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Abstract

Memory contention can be a major source of overhead in large-scale shared-memory multiprocessors.

Although there are many hardware solutions to the problem of memory contention, these solutions are

often complex and expensive, so software solutions are an attractive alternative. This paper evaluates

one particular software solution, called block-column allocation, which is very effective at reducing memory

contention for a large class of SPMD (Single-Program-Multiple-Data) programs, and can be implemented
easily by the compiler. We first quantify the impact of memory contention on performance by simulating
the execution of several application kernels on a large-scale multiprocessor. Our simulation results confirm
that memory contention is widespread on large-scale machines; our applications suggest that contention is

usually caused by synchronized access to a range of addresses (rather than to a single address). We show
that block-column allocation, where each range of addresses is divided into cache lines, and each cache line
is allocated to a separate memory module, can nearly eliminate this source of memory contention. As our

main contribution, we compare block-column allocation to row-major allocation (a common data allocation

scheme) and logarithmic broadcasting (the standard software technique for alleviating memory contention).

Our analysis demonstrates the clear superiority of block-column allocation over row-major allocation in

the presence of memory contention. Our analysis also indicates that the choice between block-column
allocation and logarithmic broadcasting is less clear, as it depends both on the type of synchronization used
and the number of processors. We can conclude however that on large-scale machines with hundreds of
processors, block-column allocation and lock-based synchronization is the most effective combination for
reducing memory contention in SPMD matrix computations.
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1 Introduction

Large-scale shared-memory multiprocessors based on off-the-shelf RISC microprocessors offer the
computational power needed to solve large scientific problems. Several efforts are underway to

design shared-memory multiprocessors that scale to hundreds of processors, including the Stanford

DASH (Lenoski et at., 1992] and MIT Alewife [Agarwal et al., 1992] machines. To effectively exploit

these large-scale multiprocessors we must eliminate all bottlenecks that limit scalability. One such

bottleneck is memory contention, which occurs whenever multiple processors need to access the

same memory module simultaneously. Absent special hardware, the memory module can satisfy

only one request at a time, and must reject all others. By serializing multiple accesses, and requiring
that a processor repeatedly issue requests to the same memory module so as to satisfy a single data

reference, memory contei'tion can severely limit the speedup of par;a01 applications.

The majority of techniques for alleviating memory contention assume special hardware sup-

port, such as multi-stage interconnection networks with combining of memory references [Gottlieb

et al., 1983; Pfister and Norton, 1985], interleaved memory [Pfister et al., 1985], and eager sharing

[Wittie and Maples, 1989]. Although these techniques are known to reduce or eliminate mem-

ory contention, the associated hardware can be both complex and expensive, and may depend on

particular properties of the interconnection network.

One general technique to alleviate memory contention caused by simultaneous access to data

is to broadcast the data to every processor [Saad and Schultz, 1989]. This technique is especially

easy to implement on machines that support broadcasting in hardware, such as bus-based multi-

processors like the Sequent Symmetry, or ring-based systems like the Kendall Square KSR1. On

direct-connected distributed-memory machines, such as DASH and Alewife, the broadcast must be

implemented in software (or by the coherency protocol). Software broadcasting typically employs a

logarithmic distribution of data, wherein the source processor sends the data to N other processors,

each of which pass the data on to N other processors, until all processors receive the data.

Two other related techniques for alleviating contention are software combining trees [Yew et aL,

1987] and data replication. Software combining trees are analogous to hardware combining net-
works, and incorporate logarithmic broadcasting. As in combining networks, requests for shared

data flow from the leaves of the tree to the root, and the data flows from the root down to the

leaves. As in logarithmic broadcasting, the data flows down the tree in O(log P) steps (where P is

the number of processors), and the width of the tree limits the potential for memory contention.
In SPMD programs where all processors are known to require the data, there is no need to propa-

gate read requests up the tree, and therefore no need to distinguish software combining trees and
logarithmic broadcasting.

We can also limit memory contention by replicating data across multiple memory modules.

By distributing the requests for data evenly among the copies, we can reduce or eliminate memory
contention for the original copy. Although this scheme avoids broadcasting data to all the processors

(since each processor explicitly requests the data from one of the copies), it requires that the copies

either be created serially, or that some form of broadcasting be used to create the copies. In []
addition, there can still be memory contention for an individual copy, depending on the number of E]

processors and the number of copies. See [Bianchini et al., 1993] for a complete discussion of this

technique.

Each of the techniques described above is general enough to use in any program. However,
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our investigation of memory contention in programs for solving linear algebra and graph problems
suggests that techniques devoted specifically to parallel matrix computations [Geist et al., !987;
Ortega and Romine, 1988] can also be very effective at alleviating contention. In this paper, we
focus on one such technique, called block-column allocation. This technique is motivated by the
observation that memory contention in matrix computations is typically caused by simultaneous
access to a single row of the matrix by multiple processors. If matrices are allocated among
memories by rows, simultaneous access to any part of a row requires that processors contend for
a single memory module. Allocating matrices among memories by column alleviates this source of
contention, but creates other problems, such as false sharing. In block-column allocation, a row is
divided into cache lines, and the cache lines are distributed among the memories in round-robin
order. This technique has the spatial locality properties of allocation by rows, and the memory
contention properties of allocation by column.

Using block-column allocation to alleviate memory contention is not new; the same basic idea
(called interleaved shared memory) is supported in hardware on the BBN TC2000 [BBN, 19891.
Although this hardware feature has been used in scientific applications [Amestoy et al., 1992;
Brooks and Warren, 1991], we know of no comprehensive evaluation of this technique, or of any
published experiences with this technique when applied in software. We seek to characterize the
source and extent of memory contention in SPMD matrix computations, quantify the costs and
benefits of block-column allocation, and evaluate the tradeoffs between block-column allocation
and logarithmic broadcasting on large direct-connected shared-memory multiprocessors.

In the following section we describe our example application programs, and use simulation
to quantify the impact of memory contention on their performance. In section 3 we describe
implementations of our example programs based on block-column allocation, and quantify the
effect of our implementation on the latency of remote memory accesses and the running time of
our applications. Our most important contributions are presented in section 4, where we analyze
the costs and benefits of block-column allocation, and compare its performance to both row-major
allocation and logarithmic broadcasting. We present our conclusions in section 5.

2 Characterizing the Effects and Source of Memory Contention

Memory contention occurs whenever multiple processors require simultaneous access to a single
memory module, thereby producing a so-called hot spot. Glenn et al. [1991] divided hot spots
into three categories: 1) read-only memory with a large number of readers; 2) synchronized access
to memory modules due to related strides; and 3) hot spots caused by synchronization references.
Type 3 hot spots can be effectively eliminated using proper synchronization techniques [Mellor-
Crummey and Scott, 1991]. Type 2 hot spots are present in certain highly structured problems,
and are relatively uncommon. Here we consider four representative SPMD programs that exhibit
a form of type 1 memory contention.

Our example programs all require that all processors simultaneously access data that was re-
cently modified by a single processor. This form of producer/consumers relationship can lead to
memory contention if the data that must be accessed by all processors resides in a single memory
module. As we will show, the resulting memory contention can significantly degrade pertormance.
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2.1 Applications

Our example programs axe drawn from two large classes of applications: linear algebra and graph
algorithms. These SPMD programs represent computational kernels similar to those found in many
applications. For each kernel, matrix data is allocated in row-major order.

The first program is a parallel implementation of Gaussian elimination (without pivoting or
back-substitution). The code for this program is as follows:

FOR pivot = 1 TO N-i DO
FORALL row = pivot+i TO N DO

tmp - M [row] [pivot] /M [pivot] [pivot]
FOR col = pivot TO N DO

M[row] [col] = M[row] [col] - M[pivot] [col] * tmp

On each iteration of the outermost sequential loop, we create a set of processes, each of which
eliminates the entries in a single row of the input matrix. All processes require access to the same
pivot row, and since all processes begin execution at approximately the same time, the pivot row
is a likely source of memory contention. In our experiments we used a random matrix of size 512
x 512 as input.

Our second program implements matrix inversion. The code for this program is:

FOR pivot = 1 TO N-i DO
FORALL row = pivot+i TO N DO

M[row] [pivot] = M[row] [pivot]/M[pivot] [pivot]
tmp = M[row) [pivotJ
FOR col = pivot+1 TO N DO

N[row) [col) = M[row] [col] - M[pivot] [col] * tmp

FORALL row = 1 TO N DO
FOR diagonal I TO N DO

sum = 0
FOR col I 1 TO diagonal DO

sum = sum + M[diagonal] [col] * I[col]
I[diagonal] = I[diagonal) - sum

FOR diagonal N DOWNTO 1 DO
sum = 0
FOR col = N DOWNTO diagonal DO

sum = sum + M[diagonal] [col) * M[row) [col)
MInv [row] [diagonal] = (I [diagonal] - sum) / M [diagonal] [diagonal]

The first phase of this program uses L-U decomposition, which has roughly the same structure as
Gaussian elimination, and therefore is susceptible to memory contention. Although both sequential
loops within the second phase require that all processes access the same row of matrix M, the second
of these loops cannot cause contention; M has already been loaded into the local cache during
execution of L-U decomposition and the first loop. The first sequential loop in the second phase
may suffer from contention, but the processes are only loosely synchronized, and are likely to skew
their accesses to the matrix during execution. (There is no contention for accesses to I, since each
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process has its own version of this data structure.) Again, we used a random input matrix of size
512 x 512.

Our third program computes the transitive closure of a graph, which is represented using an
adjacency matrix stored in row-major order. The code for this program is as follows:

FOR i = 1 TO N DO
FORALL j = 1 TO N DO

IF MEj]E[i THEN
FOR k = I TO N DO

IF M[i] Ek] THEN M[j) [k] = TRUE

Our sample input graph has 512 vertices, and each vertex is connected to each other vertex with
probability 0.5. Unlike the previous two programs, where each process does roughly the same
amount of work, there is the potential for load imbalance in this program. Some processes do
O(N) work, while others do 0(l) work. Each process that does O(N) work must access the same
row, represented by the index of the cutermost loop. As with the previous programs, access to this
row may introduce memory contention, but we would expect the effects of contention to be less in
this case since not all processes execute the innermost loop.

Our final program uses a paxallelization of the Warshall- Floyd algorithm to compute the all-pairs
shortest paths for a graph with 400 vertices. The code for this program is as follows:

FOR k = 1 TO N DO
FORALL i = 1 TO N DO

IF G[i]Ek] < INFINITY THEN
FOR j = 1 TO N DO

IF G[il[k] + G[k][j] < G[i][j] THEN
G[i [j] = GEi] (k] + GEk] [j]

As in the previous examples, all processes require access to the same row of the input matrix. This
program differs from the previous example in that the matrix elements represent distances between
vertices rather than a boolean value of connectivity. Since we use four-byte integers to represent
distances in the all-pairs shortest paths program, and single bytes to represent connectivity in
transitive closure, there is more communication required in the all-pairs shortest paths program,
even though both programs do roughly the same amount of work. We expect therefore that memory
contention will have a greater impact on the all-pairs shortest paths program.

We selected these computational kernels to illustrate the tradeoffs that must be considered in
the face of memory contention. Gaussian elimination is both common in practice, and illustrative
of one common source of memory contention. Matrix inversion can benefit from any technique

used to alleviate memory contention during Gaussian elimination (since the same technique can be
applied to L-U decomposition), but the second phase of matrix inversion may incur overhead due to
changes in the data allocation scheme used to alleviate contention. Also, matrix inversion illustrates
simultaneous accesses that cause contention (during L-U decomposition), and simultaneous accesses

that do not cause contention (during the second phase, when the matrix is already loaded into each
local cache).

Since both barriers and locks (used as condition variables) can be used to implement the neces-
sary producer/consumer synchronization in these problems, we also explore the role of synchroniza-
tion. We implemented the parallel loop in L-U decomposition using a barrier, which synchronizes
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all processes on each iteration of the outermost loop, and thereby increases the potential for mem-
ory contention during access to tV'e pivot row. We used locks (as a form of condition variable) to
implement synchronization in Gaussian elimination, which allows each process a bit more freedom
duri.ng execution, and thereby reduces contention.

Transitive closure (implemented with locks) is interesting because it is similar in structure
to Gaussian elimination, except that conditional execution of the inner loop helps to alleviate
contention. All-pairs differs from transitive closure in that (a) we used a barrier to implement
synchronization, and (b) each element of the matrix is a 4-byte distance, rather than a single byte
representing connectivity.

2.2 Methodology

Since we are interested in studying memory contention in the truly large-scale shared-memory mul-
tiprocessors currently under development, direct experimentation is not an available option. Thus,
we use analytic modeling and simulation for our studies. We simulate a large-scale direct-connected
multiprocessor (up to 256 processors) executing our example applications. Our simulations consist
of two distinct steps: a trace collection process, and a trace analysis process. The trace-collection
step uses Tango [Davis et at., 1991] to simulate a multiprocessor with (infinite) coherent caches.
The traces generated by Tango contain the data references that missed in the local cache of each
processor, and all synchronization events.

Our analyzer process takes as input an address trace produced by Tango, and simulates execu-
tion of the references in the trace on a distributed shared memory multiprocessor. The analyzer
assigns each reference to the appropriate processor at the appropriate time by tracking the delay
induced by previous references, combined with the time spent executing instructions on the pro-
cessor. The analyzer respects the synchronization behavior of an application as represented by the
synchronization events contained in the trace. Synchronization events are not allowed to cause
contention in our model, although they are critical in maintaining the relative timing of events
during trace analysis.

In our machine model, a memory module can process only one request at a time. Requests
arriving when the module is busy are rejected and must be reissued. Our analyzer measures
contention for memory at the page level; thus each 4KB page is treated as a separate memory
module to which requests may be directed. We treat each page as a separate memory module so as
to simulate an ideal page placement policy in which contention caused by simultaneous accesses to
multiple pages does not occur. One consequence of this assumption is that the number of memory
modules in the system is dependent on the size of the problem and not on the number of processors
in use. As a result, our estimates of memory contention are optimistic, in that we measure the
contention inherent in an application, independent of the placement of pages in memory modules.

Our simulations assume a cache line size of 64 bytes, a fixed network latency of 36 processor
cycles, and local memory latency of 10 processor cycles. In the absence of contention, a remote
memory request requires a request message, a reply message, and memory service time, or 82
cycles total. Each request rejected due to contention suffers a 72 cycle penalty, corresponding to
an immediate re-issue of the request.

Our simulation assumptions are optimistic, in that we chose values for the simulation parameters
that are likely to result in less contention than would exist in the machines of the near future, and
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yet still produce substantial contention in our simulations. For example, we chose to use 64-byte

cache lines, which are larger than the cache lines used in both DASH and Alewife (but smaller than
the cache lines used in the Kendall Square KSR1). Given the spatial locality in our applications
and the lack of fine-grain sharing, we would expect these longer lines to result in fewer cache
misses, and less memory contention than would occur in either DASH or Alewife. Similarly, we
chose a memory latency of 10 processor cycles per cache line, and a network latency of 36 processor
cycles, both of which are quite optimistic. We would expect the faster remote memory service time
represented by these two factors to result in less memory contention than would occur in DASH
and Alewife. Our infinite cache assumption means that we only measure the effect of invalidation-
related misses, and ignore capacity misses. Our assumption that network latency is fixed (i.e.,
there is no network contention) allows us to isolate the effects of memory contention from network
contention; adding network contention to our simulations would assign some of the contention we
observe to the network rather than the memory, but would not be likely to affect the tradeoffs we
consider here.

2.3 The Effects of Memory Contention

We simulated each of our application programs, and measured the number of remote memory
accesses, the number of remote memory accesses delayed by memory contention, the average latency
of remote access, and the running time. The results are shown in Tables 1-3.

As seen in Table 1, memory contention is widespread in our applications. On a 200 processor

machine, over 50% of all remote memory accesses are delayed due to memory contention. Even
on 50 processors, 46% of all remote references are delayed during matrix inversion, and 89% of
all remote references are delayed in the all-pairs shortest paths program. Although only 8% of all
remote accesses are delayed during transitive closure on 50 processors, the percentage rises to 60%
on 200 processors. There is a similar rise in the percei'tage of references that experience contention
in Gaussian elimination. Only matrix inversion exhibits a consistent degree of contention, with
roughly 50% of all remote references experiencing delays on 50, 100, and 200 processors.

The minimum deiay introduced Ly mcrw. 4, contention is 72 cycles of .,ztw-rk round-trip lptency,
but much greater delay is possible, since subsequent requests may also be rejected due to contention.
Table 2 illustrates the effect of memory contention on the effective latency of remote memory
accesses. The minimum possible latency is 82 cycles, which represents the round-trip network
costs, and the latency of the memory. As seen in Table 2, transitive closure suffers a 16% slowdown
in remote memory access time due to contention on 50 processors. while every other program
suffers at least a 100% slowdown. The all-pairs program suffers the worst: a 3270% slowdown in

the average latency of remote accesses due to memory contention! As we increase the number of
processors, the latency of remote memory accesses rises dramatically in every case. Even transitive
closure, which has the least contention, suffers a slowdown of remote memory accesses of 655%
on 200 processors. These results suggest that memory contention will be a serious problem on
large-scale machines, and yet all of these results are optimistic, since each 4KB page is considered
a separate memory module in our simulations.

The effect of memory contention on application performance isn't obvious from these tables,

since it depends on the frequency of remote references. Table 3 shows how memory contention

affects the running time of our applications. For Gaussian elimination and all-pairs shortest paths,
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Application Percent of Delayed Misses
50 processors 100 processors 200 processors

Gaussian elimination 20% 56% 84%
Matrix inversion 46% 51% 51%
Transitive closure 8% 35% 60%
All pairs 89% 92% 94%

Table 1: Percent of all remote memory references that experience delay due to memory contention
under row-major allocation.

Application Average Remote Memory Latency
50 processors 100 processors 200 processors

Gaussian elimination 164 572 1546
Matrix inversion 264 536 991
Transitive closure 95 228 619
All pairs 2764 5924 12335

Table 2: Effect of memory contention on average latency of remote memory accesses (in cycles)
under row-major allocation.

memory contention causes the running time to increase with an increase in processors. In fact,
moving from 50 to 200 processors increases the running time of these applications by a factor of
2-3, rather than cutting the running time by a factor of 4. The situation is not quite as bleak in the
case of matrix inversion, where 100 processors perform slightly better than 50 processors; however,
200 processors perform no better than 50 processors. Transitive closure is the only program that
benefits from an increase in processors, although doubling the number of processors from 50 to
100 only improves performance by a factor of 1.8, and multiplying the number of processors by 4
only improves performance by a factor of 2.4. It is important to note that, for the inputs used in
our simulations, these programs have good locality of reference and load balancing properties. and
achieve good speedup when contention is not considered. Thus, for all of these programs, memory

Application Running Time
50 processors 100 processors 200 processors

Gaussian elimination 7.4 8.5 15.6
Matrix inversion 26.1 21.7 26.0
Transitive closure 21.7 12.3 9.0
All pairs 43.0 71.3 136.8

Table 3: Effect of memory contention on running time (in millions of cycles) under row-major
allocation.
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contention is the major obstacle to effective sveedup.

The effects of contention are magnifiedI --. n more if we relax some of our optimistic assumptions.
For example, if we double the memor, - lency to 20 processor cycles, the effect of contention is even
more pronounced. On 200 processors, 92% of the misses in Gaussian elimination suffer contention
(up from 84%), the average r2mote reference latency increases to 2910 cycles (up from 1546), and
the running time increases to 28.8 M cycles (up from 15.6 M cycles). Similarly, if we keep memory
latency at 10 cycles anu reduce the cache line size to 32 bytes, then 90% of the misses in Gaussian
elimination suffer c.,ntention, the average remote latency increases slightly to 1571 cycles, and the

running time increases dramatically to 30.9 M cycles (since we've doubled the number of remote
references). If we both double the memory latency and reduce the cacle line size to 32 bytes, then
the average remote latency increases to 2904 cycles, and the running time increases to 55.2 M cycles.
These results suggest that under less optimistic (and perhaps more realistic) assumptions, memory
contention is likely to be an extremely serious problem in large-scale shared-memory machines.

2.4 The Source of Memory Contention

From the results presented in the previous section, it is obvious that all of our example programs

suffer from memory contention. This contention could be caused by any of three factors: (1)
simultaneous access to a single element of the matrix, (2) simultaneous access to a single row of
the matrix (which resides in a single page, and therefore results in memory contention), and (3)
simultaneous access to multiple rows that happen to reside in the same page. In all of our examples,

we padded the rows of the matrix to fill a page, and therefore eliminated any contention caused by
simultaneous access to multiple rows within a single page. Simultaneous access to a single element
of the matrix can occur in our programs since, upon creation, all processes immediately try to
reference the first element of a row in the matrix. However, serial access to the first element in a
row tends to skew the requests for subsequent elements in that row, thereby avoiding contention
for individual elements.

We validated this hypothesis by a simple experiment in which we simulated Gaussian elimination
on 50 processors, using a matrix that was allocated so that elements within the same row were placed

in different pages. This allocation strategy reduced the percentage of delayed references from 20'X
to 1.5%, and the average remote access latency from 164 cycles to 83 cycles. This experiment
confirms that the memory contention seen in our examples is due primarily to simultaneous access
to the elements of a row, all of which reside in one memory module.

We can also see from our examples that synchronization plays an important role in memory
contention. All-pairs shortest paths experiences the worst contention by far, in part because our

implementation uses barriers to implement the parallel loop. Transitive closure is similar in struc-
ture, but we used locks in its implementation. By using barriers in the all-pairs shortest paths
program, we force all processes to access the same row at the same time on every iteration of the
outermost loop, thereby increasing contention. To confirm the role of barrier synchronization its
a root cause of memory contention in all-pairs shortest paths, we implemented the program using
locks instead of barriers on 50 processors. The percentage of remote references that were delayed
fell from 89% to 54% as a result of this change. More importantly, the average latency of a remole
memory access fell from 2764 cycles to 247 cycles, and the running time decrea-sed from 43M cycles
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to 14.4M cycles. It is clear from this experiment that barriers exacerbate the problem of memory
contention.

1

The effect of barriers can also be seen in the performance of matrix inversion, which uses bar-
riers in the implementation of the L-U decomposition step. On 50 processors, matrix inversion
suffers enormous contention in the L-U decomposition step, where processes are tightly syrchro-
nized, but not in the following step, which has no synchronization. Gaussian elimination suffers
contention throughout execution, but not as much as L-U decomposition, since we use locks in
the implementation of Gaussian elimination. As we increase the number of processors, a greater
percentage of remote references exhibit contention in Gaussian elimination (since all remote ref-
erences are susceptible to contention), while contention is confined to references during the L-U
decomposition step of matrix inversion (which only contains about half of all remote references
in the application). Therefore, the percentage of delayed references continues to rise in Gaussian
elimination as we increase the number of processors, but remains around 50% in matrix inversion.

We conclude from these experiments that the major source of contention in our application
programs is due to synchronized access to the elements of a single row of the matrix, all of which
reside in a single page (or memory module). Although r,'laxing synchronization constraints (by
replacing barriers with locks) helps to reduce contention, we still observe substantial performance
degradation due to contention in large-scale machines. In the next section we consider an alternative
data allocation strategy designed to address this problem.

3 Reducing Memory Contention with Block-Column Allocation

Our experiments in the previous section suggest that the main cause of memory contention in our
example programs is the row-major allocation we used for matrices. Row-major allocation places
an entire row of the matrix in a single page (or memory module), so that access to the row by
multiple processors results in memory 'ontention. Since none of our example prog,'ams access a
matrix by columns, one obvious way to alleviate memory contention is to allocate the matrices in
column-major order. That way, each element of a row resides in a different memory module.

We simulated Gaussian elimination on 50 processors using column-major allocation. In this
implementation, every element of a row resides in a different page. This implementation is successful
at reducing memory contention; only 1.5% of all remote references experience a delay, and the
average delay is only 83 cycles. However, this implementation also introduces 15 times as many
cache misses (due to false sharing), and increases the running time from 7.4M cycles to 30.2M cycles!
We can see from this experiment that column-major allocation merely trades memory contention
for additional cache misses, and does not solve the performance problem. We require an allocation
strategy that has the spatial locality properties of row-major allocation, and the memory contention
properties of column-major allocation. Block-column allocation has both properties.

1Note that the effects of memory contention are greater in the lock-based implementation of all-pairs shortest

paths than in the lock-based implementation of transitive closure, since there are many more cache misses in all-pairs
shortest paths.
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3.1 Block-Column Allocation

In block-column allocation, we divide each row of the input matrix into cache blocks, and map
the cache blocks of a single row into different memory modules. In effect, we use column-major
allocation of cache blocks, rather than column-major allocation of elements. Since no cache block
contains elements from multiple rows, we eliminate the additional cache misses due to false sharing
in column-major allocation. Since the cache blocks of a single row map to different memory mod u]es,
no memory contention occurs when multiple processors simultaneously access different cache blocks
of the same row.

The algorithm changes needed to exploit block-column allocation can be described in terms
of two loop transformations: strip-mining followed by loop interchange. We use strip-mining on
the innermost loop to group together the elements of a row that fit within one cache block. We
then interchange the innermost loop with the enclosing loop, so that we iterate over columns
of cache blocks. These are standard loop transformations performed by compilers; block-column
allocation requires that compilers accompany these transformations with corresponding changes in
data allocation.

The performance benefits of block-column allocation can be seen in Tables 4-6. As seen in Table
4, the percentage of remote references that experience delay has dropped dramatically under block-
column allocation. 2 In most cases, less than 2% of all remote references experience delay. Even
in the worst case (all-pairs shortest paths on 200 processors), only 6.3% of all remote references
experience delay. By way of contrast, 94% of all remote references experience delay when simulating
all-pairs shortest paths on 200 processors using row-major allocation.

Table 5 shows the effect of block-column allocation on the average latency of remote memory
accesses. For Gaussian elimination, the average remote access latency on 200 processors is 82 cycles,
which is optimal. The results for transitive closure are also close to optimal. Average latency for
matrix inversion under block-column allocation increases slightly with an increase in processors,
but still manages a 6-10 fold decrease in average latency when compared with row-major allocation.
And even though all-pairs shortest paths still suffers from contention, which results in an average
remote access latency of 366 cycles on 200 processors, block-column allocation improves the average
remote access latency by a factor of 18 to 33.

This decrease in remote access latency produces a corresponding improvement in running time,
as seen in Table 6. Under block-column allocation, each of our applications runs faster with an
increa.. in processors. For Gaussian elimination and transitive closure, doublin,- the number of
processors cuts the running time nearly in half. Additional processors also improve the running
time of matrix inversion, although not in the same proportion. Even all-pairs shortest paths
continues to exhibit improved running time with an increase in processors, although the performance
improvements offered by 200 processors are insignificant. The speedup of matrix inversion and all-
pairs shortest path are both limited by the use of barrier synchronization; too many processors
waste cycles waiting for a barrier.

Block-column allocation is also effective at reducing contention under less optimistic assump-
tions than those used in the majority of our experiments. For example, even if we double the
memory latenct to 20 cycles, block-column allocation eliminates most memory contention in Gaus-
sian elimination. On 200 processors, only 0.78% of the misses suffer contention, the average latency

2The actual number of cache misses is the same for both block-column allocation and row-major allocation.
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Application Percent of Delayed Misses
50 processors 100 processors 200 processors

Gaussian elimination 0.16% 0.12% 0.27%
Matrix inversion 1.9% 2.1% 2.1%
Transitive closure 0.4% 0.9% 1.8%
All pairs 5.9% 6.2% 6.3%

Table 4: Percent of all remote memory references that experience delay due to memory contention
under block-column allocation.

Application Average Remote Memory Latency
50 processors 100 processors 200 processors

Gaussian elimination 82 82 82
Matrix inversion 87 92 99
Transitive closure 83 84 86
All pairs 150 222 366

Table 5: Effect of memory contention on average latency of remote memory accesses (in cycles)
under block-column allocation.

of remote accesses is only 95 cycles, and the running time only increases by 15%. The same observa-
tion applies if we reduce the cache line size to 32 bytes. For Gaussian elimination on 200 processors
with a cache line size of 32 bytes, only 0.23% of the remote references suffer from contention., the
average remote latency is 82 cycles, and the running time is only 4.0 M cycles. (By way of compar-
ison, Gaussian elimination under row-major allocation takes 30.9 M cycles on 200 processors when
the cache line size is 32 bytes.) If we both double the memory latency and reduce the cache line
size to 32 bytes, then only 0.9% of the remote references suffer from contention, the average remote
latency rises slightly to 98 cycles (where the minimum is now 92 cycles), and the running time
increaseF to 4.7 M cycles. Thus, the enormous performance advantages of block-column allocation
are relatively insensitive to memory latency and cache line size.

The conclusion that block-column allocation can effectively eliminate the effects of contention
holds even if we allocate multiple data rows to a memory module (rather than assign each row of
the matrix to a separate page, and treat each page as a memory module). As long as consecutive
rows are allocated in different memory modules, there is no significant contention for data within
a memory module other than the contention measured in our simulations.

As a final observation, we note that Gaussian elimination runs slightly faster on 50 processors
under row-major allocatiorn than under block-column allocation. In this case, the additional ad-
dressing costs of block-column allocation outweigh the benefits associated with reducing memory
contention. We will examine those costs in the next section.
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Application Running Time
50 processors 100 processors 200 processors

Gaussian elimination 7.7 4.5 2.96
Matrix inversion 25.3 15.3 10.1
Transitive closure 21.3 11.8 6.4
All pairs 15.4 10.5 1 10.3

Table 6: Effect of memory contention on running time (in millions of cycles) under block-column
allocation.

Application .Running Time
Row-major Row-major Block-column Block-column

(no contention) (contention) (no contention) (contention)

Gaussian elimination 2.4 15.6 2.7 3.0
Matrix inversion 7.7 26.0 8.7 10.1
Transitive closure 6.1 9.0 6.3 6.4
All pairs 4.0 136.8 4.4 10.3

Table 7: Running time (in millions of cycles) with and without memory contention on 200 proces-
sors.

3.2 Overhead in Block-Column Allocation

As we discussed earlier, block-column allocation can be viewed as two loop transformations: strip-
mining followed by loop interchange. The effect of strip-mining is to replace one loop with two,
thereby increasing loop overhead. This overhead is not present when using row-major allocation,
and therefore increases the running time of any program using block-column allocation, unless offset
by a reduction in memory contention.

Table 7 illustrates the tradeoff between the overhead associated with block-column allocation
and the memory contention associated with row-major allocation. In the absence of memory con-
tention (that is, under the assumption that a memory module can satisfy any number of requests
simultaneously), all of our programs execute 3-15% faster on 200 processors using row-major allo-
cation, due to the overhead associated with block-column allocation. When memory contention is
included, block-column allocation clearly dominates, improving performance by an order of magni-
tude in the case of all-pairs shortest paths. Recall from Tables 3 and 6 that block-column allocation
performs significantly better on 50 processors only for those programs with a large amount of con-
tention (matrix inversion and all-pairs shortest paths). For programs with lower contention levels,
block-column allocation performs either slightly better (transitive closure) or slightly worse (Gaus-
sian elimination) than row-major allocation on 50 processors. These data suggest that it is not
always obvious how to resolve the tradeoffs involved. In the next section we analyze these tradeoffs
to determine the circumstances under which to use block-column allocation.
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4 Determining When to Use Block-Column Allocation

The previous section presented examples of the benefits of block-column allocation, and mentioned
some of the tradeoffs associated with the technique. This section develops analytical models that
explain why block-column allocation usually outperforms row-major allocation, and under what
circumstances block-column allocation outperforms logarithmic broadcasting.

In each case, it's necessary to consider the two kinds of producer-consumer synchronization
separately: barrier synchronization and lock synchronization. Under barrier synchronization, we
assume that each task begins trying to access a new matrix row immediately after the barrier. This
leads to a different analysis from lock synchronization, in which tasks access rows after a lock is
set. Under lock synchronization, conflicts in accessing a matrix row are less frequent.

We first analyze block-column allocation and row-major allocation, and show that under each
synchronization scheme, there exists some number of processors beyond which block-column al-
location is always preferable to row-major allocation. Then, we analyze logarithmic broadcasting
and show that making the proper choice between blocked-column allocation and logarithmic broad-
casting depends both on the number of processors used to solve the problem, and on the type of
synchronization used in the program.

The metric we will use in our comparison is the increase in running time over the optimal case,
which has no memory contention and no additional instruction overhead. We measure the running
time of the optimal case by simulating the simplest program (row-major allocation) on a system
with infinite memory bandwidth (but nonzero memory latency).

Our purpose in performing these analyses is not to develop highly detailed models that can
be used to predict the performance of programs. We focus instead on simple models that provide
insight into reasons for preferring one technique over another, and that serve as a means of verifying
our understanding of the tradeoffs involved.

4.1 Modeling the Costs of Block-Column and Row-Major Allocation

In our example applications, row-major allocation admits a simple loop structure, but suffers from
memory contention. Block-column allocation alleviates memory contention, but introduces loop
overhead, which results from strip mining over fairly small strips (i.e., the size of a cache line). To
compare these two techniques, we must compare the relative impact of contention and strip mining
overhead as we scale the number of processors.

For a given cache line size and matrix size, the loop overhead introduced by strip mining is a
constant number of cycles. These cycles are distributed among the various processors, and therefore
have a decreasing effect on running time as we increase the number of processors. The contention
effects under block-column allocation depend on the form of synchronizadon. If processes are loosely
synchronized (as is the case when we use locks), then the overhead introduced by block-column
allocation is almost entirely attributed to loop overhead as follows:

L
BCA(P) = L + K1

where L is the execution time of the additional instructions introduced by strip mining, and P is
the number of processors (assuming good load balance). K 1, which is typically small relative to
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Application Running Time
50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4
Block-Column Gauss (Locks) 7.7 4.5 3.0
Optimal All pairs 12.4 6.7 4.0
Block-Column All pairs (Barriers) 15.4 10.5 10.3

Table 8: The running time of Gauss and All pairs (in millions of cycles) under block-column
allocation, compared to optimal.

L, represents the small amount of contention that still occurs under lock synchronization. We find
that the quantity K1 is fixed for each of our programs.

Block-column allocation can suffer from memory contention when using barrier synchronization,
but only for the first cache line of a row. Subsequent accesses to the same row are skewed by the
serial access to the first cache line. The overhead of block-column allocation in this case is:

BCA(P) = + RTP

where R is the number of rows in the matrix, and T is the transfer time of a cache line (82 cycles).

As seen in Table e, our experimental results agree with this analysis. For Gaussian elimination,
we measure L as approximately 50M cycles and K2 as approximately 300,000 cycles. For all-pairs
shortest paths, we measure L as approximately 70M cycles; from the program, we know that R is
400, and as noted above, T = 82. These parameters result in good agreement with the data in all
cases.

In contrast, row-major allocation adds no additional loop overhead. However, it suffers serious
contention under both barrier and lock synchronization. Under barrier synchronization, all proces-
sors contend for the entire row. Since all rows are eventually required by all processors, row-major
allocation under barrier synchronization adds overhead equal to the cost of transferring the entire
matrix, times P. This is because the last processor to receive a row will get it after P - 1 other row
transfers have completed. Under barrier synchronization, all the other processors will be forced to
wait for the last processor at the next barrier, so all are slowed equally. In other words:

M
RMA(P) = -TP

where M is the number of elements in the entire matrix, and E is the number of elements per cache
line.

Under lock synchronization, contention occurs due to random conflicts between processors,
as before. However, random conflicts are more common, since processors access a single module
repeatedly while transferring a row, and the demand for a particular row tends to be greatest
immediately after it is produced. In fact, we can determine from the characteristics of our simulated
machine that under row-major allocation, it only requires 8 processors transferring rows to saturate
a memory module. Since the network trip lasts for 72 cycles, but the memory access itself only
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Application, Running Time
50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4
Row-Major Gauss (Locks) 7.4 8.5 15.6
Optimal All pairs 12.4 6.7 4.0
Row-Major All pairs fBarriers) 43.0 71.3 136.8

Table 9: The running time of Gauss and All pairs (in millions of cycles) under row-major allocation,
compared to optimal.

takes 10 cycles (which we will call service time), no more than 7 consecutive memory accesses can
occur during a network trip.

Beyond a certain number of processors, we can expect that at any point in time, at least one
memory module is saturated. This observation holds because there are only a fixed number of
memories in use; adding more processors adds to the number of requests sent to each memory. The
delay caused by a memory module's saturation is eventually propagated to all processes, since each
processor (in addition to consuming rows) is producing a row that eventually the other processors
will need.

Thus, although it is difficult to model the random contention for memory when the number of
processors is small, we can provide an estimate of overhead when the number of processors is large.
This estimate is based on the assumption that at any point in time, some module is saturated.
We can then see that each additional processor adds an additional service time to the transfer of
each cache line, since the additional processor will likely access the module while it is saturated.
This means that each additional processor adds the cost of an entire matrix's memory service time,
or 10 cycles times the number of cache lines in an entire matrix. So we estimate the overhead of
row-major allocation, for large P, and lock synchronization, as:

RMA(P) = M C(P - 0)

where C is the memory's service time (10 cycles), and 0 is the threshold number of processors

beyond which the system shows memory saturation.

As seen in Table 9, our experimental results for row-major allocation generally confirm our
analysis. For all-pairs shortest paths, where M = 4002, our predictions are about 30% too high;
however, these running times are extremely long and our model predicts them well enough for
comparison purposes with block-column allocation. For Gaussian elimination, we determine by
inspecting the data that memory saturation is reached at about 40 processors, so 0 = 40; also,
since pivot rows only constitute the upper half of the matrix in Gaussian elimination, M = 51212/2.
Our model of overhead for lock synchronization is then quite accurate.

Using this analysis, we can determine when the extra cost of block-column allocation is worth
paying in exchange for the reduction in contention that it provides. Figure 1 shows plots of the
analytic models developed above, for the caues of all-pairs shortest paths (on the left) and Gaussian
elimination (on the right). The all-pairs graph shows that under the high contention costs of barrier
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Figure 1: Overhead of Row Major Allocation compared to Block-Column Allocation for Barrier
Synchronization (Left) and Lock Synchronization (Right)

synchronization, block-column allocation is preferable even on as few as 10 processors. Beyond
about 50 processors, the cost of block-column allocation begins to rise, but at a slower rate than
the cost of row-major allocation. This trend reflects the difference between contending for the first
cache line of the row in the block-column case, and contending for the entire row in the row-major
case.

The analytic models for lock synchronization in Gaussian elimination are plotted on the right
side of Figure 1. Since contention under lock synchronization starts more slowly than under barriers,
more processors axe required before block-column allocation is preferred over row-major, but the
same basic effect is observed: beyond some number of processors (in this case about 50) block-
column allocation is always preferable.

4.2 Comparing Block-Column Allocation and Logarithmic Broadcasting

The previous section showed that as the number of processors increases, eventually there comes a
point when it is more profitable to use block-column allocation over row-major allocation. However,
to adequately assess when to use block-column allocation, we must compare it to the best known
alternative: logarithmic broadcasting.

We implemented two versions of broadcasting for the row-major Gaussian elimination program.
One version is consumer-driven: the producer sets a flag indicating when data is ready, and the con-
sumers copy the data; the other is producer-driven: the producer copies the data for the consumers.
In the producer-driven implementation, the copies must occur in sequence. In the consumer-driven
implementation, multiple consumers can overlap time spent in the network, so many copy opera-
tions can proceed in parallel. Thus, the consumer-driven technique performs significantly better,
which is why we only present results for that technique.

As pointed out in the last section, 8 processors reading a row can saturate a memory module
when the memory latency is 10 cycles and the network latency is 72 cycles; however, as long as
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Application Running Time
50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4
Log. Broadcasting Gauss (Locks) 7.4 4.7 3.4
Optimal All pairs 12.4 6.7 4.0
Log. Broadcasting All pairs (Barriers) 15.9 10.3 7.8

Table 10: The running time of Gauss and All pairs (in millions of cycles) under logarithmic broad-
casting, compared t0 optimal.

the number of processors contending is less than 8, each processor is delayed only a small amount.
Thus, in our simulated machine, logarithmic broadcasting should not use a tree of degree greater
than 8. With this assumption, logarithmic broadcasting can completely eliminate contention when
used with lock synchronization. This is because the condition in which some memory module is
always saturated does not occur, as it did under simple row-major allocation. Memory modules
do not saturate since the complete broadcast of each row is implemented using a much larger set
of memory modules, and the number of processors accessing a single module will never be greater
than the degree of the tree.

For this reason we can estimate the cost of logarithmic broadcasting under lock synchronization
as a constant, which is equal to the extra instructions and synchronization necessary to implement
the technique. Thus,

LB(P) = K2

where K 2 depends on the specific program. Interestingly, in the programs we studied, K2 was
significant; for example, in Gaussian elimination, K2 = L.OM cycles. This occurs partly due to
the synchronization needed to access broadcast buffers. Ideally each row would have a broadcast
buffer on each processor, but that would require expanding the memory usage of the program by a
factor of P, which is impractical. Since the amount of buffer space used for row broadcast on each
processor must be bounded, buffer space must be re-used, which requires synchronization.

In contrast, under barrier synchronization, the cost of logarithmic broadcasting is not indepen-
dent of P. The broadcast of each row requires d steps, where d + 1 is the depth of the broadcast
tree.3 For a tree of degree r, each step requires r row transfers. The first row causes a delay equal
to its transfer time; the other rows cause a delay equal only to their memory service times (as
discussed earlier in this section). Thus we can estimate the overhead of logarithmic broadcasting
under barrier synchronization as:

MM
LB(P) = d fT + d(r- 1)&

where d is proportional to Rlog" Pl.

In our experiments we held d equal to 3, while we varied r to attain the lowest possible value
consistent with d = 3. For the 50 processor case, we set r = 4; for P = 100, r = 5; and for

3For a tree of degree r, the depth of the broadcast tree is roughly nlog, P1, although details of how the tree is
constructed can change this value by I in some cases. In all our experiments, d = 3.
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Figure 2: Overhead of Logarithmic Broadcasting compared to Block-Column Allocation for Lock
Synchronization (Left) and Barrier Synchronization (Right)

P = 200, r = 6. Table 10 shows the results of our experiments with All pairs and Gaussian
elimination under loearithmic broadcasting, and compares them to their ideal cases. The table
shows that K2 = 1.OM cycles is a good estimate of the constant overhead for Gaussian elimination
under logarithmic broadcasting. It also shows that our estimate of the overhead due to logarithmic
broadcasting under barriers in all-pairs shortest paths is fairly. "urate.

Figure 2 shows how the two techniques compare. The comparison for lock synchronization is
on the left, while the comparison for barrier synchronization is on the right. For lock synchro-
nization, beyond about 50 processors, block-column allocation performs better than logarithmic
broadcasting. This is because the fixed overhead under block-column allocation is lower than that
under logarithmic broadcasting. Since contention is much less severe under lock synchronization,
the extra cycles required to implement logarithmic broadcasting are more expensive than necessary;
block-column allocation is preferable due to its simplicity.

The situation is different for barrier synchronization, as shown on the right side of Figure 2.
This figure shows the overhead of block-column allocation compared to logarithmic broadcasting
using a tree of fixed degree (equal to 5). The step-function nature of the logarithmic broadcasting
curve is due to changes in the depth of the tree as the number of processors increases. The figure
also shows an upper bound on logarithmic broadcasting to show that as P grows large, logarithmic
broadcasting eventually outperforms block-column allocation everywhere. This figure shows that
under barrier synchronization contention is so severe that the linearly increasing costs of accessing
the first cache line in each row under block-column allocation eventually grow larger than the
logarithmically increasing costs of broadcast.

Figure 2 shows that for large numbers of processors, logarithmic broadcasting is best when using
barrier synchronization, but block-column allocation is best when using lock synchronization. It
also shows that for small numbers of processors, the situation is reversed: block-column allocation
is best when using barrier synchronization, while logarithmic broadcasting is best when using lock
synchronization.
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5 Conclusions

In this paper we used detailed simulations of application kernels to show that memory contention
can substantially degrade the performance of SPMD computations on large-scale shared-memory
multiprocessors. We showed that under row-major allocation, memory contention is due to synchro-
nized access to entire rows of a matrix, rather than simultaneous accesses to isolated data element&
We also showed that block-column allocation, which divides the rows of a matrix into cache lines,
and distributes the cache lines containing each row among multiple memory modules, dramati-
cally reduces memory contention, and therefore performs much better than row-major allocation
on large-scale machines.

We analyzed the costs associated with block-column allocation and logarithmic broadcasting,
and showed how the choice between these two techniques for alleviating memory contention de-
pends both on the type of synchronization used and the number of processors. For large numbers of
processors, logarithmic broadcasting is best when using barrier synchronization, but block-column
allocation is best when using lock synchronization. For small numbers of processors, the situation
is reversed: block-column allocation is best when using barrier synchronization, while logarithmic
broadcasting is best when using lock synchronization. Since the use of barrier synchronization
exacerbates memory contention, we conclude that block-column allocation and lock-based syn-
chronization is the most effective combination for reducing memory contention in SPMD matrix
computations on large-scale machines.
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