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A Conservative Formulation for Plasticity
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lI this iper ( \0e propose a tluly einfsers art•s 611t1rm Ibr the Continuum ellatton-

governing ralre-dependent and rai,-independenr plastic tl)o% in imetal,. ihe cotner-
ration lis are valid for discontinuous ai ".il ve, ,,momolh solutions. III the
rate-dependent case. the e¢ilution cquations irc in dierecnce form. %%ith 1heC
plastic >train heing passively convected j,,,,i .mrenlcd h% source terms. In
the rate-independent case. the conservation laws involve i Lagrange multiplier
that is determined by a set of constraints: \e ,how that Riemann problems !or this
system admit scale-invariant solutions. i, P 2-\ d..mdcnic i'Vre.. Inc

.I NITR()D '(-Ii( )N

In a previous paper [24], we formulated the equations for elasticity in
the Eulerian picture as conservation lawvs. The motivation tor this work
was that the Eulerian framework is useful in numerical computations of
large-deformation flows. Furthermore, the most eftective numerical meth-
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ods, such as second-order Godunov schemes and the front tracking method.
rely on an understanding of the structure of nonlinear wvave solutions.
Such an understanding requires that the equations be in conservation
form. Subsequent studies [5, 11 have shown that the use of a conservative
formulation does indeed lead to substantially improved numerical calcula-
tions.

In the present paper. we show that a fully conservative formulation can
he given for the equations governing an important class of rate-dependent
and rate-independent plastic materials. Unlike the case of elastic materi-
als, for which Lagrangian conservation laws were already available, we
must appeal directly to experiment to decide which of the dynamical
equations for plastic flow are conservation laws. For this reason, we focus
on the plastic flow of metals induced by strong shock waves. We expect.
however, that the conservative form applies to a broader class of plastic
materials.

The formulation of finite-strain plasticity that we adopt has much in
common with that of Simo and coworkers [30. 28. 29]. There are t~vo novel
aspects to the present work. For rate-dependent materials, we cast the
governing equations in divergence form and argue, on the basis of experi-
mental results for metal plasticity, that these equations represent conser-
vation principles. For rate-independent materials, we show that the load-
ing/unloading conditions. written as an optimafity condition involving a
Lagrange multiplier, hold for weak solutions: the resulting constrained
system of conservation laws admits scale-invariant solutions.

Section 2 of this paper contains a brief summary of elasticity in the
Lagrangian and Eulerian pictures. The various parts of Section 3 present
the equations of viscoplasticity in the Lagrangian and Eulerian pictures
and include a discussion of the kinematics of plastic deformation. constitu-
tive relations and models, and plastic flow rules. In Section 4 it is argued.
on the basis of experiment, that the plastic flow rule and hardening law
are conservation laws. In Section 5, the conservative form for rate-inde-
pendent plasticity is obtained from the rate-dependent theory in the zero
relaxation-time limit. Finally, in Section 6. we examine scale-invariant
solutions of the rate-independent theory.

2. ELASTICITY

In this section we summarize the continuum description of an elastically
deformable medium, first in the Lagrangian (material) picture and then in
the Eulerian (spatiil) picture. We refer the reader to Ref. [241 and to the
general literature (e.g., Refs. [15, 35, 21, 9, 21) for further detail.
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2a. Kinematics and Consert'ation Laws

The motion of a deformable body - is represented mathematically by a
time-dependent map (b, the motion, embedding ýd into an ambient space
/'. Let X'. cy = 1. 2, 3, denote material coordinates on .d. and let x'.

i = 1, 2. 3. denote spatial coordinates on ,/' then x d'( X. t ). The
motion (h must respect the conservation of momentum and energy. These
principles are expressed as partial differcntial equations involving the
temporal and spatial derivatives of b. namely the Lagrangian relocitv
V' -c /at and the Lagrangian de•hormation gradient F := dHbliA'.

Let 1),,, denote the mass density of the undeformed body, &) the specitic
energy (energy per unit mass). S'"" the ( second. or symmetric)) Piola-
Kirchhoff'stress tensor, and Q" the Laagrangian heat /lux. Then the conser-
vation laws are

Prc?'~ = ({F',.S'"), 3 , (2.1)

Prc(WV' + & ',F,,S ) )-= :,2

Here the dot and the semicolon denote covariant differentiation with
respect to time and space. respectively. Equations (2.1) and (2.2) are in
divergence form- indeed, they derive from the integral form of the conser-
vation laws. Therefore they hold in the sense of distributions.

Because the motion fh enters the conservation laws only through its
derivatives, the second-order equations can be regarded as first-order
equations in which the velocity and the deformation gradient are funda-
mental dynamical variables. If ký is eliminated in favor of the FP.
however, the system of equations must be expanded. The additional
equations are also conservation laws:

Fit = Voi (2.3)

as follows by equating mixed partial derivatives of d. Equations (2.1)-Q2.3)
express the governing equations for a deformable medium as first-order
partial differential equations in conservative form.

2b. Constitutive Relations

The conservation laws involve the energy, stress, and heat flux, there-
fore they are incomplete unless supplemented by constitutive relations for
these quantities. These rc~ation• characteri7e the mtc-ia properties 01

the deformable medium.
The thermodynamic state of an elastic material is specified by the

deformation gradient F', and the specific entropy S. Because of covariance
with respect to rigidbody transformations of the spatial coordinates (the



()NSI-ERVAHVI: I'1 AS,,II('II 465

principle of frame indifference), the state depends on I-` only through the
( right ) ( 'auchv-( Green tensor

F. 2.4)

or. equivalently, the Lagram,,ui .vtrtam telsor

(In general. 6,, should be. interpreted as the material metric tensor.) We
postulate that the thermodynamic state determines the specific energy :

through a hyperelastic cquation ot state

U16)
, =,'( ,.)) (2.6)

(For simplicity, we assume that the material is unifonrm. i.e.. neither p,.,
nor • has explicit dependence on the material point X.) The heat flux is
specified by a separate constitutive relation. such as

= -AT". (2.7)

where T is the temperature and .A is the thermal condLctiu'itV.
Following the standard argument of Coleman [31. the second law of

thermodynamics, as embodied in the Clausius-Duhem inequality

PrefS + (Q"/T):,, (0. (2.8)

leads to the identifications

a513 - Pt Po(2.9)

T = - (2.10)

together with the constraint

-QVT _ >Y . (2.11)

For the constitutive relation (2.7), this constraint requires that 0..'> 0. It
follows from the goveaing equations and the consitutivc reiations that
the entropy satisfies

PrfT, - QY~y. (2.12)
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Given the constitutive relations (2.b). (2.9). (2.10). and (2.7). 'qs,.
(2.1)-(2.3) comprise a complete system of evolution equations in conser.,,-
tive form that describes elastic materials in the Lagrangian picture.

2c. ELdertan Formindation

To translate the governing equations into COnsenration laws in tc
Eulerian picture. we introduce notation for several Eulerian cluarititic,,.
which are defined to be functions of x =( A'. I)and td

, , (.13)_

" :=(.- 1 , (2.Ib)

77 := S, ( .S
0 T, (2.18)

o-) 1= -Fl ,, SvoFlo 1..10)

qI = JF',Q". (2.21)

Here J is the Jacobian determinant of the map d). i.e., the determinant of
the linear transformation F' and Tr'; is the Cauchy stress tensor.

In the standard fashion, the transport theorem (see. e.g., Ref. [91) shows
that the Lagrangian conservation laws (2.1) and (2.2) for momentum and

energy are equivalent to

dat (PV, ) + ( p"'-") a ". 2.22 •

+ + [p('~.. +ru1 ((,,,.',)): (2.23)(it --

The conservation law (2.3) governing the deformation gradient trans-
lates into the Eulerian picture in a similar manner [241. With the aid of the
Piola identity, {J(F-I", 0, Eq. (2.3) becomes

Ot(PP.) + (pf'<,t"'):j = (Pr"J",J,. (2.24)

We supplement this continuity equation with the conservation of mass

____________________
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equation.

+ (p) (1. (2.23)
at

which derives fiom the Lagrangian equation p,., =

The Eulerian system of Eqs. (2.22)-( 2.2) i, complete in the filowving
sense (cf. [241): Consider a solution to the Luierian ,%stem that is either
smooth or piecewise constant: suppose that there is a deformation b, ,such
that at some initial time t = t,,, f,', and .1 are the gradient and Jacobian of
A,. respectively. Then there is a motion fb. coinciding with b,, at t = 1 ,
that satisfies the corresponding Lagrangian system of Eqs. (2.1 )-(2.3) and
relates to the Eulerian solution as in the delinitions above.

An alternative to Eqs. (2.24) and (2.25) has been suggested by
Frangenstcin and Colella [34], viz., the equality of mixed partial derivatiXes
for d) -

a
+ [g"-,v] = 0. (2.26)

An equivalence, in the sense above, between the Lagrangian system and
the system comprising Eqs. (2.22), (2.23). and (2.26) is straightforward to
establish in the manner of Ref. [24]. Moreover. Wagner [37] has used the
methods of Ref. [36] to extend the equivalence to general weak solutions.

The conservation laws must be supplemented by an equation of state.
which expresses the energy as a function of the Finger tensor

b, (,(2.2-7)

or, equivalently, the Almansi strain tensor

Note that e,, := (F-1 )"jE, E3(F-')'
3 . The equation of state can be written

[30] as

C = , .... , 1
(e,-, (2.29)

where i relates to 8ý through

g( ekl fkP, 1 :Y y e), (2.30)
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Differentiating this definition yields the formulae

0 = -(2.32)

In calculating the derivative in Eq. (2.31), e,, and fk are regarded as
independent variables, and their relationship is invoked only after the
differentiation has been performed.

Remark. The dependence of ý' on f-A is essential. In fact.

, g
= 2J'rek,, (2.33)df)

so that if i were independent of f4', then the stress u-" would vanish. In
other words, one cannot assume that the energy depends solely on e,) and
77 (unless the material response to deformation is trivial). Note, however,
that did/f k vanishes at the undeformed state e,1 = 0, which means that
the effects of f.k under small deformations are of higher order. Similar
conclusions hold in the case of plasticity.

The constitutive relation (2.7) for the heat flux becomes

q' -(2.34)

with k :=J-' 1 I,.
Assuming the constitutive relations (2.29), (2.31), (2.32), and (2.34). Fqs.

(2.22) and (2.23). together with either Eqs. (2.24) and (2.25) or Eq. (2.26),
comprise a complete set of conservation laws in the Eulerian picture.

3. PLASTrICITY

The plastic response of real materials is extremely diverse. For instance,
the microphysical pictures of metal plasticity and of the flow of granular
materials are quite different. Furthermore, passage from the microphysical
to the macroscopic description requires scientific modeling across a hierar-
chy of length scales. Nevertheless, there are two concepts that apply to a
broad class of macroscopic models: plastic deformation and plastic flow
rule.
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3a. Plastic Defrrnation

One principal feature of plastic behavior is irrecoverable deformation:
whereas an elastic body will return to its undeformed state when surface
forces are relaxed, a plastic material might not. The permanent deforma-
tion suffered depends on the manner in which the body was worked. i.e..
on the history of deformation of the material. In a continuum theory of
this phenomenon, there must be "internal" state variables that record this
deformation history. Because the deformation history' varies from point to
point in the body. a plastic material is inhomogeneous.

To understand these ideas on a physical level, consider a small neigh-
borhood of a material point X in a body that has undergone plastic
deformation. If the neighborhood is cut out of the material and the forces
on its surface are relaxed, then it deforms, recovering a stress-free config-
uration. Because of the plastic working, this configuration differs from the
original configuration of the neighborhood before the body was deformed.
Thus at every point there is a local irrecoverable deformation taking the
neighborhood from its \,irgin state to a stress-free configuration. In gen-
eral, however, there is no global deformation that relaxes the internal
stresses simultaneously throughout the body. The local irrecoverable de-
formations at neighboring points may be incompatible, in the sense that
the relaxed neighborhoods do not fit together to form a continuous body
without gaps or tears.

These ideas can be expressed mathematically, using the theory of
inhomogeneous materials developed by Noll [351. For a neighborhood that
is sufficiently small on the macroscopic scale, the irrecoverable deforma-
tion is approximated well by its gradient, which is a linear map from the
tangent space at X to three-dimensional Euclidean space R3. Mathemati-
cally, such a linear map defines a frame at X, for its inverse carries the
standard basis for R3 to a basis for the tangent space at X. We denote the
components of this local reference frame at X by (Fref(X))aa, where
a = 1,2,3.

Let a local reference frame (Fref(X))',U be chosen at each material point
X. As discussed above, there need not exist a deformation of the entire
body whose gradient is (Fref),'": there is no "intermediate" stress-free
configuration of an inhomogeneous body. Indeed, the body is considered
to be homogeneous if and only if the frame field Frct is a gradient.
Nevertheless, the gradient FPI of an arbitrary deformation can be re-
ferred, at each material point, to the local reference frame. Thus we
define F,, by decomposing the deformation gradient F',, as a product
involving the frame (Fef)'ay:

Ft F•,(Fref)U . (3.1)
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F,)( Ilntermnediate F

Lagrangian Eulenan

F

FIG. 1. The multiplicative decomposition of 'he deformation gradient: F' = Fý,( Fn)`,,.
The plastic deformation (F,)",. which represents the irrecoverable deformation, maps
neighborhoods in the body to local stress-free configurations, Here this deformation involves
the slip of horizontal crystal planes. As indicated, the relaxed neighborhoods do not tit
together continuously. The elastic deformation (F,.)',, distorts the relaxed neighborhoods into
the tinal configuration of the body.

(See Fig. 1.) For a homogeneous body, the transformation to local refer-
ence frames amounts to a change of material coordinates.

For example, the frame field can be given a concrete interpretation in
terms of the theory of dislocations in crystals (see. e.g., Refs. [35, 6, 13. 12.
101). Each of the three basis vectors defined by the local reference frame
at X is regarded as a displacement by a fixed number of lattice spacings
along a crystal axis. Thus the local reference frames reflect. at a contin-
uum level, the crystallographic structure. The tensor field

P U = -e"C(3(F,,f) t:v' (3.2)

which is a measure of the nonintegrability of the frame field, can be
interpreted as the dislocation density.

With (Fret)U,, chosen, the material response depends on F,,, the en-
tropy, and the material position X. If there exists a choice of local
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reference frames such that this response does not depend explicitly on X.
then the bodv Is said to be matetriallv iunibwm . Note that there is a possible
am bi guityx in the decomposition (3.1). dcpcndIniu on the symmetry of the
material. Indeed, a matertal [Noinorphism at a point Is a change of' local
reference framec that preserves, the response of the material to detorma-
tiOns [35. 10ti. These isomnorphisms form the !ok-al symnmetry ggroup at thc:
Point, a materially unliformi bo(dy has the ,sme local svmmet rv group at
each point. ( re i-. tree to) transform the local reference t ramec at eachi
point of the body. flVo\ided tlihat the t ransiormation he:longs to the svmmc-
try group and depends continuously on position. Ft~r a cir stal. the svmmc-
t rx group IS finite. ,() that Ilhe t rans'ormation must he the same at each
point. Thus (F1 V is scn ia unique. heiniz defined rn'dulo) a fin't
gTroup of' transformations. By contrast. the synmmetr 'g oup Is the rotation
group for a miaterial such as\ a in.ta.(onscquentlv. the constitutiIVe
equation for the energyv depends on (1-K.) o nlv thirouizYh the strain

-I.-T(3e3

The theory of inhomogeneous materials can be adapted to model
plasticity by allowing- the local reference frames of Noll to be dynramic [6].
In this approach. the frame field ( F1, )", i, reiiarded ats thle plastic
dlejortnation ( F~ )",,. while j-'. is the elastic tdbfriati'oj (If' Y. Thus " c are
led to the fundamental kinematic decomposition

Such a multiplicative decomposition has been advocated ()v seseral work-
ers in plasticity th eorv [4, 17. 6. 16. 41. :ý). 1Q., 2-5. 14].

The plastic deformation ( F, )t,, Is the principal, but not necessarily the
only, internal variable in a model of a plastic material. Other variibles.
such as a hardlenin~i parameter, characterize the effects of plastic deforma-
tion on the material response. We will assume that there is a single scalar
hardening parameter K, the theory is easily extended to account for
several tensorial internal variables.

3b. Constitutiv'e Relations

Internal variables ( FP)",, and K enter the equations of motion in two
places: in the dynamical equations that govern their evolution, ai-id in the
constitutive equation for the energy, which depends on the local reference
frame and hardening parameter as well its the deformation gradient and
the entropy. Choosing a plasticity model amounts to specifying thle evolu-
tion and constitutive e-vations.
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A general thermodynamical framework for plasticity, which encom-
passes a variety of specific models, has been given by Green and Naghdi
[7]. i'his framework allows for various choices of the measure of plastic
strain. A model based on the multiplicative decomposition (3.4) can be
accommodated in two ways, depending on the material symmctrv [6]. For
crystals. one chooses (), as the piastic strain measure: for metals. oi.e
defines the plastic strain l'P by Eq. (3.3):

f , [ ( .... ) ,- .(.5)

In the following we will focus on metals, although the development could
be adapted to treat crystals.

"The constitutive equation for the energy expresses & as a function of
the deformation gradient EK. the plastic deformation (F%)"'. the harden
ing parameter K. and the entropy S. By the principle of frame indiffer-
ence, 6' depends on the deformation gradient only through the (total)
strain E,,,; and for a metal, the plastic deformation appears only through
the plastic strain EP,. Therefore we assume the hyperelastic equation of
state

4"= (E,,EP", K. S). (3.6)

This assumption, together with the Clausius-Duhem inequality, implies
formulae for the stress and temperature [3, 7].

To derive these formulae, we introduce the notation

(FkVk. a F (3.7)
(F4=k 13 .- Fk

,r ,Vk(,, ) (3.8)

for the Lagrangian strain rate and vorticity tensors. These tensors are the
symmetric and antisymmetric parts of Fk, Fk•,, respectively; in particular,

E,,3 = Da 3  (3.9)

Note that the energy conservation equation (2.2), combined with the
momentum conservation equation (2.1), implies that

Prcf6 '= S"ft3D - QS (3.10)

Furthermore, differentiating the equation of state (3.6) shows that

a raed. d4.
e,= -E,13 + EP + -K + -S. (3.11)

dEdE dK ds
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Combining these two equations with inequality (2.8) yields

" 13 1  Prc1 -) -Ei -p K

F- Q . (3.12)

Assuming. as is conventional, that Er and S can be chosen arbitrarily

even if there is neither a temperature gradient nor plastic flow (i.e..

T = 0. E,', = 0. and K = 0). inequality (3.12) leads to the identifications

__ P -- - (3.13)

and

T (3.14)d S

along with the constraints

. _> 0, (3.15)
Q •'T: ,T + ± >_ 0. (3.16)

T

Here

• :=E dPe .,. E r K (3.17 )Pr-et3Ep t - reO

is the plastic dissipation, since entropy is generated according to

PrefTS -Q'y + ..9/ (3.18)

Thus the pu,.itic dissipation is -9 =SI'E, + Ilk. where

Sao := -Prefo , (3.19)

a 13

0 r= - epvf- (3.20)

are the dissipative forces conjugate to EI" and K. respectively. In general.
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the plastic siress N'.," and the stress S,'ý differ. although they are appro\i-
matelv equal in the small-strain limit. Inequalities (3.15) i and (3.1 ) place
thermodynamic restrictions on the dependence ot f on the internal
variables and on the evolut(ion equations that govern them.

3c. Constitutive A \ )dcl.s

Specifving the conIStitutic we tunci ,•" involves rm(dctingi assumptions1..
F-or instance, i natural vtsurnpt)ion in plasticitv is that the encrev 1,
determincd orimarily by tihe elastic part Of' the strain: the history ot plastic
deformation has only mild elfccts on the material rcsponsc. accounted for
by the hardening parameter. Furthermore. the ,nisotropic component ot
the elastic strain is typicall% small because of plastic yielding, so that a
small-anisotropy approximation is uscul for a material that I,, isotropic in
the local stress-free configurations.

Two alternative measurces of the elastic strain are used in the literature.
Green and Nag.hdi define the elastic stra as measured with rpct
to the Lagrangian frame, through the additive decomposition

of the Lagrangian strain. Equation (3.21) is analogous to the additive
decomposition of infinitesimal strain in classical plasticity. Alternatively.
Lee and Liu [17. 161 measure the elastic strain with respect to the local
reference frames using

F:, = - ( 2)A.( F•.),, - ,, . (3.22)

instead of Ec These strain measures are related by

/ =' ( p), :(' (".{3.23)

Either measure of elastic strain can be used in constructing the equation
of state (3.6). This is evident for the additive decomposition (3.2]). In
terms of the strain measure E,,1,, the general constitutive equation 03.6)
can be written as

,E,, 1 ,K . S (3.24)

where

,5( Eh, (FP)", K, S) +{(FP),,( " + 4[ F " ]

[(Fp),}o( F 6)131 1 -& K.S). (3.25)
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Conversely. for Eq. (3.24) to represent an equation of state. Eq. (3.25)
must hold for some &. Indeed, when the local symmetry group is the
rotation group. ,,,Li and (T )",, enter u" only through the variables E,,

and EPL In this sense, the alternative formulations are equivalent [8. 271:
for a particularly lucid explanation. see Ref. [301.

When the equation of state is formulated as in Eq. (3.24). it is useful to
work with v,,rious tensors referred to the intermediate frame. For in-
stance. with

S( ,, 1),. (3.26)

Eqs. (3.13) and (3.25) imply that

S"' (3.27)

Furthermore. in formulating the dynamical equation governing the plastic
strain (see Section 3d), the following definitions will be helpful:

EP (3.28)

((LEP),,,, F'P- )"•* ( FP- , (3.29)

Here (LPEP),,, is the plastic Lie derivatire of E-P [30]; cf. Eq. (3.63) below.
Let us return to the example of a plastic material that is isotropic. The

physical picture provided by the multiplicative decomposition of the defor-
mation gradient (see Fig. D) suggests that the isotropy is manifested in the
stress-free intermediate configuration. This means that e depends solely
on the principal invariants of (EC),, or equivalently of (C:)a=, 2(e )a,

+ 6'h,. (Recall that the principal invariants of a 3 x 3 matrix A are
L1(A) = IrA. t,(A) = !(tr A) 2 - tr A-], and t,(A) = detA: see. e.g.A
Refs. [2, 91.) Thus Lee and Liu (17. 161 adopt the equation of state

e= 1,,!1, 13. K, S). (3.30)

where Ik := Lk(Ce), k = 1,2,3. This equation of state conforms with the
requirement embodied in Eq. (3.25) because the invariants I. 1. and 1,
can be expressed in terms of E,,, and E/P. To see this. we let CP
2EP + 6 and note that

(CP ') tY = F-),,( F) ,,(hF ) : (3.31)
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as the invariants are unaffected by a similarity transformation, i '(C'7 "C)
= Lk(CC), k = 1.213.

Remark. For an equation of' state such as Eq. (1.30), the plastic stress
S"O of Eq. (3.19) that enters the plastic dissipation .2 can be related to the

P
stress S"":

s, .. ,c ( 3.321

(the matrix on the right is, in fact. symmetric). When the elastic strain fi

is small. S;,"' is approximately equal to S'".

3d. Plastic I'low Rule

The other fundamental feature of plastic behavior is the plastic flow
rule, which specifies the time evolution of the plastic detormation. Such a
flow field has the general form [23. 181

£,PYO = \,,ij E,6. EP,. K.S) (3.33)

for a rate-dependent plastic. i.e.. uiscoplastic, material. In addition. a
hardening law

H(E •, E. K. S) (3.34)

governs the evolution of the hardening parameter. The flow rule and
hardening law are constrained by the requirement (3.15) that the plastic
dissipation 2 be nonnegative.

Characteristic of viscoplastic flow (as opposed to viscoelastic flow) is
that plastic deformation occurs only if a threshold has been reached.

According to the plastic flow rule (3.33), the material deforms plastically
on!y in the region of state space where "\,,,3 : 0. Since the hardening
parameter records the effects of plastic deformation on the material
properties. hardening occurs only during plastic flow; therefore H is
assumed to vanish when A,,,, = 0. The interior of the region where
A,,, = 0, in which the behavior is purely elastic, is called the elastic range.
The boundary of the elastic range is called the (static) yield surfiace. The
elastic range and yield surface are usually characterized by a yield function
V: V < 0 in the elastic range and 4 = 0 on the yield surface. The yield
function (4 depends on the variables E.,,, EP,, K. and S: frequently,
however, (1) depends on the strains and the entropy only through the stress
and the temperature.

We illustrate these concepts with a model that has been used to
describe high strain-rate plastic flow in metals [11, 31, 32]. In the case of
finite deformations, this model is specified most simply in terms of tensors
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referred to the intermediate frame (see Section 3c and the first remark
below). First. the ron Mises yield criterion

(1) := dev S11 - V2/3 Y,( 7. T. K) (3.35)

is adopted. In this equation. Y', is the static weld strength (as specified
below), S = 1-5 is the mean pressure. (dev S)'Jb is the de'iatoric

stress,

(dcv S) Sah - h (3.36)

and the norm ý1• If is defined by flA-111 AA ,,. The flow ruic is taken to
be the Lcit-St. Venant flow rule, given by

(dev S),,,
(LPEP),,,, = \(P. Ildev S11, T, K ) - (3.37)

j1dev S11

In particular. the model is complete once iILPEPII = A(P. 11dev ý11. T. K)
has been specified.

Remarks. (1) Plastic flow in metals is often assumed to be volume
preserving [17. 16], so that dct F = L. Since

(detFP)-'(det Fp)= 1 = (LPEP) ,. (3.38)

the plastic flow rule preserves volume if and only if (LPE)Uh is trace-free;
this has been emphasized to us by F. Wang [401. For this reason, we have
formulated Eqs. (3.35) and (3.37) in terms of (dev •Y)", rather than
(dev o-", as would be conventional (see, e.g., Ref. [281). The correspond-
ing Eulerian formulation is given in Eqs. (3.71) and (3.72) below.

(2) When Y, is independent of TI, the LUvy-St. Venant flow rule is
associative, in the sense that

LtEP),,, = A(P, I[dev SIH, T, K) .. . (3.39)

Thus the direction of A,,t is determined by the normal to the yield surface
in stress space.

(3) In terms of Lagrangian quantities, the flow rule (3.37) is

" K)~ r(dev(., S Y6

EaP1 = A(P, JidevC,, Silo, T, K)CP (3.40)'aC Ildevc( Snc' '
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where , K= -

.,,- P , 'p . (3.41)

and the norm i1 (-,' is defined by

Theretore this flow rule does. indeed, have the form of I-q. (333).
provided that S'./ and "F arc expressed in terms of -, 'r K and S
through Eqs. (3.13) and (3.14).

The specification of 1II -EI' derives from a model for the dvnamcw Yielt
strength Y = Y( I. T, [IL -E. K ). This quantity is the yield strength ob-
served in plastic flow at nonzero strain rate: in other words,

jjdev S V=213 77Y(P. T. HiLPEP'l. K) (3.431

during plastic flow. The dynamic yield strength must exceed the static yield
strength

Y,( 1.,T. K) := Y(P, T, 0, K) (3.44)

and increase monotonically with strain rate.
Given a model for the dynamic yield strength, the corresponding

flow rule is derived as follows. When ildev S11 is below the static yield
strength, there is no plastic flow. and IILPtE-I = 0)" otherwise. fldev SI! >

2/3 Y•5. T. K). so that Eq. (3.43) can be solved for I1LP1EPli in terms of
the remaining quantities, obtaining

IILPEr'Pi = A(P. I1dev SIl, T. K). (3.45)

Therefore the plastic flow rule is

0 if ljdev ,511 _< V"2/3 Y,,( P. T. K).

(LPEP),,, = -_ (devSý)1 ,,
{ (P, 1dev ,{/, T, K) (dev.ý,, otherwise.IHdev,511

(3.46)

To be more concrete, we consider a model for the dynamic yield
strength given by Steinberg and Lund [32]. In this model, Y is composed of



( ()\•I !I,\ A Iii I ',1 \ I 1(11 Y 47()

a thermally activated part V, ýtnd ,-t ,train-hardening, part V,:

(;( P. 1')

- I v, I,( K ). (3.47)

where the thcrmtalk ictivatc'd part Y1 .V ) V, ).. IN the solution ot the

equation

v,:,-', l. t y . -- ( , t C)'] A ' -.. (3.4,l1)

In thelse exprc,.,ions. the [tiliLtIons (G; And , atnd the parameters (,. (C,
C _ Y1'. ,ind ;1 1- ar1 maiterial-dCpCndCnt quantit ies, [he hardening law
(.334) is takenl to he

S" ,,_f3 +iL~ (.3.49)

in other \xords. K is the cqutiaicnt plastic .rrain. mnd Elq. (0.49) models
isotropic strain -hardeninlg

The function .A for this model is obtained as follows: According to Eq.

(3.48).Y 1 = i when i, L KYi (). so that

(;P.T)
1 'E( P. T. K) - Y( K). (3.50)

Since j1dev S,: = ý-2/3 Y during plastic flow. Eq. 3.47) implies that

IdeV S~ - v2-/3 Y,( P . T. K)

v213 G( P )iG,, (3.51)

thus Y, coincides with a measure of the extent to which the static yield

condition has been exceeded. Substituting this expression into the right-
hand side of Eq. (3.48) gives /•2/3 A.

3e. Eiulerian Formulation

Corresponding to the internal variables JP. and K characterizing a
plastic material in the Lagrangian picture. we define the Eulerian quanti-
ties

(] ), =(F ), , (3.52)

SFF-'), EP( F 1) (3.53)

K K, (3.54)
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which are regarded as functions of x = .(X t) and t. In terms of' the
elastic Finger tensor

a ;= (1)" (3.55)

The equation of state is

e. = + 0 , ek ,• , ] ", K _._

where

ý(ek. e•,. kl, r. ) 4( , ,,,,,, .]'Y,,,, ,. K.1 r). (3.58)

Just as for elastic materials, the Eulerian conservation laws of momcn-
tum, energy, and continuity are Eqs. (2.22). (2.23). and either Eqs. (2.24)
and (2.25) or Eq. (2.26); the constitutive equations are Eqs. (3.57). (2.31).
(2.32), and (2.34). The thermodynamic constraints (3.15) and (3.16) be-
come

d > 0. (3.59)
qk.

q kAk + d Ž0. (3.60)
0

where

d := -p (L, el), - p-L,K (3.61)

is the plastic dissipation J-'.2, and entropy is generated according to the
equation

pOL,.r= -q k :.k + d. (3.62)

In these equations we have introduced the Lie derivatives [21, 30] of eP, K.

and 17, as defined by
(L,,eP), (f-') ]r 'ka0~ 1-3

= e. + v e + v ,ek . + eP , (3.63)at I] "j k k) i

dK
L,.K - + kK :k, (3.64)at

d q k=77 1 + V r7; k (3.65)

at
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To write the plastic flow rule (3.33) in the Eulerian formulation, we
multiply Eq. (3.33) by (0f-)",(f )'. to find that

Lel) A,,(e k,Vk1.f &,K.,q); (3.66)

in addition, the hardening law (3.34) becomes

K = h I(e. e 1 3.07)

Here we have made the identifications

A, tkI 1, ]k I' K) ( [. E,,( EV1 P K. S)( F')~.(.

,\,i(ekl,,ckl.f (.I). H E( ,)", P.,, , K .S). (3.69)

Similarly. the Eulerian yield function .- is given by

F( ek.,._,pf := k .0( E•,,, EP,, K. S).. (3.70)

For example, the von Mise yield criterion (3.35) and the , ,vy-
St. Venant flow rule (3.37), as expressed in the Eulerian picture. are

,p l:dev,,, rii, , - 2-/3 y,( p, O. K). (3.71)

-. ( devh-, ,r )/
L e -- A( p. ildev,,, (,rl,,1 .O. K)( b- I),k (devh-,'rii (1 c b (3.72)

where p ¾Y"(bflA is the mean pressure P.

(dev,, - o () o711 - I (3.73)

and the norm i is defined by
IAIIt•' A=Z(b )Jk1kI(bj ),,. (3.74)

Also, A and v0 are identified with A and Y1, respectively. Therefore this
flow rule has the form of Eq. (3.66) when o''j and 0 are expressed in terms
of ekl, ekl, K. and q7 through Eqs. (2.31) and (2.32).

4. Fiow RuLE.S AS CONSERVATION LAWS

In the previous section we have seen that the evolution of a plastic
medium is governed by the conservation laws of momentum, energy, and
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continuity together with flow rules for the internal variables. This discus-
sion implicitly assumed that the flow was smooth. Here we consider the
possibility of discontinwous solutions. as are expected to occur on the basis
of experiment and the structure of the governing sstem of partial differ-
ential equations. Analysis of discontinuous solutions is best carried out
when the equations are written as conservation laws. This poses a ques-
tion: When are the dynamical equations for the internal variables conser-
vation laws'?

Answering the question of when an evolution equation is a conservation
law has two aspects. First, the equation must be ýýritten in divergence
form. Second. the equation must hold in the sense of distributions. To
understand these aspects. we recall the example of gas dynamics.

For smooth gas flows, the equations governing the time evolution _t
both energy F and entropy 7 are in divergence form:

,+ E)j + [p(p(' - - -(PVJ,, (4.1)

'9
-(p77) + (p-7U.): 0. (4.2)
at

However, one cannot require both of these equations to hold for discon-
tinuous flows. Indeed, the jump conditions enforcing conservation of
energy entail an increase in entropy, whereas the jump conditions for
conservation of entropy lead to a decrease in energy. Although both Eq.
(4.1) and Eq. (4.2) hold up until shock formation, a choice between them
must be made at that point. This choice is not dictated by the mathemati-
cal structure of the equations. Rather. it must be made on the basis of
physics: energy is conserved and entropy increases. Similarly. in plasticity.
we must appeal to physics to decide when a flow rule is expressing a
conservation law.

For plasticity, we first ask whether the evolution equations for the
internal variables have divergence form. Referring to Eqs. (3.33) and
(3.34), we see that the plastic flow rule and hardening law have divergence
form in the Lagrangian formulation: the time derivatives of the internal
variables are given by source terms involving the state variables but not
their derivatives. By contrast, the corresponding equations (3.66) and
(3.67) in the Eulerian formulation have not been written in divergence
form; this is because L,.ep and L, K involve spatial gradients multiplied by
functions of the state variables. We therefore replace these equations by
ones in divergence form.

The Eulerian equations in divergence form that correspond to the
Lagrangian flow rule and hardening law are obtained as in Ref. [24]:
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(a) the equations are written in integral form: (b) a change of variable is
made in the integral: and (c) the transport theorem is applied. The
equations that result can A.lso be obtained by a simple argument (which is
valid only for smooth solutions). Thus we multiply Eq. (3.33) by p and add
the equation of conservation of mass. multiplied by El' this yields

a
-(pL,\j+ 4- (4.3)
fit

Since E = ,,P';f' 1 . we obtain

7+ (PI',e'2J"1 ,) t (pJ", cfi" ):• = pf",,\,,f. (4.4)

Similarly, the hardening law becomes

a
-(pK) + (pKuk):= ph. (4.5)

The question remains whether Eqs. (4.4) and (4.5) represent physical
conservation laws. In this paper, we address this question within the
context defined by experiments on shock wave propagation in metals [26.
38, 39, 31-331.

Distinct wave structures are observed in the three regimes of low.
intermediate, and high pressure driving the metal. If the driving pressure
is below the Hugoniot elastic limit (on the order of 10 kbar). a purely
elastic shock wave occurs. For an intermediate pressure (less than about
100 kbar), a two-wave structure is observed. At still higher pressures, the
two-wave structure collapses into a single strong shock wave.

In the intermediate pressure regime, the leading wave is relatively
sharp, has an amplitude that is generally independent of the driving
pressure, and propagates at a speed determined by the elastic properties
of the metal. Therefore it is interpreted as an elastic precursor wave. The
wave following the precursor has a broader profile and an amplitude that
increases with driving pressure: its structure is sensitive to the strain rate.
Furthermore, the relaxation time associated with the strain-rate depen-
dence is long compared with the rise time for the elastic precursor. These
observations suggest that the plastic deformation occurs predominantly
after the passage of the elastic precursor.

On this basis, it is concluded that (a) the elastic wave can be modeled
effectively as a mathematical discontinuity, involving no change in the
plastic deformation and (b) the plastic flow occurs within a broad profile
plastic wave following the elastic precursor. This picture is consistent with
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the assumption that the flow rule and hardening law. Eqs. (3.33) and (3.34)
or Eqs. (4.4) and (4.5), are genuine conservation laws.

To justify this statenent, we consider a plane wave. propagating at
(Lagrangian) speed Su in the direction of the vector Ne, across which a
discontinuity occurs in the state variables. Using A to denote the jump in a
quantity across the wave, the jump conditions for Eqs. (2.1)-(2.3) and Eqs.
(3.33) and (3.34) are

-- PrefSNAV' = A( F'(, S".V. (4.6)

-pIs.\'A( V, V' + e) = A(VF,"S""")Nj, - AQ)'N, (4.7)

-SNVAF', = AV'N'. (4.8)

-SvAEP• = I.(4.9)l

- SN, AK = 0. (4.10)

Therefore no change in the internal variables EP and K are sustained
unless SN = 0; i.e., the wave moves with the speed of the fluid particles.

Thus for the case of shock wave propagation in metals, we have
established a conservative form for the governing equations. This conser-
vative form might well apply to a broader class of rate-dependent plastic
materials.

5. RATE-INDEPENDENT PLASTICITY

While plastic flow is fundamentally a rate-dependent process. a rate-
independent approximation is useful in certain flow regimes. In this
section, we shall see how the rate-independent equations emerge as a
singular limit of rate-dependent plasticity. We also explain the sense in
which the rate-independent equations are conservation laws.

We assume that the static yield surface associated with the flow rule A,
is given by Eq. (3.70). In particular, IAil > 0 when ýp > 0. so that we can
define the relaxation-time parameter 7 > 0 to be 7 := ýi/JIAII. (For in-
stance, in the Steinberg-Lund model, -r is proportional to CG.) Noting that
Ai= 0 and h = 0 when (p < 0, Eqs. (3.66) and (3.67) can be written

I
(L,,eP),, = ['p(ekl, e~,fk,,K,7)] + #Ae.,, ef,, YK,. ), (5.1)

Lp=ekV , 4, fk,/, K, r7)I + i(ekl. 4,, f,, K, 71), (5.2)
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where iIA] =- I. Here [.. denotes the positive part of its argument: [d]. is
,p when ( > () and is zero otherwise.

If the material is in theiplastic regiomn p > 0, then Eq. (5.1) dictates that
ep relaxes to the yield surface , = 0 on the time scale ot f. In the limit
r7- 0, the flow process is approximately rate-independent. This approxi-
mation is valid when the time scale fOt returning the plastic material to tile
yield surface is much smaller than the time scale for other flow processes.
The limiting equations can be formulated as

i( L,'). = KA,(,, 1)(3)

1, K= /I ck. CAI, I", K. 7 (5.4)

where A is a lagruantc multiplier that is subject to the hodinm/thunowdintg
conditions

S> I. < G. •€=. (5.5)

written as a Kuhn-litcker complementariti" condition, and the perrsivtencv
condition that

L = if A > 0. (5.6)

Remark. This formulation has been extensively discussed by Simo and
coworkers [30. 28. 29]. Conditions (5.5) can be derived as optimality
conditions for a ,:onstrained optimization problem: maximize the rate of
dissipation of energy during plastic flow, subject to the constraint P : ().

In the following we descriL• how the rate-independent equations arise
from the rate-Jependent equations as 7-r 0. assur ing that the flow is
smooth. Comparing Eqs. (5.1) and (5.2) with Eqs. (5.3) and (5.4) suggests
the identification

) = lim-[pJ]. (5.7)
T07

Therefore we calculate lim -l[•p]..

As a preliminary, note that the yield function ,o satisfies the equiltion

a
,f= [L ]c,, - -- ['1., (5.8)

where

- (L, e),, - -- q A (5.9)
dei, pO dn
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and

7 1 C, -K 0 d ol O -

Equation (5.S) can be derivcd by lirst calculating (1) in Lauragian cooldi-

nates and then transforming to E-ulcrian coordinates.

Remark. Ihc combinations ot derivatives of c, that appear as coeitb-
cients in the dcfinition of a' arc the derivatives of : with t. rather than r7.
held fixed.

At this point we must ,,ssume that a .. 0: this constitutive assumption i,
a stability conditoin. in that when the material is beyond the yield surtace.
i.e.. 0 > 0. the second term in Eq. t5.S) drives the material toward the
yield surface 0' = 0.

We regard Eq. (5.8) as an ordinary differential equation for ; along a
particle path. with [L €]d..ic servij 'is a known forcing term. To simplify
the analysis. we assume that t has been resealed so that t is constant.
Furthermore. we suppose that the flow begins within the yield surface. i.e..
(F takes on the (7-independent) initial-value Fk {,, < () at time 1 (1. In
order to solve the initial-value problem. we consider three cases.

First, if €I, , = 0 and [L.], > 0. then c > 10 for small t 0 H so
that ,c]= .. Therefore multiplying Eq. (5.8) by exp(at/7) and integrat-
ing both sides along a particle path shows that ,c is given by

- "e = ") , [ L, ,p]c,,1,tc ds. (5 11)

Note that when t 0 is fixed. (,t/7)exp[-a(t - 0)/r1 approaches a
delta-function at s =t as r T 0. Consequently, Eq. (5.11) implies that

lim lirn -[p] = -[L, , (5.12)
7- ) -i1 7 (Y

(Obviously, taking the limits t -- (0 and 0 -- () in the opposite order
yields zero: thus g. is discontinuous at t = 0.)

Next. if either €,, 0 I or ,0L , () and [ ,L , ,,a, 0. then
S_< () for small t >Ž 0. Therefore

lim limn -[p] =(. 0..13}

Finally, suppose that 1,I, 0 and [1-, ,, = 0. Since f[€, , ,
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As concCrn,, the I.,,ran.e multiplicr Ai p i),o ly. ii -. we drav, the
tol low ing Cncltusions. tI-lu ltion S.l '1 ) says that A. t it ¢ • . Morcocr.
by lqs. (5.t).. (5.13) td t5 !5. . U onlyl if Eýq. L5.1) hold,, in L.),hicI

case Eq. 5.S) inuplic I u, It I -a .1. In other ,ord,. Iqs,. 3.3) Mid (5.4)
and conditions 15.5) and (5.( aic thtained in the rate-independcnut limit.

These conditions lead to the strain-spacc lormulation oI the loadingw
criterion ftr a rate-independent material [22]. We define u : to he the
right-hand side ot Eq. (5.12). ic..

(L c),- -t)
/• •r,,i =, 5.t,.

and say that the flow is undergoing loadilg when 1 - ) and . '

neutral loadmz, wI'hen t =! and Mi,, U. un/oadjn, when i - and
T r.ial and cla.snr dlt'Ormaiof, when , - U. Then the l.agranC mululti-

plier .A that appears in Eqs. (5.3) and (5.4) is

( P,,.,i in the case of loading.
otherwise.

This classical formulation is implied by conditions (5.5) and (5.61. as
follows [29]. First suppose that q = 0 and u, U. Then in order for c
to remain nonpositive. we must have that L . _ 0. Since L. =

[L, ],c - Aa. this implies that A > /.t., > 0. By the persistency con-
dition. we conclude that 1.. .= () i.e.. [L (F], hNI,,- Ac = 0. By the
persistency condition. we conclude that L, F = 0. i.e.. [ L, ¢•1 ,,,, - pa
0. Therefore / , Next suppose that ,c < (). Since 4t =. this
implies that A = (). Finally, if A,,,,i ( ). then . = ( as well: otherwise A
would be positive, implying that L, ,c = 0, which would entail that u. =

Atrial, a contradiction.
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The classical flow rule is inadequate, however. \ýhen the flow is not
smooth. In general we wish to allow flows containing discontinuities. i.e..
solutions with boundecf-variation that satisfy the governing equations In
the weak sense (the sense of distributions). In such a case. Eq. (5.16) might
involve multiplying a discontinuous function by a distribution with a
delta-function singularity, a process that is ill-dlefincd. In contrast. the
Kuhn-Tucker conditions (5.5) are sensible for bounded-variation solu-
tions: the conditions hold almost everywhere. f:urthermore. if the pesis-
tency condition (5.6) is replaced by the equivalent condition

a
-(P'P) + (PA '):k = 0 in the interior of the support of' .. (5.18)

then it also can be required of weak solutions.
Thus the weak formulation of the governing equations for rate-indepen-

dent plasticity consists of the conservation laws (2.22). (2.23) and either
(2.24) and (2.25) or (2.26), together with the flow rule

d
- (pf',,e,Pf',) + (Pf',,ejPf1iu )k = P. f,,A,,'•, (5.19)

-(pK) + (pK,,)-, =k ph. (5.20)

where p. is constrained by conditions (5.5) and (5.18). We call the resulting
system a constrained system of conservation laws.

6. WAVE STRUCTrURE

In this section we give a preliminary analysis of scale-invariant solutions
for rate-independent plasticity. In the Lagrangian picture, the governing
equations (with heat conduction neglected) are

Fla = V' (6.1)

PrefV' = (6.2)

PrCf(½1gv' + e)"= (VF',,Sa 3tj, (6.3)
a13 =p.a, (6.4)

kpI= ./,(6.5)
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where ui is subject to the constraints

• _-O(, P) < 0, p = 0t. (6.o)

+) = 0 i"f A > 0. (6.7)

We seek scale-invariant solutions of these equations. [3 this ve mean that
the flow variables F',. I". S. EP,, and K depend solely tn , .. N A"' it.
whereas A has the form A(3)/t.

If such a solution has a jump discontinuity at speed S,, then each
(distributional) derivative appearing in Eqs. (6.1)-(6.5) is proportional to
the delta-function ,(NXl - St) supported on the plane 4 S,,. For
instance, LEP,, = -S, IEP 5 and V' AN AV' 5. The source terms on
the right-hand sides of Eqs. (6.4) and (6.5). however, are hounded varia-
tion functions. with no delta-function component. Eheretore the jump
conditions (4.6)-(4.10) are satisfied (with AQY = M). subject to the con-
straint that 41) _< 0 on both sides of the discontinuity. In other words, jump
discontinuities are unaffected by the plastic source terms. There is no need
to determine u; in fact, since the plane e = S,. has measure zero. the
value of the distribution A on this plane is indeterminate.

For a smooth solution, on the other hand. Eq. (6.2) becomes

p = A'5FJ8;0 - PrefTF',, ["S*

± I 4 3 EP + -K01 (6.8)
MP ":s 1 s" d

Here A!IOI• is the adiabatic elasticity tensor and the I""' are the Grtineisen
coefficients:

02•
A : Pre (6.9)

- TFag1 - a (6.10)

The elasticity tensor is related to the adiabatic elastic inoduli

through the equation A!,Ok3 = FaCaI"'YaFkI + 6 'kSItM.
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Furthermore. Eq. (6.3) can be replaced by Eq. (3.18). i.e..

dE K
'as I.

4 aEP -A,.-•, -- t;I " (6.12)

This implies that (i) =,lej,c - Aa with

c- /.<, (6.13)

and

a__= -, [ l, - IH" (6.14)

dEP '1 d S d~ aEf P K TS as bK

Therefore. when a scale-invariant solution is differentiable. Eqs.
(6.1)-(6.5) become

-_(F,) = Nk(V')E, (6.15)

- pr4(-"V'), = N1A'5(F,•)e - prTF',,.0F("Se

[asU dso. 1
+ FPitN[13 -(EP/%)• - K -KJ, (6.16)

4 EP ý 11K

- TS, = f3 + -HI. (6.17)

- =Kt 1!./ (6.19)

If we let

Atriai :. . F, Ni( VI) 4, (6.20)
a E3E-,,3

then according to conditions (6.6) and (6.7), j! =/2,a when (P = 0 and

t¾rial > 0, whereas Ai = 0 otherwise.
When ý = 0, Eq. (6.15) implies that (V') = 0, while Eqs. (6.17)-(6.19)

are solved by taking 2 = 0. Thus there is no velocity variation and no
plastic flow at " = 0. Equation (6.16) represents three linear conditions

connecting the remaining unknowns (•F>), S,, (EP), and K,. These

conditions are the infinitesimal version of the requirement that the normal



CONSERVATIVE PLASTICITY 491

stress FP,,S"`IN. be continuous across a discontinuity propagating at speed
S,, = 0 (cf. Eq. (4.6)).

On the other hand. whdn 4• 0. Eq. (6.16) can be replaced by

Preý ( V) A~!)',( VI ) + PiF, N~13 PE ye( ) I -re ]E ?
+ + ,"+ p.r'"eI. (6.21)

dK dKýI-J

where A'I, = N jA N. is the acoustic tensor. Since ,, is proportional to
(V06), Eq. (6.21) represents an eigenvalue problem: if 1 = ()and iri > 0.
then Proct is an eigenvalue of the plastic acoustic tensor (AP)1 defined bv

I [asao
(AP (A,)' + -F', E, aEP

a' + -E~ + Pref~ k1v6

+ +Prefryo-)H F,,N,7 (6.22)

and otherwise Pref 2 is an eigenvalue of the (elastic) acoustic tensor
(A,)j. The eigenvector in each case is (VW)j, and once it is known, the
remaining unknown quantities (' St, (EP and K, are determined
by Eqs. (6.15) and (6.17)-(6.19).

Assuming the eigenvalues of (ANY) and (AP)'1 to be positive, the wave
modes occur in three pairs. For instance, in the elastic flow of an isotropic
material, the fastest wave corresponds to longitudinal stress (i.e.. pressure)
modes, while the two slower waves correspond to radial shear stress (i.e..
necking) and angular shear stress (i.e., torsion) modes. In plastic flow
(A > 0), waves propagate at speeds corresponding to the eigenvalues of
the matrix (AP)'Y, which is a rank-one perturbation of (AN). Typically the
constitutive model leads to plastic wave speeds that are smaller than the
corresponding elastic wave speeds.

7. CONCLUSIONS

In this paper we have formulated the equations governing rate-depen-
dent and rate-independent plastic flow of metals in a conservative form.
applicable to both smooth and discontinuous solutions. A preliminary
analysis of the wave structures arising in the rate-independent case was
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also given. This work provides the foundation for further studies of
nonlinear waves in plastic flow, and for the use of this information in
numeric-l computatioits.
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