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Abstract

This paper describes the motivation, design and performance of Midway,
a programming system for a distributed shared memory multicomputer
(DSM) such as an ATM-based cluster, a CM-5, or a Paragon. Midway
supports a new memory consistency model called entry consistency.
Entry consistency guarantees that shared data becomes consistent at a
processor when the processor acquires a synchronization object known to
gVard ýie data. Entry consistency is weaker than other models described
in the literature, such as processor consistency and release consistency,
but it makes possible higher performance implementations of the
underlying consistency protocols. Midway programs are written in C,
and the association between synchronization objects and data must be
made with explicit annotations. As a result, pure entry consistent
programs can require more annotations than programs written to other
models. In addition to entry consistency, Midway also supports the
stronger release consistent and processor consistent models at the
granularity of individual data items. Consequently, the programmer can
tradeoff potentially reduced performance for the additional programming
complexity required to write an entry consistent parallel program.

]DTIC QT7P: 7-771 5

Ao t, 7ton F•r
1- -

-I., El .:.• .

I;i



The Midway Distributed Shared Memory System

Abstract other models. In addition to entry consistency, Mid-
way also supports the stronger release consistent and

This paper describes the motivation, design and per- processor consistent models at the granularity of ind:-
formance of Midway, a programming system for a dis- vidual data items. Consequently, the programmer can
tributed shared memory multicomputer (DSM) such as tradeoff potentially reduced performance for the addi.
an ATM-based cluster, a CM-5, or a Paragon. Mid- tional programming complexity required to write an en-
way supports a new memory consistency model called try consistent parallel program.
entry consistency. Entry consistency guarantees that
shared data becomes consistent at a processo - when the
processor acquires a synchronization object known to I Introduction
guard the data. Entry consistency is weaker than other
models described in the literature, such as processor Midway is a distributed shared memory (DSM) pro-
consistency and release consistency, but it makes pos- gramming system supporting multiple memory consis-
sible higher performance inmplementations of the un- tency models within a single parallel program. Mid-
derlying consistency protocols. Midway programs are way is intended for use on medium-scale multicom-
written in C, and the association between synchroniza- puters (fewer than 100 nodes), such as an ATM-based
tion objects and data must be made with explicit an- cluster [Rider 89], a TMC CM-5, or an Intel Paragon.
notations. As a result, pure entry consistent programs In addition to supporting processor consistency and
can require more annotations than programs written to release consistency, Midway supports a new memory

consistency model called entry consistency. Entry
This research was sponsored in part by The Defense Ad- consistency guarantees that shared data becomes con-

vanced Research Projects Agency, Information Science and sistent at a processor only when the processor acquires
Technology Office, under the title 'Research on Parallel Corn- a synchronization object that guards the data. Fur-
puting", ARPA Order No. 7330, issued by DARPA/CMO under thermore, the only data that is guaranteed to be con-
Contract MDA972-90-C-0035, by the Open Software Founda- s
tion (OSF), and by a grant from the Digital Equipment Corpo- sistent is that guarded by the acquired synchronization
ration. Beushad was partially supported by a National Science object. This allows an implementation of entry con-
Foundation Presidential Young Investigator Award. Sawdon. sistency to reduce the frequency of global communica-
was partially supported by a grant from the International Busi- tion by exploiting synchronization patterns between
ness Machines Corporation.

The views and conclusions contained in this document am processors. Midway's implementation of entry con-
th(rc of the authors and should not be interpreted as represent- sistency requires that the relationship between data
ing the official policies, either eipressed or implied, of DARPA, and synchronization objects (which is implicit in the
OSF, DEC, IBM, the NSF, or the U.S. govesunent. structure of a parallel program) be made explicit to

the compiler and the runtime system.
Midway supports multiple consistency models

within a single program to es• the. task ,f construct-
ing a program that runs efficiently on a DSM system.
A program running under Midway may contain data
that is processor consistent, release consistent, or en-



try consistent. Furthermore, within a single run of a memory system.
program, multiple consistency models may be active These observations about explicit synchrouiza-
at the same time. This allows the programmer to be- tion have led to a class of weakly consistent proto-
gin with a processor consistent parallel program, and cols [Dubois et al. 86, Scheurich & Dubois 87, Adve
thea selectively relax its consistency requirements for & Hill 89, Gharachorloo et al. 90]. Such protocols
shared data by modifying the program to use one of distinguish between normal shared accesses and syn-
the weaker models. chronization accesses. The only accesses that must

execute in a sequentially consistent order are those re-
1.1 Motivation lating to synchronization.I

A weaker model offers fewer guarantees about mem-
A wide range of memory consistency models ex- ory consistency, but it ensures that a "well-behaved"

ists, and each offers a different guarantee about the program executes as though it were running on a se-
strength and timeliness with which updates to shared quentially consistent memory system. The definition
memory take effect at processors distributed through- of "well-behaved" varies according to the model. For
out a network. In order of strength, these models example, in a processor consistent system, the pro-
include sequential consistency [Lamport 791, proces- grammer may not assume that all memory operations
sor consistency (Goodman & Woest 88], weak consis- are performed in the same order at all processors. (A
tency [Dubois et al. 86], release consistency (Ghara- load or store is globally performed when it is per-
chorloo et al. 90] and entry consistency, which is de- formed with respect to all processors. A load is per-
scribed in this paper. In order, each model can in- formed with respect to a processor when no write by
crease a processor's tolerance for latency in the mem- that processor can change the value returned by the
ory system by relaxing the rules that determine the load. A store is performed with respect to a processor
behavior of operations which write to shared mem- when a load by that processor will return the value of
ory. Aggressive implementations of the weaker mod- the store.) For weak consistency, the programmer may
els are capable of delivering higher performance than not assume that a processor's updates are performed
those of stronger ones because they better tolerate at other processors until the updating processor issues
network delays and limited bandwidth [Gharachorloo a synchronization operation. For release consistency,
et al. 91, Zucker & Baer 92]. only a processor's releasing synchronization operation

Programmers often assume that memory is sequen- guarantees that its previous updates will be performed
lially consistent. This means that the "result of any at other processors, and only a processor's acquiring
execution is the same as if the operations of all the pro- synchronization operation guarantees that other pro-
cessors were executed in some sequential order, and cessors' updates have been performed at it. (A releas-
the operations of each processor appear in this se- ing synchronization operation signals to other proccs-
quence in the order specified by its program" [Lamport sors that shared data is available, while an acquiring
79]. In a sequentially consistent system, one proces- operation signals that shared data is needed.) For en-
sor's update to a shared data value is reflected in every try consistency, data is only consistent on an acquiring
other processor's memory before the updating proces- synchronization operation, and only the data known
sor is able to issue another memory access. Unfor- to be guarded by the acquired object is guaranteed to
tunately, sequentially consistent memory systems pre- be consistent.
clude many optimizations such as reordering, batch- Programs with good behavior do not assume a
ing, or coalescing. These optimizations reduce the per- stronger consistency guarantee from the memory sys-
formance impact of having distributed memories with tem than is actually provided. Each model's definition
non-uniform access times [Dubois et al. 86]. of good behavior places demands on the programmer

Memory consistency requirements can be relaxed to ensure that a program's access to shared data con-
by taking advantage of the fact that most parallel forms to that model's consistency rules. For example,
programs already define their own higher-level con-
sistency requirements. This is done by means of ex- Ila practice, synchronization accesses need only be procesor
plicit synchronization operations such as lock acqui- consistent [Goodman & Woest 881, that is, writes issued from
s~ n',• and barrier entry. These operations impose an a single processor must be perforned in the order issued at
ordering on access to data within the program. In all processors, but writes fr"m diffo-rent proc'essors ,cc! -,L be
the absence of such operations, a multithreaded pro- obsercd in the same oider everywhete. 14he distinction between

sequentiaily consistent and processor c.-nsistent synchronizatioii
gram is in effect relinquishing all control over the order is small, however it is easier to build a processor consistent
and atomicity of memory operations to the underlying system.



with entry consistency, a processor must not access a software and has no dependencies on any specific hard-
shared item until it has performed a synchronization ware characteristic other than the ability to send rnes-
operation on the item's associated synchronization ob- sages between processors. A strictly software solution
ject. These rules provide the memory system with in- is attractive because it allows us to exploit application
formation to allow a well-behaved program to execute specific informiation at the lowest levels of the system.
as though it were running on sequentially consistent It also ensures portability across a wide range of multi-
memory system. Unfortunately, the rules can add an computer architectures. The system described in this
additional dimension of complexity to the already dif- paper is operational on a cluster of MIPS R3000-based
ficult task of writing new parallel programs and port- DECstations running CMU's Mach 3.U operating sys-
ing old ones. The additional programming complexity tem [Accetta et al. 86] over both ethernet and an
can result in higher performance, though, bccause it ATM network.
provides greater control over communication costs.

1.2 Multiple models 1.3 Related work

Midway allows a programmer to navigate through Memory consistency models for DSM systems have
a subset of the consistency models, selecting one, or been implemented in both hardware and software.
several, to achieve an acceptable tradeoff between per-
formance and programmability. A program written for Earlier hardware-eased systems used snooping pro-
Midway can use entry consistency, release consistency, tocols where each processor monitored a shared bus
or processor consistency. For all of these models, lo- t ile processorpco c e stanordcal memories on each processor cache recently usd DASH [Lenoski et al. 92] multiprocessor supports re-
data andories scon eachrobjects.r Wthe rentry cnsi- lease consistency in hardware using a directory-basedd a ta a n d sy n ch ro n iza tio n o bjects . W ith e n try co nsis-p r t c l o e a d di t d l w - t n y i t r o n c .
tency, communication between processors occurs only protocol over a dedicated low-latency interconnect.
when a processor acquires a synchronization object. Most software systems intended for parallel pro-
Only the data guarded by the synchronization object gramming have implemented these same consistency
is guaranteed to become consistent at the time of the models using conventional virtual memory manage-
acquire. Consequently, Midway provides an execution ment hardware and local area networks. Li's Ivy sys-
environment where a parallel program's performance tem [Li 86] described the first implementation of such
is ultimately limited only by its internal synchroniza- a page-based DSM and was followed by several other
tion patterns, systems [Fleisch 87, Forin et al. 89]. Munin [Carter

Although entry consistency enables the use of low- et al. 91] is a software system which uses release
overl-ead consistency mechanisms, writing an entry consistency to support automatic data caching over
consistent program requires more work than writing a local area network. Munin is unique among weak
one to a stronger model. For example, every synchro- consistency systems, in that it implements multiple
nization object must be identified; every use of such an consistency protocols which can be used on a type-
object must be explicit; every shared data item must specific basis. Munin uses hints from the programmer
be associated with a synchronization object; and syn- to determine the access patterns to shared data items,
chronization accesses should be qualified as read-only and then selects the best consistency protocol for each.
or read-write for best performance. Munin differs from Midway in that it offers multiple

To make these restrictions less onerous, Midway implementations of a single consistency model (release
provides a graceful migration path away from more consistency), whereas Midway supports multiple con-
strongly consistent models to entry consistency. A sistency models within a single program.
programmer begins with a processor consistent par- Lazy release consistency [Keleher et al. 921
allel program or algorithm and sets Midway's consis- is a technique for implementing release consistency
tency model "dial" to processor consistency. The run- through causal broadcast. It has been shown through
time system can be used to collect reference patterns simulation to greatly reduce the number of messages
for shared data so that strongly consistent code which required by systems such as Munin. Our work with en-
accesses heavily shared data can be reorganized to use try consistency can be considered as an extreme vari-
a weaker consistency model. With this, a programmer ant of lazy release consistency in that Midway's ex-
can quickly get an application running on the DSM, plicit association between synchronization objects and
although the application may not run very quickly. data offers the runtime system additional information

Midway implements its consistency protocols in about causality.



1.4 The rest of this paper Midway's implementation of entry consistency uses
an update-based protocol. In relatively high latency

In Section 2 we describe entry consistency. In S-ýc- networks, where interprocessor communication is on
tion 3 we describe Midway's programming interface in the order of thousands of processor cycles, the effect of
the context of multiple consistency models. In Sec- a cache miss on processor performance can be substan-
tion 4 we describe the important aspects of Midway's tial. For example, assuming a RISC processor with a
implementation and show that the infrastructure re- 10 as cycle time, the latency of resolving a cache miss
quired by entry consistency can be adapted to provide over an ATM network with a 100 psec round-trip time
each of the stronger consistency models. In Section 5 is on the order of 10,000 instructions. Consequently, it
we discuss performance. In Section 6 we present our is critical to use an update-based protocol to minimize
conclusions. the chance that a processor experiences a cache miss.

An advantage of entry consistency with an update-
based protocol is that interprocessor communication

2 Entry consistency is only necessary during the acquisition of synchro-
nization objects. By updating only at synchronization

Entry consistency takes advantage of the relation- points, and only between the synchronizing processors,
ship between specific synchronization objects that pro- new values for data guarded by a synchronization ob-
tect critical sections and the shared data accessed ject may be coalesced and delivered to a processor all
within those critical sections. A critical section is a at once. By ensuring that updates are performed with
region of code that accesses data which may have been respect to a processor when it enters a critical section,
written by another processor. A synchronization ob- unexpected delays in a critical section as a result of
ject controls a processor's access to the code and data cache misses cannot occur. Moreover, no communica-
in the critical section. Examples of critical sections tion is required for repeated accesses and releases of
are code sequences guarded by a mutex, or phased by the same synchronization object on the same proces-
a barrier. In an entry consistent system, a proces- sor - common patterns in parallel programs [Eigers
sor's view of shared memory becomes consistent with 89, Bennett et al. 901.
the most recent updates only when it enters a critical
section. 2.2 Caching synchronization objects

The entry consistent model matches that already
used by many shared memory parallel programs, Entry consistency facilitates strategies which per-
namely, the use of critical sections to guard access mit synchronization objects to be cached on the pro-
to shared data for which the results of ai. unguarded cessor(s) where they were most recently used. For a
access is undefined, synchronization object s, we define the owner as the

processor that last acquired s. Only the owner of s
2.1 Performing store operations may perform updates to the data guarded by s. The

processor that owns a synchronization object may en-
A consistency model does not define whether store ter and exit the associated critical sections without

operations are performed at a processor using an having to communicate updates of shared memory to
invalidation-based or an update-based protocol. With other processors. A processor becomes an owner of
an invalidation-based protocol, an operation is per- s by sending a message to the current owner. The
formed at a remote processor by invalidating an entry current owner ensures that all updates to the data
in that processor's local cache. The processor's next guarded by s are then performed at the new owner.
access to the invalidated entry results in a cache miss An unfortunate aspect of single ownership is that no
and a round-trip network message to fetch the missed more than one processor at a time can access a given
value. With an update-based protocol, an operation shared location even if the location is only being read.
is performed at a remote processor when the stored To guarantee consistency, a processor must hold the
value is deposited in that processor's cache. This al- appropriate synchronization object. However, that
lows the next access to the item to always be satisfied synchronization object, if used in the classical sense
locally. The advantage of an invalidation-based proto- (such as a semaphore), only permits mutually exclu-
col is that consistency messages can be smaller because sive access to the data. Consequently, straightforward
they contain only addresses, not data. The advantage use of synchronization objects to ensure consistency
of the update-based protocol is that it greatly reduces can limit concurrency.
the likelihood of a cache miss. We address this problem by defining two modes



of access to synchronization objects: exclusive and 3 Other models in Midway
non-exclusive. Synchronization objects continue to be
owned by a single processor, but may be replicated if A parallel program's consistency requirements can
they are held only in non-exclusive mode. A processor be buried within its algorithms and sharing pat-
must perform an exclusive access to a synchronization terns. Midway's implementation of entry consistency
object s in order to update any data guarded by s. requires that they be made explicit. ThL; may be dif-
By definition, that processor becomes the owner of ficult because it can require a complete understanding
s. Reading data guarded by s, though, only requires of a program or algorithm, and can be a major barrier
non-exclusive access to s. to porting someone else's code.

An exclusive-mode access to a synchronization ob- From a performance standpoint, a complete trans-
ject s requires that no other processor holds s in formation into entry consistency may not be necessary.
non-exclusive mode. After an exclusive mode access In many parallel programs, most communication is of
to s has been performed, any processor's next non- a few primary data structures. While a large num-
exclusive mode access to 8 is performed with respect ber of secondary data structures may be used, they
to the owner of s. This enables a processor to perform are shared, or at least modified, with low frequency.
a sequence of non-exclusive accesses to s without hay- There would be only a marginal performance impact
ing to communicate with s's owner each time. when using a stronger consistency model to manage

these infrequently modified items. For example, some
2.3 Programming to entry consistency programs maintain a set of flags which change infre-

quently, such as when new data is available, or when
Entry consistency makes several assumptions about an algorithm has terminated. This kind of data may

the behavior of parallel programs and the runtime en- be most easily managed as processor consistent. There
vironment. First, as an instance of a weakly consis- also exist programs that can tolerate minor inconsis-
tent protocol, entry consistency requires that synchro- tencies in their results, and underspecify their synchro-
nization accesses be distinguished from other accesses. nization. This is done, for example by locus, mp3d and
Second, entry consistency requires an association be- pthor from the Splash application suite [Singh et al.
tween shared data and its guarding synchronization 92]. These programs can be converted to entry con-
object. Third, to enable concurrent read-sharing, en- sistency by, for example, binding all data to a barrier,
try consistency requires that exclusive synchronization but this would oversynchronize the processors. In-
accesses are distinguished from non-exclusive accesses. stead, managing the data with its initially assumed
Finally, entry consistency requires that updates are consistency model may be the best solution.
performed with respect to an acquiring processor. The Because entry consistency may be hard to use and
last constraint affects Midway's implementation, while may not always offer a performance ddvantage, a Mid-
the first three affect its programming interface. Specif- way program may also contain data which is release
ically, or processor consistent. Entry consistent data is asso-

ciated with a synchronization object. Data not associ-
* All synchronization objects should be explicitly ated with a synchronization object, but with a "flush

declared as instances of one of Midway's synchro- interval" is maintained according to processor consis-
nization data types, which include locks and bar- tency. The flush interval controls the rate at which
riers. updates are propagated (in issue order) to other pro-

* All shared data must be explicitly labeled with cessors. An item that is neither associated with a

the keyword shared, which is understood by the synchronization object nor a flush interval is assumed

compiler. to be release consistent. A processor's updates to re-
lease consistent data are performed at remote proces-

* All shared data must be explicitly associated with sors only when a release from the updating processor
at least one synchronization object. This is made is necessary to satisfy another processor's acquire.
by calls to the runtime system, is dynamic, and
may change during the execution of a program. 4 Implemnentatioii

Programs that include the necessary labeling infor-
mation, and precede all accesses to shared data with The implementation of Midway consists of three
an access to the appropriate synchronization object main components: a set of keywords and function calls
will observe a sequentially consistent shared memory. used to annotate a parallel program, a compiler which



generates code to maintain reference information for 4.2 Synchronization management
shared data, and a runtime system to implement sev-
eral consistency models. Distributed synchronization management enables

processors to acquire synchronization objects not
presently held in their local memories. Two types of

4.1 Compiler and language support for synchronization objects are supported: locks and bar-

Midway riers. Locks are acquired in either exclusive or non-
exclusive mode by locating the lock's owner using a
distributed queueing algorithm [Forin et al. 891.

Barriers permit SIMD-style processing by synchro-
Midway's concurrency primitives are based on the nizing multiple processors across sequential phases of

Mach C-Threads interface [Cooper & Draves 881. A a computation. A processor delays at a barrier until
Midway program is written in C, and looks like many all other processors reach that same barrier. Shared
other parallel C programs that use thread manage- data accessed within a barrier must be made consis-
ment directives such as fork and join, and synchro- tent only at the point where the barrier computation
nization primities such as lock and unlock. Shared proceeds from one phase to the next. Within a phase
data can be allocated either dynamically or statically, there are no consistency guarantees for data updated
but must be tagged as shared during storage alloca- during that phase (unless other synchronization prim-
tion. All references to shared data, however, do not itives are used).
need a shared qualifier, so procedures can take point- Midway associates a manager processor with each
ers to data which is either shared or unshared. barrier synchronization object. Processors "cross" the

Midway requires a small amount of compile- barrier by sending a message to the manager and wait-

time support to imple-z,,t its consistency protocols. ing for a reply. The crossing message contains the bar-

Whenever the compiler generates code to store a new rier name and all updates to shared data associated

value into a shared data item, it also generates code with the barrier that were performed by the crossing
that marks the item as "dirty" in an auxiliary data processor. The manager coalesces the updated valuesstructure. Other information necessary to implement it receives from all processors, then releases the pro-strutur. Oher nfomaton ncesaryto ipleent cessors by sending the coalesced updates back to each
entry consistency, such as the association between syn- cessors bsding alsc upp atermbato each
chronization objects and guarded data, is specified at processor. Midway also supports a terminating bar-runtime with procedure calls into Midway's runtime tie" that can be used to coalesce the final results of a
system. program at a single processor. Upon crossing a termi-nating barrier, the data is coalesced at the manager,

An alternative to relying on the compiler to gen- but is not flushed back to the participating processors.
erate code which marks items as dirty is to use the
virtual memory system to trap writes to shared data. 4.3 Cache management
This is the approach taken with page-based systems
such as Ivy and Munin. Although this approach al- Distributed cache management ensures that a pro-
lows programs to run with an unmodified compiler, it cessor never enters a critics! --ction without having re-
has several drawbacks that can limit its performance. ceived all updates to the shared data guarded by that
First, virtual memory systems, and their underlying synchronization object. While this condition could
MMU hardware, do not have particularly fast fault be satisfied by transferring all shared data guarded
handling times [Appel & Li 91], and those times are by the synchronization object, entry consistency re-
getting relatively slower, not faster (Anderson et al. quires only that updated data more recent than that
91]. Second, page-based strategies can incur a large contained in an acquiring processor's cache be trans-
number of write-faults in the presence of false shar- ferred. To determine which updates are more rec rnt
ing. This happens when unrelated data items on the than others, Midway uses Lamport's happens-be~ore
same page are written by different processors. Third, relationship [Lamport 781 to impose a partial ordering
faults which occur during a critical section increase the on updates to shared data with respect to synchro-
amount of time to execute the critical section, thereby nization accesses.
increasing contention. Similarly, faults which occur Each processor pi maintains a monotonically in-
during a barrier sequence result in processors finish- creasing counter c which serves as its local clock.
ing at staggered times, ei" though the computation Whenever pi sends a message, for example to synchro-
may statically appear load-nalanced. nize, to pj, it increments ci and includes ci in the mes-



sage. Upon receipt of the message, pi sets its clock ej Data items maintained according to processor or
to maz(ci,ci). Each synchronization object s has an release, but not entry, consistency, initially have the
associated timestamp t, which is set to the value of ci high bit in their associated timestamp set. On a store
whenever its ownership transfers to another processor to the line, if the high bit of the timestamp field is
pp. Each shared data value v guarded by s has an as- set, then the store will be performed at all other pro-
sociated timestamp t. that is logically set to the local cessors independent of any particular synchronization
clock value whenever v is updated. When processor pi operation. The modified address is recorded in a per-
requests a from pj, the request contains pi's last value processor queue of pending updates and the high bit
of t,, ,.i, which is the "time" that pi last observed s. of the timestamp is cleared to ensure the item is not
For each shared value v guarded by s, if t, > t,.i, then queued again. This strategy for queue updates allows
pi's cache has a stale version of v and pi must t. nsfer us to use the same compiler-emitted code sequence
the new value of v with s. when updating both entry consistent and non-entry

Timestamps are arranged in memory so that the consistent data. Once the non-entry consistent data
runtime system can quickly convert from a shared has been queued, subsequent stores continue to clear
item's address to its timestamp. Midway avoids com- the timestamp field just as if the data were entry con-
puting a timestamp for each update, delaying until sistent.
the timestamp is needed by the synchronization pro- Associated with each cache line i', a copyset that
tocol. On store, the local timestamp field is set to defines the processors holding a copy of the line in
zero to indicate that the associated data item has their local memories. A pending update to a line need
been modified. When a synchronization object s is only be performed at the processors in that line's copy-
requested from a processor pi, all data guarded by s set. For release consistent data, pending updates are
whose timestamp is zero will have their timestamps flushed by a processor any time the processor's re-
set to ci. When a shared data item is allocated, the leasing synchronization operation is performed at an-
granularity of the timestamp (in effect, the cache line other acquiring processor. Processor consistent data
size) can be selected by the programmer according to is flushed at taese points, as well as at the periodic
the expected access patterns to the item. For exam- interval specified by the programmer. In either case,
pie, a large contiguous object may be backed by many when an update is flushed by a processor, the high bit
timestamps to improve the granularity of sharing and in the item's timestamp is set to catch that processor's
update information. Timestamp granularity can be as next store to the item at that processor.
fine as a single byte. Under entry consistency, all data bound to a syn-

Midway does not assume that processors have in- chronization object is prefetched when the object is
finite caches. At any point, a processor may discard acquired. With processor consistency and release con-
a shared data item as long as that processor does not sistency, there is no associated synchronization object
presently own the synchronization object guarding the and no way to know which data to prefetch or when to
item. When next acquiring the guarding synchroniza- prefetch it. Consequently, on a processor's first refer-
tion object a, the discarding processor indicates tuat ence to an item, that processor will not be in the item's
it has not held a for a "very long time." copyset and will not have received any prior updates.

4.4 Supporting stronger consistency We detect this condition with a cop gset fault, which is
4.pors simplemented with virtual memory page faults.
models Each processor marks virtual memory pages that

Much of Midway's infrastructure for entry consis- contain cache lines for which the processor is not in

tency can be leveraged to support processor consis- the copyset as no-access. Access to such a page causes

tency and release consistency. Supporting these other a page fault, and the faulting processor fetches the

models requires that the compiler and runtime detect faulted page from the page's home processor. Every

writes to shared data, perform updates at other pro- page has a home, based on the page's virtual address.

cessors in the order required by the model, and recover Before the home node returns the page's data, the

from cache misses which occur when a processor ac- faulting node is added to the page's copyset and all

cesses a shared data item not present in its local cache, other members are informed of the change. Any pro-

For this, Midway overloads the timestamp mechanism cessor but the home processor may remove itself from
described earlier. The compiler emits the same code the copyset of a page by notifying the page's home
for a store to a shared address, but, at runtime, the processor.
computed timestamp is treated differently. With this strategy, all cache lines within a virtual



page are part of the same copyset. A page fault oc- 5.2 Matrix multiply
curs only when a processor adds itself to a cache line's
copyset; otherwise runtime write detection to shared We present the results of a simple matrix multiply
data is done with compiler-emitted code, rather than application running on several processors to provide
with faults. Thus multiple processors may write to a an integrity rh':ck for Midway, to show the interac-

page at the same time. tion between processor speed and network speed, and
For all three consistency models, Midway uses up- to compare the b~iiavior of a single program under two

date, rather than invalidate, to perform writes to other different consistency models. MM-ec is a matrix rnul-
processors. This is done for two reasons. First, it guar- tiply program which multiplies two 512 x 512 floating
antees that processors never experience a cache miss point matrices on from one to eight processors using
except on a copyset fault. Second, it enables the use of entry consistency. A master processor writes the two
the same update machinery used for entry consistency. input matrices A and B, and then spawns slave pro-

cesses on the other machines. The master and each
slave machine acquires a non-exclusive (read) lock on

5 Performance all of A, and a non-exclusive lock on a portion of B.
Each processor then computes its por'on of the result

In this section we look at the behavior of a sim- matrix C, and crosses a final barrier. It returns that
pie parallel program under Midway us'.ig both entry portion of C that it has written back to the master.
consistency and release consistency. For our measure- The main advantage of using entry consistency for
ments, we use two metrics which we present as a func- matrix multiply is that the initial message required to
tion of the number of processors on which an appli- satisfy each slave processor's non-exclusive lock acqui-
cation runs: execution time and message count. Our sition transfers the input matrices. Similarly, when a
measurements show that a program written to entry slave terminates, the message it sends indicating that
consistency requires substantially fewer messages than it has crossed a barrier also transfers the results back
one to the stronger models. This translates into im-" to the master. In effect, the consistency model in com-
proved execution time. bination with a synchronization protocol natural to

the problem provides optimal clustering of data, both
5.1 The hardware platforms in terms of number of bytes transferred and number

of messages generated.
Our implementation of Midway runs on MIPS To assess the importance of this clustering, we have

R3000-based DECstation 5000/120s and 5000/200s written a version of matrix multiply to use release,
on top of two networks: a 10Mb/sec ethernet and rather than entry, consistency (MM-rc). Table I shows
a 155 Mb/sec ATM network. Tie operating sys- the elapsed time, speedup, time spent computing and
tern is Mach 3.0 with CMU's Unix server [Golub transferring data, amount of data transferred, and
et al. 901. The DECstation 5000/120 uses a 20Mhz the total number of messages for MM-ec and MM-rc.
R3000 with a 12.5Mhz Turbochannel (TC) bus in- Since fast-ATM represents the best possible configu-
terface. The 5000/200 uses a 25Mhz R3000 with a ration, we show the results of MM-rc only for it. In
25Mhz Turbochannel interface. Presently, we have the single-processor case, we compiled the program
only four 155Mb/sec ATM network interfaces, and we to run on a uniprocessor, eliminating synchronization
use these to connect the faster and more network ca- and timestamp management overhead.
pable 5000/200s through the central switch. Elapsed time is the interval beginning after all pro-

We present results on three configurations: slow- cessors have started and ending when the master pro-
ether, which uses the slower DS5000/120s con- cessor terminates. This includes the time to move the
nected by ethernet; fast-ether, which uses the faster input and output data sets between processors. The
DS5000/200s connected by ethernet, and fast-aim, data transfer times shown are from the perspective
which is like fast-ether, except that we use the ATM of the master processor (which sources and sinks all
network instead. The slow-ether configuration allows data). The input and output data sizes are only a
us to evaluate performance on more than four proces- function of the number of processors (problem par-
sors, while the fast-ATM network lets us look at the titioning), and not the processor, network or consis-
system's behavior on a faster network with faster pro- tency model. The number of messages is a function of
cessors. We include the fast-ether numbers to provide the number of processors and the consistency model.
a common point of comparison between slow-ether and The compute time is the time spent actually working
fast-ATM. on the matrices and, as shown, scales with the number



I I 1 In put C om pute O tut Data
# Elapsed Tnf Rel T ransfer Results Transfer Transferred #

Procs. (secs) Speedup (secs) (sees) (scs) (mbytes) Mpgs

"MM-ec: slow-ether 1 282 1 0 0 0 0 0
2 148.4 1.90 12.92 132.4 3.05 2.14 24
4 84.9 3.32 12.08 66.3 6.51 4.81 72
6 65.0 4.34 13.72 44.4 6.92 7.13 120
8 58.6 4.81 17.56 33.2 7.87 9.36 168

MM-ec fast-ether 1 164 1 0 0 0 0 0
2 92.8 1.77 8.70 81.4 2.66 2.14 24
4 53.3 3.08 8.50 40.6 4.17 4.81 72

MM-ec- fast-ATM 1 164 1 0 0 0 0 0
2 83.5 1.96 1.53 81.7 0.31 2.14 24
4 43.3 3.79 1.86 40.9 0.50 4.81 72

MM-rc: fast-ATM 1 164 1 0 0 0 0 0
2 86.8 1.89 3.14 82.0 1.61 2.17 1802
4 48.4 3.39 6,06 41.1 1.28 4.97 5106

Table 1: Breakdown of the performance of matrix multiply using both entry consistency and release consistency.

of processors. the impact of Midway's implicit prefetch that comes

Looking only at the entry consistent configurations, during lock acquisition for entry consistency. Instead

speedup is slightly less than linear because the com- of transferring the entire input and output matrices in

munication overheads do not decrease as processors single messages, as is done with entry consistency, the
are added. The fact that speedup at 4 processors for release consistent implementation misses frequently as

fast-ether is worse than for slow-ether shows the im- can be seen by the number of messages sent. Most of

pact of increasing processor performance without in- the messages correspond to the transfer of a page of
creasing network performance. A single DECstation data. Specifically, each message for the entry con-

5000/200 is roughly twice as fast at matrix multiply sistent run corresponds to a synchronization request,
as a DECstation 5000/120. Communication over- which also occurs during the release consistent run.

head on both systems is roughly the same, therefore The additional messages for the release consistent run
there is less room for improvement when running on are for data transfer. The elapsed time difference be-

a network of 5000/200s. In contrast, speedup is much tween the release and entry consistent runs is due to
closer tr, linear on the fast-ATM network where com- tue overhead of having to send more messages, even

munication overhead is less than 6% of total execution though the total amount of data transferred is nearly
time (as opposed to almost 25% on the fast-ether con- unchanged.
figuration).

By point of comparison, the Munin system yielded
an 8-fold speedup for an 8 processor matrix multiply 6 Conclusions
using release consistency running over a 10 Mb/sec
ethernet [Carter et al. 91]. The processors used there,
however were substantially slower than those used in There exist a range of memory consistency mod-
our fast-ether configuration. A single Munin proces- els that provide different kinds of behavior both in
sor could compute the -roduct of two 400x400 ilte. terms of semantics and performance. Strongly con-
ger matrices in a little over 700 seconds, almost five sistent memory systems simplify porting and reason-
times slower than a DS5000/200 running on a larger ing about programs written for shared memory mul-
(512 x512) and harder (floating point) input set. From tiprocessors but are limited in their ability to conceal
this we conclude that uniprocessor performance has latency. Entry consistency takes into account both
reached the point where ethernet is no longer a vi- synchronization behavior and the relationship between
able network for parallel processing, even for well- synchronization objects and data. This allows the run-
structured parallel applications such as matrix mul- time system to hide the network overhead of mewory
tiply. references by folding all memory updates into synchro-

Moving to the release consistent runs, we can see nization operations.
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