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A Conservative Formulation for Plasticity
Brapiey J. Pronr”
Stare {nicersity of New York, Stomy Brook, New York 11704

AND
Davin H. Sitake’

Theorencal Dirpsion-Complex Svstems Growp, ov Alamos Nanonal Loboraron
Laos Alamos, New Meveo 8375438

In this paper we propose @ tully consenatine torm tor the conunuum equations
goverming rute-dependent and rate-independent plastic fow in metals, The conser-

vatton kaws are valid for discontinuous as well as smooth solutions, 1o

rate-dependent case. the evolution cquations are in divergence form. with the
plastic strain bemng passively convected aod wagmented by source terms. In
the rate-independent case. the conservation laws involve a Lagrange multiphier
that is determined by a set of constraints: we show that Riemann problems tor this

svstem admit scale-tnvariant solutions. - 1992 Academie Prese, Ine

I. INTRODUCTION

In a previous paper [24], we formulated the cquations for elasticity in
the Eulerian picture as conservation laws. The motivation tor this work
was that the Eulerian framework is useful in numerical computations of
large-deformation flows. Furthermore. the most cttective numerical meth-
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CONSERVATIVE PLASTICITY 463

ods. such as second-order Godunov schemes and the tront tracking method.
relv on an understanding of the structure of nonlincar wave solutions.
Such an understanding reguires that the cquations be 1n conservation
form. Subscquent studies (3, 1) have shown that the use of a consenvative
formulation doces indeed lead to substantially improved numerical calcula-
tions.

In the present paper. we show that a fully conservative formulation can
be given for the cquations governing an important class of rate-dependent
and rate-independent plastic materials. Unlike the case of elastic materi-
als, for which Lagrangian conscrvation faws were alreadyv available. we
must appeal directly o experiment to decide which ol the dvnamical
cquations for plastic low arc conservation laws. For this reason, we tocus
on the plastic flow of mctals induced by strong shock waves. We expect.
however. that the conservative form apphes to a broader class of plastic
materials.

The formulation of finite-strain plasticity that we adopt has much in
common with that of Simo and coworkers [30. 28. 29]. There are two novel
aspects to the present work. For rate-dependent materials. we cast the
governing equations in divergence form and argue, on the basis of experi-
mental results for metal plasticity, that these equations represent conser-
vation principles. For rate-independent materials., we show that the load-
ing /unloading conditions. written as an optimality condition involving a
Lagrange multiplier, hold for weak solutions: the resulting constreined
system of conservation laws admits scale-invariant solutions.

Section 2 of this paper contains a brief summary of elasticity in the
Lagrangian and Eulerian pictures. The various parts of Section 3 present
the equations of viscoplasticity in the Lagrangian and Eulerian pictures
and include a discussion of the kinematics of plastic deformation. constitu-
tive relations and models. and plastic flow rules. In Section 4 1t is argued.
on the basis of experiment. that the plastic flow rule and hardening law
are conservation laws. In Section 5, the conservative form for rate-inde-
pendent plasticity is obtained from the rate-dependent theory in the zero
relaxation-time limit. Finally, in Section 6. we examine scale-invariant
solutions of the rate-independent theory.

2. ELastiCiTY

In this section we summarize the continuum description of an elastically
deformable medium, first in the Lagrangian (material) picture and then in
the Eulerian (spatial) picture. We refer the rcader to Ref. [24] and to the
generai literature (e.g., Refs. [15, 35, 21, 9, 2)) for further detail.
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2a. Kinematics and Conservation Lawsy

The motion of a deformable body 4 is represented mathematically by a
ume-dependent map . the motion, cmbedding &4 into an ambient space
. Let X a = 1.2,3, denote material coordinates on &, and let x'.
(= 1,2.3. denote spatial coordinates on ./ then x' = ¢'(X.t). The
motion ¢ must respect the conservation of momentum and energy. These
principles are cexpressed as partial differential cquations involving the
temporal and spatial derivatives of &, namely the Lagrangian relocity
V= 0d'/dt and the Lagrangian deformation gradient F! = dd' /o X

Let p,., denote the mass density of the undeformed body, & the specific
energy (energy per unit mass). $™ the (Gecond. or symmetric)) Piola-
Kirchhoff stress tensor, and Q¢ the Lagrangian hear flux. Then the conser-
vation laws are

eV = (F,S") 4. (2.1)
prei(‘f[/;l/‘ + oﬁ)'z (V,F'“S"ﬁ)ﬂ — QY:Y' (2'2)

Here the dot and the semicolon «enote covariant differentiation with
respect to time and space. respectively. Equations (2.1) and (2.2) are in
divergence form: indeed. they derive from the integral form of the conser-
vation laws. Therefore they hold in the sense of distributions.

Because the motion ¢ enters the conservation laws only through its
derivatives, the second-order cquations can be regarded as first-order
equations in which the velocity and the deformation gradient are funda-
mental dynamical variables. If ¢ is eliminated in favor of the F°’,.
however, the system of equations must be cxpanded. The additional
equations are also conservation laws:

Fo=V', (2.3)

as follows by equating mixed partial derivatives of ¢. Equations (2.1)-(2.3)
express the governing equations for a deformable medium as first-order
partial differential equations in conservative form.

2b. Constitutive Relaiions

The conservation laws involve the energy, stress. and heat flux; there-
fore they are incomplete unless supplemented by constitutive relations for
these quantities. These rclations characterize the matcriai properties ot
the deformable medium.

The thermodynamic state of an elastic matenal i1s specified by the
deformation gradient F*, and the specific entropy §. Because of covariance
with respect to rigidbody transformations of the spatial coordinates (the
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principle of frame indifference). the state depends on £ only through the
(riglit) Cauchyv-Green tensor

C., o=F F*, (2.4

or. cquivalently. the Lagranctan strain tensor

L]
;Jl

/“: - [..»"u[..\i’: - 6-:11’}% " (

143

(In general. 8, should be interpreted as the material metric tensor.) We
postufate that the thermodynamic state determunces the spectfic energy &
through a hyperelastic cquation ot state

A=A LS). (2.6)
(For simplicity. we assume that the matertal s uniform. 1.e.. neither p,,
nor ¢ has explicit dependence on the material point X)) The heat flux is
specified bv a separate constitutive relation. such as

Qu — _’ﬁ:T‘.lx‘ (27)

where T is the remperature and %7 is the thermal conductivity.
Following the standard argument of Coleman [3]. the second law of
thermodynamics. as embodied in the Clausius~Duhem inequality

prcf‘s; + (QQ/T):Q 2 I (28)

leads to the identifications

“afl i 5
5 = /)m;ﬁ (2.9)
&
T = TR (2.10)
together with the constraint
-Q'T, 2 0. (2.11)

For the constitutive relation (2.7), this constraint requires that 57> (. It
follows from the goveraing cquations and the constiiutive reiations that
the entropy satisfies

peiTS = Q7. (2.12)
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Given the constitutive relations (2.63. (2.9). (2.10). and (2.7). Eus.
(2.1)-(2.3) comprise a complete system of evolution cquations in COnsen a-
tive form that describestelastic materials in the Lagrangian picture.

2¢. Euldertan Formulation

To translate the governing cquations into conservation laws in the
Eulerian picture. we introduce notation tor several Eulerian quantitios,
which are defined to be tunctions ot v = H(X. 1) and r:

fLo=F (2.13)
g = (N (2.14)
po=1"p. (213
e (2.100
J— (2.17)
=5. (2.18)
g:=T. (2.19)
ol = I ST (2.20)
g' = J-i[.‘f“Q". (2.21)

Here J is the Jacobian determinant of the map ¢. i.c., the determinant of
the linear transformation £’ , and o is the Cauchy stress tensor.

In the standard fashion, the transport thcorem (sce, ¢.g., Ref. [9]) shows
that the Lagrangian conservation laws (2.1) and (2.2) for momentum and
energy are equivalent to

J
o () + (prter), = ot (

bl

.

fJ

J .
Et—[p(%z',z" + 5)] + [p(%l',t" + a)z"]:, = (r,07)., —qg* (. (2.23)

The conservation law (2.3) governing the deformation gradient trans-
lates into the Eulerian picture in a similar manner [24]. With the aid of the
Piola identity, {J(F~"*} =0, Eq. (2.3) becomes

a
E(pf‘a) + (pflﬂl"):] = (pt'f’,).,. (2.24)

We supplement this continuity equation with the conservation of mass
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equation,
ap
— + (pr?) =L 2.25)
5 T er), (

which derves 1rrom thie Lagrangian equation g, ., = .

The Eulerian system of Egs. (2.22)-(2.25) is complete in the toilowiny
sense (¢f. [24]): Consider a solution to the Eulertan svstem that is either
smooth or piecewise constant: supposce that there s a deformation &, such
that at some initial time ¢ = «,,, f' and J arc the gradient and Jacobian of
¢y, respectively. Then there 1s a motion . coinciding with &, at 1 = 1,,.
that satisfics the corresponding Lagrangian svstem of Egs. (2.1)-(2.3) and
relates to the Eulenan solution as in the definitions above.

An alternative to Egs. (2.24) and (2.25) has been suggested by
Trangenstein and Colella [34], viz., the cquality of mixed partial derivatives
for ¢ "

J _
e+ (gt =0 (2.26)

An equivalence. in the sense above. between the Lagrangian svstem and
the svstem comprising Egs. (2.22), (2.23). and (2.26) is straightforward to
establish in the manner of Ref. [24]. Moreover. Wagner [37] has used the
methods of Ref. [36] to extend the equivalence to general weak solutions.

The conservation laws must be supplemented by an equation of state.
which cxpresses the energy as a function of the Finger tensor

b = f0f, (2.27)

or, equivalently, the Almansi strain tensor

3

€= %[50"“([)_1),,}, { .28)

Note that e, = (F~ )% E_g(F~1)P.. The equation of state can be written
[30] as

3]

e=2£(e,. f*,. 1) (2.29)
where £ relates to & through

é(ekl’ ka’ n) = (f)(fmyemnf"ﬁ‘ Tl)' (23“)
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Differentiating this definition yields the formulae

IE
ol =p—, (2.31)
(’L’ ;
il
¢
= —. (2.32)
d‘r]

In calculating the derivative in Eq. (2.31), ¢,, and j"",/ are regarded as
independent variables. and their relationship is invoked only after the
differentiation has been performed.

Remark. The dependence of £ on f* s essential. In fact.

-

Jd&

A

= 2g'%e, (2.33)

ot

so that if £ were independent of f"'y, then the stress o'/ would vanish. In
other words, one cannot assume that the energy depends solely on e, and
71 (unless the material response to deformation is trivial). Note, however,
that 0é /af* vanishes at the undeformed state e,, = 0, which means that
the effects of f* under small deformations are of higher order. Similar
conclusions hold in the case of plasticity.

The constitutive relation (2.7) for the heat flux becomes
q' = —ko, (2.34)

with k = J ¥,

Assuming the constitutive relations (2.29), (2.31), (2.32), and (2.34), Eqgs.
(2.22) and (2.23), together with either Eqgs. (2.24) and (2.25) or Eq. (2.26).
comprise a complete set of conservation laws in the Eulerian picture.

3. PLastiCITY

The plastic response of real materials is extremely diverse. For instance,
the microphysical pictures of metal plasticity and of the flow of granular
materiais are quite different. Furthermore, passage from the mcrophysical
to the macroscopic description requires scientific modeling across a hierar-
chy of length scales. Nevertheless, there are two concepts that apply to a
broad class of macroscopic models: plastic deformation and plastic flow
rule.
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3a. Plastic Deformation

One principal feature of plastic bchavior is irrecoverable deformation:
whereas an elastic body will return to its undeformed state when surface
forces are relaxed. a plastic material might not. The permanent deforma-
tion suffered depends on the manner in which the body was worked. 1.c..
on the historv ot deformation of the material. In a continuum theory of
this phenomenon. there must be “internal” state variables that record this
deformation historv. Because the deformation history varies from point to
point in the body. a plastic material is inhomogeneous.

To understand these ideas on a physical level. consider a small neigh-
borhood of a material point X in a body that has undergone plastic
deformation. If the neighborhood is cut out of the material and the forces
on its surface are relaxed. then it deforms. recovering a stress-free contig-
uration. Because of the plastic working, this configuration differs trom the
original configuration of the neighborhood before the body was deformed.
Thus at every point there is a local irrecoverable deformation taking the
neighborhood from its virgin state to a stress-free configuration. In zen-
eral, however, there is no giobal deformation that relaxes the internal
stresses simultaneously throughout the body. The local irrecoverable de-
formations at neighboring points may be incompatible. in the sense that
the relaxed neighborhoods do not fit together to form a continuous body
without gaps or tears.

These ideas can be expressed mathematically, using the theory of
inhomogeneous materials developed by Noll [35]. For a neighborhood that
is sufficiently small on the macroscopic scale. the irrecoverable deforma-
tion is approximated well by its gradient. which is a linear map from the
tangent space at X to three-dimensional Euclidean space R?. Mathemati-
cally, such a linear map defines a frame at X, for its inverse carries the
standard basis for R? to a basis for the tangent space at X. We denote the
components of this local reference frame at X by (F. (X)), where
a=1273.

Let a local reference frame (F, (X)), be chosen at each material point
X. As discussed above, there need not exist a deformation of the entire
body whose gradient is (F,)?,: there is no “intermediate” stress-frce
configuration of an inhomogeneous body. Indeed, the body is considered
to be homogeneous if and only if the frame field F, is a gradient.
Nevertheless, the gradient F ’a of an arbitrarv deformation can be re-
ferred, at each material point, to the local reference frame. Thus we
define F' by decomposing the deformation gradient F', as a product
involving the frame (F, )%,

Fiuzfia(Frcf)an' (31)
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Ty
hdd

FD { ) Fo
L J
intermediate
Lagrangian Eulenan
F [ ICBUSNSGUISRBARENE »
FiG. 1. The multiplicative decomposition of the deformation gradient: F' = (F )Y (F ) .

The plastic deformation (Fp)",,. which represents the irrecoverable deformation. maps
neighborhoods in the body to local stress-tree contigurations. Here this deformation involves
the slip of horizontal crystal planes. As indicated. the relaxed neighborhoods do not it
together continuously. The elastic deformation (F,), distorts the relaxed neighborhoods into
the tinal configuration of the body.

(See Fig. 1.) For a homogeneous body, the transformation to local refer-
ence frames amounts to a change of material coordinates.

For example, the frame field can be given a concrete interpretation in
terms of the theory of dislocations in crystals (see. e.g., Refs. {35, 6, 13. 12.
10]). Each of the three basis vectors defined by the local reference frame
at X is regarded as a displacement by a fixed number of lattice spacings
along a crystal axis. Thus the local reference frames reflect. at a contin-
uum level. the crystallographic structure. The tensor field

pe = =B (Fr) 'y, (3.2)

which is a measure of the nonintegrability of the frame ficld. can be
interpreted as the dislocation density.

With (F,)¢, chosen, the material response depends on F' ., the en-
tropy, and the material position X. If there exists a choice of local
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reference frames such that this response does not depend explicitly on X
then the body is said to be materially uniform. Note that there 1s a possible
ambiguity 1 the decomposttion (3.1). depending on the symmetry of the
matertal. Indeed. o material isomorphism at a point is a change of local
reference frame thuat preserves the response of the material to detorma-
tions [35. 10]. These isomorphisms form the local symmetry group at the
point: a matenaliy uniform body has the same local symmetry group at
cach pomnt. One i~ tree to transtorm the local reference frame at cach
potnt ot the body. provided that the transivrmation belongs to the svmme-
try group and depends continuously on position. For a cryvstal, the symme-
try group is finite. ~o that the trans‘ormation must be the same at cach
point. Thus (1) 1s essenually unigue. being defined oodulo a finite
group of trunstormations. By contrast. the symmetry croup is the rotation
group for a matenal such as a meotal. Conscquently. the constitutive
cquation for the energy depends on CF ) only through the strain

"
Lod
—

Er o= (F )l Fu) 'y = 6.4] (

The theory of inhomogencous materials can be adapted to model
plasticity by allowing the local reference frames ot Noll to be dvnamic [6].
In this approach. the frame ficld (F ), I8 regarded as the plastic
deformanon CF) . while ' is the elastic deformation (F Y,. Thus we arc
led to the fundamental kinematic decomposition

I:[ = ([: )la([;p) «” (34)

Such a muitiplicative decomposition has been advocated by several work-
ers in plasticity theory [4, 17, 6. 16, 41, 200 19, 25, [4].

The plastic defermation (F,)" is the principal. but not necessarily the
only, internal variable in a model of a plastic material. Other variubles.
such as a hardening parameter, characterize the ctfects of plastic deforma-
tion on the material response. We will assume that there 1s a single scalar
hardening paramecter K the theory is casily extended to account for
several tensorial internal variables.

3b. Constitutive Relations

Internal variables (F))“, and K enter the cquations of motion in iwo
places: in the dynamical equations that govern their evolution: asd in the
constitutive equation for the energy, which depends on the local reference
frame and hardening parameter as well as the deformation gradient and
the entropy. Choosing a plasticity modcl amounts to specifving the evolu-
tion and constitutive eguations,
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A general thermodynamical framework for plasticity, which encom-
passes a variety of specific models. has been given by Green and Naghdi
[7). ‘his tramework allows for various choices of the measure of plastic
strain. A model based on the multiplicative decomposition (3.4) can be
accommodated in two ways, depending on the material symmetry [6]. For
crystals. one chooses (£)¢ as the piastic strain measure: for metals. one
defines the plastic strain 7, by Eq. (3.3):

+ "

[_;';'1“ Do ;‘,[(Fp)””( F‘p) B (311/3] . (3-5)

In the tollowing we will focus on metals, although the development could
be adapted to treat crystals.

The constitutive cquation for the energy expresses 4 as a function of
the deformation gradient F' . the plastic deformation (F ), . the harden
ing parameter K. and the entropy $. By the principle of frame indiffer-
ence, & depends on the deformation gradient only through the (total)
strain I ;; and for a metal, the plastic deformation appears only through
the plastic strain EY,. Therefore we assume the hyperelastic equation of
state

A

ﬁf”: ‘)()(E-y(iv E\‘?&’ K‘S) (36)

This assumption, together with the Clausius-Duhem inequality, implies
formulae for the stress and temperature (3, 7].
To derive these formulac. we introduce the notation

Daﬁ = %(FkaVk;ﬁ + I/k:aFkli)’ (3.7)
(2,1[1 = lZ(FerVk:ﬁ - V/\‘:quH) (38)

for the Lagrangian strain rate and corticity tensors. These tensors are the
symmetric and antisymmetric parts of FkaF"ﬁ, respectively; in particular,

E.5 = D,p. (3.9)

Note that the enerzy conservation equation (2.2), combined with the
momentum conservation equation (2.1), implies that

P& =S"*D,y — Q... (3.10)

Furthermore, differentiating the equation of state (3.6) shows that

5 & ; IE o aé"K. a(f“g. -
= DI + —K+ —S. 3.
IE,, ™ 9ED, P 0K 48 (
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Combining these two equations with inequality (2.8) yields

~ ~

‘ 5 A& £ ad’ po f"ff),\.
sy et - p P - p =K
( Pre (:)[5”“ af’ prv.l Jll‘(‘,)ﬁ afd Pret r‘;K
ady . T
"p.,’["‘i‘“_S‘" — (.
i A [
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(3.12)

Assuming. as is conventional, that lfu‘, and $ can be chosen arbitrarily
even if there is neither a temperature gradient nor plastic flow e
T =0, £, =0, and K = 0) incquality (3.12) leads to the identifications

. ae”
S = pogy ‘;)L_”u—
and
A&
Ty
along with the constraints
2 =20
QT
-~ + 20
Here
. i& & .
2 = '_'pref;.)_E:[:,;Ergﬂ ~ Py K

is the plastic dissipation, since entropy is generated according to
prefTS — —QYIY + .@

Thus the piustic dissipation is 2 = SSPEP, + QK. where

p ﬁég
Sph = —prcf@;‘
Q (763

= —prcfﬁ

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

are the dissipative forces conjugate to EJ, and K. respectively. In general.
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the plastic stress .S';,’” and the stress $°7 ditler. ulthough they are approsi-
mately cqual in the small-strain limit. Incqualities €3.15) and (3.16) place
thermodynamic restrictions on the dependence of 4 on the internal
vartables and on the evoluton equations that govern them.

3¢, Consttutive Models

Specitving the constitutive tunctn ¢ involves modeling assumptions.
For instance. a natural assumption m plasticity s that the cnergy s
determined primarily by the clastic part of the stram: the history of plastc
detormation has only mild ctiects on the material response. accounted tor
by the hardenming parameter. Furthermore, the anisotropic component ot
the clastic strain s tvpically small because of plasue viclding, so that a
small-anisotropy approximation is usctul for a material that s isotropic in
the local stress-free configurations.

Two alternative measures of the clastic strain are used in the hiterature.
Green and Naghdi define the clastic stramn Ef . as measured with respect
to the Lagrangian trame. through the additive decomposition

-4 e 1‘~ e <~p 3 ¥
E=ESy+ ED, (3.21)
of the Lagrangian strain. Equation (3.21) is analogous to the additive
decomposition of infinitesimal strain in classical plasticitv. Alternatively.
Lee and Liu {17. 16] measure the elastic strain with respect to the local
reference frames using

ah :

Es = R R = 8., (3.22

instead of £ ;. These strain measures are related by
< . o _:t.' - b nn
'"ﬁ = (PP) nl:ab([p) il (3...3)

Either measure of elastic strain can be used in constructing the equation
of state (3.6). This is cvident for the additive decomposition (3.21). In
terms of the strain measure Z_;h the general constitutive equation (3.6)
can be written as

—f = u

&= 2(Es, (F,) , K.S). (3.24)

“abe s}

where

b

E(ES (F) ' K.S) = E((F,) ' ES(F,) s + %[(Fn).,,,(ﬁw) - (,”H]_
1{{(1‘})00(@)“” _ﬁlrﬁ}‘K‘S)* (3.25)
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Conversely, tor Eq. (3.24) to represent an equation of state. Eq. (3.25)
must hold for some &. Indeed., when the local symmetry group 1s the
rotation group. L, and €F )", enter & only through the varables £,
and E“:ﬁ. In this sense. the alternative formulations are cquivalent [8, 27);
for a particularly lucid explanation. see Ref. [30].

When the equation of state 1s formulated as in Eq. (3.24). it is useful to
work with vuarious tensors referred to the intermediate frame. For in-
stance. with

Cuh s d "y ~ D
SP=(F) L STEL) (3.26)
Eqgs. (3.13) and (3.25) imply that
Ak

S’ur’) = P = (327)

ret L 7T
{’[‘«l/)

Furthermore. in formulating the dynamical equation governing the plastic
strain (see Section 3d), the following definitions will be helpful:

—— . - r . . /3
1;‘5)"’ = ( FD ! ) uLv?[J( Pp l ) h (328)
(LPE™),, = (Fy ') Eny(F) (3.29)

Here (LPE™),, is the plastic Lie derivative of EP, [30]; cf. Eq. (3.63) below.

Let us return to the ¢xample of a plastic material that is isotropic. The
physical picture provided by the mulitiplicative decomposition of the defor-
mation gradient (sce Fig. 1) suggests that the isotropy is manifested in the
stress-free intermediate configuration. This means that £ depends solely
on the principal invariants of (E")",,, or equivalently of (C* Y, = 2E®),
+ 6¢,. (Recall that the principal invariants of a 3 X 3 matrix A are
1(A) =tr A. o(A) = Y(tr 4)F = tr A7), and ((A) = det A: sce. c.g.
Refs. [2, 9]) Thus Lee and Liu {17. 16] adopt the equation of state

=&, 1, 1,,K.S). (3.30)

where [, = L,\.(C_"), k = 1,2,3. This equation of state conforms with the
requirement embodied in Eq. (3.25) because the invariants /,. /.. and [,
can be expressed in terms of £, and EJP,. To see this. we let CFy; =
2ER, + 9,5 and note that

h

(C_I)MCW - (Fp—l)"u(ac)dh( E)) a (3.31)

p
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as the invariants are unatfected by a similarity transformation. ¢ (C7'C)
=, (C), k =1,2.3

Remark. For an equation of state such as Eq. (3.30). the plastic stress
S;,'“ of Eq. (3.19) that enters the plastic dissipation ' can be related to the
stress $“#:

wny .
S‘rlﬁ = ((l‘—-() (

p P

*0f3 -
RN (3.32)
(the matrix on the night is, in fact, symmetric), When the clastic strain I?’j',,

is small. $7* is approximately equal to $°%.

3d. Plastic Flow Rule

The other tundamental feature ot plastic behavior is the plastic flow
rule, which specifics the time cvolution of the plastic detormation. Such a
flow field has the general form [23. 18]

EPy = Nyl E, s EP K. S) (3.33)

for a rate-dependent plastic. t.e.. viscoplastic. material. In addition. a
hardening law

K=H(E,, EP

yar

K.S) (3.34)

governs the evolution of the hardening parameter. The flow rule and
hardening law are constrained by the rcquirement (3.15) that the plastic
dissipation 7 be nonnegative.

Characteristic of viscoplastic flow (as opposed to viscoclastic flow) is
that plastic deformation occurs only if a threshold has been recached.
According to the plastic flow rule (3.33), the material deforms plastically
only in the region of state spacc where .\, # (). Since the hardening
parameter records the effects of plastic deformation on the material
propertics. hardening occurs only during plastic flow; therefore H is
assumed to vanish when A, = 0. The interior of the region where
A,g = 0, in which the behavior is purely elastic, is called the elastic range.
The boundary of the elastic range is called the (static) vield surface. The
elastic range and yield surface are usually characterized by a yield function
®: ® < 0 in the elastic range and ¢ = 0 on the yield surface. The yield
function & depends on the variables E.;, EY;, K. and §: frequently,
however, & depends on the strains and the entropy only through the stress
and the temperature.

We illustrate these concepts with a model that has been used to
describe high strain-rate plastic flow in metals [11, 31, 32]. In the casc of
finite deformations, this model is specified most simply in terms of tensors
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referred to the intermediate frame (see Section 3¢ and the first remark
below). First. the ron Mises vield criterion

& = lidev Sl = V2/3Y(P.T.K) (3.35)
is adopted. In this cquation. Y, is the static yield strength (as specified
below), P = J7'§* is the mean pressure. (dev $)*° is the derviatoric
stress.

R Cab ' Co gqub
(dev §)" = §ub — L15¢ gub, (3.36)
and the norm § - | is defined by | Al == 4“%4 . The flow ruic is taken to

be the Lévy-5t. Venant flow rule, given by

(devS),,

LPEP = \(P.IldevSI.T.K =
( Yan = M(P.lldev Sl ) lidev S|l

(3.37)

In particular. the model is complete once [|LPEP] = A(P. lidev SI. 7. K)
has been specified.

Remarks. (1) Plastic How in metals i1s often assumed to be volume
preserving [17. 16], so that det F, = 1. Since

(det F,) " (det £,) = (F,) (F7') . = (LPEP) .. (338)
the plastic flow rule preserves volume if and only if (L”E)“,, 1s trace-free;
this has been emphasized to us by F. Wang [40]. For this reason. we have
formulated Egs. (3.35) and (3.37) in terms of (dev §)“". rather than
(dev o), as would be conventional (see, e.g., Ref. [28]). The correspond-
ing Eulerian formulation is given in Egs. (3.71) and (3.72) below.

(2) When Y, is independent of P, the Lévy-St. Venant flow rule is
associative, in the sense that

ad
('):S‘_ah :

(LPE®)., = A(P,|ldevSI. T, K) (3.39)
Thus the direction of A, is determined by the normal to the vield surface
in stress space.

(3) In terms of Lagrangian quantities, the flow rule (3.37) is

E®P. = A(P,|ldev,» Sllce, T, K)CP (devee $)™ cr 3.40
a8 = A(P,lldeveo Sllee, T, )“Ylldev(‘pSH(-v o 340)
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where P = J7'S¥CP

rj3

(dCV(-pS)““ = Suli - ?isyn(~fy'1(('p i)‘ (34})
and the norm | - i+ is defined by
FeAlid o= APCR 0D (3.42)

Thercetore this flow rule does. indeed. have the torm of Eq. (3.33).
provided that §% and T arc expressed in terms of £, P K.oand §
through Eqgs. (3.13) and (3.14).

The specification of HL‘_’E"H derives from a model for the dvaamic vield
strength Y = Y(P. T HLYEPH K). This quantity is the vield strength ob-
served in plastic ttow at nonzero strain rate: in other words,

lIidev Sl = V2/3Y(P. T ILPEPIL K) (3.43)
during plastic flow. The dynamic vicld strength must cxceed the static vield
strength

Y(P.T.K):=Y(P.T.0.K) (3.44)

and increase monotonically with strain rate.

Given a model for the dynamic yield strength. the corresponding
flow rule is derived as follows. When {ldev S| is below the static vield
strength. there is no plastic flow. and [|LPEP] = 0: otherwise. fidev 811 >
V2/3Y,(P.T.K). so that Eq. (3.43) can be solved for [[LPEP] in terms of
the remaining quantitics, obtaining

ILPEPH = A(P.lldev SI. T. K). (3.45)
Therefore the plastic flow rule is

0 if ldevSll < V2/3Y,(P.T.K).

(LPEP),, = (dev S,

A(P.lidev SIL T, K) v 3l otherwise.
ev.

{3.46)

To be more concrete, we consider a model tor the dyvnamic vield
strength given by Steinberg and Lund [32]. In this model, Y is composed of
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a thermally activated part Y, and a strain-hardening part Y

aerry,
Y, S Y (A (3.47)
(r,
where the thermally activated part Y, 00 <Y, < Y. iy the solution of the
cquation

— | ) W Yy )
P23 LVEY =Y, PO = oY ewp — L - -) S (3A48)

v P kr v

In these expressions, the tunctions ¢ oand Y, and the parameters G, C.
C.. Yoond UGk are materiad-dependent quantities. The hardenming law
(3.34) s taken to be

KN o= 2/ 30LPED: (3.49)

in other words., A is the cquiralent plastic strain. and Eqg. (3.49) modcels
isotropic stramn-frardening .
The tunction \ for this model is obtained as tollows: According to Eq.
(3.48). Y, = it when {L7ETE = 0. so that
G(P.T)

Y(P.T.K) = ———VY (KN). (3.50)
Gy

Since fidev S = v2/3 Y during plastic How. Eq. (5.47) implies that
Ndev St — 2/3Y(P.T.K)

)'/_:—_ — = . (35])
V2 /3G(P.T) /G,

thus Y, coincides with a measure of the extent to which the static vield
condition has been cexceeded. Substituting this expression into the right-
hand side of Eq. (3.48) gives y2/3 AL

3c. Lulerian Formulution

Corresponding to the internal variables £7 and K characterizing a
plastic material in the Lagrangian picture. we define the Eulerian quanti-
ties

(f) = (F) (3.52)
ef = (FTY)" EPy(F 1, (3.53)

k=K, (

[9S]
‘n
e
“—
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which are regarded as functions of x = &(X.r) and ¢. In terms of the
elastic Finger tensor

BY = (£ () (3.55)
ef = 1[(67"), — (b7 (3.56)

The equation of state is
£ =é(ey. el fr, km) (3.57)

wherc
g(ekl‘ el?l' fky‘ K. T’) = (’()(fmyenmf”d . fm:-cr‘:rnf”d' k.M ) (358)

Just as for elastic materials, the Eulerian conservation laws of momen-
tum. energy, and continuity are Eqs. (2.22). (2.23), and cither Egs. (2.24)
and (2.25) or Eq. (2.26); the constitutive equations are Eqgs. (3.57). (2.31).
(2.32), and (2.34). The thermodynamic constraints (3.15) and (3.16) be-
come

d >0, (3.59)
k
q“e.
_A%k s, (3.60)
where
Jd€ . dé
d = “pb;—g(l‘,e ),j—[)a‘L,K (3‘61)

is the plastic dissipation J~!2, and entropy is generated according to the
equation

pOL.n = —q* , + d. (3.62)

In these equations we have introduced the Lie derivatives [21, 30] of ¢}, .
and 7, as defined by

(L.eP), = (fﬁl)aiEgB(f_ l )Bj

d
= 5;63 + vkel  + vt el + et (3.63)
oK
L.k=— + vk, (3.64)
at '
on .
Ln=—+0vhn,. (3.65)
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To write the plastic flow rule (3.33) in the Eulerian formulation, we
multiply Eq. (3.33) by ( £ (" ")# to tind that

(L.eM), = ’\”("klv ey fk) ' K 77)2 (3.66)

in addition. the hardening law (3.34) becomes

K

1‘!1\.:/1(6/«/'(‘/{)/‘ ",K.n). (3.()7)

Here we have made the identifications

«@

Aear el S o omom) o= (F TN A L(EL ERLVKS)F)Y L (3.68)

h(eg el f* komy=H(E | EP K. S). (3.69)
Similarly. the Eulerian vield function ¢ s given by

cleg el f5,  kom) = ®(E,, EB,. K.S). (3.70)

For example. the von Mises vield criterion (3.35) and the 3vy-
St. Venant flow rule (3.37). as expressed in the Eulerian picture. are

@ = lldev, ity 1 = Y2/3v(p. 0. k). {3.71)

_ (devh;-lrr)kl
L.ef = A(p. lldev,,k_-; olip, 1.0, K)(b."‘) -

vy ¢

(b ) (372
IA“dthL_'U“huf()‘ )i (3.72)

where p == 1o*(b;"),, is the mean pressure P.
(devy-10)’ = o = ta*(b7 1), Y (3.73)
and the norm || - |l,-1 is defined by

Al =AY (b "), A (B, (3.74)

Also, A and v, are identified with A and Y, respectively. Therefore this
flow rule has the form of Eq. (3.66) when o'/ and 8 are expressed in terms
of e,,, ef;, . and 7 through Egs. (2.31) and (2.32).

4. FLow RuLis as CONSERVATION Laws

In the previous section we have scen that the evolution of a plastic
medium is governed by the conservation laws of momentum, energy, and
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continuity together with flow rules for the internal variables. This discus-
sion implicitly assumed that the flow was smooth. Here we consider the
possibility of discontintrous solutions. as are expected to occur on the basis
of experiment and the structure of the governing svstem of partial ditfer-
ential cquations. Analysis of discontinuous solutions is best carried out
when the cquations are written as conservation laws. This poses a ques-
tion: When are the dynamical equations for the internal variables conser-
vation laws?

Answering the question of when an evolution equation is 4 conservation
law has two aspects. First, the cquation must be written in divergence
form. Sccond. the cquation must hold in the sense of distributions. Tuo
understand these aspects, we recall the example ot gas dvnamics.

For smooth gas flows, the equations governing the time evolution of
both ¢nergy ¢ and entropy 11 are in divergence torm:

J

E[p(%v,t" + E)] * [p(%lxll.l + F)l‘)y; - -(pl‘/):w (41)
a 5
o lem + (pme’)., = 0. (4.2)

However, one cannot require both of these equations to hold for discon-
tinuous flows. Indeed. the jump conditions enforcing conservation of
energy entail an increase in entropy. whereas the jump conditions for
conservation of entropy lead to a decrease in energy. Although both Eq.
(4.1) and Eq. (4.2) hold up until shock formation, a choice between them
must be made at that point. This choice is not dictated by the mathemati-
cal structure of the equations. Rather. it must be made on the basis of
physics: energy is conserved and entropy increases. Similarly. in plasticity.
we must appeal to physics to decide when a tlow rule is expressing a
conservation law.

For plasticity, we first ask whether the cvolution equations for the
internal variables have divergence form. Referring to Egqs. (3.33) and
(3.34), we see that the plastic flow rule and hardening law have divergence
form in the Lagrangian formulation: the time derivatives of the internal
variables are given by source terms involving the state variables but not
their derivatives. By contrast, the corresponding cquations (3.66) and
(3.67) in the Eulerian formulation have not been written in divergence
form; this is because L, e” and L, « involve spatial gradients muitiplied by
functions of the state variables. We therefore replace these equations by
ones in divergence form.

The Eulerian equations in divergence form that correspond to the
Lagrangian flow rule and hardening law are obtained as in Ref. [24]:
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(a) the equations are written in integral form; (b) a change of variable is
made in the integral; and (¢) the transport theorem is applied. The
equations that result can diso be obtained by a simple argument (which is
valid only for smooth solutions). Thus we multiply Eq. (3.33) by p and add
the equation of conservation of mass. multiplied by EF;; this yields

It
l,-);(pl;’,f’ﬂ) + (pEP et ):A =pA - (4.3)

Since L], = f' ¢ f/,. we obtain
(" - - . . /‘ . N
ol VIR I VI T )o = LA (4.4)

Similarly, the hardening law becomes

d
E(pK) + (prtX). = ph. (4.5)

The question remains whether Egs. (4.4) and (4.5) represent physical
conservation laws. In this paper. we address this question within the
context defined by experiments on shock wave propagation in metals [26.
38, 39, 31-33].

Distinct wave structures are observed in the three regimes of low.
intermediate, and high pressure driving the metal. If the driving pressure
is below the Hugoniot elastic limit (on the order of 10 kbar)., a purely
elastic shock wave occurs. For an intermediate pressure (less than about
100 kbar), a two-wave structure 15 observed. At still higher pressures. the
two-wave structure collapses into a single strong shock wave.

In the intermediate pressurc regime, the leading wave is relatively
sharp, has an amplitude that is generally independent of the driving
pressure, and propagates at a speed determined by the elastic properties
of the metal. Therefore it is interpreted as an elastic precursor wave. The
wave following the precursor has a broader profile and an amplitude that
increases with driving pressure; its structure is sensitive to the strain rate.
Furthermore, the relaxation time associated with the strain-rate depen-
dence is long compared with the rise time for the elastic precursor. These
observations suggest that the plastic deformation occurs predominantly
after the passage of the elastic precursor.

On this basis. it is concluded that (a) the elastic wave can be modeled
effectively as a mathematical discontinuity, involving no change in the
plastic deformation and (b) the plastic flow occurs within a broad profile
plastic wave following the elastic precursor. This picture is consistent with
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the assumption that the flow rule and hardening law. Eqs. (3.33) and (3.34)
or Eqgs. (4.4) and (4.5), are genuine conservation laws.

To justify this statetnent. we consider a plane wave. propagating at
(Lagrangian) speed §, in the direction of the vector N, . across which a
discontinuity occurs in the state variables. Using A to denote the jump in a
quantity across the wave, the jump conditions for Egs. (2.1)-(2.3) and Eqgs.
(3.33) and (3.34) are

=PIy AV = A( F'"S'"’),Vﬁ‘ (4.6)

- /)rc!‘s.\' A(%VIVI + é))

AV,FUSIN, = AQN,.  (4.7)

- SyAF', = AV'N . (4.8)
— SvAER, =0, (4.9)
- Sy AK =10. (4.10)

Therefore no change in the internal variables £P and K are sustained
unless S5 = 0; i.e., the wave moves with the speed of the fluid particles.

Thus for the case of shock wave propagation in metals, we have
established a conservative form for the governing equations. This conser-
vative form mignt well apply to a broader class of rate-dependent plastic
materials.

5. RATE-INDEPENDENT PLASTICITY

While plastic flow is fundamentally a rate-dependent process. a rate-
independent approximation is useful in certain flow regimes. In this
section, we shall see how the rate-independent equations emerge as a
singular limit of rate-dependent plasticity. We also explain the sense in
which the rate-independent equations are conservation laws.

We assume that the static yield surface associated with the flow rule A,
is given by Eq. (3.70). In particular, [|All > O when ¢ > 0, so that we can
define the relaxation-time parameter v > () to be 7:= @/llAll. (For in-
stance, in the Steinberg—-Lund model, 7 is proportional to C,.) Noting that
A;;=0and h = 0 when ¢ < 0, Egs. (3.66) and (3.67) can be written

1 .
(L.e®)i; = ;‘[‘P(ekzvefzvfky’ "vn)] + )‘z’j(ekl'elfl’fky"“‘n)- (3.1)

1 _
L.k = ;[(p(ek,,e,‘(’,,fky,x,n)] +h(egel, f*, km). (5.2)
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where ([All = 1. Here [-]. denotes the positive part of its argument: [e]. is
¢ when ¢ > 0 and is zero otherwise.

If the material is in thesplastic region ¢ > (), then Eq. (5.1) dictates that
ey relaxes to the vield surface ¢ = @ on the time scale of 7. In the limit
7 — 0, the fHow process is approximately rate-independent. This approxi-
mation is valid when the time scale for returning the plastic material to the
vield surtuace is much smaller than the time scale for other flow processes.
The limiting cquations can be formulated as

‘ 1-',- U[‘)u = ,U,/\”(L‘A.,,L’{)/.fky,}\', 7’) (53)
L,k =uh{e,. L‘,‘f,./'ky,f\'. n). (3.4)

where wois a Lagranee mudtiplier that is subject to the loading /unloading
condinons

N
wn

w > 0. ¢ < G e =), (3.3)

written as a Aw/m-Tucker complementarity condition, and the persistency
condition that

L.¢=10 ifw >0 (5.6)

Remark. This tormulation has been extensively discussed by Simo and
coworkers [30, 28, 29]. Conditions (5.5) can be derived as optimality
conditions for a constrained optimization problem: maximize the rate of
dissipation of cnergy during plastic flow, sub,ect to the constraint ¢ < 0.

In the folowing we describe how the rate-independent equations arise
trom the rate-dependent equations as 7 — (), assur ing that the flow is
smooth. Comparing Egs. (5.1) and (5.2) with Egs. (5.3) and (5.4) suggests
the i1dentification

1
w o= lim —[¢]}.. (5.7)

-0 T

Therefore we calculate lim. 7~ '[¢]..
As a preliminary, note that the vield function ¢ satistics the equation

«Q
l‘l‘P = [L!¢]claxsllc - t[‘p]*‘ (58)
where
e 1 de
p = —(L,e),, - — —q* 5.9
[[ ! ¢]cl:mu (')6’,-]( l() ) I)O ‘977 q T A ( )
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and

'r'hp I dg G5
— e — — 1. (5.1
U Hdq dx

¢ = T T

j 4'9;? . ] t')q: e )-

. | Fa
deb f dn (,(,!p/l
Equation (5.8) can be derived by tirst calculating & in Lagragian coordi-
nates and then transtorming to Eulerian coordinates.

Remark,  The combinations of derivatives of ¢ that appear as cocethi-
cients in the definition ot « are the derivatives of ¢ with ¢. rather than n.
held tixed.

At this point we must assume that « .- 0: this constitutive assumption is
a stability condition. i that when the material is bevond the vield surtace.
e ¢ > (0 the sccond term in Eqg. (3.8) drives the matenal toward the
vield surtace ¢ = (.

We regard Eq. (5.8) as an ordinary differential cquation tor ¢ along a
particle path. with [ L ¢] . serviiig 1s a known torcing term. To simplify
the analysis. we assume that ¢ has been rescaled so that o 18 constant.
Furthermore. we suppose that the low begins within the vield surface. 1.c..
¢ takes on the (r-tndependent) inttial-value ¢f, ., < 0 at time ¢ = 0. In
order to solve the initial-valuc problem. we consider three cases.

First. if ¢l, .o = Oand [L, ¢l -0 > 0. then ¢ > 0 for small ¢ = ti s0
that [¢], = ¢. Therctore multiplying Eq. (5.8) by exp(at/7) and integrat-
ing both sides along a particle path shows that ¢ is given by

.¢ = /'[(' SIUERY | "[ l.a, ‘P]L'IH\“C (/S_ (Sl l)

)

Note that when ¢ > () is fixed. («/7)expl—alt — v)/7] approaches
delta-tunction at s = ¢ as v — ). Consequently, Eqg. (5.11) implies that

1 1
lim tim —[e]. = —[L, ¢ (5.12)
T (44

=X R € M

(Obviously, taking the limits + = 07 and 7 — 0 in the opposite order
vields zero: thus p is discontinuous at ¢ = ()

Next. if either ¢i,. <0 or ¢l,.a =0 and [L ¢l lr o < 0. then
¢ < () for small r > 0. Therctore

1
lim lim —[¢]. = 0. (5.13)

0" -0 T

Finally, supposc that ¢l, .« =0 and [L, ¢l v = 0. Since {¢]. = ¢
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the argument leading to b o3 1) vields the mequalin

[«] N 0, N VA (.14
MR !
Thus
;
e dim hmesup cfe ) o maxoc[ Lo c] s s 1313
. ST

As concerns the Tagranee mutuphier w2 O of g 3700 we draw the
tollowing conclustons. bguation (3 13) savs that o - 0 ¢ - 8. Moreover.
by Ligs. (S 12065030 nad (S 1350w - O onlv it Eqg. «3.12) holds, in which
case g (3.8 implies that /0 ¢ = 00 In other words, Bgs, (3.3 and (3.4
and conditions (3.3) and (300 aie obtained in the rate-independent imit,

These conditions fead o the stram-space formulation ot the loading
criterion tor a rate-independent material [22] We define o, to be the
right-hand side of Eq. (3.12) e,

de bode
(Loe¢), - ———u" .
e, ph dn
TR ; ) " - — (3.16)
it i de l ()‘; g = {()¢ I e oOF -
- - = — - - = - 1h
del #dn deb ‘ 1 #dn oKl

and say that the flow s undergoing loading when ¢ = 0 and w,,,, » 1.
neutral loading when ¢ =10 and w,,,,, = 0. wloading when ¢ = ¢ and
Koy -~ O and claste detormation when ¢ - 0. Then the Lagrange multi-
plicr i that appears in Egs. (3.3) and (5.4) 1s

[T in the case of loading.

700

) (5.17)
otherwise.

This classical formulation s implied by conditions (5.3) and (5.6). as
follows [29]. First suppose that ¢ = ) and u,,, > (). Then in order for ¢
to remain nonpositive. we must have that L ¢ < 0. Since L. ¢ =
[L, ¢lpue — pa. this implies that g > u,,, > 0. By the persistency con-
dition. we conclude that [ ¢ =0 ic. [L, ¢l e — na =0, By the
persistency condition. we conclude that L, ¢ = 0. e [L, ¢) 0 — na =
0. Therefore p = u,,,. Next supposc that ¢ < (. Since w¢ = 0, this
implies that = 0. Finallv. if ., < 0. then & = 0 as well: otherwise u
would be positive. implying that L., ¢ = 0. which would c¢ntail that 4 =
Hopge & contradiction.
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The classical How rule is inadequate. however. when the flow 1s not
smooth. In general we wish to allow flows containing discontinuities. 1.c..
solutions with bounded-variation that satistv the governing cquations m
the weak sensc (the sense of distributions). In such a case. Eqg. (5.16) might
involve multiplying a discontinuous function by a distribution with u
delta-function singularity, a process that is ill-defined. In contrast. the
Kuhn-Tucker conditions (5.5) are scnsible for bounded-variation solu-
tions: the conditions hold almost evervwhere. Furthermore. if the peisis-
tency condition (5.6) is replaced by the equivalent condition

J
Tt—(p‘p) + (pot*), =0 in the interior of the support of w. (5.18)

then it also can be required of weak solutions.

Thus the weak formulation of the governing equations for rate-indepen-
dent plasticity consists of the conservation laws (2.22), (2.23) and either
(2.24) and (2.25) or (2.26), together with the flow rule

d

.(?—[(pfluel[; j{d) + (pflael;; jljl.l\)_/\‘ = p“’flu’iufjlb (519)

d -
(—9—{-(;)1() + (prr* ).« = puh. (5.20)

where u is constrained by conditions (5.5) and (5.18). We call the resulting
system a constrained system of conservation laws.

6. WAVE STRUCTURE

In this section we give a preliminary analysis of scale-invariant solutions
for rate-independent plasticity. In the Lagrangian picture. the governing
equations (with heat conduction neglected) are

Fa=V'a (6.1)

preri = (F‘asaﬂ)v_ﬁv (62)
pref(%ViVl + é)): (VIF’aSaB),ﬂ’ (63)
EPy = A4, (6.4)

K=uH, (6.5)
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where u is subject to the constraints

u >0, b <0, wh =0, (6.6)

d=0 ifu>0. (6.7)

We seek scale-invariant solutions of these equations. By this we mean that
the flow variables F* . 17, 5. EF,, and K depend solely on & = N X /1.
whereas u has the torm a(£)/1.

If such a solution has a jump discontinuity at speed S.. then cach
(distributional) derivative appearing in Eqgs. (6.1)-(6.5) 1s proportional to
the delta-tunction 8NV, X = §y1) supported on the planc ¢ = §.. For
instance. E,',’lj = =S AE, 6 and V' =N _AV'5. The source terms on
the right-hand sides of Egs. (6.4) and (6.3). however. are bounded varia-
tion functions. with no delta-function component. Theretore the jump
conditions (4.6)-(4.10) are satisfied (with AQY = 0). subject to the con-
straint that ¢ < 0 on both sides of the discontinuity. In other words. jump
discontinuities are unaffected by the plastic source terms. There is no necd
to determine wu; in fact, since the plane ¢ = §, has measure zero. the
value of the distribution x on this plane is indeterminate.

For a smooth solution, on the other hand. Eq. {(6.2) becomes

Per' = A'mép,s;ﬁ = Peer TF, IS, B

3ss s
P+ ——K | (6.8)

+ F' | —EP,
a a£$0 ya:B K

Here A®%? is the adiabatic elasticity tensor and the 1'% are the Griineisen
coeflicients:

AlBkS . p ,_6235____ (6.9)
I’Efaf*[ﬁ (‘)F/\.o *
—_ 92&
- W= 6.10
IE ;3 (6.10)

The elasticity tensor is related to the adiabatic elastic moduli

CoB" i p i (6.11)
re 0[‘;03 8E75

through the equation A'P*® = F' CBYFX 4 §hgh?
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Furthermore. Eq. (6.3) can be replaced by Eq. (3.18). 1.c..

- a& as
7§ = — . + X 12
#laEp, Vs T o (6.12)
This implies that b = (i)lc;;.\m. ~ pna with
t) ap
¢ . LI —— 5 . 3
‘ALI\II(. (,’Ew,. i Ve (() | )
and
I | od ok - Jdp 1 od a8 i
= — - = — A, ~{— = =—— 6.14
@ JED. T as 9ET, a8 3K TS ik ( )

Therefore. when a scale-invariant solution is differentiable. Egs.
(6.1)-(6.5) become

—E(F)e = No(V e (6.15)
= P (V1)e = NyAPP(Fy), = proy TF', Ny TS,
, N et ; gsab )
+ F' N, (“536(157,;)7f TR K.|. (6.16)
TS iy Msﬁ 6.17
- ¢ = T H A .+ —H]|. _
9= ~mgEn Rae T o (6.17)
~E(Efp)e = Ay (6.18)
- ¢K, = iH. (6.19)
If we let
_ LN -
Hiriat = . aEﬁ' Iy (V7 )¢, (6.20)

then according to conditions (6.6) and (6.7), & = fi,,, when ® =0 and
Lyia > 0, whereas o = 0 otherwise.

When ¢ = 0, Eq. (6.15) implies that ('), = 0, while Egs. (6.17)-(6.19)
are solved by taking & = 0. Thus there is no velocity variation and no
plastic flow at & = 0. Equation (6.16) represents three linear conditions
connecting the remaining unknowns (F;),, S,, (EJ;),, and K,. Thesc
conditions are the infinitesimal version of the requirement that the normal
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stress F‘“S""Nﬁ be continuous across a discontinuity propagating at speed
Sy = 0 (cf. Eq. (4.6)). _
On the other hand. whén ¢ # 0. Eq. (6.16) can be replaced by

(')Suﬁ H()() \ i
2 t — ! ~ | g
prct‘g (V )E— (A,V)/(V))E+#F(,N;3 r’lEé’n *prcll ('fﬁ&) y O
ases ) aEN
+ + p oI — . (621
7K P el 7K H {(6.21)

where A4, = N,AP°N; is the acoustic tensor. Since g, is proportional to
(V’),, Eq. (6.21) rcpresents an eigenvalue problem: it ® = O and @&, > 0.
then p,, £ is an eigenvalue of the plastic acoustic tensor (AR.), defined by

p ! t L : (')S“ﬁ af J& 1
(AN)] = (AN);' + ;FaNﬁ 8E$5 + prc:fr ‘?Efi, ~\y6
aseh (?(;;) L
+ K + p,cfl‘“"é—[? H F FN,: (6.22)
en

and otherwise p £° is an eigenvalue of the (elastic) acoustic tensor
(A ). The eigenvector in each case is (V'),, and once it is known. the
remaining unknown quantities (F', ), S, (EZ,),, and K, are determined
by Egs. (6.15) and (6.17)-(6.19).

Assuming the eigenvalues of (A, ) and (A%)', to be positive. the wave
modes occur in three pairs. For instance, in the elastic flow of an isotropic
material, the fastest wave corresponds to longitudinal stress (i.e.. pressure)
modes, while the two slower waves correspond to radial shear stress (i.e..
necking) and angular shear stress (i.e., torsion) modes. In plastic flow
(z > 0), waves propagate at speeds corresponding to the eigenvalues of
the matrix (AR )}, which is a rank-one perturbation of (A ). Typically the
constitutive model leads to plastic wave speeds that are smaller than the
corresponding elastic wave speeds.

7. CONCLUSIONS

In this paper we have formulated the equations governing rate-depen-
dent and rate-independent plastic flow of metals in a conservative form.
applicable to both smooth and discontinuous solutions. A preliminary
analysis of the wave structures arising in the rate-independent case was
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also given. This work provides the foundation for further studies of
nonlinear waves in plastic flow, and for the use ot this information in
numerics:l computatiorss.
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