the activity
coefficients cannot be calculated and, therefore, the properties cannot be estimated. In addition, it
has been observed that the errors associated with estimating S and Ky, via the UNIFAC approach
tend to increase as the compound becomes less solubility (larger Kqy,). Correction factors have
been presented in the literature to correct for this tendency.
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Property/Property Module
Overview

Quantitative Property-Property Relationships (QPPRs), based on the relationship between two
properties as determined by regression analysis, are used to predict the property of interest from
another more easily obtained property without a specific concern for molecular structure.
Frequently, the regression expressions are expressed in terms of the log of the two properties.

The operation of the Property-Property correlation module, illustrated in Figure 20, is
considerably different than the other modules because the choice of the regression models used for
the property estimation determines the required inputs.

E=——=——=————— PEP Processor
60 Print Uiew

Chemical Name:_2,2,6,6'-tetrachlorobiphenyl
SMILES String:
1. Choose 2 Tiow 3. Input Properties
p;.upeng @ USER choose regression PEP REF | Look in Prop. DB |
O PEP choose regression Stats e )
Xs | Universal from Kow ] W kg Kow 3236 . .. .
Jogp Pv e |
Okow [ | Unhearsoi fremm S % i i | AR N oegu e
ke
X Koc l Universal from Kow j W, ey
[XI BCF [ Universal from Kow | €& W., ::: e
) : 4. Estimate
Properties

B CYN KT

Figure 20. Example card from PEP property-property module.
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Selecting the Properties to be Estimated

Since the input for the Property/Property module depends on the properties to be estimated and
the regression models used, the user must first select the properties to be estimated and the
regression equations to be used before any input values are requested. The program keeps track of
the properties required and provides the appropriate input fields. If available, the required
properties can be imported directly from the associated chemical property database. Currently
property-property relationships for the estimation of S, Kow, Koc, and RCF are available and will
darken as the properties are selected.

Choosing the Property-Property Regression Model

The most appropriate model to use in estimating the property of interest depends on the class of
the chemical and what property-property relationships are available. The property-property
relationships that are available in PEP are divided into two general categories; regressions
developed using data from the PEP Chemical Physical Data Base and regressions obtained from
the literature. The two categories are separated by a grey line in the popup menu. To choose the
property-property model, use the popup menu directly under the current regression by holding the
mouse button down while over the title of the current regression. The “eye” icon to the right of the
regression title will display the regression equation and statistics associated with the current
relationship. The “book” icon will show the reference for the current regression if the regression is
from the literature.

Viewing the Calculated Values

Once the properties and the relationships are chosen, the properties required for input need to
be entered. The properties that are required are shown on the right side of the card with a line next
to the symbol. The values can be retrieved from the PEP Chemical Property Database by making
sure the property name is correct and clicking on the “Look in Prop. DB” button. The current units
of the inputs will be shown if appropriate, and will be changed as needed by PEP for the different
regression equations.

When the “Estimate Properties button is clicked the properties that were input will be used
along with the chosen regression equations to estimate the selected properties. If the values for the
input properties have not been entered on the Property-Property card the user will be prompted to
supply the required values. The property estimates along with the calculated 95% prediction
interval, if the statistical information is available, will be placed on the Results card.




Limitations of the Property/Property Module

One major limitation to the use of property/property relationships is the lack of suitable
property values required for input into the regression models. For many new chemicals, no
physical/chemical property information is available. In addition, the quality of the property-
property regression model depends on the extent of the database used to develop the relationship.
For example, some property-property models are broader than others in the type and number of
compounds used in its development.
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PEP BATCH

Overview

PEP Batch provides users with a method for the convenient, unattended calculation of MClIs,
TSA and UNIFAC activity coefficients and subsequent estimation of physical properties for large
numbers of compounds via the PEP processor described earlier. Like the PEP Processor, PEP
Batch is divided into MCI, TSA and UNIFAC modules. Each module, as illustrated in Figure 21
for the MCI module, requires the user to select the appropriate input file (i.e. SMILES string,
connection table or 3-D atomic coordinates), choose to information to be sent to the output file (i.e.
chemical name, SMILE:s string, properties) and start the batch driver.

= PEIPBatch =—FF7F—r———n———————

Lowe

2. Select Output [ Selectall | {UnSelect all]
Output Options p
B Chemical Names from file
X Smiles string
DI MCis

s

1. Select Ll X Kow 3. Start
Input Type X Pv Batch Drive
XH
X Koc
X BCF

X Include Regressions Used
X Rest of the Input file

Figure 21. Example card for PEP Batch, MCI module.
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Input Structure

The MCI and UNIFAC modules require the two-dimensional molecular structure of the
chemical to be entered using either SMILES strings or connection tables.

To enter SMILES strings into the MCI or UNIFAC batch modules, you mus create a text file
containing name of the chemical and its corresponding SMILES strings in columns separated by
tabs and hard returns at the end of each row. The text file can contain additional tab-delimited
information, but the SMILES strings and chemical names must be in the first or second column.
When you select the SMILES input option, you must indicate the column order on the “Explain
SMILES file card shown in Figure 22. The text file can be created with word processing or
spreadsheet programs or you can also edit or create a file containing the SMILES strings and
chemical names within PEP by selecting SMILES from the “input structure type” pulldown menu.

BEe———————= PP Batch

—— R D SIS 1

( View File Contents )

benzene clcececel >
toluene ctec(Clecel 1
o-xylene ¢1c(C)c(Clcecel
ethylbenzene cte(CClecce!
|—
&

Column 1 Column 2
@ Chemical Name O Chemical Name (] tgnore First Line
O SMILES qSriLEs

Figure 22. PEP Batch, explain SMILES file card.
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To input connection table files into the MCI or UNIFAC batch modules, you must first place
them in a single folder. Select the “Connection tables” option from the *‘Select Input Type” popup
button and choose the folder that contains the connection table files using the standard “open file”
dialog box that appears. Highlighting any one of the files in the folder selects all of the files in that
folder and allows you to view or delete specific files. The files can be any valid type for the MCI
module as they will be converted if possible (see MCI module helps). After selecting the input
files, click on the advance arrow located at the upper right of the card to advance to the next step.

The TSA batch module operates in the same manner as the MCI and UNIFAC modules except
that the calculation of TSA requires the three-dimensional cartesian coordinates for each atom in the
chemical of interest. The TSA batch module accepts Cartesian Coordinates or Alchemy files.
Alchemy files contain both the two-dimensional chemical structure and the coordinates. This
allows PEP to calculate the chemical’s TSA and determine the most appropriate TSA-property
relationship based on chemical class. From within the standard dialog box, you can click on any
file in a folder to select all of the files in that folder. The files will then be displayed. You can
also view or delete files.

Output Options

Once the input files have been selected, the “output option” step becomes active. This allows
the user to select the properties to be calculated and any additional information that is available (i.e.
chemical name, SMILES string, MClIs, TSA, or UNIFAC activity coefficients) to be exported by
to a tab-delimited text file.

Start Batch Driver
After the output information is selected, the “Start Batch Driver” button becomes active.

Clicking this button brings up the standard Macintosh *save file” dialog box that allows the user to
specify the name of the data file to be exported by PEP batch and the location that the file will be

saved.
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CHEMICAL PROPERTY DATABASE

Overview

Experimentally determined physical property data for about 800 compounds, having at least
one value of aqueous solubility (S), octanol/water partition coefficient (Kow), vapor pressure
(Pv), organic carbon normalized soil sorption coefficient (Koc), bioconcentration factor (BCF), or
Henry's law constant (H), was complied from a variety of literature sources and computerized
databases. Using this information, a chemical property database was constructed using
HyperCard™ and subsequently used for developing MCI-property, TSA-property and property-
property relationships. In addition to the properties listed above, the database includes the
following information: compound name and synonyms, a diagram of the 2-D chemical structure,
SMILES notation, uses, CAS number, chemical formula, molecular weight (MW), boiling point
(BP), melting point (MP), and appropriate references for each value. A built-in unit conversion
utility enables users to quickly view property values in a variety of commonly used units. The
database is directly connected to the PEP Processor stack.

The Chemical Property Database also provides the means for the user to search for chemical
compounds by full or partial name or synonym, to sort the compounds by name, boiling point,
melting point, or molecular weight, and the ability to transfer to any of the property estimation
modules. In addition, the user can easily edit exiting values, add new values or export information
to a text file or another database.

Ir: addition to the physical properties, information describing the environmental persistence and
toxicity of specific chemicals can also be entered into the database. Placeholders for
biodegradation rates, hydrolysis rates, photolysis rates and L.C50s, along with the appropriate
references and comments have been incorporated into the database. This feature was added to the
database after requests froni test users, however currently no degradation or toxicity data has been
entered inte the database. The chemical property database is illustrated in Figures 23 and 24.
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Figure 24. PEP database degradation properties.
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Searching for Chemical Compounds in PEP’s Database

Chemicals in the database can be found by full chemical name, partial chemical name,
synonyms, or CAS number searches, or by selecting the chemical from a current list of
compounds. The user selects the desired option from the “Find” menu.

Searching or Finding by either chemical name, partial chemical name, synonyms or CAS
number is done using the finding tools built into HyperCard. When the finding option is chosen a
standard dialog box is used to input the string that is to be found. Finding by full chemical name
or CAS number requires that the entire contents of the appropriate field match the string of
characters that was entered. Finding by partial chemical name or synonym requires that all of the
string that was entered be present in the appropriate field.

The select from list option allows the user to select a compound from the current list of
chemical names. The chemical names appear alphabetically sorted in a dialog box. Typing the first
letter or number of the chemical will scroll the list to the first chemical starting with that character.
The chemical card is located and displayed by clicking twice on the same chemical name or
selecting the chemical name and then clicking the “Go There” button.

Sorting the Database

The “Sort” menu at the top of the card allows you to sort the database by name, melting point
(MP), boiling point (BP), or molecular weight (MW). NOTE: the alphabetic sort function built
into HyperCard places all chemicals with numbers preceding the letters in the chemical name before
those chemicals having only letters in the chemical name. For example, after sorting by name, 1-
octanol would come before acetone and 2-octanol, but after 1-decanol.

Adding or Deleting Data

New chemicals may be added to the data base by choosing “Add new card” option from the
Values menu. The user will then be prompted for the chemical name, CAS number, molecular
formula, melting point, boiling point, molecular weight, and the SMILES string.

Additional values for melting point, boiling point, S, Kqw, Py, H, Koc, BCF, and K, can be
added to a chemical already in the database using the “Add value” option accessed from the Value
menu. As each new value is entered the user is prompted for the reference. The reference can be
an existing reference or the user can add a new reference. If a new reference is to be added, the
user will be prompted for the author, year, title, publication, volume, issue, and the page numbers.
The user will also be given a chance to edit the new reference.
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An entire card or specific values contained on a card can be deleted by choosing the appropriate
item from the Value menu. A reference can also be deleted if it was entered incorrectly. The data
will not be deleted until the user verifies the request through a standard dialog box.

Printing Information From the Database

The user can print the current card, or a series of cards using the print features built into
HyperCard. To print a series of cards, first the user must select that option from the “Print” menu.
Then while each card that is to be printed is the currently displayed card, the select “Print this card”
option from the print menu must be chosen. When the desired cards have been printed, the user
then selects “Stop printing” from the “Print” menu. The user can also print a list of all the
references contained in the PEP data base.

Exporting Information From the Database

Information in the database can either be exported as text in a line or as a spreadsheet format
using the “Export” menu. If the line format option is used, the data will appear with each data field
on a line and each chemical separated by a solid line. This option is most appropriate if a word
processcr will be used to print or manipulate the exported data. If the spreadsheet format is used
the data will be put in columns delimited by a tab.

Moving to Other PEP Modules

The “Go” menu at the top of the card allows you to move to any PEP module. To use the Go
option, move the pointer to Go menu at the top of the card. Hold the pointer down on the button
until the selections appear. Then move the pointer until the selection of choice is highlighted and
release the mouse button.

Changing the Units of Measurement
The popup menu under each property’s units allows you to change the units for solubility,

Henry’s law, and vapor pressure. All values of the property will be changed to reflect the new
units.
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PEP Models

Overview

To illustrate the practical application of PEP, an additional stack called PEP Models was
developed. This stack, which contains the algorithms for the Level 1 and 2 Fugacity Models
(Mackay, 1980), is linked directly to the the PEP Processor, but can also be used independently.
The Level 1 Fugacity Model considers a unit world consisting of six compartments: air, water,
soil, suspended solids, sediment, and biota (as shown in Figure 25).

Air

- Suéb‘énded ' .
Solids .- ..z

Soil

.........

\ Sediment

Figure 25. Representation of Fugacity Level 1 compartments.

The model predicts the equilibrium concentrations of the chemical of interest in each
compartment using the fugacity approach described by Mackay (1980). The model requires the
input of Ko, H and BCF which can be read directly from the PEP processor or the PEP chemical
property database, if available. In addition to the chemical specific properties, the density and
volume of each compartment must be specified along with the organic carbon content of the soil,
sediment and suspended sediment. An editable set of default values for compartment density,
volume and organic carbon content, as shown in Figure 26.
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value frem DB

Figure 26. PEP Models card, input for Fugacity Level 1

The Level 2 Fugacity Model allows for the chemical of interest to degrade in each
compartment, move by advection through the water and air phases, and be emitted into the unit
world. The rate values for each of these processes must be entered by the user. The degradation
rates for each compartment can be entered either by t1/2 values in hours or by first order reaction
rate constants in 1/hours, as shown in Figure 27. The advection rate data can be entered either by
residence time or flow rate and the concentration or by directly entering the mass flow rate in moles
per hour. The emission rate is entered in the units of moles per hour.
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Figure 27. PEP Models card, input for Fugacity Level 2

Input Property Values

To calculate the environmental distribution of a chemical the user must enter the several
physical-chemical properties along with the size and densities of each compartment. The physical-
chemical properties that are need to be input for the six compartment unit world are Koc, H, and
BCF. However, in step 2 the user may choose to eliminate one or more compartments to simplify
the model cr to more closely examine the distribution of a chemical in a sub-environment such as
the hypolimnion of a lake (i.e., water, air, biota). This would eliminate the need for a value for
Koc. PEP determines which physical-chemical property values are needed depending on the unit
world which the user has defined. The chemical-physical properties that are not needed will be
dimmed.

When available, experimental values are preferred over estimated values in environmental fate

modeling. Experimental values for the physical-chemical properties can be searched for in the
Chemical Property Data Base by using the “Look for Values in Prop.DB” option. When clicked, a
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full chemical name search is initiated, and if the chemical is found, the values of the three
properties required by the Fugacity level 1 model will be displayed in a dialog box. The values can
be copied to the Fugacity card using the buttons on the dialog box as illustrated in Figure 28. The
check boxes next to the property names of the Fugacity card indicate if the property came from the
data base.

Ualues from the PEP Property Database
Select the properties to copy to the Model

Log Koc: 1.780 < Cancel
LogH: -0.648 ) )
Log BCF: Not Found ( copynpn |

5 Copy Selected

Figure 28. Example dialog box resulting from the “Look for Values in Prop.DB” option

Input Environmental Values

The values used for the unit world can be changed in step 2. The available compartments are
air, water, soil, suspended solids, sediment, and biota. Water must always be part of the unit
world because of the partition coefficients are defined as the ratio of the chemical in the non-
aqueous phase to the aqueous phase. The rest of the compartments can be eliminated by clicking
the check box next the compartment name. The densities, volumes, and the percent organic carbon
(if appropriate) of each compartment can be changed.

Different user defined environments or unit worlds can also be saved using the “Save Current
Values” button and later recalled using the “Values:” popup menu. The “Delete Saved Values”
button can be used to remove a saved set of values from the list that will popup when the “Values”
button is used. The “Set Default Values™ button can be used to set the unit world that is used when
the PEP Models stack is opened.

Calculate Distribution

After the user inputs all the required information and hits the “calculate distribution” button, the
model calculations are performed in HyperTalk and the results are presented in both in tabular and
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graphical form as illustrated in Figure 29. The graphical display can be changed from bar
(concentration of the chemical in each phase) to pie (percent of the chemical in each phase) chan
forms using the “Graph:” popup menu. The values of the distribution coefficients that were used
in the calculations are also shown on the results card.

et Gruscatu e PEP Models T e e T e
File Edit Go Print

gugacity Results

Chemical Name: 2,2°,6,6'-tetrachioroniphenyl
Percent Conc. Graph:[Percent {L’J
in each 3
compartment mol/m Percent in each Compartment
flir 91.86 92E-09 H
Water 2859  4.1E-07
Soil 0.917 1.0E-04 B
Susp. Solids 0.007 2.0E-04
Sediment 4.280 20E-04 B
Biota 0.070 0.020
Total 1060.0

Values used Source
Log Koc 392 MCI
Log H -1.648 Data Base
Leg BCF 4.69 MCI

Figure 29. PEP Models results card
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PEP Help

Information regarding the operation of the chemical property database and the property
estimation, models and batch modules is available in the PEP Help stack. This stack easily
accessed at any time within the PEP system. The organization and layout of each help card is
similar to that illustrated in Figure 30 for the MCI module. The user can select the topic of interest
by clicking on the appropriate radio button and the information on that subject will be displayed in
the scrolling field.

PEP Help ____‘—“___—_*'—"‘*——*““‘_—El

File Edit

PRI R =

Moleculer connectivity developed by Randic

(1972) end refined and expanded by (Kier and Hall,

1976, 1980, 1986) is a methad of bond counting

from which topological indexes, based on the

QO input structure structure of the compound, can be derived. For a

iven molecular structure, several types snd

O calculate MCls (g:rders of molecular connectivity indixes (MCls)

O choose properties &jcan be calculated. tnformation on the molecular
regression equations |size, branching, cyclization, unsaturation, and

O estimate properties heteroatom content of a molecule is encoded in

these various indices (Kier and Hell, 1976).

Q limitations Moleculer connectivity has been used to predict

Koc (Sabljic, 1984, Sabljic, 1987, Bahnick and

Doucette, 1988), S (Doucette, 1985,

MCI Options

@ overview

Nirmalakhandan and Speece, 1988a), Kow (Doucette|g

Figure 30. Example card from PEP Help stack for MCI module.
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APPENDIX B

STATISTICAL SUMMARY FOR MCI-PROPERTY,
TSA-PRCPERTY AND PROPERTY-PROPERTY
RELATIONSHIPS INCORPORATED INTO PEP
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