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Abstract

This paper describes the motivation, design and performance of Midway,
a programming system for a distributed shared memory multicomputer
(DSM) such as an ATM-based cluster, a CM-S, or a Paragon. Midway
supports a new memory consistency model called entry consistency.
Entry consistency guarantees that shared data becomes consistent at a
processor when the processor acquires a synchronization object known to
guard wie data. Entry consistency is weaker than other models described
in the literature, such as processor consistency and release consistency,
but it makes possible higher performance implementations of the
underlying consistency protocols. Midway programs are written in C,
and the association between synchronization objects and data must be
made with explicit annotations. As a result, pure entry consistent
programs can require more annotations than programs written to other
models. In addition to entry consistency, Midway also supports the
stronger release consistent and processor consistent models at the
granularity of individual data items. Consequently, the programmer can
tradeoff potentially reduced performance for the additional programming
complexity required to write an entry consistent parallel program.
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The Midway Distributed Shared Memory System

Abstract

This paper describes the molivation, dzsign and per-
Jormance of Midway, a programming system for a dis-
tributed shared memory multicomputer (DSM) such as
an ATM-based cluster, a CM-5, or a Paragon. Mid-
way supporis a new memory consistency model called
eniry consistency. Eniry consistency guaranices that
shared data becomes consistent at a processa~ when the
processor acquires & synchronization object knoun to
guard the data. Eniry consistency is weaker than other
maodels described in the literature, such as processor
consistency and release consistency, but it makes pos-
sible higher performance in.plementations of the un-
derlying consistency protocols. Midway programs are
written in C, and the association between synchroniza-
tion objects and data must be made with ezplicit an-
notations. As a result, pure entry consistent programs
can require more annolations than programs writien to
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other models. In addition te eniry consistency, Mid-
way also supports the stronger release consistent and
orocessor consistent models al the granularity of indi-
vidual data items. Consequently, the programmer can
tradeoff potentially reduced performance for the addi-
tional programming complezity required to write an en-
try consistent parallel program.

1 Introduction

Midway is a distributed shared memory (DSM) pro-
gramming system supporting multiple memory consis-
tency models within a single parallel program. Mid-
way is intended for use on medium-scale multicom-
puters (fewer than 100 nodes), such as an ATM-based
cluster [Rider 89], a TMC. CM-5, or an Intel Paragon.
In addition to supporting processor consistency and
release consistency, Midway supports a new memory
consistency model called entry consistency. Entry
consistency guarantees that shared data becomes con-
sistent at a processor only when the processor acquires
a synchronization object that guards the data. Fur-
thermore, the only data that is guaranteed to be con-
sistent is that guarded by the acquired synchronization
object. This allows an implementation of entry con-
sistency to reduce the frequency of global communica-
tion by exploiting synchronization patterns between
processors. Midway’s implementation of entry con-
sistency requires that the relationship between data
and synchronization objects (which is implicit in the
structure of a parallel program) be made explicit to
the compiler and the runtime system.

Midway supports multiple consistency models
within a single program to ease the task »f construct-
ing a program that runs efficiently on a DSM system.
A program running under Midway may contain data
that is processor consistent, release consistent, or en-




try consistent. Furthermore, within a single run of a
program, multiple consistency models may be active
at the same time. This allows the programmer to be-
gin with a processor consistent parallel program, and
then selectively relax its consistency requirements {or
shared data by modifying the program to use one of
the weaker models.

1.1 Motivation

A wide range of memory consistency models ex-
ists, and each offers a different guarantee about the
strength and timeliness with which updates to shared
memory take effect at processors distributed through-
out a network. In order of strength, these models
include sequential consistency [Lamport 79), proces-
sor consistency [Goodman & Woest 88], weak consis-
tency {Dubois et al. 86], release consistency [Ghara-
chorloo et al. 90] and entry consistency, which is de-
scribed in this paper. In order, each model can in-
crease a processor’s tolerance for latency in the mem-
ory system by relaxing the rules that deterinine the
behavior of operations which write to shared mem-
ory. Aggressive implementations of the weaker mod-
els are capable of delivering higher performance than
those of stronger ones because they better tolerate
network delays and limited bandwidth [Gharachorloo
et al. 91, Zucker & Baer 92).

Programmers often assume that memoty is sequen-
tially consistent. This means that the “result of any
execution is the same as if the operations of all the pro-
cessors were executed in some sequential order, and
the operations of each processor appear in this se-
quence in the order specified by its program” [Lamport
79]. In a sequentially consistent system, one proces-
sor’s update to a shared data value is reflected in every
other processor’s memory before the updating proces-
sor is able to issue another memory access. Unfor-
tunately, sequentially consistent memory systems pre-
clude many optimizations such as reordering, batch-
ing, ot coalescing. These optimizations reduce the per-
formance impact of having distributed memories with
non-uniform access times [Dubois et al. 86].

Memory consistency requirements can be relaxed
by taking advantage of the fact that most parallel
programs already define their own higher-level con-
sistency requirements. This is done by means of ex-
plicit synchronization operations such as lock acqui-
siiion and barrier entry. These operations impose an
ordering on access to data within the program. In
the absence of such operations, a multithreaded pro-
gram is in effect relinquishing all control over the order
and atomicity of memory operations {o the underlying

memory system.

These observations about explicit synchironiza-
tion have led to a class of weakly consistent proto-
cols [Dubois et al. 86, Scheurich & Dubois 87, Adve
& Hill 89, Gharachotloo et al. 90]. Such protocols
distinguish between normal shared accesses and syn-
chronization accesses. The only accesses that must
execute in a sequentially consistent order are those re-
lating to synchronization.!

A weaker model offers fewer guarantees about mem-
ory consistency, but it ensures that a “well-behaved”
program executes as though it were running on a se-
quentially consistent memory system. The definition
of “well-behaved” varies according to the model. For
example, in a processor consistent system, the pro-
grammer may not assume that all memory operations
are performed in the same order at all processors. (A
load or store is globally performed when it is per-
formed with respect to all processors. A load is per-
formed with respect to a processor when no write by
that processor can change the value returned by the
load. A store is performed with respect to a processor
when a load by that processor will return the value of
the store.) For weak consistency, the programmer may
not assume that a processot’s updates are performed
at other processars uantil the updating processor issues
a synchronization operation. For release consistency,
only a processor’s releasing synchronization operation
guarantees that its previous updates will be performed
at other processors, and only a processor’s acquiring
synchronization operation guarantees that other pro-
cessors’ updates have been performed at it. (A releas-
ing synchronization operation signals to other proces-
sors that shared data is available, while an acquiring
operation signals that shared data is needed.) For en-
try consistency, data is only consistent on an acquiring
synchronization operation, and only the data known
to be guarded by the acquired object is guaranteed to
be consistent.

Programs with good behavior do not assume a
stronger consistency guarantee from the memory sys-
tem than is actually provided. Each model’s definition
of good behavior places demands on the programmer
to ensure that a program’s access to shared data con-
forms to that model’s consistency rules. For example,

Un practice, synchronization accesses need only be processor
consistent [Goodman & Woest 88|, that is, writes issued from
a single processor must be performed in the order issued at
all processors, but writes {from different proressors need .t Le
observed in the same order everywhere. The distinction between
sequentially consistent and processor cnsistent synchronization
is small, however it is ecasier to build a processor consistent
system.




with entry consistency, a processor must not access a
shared item until it has performed a synchronization
operation on the item’s associated synchronization ob-
ject. These rules provide the memory system with ia-
formation to allow a well-behaved program to execute
as though it were running on sequentially consistent
memory system. Unfortunately, the rules can add an
additional dimension of complexity to the already dif-
ficult task of writing new parallel programs and port-
ing old ones. The additional programming complexity
can result in higher performance, though, bccause it
provides greater control over communication costs.

1.2 Multiple models

Midway allows a programmer to navigate through
a subset of the consistency models, selecting one, or
several, to achieve an acceptable tradeoff between per-
formance and programmability. A program written for
Midway can use entry consistency, release consistency,
or processor consistency. For all of these models, lo-
cal memories on each processor cache recently used
data and synchronization objects. With entry consis-
tency, communication between processors occurs only
when a processor acquires a synchronization object.
Only the data guarded by the synchronization object
is guaranteed to become consistent at the time of the
acquire. Consequently, Midway provides an execution
environment where a parallel program’s performance
is ultimately limited only by its internal synchroniza-
tion patterns.

Although entry consistency enables the use of low-
overtead consistency mechanisms, writing an entry
consistent program requires more work than writing
one to a stronger model. For example, every synchro-
nization object must be identified; every use of such an
object must be explicit; every shared data item must
be associated with a synchronization object; and syn-
chronization accesses should be qualified as read-only
or read-write for best performance.

To make these restrictions less onerous, Midway
provides a graceful migration path away from more
strongly consistent models to entry consistency. A
programmer begins with a processor consistent par-
allel program or algorithm and sets Midway’s consis-
tency model “dial” to processor consistency. The run-
time system can be used to collect reference patterns
for shared data so that strongly consistent code which
accesses heavily shared data can be reorganized to use
a weaker consistency model. With this, a programmer
can quickly get an application running on the DSM,
although the application may not run very quickly.

Midway implements its consistency protocols in

software and has no dependencies on any specific hard-
wate characteristic other than the ability to send mes-
sages between processors. A strictly software solution
is attractive because it allows us to exploit application
specific inforination at the lowest levels of the system.
It also ensures portability across a wide range of multi-
computer architectures. The system described in this
paper is operational on a cluster of MIPS R3000-based
DECstations running CMU’s Mach 3.U operating sys-
tem [Accetta et al. 86] over both ethernet and an
ATM network.

1.3 Related work

Memory consistency models for DSM systems have
been implemented in both hardware and software.
Earlier hardware-tased systems used snooping pro-
tocols where each processor monitored a shared bus
to implement processor consistency. The Stanford
DASH [Lenoski et al. 92] multiprocessor supports re-
lease consistency in hardware using a directory-based
protocol over a dedicated low-latency interconnect.

Most software systems intended for parallel pro-
gramming have implemented these same consistency
models using conventional virtual memory manage-
ment hardware and local area networks. Li's Ivy sys-
tem [Li 86] described the first implementation of such
a page-based DSM and was followed by several other
systems [Fleisch 87, Forin et al. 89]. Munin [Carter
et al. 91) is a software system which uses release
consistency to support automatic data caching over
a local area network. Munin is unique among weak
consistency systems, in that it implements multiple
consistency protocols which can be used on a type-
specific basis. Munin uses hints from the programmer
to determine the access patterns to shared data items,
and then selects the best consistency protocol for each.
Munin differs from Midway in that it offers multiple
implementations of a single consistency model (release
consistency), whereas Midway supports multiple con-
sistency models within a single program.

Lazy release consistency [Keleher et al. 92]
is a technique for implementing release consistency
through causal broadcast. It has been shown through
simulation to greatly reduce the number of messages
required by systems such as Munin. Our work with en-
try consistency can be considered as an extreme vari-
ant of lazy release consistency in that Midway's ex-
plicit association between synchronization objects and
data offers the runtime system additional information
about causality.




1.4 The rest of this paper

In Section 2 we describe entry consistency. In Sec-
tion 3 we describe Midway’s programming interface in
the context of multiple consistency models. In Sec-
tion 4 we describe the important aspects of Midway’s
implementation and show that the infrastructure re-
quired by entry consistency can be adapted to provide
each of the stronger consistency models. In Section 5
we discuss performance. In Section 8 we present our
conclusions.

2 Entry consistency

Entry consistency takes advantage of the relation-
ship between specific synchronization objects that pro-
tect critical sections and the shared data accessed
within those critical sections. A critical section is a
region of code that accesses data which may have been
written by another processor. A synchronization ob-
ject controls a processor’s access to the code and data
in the critical section. Examples of critical sections
are code sequences guarded by a mutex, or phased by
a barrier. In an entry consistent system, a proces-
sor’s view of shared memory becomes consistent with
the most recent updates only when it enters a critical
section.

The entry consistent model matches that already
used by many shared memory parallel programs,
namely, the use of critical sections to guard access
to shared data for which the results of ar unguarded
access is undefined.

2.1 Performing store operations

A consistency model does not define whether store
operations are performed at a processor using an
invalidation-based or an update-based protocol. With
an invalidation-based protocol, an operation is per-
formed at a remote processor by invalidating an entry
in that processor’s local cache. The processor’s next
access to the invalidated entry results in a cache miss
and a round-trip network message to fetch the missed
value. With an update-based protocol, an operation
is performed at a remote processor when the stored
value is deposited in that processor’s cache. This al-
lows the next access to the item to always be satisfied
locally. The advantage of an invalidation-based proto-
col is that consistency messages can be smaller because
they contain only addresses, not data. The advantage
of the update-based protocol is that it greatly reduces
the likelihood of a cache miss,

Midway’s implementation of entry consistency uses
an update-based protocol. In relatively high latency
networks, where interprocessor comsmunication is on
the order of thousands of processor cycles, the effect of
a cache miss on processor performance can be substan-
tial. For example, assuming a RISC processor with a
10 ns cycle time, the latency of resolving a cache miss
over an ATM network with a 100 usec round-trip time
is on the order of 10,000 instructions. Consequently, it
is critical to use an update-based protocol to minimize
the chance that a processor experiences a cache miss.

An advantage of entry consistency with an update-
based protocol is that interprocessor communication
is only necessary during the acquisition of synchro-
nization objects. By updating only at synchronization
points, and only betwecn the synchronizing processors,
new values for data guarded by a synchronization ob-
ject may be coalesced and delivered to a processor all
at once. By ensuring that updates are performed with
respect to a processor when it enters a critical section,
unexpected delays in a critical section as a result of
cache misses cannot occur. Moreover, no communica-
tion is required for repeated accesses and releases of
the same synchronization object on the same proces-
sor — common patterns in parallel programs [Eggers
89, Bennett et al. 90].

2.2 Caching synchronization objects

Entry consistency facilitates strategies which per-
mit synchronization objects to be cached on the pro-
cessor(s) where they were most recently used. For a
synchronization object s, we define the owner as the
processor that last acquired s. Ouly the owner of s
may perform updates to the data guarded by s. The
processor that owns a synchronization object may en-
ter and exit the associated critical sections without
having to communicate updates of shared memory to
other processors. A processor becomes an owner of
s by sending a message to the current owner. The
current owner ensures that all updates to the data
guarded by s are then performed at the new owner.

An unfortunate aspect of single ownership is that no
more than one processor at a time can access a given
shared location even if the location is only being read.
To guarantee consistency, a processor must hold the
appropriate synchronization object. However, that
synchronization object, if used in the classical sense
(such as a semaphore), only permits mutually exclu-
sive access to the data. Consequently, straightforward
use of synchronization objects to ensure consistency
can limit concurrency.

We address this problem by defining two modes




of access to synchronization objects: ezclusive and
non-ezclusive. Synchronization objects continue to be
owned by a single processor, but may be replicated if
they are held only in non-exclusive mode. A processor
must perform an exclusive access to a synchronization
object s in order to update any data guarded by s.
By definition, that processor becomes the owner of
s. Reading data guarded by s, though, only requires
non-exclusive access to s.

An exclusive-mode access to a synchronization ob-
ject 8 requires that no other processor holds s in
non-exclusive mode. After an exclusive mode access
to s has been performed, any processor’s next non-
exclusive mode access to & is performed with respect
to the owner of s. This enables a processor to perform
a sequence of non-exclusive accesses to s without hav-
ing to communicate with s’s owner each time.

2.3 Programming to entry consistency

Entry consistency makes several assumptions about
the behavior of parallel programs and the runtime en-
vironment. First, as an instance of a weakly consis-
tent protocol, entry consistency requires that synchro-
nization accesses be distinguished from other accesses.
Second, entry consistency requires an association be-
tween shared data and its guarding synchronization
object. Third, to enable concurrent read-sharing, en-
try consistency requires that exclusive synchronization
accesses are distinguished from non-exclusive accesses.
Finally, entry consistency requires that updates are
performed with respect to an acquiring processor. The
last constraint affects Midway's implementation, while
the first three affect its programming interface. Specif-
ically,

¢ All synchronization objects should be explicitly
declared as instances of one of Midway’s synchro-
nization data types, which include locks and bar-
riers.

o All shared data must be explicitly labeled with
" the keyword shared, which is understood by the
compiler.

o All shared data must be explicitly associated with
at least one synchronization object. This is made
by calls to the runtime system, is dynamic, and
may change during the execution of a program.

Programs that include the necessary labeling infor-
mation, and precede all accesses to shared data with
an access to the appropriate synchronization object
will observe a sequentially consistent shared memory.

3 Other models in Midway

A parallel program’s consistency requirements can
be buried within its algorithms and sharing pat-
terns. Midway’s implementation of entry consistency
requires that they be made explicit. Thic may be dif-
ficult because it can require a complete understanding
of a program or algorithm, and can be a major barrier
to porting someone else’s code.

From a performance standpoint, a complete trans-
formation into entry consistency may not be necessary.
In many parallel programs, most communication is of
a few primary data structures. While a large num-
ber of secondary data structures may be used, they
are shared, or at least modified, with low frequency.
There would be only a marginal performance impact
when using a stronger consistency model to manage
these infrequently modified items. For example, some
programs maintain a set of flags which change infre-
quently, such as when new data is available, or when
an algorithm has terminated. This kind of data may
be most easily managed as processor consistent. There
also exist programs that can tolerate minor inconsis-
tencies in their results, and underspecify their synchro-
nization. This is done, for example by locus, mp3dd and
pthor from the Splash application suite {Singh et al.
Y2]. These programs can be converted to entry con-
sistency by, for example, binding all data to a barrier,
but this would oversynchronize the processors. In-
stead, managing the data with ils initially assumed
consistency model may be the best solution.

Because entry consistency may be hard to use and
may not always offer a performance advantage, a Mid-
way program may also contain data which is release
or processor consistent. Entry consistent data is asso-
ciated with a synchronization object. Data not associ-
ated with a synchronization object, but with a “flush
interval” is maintained acccrding to processor consis-
tency. The flush interval controls the rate at which
updates are propagated (in issue order) to other pro-
cessors. An item that is neither associated with a
synchronization object nor a flush interval is assumed
to be release consistent. A processor’s updates to re-
lease consistent data are performed at remote proces-
sors only when a release from the updating processor
is necessary to satisfy another processor’s acquire.

4 Implementation

The implementation of Midway consists of three
main components: a set of keywords and function calls
used to annotate a parallel program, a compiler which




generates code to maintain reference information for
shared data, and a runtime system to implement sev-
eral consistency models.

4.1 Compiler and language support for
Midway

Midway’s concurrency primitives are based on the
Mach C-Threads interface {Cooper & Draves 88]. A
Midway program is written in C, and looks like many
other parallel C programs that use thread manage-
ment directives such as fork and join, and synchro-
nization primitives such as lock and unlock. Shared
data can be allocated either dynamically or statically,
but must be tagged as shared during storage alloca-
tion. All references to shared data, however, do not
need a shared qualifier, so procedures can take point-
ers to data which is either shared or unshared.

Midway requires a small amount of compile-
time support to implemznt its consistency protocols.
Whenever the compiler generates code to store a new
value into a shared data item, it also generates code
that marks the item as “dirty” in an auxiliary data
structure. Other information necessary to implement
entry consistency, such as the association between syn-
chronization objects and guarded data, is specified at
runtime with procedure calls into Midway’s runtime
system.

An alternative to relying on the compiler to gen-
erate code which marks items as dirty is to use the
virtual memory system to trap writes to shared data.
This is the approach taken with page-based systems
such as Ivy and Munin. Although this approach al-
lows programs to run with an unmodified compiler, it
has several drawbacks that can limit its performance.
First, virtual memory systems, and their underlying
MMU hardware, do not have particularly fast fault
handling times {Appel & Li 91)], and those times are
getting relatively slower, not faster [Andersoa et al.
91]). Second, page-based strategies can incur a large
number of write-faults in the presence of false shar-
ing. This happens when unrelated data items on the
same page are written by different processors. Third,
faults which occur during a critical section increase the
amount of time to execute the critical section, thereby
increasing contention. Similarly, faults which occur
during a barrier sequence result in processors finish-
ing at staggered times, ev  though the computation
may statically appear load-opalanced.

4.2 Synchronization management

Distributed synchronization management enables
processors to acquire synchronization objects not
presently held in their local memories. Two types of
synchronization objects are supported: locks and bat-
riers. Locks are acquired in either exclusive or non-
exclusive mode by locating the lock’s owner using a
distributed queueing algorithm {Forin et al. 89].

Barriers permit SIMD-style processing by synchro-
nizing multiple processors across sequential phases of
a computation. A processor delays at a barrier until
all other processors reach that same barrier. Shared
data accessed within a barrier must be made consis-
tent only at the point where the barrier computation
proceeds from one phase to the next. Within a phase
there are no consistency guarantees for data updated
during that phase (unless other synchronization prim-
itives are used).

Midway associates a manager processor with each
barrier synchronization object. Processors “cross” the
barrier by sending a message to the manager and wait-
ing for a reply. The crossing message contains the bar-
rier name and all updates to shared data associated
with the barrier that were performed by the crossing
processor. The manager coalesces the updated values
it receives from all processors, then releases the pro-
cessors by sending the coalesced updates back to each
processor. Midway also supports a terminating bar-
rie- that can be used to coalesce the final results of a
program at a single processor. Upon crossing a termi-
nating barrier, the data is coalesced at the manager,
but is not flushed back to the participating processors.

4.3 Cache management

Distributed cache maaagement ensures that a pro-
cessor never enters a critical c.ction without having re-
ceived all updates to the shared data guarded by that
synchronization object. While this condition could
be satisfied by transferring all shared data guarded
by the synchronization object, entry consistency re-
quires only that updated data more recent than that
contained in an acquiring processor’s cache be trans-
ferred. To determine which updates are more rec nt
than others, Midway uses Lamport’s happens-be.ore
relationship [Lamport 78] to impose a partial ordering
on updates to shared data with respect to synchro-
nization accesses.

Each processor p; maintains a monotonically in-
creasing counter ¢; which serves as its local clock.
Whenever p; sends a message, for example to synchro-
nize, to p;, it increments ¢; and includes ¢; in the mes-




sage. Upon receipt of the message, p; sets its clock ¢;
to max(c;j,c;). Each synchronization object s has an
associated timestamp ¢, which is set to the value of ¢;
whenever its ownership transfers to another processor
pj- Each shared data value v guarded by s has an as-
sociated timestamp {, that is logically set to the local
clock value whenever v is updated. When processor p;
tequests s from p;, the request contains p;’s last value
of t,, 1,.;, which is the “time” that p; last observed s.
For each shared value v guarded by s, if t, > ¢, ;, then
pi's cache has a stale version of v and p; must t. nsfer
the new value of v with s.

Timestamps are arranged in memory so that the
runtime system can quickly convert from a shared
item’s address to its timestamp. Midway avoids com-
puting a timestamp for each update, delaying until
the timestamp is needed by the synchronization pro-
tocol. On store, the local timestamp field is set to
zero to indicate that the associated data item has
been modified. When a synchronization object s is
requested from a processor p;, all data guarded by s
whose timestamp is zero will have their timestamps
set to ¢;. When a shared data item is allocated, the
granularity of the timestamp (in effect, the cache line
size) can be selected by the programmer according to
the expected access patterns to the item. For exam-
ple, a large contiguous object may be backed by many
timestamps to improve the granularity of sharing and
update information. Timestamp granularity can be as
fine as a single byte.

Midway does not assume that processors have in-
finite caches. At any point, a processor may discard
a shared data item as long as that processor does not
presently own the synchronization object guarding the
item. When next acquiring the guarding synchroniza-
tion object s, the discarding processor indicates that
it has not held s for a “very long time.”

4.4 Supporting consistency
models

stronger

Much of Midway’s infrastructure for entry consis-
tency can be leveraged to support processor consis-
tency and release consistency. Supporting these other
models requires that the compiler and runtime detect
writes to shared data, perform updates at other pro-
cessors in the order required by the model, and recover
from cache misses which occur when a processor ac-
cesses a shared data item not present in its local cache.
For this, Midway overloads the timestamp mechanism
described earlier. The compiler emits the same code
for a store to a shared address, but, at runtime, the
computed timestamp is treated differently.

Data items maintained according to processor or
release, but not entry, consistency, initially have the
high bit in their associated timestamp set. On a store
to the line, if the high bit of the timestamp field is
set, then the store will be performed at all other pro-
cessors independent of any particular synchronization
operation. The modified address is recorded in a per-
processor queue of pending updates and the high bit
of the timestamp is cleared to ensure the item is not
queued again. This strategy for queue updates allows
us to use the same compiler-emitted code sequence
when updating both entry consistent and non-entry
consistent data. Once the non-entry consistent data
has been queued, subsequent stores continue to clear
the timestamp field just as if the data were entry con-
sistent.

Associated with each cache line i+ a copyset that
defines the processors holding a copy of the line in
their local meniories. A pending update to a line need
only be performed at the processors in that line’s copy-
set. For release consistent data, pending updates are
flushed by a processor any time the processor’s re-
leasing synchronization operation is performed at an-
other acquiring processor. Processor consistent data
is flushed at taese points, as well as at the periodic
interval specified by the programmer. In either case,
when an update is flushed by a processor, the high bit
in the item’s timestamp is set to catch that processor’s
next store to the item at that processor.

Under entry consistency, all data bound to a syn-
chronization object is prefetched when the object is
acquired. With processor consistency and release con-
sistency, there is no associated synchronization object
and no way to know which data to prefetch or when to
prefetch it. Consequently, on a processor’s first refer-
ence to an item, that processor will not be in the item’s
copyset and will not have received any prior updates.
We detect this condition with a copyset fault, which is
implemented with virtual memory page faults.

Each processor marks virtual memory pages that
contain cache lines for which the processor is not in
the copyset as no-access. Access to such a page causes
a page fault, and the faulting processor fetches the
faulted page from the page’s home processor. Every
page has a home, based on the page’s virtual address.
Before the home node returns the page’s data, the
faulting node is added to the page’s copyset and all
other members are informed of the change. Any pro-
cessor but the home processor may remove itself from
the copyset of a page by notifying the page's home
processor.

With this strategy, all cache lines within a virtual




page are part of the same copyset. A page fault oc-
curs only when a processor adds itself to a cache line’s
copyset; othcrwise runtime write detection to shared
data is done with compiler-emitted code, rather than
with faults. Thus multiple processors may write to a
page at the same time.

For all three consistency models, Midway uses up-
date, rather than invalidate, to perform writes to other
processors. This is done for two reasons. First, it guar-
antees that processors never experience a cache miss
except on a copyset fault. Second, it enables the use of
the same update machinery used for entry consistency.

5 Performance

In this section we look at the behavior of a sim-
ple parallel program under Midway us .g both entry
consistency and release consistency. For our measure-
ments, we use two metrics which we present as a func-
tion of the number of processors on which an appli-
cation runs: execution time and message count. Our
measurements show that a program written to entry
consistency requires substantially fewer messages than

one to the stronger models. This translates into im-"

proved execution time.
§.1 The hardware platforms

Our implementation of Midway runs on MIPS
R3000-based DECstation 5000/120s and 5000/200s
on top of two networks: a 10Mb/sec ethernet and
a 155 Mb/sec ATM network. The operating sys-
tem is Mach 3.0 with CMU’s Unix server [Golub
et al. 90]. The DZCstation 5000/120 uses a 20Mhz
R3000 with a 12.5Mhz Turbochannel (TC) bus in-
terface. The 5000/200 uses a 25Mhz R3000 with a
25Mhz Turbochannel interface. Presently, we have
only four 155Mb/sec ATM network interfaces, and we
use these to connect the faster and more network ca-
pable 5000/200s through the central switch.

We present results on three configurations: slow-
ether, which uses the slower DS5000/120s con-
nected by ethernet; fast-ether, which uses the faster
DS5000/200s connected by ethernet, and fast-atm,
which is like fast-ether, except that we use the ATM
network instead. The slow-ether configuration allows
us to evaluate performance on more than four proces-
sors, while the fast-ATM network lets us look at the
system’s behavior on a faster network with faster pro-
cessors. We include the fast-ether numbers to provide
a common point of comparison between slow-ether and
fast-ATM.

5.2 Matrix multiply

We present the results of a simple matrix multiply
application running on several processors to provide
an integrity ch=ck for Midway, to show the interac-
tion between processor speed and network speed, and
to compare the beuavior of a single program under two
different consistency models. MM-ec is a matrix mul-
tiply program which multiplies two 512 x 512 floating
point matrices on from one to eight processors using
entry consisiency. A master processor writes the two
input matrices A and B, and *hen spawns slave pro-
cesses on the other machines. The master and each
slave machine acquires a non-exclusive (read) lock on
all of A, and a non-exclusive lock on a portion of 8.
Each processor then computes its pori‘on of the result
matrix C, and crosses a final barrier. It returns that
portion of C that it has written back to the master.

The main advantage of using entry consistency for
matrix multiply is that the initial message required to
satisfy each slave processor's non-exclusive lock acqui-
sition transfers the input matrices. Similarly, when a
slave terminates, the message it sends indicating that
it has crossed a barrier also transfers the results back
to the master. In effect, the consistency mode! in com-
bination with a synchronization protocol natural to
the problem provides optimal clustering of data, both
in terms of number of bytes transferred and number
of messages generated.

To assess the importance of this clustering, we have
written a version of matrix muitiply to use release,
rather than entry, consistency (MM-rc). Table 1 shows
the elapsed time, speedup, time spent computing and
transferring data, amount of data transferred, and
the total number of messages for MM-ec and MM-rc.
Since fast-ATM represents the best possible configu-
ration, we show the results of MM-rc only for it. In
the single-processor case, we compiled the program
to run on a uniprocessor, eliminating synchronization
and timestamp management overhead.

Elapsed time is the interval beginning after all pro-
cessors have started and ending when the master pro-
cessor terminates. This includes the time to move the
input and output data sets between processors. The
data transfer times shown are from the perspective
of the master processor {which sources and sinks all
data). The input and output data sizes are only a
function of the number of processors (problem par-
titioning), and not the processor, network or consis-
tency model. The number of messages is a function of
the number of processors and the consistency model.
The compute time is the time spent actually working
on the matrices and, as shown, scales with the number




Input Compute | Output Data
# Elapsed Transfer { Results | Transfer | Transferred #
Procs (secs) | Speedup | (secs) (secs) {secs) (mbytes) Msgs
MM.ec: slow-ether 1 282 1 0 o 0 0 0
2 148.4 1.90 12.92 132.4 3.05 2.14 24
4 849 332 12.08 66.3 6.51 4.81 72
6 65.0 4.34 13.72 44.4 6.92 7T.13 120
8 58.6 4.81 17.56 33.2 7.87 9.36 168
MM-ec: fast-ether 1 164 1 0 0 0 0 ]
2 92.8 1.77 8.70 814 2.66 2.14 24
4 83.3 3.08 8.50 40.6 4.17 4.81 72
MM-.ec: fast-ATM 1 164 1 0 0 0 ) 0
2 83.5 1.96 1.53 81.7 0.31 2.14 24
4 43.3 3.79 1.86 40.9 0.50 4.81 72
MM-rc: {ast-ATM 1 164 1 0 6 o 0 0
2 86.8 1.89 3.14 82.0 1.61 2.17 1802
4 484 3.39 6.06 41.1 1.28 4.97 5106

Table 1: Breakdown of the performance of matrix multiply using both entry consistency and release consistency.

of processors.

Looking only at the entry consistent configurations,
speedup is slightly less than linear because the com-
munication overheads do not decrease as processors
are added. The fact that speedup at 4 processors for
fast-ether is worse than for slow-ether shows the im-
pact of increasing processor performance without in-
creasing network performance. A single DECstation
5000/200 is roughly twice as fast at matrix multiply
as a DECstation 5000/120. Communication over-
head on both systems is roughly the same, therefore
there is less room for improvement when running on
a network of 5000/200s. In contrast, speedup is much
closer t+ linear on the fast-ATM network where com-
munication overhead is less than 6% of total execution
time (as opposed to almost 25% on the fast-ether con-
figuration).

By point of comparison, the Munin system yielded
an 8-fold speedup for an 8 processor matrix multiply
using release consistency running over a 10 Mb/sec
ethernet [Carter et al. 91]. The processors used there,
however were substantially slower than those used in
our fast-ether configuration. A single Munin proces-
sor could compute the product of two 400x400 inte-
ger matrices in a little over 700 seconds, almost five
times slower than a DS5000/200 running on a larger
(512x512) and harder (floating point) input set. From
this we conclude that uniprocessor performance has
reached the point where ethernet is no longer a vi-
able network for parallel processing, even for well-
structured parallel applications such as matrix mul-
tiply.

Moving to the release consistent runs, we can see

the impact of Midway’s implicit prefetch that comes
during lock acquisition for entry consistency. Instead
of transferring the entire input and output matrices in
single messages, as is done with entry consistency, the
release consistent implementation misses frequently as
can be seen by the number of messages sent. Most of
the messages correspond to the transfer of a page of
data. Specifically, each message for the entry con-
sistent run corresponds to a synchronization request,
which also occurs during the release consistent run.
The additional messages for the release consistent run
are for data transfer. The elapsed time difference be-
tween the release and entry consistent runs is due to
tue overhead of having to send more messages, even
though the total amount of data transferred is nearly
unchanged.

68 Conclusions

There exist a range of memory consistency mod-
els that provide different kinds of behavior both in
terms of semantics and performance. Strongly con-
sistent memory systems simplify porting and reason-
ing about programs written for shared memory mul-
tiprocessors but are limited in their ability to conceal
latency. Entry consistency takes into account both
synchronization behavior and the relationship between
synchronization objects and data. This allows the run-
time system to hide the network overhead of memory
references by folding all memory updates into synchro-
nization operations.
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