L}
. e

REPORT DOCUMENTATION PAGE o P 15
Qe 1 mw Por re8DONES. INCIUCING the time 107 reviewing INEIFLCIIONS. sad/chmg @XKUNG Tala TOUCes GRINeNNg and g The cata
ing this burden estimate o7 any other aspect of Tis coORCTION of IOrMATIoN, INCKIRNG SUKGESTIONS 107 rEGUCINgG this burder: 1o Washmgion
- A265 0 1 5 1215 Jettarson Davis Highway. Sulte 1204, Arlington, VA 22202-4302, and 10 the Offca of Informanon anc Reguiatory Attains Offics of
[T U s SRR VR TATES vEReD
B Final: 25 Jan 93

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Validation Summary Repont: Alsys, AlsyCOMP_068 Version 1.83, Control Data 4680
under EP/1X 1.4.3 (host & target), 93012511.11310

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT E 12b. DISTRIBUTION CODE

A —
13. ABSTRACT (Maximurm 200 words)

6. AUTHOR(S)
IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S] AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
IABG-AVF, industrieanlagen-Betriebsgeselschatt REPORT NUMBER

Dept. SZT; Einsteinstrasse 20 IABG-VSR 109

D-8012 Ottobrunn

FEDERAL REPUBLIC OF GERMANY
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER
United States Depantment of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

Approved for public release; distribution unlimited.

Alsys, AlsyCOMP_068 Version 1.83, Control Data 4680 (under EP/IX 1.4.3) (host & target), ACVC 1.11

) | . ' 93-1163
a2 - 07§ (T :

14, SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY GLASSIFICATION [18, SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRAC!
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

4@\
Oe |

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Ada COMPILER

AVF Control Number: IARG-VSR 109

VALIDATION SUMMARY REPORT:
Certificate Number: 930125I1.11310

Alsys

AlsyCOMP_068 Version 1.83
Control Data 4680 under EP/IX 1.4.3
Host and Target

Accesion For

NTIS
DTIC

U..announced
Jstification

..........................

CRA&I g
TAB
]

By

Dutlbjtaonl

Availability Codes

Dist

A-l

Avail and|or
Special

Prepared By:

IABG mbH, Abt. ITE

Einsteinsty. 20
W-8012 Ottobrunn
Germany

26 January 1993

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on January 25, 1993.

Compiler Name and Version: AlsyCOMP 068 Version 1.83
Host Computer System: Control Data 4680 under EP/IX 1.4.3

Target Computer System: Same as Host

See Section 3.1 for any additional information about the testing
environment.

As a result of this valication effort, Validation Certificate
#93012571.11310 is awarded to Alsys. This certificate expires 24 months
after ANSI approval of ANSI/MIL-STD 1815B.

This report has been reviewed and is approved.

Jodog v LD

IABG, abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

WV

h(Ada ¥alfdatjion Organization
&)

Diréct{ mputer & Software Engineering Division
Institu nr Defense Analyses
Alexandria VA 22311

bt Bt

“Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Alsys GmbH & Co. KG, Germaay
Certificate Awardee: Alsys

Ada Validation Facility: IABG moi, Germany

ACVC Version: 1.11

Ada Implementation:

Compiler: ‘ AlsyCOMP_068, Vgrsion 1.83
Host: Control Data 4680

Operating System: EP/IX 1.4.3

Target: Same as host

Declaration:

I, the undersigned, declare that I’ha.ve no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation
listed above.

Qows Uluc 94.1.93

Rainer Kollner Date
General Manager
Alsys GmbH & Co. KG

CHAPTER 1

Y
FNEREN S

CHAPTER 2

NN

CHAPTER 3

W W Ww

APPENDIX A

APPENDIX B

APPENDIX C

W

W N

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES . . .

ACVC TEST CLASSES
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS .
INAPPLICABLE TESTS

TEST MODIFICATIONS
PKOCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTICON . .

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

o b
L
(IRENENE®

[NENEN]
]
B

[FE W)
]
INgoS

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard [Ada83] using the
current Ada Compiler Validatieon Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referxed to
{Pro92}. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UGS89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the “Freedom of
Information Act" (5 U.S§.C. -#552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report. ‘

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copiles of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organizaticn

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

INTRODUCTION

1.2 REFERENCES

{Adag83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1887.

(Pro92] Ada Compiler Validation Proceduresg, Version 3.1, Ada Joint
Program Office, August 1992.

[(UGe9] Ada Compiler Validation Capability User'’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK_FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all vioclations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects viclation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. ' This customization consists of making the modifications described

in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
OCffice (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
- (AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’'s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out th
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and alsc for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computex
System

Inapplicable
test

IS0

LRM

Cperating
System

Target
Computer
System

Validated ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRCDUCTION

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test cbjectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-~1815A-1983 and ISO 8652-1987. <Citations frem
the LRM take the form "<section>.<subsections:<paragraph>.”

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Prec3d2].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneocus or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVC or the AVF. The
publication date for this list of withdrawn tests is August 02, 1991.

E28005C B2800€C C32203A C34006D C38508I C35508J
c35508M C35508N C35702A C35702B B41308B C43004A
C45124A C45346A C45612A C45612B C45812C Cas5651A
C46022A B49008A B49008B A74006A C74308A B83022B
Begl2l22H B83025B B83023SD B83026D C83025A C83041A
B85001L C86001F C94021A C97116A C930Q03B BA2C11iA
CB7001A CEB7001B CB7004A CCl223A BC1l226A CC1226B
BC3009B BD1BO2B BD1BO6A AD1BO8A BLC2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CDZA87A CD2B1sC
BD3006A BD4C0O8A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A cD7004C ED7005D
CD70Q5E AD7006A - CD7006E AD7201A AD7201E CD7204B
AD7206A BD80O2A BD8004C CDS005A CD300SB CDA201E
CE21071 CE2117A CE2117B CE2119B CE220S5B CE2405A
CE3111C CE311FfA CE3118A CE3411B CE3412B CE3607B
CE360Q07C CE3607D CE3812A CE3814A CE3502B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a %test’'s inapplicability may
be supported by documents issued by the IS0 and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) (*) C35705L..Y {14 tests:
C35706L..Y (:3 tests) C35707L. .Y (14 tests;
C35708L. .Y 14 tests) C35802L..2 (15 tests;
C45241L..¢ (14 tests) C45321L..Y (14 trests)
€C45421L..Y (14 tests) C45521L..2Z (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y {14 tests) C46012L..2 (15 tests!
(*) C24113W..Y (3 tests) contain lines of length greater than 255
characters which are not supported by this implementaticn.
The following 20 tests check for the predefined type LONG_INTEGER; for

this implementation, there is no such type:

C35404C C45231C C45304C €454311C C45412C

C45502C
C45613C
C535B0O7A

C45503C
C45614C
BSS5BOSC

C45504C
C45631C
BB8600O1W

C45504F
C45632C
C8600C6C

C45611C
B52C040
CD7.01F

C357138B, <C45423B, B86001T, and CB86006H check

for the predefined o
SHORT_FLOAT; for this implementation. there is type

no such

C35713D and BB6001Z check for a predefined flcating-
name other than FLOAT, LONG_FLOAT, or SHCRT_F
implementation, there is no such type.

C414C1A checks that CONSTRAINT ERROR is raised upon the evalua
various atcripute prefixes; this implementation derives thne at
values from the subtype of the prefix at compilaticn time, and thus

dces not evaiuate the prefix or raise the exception. {See Secticn 2.3.}

C45531M. . P and C45532M..P (8 tests)! check fixed-point operations for
types that require a SYSTEM.MAX_MANTISSA of 47 or greater: for this
implementation, MAX_MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLCWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE_ OVERFLOWS is TRUE.

BB6001Y uses the name of a predefined fixed-point type other than type

DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION’s base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

IMPLEMENTATION DEPENDENCIES
CD2AB4A, CD2AS4E, CD2AB4I..J (2 tests), and CD2AB40 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

CD2B15B checks that STORAGE_ERROR is raised when the storage size
specified for a ccllecticn is too small to hold a single value of the
designated type; this implementation allocates more space than was
specified by the length clause, as allowed by AI-00558.

BD800O1A, BD80O3A, BD8004A..B (2 tests), and ADBOl1A use machine ccde
inserctions; this implementation provides no package MACHINE_CODE.

The tests listed in the following table check that USE_ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation suppor:ts
these operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INGUT_FILE DIRECT_IO
CE2102I CREATE IN_FILE DIRECT_IO
CE2102J CREATE CUT_FILE DIRECT_IO
CE2102N OPEN IN_PFILE SEQUENTIAL_ IO
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102F OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INCUT_FILE DIRECT_IO
CEZ21025 RESET INOUT_FILE DIRECT_IC
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE - DIRECT_ IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_IOC
CE3102F RESET Any Mode TEXT_I0
CE3102G DELETE = ---=====- TEXT_IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

CE2107C..D (2 tests), <CE2107H, and CE2107L apply function NAME to

temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USE_ERROR is raised because temporary files have no name.

CE2108B, CE2108D, and CE3112B use the names of temporary sequential,
direct, and text files that were created in other tests in order to
check that the temporary files are not accessible after the completion
of those tests; for this implementation, temporary files have no name.

CE2203A <checks that WRITE raises USE_ERROR if the capacity of an
external sequential file 1is exceeded; this implementation cannot
restrict file capacity. ‘

EE2401D uses instantiations of DIRECT_IO with unconstrained array and
record types; this implementation raises USE_ERROR cn the attempt to
create a file of such types.

IMPLEMENTATION DEPENDENCIES

CE2403A <checks that WRITE raises USE_ERRCR if the capac:ity of an
external direct file is exceeded; this implementation cannot restricrt
file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and actempt to read from one file what was written
to the other, which 1s assumed to be immediately availakle; this

implementation buffers output. (See section 2.3.)

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USE_ERROR is raised. (See section 2.3.)

CE3304A checks that SET_LINE_LENGTH and SET PAGE_LENGTH raise
USE_ERROR 1if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT _ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 130000, making the checking of this
cbjective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24009A B235001A B38003A B380C9A B380OSE
BS1001H BC2001D BC2001E BC3204B BC3205B BC3205D

C34007P and C340075 were graded passed by Evaluation Modification as directed
by the AVO. These tests include a check that the evaluation of the selector
"all" raises CONSTRAINT_ERROR when the value of the object is null. This
implementation determines the result of the equality tests at lines 207 and
223, respectively, based on the subtype of the object; thus, the selector 1is
not evaluated and no exception is raised, as allowed by LRM 11.6{(7). The tests
were graded passed given that their only output from Report.Failed was the
message "NO EXCEPTION FOR NULL.ALL -~ 2".

C41401A was graded inapplicable by Evaluation Modification as directed by the
AVO. This test checks that the evaluation of attribute przfixes that dencte
variables of an access type raises CONSTRAINT _ERROR when the value ¢f the
variable is null and the attribute is appropriate for an array or task type.
This implementation derives the array attribute values from the subtype; thus.
the prefix is not evaluated and no exception is raised, as allowed by LRM
11.6(7), for the checks at lines 77, 87, 97, 108, 121, 131, 141, 152, 165, &
175.

C64103A was graded passed by Evaluation Modification as directed by the AVC.
This test checks that exceptions are raised when actual parameter values, which
result from an explicit type conversion, do not belong to the formal
parameter’s base type. However this implementation recogni' es that the formal
parameter is not used within the procedure and therefore the type conversion
{(and subtype check) need not be made {(as allowed by [Ada 83] 11.6.7) and the
subsequent expected exception need not be raised. The AVO ri’ed that the

2-4

IMPLEMENTATION DEFPENDENCIES

implementation’s behavior should be graded passed, given that Report.Failed was
invoked only from procedure calls at lines 91 (invoking line 76) and 119
{invoking line 115), yielding the following output:

"EXCEPTION NOT RAISED BEFORE CALL -P2 (A"
"EXCEPTION NOT RAISED BEFORE CALL -P3 (A)*"

BC3204C..D and BC3205C..D (4 tests) were graded passed by Evaluatien
Modification as directed by the AVO. These tests are expected tc produce
compilation errors, but this implementation compiles the units without error;
all errors are detected at link time. This behavior is allowed by AI-00256,
as the units are illegal only with respect to units that they do not depend orn.

CE3111B and CE3115A were graded inapplicable by Evaluation Modificaticn as
directed by the AVO. The tests assume that output from one internal file is
unbuffered and may be immediately read by another file that shares the same
external file. This implementation raises END_ERROR on the attempts to read
at lines 87 and 101, respectively.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file, which in
this implementation has no name; USE_ERROR is raised but not handled, so the
test is aborted. The AVO ruled that this behavior is acceptable pernding any
resolution of the issue by the ARG.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately
by the information given in the initial pages of this report.

For a peint of contact in Germany for technical and sales information about
this Ada implementation system, see:

Alsys GmbH & Co. KG
Am Ruppurrer Schlof 7
W-7500 Karlsruhe 51
Germany

Tel. +49 721 883025

For a point of contact outside Germany for technical and sales information
about this Ada implementation system, see:

Alsys Inc.

67 South Bedford Str.
Burlington MA
01803-5152

USA

Tel. +617 270 0030

Testing of this Ada implementation was conducted at the customer’'s site by
a validation team from the AVF,

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming

Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pros2].

For all processed tests {(inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementaticn’'s maximum
precision (item e; see section 2.2), and those that depend on the support

of a file system -- if none is supported (item d}. All tests passed, except
those that are listed in sections 2.1 and 2.2 (counted in items b and f,
below) .

a) Total Number of Applicable Tests 3787

b) Total Number of Withdrawn Tests 95

¢} Processed Inapplicable Tests 87

d) Non-Processed I/0 Tests 0

e} Non-Processed Floating-Point

' Precision Tests . 201

f) Total Number of Inapplicable Tests 288 {c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

The Ada implementation was installed on a computer at the AVF. The customized
test suite (see section 1.3) was then loaded onto the host computer by the
validation team.

After the test files were loaded, the full set of tests was processed by the
Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options.

Tests were compiled using the command
ada.c -v 'file name’
and linked using the command
ada.link -v -o ’'file name’ ‘main unit’.
The option -v was used to cutput additional compiling and linking information.

The option -0 was used to assign a dedicated file name to the generated

————— e}
executable image.

Class B tests, the executable not applicable tests, and the executable tests
of class E were compiled using the full listing option -1. For several tests,
completer listings were added and concatenated using the option -L ‘file name’.
The completer is described in Appendix B, compilation system options, chapter
4.2 of the User Manual on page 40. '

Test cutput, compiler and linker 1listings, and job logs were captured on a
Magnetic Data Cartridge and archived at the AVF. The listings examined on-site
by the validation team were also archived.

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG83). The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which s
the value for $MAX IN_LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN_LEN 255 -- Value of)v
$BIG_ID1 (1..V-1 => ‘A’, V => '1")
$BIG_ID2 (1..V-1 => ‘A, V => '2")
$BIG_ID3 {1..V/2 => 'A’') & '3' &
{(1..V-1-V/2 => 'A'}
$BIG_ID4 . (1..V/2 => 'A’') & '4' &
(1..V-1-V/2 => 'A’)
$BIG_INT_LIT (1..Vv-3 => '0') & "298"
$BIG_REAL_LIT (L..v-5 => ‘0’) & "65%0.0"
$BIG_STRING1 't g (1..V/2 => 'A') & '
$BIG_STRING2 ree g (1..V-1-V/2 => 'A’) & ‘17 & "M
$BLANKS (1..v-20 => ' ')

$MAX_LEN_INT_BASED_LITERAL
®2:" & (1..V-5 => '0°) & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => '0’) & "F.E:"

$MAX_STRING_LITERAL ‘"' & (1..V-2 => 'A’) & '"¢

MACRO PARAMETERS

The following table lists all of the other macro parameters and their

respective values.

Macrc Parameter

Macro Value

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
$DEFAULT_MEM_SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
$ENTRY_ADDRESS
$ENTRY_ADDRESS1
$ENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
$FIXED_NAME
$FLOAT_NAME
$FORM_STRING

$FORM_STRING2

32

4

2147483647

2147483648

8

MIPS_EPIX

241 . 0#4E-31

SYSTEM. INTERRUPT VECTOR (SYSTEM.SIGUSR1)
SYSTEM.INTERRUPT;VECTOR(SYSTEM.SIGUSRZ)
SYSTEM. INTERRUPT_VECTOR (SYSTEM. SIGALRM)
512

’ ’

NO_SUCH_FIXED_TYPE

_NO_SUCH_FLOAT_TYPE

nn

"CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION

6.0

$GREATER_THAN_DURATION_BASE_LAST

200_000.0

SGREATER_THAN_FLOAT_BASE_LAST

16#1.04#E+32

$SGREATER_THAN_ FLOAT_SAFE_LARGE

164#0.8#E+32

$GREATER_THAN_SHORT FLOAT_SAFE_LARGE

$HIGH_PRIORITY

0.0

15

$TLLEGAL EXTERNAL_FILE_NAME1

/nedir/filel

MACRO PARAMETERS

$ILLEGAL_EXTERNAL_FILE_NAME2

/wrongdir/£file2

SINAPPROPRIATE_LINE_LENGTH

-1

$INAPPROPRIATE_PAGE_LENGTH

$INCLUDE_PRAGMAL
$INCLUDE_PRAGMA2
$INTEGER_FIRST
$INTEGER_LAST
$INTEGER_LAST_PLUS_1
$ INTERFACE_LANGUAGE

SLESS_THAN_ DURATION

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006DL.TST")
~2147483648

2147483647

2147483648

C

-0.0

$LESS_THAN DURATION_ BASE_FIRST

SLINE_TERMINATOR

$LOW_PRIORITY

-200_000.0
ASCII.LF

0

$MACHINE_CODE_STATEMENT

$MACHINE_CODE_TYPE
$MANTISSA_DOC
$MAX_DIGITS

$MAX_INT
$MAX_INT_PLUS_1
$MIN_INT

$NAME

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE

$NEW_SYS_NAME

NULL;

NO_SUCH_TYPE

31

15

2147483647

2147483648

~2147483648
SHORT_SHORT_INTEGER

MIPS_EPIX
/pecple/vali/res/chape/X2120A
/pecple/vali/res/chape/X21208B
/people/vali/res/chape/X3119A
164FFFFFFFE#

2147483648

MIPS_EPIX

A-3

$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARTABLE_ADDRESS
$VARIABLE ADDRESS1
$VARIABLE_ADDRESS2

$YQUR_PRAGMA

’ ¢

NEW INTEGER
NO_SUCH_MACHINE_CODE_TYPE
32

10240

1.0/3600.0
GET_VARIABLE_ADDRESS
GET_VARIABLE_ADDRESS1
GET_VARIABLE_ADDRESS2

RESIDENT

MACRC PARAMETERS

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as desc:i.ked in
this BAppendix, are provided by the customer. Unless specifically nocted

otherwise, references in this appendix are to compiler documentation and not
to this report.

Compiling Chapter 4

4 Compiling

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as the main program. If all units needed by the main program and the main
program itself have been compiled successfully, they can be linked. The resulting code
can then be executed.

§4.1 and Chapter 5 describe in detail how to call the Compiler, the Completer, which
is called to generate code for instances of generic units, and the Linker.

Chapter 6 explains the information which is given if the execution of a program is
abandoned due to an unhandled exception.

The information the Compiler produces and outputs in the Compiler listing is explained
in §4.4. - .

Finally, the log of a sample session is given in Chapter 7.

The following conventions are used:

<ADA_dir> stands for the directory where the Alsys Ada System is located on your
computer. This directory can be found using the ada.lib command.
(If you have no library just create one with the ada.create command.)
The output of the ada.lib command displays the directory in the first
line.

4.1 Compiling Ada Units

The command ada.c invokes the Compiler, and optionally Completer and Linker of
the Alsys Ada System.

ada.c Command Description

NAME
ada.c - Alsys Ada System compile command
SYNOPSIS

ada.c [option ...] [file ...] [-1d ldopt]

Alsys Ada System - User Manual 35

Chapter 4 Compiling

DESCRIPTION

Compilation, Completion and Linking are performed in that order. The Completer
is called if the -C or the -m option is specified. The Linker is called if the -n option
is specified. By default, only the compiler runs and compiles the source(s) in the
given files.

The source file may contain a sequence of compilation units (cf. LRM(§10.1)). All
compilation units in the source file are compiled individually. When a compila-
tion unit is compiled successfully, the program library is updated and the Compiler
continues with the compilation of the next unit on the source file. If the compi-
lation unit contained errors, they are reported (see §4.4). In this case, no update
operation is performed on the program library and all subsequent compilation
units in the compilation are only analyzed without generating code.

The command delivers a non-zero status code on termination (cf. ezit(2)) if one

of the compilation units contained errors.

file specifies the file(s) to be compiled. The maximum length of lines in file is 255.

The maximum number of source lines in file is 65534.

Note: If you specify a file name pattern, which is replaced by one or more file
names by the shell, the order of the compilation is alphabetical, which is
not always successful. Thus file name patterns should be used together with
the option ~a. With this option the sources can be processed in any order.

The generation of listing output is controlled by options -1 and -L. The default
listing filename for a compilation is the basename, cf. basename(l), of the source
file with suffix .1; when the source file already has a suffix, it is replaced by the
sufix .1. When an automatic recompilation is performed through option -R the
basename is taken from the original source file name stored in the library.

-A Controls whether automatic inline expansion is performed. A sub-
program S is automatically inlined at a place P where S is called,
if the following conditions hold: S meets the requirements for ex-
plicit inlining via PRAGMA inline (c¢f. §15.1.1); subprogram spec-
ification and subprogram body of S are in the same compilation
unit; and the estimated code size of S when expanded inline is not
greater (or only slightly greater) than the call it replaces. (The
estimation of size is based on heuristics and is not exact; however,
it is designed to give a close approximation.) If you specify -A,
automatic inline expansion is suppressed.

By default, automatic inline expansion is performed.

-a Specifies that the Compiler only performs syntactical analysis and
the analysis of the dependencies on other units. The units in file
are entered into the library if they are syntactically correct. The
actual compilation is done later.

)

36

Alsys Ada System - User Manual

Compiling - ’ Chapter 4

Note: An already existing unit with the same name as the new
one is replaced and all dependent units become obsolete,
unless the source file of both are identical. In this case the
library is not updated because the dependencies are already
known.

By default, the normal, .ull compilation is done.

-C unitlist Requests the completion of the units in unitlist, which is a white
space separated list of unit names. unitiist must be a single shell
argument and must therefore be quoted when it has more than
one item. Example with two units:

ada.c -C "our_unit my_unit"
The Completer generates code for all instantiations of generic
units in the execution closure of the specified unit(s). It also
generates code for packages without bodies (if necessary).
If a listing is requested the default filename used is cozplete.l.
The listing file contains the listing information for all units given
in unstlist,

-c _ Controls whether a copy of the source file is kept in the library.
The copy in the program library is used for later access by the
Debugger or tools like the Recompiler. The name of the copy
is generated by the Compiler and need normally not be known
by the user. The Recompiler and the Debugger know this name.
You can use the ada.list -1 command to see the file name of the
copy. If a specified file contains several compilation units a copy
containing only the source text of one compilation unit is stored
in the library for each compilation unit. Thus the Recompiler can
recompile a single unit.

If - is specified, the Compiler only stores the name of the source
file in the program library. In this case the Recompiler and the
Debugger are able to use the original file if it still exists.

A copy of the source is only taken if the ada.c command resuits
in a successful compilation {and the option -¢ is not given). In
particular, no copy is taken if the option -a is given since in this
case no compilations are carried out.

-D By default debug information for the Alsys Ada Debugger is gen-
erated and included in the executable file. When the -D option
is present, debug information is not included in the object file. If
the program is to run under the control of the Debugger it must
be linked withcut the -D option.

7 AlsysAda. System - User Manual 37

Chapter 4

Compiling

-L directory

-L file

-1d ldopt

-m unit

-0 file

Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

Generates listing files with default filenames (see above) in the
current directory (use option -L for redirecting to another direc-
tory).

Generates listing files with default filenames (see above) in direc-
tory directory.

Concatenates all listings onto file file.

This option can be used to supply options for the call of Id(1) when
linking a program by the -z option. -1d followed by the options
to be passed to /d{1) must be the last items of the command.

Specifies the name of a main program, which must be 2 param-
eterless procedure. This option will cause the completion of any
generic instantiations in the program; if a listing is requested, the
listing options have the same meaning as for the complete op-
tion; if the completer has already been called by the -C option,
the listing output is appended to that completer listing file. If
all compilations are successful, the linker is invoked to build an
executable file; if a listing is requested, the default filename for
the linker listing is 1ink.1.

Restricts optimizations to level I. Level 0 indicates no optimiza-
tions, level 1 indicates partial optimizations, level 2 indicates full
optimization. Default is full optimization.

Partial optimizations allows those optimizations that do not move
code globally. These are: Constant propagation, copy propaga-
tion, algebraic simplifications, runtime check elimination, dead
code elimination, peephole and pipeline optimizations. This op-
timization level allows easier debugging while maintaining a rea-
sonable code quality.

Full optimization enforces the following optimizations in addition
to those done with -01: Global common subexpression elimination
and keeping local variables in registers.

When linking is requested by -m this option can be used to specify
the name of the generated executable file. By default, the unit
name given with the -n option is used; this value is taken literally,
i.e. upper and lower case letters are distinguished.

38

Alsys Ada System - User Manual

Compiling

Chapter 4

-r

-3

-v

-y library

Indicates that a recompilation of a previously analyzed source is
to be performed. This option should only be used in commands
produced by the ada.zmake command.

Suppresses the generation of an executable file when linking is
requested. See the -r option of the ada.link command (§3) for
details.

Controls whether all run-time checks are suppressed. If you spec-
ify -S this is equivalent to the use of PRAGMA suppress for alil
kinds of checks.

By default, no run-time checks are suppressed, except in cases
where PRAGMA suppress_all appears in the source.

Controls whether machine code is appended to the listing file.
-s has no effect if no listing is requested or -a (analyze only) is
specified.

By default, no machine code is appended to the listing file.

Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable image. With -t the code of all subprograms of
all packages in the execution closure of the main procedure is
linked into the executable image.

Note: The code of the runtime system and of the predefined units
is always linked selectively.

Controls whether the ada.c command writes additional informa-
tion onto standard error.
By default, no additional information is written.

Specifies the program library the ada.c command works on. It
needs write access to the library.
The default library is adalib.

End of Command Description

Alsys Ada System - User Manual 739

Linking Chapter 5

5 Linking

- An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main piogram.

The EP/IX system lirker is used by the Alsys Ada Linker.

To link a program, call the ada.link command. The Linker can also be called directly
from the ada.c command and from the ada.make command.

ada.link Command Description

NAME

ada.link - invoke the Alsys Ada System linker
SYNOPSIS

ada.link [option ...] unit [-1d /dopt]

DESCRIPTION

The ada.link command invokes the Alsys Ada Linker.

The Linker builds an executable file. The defzult file name of the executable fle
is the unit name of the main program given with the unit parameter. This value
is taken literally, i.e. upper and lower case letters are distinguished.

unit specifies the library unit which is the main program. This must be a para-
meterless library procedure.

-A : This option is passed to the implicitly invoked Completer. See the
same option with the ada.c command.

-¢ Suppresses invokation of the Completer of the Alsys Ada System
before the linking is performed. Only specify -¢ if you are sure
that there are no instantiations or implicit package bodies to be
compiled, e.g. if you repeat the ada.link command with different

linker options.

Alsys Ada System - User Manual

Chapter 5

Linking

-L directory

-L file

-1d ldopt

-0 file

-r

By default debug information for the Alsys Ada Debugger is gen-
erated and included in the executable file. When the -D option
is present, debug information is not included in the object file. If
the program is to run under the control of the Debugger it must
be linked without the -D option.

Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

If -1 is specified the Linker of the Alsys Ada System creates a list-
ing file containing a table of symbols which are used for linking the
Ada units. This table is helpful when debugging an Ada program
with the EP/IX debugger. The default name of the listing fle is
link.1. By default, the Linker does not create a listing file.
This option is also passed to the implicitly invoked Completer,
which by default generates a listing file complete.l if -1 is given.

The listing files are created in directory directory instead of in the
current directory (default).

The listing files are concatenated onto file file.

This option can be used to supply options for the call of /d(1).
-1d followed by the options to be passed to /d(1) must be the last
iterns of the command. 3
This option is passed to the implicitly invoked Completer. See the
same option with the ada.c¢ command.

Specifies the name of the executable file.
The default file name of the executable file is the unit name of the
main program.

Suppresses the generation of an executable file. In this case the
generated object file contains the code of all compilation units
written in Ada and of those object modules of the predefined lan-
guage environment and of the Ada run time system which are
used by the main program; references into the Standard C library
remain unresolved. The generated object module is suitable for
further /d(1) processing. The name of its entry point is main.

This option is passed to the implicitly invoked Completer. See the
same option with the ada.c¢ command.

52

Alsys Ada System - User Manual

Linking Chapter 5

-3 This option is passed to the implicitly invoked Completer. See the
same option with the ada.c command. If a listing is requested
and -s is specified, the Linker of the Alsys Ada System generates
a listing with the machine code of the program starter in the
file 1ink.1l. The program starter is a routine which contains the
calls of the necessary elaboration routines and a call for the Ada
subprogram which is the main program.

By default, no machine code is generated.

-t Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable file. With -t the code of all subprograms of all
packages in the execution closure of the main procedure is linked
into the executable file.

Note: The code of the runtime system and of the predefined units
is always linked selectively, even if -t is specified.

-v Controls whether the ada.link command writes additional infor-
mation onto standard error, and is also passed to the implicitly
invoked Completer.

By default, no additional information is written.

-y lidrary Specifies the program library the command works on. The
ada.link command needs write access to the library unless -¢
is specified. If -¢ is specified the ada.link command needs only
rgad access. The default library is adalib.

End of Command Description

The ada.link command implicitly calls the EP/IX System Linker usirg the command

/bsd43/bin/ld ([-N 1 -o resultfile /bsd43/usr/lib/czplrs/cec/crtli.o \
oby rtslib ld_options -lc /b3dd3/usr/lib/caplrs/cc/crtn.c

unless the -r option is specified. When -r is specified, the Linker is called with the
command

/b3d43/bin/1d [-N] -o resultfile ~r obj rtslib ld_options

Here, obj denotes the file containing the object module which is produced by the Ada
Linker and rtsiid the archive library containing the Ada runtime system. (This may
be 1ibrtsdbg.a resp. librts.a if the Alsys Ada Linker is called with option -D. In
this case the -N option is missing.)

Alsys Ada System - User Manual 53

Chapter 5 Linking

If you invoke [d(1) by yourself to link the executable object rather than having the Ada
Linker doing it automatically, then you must explicitly specify the startup modules
(see below) and any libraries you want linked into the Ada program. Furthermore, the
option -N of /d(1) should be specified to allow the resulting object file to be debugged
by the Alsys Ada Debugger. (Note that debugging is only possible if the option -D
was not passed to the Ada Linker.)

The startup module must satisfy the following requirements:

s A global variable called environ is defined containing a pointer to the current
environment {cf. environ(7).)

o The Ada main program is called using the entry point main.
e argc and argv are passed as arguments to main.
Note that instructions following the call of main will never be executed.

By default, the Standard C runtime startup routines /bsd43/usr/lib/caplrs/cc/cxtl.o
and /bsd43/usr/lib/caplrs/cc/crtn.o are used.

54 , Alsys Ada System - User Manual

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementaticn-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of this
Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this Appendix are
to compiler documentaticon and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are
contained in the following Predefined Language Enviroment {chapter 13 page 275
ff of the compiler user manual).

Predefined Language Environment

Chapter 13

13 Predefined Language Environment

The predefined language environment comprises the package standard, the language-
defined library units and the implementation-defined library units.

13.1 The Package STANDARD

The specification. of the package standard is outlined here; it contains all predefined

identifiers of the

implementation.

PACKAGE standard IS

TYPE hoolean

IS (false, true);

-~ The predefined relational operators for this type are as follows:

-- FUNCTION
-- FUNCTION
-=- FUNCTIONW
-~ FUNCTION
-~ FUNCTION
-~ FUNCTION

#=" (left, right
"/=" (left, right
ngn (left, right

">=" (left, right

: boolean)
: boolean)
: boolean)
m¢=" (left, right :
m>n - (left, right :
: boelean)

boolean)
boolean)

RETURN
RETURN
RETURY
RETURY
RETURIN
RETURN

boolean;
boolean;
boolean:
boolean;
boolean;
boolean:

-~ The predefined logical operators and the predefined logical
-- negation operator are as follows:

-- FUNCTION
-- FUNCTION
-=- FUNCTION
-~ FUNCTION .

"AND®™ (left, right
"O0R" (left, right

: boolean) RETURN boolean;
: boolean) RETURN boolean;
"XOR" (left, right :

boolean) RETURN boolean;

"NOT" (right : boolean) RETURN boolean;

-~ The universal type universal.integer is predefined.

TYPE integer IS RANGE - 2.147_.483_648 ..

2.147_.483_.647;

-~ The predefined operators for this type are as follows:

-~ FUNCTION
-~ FUNCTION

"=" (left, right
"/=" (left, right

: integer) RETURN boolean;
: integer) RETURN boolean;

Alsys Ada System - User Manual

275

Chapter 13 Predefined Language Environment

-= FUNCTION "<" (left, right : integer) RETURN boolean:
-- FUNCTION "<=" (left, right : integer) RETURN boolean;
-~ FUNCTION ">" (left, right : integer) RETURN boolean;
-- FUNCTION ">=" (left, right : integer) RETURN boolean;

=~ FUNCTION ®e" (right : integer) RETURN integer;
-~ FUNCTION "-" (right : integer) RETURN integer;
-~ FUNCTION "ABS" {(right : integer) RETURN integer;

-= FUNCTION "+" (left, right : integer) RETURN integer;
== FUNCTION "-" (left, right : integer) RETURN integer;
-- FUNCTION "=*" (left, right : integer) RETURN integer;
-- FUNCTION "/" (left, right : integer) RETURN integer:;
-- FUNCTION "REM" (left, right : integer) RETURN integer;
~- FUNCTION "MOD" (left, right : integer) RETURN integer;

-- FUNCTION m=*x" (left : integer: right : integer) RETURN integer:;

== An implementation may provide additional predefined integer types.
== It is recommended that the names of such additional types end

== with INTEGER as in SHORT.INTEGER or LONG.INTEGER. The

-=- specification of each operator for the type universal_integer, or
== for any additional predefined integer type, is obtained by

== replacing INTEGER by the name of the type in the specificatiocn
== of the corresponding operator of the type INTEGER, except for the
-- right operand of the exponentiating operator.

TYPE short_short-integer IS RANGE - 128 .. 127;
TYPE short_integer IS RANGE - 32.768 .. 32.767:
=~ The universal type universal_real is predefined.

TYPE flcat IS DICITS 6 RANGE
- 16#0.FFFF_FF#E32 .. 164#0.FFFF_FF#E32;
FOR flcat'size USE 32;

-~ The predefined operators for this type are as follows:

-- FUNCTION "=" (left, right : float) RETURN boolean;
-- FUNCTION "/=" (left, right : float) RETURN boolean;
-- FUNCTION "<" (left, right : float) RETURN boolean;
-= FUNCTION n"<=" (left, right : float) RETURN boolean:
-- FUNCTION ">" (left, right : float) RETURN boolean:
-- FUNCTION n">=" (left, right : float) RETURN boolean:

== FUNCTIOQN "+" (right : float) RETURN float;

278 Alsys Ada System - User Manual

Predefined Language Environment Chapter 13

FUNCTION "-n (right : float) RETURN float;
FUNCTION "ABS"™ (right : float) RETURY float;

FUNCTION "+m (left, right : float) RETURN float:
FUNCTION "-7 (left, right : float) RETURN float;
FUNCTION "+* (left, right : float) RETURN float;
FUNCTION "/" (left, right : float) RETURN float;

FUNCTION "#x" (left : float; right : integer) RETURN float;

An implementation may provide additional predefined floating

peint types. It is recommended that the names of such additional
types end with FLOAT as in SHORT.FLOAT or LONG_FLOAT.

The specification of each operator for the type universal_real,
or for any additional predefined flocating point type, is obtained
by replacing FLOAT by the name of the type in the specification of
the corresponding operator of the type FLOAT.

TYPE long_flcat IS DIGITS 15 RANGE

- 16#0.FFFF_FFFF_FFFF_F8#E286 ..
16#0.FFFF_FFFF.FFFF_F8#E256;

FOR long_float'size USE 64:

In addition, the follo&ing operators are predefined for universal
types: :

FUNCTION "«" (left : UNIVERSAL_INTEGER; right : UNIVERSAL_REAL)
RETURN UNIVERSAL_REAL:

FUNCTION "%m (left : UNIVERSAL_REAL; right : UNIVERSAL.INTEGZR)
RETURN UNIVERSAL_REAL:

FUNCTION "/" (left : UNIVERSAL_REAL; right : UNIVERSAL_INTEGER)
RETURN UNIVERSAL_REAL:

The Type universal_fixed is predefined.
The only operators declared for this type are

FUNCTION "«" (left : ANY_FIXED.POINT.TYPE;

right : ANY_FIXED_POINT_TYPE) RETURN UNIVERSAL_FIXED:
FUNCTION "/" (left : ANY_FIXED POINT.TYPE;

right : ANY_FIXED.POINT_TYPE) RETURN UNIVERSAL_FIXED:

The following characters form the standard ASCII character set.
Character 1literals corresponding to control characters are not
identifiers,

TYPE character IS

(nul, soh, stx, etx, eot, eng, ack, bel,

Algvwa Adea Ruvetarm - 1Tear AMannal 277

Chapter 13

Predefined Language Environment

FOR character USE

bs, ht, 1z, vt,
dle, dci, dc2, de3,
can, en, sub, esc,
. -. s!o' 'n'. o#o.
’(’. ‘).l '*.l .’..
‘o, ‘1, 2, ‘3,
080. 09'.'.:a. l:l.
'@’, ‘A’, °B'. ‘C°.
‘H*, *'I*, *I', ‘'K-°,
'P*, *Q'. °'R*. °'S".
X, 'y, z*, (.
et ‘a’, - R ‘e’,
h, i, i, 'k,
.p'. Dq!' lril 's'.
.oty oz {

<o| 1' 2' 3' 4! 5’

£, cr, so,

dec4, nak, syn,
fs, g3, rs,

SRR
4, '5°', 's°,
K, =, >,
‘D*, 'E°', 'F°',
‘L, °‘M*, 'N',
IT'. DU'. 'v'.
SR AT
'd*, ‘e', 'f°,
'1', 'm’, ‘n’,
'tb' Du" Ov!‘
.I'I '}'. '-.0

.. 125, 126, 127);

si,
eth,
us,

AN
T
22
IG"
g,
WYL

g
o',
lwl

*

del);

128 ascii CHARACTER SET WITHOUT HOLES

-~ The predefined operators for the type CHARACTER are the saxze as
-=- for any enumeration type.

PACKXAGE ascii IS

nul

stx
eot
ack :

bs
1f
1z
so
dle

de2 :
ded ¢
syn :
can :
sub :

.- fs

rs

del :

Control characters:
: CONSTANT character :
CONSTANT character
CONSTANT character :
CONSTANT “character :
: CONSTANT character
: CONSTANT character :
: CONSTANT character :
: CONSTANT character :
: CONSTANT character :
CONSTANT character
CONSTANT character :
CONSTANT character :
CONSTANT character
CONSTANT character :
: CONSTANT character :
: CONSTANT character
CONSTANT character :

RN

. e . .
N 0 0 oddoRoNEu

-~ Qther characters:

nul;
stx;
eot;
ack:
bs;
1f;
£f;
0;
dle;
de2;
decd;
syn;
can;
sub;
£s3;
rs;
del;

exclam : CONSTANT character
quotation : CONSTANT character
sharp : CONSTANT character

soh
etx :
eng :
bel :
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
de3 :
nak :
etb :
: CONSTANT

ht
cr

si
del

en

esc :
: CONSTANT
: CONSTANT

gs

:’ U#.;

CONSTANT
CONSTANT
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT

CONSTANT

character :

character

character :
character :
character :
character :
character :
character :
character :
character :
character :
character :
character :
character :
character :
character :

. N . .
[IR N R DN I DR N N NN NI R

soh;
etx;
end;
bel;
ht;
vt
cT,
si;
det:
de3;
nak:
eth;
em;
esc;
gs.
us;

278

Alsys Ada System - User Manual

Predefined Language Environment

Chapter 13

dollar
percent
ampersand
colon
semicolon
query
at_sign
l.bracket

underline
grave
l_brace
bar
r_brace
tilde

le_a ;

lc_z

END ascii;

: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
: CONSTANT
back_slash :
r_bracket

circumflex

CONSTANT
CONSTANT
CONSTANT

: CONSTANT
: CONSTANT

-

: CONSTANT

: CONSTANT
: CONSTANT

-
-

CONSTANT

-- Predefined subtypes:

character :

character
character
character

character :
character :

character

character :
character :
character :
character :
character :
character :
character :
character :
character :
character :

CONSTANT character := 'a’;

: CONSTANT character := 'z°;

R EREEREEEEEREEE R

SUBTYPE natural IS integer RANGE O ..
SUBTYPE positive IS integer RANGE 1 ..

-~ Predefined string type:

.

integer’last:
integer’'last;

TYPE string IS ARRAY(positive RANGE <>) OF character:

PRAGMA byte_pack(string):

The predefined operators for this type are as follows:

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION

nan (left, right : string) RETURN boolean;
n/an (left, right : string) RETURN boolean;
n¢n (left, right : string) RETURN boolean:
#<=" (left, right : string) RETURN boolean;
">n (left, right : string) RETURN boolean:
">an (left, right : string) RETURN boolean;
n"g" (left : string: right : string) RETURN string:
ngn (left : character; right : string) RETURN string:
"g" (left : string: right : charactar) RETURN string:

Alava Ada Svetem - Tlzer M annal

279

Chapter 13 - Predefined Language Environment

-~ FUNCTION "&" (left : character; right : character) RETURN string;

TYPE duration IS DELTA 2#1.0#E-14 RANGE
- 131.072.0 .. 131.071.999.938_.964.843_75;

-- The predefined cperators for the type DURATION are the same
~= as for any fixed point type.

-= the predefined exceptions:

constraint_error : EXCEPTION:
nuneric_error : EXCEPTION;

program._error : EXCEPTION;
storage_error : EXCEPTION;
tasking.error : EXCEPTION;

END standard;

13.2 Language-Defined Library Units

The following language-defined library units are included in the master library:

The PACXAGE system

The PACKAGE calendar

The generic PROCEDURE unchecked_deallocation
The generic FUNCTION unchecked._conversion
The PACKAGE io_exceptions

The generic PACKAGE sequential_io

The generic PACKAGE direct_io

The PACKAGE text_io

The PACKAGE low_level_io

280 Alsys Ada System - User Manual

Appendix F: Representaticn Clauses Chapter 16

16 Appendix F: Representaiion Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK

As stipulated in the LRM(§13.1), this pragma rmay be given for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized. For
components whose type is an array or record type PRAGMA pack has no effect on
the mapping of the component type. For all other component types the Compiler
will choose a representation for the component type that needs minimal storage
space (packing down to the bit level). Thus the components of a packed daa
structure will in_general not start at storage unit boundaries.

BYTE_PACK

This is an implementation-defined pragma which takes the same argument as
the predefined language PRAGMA pack and is allowed at the same positions. For
components whose type is an array or record type PRAGMA byte_pack has no
effect on the mapping of the component type. For all other component types the
Compiler will try to choose a more compact representation for the component type.
But in contrast to PRAGMA pack all components of a packed data structure will
start at storage unit boundaries and the size of the components will be a multiple
of systexm.storage.unit. Thus, PRAGMA byte.pack does not effect packing down
to the bit level (for this see PRAGMA pack).

Alsys Ada System - User Manual

313

Chapter 16 Appendix F: Representation Clauses

16.2 Length Clauses

SIZE
For all integer, fixed point and enumeration types the value must be <= 32;
for float types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
for long_float types the value must be = 64 (this is the amount of storage whxch.
is associated with these types anyway);
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE~
STRICTIQN error message in the Compiler listing.

STORAGE_SIZE
Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the leng:h clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K (+ 2K) bytes if no
length clause is given (cf. Chapter 14). If the task is to be allotted either more or
less space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause. Whether
a length clause is given or not, an additional 2K bytes are allotted for runtime
activities and the total space allotied is not extended dynamically at runtirze.

SMALL
There is no zmplementatxon-depeqdent resiTiction. Any specification for SMALL
that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

16.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest integer type which is supported; this is the type integer deﬁned in package
standard.

314 Alsys Ada System - User Manual
e

Appendix F: Representation Clauses Chapter 16

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is O
the objects of the correspending record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTIQ! error message.

There are implementation-dependent components of record types generated in the
following cases :

e Ifthe record type includes variant parts and the difference between the maximum
and the minimum sizes of the variant is greater than 32 bytes, and, in addition,
if it has either more than cne discriminant or else the only discriminant may
hold more than 258 different values, the generated component holds the size of
the record object. (If the second condition is not fulfilled, the number of bits
allocated for any object of the record type will be the value delivered by the size
attribute applied to the record type.)

o Iftherecord type includes array or record components whose sizes depend on dis-
criminants, the generated comonents hold the ofisets of these record cocmponents
(relative to the corresponding generated component) in the record objec:.

But there are no impleentation-generated names (¢f. LRM(§13.4(8))) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared by an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler listing.

If an address clause is given for an object, the storage occupied by the object staris at
the given address. Address clauses for single entries are described in §16.5.1.

Aleve Ada Sveterm . ITesar \Manual

Chapter 16 Appendix F: Representation Clauses

16.5.1 Interrupts

Under EP/IX it is not possible to handle hardware interrupts directly within the Ada
program; all hardware interrupts are handled by the operating system. In EP/IX,
asynchronous events are dealt with by signals (cf. sigues(2)). In the remainder of this
section the terms signal and interrupt should be regarded as synonyms.

An address clause for an entry associates the entry with a signal. When a signal
occurs, a signal catching handler, provided by the Ada runtime system, initiates the
entry call.

By this mechanism, an interrupt acts as an entryv call to that task; such an extry is
called an interrupt entry.

The interrupt is mapped to an ordinary entry call. The entry may also be called by an
Ada entry call statement. However, it is assumed that when an interrupt occurs there
is no entry call waiting in the entry queue. Otherwise, the program is erroneous and
behaves in the following way:

e« Ifan entry call stemming from an interrupt is already queued, this previous entry
call is lost.

o The entry call stemming from the interzupt is inserted into the front of the entr;
queue, so that it is handled before any entry call stem=ing from an Ada exntry
call statement.

16.5.1.1 Association between Entry and Interrupt

The association between an entry and an interzupt is achieved via an interrupt number
(type system.interzupt _number), the range of interrupt numbers being 1 .. 31 (this
means that 31 single entries can act as interrupt entries). The meaning of the interrupt
(signal) numbers is as defined in siguec(2). A single parameterless entry of a task caa be
associated with an interrupt by an address clause (the Compiler does not check these
conventions). Since an address value must be given in the address clause, the interrupt
number has to be converted into type systen.address. The array systex.interrupt.
vector is provided for this purpose; it is indexed by an interrupt number to get the
corresponding address.

The following example associates the entry ir with signal SIGINT.

316 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

TASK handler IS
ENTRY ir;

FOR ir USE AT system.interrupt.vector (system.sigiat);
END;

The task body contains ordinary accept statements for the entries.

16.5.1.2 Important Implementation Information

There are some important facts which the user of interrupt entries should know about
the implementation. First of all, there are some signals which the user should not use
within address clauses for entries. These signals are SIGFPE, SIGSEGY, SIG3US, SIGILL,
SIGTRAP ond SIGALRM; they are used by the Ada Runtime System to imp nent excep-
tion handling and delay statements (SIGALRM). Programs containing address clauses
for entries with these interrupt numbers are erroneous.

Moreover, the Debug Runtime System establishes a signal catching handler for the
signals SIGUSR1 and SIGQUIT; hence, debugging of any program containing an address
clause for an entry with either of these interrupt numbers is restricted.

When the signal SIGUSRL is used for an interrupt entry, the break-in and connect
commands (described in §8.7.2 and §8.5.1 respectively) must not be used as they sead
the signal SIGUSR1 to the program.

When the signal SIGQUIT is used for an interrupt entry, no program dump can be
created by sending this signal to the program. This restriction does not afect the
automatic generation of a program dump when the program is abandoned due to an
unhandled exception.

In the absence of address clauses for entries, the Ada Runtime System establishes signal
catching handlers only for the signals mentioned above, so all other signals will lead
to program abortion as specified in the EP/IX documentation.

A signal catching handler for a specific signal is established when a task which has an
interrupt entry for this signal is activated. The signal catching handler is deactivated
and the previous handler is restored when the task has been completed. Several tasks
with interrupt entries for the same signal may exist in parallel; in this case the signal
catching handler is established when the first of these tasks is activated, ard deactivated
when the last of these tasks has been completed.

Alsys Ada System - User Manual 317

Chapter 18 Appendix F: Representation Clauses

16.5.1.2 Example With Interrupt Entries

A complete example for an interrupt entry follows at the end of this section. This
example can be found in <ADA_dir>/exazple/interrupt.ada. In that example, a
child process is created (by 2 EP/IX system call fork(2)) which executes the sh{1) with
the command sleep 10 (cf. sleep(1)). A task named shell_call_handler defines the
entry handle_sigchld which is bound to the occurrence of the signal SIGCELD. Once
this signal occurs, i.e. the child process dies after about 10 seconds, this interrupt
entry is called and handled.

The log of a sample session follows. The lines starting with "$” are EP /IX commaxzds,
all other lines are ouiput.

$§ ada.c -v interrupt.ada

ALSYS ADA - COMPILER Control Data 4CCQO/EP/IX 1.83
Library: /top/adalid :

Compiling: /tap/interrupt.ada

PROCEDURE INTERRUPT_EXAMPLE

x No Exrrors found »»=»

CPU Time used : 4.1 Seconds

$ ada.link -v -o iaterzupt intersupt.exazple

ALSYS ADA - COMPLETER Control Data 4000/E?/IX 1.83
Library: /t=p/adalidb

Completing: INTEZRRUPT EXAMPLE._DUR_IO.BOOCO1

SEPARATE PACXAGE BODY _DUR_IO_B0OC0O1

sx* No Errors found #==

CPU Tize used : 1.0 Seconds

ALSYS ADA - LINKZR Control Data 4000/EP/IX 1.83

$ interrupt

At 48538.33142, "sleep 10" started.
At 45549.63086, workload finished
At 45549.63202, "sleep 10" - status: O

$ cat interrupt.ada

318 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

WITH system, text_io, calendar:

PROCEDURE interrupt._exazple IS
PRAGMA priority (1)

status : integer;
£ : fleat;
abort_error : EXCZPTION:

FUNCTIGN tize_stazp RETURN string IS
t : calendar.tize := calendar.clock;

result : string (1 .. 18);
PACKXAGE dur_ioc IS NEW texs_io.fixed_io (duration);:
BEGIN

dur_io.put (result, calendar.seconds (t)); RETURI result;
END tize_stazp;

PROCZDURE error (func : string) IS
BEGIY
text_io.put_lize (
func & ": error" & integer’'izage (system.errao));
RAISE abort_errer:;
END erzor;

PROCEDURE system.call (com=zand : IN string) IS
rasuls : iateger; PRAGMA resident (result);
arg0 : CONSTANT string := "/bin/sh" & ascii.nul;
PRAGMA resident (arg0):

argl : CONSTANT string := "sh" & ascii.nul;
PRAGMA resident (argl):

arg2 : CONSTANT string := "-c¢" & ascii.nul;
PRAGMA resident (arg2):

argb : string (1 .. 80);
PRAGMA resident (arg3):

arg4a : CONSTANT string := " " & ascii.nul;
PRAGMA resider+ (arg4):

FUNCTION unix_fork RETURN integer:
PRAGMA interface (¢, unix_fork);
PRAGMA external_name ("fork", unix fork);

FUNCTION unix.execl (
argQ, argl, arg2, 7
arz3, arg4¢ : systex.address) RETURN integer:
PRAGMA interface {c, unix_execl);
FRAGMA extarnal_naze ("execl", unix_execl);

Alsys Ada System - User Manual 319

Chapter 16 Appendix F: Representation Clauses

BEGIY -- systezm_call
arg3 (1 .. 1 + comzmand'length - 1) := command;
arg3 (com=and'length + 1) := ASCII.nul;
result := unix_fork;
IF result = Q THEY
== child process
DELAY (1.0):
result := unix_execl (arg0'address,
arg!‘address, arg2‘’address,
arg3’address, arg4’address);
error ("exescl");
ELSIY result = -1 THEN
error ("fork"):
ELSE
NULL: =-- the parent
END IF;
END system_call;

PROCEDURE wait_for.child (status : OUT integer) IS
r.status : integer: ,
PRAGMA resident (r_status);
result : integer;

FUNCTION unix_wait (status : IN systen.address) RETURN integer:
PRAGMA interface (e, unix.wait);
PRAGMA exsernal_name ("wait", unix_wait);

BEGIN ~-- wait_for_child
result := unix.wait (r_status’'address);
IF rasul® = -1 THEN error ("wait"); END IF;
status := r.status;

END wait_for_child;

TASK shell_call_handler IS
PRAGMA priority (2):

ENTRY subshell (comz=and : IN string):
ENTRY wait (status : OUT integer);
ENTRY handle_sigchld;
FOR handle_sigchld USE AT
systen.interrupt_vector(system.sigchld):
END shell_call_handler;

TASK workload IS

PRAGMA priority (0);:

ENTRY start;

ENTRY stop:

ENTRY finished (result : OUT float);
END workload;

320 e Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

TASK BODY shell_.call_ handler IS
last_status : integer := 0:
BEGIN
Loop
SELECT
. ACCEPT subshell (comzand : IN string) DO
system_call (comzand);
END subshell;
ACCEPT handle_sigchld;
workload.stop;
wait_for_child (last.status);
OR
ACCEPT wait (status : QUT integer) DO
status := last_status;)
END wait;
cR
TERMINATE;
END SELECT;
END LQOOP;
END shell.call_handler;

TASK BODY workload IS
£ : float := Q.0;
BEGIX
ACCEPT start;
LOgP
SELECT -
ACCEPT stop; EXIT;
ELSE
IF £ >= 10.0 THEX £ := 0.Q; END IF;:
2 s £ x2,0+1.0;
END SELECT;

~ END LOOP;
ACCEPT finished (result : OUT float) DO
result := f; :

END finished:
END worklnad;

BEGIN ~
shell_call_handler.subshell ("sleep 107");
text_lo.put_line ("At " & tize_stamp & ", ""sleep 10"" started.");
workload.start;
workload.finished (£); :
text_io.put_line ("At " & tize_stazp & ", workload finished"):
shell_call_handler.wait (status).
text_jio.put_line ("At " & time.stamp & ", ""sleep 10"" - status:"
& integer’'image (status)):
END interrupt.example:

Alsys Ada System - User Manual 321

Chapter 16 Appendix F: Representation Clauses

16.6 Change of Representation

The irnplementation places no additional restrictions on changes of representation.

322 Alsys Ada System - User Manual

Appendix F: I/O Chapter 17

17 Appendix F: I/0O

In this chapter we follow the section numbering of Chapter 14 of the LRM and provide
notes for the use of the features described in each section.

17.1 External Files and File Objects

An external file is identified by a string that denotes an EP/IX file name. It may
consist of up to 1023 characters.

The form string specified for external files is described in §17.2.1.1.

17.2 Sequential and Direct Files

Sequential and direct files are ordinary files which are interpreted to be formatted with
records of fixed or variable length. Each element of the file is stored in one record.

In case of a fixed record length each file element has the same size, which may be
specified by a form parameter (see §17.2.1.1); if none is specified, it is determined to
be (element _type’ SIZE + system.storage _unit - 1)/system.storege _unit.

In contrast, if a variable record length is chosen, the size of each file element may
be different. Each file eleraent is written with its actual length. When reading a file
element its size is determined as follows: |

e If an object of the element_type has a size cornponent (see §16.4) the element
size is determined by first reading the corresponding size component {rom the file.

e If element_type is constrained, the size is the minimal number of bytes needed
to hold a constrained object of that type.

e In all other cases, the size of the current file elemment is determined by the size of
the variable given for reading.

17.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in the LRM.

Alsys Ada System - User Manual 323

Chapter 17 Appendix F: I/O

17.2.1.1 The NAME and FORM Parameters

The naze parameter must be an EP/IX file name. The function nare will retura a
path name string which is the complete file name of the file opened or created. Each
component of the file name (separated by " /") is truncated to 255 characters. Upper
and lower case letters within the file name string are distinguished.

The syntax of the forz parameter string is defined by:

form.parameter ::= [form_specification { , fora_specification }]
form_specification ::= keyword [=> value]
keyword ::= identifier

value ii= identifier | nuzeric_literal

For identifier and numeric._literal see LRM(Appendix E). Only an integer literal
is allowed as nu=meric_literal (see LRM(§2.4)). In an identifier or nuzeric.
literal, upper and lower case letters are not distinguished.

In the following, the form specifications which are allowed for all files are described.

MODE => nuzeric_literal

This value specifies the access permission of an external file; it only has an effect in
a create operation and is ignored in an open. Access rights can be specified for the
owner of the file, the members of a group, and for all other users., nuzeric.literal
has to be a three digit octal number.

The access permission is then interpreted as follows:

8#400%# rTead access by owner

8#200# write access by owner

8#100# execute access by owner

8#040# read accasss by group

.. write/executa accass by group, analogously
8#004# read access by all others

.. write/exscuts access by others, analogously

324 Alsys Ada System - User Manual

Appendix F: I/O Chapter 17

Each combination of the values specified above is possible. The default value is
86665,

The definitive access permission is then determined by the EP/IX System. It will be
the specified value for MODE, except that no access right prohibited by the process’s
file mode creation mask {which may be sct Dy the EP/IX command umask(l)) is
granted. In other words, the value of each "digit” in the process’s file mode creation
mask is subtracted from the corresponding "digit” of the specified mode. For exammple,
a file mode creation mask of 8#022# removes group and others write permission (i.e.
the default mode 8#%#666= would become mode 8£6447).

The following form speciication is allowed for sequential, direct and text files:

SYNCHRQ => QFF | ON | ON_WAIT

It allows reader/writer synchronization of parallel file accesses by different processes,
such that only one process may writ2 to 2 file (and no other process may read from
or write to the same file in parallel) or multiple processes may read 2 fle in parallel.
This synchronization is achieved through the system call fenti(2).

By default parallel accesses are not synchronized (SYNCHRQ => OFF).

If the form specification SYNCHRO => 0¥ is given, USE_ERROR is raised when the
access is not possible (because other processes are accessing the fle when write access is
requested, or because another process is writing the file when read access is requested).
If the form specification SYNCHERO => ON_WAIT is given, the process is blocked when the
access is not possible for one of the above reasons. When the access becomes possible,
the process is unblocked. USE_ERROR is not raised with SYNCARG => ON_WAIT.

The following form specification is allowed for sequential and direct §les:

RECORD._SIZE => nu=eric_literal

This value specifies the size of one element on the file (record size) in bytes. This form
specification is only allowed for files with fixed record format. If the value is specified
for an existing file it must agree with the value of the external file.

By default, (element type’ SIZE + system.storage_unit — 1)/system.storage_unit will be chosen
as record size, if the evaluation of this expression does not raise an exception. In this
case, the attempt to create or open a file will raise USE_LERROR.

If a fixed record format is used, all objects written to a file which are shorter than the
record size are filled up. The content of this extended record area is undefined. An
attempt to write an element which is larger than the specified record size will result
in the exception use_srror being raised. This can only happen if the record size is
specified explicitly.

~ Alsys Ada System - User Manual 325

Chapter 17 Appendix F: [/O

17.2.1.2 Sequential Files

A sequéntial file is represented by an ordinary file that is interpreted to be formatted
with either fixed-length or variable-length records (this may be specified by the form
parameter). :

If a fixed record format is used, all objects written to a file which are shorter than
the maximum record size are filled up. The content of this extended record area is
undefined.

RECORD.FORMAT => VARIABLE | FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

The default is variable record size. This means that each file element is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

APPEND => FALSE | TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

TRUNCATE => FALSE | TRUE

If the form specification TRUNCATE => TRUE is given for an existing file in an open for
an output file, then the file length is truncated to 0, i.e. the previous contents of the
file are deleted. Otherwise the file is rewritten, i.e. if the amount of data written is
less than the file size, data previously written will remain at the end of the file. This
form specification is only allowed for an output file; it only has an effect in an open
operation and is ignored in a create. By default the value TRUE is chosen.

326 Alsys Ada System - User Manual

Appendix F: /O Chapter 17

The default form string for a sequential file is :

"RECORD_FORMAT => VARIABLZ, APPEYD => FALSE, " &
"TRUNCATE => TRUE, MODE => 8%€€6% " ¢&
"SYNCHRC => QFr"

17.2.1.3 Direct Files

The implementation dependent type cournt defined in the package specification of
direct_io has an upper bound of :

COUNT'LAST = 2_.147.483_647 (= INTEGER'LAST)

A direct file is represented by an ordinary file that is interpreted to be formatted
with records of fixed length. If not explicitly specified, the record size is equal to
(elerment_type’ SIZE + systemn.storage_unit — 1) /system.storage _unit.

The default form string for a direct file is :

"RECORD.SIZE => ..., MODE => 8#666#, SYNCHRO => QOFF"

17.3 Text I/O

Text files are sequential character files.

Each line of a text file consists of a sequence of characters terminated by a line termi-
nator, i.e. an ASCILLF character.

A page terminator is represented by an ASCII.FF character and is always preceded by
a line terminator.

A file terminator is not represented explicitly in the external file; the end of the fle is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last character of the file.

Output to a file and to a terminal difer in the following way: If the output refers to
a terminal it is unbuffered, which means that each write request in an Ada program

Alsys Ada System - User Manual 327

iy

Chapter 17 Appendix F: [/O

wiil appear on the terminal immediately. Output to other files is buffered, i.e several
characters are saved up and written as a block.

Terminal inpnt is always processed in units of lines.

17.3.1 File Management

Besides the mode specification (cf. §17.2.1.1) the following form specification is allowed:

APPEND => FALSE | TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen. '

The default form string for a texs file is :

"APPEND => FALSE, MODE => 8w#€66#, SYNCARQO => QFf"

17.3.2 Default Input and Output Files

The standard input (resp. output) file is associated with the standard EP/IX files
stdin resp. stdout.

Writing to the EP/IX standard error file stderr may be done by using the package
text_io.extension (cf. §13.3.4).

328 Alsys Ada System - User Manual

Appendix F: I/0 ‘ Chapter 17

17.3.3 Implementation-Defined Types

The implementation-dependent types count and field defined in the package specis-
cation of text_ic have the following upper bounds :

COUNT'LAST = 2.147.483_647 (= INTZGEZR'LAST)

FIELD'LAST = 512

17.4 Exceptions in I/0O

For each of name_error, use_error, device_error and data_erzor we list the condi-
tions under which that exception can be raised. The conditions under which the other
exceptions declared in the package io_exceptions can be raised are 2s described in
LRM(§14.4).

NAME_ERROR

e in an open operation, if the specified file does not exist;

e if the naze parameter in a call of the create or open procedure is not a legal
EP/IX file name'string; i.e, if a component of the path prefix is not a directory.

USE_ERROR

e« whenever an error occurred during an operation of the underlying EP/IX system.
This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a capacity limit is exceeded
or for similar reasons;

e if the function naze is applied to a2 temporary file or to the standard input or
output file;

o if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size determined when the file was opened
(¢f. §17.2.1.1); in general it is only guaranteed that a file which is created by an
Ada program may be reopened and read successfully by another program if the
file types and the form strings are the same;

e in a create or open operation for a file with fixed record format (direct file or
sequential file with fora parameter RECORD_FORMAT => FIXED) if no record size is
specified and the evaluation of the size of the element type will raise an exception.

Alsys Ada System - User Manual 329

Chapter 17 Appendix F: I/O

(For example, if direct_io or sequential_io is instantiated with an unconstrained
array type.)

if a given fora parameter string does not have the correct syntax or if a condition
on an individual form specification described in §317.2-3 is not fulfilled;

in a create or open operation with form specification SYNCERG => 0N when the
requested access is currently not possible; see §17.2.1.1 for the exact conditions.

DEVICE_ERROR

is never raised. Instead of this exception the exception use_error is raised when-
ever an error occurred during an operation of the underlying EP/IX system.

DATA_ERROR

the conditions under which data_error is raised by text_io are laid down in the

LRM.

In general, the exception data_erzor is not usually raised by the procedure read
of sequential_io and direct_io if the element read is not a legal value of the
element type because there is no information about the file type or form strings
specified when the file was created.

An illegal value may appear if the package sequential_io or direct_ic was
instantiated with a different element_type or if a different form parameter string
was specified when creating the file. It may also appear if reading a file elexmens:
is done with a constrained object and the constraint of the file element does not
agree witl, the constraint of the object.

If the element on the file is not a legal value of the element type the effect of
reading is undefined. An access to the object that holds the element after reading
may cause a constraint_error, storage_error or non_ada_erIor.

17.5 Low Level I/O

We

give here the specification of the package low_level_io:

PACXAGE low_level._io IS

TYPE device_type IS (null_device):

TYPE data.type 1S
RECORD
NULL:

330

Alsys Ada System - User Manual

. L ¢ *

Appendix F: I/O Chapter 17

END RECORD;

- PROCEDURE send._control (device : device_type:
data : IN QUT data_type):

PROCEDURE receive_control (device : device_type;
data : IN OUT data_type):

EYD low._level_ioc;

Note that the enumeration type device_type has only one enumeration value, null.
device; thus the procedures send_control and receive_control can be called, but
send_control will have no effect on any physical device and the value of the actual
parameter data after a call of receive_control will have no physical significance.

Alsys Ada System - User Manual - 7 331

