
REPORT DOCUMENTATION PAGE •°07-8
" I.,'.. ."" .. " '. ll0......VArW rIvoragaI• 1 hO4i per ¢IDrapoi. vrck:I•n tf,. •tTNI |Or rlw• VRItru1lerz& i•h swdIJ e..flg OaIa S0MCIi9a uklhrr &• fla1a•rlrl • 0

rgardrrQ thes brdeer *i~at" or any othet &"spc of this colec-tion ol ,wiormaiaon. &-t~ing siggestion to, r~dgrrg ta bL.O~r~ to Wastw~oonADA6 14 4Ma. 1215 Jef1,rson Davis Hqhay. Suto 1204 "On.~r VA 22202-432 aVru0 ft OR" 0tto 111fMair'O a&W PAeguraDy MAWSrr !On" of

II li1 ¶1 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
1111 1111 P11 1111111 111I Final: 19 Mar 9

4. TITLE AND SUBTITLE .. 5. 'UNDING NUMBERS

Validation Summary Report: Digital Equipment Corporation, DEC Ada for OpenVMS
VAX Systems, VW.rsion 3.0-7, VAXstation 4000 Model 60 (host & target),
930319S1.11316

6. AUTHOR(S) ouf
National Institute of Standards and Technology
Gaihersburg, MD ELECTE
USA -- MAY 2 5 1993__
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E 8. PERFORMING ORGANIZATION

National institute of Standards and Technology % 0 REPORT NUMBER

National Computer Systems Laboratory NIST93DEC505 2_1.11

Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSOR"ING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORINGrMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DIST RIBUTIONMAVAILABI LITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribu!'-on unlimited.

13. ABSTRACT (Maximum 200 words)

Digital Equipment Corporation, DEC Ada for OpenVMS VAX Systems, Version 3.0-7, VAXs*tz:,ion 4000 Model 60 (under
VMS Version 5.5) (host & target), ACVC 1.11

93-11590

14 SUBJECT TERMS 15, NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16'PICE CODE

17. SECURITY CLASSIFICATION 18. SECURI'Y CLASSIFICATION 19- SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280 55u Standard Form 298, (Rev. 2-89)
Prescribed by A" I Std. 239-128

DECLAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFCANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AVF Control Number: NIST93DEC505_21.11
DATE COMPLETED

BEFORE ON-SITE: 93-02-09
AFTER ON-SITE: 93-03-22
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 930319S1.11316
Digital Equipment Corporation

DEC Ada for OpenVMS VAX Systems, Version 3.0-7
VAXstation 4000 Model 60 =>

VAXstation 4000 Model 60

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

AC~1ebjufi or

NTIS CbRA&I
O:)TIC TA6

Unan nao inced C)]
JuSltficall+O•

01stribution t

Availability Codes

i Avail and I or
D Is Scecoi

AVF Control Number: NIST93DEC505_2_1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on March 19, 1993.

Compiler Name and Version: DEC Ada for OpenVMS VAX Systems,
Version 3.0-7

Host Computer System: VAXstation 4000 Model 60 under VMS
Version 5.5

Target Computer System: VAXstation 4000 Model 60 under VMS
Version 5.5

See section 3.1 for any additional information about the testing
environment.

q3~ 0o'3 q S 1, 1 S 6
Asa'result of this validation effort, Validation Certificate

~-IFcA•.W 1 E is awarded to Digital Equipment Corporation.
This certificate expires 2 years after ANSI/MIL-STD-1815B is
approved by ANSI.

This report has been reviewed and is approved.

A a lidati6o Flci iA A a Validation ,racility
Dr. David K. J fer1o Mr. L. Arnold J6ihnson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg MD 20899

Ada Validation Organization Ada Joint Program office
Directior, \Co pter & Software Dr. John Solomond

Engineerin Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: Digital Equipment Corporation

Certificate Awardee: Digital Equipment Corporation

Ada Validation Facility: National Institute of Standards and
Technology

Compvter Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DEC Ada for OpenVMS VAX Systems,
Version 3.0-7

Host Computer System: VAXstation 4000 Model 60 under VMS
Version 5.5

Target Computer System: VAXstation 4000 Model 60 under VMS
Version 5.5

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

1 -2. 7.Cc 3/
Customer Signature Date
Company Digital Equipment Corporation
Title: Project Manager

Certificate Awardee Signature Date

e) Non-Processed Floating-Point
Precision Tests 0

f) Total Number of Inapplicable Tests 79 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b-f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded onto VAX 6000 Model 350
and transferred to the host/target computer by Ethernet.

After the test files were loaded onto the host/targeL computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system, as appropriate. The results were captured on the
host/target computer system. The test results were transferred
from the host/target computer to the VAX 6000 Model 350 where a
magnetic was written capturing the test results.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

ADA/COPYSOURCE/UODEBUG/NODIAG/ERRORLIMIT=1000/LIST/NOSHOW

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

TABLE OF CONTENTS

CHAPTER 1 .. I-i
INTRODUCTION .. I-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-i
1.2 REFERENCES i-i
1. 3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES.............................2-1
2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A ... A-1
MACRO PARAMETERS .. A-1

APPENDIX B ... B-1
COMPILATION SYSTEM OPTIONS B-i
LINKER OPTIONS .. B-2

APPENDIX C ... C-1
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reade, is referred to [Pro90]. A detailed description
of the ACVC may be found in tne current ACVC User's Cuide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming LanguaQe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-i

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and
target computer system to allow
transformation of Ada programs into
executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability user's guiQe and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass
Ada Implementation an ACVC an Ada version.

1-3

Compu'Ler System A functional unit, consisting of one or
more computers and associated software,
that uses common storage for all or part
of a program and also for all or part of
the data necessary for the execution of
the program; executes user- written or
user-designated programs; performs
user-designated data manipulation,
including arithmetic operations and logic
operations; and that can execute programs
that modify themselves during execution. A
computer system may be a stand-alone unit
or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process or
service of all requirements specified.

Customer An individual or corporate entity who
enters into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer
Conformance assuring that conformity is realized or

attainable on the Ada implementation for
which validation status is realized.

Host Computer A computer system where Ada source
System programs are transformed into executable

form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Ma nu a 1 , pu . 1 i s h e d a s
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987.
Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such
as resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are
predominantly software, but partial or
complete hardware implumentations are
possible.

1-4

Target Computer A computer system where the executable
System form of Ada programs are executed.
Validated Ada The coripiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF

testing or by registration [Pro90].

Validation The process of checking the conformity of
an Ada compiler to the Ada programming
language and of issuing a certificate for
this implementation.

Withdrawn Test A tept found to be incorrect and not used
in conformity testing. A test may be
incorrect because it has an invalid test
objective, fails to meet its test
objective, or contains erroneous or
illegal use of the Ada programming
language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIB02B BDIB06A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005L
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C24113W..Y (3 tests) use a line length in the input file which
exceeds 255 characters.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

2-1

C4553i... .P and C45532M..P (8 tests) check fixed-puint operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

B91001H checks that an address clause may not precede an entry
declaration; this implementation does not support address clauses
for entries. (See section 2.3.)

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not'-support such size.s--r

CD2BI5B checks that STORAGE ERROR is raised when the storage size
specified for a collection is too small to hold a single value of
the designated type; this implementation allocates more space than
was specified by the length clause, as allowed by AI-00558.......

BD8001A, BD8003A, BD8004A..B (2 te-ts), and AD8011A use machine
code insertions; this implement ation provides no package
MACHINECODE.

The 18 tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for The given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
--

CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAL0IO
CE21022 RESET OUTFILE SEQUENTIAL0IO

2-2

CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUTFILE DIRECT 10
CE3102F RESET Any Mode TEXT O1
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

The tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL_10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE IN FILE TEXT I0

The following 12 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file and one or more are open for writing; USEERROR
is raised when this association is attempted.

CE2107B CE2107E CE2107G CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USE ERROR is raised because temporary files have no name.

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the czopleticn of those tests; for this implementation, temporary
files have no name.

CE2111C checks that a supplied mode parameter can be RESET from
IN FILE to OUT FILE (An amplification in accessing privileges while
the external file is being accessed). The proper exception is
raised.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

2-3

CE2401H, EE2401D, and EE2401G use instantiations of DIRECT _O with
unconstrained array and record types; this implementation raises
USEERROR on the attempt to create a file of such types.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 1 test.

B91001H was graded inapplicable by Evaluation Modification as
directed by the AVO. This test expects an error to be cited for an
entry declaration that follows an address clause for a preceding
entry; but this implementation does not support address clauses for
entries (rather, it provides a package that allows a task to wait
for the delivery of one or more signals), and so rejects the
address clause.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical and sales information about this Ada implementation,
contact:

Attn: Maryanne Cacciola
Ada Product Manager

Digital Equipment Corporation
110 Spit Brook Road (ZKO2-1/M1I)

Nashua, NH 03062
(603) 881-1028

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3996

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 79
d) Non-Processed I/O Tests 0

3-1

e) Non-Processed Floating-Point
Precision Tests 0

f) Total Number of Inapplicable Tests 79 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded onto VAX 6000 Model 350
and tranfered to the host/target computer by Ethernet.

After the test files were loaded onto the host/target computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system, as appropriate. The results were captured on the
host/target computer system. The test results were transferred
from the host/target computer to the VAX 6000 Model 350 where a
magnetic was written capturing the test results.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

ADA/COPYSOURCE/NODEBUG/NODIAG/ERRORLIMIT=1000/LIST/NOSHOW

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada itriEng aggregates, where 'IV" represents the maximum input-line
length.

Macro Parameter Macro Value
--

$MAX-IN-LEN 255-- Value of V

$BIG-ID1 (I..V-1 => W, V =>. ,J,)

$BIG-ID2 (1..V-1 => W, V => "21)

$BIG-ID3 (I..V/2 => W) & 131 & (l..V-1-V/2 => W)

$BIG-ID4 (l..V/2 => W) & 14" & (l..V-1-V/2 => W)

$BIG-INT-LIT (l..V-3 :=> 101) & 1129811

$BIG-REAL-LIT (l..V-5 => 101) & 11690.011

$BIG-STRING1 (1..V/2 => W) & 01111

$BIG-STRING2 (I..V-1-V/2 => W) & "j,

$BLANKS (l..V-20 =>

$MAX-LEN-INT-BASED-LITERAL
112:11 & (l..V-5 => 101) & 1111:11

$MAX-LEN-REAL-BASED-LITERAL
1116:11 & G..V-7 => 10") & IIF.E:II

$MAX-STRING-LITERAL & (i..V-2 => W) &

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

SCOUNTLAST 2_147_483_647

$DEFAULTMENSIZE 2**31-1

SDEFAULTSTORUNIT 8

SDEFAULTSYSNAME VAXVMS

SDELTA-DOC 2. O** (-31)

$ENTRYADDRESS FCNDECL.ENTRYADDRESS

SENTRYADDRESS1 FCNDECL.ENTRYADDRESS1

SENTRYADDRESS2 FCNDECL.ENTRYADDRESS2

SFIELD-LAST 2 147 483 647

SFILETERMINATOR 11

$FIXEDNAME NOSUCHFIXEDTYPE

SFLOATNAME LONGLONGFLOAT

$FORI4_STRING "I Satisfies condition 1 only"

SFORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"I

$GREATER THANDURATION 75 000.0

SGREATERTHANDURATIONBASELAST 131_073.0

SGREATERTHANFLOATBASELAST 1.80141E+38

$GREATERTHAN FLOATSAFELARGE 1.7014117E+38

$GREATERTHANSHORT FLOATSAFELARGE 1.0E308

SHIGH-PRIORITY 15

A-2

$ILLEGAL EXTERNAL FILE NAME1 BADICHAR-@. -!

SILLEGALEXTERNALFILENAME2 x"l&(1. .256->'c')&"y

$INAPPROPRIATELINELENGTH 65_536

$INAPPROPRIATEPAGELENGTH -1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ('IA28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006E1 .TST")

$INTEGERFIRST -2147483648

SINTEGER-LAST 2147483647

SINTEGERLASTPLUS_1 2_147_483_648

$INTERFACELANGUAGE C

SLESSTHANDURATION -75_000.0

$LESS THAN DURATION BASE FIRST -131 073.0

$LINETERMINATORII

$LOWPRIORITY 0

$MACHINE CODE STATEMENT NULL;

$MACHINE.CODETYPE NOSUCHTYPE

$MANTISSADOC 31

SMAXDIGITS 33

$MAXINT 2147483647

$MAXINTPLUS_1 2_147_483_648

SMININT- -2147483648

$NAME SHORTSHORTINTEGER

$NAME-LIST VAX VMS,VAXELN,OPENVMS AXP,RIS
C ULTRIX,MILSTD_1750A,MC68000
RMC68020 ,MC689040-,CPU32

$NAME SPECIFICATIONi ACVCLFNDEVICE: (ACVC LFN AREA
]X2120A. ;1

A- 3

$NAME SPECIFICATION2 ACVCLFNDEVICE: [ACVCLFNAREA
1X2120B. ;1

$NAME SPECIFICATION3 ACVCLFNDEVICE: [ACVC LFN AREA

)X3119A. ;1

$NEGBASEDINT 16#FFFFFFFEI

$NEWMENSIZE 1_048_576

$NEWSTORUNIT 8

$NEWSYSNAME VAXELN

$PAGETERMINATORII

$RECORDDEFINITION RECORD NULL; END RECORD;

$RECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASK-STORAGESIZE 0

$TICK 10.0**(-2)

$VARIABLEADDRESS FCNDECL.VARIABLEADDRESS

$VARIABLEADDRESS1 FCNDECL.VARIABLEAL'DRESS1

SVARIABLEADDRESS2 FCNDECL.VARIABLE ADDRESS2

SYOUR PRAGMA EXPORTOBJECT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

Compiler options for DEC Ada hosted on OpenVMS VAX and OpenVMS AXP

systems

The default compiler options were used except as follows:

1. /LIST was used to produce compiler listings.

2. /NODEBUG was used to inhibit the generation of debugging
information in the object file since such information is not
relevant to validation.

3. /ERRORLIMIT-1000 was used since more than 30 errors are
diagnosed for some validation tests.

4. /NOSHOW was used to exclude portability information from the
compiler listings

The DEC Ada compiler options and defaults for OpenVMS VAX and OpenVMS

AXP systems are summarized as follows:

o /ANALYSISDATA or /NOANALYSISDATA

Controls whether a data analysis file containing source code
cross-referencing and static analysis information is created.
The default is /NOANALYSISDATA.

o /CHECK or /NOCHECK

Controls whether run-time error checking is suppressed. (Use
of /NOCHECK is equivalent to giving all possible suppress
pragmas in the source program.) The default is /CHECK (error
checking is not suppressed except by pragma).

o /COPYSOURCE or /NOCOPYSOURCE

Controls whether the source being compiled is copied into the
compilation library for a successful compilation. The
default is /COPYSOURCE.

o /DEBUG or /NODEBUG or /DEBUG-option

where option is one of

ALL, SYMBOLS or NOSYMBOLS, TRACEBACK or NOTRACEBACK, or NONE

Controls the inclusion of debugging symbol table information
in the compiled object module. The default is /DEBUG or,
equivalently, /DEBUG-ALL.

o /DESIGN or /NODESIGN

Controls whether the input file is processed as a design or
compiled as an Ada source. The default is /NODESIGN, in

which case the file is compiled.

o /DIAGNOSTICS /DIAGNOSTICS-file-name, or /NODIAGNOSTICS

Controls whether a special diagnostics file is produced for
use with the VAX Language-Sensitive Editor (a separate
DIGITAL product). The default is /NODIAGNOSTICS.

o /ERRORLIMIT-n

Controls the number of error level diagnostics that are
allowed within a single compilation unit before the
compilation is aborted. The default is /ERRORLIMIT-30.

o /LIBRARY-directory-name

Specifies the name of the Ada compilation library to be used
as the context for the compilation. The default is the
library last established by the ACS SET LIBRARY command.

o /LIST, /LIST-file-name, or /NOLIST

Controls whether a listing file is produced. /LIST without a
file-name uses a default file-name of the form
sourcename.LIS, where sourcename is the name of the source
file being compiled. The default is /NOLIST (for both
interactive and batch mode).

o /LOAD or /NOLOAD

Controls whether the current program library is updated with
successfully processed units contained in the source file.
The default is /LOAD,

o /MACHINECODE or /NOMACHINECODE

Controls whether generated machine code (approximating
assembler notation) is included in the listing file, if
produced. The default is /NOMACHINECODE.

o /NOTESOURCE or /NONOTESOURCE

Controls whether the file specification of the current source
file is noted in the compilation library. (This copy is used
for certain automated (re)compilation features.) The default
is /NOTESOURCF.

o /OPTIMIZE or /NOOPTIMIZE

Controls whether full or minimal optimization is applied in
producing the compiled code. The default is /OPTIMIZE.
(/NOOPTIMIZE is primarily of use in combination with /DEBUG.)

o /SYNTAX ONLY or /NOSYNTAXONLY

Controls whether a syntax check only is performed. The
default is /NOSYNTAXONLY, which indicates that full
processing is done.

o /SHOW-PORTABILITY or /NOSHOW

Controls whether a portability summary is included in the
listing. The default is /SHOW-PORTABILITY.

o /WARNINGS-(category:destiration,...)

Specifies which categories of informational and warning level
messages are displayed for which destinations. The
categories can be WARNINGS, WEAK WARNINGS, SUPPLEMENTAL,
COMPILATION NOTES and STATUS. The destinations can be ALL,
NONE or combinations of TERMINAL, LISTING or DIAGNOSTICS.
The default is

/WARNINGS-(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE, .TAT:LIST)

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

Linker options for DEC Ada hosted on OpenVMS VAX and OpenVMS AXP
systems

DEC Ada programs are linked using the "ACS LINK" command. The default
ACS LINK options were used except as follows:

1. /COMMAND was used. ACS LINK checks that all units in a
program are current and writes a command file to create the
executable image using the VMS linker. By default, this
command file is invoked in a subprocess and the image is
linked. If /COMMAND is specified, the command file is
written but not invoked. For validation, /COMMAND was used,
and the generated command file was invoked after the ACS LINK
command to do the actual link. This approach saves the
overhead of spawning a subprocess for each executable
validation test.

2. /NOTRACE was specified to exclude traceback symbol
information from the image file since this information is
only relevant when debugging programs-.

3. /EXECUTABLE was used to specify the name of the executable
image file.

4. For VAXELN targets only, /SYSTEMNAME-VAXELN was used-.--------

The opticns and defaults for linking Ada programs are summarized

below.

o /COMMAND-file-name

Write a command file create the executable image using the
VMS linker but do not invoke this commmand file.

o /DEBUG or /NODEBUG

Controls whether a debugger symbol table is included in the
executable image. The default is /NODEBUG.

o /EXECUTABLE, /EXECUTABLE-file-name, or /NOEXECUTABLE

Controls whether the linker creates an executable image file
and optionally provides the name of the file. The default is
/EXECUTABLE.

o /LOG or /NOLOG

Controls wheter a list of all units in the image is
displayed. The default is /NOLOG.

o /MAIN or /NOMAIN

Specifies whether the main Ada unit is the main program. The

default is /MAIN which indicates that the main Ada unit is

the main program.

o /MAP, /MAP-file-name, or /NOMAP

Controls whether the linker creates an image map listing
file. The default is /NOMAP. If /MAP is specified, some
other options can be specified to control the level of detail
in the map listing file.

o /OUTPUT-file-name

If specified, requests that output be written to a file other
than to the standard output device.

o /SYSLIB or /NOSYSLIB

Controls whether the linker automatically searches the
default system library for unresolved references. By
default, it is automatically searched.

o /SYSSHR or /NOSYSSMR

Controls whether the linker automatically searches the
default system shareable image library for unresolved
references. By default, it is automatically searched.

o /SYSTEMNAME-System

Directs the program library manager to produce an image for
execution on a particular operating system. On VAX systems,
the possible values are VAX VMS or VAXELN. On AXP systems,
the only value supported is OpenVMSAXP.

If /SYSTEM NAME is not specified, the setting of the pragma
SYSTEMNAME determines the target environment.

o /TRACEBACK or /NOTRACEBACK

Controls whether subprogram traceback information is included
in the executable image for run-time error reporting. The
default is /TRACEBACK.

o /USERLIBRARY-(table,...) or /NOUSERLIBRARY

Controls whether the linker searches any user-defined default
libraries for unresolved external symbols. By default, the
linker searches process, group, and system logical name
tables for user-defined library definitions.

Additional options are provided that control whether the link is done
while the user waits or is done in a background mode. Using one
option or the other has no effect on the executable image that is
generated.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648..2147483647;
type LONG INTEGER is range -2147483648..2147483647;
type SHORT INTEGER is range -32768..32768;
type SHORTSHORTINTEGER is range -128..127;

type FLOAT is digits 6 range -l.70141E+38..1.70141E+38;
type LONGFLOAT is digits 15 range

-8.988465674312E+307..8.988465674312E+307;
type LONGLONG FLOAT is digits 33 range

-5.9486574767861588254287966331400E+4931..
5.9486574767861588254287966331400E+4931;

type DURATION is delta 1.OE-4 range -131072.0..131071.9999;

end STANDARD;

C-1

B
Predefined Language Pragmas

This annex defines the prigmas LIST, PAGE, and OPTIMIZE, and summarizes
the definitions giver elsewhere of the remaining language-defined pragmas.

The DEC Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma Meaning

AST-ENTRY On VMS systems only

Takes the simple name of a single
entry as the single argument; at most
one AST ENTRY pragma is allowed
for any given entry. This pragma
must be used in combination with the
ASTENTRY attribute, and is only
allowed after the entry declaration and
in the same task type specification or
single task as the entry to which it
applies. This pragma specifies that the
given entry may be used to handle a
VMS asynchronous system trap (AST)
resulting from a VMS system service
call. The pragma does not affect
normal use of the entry (see 9.12a).

COMMONOBJECT Takes an internal name denoting
an oLject, and optionally takes an
external designator (the name of a
linker storage area) and a size as
arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a variable
declared by an earlier declarative
item of the same declarative part or

B-1

package specification. The variable
must have a size that is known at
compile time, and it must not require
implicit initialization. This pragma is
not allowed for objects declared with
a renaming declaration, This pragma
enables the shared use of objects that
are stored in overlaid storage areas
(see 13.9a.2.3).

COMPONENTALIGNMENT Takes an alignment choice and
optionally the simple name of an array
or record type as arguments. When no
simple name is specified, the pragma
must occur within a declarative part or
package specification, and the effect of
the pragma extends to types declared
from the place of the pragma to the
end of the innermost declarative part
or package specification in which
the pragma was declared. When a
simple name is specified, the pragma
and the type declaration must both
occur immediately within the same
declarative part, package specification,
or task specification; the declaration
must occur before the pragma. The
position of the pragma and the
restrictions on the named type are
governed by the same rules as those for
a representation clause. This pragma
specifies the kind of alignment used for
the components of the array or record
types to which it applies (see 13.1a).

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immediately
within the declarative part or package
specification that contains the
declaration of the access type; the
declaration must occur before the
pragma. This pragma is not allowed for
a derived type. This pragma specifies

B-2

that automatic storage reclamation
must not be performed for objects
designated by values of the access type,
except upon leaving the inner-most
block statement, subprogram body, or
task body that encloses the access type
declaration, or after leaving the main
program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed
immediately after the context clause
of a compilation unit (before the
subsequent library unit or secondary
unit). Each argument must be
the simple name of a library unit
mentioned by the context clause.
This pragma specifies that the
corresponding library unit body
must be elaborated before the
given compilation unit. If the given
compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

EXPORT-EXCEPTION On VMS systems only.

Takes an internial name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA
or VMS), and a code (a static integer
expression that is interpreted as a
condition code) as arguments. A code
valuc must be specified when the
form is VMS (the default if the form
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative
item of the same declarative part
or package specification; it is not

B-3

allowed for an exception declared
with a renaming declaration or for an
exception declared in a generic unit.
This pragma permits an Ada exception
to be handled by programs written in
another programming languagp (see
13.9a.3.2).

EXPORT_FUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before
any subsequent compilation unit.
This pragma is not allowed for a
function declared with a renaming
declaration, and it is not allowed for a
generic function (it may be given for
a generic instantiation). This pragma
permits an Ada function to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORTOBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a linker global
symbol) and size option (a linker
absolute global symbol that will be
defined in the object module-useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and must
apply to a constant or a variable
declared by an earlier declarative

8-4

item of the same declarative part or
package specification; the declaration
must occur at the outermost level of a
library package specification or body.
The object to be exported must have
a size that is known at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit.
This pragma permits an Ada object to
be referred to by a routine written in
another programming language (see
13.9a.2.2).

EXPORTPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation

unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORTVALUEDPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. This pragma is only

B-5

allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma is
not allowed for a procedure declared
with a renaming declaration and is not
allowed for a generic procedure (it may
be given for a generic instantiation).
This pragma permits an Ada procedure
to behave as a function that both
returns a value and causes side effects
on its parameters when it is called
from a routine written in another
programming language (see 13.9a.1.3).

FLOATREPRESENTATION On VMS systems only.

On VMS VAX systems, takes VAX_
FLOAT as the single argument. On
VMS AXP systems, takes either
VAXFLOAT or IEEE-FLOAT as
the single argument; the default is
VAXFLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit (if
any) of the compilation. It specifies
the choice of representation to be
used for the predefined floating point
types in the packages SYSTEM and
STANDARD. (see 3.5.7a).

IDENT Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pragma IDENT (string literal);

8-6

This pragma is allowed only in
the outermost declarative part or
declarative items of a compilation unit.
The given string is used to identify
the object module associated with the
compilation unit in which the pragma
IDENT occurs.

IMPORTEXCEPTION On VMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA

or VMS), and a code (a static integer
expression that is interpreted as a
condition code) as arguments. A code
value is allowed only when the form
is VMS (the default if the form is
not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, a
VMS condition) to be handled by an
Ada program (see 13.9a.3.1).

IMPORTFUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
On VMS systems, a first optional
parameter is also available as an
argument. The pragma INTERFACE
must be used with this pragma
(see 13.9). This pragma is only allowed
at the place of a declarative item, and
must apply to a function declared

B-7

by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before any
subsequent compilation unit. This
pragma is allowed for a function
declared with a renaming declaration;
it is not allowed for a generic function
or a generic Function instantiation.
This pragma permits a non-Ada
routine to be used as an Ada function
(see 13.9a.1.1).

IMPORT-OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker global symbol) and size (a linker
absolute global symbol that will be
defined in the object module-useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a variable declared
by an earlier declarative item of the
same declarative part or package
specification. The variable must have
a size that is known at compile time,
and it cannot have an initial value.
This pragma is not allowed for objects
declared with a renaming declaration.
This pragma permits storage declared
in a non-Ada routine to be referred to
by an Ada program (see 13.9a.2. 1).

IMPORTPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. On VMS systems,
a first optional parameter is also
available as an argument. The prag-ma

B-8

INTERFACE must be used with this
pragma (see 13.9). This pragma is only

allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration;
it is not allowed for a generic procedure
or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure
(see 13.9a.1.1).

IMPORTVALUEDPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. On VMS systems,
a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma
is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This

B-9

pragma permits a non-Ada routine that
returns a value and causes side effects
on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

INLINE Takes one or more names as
arguments; each name is either the
name of a subprogram or the name of
a generic subprogram. This pragma
is only allowed at the place of a
declarative item in a declarative part
or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. This
pragma specifies that the subprogram
bodies should be expanded inline at
each call whenever possible; in the case
of a generic subprogram, the pragma
applies to calls of its Instantiations
(see 6.3.2).

INLINEGENERIC Takes one or more names as
arguments; tach name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package

specification, or after a library unit
;n a compilation, but before any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,
or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by
an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that inline expansion of the generic
body is desired for each instantiation
of the named generic declarations or
of the particular named instances;
the pragma does not apply to calls of

B-i0

instances of generic subprograms
(see 12.1a).

5 INTERFACE Takes a language name and a
subprogram name as arguments. This
pragma is allowed :,t the place of a
declarative item, a id must apply in
this case to a sub, rogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in this case
the pragma must appear after the
subprogram declaration, and before
any subsequent compilation unit. This
pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object module will be supplied for the
corresponding subprogram (see 13.9).

In DEC Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORT-FUNCTION,
IMPORTPROCEDURE, and
IMPORTVALUEDPROCEDURE
when any of those pragmas are used
(see 13.9a.1).

INTERFACENAME Takes an internal name and an
external name as arguments. The
internal name may be an Ada simple
name that denotes a subprogram or
an object. If the declared entity is a
function, the internal name may be a
string literal that denotes an operator
symbol. The external name may be any
string literal; the literal is used as a
linker global symbol that is associated
with the external subprogram or
object. This pragma is only allowed
at the place of a declarative item,
and must apply to an entity declared
by an earlier declarative item of the

B-11

same declarative part or package
specification.

If this pragma applies to a subprogram,

then the pragma INTERFACE must
also apply (see 13.9). If a subprogram
has been declared as a compilation
unit, the pragma is only allowed after
the subprogram declaration and before
any subsequent compilation unit. This
pragma is allowed for subprograms
declared with a renaming declaration.
This pragma is not allowed for a
generic subprogram or a generic
subprogram instantiation.

If this pragma applies to an object.
then the size of the object must be
known at compile time. This pragrna is
not allowed for an the object declared
with a renaming declaration.

This pragma associates an external
symbol with the internal Ada name for
a subprogram or object (see 13.9b).

LIST Takes one of the identifiers ON or
OFF as the single argument. This
pragma is allowed anywhere a pragma
is allowed. It specifies that listing of
the compilation is to be continued or
suspended until a LIST pragma with
the opposite arg,• ment is given within
the same compilation. The pragma
itself is always listed if the compiler is
producing a listing.

LONGFLOAT On VMS systems only. Also, the
value of the pragma FLOAT_
REPRESENTATION must be VAX
FLOAT.

B-12

Takes either DFLOAT or G_FLOAT
as the single argument. The default
is G_FLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation. It specifies
the choice of representation to be used
for the predefined type LONGFLOAT
in the package STANDARD, and for
floating point type declarations with
digits specified in the range 7 .. 15
(see 3.5.7b).

MAINSTORAGE On VMS VAX systems only.

Takes one or two nonnegative static
simple expressions of some integer type
as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most
one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created
for a main task (the task associated
with a main program), and determines
the number of storage units (bytes)
to be allocated for the stack working
storage area or guard pages or both.
The value specified for either or both
the working storage area and guard
pages is rounded up to an integral
number of pages. A value of zero for
the working storage area results in the
use of a default size: a value of zero for
the guard pages results in no guard
storage. A negative value for either
working storage or guard pages causes
the pragma to be ignored (see 13.2b).

7 MEMORYSIZE Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the

B-1 3

first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number MEMORYSIZE
(see 13.7).

8 OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primary optimization criterion.

In DEC Ada, this pragma is only
allowed immediately within a
declarative part of a body declaration.

9 PACK Takes the simple name of a record or
array type as the single argument. The
allowed positions for this pragma, and
the restrictions on the named type,
are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when
selecting the representation of the
given type (see 13.1).

10 PAGE This pragma has no argument, and is
allowed anywhere a pragma is allowed.
It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

PRIORITY Takes a static expression of the
predefined integer subtype PRIORITY
as the single argument. This pragma is.
only allowed within the specification of
a task unit or immediately within the
outermost declarative part of a main
program. It specifies the priority of the

B-14

task (or tasks of the task type) or the

priority of the main program (see 9.8).

PSECTOBJECT On VMS systems only.

Has the same syntax and the same
effect as the pragma COMMON_
OBJECT (see 13.9a.2.3).

SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type
is a scalar or access type; the variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update of
the variable is a synchronization point
for that variable. An implementation
must restrict the objects for which
this pragma is allowed to objects
for which each of direct reading and
direct updating is implemented as an
indivisible operation (see 9.11).

SHAREGENERIC On VMS systems only.

Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allow-3 at the place of a declarative
item in a declarative part or package
specification, or after a library unit in a
compilation, but before any subsequent
compilation unit. Each argument
either must be the simple name of a
generic subprogram or package, or it
must be a (nongeneric) subprogram
or package that is an instance of a
generic subprogram or package. If the
argument is an instance of a generic

B-1 5

subprogram or package, then it must
be declared by an earlier declarative
item of the same declarative part or
package specification. This pragma
specifies that generic code sharing is
desired for each instantiation of the
named generic declarations or of the
particular named instances (see 12.1b).

13 STORAGEUNIT Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number STORAGE UNIT
(see 13.7).

In DEC Ada, the only argument
allowed for this pragma is 8 (bits).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also the
name of either an object, a type or
subtype, a subprogram, a task unit, or
a generic unit. This pragma is only
allowed either immediately within a
declarative part or immediately within
a package specification. In the latter
case, the only allowed form is with a
name that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to omit
the given check extends from the
place of the pragma to the end of the
declarative region associated with the
innermost enclosing block statement or
program unit. For a pragma given in a
package specification, the permission
extends to the end of the scope of the
named entity.

B-16

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type of a
named type or subtype; for calls of a
named subprogram; for activations of
tasks of the named task type; or for
instantiations of the given generic unit
(see 11.7).

SUPPRESSALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that
all run-time checks in the unit are
suppressed (see 11.7).

15 SYSTEMNAME Takes an enumcration literal as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation. The effect of
this pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEMNAME. This pragma is
only allowed if the specified identifier
corresponds to one of the literals of the
type NAME declared in the package
SYSTEM (see 13.7).

TASKSTORAGE Takes the simple name of a task
type and a static expression of some

integer type as arguments. This
pragma is allowed anywhere that a
task storage specification is allowed;
that is, the declaration of the task
type to which the pragma applies and
the pragma must both occur (in this
order) immediately within the same
declarative part, package specification,
or task specification. The effect of
this pragma is to use the value of the
expression as the number of storage

B- 7

units (bytes) to be allocated as guard
storage. The value is rounded up to
an appropriate boundary. A negative
value causes the pragma to be ignored.
A zero value has system-specific
results: on VMS VAX systems, a value
of zero results in no guard storage;
on VMS AXP and ULTRIX systems,
a value of zero results in a minimal
guard area (see 13.2a).

TIMESLICE On VMS systems only.

Takes a static expression of the
predefined fixed point type DURATION
(in the package STANDARD) as the
single argument. This pragma is only
allowed in the outermost declarative
part of a library subprogram, and at
most one such pragma is allowed in a
library subprogram. It has an effect
only when the subprogram to which
it applies is used as a main program.
This pragma causes the task scheduler
to turn time slicing on or off and, on
some systems, to limit the amount of
continuous execution time given to a
task
(see 9.8a; see also the appropriate
run-time reference manual for
implementation differences across
systems).

TITLE Takes a title or a subtitle string, or
both, as arguments. The pragma
TITLE has the following form:

pragma TITLE (titling-option

[, titling-option]);

titling-option :=
[TITLE =>] stringliteral

I [SUBTITLE =>] stringliteral

B-18

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title and/or
subtitle portions of a compilation
listing.

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. The pragma
must appear before any occurrence of
the name of the variable other than
in an address clause or in one of the
DEC Ada pragmas IMPORTOBJECT,
EXPORTOBJECT, COMMON-
OBJECT, or PSECTOBJECT. The
variable cannot be declared by a
renaming declaration. The pragma
VOLATILE specifies that the variable
may be modified asynchronously. This
pragma instructs the compiler to obtain
the value of a variable from memory
each time it is used (see 9.11).

B-1 9

F
Implementation-Dependent Characteristics

Note

This appendix is not part of the standard definition of the Ada
programming language.

This appendix summarizes the implementation-dependent characteristics of

DEC Ada by presenting the following:

"* Lists of the DEC Ada pragmas and attributes.

"* The specifications of the package SYSTEM.

"* The restrictions on representation clauses and unchecked type conversions.

"* The conventions for names denoting implementation-dependent
components in record representation clauses.

"* The interpretation of expressions in address clauses.

"* The implementation-dependent characteristics of the input-output
packages.

"* Other implementation-dependent characteristics.

See the relevant run-time reference manual for additional implementation-
specific details.

F.1 Implementation-Dependent Pragmas
DEC Ada provides the following pragmas, which are defined elsewhere in the
text. In addition, DEC Ada restricts the predefined language pragmas INLINE
and INTERFACE. See Annex B for a descriptive pragma summary.

DEC Ada systems

Attribute on which it applies Section

ASTENTRY OpenVMS 9.12a

BIT All 13.7.2

MACHINESIZE All 13.7.2

NULLPARAMETER All 13.9a.1.2

TYPECLASS All 13.7a.2

F.3 Specification of the Package System
DEC Ada provides a system-specific version of the package SYSTEM for
each system on which it is supported. The individual package SYSTEM
specifications appear in the following sections.

F.3.1 The Package System on OpenVMS VAX Systems
package SYSTEM is

type NAME is
-- DEC Ada implementations

(VAX VMS, VAXELN, OpenVMS AXP, RISCULTRIX,
-- XD Ada implementations
MIL STD 1750A, MC68000, MC68020, MC68040, CPU32);

for NAME use (1, 2, 7, 8, 101, 102, 103, 104, 105);

SYSTEM NAME constant NAME := VAX-VMS;
STORAGE UNIT constant 8;
MEMORY SIZE constant 2**31-1;
MAX INT constant 2**31-1;
MIN-INT constant -(2"'31);
MAX DIGITS constant 33;
MAX MANTISSA constant 31;
FINE DELTA constant 2.0"*(-31);
TICK_ constant 10.0"*(-2);

subtype PRIORITY is INTEGER range 0 .. 15;

type INTEGER 8 is range -128 .. 127;
for INTEGER 8'SIZE use 8;

type INTEGER 16 is range -32_768 .. 32_767;
for INTEGER 16'SIZE use 16;

type INTEGER 32 is range -2_147_483_648 .. 2_147_483_647;
for INTEGER 32'SIZE use 32;-

type LARGEST-INTEGER is range MIN_INT .. MAXINT;

-- Address type

type ADDRESS is private;

ADDRESS ZERO constant ADDRESS;
NO ADDR- constant ADDRESS;
NULLADDRESS constant ADDRESS;

-- Note that because A7DRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined

-- function "=" (LEFT, RIGHT ADDRESS) return BOOLEAN;
-- function " (=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

function "< ((LEFT, RIGHT ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

generic
type TARGET is private;

function FETCHFROMADDRESS (A ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A ADDRESS; T TARGET);

-- DEC Ada floating point type declarations for the VAX
-- floating point data types

type F FLOAT is (digits 6);
type DFLOAT is (digits 91;
type G-FLOAT is (digits 15);
type H FLOAT is {digits 331;

type TYPE-CLASS is (TYPECLASS ENUMERATION,
TYPE CLASS INTEGER,
TYPE-CLASS FIXED POINT,
TYPECLASSFLOATINGPOINT,
TYPE CLASS ARRAY,
TYPE CLASS RECORD,
TYPE CLASS ACCESS,
TYPE CLASS TASK,
TYPECLASSADDRESS);

-- AST handler type

type AST-HANDLER is limited private;

NOASTHANDLER : constant AST-HANDLER;

-- Non-Ada exception

NONADAERROR : exception;

-- Hardware-oriented ly'-es and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BITARRAY);

subtype BIT ARRAY_8 is BITARRAY (0 7);
subtype BIT ARRAY-16 is BITARRAY (0 15);
subtype BIT- ARRAY 32 is BITARRAY (0 31);
subtype BITARRAY_-64 is BITARRAY (0 63);

type UNSIGNED BYTE is range 0 .. 255;
for UNSIGNEDBYTE' SIZE use 8;

function "not" (LEFT UNSIGNEDBYTE) return UNSIGNED BYTE;
function "and" (LEFT, RIGHT UNSIGNED BYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "xor" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;

function TO UNSIGNED BYTE (X BIT ARRAY 8) return UNSIGNED BYTE;
function TO_BITARRAY_8 (X UNSIGNED_BYTE) return BITARRAY_8;

type UNSIGNEDBYTEARRAY is array (INTEGER range <>) of UNSIGNEDBYTE;

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNEDWORD' SIZE use 16;

function "not" (LEFT UNSIGNEDWORD) return UNSIGNED WORD;
function "and" (LEFT, RIGHT UNSIGNEDWORD) return UNSIGNED WORD;
function "or" (LEFT, RIGHT UNSIGNEDWORD) return UNSIGNED WORD;
function "xor" (LEFT, RIGHT UNSIGNEDWORD) return UNSIGNEDWORD;

function TO UNSIGNED WORD (X BIT ARRAY 16) return UNSIGNED WORD;
function TO-BITARRAY_16 (X UNSIGNED_WORD) return BITARRAY_16;

type UNSIGNEDWORDARRAY is array (INTEGER range <>) of UNSIGNEDWORD;

type UNSIGNED LONGWORD is range -2147_483_648 . 2_147_483_647;
for UNSIGNEDLONGWORD' SIZE use 32;

function "not" (LEFT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "and" (LEFT, RIGHT UNSIGNED_LONGWORD) return UNSIGNEDLONGWORD;
function "or" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "xor" (LEFT, RIGHT UNSIGNEDLONGWORD1 return UNSIGNEDLONGWORD;

function TO UNSIGNED LONGWORD (X : BIT ARRAY 32) return UNSIGNED LONGWORD;
function TOBITARRAY_32 (X : UNSIGNED-LONGWORD) return BIT-ARRAY_32;

type UNSIGNED LONGWORD ARRAY is
array (INTEGER range <>) of UNSIGNEDLONGWORD;

type UNSIGNED QUADWORD is
record

LO UNSIGNED LONGWORD;
Li UNSIGNEDLONGWORD;

end record;
for UNSIGNED QUADWORD'SIZE use 64;
for UNSIGNED QUADWORD use

record
at mod 8;

end record;

function "not" (LEFT UNSIGNEDQUADWORD) return UNSIGNED QUADWORD;
function "and" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNED QUADWORD;
function "or" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;
function "xor" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;

function TO JNSIG3NEDQUADWORD (X : BITARRAY 64) return UNSIGNEDQUADWORD,
function TOBITARRAY_64 (X : UNSIGNEDQU-L2WORD) return BITARRAY_64;

type UNSIGNED QUADWORD ARRAY is
array (INTEGER range <>) of UNSIGNED QUADWORD;

function TO ADDRESS (X INTEGER) return ADDRESS;
function TO-ADDRESS (X UNSIGNED LONGWORD) return ADDRESS;
function TOADDRESS (X (universal integer)) return ADDRESS;

function TO INTEGER (X ADDRESS) return INTEGER;
function TO_-UNSIGNEDLONGWORD (X ADDRESS) return UNSIGNEDLONGWORD;

function TOUNSIGNEDLONGWORD (X ASTHANDLER) return UNSIGNEDLONGWORD;

Conventional names for static subtypes of type UNSIGNEDLONGWORD

subtype UNSIGNED 1 is UNSIGIED LONGWORD range 0 2** 1-1;
subtype UNSIGNED-2 is UNSIGNED-LONGWORD range 0 2** 2-1;
subtype UNSIGNED -3 is UNSIGNED -LONGWORD range 0 2** 3-1;
subtype UNSIGNED -4 is UNSIGNED -LONGWORD range 0 2"* 4-1;
subtype UNSIGNED 5 is UNSIGNED LONGWORD range 0 2** 5-1;
subtype UNSIGNED 6 is UNSIGNED-LONGWORD range 0 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED -LONGWORD range 0 2** 7-1;
subtype UNSIGNED_8 is UNSIGNED -LONGWORD range 0 2"* 8-1;
subtype UNSIGNED 9 is UNSIGNED LONGWORD range 0 2** 9-1;
subtype UNSIGNED 10 is UNSIGNED-LONGWORD range 0 2"'10-1;
subtype UNSIGNED 11 is UNSIGNED -LONGWORD range 0 2"*11-1;
subtype UNSIGNED-12 is UNSIGNED -LONGWORD range 0 2"'12-1;
subtype UNSIGNED_13 is UNSIGNED LONGWORD range 0 2"*13-1;
subtype UNSIGNED-14 is UNSIGNED-LONGWORD range 0 2**14-1;
subtype UNSIGNED_15 is UNSIGNED LONGWORD range 0 2"'15-1;
subtype UNSIGNED_16 is UNSIGNED LONGWORD range 0 2**16-1;
subtype UNSIGNED_17 is UNSIGNED LONGWORD range 0 2"'17-1;
subtype UNSIGNED 18 is UNSIGNED LONGWORD range 0 2**18-1;
subtype UNSIGNED_19 is UNSIGNED LONGWORD range 0 2**19-1;
subtype UNSIGNED_20 is UNSIGNED LONGWORD range 0 2"'20-1;
subtype UNSIGNED_21 is UNSIGNED LONGWORD range 0 2"'21-1;
subtype UNSIGNED_22 is UNSIGNED LONGWORD range 0 21*22-1;
subtype UNSIGNED 23 is UNSIGNED LONGWORD range 0 2".23-1;
subtype UNSIGNED 24 is UNSIGNED -LONGWORD range 0 2"'24-1;
subtype UNSIGNED_25 is UNSIGNED -LONGWORD range 0 2"'25-1;
subtype UNSIGNED-26 is UNSIGNED -LONGWORD range 0 2**26-1;
subtype UNSIGNED 27 is UNSIGNED -LONGWORD range 0 2"'27-1;
subtype UNSIGNED 28 is UNSIGNED-LONGWORD range 0 2"'28-1;
subtype UNSIGNED 29 is UNSIGNED LONGWORD range 0 2"'29-1;
subtype UNSIGNED_30 is UNSIGNED LONGWORD range 0 2**30-1;
subtype UNSIGNED_31 is UNSIGNEDLONGWORD range 0 2**31-1;

Functions for obtaining global symbol values

function IMPORT VALUE (SYMBOL : STRING) return UNSIGNED LONGWORD;
function IMPORT-ADDRESS (SYMBOL : STRING) return PDDRESS;

VAX device and process register operations

function READ REGISTER (SOURCE UNSIGNEDBYTE) return UNSIGNED BYTE;
function READ-REGI3TER (SOURCE UNSIGN"D WORD) return UNSIGNED-WORD;
function READ REGISTER (SOURCE UNSIGNEDLONGWORD)

return UNS IGNED_LONGWORD;

procedure WRITEREGISTER(SOURCE UNSIGNED BYTE;
TARGET out UNSIGNED BYTE);

procedure WRITEREGISTER(SOURCE UNSIGNED WORZ;
TARGET out UNSIGNED WORD),

procedure WRITEREGISTER(SOURCE UNSIGNED LONGWORD;
TARGET out UNSIGNED LONGWORD);

function MFPR (REG NUMBER INTEGER) return UNSIGNEDLONGWORD;
procedure MTPR (REG-NUMBER INTEGER;

SOURCE UNSIGNEDLONGWORD);

L I , . ,

-- VAX interlocked-instruction procedures

procedure CLEARINTERLOCKED (BIT in out BOOLEAN;
---OLD VALUE out BOOLEAN) ;-....

procedure SET INTERLOCKED - (BIT- in out BOOLEAN;
OLD VALUE cut BOOLEAN);

type ALIGNEDWORD is
record

VALUE SHORTINTEGER;
end record;

for ALIGNED WORD use
record

at mod 2;
end record;

procedure ADD INTERLOCKED (ADDEND in SHORT INTEGER;

AUGEND in out ALIGNED WORD;
SIGN out INTEGER);

type INSQ STATUS is (OK-NOTFIRST, FAILNOLOCK, OKFIRST);

for INSQSTATUS use (0, 1, 2);

type RE1.IQSTATUS is (OK NOTEMPTY, FAIL NO LOCK,
OKEMPTY, FAIL-WAS EMPTY);

for REMQ STATUS use (0, 1, 2, 3);

procedure INSQHI (ITEM in ADDRESS;
HEADER in ADDRESS;
STATUS out INSQ STATUS);

procedure REMQHI (HEADER in ADDRESS;
ITEM out ADDRESS;
STATUS out REMQ STATUS);

procedure INSQTI (ITEM in ADDRESS;
HEADER in ADDRESS;
STATUS out INSQ STATUS);

procedure REMQTI (HEADER in ADDRESS;
ITEM out ADDRESS;
STATUS out REMQSTATUS);

private

-- Not shown

end SYSTEM;

F.3.2 The Package System on OpenVMS AXP Systems
package SYSTEM is

type NAME is
-- DEC Ada implementations

(VAX VMS, VAXELN, OpenVMS AXP, RISCULTRIX,
-- XD Ada implementations
MILSTD_1750A, MC68000, MC68020, MC68040, CPU32);

for NAME use (1, 2, 7, 8, 101, 102, 103, 104, 105);

SYSTEM NAME constant NAME := OpenVMSAXP;
STORAGE UNIT constant 8;
MEMORY SIZE constant 2**31-1;
MAX INT constant 2**31-1;
MIN INT constant -(2*'31);
MAX-DIGITS constant 15;
MAX-MANTISSA constant 31;
FINE DELTA constant 2.0**(-311;
TICK- constant : 0.0**(-3);

subtype PRIORITY is INTEGER range 0 - 15;

type INTEGER 8 is range -128 .. 127;
for INTEGER_8'SIZE use 8;

type INTEGER 16 is range -32 768 .. 32767;
for INTEGER_16' SIZE use 16;

type INTEGER 32 is range -2 147 483 648 .. 2147_483_647;
for INTEGER_32'SIZE use 32;-

type LARGESTINTEGER is range MININT .. MAXINT;

-- Address type

type ADDRESS is private;

ADDRESS ZERO constant ADDRESS;
NO ADDR- constant ADDRESS;
NULL ADDRESS constant ADDRESS;

-- Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined

-- function "=" (LEFT, RIGHT ADDRESS) return BOOLEAN;
-- function "/=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

function "< (LEFT, RIGHT ADDRESS) return BOOLEAN;
function '<=" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

generic
type TARGET is private;

function FETCH FROM ADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

procediure ASSIGNTOADDRESS (A : ADDRESS; T : TARGET);

-- DEC Ada floating point type declarations for the VAX
-- floating point data types

type F FLOAT is (digits 6);
type D-FLOAT is (digits 9);
type G-FLOAT is (digits 15);

-- DEC Ada floating point type declarations for the IEEE
-- floating point data types

type IEEE SINGLEFLOAT is (digits 61;
type IEEEDOUBLEFLOAT is (digits 15);

type TYPE-CLASS is (TYPECLASSENUMERATION,
TYPE CLASSINTEGER,
TYPE CLASS FIXED POINT,
TYPE CLASSFLOATiNGPOINT,
TYPE CLASS_ARRAY,
TYPE CLASS RECORD,
TYPE CLASSACCESS,
TYPE CLASSTASK,
TYPECLASSADDRESS);

-- AST handler type

type AST-HANDLER is limited private;

NOASTHANDLER : constant ASTHANDLER;

-- Non-Ada exception

NONADAERROR : exception;

-- Hardware-oriented types and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BITARRAY);

subtype BIT ARRAY 8 is BIT ARRAY (0 7);
subtype BIT-ARRAY-16 is BIT-ARRAY (0 15);
subtype BIT-ARRAY-32 is BIT-_ARRAY (0 31);
subtype BIT_-ARRAY-64 is BITARRAY (0 63);

type UNSIGNED BYTE is range 0 .. 255;
for UNSIGNEDBYTE'SIZE use 8;

function "not" (LEFT UNSIGNED BYTE) return UNSIGNEDBYTE;
function "and" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "xor" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;

function TO UNSIGNED BYTE (X BIT ARRAY 8) return UNSIGNED BYTE;
function TOBIT ARRAY 8 (X UNSIGNED BYTE) return BIT ARKAY 8;

type UNSIGNEDBYTEARRAY is array (INTEGER range <>) of UNSIGNEDBYTE;

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNEDWORD' SIZE use 16;

function "not" (LEFT UNSIGNED WORD) return UNSIGNED WORD;
function "and" (LEFT, RIGHT UNSIGNED-WORD) return UNSIGNED-WORD;
function "or" (LEFT, RIGHT UNSIGNED WORD) return UNSIGNEDWORD;
function "xor" (LEFT, RIG4IT UNSIGNED-WORD) return UNSIGNED-WORD;

function TO UNSIGNED WORD (X BIT ARRAY 16) return UNSIGNED WORD;
function TO_-BITARRAY_16 (X UNSiGNED_WORD) return BITARRAY_16;

type UNSIGNEDWORDARRAY is array (INTEGER range <>) of UNSIGNEDWORD;

type UNSIGNED LONGWORD is range -2_147_483_648 .. 2147_483_647;
for UNSIGNED-LONGWORD'SIZE use 32;

function "not" (LEFT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "and" (LEFT, RIGHT UNSIGNED-LONGWORD) return UNSIGNEDCLONGWORD;
function "or" (LEFT, RI3HT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "xor" (LEFT, RIGHT UNSIGNED-_LONGWORD) return UNSIGNED7LONGWORD;

function TO UNSIGNED LONGWORD (X : BIT ARRAY 32) return UNSIGNED LONGWORD;
function TO-BITARRAY_32 (X : UNSIGNED-LONGWORD) return BITARRAY 32;

type UNSIGNED LONGWORD ARRAY is
array (INTEGER range <>) of UNSIGNED LONGWORD;

type UNSIGNEDQUADWORD is
record

LO UNSIGNED LONGWORD;
LI UNSIGNEDLONGWORD;

end record;
for UNSIGNED QUADWORD'SIZE use 64;
for UNSIGNED QUADWORD use

record
at mod 8;

end record;

function "not" (LEFT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "and" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNED-QUADWORD;
function "or" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNED QUADWORD;
function "x,-:" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNED-QUADWORD;

function TO UNSIGNED QUADWORD (X : BIT ARRAY 64) return UNSIGNED QUADWORD;
function TOBITARRAY_64 (X : UNSIGNED-QUADWORD) return BITARRA _64;

type UNSIGNED QUADNORD ARRAY is
array (INTEGER range <>) of U.SIGNED__QUADWORD;

function TO ADDRESS (X INTEGER) return ADDRESS;
function TO ADDRESS (X UNSIGNED LONGWORD) return ADDRESS;
function TOADDRESS (X (universalinteger)) return ADDRESS;

function TO INTEGER (X ADDRESS) return INTEGER;
function TOUNSIGNEDLONGWORD (X ADDRESS) return UNSIGNEDLONGWORD;

function TOUNSIGNED__LONGWORD IX : ASTHANDLER) return UNSIGNEDLONGWORD;

Conventional names for static subtypes of type UNSIGNED LONGWORD

subtype UNSIGNED 1 is UNSIGNED LONGWORD range 0 2** 1-1;
subtype UNSIGNED 2 is UNSIGNED-LONGWORD range 0 2** 2-1;
subtype UNSIGNED 3 is UNSIGNED LONGWORD range 0 2** 3-1;
subtype UNSIGNED 4 is UNSIGNED-LONGWORD range 0 2** 4-1;
subtype UNSIGNED 5 is UNSIGNED-LONGWORD range 0 2** 5-1;
subtype UNSIGNED-6 is UNSIGNED-LONGWORD range 0 2** 6-1;
subtype UNSIGNED_7 is UNSIGNED-LONGWORD range 0 2** 7-1;
subtype UNSIGNED-8 is UNSIGNED-LONGWORD range 0 2** 8-1;
subtype UNSIGNED-9 is UNSIGNED-LONGWORD range 0 2** 9-1;
subtype UNSIGNED 10 is UNSIGNED LONGWORD range 0 2**10-1;
subtype UNSIGNED 11 is UNSIGNED-LONGWORD range 0 2*t11-1;
subtype UNSIGNED 12 is UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED 13 is UNSIGNED LONGWORD range 0 2**13-1;
subtype UNSIGNED 14 is UNSIGNED-LONGWORD range 0 2**14-1;
subtype UNSIGNED 15 is UNSIGNED -LONGWORD range 0 2**15-1;
subtype UNSIGNED-16 is UNSIGNED-LONGWORD range 0 2**16-1;
subtype UNSIGNED -17 is UNSIGNED -LONGWORD range 0 2**17-1;
subtype UNSIGNED-18 is UNSIGNED-LONGWORD range 0 2**18-1;
subtype UNSIGNED-19 is UNSIGNED-LONGWORD range 0 2**19-1;
subtype UNSIGNED-20 is UNSIGNED-LONGWORD range 0 2**20-1;
subtype UNSIGNED 21 is UNSIGNED-LONGWORD range 0 2**21-1;
subtype UNSIGNED -22 is UNSIGNED -LONGWORD range 0 2*"22-1;
subtype UNSIGNED -23 is UNSIGNED -LONGWORD range 0 2**23-1;
subtype UNSIGNED_24 is UNSIGNED-LONGWORD range 0 2**24-1;
subtype UNSIGNED 25 is UNSIGNED-LONGWORD range 0 2**25-1;
subtype UNSIGNED 26 is UNSIGNED -LONGWORD range 0 2"*26-1;
subtype UNSIGNED-27 is UNSIGNED-LONGWORD range 0 2**27-1;
subtype UNSIGNED -28 is UNSIGNED -LONGWORD range 0 2**28-1;
subtype UNSIGNED -29 is UNSIGNED -LONGWORD range 0 2**29-1;
subtype UNSIGNED-30 is UNSIGNED-LONGWORD range 0 2**30-1;
subtype UNSIGNED-31 is UNSIGNED LONGWORD range 0 2**31-1;

-- Function for obtaining global symbol values

function IMPORTVALUE (SYMBOL : STRING) return UNSIGNEDLONGWORD;

private

-- Not shown

end SYSTEM;

F.3.3 The Package System on ULTRIX Systems
package SYSTEM is

type NAME is (RISCULTRIX);
for NAME use (RISCULTRIX => 6);

SYSTEM NAME constant NAME := RISCULTRIX;
STORAGE UNIT constant : 8;
MEMORY SIZE constant 2**31-1;
MAX INT constant 2**31-1;
MIN INT constant -(2"'31);
MAXDIGITS constant 15;
MAX MANTISSA constant 31;
FINE DELTA constant 2.0"*(-31};
TICk- constant 3.906 * 10.0"*(-3);

subtype PRIORITY is INTEGER range 0 .. 15;

-- Address type

type ADDRESS is private;

ADDRESSZERO : constant ADDRESS;

function "+" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;
function "+" (LEFT INTEGER; RIGHT ADDRESS) return ADDRESS;
function "-" (LEFT ADDRESS; RIGHT ADDRESS) return INTEGER;
function "-" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;

-- function "=" (LEFT, RIGHT ADDRESS) return BOOLEAN;
-- function "/=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function "<= (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined

generic
type TARGET is private;

function FETCH FROM ADDRESS (A ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A ADDRESS; T : TARGET);

-- DEC Ada floating point type declarations for the IEEE
floating point data types

type IEEE SINGLE FLOAT is (digits 6);
type IEEE-DOUBLE-FLOAT is (digits 15);

type TYPECLASS is (TYPECLASS ENUMERATION,
TYPE CLASS INTEGER,
TYPECLASS-FIXED POINT,
TYPE CLASS FLOATINGPOINT,
TYPECLASS ARRAY,
TYPECLASS RECORD,
TYPE_CLASSACCESS,
TYPECLASS TASK,
TYPE-CLASS-ADDRESS);

Non-Ada exception

NONADAERROR : exception;

Hardware-oriented types and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BIT ARRAY);

subtype BIT ARRAY 8 is BIT ARRAY (0 7);
subtype BIT-ARRAY-16 is BIT-ARRAY (v 15);
subtype BIT-ARRAY-32 is BIT-ARRAY (0 31);
subtype BIT-ARRAY-64 is BIT-ARRAY (0 63);

type UNSIGNED BYTE is range 0 .. 255;
for UNSIGNEDBYTE'SIZE use 8;

function "not" (LEFT UNSIGNED BYTE) return UNSIGNED BYTE;
function "and" (LEFT, RIGHT UNSIGNED-BYTE) return UNSIGNED-BYTE;
function "or" (LEFT, RIGHT UNSIGNED BYTE) return UNSIGNED BYTE;
function "xor" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNED-BYTE;

function TO UNSIGNED BYTE (X BIT ARRAY 8) return UNSIGNED BYTE;
function TOBIT_ARRAY_8 (X : UNSIGNEDBYTE) return BITARRAY_8;

type UNSIGNEDBYTE ARRAY is array (INTEGER range <>) of UNSIGNEDBYTE;

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNED-WORD'SIZE use 16;

function "not" (LEFT UNSIGNEDWORD) return UNSIGNEDWORD;
function "and" (LEFT, RIGHT UNSIGNED WORD) return UNSIGNED WORD;
function "or" (LEFT, RIGHT UNSIGNED WORD) return UNSIGNEDWORD;
function "xor" (LEFT, RIGHT UNSIGNEDWORD) return UNSIGNEDWORD;

function TO UNSIGNED WORD (X BIT ARRAY 16) return UNSIGNED WORD;
function TOBITARRAY_16 (X UNSIGNEDWORD) return BITARRAY_16;

type UNSIGNEDWORD ARRAY is array (INTEGER range <>) of UNSIGNEDWORD;

type UNSIGNED LONGWORD is range MININT .. MAXINT;
for UNSIGNED LONGWORD'SIZE use 32;

function "not" (LEFT UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;
function "and" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNEDLONGWORD;
function "or" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "xor" (LEFT, RIGHT UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;

function TO UNSIGNED LONGWORD (X BITARRAY_32)
return URSIGNED LONGWORD;

function TOBIT_AJRAY_32 (X : UNSIGNEDLONGWORD) return BITARRAY 32;

type UNSIGNED LONGWORDARRAY is
array (INTEGER range <>) of UNSIGNEDLONGWORD;

type UNSIGNED QUADWORD is record
LO UNSIGNED LONGWORD;
L1 UNSIGNEDLONGWORD;
end record;

for UNSIGNEDQUADWORD' SIZE use 64;

function "not" (LEFT UNSIGNED QUADWORD) return UNSIGNEDQUADWORD;
function "and" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;
function "or" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED_QUADWORD;
function "xor" (LEFT, RIGHT UNSIGNED__QUADWORD) return UNSIGNEDQUADWORD;

function TO UNSIGNED QUADWORD (X : BITARRAY_64)
return UNSIGNED QUADWORD;

function TOBITARRAY_64 (X : UNSIGNEDQUADWORD) return BITARRAY_64;

type UNSIGNEDQUADWORDARRAY is
array (INTEGER range <>) of UNSIGNEDQUADWORD;

function TO ADDRESS (X INTEGER) return ADDRESS;
function TO ADDRESS (X UNSIGNED LONGWORD) return ADDRESS;
function TO-ADDRESS (X {universaliinteger}) return ADDRESS;

function TO INTEGER (X ADDRESS) return INTEGER;

function TOUNSIGNEDLONGWORD (X ADDRESS) return UNSIGNED LONGWORD;

Conventional names for static subtypes of type UNSIGNED LONGWORD

subtype UNSIGNED 1 is UNSIGNED LONGWORD range 0 2** 1-1;
subtype UNSIGNED-2 is UNSIGNED-LONGWORD range 0 2** 2-1;
subtype UNSIGNED73 is UNSIGNEDLONGWORD range 0 2** 3-1;
subtype UNSIGNED_4 is UNSIGNEDLONGWORD range 0 2** 4-1;
subtype UNSIGNED_5 is UNSIGNED LONGWORD range 0 2** 5-1;
subtype UNSIGNED-6 is UNSIGNEDCLONGWORD range 0 2** 6-1;
subtype UNSIGNED-7 is UNSIGNED_LONGWORD range 0 2** 7-1;
subtype UNSIGNED-8 is UNSIGNED LONGWORD range 0 2** 8-1;
subtype UNSIGNED 9 is UNSIGNEDLONGWORD range 0 2** 9-1;
subtype UNSIGNED-10 is UNSIGNED-LONGWORD range 0 2**l9-1;
subtype UNSIGNED 11 is UNSIGNED LONGWORD range 0 2**10-1;
subtype UNSIGNED 12 is UNSIGNED-LONGWORD range 0 2**12-1;
subtype UNSIGNED_13 is UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED-14 is UNSIGNED-LONGWORD range 0 2**14-1;
subtype UNSIGNED_15 is UNSIGNED-LONGWORD range 0 2**15-1;
subtype UNSIGNED-16 is UNSIGNED -LONGWORD range 0 2**16-1;
subtype UNSIGNED-17 is UNSIGNED LONGWORD range 0 2*"17-1;
subtype UNSIGNED_18 is UNSIGNED LONGWORD range 0 2**18-1;
subtype UNSIGNED-19 is UNSIGNED LONGWORD range 0 2**19-1;
subtype UNSIGNED-20 is UNSIGNED LONGWORD range 0 2**201-;

subtype UNSIGNED 21 is UNSIGNED LONGWORD range 0 2**21-1;
subtype UNSIGNED_22 is UNSIGNED LONGWORD range 0 2**22-1;
subtype UNSIGNED-23 is UNSIGNED LONGWORD range 0 2**23-1;
subtype UNSIGNED-24 is UNSIGNEDLONGWORD range 0 2**24-1;
subtype UNSIGNED_25 is UNSIGNED-LONGWORD range 0 2**25-1;
subtype UNSIGNED-26 is UNSIGNED-LONGWORD range 0 2**26-1;
subtype UNSIGNED 27 is UNSIGNEDLONGWORD range 0 2**27-1;
subtype UNSIGNED-28 is UNSIGNED-LONGWORD range 0 2**28-1;
subtype UNSIGNED_29 is UNSIGNED LONGWORD range 0 2**29-i;
subtype UNSIGNED 30 is UNSIGNED-LONGWORD range 0 2**30-1;
subtype UNSIGNED_31 is UNSIGNEDCLONGWORD range 0 2**31-1;

-- Function for obtaining global symbol values

function IMPORT VALUE (SYMBOL : STRING) return UNSIGNEDLONGWORD;

private

-- Not shown

end SYSTEM;

F.4 Restrictions on Representation Clauses
The representation clauses allowed in DEC Ada are length, enumeration,
record representation, and address clauses.

In DEC Ada, a representation clause for a generic formal type or a type that
depends on a generic formal type is not allowed. In addition, a representation
clause for a composite type that has a component or subcomponent of a generic
formal type or a type derived from a generic formal type is not allowed.

F.5 Restrictions on Unchecked Type Conversions
DEC Ada supports the generic function UNCHECKED_CONVERSION with
the following restrictions on the class of types involved:

"* The actual subtype corresponding to the formal type TARGET must not be
an unconstrained array type.

"• The actual subtype corresponding to the formal type TARGET must not be
an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKED-CONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

If the size of the source value is greater than the size of the target subtype,
then the high order bits of the value are ignored (truncated); if the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

DEC Ada does not allocate implementation-dependent components in records.

F.7 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In DEC Ada, values of
type SYSTEMADDRESS are interpreted as virtual addresses in the machine's
address space.

DEC Ada allows address clauses for objects and imported subprograms (see
13.5).

DEC Ada does not support interrupts as defined in section 13.5.1.

On OpenVMS systems, DEC Ada provides the pragma ASTENTRY and the
ASTENTRY attribute as alternative mechanisms for handling asynchronous
interrupts from the OpenVMS operating system (see 9.12a).

For information on handling ULTRIX signals, see the DEC Ada Run-7ime
Reference Manual for ULTRIX Systems.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

In addition to the standard predefined input-output packages
(SEQUENTIAL 10, DIRECTJO, TEXT_10, and 10_EXCEPTIONS), DEC Ada
provides packages for handling sequential and direct files with mixed-type
elements:

"* SEQUENTIALMIXED_1O (see 14.2b.4).

"• DIRECTMIXED_10 (see 14.2b.6).

DEC Ada does not provide the low level input-output package described in this
section.

As specified in section 14.4, DEC Ada raises the following language-defined
exceptions for error conditions that occur during input-output operations:
STATUS-ERROR, MODE_ERROR, NAME-ERROR, USE-ERROR, END_
ERROR, DATAERROR, and LAYOUTERROR. DEC Ada does not raise the
language-defined exception DEVICEERROR; device-related errors cause the
exception USEERROR to be raised.

The exception USE_ERROR is raised under the following conditions:

"* If the capacity of the external file has been exceeded.

"* In all CREATE operations if the mode specified is INFILE.

"* In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package.

"* In all CREATE, OPEN, DELETE, and RESET operations if, for the
specified mode, the environment does not support the operation for an
external file.

"• In all NAME operations if the file has no name.

"* In the SETLINELENGTH and SET_PAGELENGTH operations on text
files if the lengths specified are inappropriate for the external file.

"• In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file.

DEC Ada provides other input-output packages that are available on specific
systems. The following sections outline those packages. The following sections
also give system-specific information about the overall set of DEC Ada
input-output packages and input-output exceptions.

F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems
On OpenVMS systems, the DEC Ada predefined packages and their operations
are implemented using OpenVMS Record Management Services (RMS)
file organizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, DEC Ada provides the following
Open VMS-specific packages:

"• RELATIVE-1O (see 14.2a.3).

"• INDEXED-10 (see 14.2a.5).

"* RELATIVEMIXED-10 (see 14.2b.8).

"* INDEXEDMIXED-10 (see 14.2b.10).

"* AUXO_EXCEPTIONS (see 14.5a).

The following sections summarize the implementation-dependent characteris-
tics of the DEC Ada input-output packages. The DEC Ada Run-Time Reference
Manual for OpenVMS Systems discusses these characteristics in more detail.

F.8.1 .1 Interpretation of the FORM Parameter on OpenVMS Systems
On OpenVMS systems, the value of the FORM parameter may be a string
of statements of the OpenVMS Record Management Services (RMS) File
Definition Language (FDL), or it may be a string referring to a text file of FDL
statements (called an FDL file).

FDL is a special-purpose OpenVMS language for writing file specifications.
These specifications are then used by DEC Ada run-time routines to create
or open files. See the DEC Ada Run-Time Reference Manual for Open VMS
Systems for the rules governing the FORM parameter and for a general
description of FDL. See the Guide to OpenVMS File Applications and the
OpenVMS Record Management Utilities Reference Manual for complete
information on FDL.

On OpenVMS systems, each input-output package has a default string of FDL
statements that is used to open or create a file. Thus, in general, specification
of a FORM parameter is not necessary: it is never necessary in an OPEN
procedure; it may be necessary in a CREATE procedure. The packages for
which a value for the FORM parameter must be specified in a CREATE
procedure are as follows:

" The packages DIRECT_1O and RELATIVE_10 require that a maximum
element (record) size be specified in the FORM parameter if the item with
which the package is instantiated is unconstrained.

" The packages DIRECT_MIXEDIO and RELATIVEMIXED_10 require
that a maximum element (record) size be specified in the FORM parameter.

" The packages INDEXED_10 and INDEXEDMIXEDIO require that
information about keys be specified in the FORM parameter.

Any explicit FORM specification supersedes the default attributes of the
governing input-output package. The DEC Ada Run-Time Reference Manual
for OpenVMS Systems describes the default external file attributes of each
input-output package.

The use of the FORM parameter is described for each input-output package*
in chapter 14. For information on the default FORM parameters for each
DEC Ada input-output package and for information on using the FORM
parameter to specify external file attributes, see the DEC Ada Run-Time
Reference Manual for OpenVMS Systems. For information on FDL, see the
Guide to OpenVMS File Applications and the OpenVMS Record Management
Utilities Reference Manual.

F.8.1.2 Input-Output Exceptions on OpenVMS Systems
In addition to the DEC Ada exceptions that apply on a!l systems, the following
also apply on OpenVMS systems:

"* The DEC Ada exceptions LOCK_ERROR, EXISTENCEERROR, and KEY_
ERROR are raised for relative and indexed input-output operations.

"* The exception USEERROR is raised as follows in relative and indexed
files:

- In the WRITE operations on relative or indexed files if the element in
the position indicated has already been written.

- In the DELETEELEMENT operations on relative and indexed files if
the current element is undefined at the start of the operation.

- In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes.

" The exception NAMEERROR is raised as specified in section 14.4:
by a call of a CREATE or OPEN procedure if the string given fo: the
NAME parameter does not allow the identification of an external file. On
OpenVMS systems, the value of a NAME parameter can be a string that
denotes a OpenVMS file specification or a OpenVMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a NAME parameter can also be a null string, in which case it
names a temporary external file that is deleted when the main program
exits. The DEC Ada Run-71me Reference Manual for OpenVMS Systems
explains the naming of external files in more detail.

" The exception LAYOUTERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value returned exceeds
COUNT' LAST. The exception LAYOUTERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUTERROR is raised by GET_ITEM if no more items can be read
from the file buffer; it is raised by PUT-ITEM if the current position
exceeds the file buffer size.

F.8.2 Input-Output Packages on ULTRIX Systems
On ULTRIX systems, the DEC Ada predefined packages and their operations
are implemented using ULTRIX file facilities. DEC Ada provides no additional
input-output packages specifically related to ULTRIX systems.

The following sections summarize the ULTRIX-specific characteristics of the
DEC Ada input-output packages. The DEC Ada Run-Time Reference Manual
for ULTRIX Systems discusses these characteristics in more detail.

F.8.2.1 Interpretation of the FORM Parameter on ULTRIX Systems

On ULTRIX systems, the value of the FORM parameter must be a character
string, defined as follows:

string "[field {,field})"

field :: field id => field vaiue

field id BUFFER SIZE I ELEMENT SIZE I FILE DESCRIPTOR

field value ::== digit (digit)

Depending on the fields specified, the value of the FORM paramet er may
represent one or more of the following:

" The size of the buffer used during file operations. The field value specifies
the number of bytes in the buffer.

" The maximum element size for a direct file. The field value specifies the
maximum number of bytes in the element.

"* An ULTRIX file descriptor for the Ada file being opened. The ULTRIX file
descriptor must be open.

If the file descriptor is not open, or if it refers to an Ada file that is
already open, then the exception USEERROR is raised. Note 1hiat the
file descriptor option can be used only in the FORM parameter of an OPEN
procedure.

Each input-output package has an implementation-defined value form string
that is used to open or create a file. Thus, in general, specification of a FORM
parameter is not necessary. The packages for which a value for the FORM
parameter must be specified in a CREATE procedure are as follows:

"* The package DIRECT-IO requires that a maximum ele-ent size be
specified in the FORM parameter if the item with which the package is
instantiated is unconstrained.

"* The package DIRECTMIXED_1O requires that a maximum element size
be specified in the FORM parameter.

The use of the FORM parameter is described for each input-output package in
chapter 14. For information on using the FORM parameter to specify external
file attributes, see the DEC Ada Run-Time Reference Manual for ULTRIX
Systems.

F.8.2.2 Input-Output Exceptions on ULTRIX Systems

In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on ULTRIX systems:

"The exception NAME-ERROR is raised as specified in section 14.4: by a
call of a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. On ULTRIX
systems, the value of a NAME parameter can be a string that denotes an
ULTRIX file specification. For a CREATE procedure, the value of a NAME
parameter can also be a null string, in which case it names a temporary
external file that is deleted when the main program exits. The DEC Ada
Run-Time Reference Manual for ULTRIX Systems explains the naming of
external files in more detail.

"The exception LAYOUT_ERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value returned exceeds
COUNT' LAST. The exception LAYOUTERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUTERROR is raised by GET ITEM if no more items can be read
from the file buffer; it is raised by PUT-ITEM if the current position
exceeds the file buffer size.

F.9 Other Implementation Characteristics
Implementation characteristics relating to the definition of a main program,
various numeric ranges, and implementation limits are summarized in the
following sections.

F.9.1 Definition of a Main Program
DEC Ada permits a library unit to be used as a main program under the
following conditions:

If it is a procedure with no formal parameters.
On OpenVMS systems, the status returned to the OpenVMS environment
upon normal completion of the procedure is the value 1.

On ULTRIX systems, the status returned to the ULTRIX environment
upon normal completion of the procedure is the value 0.

" If it is a function with no formal parameters whose returned value is of
a discrete type. In this case, the status returned to the operating-system
environment upon normal completion of the function is the function value.

" If it is a procedure declared with the pragma EXPORTVALUED_
PROCEDURE, and it has one formal out parameter that is of a discr "e
type. In this case, the status returned to the operating-system environ-nent
upon normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the pragma
EXPORTVALUEDPROCEDURE returns a discrete value whose size is less
than 32 bits, the value is zero- or sign-extended as appropriate.

F.9.2 Values of Integer Attributes
The ranges of values for integer types declared in the package STANDARD are
as follows:

Systems on which it

Integer type Range applies

SttORTSHORTINTEGER -128 .. 127 All

SHORTINTEGER -32768 .. 32767 All

INTEGER -2147483648.. 2147483647 All

LONGINTEGER -2147483648.. 2147483647 OpenVMS

For the applicable input-output packages, the ranges of values for the types

COUNT and POSITIVE_ COUNT are as follows:

COUNT 0 .. INTEGER' LAST
POSITIVE_COUNT 1.. INTEGER' LAST

For the package TEXTJO, the range of values for the type FIELD is as follows:

FIELD 0.. INTEGER, LAST

F.9.3 Values of Floating Point Attributes
DEC Ada provides a number of predefined floating point types, as shown in the
following table:

Systems on which
Type Representation It applies Section

FLOAT Ffloating All OpenVMS' 3.5.7
IEEE single float ULTRIX,

Open VMS AXP2

LONGFLOAT D floating or Gjfloating All OpenVMS' 3.5.7
IEEE double float ULTRIX,

OpenVMS AXP 2

LONGLONG_FLOAT Hjfloating OpenVMS VAX 3.5.7
F_FLOAT Ffloating All OpenVMS 3.5.7
D_FLOAT Dfloating All OpenVMS 3.5.7
GFLOAT G_floating All OpenVMS 3.5.7

H_FLOAT Hjfloating OpenVMS VAX 3.5.7
IEEESINGLEFLOAT IEEE single float ULTRIX, 3.5.7

OpenVMS AXP2

IEEEDOUBLE_FLOAT IEEE double float ULTRIX, 3.5.7
OpenVMS AXP2

'When the value of the pragma FLOAT-REPRESENTATION is VAXFLOAT.
2When the value of the pragma FLOAT-REPRESENTATION is IEEE-FLOAT.

The values of the floating point attributes for the different floating point
representations appear in the following taLles.

F.9.3.1 Ffloating Characteristics

Fjloatlng value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 6

MANTISSA 21

EMAX 84
EPSILON 16#0.1000_000#e-4

approximately 9.53674E-07

SMALL 16#0.8000_000#e-21
approximately 2.58494E-26

LARGE 16#0.FFFF_F80#e+21
approximately 1.93428E+25

SAFEEMAX 127

SAFESMALL 16#0.1000_000#e-31
approximately 2.93874E-39

SAFELARGE 16#0.TFFFFCO#e+ 32
approximately 1.70141E+38

FIRST -16#0.7FFF_FF8#e+32
approximately -1.70141E+38

LAST 16#0.7FFFFF8#e+32
approximately 1.70141E+38

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 127

MACHINEEMIN -127

MACHINEROUNDS True

MACHINE OVERFLOWS True

F.9.3.2 D.floating Characteristics

0_floating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_0000_0000_000#e-7
approximately 9.3132257461548E-10

SMALL 16#0.80000000_0000_000#e-31
approximately 2.3509887016446E-38

LARGE 16#0.FFFFFFFE_0000_000#e+31
approximately 2.1267647922655E+37

SAFE_EMAX 127

SAFE-SMALL 16#0.1000_0000O0000_000#e-31
approximately 2.9387358770557E-39

SAFELARGE 16#0.7FFFFFFF_0000 000#e+32
approximately 1.7014118338124E+38

FIRST -J16#0.7FFFFFFFFF_FF8#e+32
approximately -1.7014118346047E+38

LAST 16#0.7FFFFFFFFFFFFF8#e+32
approximately 1.7014118346047E+38

MACHINERADIX 2

MACHINE-MANTISSA 56

MACHINEEMAX 127

MACHINE-EMIN -127

MACHINEROUNDS True

MACHINE-OVERFLOWS True

F.9.3.3 Gfloating Characteristics

G_floating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 16#0.4000_0000 0000_00#e-12
approximately 8.881784197001E-16

SMALL 16#0.8000_0000_0000_00#e-51
approximately 1.944692274332E-62

LARGE 16#0.FFFFFFFFFFFFE0#e+51
approximately 2.571100870814E+61

SAFEEMAX 1023

SAFESMALL 16#0.1000_0000_0000 00#e-255
approximately 5.562684646268E-309

SAFELARGE 16#0. 7FFFFFFF_FFFF_F0#e+256
approximately 8,988465674312E+307

FIRST -16#0.7FFFFFFFFFFF FC#e+256
approximately -8.988465674312E+307

LAST 16#0.7FFFFFFF_FFFFFC#e+256
approximately 8.988465674312E+307

MACHINERADIX 2

MACHINEMANTISSA 53

MACHINEEMAX 1023

MACHINEEMIN -1023

MACHINEROUNDS True

MACHINEOVERFLOWS True

F.9.3.4 Hjfloating Characteristics

H_floating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 33

MANTISSA 111

EMAX 444

EPSILON 16#0.4000 0000_0000_0000_0000_0000_0000_0#e-27
approximately 7.7037 197775489434122239117703397E-34

SMALL 16#0.8000_0000_0000_0000_0000_0000_0000_0#e-il1
approximately 1.1006568214637918210934318020936E-134

LARGE 16#0.FFFF_FFFF_FFFFFFFF_FFFF_FFFFFFFE_0#e+111
approximately 4.5427420268475430659332737993000E+133

SAFEEMAX 16383

SAFE_SMALL 16#0.1000_0000_0000_0000_0000_0000_0000_0#e-4095
approximately 8.4052578577802337656566945433044E-4933

SAFELARGE 16#0.7FFF FFFFFFFF_FFFF_FFFFFFFFFFFF.0#e+4096
approximately 5.9486574767861588254287966331400E+4931

FIRST -16#0.7FFFFFFFFFFFFFFFFFFFFFFFFFFFC#e+4096
approximately -5.9486574767861588254287966331400E+4931

LAST 16#0.7FFFFFFFFFFFFFFF.FFFF_PFFFFFFFFC#e+4096
approximately 5.9486574767861588254287966331400E+4931

MACHINE-RADIX 2

MACHINE-MANTISSA 113

MACHINE-EMAX 16383

MACHINEEMIN -16383

MACHINEROUNDS True

MACHINEOVERFLOWS True

F.9.3.5 IEEE Single Float Characteristics

IEEE single float value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#e-4
approximately 9.53674E-07

SMALL 16#0.8000_000#e-21
approximately 2.5849E-26

LARGE 16#0.FFFFF80#E+21
approximately 1.93428E+25

SAFEEMAX 125

SAFE-SMALL
approximately 1.17549E-38

SAFELARGE
approximately 4.25353E+37

FIRST
approximately -3.40282E+38

LAST
approximately 3.40282E+38

MACHINE-RADIX 2

MACHINE-MANTISSA 24

MACHINE-EMAX 128

MACHINEEMIN -125

MACHINE-ROUNDS TIue

MACHINE OVERFLOWS True

F-PQ IFF 5innt.FntCa ot=~~F

F.9.3.6 IEEE Double Float Characteristics

IEEE double float value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON
approximately 8.8817841970012E-16

SMALL
approximately 1.9446922743316E-62

LARGE
approximately 2.5711008708144E+61

SAFEEMAX 1021

SAFESMALL
approximately 2.22507385850720E-308

SAFELARGE
approximately 2.2471164185779E+307

FIRST
approximately -1.7976931348623E+308

LAST
approximately 1.7976931348623E+308

MACHINERADIX 2

MACHINE-MANTISSA 53

MACHINE-EMAX 1024

MACHINEEMIN -1021

MACHINEýROUNDS True

MACHINEOVERFLOWS Thie

F.9.4 Attributes of Type DURATION
The values of the significant attributes of the type DURATION are as follows:

DURATION' DELTA 0.0001
DURATION' SMALL 2-'4

DURATION' FIRST -131072.0000

DURATION' LAST 131071.9999

DURATION' LARGE 131071.9999

F.9.5 Implementation Limits

DEC
systems
on which it

Limit applies Value

Maximum number of formal parameters in a All 32
subprogram or entry declaration that are of an
unconstrained record type

Maximum identifier length (number of characters) All 255

Maximum number of characters in a source line All 255

Maximum number of discriminants for a record type All 245

Maximum number of formal parameters in an entry or All 246
subprogram declaration

Maximum number of dimensions in an array type All 255

Maximum number of library units and subunits in a All 4095
compilation closurel

Maximum number of library units and qubunits in an All 16383
execution closure2

Maximum number of objects declared with the pragma All 32757
COMMONOBJECT or PSECTOBJECT

Maximum number of enumeration literals in an All 65535
enumeration type definition

Maximum number of lines in a source file All 65534

Maximum number of bits in any object All - 1

Maximum size of the static portion of a stack frame All 2"
(approximate)

7The compilation closure of a given unit is the total set or units that the given unit depends on,
directly and indirectly.
2 The execution closure of a given unit is the compilation closure plus all associated secondary units
(library bodies and subunits.

