

CMA 305

A procedure for a posteriori error estimation for $h-p$ finite element methods

Mark Ainsworth ${ }^{\prime}$ and J. Tinsley Oden

Received 14 Octoher 19y

Abstract

A new approach to a posteriori error estimation is outtined which is applicable to general h-p tinite element approximations of general classes of boundary value problems. The approach makes ase of duality arguments and is based on the element residual method (ERM). Important aspects of the method are that it provides a systematic approach toward deriving element boundary condtion for the mon uniform and irreguiar $h-p$ meshes. In the present exposition. a brief outine of the theoretical foundations of the method is given tegether with the resuls of its application to several representative problems. These results show that the approach is applicable to general linearly elliptic swtems. including unsymmetrical operators, and that the method is valid for broad classen of linear and non-linear prohlems.

1. Introduction

In a recent paper [1], we developed a deneral theory for a posteriori error estimation which has the following attributes:
(1) it employs a special variant of the element residual method [1-3]:
(2) under mild assumptions, it produces estimates in convenient energy type norms which may not be directly associated with the actual bilinear form of the problem under consideration;
(3) it employs a local duality argument that leads to a guaranteed global upper bound to the error and which generalizes the duality method of Kelly [4];
(4) it is valid for symmetric and unsymmetric operators:
(5) under additional assumptions, the approach can lead to asymptotically exact error estimators:
(6) it is well suited to irregular meshes with non-uniform $h-p$ finite element approximations and functions independently of the order p of the local element shape functions:
(7) it employs a systematic scheme for flux balancing on element boundaries that substantially increases the quality of the local and global effectivity indices.

[^0]The theory generalizes previous work on the ERM. In particular. for the yectat cance of limeat triangles $(p=1)$. the conjecture made by Bank and Weiner $|2|$ is contimed: that a certain variant of the ERM always provides an upper bound on the error.

Our purpose in the present paper is to brietly outline the principat features of the theory in connection with a simple model elliptic boundary value problem and to focus on issues of implementation. The rohustness and generality of the method is demonstrated by some applications including elliptic systems and unsymmetrical problems. The applicabiliy of the method to arbitrary $h-p$ meshes is atso illustrated. In particular. it is demonstrated that the method yieds very good local estimates both for meshes with odd and with even order hape functions on neighboring elements, in contrast to other technigues propoced in recemt literature.

2. Theoretical foundations

2.1. Model problem

For clarity, we begin by considering a simple model elliptic boundary value problem in wo dimensions: Find $u=u(x, y)$ such that

$$
\begin{align*}
& -\Gamma \cdot\left(u \Gamma_{u}\right)+b \cdot \Gamma u+c u=f \text { in } \Omega . \\
& a \frac{i u}{\partial n}=g \text { on } \Gamma_{i} . \quad u=0 \text { on } \Gamma_{n} . \tag{1}
\end{align*}
$$

where Ω is a connected Lipschitzian domain in \mathbb{R}^{2} with boundary is $\Omega-\bar{T}, \bar{I}$, . In (1), the coefficients a, b, c and data $f . g$ are assumed to be such that $/$ exists. is unique. is continuous on the interior of Ω and depends condinuously on the data in appropriatic norms. The weak form of (1) is as follows: Find $u \in 1$ such that

$$
B(u, v)=L(v) \quad \forall v \in 1 .
$$

where

$$
\begin{equation*}
\eta=\left\{v \in H^{\prime}(\Omega): \gamma v=0 \text { on } I_{n},\right\} \tag{3}
\end{equation*}
$$

and $B: x \times y \rightarrow \mathbb{R} . L: \rightarrow$ 若 are the forms

$$
\begin{equation*}
B(u \cdot v)=\int_{\varrho}\left(a \Gamma_{u} \cdot \Gamma_{v}+v b \cdot \Gamma_{u}+c w\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
L(v)=\int_{\Omega} f v \mathrm{~d} x+\int_{I,} g v \mathrm{~d} s \tag{5}
\end{equation*}
$$

2.2. Partitioning

We next introduce a partitioning P of Ω into $N=N(P)$ subdomains (finite clements) Ω_{κ} where $\Omega=\bigcup \Omega_{K}$ and construct on P a sace $\hat{\lambda} \not \subset$ of piecewise polynomial functions. The space $\{$ could include arbitrary $h-p$ finite element approximations of the type discussed in $[5]$.

Following standard finite element procedures, we suppose that a function $\ddot{A} \in \mathcal{A}$ is obtained which represents. in some sense, an approximation of the solution of (1). Our goal is to use the available information to calculate an estimate of the error

$$
c^{\prime}=u-\dot{u}
$$

in an appropriate norm
With regard to the partition.P we introduce the following notation: B_{A}, L_{A} are localizations of the forms in (+) and (5).

$$
\begin{align*}
& B_{\kappa}(u \cdot v)=\int_{\Omega_{\Lambda}}(a \Gamma u \cdot \Gamma v+v b \cdot \Gamma u+c u v) \mathrm{d} x . \tag{6}\\
& B(u, v)=\sum_{\kappa}^{\dagger} B_{k}(u, v) . \tag{7}\\
& L_{\Lambda}(v)=\int_{g_{\Lambda}} f v \mathrm{~d} x+\int_{I_{\mathrm{A}} \ldots s g_{A}} g v \mathrm{~d} s . \tag{x}\\
& L(v)=\sum_{\kappa 1}^{\vdots} L_{K}(v) . \tag{9}
\end{align*}
$$

for $u, v \in 1$. Further x_{k} is a local subspace of 1 . with

$$
\begin{equation*}
x=\bigoplus_{k}^{\grave{\#}} x_{k} . \tag{i0}
\end{equation*}
$$

There now arises the issuc of the norm in which we shall measure the error e. For this purpose, we introduce a symmetric, positive definite bilinear form $a: a \times 1 \rightarrow \mathbb{B}$.

$$
\begin{equation*}
a(u, v)=\int_{s}\left(\bar{a} \nabla_{u} \cdot \nabla v+\bar{c} u v\right) \mathrm{d} x . \tag{11}
\end{equation*}
$$

where \bar{a} and \bar{c} are constants which are arbitrary except for the reguirement that the original bilinear form $B(\cdot$,$) of (4)$ is coercive with respect to the norm induced by $a(\cdot, \cdot)$. That is,

$$
\begin{equation*}
\sup _{, \sim} \frac{|B(u, v)|}{\|v\|} \geqslant \beta\|u\|, \quad \forall u \in x . \tag{12}
\end{equation*}
$$

where $\beta>0$ is a constant. and

$$
\begin{equation*}
\|v\|_{1}=\sqrt{a(v \cdot v)} . \tag{1.3}
\end{equation*}
$$

In adsition, we write

$$
\begin{equation*}
a(u, v)=\sum_{k}^{\prime} a_{k}(u, v) . \tag{14}
\end{equation*}
$$

$$
\begin{align*}
& a_{K}(u, v)=\int_{\Omega_{\Lambda}}(a \Gamma u \cdot \Gamma v+\bar{c} u v) \mathrm{d} x . \tag{15}\\
& \|v\|_{1, \kappa}^{\prime}=a_{k}(v, v) . \tag{16}\\
& \|v\|,=\sum_{k=1}^{\searrow}\|v\|_{1, k}^{*} . \tag{17}
\end{align*}
$$

We also introduce the averaged local flux

$$
\begin{equation*}
\left\langle\boldsymbol{n}_{\kappa} \cdot a \nabla i u\right\rangle(s)=\boldsymbol{n}_{\kappa} \cdot\left[\left.\left(1-\alpha_{\kappa}(s)\right) a \Gamma i u\right|_{\kappa}+\alpha_{\kappa},\left.(s) a \Gamma \hat{u}\right|_{,}\right] . \tag{18}
\end{equation*}
$$

where s is a point on the interelement boundary $\Gamma_{\kappa^{\prime}}=a \Omega \Omega_{\Lambda} \cap a \Omega_{\text {, }}$, shared by neighboring elements. n_{k} is the unit vector exterior and normal to $\dot{d} \Omega_{k}$. and α_{k}, is a linear function associated with edge $I_{\text {KI }}$.

With this notation now established, we consider the following local problem: Find $\phi_{\kappa} \in t_{\kappa}$ such that

$$
\begin{equation*}
a_{k}\left(\phi_{k}, w\right)=L_{\kappa}(w)-B_{\kappa}(\hat{u}, w)+\oint_{a s_{K}} w\left\langle\boldsymbol{n}_{\kappa} \cdot a \Gamma \hat{u}\right\rangle(s) \mathrm{d} s . \quad w \in \eta_{\kappa} . \tag{19}
\end{equation*}
$$

Equation (19) characterizes the local problem providing the basis for the error residual method corresponding to the norm $\|\cdot\|$, . The significance of (19) is embodied in the following theorem.

THEOREM 1. Let ϕ_{κ} be the solution of the local problem (19) corresponding to the element Ω_{κ}. Then the functions α_{K}, of (18) can be chosen so that

$$
\begin{equation*}
\|e\|_{1}^{2} \leqslant \frac{1}{\beta^{2}} \sum_{K=1}^{N}\left\|\phi_{K}\right\|_{, K}^{2}, \tag{20}
\end{equation*}
$$

where β is the constant appearing in (12).
PROOF. See $[1,6]$.
REMARK 1 . In the case in which the bilinear from $B(\cdot$,$) is symmetric and positive$ definite, we can take $a(\cdot \cdot)=B(\cdot, \cdot)$. Then the constant $\beta=1$ and the norm $\|\cdot\|$, reduces to the standard energy norm.

REMARK 2. The introduction of the symmetric form $a(\cdot$,$) is equivalent to symmetrizing$ the problem [7].

REMARK 3. The conditions on the approximate solution \hat{u} (that $\hat{u} \in x$) can be weakened considerably. Let ψ be a standard degree 1 basis function (a pyramid function) associated with a regular node in \mathscr{P}. Then we need only require that $\hat{u} \in C^{\prime \prime}(\Omega) \cap H^{\prime}(\mathscr{P}) \cap x$ and

$$
\begin{equation*}
B(\hat{u}, \|)=L(\psi) \tag{21}
\end{equation*}
$$

That is, it need only satisfy an orthogonality condition with respect to the lowest degree basis function.

REMARK + . Let $h_{\kappa}=\operatorname{diam}\left(\Omega_{\kappa}\right)$ and suppose that

$$
\begin{equation*}
|B(u, v)| \leqslant M\|u\|,\|v\|, \quad \forall u, v \in \mathbb{I} \tag{22}
\end{equation*}
$$

As an additional assumption, suppose that the following condition hokds:

$$
\begin{equation*}
\sum_{K=1}^{s} h_{K} \oint_{a E_{K} \cdot G_{2}}\left[\left\langle: i_{K} \cdot a \Gamma \hat{u}\right\rangle-n_{K} \cdot a \Gamma u\right]^{2} \mathrm{~d} s \leqslant \rho\|e\|_{i}^{*} \tag{23}
\end{equation*}
$$

where $\rho=\rho(h, p)$ is a constant possibly depending on the mesh parameters h and p. Then it can be shown [1.2] that

$$
\begin{equation*}
\sum_{K}^{N}\left\|\phi_{K}\right\|_{i_{K}}^{2} \leqslant M\{1+O(\bar{h})+C \rho\}\|e\|_{1}^{2} . \tag{24}
\end{equation*}
$$

where $h=\max _{\kappa} h_{\kappa}$. Then we have

$$
\begin{equation*}
\beta\|e\|_{i}^{2} \leqslant \sum_{k=1}^{N}\left\|\phi_{k}\right\|_{1, k}^{2} \leqslant \hat{M}\|e\|_{1}^{2} \tag{25}
\end{equation*}
$$

where \hat{M} depends on M, \bar{h} and ρ. This result establishes the equivalence of the global a posteriori error estimate to the true error. Moreover, if $\rho \rightarrow 0$ as $\bar{h} \rightarrow 0$ then we have $\hat{M} \rightarrow M$. This shows that the constants appearing in (25) are asymptotically optimal. In the case of $B(\cdot \cdot)$ symmetric and positive definite, we have asymptotic exactness of the error estimator.

3. Implementation

The actual computation of the error estimator may be thought of as consisting of two distinct stages:
(a) the calculation of the linear splitting function $\alpha_{k,}$ used in (18) to obtain the boundary conditions for the local problem (19).
(b) the (approximation of) the solution of the local problem (19).

The fundamental criterion determining the choice of flux splittings used in the average (18), is the following:

$$
\begin{equation*}
B_{\kappa}(\hat{u}, 1)=L_{\kappa}(1)+\int_{\ldots \kappa \cdot r_{\vartheta}}\left\langle n_{\kappa} \cdot a \nabla \hat{u}\right\rangle(s) \mathrm{d} s . \tag{26}
\end{equation*}
$$

A simple physical interpretation of (26) is seen in the special case $a(x) \equiv 1, b(x) \equiv 0$ and $c(x) \equiv 0$. For this situation (26) becomes

$$
\begin{equation*}
0=\int_{K} f(x) \mathrm{d} x+\int_{V K \cap V_{V}} g(s) \mathrm{d} s+\int_{А K \cdot r_{i}}\left\langle n_{\kappa} \cdot a \nabla \hat{u}\right\rangle(s) \mathrm{d} s . \tag{27}
\end{equation*}
$$

The condition (27) proclams that the data for iac local poblem (i9) is is equibrium. or that the fluxes have been equlibrated.

Kelly $|+|$ used this same criterion to determine flux splittings in the case of piccowise bilincar finite element approximation of Poisson's equation in two dimenvions. Our approach. whike related to kellys. differs significamly in several ways. The splittings used in our algorithm are linear functions. as opposed to constants: our splitting can be obtained using only local computations rather than applying a ghohal optimization procedure: and. under mild assumptions. acheve the equilibration exactly (subject to rounding error) and are applicable to general linear elliptic systems oi second order partial differental equations. In addition. our approach applies to general $h-p$ finite element approximations on irregular mesios. with non-uniform p and is valid for triangular elements. quadrilateral elements or indeed combinations of the fwo. Importantly, our approach applies equatly well to one two or three dimensions.

3.1. The flux spliting algorithm

The complete details involved in deriving the algorithm to be presented can be found in $|x|$. Here, we restrict ourselves to the bare essentals necessary to implement the algorithm.

A key role in the algorithm is played by the degree one basis functions (that is the pyramid functions associated with the regular nodes in the partition). Denote the regular nodes by $A . B \ldots$ and let ψ_{i} denote the pyramid function associated with node A (scaled so that $\psi_{1}=1$ at node A).

The computations are localized using the patches of elements over which the functions is, have mon-zero values. For ease of notation. we suppose clements $\Omega_{1} . \Omega_{\ldots} \ldots \ldots \Omega_{\text {, }}$ constitute the patch S_{1} of elements on which ψ_{1} does not vanish. Some examples of possible patches are shown in Figs. 1-3.

Associated with each patch S_{3} is a matrix T_{A}. The matrix depends only on the topology of the patch S_{A} and not on the geometry. For this reason we refer to T_{A} as the topology matrix for the patch. T_{4} is a square matrix of size $N \times N$. where N is the number of elements in the patch. Therefore. T_{3} are typically small matrices whose sizes do not increase as the partition is refined. The entries of T_{A} are given by

$$
T_{1}=\left[\begin{array}{rrrr}
2 & 0 & -1 & -1 \tag{28}\\
0 & 2 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right] \text { (Fig. 1). }
$$

Fig. 1. Topology matrix bor interion node on regular mesh.

Fig. 2. Topologey matrix for boundary node.

Fig. 3. Topology matrix for interior node on 1 -irregular mesh.

$$
\begin{align*}
& T_{A}=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \text { (Fig. 2). } \tag{29}\\
& T_{A}=\left[\begin{array}{rrrrrr}
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 3 & -1 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & -1 & -1 & 4 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & -1 & 3
\end{array}\right] \text { (Fig. 3). } \tag{30}\\
& \left(T_{A}\right)_{i i}= \begin{cases}C_{i}, & \text { if } j=i . \\
-1 . & \text { if } \Omega_{i} \text { and } \Omega_{j} \text { are neighbours in the patch . } \\
0, & \text { otherwise . }\end{cases}
\end{align*}
$$

where C_{i} is the number of elements in the patch which share an edge with element Ω_{1}. Some examples of topology matrices for varicus types of patch in two dimensions are shown in Figs. 1-3.

The singular matrix T_{A} is then modified by adding 1 to every entry. thereby giving a new matrix \hat{T}_{A} with entries

$$
\left(\hat{T}_{3}\right)_{i j}= \begin{cases}C_{i}+1, & \text { if } j=i \tag{32}\\ 0, & \text { if } \Omega, \text { and } \Omega, \text { are neighbours in the patch } . \\ 1 . & \text { otherwise } .\end{cases}
$$

where C_{i} is as before. It may be shown $[8]$ that \hat{T}_{A} is non-singular. In fact it is symmetric, positive definite and ronsequently simple to invert numerically (using, for example, an LU factorization).

Define the N-vector \boldsymbol{b}_{A} with entries

$$
\begin{equation*}
\left(b_{A}\right)_{K}=L_{K}\left(\psi_{A}\right)-B_{K}\left(\hat{u}, \psi_{A}\right)+\int_{\| K \cdot A} \psi_{A}(s)\left\langle\boldsymbol{n}_{K} \cdot a \nabla \hat{u}\right\rangle_{1}: \mathrm{d} s \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle n_{K} \cdot a \nabla \hat{u}\right\rangle_{1}=\frac{1}{2} n_{K} \cdot\left[\left.a \nabla \hat{u}\right|_{K}+\left.a \nabla \hat{u}\right|_{J}\right], \quad s \in I_{\kappa, l} . \tag{34}
\end{equation*}
$$

Furthermore, for every interelement edge Γ_{K}, within the pateh define
where

$$
\begin{equation*}
\rho_{k / A}=-\int_{r_{k},} \psi_{A}(s) \llbracket n \cdot a \nabla \hat{u} \rrbracket \mathrm{~d} s, \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\llbracket n \cdot a \Gamma \hat{u} \rrbracket=\left.n_{\kappa} \cdot a \nabla \hat{u}\right|_{\kappa}+\left.n_{J} \cdot a \nabla \hat{u}\right|_{J}, \quad s \in \Gamma_{\kappa I} . \tag{36}
\end{equation*}
$$

Having calculated these various quantitics. a set of constants α_{k}^{\prime}, is computed wing the procedure oullined in Fig. 4. The case when $\rho_{k, \text { : }}$ vanishes requires a little extra care, details of which can be found in $|8|$.

The procedure in Fig. 4 is applied to every regular node in the mesh. The actual flux splitting α_{k}, used in (18) is then given by

$$
\begin{equation*}
\alpha_{k l l}(s)=\sum_{A} \alpha_{\kappa I \ldots 1} \psi_{A}(s), \quad s \in I_{K \prime} . \tag{37}
\end{equation*}
$$

Most of the terms in this summation vanish due to $\psi_{\text {a }}$ having non-zero values on a smatl number of edges. For example, in the case of regular meshes. only two terms in the summation are non-zero, namely those corresponding to the two nodes forming the endpoints of the edge $\Gamma_{\kappa 1,}$. i.e. $\alpha_{\kappa,}$, is then the linear function which interpolates to $\alpha_{k, 1,}$ and $\alpha_{k, \beta}$ at the endpoints of the edge. In the case of irregular meshes the situation is more complicated with at most three non-zero terms appearing in the sum.

It can be shown [8] that, with this choice of splitting. the condition (26) is satisfied. The process described may appear elaborate. However, the computational work entailed is rather small by comparison with the cost of performing other standard tasks in the finite element method. In [8], an operation count shows that the process is of optimal order, increasing only linearly with the number of elements in the partition.

3.2. Approximation of local problems

The approximation of the local problem (19) is performed by means of a Galerkin method using a particular set of trial functions. Here, we shall describe the procedure we use for quadrilateral elements.

Let $\left\{P_{n}(x)\right\}$ denote the usual Legendre polynomials on $[-1,1]$. It will be necessary to be able to compute the values of the polynomials themselves and their derivatives efficiently. Unfortunately, in many textbooks it is suggested that these quantities be calculated directly from the expansion in terms of powers of x. This approach is not only unnecessarily expensive

```
for each regular node \(A\) do
    begin
        calculate \(\hat{T}_{A}\);
        calculate an LU factorization \(L_{A} U_{A}=\hat{T}_{A}\);
        for every element \(K \in S_{A}\) do
            begin
                calculate \(b_{K, A}\);
                calculate \(\rho_{K I, A}\)
                end;
    solve \(L_{A} U_{A} \lambda_{A}=J_{A}\);
        for every interelement edge \(I_{\text {KI. }}\) in the patch do
            begin
                \(\alpha_{K l, A}=\xi+\left(\lambda_{K, A}-\lambda_{l, A}\right) / \rho_{K L, A}\)
            end
        end;
```

Fig. 4. Pseudo-code of flux spliting algorithm
but leads to catastrophic buidd up of round-off errom. Therefore, we we the thre kerm recurrence relations. Thus. for some fixed value of x. We calculate $P_{n}\left(\begin{array}{rl} \\ \text { a }\end{array}\right.$ and $P^{\prime},(1)$ an follow-

$$
\begin{align*}
& P_{1,}(x)=1 . \quad P_{1}(x)=x . \tag{3S}\\
& P_{k, i}(x)=\frac{2 k+1}{k+1} x P_{k}(x) \cdots \frac{k}{k+1} P_{k} ;(x), k \cdot 1 .
\end{align*}
$$

and

$$
\begin{align*}
& P_{1}^{\prime}(x)=0 . \quad P_{1}^{\prime}(x)=1 . \tag{3s}\\
& P_{k, 1}^{\prime}(x)=\frac{2 k+1}{k} x P_{k}^{\prime}(x)-\frac{k+1}{k} P_{k}^{\prime}(x) . k \cdot 1 .
\end{align*}
$$

To calculate the values of $P_{",}(x)$ and $P_{n}^{\prime}(x)$ in this way requires only order 1 operations. Moreover, ats a byproduct. one also obtains the values of all the fower order polynomials and their derivatives at no extra expense.

The values of $P_{n}(x) \ldots . P_{n}^{\prime}(x)$ and $P_{n}^{\prime}(x) \ldots . P_{n}^{\prime}(x)$ are then used to compute the functions $\chi_{11}(x) \ldots \chi_{n}(x)$ and $\chi_{11}^{\prime}(x) \ldots x_{n}^{\prime}(x)$ given by

$$
\begin{align*}
& x_{11}(x)=\backslash \frac{1}{2} P_{11}(x) . \quad x_{1}(x)=1 \frac{1}{2} P_{1}(x) . \quad x_{n}(x)=\frac{1}{3} \backslash \frac{3}{2} P_{1}(x) . \tag{+1}\\
& x_{k}(x)=\frac{1}{k(k-1)} \backslash \frac{2 k-1}{2}\left(x^{2}-1\right) P_{k}^{\prime}(x) . \quad k=3 \ldots, n .
\end{align*}
$$

and

$$
\begin{align*}
& x_{11}^{\prime}(x)=0 . \quad x_{1}^{\prime}(x)=1 \frac{1}{2} P_{n}(x) . \quad x_{2}^{\prime}(x)=\sqrt{\frac{3}{2}} P_{1}(x) . \tag{+1}\\
& x_{k}^{\prime}(x)=\sqrt{\frac{2 k-1}{2}} P_{k},(x) . \quad k=3 \ldots, n .
\end{align*}
$$

Let $\Omega=|-1,1| \times \mid-1$. $1 \mid$ denote the usual reference clement. The trial functions will be detined on Ω. For simplicity. assume that the finite element approximation \bar{u} is a complete polynomial of degree p on the element under consideration. Let q - 0 be an integer; then we define the space $V^{p, 4}(\hat{\Omega})$ by

$$
\begin{equation*}
V^{p . q}(\dot{\Omega})=\left\{x_{1}(\xi) \chi_{k}(\eta) \mid 0 \leqslant j, k \leqslant p+q \text { and at least one of } j, k>p\right\} . \tag{42}
\end{equation*}
$$

It is seen that $\operatorname{dim}\left(V^{p q}\right)=(p+q+1)^{2}-(p+1)^{2}$. The index q controls the number of increments in the polynomial degree of the space and may be used to increase the dimension of the space.

The local approximation space is then taken to be $\tilde{\eta}_{k}=\lambda_{\kappa} \cap V^{\prime \prime 4}\left(\Omega_{\kappa}\right)$. The discretized version of the local problem (19) is: Find $\tilde{\phi}_{\kappa} \in \tilde{t}_{\kappa}$ such that

$$
\begin{equation*}
a_{\kappa}\left(\tilde{\phi}_{k}, w\right)=L_{-k}(w)-B_{k}(\hat{u}, w)+\oint_{w g_{k}} w\left\langle n_{k} \cdot a \nabla \hat{u}\right\rangle(s) \mathrm{d} s \quad \forall w \in \tilde{f}_{K} . \tag{4.3}
\end{equation*}
$$

Owing to the above assumptions and the construction of the local space, this problem always has a unique solution.

4. Vumerical examples

In this section we present three examples to illustrate the performane of the algorithm
In order to compare the estimated error with the true error it is necessary to accurately calculate the true error ower each element. In all our examples. the true error is computed using an algorithm which approximates the integral using first a single subdontain and then subdivides the region of integration into four subdomains and approximates the integrat ower the lour subregions. Two estimates are thus obtained for the true value of the integral. If the difference in these two estimates is les than 1 "; relatse error. then the approximation is accepted. Otherwise. the element is further subdiviced into 16 regions and so on unti agrement between consecutive approximations is obtained to less than 1^{\prime} 'r relative error.

4.1. Simmetric elliptic aperator with smooth solution

The problem we consider is: Find u such that

$$
\begin{equation*}
د u+u=0 \text { in } \Omega!. \tag{+4}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{align*}
& u(1, y)=(, \quad 11 \sin (\pi y . \quad 0<y<1,2 \\
& u(x, 0)=u(x, 1 / 2)=0 . \quad 0<x<1 / 2 . \quad \frac{d u}{\partial n}=0 . \quad x=1 / 2,0<y, 1 / 2 \tag{45}
\end{align*}
$$

where or- -2π. The geometry of the domain Ω and the boundary conditions applicd are shown in Itg. 5

The true solution is giten by

$$
\begin{equation*}
\left.u(x, y)=\left(\operatorname{cxp}(x-1) \sqrt{1+\sigma^{2}}\right)-\exp \left(-x \sqrt{1+\sigma^{2}}\right)\right) \sin a y . \tag{+6}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
B(u \cdot v)=\int_{!}\left(\Gamma_{u} \cdot \Gamma_{r}+u v\right) \mathrm{d} x \tag{47}
\end{equation*}
$$

and we choose a($6, v)-B(t, v)$. Theorem I predicts that we will ohtain guaranted upper bounds on the true error measured in the energy norm defined by $B(\cdot \cdot$; provided that equilibration of the thuxes is achiesed.

The problem is solved using uniform meshes of quadritateral clements with uniform polynomial degree. The local problems are approximated using an increment $q=2$ in the bocal space. That is. a degree p finite element approximation is analyod using the space $V^{p, \quad}$. In each case, the cquilibration procedure is able to reduce the lack of equibibration to the level of round off error on virtually every element in the partition.

Table 1 contains the results obtained for finite element approximations of degree $1-4$ on

Pig. S. Gometry and boundary condtom for smooth model problem.

Table 1
(ifonal effectity indices for model problem biah mooth solution

Degres (1)	Numine of chements		
	10	6.	128
1	1.112909	1.60355	i, in ment
-	1.1417572	1.161209	1 angiou
3	1.000205	1.912008	
4	1.1001237	1.060129	1.0n\% ${ }^{\text {a }}$

meshes containing 16 . ot and 128 elements. The quantity shown in the tahle in the cifectivity index (the ratio of the estimated error to the true error). Theorem 1 prediets that the effectivity index be greater than unity. This predietion is borne out by the results shown in Table 1.

t. . (racked panel problem

Consider the problem: Find a such that

$$
\Delta_{H}=0 \text { in } \Omega \text {. }
$$

subject to the boundary conditions

$$
\begin{equation*}
u(r, \pi)=0, \quad 0<r<1 . \quad a u / \pi n=0, \quad 0<r<1 . A=0 . \tag{49}
\end{equation*}
$$

with $u(r . \theta)=r^{\prime 2} \cos \leq \theta$ on the remaining portion of the boundary. The geometry of the domain Ω is shown in Fig. 6.

The true solution is given by

$$
\begin{equation*}
u(r . \theta)=r^{12} \cos !\theta \tag{50}
\end{equation*}
$$

The problem is the analogue of a cracked pane problem in linear elasticity, with a singularity

Fig. 6. (ieometrs and boundary combuoms for crached panel problem.

lig. 7. Position of chement adjacent on sugubate in crached panel
at the origin．In this case．We have

$$
\begin{equation*}
B(u, v)=\int_{n} \Gamma u \cdot \Gamma u \cdot d x \tag{51}
\end{equation*}
$$

 the true error，provided that we cequilibrate the fluses

In amalying this problem，wome care must be taken with the appoximatom of the focal problem．Theorea 1 aswmes that the heal problems are solvedexactly，wheh wow the case in practice．Therefore for the purpones of illustrating the theory．a sequence of approxt－ mation to the trac whtion of the focal problem in obtamed by incrementing q ．That in to sat． we compule a sequence of approximation using the yatere

until the difference of the norm of the approximation is sufficients smath．
One other feature of thin particular example is the difficult in estimating the error in ckoments adjacent to the sengular poim．Our theors makes no promises concerning the effectivity of the estamator in a single element．However．We present result shosing the cstmated and the true error in the elements adjacent to the singularity Ω_{1} and $\Omega \Omega_{\mathrm{k}}$（see Fig． 7 ）．

Table -4 comain results of estimating the error in the appoximation ohtained using a uniform meh of 32 quadriateral elements with uniform polymomal degree 1 ．Fite increment in the local approximation space are needed before agreement in obtained For purposes of comparison．we alon give the results obt tined when mo equilibration or balancing of fluxe is pertormed（imetead，a simple averaging is applic． 1 ）

Table 2 and 3 contan the crror wtimates in the ckements adjacem to the singularty Ω_{1} and Ω_{k} ．The estimate of the error ohtained when equilibration of fluxes is performed is superior to the catimate ohtamed using a simple averaging．lable + contams the glohal estimates of the error．It in seen that it is necessary to approxinate the local problems accurately if one is to obtain the upper bound proclamed by Theorem 1 ．

1．1nle：

Vimbler	I ammated hacat stror		I acal effectnity index	
，11	With	Without	Wilh	Withous
imbicment	hatheme	hatancme	halancing	balancong
1	1013 and	60.60516	110730954	11.46 ras
2	11132044	6．6350511 11	1107.3084	11 terousis
3	い15日ミ11	（16）99112 1）	1.11137111	0．finsoril
4	115350：		1.127149	0.504132
4	＇19tilo	Onsul7a 1）	1．14587	11.506051
1 1rac salue	い1 Mas？	11．13，1879－ 111	1 （GXARM	1 Inamant

lable:
 element $\Omega_{\text {R }}$ for crached panel (p 1. 32 stements)

Tiable 4
Effec of solving hacal prothem with moreaning accuracy on the evimate of gholab error for cathed panel ($p=1$. 32 chements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increment } \end{aligned}$	Estimated shobal crrer		Gidubal cllectut? inder	
	With habancing	Without batancing	With babancing	Without batancing
1	0.18.3726		10.921963	10.032ds
2	11.18 .3726	(1).206.54	1.921963	1.133×24
3	0.199198		0.9 96\%14	1.11477 xs
4	11.201876		1.1113042	1 149\%以
5	0. 2102004	0.219140	1.116997	1140539
True value	0.199277	0.199277		1 , hamme

Table 5
Fffect of solving local problem with increasing accuract on the cotimates of lecal errer in clement Ω_{1} for cracked panel ($p=1$. I2s elements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increment } \end{aligned}$	Estimated local error		Iocal effectivity index	
	With besancing	Withous halancing	With halancing	Wilhont halancing
1	0.92701919	11. $4+38+7711$	11.45910\%	10.4.99353
?	0.927019 (11	0. $+4.38+7(1)$	0.959465	0.459353
3	0.105048(0)	11.4746.36) - 11	1.10×7179	0.491218
4	0.1107279(1)	0.479842 (1)	1.1111268	11 J960trs
5	(1.107987(0)	0.481609(1)	1.1175\%	(1.495+6n
True value	11.966. $2+1$ - - 11	11.9062-4+(1)	1.momer	1.0 anam

Tables 5-7 show the corresponding results obtained when the mesh is refined uniformly to 128 elements of degree one. The results obtained are similar to the case of 32 elements. Tables X - 10 contain the results obtained when the degree of the elements is increased uniformly to degree 2 on 32 elements. Once again. the results show the superiority of the estimate obtained

Tible 6
 element Ω_{n} tor crached panel $1 \rho-1.12 x$ clements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increments } \end{aligned}$	Istimated hanal errm		I neal cthememy mides	
	With balancong	Without hatancing	With batancing	Without falancins
1	10.76275.3 - 11	11.128522(1)	10. $\times 5.569$	1.41748
2	(1.76275.3 (1)	(1.12s5こ2(1)	$11 . \operatorname{siso7y~}$	1.441798
i	0.78xomod 1)	1.1286.37(1)	Ussutitu	1.4tiouns
4	0.791049(-1)	11.1280+1(0)	11.857.2	1.44313,
5	0.791235(-1)	(1.1203042(0)	Onstig.il	1.4 .144
True value	0. $\times 9$) $401(-1)$	0.sul401(1)	1.1 ¢княп	1. H (\%ank

Table 7
Effect of wolving local problem with increasing accuract on the extimate of ghobal error for erached pand ($\rho=1.12 \mathrm{~s}$ elements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increments } \end{aligned}$	Extimated globat error		Giohal elfectioty inded	
	With balancing	Without halancing	With balancing	Without balancing
1	0.129397	0.145495	$0.918+47$	1.0132760
2	0.129397	0.145495	$0.918+97$	1.1332766
3	0.140126	$0.1+6 \times 13$	(1.99+655	1.142121
4	11.1+1983	0.146992	1.1017836	1.143392
5	$0.1+25.31$	$0.1+7115.3$	1.011720	1.14 .3825
True value	$0.1+10 \times 79$	$11.1+11879$	1.0\%h\%\%	1.0\%\%\%\%)

Table x
Effect of solving local problem with increasing accuracy on the estimates of local error in slement Ω_{1} for cracked pancl $(f)=2.32$ elements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increments } \end{aligned}$	Estimated local error		Local effectivity index	
	With balancing	Without balancing	With balancing	Without balancing
1	0.779887(-1)	0.405007(-1)	0.97150	0.504516
2		0.4430 OR(-1 ;	1.609747	0.551851
3	$0.9164 .39(-1)$	$0.457+23(-1)$	$1.1+1605$	0.560×16
4	(1.924515 - - 1)	0.4060699(-1)	1.151665	0.580580
5	0.9325.39(-1)	0.463*7.3(-1)	1.163600	1.577845
True value	0.802764(1)	0.80276+(- 1)	1.60 (\%\%)	

using equilibrated fluxes. In each case, the result of Theorem 1 is verified. although it is necessary to solve the local problems very accurately.

4.3. Unsymmetric elliptic system

As a final example, we consider the unsymmetric elliptic system with non-constant convection given by: Find u_{1}, u_{2} such that

Table 9
Effect of solving local problem with increasing accurat on the wimate of lacal error 10 element ! ${ }_{8}$ for cracked panel ($p=2.32$ ckements)

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { increments } \end{aligned}$	Estmated heat error		Local eftectovt imder	
	With balancing	Withoul batancing	With balancing	Without batancong
1	$0.532473(1)$	(1.660535 - 1)	0.6×6106	(1,857427
2	0.613689 (- 1)	0.7170590	0.790633	0.92.3013
3	(1.62si89(-1)	0.848994	0.809313	1.109377
4	0.64+4799(-1$)$	0.876593811	0.829785	1.1293 .39
5	0.6.48299(- 1)	0.9121304	0×35222	1.175122
True value	$0.7762009(-1)$	$0.77620001)$	1.9 ¢ино	1. 1 ¢0\%en

Table 10
Effect of solving local problem with increasing accuracy on the estimate of glohat error for cracked panct $1 p=2.32$ elements

Number of increments	Estimated global error		Cilobal cthectivit matex	
	With batancing	Without balancing	With balancong	Without batanoms
1	0.948095 (-1)	(1.790990) (- 1)	0.838555	0.60 csio
2	$0.107495(0)$	(1.944738(-1)	10.950753	0.86 mol
3	$0.111550(0)$	0.98(1)2.3(-1)	0.986018	11.867148
4	$0.113117(0)$	0.106715(0)	1.1104478	11.800787
5	0.114017(0)	0. 104075(0)	1.00xtis	0.920505
True value	0.113063 (0)	$0.11306 .3(0)$		

$$
\begin{align*}
& -\varepsilon \Delta u_{1}+x \frac{\partial u_{1}}{\partial x}-y \frac{\partial u_{1}}{\partial y}+x y u_{1}-u_{2}=0 \tag{52}\\
& -\varepsilon \Delta u_{2}+x \frac{\partial u_{2}}{\partial x}-y \frac{\partial u_{2}}{\partial y}-x y u_{1}+u_{2}=0 \quad \text { in } \Omega
\end{align*}
$$

where $\varepsilon=1 / 100$, subject to the boundary conditions

$$
\begin{equation*}
u_{1}=\exp \left[\left(x^{2}-y^{2}-1\right) / \varepsilon\right] . \quad u_{2}=x y \exp \left[\left(x^{2}-y^{2}-1\right) / \varepsilon\right] \quad \text { on } f_{i} \tag{53}
\end{equation*}
$$

and

$$
\begin{align*}
& \varepsilon \frac{\partial u_{1}}{\partial n}=\varepsilon n \cdot \nabla \exp \left(\left(x^{2}-y^{2}-1\right) / \varepsilon \mid\right. \tag{54}\\
& \varepsilon \frac{\partial u_{2}}{\partial n}=\varepsilon n \cdot \nabla x y \exp \left(\left(x^{2}-y^{2}-1\right) / \varepsilon \mid \text { on } I_{1} .\right.
\end{align*}
$$

where Ω, I_{D} and I_{N} are shown in Fig. 8.
The true solution to this problem is given by

$$
\begin{equation*}
u_{1}=\exp \left[\left(x^{2}-y^{2}-1\right) / \varepsilon\right] . \quad u_{2}=x y \exp \left[\left(x^{2}-y^{2}-1\right) / \varepsilon\right] \tag{55}
\end{equation*}
$$

The main feature of the solution is the presence of a strong boundary layer effect along the right-hand wall of the domain caused by the non-constant conection dominated flow fied $b=(x,-y)$.

In this case, the bilinear form $B(\cdot, \cdot)$ is unsymmetric. We choose the bilinear form at . .) to be

$$
\begin{equation*}
a(u, v)=\int_{\Omega}\left(\varepsilon \Gamma u_{1} \cdot \Gamma v_{1}+\varepsilon \Gamma u_{2} \cdot \Gamma v_{2}+u_{1} v_{1}+u_{2} v_{2}\right) \mathrm{d} x . \tag{56}
\end{equation*}
$$

The theory presented in $|6|$ shows that the error estimator bounds the true crror measured in the symmetrized norm. For the purposes of illustration. in this example we compute the true error in the symmetrized norm explicitly. It is this quantity which is labelled as the true error in Table 11.

The presence of the boundary layer indicates that an adaptive finite element analysis based on refining the mesh and enriching the degree of the approximation is suitable. The sequence of meshes generated during the analysis is shown in Figs. 9.12.15. 18 and 20. The meshes are not only irregular but contain elements of differing polynomial degree. The final mesh contains elements of degree six near the boundary layer. Nevertheless, the behaviour of the error estimator remains highly satisfactory as shown by the results in Table 11.

One source of concern when estimating crrors for this type of problem is that the distribution of the estimated error will not agree with the distribution of the true error owing to the convective effect. Therefore, in Figs. 9-23, we present plots showing the distribution of the true and estimated errors. It is observed that the distribution of the estimated error closely reflects the actual error distribution.

Table 11
Behaviour of error estimators for unvemmetric elliptic system

Men number	Degrees of freedom	True global error	Estimated glohal error		Cilubal cffectivit inder	
			With balancing	Without balancing	With balancing	Without hatancine
1	25	0.400129(0)	11.420103 (1)	$0.420218(1)$	1.049019	
2	51	0.14.0063(0)	0.144794(0)	0.14706 .3 (6)	0.908140	1.01 .3787
3	111	$0.563992(-1)$	(1.56+102 ${ }^{(101)}$	$0.564159(1)$	1.00065	1.1002906
4	16.5	$0.64684 .5(\cdots 2)$	0.647644(-2)	11.649044(- 2)	11411235	1.61384010
5	3411	$0.26 .3345(-2)$	$0.272907(2)$	$0.274071(2)$	1.1036 .310	1.040730

MESH 1

\downarrow

Fig. 9. Adaptive analysis of unsymmetric ellipic system. Mesh 1.

MESH 1

$\mathrm{MIN}=0.570 \mathrm{E}-0.3$ MAX $=0.3003809$ ERRO: $=0.400128$ D.O.F $=25$

Fig. 10. Adaptive analysis of unsymmetric elliptic system. Distribution of true ceror on Mesh 1

MESH 1

Fig. 11. Adaptive analysis of unsymmetric elliptic system. Distribution of estimated error on Mebh 1.

MESH 2

Fig. 12. Adaptive analysis of unsymmetric elliptic system. Mesh 2.

MESH 2

Fig. 13. Adaptive analysis of unsymmetric elliptic system. Distribution of true error on Mew 2.

MESH 2

Fig. 14. Adaptive analysik of unsymmetric elliptic system. Distribution of estimated error on Mesh Z.

Fig. 15. Adaptive analysis of unsymmetric elliptic system. Menh 3.

MESH 3

Fig. 16. Adaptive analysis of unsymmetric elliptic system. Distribution of true crror on Mesh 3.

MESH 3

Fig. 17. Adaptive analysis of unsmmetric elliptic system. Distribution of estimated error on Mesh 3

Fig. 18. Adaptive analysis of unsymmetric efliptic system. Mesh 4 .

Fig. 19. Adaptive analysis of unsymmetric elliptic system. Distribution of true error on Mesh 4 .
MESH 4

> $\mathrm{M} I \mathrm{~N}=0.532 \mathrm{E} \cdot 05$
> MAX $=0.0042149$ ERROR $=0.0064764$ D.O.F $=165$

Fig. 20. Adaptive analysis of unsymmetric clliptic system. Distribution of estimated croor on Mesh 4.

MESH 5

Fig. 21. Adaptive analysis of unsymmetric elliptic system. Mesh 5.

Fig. 22. Adaptive analysis of unsymmetric elliptic system. Distribution of true error on Mesh 5

MESH S

Acknowledgment

The suppor: of this work by ONR under grant Nooml-80-J-1+5I. NSF under srant AS(-91115-40 and ARO under contract DAALO3-89-K-0120 is gratefully acknowledged.

References

 methock. umpublalacel
 (omp +1 (195s, 833.31

 pros)
 3 Numer Amal 15 (1975) 3645

[^0]: Correspondence to: Mark Ainsworth. Texas Institute for Computational Mechanics, WRW 315. The University of Texas. Austin. TX 78712, USA.
 'On leave from Mathematics Department. Leicester University. Leicester. UK.

