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Introduction

The 32nd annual Sanibel Symposium, organized by the faculty of the Quantum
Theory Project of the University of Florida, was held March 14 to 21, 1992 at the
Ponce de Leon Conference Center located at the north gate of the city of St. Au-
gustine. Florida. About 330 participants gathered for 8 days of lectures and dis
cussions in a program that paid special tribute to the scientific contributions of
Professor Per-Olov Lowdin of the University of Florida in his celebrated three
articles on density matrices, natural spin orbitals, the Hartree-Fock approximation,
and its extensions, published back-to-back in The Physical Review 97 (1955). The
daily schedule was packed with plenary sessions in the morning, and late afternoon,
and with poster presentations in the evenings, often lasting until midnight.

The format of the symposium adopted for the past 2 years was followed again
this year providing a compact 8-day schedule with an integrated program of quantum
biology, quantum chemistry, and condensed matter physics. The topics of the ses-
sions covered by these proceedings include Thirty-five Years of Progress in Electronic
Structure Theory, Density Matrices and Other Revelations of 1955, Non-Born-
Oppenheimer Methods, Atomic and Molecular Phenomena in Astrophysics, Photo-
induced Phenomena. Reactive Molecular Collisions, Quantum Monte Carlo, Den-
sity-Functional Theory, Thin Films and Surfaces.

A special session on Theoretical Inorganic Chemistry was held in memory of
Arnold Karo. one of the real "old-timers" at Sanibel.

All the articles have been subjected to the ordinary refereeing procedures of the
The International Journal of Quantum Chemistr.v. The articles presented in the
sessions on quantum biology and associated poster sessions are published in a
separate volume of the The International Journal of Quantum Chemistry.

The organizers acknowledge the following sponsors for their support of the 1992
Sanibel Symposium:

"* U.S. Army Research Office (Physics)/ CRDEC through Grant DAAL03-92-
0214, "The views, opinions and/or findings contained in these proceedings are
those of the authors and should not be construed as an official Department of
the Army position. policy, or decision, unless so designated by other docu-
mentation. "

"* The Office of Naval Research (Physics and Chemistry), through Grant NOOO 14-
92-J-1238.

* U.S. Department of Energy (Office of Health & Environment Research),
through Grant DE-FG05-92ER61378.

e Hyper Chem. Autodesk.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, ix-x ( 1992)
:•, 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/01 Oix-02
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"* (',,whe /Tektronix.
"• The Universitv of Florida. through the Office of Academic Affairs,

Very special thanks go to the stafl'of the Quantum Theor Project of the U ni ersity
of Florida for handling the numerous administrative, clerical, and practical details.
The organizers are proud to recognize the contributions of Ms. Joanne Bratcher,
Mrs. Judy Parker. Ms. Robin Bastanzi. Mrs. Sue Linsley. Mr. Agustin Diz. Dr.
Erik Deumens, and Dr. Hugh Taylor. All the graduate students of the Quantum
Theory Project. who served as "gofers" are gratefully recognized lor their contri-
bution to the success of the 1992 Sanibel Symposium. The valuable help of Dr.
Charles Taylor is gratefully acknowledged.

N. Y. OHRN
J. R. SARIN

M. C. ZERNER
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Memorial Session
in Honor of
Arnold Karo

This session is dedicated to the memory of Arnold Karo who died last year. at
the age of 63, after a year-long battle with lymphoma. Arnold was a theoretical
chemist/solid-state physicist with the Lawrence Livermore Laboratory. He received
his Ph.D. from MIT in 1953 and, after a brief service with the U.S. Army Chemical
corps, he joined John Slater's group at MIT' as a postdoctoral fellow, where he
worked on lattice dynamics of crvstalline materials. Arnold began his long asso-
ciation with L3 in 1958 where he continued his work on crystalline materials,
including the first detailed calculations relating structural features of experimental
spectra to calculated critical features of the phonon densities of states. Many of us
knew Arnold from this period of time. He was one of the old-timers at Sanibel and
was one of the special people included in John Slater's famous Sanibel solid state
theory group meetings that were traditionally held on the beach on Wednesday
afternoon. In recent years. Arnold carried out fundamental studies on chemical
laser systems and plasma properties of negative ion beams. This work was in support
of the controlled nuclear fusion efforts at L3 . This memorial should not end without
mention of Arnold Karo. the person. He could simply and best be described as the
perfect gentleman. We have all lost a good friend.

it. tlarver A.ijhels
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Total Energies and Energy Gradients
in Electron Propagator Theory
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Department of Chemistry, University of New Me.xico, Albuquerque, New Mexico. 87131 and

Quantum Theory Projee. Departments of Physics and Chemistr', 'niversit" of F,'orida.
Gainesville, Florida 32611-2085

Abstract

From the second-order self-energy of electron propagator theory, one can obtain total energies for the
initial. N-electron state and the final. N ± I-electron states. Recent derivations and computational studies
have demonstrated the feasibility of calculating effective first-order density matrices corresponding to
the electron-binding energies. One-electron properties and energy gradients of the final states are thereby
made accessible. Applications to the ground and excited states of CaCN and to ('3" illustrate the cap-ibilities
of this method. :c 1192 John Wiley & Sons. Inc.

Introduction

Electron propagator theory has been applied in quantum chemistry chiefly to
the calculation of vertical ionization energies and electron affinities [ 1-7 ]. Calcu-
lations of ground-state total energies and one-electron properties have been con-
siderably less frequent in the literature 18-13 ]. Because electron propagator theory
is a direct method, one in which an energy difference is evaluated without recourse
to individual state energies or wavefunctions, it is, in principle, applicable to final
states of any energy. The prospect of using electron propagator theory to optimize
molecular geometries is therefore an attractive alternative to many correlated meth-
ods that concentrate chiefly on ground states. A recent derivation of gradients for
the second-order self-energy has shown the feasibility of this approach [14]. These
derivatives are combined with derivatives of the reference state total energy described
by second-order many-body perturbation theory [15-171 to yield derivatives of
final state potential energy surfaces. In addition, effective density matrices that
describe the density difference between the initial and final states enable calculation
of final-state properties when combined with initial-state density matrices.

It is possible to demonstrate that the potential energy surfaces for the initial state
and the final states in this level of electron propagator theory have a common
origin: the second-order self-energy. Using this description of electron correlation,
one can obtain the second-order many-body perturbation theory expression for the
initial state total energy. Electron-binding energies calculated with this self-energy
therefore yield a unified treatment of total energies for the N-electron initial state
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and the N± 1-electron final states. This unified treatment also affords one-electron
properties for each state.

Superoperator Formulation of Electron Propagator Theory

Using superoperator notation [4.18], the electron propagator matrix, G(E), is
expressed as

G(E) = (aI(EJ- 1) 'a).

Simple electron annihilation operators with spin-orbital labels constitute the vector
a. whose length is the dimension of the spin-orbital basis. The identity superoperator.
[, defined by

ix = N

and the Hamiltonian superoperator, Ii, defined by
IiX = [A-, III

operate on simple electron field operators or on products of field operators that
change the number of electrons by one. With the following choice of superoperator
metric,

(1I1z) = z0iv'. 1V 10>,
where 10> is an -- electron reference state, one obtains the participation of all field
operators that pertain to A' ± I-electron states. Note that no distinction is made
between particle and hole subspaces. for all manipulations occur in Fock space.

To avoid explicit consideration of the superoperator resolvent, (Ei - 1i) '. an
inner projection is employed:

G(E) =(alh)(hl(Ei - /i)h) '(hia)

where the vector. h. contains all field operators on which the superoperators act.
Partitioning of the last equation follows from orthonormalizing two subspaces. a
and f. The ensuing block structure of G(E), where

G(E) = [(ala) (al f )[(aI(I - Ma) (aI(Ef- l1)f)] '[(ala)1

af [ (Ei- /l)a) (f (E- li)f) ) J (f a)]

thereby simplifies to

[El -(aIllia) -(alf) i 'f[ 1 0] 0(i f f

Two separate strategies have been employed at this point. The first departs from
the observation that only the upper left block of the inverse matrix is needed. This
yields

G(E) = [El -(allla)- (alfif)[El -(fl/if)] '(fIl/a)]

A more convenient form leads to an alternative statement of the Dyson equation.
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G '(E) = El -(alia)}-(al i f)

X f[E -(fIfl/f)I '(fIia) ý Go'(/;} 2;(E)

where all terms not pertaining to the uncorrelated, Koopmans's theorem description
of electron-binding energies are contained in the last term, the self-energy matrix.
Poles occur when the determinant of G '(E) vanishes; this is equivalent to searching
for Er,,, such that

I[(a Itta) +{(a It•f)[L',,,, I- Ifif t~f) I (fi/•a} I {'Cp,•

In the second approach, one seeks the eigenvalues of the superoperator Hamil-

tonian matrix,

(a fIa) (al if) 1
( f I tia) (fIf1f)ji

Insertion of these eigenvalues into the partitioned form of G(E'). discussed above.
leads to the inversion of a matrix with a zero eigenvalue; in other words, this
insertion is sufficient to produce a pole. Provided that the same superoperator
Hamiltonian matrix elements are used. the two approaches are equivalent.

Derivatives of Electron-Binding Energies

Having solved for a pole of the electron propagator, E4,,. one can inquire into
its derivatives with respect to changes in the one-electron part of the many-electron
Hamiltonian. Such changes may correspond to external fields or to the field produced
by the nuclei arranged in a given way. Suppose that the Dyson equation approach
to discovering poles has been adopted. where

E•,. ý C (- + X(E)I,. ,<,)C

Defining the superscript. a, to denote differentiation with respect to a perturbation.
one obtains

Eý,l. = C`"(e + !(E)L.-I- ,,,,)C + C(e + M(E)

+ C* )c.+ + Eý,,,

Note that in the last of the three terms there are three portions that pertain to
orbital energy derivatives, derivatives of the self-energy, where the L' parameter is
held constant, and derivatives of the self-energy employing the chain rule. This
equation can be rearranged to

/:•,+. I -- ( c) I;') N.

E11 I __ (>t M C)

C- C"C'r),, + C t C"Ep. ,, 4 C÷(e'" + Z"(l:)1l ,r.

The left side of the previous equation is E4,,j, divided by the pole strength. 1. while
the first two terms on the right side vanish because
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(Ct C)' = 0.

Therefore,

Both P and C are generated in the process of finding the pole, only explicit differ-
entiation of the orbital energies and the self-energy matrix elements is required to
obtain Ej,.

A similar conclusion follows from the second approach to finding poles. Denoting
the entire superoperator Hamiltonian matrix as A, one may express the poles as
solutions of the eigenvalue problem

fit = tE,,,,.

Diffierentiation leads to

AH"t + " t"E, t + tE).

After multiplying both sides by t", one finds that

E",le = ttIit

Having found a pole by this approach, one must evaluate derivatives of the super-
operator Hamiltonian matrix in order to calculate Epole.

Connections between the two approaches are facilitated by partitioning the ei-
genvectors t into their a and f portions:

t = [to tf].

For a given pole, the Feynman-Dyson amplitudes, C. suffice to determine the
eigenvectors, t, through the following relationships,

t- = FPC

tf = -Fi[E,,0 ,1 l - (f It1" f)1- 1 (fIl a)C.

Second-Order Expression

The second-order self-energy derives from an f operator manifold consisting of
products of three simple field operators. Only the Hartree-Fock (HF) contribution
to the superoperator reference state is needed. Operators with two-particle and one-
hole indices or with two-hole and one-particle indices are needed to produce all
second-order terms. Letting i, j, k, / be occupied spin-orbital indices, a, b, c, d, be
virtual indices, and p, q, r. s be general indices, one can express the superoperator
matrix elements in terms of canonical orbital energies and transformed electron
repulsion integrals. The zeroth-order elements of (a I tIa),

Ifp, MCIqC,

the first-order elements of (a I 1r f ),
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/4.,= Kpijlah,. a < b
1t..,= (pa~itj) i <i)

and zeroth-order elements of ( f I 1i f).

ljt' d (ell + et, - C,) 6 . i., 1'

ttaHtu = (e, + C, - eC),aha,•Abl .

suffice to obtain second-order poles in either of the approaches discussed above.
Higher order expressions result from retaining additional terms generated by cor-
related reference state averages.

From the above expressions for Eg,,,. one obtains
Ec= . ,H,, C q" + t X fl;,,,,t,,,. + C 'V H;a.u,,lt a

;' [WaIl p 'l;_
Pl p p a p )

"",,"t/, ",,, + 1. 1*, Z_ la,,r,'l ,

fa" a-'d

+ '1ý t,* tt ,,t t, .
ar-j 1 & I,

In second order.

and

11,)" P( po' +C - Ca - ablpi ) C

tail= VP[ + • -F, -eaZ <ijIlpa) ),.

Therefore,

(''j PEot•''H'' Z ll''•tC, H•' ...
,= Vp C CI (Ew, + e (C--a,- - Ch E, + p, - e,,a-i.

+ <t'al
Erhte + El - eCl ell

E t'r-te + C' - e-a --- C1,

+ C +C

+ a- \E .., + 'U, e, - E; I-,,1, + ell -_ e, el
+1;al '

1
p, + --~+' ,,. C, -",luC. I"--4 Cl el C

+ t.',,ie + Ca. e .... C1
1'-E',,! + Ca - C, - ej
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Similar expressions will arise for more complicated forms of the self-energy matrix
or the superoperator Hamiltonian matrix 1141.

Reference State Total Energies

When added to or subtracted from a reference state total energy, electron-binding
energies yield final state total energies. A reference state total energy expression
derived from the same self-energy expression employed for the electron-binding
energies would provide a reasonable choice for the purpose of optimizing geometries
on final state potential energy surfaces. The ground state total energy is related to
the electron propagator through a contour integral that encloses the ionization
energy poles [' 2 1:

<It> Tr - (h + I)G(E)dE.

In the above expression. h is the matrix of the one-electron part of the electronic

Hamiltonian. Insertion of G0 (E). where

Go(E) = (El -])

in this equation results in the HF expectation value, that is. the energy expression
is correct through first order in the fluctuation potential. Closed forms for correlated
energies have been sought through an alternative form of the Dyson equation.

G(E) = Go(E) + Go(E)X2(E)G(E),

which, in iterated form.

G(E) = Go(E) + GC((E)Z(E)Go(E) + G0(E)Z(E)Gr(E)Z(E)Go(E) + •••

provides terms of various orders for a given choice of X(E). A consistent counting
of orders in the fluctuation potential discloses that the matrix, h, introduces terms
of zeroth and first order when it is rewritten in terms of the Fock matrix and the
Coulomb-exchange potential matrix:

h = f-v.

By consolidating terms of the same order, it is possible to identify two separate
contributions to the total energy expression through order n [121:

E' = Tr - ( f + El )G"E)()dE - Tr I vG (E)dE

Second-order many-body perturbation theory can be recovered by inserting the
second-order expression

G' 2 '(E) = G•(E) + G0(E)Z;)(E)Go(E)

into the first term on the left side of the previous equation [2]; the other term is
zero because GIr"(E) vanishes.
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TAB[ F 1. CaCN bond lengths (A) and total energies (au).

ls)mer State Ca-X C-N Total energy

CaCN V'r 2,365 1.206 -768M7801299
A211 2-357 1.205 -768.6941171
B" 2.332 1.207 --768.6924186

CaNC \:' 2.221 1.203 -768.7768773

A-'I 2.220 1.203 -768.6892728
B' 2.210 1.203 - 768.6844680

Only the second-order self-energy matrix is needed to produce reasonable ap-
proximations for the total energies of the reference state and the final states in
electron propagator theory. Second-order many-body perturbation theory total
energies for the N-electron reference state may be supplemented by second-order
self-energy results from electron propagator theory to produce final state total ener-
gies for states with N ± I electrons.

Applications

Reference state total energies and gradients at the second-order level are calculated
with GAUSSIAN 90 [19]. Electron-binding energies and their gradients are sal-
culated with a modified version of EPT90 [20]. Detailed formulas for the second-
order electron propagator gradients have been derived and presented in spin-orbital
form elsewhere [ 14 ].

('alhiumn Cyanide Ground and Exccited States

Using the closed-shell cation, CaCN '. as a reference. it is possible to study the
ground and excited states of CaCN by adding various electron affinities to the
reference state potential energy surface. This molecule is an interesting test case for
the present methods for several reasons. First, there is a low-lying excited state with
the same symmetry as the ground state. Second, there is the possibility of linkage

TS•B[ 1 I. CaCN harmonic frequencies (cm-').

1somer State a"X qm\ - 1 N ' m( t r

('a(N'' 364 1969 143
AI1 369 1973 144
B'2: 375 1961 127

(aN(" 415 2052 89
A2l1 416 2057 87
B-I" 412 2056 25i
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TABt± IWl. CaCN dipole moments (D).

Isomer State Diipole moment

CaCN X2i, 6.485
A2'11 6.402

B2 !- 6.516
CaNC V N" 6.474

A2 11 6.362
B2 1' 6.845

isomerism for all states, that is, it is possible that there are minima with CaCN and
CaNC geometries [ 211. Finally, there are questions surrounding the origin of emis-
sion bands that lie to the red of the lowest absorption frequencies [ 22,23 .

A 5s,3p,2 d basis for Ca, obtained from a previous study [ 24 1, is combined with
a 3s,2p, l d description for C and N [ 25 1. All molecular orbitals are retained in the
post-HF calculations. The default convergence criteria employed for geometry op-
timizations in GAUSSIAN 90 are retained: a maximum force of 0 00045, a max-
imum root mean square force of 0.0003, a maximum displacement of 0.0018. and
a maximum root mean square displacement of 0.0012. Final state geometries and
total energies, calculated as the sum of the CaCN + second-order total energy and
the second-order electron propagator elucton affinity, are listed in Table I. The
Ca-X distance pertains to the nucl-is 'loser to Ca in each isomer. Optimizations
on the A 211 states performed with ai". without a symmetry axis converge to identical
results. Evaluation of finite ',,ii .nces of final state gradients permits the deter-
mination of harmonic freqt, .ncies, which are listed in Table 11. For the A211 states,
the lower symmetry calculations are performed for the 2A' state that arises from
the degenerate state 'a C, symmetry. Most of the stationary points are minima,
although some of the harmonic frequencies are very small. One of the optimized
geometries has _n imaginary bending frequency. A definitive study of the relative
energies of the stationary points and their curvatures must await, at the very least,
a testing of basis-set effects. Because the expressions for the gradients of the cationic
reference state total energies and of the electron affinities include effective density

TABLE IV. 2B2 C; properties.

Property CCSD CCSDT EPT

Total energy (au) -113.300286 -113.328883 -113.330573
Bond length (A) 1.337 1.350 1.337
Bond angle (degrees) 68.3 68.0 68.6
w• a, (cm-') 1668 1601 1677
W2 a, (cm-') 687 638 720
W3 b2 (cm-') 1215 1194 1287
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TABLE V. 21+ C. properties.

Property CCSD CCSDT E[PT

Total energy (au) - 113.279310 -113.321152 1-13.326453
Bond length (A) 1.314 1.327 1.322

1 6, 1168
w2 7r, 260

Wý ac 2500i 451i 2032i
Energy relative to 2B2 (kcal/mol) 13.2 4.9 2.6

matrices for one-electron properties, the sum of the reference state's effective density
and that of the electron affinity provides a density matrix that describes the final
state's electronic distribution. Dipole moments calculated with this information
are listed in Table Ill.

C3 Minima and Transition States

Potential energy surfaces for C+ have been extensively studied with a variety of
theoretical techniques [26-28]. Among the difficulties encountered by previous
workers are multiple unrestricted HIF solutions with sharply contrasting amounts
of spin contamination for the 2 B2 ground state of the C'2t isomer. This finding
prompted a recent work in which coupled cluster energies calculated with unre-
stricted HF and restricted, open-shell HF reference states were compared with results
from a quasi-restricted HF reference state. The latter approach bears some resem-
blance to the present electron propagator method, for orbitals optimized for the
closed-shell molecule C3 are employed. The same 4s,2p, 1 d basis used in the coupled
cluster work is used in these calculations [261. Tables IV and V compare the present
methods to two methods based on an unrestricted HF reference configuration. cou-
pled cluster singles and doubles and coupled cluster singles, doubles, and triples.
The total energies for the electron propagator results are lower because no orbitals
have been discarded from the correlated calculations. Structures, harmonic fre-
quencies, and relative energies display close agreement with the coupled cluster
results. It is worth noting that coupled cluster singles and doubles calculations with
open-shell HF or quasi-restricted HF reference states yield results that are very close
to their unrestricted HF counterparts in Table IV.

Conclusions

From the second-order self-energy of the electron propagator, it is possible to
derive a general description of the N-electron ground state and final states with N ±
I electrons. For the ground state, one must take care that orders in the fluctuation
potential are consistently treated; the simplest correlated example leads to the second-
order total energy of many-body perturbation theory. Procedures for evaluating
derivatives of this total energy with respect to changes in the one-electron part of
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the Hamiltonian are well known. Evaluation of derivatives of electron-binding
energies from the electron propagator has been implemented recently. Only deriv-
atives of the superoperator Hamiltonian matrix are needed. Difference density ma-
trices emanate from the derivation, enabling the calculation not only of final state
gradients. but one-electron properties as well. In the case where a closed-shell iw

calculation defines the reference propagator, no spin contamination is introduced
in the final state doublets. Applications to cases where ionization energies and
electron affinities are calculated in order to study the species of interest have shown
the versatility of this approach. One of the most atractive aspects of the energy
dependence of the self-energy matrix is reinforced here. for optimizations on excited
states of a given symmetry can now be undertaken routinely.
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The Perturbed Electron Propagator Approach
to Molecular Response Properties

B. T. PICKUP
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Abstract

A neo method is presented fOr the calculation and analksis of static linear and nonlinear response
propertIes. Th,: me0thod inxolxes the use of a perturbed electron propagator formalism, and is a cornr-

lated generalization of standard s( i -le•cl coupled Ftariree-Fock for RP-\ ) schemes., 1992 John 'Aile &

Sons. Inc.

Introduction

The theory and calculation of the response of a molecular system to an external
applied field [ I ] has developed into an important research area in modern quantum
chemistn 12.31. since it embraces a vast area of research, from applied subjects
sucti as nonlinear optics [4) and material design, through to the theory of inter-
molecular forces. A recent review of a wide range of molecular properties is given
by Fowler [51. The theory and computational methods [8,91 for both static and
frequency-dependent molecular response properties have been refined over many
years by many authors. The commonest methods of calculation involve scr:-level
response properties via so-called coupled Hartree-Fock (CPHIF) approaches (in either
AO or Nto basis sets) [ 101. or the equivalent random-phase approximation (RPA)
[ I I]. which also gives direct access to the polarization propagator [6.7 1. and hence,
to excitatiot, energies of low-lying electronic excited states, transition amplitudes.
and also frequ.-ncv dependent polarizabilities. Algorithms for computations exist
inside most of the major ah iidfi, codes such as GAUSSIAN XX. CADPAC.
HONDO. SYSMO. etc. The theory for computations, including the higher order
effects or correlation (e.g.. %I(S*t: approaches). has also been detailed 1121, although
published calculations are as vet uncommon because of the cost. Polarization prop-
agator codes are also conventional. but in the guise of the RPA method, which is
accurate through first-order in terms of correlation. The higher order (in terms of
correlation ) versions of this (SOPPA. and its coupled cluster variant [ 81) are com-
putationally expensive, and are unviable for all but the smallest molecules, such as
saturated first row hydrides. The "'leory for quadratic response is also worked out
at the w(1- nd MSCF- levels f[12]. although the correlated versions are not yet fully
implemented. Indeed. accurate near-basis limit calculations of quadratic response
are rare. even at the SC'F: leel.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 13-30 (1992)
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The aim of this work is to present a ncw approach to linear and nonlinear( iniuiall
quadratic) static response tensors b% exploiting the power and elegance of the elec-
tron propagator ( -i'1) approach [ 13.14 1 for correlated calculations of the one-electron
density. The ti is well known for accurate computations of inolecular ionization
and attachment energies. These emerge directly out ofa s.stem ofeigenvaluc equa-
tions based upon the I p equations of motion [ 15 1. The method is well-kno" n and
established, but there is no obvious connectIon Nith response tensors. It is true,
however, that a numerically simple contour integration over a special contour, the
renowned Coulson contour [16 J. directly produces also the correlated griumnd Nah
one-electron density [19•1. and hence, any one-electron property expectation value.
The present work arose by trying to generalize an analysis of(Pi1>- linear response
tensors produced by Grant and Pickup [ 17 ]. This latter uses a breakdown of the
S('F first order perturbed one density into direct and induced terms, and hence.
produces an appealing picture of response in terms of polarization, back polari/ation.
and self-interaction of the perturbed density. The basic idea of the present work is
to study the effect of an external applied field upon the wIT and hence. to obtain
the correlated perturbed density through Coulson contour integration. Jhere has
been an early attempt at a Green's function formulation of the linear response
problem [ 18 ]. though only in the swv approximation.

The perturbed electron propagator is described in detail in the next section. The
third section gives the form of the d% namic perturbed selfteiergy at second order
in correlation, while the section after details the analysis of Grant and Pickup for
the correlated case. The fifth section outlines possible calculations. while the fol-
lowing one describes the results of pilot calculations on a series of small molecules.
The last section briefly describes the use of the method for quadratic response.

"T'he Perturbed Electron Propagator

Let us :onsider a static (time-independent) one-electron perturbation

= t ,,, aa,t

in terms of an orthonormal spinorbital basis. This one-electron perturbation can
represent the effect of an externally applied electric or magnetic field, or even a
perturbation arising from the displacement of a nucleus [3]. In general. we must
acknowledge that a field may have a set of components. so that we must decompose
the operator

,, _- r' ,- , (2)

into a sum over components labeled by the index ir. The factors. F,. are variable-
strength factors. We can express the expectation value of the operator in ( I ) as

0/1M > = (, i'N. "J ' (1) ."%r, = h"
"",,0 ;,a<a'-- tr h)pl (3)
fk/
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wvhere the one-density is defined In thle normalization of' .Mvc\Ven\ W21\e now
introduce the (causal) electron propagator matrix 120] defined in term,, of its spectral
resolution as

'P IC

+ i:(4i' '

The one-density matinx can he derived first]\ f'romi the electron propagator \IL tilte
contour Integration oxer the Coulson contour. C'

\& here the (1-operator is a shorthand notation l'r the integration o~cr thle Coulson
contour encircling the ioniiation poles. and wec hawe used the (A, I )-electron
completeness relation to pro~ide the final tw.o identitic';.

We now return to the subject of'response theor-\, considering that aill the definitions
above appl% to a perturbed system n wI %hich the operator representing the external
field (1I). has been added to the H amiltonian. We are interested in expanding the
expectation value ( 3) in powersý of the perturbation

F I j i(6)

where the term <h'", represents the ,zth-order response of' the sxystern to the
field. In terms of the decnsity the titli order change in the expectation value isý

FF :F tr h' trC, hII("C' (7)

The electron propagator matrix satisfies the equation 113. 14 1

whecre t he lo ck m a trix itIli ch prv encc ofI hie perti iirh i ii /Iu1

Flp~l" )-If('") f~ bib 4 Jlp"'' ) . N(1 If (9)

is expressed in terms of'the perturbed Hn density, which., ;"'"Uning .,e use a basis
of ,Nt s (def ,ined in the presence of* the field implies

with

10 C v irt
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The two-electron part of(9) is commonly denoted by the G matrix

G,,(p•") = j,,(p1') - Kj,,(pl'1) = I (pr•!qs>pI. (12)

which is distinguished from the electron propagator by the lack of suffix " ." The self
energy matrix in (8) contains all the effects of correlation, and can be divided into two
terms

1g(wo) = 1(x) + M(W) (13)

The first term on the left hand side of( 13) is the frequency-independent (so-called
"'constant") term,

V prIlqs)[p,, - p,'j (14)

which can be obtained in the limit as w -- -. since the dynamic self-energy. M.
is zero in this limit. Using arguments based upon the energy uncertainty principle.
we can interpret the constant part of the self energy as representing the instantaneous
response of a correlated many electron system to the presence of a hole or a particle.
The dynamic self energy, on the other hand. is dependent upon the frequency and
contains all relaxation and reorganization effects which are on a long time scale. It
is normal in the electron propagator formalism to expand the dynamic self energy
in a perturbation theory defined in terms of the correlation potential. In this way
we can define second- and higher-order electron propagators. It is vital to distinguish
this perturbation expansion in terms of the fluctuation potential from the entirely
separate one we intend to make for the applied external field.

It is convenient to include the constant part of the self energy with the Fock
operator to give

G, = (AI - F(p,) - M(w))- (15)

The Fock operator above is defined in terms of the exact perturbed one-density.
We now make a perturbation expansion of the propagator in powers of the ex-

ternal applied field using

G, =-G- +±G'- +G (t+ -. (16)

which is achieved via

F(pj) = F(pl)'()) + R~pj) IJ + F(pl)(') +-••

M = M(O) + MM + W) + -.. (17)

and an expansion of the inverse. We can now identify the perturbed Green's func-
tions by expansion of ( 15) as
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G',= G,"'F"" '"),
G (;4"( Ft NI'(1,

GI +

The perturbed Fock operators are
F(pj)'",• = h'), -f G.O,~l',)

F *1 ),l - h'') f GO),"

F'(p• - G(pV) n •2_ (19)

An expression for the first-order dynamic self'energ\ is deri\ed in the next Section.
We can identif% the individual terms in the expansion of the inverse as

G, = - - N11" F- - - !. __ MP .. ) N (20)

The densities appearing in the above equations are correlated densities defined
through Coulson integration as

S (2',""' (21)

We shall now analyze the linear response via the first-order coupled equations
arising from eqs. ( 18) and (20):

P, = 0I 'G1(F +± M + 1)G('l (22)

It is of some interest to investigate (22) in the m: limit, in which we put

GC , - (I -- c)V

N"I" -: 0 (23)

where the matrix e is a diagonal matrix ofs(-i orbital energies. since we are working
in a canonical mi: basis. In eq. (23) we have assumed that the basis set with respect
to which the propagator matrices are defined is a canonical mI: basis. in which case
the zeroth order propagator is expressed entirely in terms of the diagonal matrix
of Koopmans' orbital energies. It follows that

t) 'I f "(24)
r-i c (w _ c,,)(w -W,

for two general %10 indices. p and q. Using the notation. i. j E occ and a. 1, G vii.
and noting that only ionization poles (occupied Koopmans's orbital energies in

the present context) are included in the Coulson contour. it is easy to show that

d W • - ,)(¢ - ,) ()

, d -- c)((25)27r i f (W - ,)(EM W , r e r,-ell
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so that the only nonzero blocks of (24) are

J. ) --tJ ( ) .- I, ,- (26)

which are just the well-known first-order perturbed SCF equations (or CPHPF) in the
MO basis.

We now consider eq. (22) in the case where we have formally exact Green's
functions. We shall first analyze the equations assuming that the perturbed dynamic
self-energy M"i' -• 0. Using the spectral resolution of the propagator (4). and
defining the poles

E, = E('- E;>' E, = E'(%,, - Ej% (27)

and the Dvson spinorbitals

g,(x) = Z #,(x)h,,, = < aI,,(.)<4' >ialI4 )
P /

x = t, •,(x)ha,,,, = • ip,(x)' 1a1,I q/>') (28)

Using eqs. (27) and (28) in (4) and (22) gives the first-order coupled perturbed
electron propagator equations (I -CPF.P) in the following form

F,,) ," , + F2,, thq,,h*,2
Oil, =E- (29)

where the matrix elements

Fill (=lgF'' I,); FF`'= <£,I F")' Ig, ) (30)

are expressed using Dyson spinorbitals rather than the plain MO matrix elements
found in coupled HF. Indeed using the expression for the one-density function,

pI(X, x') = 1 tq(X) 0t,(X')*piqp, (31)

it is easily seen that eq. (29) is just a Dyson orbital expansion of the first-order
perturbed one-density

11)

p',"(x. x') Fa g,(x).)/(xf)* + FJ,'f,(x)g,(x')* (32)
E,- t.c,

It should be noted that the Dyson spinorbitals form an unnormalized, nonorthog-
onal. and linearly dependent set of spinorbitals 1 211.

It is obvious that the I-CPEP equations are identical in structure to the CPHF
equations, but using correlated poles and amplitudes instead of Koopmans's orbital
energies and MO coefficients. We have, of course, neglected the perturbed self-
energy. M'• ), a defect which we now remedy.
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The Perturbed Dynamic Self Energy

The dynamic self energy can he expressed through second-order in terms of the
correlation potential as

I( i; w) + 111aniw,, t0) (33)

where the hole contribution

A110C -h,,. I Q,,,ll)(1110 11(a>4- (34)

-- cJ + V- "

and the particle part

AI,,r,,k = I•, (pilla,)(atjqi#>(•,,, 02 g z, . ... (35)
60 a -- 'I, +- E

We adhere throughout 1o the convention that orbitals labeled i.j. k. refer to
occupied molecular spinorbitals. while a, b, c, .... are virtuals, and p, q ..... are
general in nature. The antisymmetrized two-electron integrals are defined as

(pilla!) = (Kuilal,> - pilljha> (36)

The formulae shown refer to the basis of canonical spin molecular orbitals in
terms of which the inI: reference determinant is specified. We now consider that a
perturbation of the form ( I, 2) has been applied with an arbitrary set of infinitesimal
strength factors, F,. In this instance, the orbitals are perturbed by the infinitesimal
field. We shall signify these perturbed orbitals by placing primes on the orbital
indices. We write the perturbed self energy as

M t , " t"( w ) , + A - ,,ic e ( , ) ( 3 7 )

with

M.,,1 ,, (lpa'l i'j' ( i'j'll qa'>

II'a

ht.,•"'I., 1 pi'lla't/ ýaf ) 1(Ii >',lq'
-p, , , 2 (38)

One subtlety in connection with (38) is that the indices, p, q, the matrix indices.
are unprimed. The perturbed orbitals are orthonormal as are the unprimed ones,
and are therefore a unitary transformation of the unperturbed ones. It follows that
we arc free to express the matrix indices in any basis we choose. We choose the
unperturbed basis. We are not free to choose the basis in terms of which the i,j,
a and a, h. i summations are expressed. This latter basis must be in terms oforbitals
which make the perturbed Fock operator diagonal, i.e.. a perturbed canonical basis.
We can expand these perturbed canonical spinorbitals through first order as
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Ip') - 1p) + Ipt..) = Ip) + Iq) (39)
q , C,, --".

where the unperturbed (field free) orbitals and orbital energies are indicated without
the superscript (i.e., 40) =- c,, and Iq)> q(">)). The perturbation expression for
the orbital energies is

Cp • e/, _I) - .('

rC' e-+-, + + (40)

Substitution of (39, 40) into (38). Ibllowed by an expansion through first order
gives

mt ) hole( L ( pajjlj>(F,,'' + Fj' - F'ýjla
2 (Pa F -e,- ) 2

+ I 2 FW,"prjjij)Kijjiqa) + <padjij)Kqiiqr)II',
2°a r((- e'4(() - CI - "I + CJ+l "*<It "' IL•praulij>(rjlqa) ii) + (p~ij>~qr a t" (41)

+ ,+ (41)
(e, - e,)(w - C, - c/ + e,)

This expression contains three terms, the first arising from the expansion of the
orbital energies in the primed denominators, while the remaining two are from
orbital perturbations of the primed numerators. The first term varies as O( 1 W2').
while the others have one constant (i.e.. frequency independent) denominator.
These constant denominators contain differences between particle (or hole) and
general spinorbitals. We usually expect many-body perturbation theory expressions
to involve only differences between occupied (hole) and virtual (particle) subspaces.
The summations in the second terms over r can be broken up into sums over
occupied and virtual spaces. After some magical but mindless manipulations. the
final expression for the first-order perturbed hole contribution to the dynamic self
energy is

M ,i/l qa ) I(k <p qaH

,a,(W - C, - El + E)(- e, - eC + CJ )

+ - - I p a l i) q . ..._ij q a ~ l ,t / p h f t1 ,

+-, - C+)(wo - +, -+ cj)

+ ,I,,'(pa j!iu)( jj!qa) pa ii 1,

+ - "_ __------ /

2,," (e( -- ,)(w - , C, C r"

The reduction of the particle part of the first-order perturbed dx namic %Clf energ.
is carried out in the same way to give
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v2' 'jb Fv,)( b * q

r t e c , H (w C. Z

It should he noticed that the first-order dy namic sell cnerg\ contai us teCrmsl sIriIL'\
first order in the applied hield, which i n~olk the t" n-electron Interaction lrug
the perturbed Fock operator. F' ' If these terms are to be accountd for esacIlN In
the (,[IP1 procedure. then wec must Include the d% narnic self energ\ in thle iter~ation
scheme.

We nowk define the total tirst-order perturbehd oneC-dest~l,; \.ia ( 22 )as
I l I 1 l ), . ( ý d

wNhere the static correlated one-densit\, arist-~ purel\ fi-0hm the lock operat'rit portion0
of 122')1. and the dN narnic Seti-energ\' contribution1 to t11C peilur1bed 0Ine-0Cnsits

comes from the dtlinmic self energy

& C 4'M 4

which contains a product of three frequency-dependent contribI Ilolls.
The d, namnic coupling scheme is implemented at second-order in the correlatlonl

potential using eq. (45 1.together with (42 ) and (43) in the formn

(40)

wvhere the precise form of the matrix elements. A.actualIN depends upon the oc-
cupancy ol'the spinorbitals 1p. q, s. r. T1he precise fornm of the matri\ elemients h~is,
heen derix ed bw the author through second order in correlation, It is cas aliso) to
.see that ( 46 ) is the correct form through all orders in correlation, althouigh this

saeetneeds diagramnmatic anal\ssis,1TA ro'

Analisis of L inear Response Properties

We now. consider the general ization of the analysis of the linear response Milh u
has been described h\. (;Irant and Pickup 1171 tfor s( I -level linear response properties.
t Tsing eqs. ( 7 ). (45 1. and(. (40). and the eselic in~ariancc of' the trace operation.
"~e deduce that

h ... ... r 0 : G h " 'h' 11; I'U tr Ih' Li (47)

We can now, proceed h\ elimiiination of'



-11I 1

12 22(' to g

from (47). using (22). to give

SG 0 " tr 4 , trp

- tr•. [ ) + 'G' (p'' ) (48)

We can recognize inside the equation above that the NV' term can be rewritten
in terms of the matrix A in (46) to give

I i(t' • ' tr (G 11"h`")'_ + tr 1,"(;(plý 1) -trP .

+ tr h'-p~]"" trpo1 (49

The final two terms of (49) are reduced by substitution of (46) to give the final
expression

(/t )' =tr (a 1(G ,," . )2 )(G + tr p'tlG(p',I'
+ •( t.. G,,(/)(1 (50)

The five terms in (50) can be interpreted in the following manner:
1. The static direct term. _t2 )ta,dr, is the interaction between a one-electron

field and a system of correlated interacting electrons which are frozen into the zero-
field form:

2. The static back polarization. lE-""'"hdck. is the response of the system arising
solely from the field induced by the toial (static plus dynamic) perturbed electron
density:

3. The third term. E"I"-4" "". the static interaction, is the self-interaction (Coulomb
minus exchange) of the perturbed one-density:

4. The fourth contribution. I(.-'•"tr is the dynamic analog of the direct static
response: and

2 ),1,n hac k5. The final term. the dynamic back polarization. E'-" . is the dynamic
analog of the static back polarization.
In the [ir- limit, the last two terms. which are purely correlation effects, are absent.
The first three contributions reduce to the terms described by Grant and Pickup.

It is instructive to write expressions for the first two parts of (50) in the Dyson
orbital basis. Using the spectral resolution of the electron propagator as before, we
derive

Et 2)dar I Y", '/4I ~~ 1)2
E, -,

i~flz~,•,• I •; Ig, I (i(,',")I.,L)I12
, E, - E,,

The three static contributions to the correlated linear response are all contributions
arising from instantaneous interactions. The hole and particle Dyson orbitals ap-



PI{RI iRI1ll) ITI.( I'RON PROPA(iA I R APPR(')A( If 23

pearing in eq. (51) are just the correlated versions of the Ii1: Mos. They describe
holes and particles which, in the static equations, can interact with the applied
field. h' ". and in the average field, GJ,'(/ )), induced by tile p~erturbed density. but

the hole and particle orbitals are not mutually polarized. These latter elli'cts are
accounted for by the dynamic contributions.

Algorithms for cm'Irv Calculations

The (Pr:P approach can be implemented in at least two different forms. The first,
the analytic method. is to carry out all Coulson integrals evact/y. using the ap-
proximate calculated spectral expansions (i.e., using poles anrd Pyson orbitals ex-
plicitly) computed using standard implementations of the rIr method. Once these
are known, the Coulson integrals can be carried out exactly as in (25), and they
lead to equations such as (29), which involves sums over Dyson orbital matrix
elements and difttrences in hole and particle pole energies. The analytic approach
requires the computation of all poles which contribute significantly to the response.
There are basically two kinds of poles in the i-P equations. These are best discussed
in terms of the pole strength. defined as the norm of the )yson orbitals. viz.

1PI = (g, [,,,q ', P .,1t), (52)

respectively, for the hole (ionization) and particle (attachment ) processes. The two
types of poles are those with pole strengths close to unity, and those with small
pole strengths. We shall term these primary and shake events, respectively. The
primary poles are those linked to Koopmans's theorem. in the sense that the re-
spective states are dominated by configurations in which a hole (or particle) is
added to the iiF sea. These are the poles close to the Koopmans's orbital energies
in the outer valence and core regions of the photoelectron (ionization) spectrum.
Similar comments apply to the attachment spectrum. with the reservation that
discrete Iif states may not exist for anions, i.e., we may merely be producing dis-
cretizations of the continuum in this case. The shake events are all the nonprimary
states dominated by configurations involving simultaneous orbital removal (or ad-
dition) and excitation. These events tend to have small pole strengths. the intensity
having been borrowed from the primary poles. There are large numbers of these
shake poles even in small basis calculations, and it is well known that in the inner
valence region (for instance, involving ionization of 2s-like electrons in first-row
atoms) of the ionization spectrum. the orbital picture tends to break down because
of thie large numbers of shake poles interacting strongly with the primary poles. A
similar phenomenon occurs in the attachment spectrum. If we examine eq. (29)
for the perturbed density, we see a spectral expansion in terms of all particle and
hole poles. and the question arises as to which are important in deciding the po-
larizability. and which are not. This consideration is allected bw two thctors, tile
first being quantities in numerator, and the second tile energy dill'erences in tile
denominator, In comparison with the (-'1 iF cases, where only ( Koopmans's ) pri mary
poles are present in the sum. on introduction of correlation there are many more
terms. hut the norms of the Dyson orbitals are all reduced. This latter ef]Mct may
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tend to reduce the polari/abilit. The "band gap" implied by the ditI~rence I,
,,. however, tends to be decreased by the effeicts of correlation. a Ihctor tending to

enhance the perturbed density. The resultant polarizability arises from the net effect
of both of these trends and may be lowser or higher than the (,PHi values depending
on the case. The eflect of the dynamic terms is unknown at this time, but is likely
to be very important.

There are basically two methods used for computing Dyson orbitals and poles.
The first is the Dyson equation approach, in which the zero eigenvalues of the
matrix inverse of eq. (8) are computed. This method produces selected poles and
Dyson orbitals iteratively. It is not a useful technique for obtaining all poles as
required in principle by the analytic method described above. An alternative method
is the "'large matrix" method [221 derived from the algebraic superoperator of
Pickup and Goscinski [15]. This method exists in the form of a suite of programs.
SHEEP (the Sheffield Electron Propagator Program) [23]. SHEEP can iteratively
diagonalize an operator (] equation containing information about primary and
shake ioniý!,-• and "t".zhmcnt poics. or for small cases (in which individual
symmetry blocks have dimensions of less than 1000). it can do in core diagonal-
ization of selected symmetry blocks of the superoperator Hamiltonian matrix. The
test calculations given in this study are all based upon this latter option and. for
this reason, we do not claim to have produced a viable algorithm. The alternative
method to the analytic one is to carry out Coulson integrals using quadrature.
Hence. one bases the coupled equations on the form (22). rather than (29). We
can define the quantity

ir,- , (53)

from which it follows (neglecting dynamic correlation) that
P t pI 'Pi I ' r- s•. , / • ( 5 4 )

Inclusion of dynamic correlation leads to
,I ). ( I'p ,r ± r (55)

The F and A_ quantities are both matrices labeled by four indices. They can both
be efficiently computed using numerical quadrature in the complex plane in the
traditional manner [191. This quadrature requires only the construction of the
matrix G1 4) (i A) at specific frequencies w = i:A along the imaginary axis, the in-
tegration points being derived from a transformed Gauss-Legendre formula. The
construction of this quantity at second order in correlation is rather trivial, since
we need a linear process

I !,, ,, - ,,'t Re G ,(i. ) (i:G) (56)

A similar procedure can be worked out for the quantity A. Both quantities can
be computed only once and stored in core, or in a file, depending on the storage
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available. TFhe I' and A quantities do not depend in an,. wNa upon the nature of
the perturbation. Eq. ( 55) is not thle most efficient axto orgat iic the iiP I, iteratixe
loops. It is better to form the two subsidiary qutintitics

I' .~ ~.. ( 7)

and

in terms of which ( :s6 ) can he rearranged ats

TFhe main cost is obviously in the procedure_ is. the Initial calculaionofthtl anttie
I' and A\. TFhe formier is not vcrx expensix e prox ided one can (a, seems, likcl\
throw, a\.%a\ shake processes \kith \ Cry large cnergics. In addition, it is not necar
it) use fully transformed twxo-electron Integrals fbr thle construction of' I' I heC it-
erations implied by ( 9)a- actually no more cpei cthan ( 1111 iterations, and
can be considered as a "(dressed" (correlated) version of'( 1,i' . I hIC four-indexed
quantity. B,. is independent of the field, So that It can TIe used timec and timec againl
to obtain response to difl~rcnt cxternal ficlds (or nuclear pecrturbations I. I hie miatrix\.
A' (fdoes depend On the perturbation. and Must hc fbrmied in at /crotli iteration
fb(r each difikrent kind of field. -Fih ( i'i P, procedure_. wheicther fin anal\ tic o)r numerical
( 56 ) lbrms. can he carried out with or wvithout1 thle A terms arising from d\ynamick.
correlation. We rcefer to the tw~o possibilities ats static and d\ mimic Pt I'. V respctix Clv.

Calculations

T-he trial calculations .kere carried out "with the 11,IA). I ii . and N, molecules in1 a
s I () 031 G basis set. TFhe algorithm used was the static anal\ tic one described In thle
last section. Th'le algorithm fb(r the unperturbed I P cal1culation wast, that of' Baker
and Pickup 1221 in vhich the superoperator matrix comprised 533, 14 1 . and 1 404
operators respectivelx 1 3. 11 . and 18 of' which correspond to Koopmnans\s pri ni,1Ar

prcsss ti heindvdual s% m1nietrv blocks ofthlle ( (and I )~,, I1kw N:) point groupI
,.ere separateix' diagonalited using at standard I louseholder melthod. a~nd [the poles
and Dx son orbitals were stored onl the propagator (IL IIpJfile. A sepa~rate (Pt1 P programil
has been w,%ritten to perfk)rin thle iteratix c procedure.thaloimussvmtr
to cut down the timne spent in the constructionl of' the polar sums,. [h le programil
does not \et include d\ namic sclt*-encrgx effects. 1 ihc method is, able to handle
perturbations from an\ external field. including mul.1tipolarf lctr1IosttitcW,a\W1 welas
magnetic cases. We have not Included anI 014101io to handlelI nu1clear (lerivatix es.
although this is an obx ionIs and] relati\Cvelx rix ial exteinsionl of thle method. Restilis
fb(r 11 4) are show~n in Table 1. and fkOr III in I able 11. 11It is unfortu nate tha1t if xx as
not possible to do callculations using extended basis sets as in ( Irant and Pickutp

17~ 1. 1Ihis is bc~ause of' the large maitrix\ diagonali/ations reffuired. Miatinx\ie
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-l'\III F: tPI'M and ( P11' calculations ot the dipole polari/ahilitic,, of %kater (in jul using a SH. ) t I(
basis. (1 0O4.45i, R 1.81014 au. I he i-axis is the C_, axis. and the molecule i1 in the xw-plane.

Method Static direct 1nteraeion Static back Lull ( on ponclit

4,N 12" 2.889 1149 t .6536 xx
0(9839 0(,6585 ) .2486 1.39338 x,
3,2') 14 1,8967 0.773 4.41 4i i/

I P, 2nd order 5.31 I3 3.138(0 1 11568 7.2925 xI
125 ((.9551 0,423] (.6575 x
3.-,742 2,3343 10.9980 5.010 l ,

IPI p ll (33 5.2541 3.1 1114.1 1. 1 3hO 7.2107" xx
.I 187 0o93.4 0.4085 1.64f6

3.6374 0_279{( ((.969`1 4.946•6
(PIP. I 3rd order 51(851 2.8 81 .-1. .11,5 6.S916 x

1.0A829 ().7798 0.3 15.; .547'ý 4 7
3.5(813 1 999(0 0.82] 8 4.6775 -/

increase rapidly with the orbital basis, since the number of hole and particle poles
rise like n-in and m'n, respectixely. where n and m are the numbers of occupied
and virtual orbitals in the basis. Larger basis calculations await the numerical ap-
proach outlined in the last section. although we already have some tentative indi-
cations that fairly accurate polarizabilities can be obtained excluding the highest
orbitals from the four-index transtbrmation. This point needs further studs. The
63 1G basis set we have used does not describe response effects (to dipolar pertur-
bations) very well, since it does not have the necessary diffuse and polarization
functions. The basis set is particularly deficient for out-ofplane directions. and this

I x-mt I It. ,P i .\nd (PI P calculations o( the dipole polari,/abihitics Iin au) of hxdrogen fluoride using
a s i1 631( basis. R 1,.7719 au. The molecule is oriented do"wn the x-axis.

Method Static direct Interaction Static back Full Component

('li 3.0179 9 1i.7O)7 (1.6622 4. 12401 xx
0.469 10.29(18 1 () I7 O6510),
0.46 t19 0.2)(18 ((. (117 0.65 ( (1

iPi P, 2nd order 3 3)27 1.831)9 0.7(66 4.5159
((.5292 0..3953 0.1584 0.7606 1
((.5292 0.3953 0(.1584 (0.766 1/

(1ii '. lull f133 3.355)) S.O(1.(4 ((.6995 4.4>54
((.524] (1.3834 -0.1516 0.755'4
0.524! ((.3834 0.15 16 (.7559 /,

(II i., lrd order 3.2357 1.6408 0,6255 4.25%(9 xx
0,50401 0.3264 0.1 193 (( 71 10(.,,
(1.504(1 0.3264 -(). 191 0.7 I0 / M
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TABI I III, SCF orbital energies and 4P2 pole energies (in au.) and pole strengths lfr the 42) nmolecule
using a sto 63 Ki basis. lhe geometry and orientation are as in [able I.

Designation Orbital energy Pole energy Pole strength

la, 20.5606 - 19.8426 0,774)3
2a, -1.3560 1.25 19 0,6865
2a, shake 1,1931 022062

Ib2  -0.7096 0.6644 0.9384
3a, -0.5f05 0,4751 0,92M0
I b, -0.5014 --03996 0.9150
4a, 0.2036 0. 1896 0.9811
2 b 0.2997 (,2835 0.9760
3be L.0570 1.0158 0.8860
5a 1.1866 1,0905 0.8514

2b shake 1.0993 0.3360
2b, 1.1644 1.1051 0,5985

6a, shake 1.1589 0.2800
6a, 1.2157 1.1656 0.6073
4b, 1.3792 1.2429 0,6423

4be shake 1.3419 0.2533
7a, 1.6963 1.6171 ().8748

as A,. so that for the y-perturbation, the hole-particle excitations produced by the
perturbation involve a, - bl, and vice versa. The lowest excitations will provide
the highest contributions to the polarizability and, in this case, these are lb, -
4aj, and 3a, - 2b,. The former is the lowest excitation, and the 20T lowering of
the lb, on correlation provides the most important increase in polarizability on
correlation. The 2b, attachment pole has an important shake component which
steals intensity from the main pole. In this case, the marked reduction in pole
strength probably overcomes any gain in polarizability implied by the energy shifts
due to correlation. The x perturbation has, as its most important excitation con-
tributions. 3a, - 2b, and lb -. 4a,. These are higher energy excitations than
those found for y, so the shifts in poles after correlation have much less effect on
the polarizability. The z-perturbation has slightly more effective excitation contri-
butions. with 3a, -- 4a, being the most important. It is well known that second-
order EP calculations overestimate the correlation shifts in Koopmans" ionization
poles, an effect which is corrected in higher order. This shows up as a reduced
polarizability for the higher order Green's function calculations.

The results for nitrogen are given in Table IV. They show quite a different pattern
to the other two molecules. N, has already been noted as anomalous by Grant and
Pickup [17 ]. since it has a static back component in the bond (x-) direction which
far ,utweighs the interaction term. The effect of correlation this time, is to reduce
the total polarizability, but the reduction is smaller for the higher order Green's
function calculations. The perpendicular polarizability components behave more
like those for saturated molecules.
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Quadratic Response

In (P1W: theory. the quadratic response can be calculated using only Information
from the first-order perturbed density. The Pi+ version of the theory. can be derived
straightt'or~ardlý using the formalism outlined previously. It is oh' ious that terms
arise in the second-order perturbed propagator which depend upon F"' the second-
order perturbeil Fock operator. and also the second-order d\namic se lf-energy.

.12, It is not obvious that these second-order terms can be removed from the
equations. We have been able to prove that this is so. however [251. Neglecting
the dynamic terms. it is verv easy to shox~ that

(,-I-,) I, 104 (E,.44, E 4)4L

The construction of quadratic response tensors is. therefore, relatively st raightfor-
ward once the first-order equations are solved.
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Second-Order Green's Function Simulations of the
Valence xi~s Spectra of Unsaturated H ydrocarbons
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configurations in the ionized system can occur, resulting in a complete "break-
down of the molecular orbital picture" [II 1- 15 1 for the ionization process: the
intensity is spread out over several lines of comparable intensity, and the dis-
tinction between the main and the "shake-up" lines is no longer possible. Even
in the case of a partial conservation of the one-particle picture, one should then
at least take into account the dispersion of the main photoionization intensities
in shake-up and scattering processes to obtain reliable simulation of the inner-
valence xPS spectra, this energy region being the one that provides the most
specific information on the molecular structure. However. reliable calculations
of ionization potentials and spectral intensities are difficult in the valence energy
region, the number of excited states that have to be taken into account to ensure
definite conclusions being generally very high. In addition. the energies and
interaction elements may be strongly basis set dependent.

Particularly well-adapted to the description of interacting particle systems,
the one-particle Many-Body Green's Function method ( MBGiF: also referred to
as the one-particle propagator method) has been shown to yield reliable simu-
lation of ionization spectra for a large variety of molecules 116 1. In this contri-
bution, the second-order MBGF method is applied to the simulation of the Xps
spectra of similar molecules differing essentially in their degree of conjugation.
Because of the decreasing quality of the molecular orbital picture for the ion-
ization process, structural information will be difficult to obtain from the ion-
ization spectra of the most conjugated compounds. The aim of this investigation
is to study the relationship between structural aspects (cyclization. isomerization.
and conformation ) and the one-particle and many-body features in the ionization
spectra.

Outline of Theory

The one-particle propagator (Green's function ) is closely related to the photo-
electron spectrum. In time space representation, the one-particle propagator, defined
as.

(;,,(tk.i,) = i ',l4' i T, aj,U). a, (It) i4) (I)

describes the probability amplitude of propagation, depending on the time ordering
(11. t,.) of an extra-particle (or a hole) from the iw: spin-orbital X,( x,) to the in:
spin-orbital X,(X,), because of dynamic correlation effects. In this expression.

is the exact ground state wavefunction and Ti, is the Wick chronological
operator. The creation and annihilation operators are expressed in the Heisenberg
representation. The propagation of a hole being equivalent. from the point o['iew
of charge transportation, to the propagation of an electron backward in time. these
processes can be diagrammatically represented. using the Fevnman convention, as
in Figure I(a).

In the Green's function method. Hartrec-Fock energies and wavefunction are
taken as a zeroth-order solution for a perturbation expansion. In the background
of the noninteracting iii ground state wavefunction, either hole or particle cannot
be scattered to other states. and the one-particle iUi propagator is diagonal with
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Figure 1. I Iact and fIt propagalors.

Figure 2I Fhe diagrammatic D.\on equation.

'I

Figure •. Partial expansion o the selt-cncrg' using the polanration propagator, P.

and p

F:igure 4 Propagators in'.olcd in thc second-order expansion o" the sclf-energy,

respect to the i and j indices. The diagrammatic representation of the propagation
ofta Ill particle or hole is provided in Figure l(b).

Turning to the frequency representation. the spectral resolution of

the exact Green's function can be cast in the basis of the HF spin-orbitals as
[17-21]:
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(,,( = E '' la II I(1q, i4I'

- / ('1' U/Il*',"QI(q,: Ia, Iq'Q; (2)

(e - E - E) + iO•

where the sums over in and p run over all the states of the N - I and N + I particle
system. From Eq. (2). it is obvious that G(w) has poles at the (changed of sign)
exact vertical ionization and vertical electron attachment energies: the MBGF theor'
provides a powerful approach to many-particle systems while retaining the one-
particle picture associated to the HF theory.

Carrying infinite summation through a renormalization [221 procedure, the exact
one-particle propagator can be expanded, in terms of the HF propagators, using the
diagrammatic perturbation expansion scheme provided in Figure 2. known as the
diagrammatic equivaient of the Dyson equation [23]. Interactions of the particle
or hole considered with the remaining electrons or holes in the system are introduced
through a nonlocal time-dependent effective potential: the irreducible self-energy
1 [24].

Turning to the frequency representation, this diagrammatic equation has the
algebraic equivalent:

G(w) = GO(w) + G)(.,)Ž2(w)G(w) (3)

with the HF propagator matrix calculated as:

o6,, 1+if i virtual index }

G5,(w) - w - e, ± iO0 - ifi occupied index (4)

Its poles provide the Koopmans' value for the ionization and electron attachment
energies obtained, after inversion of sign. as the energies c, of the occupied and
virtual spin-orbitals.

The poles of the one-particle propagator matrix can be obtained solving iteratively
the equation:

det[w - e - '(w)]= (5)

Using the Hugenholtz convention, 2 is written, to the nth-order in the correlation
perturbation expansion, as the sum of all the time-ordered. topologically different
and strongly connected diagrams built up from n point vertices (each of them
standing for an antisymmetrized bielectron interaction element (il Ikl>) and (2n -
I) zeroth-order propagator lines [22]. For further discussion, it is interesting to
mention the partial diagrammatic expansion [25] of the self-energy in terms of the
exact polarization propagator P [26], this expansion being provided in Figure 3.

Applying the standard rules to write down the algebraic equivalent of the self-
energy diagrams, the above expansion can be expressed as:

2 I " ,, .... )1 G ...... .(t')OP .j,,(w)](l'm 'lIqk') (6)
2 ,I , m
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in which the correlation product is defined by:

A(M)OB(w) = - A(w')B(w' - w) dw' (7)

In this expression, P(w ) in the frequency representation. is the spectral resolution
[26 ] of the polarization propagator:

*A a,'aj I,, '• )aA*allI,,

,,,0 w + EO E + iO,

)a , ail ' , )l K ,,' Z a, aj (',,)
,e --- E()'7:. + E- i-o I8

where the sum over m runs this time over all the excited states of the N-particle
system. This frequency dependent function is obtained as the Fourier transform
of:

P,,.0(t2, 11 = i-( ' [ Tj{ a,(t2)at 2), a;(l,)aj(t,) I 4i• (9)

the former time-dependent function providing the probability amplitude of prop-
agation. in the background of the interacting system. of a particle-conserving per-
turbation, this time.

Taking (Fig, 4), in the above expansion, the zeroth-order HF one-particle prop-
agator as an approximation for G (w). and the HF zeroth-order polarization prop-
agator

p, ), A,, {W) ±61ý + i"i occupied and j virtual indices 1
W ) + r, -e, 1± iO' I - if i virtual and / occupied indicesJ (10)

as an approximation for P(w). and considering all time orders, it is easy. performing
the integration (7) in the complex w-plane, to derive from Eq. (6) the second-order
expansion [ 11.271 of the self-energy:

I (pajIrs><rsjlqa) .pr.ah.(ahqr> ()
2 ~ + C ' ,C 2 + L Cr E/,

where the sums over a and b run over all the occupied (hole indices) Ht spin-
orbitals while the sums over r and s run over all the unoccupied (particle indices)
HF spin-orbitals. In the approximation of a diagonal Green's function matrix (also
referred to as the quasi-particle approximation), the two components of the second-
order self-energy describe, to that particular order in the interaction elements, the
energy contribution to the ionization potential of the dynamic polarization response
of the electron system to, respectively, the destruction of the particle and the creation
of the hole resulting from the ionization out of one of the occupied molecular spin-
orbitals.

The components of the electric dipole frequency dependent polarizabilitv tensor
are related to P(w):
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7•w ( - i <I-F,, j) ýktT I -F , 1, .ki(w) (12)

Using, as previously, the zeroth-order HF polarization propagator as an approx-
imation for P(w), one can derive from Eq. ( 12) the well-known Sum-Over-State
(sos) formulation of the static (frequency independent) polarizability tensor:

X")(,)= 2 2: Ka Ir)(rlF. Ia) (13)
ar 'c ' -C

Pole strength [1 5,22] related to the ionization of an electron in the spin-orbital
X, can be calculated, in the quasi-particle approximation as:

r, = [i - ( -. (14)

Defined as the residue of 1/(w - _,(w)) taken at the pole w,, it can be equated
[28 ] to the fraction of the photoemission intensity associated with a monoelectronic
process, the remaining fraction [I - F,] being the intensity borrowed in shake-up
or scattering processes resulting from correlation and relaxation effects. In a one-
electron description, the self-energy would have no energy dependence, and the
pole strength would be I for all ionization potentials. In a real interacting system,
pole strengths larger than 0.9 can be referred to a quasi-monoelectronic process,
while pole strengths smaller than 0.9 are indicative of a breakdown of the molecular
orbital picture. Heavy breakdowns in the inner valence region are likely to occur
when the molecule possesses many low-lying energy states.

From Eqs. (6) and (12), it appears that the magnitude of the correlation and
relaxation effects on the ionization potentials, and of the breakdown of the molecular
orbital picture throughout the overall ionization spectra, can be ultimately related,
at least on a qualitative point of view, to the polarizability of the molecular system.
As other factors, such as the degree of localization [29,30] or the inner-character
of the ionized molecular orbitals, also influence the magnitude of the many-body
features in the ionization spectra, such a dependence might not be precisely assessed.
One has at least to recall that establishing such a dependence implies the comparison
between the dynamic polarization response of the molecular electronic system to
the internal perturbation that results from the ionization process, and the static
polarization response of this system to an external electric field.

Model Systems and Methodology

In this contribution, the MBGF method is applied, using the second-order expan-
sion for the self-energy, to the isomeric series: 1,3-hexadiene, 1.4-hexadiene. 1,5-
hexadiene: and the related nearly isoelectronic cyclic molecules: 1,3-cyclohexadiene,
1.4-cyclohexadiene. The xPs spectra, for the linear molecules presented in this
series, are simulated by taking different conformers as model systems. The 1,3-
hexadiene will be taken in its trans-trans-trans (TTT) and cis-trans-trans (C"1T)
conformations. The 1.4-hexadiene molecule will be considered in its envelope ( E).
trans-cis-trans (icr). and trans-trans-trans (TT ) conformations. The 1.5-hexadiene
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molecule will be taken in its cis-trans-cis ((wC). cis-trans-trans (I I). Irans-trans-
trans (irr ), envelope (E), and trans-cis-trans (1 (Ci) conformations. The corre-
sponding molecular structures are presented in Figure 5, each compound in this
series being labeled using the alphabetical order a to/.

The calculations have been carried out using. at the ab iniln level, the GAUSSIAN
82 series of programs [ 31 , The requestea counvergence on the density matrix was
fixed to 10 " and the integral cutoff was fixed to 10 "' hartree. The use of the
extended 3-21G basis sets was imposed by the storage of the large number of
integrals needed for tile 1It-MB(iF2 calculations.

Assuming the planarity of the hydrogen and the carbon atoms involvedi i, the
vinyl groups, all the remaining geometrical parameters of the molecular -_ ,.cms
mentioned have been optimized (Table 1) at the s(T level. Among the linear systems
considered here. the most stable isomer is the conjugated 1,3-hexadiene molecule
[Figs. 5(a) and 5(b)]. Because of the increasing interruption of the conjugation
from the insertion of a methvlene. -- CH 2-. or ethylene. -- CH, .-... CH,
group in between the two double bonds, the next stable isomer is the 1,4-hexadiene
molecule [Figs. 5(c) to 5(e)1, and the most unstable the 1.5-hexadiene molecule
[Figs. 5(f) to 5(j)]. In each series of conformers. citing the different molecular
structures by order of increasing instability reflects decreasing direct (in the 1.3-
hexadiene series) or through-space (in the 1,4- and 1,5-hexadiene series) ir-inter-
actions resulting from the larger separation of the C-- C double bonds. In the 1.5-
hexadiene series, it is interesting to mention the strong destabilization of'the structure
with the rotation of the vinyl groups in an eclipsed conformation [Figs. 5(i) and
5(j)] with respect to the central single C3 -C, bond. At least, the conjugated 1.3-
cyclohexadicne compound presenting [Fig. 5(k)] a destabilizing butane-like frag-
ment in an eclipsed conformation. while the 1.4-cyclohcxadiene molecule allowing
a double ,r-methylenic conjugation between the double bonds. the large similarity
of the energies for the two isomers results from a delicate balance between steric
and conjugation etiects.

Photoionization intensities are computed using the Gelius model [32] for mo-
lecular cross sections. the relative atomic photoionization cross sections used for
('C., (C;. and i1,, being 100. 7.69. 0.00, respectively (in the valence region, core
atomic functions do not participate significantly). In the case oftthe spectra obtained
through a Green's function approach. the Gelius intensities are multiplied by the
pole strength I',. Simulated xis spectra are constructed from a superposition of
peaks centered at the Koopmans. or Mii(&2 values for electron binding energies.
The peak-shape is represented by a standard linear combination of one lorentzian
and one gaussian. both having the same height and width ( 1.5 eV ) over the energy
range considered, the peak-height being scaled according to the intensity previously
computed. The basis set dependence of the trends obtained by comparing the vari-
ation of relative photoionization intensities in the investigated series of molecules
have been tested performing the same calculations within the minimal basis set
S i(-3(G. Although the s i)-3G and 3-2 1G basis set can lead to rather diflerent
spectra. both basis sets proide qualitatively similar trends in the variation of the
sharpness and heights of peaks with the molecular structure.
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Figure 5, Selected molecular structures in the hexadiene and cyclohexadiene series of
compounds.
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T.xm t- I. Geometrical parameters ol the carbon backbone ftor the selecitd compounds.

Mlolccue .vnergp t.a. B (,ond len gths . Bond angles I ,rs,,in angles I I

a) 1,3-hexadcne I I I (I1- U2 1.3208 (I - (2 (3• 124261
F-RHII.. 2 ')L6•V31)L (- ('3 1.4661 ('2-- (3- ('4 123.884

(.' I ('4 1.3216 (3 " (, 4 C( 124.o46
('4 (' 15186 C4- ('5 (6 112.132

('5 (b' 1 5 541 6
H 1. 

3
-hesadiene4"|l ('1 C(1 132017 C1 (I 2 C 3 , 127.181

I W ilF -. -231.602638 ('2- ( 'I - I .4771 ('2 ('3 - C4 ,1 (26.696
CI -('4 1.3209 ('I 4-- (C 5 C 124.151
.'4 ( 1 .52013 (4 (5 (6 112.1XI

(5 ('6 - 1.541(
ci [.4-headn -- 2 1.314;4 (CI- (C2- (C3 124.782 C( C' (C3 C4 .120.876
IH Rill 2 -231.6943, ('2 -( 3 ISlA (J24-C (7' -C4 1 11.209 ( 2--('3 C('4 -( -- I 18.34s

C' (4 1.514- ( 3- C4 (5 - 124.681 C3(- (4 ('5 -(C6 - 180)8(i
(4 (5 1.3159 C'4 (-- ('6 124.718

(5- 6 1.54)98
di 1.4-hlsadicne I( ( CI -I V 3163 (C C (2 ('C I 123.561
SiRtit -231 685515 (C2 (3 15185 (C2-- CI" ('4 - 116.935

('C ('4 I 5*16 (C-I ('4 (5 128.537
(4 ( I 3161) ('4 (5--(6 - 123.412
('; (C6 1.5201

c) !.4-hecxahdcn I I I (I (' • .•156 (1 (2 - (3 124.492
(iR|I IF 21M 605234 (2 t' - I 5217 ('2 ('. C4 1 132911

( ; ('4 1 5223 (' 3 ('4 - 5 1 24.448

(4 C ( .61. C1 4 C( ('6 124.2019
(6 (5( _ 98

1( ) .-hexadieic(I( (1 ('2 • 1.116; ('1 -- ('2 ('3 127.1417
F (R|i :f 231 6x90-1 (2 C3 1.5141 (2 ( 3 -(4 4 14(787

(3 (4 1.5347

g) 1.5-he\adheneC I (I C2 1.3165 CI (' C3 126.789
FtRit| . 231.687314 (2 -(C3 1.5126 (2- Cl (C4 I 115.141

(3 --- (C4 1.5317 C ; ('4 C5 I11.) (0
(4.- C5 1 5208 C4 - (6SC• - 124.5hO
C5.( (6 1.3159

h) I .S-hexadicnc IF-r CI - (2 1.3160 CI C (3 124612
tRIB . 231.68539;6 (C2--(C 1.5194 C2 ( 4 112.364

(3 (4 1.5428
Ii !.5-hcxadtcnc f C (I ('2 1.3157 CI -- ('2 N ( ( (2 (244(3 ('1-2-'3--C4 115.743

1 R-ll 1 211682995 (2 (C3 1.5102 (2 (3 --('4 (14.729 ('2 (C3--C4-"('5 - 1(0.01)
(3 ('4 1.767

j) 1.5-hcxadiene I(C ( I ( (. 369 (1 C( 3 (123 1166

FiRHlF: - 211.6284 2 4 3 1.5225 (2 C(3 (4 1I1 1694
( 3 (4 1 ý718

k1 I. ;-cwleahcadihcnc C - (2 I 311"

-R : 2 10.5 1 ,6- ( (3 14714 (C (I (3 121.504
(- 1 , I 161 (3 ('4 ('5 123.391

(, 1.5648 ('4 (5 Ch I15.1It7

h 14}cclohcsadwnc ( I C (' 3158 'CI (C2 C3 123.785
(RI(i - 2130 i4382 (C2 ( 3 Il10 (C2 (3 (4 1 112.431

Again because of computing constraints, the MBGF2 calculations achieved within
the extended 3-21G basis set have been performed at the quasi-particle (QP) level
of approximation. Only the main ionization processes have been considered. The
second-order self-energy expansion is known to be quantitatively deficient. and no
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more than a qualitative simulation of the xps spectra can be expected from these
calculations. However, as this approximation provides a simple but rather complete
description of the physics involved in the main ionization process, one should be
confident in the conclusions that can be drawn from our simulations.

Molecular Structure Dependence of the One-Particle and MNany-Body Features in
the Ionization Spectra

The photoelectron spectra of t'ie selected compounds, in the series of the hex-
adiene (and cyclohexadiene) molecules. are displayed, using the same labeling order,
at the Koopmans and NABGF2/QP levels of approximation. together with the cor-
responding MBGF2/QP poles presented as spike spectra, from Figures 6(a) to 6(t).
They all reflect the classification of the valence molecular orbitals of a C,H2,,
(C"H2,, 4) molecule into n molecular orbitals of(C,, + H ,) character in the inner
valence region. and 2n - I (2n - 2) molecular orbitals of(C:,1 + Hl,) character
in the outer valence region. Considering the very different C , , and C,,, photoelectric
atomic cross section, the relative intensities from the inner and outer valence region
do not reflect directly their corresponding electronic population. Because of the
low xps photoionization cross sections of outer molecular orbitals, the most specific
information on the molecular structure is likelv to be obtained from the inner-
valence region.

The simulated spectra differ significantly from one system to another, confirming

the earlier proposition that the valence region of the xps valence spectra can be
usefully analyzed in terms of primary and secondary molecular structures. As there
are many factors ( cyclization, isomerization, conformation ) leading to such dissim-
ilarity. this observation calls for more systematic and detailed investigation.

C•clization

Most of the simulated spectra for the open linear hexadiene molecules considered
here [Figs. 6(a) to 6(j)] show the characteristic accumulation of one-particle levels
in pairs at the edges of the inner-valence regions, these unresolved pairs of levels
resulting in the extremely sharp and broad peaks bordering the C,, valence bands.
In the outer valence region, the electron levels are so densely packed that a precise
assignment of peaks in terms of molecular orbital levels is not possible in an ex-
perimental spectrum. Considering the overall energy distribution of the electronic
states, the inner-valence spectra simulated at the Koopmans level of approximation
are qualitatively similar to the corresponding spectrum of the n-hexane molecule
1331. the most striking difference coming from the gap between the C,, and C21,
valence bands, and the shape of the C2,, valence band.

The inner-valence electron levels are better resolved [ Figs. 6(k) and 6(1)] in the
case of the cyclohexadiene molecules. The electron levels are either nearly degen-
erate, or separated by rather large and similar energy intervals, these structures
being characteristic of medium sized highly symmetric cyclic molecules. In the
outer valence region also, the electron levels fall into well-resolved structures. Con-
sidering again qualitatively the overall distribution of electron levels, the cyclic



molecules considered here pro'.ide spec!rzi closel'. related to thle corresponding
spectra of the exciohexanc molecule in condensed phase [ 341.

To compare the iSOmnerilation fingerprit Iin thle xi's spectra ot' the open 1.3-
hexadiene, .,4-hexadlene, and I `,-he\,adicnc molecule series. \'xc consider each of'
these molecules taken Iin its more spatial[\. extended I t cont'Ormation. [ heir cor-
responding spectra [rCspCCL'.elv. Figs. N(a)1 0( c). and 6i( hi showN slight cliflkrenccs
in the gap bet'.xeen thle C ', '\and C..' regions. Iin the ioniiat ion ener&gý of the highest
(-r ) molecular orbital, and the cnergý splitting off he txo -,outermost Ic'el. cR11hese
quantities decrease as the conjugation between the C C double bonds 'is pro-
gressivel, interbu pted b\ the insertion of meth\ lenic and eth\ lenic spacers. In re-
lationship to the large x ariation in thle amplitude of ff-conjugation or through-space
interactions, the most strikine, efllct o:' the isomeri/at ion is obscr'.ed In thle outer
valence spect:ra. On the other hand, thle carbon backbone and the general bondinrg

or antibonding pattern of' thle molecular orbitals of' (C: + Ill,) character being
almost Unchanged. onix slight but continuous variations are observed Iin the inner
valence region Mhen comparing. ait thle Koopmans level of' approximation. tile
spectra or the 1.3-: 1.4-. and 1.5-i 1 -.1exadiene isomers.

Thie spectra obtained at this lexel of approximation flor th2, 1.3- and I .4-eveclo-
hcxudione molecules also only displa\ slight kariations in the rela:tive positions (it
peaks and photoionization Intensities Iin the inner v alence region, because of' the
large r-esolution of' the ('-, III- levels, and almost because the general topolog\ of'
tile carbon backbone remains also nearl\ unchanged. ,\s In the ease of'the linear
hexadiene mole1cules. thle ionization energ,\ of' the highest ( ,T molecular orbital
and the energy splitting bet'.xeen thle I7-, lels decrease strongly %%'ith thle loss of*
COniUgat1ion between thle double bonds. leading to a more signific.-nt change in thle
shape of the outer valence band. In a I- is spectra. bec~ause of the enhancement of'
the photoioniization cross sections inl thle outer valence region. the effiects of isom-
eri/ation on the 7, levels \xxould lead to much more striking fleatures than in our
simulated \IPs spectra.

Gjoing hewond thle Koopmans approximation. the Niiit; 2 /ot' calculations show'.
considerable diflrences betwýeen the spectra fromn one Isomer to another with the
introduction of thle man'. -body ellects in the descr-iption of the ioni/ation process.
Both NmI( ,t 2 spectra slio'.% an imnportant contraction of the energx scale compared
to thle tIII reCsults, thle relaxation effects bei ng exacerbated as long ats '.'.e move f'rom
the top to the bot torn of the alence bands [ 3 51. The ouItermost 7, levelis are alketed
during the ionliation [ix much more wkeaker many-body, elffets than the alev.els.
Ini con nection xx itli thle i ncreajsi ng relaxation eflects. we obser'.e ( Table 111 a de-
Creasing pole strength and henice \alidi-t\ ot' the molecular orbital picture Ill thle
region of thle larger electron binding energies, We observe a much stronger breakh-
dov'.'. of the mlolecular orbital picture in the inner \.alence spectra of' thle f'ull'.
Conjuigatedl dien~iC moleculesf [jFgs. 6 (a, 61 b)t. and 61 k ) 1. thle miagnitudeI Of thr'
brezýkdWmn dccrcanLe [Table 111 in the spectra corresponding. to nleth\ enie: and
then cth'.CI len ic' OU ors, as expected From thle loss of' 'internal'' polari,abilht' .x it h
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TABIF 11. Manw, !-:.ds features in the inner %alence spectra oft he selected unsaturated hydrocarons.

Molecule/
pKilarizability (a.u.) 1IO IP(HF)-(eV) IP(GF2I-(eV') AlP (eV) V,

a) 1.3-hexadiene TTT 1 29.975 26.212 3.742 0,194
49.61 2 28.574 25.075 3.499 0.301

3 26.754 23.370 .3.384 0832
4 23.477 20,615 -2.862 0.857
5 21.287 18.597 -2.690 0.865

6 20.517 17,962 --2.555 0.964

b) 1,3-hexadiene CTT I 29.924 25.796 -.4.128 0,489
47.78 2 28.497 24.474 --4.023 0.179

3 26.622 23.342 -3,280 0.845
4 23,523 20.618 -2.905 0.856
5 21.917 19.250 - 2.666 0.869
6 19.729 17.248 -2.480 0.870

c) 1.4-hexadiene E I 29.902 25.914 -3.989 0.772
47.33 2 28.582 24.946 --3.636 0.533

3 26.415 23.097 -3.318 0.828
4 24.171 21.275 --2.896 0.866

5 20.631 18.202 -2.429 0,876
6 20.435 17,921 --2.514 0.872

d) 1.4-hexadiene TCT 1 29.864 25.842 -4.022 0.670
46.34 2 28.533 24.911 -3.623 0,813

3 26.422 23.135 -3.287 0.838
4 24.177 21.351 -2.823 0.871

5 21.284 18.670 --2.614 0.868
6 19.734 17.363 -2.371 0.878

0) 1.4-hexadiene TTT I 29.826 25,79(1 -4.026 0.640
(1 45.95 2 28.594 24.962 -3.633 0.805

3 26.388 23.119 -3.269 0.835
4 24.145 21.302 --2.084 0.870

5 20.794 18.359 -2.436 0.876
6 20.260 17.770 2.4901 0,874

f) 1.5-hexadiene CTC 1 29.966 29.061 3.905 0,797
46.96 2 28.586 24.990 3.596 0.828

3 26.423 23.172 -1.3.251 0,851
4 24.178 21.166 --3-012 0.860
5 20.871 18.371 --2.5(X) 0.874
6 19.718 19.473 -2.245 0.887

g) 1.5-hexadiene ('i 1 29.921 26.(X)7 --3.914 01.789
- 46,53 2 28.620 25.1(27 -3.593 10.821

3 26.556 23.289 .- 3.267 0.850
4 23.832 20.867 02.965 0.861
5 21.728 18.304 2.424 o,877
6 20.243 17.886 - 2.356 (.881

h) 1,5-hexadiene TT. I 29.867 25.946 -3.922 0.777
- 46.1)7 2 28.658 25.065 3,592 01.815

3 26,681 23.4001 --3.281 0.848
4 23.414 20.500 2.914 O,863

5 20.974 18.569 2.405 0.880
6 20.372 17.995 -2.377 0.878
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F -,t41 11. I ota/nu d)

Mlolecule!

polarizahilit (a.u. NI() IIPI(II F cVl I1F1 2)-1CVY 2lP )(CV I"

i 1.-hc,,adicn. 1' I 29.794 25.851, 3.944 (.79

, 46.87 2 28.522 25.212 3310 0 799
3 26.498 23.2 12 3,285 0.843
4 23.603 24.636 2. 6t7 0.860
5 21.075 185542 2524 O.S74
6 14.967 17.647 2.3 It) I488 1

j) 1,5-hexadiene MCY 1 29.,744 25.853 3 891 0.799
S 45.5 2 28.647 25.0132 3.614 44.813

3 26.614 23 364 3.250 O. 848
4 23.515 210.612 2.903 0.862
5 21.283 IS 739 2.544 (0.872
6 201.0938 I 3.699 20338 ).980

k) I .3-cclohemadiene 1 30.616 26.3A1 1 4.315 (1.664
a -45.87 2 27.,606 23.815 3.791 0.763

3 27.341 23.561 3.780 (U.615
4 23.290 20.242 3.048 11,846
5 21.8415 18.741 3.064 0.851
6 1 S. 786 16.339 2.447 (0.869

I) 1.4-cclohcadiene I 30.681 26.477 4.204 ).5201
0 45.X4 2 27.681 24.012 31670 0.830

3 27.322 23,5ý75 q -3.748 0.825
4 23.715 20.678 - 3.037 0.856
5 21.30(6 18.376 --2,930 0.859
6 18,746 16.367 -2.379 (0.874

the increasing interruption of the 7r-conjugation. For the 1.3-hexadiene molecule
in its more stable conformation, the bre, kdown of the molecular orbital picture
[Fig. 6 ( a ) ] for the ionization process of the first two molecular orbitals is virtually
complete. a result that recently has been confirmed by an experimental investigation
on the closely related butadiene system [36 1. For such systems, a very large fraction
of( the main photoioniization intensity is dispersed to a rich satellite structure of
shake-up lines, rendering delicate the interpretation of their xps spectra.

( C hnfrmatiu

Because of large variations in the amplitude of interactions between the conjugated
double bonds., considerable differences are induced by conformational changes both
in the inner and the outer regions of the xps spectra simulated [Figs. 6(a), 6(b)]
for the selected forms (viT. (-TT ) in the 1.3-hexadiene series. In the inner valence
region. the two highest occupied molecular orbitals, exhibiting four and five nodes
along the carbon backbone, are strongly stabilized or destabilized with the en-
hancement oli respectively, the bonding or antibonding contributions in the CTT
form. The resulting splitting of the correspo . ing energy levels at the low energy
edge of the C, valence band lead to the largest variation observed in the convoluted
relative photoionization intensities. Moreover. at the MBGF2/QP level of approx-
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imation, a weaker (but still heavy) breakdown of the molecular orbital picture in
the bottom of the inner valence band is predicted (Table 1!) for the ('Tr conformer.
This can indirectly be related to a small but significant reduction of the molecular
electric polarizability with the cis-orientation of the double bonds. The variation
in the amplitude of the many-body effects leads to observable variations at the high
energy edge of the C2, band.

As we run along the series of the 1,4-hexadiene conformers [Figs. 6(c) to 6(e)].
systems which provide strong methylenic and through-space ir-interactions between
the double C I-C_, and C4-Cf bonds, significant variations are also observed
both in the inner and outer valence regions. The spectra simulated [Figs. 6(c),
6(e)] for the E and nTT conformers are very similar. reflecting a large resemblance
in the molecular structures. Indeed, from the point of view of intramolecular in-
teractions, the E conformer differs essentially from the TTT conformer only by a
gauche instead of anti orientation of the substituents with respect to the C2- C3,
and C3 -C 4 single bonds. Considering [Fig. 6(d)] the spectrum obtained for the
TCT conformer, the most obvious variation also comes from the peak at the low
energy edge of the CQ, band. The energy separation between the two electron levels
from which this peak results through convolution increases strongly, reflecting large
variations in the bonding or antibonding pattern for the molecular orbitals of (C,, +
H .) character resulting from the c is-orientation of C2 and C, with respect to the
C 3 -C 4 central single bond. In these series, significant variations in the magnitude
of the many-body effects are also observed from one conformer to another. Our
calculations show important many-body effects in the form of a strong breakdown
of the orbital picture at the bottom of the inner valence band. the importance of
this breakdown decreasing again with the methylenic conjugation and the 7r-inter-
actions of the C 2 C double bonds from the E to the TC and then the TT conformers.

On the other hand, the vinyl groups interact much more weakly in the 1,5-
hexadiene series of conformers, and significant variations can only be observed in
the shape of the inner valence spectra. Considering the contormers (C.R., CIT, Tir )
which provide an anti orientation for the vinyl substituents with respect to the
central C3-- C4 single bond. slight but continuous variations can be observed [ Figs.
6(f), 6(g), and 6(h)] in their inner valence spectra. With the E. and icr conformers.
once again, the most striking variation [Fig. 6(i). 6(j)] comes from the bordering
peak at the low energy side of the C2, region. and the splitting of the electron levels
from which it results is reflecting the severe destabilization of the molecular system
with the rotation of the vinyl substituents in an eclipsed orientation with respect
to the central C( C4 single bond. Despite the influence of the two extreme 'inyl
groups, leading to rather important many-body eflfcts on the ionization potential
and a small breakdown of the molecular orbital picture throughout the inner valence
energy range. the Koopmans and MIit-2 spectra are qualitatively similar.

Polarizahilitv Depencidnce If he Alany-Boldy Ieatukire in the Inner 1 al'ne
Ion izal tin S.pekra

In recent articles [29.30] we have pointed out a dependence of the relaxation
and correlation contributions on the ionization potential with the si/e ofoligomeric
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systems or the delocalization of molecular orbital. both factors influencing also tile
electric polarizability.

The heavy breakdown of the molecular orbital picture predicted in tile inner
valence ionization spectra of large conjugated molecules can be explained in terms
of a low molecular svmmetry group and the presence of a high density of excited
configurations in the low energy region. The observed trends reflect the analogy
between the mechanisms underlying the internal response of the molecular sstem
to the ionization of one of its electrons, and to the response to an external electric
field: small excitation energies to a large number of states favor both strong final
dynamic correlation etffects on the ionization process and large molecular electron
polarizabililies. From such considerations, it is interesting to attempt to establish
a correlation (Fig. 7) between the fraction of photoioni'.ation intensity dispersed
from the main inner valence lines to satellite structures with the static spatially
averaged polarizability obtained from a sos calculation, Despite the variations in
the volume and shape of the molecular electron cloud, despite the changes in the
relative orientation of bonds, the observed trend in this figure is a consistent en-
hancement of the probability to observe shake-up lines with the polarizabilit\ of
the most conjugated 1.3-: and I.4-hexadiene molecular systems. In the 1.5-hexadiene
series, on the other hand, these average probabilities do not provide such a variation
with the molecular polarizability, a result that can be explained if we assume the
additi\ it\ of the dL namnic internal polarization effects due to the most polarizable
double bonds interacting weakly, such an additivity for the static polarizability to
an cxternal field being complicated by diffirrence in relative bonding orientation.

(onclusions and Outlook for the Future
1hC qualit% of the molecular orbital picture for tile ionization process has been

1n to decrease strongl\ with the degree of r-conjugation in unsaturated hydro-
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carbons, in indirect relationship with the molecular polarizability, making the in-
terpretation of the XPS spectra of highly conjugated compounds difficult. To obtain
reliable information on structural questions from the ionization spectra, the inclu-
sion of relaxation and correlation contributions is important to describe, even at a
qualitative level, the effects resulting from variations in the primary and secondary
molecular structure.

In the particular case of the hexadiene series of conformers and isomers considered
here, the most specific information on the molecular conformation can be obtained
from the inner valence region. Changes induced by isomerization in the outer
valence spectra obtained with Koopmans and second order MBGF calculations are
quite comparable. However, important differences arise between the two levels of
description of the relative photoionization intensities in the inner valence region,
stressing the need for many-body effects to interpret that region of the xPs spectra.

To obtain more reliable and quantitative simulations, Green's function calcu-
lations have to be achieved going beyond the quasi-particle approach and using a
more sophisticated scheme for the expansion of the self-energy, such as the two-
particle-hole Tamm-Dankoff-Approximation. This should result in an enhance-
ment of the trends observed in the many-body features occurring in the spectra of
the compounds considered. Photoionization cross sections should also be computed
by means of a nonparametric approach, and larger basis sets should be considered.
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Abstract

Diagrammatic and Coupled Cluster techniques are used to develop an approach to the single-particle
Green's function G which concentrates on C directly rather thait nrst approximating the irreducible self-
energy ard then solving Dyson's equation. As a consequence the ionization and attachment parts of the
Green's function satistv completely decoupled sets of equations, The proposed Coupled Cluster Green's
Function method (CCGF) is intimately connected to both Coupled Cluster Linear Response Theory
(CCLRT) and the Normal Coupled Cluster Method (NCCM). These relations are discussed in detail.
'c 1992 John Wile5 & Sons. Inc.

Introduction

The single-particle Green's function is a powerful tool to calculate ionization
and electron attachment spectra of molecular and atomic systems [ 1-91. Vertical
ionization potentials and electron affinities derive from the pole positions of the
frequency dependent single-particle Green's function, while the spectral intensities
are related to the corresponding residues. In the field of quantum chemistry various
approaches, such as those based on Dyson's equation [1-4]. the superoperator
resolvent [5,8] or equation of motion techniques [9]. exist to approximate the
single-particle Green's function. If perturbation theory is used to arrive at the detailed
form of the working equations these methods are all closely related or equivalent
[6,7 1. The methods based on Dyson's equation employ an irreducible self-energy
X(w) that can be represented by a series of perturbation diagrams. The single-
particle Green's function, G(w), is then obtained from Dyson's equation

G(w) = Go(ce) + Go)(w)'o(w)G(w) = Go(w) + Gn(w)ŽNw)Gn(w)

+ Go(w)'(w)Go(w)1(wc)Go(w) + - - "

By solving Dyson's equation using some diagrammatic approximation to the ir-
reducible self-energy one implicitly performs a partial infinite summation of per-
turbation diagrams contributing to G(w).

In order to obtain acceptable results approximations have to be used that preserve
the analytical structure of the irreducible self-energy. The ce-dependent part of the
irreducible self-energy has a spectral representation that is given as a sum over
simple poles [41. These poles lie partly in the ionization part of the spectrum and

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 55-83 ('1992)
. 1992 John Wiley & Sons. Inc. CC( 0020-760)/92/0119)55-29
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partly in the attachment part. Because of the desired structure of the approximate
irreducible self-energy one cannot emplo\ a simple order by order perturbation
expansion of the irreducible self-energ. beyond second order. In higher order ap-
proximation schemes (2ph-iDA [12 1. AIX [41) the irreducible sell-energy is therefore
defined by a partial infinite series of diagrams. In such schemes there is one equation
that determines the ionization part of . and one equation for the attachment part.
These equations are completely decoupled and by solving them one is implicitly
summing a partial infinite series of diagrams that -ontribut( to the respective parts
of the irreducible self-energy. Both parts of the irreoacible self-energy are essential
for an adequate description of ionization and electron attachment processes. The
coupling between the two parts of 7 is achieved through Dyson's equation that
subsequently has to be sulvcd to obtain the single-particle Green's function. This
way both ionization potentials and electron affinities are obtained from a single
equation and this may be considered the main characteristic of current Green's
function methods as applied to calculate quantities of spectroscopic interest.

Because of the similarity of the diagrammatic perturbation series for G and X
the question arises if one could not define separate equations for the ionization and
the attachment part of G directly instead of I and skip Dyson's equation altogether.
Such a scheme can only be useful if both parts of the irreducible self-energy are
present in either resulting part of G. This is the starting point for the present in-
vestigation.

To arrive at decoupled equations for the respective parts of the single particle
Green's function we start from the connected diagram perturbation series for G(wc).
The decoupling of the ionization from the attachment part of G(w) is trivially
achieved by considering only those time-ordered diagrams in which the (external)
annihilation operator acts before the creation operator. The corresponding frequency
dependent diagrams constitute the perturbation series for the ionization part of
Gfco). Analyzing this perturbation series and taking it apart we identify a number
of w-dependent connected excitation operators and define them in terms of their
diagrammatic perturbation series. Then, using essentially the techniques of Coupled
Cluster theory [10-15], diagrammatic equations are presented that define these
operators in a recursive way. In the final step the diagrammatic perturbation series
that determines G (w) is reconstructed in terms of the w-dependent cluster operators.
The d .,rammatic approach advocated here is potentially exact. Approximations
are introduced by neglecting connected excitation operators from a certain excitation
level onwards. The truncv -4 diagrammatic equations then determine a partial
infinite set of perturbation diagrams, which defines the approximation to the single-
particle Green's function.

Having established the diarammatics of the Coupled Cluste, Green's function
(('GF:) approach we proceed to translate the diagrammatic equations into algebra.
From the algebraic equations it will transpire that the ('(-Vapproach is intrinsically
related to Coupled Cluster Linear Response Theory, ('C[,R1. [1 6-23]. also known
as (-( equation of motion, U-tOM [18.2021]. (CIRT in turn has been shown to
be related to the Fock Space Multi-Refcrence Coupled Cluster method [24-16] or
open shell cc [24,25 ] which presently is under strong development [27-30]. The
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(I''Rr equations for the principal Ionization potentials and electron atlinmtics can

be shown to be equivalent to tilhe equations that derive from the one-\ alence sectors

of Fock Space M0R-('(' [ 31,3212X ].
The diagrammatic Green's function approach presented here provides an alter-

native derivation, ot 'he -Ct R I equations and elucidates the intimate relation be-
twveen Green's functions and Linear Response in the context of Coupled (luster
theory. An advantage of the present presentation is that the derivation tollows ýerv

natural lines once the perturbative diagrammatic content of the w-dependent con-
nected excitation operators is estabushed. In a previous derivation of( ( I R I choices

that were made in tile process were mentioned explicitly (20.2 1 I. Also the connection
with Green's function methods remains clear due to the diagrammatic point of

view. On the other hand algebraic methods show clearly how\ the equations can he
cast in a tractable computational scheme and allow an casN interpretation of the

equations. For this latter purpose the equation ofn motion derivation of ((I R I
[ 18.20.211 is particularly useful. We witl consider tile I M derivation and elaborate
on these equations in relation to (,('(i: in order to arrive at equations for Fev nman-
Dyson transition amplitudes and consequentl. ground-state properties that deri~e
from the Coupled ('luster Green's function. At this point contact is made with the
Normal Coupled Cluster Method ' N(('). (33.341 which allows evaluation of
ground-state expectation values in a (v framewyork. The (- ((it can then he regarded

as the Fourier transform of a time-dependent expectation value within the St

formalism.

The Single-Particle Green's F-unction

We assume a finite dimensional Fock space, that is defined through a suitable

set of orthonormal spin orbitals and if we refer to *'exact" results this applies to the
finite vector space considered. The system of interest consists ofa number of pos-
itiwe!y charged nuclei at fixed positions. and A' elcctrons. The Fock space liamil-

tonian is given by

111: I • •' ;; ~ , • " !1•,,ltlI •(I )

I" % is the nuclear repulsion term. h,, denotes the sum of the matrix elements of

the kinetic energy and nuclear attraction operators. while IV,,. are tw.o electron
integrals in "1212"' notation, at, and t,; are creation and annihilation operators
with respect to the one-particle basis functions.

The single-particle Green'Y function (or matrix ) is defined by (1.351

6", ),( t ) (2)

I-ej e i'' 1, is the exact. normalized groundstate of the \'-particle s\stem under

consideration. , 1,). c;,(I') denote annihilation and creation operators in the I lei-

senhcrg picture and TI ' • • ; is the Wick time-ordering operator, The components
of the frequency dependent single-particle Green's function.
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G(,e) f df l -- t')c'd `G(f, t') . (3)

expressed in their spectral representation read

(,A,(• . 'A4 , * ,

"(4)

where we suppressed the usual convergence factors ±hi, which are unimportant in
this work. Vertical ionization energies and electron affinities are derived from the
pole-positions of G(cc), while the Feynman-Dyson transition amplitudes

ql,ý'•• tij I l,,'I. and so forth can be obtained from the corresponding residues.
The single-particle Green's function also contains detailed information concerning
the groundstate. Both the one-particle reduced density matrix and the total ground-
state energy can be obtained by taking appropriate contour integrals that enclose
the ionization potentials [35].

To arrive at a perturbation expansion for the single-particle Green's function,
the Hamiltonian is partitioned as

1I = 1h, + "

fA + P V e dA*(a ), with 1, (1I), 1'1i)I

f" . • I,,•,• •a~a~uN,)(5)

where we assume a representation in canonical Hartree-Fock orbitals. The operators
we use are always written in normal order with respect to 14'. the Hartree-Fock
determinant. The use of Hartree-Fock orbitals ensures that the one particle per-
turbation in normal order vanishes identically, and this reduces considerably the
number of perturbative contributions (diagrams) that have to be taken into account.

The perturbation expansion of the single-particle Green's function is treated in
many textbooks. (for example. Ref. [35]). and the result can concisely be written
as

6,,U,,,- I L'( ., (6)

which after invoking the Linked Cluster Theorem reads

G,.,z. 4)"=( I,! 1',51~ ~ ~ vt) ' • . - . (Po I'),,C,,,,,.•,,, (7)

All operators are now given in the interaction representation. The perturbation
exp~ansion ot'G; ' •., ,.-,..I -.,ilie perturbation expansion of the evolution operator.
expressed formally as
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(1.') I )/ 0

Equation ( 7 1 is represented diagrammaticall\ bh the sun )mer all ]pologicall.
distinct. closed, connected diagrams. that besides interactions ( represented h\ wigl\
lines) contain two external points labeled p and q. We represent these external
points b\ crosses connected by a dashed line that runs from p to q. I \ pical examnples
of contributing diagrams are given in lFigure 1. Each nith order Fe~. nman diagram
(containing it interactions) gives rise to (ii + 2 )! different time-orderings or (old-
stone diagrams [361. Time runs upwards in these diagrams. The diagrams can be
divided in two distinct classes, according to the time ordering of the external points.
Ift > i then ,;( ') acts bel.re ',P( ) and the diagram contributes to the attachment
part of G,<J 1. "). The dashed line points dow nwards. If 1 < t' then de() acts first
and the diagram contributes to the ionization part. These diagrams are characterized
by a dashed line that points upwards. This partitioning of diagrams remains valid
if'the internal time integrations and the Fourier transform of'G(,,,/. I') are perlformed.
It follows that the ionization part of (iG,,(,:) is given by the sum over all time-
ordered diagrams where the dashed line points upwards.

The diagrams are evaluated according to the usual rules. as given for example
in Cederbaum and Domcke [ 11. With regard to this article the most important rule
concerns the energy denominators: With each let el ( between each two interactions.
betwxeen an interaction and an external point. etc.) there is associated an energy
denominator which reads

e, :tw(

Ihe sum over i runs over all hole-lines (directed downwards). that are present at
this level. The sum over a runs likewise ovcr all particle lines (directed upwards).
The w-contribution is present if the dashed (or w- ) line cuts the level considered,
entering with a minus sign if' the line points upward, with a plus sign otherwise.
Another important rule says that a minus sign should be added for each hole-line.
and for each closed loop in the diagram. In this connection it should be mentioned
that the dashed c-line is not treated as a real line in the algebraic evaluation of

I tlure 1. F'lturl-vii i i agram,, that c onirihu ' oi , i .t.,,(w). :.E ) 1 ,I cond-order conribution

wt o an'i' ati-hincnr iprt )I'(;: th fttith-orcr contribution t,i ihc ionvalion part.
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these diagrams in the sense that it cannot make a loop closed. it does not contribute
to the number of hole lines. nor does it influence the degree of connectedness of a
diagram. The dashed line is merel\ a help to the e.e to facilitate the evaluation of
the diagram. in particular the w-dependence of the denominators. We will see shortl\,
ho,,'vcr, t-iat the dashed line plays a crucial role in this work.

Derivation of the Coupled (luster Approach
to the Single-Particle Green's Function

('C!tcr l-.paU.n of Mihe Sinh/'-tPartich (rceen F !+unction

Diagranimatics. From now on we restrict ourselves to the ionization part of the
single-particle Green's function. ,that is represented by those perturbation
diagrams contributing to G(w) in which the w-line points upwards. The derivation
for the attachment part would be completely analogous. Let us first sketch briefly
what we intend to do. To analyze the diagram series that determines G(w) we
consider an arbitrary diagram and cut off a number of iJs top levels (interactions
or external points). What remains is a diagram that has flee. open lines emerging
at the top. Such a diagram corresponds to an operator [ 10-14 1. Different types of
operators will be distinguished. depending on the presence and the position of the
dashed w-line and each operator is defined as the sum over all perturbation diagrams
of a particular form. As in Coupled Cluster theor.' all operators we use consist of
connected diagrams only.

In the next step we show how one can write down diagrammatic equations that
determine the newly defined operators in terms of these very operators, that is,
recursively. Iterating these equations generates the complete diagrammatic pertur-
bation series for each operator. The single-particle Green's function is written in
terms of these operators, analogous to the correlation energy in Coupled Cluster
theory.

In this section the identifications we make are purely diagrammatical and we
will not give a physical interpretation of the associated operators. In the following
sections the resulting diagrammatics is translated into algebra. which is discussed
in detail subsequently and the connections with CCLRT and NCCM are made,

To arrive at the desired operators we proceed as follows. Take an arbitrary diagram
contributing to G(w) and mentally cut it across a horizontal line between two
successive vertices. Now consider only the part (diagram) below the horizontal cut.
This part consists in general of a number of mutually disconnected parts, which
are internally connected. open from above (there are free lines emerging at the top
of each" disconnected part). and closed from below (there are no free lines at the
bottom of the disconnected parts). Of course the part of the diagram below the
h. pothetical horizontal may also consist of only one connected part.

A few remarks on nomenclature are appropriate here (Cf, Lindgren [I I]). A
disconnected (internally connected ) part is just one piece in the diagram. Free lines
only occur at the top of a diagram (due to our stripping off the top part of the
diagram) and they correspond to creation or annihilation operators, that generate
excitations out of the reference state 14,,. Free lines directed downward and going
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Figure 2. Diagrammatic representation ofl -independent connected (Coupled (luster)
operators 1'.

into the diagram create a hole in IPo) (operator d,). free lines directed upward
and leaving the diagram create a particle (operator dJ. Here and in the sequel we
will refer to holes through the labels ij, k. to particles with a, h, c ..... while
p, q, r, s are used for arbitrary spin orbitals. Lines that are not free but run from
one vertex to another are called internal. The term open means that the diagram
contains free lines and corresponds to an operator (of particle-rank higher than
zero). A closed diagram is a diagram without free lines and corresponds to a constant.
G(w). the quantity of interest consists of closed diagrams only. We note that the
external points, represented by crosses, and indicating the particular matrix-element
of G(w) that is involved, are not free lines associated with an operator.

Now let us classify the disconnected parts that are obtained by applying the
hypothetical horizontal cut. A disconnected part may or may not contain the dashed
w-line. If it does not contain the dashed line it has diagramatically the same form
as a contribution to a connected cluster operator familiar from the Coupled Cluster
formalism. These are the first type of building blocks. The cluster operators are
given by the sum over all possible, topologically distinct connected diagrams with
one ( T), two (T2). and so forth, pairs of free lines emerging at the top of the
diagram, where each pair consists of a particle and a hole line 110-14]. Diagram-
matically the various I-operators are given in Figure 2. where the rectangular boxes
symbolize a sum over all possible connected "'paths" leading to the free lines as
indicated.

The second possibility is that the disconnected part does contain the dashed line.
Here we distinguish two subcases.

(a) The w-line emerges at the top of the disconnected part. At this point one of
the external indices of G,,(w) is specified (p if the w-line runs upwards). The diagram
is a contribution to a new type of operator, denoted as ,rP)(w). Analogous to the
T-operators we have StjP"(w), S'f'(w), and so forth, symbolized by a box with 1,
2, and so forth, pairs of lines emerging at the top, where one of the pairs contains
the dashed line (see Fig. 3). These diagrams correspond to It, 2hp. and so forth.

Figure I Diagrammatic representation of w-dependent connected operators .(wt.

that generate ( A, ) particle states when operating on T , . he dashed line is external.
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Figure 4. Diagrammatic representation of w-dependent connected operators K''(W).
The dashed line is internal.

ionization/excitation operators assuming that the w-line is directed upwards. The
box symbolizes again the sum over all connected perturbation diagrams leading to
the emergence of the free lines as indicated.

(b) The w-line is an internal line. At this point both external points (i.e., the
matrix element considered) of G,,w(w) are specified and we denote the associated
operator as/f (R'q1(w), distinguishing single. double. and so forth, excitation oper-
ators. The corresponding diagrams are given in Figure 4. The box symbolizes the
sum over all "connected" perturbation diagrams with an internal W*-line. with free
lines at the top of the diagram as indicated. (The term connected has a slightly
different meaning here as will be explained below).

A general diagram contributing to Gq(cw) is given in Figure 5. By successively
drawing hypothetical horizontal lines between interactions one obtains mutually
disconnected parts that are internally connected and which are all of one of the
above forms t, ,¢"'(w). or/R(P')((). It will be clear that any disconnected part
constructed in the above way can always be classified as a contribution to one and
only one of the above operators. In Figure 5 it is also illustrated how both the
ionization and the attachment part of the irreducible self-energy enter the ionization
part of G which is known to be essential for an adequate description of ionization
processes. The diagram in Figure 5 is reducible as it falls apart if one cuts the line
that is present at the level of the single S9(lp (w) operator. The part below this cut
contains a fourth-order contribution to the ionization part of 1. while in the part
above the S"'>(w) level one identifies a third-order contribution to the attachment

---. ----.-. ---------------.\.. ... ...... .'•"¢•~

S... ... ... .... ... . .. ....................... . •/ ," e

S.. ... ......... . . ... + . . . .. . .. . . ,

Figure 5. A general (seenth-ordcr diagram contributing to G,,( ). 1t)ypothetical hor-

i/ontal lines are draA n. and the parts Wxlow these horizontal cuts arc identified as contri-

butions to operators 71. N'q •. or R''I •) of definite excitation lcvel.



COUPLED (LUSTER APPROACtH 63

Figure 6. First-order contribution .o , We define this diagram to be connected.

treating the dashed line as an ordinar\ line in this respect.

part of 1. The attachment part of 2 enters in our cc description through nonlinear
terms like t,' (wt' and inclusion of these terms is hence a crucial ngredient of
the CCGF approach.

The perturbation diagrams that contribute to the operators T. S¢"v ce), or R iml(w)

can be evaluated algebraically combining the rules for w-independent operators
that are given for example in Lindgren [I l]. with the familiar rules for the w-
dependence of the denominators [I]. There are some subtleties, however, in con-
nection with the operator R) "")(w) that we will address now.

(i) Consider the diagram given in Figure 6. This diagram consists of two dis-
connected parts, but by adding interactions and closing the diagram, such that it
becomes a diagram that contributes to G (w). these parts will always get connected.
The parts cannot be closed separately because each of these parts contains an odd
number of free lines. This notion is completely general. Diagrams like Figure 6
occur if we apply the hypothetical horizontal cut, and we include such contributions
in the definition of the operator i'P 1r(w). It follows that if we extend the notion
of connectedness by treating the w-line as an ordinary line that may connect two
disconnected parts, the operator 1? {)q'(w) is given by the sum over all open connected
diagrams with an internal w-line.

(ii) Consider next the diagrams in Figure 7. Both diagrams contribute to
R1 puI (W). If we add an extra interaction to this operator, as in Figure 8, we close a
loop in Figure 8(a). but not in 8(b). So the algebraic rules for propagating the
operator •""(w) are not unambiguously defined. We resolve this ambiguity by
adding one extra rule to evaluate the diagrams. The co-line is treated just like an
ordinary line in the sense that we assign a minus sign also to those loops that
contain the w-line. On the other hand we add an extra minus sign to any diagram

Figure 7. First-order contributions to R"f( •,) I a) The dashed line is part of a closed
loop: I hI [he dashed line is part of an open line connecting the free lines at the top.
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i 

,

Figure&. The rules for propagating the operator AR1"1(w) are not unambiguously defined.
In Fig. 8(a) a loop is closed. in Fig. 8(b) no loop is closed.

that contains the w-line as an internal line. Since the perturbation series for G(w)
only contains closed diagrams where the w-line is both internal and part of a (non-
existent) loop the extra minus signs correctly compensate each other. This extra
rule resolves the ambiguity noted in Figure 8 as now a loop is closed in both cases.
Also the diagrams in Figure 7 differ in sign using the new rule, which is correct as
diagram 7 (b) is an exchange diagram of Figure 7 (a).

Summarizing we treat the w-line as an ordinary line in the sense that it may close
a loop, and it may connect two disconnected parts. If the w-line is internal an
additional minus sign is included in the algebraic expression corresponding to
the diagram.

The perturbative diagrammatic definition of the operators allows us to write
down diagrammatic equations for the operators directly. This can be understood
if we strip off the topmost interaction (or external point) of an arbitrary diagram
contributing to a particular operator and analyze the remainder. This remainder
of course consists again of contributions to the previously defined operators. To
derive the diagrammatic equations we proceed in the reverse way. A particular
operator can be formed by connecting a number (possibly zero) of building blocks
(operators) to the topmost interaction element (or external point) such that the
total diagram has the structure of the particular operator under consideration. As
each building block symbolizes a sum over all perturbation diagrams of a particular
form the equations are exact if all possibilities of constructing the operator are
exhausted. This means that for N-electron systems up to N-fold connected excitation
operators of the various types have to be included. The equations have a recursive
character because a building block beneath the topmost interaction may be of the
same type as the operator under consideration. The factorization theorem (Frantz
and Mills [ 371) ensures that automatically all relative time orderings between dif-
ferent disconnected parts are taken into account by the above procedure. Hence
iterating the diagrammatic equations generates the complete perturbation series for
each operator.

In practice the equations have to be decoupled by neglecting high-level connected
excitation operators and iteration of the diagrammatic equations then generates a
partial infinite set of perturbation diagrams.

To avoid the plethora of terms that is usually obtained if diagrams are drawn in
full detail, we only indicate which diagrams contribute. This is sufficient for the
definition and understanding of the equations. Detailed algebraic expressions
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(working equations) can be obtained by expanding the diagrammatic equations
and evaluating the resulting diagrams according to the rules.

To draw the diagrams we make use of the operator C = e', the wave operator
in Coupled Cluster theory. C' is as usual partitioned in operators generating single.
double, and so forth, excitations out of , 1),). The C operators are represented by
shaded boxes with pairs of particle hole lines emerging at the top and they are easily
expressed in t-operators diagrammatically (Fig. 9).

A second (and related) reduction in the number of diagrams is obtained if the
lines in the diagrams are not explicitly connected, but only the structure of the
contributing diagrams is indicated. In the diagrams we consider there are free lines
emerging at the top of the diagram (one line may be dashed) that indicate the
excitation level of the operator (which may be zero if the diagram is closed from
above). There is an energy denominator associated with the free lines and this is
indicated by a dashed horizontal line in the diagrams. Beneath the free lines is the
top vertex which is considered to be a two-particle interaction in normal order with
respect to I I,•). or an external point. Beneath the vertex there may be 0. 1, or 2
operators. At most one of the operators contains the dashed line and corresponds
to an 9 p)(W), or R(P")(w) operator. Also there may be a C-type operator, which
can be expanded in F-operators if desired. The expansion of the C-operator in t-
operators is crucial in the ultimate evaluation of the diagrams as they determine
whether the diagrams are connected. The total number of connected operators be-
neath the interaction is at most four. In the diagram the lines are not yet connected
to the interaction, nor identified with free lines at the top and we use the subscript
C to indicate that only connected diagrams are to be included.

Figures 10 to 12 represent the diagrammatic equations that determine the op-
eratorst, 9. SP(M). and R Pqý(,) up to two-fold excitation level. The diagrammatic
equations have a hierarchical structure and have to be solved in succession. Figure
10 represents the Coupled Cluster equations and contains F-operators only. The
equation for S ' ( :) contains both t- and S ( w() -operators. Hence to solve for
9'19(w) requires knowledge of T. '1`"11(w) (Fig. 12) depends on Tand S~P•(o),

E gur () Diagranrndatic representation of the relalton ( ( ( :. and (C, are rep-
resented h,, shaded tx)xes,
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C C

jC+ V+ V

V Vt

C+

Figure 10. Compact representation of diagrammatic recursion relations for t. An inter-
action with a C attached to it denotes the sum over all topologically distinct connected

diagrams of the indi•'ated form. (a)equation for f,. (b) equation for f2.

so this equation can be solved only after the equations that determine t and Se t( w)
have been solved.

The equations for the different components of an operator [e.g.. ti, Fig. 10(a),
and t 2 , Fig. 10(b)] are strongly coupled. Such equations are always treated together
and they are considered one equation in the following sections.

In Figure 13 (the ionization part of) G,,•(w) is constructed in terms of the above
building blocks -f, S1 t ( P),/ R P)(w), and a. This equation for G,(w) is derived
in the same manner as the operator equations. Strip off the topmost vertex (inter-
action or external point) of an arbitrary diagram contributing to G,,(w) and analyze
the remainder. The various contributions are easily classified as given in Figure 13.

In Figure 14 it is illustrated how the equations can be expanded in detailed
diagrams that can be evaluated with the usual diagram rules [1. 10-14].
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.1 .. .. . .. . "

p p +

C C

C C
+ 4 AN +V

P (I ,

Figure I1. Diagrammatic recursion relations for S':'(•). (a) Equation for SV'~(w). The
first two diagrams correspond to the initialization of S9(j(w). where the dashed line emerges
from the external point. The other diagrams denote the propagation of -(u)-operators
to , (b) Equation for $(2 { (). The first term corresponds to initialization, the others

to propagation.

Figures 10 to 13 constitute the diagrammatic representation of the Coupled Cluster
approach to the single-particle Green's function. We end our discussion of the
diagrammatics of the CCGF with an account of the Coupled Cluster aspects of the
approach.

(i) The operators we use are all connected.
(ii) In the diagrammatic definition of the operators, the free lines emerge at the

top of the diagrams. All interaction lines occur beneath the endpoints of the operator
lines, and consequently all operator lines end at the same level. Hence, if a certain
perturbation diagram is included in the definition of an operator it does not mean
that every different time-ordering of this diagram is included in the perturbation
series for this operator as well. We stress that there is a choice here. One might
alternatively conceive of an approach where operators are defined in terms of Feyn-
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A -/

CC
C C C

Figure 12. Diagrammatic recursion relation for operator /r*•(':). (a) Equation for
/••a•o) in the first three diagrams the ,• line runs into the external point, initializing the
operator i/'1"'J(•). The other diagrams correspond to propagation. (b) Equation for

R"w(•. Contributions 1-4: initialization, Contributions 5-8: propagation.

man diagrams, with no restriction on the time-orderings included. This would be
in line with the original time-dependent perturbation theory and the concept of
Green's functions. However, the use of time-ordered diagrams is essential to de-
couple the ionization and attachment parts of the Green's function. It also allows
us to concentrate on the topmost vertex to generate rather simple diagrammatic

ý) C VC

Figure 13. The construction of (4m(w•) in terms otr~ Stq, 1r( u)./ ,,,)( o8 } and 7,
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~ ~+i+

++

Figure 14. Example of expansion of one of the compact diagrams contributing to

S:fV (w). Using nondegenerate (not antisymmetric) vertices for both the interaction and
T-operator. this single diagram corresponds to eight distinct contributions.

recursion relations. The restriction on time-orderings included gains relevance if
approximations are introduced. For example a diagram that contains a contribution
(in the sense of Fig. 5) from 1-SV'1(u)) might contain a contribution from
S3' (w) in another time-ordering of the diagram. This diagram containing an
S3" (w)-contribution might then be excluded from the partial infinite perturbation
series that defines the approximation to Gpq(W).

(iii) Although perturbation theory is the starting point for our approach the
final equations are independent of the parti-,oning of the Hamiltonian in a zeroth-
order order and perturbed part. This will be evident once the algebra of the equations
is discussed.

The above notions are characteristic for the Coupled Cluster nature of our ap-
proach.

The diagrammatic equations that determine the Coupled Cluster operator T
(Fig. 10) are usually presented in a difterent way. In the perturbative type of diagrams
we use there is an energy denominator associated with the lines above each inter-
action (if any) and all interaction elements correspond to 1" (instead of H). We
stress that it is precisely the use of these perturbative type diagrams. together with
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their Feynman-like interpretation, that permits us to write down the diagrammatic
equations directly. No algebraic equation is needed to define the diagram series.
Nowadays the common route to Coupled Cluster theory derives from algebra. It
is straightlbrward to show how the perturbative approach follows from the con-
ventional Coupled Cluster equation. We will briefly refle, t on the relations between
the diagrammatic C7,upled Cluster equations and their ".lgebraic counterparts. This
also serves to introduce some convenient notation.

We use capitals I and .4 to denote ordered strings of hole and particle labels.
respectively.

[ 1i.i . .. i1i < i,. < .. < 1A

a ] = 4aa ..... k a•. at < a2 < . < uA (10)

The strings I and A are nonempty and have equal length. The cluster operator is
written

where -!/ is a string of quasi-particle (or q-) creation operators.

= (~a, a ,,a, ,,,. (12)

which generates excitations out of l4)o>:

_2 I1 1 ,, > IP, i > (13)

The amplitude corresponding to this excitation operator is given oy t,'. Of course
the operator t is usually truncated, for example, to one and twofold excitation
operators. This is not essential in the theory and we will not further specify the
sum over I and A. The projection used below is on the manifold of states
I I)> } that have a nonzero overlap with the state T P'Io). The Coupled Cluster
equations read

he, = Eet 14)) 1 ( 4/`I te ifie ) = 0

< 4,'1e fIoeH ' + el.' -ie' I. N) = 0 +
-( ? - [t'I" ,,, -f] ,I ,<, )= (,l• Ie - ,l:e il,, ,

(E, - E,_1) 1) = ( >,11 11 1ýe ' } ,(.t ý, (14)

Here bL* - Z,, = c, -- . ,,. The equations can also be given at an operator
level as

:1'' (15)
E, - E.. .

where in the connected product { ,e'j only those terms contribute that corre-
spond to the substitution operator Q`. This operator form is precisely the content
of the diagrammatic equations given in Figure 10. The energy denominator asso-
ciated with the free lines at the top of the diagrams is explicit in Eq. (15). In this
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derivation we used the familiar substitution e '1-e' ' = , 1 1e which derives from
the application of Wick's theorem, see, for example, Ref [ 38 1.

Algebraics of the operator S(P)(). Analogous to the operator 1. the operator
S9M(w) is written as

7_7 ' S' . ,)Aj ., (16)

I,,,1..I,,

where 1. is an ordered string of hole labels (of length >_ I ) and A an ordered string
of particle labels (possibly of length zero). The length of 1. exceeds the length of
A by one, for example,

.S (J7.( w) - . i( w) ? = sr'' I....... (o.,) l,V( ,, dc( • ~ • •, ai,, ,,) (17)

and
S'•".(t)I~o) s "1/.(U;)fA I÷, sfl A(,w)I =) . (18)

If the operator S'P)(w) is expanded up to N-fold excitations (the excitation level
being defined through the length of the string I, ) the set of states 4 P]'.> } is complete
in the (N - 1 )-particle Hilbert space.

The diagrammatic equation given in Figure 11. that defines S•')(t) recursively
can be directly translated into

1 1 1 1ý ,t d ,., + ldpd,l,.- ( 9
-w + E. - 1, ( IVS•P•(w)I e(•' 1 .+ . (19)

The energy denominator is made explicit. The first term on the right-hand side
corresponds to the "propagation" of 9'(¢(w): connect S9"()(w) to a V interaction
and possibly connect T operators to the interaction, too. such that the free lines
generate the ionization/excitation 1, - A. The second term generates the "ini-
tialization" of S9'tw w), the diagrams in Figure 11 where the w-line emerges directly
from the external point p.

Equation (19) can be rewritten by bringing the denominator to the other side
and writing it as a commutator of 5 (P11' (w) with fHo. Then we let both sides of the
equation operate on IF0 ). This does not change the content of the equation as
,ý (w) contains only q-creation operators. In the next step we sum over the various
S m( w)-components and project against (4. 1. This leads to

(KI' A - og,,(to)( -[I 1  '0 )JFn

I44, e- 7 ([ e .Ia P (w)] + a,,)e' Ito) (20)

Here we also used that each component of 9t P)(w) consists of q-creation operators
only, and the fact that tV contains an even number of construction operators to
replace the connected products with commutators on the right-hand side.

If one uses next that (th,, S1' 1(w)] contains q-creation operators only and hence
commutes with tone may write
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(÷/ i(-..'P'(w) - e' ~i II. S'•'"(w.)lei)t÷,, 4K ÷ Ic ',ac,"1÷,) (21)

where H10 and IV are recollected.
After expanding s'r(w) =Eq. (21 )reads

. <4A I'e '(-wf2,!. - jIf f.),' I ,,,,,.)

= ( j I(e.- IJ.,, ) (22)

Define the matrix A with elements
I÷ ' le-i I S, . le' 1, (2.3)

and the vectors b"'I with compcnents

(IPA. 1 e-r,•,de l 4>. (24)

Equation (22) for the coefficients s4 '"(w) then transforms into

(-wl - A)sP"(w) = b(P) (25)

which can be solved by diagonalizing A: A = UAU - leads to

U(-Wo -A)U Is<")(w) b(P) (26)

or

s'P)(W) = U(-wl - A)-U-b'P). (27)

This equation deserves further analysis. The most salient feature of the matrix A
is that it is nonsymmetric. This implies that the matrix U is nonunitary: U ' *
U1. The right eigenvectors of A are accumulated in U, while U ' contains the left
eigenvectors. The eigenvalue spectrum is the same for both types of eigenvectors.

The matrix A has previously been derived in the context of Coupled Cluster
Linear Response Theory (CCLRT) [16-231 in a number of alternative ways and
below we review the equation of motion type of procedure [18.20,21]. The EOM
derivation leads directly to an interpretation of the quantities A, U, U ', and
U-'bPj occurring in Eq. (27) and shows how Feynman-Dyson amplitudes can be
extracted from the formalism.

Equation of motion derivation of matrix A. Let us use a shorter notation I14,,
to denote I1 -0> and introduce a nonorthogonal basis for the (N - I )-particle
Hilbert space

IX• > = ='I'•4Q = = I4'O) (P() f2, I I-c) (28)

together with the bra states

(A, I = (, le e (29)

which are dual to the states I XA\) in the sense that

<X IXx) = (P. lIe--ei$~) = (I >I4'x> =6,\ (30)
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and

The set of states N .> is complete if the set of states , 1), is., because (he
operator e is nonsingular. If the set of states X . ,> is taken to be incomplete,
Eq. (31 ) denotes a nonorthogonal projector on the space spanned by N I ."'> A,' The
idempotency of the projection operator follows directly from the bi-orthonormality
relation (30).

Next one tries to find (N - I )-particle eigenstates ' '', by expanding

=' ' - ,AK i1÷,>K "A I , ' '½ I,-

.A (32)

In this last expression one recognizes the equation of motion ansatz. Using that
PIrlt) = qI*(,(.> is the exact groundstate, the eigenvalue equation for state

I'-, '> can be written

Y"I, h.L ,,]e I> = ( I.- 1,o • x. (33)

Projecting against (,, I = <(. 1e- one finds

, (P, Ie i[*I, H .']eil0o)C, = (E,.- Eo)c, (34)

that is,

Ac,, = IE,c,c (35)

It follows that the expansion coefficients c, of I '))> in the nonorthogonal basis
I I X,.,) are obtained as the fight eigenvectors of the matrix A. The eigenvalues of
A correspond to the energy differences k-, - &o, that is, ionization potentials.

This equation is also used to determine energy differences in case e" ,to ) is not
an exact eigenstate of /i. In that case the eigenvalue equation for I 4K")-) and
Eq. (33) are not equivalent. The use of the ansatz I *'i' -> = Oý1 'o) and the use
of the commutator to arrive at the equation that determines the energy difference
directly is characteristic for the equation of motion method. Other assumptions in
the above derivation are particular of the method and various alternatives are found
in the literature [20,21].

(i) The choice of the operator 0,6, which consists of q-creation operators only.
(ii) The Coupled Cluster form of the (approximate) ground-state wave function.
(iii) The projection on the states <,.Q I to cast Eq. (33) in a computationally

tractable form. A consequence of using this projection is the absence of an overlap
matrix on the fight-hand side of Eq. (35).

(iv) The operator 6, is not required to satisfy the killer condition <4', 60 = 0
which occurs frequently in equation of motion type of approaches. This is related
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to the parametrization of the operator (, (point i). The equation 0, 1qI' =
,K.' 1N determines the operator 0,. completely and there is no freedom left to

satisfy an additional killer condition [391.
We note that the above specifications arise naturally in our procedure starting from
the diagrammatic perturbation series for G(w).

We now continue our analysis of the matrix A by defining bra-states, which are
required to be (N - 1 )-particle eigenstates of t1

K•'I," d_ = . e,. KI>&i Zd,.J ,' (36)

The coefficients d, are determined such that

d_,., X) = > ,., (37)

or to get energy differences

2 ÷ d_ e '[,1, fŽ,,e 4÷, = (E,.- (,, (38)

that is, d,,A = dA,.. The expansion coefficients d, are determined as the left ei-
genvectors of the nonsymmetric matrix A.

As the vectors d, and c, are the left and right eigenvectors of A they form a bi-
orthogonal set, and they can bc chosen to form a bi-orthonormal set:

d, .. = k' (39)

Similar results hold for the states I '' -> and 4'V( I:
< Td,•".I)•p(N : = d1(KX l.A),. (40)

Also

= I4Kx•'• )Kil= E''x =I'-*' ''. (41)

The above results remain valid if one uses a restricted set of states I X,) I and its
dual basis I (, I . 1'(. I is then a nonorthogonal projector on the space spanned
by J I X,) } or a resolution of the identity within this space.

Let us now return to the interpretation of the operator 9'11(w) and insert the
above resolution of the identity into Eq. (22)

J". B J

= A -7I, I(e-dPe1 )I"o) (42)

or



(OUPLED (TIJST[R APPROACtH 75

JA, t

- (÷ 't+d,.e')HF4>

(43)

Comparing with Eq. (26) we identity

A, ( . _ (44)

U,_. = . 'I I )) (45)

and

U;) = K"' I A d, (46)

From these identities and the definition ot'b"' [Eq. 24] it follows

U lb"`= Z (1')' ')ei ÷")f" Id,, 1 j> - () > d, I q,('W) (47)

and using Eq. (27)
1'"(w~o)÷ ) = X _, 14)•<4L Ic le

v I.,.,

q'• Idpl qcc) ( 48)Xl(-w -l. F'' +1± E) ('K''.'IdAlhc (8

hence

M t P ' 11 -) (49)

which is used later on.
If t is expanded up to N-fold excitations and the manifold of states (IDA) ( is

taken to be complete the equations are exact. In this case 4K' ,') and
(A'-• 1)+, are both exact (N - I )-particle eigenstates. which may still differ, however.

in their normalization (only the overlap of these states is specified. not their indi-
vidual normalizations). In actual applications one will use a restricted set of states,
or equivalently a restricted set of operators fl,. We note a few interesting obser-
vations. Let us consider the concrete case of using a { h. 2hp} manifold:

ix= {f d,}, da,6 aI a}} . (50)

(i) The character of the states ] 1)) and ( < I--) i% vastly different. Due
to the presence of ei the states I' *)' . contain up to N-fold excitations with
respect to 1o)>. With respect to <4. e-r acts as a deexcitation operator and the
states <('-)j can all be expanded in terms of(h, 2hp) bra-states (' .4.

(ii) The set of states II '•'-)) do not, in general, form an orthogonal basis:
(f.% -I)'1 ') (A )O,A#v, (51)

where,,'1,)' 'I is the adjoint of I[2. This also implies that the operator
X, I4' * ) <'1' %k'- lacks the requirement of idempotency and hence cannot be
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considered a projection operator. The orthogonality of approximate stales with
different eigenvalues might seem to be a very desirable property, but one may put
a question mark here. If one would project the exact eigenstates on a certain trun-
cated manifold, the projected eigenstates would not be orthogonal, although in a
least-squares sense this represents the best possible approximation of the eigenstates
within the manifold.

(iii) From the analysis sofar one might expect that the ionization part of G(W)
can be constructed from the information that can be extracted from the equation
for 9(Pl(w) alone:

P, (< ' id o E *)*. ")
W(6 =- (E() -E(." " )

"-. KIc aI'. \-4' aI''x (52)

According to the above expression Gl'(w) is obtained in intermediate normalization.
but this is easily corrected by introducing a normalizing factor. The fact, however.
that the operator Z. 1 +' ,A'_ •) ( , + I does not represent a projection renders the
above formula useless in practice. (This was born out in numerical experiments in
which Eq. (52) was utilized to calculate the residues of the single-particle Green's

function.) Therefore we continue our analysis and show in the next section how
one can build up the remaining part of G.

Algebraics of the operator Ri (")( w) and the construction of G,,(w). The operator
A (Pq)(w) is written

Sw r f - )R(W)!4 (53)

JB J,B1

J and B denote ordered strings of hole and particle labels, respectively, of equal
length, so !t• I 4o) = I 4KI>_refers to an N-particle state. The diagrammatic equation
in Figure 12 that defines R'uP)(w) corresponds algebraically to

1,q)(6)] I { =(I P C (A)}e ii - {(e. S"'`(w))e, 1-,) (54)
(E1 - E,)

The first term on the right-hand side corresponds to the propagation of A (Pq)(w):
Connect A (pq)( W) to a V!-interaction and possibly connect extra T-operators, such
that the lines emerging at the top of the diagram generate precisely the excitation
J -- B. The second term generates the initialization of/ A{P(() where the W-line
disappears again in the external point labeled q. There are two subtleties however.
Firstly 9,Pm(w ) is not necessarily connected to d' by a real line. It may be connected
to d.' by the dashed line only. An example of such a diagrammatic contribution is
given in Figure 6 as was discussed previously. On the other hand if a cluster operator
tis present it will always be connected to d'. Secondly, there is a minus sign in
Eq. (54). The algebraic expression then agrees with the direct evaluation of the
diagrams using the rules as discussed in connection with Figures 7 and 8.
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Equation (54) can be cast in matrix form following essentially the same steps as
in rewriting the equation for S"'Rc).

- O P I t [ z;, -I f ' # (w fl e i ÷1 ,)0 - ( P le Id P" ( )M e I I (P " ' ( 5 5 )

or

- < (4 e [i[. f2ie' I,,) r 'Q7(pq ) - K (P I, Ie 'a1Aw)l,,,.N
,-. (56)

cII''(w) can also be written as
Qv,,,() I (W N ÷' l "+ <' e) ,,

Sw ( ,, E. \ - '1 ) (57)

using Eq. (49).

The equation for iEPql(w) hence reads

-() e1)( w) (58)

that is,

( -B ICQ)(W) (59)

using the newly defined matrix B and the w-dependent vectors c1 "")(w).
These equations hardly present a practicle means of calculating the coefficients

r(Pq)(w). For each element (pq) and for each pole of r(P+)(w) one would have to
solve a large system of linear equations. We will arrive at a suitable method, however.
if we continue to construct G(w). The final diagrammatic equation in Figure (13)
translates algebraically into

GP(w) ={ J'R 1"q(w)e7 }/, - aSq'"(w)},, (60)

where f.c. stands for fidly' contracted, that is, no construction operators remain
uncontracted. The resulting expression is a number. The minus sign in the second
term agrees with the direct evaluation of the diagrams under consideration. The
equation is rewritten

G'P(w) = K(,o•. [<P:q)(w)ei[÷Fo> - <(÷ojat9PI(w)Ito) (61)

as only fully contracted terms survive in expectation values of the reference deter-
minant. Hence

G_____w) = - __ _eo) r(Pq)'(w) -- ,(0lat,•'P'(w)I,) (62)s.• • --- - •..- - • -"(62)

Substituting Eq. (59) for rOP11(w) one finds

G,(w)= -f B-'c (w) - K4olatS(P)(w)e'I'Fo) (63)
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where we also used that one can insert e in the second term without altering this

expression as da has to be contracted to S1"m(w) and only the constant term in e'

leads to a nonvanishing contribution.
Now define coefficients : through

z -fB (64)

or

zB + f = 0 (65)

The z-coefficients can easily be solved for. They are the solution of an w-independent.

nonsymmetric system of linear equations. The crucial difference with Eq. (59) is

that now one has to solve only one such equation.
.Using the coefficients z and the expressions for cll")(w) [Eq. (57)] and

eTS P((W)I4o> [Eq. (49)] one finds from Eq. (63)

K''cd .J)(4, eiA I •.-I\ / t.

-- w(- /x,--

Sw - (Eo - Eý'v • (66)

, • - (Et) - E,',-"•))

where K +'cc is defined by the expression between parentheses,

+I ±o1 + / z( 4( 4/'le. (67)
I, A

Equation (66) clearly resembles the spectral resolution of the ionization part
of G(w).

The approximate ground-state bra ('4cc I is by now well established in the cc
literature [33,341. It was introduced by Arponen in the framework of the Normal

Coupled Cluster method (NCCM) [ 33 ]. An important feature of <'Iccl is that it

has an overlap of unity with the cc ket I *'cc>. irrespective of the parameters z
and t

+Icc I "cc > 40I eKi- I 'DIo) + 2Z" ((l I4o) = 1 (68)
J.R

It follows that the optimal values for the parameters z and t can be obtained from

a bivariational principle [33]: the requirement that / +'cc H i *(-cc> be stable under

a variation of either the parameters z or t leads to the conventional Cc equations

for the parameters t and to the equations for the parameters z, as given in Eq. (65).

The variational principle implies the existence of a Hellmann-Feynman theorem,
which means that expectation values of an operator 0 can be obtained as

<6) - (4tccll Icc)• (69)
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Hence the N( M furnished the solution of' a longstanding problem in ( 'oupled
Cluster theory.

A second featurc of" the N>( \l bra state %%', . which i,, of great practical i1-
pOIlance, is its simlplicity. D)ue to the f;icI that the components of, i act as dc-
excitation operators when operating to the elet, the state ( ( lies cotlplctcl% in
the linear space spanned bh' +I' I', used in the d.lintion of I'•i I his
means that e\pectation values of the form (() ) call be calculated , ith rcl:lti, ease.
The same holds for the transition moments that occur in the ('oupled p laster
Green's function [tEq. (6 ) 1. Due to the simplicit. of the bra's the expressions forl
the transition amplitudes can be calculated in practice.

The state +( ( 1 is also used to calculate Coupled Cluster energy gradients [40-
441. Similar manipulations as described above were used to reduce the number of
linear equations to be solved when calculating the gradient [40-44 J. The procedure
goes back to Handy and Schaefer [40] who used it when solving tb,)r the orbital
rotation part of the gradient. Adamowicz et al. [411 similarly showed it to be a
convenient short cut to calculate the c( energy gradient and the procedure is now
known as the Z-vector method [42]. Koch et al. [441 regarded the --coefficients
as Lagrangian multipliers and derived their equations from a variational principle.
The use of a variational principle is clearly very useful wvhen calculating energy
derivatives. Explicit working equations for the coefficients z have been given [42-
441 that allow for an efficient solution on a computer. Finally Koch and Jorgensen
started from the bi-orthonormal formulation in their recent work on Coupled Cluster
response functions [22.23 1. The matrix B [Eq. ( 56)]. which has a similar structure
as the matrix A [Eq. (23)1 is used in (VIR r to calculate excitation energies 16-23].

Returning to Eq. (66) consider the calculation of

('+,-,~i,4 '~ K ' . ~4'((a~� 40'' " A,.; c' 1'P' K - e'11 . (70)

where the vector e"' is given by

e 'lI (e 1~ K 111 I.

+ Y,: 'I \ j,•./ 4i , + [ ,. ]I÷ .",.( 71)

It follows that (4q•w) is then given by

(4,iw) = et'CU(w + A) 'U 'b =e'"'(w + A) Tb)'' (72)

where the former expression is in direct correspondence with Eq. (66).
It was mentioned before that certain properties that derive from the ground-state

wavefunction can be obtained by calculating contour integrals over G(w) that en-
close the ionization potentials. Equation (72 ) allows us to calculate these contour
integrals analytically. The one-particle density matrix can be calculated as

I __ / (ir,(w)dw = = U = e 0 eU'1"b b'"' (73)
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To calculate the total energy from the Green's function one also needs

2 • f WG,,,(w)dw = e•)U(_A)U lb"),= -e(q) .Ab 4 , (74)

It follows that to calculate these quantities in our formalism one does not need 'o
know the pole structure of G(w) explicitly.

Approximations

The equations considered sofar are ex.ct for N-electron systems if all connected
operators are expanded up to N-fold excitation level (assuming a finite dimensional
Fock space, defined through a finite set of one particle basis functions). By solving
these equations one is hence implicitly summing the connected diagram perturbation
series through all orders. In actual applications the equations are decoupled by
neglecting connected excitation operators from a certain excitation level onwards.
A managable and hopefully adequate set of operators arises from

T1+ t,

) <( = (w) + Rpq•() (75)

that is, all operators are expanded up to twofold excitation level. For this approach
the acronym CCGF-SD is used. By solving the CCGF-SD equations one is implicitly
summing a partial but infinite set of perturbation diagrams. Given an arbitrary
perturbation diagram contributing to G(w) it is fairly easy to determine whether
or not this diagram is included in the partial CCGF-SD series, by applying the test
described below.

Mentally cut the diagram at a certain level (between two successive interactions,
or between an external point and an interaction, etc.). In the part below the hori-
zontal cut, each of the resulting disconnected parts (internally connected) should
have at most four free lines emerging at the top. The dashed line is to be treated
on an equal footing with the other lines here. The diagram 's included in the CCGF-
SD series if it satisfies the above test at each level. This follows directly from the
diagrammatic definition of the approach (Figures 10-13), if one discards the co,,-
tributions that contain connected operators of excitation level higher than two.

The fact that the Coupled Cluster approximation to the single-particle Green's
function corresponds to a well-defined partial infinite series of connected pertur-
bation diagrams implies that the method is size-consistent. Size consistency is im-
portant (a kind of necessary condition nowadays) but it does by no means imply
that one vill also get sensible results out of a calculation. The aim in this kind of
diagram summation should be to sum over the important diagrams in a balanced
way. It is not so clear if the diagram series implied by CCGF-SD indeed constitutes
such a balanced series. The CCGF-SD approach to the single-particle Green's function
is quite similar to the CCSD approach to the correlation energy however, and this
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is known to give quite satistactory results for a large number of systems. 1 his scrves
as an indication that the approach presented here will lead to adequate results.

Conclusions

The diagrammatic approach we employed to arrive at equations that allhnN eval-
uation of the single-particle Green's function is quite general. In a similar way one
may (re- )derive equations that determine for example expectation %alues ( leading
to the N('CM equations [33,341). the polarization propagator (leading to the ((l R I
equations for excitation energies [ 16-23 ] and the corresponding transition ampli-
tudes), higl-2t order response properties (Cf Monkhorst [19 ]). and so forth. The
starting point is always the diagrammatic perturbation series for the quantity of
interest. If a diagram contributing to the series is taken apart as in this article. b\
aýiplving a complete horizontal cut between two successive vertices and one c(..,idders
the connected parts beneath the cut as perturbative contributions to operators of
a particular type (compare our ". 5'•(•) and i'"'(w) operators) one will be
lead to a Normal Coupled Cluster type of approach [33.341, It is interesting to
note that the only choice made is the way that one takes the diagrams apart: the
identification of the building blocks in terms of their perturbative diagrammatic
content. The subsequent establishment of diagrammatic recursion relations f•or the
operators and the translation of the diagrammatic equations into algebraic equations
is mereiy a matter of technique.

Although the diagrammatics is quite sufficient to establish the (v(;1: approach
and diagrams are also very useful in deriving the detailed working equations. the
algebraic equations presented in the third section greatly help to clarify the general
structure of the approach. The algebra also establishes the intimate relation between
CCGF, C(t.RT, and N'" .'. Indeed the diagrammatic approach advocated here maN
be regarded as a powerful alternative to derive current extensions of Coupled Cluster
Theory which are characterized not only by the use of the exponential ansatz for
the wave operator but also by the use of hi-orthogonal sets of bra's and kets of vrv
different character. A striking example of the biorthogonal formulation is encoun-
tered in the final expression for the cingle-particle Green's function [Eq. (66)],
where only the products of the Fevnman-Dyson transition amplitudes represent
mean'ngful quantities.

We end our discussion with an overview of the main teatures of the Coupled
Cluster Green's function method.

( I ) The decoupling of the equations for the ionization and the attachment ener-
gies greatly reduces the dimension of the problem compared to many other ap-
proaches to the single-particle Green's function. The (• ( ;a--so method for ionization
energies leads to an eigenvalue problem in the h - 2hp space. The decoupling of
the (N - I I- and (N + 1 )-particle problems is also satisfying from a conceptual
point of view. In contrast to most other approaches to the Green's function well-
defined states are recovered in the (v(a formalism.

(2) The method is potentially exact. Inclusion of up to N-fold excitation/ion-
ization operators will lead to exact results for N-electron systems. This is useful



82 NMOIJiN ANI) SNIJI) RS

both in analyzing the method and in implementing/debug&,ing the corresponding
computer code (w.Ne know ibr example which results we should get for two-clectron
systems).

(3) The method is size consistent. it shares this properv, ý% ith aný method that
derives from a connected diagram expansion of the single-particle Green's function.

(4) Unlike many other Green's function methods t(,il does not depend on a
partitioning of the Hamiltonian in a zeroth order and a perturbed part. We have
only used perturbation theory' to derive the method. In general the results do depend
on the division of the orbital space in holes and particles, that is, on the reference
state employed.

( 5 ) Ground-state properties that derive from the (v Green's function are closely
related to properties obtained in the NCCM framework. The precise relationship
will be discussed in a forthcoming article.

(6) The eigenvalue problem that has to be solved to obtain ionization potentials
is nonhermitean, with the possibility that one might obtain complex eigenvalues.
or even the matrix may not be diagonalizable. Also the one particle density matrix
and the residue corresponding to a pole of G(w) is nonhermitean. The degree of
nonhermiticity may serve, however, as an indication of the quality of a calculation.

(7) The method uses a single determinant as a reference state. This limits the
applicability of the method to systems that can reasonably be described in terms
of a single determinant, analogous to the cCSt) approach. On the other hand. this
also facilitates the actual application of the method.
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Alternative Ansaitze in Coupled-Cluster Theory. IV.
Comparison for the Two Electron Problem and the

Role of Exclusion Principle Violating (EPV) Terms*
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Abstract

The tm~o-clectron problem is in)estigated using cponentialI paramctri,cd %%i% c Itrct;ions !',r %,Irius
different coupled-cluster ic(C methods. incluTing regular. elpctation %aluc. x,,monierie d exlpctation
value ( i.e.. unitary ). extended. and quadratic configuration interaction WI ) \ariants. All arc \ ic\\ed a,
arising from alternalive energ\ functionals. This pedagogical cxaluation dcmonxtratcx the ditlcrencc, in
these methods, including the role of FPV terms. ( 1942 John k,% ilc. & Son,. Inc

Introduction

To ensure the extencive property 11.2). many body methods (Unlike (-I) use an
exponential paramcterization of the wave function

where T is the cluster operator for n electrons

T= T, + T2 + T3 4 ... Ir

T,= t(- ) 1 a.ih.jcI k (2)

with i, j. k. - • - indices indicating spin orbital and operator labels for orbitals
occupied in 10), while a. h. c. • • • correspond to orbital and operator labels
unoccupied in 10>. Orbitals are orthonormal and normal ordering is denoted by

: . We assume real amplitudes in T,,.
The normal-ordered Hamiltonian defined by

A = It - 0 1 If 10 >

+ - ý 4pqIlrs) :,pq+sr', + ( "T (3 )
Jl+.r, "
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is composed of Fock matrix elements. I,, and antisymmntrized two-electron in-
tegrals, pqIq rs').

With a wave function of the form ( I ). the expcctation 'alue oflI\ can bV written
as

o 01 ll, eI e0> (4)
t" I .'O ' Ake> l(o('le'), (40

The right-hand side of the equation indicates that the energy can be written as a
sum of connected terms only as was shown by (i2ek [31. Cancellation of the
denominator introduces the so-called EPV terms (sec later): therefore. the energy
expression (4) and the associated stationary equations are infinite [ 3] for any number
of electrons (i.e. even if T,, 0 for some n). Thus. variational determination of
the parameters of the wave function is not straightforward.

Alternatively. the traditional coupled-cluster method [41 is built upon projections
of the Schrrdinger equation:

e //l>e1JO =- AEIOý

Using properties of the normal-ordered operators. F and I/.\. this can be written
as:

(f,,e'l, O = \EO\,

where the subscript c denotes that connected diagrams only are included. To de-
termine the coefficients. this equation is projected against excited determinants, for
example:

KD," I(//,eT),.0) =-0
.Dal (t.•e' ),0) 0

(5)

Projecting against the reference function we 6,et the energy:

AE = (O(He'O),10)

Bartlett. et al. [5-7] introduced a de-excitation operator. A., to make it possible to
evaluate analytical derivatives with cC and MBPT wave functions, without requiring
an explicit determination of the derivative wave functions. From another viewpoint.
this means we can associate an energy functional [81 with CC theory in the form:

AE = (01(1 + A)(h.e'), 10> (6)

where A is a de-excitation operator. Because this functional is linear in A, the
stationary equations provide the usual decoupled equations for T in the form gi-
ven above. Stationarity of T will define the A equations.

Another variant on Cc theory is offered by the so-called QCi [9] method. Assuming
canonical Hartree-Fock orbitals the equations are:
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and the correlation cnerzx is:

.1L 0) 11\ 0

"%here the o( I coefficients. T, J, 4i/ (I.e.. K ̀ I;" If 1t I I and
I-,1 . The a hove eq IZuatinS are closel s related to tile t rad itional 1,1-1 ()r1, Il he(

method described abose. being a truncation of exp( I I. loxecwr. 11his pariul arI Il
truncation is still exact t'Or two electrons. We canl also conlstructA 3 yf I lntmicknall
analogous to Lq. 6 ) hy in' ok ing the same trunIcation l 01\11( I I. M'itch Is,:

AL, Oj 0[ll1\ + AI(llj(I + (9 c (

Reali.'ing that the (v functional ( 6 ) has ant exponentilal kei state and ai ( I I\ pev
bra state, it can be gcneralited uIsingl anl exponential I'Liction als"o Itbr the b-ra sae

AL' 0: AlIc )( , 0v.o

Ulnlkke the A In Vq. (6~ t. whi1ch call have dic etdparls. N \can beN yestIctedk 1k)
a connected Iorm with e\' introducing appropriate disconnected products. I his'
lunctional defines th2- extended (v ( (I ( method of' Arponen ci al. [ 8. 10.
uniike that of the cc( method, this functional Is not linear in A. and therehire. the
%tationarx, equations pro,,ide coupled equations for the \~ariables A and I:

This functional has some desirable formal properties, as It ensure,, that both I and
.A are fullv connected: howkever, such Couipled equiationis cain ble .omputaLItionll ilII
inconvenient.

The [Cc,( method Is alreadN. closel% related to the expectation \aloe of the cticruw\
(4 ). As mentioned befOre. the normal (cl expectation \ alue. L~q. ( 4 pro\ Ides an
infinite expansion. Theref'Ore in application truncation is necce'ssar InI thle v
(expectation ,alue uImethod [ Il we ] CUsed the order of' the term, dehnedCL h\
perturbation arguments to truncate the expression. Recenrtly. %- insestigtd th
.structure of the stationar\ equations, of the untrUnCa~ted i nfinite functionall 1:2

for a -I. 2 n,. We use 1),, to s, mholi/c excited determninants. V, -,,e hax c
proven elsewh0ere [12 1 the set ol equLations dlefined b\ [qIs. I K I and] t 9) becomecs
cxactl% the following set of equations,:
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"fl• j c''( W'l / ,,0, 0 (00)
0 ()G, r'1l.0, e'lD,,"•., = 0 (I

The very important consequence of the above form of the amplitude equations is
that the number of terms in them is finite because only four operators can be
connected to II/. (because it contains no more than two electron operators). Then.
the energy with the converged amplitudes can also be written in closed form:

AE = `0()c '(/'), 10),

The advantage of the xcc method over 1-c" is that only one set of equations (for
real amplitudes) has to be solved to determine T and to calculate the energy. On
the other hand. as we also showed in ref. 12 no simplified energy functional exists:
i.e., for the calculation of energy derivatives the original form of the AE functional
(4) has to be used.

An approximate functional can be defined, however, which is finite. In ret'. I I
and 12 we choose the following form:

. [KE -=[O r'2(l.,',0 + O1I(e'H,\), el 10),1 (12)

because it is symmetric in T and T. and only one set of equations (for T or for
T t ) has to be solved, even for a gradient calculation. The method described by this
functional is equivalent to the sxcc (symmetric xcc) method, which is equivalent
to unitary (ucc(n)) for low n-orders II J. Since this method ensures the satisfaction
of the generalized Hellmann-Feynman theorem, it may be readily used to evaluate
analytical gradients and other properties, as demonstrated elsewhere [1I. 13.141.
Stationary conditions (amplitude equations) for this functional are:

4KD, IeCT( tl,,er),O1), + 1KD,,( e' tj!), e'10 = 0 (13)

4( O1(e" t 1),e•' ID,,),. + I(O0le'(tle')I D.), 0 (14)

Both the functional and the amplitude equations are finite unlike the original ones.
One has to remember. however, that functional ( 12) is only an approximation of
the original functional (4) [12].

In this article we compare the above methods for the special case of the two-
electron problem. This is not a precise derivation of these methods, but rather a
pedagogical evaluation. This simple example, however, is very useful for under-
standing the structure of these coupled-cluster ansatze. Except for the sx((. all
methods are exact for two electrons, therefore. the same results will be obtained
from them. However, even though the final results are the same, the difference- of
the actual form of equations defined by the different methods provides a deeper
understanding of their structure. Below, we discuss the role and properties of EPV
(Exclusion Principle Violating) terms. The different ways these methods handle
these terms provides the principal difference in alternative coupled-cluster ansatze.

For a more transparent analysis we use diagrammatic language in this article.
The detailed discussion of this formalism is given in ref. 15. Here we give the basic
definitions only.



At ItURN I\1 .\NSt II IN ( 01lVI I),( It Si, R I Iitt)OR) 11 q

Tihe normal ordered I lamilIonian is described 11% S I. undi rcctcd hI agiair0i is.

H N - X - 1 r A i A A

where the first term isj/ and the remainder arise from It \. Ihe cllusýter operator."
F, and T_. are described by the diagrams.

V

LVN
while the hermitian conjugate oft'hem is dcnoted h\ the upsidc-dom in t'orl. lihcse
are also their normal product fOrlms.

Origin and Properties otf F\ lerms

IPV (exclusion principle \iolating} terms pla\ an essential role in nin\-bodý
perturbation theory. Complete cancellation olfthe renormali/ation part ofthe cnerg.
expression of perturbation theor\ in an\ order introduces such I I\ terms 1161.
similar process can be used to cancel tihe denominator of an expectation %altic
encrg\ expression as in Fq. (4) J3J.

Schematicallb. this process can be demonstrated b\ a simple model in which only
double excitations arc allowed. i.e., T T- T" the numerator of the energy Cepression
according to Eq. (4) is

w L•-L0` , Z i-, i-Q

"T'he diagrams are drawn without regard to II'V terms, as the summations in the
first and second terms are independent from the viewpoint of intermediate deter-
minantal states. Ihis means labels in the first and second term can be the same.
which would mean allowing excitation frorm or to the same spin orbitals. Tlhe
denominator in our example has the form:

1 -(Z]n n, (16)
so that, after cancellation, the energy expression is

AE-UO_+ - (17)

'The above example was chosen to describe the structure of this cancellation in
a simple way. The price we pay for this cancellation is that for even two electron
terms like the second in Eqn. ( 17) thatarisefrom QVT1/, .which would formallv
correspond to quadruple excitations, have to be included.

The general case follows now. In this we strongly refer to the proof of theorem
I of reit 12. -There we have:

<o 'V 'c'0 -=- '0Ie'ltlSce0IXý01e 10"!0) (0'11e ),c"" l

The cancellation by the denominator can be performed only if the summations in
T's [see eq. (2)] in fec"tlye'), and in e'*e' are independent. This means that
already on the left-hand side of the above equation the summation in T's and V's
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should be independent. T'his requires the inclusion of the I1'\ terms. The sum of
all such tHTv terms. linked and unlinked. is zero. and an\ diagram of II \& U i hich
has to or more open lines . ith the same index %anishes according to lemrnma 3 of
retf 12. T'he sum of all diagrams that one can cr,.ate bh closing these open diagrams
b\ pieces of cU is still zero. In that wa% we introduce connected and unlinked
diagrams also. In the next step we can cancel by the denominator, and we obtain:

AE- 0 i ()lc '), 1t)

This :onnected expression contains the connected 1.1w terms.
tIp\ terms do not introduce nonph.sical contributions to the energx as is clear

from the abowe derivation. We simply added zero to the energy expression in order
to be able to perform the cancellation. Therelore. the result is exact. For that reason.
"we prefer the name "conjoint" [ 17 1 rather than ui[, flor the remaining linked terms.
On the other hand. the the latter name is \err much used in the literature.

We nowk introduce the basic technique for dealing wkilh those terms. We v% ill need
this technique for later dexelopments as well. Consider the Q.It t /2 term--which
contribute to the 1'. amplitude equation- for two clc'rotnm. In this case there are
onlh two diflerent spin-orbital hole-line labels. The five possible diagrams for this
term are given in Fig. 1. The last one is unlinked, the other four are the usual
connected diagrams (see. e.g.. ref. 15 ). We Aould like to showk that the sum of all
five terms is zero in line with the above discussion. If two lines have the same label
then the end of these lines (wAhere theyt are pointing) can be changed. This process
is described in Figure 1. Note that the sign of the diagram ma. change by this
because the number of loops is different after interchanging the lines. Similarly.
one has to consider that the factor in the algebraic expression associated with a
diagram can change during this process. The rules can be summarized as follov+s:

I. Interchange lines -with the same label.

QT< =- 2 0D- VU
\/,N= + 0 V_V

\LD Oi/ = -VW

Figure I.
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2.Sign is determined accordl IUg to thle change i I 111e nij iInher 4 d 1i00p-s

I. a )\luIlt Ip ph\b a factor of' it t here is a iies% eq u alclnec I erte\ ofr linle
( h flIu~ltipl\ b\ a tactOr of' 1 2 it'a nest, permulLtatiIn Is possible orf the euk
alence (11 \ erlices is destros cd after stecp I is done.ý

Alter natisel\ to steps .31 a I and 3, b) tile factor call be determi-ined in tilie 16fol lt-
Ing \%a\:

3. \ Iiltipi pl\ -i 2 if the Origi nal diagrams are [lot S\ min nitric hut thle one obtained
bx step I Ps. 11\ ide b', 2 Ill thle opposite case, the faictor is I other\\ is.

Yhe abo~ e rules, as e, er\ rule onl diagramis. are based onl thle IManipulation of,
second q uantized operators. I[bus. lotr esamlple. rule 2 Canl be unde~rstood aLS a
conSe4.jICn1cC of'1the faict that changing the order of the operators caujses the sign to
change

*s %N c see f rom fi1g ure I t he s umn ol tallI i \ e d iagrams is I ,/ei-o : hc ti rst It\xo conIInectIed
diagrams cancel thle unlinked one. Ibhis means, that the unlinked diagram canl equally
wkell be xx ritten in a con nected xx a\

The third and] fourth diagrams Of Figure I cancel each other, thus the\ arc not
needed for thle cancellation of'1the unlinked dliagram. This pr4)pert\ otf I P parts, is
xxkefl known, n.and has been uIsed to define approximate ,(methods (see later) 11[8-
2 1]. as, xxell as being integral to the older (F 1 ts methods [ 22.231.

I he Iwuo-Ekectrorn Problem W ith Brueckne~r Orbitals

'Ihle easiest ,-.a\. to analsie the txxo-electron problem firmiallx is to assume the
use of' Brueckner orbitals [24.25 J.In this ease, 1', (0. so 1T and thle eniergy
expectation x alue canl be wrnitten as

o1(l -/,i)( I ri Itl

since all higher products o)1 v: % anish.' The derixaitive of' Al; xxith respect to T'
ma\ be %xxritten in diagrammatic lainguaige as

According to the \ariational principle the parameters of' T. (or T2 1 can be dle-
terniined b-x requiring. for example OAF/dbl 30. Fromn this w.e obtain

In hw, womIn Av (it) no intii lr Iucc th 1w 11% icrm ii iat the wtni f g .11 g but Insiead l ater, ito gei aninthcr
itjea it heir o~
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( 1- ni)(V-V-VVv\NVvx< -
(01 GC IOI~ ~)v~v(21)

or using the definition of AE:

V.VV_.VV._V- - AE - \LV (22)

The latter is the diagrammatic form of the CID equation and exact for the two-
electron problem. We, on the other hand. attempt to get the C(') equation by
manipulating the former one. After rewriting it, we obtain

( 1- (ED) (VV\_.LV-V__V-,, -U00V_.V (23~ (23)

a U VV --(AE (D -*) VV - 0
Using the definition

S= V.V\ V_NV -\Lv -OiXV_ (24)
this can be written as:

( -LV -(0 25)

This equation has the form of a homogeneous equation in . Note that. in the

second term. _- is contracted to "r that is. we sum over all labels. To ensure the
stationary condition (23). the following equation has to be solved:

VV+VVVV_.- -x_-_.0 V.V - 0 (26)

The last term is an unlinked EPV term. Now we can use the results of the previous
chapter and replace the unlinked term with linked ones. As can be seen from Figure
1. (VTT)r =-( W7". Here the subscripts UL and L mean unlinked (last
diagram) and linked (first to fourth diagrams), respectively. Using this, we arrive
at the fully connected (linked) CCD equation, which applies for any number of
electrons, as well,

It' + 1 '+,jT+ If', T =0 (27)

Id is the diagonal part ofA',,1 .
Trivially, QCID(i.e.. QCISD with C, 1 T, = 0) is equivalent to CCD. Furthermore.

the above equation is the XCCD [121 and ECCD [8,101 T2 equation for two electrons.
Note that the general equation of these two latter methods (see Introduction) in-
cludes additional terms which vanish for two electrons.

Other methods can be derived also. From Figure 1 it is clear that to replace the
unlinked term we do not need all four linked diagrams, hence, the last two cancel
each other. Therefore, including only the first two terms the method is still right
for two electrons and leads to the AC(1D - ACP-D45 = ACP of Dykstra and Paldus
118-211. Moreover all the CEPA methods [22,23] calculate only the EPV part of
diagrams one and two of Figure L. Therefore. unlike ACCD. for more than two
electrons, they are not invariant under virtual-virtual or occupied-occupied orbital
rotations.

Returning to the two-electron problem, the stationary energy can be written as
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LE-~L U- - (28)

if the stationary condition (26) is satisfied.
Finally we are going to determine the functional of the various methods. Eq.

(19) is clearly the (it) functional with T, C,. Rewriting ( 19 ). we get
LE-U• OOOv'_0- •0,£

(29)

where --I is the strictly connected form of ... as described abooc.
Introducing the new \ariable. A,.

A-/ A •(3))

the functional becomes

iE )(31)

This is the functional form of ('D. Q('I). and L('CI) methods for two electrons. It
also holds in the many-electron case for (-('D and QD,. ('learly, differentiating it
according to A2 leads to Eq. (27).

In the two-electron case it is not necessary to solve an equation for A, because
of its relationship with 7'2. This is not valid, however, if the number of electrons
exceeds the excitation rank in T. In this case. eq. (30) is only a better initial guess
for the A2 amplitudes than the usual A, = T,.

The functional for the xc( method can be obtained from Eq. (19) by full ex-

pansion of the denominator:
/• E - U.•÷0•0, n • - , CD -- • -C(on(-

- n-Z D - COZ CUZ - ED- -* -X D, 32(32)
+ChQUUc -

which is infinite. Differentiating according to T,, we gct for the stationarv equa-
tion:

=1- ýI ~ -V~ \L cuT -o0 ('1)
The solution is clearly the same as from Eq. (26).

The Two Electron Problem With Singles and Doubles

In this case. 7T T, + T 2 . I, = G;, = and the energy functional has the form:

AE = <0] er',lbe""'lO -__ Numerator
l0e, Ie' 0 Denominator
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DENOMINATOR -
- 1 -a -uU .•_-_-0 U F] -. _ýR

NUMERATOR -

The stationary conditions are (dAIE/OT,) 0 and (3AE/!17") 0. which lead to

the following equations:

DENOMINATOR-( V-V \LV-V \J-VV. V-x -

+_VV VV-x )- NUMERATOR (VV_+VV)- 0

DENOMINATOR R(V--x V*+V V+U.v V_• ÷ (35)

__- *Vf *_ ) - NUMERATOR*
(V• + V_f _ V1 IV,_) - 0

The CC(SD Method

For this method we define the following one- and two-particle variables:

= V.V-+V V4_VA LVV" x•V\L -
+VVU- V._ V_VýY_ ) (36)

and with this it is transparent that we have again a homogeneous system of equations:

DENOMINATOR * ( I+ ) -

- (rB+H+4 )( Vz -v__.+.va+-.k)- o

DENOMINATOR - • -
(37)

- (EM B+ )( VV-VAv )-o
As before, linear independence requires that

-0 (38)

The two-particle variable has unlinked EPV and disconnected terms, while the one-
particle variable has only unlinked EPV terms. One can remove the disconnected
terms of the T2 equation using the following identity. which is a consequence of
the T, equation, which is embedded into the T 2 equation:
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Recogn iing this the mxo-particle variable becomes:

- V- V -jV" V. V_'vd/-Vt - V/< (40)
ýL v ý - ( 4v I, - - V

and now all unlinked terms are of ITP• t pe. \gain. •e can arrange them into
connected Int'v terms using the above rules.

(4! (4! )i
Sir, u= iV\] V-V T_

As a further demonstration. the if T, 13 case is given in Figure 2.
The two-particle variable is no-, fully connected:

VJVQ'=-2 v v

(� 1W2)L U V -V_•Y-
Iigurc 2.
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I ;W , = vT, + 11',+ tl,1 i - 1 Fj I- T' ,l

+ II4•A- + I•I-- +_ r , If I" (41)
3. 4!

and the equation to solve reads:

If\T1 + J"\ + I-H2j' + iLf--- + 4'T, f lt'Tjl

Sw.,.- + I A, T .(42)
3! 2 1 4!

which is the CCSD T, equation for any number of electrons.

In the same way. we can replace the unlinked EPV terms of the T, equation using

(I-M .TT A. T2 T Ii T1 X

3! 1, \4'3! J.

For a demonstration see Figure 3. The fully connected one-particle variable then
becomes:

JTI + 14' T + [V7T + 14"1 I+fTj"\ T2 T, IVA (43)S..... . 3 ! ( 3

which leads exactly to the CCSD T, equation of the many-electron system:

.fýT+ + + T- + If 7T + wf +1+ +1 R = 0 (44)
3!

Using the fact that satisfying these equations means, for two electrons, tthe ful-

fillment of the original homogeneous equation, the energy can be simplified to

£•E" iD• O *_-(45)

Sgu- 0:-•Q 3.' °

Figure 3.
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which again is the (vst) energ\ expression. The fact that we arrived at tie (( sD)
equations and energy expression shows that the method is exact Ior two electrons.

F~inally, ,e determine the (-('St) functional. I, sing the definition of Iq. 36 ) the

energy functional of Eq. ( 34) can he re% ritten as:

DENOMINATOR (40)

where, in the last step. k was introduced as:

DENOMINATOR

DENOMINATOR
This definition of' A shows, that it is -'I --Iike. i.e., A contains disconnected parts.
At this point the two- and one-parlicle \ariahles in the functional include unlinked
terms. As we have seen abo\c, it is possible to write them in connected form [see
steps from Eqs. ( 39 )-(43 1]. Therefore, the final torm of the functional is

,A E - 1Z_ý, -2 eu 0 -7; i a48)

The derivative, according to .%, leads to the (vsi) eqs. (42) and (44).

"I ' Q("I.I ft.I d

We define tile same one- and t~ko-particle \ariables as for the ((si) method ilth
eq. ( 36 ), and follo% the same steps through Eq. (40). [hen, we do not cancel the
disconnected diagrams of the two-particle •ariable. but instead introduce a ne1.
disconnected variable. In diagrammatic language

"Ll v 'VA/V'1 (49)

or algebraicall.

"The permutation of the indices on the 1' amplitudes is required to maintain full
antis\ mmetry. This new variablc corresponds to the ( I coefficient. Introduction
of the new, xariable means using (C 1'" 4 •'i in the operator basis. We now
obtain,

o( )o
NJ .:/ .\,, y', / . /\ ". ,.'. -'* _( •v •

One should. of course. check- whether the replacement isjustified for all terms. This
can be done at the diagrammatic lekel. and this process is showkn in Figure 4 for
the Q, IF, I 2 term and for the energy.

fhe nest step is. as in the ( (sl) case, the replacement of the unlinked I P\ terms
h\ the linked one. [he onl diflirence to the former case is that no\k w\e use (C
rather than 7.2. The one- and t\vo-particle connected \ariahles are then

: llx/• ~~~+ ,l l( x'/ 51

, ~ ~ ~ 4 21t (•(R•
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+

-i, ': .. .. .1

Figure 4.

Therefore, the amplitude equations are:

It',.7-1 +.1Tj + W\ C, + •tfT, 0 (53)

It T, + If,, + IfH,'C + ./,,C, + I Uc2 - 0 (54)

and the energy expression is:

AE = IFAC,2 55

These equations and energy expression are the QcSi) equations [9) for any number
of electrons and, as it follows from above. they are exact for two electrons. One
should note here that the Qwi Eqs. (53) and (54) and CCSD Eqs. (42) and (44) are
equivalent for two electrons only. In this case, all steps of our derivations are exact
and, therefore. the difference"s are hidden. Inclusion of the connected i:Pv terms
with the variable T (CcsD method) or C" (Q(,I method), which are tetraexcited
contributions in the many-electron case. is essentially different. The relationship
of CCSD and QCISD has been discussed in detail by Paldus et al. [26.271 and Pople
et al. [28,291.

Using similar steps as for the CCSD method the functional can be written:

(56)

Thei Ac( Method

We now define the one- and two-particle variables differently:
.•vy 1V.V-",_VN +"1/V_V_.-•

'V2-x, VV - (¢LM-0 •) (VV" V )

41" V-X+ V+V •'•'v -\/+o\V, +

-. J + VL + V_• • V_• .V - \.V. (57)

"+VW-- " --- X * V -X" +] VLO W- - V--

--(O O 0' +(• V__f + V + VV•)



Note thle differnclit v. ith [qI. ( 30 )" thle flc one-election \af IahIab c.ontains" pic.ccs
ot, thle tý\ o-electrot var-iabl Conltlraied h\ 01 tnihe Ot her. h1and(. hie npri

ariable is C\act1%, thle sallic as Hr1 (SID, With those. thle Iand Iequations
becomine:

DENOMINATOR

DENOMINATOR

Vgai n. til hc t moigenCnuIS cq na~tionl ha~s oni'" th1w tri '[ i! solUt inn. tltervI-0re. the 110%

\ anable should \ anish~. \,o\\, cont rar\ ito thle C( As) case. the I icq nation hMa, unlin1KedI
tcrmls. "' hich are not Is m~ \Ie. One should Cancel them. WCe use thle c( SI) i*, Eq.

I 44 1. Ihis i, JUStifiedi because \w are looking to0; evict results mr1 t01- ný cICrnns1-
an1d. InI thils case. tilt:( SD) F; equaInn1[ satisfieS thiscM)nditinfl. We Use thle tHloýIns iW

Wqaithties:

V 2 'V

IV . I- S 6)

.41

11ecause tlie two-partidcl aibotIq17 is thesame as in thle( ( SI case ahmse.
hie connected timo-particle %ra; hk Is tile saime as Iur (SI):
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WA HT, ± H+ \- I "T + It-, + /,JT2 + IF-, T'

+ + + If' + W,,-- + IV (62)
. 3! A-24!

[compare Eq. (42)]. The equations to solve are then
& -0

063)

At this point, one should note that the one-particle variable of Eq. (61 ) can be
turned into that for CCSD (43): all terms containing T* add up to zero because of
the T: equation. This. of course, must be true. because both equations must be
exact for two electrons. They give, however, different results if we apply them to
problems with more than two electrons. In this case. as we will see below, other
terms appear in the T, equations. therefore, these terms do not cancel each other.
They introduce higher excitation effects (see later). The energy expression is the
same as for the CCSD method but for only the two-electron case.

Now we are going to show that the above equations are really xC( type equations.
i.e.. they are the same as Eq. (10) for two electrons. The XCCSD equations, according
to Eq. (10). have the structure:

Q1 +1TT + I' 7T + T714B + /,'aT-
QT( + TTT + R ' TTi, + 2 + T1 "

2 2), + 1 1d

+ + I TI(HIV T), + HT,7T_ + 3- 1Tf,' + 2 Pf H),T, T'),
3. -

I JA W, T2) + 4!T( + +t ( If,'" -1)
+ , 2 T1 WT') It I(WvT2 Ti).

24! 3!

+ Tt(.-.+ Tj(.. =0

and

Qi H 'A T1 + Wv, + If'.,, T, + HI \y + /,IT, + 14i T, 7",

• v7`1 -+ T•, 7-2- T" 4,• _
+ If "V + WAFvT' - + lill -
+ 3! 2 2 4!

+ 7-,( •• + T1':( • ) + T".( . .. 0)=

All the terms denoted by .. •) are EPv terms with more than two open hole
lines. Therefore. they are zero according to lemma 3 of ref. 12, and for two electrons
the x(v equations are exactly the same as the above. The conclusion is that the
x(c method is right for two electrons. However. in practice. some truncation of
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the finite equations is n.ecessar. I I1. rI'we Nani it to be right tor t\ko electrons also
in this case, the lirst part should he retained compIpleIl. and onth tile trms denoted

\ ( . I •can be truncated.
Fhe vanishing of terms flor two clectrons denoted hb\ ) suggest that these

tervis represent higher excitation effects. Ihis is in line with tile findings of rels. I I
and 30-32. where terms like these were used ito include higher excitation elffcts
into the (v(SI) calculations.

As in the Brueckner orbital case, the xv ( functional is infinite. I ýsing the definition
of Eq. I 57 . the original functional 34) can he written as

DENOMINATOR

fcompare to eql. 146)]. I sing the abox e results, it can he re•xritten into a llh
connected form.

DENOMINATOR

Now we expand the denominator completel]:

zL _.> - •- E 1" DENOMINATOR " (66)
"DENOMINATOR -

Atfter replacing the unlinked [i1> terms it can be written as being full\ connected.
Making it stationarx according to 7.+ we get an equation which is satisfied if Eq.
(63 1 is satisfied.

-/l /( ( So .1c lthbO

For this method we start at Eq. (655. We define A ditlerentl\ as in Eq. (47):

DENOMINATOR (67)
(67

DENOMINATOR

i.e.. it is not ( I-like. rhis leads to

1 his is now, \cr. similar to thie t(c functional. One has to remember, however,
tile def1inition of the one-particle %ariable [see EIq. (61 )]: there are some terms
Ila% ing 7, in thenm. In the I(( case they should be A• . The derivalive o1" (68)
according to A., leads to the Eqcs. (63 ). We hae seen above that. at least for tlle
two-clectron case, thie terms including T1 in the one-particle variahle add up to
,ero. I hierefOre. replacing 1 b\ .\, does not change the amplitude equations. The
modified one-particle ariahlc Is instead.

.1. l,/ . If'\ - [l,.l i- 1- l,2 iT + If\i 4 .4 1.17

I* 4
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I 1,
+ A, A(HvT'T I),+ -A I (rI\Ti),-

2
I I

+ A , T4)" + AI(1f',T.T,), + 3 A,(fT-'), (69)

and the functional becomes

AE- _+C-0+1-12
which is now the ECC functional. 2 If there are more then two electrons then the
replacement of T'i by AI is not justified because the cancellation of TIi containing
terms does not appear. In fact, it causes a scaling of these terms (which represents
higher order contributions) by the denominator. This eventually may cause an
unbalanced description.

SXC(C Method

The amplitude equation of the sxcc method is described by Eq. ( 13.). As men-
tioned in the introduction, and shown in ref. 12, this method is not exact, i.e.,
including all possible excitations in Tthe method is not equivalent to full (i. There-
fore, it is not correct for two electrons. Even if we know that already, it is interesting
to understand the origin of this deficiency to try to estimate its error.

We know from the previous section that the first term in Eq. ( 13) is zero for two
electrons (the xcc functional is exact). Therefore, we now investigate the second
term

(D,I((e1.,), e), 10) (70)

only. It should vanish in the case of an exact theory.
For the sake of easier understanding we first return to the Brucckner orbital case.

We have to modify the two-electron variable defined by Eq. (24) to a form given
by (70). To that end we now do not replace the last term by the corresponding
connected expression, because the term (70) does not contain it. We rather use the
following identity:

LiDO -T- (71)

This follows from the definition of T[ Eq. ( 2)] and the symmetry of the functional
and amplitude equations. Now the unlinked tvv term is

- n \LV (72)

and the question is whether we can replace it by the corresponding connected one:

n V-V 2 (T?"WT2 )L (73)

-Transfirmation to the doublc c( nocc ki siructure J,., I % . not di, .t.,co here bcc-auw ii utld

need a notIatiol ý..,hich woulcd fnoi b. consistent ,. iih th- prcscnt one. hut the lftranOormaltiol i%. cxict 181



A\ccording to Figure

T?, WT L 74)

i~e.. the simiiple replacement I introdLICes tilie furl her non /cro unli in ked terms. \ke
nieed on11\ tile SCeýOnld atd ,i \Itl h trnI of 1ign re 5 to replace tie unlttinked termi. I huso.
thle exact IamplitudeI equlationl can he X~rittcni av:

\'here subscript 2. 6 means the se~onld aridt "mil diagramsl, of h-riure 5. 111h,, equationl
is correct for txMo electrons. hut U iforimi atel. \ mt conmpathibe %\t itithe f~rnit of'

70). In othter x\ ords. not all I'l de txe tteeeguitct ionat I 12 tare Included
Iltithe exact am p1l it tide eq uat ion. Ilhercfbre. fin rder to ha e thle I'nlt 14 OMat xx e ha eý
to Include all ttile terms of, Figuire S and. in addition. xe thake to add ,ome terms
x% hieh cancel the second term ot' Lq. -14

I sig I ( 6) %%e can rite:

j'j 01hI

OýV-VV= 2 QID0 \LY
T- V-\ZI/ = 2 n-DVI/

017VV - IIVfQ-OV
Q7V-\Vt - 2 VJQII -

V- V =0 VJ -V

V~I + 070 VII
\z+ 1 011TO\/-\

+~ WT
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Replacing these unlinked I:,v terms by linked ones, and inserting into Eq. (75).
we get:

I, + + +,F - i'.i, I + j ) j-'

+ -((2Th,)T),.X 4((7•:i,), i), (,

Here subscript r means that only specific diagrams have to be included. There-
fore, once again, we do not have the whole derivative of the diagrams of the
energy expression. It is worth mentioning that this equation has exactly those
higher-order terms which prevented us in ref. 12 from showing that the

D,, I(( e' 7//\), e'), 10 '> = 0 equation is exact.
The rule we see here is that the sum of all connected [1W1i terms is equal to the

sum of all unlinked 1-iPx terms (see also Origin and Properties of •IPV Terms). The
exact equation of the two-electron problem does not include all unlinked tPV terms.
therefore, a subset of the connected terms are needed to cancel them. Hence. the
inclusion of specific diagrams into the amplitude equation is not compatible with
a finite functional.

Now we return to the T = T, + T2 case. We start with Eq. (60) for the T,
amplitudes. Beside Eq. (71 ) we also use a similar identity.

ILL. .(771

Replacing the unlinked terms with the connected ones and remembering the rule
obtained above we have:

-: T" + Iti,7, + '[1,T ÷ l W5 T, + If-\ T2 +- Till, if 1 vIt,1I

-*- TI AT.,, + Ti'I, 11.Ti + TIWT 2T. + ¾'/ 11,I

.+ I',+ , If T -' + T, + 7I~' TlT I- I~ -. I
2 7 721 %,.T T + ý, T, /',

+ UVU. V V 0 U -T (78)

For the T2 equation, from Eq. (40) we obtain.

"I'ABL F 1. Total energy of the 1 molecule at I A.

Total energy

Method DZ DZP

Full ti 1.12671267 1.13962799
Sx(c (4')' 1-12671873 I. 1396352x

'This method is a truncated form ofthe sm ( method I111
according to tburth-order. using both T, and 7i as lirt-order
quantities-
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As in the simplest case, the I (si) Eq. (42) can he used to replace unlinked
tcrms- I his procesýs again introduIces specific higher-order terms so that the e\act
equation is not compatible wý th thc form ( 10(1).

The conclusion of this section Ps that ex en to~r t%-xo electrons It IS, not possible to
hax ea simplitied sx m metric functional in an evact method. lThe error is represented
bxý higher-order teris onlN. \hich arc maill and w~hose magnitude can he estimrated
b,. pert Urbation theor\ argumnents. I[able I shoxxs that a truncated torm of' sv
guI'Cs in energ\ \cr\ close to the fu~ll (,i energ\ for tmxxo clcctrons.

In hi~s slud\. the txmo-clectron problem has been III estigated using an cxponen-
tiall\ paramicti/ed encrg\ fun1ctional The Csact stat ionar\ equations canl be slio\x n
to becomle the (CSI). o( 151). I , I). and X\( ( Sb equations. because these methods
arc esact for txxo clcctrmins, [Hie di llcrent l'orms of the \ arious, equations Illuminates
sýonIC (11 thel Connection hetxxcen ( < o) and Q( ISI, and aIlso ho\% higher escitation

cicsarc introduced for more then tx~ o electrons in the IC(( SI) and v ( si) methods-
I he ,v ( si ) method xx as foIund not to tic correct for t~ko electrons. although it

I'd&, 0111\ bcauseI of sorni higher-order terms,. I his smiall dfiflhrence mrax, not affect
the method for practical1 calculAtions. One should also note that. in practice. the
fi nite but rather longi eqIuations" oftheIC I(S n method probabi> need to be truneated.
makinvc other methods computationall\ comnpetitive wvith F(v( because they are
t1\1 mm"Itric in the / and In tile I paramectcrs. I or S\(C it x er\ eass to cx aluate
pro)perties as the gcneraii/ed I lell mann- le\ rman theorem is satisfied [I11. 1 ] All
o)ther mecthods reqluire the determination of both Iland .\ to determine properties

wse. cco.. rels. K334. and 35i).
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Coupled-Cluster Method for an
Incomplete Model Space

STANISLAW A. KUCHARSKI* and RODNEY J. BARTLETT'
Quantum Theory Pruject. Lniversir" of Florida. Gainesville. Hlorida 3261 1

Abstract

The coupled-cluster method with multidimensional reference space is studied in the case of the in-
complete active space (]AS). The latter was chosen as a subspace of the Hilbert space corresponding to
a fixed number of valence particles. Two different approaches for the normalization condition are analyzed.
When not imposing intermediate normalization, the cancellation of disconnected terms is proven. ensunng
that extensive energies are obtained. , 1992 John Wle? & Sons. Inc.

Introduction

The selection of the reference space is a crucial problem in the multireference
generalization of the many-body perturbation (MBPT) and coupled-cluster (cc)
theories. The most convenient approach to this problem would be an inclusion of
a very limited number of functions, possibly those which strongly interact and are
close in energy. The model space formed in this manner is usually incomplete. To
make it complete would usually require taking into account many more functions.
not important from the viewpoint of the physics in the problem. This also enlarges
the size of the model space. and it brings about the problem of intruder states [I-
3]. The first is impractical and the second often fatal. It should then be concluded
that a reasonable answer to the problem would be an adoption of an incomplete
model space. This complicates the theory somewhat 14-6 ].

MBPT for an incomplete model space was first considered by Hose and Kaldor
17] where the disconnected terms occur and a general method for their generation
is suggested. The detailed analysis of the additional terms due to incompleteness is
given in Ref. [2]. The main question connected with the occurrence of the dis-
connected terms pertains to the (size) extensivity property [8]. This feature is
considered to be a prime virtue of MBPT/C( methods as compared to the (t-based
methods. The coupled-cluster formulation corresponding to the Hose-Kaldor MIIPT
approach was presented by Jeziorski and Monkhorst [5 1. The (( equation given
there for an incomplete model space leads to disconnected terms in agreement with
conclusions reached by Hose and Kaldor.

* Permanent address: Institute of ('hemistir. Silesian I nisersit,. S/kolna 9. 40t-00)6 Katowice. Poland.
* To whom correspondence should be addressed.

International Journal of Quanturn (hemisirN: Quantum (hcrmistr, S mposium 2. 107-1 15 )992)
1992 John Wile) & Sons, Inc, (10 ( U0t))-7f06ttX!)2/[ll1)07
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The problem of extensivity of the different approaches was addressed by Shepard
[9 1, who arrived at the conclusion that the presence of disconnected terms destroys
the correct scaling of the energy with a system's size. That statement had weakened
the importance of the incomplete model space approaches.

A new aspect of the problem was presented in the studies by Mukherjee [10]
and Mukherjee and Lindgren I I l]. In their approach. they exploit the previously
introduced idea of the universal wave operator [1 2-14] defined, not only for the
given n-valence Hilbert space, but also for all other tn-valence (On < ?7) spaces, i.e.,
for the entire Fock space. They call this method a Fock-space approach to distinguish
it from the Hilbert space approaches. e.g.. realized by Jeziorski and Monkhorst.
The conclusions drawn in Ref. [I l] state that the incomplete model space may also
generate an effective Hamiltonian of connected nature. provided the "ave operator
is a valence universal Fock space operator and once the intermediate normalization
typical of the Bloch approach is abandoned.

Another Fock-space approach to the C(, theory was developed by Stolarczyk and
Monkhorst [ 15 1. Here the active space was expanded to include the whole spectrum
and, consequently. the model space lost its usual meaning. That would require an
alternative definition of the effective Hamiltonian as a quasiparticle conserving
operator.

The aim of the present study is to give a thorough discussion of the terms appearing
in the expansion of the effective Hamiltonian and in the c(- equations for the
incomplete model case. Particular attention will be paid to the role of the inter-
mediate normalization condition in the generation of the unlinked diagrams in the
effective Hamiltonian expansion.

General Coupled-Cluster Equations for Multidimensional Reference State

The basic equation in the derivation of the C( equation is a generalized Bloch
equation [16.17]:

I12P = f

When operating on the Bloch equation with the model space projector. I", u'e
obtain an expression for the effective Hamiltonian I1"'

Ijr" = Pimp - f"XPltlr P (2)

where Q = P + X.
Acting on Eq. ( 1 ) with operator Q. i.e.. the orthogonal space projector. we obtain

a general form of the (v equations:

QJIII' - QxII' t1 P = 0 (3)

Further analysis of Eqs. ( 2) and (3) requires a specification of the wave operator.
Two main forms of the wave operator will be considered in the present study. The
first one, based on Jeziorski-Monkhorst (JM) [5). will be termed a Hilbert space.
ket-dependent exponential ansatz; whereas the second. corresponding to the Mu-
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kherjee-Lindgren (M L) formulation [ 12-14 ], will be termed the universal (or Fock
space) wave operator approach.

Description of the Method

The approximations introduced into the coupled-cluster method usually rely on
the truncation of the cluster expansion. In order to avoid excessive proliferation of
terms we adopt the method denoted in the literature as CCSD for the single reference
[18] or MRCCSD for the multireference case [61, in which the cluster operator, T,
is approximated as

T(K) = Tt(K) + T 2 (K) (4)

i.e., only single and double replacement amplitudes are included with respect to
each (i.e. K) reference state. The detailed form of the T, and T2 operators depends
on the type of wave operator assumed and will be specified later.

As far as the reference function is concerned, the two-dimensional model space
is selected. spanned by the functions 4'0 and 4', i.e., the simplest case of the
incomplete space.

Hilbert Space Exponential Ansatz

The explicit form of the wave operator. 9, may be expressed as

Q= Z eI(K)4S(K)PAP (5)
K

where

T(K) = • T.(K) (6)
L

and

TJ(K) = (LV)- 2 ,' t"--.2 12•2 (7)

The prime in the last summation reminds us that those components of Tr(K),
which produce excitations within the model space, are excluded from the sum-
mation. S(K) is an additional operator, which depends on the choice of the nor-
malization condition.

In order to employ diagrammatic techiniques in further derivation, the reference
function which would play the role of the Fermi vacuum should be selected. The
natural choice would be to assume also a ket-dependent Fermi vacuum, which
means that the particle and hole states will be redefined for each column of the
effective Hamiltonian matrix. This also means that the diagrammatic expansion
of the diagonal element of the effective Hamiltonian matrix will be expressed in
terms of closed diagrams, i.e., those appearing in the energy expansion for closed-
shell theory.



I it) KtT('ILARSKI AXND BART11111r

In order to proceed, the normalization condition should be specified. In the
following subsections two options will he considered with the intermedhute nor-
malization imposed or abandoned.

Intermediate Normalization Imposed

The intermediate normalization condition assumed in this subsection may be
expressed as

PQ = P (8)

This equality only holds for the specific form of the S(K) operator:
S(K) = [t"(K)t,(K) - 1:.(K)r,(K)j]t i.43v (9)

With these assumptions the effective Hamiltonian operator of Eq. (2) takes the
form

Ie" = PI2P (10)

tt:Xr = K'.F, i /i tl. •i•,) ( 10a)

m = ,I I (Do) (l11)

In ore ;r to obtain specific diagrammatic expressions for the diagonal and off-
diagonal element of the above operator, standard techniques based on Wick's theo-
rem are employed. The diagonal element, tI,, takes the form, as previously men-
tioned, analogous to the energy expression in the closed-shell theory [ see Fig. I (a)].

The off-diagonal element, Il5k = WI"," graphically denoted asa: v!(doubie arrows
refer to the active le, 2-s) is given in Figure I (b). The symbols. v and ! ý,• represent
the sets of diagrams occurring in the expar-•in of the effective Hamiltonian for
the complete model space (CMS) approach aiit are given in Ref [191. The difference
between the diagrammatic expansion of the It', element for the ('MS and the
present treatment is represented by the last four diagrams in Figure I (b). all being
disconnected. Thus, the off-diagonal elements contain disconnected diagrams. absent
in the ('MS theory. The origin of those terms may be attached to the tact that the
T, operator is allowed to carrv active labels only.

The coupled-cluster equations are given in Eqs. ( II ) and (12). and their dia-
grammatic versions in Figure 2(a and b) for T, and T, amplitudes. respectively.

= o---~ -- +

b =+ +

figurc . IDiagrams contributing to the diagonal (a) and off-diagonal (b) element of the
etfective Hamiltonian. Flilbern space tDpe wave operator with intermediate normalization

assumed. iv),od) means permute indices in last diagram in the two possible ways.
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The general structure ot the (C equations is analogous to that ot the (,MS case

1191. i.e., no explicitlI unlinked terms contribute. The 7i1 equations are set up now

also tor the t. amplitudes. i.e.. those engaging active labels only. This is a conse-

quence of the incompleteness of the model space. The latter fact also atlects. to

some extent. the renormalization diagrams which are now slightly modified.
In the I', equation two tDpcs of terms contribute: connected and disconnected.

This means that the explicitll unlinked terms are fully canceled. The con-

nected terms may be divided irto two pans: (principal term graphically denoted as

"which is identical to that occurring in the ('MS case and close to the diagrams

obtained for the closed-shell theory: and the renormalization term. denoted as

" , which is somewhat modified with respect to Rel. 1191 and which is entirely

absent in the closed-shell theory [ 18 1. The terms written in Figure 2(b) as discon-
neeved diagrams are. in fact, of a connected nature when their order-by-order struc-

ture is examined. In full analogy with the complete model space. they may be called
apparent disconnected terms.

The full set of renormalization diagrams, i.e.. those represented in Figure 2 by

symbols Y and %' ,*,' is gi-en in Ref. [19].
It should be mentioned here that although the (v equations are formally of a

connected nature, they also implicitly generate unlinked terms. This is caused by

the flict that the It ': element of the IIt" involves some disconnected cortributions

[see F.g. I(b)]. Substituting the ',',1' disconnected component fbr the R ';', element
in the (( equation will create a number of unlinked diagrams. This should be kept

in mind when dealing with the (-( method based on the wave operator considered

in this subsection. as applied to an incomplete active space.

D0+ ai O .b '.pJ,.• <aJ, b a J , b -

0~D Jj-j ~~ + b VV1 {)ob

Figure 2. Diagrammatic equations for the single (a) and double (b) excitation amplitudes.
for Hlilbetl space formulation of the tc theory with intermediate normalization assumed.
(itlah) indicates the inclusion of the last diagram subject to permuiting the labels as

specified.
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Intermediate Normalization Abandoned

The departure from the intermediate normalization may be written as

M•2 # P (13)

This happens when we set the S(K) operator equal to zero. As a consequence, the
second term on the right hand side (rh,:) of Eq. (2), known as a renormalization
term. does not disappear. The diagonal element of the 11" operator, e.g., for the
reference, 4), may be expressed as

<t•leJ00 <Po le7(°]o) -- (14)

since the other reference function, (D, does not contribute to the renormalization
term. The diagrams appearing in the expansion of H(M) are prested in Figure
3(a). We observe the presence of the additional term as compared to the case
described in the previous subsection. This term is due to the renormalization com-
ponent of Eq. (2) or, in other words, due to the fact that the x operator can Ic:;rod' ce
the component of the model function. The off-diagonal element of IUtt mrt t.L

expressed as

H1lo, I4'ejI () Jto>- K xI X I (o<Polt ) (15)

where we took advantage of the equality ( 41 I X I =1il) = 0.
There is a basic difference between exptessions ( 10b) and (15). In the former,

the unlinked diagrams do not appear when applying Wick's theorem, since the
operator, e ,O)±S(O) cannot generate the function ,'•. The elimination of the S(K)
operator from the exponent allows us to create the function 4ý,'"'! when operating
with eT(0 ) on (Do and this has the consequence of creating unlinked diagrams from
the term K'F2He. I O)'F. The unlinked terms are also generated by the second
term of Eq. (15) and these cancel all those coming from the first term. The full
mutual cancellation is not possible. however, due to the term in brackets in Figure
3(a). The structure of the noncanceled diagrams points out its connected P. i jre.
In fact, this is an EPV diagram shown as the last term in Figure 3(b).

The disconnected terms are now generated by the terms:

<( D gI• 710 jte r,,, o > ( €, a .I 1Ve Tf ,,)l ,, l e' o > ( 16 )

o ý EO + oo---x x+ +

0 N 0

Figure 3. Diagrams contributing to the diagonal (a) and off-diagonal (h) element of the
effective Hamiltonian. Within the Hilbert space formalism without intermediate normal-

ization assumed. ( ) denotes permutation of the nonequivalent lines.
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and also bx the renormaliiation part of Fq,( I I ). xploiting thei equation tor
the r,' amplitude. we observe the partial cancellation of the disconnected diagranmi
The surx i\ ing term [ the second term in Fig. 3( h) I is actuallx a con nected I 1,
diagra.n. Thus, in this approach. onlh connected terms contribute to the otffdi:igonal
etlectiwe Hamiltonian element.

The (v equations deri\cd for the present torm of the •xx•c operator are identical
to those presented in Figure 2. The cancellation of the unlinked terms in the current
case is a little more complicated. This is due to the fact that ,1,,, (h' I .. I,, is no
longer equal to )I,. Writing the T, in the general torm I Eq. I I]. I .Ie obscrxe
that the cancellation of the unlinked terms occurs hetxeen the first and second
term. This is also true for the (Nis and waxe operator described in the previous
subsection. Here only partial cancellation takes place between them xxitlh the term

(with plus sign ) surviving. The absence of the imermediate normalization

makes the term ,1,<,,! X( I I nonvanishing and. as a result, the last term of Eq.
I I generates the diagram . . (minus sign). making the cancellation of the

untinked terms complete.

Fock Space, Uniersal W%"ave Operator Approach

In this section xwe ýxill discuss brielyt the formulation of the samne problemnlv ithin
the Fock space scheme.

The formulation of the lock space c theory relies on tile •axve operator defined
as

S.... 1,• (17)

where denotes tile normal product of the second quantiled operators. 1 he
cluster operator is. as usual. separated into components corresponding to the single.
double. etc.. excitations

T- T, " (18)

k% here

The summation over d, runs oýer particle and acti\e levels, and summation over
ij goes over hole and actixe lc\cls. [his means that active labels occur both as the
creation and annihilation operators. Owing to this propert\ there are possible op-
erators which are tfrmally classified as double. triple. etc.. excitations. but effectixcly
generate the single excitation function ,,'. e.g.. t1'. 17,. i;7, etc. and the same is
true for higher clusters.

The number of unknown amplitudes, defined according to Eq. ( 19 ). far exceeds
the number of equations. In order to solve the problem w~e need to include into
the model space also loxxer ranked sectors. containing dilffrent numbers of electrons.
The standard wNaox of constructing the Fock space operator is to proceed in an
hierarchical manner, starting with the S,"' .. ' sector ((1,0 and after solving the (v
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equations go to the sectors .' -' and S""' with one extra and one less electron
and solve the cc equations until finally ending with the S"V ' sector, which
corresponds to doubly excited configurations relative to 1,( ,; . NoAw ith all
single and doubly excited configurations included in the orthogonal space. with
respect to the additional reference states. the required number of cluster equations
may be formulated. This allows the universal waveoperator to he unambiguousl\N
determined.

'The second approach which could be employed here is to adopt the core as a
vacuum, which means the ,Y"' sector is now tile doubly ioni/ed configuration and
we will consider, also. the .•Y' " sector corresponding to fIOur singl. ioni/ed config-
urations and finally the S"' 2" sector which would include four determinants in the
complete case. or the two D,, and (F,;,' in the current example.

it was shown in Refs. [10. 11,201 that the connected form of the ellectiv- Ilam-
iltonian and the (v equations ma\ be ensured by retaining the above operators in
the expansion or, in other words. by dropping the intermediate norrnali/ation.

Thus, in the present case, we also end up with the connected structure of the
involved quantities. However, the complexity of the problem is greater in some
respects. although computational considerations are such that Fock space calcu-
lations represent only a fraction of the time of the ground slate (v solution [23].

Conclusions

It was shown on the example of the two-dimensional model space that the presence
of the disconnected diagrams in the etthctive Hlamiltonian cluster expansion ma\
be attributed to the intermediate normalization condition. Departure from that
condition eliminates disconnected terms,

The disconnected diagrams. present in the ettfctiýce Hamiltonian expansion. are
the source of the unlinked contributions when iterating the (v equations.

The important observation is that the connected expansion of the efectike Ham-
iltonian may be obtained for the Jeziorski-Monkhorst wave operator. i.e.. an op-
erator defined for an incomplete n-valence Hilbert space [4.61. The necessity of
the inclusion of the lower rank components of the Fock space approach is very
inconvenient from the computational point of view. particularly for problems where
lull potential energy surfaces. as opposed to energy differences. are derived [ 20.211.
It also confuses the usual meaning of "excitation." as ".spectator" amplitudes like
,"` are part of "double" excitation amplitudes. The number of equations which

should be considered is larger than that in the Hlilbert-space approach.
One may anticipate that the later formulation of the multireference coupled-

cluster theory will be easier to implement and more useful in actual applications.
Elsewhere, this is explicitly shown for the two-configuration. open-shell singlct case
[22 1. the hitc noire of single-reference (v approaches.
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Moment-Method Perturbation Theory for the
Hydrogen Atom in Parallel Electric and Magnetic

Fields and in Inhomogeneous Electric Fields
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Abstract

The problems posed by the hsdrogen atom in parallel electric and magnetic fields and in inhomogeneous
electric fields are treated simultaneously by means of perturbation theory. The application of this approach
is facilitated b> the transformation of the Schrridinger equation into a recurrence relation tbr the moments
of the %vavefunction wshich does not appear explicitly in the calculation. Two infinite sets of states are
considered as illustrative examples. one of them can he treated as nondegenerate. and the other requires
perturbation theory tor degenerate states. Closed-lbrm expressions for the perturbation corrections to
the energy are obtained in terms of the hydrogenic principal quantum number. The present calculation
extends and generalizes presiously published results. t 1992 John Wile, & Sons. Inc.

Introduction

Perturbation theory without wavefunction is one of the simplest and most efficient
ways of deriving analytic expressions for the energy eigenvalues of relatively simple
quantum-mechanical systems. One version of this approach which comes from the
combination of perturbation theory with the hypervirial and Hellmann-Feynman
theorems leads to closed-form expressions for the energy coefficients of arbitrary
states in terms of the zeroth-order energy [ 1,2 ]. This method only applies to separable
problems, because only in such cases one can obtain the required recurrence relations
for the expectation values uf properly selected operators. On the other hand, the
combination of perturbation theory and the moment method applies to a wider
variety of problems, and has been intensively used in tl-: -tudy of the hydrogen
atom in magnetic [ 3-61 and magnetic and electric 171 fields. The first applications
of this method were restricted to nondegenerate states and states not coupled by
the fields. The latter can be treated as if they were nondegenerate thus facilitating
the application of the approach. Recently, the moment method was shown to also
be useful in the application of perturbation theory for degenerate states to the
Zeeman and Stark effects in hydrogen [8,9].

The purpose of this study is the application of the moment-method perturbation
theory to the hydrogen atom in parallel magnetic and electric fields and in inho-
mogeneous electric fields. A previous application of this method to the former

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 117-126 (1992)
, 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010117-10



s5\stem consisted olfa nuumerical calculation tor states that can be treated as non-
degenerate [71. le.re are derfxed analh tic e\pressions Ior the energies of'these ,state%
and also of a Class I tI'Saat'S coupled bN tihe pertu i 'a•,di n. I, Ii% "jA ! : " pr,-tý 1i . rc
outlined in the next section- the recu rrence relations for the moments are derived
in the section following, examples of nondegenerate and generate states are treated
in the subsequent two sections. respectiý el : and. finally, results are discussed.

The Models

First consider a spinless h.,drogen atom under the combined action of a uniform
static magnetic field B and a homogeneous electric field E both along the : axis.
Choosing an axiall.\ symmetric gauge tfor which the vector potential A is related to
the magnetic field induction B b, A -R B r. then the interaction between the
atom and the fields is

(w,. 1,) + (<,.,, x r)' -+ cE -r. (Ii
8

w'here r is the position of the electron of charge --e. !. is the angular momentum
operator, and w, is the cyclotron angular velocity of the electron w, / enmcB. In
this last equation. m is the mass of the electron and c the velocity of light. The first
term in eq. ( I ) is proportional to L._. wvhich commutes with the total Hamritonian
operator because of the c lindrical svmmetr\ of' the s,.stem. Therefore. I.. is a
constant of the motion and without loss of generality that term can be omitted
during the calculation, and its contribution added at the end.

In atomic units, the energy and length are multiples of e/au,. and a,. -- h 2/( 1114 ).
respectively, and the F!amiltonian operator reads

It .. I!, X X[ art( I - cos () br hrcos ti] , (2)

w hhere /1,, 7 . 2 - I/ r describes the hydrogen atom in absence of fields, a1
B2, e![x( [nc)'] and h ý 6aj/•lc. Here. 1? and 4, are. respectixely, the magnetic and
electric field intensities, and the perturbation parameter. X, is set equal to unit., at
the end of the calculation.

For the hydrogen atom in an inhomogeneous electric field along the z axis. taking
into account only the dipole and quadrupole contributions to the classical interaction
energy between the atom and the field I 10 one has to add

ctfO)ý+ g•£ •(0)(3z: rel (3)
6 1 --

to the Hlamiltonian operator for the isolated atom. -1 herelore, the total Hamiltonian
operator in atomic units reads

tl t!,, ÷ Aalr( I 3 cos- I) + /,rcos HI. (4)

in which a (ua,,/6e)(06,/Thz)(z - 0) and h aY, (O(/I.
Onv- can treat both problems simullaneously by means of the larniltonian op-

erator
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"%%hich reduces to either ( 2 1 or ( 4 ) c, hen a I or ' .. r c',IC'tc,

Moment-Niethod Perturbation I h:or'ý

It' ' is an eigenfunction of II. .%i]h 1eigOeInaluc I' and I . bhelri!,,e , t, he tI o 1 l i,
of II. then I I/ I-,'). ' Fl! II 1-,'I I(. In partcular. it I is ol the
form.

S sinl l ) Cos' frt"i w. / t , ..... m ) I.

then

11 1
4 -- [(z +/)i +-/ , I) 4z~ I I)]/f ,

I" - i: I

The second term on the right-hand -,di of tIhi' equation vanihe, '.'hen I
if d I /N. N = I. 2 ..... Another choice that simplifies this recurrence relation
is i= In7 because. in that case. the subscript t remains unchanged and CquaLl to a
good quantum number. Under these conditions the momenls

1 .8 -1:

satisfy the recurrence relation

n + I - I+, ,+ [ ImiI + j)( 1111 - + 1 1101 + 1)I/ ...

A

.• j(j I I, :,, : A tL I.,, + X,(al .. !,,. ... ,; , ,..., (

in which ..%\E is the energy shift L; ± I /(.\ ). In principle, this recurrence relation
completely determines the energy and the moments the same a',,t, the Schridineer
equation does for the energy and the vavefunction. Hence. numerical calculation
of the energy and moments from their recurrence relation is possible. as shio% n h.
Blankenbecler et al. for anharmonic oscillators [II]. H!ere the recurrence relation
(9) is treated by means of perturbation theory: an approach \,hich requires an
appropriate expression for the energy shift in terms of the moments. This point is
illustrated in the examples that follow.

Nondegenerate States

The only nondegenerate state of the spinless hydrogen atom is the ground state.
In addition to it there are some degenerate states that can be treated as nondegenerate
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because the perturbation operator does not connect them to other states with the
same energy. One such class of states is discussed here.

The first three terms in the recurrence relation t9) anish simultaneously N% hen
j J. n = N - I and Iml p ,\ - J - 1. .being either 0 or I. When J 0 0. the
recurrence relation reduces to ..\l7 ,, \\, t (T4.ral. \ •, + hi , ). In order
to obtain perturbation corrections for an arbitrar.x \alue of' N it is convenient to
redefine subscript n as N - 1 + i and the moments as..1,, -, 1, \ . The recurrence
relation is linear in the moments so that one of them can be chosen arbitrarily, and
the energy is independent of this choice that pla's [lhc role of a normalization
condition. In the present case. -,, - I leads to a particularly simple expression for
the energy shift: AE \ X( - w.-1. + /I..)

The perturbation expansions for the energy shift and moments.

aE= V E,,X'..-r., •- A [)X'?x. (10)
p I I I

lead to the following expression for the energy coefficients:

-,=a.t' o aA._' ±+ h/A,, 1  p >O. (II l)

According to eq. (9) the perturbation corrections to the moments satisfy the re-
currence relation:

"') i I ±+ i)(N + i+ I) -- - l)(j+,,)]-"

+ -1(1 - .).,I, + >

+ X ,e.,1)3 a- ., -3 ,% , 2] (12)

The starting point of the hierarchical calculation of the perturbation corrections
from this equation is given by

( P)

.40o, = 6Po (13)

which follows from the normalization condition. In order to obtain E*. one has to
proceed according to the nested loops: q = 0. I .... p. j = 0. 1 ..... 2(p - q),
and i = 0. I .... 3 (p - q) - 1. Because only one expression for the energy suffices
to carry out the calculation one can treat this class of states as nondegenerate.

Degenerate States

The choice. J = i. selects a class of states with i I N - 2. N = 2.3 ... In
this case it is convenient to define the subscript i according to n = N - 2 + i so
that the moments A1 ., = , 2,, satisfy the recurrence relation
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When i = t and / 1. this recurrence relation gives an expression tor the energy
shift in terms of the moments:

AE.-A ., I. al ,T .l•; - X I. ). (15)

Straightforward application of perturbation theory, as in the pre% ious section, showNs
that the recurrence relation (14) and eq. I 15 ) are insutiteicnt to Solve the problem.
because the perturbation corrections to the monlents and energy depend on those
for .-I,,. and A 1 1. The reason is that these states are connected h\ the perturbation
and have to be treated explicitly as degenerate.

To obtain additional equations. / = i = 0 in the recurrence relation ( 14). \%hich
becomes

(, - I )., + AEA .\ 4- M aa.-:. - a..I,,, - h/. ,1 0. ( 16)

whereas, when / = 0 and i = -- I. one obtains

,11, 1 = . ' -A E ., AI.. 4 X(,a ..le, - a~l,,: - .1 . )](17 )

Substitution ofeq. ( 17 ) into eq. ( 16) yields a second expression tor the energy shift:

AE[,.ij• - N(AN - I )At..
+ X1 oa[.l, - N( - I )., ] - a[ .-, -- N(N -- I )..1..-

- h[A 1.2 - N( A'- I )Al.,] = - )O. ( 18)

The normalization condition. /.41 = I. leads to a particularly simple expression for

the energy shift

AE = X(aA•., - iaA... + b. 211) . (19)

which, when substituted into ( 18). gives

- N(N -- I ).A,,(](aAjj - aaAI,.3. + b.l_1.)

+ ;- a[A2,, - N(A' - 1 )A,.2] - a[A(. - N(N - I )..o•j

"1/)[A1 N(N I)A,] = 1. (20)

According to eq. ( 19). the perturbation corrections to the energy are given by

E, = a..l ' ", - aaV. '. + /.) ''. (21)
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and those tbr the moments are obtained hierarchicallv by means of

I(.\ - 2 - I )(I N + i)- ( +. 2)(.\ +. l) ., ,

+ .j(. +-I .1 '••/ ,
2 . ' .1 1

t+.,- I 1",.' , . (221)

starting from

(23)

which comes from the normalization condition. These equations yield the pertur-
bation corrections to the energy and to all the moments in terms of those far .'1,
which are determined by eq. (20) that play the role of the secular determinant in
standard perturbation theory [ 12 ]. For instance, after writing all the moments of
order zero in terms of A,1,1. by means of the recurrence relation (22), eq. ( 20) forX - 0 becomes

I) 3- ,] .,1A'• A'(2 + )+ 2 3 ., .

2

+a,4 - N + + 7( 1 - A) ..I - Nh= 0. (24)

The two roots of this equation, which are both real, give the splitting of the pair of
degenerate states considered for each value of N. Expanding eq. (20) in X-power
series, and expressing all the perturbation corrections in terms of those for AJ.O.
shows that the resulting equation is linear in the corrections A4,-t' with p > 0. which
one can obtain in terms of corrections of lesser order already evaluated in previous
steps. Explicit expressions in the simpler case of the Stark effect in hydrogen (a = 0)
are shown [8], but here it seems preferable to use a symbolic processor to solve
for .1 o,) in every step, thus avoiding mistakes.

Results and Discussion

Throughout this communication, the states have been labeled by means of three
numbers that occur naturally in the recurrence relation for the moments N, Ia m,
and J. The projection of the angular momentum along the z axis is a constant of
motion with value mnh, m = 0, ±L • • • and the energy depends on Iml which
appears explicitly in that recurrence relation. The number, N. is the principal quan-
tum number of the isolated atom so that the zeroth-order energy is E' = - I/( 2N 2 )
in atomic units. For low fields, it is customary to designate the states by means of
the hydrogenic quantum numbers. According to this convention it remains to in-
troduce the angular momentum quantum number / = 0, .... Close inspection
of the expressions for the energy derived above shows that I = Iit = N - I for
the states treated in the Nondegenerate States section, because they are nodeless



\~hn. .()n thc other hanIId. tff Ir Ihc pai11r of, dcgc I Ict: qatI Ie )II idk~Jer 1l til1.he
I )egecneratc statcN sect on. onle ha,, (M I rOeof theml anid 1 2 140
thle other, both hlam inc A 2. 1[Its LoflelUsiItOllx s 110111 Ililte eI'eIn CwkkiW11
Ot AL II CLII. i Iand ( 18 h1 i rex1A cal tat. lot' IC Ofmc' the stics5iid, e
\x hereas the other has evactix one radial lcro. I or exa mlplc. Ax lin . thec pal
Of Unperturbed states are 2'p and 2\ . 11h1u' present approach Ii 1!terec ý\\ Ist h

perturbation theor% that leads to a 2 2 -1secular, determ Intilil i illi acll ismlc lliln:,
oti-diagonal matrix elements I'll- Such Slates. I he splittli ne 01' the Clierex Ic" i .1 Cc
to the admix~ture of' these States IS enirelyCI due to thc er ICIl/'--. becauseý the,, termsi,
proportional to a hiaxe iero ofl-diagonal matrix eleenits.,,

1 hie nmomen t method leads to remiarkahl\ silni ile r~c(u ri enCC re6l1at11 M n xI lk a
suitable for both numerical and anal\ tic calculation1s. He[re thc in~terest is, HI anlaklx t
expressions bc~ause the\ allovk a clearer interpretation of the ph\ iical phecnomenon.,

Een with the help of the mioment method. an anal\ tic calculation of order lai2cer
than the second xxould be extrernelx tedious without thle assistance of a sý mbolihfc
processor such as Maple or Reduce. J hie former is Used to obtain thle rellsi
Tables M-V. Table I shioxxs thle first four perturbation c.orrections to [lhe enicruex o!
the states with / In: : - I of' the 1\ drogen atom in parallel electric aind
magnetic fields ( < I 'I. hoe results agree eompletel \ x ith the anal\ tic calculation
of' Lanbi n et al . I13, 1. with thle numerical calculation ofiohn-son ct al. 114 1 t'r thle
ground state. and wNith the numerical Calculation of' l'ermnhde/ and ( as'ti'o 1 7
excited states. Oti the oilher hand. the coefficient of'(, in the analxol gi round-
state energ\ obtained b\ Turbinci [f 15 1 through thle loglarithinc per-tubtion14111 t l]corx
must be xx rong. Ilable 11 Q(Soxs the pert urbhation correenlons to tile nclicges of- the
pair of' states wkith Iin m \ 2. / 1. and / V 2for tile samet xsotem.
Because the energx coellicients become i ncreasi ngl\ coinpliicated hi netions of, A .
as the perturbation order increase,. onlx the first perturbation correction hI or arbitrar-x
NV and the first three corrections bor A I- arc shoxxl ii otice that the Splitting of
the pair of degencrate States Is gix en b\ thle sIgn of' the squaI~re roiot in 'I. Ihis,

I \liti I [ Ienuchutiln IIIrdcm iOn ctec~ the ýkalvs sio t to I 14iw h~~l1

ll~mi if) p1r,11cII t mfl kk'n cidm c1.1icic tofl.1d

V, (\ 5h I

I~l~iO'~4S (l,161iS4\ - 45's.'tcflai S i'01N400.\ lll',O

.i~f~5l~i Ix~4-i~ i ~i~ 5 ~-'i'-' ~ '1N2'0c\ ISNO1icl



124 FERNAN[DZ

TA.B.fT I1. Perturbation corrections to the energy of the states with Im I N - 2, / .N I and
I -- 2 for the hydrogen atom in parallel electric and magnetic fields. Here A A

., =. 2(N - I) hN1A

A a([.\ + I IN- - 7N] t [a", -(4A' X - 44N3 + 931N4 -- 154N + 49) + 24ah.\(2N + 1)
+ 36j'"2-[,/2N-(4aN,' + 2a. + 3b)]

E, = 12a + 121.A

E, = -2688a2 - 4416ah.4 + b2(2688A2 - 2941, 2) - 12b[a-(-256768A,1 + 131584A) + a14 73856.42
+ 160000.4- - 14496.4 + 3336) + bM(21120A3 - 1656A)/(96bA-f + 640a.. - 184a)
4

E, 4 [a6(-33016371200 + 344518656000A - 1198325760000A2 + 1389363200000.4 )

"+ a•/(170714931200A4 + 1345363834880.43 
- 784635667456A' + 101330065920.4)

"+ a46 2(-81341644800A' + 130628736000A 4 + 340686297600A ' + 5184082608A
- 117119362560A2 - 265992240) + a3b3(7818240000.46 - 89171389440A' + 42978037248.4'

+ 40913244480.4' - 9372717024A-' + 1043037120A + 12091680) + a'b 4(2564352000Ab
- 23014775808A -+ 2995896960.4' + 4861565568A' - 74329560A - 1004842080.42

9250020) + ab5(630374400A" - 1854524160A' - 48161080A 4 + 378855360,4'
+ 36243720A2 - 9690705A) + b6(63244800A6 - 30922560A 4 + 2528010A 2)1/[l2bA + a(80A
- 23)1'

=(20a + 3[) 23a + (529a4- + 60ab + 9b2)"2 ]

splitting is caused entirely by the electric field in agreement with the prediction of
standard perturbation theory. Thus far, no independent calculation of these per-
turbation corrections has been reported so the present results are compared with
those for the Stark (a = 0) and Zeeman (b = 0) effects in hydrogen obtained by

TABLE Ill. Energy coefficients for the states with I = I = N - I of hydrogen in an inhomogeneous
electric field.

E, = bhN22(N' - 1)

L2, - 2N4N(N + 1)[lf
2N2(16N' + 20N2 + 28N + 56) + 4N + 53

E -, b'ý•E (N + I)[4'N 2(48NI + 168N4 + 240N' + 36N 2 - 748N - 968 + 4N' - 22N 2 - 102N
4
- 931

-.... -I h4N'°(N + l)[eN4(66560N' + 415120N 6 
+ 1 167840N' + 1936800N'4 + 2486528NI

640
+- 6005776N 2 + 13623520N + 11373440) + W2 N'(8960N5 + 33160N4 + 166160N' + 810400N-
- 1665800N + 1165840) + 960N3 + 4665N' + 7750N + 44001
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I .\HI I\ Energy. cofltfcicnts OTr the states ýtth m .\ 2. / \ I and I ' I1%,,ot ci
in an inomoggneol elec tIric field I Joe .1

IA.6, ,' " \ .I]

. 1 :A.\2.\A I5N I fl [I .:4.\
4  (,d.\I I 1,s1.\ 30W.A 12H 24L\(2\ l1

2, .':[2', 2. " I" 3],

6/,'[ 12 - 2()

E, -6-'[&(2 0 9 9 -I 70(8481 c2(X81408..I - 76416 "1 Z(4 160.1 5 ,4 • 21. I

174.1 961 ']/[(80. -. 2 7,C) i 12.1]

12
, -- h'[,(214453370880 1906252185600A -56481 ,4624!000 • 5578424320)00.11)

( (-328738487040 20107857801736A - 3602664284160..4- 13 17236736000.1 ')

44(673 1274960 -- 38759215392 -t1- 17694135936012 - 339210828801}.-_3 1383042,f3 20.1"

382432051200A 5) -,( -41577480 - 5841953280.A - 23069407104A: 2833339200.1l
1144584314881• 1 147592719360.,1 ,0 26060800001..1') +- 2(490590) 2901854801

168177360012 -- 2116040832._1 - 9384504960.t" 1- 4 16603978752." 1 85478400041)
t 0,f 3792015 4 12081240A 69958080..1- 1605369601A i 407980800.0A 210124800.1 t)

S.,12(842670 - 10307520A.12 2108161)0.14)]/[) ( -- 27 -- 80.01 + 12_.i]

A 25( + (62542 4 601 + 9)""/14(204 ý 3)1

the same method but a different symbolic processor (MUIMATH) and contrasted
with results from various sources [8,9].

Table III shows the perturbation corrections to the energy of the states with t =

mIm = N - I of the hydrogen atom in an inhomogeneous electric field (T = 3).
Because the whole perturbation vanishes as the electric field is turned off it is con-

venient to write a = bý. To compare present results with those obtained by Bedn~iI
[16] by means of the Lie algebraic method one has to substitute a/3 fbr ý and F
for h. The first-order corrections agree, but there is a slight discrepancy between
the second-order ones. which may be attributed to the long and tedious hand cal-
culation followed by Bedn~i. Table IV shows the perturbation corrections to the

energies of the pair of states with JinI = N- 2,1 = N - I and ' N - 2. For the
same reason given before only the first perturbation correction is shown for arbitrary
N and the first three energy coefficients for N = 2. The author is not aware of
published results for these states to which he can compare present energy coefficients.
but they must be correct since they come from the same program that produced
the results for the other problem.

The moment method provides a systematic and simple way of applying pertur-
bation theory to various problems of physical interest. One obtains the perturbation
corrections hierarchically from recurrence relations which are suitable for both
analytic and numerical calculation. Their treatment by means of symbolic processors
is straightforward. so that one easily derives analytic expressions of relatively large
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order which commonly facilitates the understanding of physical aspects of the
problem.

Moment-method perturbation theory is prefi.trable to logarithmic perturbation
theory [ 15] because the latter becomes much more tedious in the process of treating
states with nodes. Furthermore, it seems that this method has not vet been appt~ed
to degenerate states. If one is only interested in the energy the moment method is
more convenient, because of its greater simplicity, than the L.ie algebraic approach
[ 16,171. The latter is certainly the most powerful method to derive analytic expres-
sions for all the relevant dynamical variables in the system. However, in the cal-
culation of such properties by means of perturbation theory.', the moment method
is still useful for providing a rapid and independent test of the energy coefficients.
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Relativistic Many-Body Perturbation Tlheory Using
the Discrete Basis Expansion Method: Analysis of

Relativistic Pair Correlation Energies of the Xe Atom
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Introduction

-The relativistic IIa-bod'. theors has been the suhtcct of actvýx rsTearch interest
during the last decade. This is due to the increasing awvareness of the importance
of relati it. in describing the electronic structure of heav\ -atom systems, and due
to the inadequacy oftthe physical model that neglects relati\ ity or treats it as a small
perturbation. It is necessary to forteit the Schr6dinger equation in faivor of the Dirac
equation to describe the electronic structure of hea. v-atom systemns.

In the last few years, the relativistic manv-bod\ perturbation theory (IIMIt'I)
which accounts for both relativistic and electron correlation effects, ý%as developed
by a number ofgroups [1-9]. The relativistic %ImIt algorithm, based on an expansion
in analy.tic basis functions [4-9 1, has the advantage in that it provides the compact
representation of the complete Dirac spectrum. and greatly l'acilitates the evaluation
of the many-body diagrams using finite summations [6]. Furthermore. hý inm oking
the finite basis set expansion in terms of (iAUSSIAN spinors (G-spinors). the
relativistic manv-body methods can be applied to molecular electronic structure
problems in a straightforward wvay [10. II]. Applications of the relativistic manil-
hody calculations, ho,,ever. have been limited to lighter systems, because the ap-
plications to many electron systems require large integral storage space and com-
putation time.

In a series of studies [ 5,7. 12.1 3 1. we hawe developed matrix Dirac-Fock I I1).

sell-consistcnt field ( s(-). and relativistic MvBI I calculations using analytic basis
expansion in terms of (i-spinors in order to account tor both relativ istic and celctron
corri-lation ctefcts in heavv-atom systems. The analytic basis expansion in terms

Intcrnational Journal of Quan tum (hcmi sr.: Quantum (hcmistr, Sr mpoxium 2P. 127- I 1 I i
. 1,2 John Wiler & Sons, Inc. ( ( ()1 20-7 (mt,;o)2/(1ltt 27-tt9
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of G-spinors has yielded accurate results for highly ionized systems, and shows
none of the signs of the near-linear dependency problems reported with S-spinor
basis sets [4]. In a recent study [13]. we also developed a way to reduce the com-
putational burden in relativistic MBPF calculations on Kr and Xe by using contracted
G-spinor basis sets that retain both accuracy and flexibility in the core and the
valence region. The feasibility of a practical relativistic MBPr on heavy atoms is
examined by benchmark electronic structure calculations on the ground state Xe
atom by using the contracted G-spinor basis sets. The Xe atom possesses 54 electrons.
and is one of the heaviest atoms to which nonrelativistic and relativistic MBP'[

calculations employing analytic basis functions that has ever been applied.
In the relativistic MBPT study on the xenon atom [1 3 ], we have obtained the

relativistic second-order energy to be -2.7403 au. Its nonadditive contribution
[ 13]. due to the intcrference between relativistic and correlation effects, was found
to be -0.0326 au. Although the electron correlation energy and the nonadditive
contribution are small in magnitude in comparison with the total Dr: energy of
Xe, they may constitute a significant fraction of the valence-shell energy. Because
of the large number of electrons involved, it is very likely that we will be able to
take only the valence-shell correlation energy into account in al inilio fully re-
lativistic many-body calculations on heavy-atom-containing molecules. Thus. it
is important to investigate what fraction of the correlaton energy, as well as of
the nonadditive contribution in a heavy-atom system. is due to its valence shell
correlation energy. If a significant fraction of the nonadditive contribution comes
from the valence shell, then the relativistic and correlation effhcts are no longer
additive in the valence shell.

In the present study, relativistic pair correlation energies of Xe are computed by
using a recently proposed contracted G-spinor basis set that is capable of reproducing
over 9911"; of the relativistic correlation energies computed by using the large un-
contracted G-spinor basis set Il 31. The computed second-order pair energies are
partitioned into the core, core-valence, and valence shell contributions, in order to
study the nature of electron con 'lation enc•rgy in the valence shell of the heavy-
atom system. The objective of the present study is to perform a detailed analysis
of the relativistic correlation energies of Xe. in order to provide a benchmark for
heavy-atom systems.

Methods

The N-electron Hamiltonian for our relativistic MBPT calculations is the so-called
relativistic "no-pair" Dirac-Coulomb (1t') Hamiltonian [14, 15 1,

ti, = 1, ht, ( i) + L- (1 !,- ,I / r,,). L I

where £, = L. (I) L,(2) . L,(N). and L, (i) is the projection operator onto
the space spanned by the positive-energy eigenfunctions. q'4, of the radial DF-
operator, F, [ 16].

r)= e~,,(r) (2)
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T -xmt1 1. Orbital energies and total

I)1 ncrg' of Xe (in aU).

Orbital Orbital energies'

Is,, 1277.25i

Ls,., .202.4646

2P, 189.6769
2P)3 : 177.7045
351st. -43.01016

3p, 37.65910
3P) -35.32504
3d., .26.02319
3de -25,536094
4s, -8.429622
4p,1 6.45 2115
41: -5.982547
4ti, 2  -2,711115
4d•:, 2.633551
5&1 --1.009964

5p,,, -0.4923594
5p•,. -0.4396173

Ernr' -7446.88356
Ela, - 7232.07173

SComputed bN using well-tempered

2 Isl 9pl13d G-spinor basis set.

' Total Dirac-Fock-Coulomb sCF en-
ergy.

'Nonrelativistic limit computed b. using
c 10',

where

F, ( + + I' - (3)Seli, + rs, VS~s - 2c:

and

0,+,(r) = (Q,.(r)) (4)

The radial functions, P.,Ar) and QO,(r). are referred to as the large and small
components, respectively. P,,,jr) and Q,1A(r) may be expanded in sets of analytic
basis functions [4-8.16].

In q-number theory, the negative-energy states are taken to be filled in the true
vacuum state, and the relativistic many-body perturbation theory is conveniently
described within the particle-hole second-quantized formalism in which the occupied
positive-energy states as well as the negative energy continuum are taken to be
below the Fermi level [ 6,7 ].
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TA! F. IL Pair correlation energies of Xc (in milli-hartrecs).

Pair cncrgý

Pair c 137 (137(0 W D0 Iill.

Valence
5 pSp 731.63 73.81 +0.18
5p5.s -26,72 25.35 - 1.37

5s,5.,. 5.89 578 0. 11

Core-v.alence
5p4d 1 138.39 134.24 4.15
5p3d -.. 13.15 - 12.50 0.65
5p4p - 17.713 -17.20 0.53
5p3p -3.56 - 3.54 .0.02
5p2p -1.23 -16 I-0.07
5p4s --3.09 --3.21 t0.12
5p3s . 0.80 .0.85 +0.05
5p2s -0.28 -0.28 O.()
5pis -0.11I -0.10 -0.01

5s4d -49.61 -43.75 --5.86
5s3d -6.26 -529 -0.97
5s4 p -10.81 --9.86 -0.95

5s3p -1.80 -- 1.59 -0,21
5.s'2p -0.50 -0.42 0,0(18

5s4s -- 1.59 1.52 -.0.07

5s3s -0.35 --0.34 --0.01
5s2s -0.11 -0.10 -0.01
5sis --0.04 --0.03 -0.01

Core
4d4d -409.53 -409.75 +0-22
4d3d -171.72 -172.86 +1.14
4d4p -- 187,64 184.91 --2.73
4d3p -48,42 -50.96 + 2.54
4d'2p -16.90 -- 17.33 +043
4d4s -46.22 --46.10 '-0.12
4d3s -11.08 -- 12.41 + 1.33
4d2s -3.85 -4.19 p0.34
4dls -0.16 -0.19 +0.03
3d3d --383.96 -382.72 --. 24

3d4p -81,98 -77.41 -4.57
3d3p -200.96 -200.92 -0.04
3d2p -121.20 --124.01 +2.81
3d4,5 -27.40 -23.79 -3.61
3d3s -50.62 -49.59 - 1.03
3d2s -28.38 -31.20 +2.82
3dls -1.09 -- 1.26 +0,17
4 p4p -53.93 -53.23 -0.70
4 p3p -31.87 --31.33 ---0.54
4 p2p - 12.31 - 11.69 --0.62
4p4s -26.67 -25.67 -- 1.00
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'I\ft 1l 11 (C'ollflll d )

Pair cnlcrg\

Pair 13'.03-70]14 Dil

4p~s7.5) 7.8q5 ,o I1
4 1 2 ' 2.84 2.79 0.05
41)1 1.14 1.09 (f.Lo
3p3 p5) 5f. 55.i7 1 5564

3121 58.74 5.24.5
10.51 9,40 I W;

3/,3 . - 27.34 27.13 1.2
312, 13.25 11.07 (I.s
3pl 5.9c• 5.7 . -. 24
2 p2 p 135.57 131.52 3.75
214.s " 3.54 3.06 0.48

2p36 13.16 1.6] 1.55
45.82 43.98 1.84

2pt.A 31,0i5 31.08 0.57
4ý4% 4,70 4.56 0.14
403, 2.48 2,46 1(.2
4-2l 0).8 7X 0.4 0.14
4 1 N I 0..28 (1.24 0.04
303 4.457 4.55 0.0 2
3%2\ 3.4r, 3.27 0. 11
3\1, 1.2 1,1 (I11 IX

%7.7 7-23 o 27
2k 6.04 5.28 .
IA I 23.93 24.77 I0.84

In a series of studies [5,7, 12, 13. 17. 18]. we have performed matrix Dirac-Fock-
Coulomb ( miv) and Dirac-Fock-Breit (I)F:B) S(I calculations on many-electron
systems with a finite nucleus model. In these studies, we have emphasized alteration

of the boundary conditions such that GAtJSSIANs become the best form for basis
functions. Representing the nucleus as a finite body of uniform proton charge
accomplishes that feat [I17]. With this representation of the potential, for example,
the exact .sj , solutions of the Dirac equation near the origin. we have

P(r)/r- 1 4 gzr, + g4r+ (5)

Q(r)/r A . Ir - •ir • (6)

so that. for a arbitrary parameters [ 171.

1(r)-- r+ ggr' + rexp(- r') (7)

Q(r) .. /lr: + Jfr 4 + .. . . Ar exp( -- c.r). (8)

Thus. in the finite nuclear model, the GAUSSIAN functions of an integer power
of rare appropriate basis functions because imposition of the finite nuclear boundary
results in a solution which is GAUSSIAN at the origin [ 17.
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Figure 1. Partial wac analysis of the pair correlation energies (sign reversed) for the
ground state of Xe.

The G-spinors that satisfy the boundary conditions associated with the finite
nucleus automatically satisfy the condition of the so-called "kinetic balance" for a
finite value of c. The kinetically balanced G-spinor basis sets are precisely the form
given in eqs. (7) and (8). This is a consequence of the fact that the exponent of r
in the GAUSSIAN functions does not depend on the speed of light. In this sense,
the G-spinors are chosen to satisfy the condition of kinetic balance and relativistic
boundary conditions associated with a finite nucleus.

TABLE Ill. Core, core-valence, and valence contri-
butions of pair and nonadditive energies (in milli-

hartrees).

Pair
energy Nonadditive energy

Core -2384.64 -17.87
Core-valence --249.41 -13.43
Valence -106.24 -1.30
Total -2740.29 -32.60

'Ref. 13.
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In a recent study [13], we hawe performed relatiuistic I)N ( S(I and MI1' cal-
culations on ground-state xenon with the x'ell-tempered GAUSSIAN basis of Hu-
zinaga and Klobukowski 119. 201 in a contracted and an uncontracted form. In the
present study, we have used tile same well-tempered GM 1.SSIAN basis sets: The
[I-(. S(,f calculations were done 'w. using the uncontracted 21 xl 9p 12 d basis set.
Basis functions in the 2Is. 1917. and 12 d primitive sets %%ere contracted to generate
the [t4s1 3p 10d] contracted set for .MHI'I calculations. The contracted set was de-
rijed by grouping the functions of highest exponents (see -Table 2 of retf 13 ). The
pair correlation energ. calculations were performed b\ emplo. ing a partial-wa~e
expansion up to order Lm.ý. 5 ( 14-. 1313 I0d7 /6g5h basis set I. The Xe nucleus
%-as represented as a sphere of uniform proton charge distribution. The atomic
mass used in the calculations was 131.30 amu. The speed of light used %.•as 137.0370
au. To simulate the nonrelativistic limit, a value of c of 10' vas used.

The virtual orbitals used in the study were calculated in the tield of the nucleus
and of all the electrons ( 1" potential). Goldstone diagrams haxe been summed to
compute the second-order pair correlation energies. Diagrammatic summation was
done wxithin the subspace of the positive energ> branch. i.e.. in the no-pair approx-
imation [14.151.

The fxc Hamiltonian used in the present study is approximate. In the Ix' Hlam-
iltonian. one-electron interactions are treated relativisticalls as a sum of Dirac one-
electron Hawiltonians. whereas the two-electron interaction is treated nonrelativ-
isticallv as the instantaneous Coulomb repulsion. Howe\er. the encrgy shift induced
by the low-frequency Breit interaction in the s(1: and correlated calculations is
known to be significant for inner-shell orbitals ofheav% systems [8. I8]. The effects

of relativity on the valence spinors. however, are almost entirely accounted for by
the I)(" Hamiltonian used in the present study.

Results and Discussion

Table I displays the total I)iF( energy.11` ), . as well as the orbital energies of Xc
computed by using an uncontracted 2 lx 19 13d G-spinor basis sets. This total i)i-
energy is 0.017 au higher than the total Im(- energy. -- 7446.90 10 au compute(] by
using numerical finite ditffrence mw program [21]. We have computed the non-
relati% istic limit, / 111 , by taking c l--0 in our of ( s(,[ calculations. This gave
-.7232.07173 au. The relativistic energy lowering, w,-hich is the diflerence betNccn
the total r)F( Sd(: energy, E,). and the nonrelativistic limit. li' . is 214.81 au.

A number of quasirelativistic eflective core potential calculations [ 22-241 have
been performed on diatomic Xe, and XeCI. In these calculations. the 5ý and 5,"
orbitals of Xe are taken to be the kalence orbitals. All the remaining orbitals are
treated as the core orbitals, and they are replaced b\ a set of eflective core potentials
for valence-only calculations.

In the present study, we also treat the 5s and 51) orbitals as the \alence orbitals
and the remaining as the core orbitals. Then the total of 66 second-order pair
correlation energies for ground state Xe may be partitioned into the valence, core-
valence, and core contributions. Table II gives the second-order pair correlation
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energies partitioned in this manner. In the table, the relativistic pair energies com-
puted by using c = 137.0370 are given in the second column. The nonrelativistic
pair energies obtained by setting 4- - 10' are tabulated in the third column. In the
fourth column, the nonadditive contributions, i.e.. the difference between the re-
lativistic and the nonrelativistic pair correlation energies. are given.

The partial-wave analysis of the second-order pair correlation energies given in
Table If are schematically presented in Figure 1. Here. the magnitude of the rela-
tivistic second-order pair energies for the ground state of Xe are presented as a bar
graph. From Figure 1. one can clearly see that the dominant correlation contribution
comes from the 4d4d and 3d3d pairs as well as those that involve 4d and 3d
orbitals (e.g., 4d4p. 4d3d, 3d4p, 3d3p. etc.). This may easily be understood
because the 4d and 3d shells each possess 10 electrons, and the dynamical corre-
lations among these electrons are not well accounted for in the iwc:( Sd|: step.

The valence, core-valence, and core contributions of the relativistic pair corre-
lations, as well as the nonadditive energies. are tabulated in Table Ill. The valence
and the core-valence contribution of the pair energy are. respectively. 3.9"k and
9.1% of the overall second-order energy of Xe. The valence contribution of the
nonadditive energy, - 1.3 milli-hartrees, accounts for only 4"( of the overall non-
additive energy, and only 1.2% of the valence pair correlation energy. This strongly
indicates that relativity and correlation effects are additive in the valence shell
of Xe.

Table 11 shows that a number of core pair energies are of comparable magnitude
but with opposite sign. Because of the large cancellation of the nonadditive energies
in the core shell, the overall nonadditive energy of the system remains small. Fur-
thermore, the core contribution of the nonadditive energy accounts for only 55r"
of the total nonadditive energy. Because there is no such cancellation. the core-
valence contribution of the nonadditive energy accounts for a large fraction (4 1)
of the total nonadditive energy.
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Nonorthogonality and the MO Energy Level Patterns
of Molecules Deduced Directly from Structural
Formulas by the New VIF Method as Compared

with Machine Computations*

OKTAY SINANOGLU
Sierlfin Chemistry Laboratorv., Yale University, PO. Bov 06666, Nem Haven. (Conecticut 06511

Abstract

The Mo energy level patterns of molecules deduced directly from the pictures of molecules (VIF
method) are shown to implicitly include the overlap integrals between highly nonorthogonal AO's and
to be invariant under crucial nonunitary transformations. Further. machine-computed MO levels are
found to readily yield chemically interpretable information such as the nonbonding Mo levels and the
nature of the HIOMO and LL:MO once the proper invariant quantity found here is subtracted out from
the numerical energies. The resulting EHT, Gaussian STO-3G . type computed MO energy level
patterns then show correspondence with the viF-pictorially deduced level patterns obtained without point
group symmetries. c 1992 John Wiley & Sons. Inc.

This article is a contribution to the bridging of the gap between the pictorial.
electronic language of chemistry needed by practicing experimental or synthetic
chemists and the numerical results obtained by machine computations.

Conceptual and necessarily pictorial theory of valency based more and more on
the molecular orbital (Mo) formulation teaches us to think in terms of bonding,
nonbonding, and antibonding MO energy levels. Computations on the other hand
yield a set of MO energy level values the lowest ones negative, a few of the highest
ones being positive numbers. Can these numbers be readily interpreted and be put
into correspondence with conceptual notions without going into a full. detailed
analysis of MO coefficients and/or extensive use of point group symmetries as most
molecules are not symmetrical anyway?

Computational methods starting with Extended Hiickel Theory (EHT) [1] and
going on up to Gaussian 90/92 [2] options RHF STo-3G and higher, fully include
in the calculation of MO energy levels, the overlap integrals S,,, between the valence
shell atomic orbitals (AO) of different centers these being highly nonorthogonal.

The qualitative features of a molecule's MO energy levels pattern are given by
three level pattern indices LPI = n+, n,,, n- }, the three integers being the numbers

* This article is dedicated to Per Olov Lowdin who has done so much for the establishment of the

field of quantum chemistry worldwide.

Internalional Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 137-151 (1992)
, 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010137-15
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of bonding (±), nonbonding (o). and antibonding (-) levels. It has been shown
that [31 these integers already so useful for qualitative chemical reasoning are also
fundamental invariants [4] when isomeric sets of molecules (and their MO ham-
iltonians h) are transformed into other isomeric molecules yielding thermic and
kinetic reaction selection rules more general than any based on quantum numbers
and point group symmetries. Such chemical transformations can be carried out
pictorially f 31 by simple-to-use pictorial rules applied to the VIF (valency interaction
formula) pictures of molecules which look like amplified structural tormulas (SF).

While SF depicts the electron density (electron pair bonds. lone pairs) in the ground
state of a molecule, the Vii depicts an effective one-electron MO hamiltonian, h.
The VIF therefore yields more electronic information, such as HOMO-LUMO reac-
tivity, than the SF. Further, SF has difficulty in dealing with nonclassical. nonoctet
rule structures, while VIF applies equally well to any electron-deficient, organo-
metallic, or unstable, transient species.

With the pictorial VIF rules one may also deduce the LPI directly from a picture
of the molecule [3].

Nonorthogonality of AO's, the MO Hamiltonian, and the VIF

We start with the abstract, basis-frame independent MO equation.

( h - E)I )=0 (I)

According to the principle of linear covariance [41. Eq. ( I ) can be written in a
linearly covariant form which then looks the same in any orthonormal (O.N.) or
nonorthonormal basis frame for the valence shell vector space Vn of dim = n. We
use

I = Je,>(e,,I (2)

and

el = (3)

with { I e>) } a valency basis set for V, in general non-ON. The I is inserted in
several places in Eq. ( I ) to get the form

(h,1, - ESe)c' = 0 (4)

covariant with respect to the most general group, L(n). (linear group over V,,).
The covariance principle used has been deduced and shown by this author [3,4]
to be a major consequence of the superposition principle, the primary postulate of
quantum mechanics.

Upper and lower indices balance out and are summed over I to n. Lower indices
we take to indicate covariant components, upper ones contravariant.

h e,, I ehle,); h,. a.;- e; h.,- ý09; (A : V) (5)

S . ." = e ele o) (6 )
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The primarn calculated (or semiempirical ) quantities are taken to be the covariant
ones. Eqs. ( 5) and (6). Indices are raised using the metric tensor

A"' = s"' (7)

where

A ,,,=a,

Thus in matrix form

{k.,,-4 (8)

the usual overlap matrix, and

', -' S " (9)

its inverse. In most molecular problems S is nonsingular (I SI * 0) except in some
cases of far-t.v spectroscopy interest where a "A-catastrophe" and its resolution
were previously mentioned [5]. The

h /,,=h (10)

is the usual )a,,,,. 0, }-Extended Hiickel (ELIT) matrix if non-ON, AO's are the
particular basis set chosen and the FlIT approximations are used on h.

More generally it may be a closer approximation to the Hartree-Fock-Roothaan
hamiltonian in which case a's and /3's may include major pieces of electron-electron
repulsions J,.. J,. as in the Pariser-Parr-Pople method [6] for Il-systems, and
('N.)O [ 71 more generally. Even pieces of the all-exiernal correlations c,. e,, may
be included as done using the many-electron theory (MET) of this writer [8].

By linear covariance [4]. however, the same form of the Eq. (4) now applies to
any other basis frame. For example in the Mo-basis (necessarily O.N.). h,, becomes
diagonal, as does S., -- 1. = P 6= 6,.. the Kroenecher delta.

There are also newly discovered unusual non-O.N. basis sets in which { h,.,,.
hecotne" the' sUae matrix as the h of another molecule. These topics are treated in
a previous set of articles [41 giving the foundations of chemical transformations
theory and its vii: pictorial implementations [ 31.

Convenient starting points for MO calculations are hg,. S., ; taken in the non-
O.N. valence shell AO's basis set (as in :-ITr, MNI)O [9]. Rliit: Si-3G).

The MO energy levels , P"., with i e ' I to tii come out very similar in any,
approximate method of calculation in the case of the lower negative eigenvalues.
but differ widcly. in magnitude for the few highest and positive P',. These levels are
measured relative to the "'total zero" reference, that of all electrons and nuclei
separated out to inlinitv.

Given a certain basis set (such as that of i~iri or of sio-3(i). all other bases
obtained by linear transformations J; on that (initially non-O.N.) set. leave the
(I 1I )"' of h, Eq. (5 ). invariant. Thus the numbers I .n,, a; are conserv-d since
V C I.(•). the linear group, and h transforms ad.jointly
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h' T'hT (10')

asseen from h, =T•'T,7 h,, (covariant to covariant tensor transformation). The
eigenvalues { E, } themselves are of course not preserved unless the transformation
is from an O.N. to another O.N. basis in which case T is unitary. In general T is
nonunitary.

The conservation of the MO-level pattern of h (true with or without the consid-
eration of S,. in Eq. (4), see below) with the { E, ) relative to the "total zero," and
this (LPI)h are not however particularly useful for qualitative chemical reasoning
on the behavior of that molecule. We need to shift the zero of the energy and look
at the E, relative to separated atoms (and their free atom AO'S), to assess the bonding,
nonbonding,. ... quality of each MO level. To do this, one of the a,•'s is substracted
out from the diagonal elements of { h,,}. A convenient one is that of a most fre-
quently occurring suitable AO, for example, that of carbon for the pyridine pi-
system (for sigma systems see Ref. 3 1). As alternatives, one may substract a, the
average of all the a•m in h. Taking the substracted one as the standard (std) a, one
has from the abstract form, Eq. ( 1 ),

f= h - cd
and

(•- EI)1,> = 0

with
E= F-a (11)

This h was used initially in HMickel's pi-HMO with the large overlaps S,, neglected,
but here the a-substraction is done now on the abstract form for any molecule
sigma and pi, and as we will see below, without neglecting the overlaps.

Starting for the general case, with the abstract Eq. ( 11 ), we now apply the non-
O.N. unity trick, Eq. (2) for any basis frame and get

[(h)•, - ESjc' = 0 (12)

where however li = h - al has become

(h),,, = h,, - aS,. (13)

The std non-O.N. AO basis set is such that each AO is normalized to unity, those
on the same atom are orthogonal, on different centers they are not. Thus

(h),, = aM. - a (14)

(h), = V-aS.•; (j * Lv) (15)

If all a,'s are nearly equal to a (std a), then

fits = 0 (16)

but if only some of the a,,'s = a (std), there will arise some nonzero fih,'s.
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The original vw's were drawn (even for sigma systems), based seemingly on

-- - ]c- . (1 ) (17 )

where (fi1)" =' -

but ()8), d " (18)

To make it dimensionless {(h)•, is divided by a std j3. Then we have the corre-
spondence

Thus, for example, for an almost linear H3

2

VIF: (19)

jjrý 
3

where each dot = a valenco point, vp, and each line is a symmetrized dyad
e e,)e, I with the coefficient giving the line strength K.• = 0.1/3. All (h0.)" = O.so

there are no AO (i.e., vP) self-energy loops I e.>(e. I in this vIE.
In the initia! vIF [ 3.4] papers it was stated that nevertheless VIF includes overlaps

due to the principle of linear covariance, but proof was not given which is given
now in several steps.

Step 1. The VIF is actually drawn ror (fi), of Eqs. ( 13-15). where, for example.
for the H.A species (a - a)I/3 = 0. and line strengths are K,,,. (= , - 6S.,/J) with
the std 0 = j3 - aS using a std overlap value S. In the starting VIF's nonnearest
neighbor (non-n.n.) lines are neglected as in Eq. ( 19). This neglect is not essential.
The effect on the LPI of the inclusion of further interactions can also be examined
with the VIF-rules. For example if we take the n.n. 12 and 23 as equal and their
strengths as 0. then their K = I (if no K is written on a line in the VIF that line
strength is implied to be K I ). but 13 line will have a weaker strength x < I as
in

2

VIE: (19')
13

Ic
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[This change would also allow one to examine how the t.I of linear 1-1 evolves
into that of an equilateral triangular H, if one were to vary x continuously and
apply the VIE-rules].

The VwF's drawn for hM, and (h)", are the same and yield the same iP1. This
constitutes the first step of the proof that inclusion of overlaps does not affect the
VIF theory going from Eq. ( 18) to Eqs. ( 14) and ( 15).

Step 2. The MO levels { E, } of Eq. (12) with overlaps in the second term. and
the eigenvalues { E If of Eq. ( 17) are different. Even though Step I above showed
the structural covariance under L (n), of ( h L so( h )`, so that when simply diago-
nalized as individual matrices they should yield the same t.ri of their diagonalized
elements, the presence of S,, rather than 6,,, in the full equations Eq- (12). need
be considered.

We show now that the LPI from h alone remains the same when the MO levels
are to be calculated from h - ES.

The overlap matrix occurring explicitly in Eq. (12') below can be eliminated in
a number of ways.

)- ̀ = 0

where

while

and

A= A,

or in matrix form

c- S Ic (12')

The S matrix is turned into the unit matrix I by any number of transformations
from the non-O.N. basis to some O.N. one. Any such transformation is nonunitary.

(a) The method used computationally in the EHT FORTRAN programs is to find
the transformation matrix corresponding to the act of Schmidt-orthogonalization
procedure (this matrix which is not unitary may be derived in the general case by
writing, then solving recursion relations).

(b) Another way is L6wdin's [11] "square root" S` 1 2 device which yields the
OAO (symmetrically orthogonalized AO'S) basis. Equations (20) show this method.

Multiply Eq. (12') from the left with S`/2. Inserting S I/2S• ,/2 after the last
bracket, one gets

(S I/
2  ES 1/2 - 0. /2SS /2)S/-"= O.

(h - EI)q = 0

where
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C) Still another wa\ is: first diagonaiie S obtaining itS cigcn',alucs and its

eigenvector columns which make up the diagonali/ing unitar\ transform I.'.

-1 L 'SL' .

where L t- I' and (' )
0 .,

Next apply the nonunitarN transtlrm

B: t) )'-
yielding

= B+;SU'B (21m)

The full nonunitary transform is

I xSx (2In

with X = LUB.
In all of the methods above (and other possible ones). the nonunitary X used to

transform the symmetric S. act as an adjoini irwni!ormation. Eq. ( 21 n ). The same
X is now applied to the h, also self-adjoint. again in an adjoint tran4oinmaiion
yielding another self-adioint matrix h. nondiagonal.

h X'hX (21k)

so the eigenvalue equation becomes

( LA - E,)c 0 (21p)

with c = X V.

All the x-transforms in methods (a) to (c) are nonsingular and they are elements
of the general linear group L(n), Thus they preserve the MO-level pattern indices.
LPI of fh. that is.

h h (21q)

In this case (unlike in Step I ), the ) f-,, MO levels are also numerically the same
whether calculated from Eq. (21p) or from Eq. (12') with S explicit as in Fi1.
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Note however that even in OAO basis Eqs. (20), (21), it is the original non-O.N.
basis a that is subtracted out from the { E, ) to get the chemically meaningful { F,
relative to separated atoms.

S- ai

and

E, -a. (22)

One would have thought on the basis of the original OAO justification [ 11,121 of
the pi-HMO theory 1101 vis-a-vis dropping of overlaps, that CrOAO would be subtracted
from the E, and the h°A°. As we see this is not true. The starting non-O.N. AO

basis' a is taken out. Just as well, since aOAO values greatly vary for the same atom
in different locations (even in H3 ) and they are difficult to calculate.

The proof for the invariance of the VIF method vis-a-vis overlaps is still not
complete. The two pictorial VIF rules applied to the initial VIF in any combination
and succession amount to generating various basis set transformations T on the
same molecule or to transforming molecules into other molecules in the same
equivalence class with all such T e L(n). As most of these T are nonunitary, at
each step of the VIF manipulations new overlap integrals will arise in the transformed
versions of Eq. (12). That the LPi remains invariant under all such nonunitary
transformations is proved in Step 3.

Step 3. Let us demonstrate the problem with a simple example. Take a square
configuration of H4 or the isomorphic system, the pi-system of cyclobutadiene.
Divided out by the single j3•,= j6. and the single a = a,, taken out

hh -a -- VIF" (23)

VIF"

where there are no loops at each VP as a has been taken out making the reference
zero of energy at a - ref. zero.

The line strengths are f3,d/j = 1. However Step I showed that the VIF and the
LPI that will result are the same with /lM, -' (fl.. - aS•,) = (/3 - aS) Kf; =

= I and VIF' - VIF (- isomorphic).
The VIF is "reduced" by the VIF-rules to get iSO-LPI structures as well as the LPI

itself (for the details cf. Ref. [41) as follows:



mo ENERGY LEVEL. PAFIFRNS 145

-/-r

SC (24)

SCs
LP! ' i

"%J[=2

with the MO level pattern:

- ..... -I.. -ct=> ) (24')

The two nonbonding levels are found. Assigning the four electrons for the neutral
species, we see the antiaromaticity for the cyclobutadiene pi-case. or the unstable
nature of a square H 4 (or the high activation barrier in a reaction like H2 + •2 --

2HD with a square activated complex). (In this example the LPI could also be
obtained of course, with the Frost-Musulin mnemonic, cf, e.g., Ref. [10]1, which
is applicable only to single rings. VIF however gives such results for any polycyclics,
branched, bridged, side-chained hydrocarbons [131).

Principle of linear covariance allows us to interpret each step in Eq. (24) either
in the MO-basis (thus MO LPI is read off directly from the last picture (No. of free
dots = no. of nonbonding overall MO's), or in a localized orbital L.o basis. In the
latter reading of Eq. (24), for the H4 case, ones sees the reactions

Sc Sc
H4 - H3 (linear) + H --- H 2 + H + H (25)

to be "allowed" having the same LPI's and in the same L-equivalence class (thereby
called structurally covariant (sc) [4 ] ).

Each picture in Eq. (24) corresponds to a { h,.} written in a new basis-set frame,
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transto.,nations from one to the next in general being nonunitary thereby generating
new overlap matrices in the full equation (hf,. - ES•,)c' 0.

During the reactions, Eq. (25), MO composite levels E, } change, but the level
patterns, LPI remain the same. This is proved as

h,, --• h ,,,,-- .. .. (26)

Each basis and hamiltonian transformation occurs by an T E L(n) and an adjoint
transform, for example,

f'= T'fiT (27)

in each step of Eq. (24). By the fundamental theorem 13.41, these h's all have the
same LPI. Further for each step, as new overlaps arise, the nonunitary transform
X shows the S term does not affect the LPI as in Eqs. (20. 21).

(h' - ES') -(i'x - El)
/ -e (28)

h ' = 1 = fi,

(q.e.d,)
This completes the three-steps proof and we state the proved theorem.

Theorem on the Conservation of MO Energy Level Patterns
Under the Effect of Overlaps

Theorem

The VIF picture of a molecule (or reacting isomeric assembly) drawn without
regard to the large non-O.N. AO basis overlaps yields the same MO level pattern,
LPI = { n4, nf, n }, numbers of bonding, nonbonding, and antibonding MO levels
(relative to a chosen free atom AO self-energy) as if the overlaps were included in
a full (b - ES) calculation. The chemical VIF-rules transformations or the VIF
pictorial changes in deducing LPI, while they imply nonunitary transformations
(among non-O.N. bases) leading to new overlaps still retain the same LPI. (Proof
was given above.)

Remark. The simplest and qualitatively most useful VIF's for blackboard type
chemical deductions are drawn with nearest neighbor or proximity hi elements only
(with the corresponding overlaps in S, implied). Next nearest neighbor terms in
b3 or any other terms of hi may be drawn in more elaborate VIF'S to explore the
effects on the LPI, if any, of such refinements. A computer EHT calculation (or, e.g..
STO-3G) normally includes all 3,•'s and S,,,'s. To compare such an EHT { E, I
pattern after subtracting out the chosen a from each E, - E, = E, - a, with the
LPI predicted by a certain VIF, the S,,(j3•) terms omitted in that ViF can be deleted
in the EHT calculation using the input option L2 = .TRUE. in the program [I].

Some Numerical Examples

(I) Allyl pi-system or H3(linear)
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Sc

VIF: }l
(29)

LPI = = n 1; n. =1 1

This n.n. VIF omits the overlap between atoms I and 3. It shows clearly the presence
of one nonbonding level. That level is invariant if the 12 or 13 or both are changed
by any amount as seen with the Vu: rule I (K-rule):

x (1/Y)

SC (30)

same LPI

Thus the H2 + D - H + lid reaction along a collinear path is [ P71 preserving,
hence "allowed" with a small activation barrier (H , linear or nearly so) indicated
relative to a J( z (- 1/2)D,, of H1).
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TABLE I. Comparison of MO energy level patterns by the pictorial viF with those from numerical

EHT' and .- calculations. Linear H3 complex H I -H2 ---- H3 with R( 12) R(23) -- 0.85 A: c,

-13.6 eV. All F, in electron volts (eV).

%it

i ý MO level # EHTI FHilTl ) direct level
(highest energy to lowest) f = - a, E, = 0 EP - ,k. pattern, Pn'

(1) +25.72 +39.72: n - 1
(2) +2.07 0.001, n,,- I
(3) -4.79 -4.52,

a The E (i) MO levels from full EHT calculation (Ref. 11]). The ali - 13.6 is the invariant-subtraction

yielding F,,
b The ED (i) MO levels from EHTID, that is, EHI with non-n.n. overlaps S, 3 deleted in the input. The

(Efo - ah) = fP level pattern coincides with the pictorial vIF result.'
SPictorially deduced [Eq. (29)] level pattern indices LI'I {, n.,n n-. , the strutural covariant invariants.

also #'s of bonding (+). nonbonding (o), and antibonding (-) MO's which agree with numerical calculation

after the proper (covariant) subtraction.

A complete VIF, VIF1 includes the 13 overlap (or o,3) line:

1 1 ~SC___

.. ...................................... ct => 0 )

K

( n-=1 n=2)

VIF,: (31)

The nonbonding MO level is expected to move up a little (dependent on magnitude
of K < I).

The same picture shows what happens when linear H3 is bent into a triangle.
The nonbonding HOMO moves up becoming slightly antibonding.

Tables I and 11 show two EHT calculations, for linear HF, one with all overlaps,
another with 13 overlap deleted (EHTD). The a = -13.6 eV substracted E, shows
the same LPI'€ as the corresponding vIF'S.

(2) Cyclobutadiene pi-system or square H4.
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12

VIF

(n. n. ) (cf. Eq. (24))

4

and (32)

VIF K K
f K

LPIf = n =1; n =3; no=O }

With the weaker (K < I) overlap (and .) lines 13 and 24- included, the iPi changes
from the n.n. only, that is, square. such that n,, = 2 nonbonding levels become
slightly antibonding.

The same happens if the square H4 is distorted to become slightly tetrahedral
(squeeze 24, lift up 3 out of plane). [One caution, however: the bonding level in
the quantitative sense, could go considerably lower affecting stability in the opposite
way of the HOMO].

Table III shows the EHT computations for each of the two viu's and the L's with
a = - 13.6 eV removed. The I E, I level patterns coincide with those of the pictorial
VIF deductions.

These examples further demonstrate how vii: implicitly takes into account the
overlaps in (Ih - ES).
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TABLE II. MO level patterns obtained by the pictorial VtIF rules compared with numerical Enirlt-iID
calculations. Along linear H1 reaction sur'-ce HI H2--H3 at R({2) -0.81 A and R(23) - 1.27

A (i.e.. along H2 + H). The all -13.6 eV. (All energies in electron volts).

VIE,*

I = MO level # EHT` FHAMP pictorially
(highest energy to lowest) , = L, = A? F"' = Ei - (", deduced t Pi

(1) +16.33 +18.85, n. - 1
(2) +0.78 0.00; n,. - 1
(3) 4.15 -4.01 n. = I

"The E(t) MO levels from full ElT calculation (Ref. [11). Then11  -13.6 is the invariant-subtraction
yielding L,.

SThe E' (i) MO levels from EHrD that is. FHr with non-n.n. overlaps s, deleteted in the input, The
(E o - a,) - E," leel pattern coincides with the pictorial VIF result.'

SPictoriall% deduced [Eq. (291] level pattern indices IP1P n.. _ n n_. the structuralcovaruant invariants.
also S's of bonding (+). nonbonding (o). and antibonding (-) MO'S which agree with numerical calculation
after the proper (covariantl subtraction.

At R(21) 7 1.5 R (I-2)0IF: relatise line strength (12-3): S_,/SI, = 0.574 [cf. Eq. (30) showing K =].

Conclusion

This article has shown how the MO energy levels obtained from computer MO
theory computations (such as EHT, but applicable with care also to MNDO, and ab
int1. e.g.. STO-3G) may be converted to MO energy level patterns from which
important qualitative deductions based on bonding, nonbonding, and antibonding

TABi 1 III ,•io level patterns for a square H4 complex with R - 1.00 A. EHT- and EHrD' calculation
ý the latter with only the non-nn. overlaps deleted) after the invariant-subtraction ofaH = - 13.6 eV coincide
with the pictonall deduced vit- level pattern. tpi = n, n,, nn_ which implicitly includes

the overlaps. All energies in eV.

VIEr
I = MO level # EHr EHETDb pictorially

(highest energy to lowest) E, = F;- aH FRP = L " - aH deduced LPt

(I) 421.1 +153.2 n.,=

(2) -3.65 0.0 2
(3) +3.65 0.0

(4) -5.57 .- 4.94'1 = I

EHT calcuation with PROGRAM FORTICON8 (Ref. [I]).

b EHTV calculation with only the S (T31 and S (T4) overlaps deleted as nonnearest neighbors. The a,.

is invariant-subtracted.

SVIE pictorially deduces [Eq. (24)] the MO level pattern, numbers of bonding, nonbonding, antibonding
levels relative to IsH energy. a..
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MO level types become possible. Correspondence with the MO level patterns deduced
directly from the VIF pictures drawn from structural formulas or ORTEP diagrams
using the pictorial "blackboard" type VIF-rules is established, this article giving the
proof that, for one thing. VIF implicitly includes overlaps. VIF-method has a con-
siderable advantage in that many reactions, distortion, rearrangement pathways
can be readily and visually examined. Many seemingly different molecules also
become relatable to each other getting classified into fundamental classes, each class
with a given MO level pattern. In addition, now VIF selected molecules or paths
maybe made more quantitative, relationship to computation having been dem-
onstrated. High-level machine computations may be carried out once certain re-
action paths or species are readily chosen on the basis of pictorial vir-rules.
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Abstract

In this work use is made of[algebraic techniques developed for the evaluation of Vibration-Translation

energy transfer in atom-diatom collisions to obtain the energy eigenvalues of the one-dimensional quartic
oscillator. We have found that even our zero order approximation results are very close to the exact ones

and w. hen second-order perturbation theory is used. theN improve even for high values of the anharmonicity
parameter. ý 1992 John Wiley & Sons, Inc.

Introduction

The one-dimensional harmonic oscillator potential has been used extensively in
nuclear physics, high-energy physics, solid-state physics, and in atomic and molec-
ular physics [ I ]. Among this model's many favorable characteristics, is that it is a
rather simple model and allows testing of different levels of approximations against
exact results. On the other hand, the evaluation of accurate energy levels of a quan-
tum mechanical anharmonic oscillator has received renewed interest since it can
be seen as a field theory in one dimension and it has becomt- the testing ground
for new methods in quantum field theory [2]. Different techiniques have been
applied to that end, optimized variational method [3], variational and coupled
cluster calculations [4], and matrix diagonalization techniques [ 51 to name a few.
Rayleigh-Schrodinger perturbation theory has proved to give good results when the
nature of the unperturbed Hamiltonian is changed to that of a squared harmonic
oscillator Hamiltonian with an adjustable frequency [6].

In atomic and molecular physics, in those cases where heteronuclear diatomics
are involved, the harmonic oscillator model has severe limitations since the presence
of anharmonicities cannot be included, nor can one study rearrangement collisions
because the potential supports an infinite number of vibrational bound states. For
homonuclear diatomics, when the collision energy is large compared with the energy
level spacing of the vibrational states of the molecule, anharmonic terms play an
important role, this is also the case for heteronuclear diatomics where the anhar-
monic terms are important even for low-lying transitions and low collision energies.
Some time ago, a study of the 0 -- I vibrational transition in anharmonic oscillators

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 153-160 (1992)
t,' 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010153-08
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was made, including quadratic and cubic terms in the potential function [ 71, more
recentlv, the one-dimensional anharmonic oscillator including quadratic, cubic.
and quartic terms in the potential function was used for the evaluation of vibrational
transition probabilities in collisions between an atom and a diatomic molecule
[8.9]. The anharmonicity parameters were fitted to adjust a Morse oscillator. The
results obtained with this model could be compared favorably with exact quantum
results [10] in a large energy range and for several transitions.

In this work, we evaluate the energy spectra of a quartic oscillator using an
extension of the algebraic method developed for the study of TV energy transfer.
We applI a sequence of Bogoliubov transformations to the Hamiltonian in order
to obtain a set of transformed basis functions such that. after each iteration, they
contain information from the quartic part of the potential in the previous iteration.
In the next section we describe the method. then we obtain the energy eigenvalues
for different anharmonicity constants X within two simple approximations. The
first consists in the evaluation of the eigenenergies for the transformed diagonal
Hamiltonian and the second, in the use of second-order perturbation theory to
treat that part of the transformed Hamiltonian which is not diagonal in the trans-
formed basis. We compare our approximations with exact numerical results [4,13]
and we also show the behavior of the coefficients of the Hamiltonian as a function
of the iteration number.

Theory

Consider the one-dimensional anharmonic oscillator Hamiltonian

I I + ,S= -IYp±- + k X'c 1

now we express the displacement operator x in terms of boson creation and an-
hilation operators a,a t

X -(a + a) (2)

then we get

+X(a" -- 4aa± + 6aU2 + 6at'a- 2 + 12a*a + 6a+-' + 4at"a + at' + 3), (3)
4

with ,,;,, (ata + 1/2) and we have written the Hamiltonian in normal order.

Now we decompose the Hamiltonian as the sum of two parts.

-* = ,')I) + , 1 (4)



QU+ARTIC OSCIt LAIOR I:N:R(;Y lT-lS 155

where

" ;+ - O± (6a-" + l2a t a + 6a+- + 3) = • G,au+a' (5)
4 O. .' ,. _2

forms a closed set under the operation of commutation. and , <) -

The Hamiltonian/;" 1) 1) is a bilinear form in the operators a.a+. so it is convenient
to apply a generalized Bogoliubov transformation to obtain a new set of operdtors

a' a such that the Hamiltonian ,? :) is diagonal in the new basis f 8.91. The
transformation is canonical and thus must preserve the commutation relations
between the boson operators. Consequently. we get the condition that the deter-
minant of the transformation must be equal to one. The required transformation
has the form [ I I] ( i = 0 for the first time we apply the transformation)

,,+ I ) = it a `e +- tl )a (ts+ {

a '.3 -t+a"+ I~'lla '+ (7)

and the transformation coefficients are given by:
til = 1) + z,2 (8

1, / 1+ G 2 \o /'

,,) t ' (8

l. -,(9)
- (1,H) - (;11)0,

, G,, + 2G,, ± V G -4(',) o(0)

(/,)l - i -- 2G(, + VG, - 4G2). (I)

and the transformed Hamiltonian has been expressed as

" ,'a (,aa 4 (11.1 (12)

When we apply the transformation to //'I' we get a new Hamiltonian which
contains the same set of operators as the original one with coefficients dependent
upon the 6"'. The Hamiltonian we obtain after k transformations has the form

i= Z a (3)

and. since it is hermitean we have the restriction ,,, = ,,,, . In the case of a
quartic oscillator. the coefficients (, are real and we have the condition G,' =
G(, . The series of transformations mentioned above is done as many times as
necessary until the matrix of the transformation is as close as we want to the identity
matrix, indicating that we have minimized the anharmonic part of the oscillator.
As will be seen in the next section, the sequence of transformations has a very atst
convergence.

In Figure 1 we show the behavior of the coefficient (i as a function of the
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Figure I. Fkhaviour of the coeffitcient of •a as a function of the iteration numbLir Imr a
fixed value of the anharmnonic-it parameter A I

number of iterations performed for A = 1. Notice that after a Cew transtormations
(say 5 or 6). G", attains a fixed value, corresponding to the i'requency that a
harmonic oscillator should have in order to represent the anharmonic oscillator.
It is a characteristic value associated to the potential function as a whole, not only

G22 __

Gi5,oi ii

0.0 H
00 50150 20

iteration

Figure 2. Behaviour of the coetficients G, (full line) and (h I broken line) as a function
of the number of iterations for a fixed value of A - 10.
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near tlie minimum. The final frequency fbr the oscillator is smaller than the origi Ial
one indicating that the corresponding harmonic oscillator should he softer than tlhe
anharmonic one. All the GiA show a similar hehavior for all the xalues of
X we ha\e tested, they change significantly from their initial values during the first
few iterations and after that. they all attain fixed values, generall.( dilfltrcnt from
zero. As an example in Figure 2 we showk (i-. and (i__ or X 10. Notice that
the asymptotic values of the (i'." are smaller than originatl\, an indication that one
can try to appl% perturbation theory to this transformed I lamiltonian and hopefully
obtain improved results.

Energy Eigenvalues

With the boson operators we obtained after k transformations. we evalu-
ated the energy spectrum of the corresponding diagonal Hamiltonian W ,1 -

•.: ,, a . We show in Table I this zeroih order approximation after
10 transformations. the results obtained when we use second-order perturbation
theory 1121 after the same 10 transformations. and the exact results of fHsue and
( ,ern [13 ]for the ground and the first four excited states of a quartic oscillator with

It can be seen that the zero-order approximation gives very reasonable results
when compared with the exact. not only for the ground but also for the excited
states. The percentage difference

'U

.. St,(,~ E = 00 0) 4
IO() X (14)

being a few percent at most. When we appl% second-order perturbation theory to
the transformed oscillator, we improve the results significantly and it is interesting
to notice that this is so even for the excited states where simple perturbation theory
is known to fail badly. Notice that the percentage difference

10 , X -E I0 L (15)

is in this case less than 3",f in the worst case. that is. for n - 4.

TAHJu I. Energx cigenmalues for a quarlic oscitlator (X 1.0).

SU:,, t:,. r ,.1,,.l,

0 .81250 .8(041) .80377 1. .04
I 28125 2,7223 2.73789 2.1 .6
2 5.5625 5.0994 5,17929 7.4 15
3 9(0625 7.7537 7,94240 14.1 2.A
4 13.3125 10,6485 10.9636 21 .1 2.9
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Table 11 shows the results obtained with perturbation theory (alter 10 transtor-

mations) as a function of X for the ground and first four excited states of the
oscillator and compare these with exact results 113 1. Notice that perturbation theory
can be safely applied for the whole range of values of the anharmonicity parameter
A .1; X A_ 1000.0. We also show the percentage diflifrence --1, delined above.

Finally. Table Ill shows the convergence behavior of the ground state energy

eigenvalue in the zeroth approximation EA -). when we have applied second-order
perturbation theory to the transformed Hamiltonian LK 1 and the value of the
perturbation correction A,, for dillirent values ofX. For A = 1.0, the eigenxalue
changes drastically during the first few iterations but. after about 4 or 5. un-

perturbed results hardly change and the contribution due to the perturbation ap-
proaches a fixed value. When we increase the strength of the anharmonicitV to
X = 10.0, we have to make more transformations betbre attaining convergence:

I.BI 11. Fncrgp eigenmalucs fr a quanric oscillator.

n I.'. " X

0 .55915 .55921) .009 1)
I 1.7695 , 1,76776 .I1 10
2 3.13862 3.12814 .33 3t0
3 4.628KA 4.5983 1 .6h .10
4 6.22,0301 6.15759 H.)1 .10l
0 .80377 .805010 15 1.0

2.73789 2.122•16 .57 I)
"2 i, 179-29 5.09939 1.54 1.O
3 7.942401 7.75367 2.38 I1)

4 Io.936 10.6485 2.87 1.1)

0 1.50497 1.50974 .32 10. 0
I 5,32161 5.27491 .88 10,0
2 10.34, 1 1(1.1191 2.2 10,

3 16.0901 15.5876 3.12 I0.0
4 22.4088 21.6278 3.49 10.0)

0 3.13138 3.14361 .39 10M.0
I 11. 1872 11.0832 .93 4 004,)
2 21.9069 21.3937 2.34 100.10

3 34.1825 33.0599 3.28 00(1.0
4 47.7072 45.9808 3.62 100A.0
0 6.69422 6.72184 .41 400(1.1)

23.9722 23.7488 .93 1000.0
2 47.0t73 45.91)61 2.36 1000.0

3 73.4191 70.9864 3.31 10(0.0

4 102.516 98.7767 3.6,5 10H0.0(
0) 11,4308 11.475 i .39 5000.1)
I 40.9517 40.5462 .33 5000.)
2 8N1. 343( 78.39104 2.43 50(1M,

3 125.475 121.262 3.30 5(10((

4 175.2 IS 160.816 3.65 5•K)0.0

For X 5000, E:, t.as taken Irom Ref Ii.
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(1i . (R) N6%79 _4532 i 007(1)

1.86307 NO 129 .10000 00114
2 .811)74 X0I1 3' .01831 M1124

3 .8 1 35 .80oi7l .111F2 00(1 1)
4 S81264 81146i 0017( .SO0h(1119

'S .82i2 .8o5 12 00(1740 .0014
6 .8 1250 8(0495 .(155 oo112

8 .1250) .8(15(1 .0074S .1011)
8.8 125(1 .S0499 .10W i1 AX1 2

9 .81251)ý .81)50 .00(75( (11 -1

0 ~8.1000(0 2.61 N3 5.3847 . 11

I2.1()7S I1.501) i59776 0,0)048
21.6853 1.4674 .2179(6 0.03711

3 .56117 1 .5 11I6 .0149098 (1.0066
4 1.ý5181 .541.034018 0.(A.0)1I

I1. 4;114 .0-2134 01.00164

6 1.5316 1,5087 012283 0.01037

1L53 11 1.5ý 10212 012116 01.00152

8 1. 53 13 1.5(1)95 011212 (0.00145

9 1,53 13 1.5(098 .012141 01.00(48

however, the importance of the perturbation term decrease.,- significanilly during
the first few tra nsformat ions. Notice also that thle ground-state energy obtained
after conxergence is not necessarily the closest to the exact value: this indicates that
we are modelling the whole of the potential function, not only the region near the
minimum, 1-or example, for X - 1.0. the result obtained with second-order per-
turbation theory after tour iterations differs from the exact in 0.0009. less than
A.I1W. while the difference between the second-order perturbation results after nine
iterations and the exact is .0012. The same kind ot behav.ior occurs for XA 10.0
where again, the closest result is obtained after four iterations. One could also make
the transformations state dependent and thus obtain enhanced energy for a given
state. If one requires more accuracy that can be obtained with a variational cal-
culation which uses the transformed states as a basis 114].

Conclusions

We have shown an algebraic metho& to evaluate the energy eigenvalues of a
quartic oscillator. After transforming the quartie oscillator's H-amiltonian. we can
safely use perturbation theory. The results we have obtained even before the use
ol perturbation theory are close to the exact In a large range ot'values of the an-
harmonicity parameter and the use of second-order perturbation theor-v improves
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the results significantly. The same happens for the excited states of the oscillator.
The extension of the method to the double well and to the anharmonic oscillator
with cubic and quartic terms present is under study as well as the implementation
of a variational calculation using as a basis the k-transformed states and will be
published elsewhere [ 14 ].
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Abstract

The paired orbital method deals with the problem how to obtain the best pairing scheme in the

different orbitals for the different spins I [xmt)S) method. Once one has found those .irtual orbitals wxhich

are the best pairs of the occupied orbitals- one can use the same formalism for the energ. expression

as used earlier in the alternant molecular orbital (AM%) method. Starting from the canonical orbitals,

one performs orthogonal transformations in the virtual space until the minimum of the total energy is
obtained. An illustrative calculation on the water molecule for three internuclear distances shows that

the method yields 25-60% of the energy improvement obtained by a full configuration interaction method.

The percentage of improvement increases with the increase of the internuclear distance. , 1992 John

Wiley & Sons, Inc-

Introduction

In the theoretical treatment of atoms and molecules, the self-consistent field
method (scF) is an excellent starting point. The wavefunction is given in the form
of a single determinant in which n orbitals are doubly occupied. For the sake of
simplicity we shall restrict our treatment to the case where the number of electrons
is even (N = 2n). The orbitals are determined from the minimization of the total
energy of this wavefunction. In most of the applications, the orbitals are given as
linear combinations of given basic orbitals. and let us denote the number of basic
orb;tals by M. The corresponding variational equations for the best coefficients
have been derived by Roothaan [Il and Hall[2]. After solving the equations one
obtains n orbitals which are doubly occupied and. in addition. n, = M - n orbitals.
which do not have immediate physical significance. The latter are called virtual
orbitals.

The SCF solution gives good results for the total energy. bond lengths. and some
other properties of the molecules. The small error in the total energy (0.51 ) is still
too large when we would like to calculate transition energies, dissociation energies.
and so on. It is necessary to go beyond the SCF method. The difference between
the SCF energy ana the best energy obtained in the given basis using the nonrela-
tivistic Hamiltonian is called the correlation energy. Several methods have been
suggested to treat the electronic correlation problem. One should remember that

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 161-169 (1992)
'it 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010161-09
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the single determinantal approach already takes into account. to some extent, the
correlation between electrons with parallel spins because the wavefunction is an-
tisvmmetric. and therefore. the probability of finding two electrons with the same

spin in the neighborhood of the same point is zero. The single determinant does
not describe properly the correlation between electrons with antiparallet spins.

L6wdin [3] suggested a simple method tbr the improvement of the one deter-

minantal representation. One should relax the restriction that each of the n orbitals
occurs twice in the wavefunction. One can assign diflierent sets of orbitals to be
associated with a and ý3 spins. The method is called dificrent orhitalsfilr difl'rent
spins (DODS). The single determinant constructed in this way is not a pure spin

eigenfunction, but a definite spin state is obtained using the projection operator of
Lbwdin [4]. This method is also called the spin-projected extended Hartree-Fock
(HF) method. An excellent review is given by Mayer [5]. In a recent article. V
adakov [61 derived equations for obtaining the best orbitals in this scheme.

A simple variant of the X)ODS method is the alternant moh'eciar orbital method

(AMO) suggested by L6wdin [7 ]. The basis of the method and its early developments
are given in a book by Pauncz [8]. The AMO method was quite successful for
alternant conjugated systems.

The paired orbital method (Po) is also a variant of the different orbitals for the
DODS approach. It can be considered as a generalization of the ANMO method. The
wavefunction is formally similar to the one used in the AMo method, and the

corresponding energy expression is identical with one derived by Pauncz et al. [9]
and de Heer and Pauncz [10]. The difference between the two approaches is in the
selection of the orbital pairs. In the case of AMO, Lowdin's suggestion was very
successful because it used the special properties of alternant conjugated systems in
which occupied and virtual orbitals are paired according to the Coulson-Rushbroke

theorem [111. The Po method seeks the answer to the question of how to obtain
the best pairing of the occupied and virtual orbitals for a general system.

Pauncz et al. [ 12 ] have given an algorithm for the determination of orbital pairs
in a general system using the idea that these orbitals should be close to each other
spatially. The sum of coulomb integrals between the corresponding orbitals was
maximized. The method was tested for the case of water molecule. Harrison and

Handy [ 13 ] performed a full configuration interaction calculation for this case so

one can compare the result with the best possible treatment in the given basis. The

P0 method, using five nonlinear parameters. recovered about 20% of the correlation
energy obtained with the full (ci treatment (256,473 configurations). Pauncz [141
has derived the expressions for the derivatives of the energy with respect to the
nonlinear parameters, and he proved that the SCF energy is a maximum with respect

to the nonlinear parameters in the Po method. The structure of the PO wavefunction
and its relation to a limited configuration interaction method was investigated by
Pauncz [15 ]. Refs. [ 12 ]. [14 ]. and [ 151 will be referred as I, 11, and Ill, respectively.

The aim of the present approach is to obtain the orbitals by minimizing the total

energy instead of maximizing the sum of coulomb integrals between the corre-
sponding orbitals. Orthogonal transformation among the virtual orbitals will be
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performed to achieve this goal. First. we shall discuss the structure of the P0 wave-
function and the energy expression, and then consider in detail the method of
orthogonal transformations in the virtual space.

The Paired Orbital Wavefunction and the Energy Expression

The wavefunction used in the Po method is of the following form:

* = A.-A4)Osv(I). •.(n)0(n + I)- .. .(2n) (I

where - is the antisymmetrizer. N is a normalization constant, and O0 is the spin
projection operator. We shall consider the singlet state only (S = 0). 4) is a spatial
(freeon) wavefunction which is a product of one-electron orbitals:

4, = u( .) .• •,(n)v1 (n + I) . 1,,(2n) (2)

In the Po (and in the AMO) method. the u,'s and v,'s form a set of orthogonal
one-electron orbitals in the following way:

u,= aX,,,-± h,t,,

V, = a, ý, - 1),ý,, (3)

where a, = cos 6, and h, - sin I,. ý, (i = I .... n) is a doubly occupied orbital in
the single determinantal SCF wavefunction. and 4,, is a virtual orbital with which
it is paired.

Let us introduce the overlap integral between u, and v,:
( uv, X, = cos 20, (4)

There are three important functions of the X, which appear in the energy expres-
sion:

A"\ = (-I )'C(S. k + q)S,(.v,......,'). (q = 0. 1.2) (5)
k:()

where x, = X1. (C(S. k) are the spin projection (Sanibel) coefficients [16]. For the
singlet state they are given as follows:

C(0. k)) I (n+ 1 (6)

and SA(xl..... v,,) (abbreviated as .S) is the kth symmetric sum formed from the
.X1 . .. Xn:

So'_

S, . 1 X", (7)
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A0 is the normalization integral:

AO 4,0 q/

Let us divide the energy expression into two parts. The first one corresponds to
the one-electron operators in the Hamiltonian (kinetic energy and nuclear-electron
attraction), the second one to the two-electron operators (electron-electron repul-
sion). The one-electron part is:

El =E, + EIil,/A

t? a
= w, - AOIw,X,- (A +± A01) (9)

Here

, hIt, + h,,, .w, = th, - h,, (10)

and

h f, ='*ý,A f *h€,, (1

that is. they are diagonal elements of the one-electron Hamiltonian over the occupied
orbitals and their virtual pairs. respectively.

The two-electron part reads as follows:

E, = (E,, + E21 , + E,,)A-) (12)

where
fl

E2,, = Z [A,,y,, + A,,,,',- B

E2 [F(i~j)- A(i,j)]

E,,=_w Z( i,j).(3

A,, = (1/4)(1 + X,)- a (A, + A0 ).axY,

A,,,, /4)(1 -- X,) - (A, + A(,).

ax
= 1/2)(I 1 X2)-X

C=(I X,2~) A, (14)OXI
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F(i.j). A(i.j). and Z(i,j) are defined as follows:

r(i.j) r,,,, + I',,y,,. + I'Y,.+ I+

A(ij)= A,,611 + A.,.6,, + A,.6,, + A,,/ 6,0"

Z(i~j) = Z,41 , + Z,,,1,, (15)

The basic two-electron integrals. .. y,5, and c,,, are respectively the coulomb.
exchange, and a new kind of integral which is characteristic of the AMO and Po
methods:

",iijj) b, = (Ujli). ,, = (i j'i')

(iilIk) 1 )0( 1 X l/r,)Ik(2)ýj(2) d-, dr2  (16)
The X(0)-dependent factors in eqs. ( 15) are given as follows:

, = ( I + k,)( I + X)(a + b(,\ + X,) + cX, 1X).

A, = (1 + X,)( I + X,)(a + b[2(X, + X,) - I - X,X,J + c-X,X,)/2 . (17)

Z,, = sin 20, sin 20,(a + b) - ( 1/4) sin 40, sin 400(h + c)

Z1,.=sin 20, sin 20,(a + b) + (1/4) sin 40, sin 4 0,(b + c) (18)

where

a92  a2 02a = - ., b C =l - -J) . (19)
ax,, A-j OAOax, ax, i). 1

From the expressions in eqs. ( 17) one obtains the corresponding factors involving
i' and/orj' by reversing the sign of the X, and/or X,.

Orthogonal Transformations in the Virtual Space

The main problem in the P0 method is how to choose the paired orbitals [eq.
(3)]. We shall leave the occupied orbitals unchanged, these orbitals have been
determined from the SCF procedure. they minimize the energy of the single deter-
minant with doubly occupied orbitals. For a concrete example, let us choose the
water molecule in a double-zeta basis. The number of basis orbitals, M = 14: the
number of occupied orbitals. n = 5: the dimension of the virtual space, n, = 9. We
are looking for a set of molecular orbitals in the virtual space which are the pairs
of the occupied orbitals. The original occupied and virtual orbitals form an ortho-
normal set, and we want to preserve this property, so we are looking for an orthogonal
transformation in the virtual space which will provide the 5 virtual orbitals.

14 v1
st,.= Z ify,,. =-, v2 da,~(i = 1.5) (20)
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TAMt 1. S inmetnries of the canonical orbitals in the %%ater molecule.

Occupied tai 2a, 3b,? 4u, 5t

Virtual 6al 7b,_ X1h, thl I011/ 1 Ia, I2b: I 3ai 14a,

The D matrix has n, rows and n columns. From the orthogonality of the n
columns, and from the normalization conditions, follows that the number of in-
dependent parameters. , = n,.n - (n + n(n - 1 )/2) = n(2n, - (n + 1 ))/2. In
the case of the water molecule we have 30 independent parameters.

The first 8 parameters determine a 9-dimensional unit vector:

dl = cos(pl) (21)

d_1 = sin(pl) cos(p 2 )

-6 = sin(pi) sin(p 2 ) cos(pi)

d8l = sin(p 1) sin(p 2 )' .. sin(p 7) cos(p8)

d -1 = sin(p 1 ) sin(p 2 ) .. sin(p 7 ) sin(p8)

The next 7 parameters determine 8 elements of the second column, starting
from the second element and using the same algorithm as given in eq. ( 21 ). The
first element is determined from the orthogonality of the second column to the
first one, and finally, the second column is normalized. One can continue this
algorithm, which is essentially a Schmidt orthogonalization procedure. It is an
essential point in this procedure that. if all the parameters are zeros. tho", we
obtain 9 columns in which the diagonal elements are equal to one an- .. : rest
are zeros.

Beside the 30 parameters which determine the 5 orbital pairs, we have 5 more
variational parameters (0,, i = 1,5, if all the 0's are zero then we have a single
determinant with doubly occupied orbitals). The total energy is a function of the
30 + 5 variational parameters. Using the energy expression given in section 2, one
can minimize the total energy by the variation of the nonlinear parameters. In the
calculation we used the DUMCGF program of the IMSL library, this is a mini-
mization program using a conjugate gradient algorithm and a finite-difference
gradient.

The procedure outlined so far deals with the case if the molecular orbitals do not
belong to certain irreducible representations of the symmetry group of the molecule.
This is the case when we use localized molecular orbitals which correspond to inner
shells, bonds, and lone pairs. These type of orbitals have been used in the calculations
reported in I.

The calculation needs less variational parameters if we use canonical orbitals
which belong to the different irreducible representations of the symmetry group
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1 x.i tu 11. Paired orbital calculations for the water molecule.

R, 1.5RR, 2R,.

SCF -- 76.009838 75.803529 75.59 5180
FC[ -76,157866 76.014521 -75.905247
.\EIFCI) -0.148028 -0.210992 0.310063
.ThE(PO) -0.040704 -0.083576 -0. 191607
q' 27.5 39.6 61.8

All energies in atomic units.

(In the case of water molecule the group is C_). In this case. the occupied orbital
and its pair should belong to the same irreducible representation. Table I shows
the symmetries of the canonical orbitals.

Inspection of Table I shows that there are 3 orbitals of symmetry a, among the
occupied orbitals and 5 orbitals of the same symmetry among the virtuals. That
means that we have to form 3 paired orbitals as a linear combination of the 5
virtuals. all belonging to the a , symmetry. There is only one orbital among the
occupied and 3 orbitals in the virtual set which belong to symmetry b2 , and finally.
one orbital both in the occupied and in the virtual set which belongs to h). We
have to form three orthonormal vectors of length 5 (symmetry a, ) and one vector
of length 3 (symmetry b2 ). The number of parameters determining these vectors
using the same algorithm presented above is 9 + 2 - I1.

Results and Discussion

Illustrative calculations have been performed for the water molecule. Here we
are able to compare the results with the best possible result obtainable in the same
basis. Harrison and Handy [ 13 ] have performed full cI (FCI calculations for three
bond distances. The calculations refer to the C,, symmetry at the 0 - H distances:
R,, 1.5R,. and 2R,. There are 256,473 configurations.

The results of the calculations using the canonical orbitals are given in Table I1.
Table III contains the 0, values for the optimum orbitals.

TARiLE IIL The 0, values for optimum orbitals.

01 0 00• 04 05

IR, 0.00124 0.16014 0.25203 0.21120 0.18852
1.5R, -0.03126 0.01968 0.42355 0.42497 0.07295
2R,, 0,00041 -0.00037 -0.58337 0.59572 -0A044i?4
Sym. a[ a, b 2 a, h,



168 P-UNUZ

Comparing the results with those obtained in I we see a substantial improvement
in the quality of the approximation. In the earlier calculation, where the paired
orbitals were determined by maximizing the sum of the interelectronic repulsion
between paired orbitals. we obtained only about 20% of the energy improvement
of the FCI. In the present treatment where we optimize the total energy of the Po
wavefunction the results are much better and the percentage of the energy im-
provement increases with increasing internuclear distance. The number of param-
eters determining the orbitals is 11. It was a quite surprising result that when localized
orbitals were used instead of the canonical ones. the results were quite close to the
results obtained with the canonical orbitals, but slightly inferior. This is surprising
because, in the latter calculations. 30 parameters have been varied for optimizing
the orbitals.

On the one hand, the results are satisf'ying. as we obtain using I I + 5 nonlinear
variational parameters 27-60% of the energy improvement obtained by the FCI

(256,473 linear parameters), and the wavefunction has a relatively simple
meaning as contrasted with the sum of 256.473 configurations: on the other
hand, this is still far from the accuracy one can obtain with alternative methods
(e.g.. coupled cluster method). We have to remember that our solution is still
not the best PHIF solution. Ldwdin [ 17] pointed out that we do not have to retain
the occupied orbitals as unchanged: by forming the paired orbitals. we can use
orthogonal transformations in the full basis (in our case 14 orbitals). There is
still another approach in which one uses general spin-orbitals. See Takatsuka ct
al. 118] and Mayer and Lbwdin [19]. We emphasize that, in our treatment. the
pairing theorem [20] was used consistcntly as an essential part of the theory.
The problem or how to obtain the best PHF solution by a practical algorithm is
still an open question.
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Abstract

A procedure to obtain the operational solutions of second order differential equations related wi'th
Sturm-Liouville problems is presented. The method is based on the commutation relation between the
ladder operators themselves, with a certain structure, and the position and momentum operators. Even
though the creation and annihilation operators, derived by the proposed approach, factorize as expected
the corresponding differential equation, the method does not use, as original premise factoring, the
differential relation under consideration, That is, the displayed procedure is quite different, simple, and
direct when compared with other procedures such as the factorization method of Infeld and Hull. To
illustrate the above, the usefulness of the proposed procedure is shown by finding the ladder operators
associated to the quantum numbers n and I for various potential wave functions., 1992 John Wiley &
Son%. Inc

Introduction

Since von Neumann introduced the operator algebra theory in 1929 [I], it has
played an important role in diverse fields of mathematical physics. Probably the
most important improvement brought about by the algebraic procedures has been
the factorization method of Infeld and Hull [2,3]. which permits one to obtain
ladder operators for Sturm-Liouville problems. For many years, the operational
methods have shown their usefulness in quantum mechanics problems, mostly in
the algebraic calculation of matrix elements where the factorization method has
been used along with other mathematical techniques such as the hypervirial theorem
[41 and parameter differentiation [ 51 method.

Recently Morales et al. [6] have proposed an alternative approach to obtain
ladder operators for potential wavefunctions from the algebraic representation of
the orthogonal polynomials with which the wavefunction is directly involved. Also,
that method was used to obtain, algebraically, generalized recurrence relations and
closed-form expressions for multipole matrix elements of hydrogen-like wavefunc-
tions [7]. However, in spite of its simplicity and usefulness, it seems at first glance
that such a procedure necessarily needs the previous knowledge of the wavefunction

Also at Universidad Autonoma Metropolitana I Ate-('BI). Mexico.

International Journal ofQuantum ('hemistry: Quantum Chemistry Symposium 26. 171-179 (1992)
( 1992 John Wiley & Sons. Inc. CCC (X)20-7608/92/010171-09
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under consideration, which is contrary to the virtue of the usual fiactorization
method. This occurs because their procedure was applied to solve. operationally,
differential equations of orthogonal polynomials. Thus, in order to overcome that
apparent deficiency. in the present work we consider the operational solutions of
the Schrbdingei equation fo• various potential wavefunctions by means of an al-
ternative procedure to the usual factorization method. That objective is achieved
by finding two kinds of ladder operators: those shifting the n quantum number and
the ones acting on the I orbital number, or equivalent numbers. for the Coulomb.
Morse, and P6schl-Teller equations.

Alternative Approach to the Factorization Method

As stated above, in order to include the most general case of second order dil-
ferential equations containing first order derivatives, let us consider the relationship

a(x)./`" + j3(x, n)./, + ý(.x. n).,, = 0

into its operational form

10ý = 0 (2)

which is appropriate for obtaining its algebraic solutions. In that case. by assuming
the existence of the ladder operators . such that

n~f, = J+•(3)

Eq. (2) transforms to

['P. nt,,I + ti pn = 0 (4)

where it should be noted that the f, functions were dropped in order to leave the
operators alone. At this point, by defining

)3(x,n) = $(x.n+± I)+ +13 (x. n) (5a)

and

k(x, n) = ý(x, n_ ±1I) + •-x, n) (5b)

one obtains

[Pn•, H -(/3±(x n)d + PU(x. n) )0.9 (6)

where we have used the identity tjjf4 1 = 0. Thus, by commuting ýp.' and31 (x.
n)d/dx in the above equation, and reordering it, we get finally

p,•,l _ (x, n) - -,p .I3t(x, n)__ - U(x,n)o (7)

In order to solve this relationship for p,', it is necessary to propose some structure
for the ladder operator solutions. For example, if these are considered to be linear
according to
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d
a, a(x, n) + (lx, n) . (8)

Eq. (7) becomes

a -d2a -'(x, n) da'-(x n + b'(x, n) dk(x, n)

dx 2 (x A dx

+[b±(x. n) d3(x'n ± 1) - a(x)(2 da'(x,) n + d2hbIx, n))

- 3(x, n ± I) dA(x.n) d

I da~~x) I dh(x~n ~d
+ (b-(x, n) d( 2,(x) d- nr = -F(x. n)a'(x ,n)

- it(x , n)al-(x, n) + bý-(x, n) 41( x, n) + d r (x, ) d r

dx2

Thus, matching term by term in the above relation one gets the differential equations
system

d2a-i(x, n) + O 1)da'- dý(x, n)a(x) -x ~,n+ bt (x. n) d.--v
dx` xd

- ý'(x, n)a:(x, n) = 0 (1Oa)

-0±i-(x, n)a±(x. n) + 2a(x) d(x.+ a(n ) dbv n)
dA dxýdv + (x) n

do3(x.n) Ax, n) 0 lOb
- b-(x, n) , -(x, n) + )(x n d±

2x)d(Xdx n dax) +)~,n

2a(x) (x, n _ + (x, n)) b(x, n) = 0 (lOc)

which can be easily solved. In fact, bh(x, n) comes from Eq. ( Oc) as

b±(x, n) = A- ±exp(f 2  - + ( ) (x, n))dx) (11)

On the other hand, in order to avoid the apparent redundance that comes from
Eqs. (I Oa) and ( 1Ob), the latter is rewritten as

da '(x, n) = P±-(x, n) + Q-*(x, n)a-i(x, n) (12)
dx
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where

Q (x, n) (13)
2,(x)

and

I d~b-(x,n) b'(xn) 100-,n))
2 dx-2  +12a(_) \ + ,

fi(x. n ± I ) db (x, n)
2a(x) (14)

Thus, the a-(x, n) solutions are straightforwardly obtained by using Eq. (12)

into Eq. (10a) by means of

a (x, n) a(x) dx + (Q'-(x, n))) + Ql(x, n)O(x., a _ 1) - (x. n)

- (., n) d -(x, n Pi(x. n)(a(x)Q:-(x. n) + O(x, n _ 1))

dx

dP-(x, n)
- a(x) dx(15)dx

That is, the p, ladder operators specified by Eq. (8) are then given from Eqs. (I )
and (15).

Applications

In this section we are going to consider the algebraic treatment of the Schrodinger
equation for the Coulomb, Morse, and P6schl-Teller potential wavefunctions by
assuming A' = :- I hereafter.

Algebraic Approach to the Coulomb Potential Wav,,inctions

For the hydrogen atom potential, the differential equation containing first order
derivative is given by [ 8 ]:

C~•R,..(x) = 0 (16)

with

S d2  2 d ( n +1(1+l))\C n l=j - + (17)
- TVx4 x dX, 2

where x = arr with u2 = -8mE/h 2 and n = 2mZe-/ih . There are two cases to

be considered: ladder operators p,,, moving I and the ones acting over n according
to the properties

,p 'R~j(x) = R,11 1 (x) (18a)
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and

R,,1( ) = R,,. .(-). (1 8b)

In the first situation, 3{(.. I) 0and*'(x, 1) = ±2(1+ 1/2t I /')/A, lbrwhich
Q'(-x. 1) = 0 and P'(x. 1) T-(l T 1/2 + 1/2)/x-. It follows that.

b'(Y. 1) = •1 and a'(x. I) = - + I 1+ / 1/2

2(1+ 1/2 ± 1/2) x

That is, the V1 ladder operators, shifting 1, are then given by

n d l9a)
2(/+ I) x dA

and

n I+ 1 d
( .) x d.\ (9b)

that are equivalent to the ladder operators published by Salburg [91.
We are going to consider the second case. In order to find the corresponding

• creation and annihilation operators. without loss of generality, Eq. ( 16) is mul-
tiplied byx 2 from left to right. In that case, 0f(x, n) = 0 and •(x, n) = -ix for
which QT(x. n) = 0 and P"(,v, n) = 1/2. That is. bl(x, n) = ;xand a'(-v, n) =

x/2 - n • I. Straightforwardly. the V, raising and lowering operators are then

X d= A - n - I -- dx (20a)

and

x d
- = 2 n + I + x- (20b)

are previously obtained by Badawi et al. [101. It should be noted that both ladder
operators, p,,. factorize the corresponding differential equation by means of

- ( + - n,)R,()= 0 (21a)

((pn4 -jp + +(/ I I) - n(n - I ))R,,,(x) = 0 (21b)

and conversely, from (p,>. ,1, j~on.1 as expected.

Algebraic Approach to the Morse Potential Wavefiunctions

The Schrddinger equation for this potential. according to Infeld and Hull [31.
is given by

R,,,,,(x) = 0 (22)
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with

.4 -- + s + eI' e C" - W(23

where the variable changes x = -a(r - ro) + log[(8MD)t" 2/(ah )], s + 1 =
(2MD)"' 2 /(ah), n2 = -2ME/(a 2h 2 ). and s- n = 0. 1, 2 .-. let us recover the
original Morse differential equation as well as the corresponding energy spectra.

It should be noted that we have used a differential equation that does not contain
a first order derivative, that is. 13(x) = 0 and Q"(x, s, n) = 0. Then, similar to the
above case, two types of ladder operators will be considered: O0 . acting on s and
n, respectively, according to equivalent properties of Eqs. (18).

For those creation and annihilation operators. 0,, s related, one has h'(x,
s) = l, (, s) = Te', and P`(.,, s) =e' leading to aI(x, s) ,e' - (s +
i2 + ) That is, the corresponding ladder operators are

I e= - - (s + I) d(
2 d- (24a)

and

1 d
0he'-s+d- (24b)

as reportec by Infeld and Hull [3]. The 0. case is worked out as before. That is,
by making

e -' ,,R,.,(x) = 0. (25)

one gets a(x) = e-2,, i(x, n) = (±2n + I )e- 2' and P-(x, n) = -ne -'. Conse-
quently. a&(x, n) = ne'- (s + 1/2)/(2n+ l)and b(x, n) = 4e-'. Therefore,
the corresponding ladder operators shifting n are then given by

s+ 1/2 _ d
0=ne -i 2n± (26)

as obtained by Huffaker and Dwivedi [I I ], after multiple variable changes, in order
to use factorization type V. Finally, the Morse potential equation is factorized
according to

(0'0, - + n2 - s2 )R,.,(x) = 0 (27a)

and. conversely, from 0-4 1.n4 I0 ,+ as expected.

Algebraic Approach to the Pdschl-Teller Potential favef'inctions

The P6schl-Teller (PT) equation is

PTnR,,R..(x) = 0 (28)
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with

T. d2 (2( +sing)(n _ +g+ p -g)(n -g+ g )
PT~~ (-( -4-)m± + Idx~ sin, pX Cos- P.X

(29)

where x = r - r0 and E, = 4p(rn + n + I )2. Similar to the Morse potential case,
Eq. (28) does not contain a first order derivative for which (3(x) = 0. and Q_ (x,
m, n) = 0. In consequence, for the ri,,, creation and annihilation operators, with
equivalent properties to those given in Eqs. ( 18). bh(x. m) = -1 and

,rn + g+ 1/2± 1/2 ng + 1/2 ± 112\
t-(x, m) = ±2p2( sin 2 px + cos-2 -px

and

P(x, ) =_P2 ?n+g+ 1/2± 1/2 +m -g+ 1/2± 1/2)
sin px cos0" P-

That is,

al(x,m)=p(m+g+ 1/21/2 )cntpx.-p(n-g+ 1/2+ ±1/2)tanpx

in order to obtain straightforwardly

d
17M=p(m+g+ 1/2_ ±l/2)cospx-p(m-g+ 1/2± 1/2)tan pxT-

(30)

in good agreement with Barut et al. [ 12 1. Therefore, one can factor the PT equation
by means 3f

(-ir_,7 + 4p 2m 2 - E,)R.,m,(x) = 0 (31a)

(i7,,+l •m + 4p2(m - 1) 2 - Ej)R,., (x) = 0 (31b)

depending on the choice of 1, -7,,.
Finally, in order to get the r?, ladder operators acting over n, Eq. (28) Is trans-

formed to

sin 2 px cos 2 
PXP)5T,,,,R,,,(x) = 0. (32)

In that case, 0±(x, n) = 0and U'(x, n) = ¥8p 2(m + n + I t 1)sin2 pxcos 2 px
for which Q'-(x, n) = 0 and P±(x. n) = 4p'(m + n + 1 ) sin px cos px. That is.
b±(x, n) = :sin px cos px and

a(x, n) = ((M + g)(M + g + () - g)(m-g+ 1)

2 \2(m + n +I± 1+)2

+ 2(m + n + I )(cos 2 px - sin 2 px))
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Thus, as the above cases, the q, ladder operators are then given by

P (mr+g)(m+g+ 1)-(In -g)(m-g+ 1)
U 2( - 2(n- +n+ I t -)

+2(m + n + I )(cos: px - sin-2Ps ) sin p.v cosp-rd. (33)

It is interesting to point out that the latter creation and annihilation operators,
as far as we know, have not been published elsewhere. However, due to the fact
that i? : factorize Eq. (32) through

- •_ 2  (m+g)(m -+g+ g))2

- 2(m + g)(m + g + 1) + 4(m + n + I )(m + n + 2)

- 2(m - g)(m - g + I R ...... (.) = (34a)

and

+ ~ ~ ~ I -M+g( (M - g)("? - g +I
S -1 P2 ((( + g)(- g+2( + n + 1/2) )

+ 4(m + n + I )(m + n) - 2(m + g)(m + g + I)

S) (x) = 0, (34b)

these ladder operators also could be obtained using the standard factorization
method.

Concluding Remarks

In the present work, an alternative procedure to the usual factorization method
has been proposed. That approach is generalized in the sense that it can be also
applied directly to second order differential equations containing first order deriv-
atives. That is, although it is always possible to eliminate the first order derivative,
by a change of variable or a change in the function, the proposed method avoids
such kinds of unnecessary transformations. The method is simplified because it is
reduced to solve the commutation relation between the operator related with the
differential equation and a trial structure for the ladder operators under consider-
ation. As exemplified, for creation and annihilation operators with linear structure
on the derivative, the method applied to various useful potential wavefunctions
gives rise, adequately, to previously accomplished equivalent results. Advanta-
geously, the proposed procedure also permits determination of the two kinds of
ladder operators that characterize any potential wavefunction by means of a single
multiplicative factor in the original differential equation. Although finding such a
multiplicative factor is not trivial, the price to pay is comparatively inexpensive vis
a vis more cumbersome procedures that require the transformation of the equation
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according to a structure ad hoc to the different classes and types specified bhx the
factorization method. Thus. our approach is quite simple and direct when compared
with other published methods. Also, it can be easily extended to obtain the algebraic
representation of other potential wavefunctions as well as nonlinear structures for
ladder operators.
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Some Comments on
The Electrostatic Potential of a Molecule
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Abstract

In this article we discus seseral principles and tools w hch should expdite desrnption of the electrostatic
potentials and electrostatic interactions of molecules. and shos, that these also lead to some rather re-
markable results in the theory of the irreducible representations of the full rotation group so( 31. First,
by representing a molecule s chargc-densit, matrix over a basis of atomic-like orbitals (on the various
atoms). we observe that outside its charge distribution the molecule's electrostatic potential is exwd(tv
the same as if that charge distribution were merely a sum (and in the case of a finite orbital basis, this
is afinat' sum) of point multipoles on each of the atomic centers and line mullipoles on the line segments
joining each of those atomic centers. Possible methods of approximating the field of these line charges
and line multipoles. as if they were due to point charges and point multipolcs. are discussed. The calculation
of the interaction of point multipoles of high order, as is necessary for this procedure to successfully
calculate the interaction of arbitrarily oriented molecules, motivates our second topic. Here we present
a differential operator which, when acting on the 3-dimensional delta function, produces the source
density for a scalar field that is exactly an (1.rn) multipole field. Using the Hermitian adjoint of this
operator, we express the interaction of this (I.rn) multipole with an external scalar field as the result of
this differential operator acting on that external field at the location of this multipole source, Irreducible
representation matrices of the full rotation group are then used, together with these relations, to simplify
the interaction of two arbitrarily oriented multipoles of any orders. Finally. we use the representation of
the Condon and Shortley "raising and lowering" relations on eigenstates of the --component of angular
momentum, in an orientation that is not aligned with its fundamental basis states, to generate rec,-rsion
relations that allow simple calculations of the irreducible representation matrices of the full rotation
group, so(3). and the special unitary group. su(2). From these recursion relations we display some
useful symmetry properties of our parameterization of these matrices, that allow the entire matrix to be
very simply generated from an explicit calculation of only about I/8 of its elements. c 1992 John Wilcs,
& Sons. Inc.

Introduction

rhis article presents a number of concepts [ 1-28] which should prove useful in
the efficient calculation of molecular electrostatic potentials and their associated
intermolecular forces and intermolecular interaction energies.

The electrostatic potential of a molecule has been shown to be very useful in
calculating the forces of this molecule. at medium-to-long distances, upon other
molecules [291. Forces at this range are very important in determining the kine-
matics of a molecule [2,29-33,59 ]. which become important in many aspects of
molecular physics, including biochemistry [2,7,31-42,591. The knowledge of the
electric field and the charge density [7,35-45,59 ] of such an electrostatic potential

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 181-205 (1992)
'd, 1992 John Wiley & Sons, lic. CCC 0020-7608/92/010181-25
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is also useful in determining the chemical reacti\ it- at the reactise sites ol'a molccule
7.3 1-46.59 ]. which is serv important in predicting drug actisity 17.31-39.591.

Simple representations of the electrostatic potential of a molecule. in terms of
point charges at the centers of the atoms [2.31-501. while prosiding simply cal-
culated salues' lbr the field. are not of high-qualiw. and difl.rcnt methods lbr
computing these charges lead to ditkrent \alues for them [ 2.37_38.45-501. Allow ing
for point multipoles. either on the atomsf 7.37.38,42.51-531 or on the bonds
[7,42.49.511. improves the numerical accuracy of the calculated potentials
137.38.511I but generally diminishes the stability of the mathematical representation
138,5 1]: and experience has shown that. for the model to be stable and accurate
(especially glohal/v accurate), it must also include charges 17 1 (or prefi.rahl., charges
and mulhipoles [7,5 1,42 1') on the "bond axes" between the atoms.

Yet. how should we determine the proper positions and values of the charges
and charge multipoles to be used? How can we most simply calculate the interaction
energies of these electrostatic potentials? And, are there any auxiliary mathematical
functions or relations that will expedite these calculations? In the course of this
article we present information that we hope will be helpful in obtaining appropriate
answers to these questions.

First. we present a parameterization of the electrostatic potential that is uniquely
determined by the density matrix over the atomic-like orbitals that are the primitive
basis orbitals for the molecular wavefunction. For Slater-type orbitals (sr(0s)
[21,54.46.47.30.34.]. such a description leads to an electrostatic potential which.
for field points outside of a volume (of appropriate shape) which is large enough
to [essentially 31 contain the charge distribution, is [almost'j exactly represented by
point charges and point multipoles. on the atomic centers, together with line charges
and line multipoles on the line segments (i.e., bond lines) connecting each pair of
atom'; [3-9,54,55 1. It is the field of the point multipoles on the atomic centers and
the line charges along the bond lines which, when represented h\ charges on the
atomic centers, leads to inconsistency and instability in the calculated values of the
atomic charges used to represent the molecular electrostatic potential [ 38.42.29j.a
However, a representation of these line charges and line multipoles by point charges
and point multipoles at suitably chosen points along the bond line [ 291 is adequate:

SSimple methods based soc'le on point charges inoke a calculation algorithm that leads to numericall

unsatisfactor, held ,alues at lIr distances, since these field salucs are obtained as tin\ dhi.-rences of large.
nearly equal numbers: also, because of the long range of the field of a point charge. all source points are
needed to calculate the kalue of the field at any field point 15 11.

W Where more than one reli.rcrnce occurs in the same citation, wke ha\se endeored to hawc the references
most relesant to that topic listed first.

Here Ae are dealing with an asymptolic relationship that is exponentially con\crgent and is corn-
putationalt use'ul for distances he.ond about two bond lengths 17.42.46 1.

" for (,aussian-t.pe orbitals (ci t(s). the line charges and line mktlapoles become replaced bl many

point charges and point multipoles distributed along the hond lines 1.71 ' .42.54-5 ]. A more etficient
parameterization of the potential of the set of point charges and point multipoles along a gisen bond
line mas be a much smaller set o(f line charges and line m, hipoles., shich parameteriation is likel also
much less affctied bh a change to a quite dif lrent ( but oll salid ) choice of basis (i• )os than is the set of
point charges and point multipoles along the hond line.
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,(1 ... ; ) P- ( )! x.(x Fl ))* (2)

Here. .I and B each label atoms, M labels an atomic orbital on atom A., and v labels

an atomic orbital on atom B. The expansion ,'Oetricients ; form the electror'c
charge densit. matrix of the molecule in this basis of atomic orbitals. The charge
density, 5( fl. ma\ be decomposed into a sum of intra-atomic parts p' F) and

pairwise interatomic parts p,, r fllows

E + , (*) (3)

with [3-5]

'V X 1(

P , X(?)_+, , (x ±t;/V,, X.fl/J(X) )

2 Ref XA!( x2 () X!,( l*I (4)

Note that the intra-atomic piece, po',' i). is expressed solely in terms ofthe orbitals
on atom A. whereas the interatomic piece. p i,( F). is expressed using terms in-
volving one atomic orbital on A, and another atomic orbital on R. Thus.
pt( •) represents an atomic charge density on atom .1, and .,.( r, represents
the "overlap charge" connecting atoms .A and B. We shall find that, for field
points everywhere outside of a sphere 7 (centered on the appropriate atom) large
enough to contain 8 that part of the charge distribution, each intra-atomic charge-

density term. p 1( f•) produces an electrostatic potential that is exactly exprzssible
in terms of a point charge and a (small) finite number of point multipoles centered

on atom A [ 7 ]. However. tie interatomic part, p t,
2oB(f). produces an electrostatic

potential that is best expressible in terms of a line charge and a (small) finite
number of line multipoles along the line segment joining the centers of atoms A
and B [3-5,8-11.7].

T/, Atom-Centered Charge Density am,' Its Electrostatic Potential

The electrostatic potential, V,,, due to the charge density, p0(), that involves
only the atomic orbitals on atom A, may be written

= (r.) 2 dr2 sin 02d82 dOid,2  (5)
rI2

Not. that for p.' * ). this region generalizes to a prolate ellipsoid (i.e.. the region formed by spinning
an ellipse about its major axis) with foci on A and B.

See footnotes 9 and 3.
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and \we mna\ represent I ,/r. [i [1-16.Wi]

1 4TIr Yr-)

sherc the ;,-Y,( 0. jr ) are the standard :phericaI harmonics,; 12-17] SuhstiIuting
Eq. (b) into Eq. ( 5). we lind lhat for" -, > ma.\ (r-i.e.. 1i`r 0I outside of the
smallest sphere ( centered at .I ) containing "' the charge distribution-this . iclds an
expansion oelthe atomic charge p(,tential I',( t )in the form

1 V V:

We recognize this as a point multipole expansion [ 7.12,14 _ of ths clectrostatic

potential about the center of atom .,. I ith q ..... as the ,aluc of the (/.m )-mullipole
moment.

The Inweralomuc Overlap ("hartl'' Dnti andU. Its l tl'drelu N I' uPt'1/1l(I/

The electrostatic potential. I',•'. due to the interatomic oxerlap charge densits.
p,?(F). of the pair ot atoms. . and 13. ma.\ eý written [ 18,3-5J

I /11( 7, = ,,"(_ )d:

= P,i ._) R )Iilr' t l. SF

Jr, 8

where I• (,r + r•t)iR. Y7 ( r, - rt)iR. and t [the azimuthal angle about the

bond axis] are prolate ellipsoidal'' coordinates [3-5.18.19]. (I . C < - .
- I n i_< I. 0 --: i < 2r). and R is the internuclear distance. We can represent

I /r, b.' the Neumann expansion [ 18,.3.5]

m / ~. (--)"'(21 ¼ W
rlj, R +," , F iml:,

X P," (s. )0..." ,(k )PI"! 1, )Pi"' (•1 ... (9)

For ýj > max(,)-i.e.. for T, outside of the smallest ellipsoid (sith foci I and B)

What Ae mean here b, max( r,) is the lowest permissible .daluc oft he upper limit of r2 to hich the
integral in Eo. 15) needs to he taken (to ohtain the desired acturac% of the resolh) It oý ,\actlI x\e
interpret this influences how exactl, •et can interpret man,, oftour subsequent statlemenls [e.g_ Fq C7)]
concerning V ', ' ) and p ,i,( I )-

"'See footnotes 9 and 3.
SWe prefer the ttrm "prolate Olipsoidal" to the more indefinite term "prolate ,pheroidal" usd hb

Abramossitz and Stegun [19] and seweral other authors.
"2 We are using the Abramowitz and Stegun [12.19,201 definitions of the P,' and Q," functions.

which, for argument ( I i u - I I. differ hy a factor of( ) ' from the standard definitions used b,
many other authors [1 3-15 I.
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containing" the charge distribution-this yields an expansion of the overlap charge
potential I A ?, , in the form

F )•,, ,. ,_ ,,, (n )Q " (• (10)

The part of this potential belonging to a given in-Nalue has. as its source, the singular
volume charge density [8,9.3,11

P,,,( ) = 17,()( - )"(!- + i sgn(m) j,(.),(v)l (II)

where the 6's are Dirac delta functions and X,,,() is (by definition) the line
(mm)-polc density "4 [i.e.. the (mOn)-multipole moment per unit length] at the
point on the bond axis (the :-axis) parametrized by (ý = 1. - I - r/ I 1) with

,,,, -(1 72i,-) Q. '2 07) (12)-- -i,,n(n '

where al,. is the same coefficient as that which appears in Eq. (t10).
Thus. outside of the charge distribution, the electrostatic potential due to the

(distributed) charge density of a molecule may be represented as if it were produced
by the following sources:

1. Point charges and point multipoles on each atom. (These represent the intra-
atomic terms in the charge density [ 18.3-51.)

2. Line charges and line multipoles along each of the line segments joining two
nuclei. (These represent the interatomic terms (i.e.. the "overlap- terms) in the
charge density [ 18.3-5].)
For a given finite atomic orbital basis, the intra-atomic terms in the charge density
lead to a potential that, outside the charge distribution, is expressible in terms of a
point charge and a (small) finite number of point multipoles on each atom [7].
For this same basis, the interatomic terms in the charge density lead to a potential
that. outside of the charge distribution, is exactly expressible as that due to line
charges and line multipoles of order less than or equal to some (small) finite mma
[5 ]. This point charge. point multipole. line charge, line multipole representation
of the potential is uniquely determined by the representation of the charge density
as a bilinear form over the given atomic orbital basis [2-5.5 11. Any valid simpler
representation [29.5 1] of the potential is appropriately obtainable as a canonical
reduction of the potential due to these point and line sources.

Possible ways to reduce the above representation 15:

See footnotes 9 and 3.
•4 For sfo bases, or any basis with the correct asymptotic behavior at the nucleus and at infinity. A,

is a continuous function oft Y. However, for a Gaussian orbital basis. this "'line-multipole density" becomes
a st At point multipoles. "'strewn" over the line segment joining atoms .4 and B [7. 11.42.54-57 1, so
that x.,( I) becomes a linear combination of delta functions.

" Gaussian orhitals do not produce a line-charge or line multipoles but. rather, produce point charges
and point multipoles along the "lbond" line [7.1 i.42.54-571. Still, reduction of their number, in these
ways. may be appropriate.
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I. Replace the line charge and line multipole potentials fbr the pair ol aloms. I
and B (from the corresponding interatomic terms in the charge denslit ) b. a poinI

multipole expansion about e.g. the center of the line segment joining tile nuclei of
atoms ..1 and H (i.e.. about the center of the "bond") [7.29 j I (his is mathcnaticall\
simple and fairl. rapidly converging for most field points of interest.)

2. "Sever" the line charge and line multipole densities joining atom,.s I and B
at e.g. the point equidistant from these atoms. and express the potential of each of
these two "pieces" as a point multipole expansion about its corresponding atom
[7,291. (This leads to a canonical representation of the total electrostatic potential
solely in terms of point multipoles centered on each atom [17.291. tlov'e\er. it is
less rapidly converging than the procedure outlined in ( I ) abo,.e, and the calculated
values oi' the "'atomic" charges and multipoles can be overn sensitixc to small
changes in the wavefunction 17.291 if the bond is asymmetrical and there is a large
absolute value of the eflective line charge density at or in thie vicinit\ of the midpoint
of the "bond".)

3. Replace the line charge density joining atoms ,A and B b, a point charge (at
the center of charge) and its complement [7.291. This complement thus contains
no monopole component and no dipole component. It tlherel'Ore can be replaced
by an in = 0 point quadrupole (aligned along tile bond line) and its complement.
with the quadrupole centered at the particular point on the bond line such that its

complement contains no poles of order less than or equal to that of an octlpolc.
One may represent this latter complement by a point hexadekapole centered at the
point such that its complement contains no pole of'order less than or equal to 32:

and the procedure may be continued. with all generated point multipoles Ik ing on
the bond line and being aligned in the direction of the bond line. Analogous pro-

cedures are possible for each line multipole density joining atoms .I and I. I1his

should be the most rapidly convergent method of these that we have suggested.)
Methods ( I ) and ( 3 ) are appropriate when atoms. I and B are close neighbors.

since the\ require fesser terms for a given accuracy of the held kalues. When atoms
.I and B.? are fhr apart, the line source being representei Is of sery small magnitude.
so method (2) may be prefi.rred. since it does not place charges and multipolCs

anyv, here except on the atomic centers.

Point .Multipole Potentials, Their Source Charge Distributions,
and Their Interaction Energies

The above description for the electrostatic potential of a molecule. in terms of

point charges and point multipoles on the atomic centers and line charges and line
multipoles along the "bond" axes. is accurate and compact. leading to simple eval-
uations of the potential in the region outside of the sources. I hlwoexer. the interaction

energy of two line multipoles of arbitrary orientation is presently awvk\ard to cal-

culate. Thus. for the purpose of calculating interaction encrgies of" molecules. it is
presently appropriate to re-express the molecular electrostatic potential of at least
one of the two interacting molecules solely in terms of point charges and point

mullipoles centered on appropriate centers. in a manner akin lo the reductiMns
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suggested in the previous section. When this is accomplished, the interaction energy
of two molecules may be calculated using a procedure based upon the following
discussion.' 6

The Charge Distribution of'a Point Alultipole Potential

The electrostatic potential of a charge distribution p(7) may be written [12,1.51

ý(-) = f G( -;, 7')p( f')d3-7' (13)

where the Green's function, G(i. P'), has the representation [12-161

G(7. 7') =

I _4r 4(r)
=i2: 2 , ( r . ) p(YVi6,(O'. V'))* (14)

0 m,21+ I

From this, one can show that one source charge distribution that will produce the
potential [I I ]

'47r I )15)

may be written [ 8.9]

= Z,6 (7 •)(16)

where

m)!(1 + in)! f1r O9inC.1

(_)l ' I (1- lmt )!(l+ Iml)! 9z [ -i ., for -

(17)

We note that (.£ ,/))t the Hermitian adjoint of the operator £2. may be written

"t Follow the appropriate footnotes in this discussion to be appraised of some of the relevant applications
of this approach. as well as its limitations.
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for 0 mn (
t18)

Expressions for the generating operators fbr the source charge distributions of the

corresponding "'nonorthogonal" Cartesian multipole potentials are of an even sim-
pler form [8]."

The Interaction Energy of a Point Multipole With an External Potential

The (complex) energy of interaction of the (complex) multipole potential

i2)() [produced by the point source charge density p,'( F)J and a (complex)
external potential F(?) may be written [291

...f (p!111',) )*(( ; W)* ( •)i

f: b( (F - ) l ,, ) )*,P( 7 ) d'-;

:: ((. .) +(19 )

(In any physical situation, the total interaction energy will. of course. be real.)
It is easy to show that if we translate the potential ik ,( ') from the origin

r - to the origin 7 7(0), -b' ) becomes replaced by A,'( • - ) and we
have the generalization [151

"P( (20)

Also, providing the orientation of the Cartesian axes with respect to the axes of
defi'iition of the polar angles (0. p) is preserved, our differential operators ma. he
expressed in terms of spherical coordinates with respect to any origin ' as [ 15 -

a C 3 sin 0 a-- co COS -

az ar r of)

a + e sin 0 CosN + v

d.1 ar r 68 rsin 1) Ai,€

a a3 a cos 0 a it,"' a
- +i--- e sin 0 -- +e - - (21)
0 .O V Jr r aft rsin 0 r3€e

"Such "nonorthogonat" Cartesian multipole potentials occur in the far-held representations [ 57.,6.42 1

of the fields of charge distributions arising from molecular charge densities represented in terms of
(artesian Gaussian orbitals [57.56.42 1.

" ITransformation to other cosrdinate systems, such as prolate ellipsoidal 119.1h) known in these
references as -prolate spheroidal" ). is also straightforward and can cxpcdite such things as the calculation
of the interaction energy of our point multipole with a line multipole
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Simplifications occur if the ('artesian axes delining the spherical coordinate ssstem

for the potential ',1( F) are parallel i' to the (artesian axes defining the spherical

coordinate system for the multipole potential •j,,, F). for then wc may choose the

spherical coordinate system representing our ditferential operators to be the spherical

coordinate system natural to our potential +( ;).
To illustrate this, we might choose +( F) to he an untranslated point multipole

potential • it/,( F). and let ( r,. t,,. ý ,) be the spherical coordinates of F,, [the center

of the translated 4 ill( ). potential in the coordinate system natural to +1( 7). In
this case. the mathematical representation of the interaction energy, derived from

the above procedure. is exemplified by the following expressions.-" valid for / I'
2 with m -= ' -n ±2 and --in m' _-2. respectively.

9 + 20 cos 20,, 4•35 cos 40k.a
/ - -64r;,

35 e ,4. sin 4 4 ,.

[where the ± signs are correlated in Eq. (22b)].
When the interacting potential. P1(F). does not have its Cartesian axes aligned

parallel to those of the multipole potential 4 ýP( ). it may be appropriate that we
express ) in terms of potentials aligned to the coordinate system of ,I( ;) via

the relations [ 17.16,13.11]

,,R (23)

[The corresponding source charge densities. p,'( F) and () are related in

exactly the same waN. I Here 'i) (){ is the set of multipole potentials whose
('artesian axes are aligned parallel to those of'P( I ). 1 is the operator which rotates

the ('artesian axes of V 1) to be parallel with those of ,(F). and D"'(/R) is the
irreducible representation matrix. of the full rotation group. appropriate to this

rotation. ', This is the same irreducible representation matrix for which the substi-

tUtion of Y1'... (f. p) for ( F) and Y',,,( B') for ' I,, (F) in Eq. (23) yields a true

relation. [ Here (0. ý,) and (10'. i') are the spherical polar angles with respect to the

('artesian axes o ',,, and of4)( 7 ). respectively.] : Because their natural Cartesian
coordinate systems are mutually parallel, the interaction energies between each

member of the basis set of potentials. {$,( F) .and the external potential. 4I,( ).

" Such "parallel axis representations are 'erN common in the representation of the atomic orbital
basis of molecules, and propagate to the repres.e'ntation of the charge distributions appearing in the two-
electron integrals of the I /r,, interaction. Thus. this simplification is valid and relevani to the multipole
interaction representation of these integrals under conditions in %khich the interpenetration of lthe tso
relevani charge regions ma. he neglected [3-5].

` We have ohtained expressions for all ( 1. in. L in') wlth I and /' in the range 1) through 5. using the
s-,mholic manipulation facility of the ,I faiiuhmatw, program 1251. Some of these results are reported
else%& here 124 1.
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mlax he ~asily caClculated in thfe i . 4;' ) coordi nate s\xstern,. uISIng ourI tFOrmler procedu re -
This feature expedites the evaluation of'the interaction cncrg\ hev.%een i. i~ 7) and

P %N x hose natural Coordinate sxýsterns are here not mutu11.alls parallel )xia the
principle ot'linear superposition.

It is also often convenient to represent the orientation of the axes of each of the
potentials. f- X2 ) and +( 7) ~ith respect to a laboratory coordinate s\xstem.
via the rotation operators. R`- and R", %,thich rotate the laborator\ coordinate
system. about its origin, Into the coordinate system parallel to that of~.and of'
4,. respectixelk 1 17.1 b.1 3J.1], Noxx, consider (1 itself' to he a point multipole po-
tential. 'I'2- .k ith its own orientation lbOr its ('artesian axes, and let fi` be the
operator that rotates the lahorator\ coordinate sxstem (about its origin ) such as to
make its new, :-axis parallel to thle line through thle centers of*C >1, and 'i/. lienl
xxec may define the sets of' potentials ~ ~and ;I . ha\vIng the same centers
as and '1,.respectixelN. but aligned with their common :-axis through the
centers of~~and ',, .as IbOllows:

~, 7) J*( ~ 4 , T) ~1j( (24h) ( ?' )I ~N

'5 J IWI) II)DW~I

Lect 6 j$. ~)he the interaction energy betx.%een the aligned multipoles. /(7
and '1') ) It is easy to showý that

r, op, 25a)I

and we have just recently succeeded in proving2 2 that

L n/- )!(/'± 4- t ill)!(/ l + 1n)! j 1

tHere. 1-12 Is the distance between the multipoles, and 1, Is the /-xalue of the potential
centered at the point having the larger value of the :-coordinate in the coordinate
system obtained by rotating the laboratory coo)rdinate system about its origin by
the operator R' These interaction energies are zero) unless in' in, making the

I his is. particutairl% relevant it one i% foltowing the classical d\ namical interaction (if molecuiles.
represented Iin pant iN Such CICCtroSttic multipoles. in a tahorator% tosordinate sxstem.

,'Atter one of us IMt.L. had %critied thi~s b,, explicit esaluation %ia EqIs. (t 18-f 21 ) [through their
analogs of Eqs. I22). Ai th 11,. 01 I hr alt integer I and P values in the range t0 through 5 (andi their
alltossed %atues of m) . another ( IC. managed to finall\ prose it for till integer / and 1' land their
alto\A~ed imi(
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rectangular matrix, C"'}(r1 2), defined below, zero except fbr its diagonal. sym-
metrically placed. maximal squa:-c submatrix.

Let 8(I''(r.) be the (21 + 1) by (21' + 1) matrix whose (m~m') element is

I.(r.... -), and let D11(f) be the (2! + I) by (21 + 1) matrix whose (I n",n)
element is D,,'.,,,( Ri). Then. it is easy to show that the interaction energy between
the original point multipole. 7/,(?). and the point multipole. 'I¼,',(7), is given
by

2

= [(D/t•(D, rD))D" )] ... (26)

The ¶ matrices are simply calculated using Eq. (25). All of the heavy orientational
information is contained in the D matrices. Symbolic programming [23] can al-
gebraically simplify the final expression and make it reasonably easy to compute
for values of Iand I' less than or equal to 6. Most quantum chemical calculations
can be virtually exactly managed with I values less than or equal to 4. so this
represents a feasible route toward calculating the interaction energies of molecules
of moderate size. However, satisfactory implementation of this procedure, for the
evaluation of intermolecular torces in a dynamical setting. requires evaluating spatial
derivatives of such interaction energies for many different intermolecular confor-
mations. This is often best expedited by simple and rapid numerical calculation of
the D matrices (and their derivatives) for many different orientations. The foun-
dations of a method for accomplishing such calculations of these D matrices are
presented in the following sections.

Angular Momentum Operators, Rotations, Euler Angles, Spherical Harmonics,
Pauli Spinors, and the Irreducible Representations

of the Full Rotation Group [Also of sL(2)I

Starting with the quantum mechanical definition of the positi, ., operator. r =

7, and the momentum operator, 14- = (h /i)•, the quantum mechanical angular
momentum operator. L., is derived to be: [ 15.17 1

h
I. =r7X T) (7 X 7) (27)

(Hereafter we shall take h = 1.) From the commutation relations between the
component, of -? and the components of A one derives thq corrmutation relations
among the components of 1, that may be summarized as L X L = iL. From these
commutation relations on L one may derive the Condon and Shortley relations
[22.17,15.131:

": The careful reader will note that the lefi-hand side of Eq- (26) [upon substituting the definition
from Eq. ( 19 tl explicitl3 show.s the necessary transformation properties required by the laws of physics
(e.g.. it is invariant under any global rotation or translation ). whereas the right-hand side is expressed
in terms of coordinate-dependent parameters and, therefore, does not display these transformation
properties ev.ph ahti. ( However. the reader is insited to test that it does in fact transform correctl%.
As an example, we pIint out that interchanging 4 1, and 'i',,. which is equivalent to the transformation
((I- 1')( n n- P'). transforms each side of Eq. (26) into its complex conjugate.
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nl:J In - I rol(:28a)

L.~L 4I. ,,1" m( )- -m I i in (2t8b,c)

Here L -- = L, + L,. and I/. i0z, is ani set of states or functions that satisfl
these relations (e.g., the set of spherical harmonics )Y,,!(8. ') belonging to a
given /-value).

Whereas uniqueness of the scalar wavefunction requires / to be a nonnegatiie
integer, the formal algebra that derives the Condon and Shortley relations requires
only that 21 be a nonnegative integer. When we allow for the possibilit\ that "I" is
a half-integer, we dengte L as .1 and /asj to remind us that, when i is a half-integer.
every component of j has no single-valued scalar eigenfunctions [231. The Condon
and Shortley relations are uniquely determined by the algebra, to within multipli-
cative phase factors on the results of L, from which the corresponding unimodular
phase factors on the results of L, are determined [17 ]. The Condon and Shortley
convention sets all of these phase factors equal to unity [17).

Now the f(i. ii) rotation operator for a counterclockwise rotation by an angle
4 about an axis labeled by its unit vector. n,. when acting on an entity " upon which
J can operate. may be represented 1171 as

f fi)l exp((-i4fi. J)lI >129)

From this and the Condon and Shortiey relations. we derive that [t 71

i(o-. fi)ItT t'4 = t, a- , a*] (30)

where a = cos(0/2) - in. sin(0/2) and h = -(n,. + in, )sin(0/2).
Here I vt, L,4 I are the Pauli spinors (often denoted by a., 0 ). and the matrix

involving ( a, b, -h*, a* 1 is the corresponding element of the special unitary
group, su(2). The elements I a, b, -h*, a* ; play a dominant role in describing
the irreducible representations of su(2) and so(3) (the full rotation group), and
may be expressed as shown above [ 17 1, or in any of several other ways that par-
ametrize the rotations [I 7.11.13 1.

In particular, Rotations may also be parameterized by the Euler angles
a, /3, y }, which have each of the following two interpretations.

Body-fixed interpretation [ 11,58]: (I ) Rotate the system counterclockwise about
the body-fixed z-axis by the angle a. (2) Then, rotate the system counterclockwise
about the present orientation of the body-fixed Y-axis by angle 0. (3) Finally.
rotate the system counterclockwise about the present orientation of the body-
fixed z-axis by the angle 'y.

Space-fixed interpretation [ 17,58: ( 1 ) Rotate the system counterclockwise about
the space-fixed z-axis by y. (2) Then, rotate the system counterclockwise about
the space-fixed y-axis by /3. (3) Finally. rotate the system counterclockwise about
the space-fixed z-axis by a.

In either of these representations, the above-introduced parameters. a and h,

take on the values [ 171:
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a = c `,/2) .Cos-3e 2), 1) __ C M 2 si (31a.b)
2 ( I

We now consider the normalized spherical harmonics ).,,,( 0. ,) [ 17.15.13221
For any given I. the set j Y,,,(0, ýrH nz -/. -1 + 1. • • • I -. 1 may be obtained
[17.15.13,22] by the repeated action of i. acting on 'j(f.t, p) -(-(sin 8).edU
choosing the magnitude of the constant (C by the requirement of normalization.
and the phase of C by the requirement that S',.(0, €) - Aji(cos f). where .A, is a
positive constant. It is easy to show [ 17,15.13,221 that this set forms a basis for an
irreducible representation of the full rotation group, and we may write Y /1(0, ;P)
as shorthand fbr the row array [281 formed by the set of spherical harmonics
belonging to this i-value. Thus,

It" "(0.,-) ý_(I. O, ) YUj(0, v U 1 .() .. . 1. 1, (0. ý,). Y1, j(H. ýr)) (32)

which allows us to write

p' 1,C) N,, ,,,( , ) 33a)

in the form [28}

Y'" "(0. p) R ,i) Y "(0. V) = Y11(0, ý,)D11 (o. t!) (33b)

where D"'(0, ii) is the irreducible representation matrix [16.171 associated with
the basis YC'l(0, p) and the rotation operator i(r, rfi) in the full rotation group
sO(3). [Here we need to distinguish between 0 as an angle of rotation and (P as
the spherical azimuthal angle.] It is easy to show that the basis vectors 17 1

(.=- . ,e,,. ,) = ! :) [i e,21 (34)

0 1 0

(where j, ,. • are the unit vectors along the Cartesian axes) have the property
that [17]

/• ( 0 r7 ) • l • = e f > D l ( O , • ) 3 5 a )

where also [17]

/i(ob, i)Y I1 (0. •P) = Y 1)(0, po)D ' ((P, q•) (35b)

Thus, i.. transforms according to the same irreducible representation. D"). of the
full rotation group, as does the set of spherical harmonics belonging to I I. This
irreducible representation may be written in terms of the parameters
{a,b.a*. -b* I as[17]
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1,,. [ " uh<' ",21
I) o7 t•( ,6*) . * b( t> t*) {2 *t,I /jL W* 1 M1*1 3*0 ( ]

It is eas\ to sht I hat u nder ri at 1on. he ( artC sian conl I on nts I if,. / .. ) of

tile \ cio)r anlgular momlent ulin operator f tra. lOrm in the SalleIC •lAa \ tihe unit
%ctors ( C, " .t .: ) BcCause of the relationship of I . . I to it) c ,. this
mll eans that [ ], I ,j

N•o~x tile (ondon and Shortlev relations [1-.qs. ( 2 sx ' hn uSed In conjunction
with the spherical harmonics. .()...( gi. ) lI,.

i.)', ~ ~~ 10•.i: ill( ;- II ýl : ! ,, .r ) (38b.c)

I sine our definitions oflhc the >.. ;gixen in tcqs. ( 33i ). tocelhC r %\ ith our delinitions
of I. . I gi. e 'en in ql. 137). the insariance of the "lass of pht•sic" ( here.

the ('ondon and Shortie\ relations) to the orientation ot our rdllerene firame rcelquires

that also [ 16.13]

V Y-} M( t I /M mit I,, .Y", I t.Va9

Writing

/ , . ,/ ' .-: -. i4. 04 a

. 1 , '. U 1. , 1. 4(4c0 )

vc" may read the "values'- of the (o 3. " ) coeffcients fromn the definitions of'
IV'. . i. '. I.' ) and the" matrix elements of D)' 1' q. ti t.

The Condon and Shorile relation for V- I 7q. 1 39a )I man be written as

( < , , ,I . . i 7 v If .-: -4 >f 1 \ ) j ., , ( I i . ' ) / ) , ' , (. , , ,' ,. N 7 )

ti

m )( IL tD ,,,(<rp. )7) 1411

xAhich, upon substituting the entities on lhe right-hand side of FEqs. ( 3N) for the

prloducts shov n on the left-hand side of 1"qs. (3X ), as the\ appear in Eq. (41 I. and

then comparing the coetficients of the on each side ol the equation. rields
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acV!(I + I ) m'(tn' -- I ) D, ,,), 4- i, 3nl'J D,,, ....

+ 0/• I) n'(in' + t) ... . ,, ,,, (42)

with

ao = -ah. J3() = (aa* + h(-h*)), " a*(-j*)

This equation allows one to obtain the element Do,,,) (for any row n in column m)
from the elements (D,+',, and D,/, 2.,) or from the elements (D(,,. and
D ~,,-rn) or (except for n in 0) from the elements (D",,'-,m and Dn(') J,,, [all

of these elements belonging to the same column tn of Do')]. As implied by the
coefficients, in using these relations, one may take the elements whose indices lie
outside of the range of the matrix to be zero. By this means every element in column
m of D"• may be generated from either Dl,,,, or DI). The Condon and Shortley
relation for L, may be written as

(:± L, • •L+ ,L. ) • )',>(o,) ~,)D,,(4., ii)
L +-y I

• (I)

0(1 + 1)-n(n+ ±) • Y.,,(O. ,,,(i) (43)
In'- - /

which, upon substituting the entities on the right-hand side of Eqs. (38) for the
products shown on the left-hand side of Eqs. (38), as they appear in Eqs. (43),
and then comparing the coefficients of the { Y11,,," I on each side of the equation.
yields

• (I) . ,• l

a.V/(I + I) - m'(M' - I )D.",_ +

+ y,.( + )- mn'(m' + I )D').m VI(I + I)- m(m ± I )D D"I,,, (44)

with
a, = a'. 3+=-2a(-b*), -y, = -(-b*)'

a- = -b 2 , ý3 2a*b. -_ = (a*) 2

The L+ relation [with (a,, 0,, -y,)] allows element D,'+,., t lo be obtained from
the elements J( Dn"t)Ln, DW) D (j ), thereby generating an element in the column
m + I from its three closest neighboring elements of column mn. The L'_ relation
[with (a-, -, -)] allows element D•.,,-n(' to be obtained from the elements

I.. D . ..,, "? 1,m D thereby generating an element in the column m - I from
its three closest : eighboring elements of col'imn m. Thus, using each of the {L',
L'_, L' I relations one may obtain every element of the D"' matrix by any element
on its perimeter. In particular, using only the relations { L', L' one may generateM•I = a21.

every element of D") from the element DUI a
As will be shown in the next section, the symmetry of the Do" matrix requires

also that the following relations hold. These relations are images of the ) L'Z, L',.
L' } relations under the symmetry operation of simultaneously reflecting both the
matrix D") and the matrix D"'), each about its main diagonal.
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The image of Eq. (42) under this symmetry operation is:

0 310 + I ) n'(m' 1;1 '1)Q), i ,

;V/ / , - 1) - ai n i - ) l),2,,. - . (45

with

(5 -W( -- b* ). 3' -= (a * t -' h )l)) , */i

This relation 2' does for the rows of the matrix D"' what the relation given in Eq
(42) does for the columns of D".

The image of Eqs. (44) under this svmmetry operation is:
(l + I -W( IW - I) 4- ' n D/

+' Vl(l- )- I+ '( Ii' 4). ,.• 1 1 1, , I )M ;;',• (41

with

(" = a2, ', . ... -2ah. `' -

. =-( -h* )2, 3' - 2a*(-ht )*), -, (a* )-

These relations do for the rows of the matrix D' what the relations given in Eqs.
(44) do for the columns of the matrix D"').

The Relationship o/ Column m = 0 ol D" W ith the Spherical ltartnomcýi

The so-called "addition theorem" for spherical harmonics may he written [ 15,14 1:

PI(cos N,)-21 -1 Y }'l. . )(}7,,,,(O'. p'))* (47)
-) 4- 1 ,1 / 11

where -j is the angle between a vector from the origin, pointing toward (0. p) and
a vector, from the origin, pointing toward (0'. ýp'). Now, for any p",

4x-
f1(cos I ' 21 - I )'(' "

and

/.o '., M " ) = R( a. M. ) ILO(0. P) (48)

where the Euler angles (a. 3,)-y are such as to define a rotation R(,y. 4. 3) that
wili carry the original z-axis into the direction of( '. (p). This may be accomplished
by choosing '. j3 --- '. -y arbitrary. Thus. we may now rewrite the "'addition
theorem"

'• A reduction of Eq. (45 ; for a rotation aboui (lie Y-axis is given as Eq. ( 35.4 ) of Ref 16.
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Rlt :, ",3t, . - " -,, ) 2/ 1 - (1 ) (49)

Since the coefficient of ,.( U. ,') in this equation is. bx definition, ,,(,,. 5. -
we have [ 13]

4r

2/ i I

Also, since [15]
}:d cv / • V'(21)! 2lt +• (I ) ~ (S ... .... .( sin Sllc •"(5

2 •P! 4ir

then [171
i)•¢,. ,V( 2/)!

-(sin 3) '( " (52

but. from Eq. (31):
e....sin ~3 ..... 2ah 5

so

_(54)

This is the same result as is obtainabk from stepping down in-wise [using Eq. (44 )]
from (D, 1,),,,M a2- which is the D1,1. value obtained 11 7] from a ' ",:which
the m = I function is ( L, ), 1. where t. is the Pauli spinor o. h, ,ri ng [I151]
with Y.o 0(O. 4) = AP.(cos 0). with .,I, a positive no..a:,iav on constant, and gen-
erating the rest of the spherical harmonics via thv act )n of the Condon and Shortley
L. operators upon )/,. establishes, 2' via the connection of D', to ... ,,t [as given
in Eq. (50)]. exactly the same irreducible reprcsentat,,,n .. ; 'ru . i. c-tained from
our recursion procedure based upon Eqs. (42) and (44)-(46) (or the traditional
su(2 )-based procedure [16.17]). starting from DV = a12 '. Our recursion procedure
is capable of generating D"' matrices for all j-values (including the half-integral
ones). Recognizing the proportionality [Eq. (50)] between ',, I) and
(Ym,,,(i, a))*. we may use the i': relation [as expressed in Eqs. (39a). (40b), (41).
and (42)] to derive the following recursion relation for spherical harmonics-':

"25 Completion of the D)"J matrix from this starling point ma), proceed by using this column il ,

of D" and the re, ursion relations [given in Eqs. (44)]. to obtain the adjacent columns, then icrating
with these relations to generate the remaining columns of the matrix- This requires a knowledge of the
coefficients(o. •., -y.)-,ýhich are directly obtainable from either the matin D' or the pnmitem w'mt 2)
matrix. For corsistency, all elements of D' and D' should here he represented in terms of the luler
angles (a, j3. "t) with a =. • 0. [Note that the to - 0 column of 3(, ). , )does not depend upon
the Euler angle y..

26 With care, this rcation is also deiivable from s,.,me well-known properties and recursion relations
[19, using Eq. (8,3.1 ) in Eqs. (8.5.1). ((v.5.2). and (8.5.4)] on the P/', (cos 10 ý. Nevertheless. a search
of the available literature failed to reveal any citing of this relation [Eq. ( 55 )].
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(11 ) I))))

" m [2; cot ,, . t I/(1- i) tnit I I/ )c , . .. ( j (5 )

One may generate the entire set of spherical harmonics b\ sleppi rig do\% n m-wise
from

(, A( . r) 21 (sin (1) 2c' (21 () 47r

using this relation.-" Because Eq. ( 55 does not inmolke diffrrentiation.- it is es-
pecially %%ell adapted to gei,..rating numerical values (at fixed ,I and r) for all of
the spherical harmonics belonging to the same /-\alue.

Symmetry Properties of the Irreducible Representation .Matriees of the Full
Rotation Group, so( 3). and of the Special U 'nitary Group. st '(2)

Because the spherical harmonics ! )I..,(Al, ,i:) are expressible solely in term' of
the factors cos j3. sin 1. e". v ... . and cannot involke irreducible factors such as

t - " cos(k32).sin(i/2)., e e '" ,the elements ofcolumn
in - 0 ofD'D" (which are expressible in terms of the o If,,,( L , are invariant to
the transforrmation (a h)( -h* - a* ). such as is induced b\ reflecting the prim-

itive st (2) matrix D' 2 )(R) [ f /, /'about its vertical midline. The svm-

metry "of the operators V., and V.' .which, via Eq. (44). generate the m > ( and

m < 0 columns, respectively, of DW' from the n i 0 column. '' show that the
elemnen! D ,',,' (the image, under reflection about the vertical midline, of the
element D.,,, may be obtained from the element D!",, by the transormation
(a -h* • a* t of the primitive elements ... h, . a* u appearing in the
expression for the element i)Xem This shows that the matrix elements of'D.. (i).
related to each other by reflection about the vertical midline, display the same

'*Analytical performance of this procedure is al]ass possible. Iioweer. in the abhoe fiorm, it maa
hawe numerical difficulties li.e., it ma_ lack sufficient precision I when sin H is %c \ tin\ . f course. we
should expect this, because when sin H is trul\ /ero. all of the );,, except Y,/0 are esactl. lero.) Io a% oid
this problem, it max be preferable to rewrite Eq. 155) directly in terms of 1 n )cos i

d•'/d(cos 0)'/ I)' cos 10) ( sin ft) "`'/'(cos it), which are numericals more stable than the
YI•.• a ' near sin 1) 0).
2U :nlike the standard procedure for genciu.ing the Y.:,, through the action of the linear diflcrenlial

116.13.17] operator/..
"' Io show this s\ mmetn. it ns approoriate to insert the faclor I in the form t l( a* ) bI t ' t, h on

the right-hand side of Eqs. 44)-
"' "This s.mmetrs ma, he also seen by starting with the m /colunmns and. sxmmetrieallN. stepping

toward the center column from these [ after first examining the s.ymmetrical relationship of'the generation
of the in /column from D11" a2I and the in I column from I011'• b"'. using Eq. (42)] and

ohsering that this generation procedure aswnbes the proper %ertical reflection interchange sxmmefries
to the elements of these columns.
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TABIE 1. The irreducible representation matnx. 1)), of the full rotation group, v.,(3). cxpre',sed in
terms of the elements !, h. bt, a*; o" the prmitiwe st (2) matrix

in 2a--h -•{a lii I Via).. li #) h mP *i i,.

0 v' ý 2 h.) 2o h ta j i'lh('1 ,: 14 /w .•! ,'I Oý le " " ,'ý

i' = I 2.A i * " • ,- , I "tn+, 1 *,( * *, . ) , .i'f 2h3I ,*I

interchanges of the elements :a. . -t*. ja* as are obtained by reflecting the

primitive st'(2) matrixD''+(R) D -* ] about its vertical midline."

Also. because of the homomorphism between the irreducible representation ma-
trices { D<"(/R) 1 and the rotation operators R .together with the homomorphism

between the rotation operators and the primitive Su(2) matrices a "

and the fact that all of these entities are unitar., we have the following '

Dt/ -b* * ..,( ( a* b/ 1 D[{ _ I))*(....
[ D (')( b a* - a

[{l() (. -))}.] [D') ... (7)D<)Rh* a \ h a* k57

Thus, [D1 t)(R)].,....is obtained from [D"t (/)] ....... by the interchange (h ' h -b*)
in the expression for [D"(1)],m.. in terms of the parameters { a, b. -h*. a* }.
This shows that the matrix elements of D"'(Ri). related to each other by reflection
about the main diagonal. display the same interchanges of the elements
{a. h, -b*, a* as are obtained by reflecting the primitive sU(2) matrix

D(" 2 )( A) = -* a* about its main diagonal.

3 Here, the elements ý a, h, -h*. ar I must be treated as being totally independent. since this symmtr

property is lost when the algebraic expressions for the elements of the D11 matrin are reduced [ 13,16.11 1.
such as by expressing ' a. b. -h*. a* } in terms of the Euler angles IY. 0, -y) and then algebraicall%
reducing these expressions using the trigonometric identities.

'2 Here. [D"t (/i(s))],,,.,,, denotes the (mi'. m) element of the irreducible representation matrix D"'
for that operator R whose primitive su(2) matrix is [s]. Also. f '(s) is the inverse of the operator R(s).
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By combining the reflection about the vertical midline N ith the reflection about
the main diagonal. we can show that

I..... "'"\a* -- (reflection about %ertical midline- " b-h* a1 t* /

I (Z a h, N l 1 (. U -I?,*\
"- .. (reflection about main diagonal

1), I a t,)4 l),, -t* (I*)
)'"", ,* "") (reflection about horizontal midline)

I a I \'-• I, *. - h*
D ...... ," (reflection about cross diagonal)

These symmetries are illustrated by the matrix D` shown in Eq. (36) and the
matrix D)2 shown in Table 1. Using these symmetries, we can reduce the number
of matrix elements that need to be explicitly calculated to a fraction only modestly
greater than . of the total number of elements in the matrix I)D"'. The
(V, V. I.'.. V. ) rotations given above, together with the above symmetry properties.
are equally \alid for (Y. Y'.. ' ) (with the substitution oft for 1). and half-integral
values of j. Thus. this procedure also generates the irreducible representation ma-
trices D"'( ý R. for all \alues of j. for the special unitary group SIA 2).

Although not widely known, these symmetries have also been obsemred by certain
other authors [ 16.581. Whereas in Ref. 58 these symmetries are described in their
Euler angle representation, in Ref 16 they are described by means of an analysis
of the range of the index k in the traditional representation of the elements of the
matrix D', namely [ 16.13,17]:

[D "•() ( 4 In')).(j - l ).( I -) -I I),

X V" 158)
A (j + III k)!(j - I'- k)!(mn' - In + k)!k!

These authors have used these symmetries to display some otherwise-hidden sym-
metries of the Wigner symbols [16.261. We believe that these symmetries are at
least equally transparent in our approach. We also believe that the recursion relations
given in Eqs. (42) and (44)-(46) offer some distinct advantages [over the explicit
expression of Eq. (58)] for obtaining complete columns (or complete rows) of a
D matrix either in parametric34 form (as functions of i a. h. -h*, a* } or the

As a shorthand. %e are omitting the intermediate "function.," . and writing D"( R(s)t simply as
D"'Is).

"3 for parametric calculations. it seems best to multipl., the right-hand sides of Eqs. (42) and (44)-
(46) by unitN. in the form (aa* bh b* J). to bring all coefficients to the same degree in the paramelers
', . h. - ~ t,* a -
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parameters that define them) or in numerical form. For parametric calculations.
both procedures are enhanced by the use ofa symbolic manipulation program such
as Aluthemalicu [25], and both benefit by the use of the symmetry properties
discussed above. However, the recursion relations produce the more efficient al-
gorithm. This is especially true for large values ofj. "here often sekeral A-salues
are needed and the evaluation and processing of the tactorials can become a burden.
For numerical calculations, it is very easy to construct, from the recursion relations.
efficient algorithms that are also optimally numerically accurate. Whereas numerical
calculations using the explicit expression of Eq. (58) may be organized to be accurate
and moderately efficient, numerical algorithms based upon the recursion relations
presented here have a distinct computational advantage. ý

Conclusions

In this work, we described some concepts which should prove to be relevant to
algorithms for the efficient calculation of molecular electrostatic potentials and
their associated intermolecular forces and interaction energies. Our approach is
very similar, in spirit, to that of Srebrenik, et al, [42]. in that we find an expression
for the solution to Poisson's equation for the region outside of the charge distribution.
using, as input, the density matrix over the orbital basis. We explicitly emphasized
the representation in terms of point charges and point multipoles whose potentials
are expressed as "solid spherical harmonics" specified either in terms of their mutual
orientation or in terms of each of their arbitrary orientations with respect to a
laboratory frame.36 The mathematical foundations for a complete quantum me-
chanical description of a molecule whose atomic orbitals have their orientations
described in this manner have been given earlier by Harris [ I l]. Whereas the specifics
of our results are expressed from this perspective, the general methodology is hope-
fully also relevant to the description based upon a global Cartesian coordinate
system, with Cartesian Gaussian orbitals centered wi each of the atoms of tlhe
complete system, as the reference basis [ 57,56,31 1. Using the source charge densities
for the Cartesian point multipole potentials. many of the two-electron integrals of
the Coulomb interaction may be simply calculated as point-multipole interactions
[57 ]. For the interactions of two separate molecules, each in its separate Cartesian
coordinate system [57,56,31 1, some of the methods described here for dealing with
multipoles of arbitrary mutual orientation may also be useful.

Our expressions for the multipole interaction energy rest upon a knowledge of
the source charge densities of the -'solid spherical harmonic" multipole potentials:
and their effective implementation requires either a "parallel axis" orientation of
the potentials. or an efficient way of calculating the matrices of the irreducible

" The authors of Ref. 16 present. as their Eq. (3.84), a %er'. restricted version of our 4q_ (45). and
state that it has "'. .. been found to he particularly useful in numerical calculations.,." I ised together.
our set of six such relations I Eqs. (42 ) and (44 )-(46)1 should be een more ctteclike.

"" Such a parameteribation is especially rclevani to a "rigid molecule" 1521 represcntation of molecUlar
dynamics, in which the electrostatic interactions can play a 'mrx important role and lead to the time-
dependent mutual orientations of the interacting molecules.
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representations ( of' thle full rotationl grou01p ) 'earricdI b\ " the sphecrical harironics,
Such ant effhcient algorithmn can be based Upon thle recursion relit ions ( anmong thle
elements of these matri.ces ) presented here. ,N hich niaN he implemented it) gencrate
the reduced algebraic formnulas fo6r these elements. or to) cr% efficient[\ calculate
their numerical %3liies. f-orn the formula or numerical \alue ot onix one element
on the perimeter of the matrix.

Our procedure for representing the electrostatic potential ot'a molecule in term,,
ol'point multipoles on each of the atoms and litne miultipoles onl each ot the -"bond"
axes is uniquel\. determined by thle representation of the electronic charge densitx
matrix in terms of' its basis of' atomic orbitals. ss ith orbitak. onl each atom. One
weakness of' this procedare is the dependence of' the \alucs of' thle atomic point
multipoles and "bond" line multipoles on thle partitioning of' this, orbital basis
among the %arious atomns of the molecule. An extreme ot this dependence mnax be
illustrated by a one-center orbital expansion t which, although grosslý inetficient. is
possible). which w~ould \ ield a point multipole expansion of the electrostatic potential
of the molecule about1 that center. Such a point niultipole expansion \,%ould he \alid
only outside of a sphere that w-ould "enclose' thle charge distribution of the entire
molecule. and it would serve only a very small traction of'our neceds. Fortunatels..
experienced quantum chemists have learned how to optimall\ partition the atomic
orbital basis of a molecule among the various atoms, and it is their xs~ork wshich
gives stability to our calculated values for the atomic point multipoles and bond
line multipoles and contributes greatly to the integrit\ of our method.
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Abstract

We extend the validity of the virial theorem for complex scaling to the case in which a molecule is
partitioned in different regions fulfilling certain prescribed conditions. There is a parallelism between
our results for complex scaling and those of the literature for real scaling. Therefore, we extend regional
virial relations useful to the treatment of bound states to the case of metastable states. c 1992 John WiIeN

& Sons. Inc.

Introduction

If the electronic density of a molecule in a stationary state is partitioned in several
regions separated by "zero one-particle density flux" surfaces, the virial-type relations
are found to be valid in each of these regions with a high degree of approximation
[1,2 1. On the other hand. the use of real-scaled molecular coodinates with fixed
nuclei, produces a formally different variational condition for these relations [3].
The importance of this difference has been discussed recently using a very simple
model wave function for homonuclear and heteronuclear diatomic molecules with
fixed nuclei [4].

Moreover, using a real scaling technique, a general condition fulfilled by the
regional virial relations for a molecule in a stationary state with nuclei quantum
mechanically described, has been found 151. Here we extend these results to the
case of a molecule in a metastable state [6-8].

According to our results, we can classify the molecular virial-type relation in the
following way: there is a first type that we may call global, which is obtained when
all the coordinates, quantum mechanically described, are multiplied by a real scaling
factor and the physical space of the molecule is not partitioned [ 9-12 1. These virial
relations are the more usual ones, and have been of great utility in the description
of the global properties of molecules in stationary states [13]. A second type is
obtained in the same way as in the preceding case. except that now, the scaling
factor is complex instead of real [14-161. This type has also proved of great utility
in the calculation of resonances in molecular systems [16-18]. Recently, a third
type has been obtained using a scaling procedure in which only some of the co-

* Currently on leave from Instituto Venezolano de Investigaciones Cientificas (IVIC) and Universidad
Central de Venezuela (UCV),

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 207-211 (19921
(., 1992 John Wile, & Sons. Inc. C('CC 0020-7608/92/010207-05
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ordinates, quantum mechanically described, are modified by a scaling factor: real
for the description of stationary states [ 19 1, and complex for metastable states [ 20]
In these two cases, a restricted number of the system variables is included in the
virial-type relations obtained, yielding more detailed information about the relation
between kinetic and potential energies of the particles than that provided by the
global virial relations [19,20]. In contrast with these two cases, in the present study.
we consider the physical space of the molecule partitioned, while complex scaling
factors modify all the coordinates of the system that are quantum mechanically
described.

Complex Regional Virial Relations

Let us consider a molecule described by the Schr6dinger equation:

tf(i)j,(n)> = E(i7),,(i7)) (I)

where 11(1) is the resulting Hamiltonian. after all coordinates had been modified
by the complex factor q = e'". Assume that I* (n = I)> describes a metastable
state of the molecule such that for angles Os fulfilling O' < 0 < ir/2, where 0 <
01 < ir/2, the ket I *( i)> becomes normalizable (for an introductory view of the
complex scaling method, see, for instance, Ref. 21). Assuming that 11 (77 = I ) is
real. the extremum principle can be written under the form [14]:

E(n) = 41(.7*)111(n)14'(77)) (2)

and we have the equalities H*( 71) = H(ij*), E*(77) = E( 7*)" and **(77) = NP(17*),
where H1( q) is. in general, non-self-adjoint: and, E(17 ) may be complex (for a study
on the change of spectra associated with complex scaling transformation see Refs.
21 and 22).

Let us now define the quantity

En) )I()(3)1 V( 7* )1 *I( 77)> R,,

where the subscript. R,, in the right-hand side of Eq. (3) means that the coordinates
of the particle L are integrated only in the region R_.

The restricted region. R,, may be associated to either an electron or a nucleus in
the case that both kinds of particles are quantum mechanically described. On the
other hand, when the nuclei are considered to occupy successive fixed positions.
the region R, can be associated to electrons only. Here. we will consider the case
in which electrons and nuclei are quantum mechanically described. In general. the
region. R,_ depends on the scaling parameter 17. Taking into account this dependence.
and the fact that in the present problem the Hamiltonian also depends on 717. we
have
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o il- I[I - E R , l* ( 17) Ri

+ Hf - ER - + (li" 011
C, 7ER, 7*

+ fds, (.( 7*)IH - ER, I(7))/R, K(* l(7)))R (4)

where S,(iq), appearing in the last term of Eq. (4). is the surface surrounding the
region. R,( 77). Now, from Eqs. (1) and (3), one immediately finds E(17) =
EN(O7 ), which implies that the first and the last terms in Eq. (4) equal zero. On
the other hand, the third term in Eq. (4) yields:

(,I,(n*)IaH/O9n *( _)>R, = _ 1 (2TR.( 7 ) + VR(q)) (5)
(*( n*) 1 *( ) >R, t)

where T,(i 7) and VS(7) are, respectively, the mean kinetic and potential energies
which contribute to the energy, E R( 7n), according to Eq. (3). Therefore, from Eqs.
(4) and (5), and the condition of stationarity of the energy, E,, with respect to
the scaling parameter, 7, one obtains

2T,(71 ) + VR,( 7 ) 7(4F(.7*)111 - ER, 4'()R / (6)

Thus,

=0 (7)\*•(r*) II - ER, "• R 0 (7)

will be the condition fmt the complex regional virial relation

2TR,( I) = VR(7) (8)
Equation (7) reduces to the condition of the real scaling case in the limit n -- 1

5 ]. Even in this situation, Eq. (7) is not an identity for any R,, but a relation only
fulfilled by certain regions, R,, because of the non-Hermitian character of H, which
arises from the fact that for the particule, L, the space of integration is truncated
[5 1. Another source of non-Hermiticity arises in our case of complex scaling from
the fact that the Hamiltonian, H(n7 ), is itself a non-self-adjoint operator when 0 <
0 < ir/2.

"rae condition for the boundary of the region, R,, given in Eq. (7). has to have
the same form as the condition for approximate wave functions in order to be
compatible with the regional virial relations associated to real scaling [3]. This
condition has been derived in Ref. 3 for the fixed nuclei case and, by following the
same steps detailed in Ref. 5, it can be generalized to the case in which the nuclei
are quantum mechanically described. In both the case of virial relations for ap-
proximate wave functions [ 3 1, and our case, the energy E, may be complex.
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Moreover. adding a term equal to zero to Eq. ( 7), we obtain

which can be interpreted as a Ilurley-type condition [ 3.231 for the fulfillment of
a Hellmann-Freynman type relation, which will follow from Eqs. (4) and (9):

1?7 1 (3 77

Similar to the case of real scaling [3]. we can also write the complex scaling
relations in the form given in Eqs. (3 )-( 8), but now for approximate wave functions.
Given an approximate wave function. the condition. lh'ýiOr7 = 0. will determine
an optimal value, r7o, fbr q. Then. a relation of the same form as Eq. (9) for 77

77o, i.e.,

""I- E +E -, 7
R3 7 ,, )JhI( 7  =0

"will determine the region. R, - R". for which the virial relation. 2ijl+(, -- "UrU). holds, according to Eqs. ( 5). •1 0). and 11) and the stationaritv con-

dition. oLR/3or7 - 0.

Conclusions

Experimentally, it is found that ionization or dissociation processes in a relatively
large molecule can be frequently interpreted as occurring locally, in a small part of
a molecule. The region, R,, determined by Eq. ( I I ), is a precise criterion to select
such localized regions where the process, responsible for the nonbonding character
of the molecular state, actually occurs. For instance the method of the fl-trajectory
of the complex energy [ 21], which is based in the virial theorem, could be applied
to the fragment of the molecule enclosed by a region, R_. fulfilling Eq. ( I I ).

Given an approximate wave function for a bound state. it is well known that the
global virial relations associated to real scalings hold, independently of the quality
of the wave function considered, provided that this wave function is optimized
variationally with respect to the real scaling parameter [ 12 1. This property implies
that the fulfillment of virial relations cannot be invoked as a criterion to test the
quality of a given wave function [12].

When one introduces the partition of the physical space, the fulfillment of regional
virial relations requires both the stationarity of E, with respect to 71 and that the
partition of the physical space be such that Eq. ( I I ) holds. Thus, in this case,
although the stationarity of E!? with respect to n can be obtained for a low-quality
wave function, the corresponding partition of the physical space induced by Eq.
( I I ) may be a criterion for the quality of the approximate wave function used.
This argument applies to both real regional virial relations [ 3.51 and to the complex
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regional virial relations considered here. For instance, a partition incompatible with
the symrnetrv or other well-known structural features of the molecule will serve as
a criterion to discard a viv\en approximate wave function.
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Abstract

We compute a number of properties for the I'S. 2'S. and 2'S states of helium as N•ell as the ground
states of FH2 and H13 using Vanational Monte Carlo. These are in good agreement sm ith pre~ious calculations
(where available ) Electric-response constants tor the ground states of helium. H2 and H i are computed
as denvatixes of the total energs. The method used to caLculatC these quantities is discussed in) detail-
t- 19')2 John Wile, & Sons. Inc.

Introduction

Variational Monte .'arlo is a method of computing the expectation ,alue of an
operator (such as t.- : Hamiltonian 5 and a trial vvaet'iunciion. *3,. using Monte
Carlo integration [ 1-14 1. Typically the adjustable parameters in 4I', are chosen so
as to minimize some combination of the total energy and its variance. In Ref. [14]
we computed a number of Hvlleraas-type wavefunctions by minimizing the variance
functional

where ', 'I',(x,) and where

4.,_+ (2)
2 rat ~ ,,, ,

is the molecular Hamiltonian (A.B denote nuclei, ad denote electrons). Unless
otherwise indicated, all values in this article are given in atomic units. In Eq. (I I
the weight function, iv, = w(x,), is the relative probability of choosing the ith
configuration. x,, and exactly compensates for not having chosen it randomly. The
constant E,, is fixed at a value close to the desired state in order to start the opti-

Also at institute tfor Astrophysics and PlanctarN Exploration. One Progress Blvd.. Box 33, Alachua.
FL 32615.

' Also at Cuantum Theory Proiect. Unixersity of Florida. Gainesville. FI 32011.

International Journal of Quantum Chemistry: Quantum Chemistrv Ssmposium 26. 213-227 (1992)
1992 John Wiley & Sons. Inc. (C( T(020-760(/92/1010213-15
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mization in the proper region. With these •a•cfunctions ,ýc .%cre ,bkhl to accuratel\
determine the total energý

of several simple ssterns. Once a trial wavefunction has been optilmied. hoC•eir.
a number of properties of phxsical interest can be computed using exactl% the same
techniques which ,xore developed to evaluate the total energy. In fact, thle expectation
value

,".• ... E [¢,z~l,/,,,]/ < [i,'. l ,,l(4)

and variance

j-- = ' [(, ',' ,-" ,)'A j:: I •"/fiN/ ,, (5)

of simple operators (A) which act only on a single. previously-optimlied wave-
function can be evaluated at the same time as the total energy and with little ad-
ditional cost. Because all integrals are done numerically. Variational Monte Carlo
enables relatively complicated expectation values to be evaluated easil. Unlike
analytic calculations, explicitly correlated wavefunctions present no more of a
problem than traditional wavefunction forms. When the Biased Selection Method
[4-9.11.14] is used to compute the Monte Carlo integration points, the value and
error of an expectation value converges independently of the weight function for
a sulficiently large number of configurations. There is no time step bias. Unlike
Diffusion Monte Carlo [15-19 ]. Variational Monte Carlo is only capable of cal-
culating properties involving the trial wavefunction: expectation values involving
the exact wavef'unrtion cannot be made. In practice, however, Diffusion Monte
Carlo most naturally calculates mixed expectation values involving both the exact
and the trial wavefunction.

In this article v,2 show that a number of properties can be accurately computed
using Variational Monte Carlo methods. Besides being of general physical interest.
these properties provide an important check on the accuracN of the Biased Selection
Method. Because our trial wavefunctions were computed by minimizing the de-
viitions in I/*/ *. an ac,.,,iate value for the expectation value of the Hamiltonian
does not automatically mean that other properties are sampled correctly. In the
next section we consider several expectation values of a number of simple atomic
and molecular systems. Both ground and excited states are examined. The third
.section describes our calculations offhe dipole polarizability and the second dipole
hyperpolarizabilities for the ground states of helium. If,, and 11 1. Since electric-
response constants are derivatives of the total energy. th,bir evaluation is considered
in some detail.



N \RI \ I I0\ XI \1() I i \R1 () Ml I 1101)D'.,

Simple Propertiesi

The H\ llerzias-like trial w\avefunlctions \'c ecompute11d in) Kel 14 1 for \ ariOLIN
states of' the helium atom have tile form

%vhlere Pi, is the operator which interchanges thle coordinates of the: mo elec~trons
(+ I for singlets. -- I tor triplets). o, ' i. and a4 are thle paramnelers to he opti il/ed

with the mininmization functional-, and k. (-4 and d,~ are p-redectermiined integcr
constants. For comparison we al~so optimized a set ot trial \kaxefuntilons basecd onl
Slater-type gemninals ( see, for example. Refs. [ 20-221

The predetermined constants hA4 and c, allowk the %ýawelbnction it) he distorted in
the : direction, a flexibility which will be needed in thle fourth section to studl\
electric-response properties.

Table I shows that both a 50-term i-Is leraas expansion and a set of 8', Slater
functions (b. C = 0) produce a number of helium ground 1I 'S) state properties

1SI \i I.L Selected Properties (in ,Iti, 1 otinc hlicuni I S \iaL'.

Propert% I h Ilcrais' Slater" I iicraiturc

CI d 0. 0 10

I;2.903- 1 fl) 2.L)0;7240 f43

r - r, r2115(1 85(( 5(
r -~ r, 13(()33S23T"3

r2 Y *-r 2,37i(2) 2, ;75U -11616

)r -- r22 12.0)2(9) 12.05(4; 12.11141

r,(.41[85(9) 1,4 18145)42()
r," .948(11) 09477(1,) 0i94 1 8 1

r,2.50](3) 2.504)11 25 164',1)

P54(2) 5 1,35) S-4 055)02
2 40(,. 3.63)(4) 3.62(2) .6 20.1 ;4

"(12) 01070()2) 0(1060(l) 0I 10634;

Fvalualed using 1.024.1000 configurations.
Evaluated using 4.096)00 configurations.
Reference [2-11.
Error per ciinfguration in the total energy.
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which are in good agreement with the lit.erature [20,23,241. A few quantities. hov-

ever, diflfr from the "exact" results by several standard deviations. The liv lleraas

and Slater wavel'unctions give values for (1, 'which arc (0,13 ý: ).01 )", and

(0.053 t 0.005 ); larger than the exact result. 'This behaxior is consistent with

these wavefunctions being optimized to slightly too high a value near the origin
(where p,2 - I /r). It also indicates that we do not exactly satisf\ the virial theorem.

To do so would require a scale change in the expectation values. While this .%ould

correct the virial theorem, it would also increase the statistical error in the energe.

The values for 1-2 and Kr are about 0.5"; too lo* which shows that the trial

w.avefunctions drop a little too l.st at large r. These small discrepancies are due to

the fact that variance minimization does not completcly optimize the edge of any

wavefunction and to inadequacies in our sampling technique. This last problem
can probably be corrected by minimizing over more than the 4000 configurations

used in these calculations and by changing the form of the guiding function so as

to place more Monte Carlo integration points just beyond the edge of the wave-

function.
In Ref [16] Caffarel and Claveric computed values ofPF ý -2.904( 1 ) and K r'

2.37(2) for the helium ground state using Diffusion Monte Carlo. This calculation

was performed with 400 trajectories and 40.000 time steps for each trajectory. that

is. a set of 16 million configurations Since the statistical error in each property

behaves like c, /V 'V (where N is the number of configurations). c is a constant

whose value depends on the method used to generate each configuration, on the

method used to estimate the property, and on the quality of the trial wavefunction

(especially in the case of the total energy). This error per configuration is 400 times

smaller in our energy and almost 80 times smaller in our evaluation of r2 Al-

though our Variational Monte Carlo results converge to expectation values of the

trial wavefunction rather than the exact result. Table I shows that for this system
these expectation values are well within I (7 ofthe exact result and can be calculated

using a much smaller number of configurations.
Table II shows that the properties of the triplet ground (23S) state of helium are

in generally good agreement with the literature [21.24.25]. It should be pointed

out that the 34-term Hylleraas expansion which we use has an energy limit of

-2.1752253 [141. In contrast, the set of 8s functions which constitutes the Slater

wavefunction produces a total energy which is much closer to the 'exact" result,

Both trial wavefunctions have an error per configuration for the total energy which

is over three times better than that of the singlet ground state. This is because the

antisymmetrv of the (2 S) state makes the wavefunction small when r,, is small.

Like the calculations in Table I. a few expectation values differ from the results in

the literature by several standard deviations. The quantity Cp1) differs by (0.08 ±

0.01 )% when computed with the Hylleraas wavefunction and by (-0. 11 ± 0.01 )IT

when computed with the Slater wavefunction. The results for <r i , show a similar

behavior: differences of(-0.17 ± 0.01 )- and (0.10 ± 0.02)17. respectively.

Unlike the wavefunctions used in Tables I and 11, the trial wavefunctions for the

first excited singlet (2'S) state of helium were not optimized in an explicitly vari-

ational manner. Instead they were found by simply minimizing the variance. Eq.
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I -•1l I IL ckecclcd propCrIlL., I d j l I Ol th l hchui 2-s m .

S- I'
2

06 1 b 2 17521S31 2 I •-_26

, l' 4. 314215! 4 ,34 4 4 ý5o45;1,'(

r I 5.ot 21 5, I I 21 5X1Q24

r • r . . 3 2 3!(4 j 2 ~�114 1 1

r r *' 2. 23 1 2 22 2

r 8 ,: 420') 8.4 10) 5 t4IN1}(1

r,_ 4.4 172' 4.4(4(2 4 44-3,
r 0.26N•( I.24 I o, 2ws Q=

2..N_ 2V ?;4; 2 (D46'0`

PM I 4211 41.51Ž 141 ,53 WX U'W

2 •r1 I 2.6338141 2.63,4( 2 464110 1
. •{•- 0.0 01.0111

1' aluatu d using 1.0)24,3011 conf'igural•iols.
SError per configuration in the total cncrg,.

fRefernice [251.
Rcfrencc [241.

I ). with E1,, = -2.145. Orthogonality with the ground state was checked a povterion
using the Rayleigh-Ritz method described in Ref. [ 14 1 and found to be very good.
In Table III we show that the properties of the ( 2'S) state are in generally good
agreement with the literature [21.25.261. The Hylleraas wvavefunction consists of
a 50-term expansion while the Slater wavefunction is again constructed from 8s
functions. The values of c/ for the total energy show that for this system the quality
ofSlater wavefunction is much better than the 1'Iylleraas. In tact. only two properties
for the Slater wavefunction differ by more than 4ff from the accepted values: /p";
by ( -0.080 ± 0.014 )1- and ( ( r, 2)) by ( -1.06 ± 0.23 )'-;. These two values suggest
that this wavefunction is spread out a little too much (in Iact the smallest exponent
in Eq. (7) was optimized to 0.452).

For the 1H2 ground state at the internuclear distance 1.4 a.u.. the tlvlleraas wave-
function in Ref. [141 has the form

I _'+
+ PI A er, . I__. f)

X r + r )''r ,-"r )"r ,+ r )• (8)
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I \m k III Selected proplvrne On J ,I U. ul he hclhutnn 2 S Ntti

Prot.v rtI I I\ H lcraus' sattir I 11craui c

I. 2. 145)I(7()) 2. 745'163f4) 2, 145'47)4 "

/"i': P1 L 4.2Sl21(i 4.2885Mb 4 29H1t4•

r *r 5 XS3t3i S.)SI3) 5.9046•2'r~~~~~ ~~ --.,hr' ,•2it'12 7(1 ) 4._ 2'1)19,X '•

, . S.(3) 2 30) 29 16<V51

r p • - rp : ).2)11) 8,2349) 1.2 )35'66"

r , 5. 218(2s 5.27 1 5.211,T1','
1)249•( 21) .249'2(2) 0,24968338

31.300) 32.37(4) 32 30)2'

r 0 514•(.)_ ) 0. 145(') 0 1417413'
7'1'C 7,).001110t) OI.( 961 (1 { .M1) 95( •

p4  
401.20)4) 40 ) 41. 11866, '

2 . , 2.61 14) 2.61914) 2.6189,94,
,5(i:)0.00O831(I 1 t1.1)1),5,'( ) 0.008W; r21'

" F aluatcd usiOng 1.024.1)00 configurations.
I -rrr Ix'r configuration in the total cncrg .

"Rcfcrcncc 1251.
Rclfrencc [21].

where A1 and B are nuclear positions. Although the Slater wavefunction in Eq. (7)
is for atomic systems, one generalization of this expression to molecular systems is

qf, - ( I + P,_2) "ý d•v', ' , '[ , . .. .""14 )4,1 (9)

These basis functions are added on whatever combination of atoms (.4 and B both
situated on the same atom:.,A and B situated on different atoms) will produce the
minimum variance. In Table IV we compare the properties computed with these
trial wavefunctions with the literature [27-32]. Our Slater wavefunction was op-
timized with a set of 9s functions and 71p functions (since the internuclear axis is
taken to be in the : direction) and yields a slightly worse cl, than the Hylleraas
form. As a result, many of the properties computed with this Slater wavefunction
are also less accurate. This inaccuracy is partially masked by the fact that the form
of the Slater wavefunction (because it has fewer basis functions) enables us to
calculate expectation values with more configurations than the Hylleraas wave-
function in the same amount of cpPu time. The only significantly incorrect value
for the Hylleraas wavefunction. Kr(ri,)), is off by ( -0.15 + 0.04)'2. Because the
electron-electron correlation is less important in this system than it is in helium
[ 14], properties which are functions of r,2 are also more accurate.
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\I \B1 IN. Selccttd proprtics iin a u ot the I1f ground ý,|utc R I 4 ,t.u alons lilte a-\i

Prop ,rt IH\lleraas" Skiter" I 11eratLure

0 (.0 1 (0020
1.1744413) 1. 174 sf 2 ) I I "446)'9

I 1 17 2.35t 2.346t 1- 2 ;40()1o

P 1'; , 1• I0.6 1(l) I 080 )I '

r.: 2.16t42) 2.I4I 2 -4'H" 1

r•-5.62'6201) 5.1T7)5)5 5c h31S
r,)1.588219) ).). 5i0,t4 ) ).5,'6-'')5 I

rI .548(2) 1 .55.584 I. 54,•88 4

3.031(6) 3.t)50(3) 31i36. 15431
OIA 10021) 1.'2s l) 12 "

"" 2.7111 5 2.72 31 , 7I 1 28O

1.,r,4  2.323)3) 2.32,8i2 2.32 1414a
r.r: 2.38 1031 2.31) 17( 2 2 2.3848S7(1)

o() 11)2) 0. I() (•12 58) 0. I i,163461 I
VIA, 0.O55( 1 ().574,W; ) 746 10291 3

-V - - x~ ( ) 1.071,1 2) 11.035() 1.26 t

r - (ri r2) 2.5431(41 21')') 2,543543'

-)4: 3(5) 47.450)3) 0.456S443ý

Qh )).27(4) 0.26121 0-2826'

, *102(21 o.119)8) 0. 1008602'

2p, 13.0(4) 13.2(2) 13.249)•

r0.459(l ) 0.46100('51 0.46014 5"

2i(r• .), 1)0.0 1 66'(6) 10.01 6X403, 0.0I)) 16 W

" Evaluated using 256.000 cchfigurations.
LE aluated using 1.0124.000)) contigu, ations.
Error per configuration in the total cnvrg..
Retirence [281-
S(1 Ialues from Ref 1[32].

' "he electric quadrupole moment (or If. is defined as

Q: R-'

SReference 130)].
I-he electric hxadecapole moment tor Ifi is delined as

Q. R'18 z' x -- $. . '

Reference [291.
SReference [271.
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Earlier Diffusion Monte Carlo studies have computed several properties ofthis
system. Because they sample both the trial wavefunction and the exact eigenfunction.
their results should, in principle. be equal to the exact values Aithin the statistical
error. In Ref. [ 181 Barnett et al. calculated values of 1.026(3) for ( -- ) and 2.549(t6)
for \ r2 ) but did not list the number of configurations used to produce these results.
Caffarel and Claverie [16] computed values of -1.175(2) tbr the total energy.
0.587(3) for r 2.169(9) for <r4,2. 5.63(5) for (r, 2 \. 1.550(6) for r,,.,
0.908(4) for (r 1,1). 3.04(2)for r 4 )2.71(2)for r,4 rtj), 2.33(2)tfor rr:,)..
2.39(2) for Kr,,r'1 ), -0.156(6) for Kzj:,). -0.055(4) for (.x-v.:), 1.02(2) for
(-), 0.76(2) for (x2), and 2.55(4) for Kr2). These properties were evaluated
over a set of 50.000.000 configurations in contrast to the 256.000 configurations
our Hylleraas results used.

At its equilibrium configuration the ground state of the H ion has D•h symmetry
and a bond distance of 1.65 a.u. For this reason we chose our Hylleraas trial wave-
function to have the form [141

120

P,, = (1 +P 2 ) 1 a ý{ e "", r z(r1.. - r,H)"(r1 , + r_8 )ji

X (r2.A - r'H)"(rz.I + r.)-'(rj(1 - r2()(rI(. + r-)

+ [A - Cl + [B C (10)

where A., B, and Care the positions of the three nuclei. Using the same form as in
Eq. (9). we have also optimized a Slater wavefunction for this system. When the
11, ion is placed in the x. plane. a set of 18s functions. 8p, functions, and 9 p,
functions produces a reasonable wavefunction. In Table V we compare the properties
computed with these trial wavefunctions. For this system we could find no published
properties except for the energy. This value has been recently computed to be
- 1.3438279 [ 33 ] and - 1.3438220 [ 34 ] using explicitly correlated basis functions
and -1.343835(1) using Diffusion Monte Carlo [351. The values of c, indicates
that the Hylleraas values should be much more accurate than those calculated with
the Slater trial wavefunction (with a systematic error less than the difference between
the two calculations).

All of the properties computed in Tables I to V were determined using Eq. (4).
Thus they require only that the wavefunction or its derivatives be evaluated (both
of which are known). For the function p2 we used the well-known relation

f drt'',p', - f dr',' 1 •I', (II)

and for p4 we used [36]

f dr'I',p'f', = fd(7 iij,)2 (12)

The delta functions were computed simply as
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I -,1ii1 V. Selected propeni•s In a u.i of the I[I' ground sIm.c I hc

s stc.n is tn an equilateral riangle configuration to the i I plane I % tll

R 1-6* a.u.

PropertN emraas' Slater'

S," O.)25 (o202

I 1.343?111 1.3410(4)

I p 2.69() 2.705(6)

4 I-,, : 0.792(4) g.x1412(

r11.10 4l(6) I .04M (5)

r2 4.6 1(2 4.0.04( 1)

r, 0.65s 23) 1,52

r, l.5;26} 1.(4)

ri 2.97(2) 2.9551

r, 0.856(5) 0 ,57(2)

r +r,., 2.59(l) 2,4583(7)

r, ,r,2 2.42( 1 2.402(16

r+ ,r,,j 2.4911) 2,46,0+
k.ký -(1.10)813) 0. 10)6(1

- -0.034(2) ( .(13 ( )

I

S (z• :i) 03.541(4) 0.5,39(2)

2 i r r) 2.06(!1 2.146(,5)

0.115(4) -o.121(21

p! 7-7(1) 83(3)

rj,) (1.363(2) 0.3M6(018
Mr r) ý 0.0185(1 ) 0.0270()5 )

Evaluated using 64.000 configurations.
Evaluated using 256.000 configurations.

Error per configuration in the total energ\.

= f drŽ4',(r, = 13)

and

b(r,2)) = f dr~dr'I,(r .r2,r]2 )6(r 1 ,)4'(rl ~r,rr)

f dr'*,(r, = r,.r.,0) 2 (14)
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In both Eqs. ( 13 ) and ( 14) the Monte Carlo integration is onIý over the r, electron
and the weight of the configuration must be changed so as to reflect the 1act that
r, is no longer chosen randomly.

Electric-Response Properties

When an atomic or molecular system is placed in an electric field. F. the I1am-
iltonian becomes

11(F) - 1I(F= 0) F*r (15)

where r, is the position of the ith electron. The total energy of a neutral S-state
atom or a symmetric molecule upon introduction of a static. axially symmetric.
homogeneous field F is thus

I 1
F(F+) 2( 4 - - d .,,,,a,., , - (16)

whero we ha\e assumed an implicit summation over repeated indices and the sub-
scripts run over the Cartesian coordinates (N.v.-). In Eq. (16) c is the dipole
polarizability tensor of the system and -y is the second dipole hyperpolariiabilitv
tensor. For S-state atoms it and -y have only one independent component so we
drop these subscripts for helium.

To calculate the electric-response constants for helium we set the electric field
to lie along the : Cartesian axis. Since the Hamiltonian now has a directional
preference. the trial wavefunction must be flexible enough to respond to this change.
Our Hylleraas wavefunctions do not allow one coordinate to be selectively prefierred
but our Slater wavefunctions do. In the presence of small electric fields (F = 0.02
and F= 0.04). Slater wavefunctions were constructed from 9s functions. 3p, func-
tions (/, = I. cA - 0). and Id:: function (hA = 0. ck = I ). Table VI shows that this

IABt f VNT Convergence of the energy. polarizability, and hypcrpolarizability (in a.u.) of helium. N is
the number of configurations,

A E I F= 0) E F = 0.02) -(Fk - 0.04)

1.08) -- 2.9038( ) -2,9040(1) 29048( 1
64.0)(X 2.90383(4) - 2.9041 t(4) -- 2.9049405)

2<60 N) 2.90374)2) - 2.9040 12) - 2-90484(2)

2,E tF U .)02)) 2(E (F = 0.02) 1 2F (21- 004)
- 2'/: F 0)f , F =0, -- 8RE (F.= 0.02) + 61, (F 0),

P .
2  

1,2 I".

16.0(XX) 1.30) 1.33(4) 609(770)
64.(X10 1.4(3) 1.38(2) 74)415)

2 S6.0X) 1 4AM) 1.371(9) 182)201)
I ite.atue 140. 411 1.383192 41.9



\ \RI~ \ 1I) \ \1()\N II ( \K1I•) \11I IiI()I)N -

basis gixcs roughl_ the same statitical error as o0.r 11. [ 0) result. WVith these trial
\xa\etUnctions, xse computed the polarlabiht\ and the htperoiariiahitx lir he-
lium as derivatives of the encrgx

0I . / "171

and

12 P-) 4(F1) 61.(1 (F) 4(1-.' " 1 1A 21
, , - . . ( I .

"These derixatios can be numericall. computCd in a number of Wa.\s. ,e e\peri-
mented vxith several forrmulas ( see. for example. Ref. 137 ]) and found little dit.rence
bet\%een them. Once a particular tlrnIula has been chosen. the most direct wxax of
computing the derivative is to simply evaluate the total energx of this system at
f '- 0.0. 0.02. and 0.04 and then subtract the appropriate numbers, fable VI shows
that this approach gives reasonable results but vith a tai.rl. large \ariance. Since a
large part of the statistical error in these expectation values should be the same if
the value of the electric field is sutlhcientl\ small (i.e.. onl. a minor perturbation ).
a much more accurate approach is to compute the diftlerences directlx . [his tech-
nique has been used to determine the dipole moment of Lili [38]. molecular
derivatives [171. and differences in potential energy surfaces [ 7.12.39]. When ap-
plied to our calculation of the polarizability. this method decreases the variance by

about a factor of 15 and gives a result which is in much better agreement with the
accepted value of 1.383192 [40.41]. When applied to the calculation ofthe second
dipole hvperpolarizability, however, we see that the resulting statistical error com-
pletely obscures the computed value. The reason for this may be that the optimized
error in the trial wavefunction is too large to detect the Influence of this constant.
41.9 [41]. in the total energy. In a Variational Monte Carlo calculation the etlict
of the electric field on the total energy has to be larger than the statistical error in
the trial wavefunction in order to influence the optimization of the adjustable pa-
rameters. If the strength of the held is too large. however, then the composition of
the vavefunction will change significantlN and the "arious expectation values used
to calculate the derivatives w:ll no longer be strongly correlated. In fhct. the Cbrmulas
we have chosen may themselves become inaccurate because of contributions from
higher-order terms. While we have tried to strike a balance between these two
limits, a closer investigation of this problem is clearly in order.

If the Hellmann-Feynman theorem [42] is satisfied. then electric response prop-
erties can also be obtained from the induced dipole moment. In most traditional
calculations this automatically occurs because the parameters in the wavefunction
are optimized so as to minimize the total energy. Since our Variational Monte
Carlo procedure adjusts the parameters in the trial wavefunctions so as to minimize
the variance, the I lellmann-Feynman theorem will not be explicitly satisfied. For
S-state atoms the dipole moment alternative to E.q. ( 16) is
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,AIF) kl,,;") -g ,'.... JK/ 19)
6

where, for example,

Again tbr simplicity we drop the subscripts and obtain the expressions

1u (2F)• - 2(F){- ( " ) m( 2 (22)
1 1, !2 F'I0

Although p( ---- 0) is tero tor the svstems considercd here. we tbund that computing
this operator as part of Eq. ( 21 ) reduces the si/e of the statistical fluctuations. Table

"I AMI I VI1. ( Ground stale rplan/ahilities (in a.u I1 of% artot\ w \, k . ,iN the nuitvvr of c•.nfiguralollv.

[ncrg.

S%%sem N5 [lk. (21,1 (Iq. (1 71) 1 iterafurc

lie l,) 16.0011 1.41(2) 1.333(4

64.(00(1 1.41H1I 1.39(2)

256.000 1.41 X( 61 1.371(1)) I .383

!1b (,,1) I 634)(1 5.57(6) 0.1(6)
64.,(049) 5,5713) 0.2(3,

256,(1)0 5,57( 1) 6.3(2) 6.1801
S16.)(H)( 4.1 5(5) 3.7(X}

64,(X)0 4.,06(l) 4.604)
256.(()0 4.11(H1 4.4(2) 4,57X'

II (,,,,( I h.m)(O 3.48(4) 2.IN 21

64.000 3.4412) 3.31 I
256,000 Y344H1) 3.4(4) 3.476•"

II, ((,,,) 16.00{) 3.4614) 3.1(21

64.01(1 3.47(2) 3.4)))
256.1000 3.47(1) 3 51) 3.476W'

l; (,...) 16.000 2.14(3) 1.412)

64,0H0 2.16(2) 1.6HI)
256.000 2.169(m) 2 O1f3) 2.1)77%"

"1 hc_' nunieTr.' do not agree with thowe compuled u'ing elnrgy derivaltes tecause our %%awlunctions
do no) sailfv the I lellrmann- In e niman theorem.

Re.'crences 140, 411.

Rrfi.rencc [431
R'cerence 1441.
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Vil sho\Ns that this calculation produces a smaller statistical error than tEq. ( I
(over an order of magnitude in most s.steins) but not tile correct result. (learl\

our calculations do not sulliciently satisl\ the ilellnann-Fesnman theorem to
justifN using Eq. (19) despite the fact that all our trial \a\el'ufnctions are reasonabl\
accurate otherwise. Although not shown, the calculation of the second dipole hl\-
perpolarizability using Eq. ( 22 ) is again inconclusi\e.

For the IfI ground state polarizabilit\ calculations %e used field strengths of

F - 0.01 and P' = 0.02. When the field was placed parallel to the molecular axis

(i.e.. along the -direction). we simply needed to reoptimi/e our field-free wkave-

function in order to obtain an adequate trial wasefunction. that is. one ,\hose

variance is comparable to the field-free value. When the field w.as placed perpen-

dicular to !he molecular axis (i.e., along the .x direction ). we had to reoptihnize our

field-free wavefunclion and add 2p, functions. These trial waN efu nctions produced
polarizabilities which are in good agreement with those in the literature [43]. Not

surprisingly, the statistical errors for this system are larger than those in helium
sine, 0hw ¢0atzr *•.a6`unL,'1on is of poorer quality.

For the Hi ground state we used a field strength of.F -- 0.03 for tile polarizability
calculations since the error per configuration for this system is 10 times larger than
in H,. When the field was placed along the x axis or the t' axis, we simply needed
to reoptimize our field-free wavefunction in order to obtain an adequate trial wave-
function. When the field was placed along the : axis (perpendicular to the plane

of the molecule) we had to reoptimize our field-free wavefunction and add 6p:
functions. These trial wavefunctions produced polarizabilities which are in good
agreement with some unpublished RPA results by Sauer and Oddershede [44].

Conclusions

Variational Monte Carlo enables a wide variety of properties to be computed in
a straightforward manner. Since the wavefunction and its derivatives must be com-

puted in order to evaluate the total energy, many other expectation values can be
determined at the same time and with little additional cost. Although all the cal-

culations presented here have been done with wavefunctions which were optimized

using the variance functional, we examined the influence of other minimization
functionals [141 and found only slight changes in the values of these properties. In

general, most of the properties computed here agree to I"; or better (two or three
significant figures) with those values determined by more traditional methods. This

success verifies the accuracy of the Biased Selection Method. For the 11 molecular
ion. our calculations provide the first look at the properties of this system.

The difference between our Hylleraas and Slater calculations show the etfiect that
changes in the trial wavefunction can have on the accuracy of different expectation
values. These two forms also illustrate the tradeoff one must frequentl\ make be-

tween the complexity of a wavefunction and its computational cost. Because the

Slater-geminal form contains a large number of nonlinear parameters per basis
function, it usually takes much longer to optimize than the Hylleraas form (which
contains almost only linear parameters). Once these parameters are optimized
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however, the computational time needed to c\aluate a trial axcflulnction over a

large number of configurations scales as the number of basis functions. For this
reason a compact Slater-germinal tbrmr is usualh pret:rablc to a large II% lleraas
expansion for most purposes. Although all the properties computed in this article
were evaluated using \wavefunctions optimi/ed b\ Monte Carlo techniques. \ave-
functions computed by more traditional nmthods could also ha\c been used. Ihis
might be done, for example, to quickly estimate some expectation value which
would otherwise be difficult to e aluatc anal\ ticallv.

To obtain even more accurate expectation v alues. better trial wae ofunctions and
guiding functions will be needed. In this article we computed all properties over
the same set of configurations. Although the guiding function wNhich generated
these configurations was chosen to produce accurate energies. our calculations show
that it also gives good results for most expectation values. Some properties. however.
(e.g., p') are large (or small in quite diflerent regions than the total energy and
might he more accurately computed with a guiding function which places more
(or less) configurations in these regions.

Prex ious work has shown that the selection ofa good wvavefunction is essential
to the calculation of accurate electric-response properties [45-47 1. Because of its
ability to easily evaluate a wide variety ofwavefunctions (including those containing
interelectronic coordinates), Variational Monte Carlo should be a powerful method
with which to calculate these properties. While all our polariz.abilitics agree with
those computed by traditional methods (within the statistical error). Table VII
shows that the statistical error of these results do not always drop by the expected
factor of c,/ VA. This suggests that the guiding functions we use for these systems
are reasonable for calculating simple properties but not for calculating some deriv-
atives. Future work in this area must first concentrate on finding better guiding
functions and wavefunctions. Also needed. however, are algorithmic changes which
will lower the statistical error of taking the difference of two or more quantities.
One possibility might be to optimize the change between the field and field-free
solutions directly. Certainly any technique which enables the polarizabilities to be
calculated more accurately will also enable higher derivatives, such as the hyper-
polarizabilities. to be ultimately computed.
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Localization of Wavefunctions From Extended
Systems Using Orbital Occupation Numbers

JOHN D. HEAD and SUSIL. .1 SILVA
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Abstract

An algorithm is presented ihich produccs localized cluster region orhitals' hich mas he uscul in
embedded cluster calculations. the orbital occuniation namber matrin, n. f'r a trial set of functions %i
esaluated using the densitN matrx computed ftrom an extended s,,stem. SurpnriingI. %%hen using Ilartree-
Fock (Hi.) orbitals omr finite cluster calculations, several partiall, occupied orbitals, hasing na different
from 2 and l are found, The lo 'alization is accomplished by applying Jacobi iransformation to n. mixing
surrounding functions %kith the cluster region. so that the final set of localized functions have i,,, with
either 2 or 0. Numerical examples of the algorithm are given lor Li clusters simulating the l.i(l M)
surface, i. l')2 John 'VileN & Sons, Inc.

Introduction

Cluster calculations in combination with the standard tools of quantum chemistryv
is a convenient approach to modeling local interactions on surfaces [I] For example.
ah initio calculations on transition metal clusters have already been helpful in
rationalizing a number of surface properties. Recently. we have even found Hartree-
Fock (uF) calculations on clusters composed of the free electron-like Al metal
useful for proposing structures for H chemisorbed on the AI( III) surface [2].
Nevertineless, the truncation at the cluster edge is a drastic approximation to the
extended substrate. It does appear that properties such as adsorbate-surface ge-
ometries and vibrational frequencies converge rapidly with cluster size while ad-
sorbate binding energies are more problematic [3.4]. Siegbahn and co-workers
have recently suggested that relatively large clusters often need to be prepared for
chemisorption bonding by making an excitation to the proper bonding state 151.
On the surface, such an excited state will always be easily accessible.

An alternative to the Siegbahn et al. strategy is to use an embedded cluster ap-
proach where the potential on the edge atoms is modified to simulate the potential
from the extended surface. There are a number of groups developing these proce-
dures [6,71, with the method of Whitten el al. [81 perhaps being the simplest to
implement into existing ab ini/io computer codes. The Whitten et Jl. method es-
sentially localizes the delocalized functions of an extended substrate into functions
spanning mainly the cluster of interest. These localized functions are then taken
to form a basis set for use in the truncated calculation. Although Whitten et al.

International Journal of Quantum (hcmistrx: Quantum Chemistry Symposim 26. 229-241 (1992)
1992 John Wile-, & Sons, Inc. CCC 0020-7608/92/010229.13
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have now successfully applied their method to sex eral applications there still remain
a number of concerns, including the localization technique, with the method [7 1,

In this article, we develop a better procedure for obtaining the localiied cluster
region orbitals. We start by using the results from a tu calculation on the extended
periodic substrate. performed by using tile CRYSTAL program deoeloped by Pisani
et al. [91. instead of the very large finite cluster results xxhich Whitten et al. use.
The CRYSTAL program -llows one to use the same ba,;is sets In both the extended
substrate and the cluster calculations. From tile density matrix computed b\ the
CRYSTAL program we obtain occupation numbers 1br orbitals located in the :luster
region. The cluster orbital occupation numbers are obtained in a manner similar
to a Davidson population analysis [101. In such a population analysis one might
expect the occupied ji orbitals from a finite cluster when measured a:gainst the
extended substrate density matrix to have an orbital occupation number of 2. In
the results section we show this does not always happen, illustrating another 1h.ature
to be considered when using cluster models to simulate extended systems. In the
next section. we describe how the cluster region orbital populations are computed.
We then present an algorithm which transforms the cluster region orbitals into a
new set of functions having occupations numbers ofleither 2 or 0. These transformed
functions are like the Whitten et al. localized functions, and they have tails wxhich
connect the cluster to the surroundings. Examples of generating these transformed
functions are given in the second part of the Results section. We expect these new
functions to be useful in an embedded cluster procedure which vill only require
minor modifications of existing ah iiiio computer packages.

Method

In this section, we present an algorithm which generates a set of localized functions
with orbital occupation numbers of either 2 or 0 with respect to the denity

matrix computed in an extended substrate calculation. The functions are localited
in a manner similar to the linear combination of basis functions one obtains in a
cluster calculation. We start with cluster orbitals. . which have the form

where x, are the basis functions centered on the atoms composing the cluster. The
cluster we pick initially is somewhat arbitrary, but then we can similarly define
surrounding functions khv which have X. on the surrounding atoms of the extended
substrate but outside of the cluster region.

The occupation number for a cluster function is computed according to

n,, = -CSP'SCj (2)

where Px is the density matrix from the extended substrate calculation spanning
the same basis function types X,, as used in the cluster region. and S is the matrix
of the basis functions overlaps. Davidson has described how the n matrix can be
used in a population analysis [101. The diagonal element. n,,_ is the occupation
number of the cluster function , . and should obey the inequality
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(I - 11, 2. (3)

lIoxcc cr, the occuLpation number can onl\ be used to assign electrons to a definite

cluster orbital ýhen the ' (, , set is orthonormal. Presentiy. %%c Schmidt ortho-
gonalihe the ;,' . starting with the basis functions at the center of the cluster and
\korking outward, but we expect other orthogonali/ation schemes to produce equix-
alent results. mit Orbitals from finite cluster calculations also automatic.dll satisl\
the orlhogonalit\ rý.quirement on ; q . In the first part ofthe Results section we
discuss the n,, computed when using finite cluster IIt orbitals. When the is
augmented b\ additional functions from the surroundings set. then these new func-
tions are also Schmidt orthogonalized to the existing cluster functions.

The localized cluster functions pf with ti,, either 0 or 2 are produced by pelrtrming
Jacobi-like unitary transformations which mix a cluster region orbital ssith an or-
thonormal surroundings function

V =- P cOS () 4 sin 8 (4)

giving the resulting orbital occupation number

11,, = n1 cos2 0 + n,, sin 2 8 + 2n,, sin 0 cos 0 (5

We use a 0" with n,, > n,,(u1 , < n,) to reduce (increase) the occupation number

of 4), . The algorithm consists of the following steps:

I. Pick the orbitals to be included in the cluster region basis set and orthogonalize
them to produce 1 '1 V.

2. Select the extra functions ; 0 which will be allowed to mix with the , ,
from the surroundings set. Schmidt orthogonalize the to the . The
resulting Of- correspond to the 0,' used in eq. (4).

3. Compute the orbital occupation matrix, using eq. (2). for all the 0! and 0f
functions and perform a Jacobi diagona'ization fII] on the cluster-cluster, nl((.
block.

4. Determine whether the final fi,, should be 0 or 2. We use the scheme if

n,, < 6 then fi,, = 0 (6)

or if

n,, > 2 - 6 then t.=2 (7)

where 8 can be varied, but is taken as 0.5 for calculations in the Results section.
When

S< n, < 2(8)

use perturbation theory to predict whether the cluster orbital prefers to gain or
lose electrons.

5. Perform Jacobi rotations of the type given by eqs. (4) and (5) between the

cluster and surrounding orbitals. This step is performed iteratively, reducing the
n,, of those orbitals which want tl,, = 0 first, and then increasing n,, for the fi,,
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2-type orbitals. 'The occupation number change in a single iteration was restricted
to 0.25 electrons. Convergence is achieved when no changes in the a,, occur.

In the Results section, we d,'monstrate the utility of the above algorithm by
performing monolayer cluster ,.nd slab calculations to simulate the Li( 1(0)) surface.
The (100) surface consists of Li atoms arranged in an array of squares. In the
calculations, we only include Li Is and 2s orbitals via a s ro-3G basis [ 12 1, but we
expect the algorithm to still be applicable when using more extended basis sets.
The density matrix for the extended substrate, Px, was computed by a CRYSTAL
[9] calculation on a monolayer of Li( 100) atoms. In all of the calculations we used
a Li-Li distance of 3.087 A, which was obtained by optimizing the Li monolayer
lattice spacing in the CRYSTAL calculation. This 3.087-A distance matches closely
the nearest neighbor distance (3.02 A) for bulk Li [13]. Since CRYSTAL only
performs closed-shell HF calculations, all of the cluster calculations were performed
on systems containing an even number of Li atoms. The different-sized clusters
are made by using different numbers of shells of symmetry-equivalent atoms around
the cluster center: the coordinates for each of the unique atoms are listed in Table
I. Finite-cluster HF calculations were performed on Li8 , Li1I, Li I. and Li 4. and
the resulting n,,, computed by eq. (2), are discussed in the Results section. LiX is
the simplest cluster, it has 2 central atoms, each surrounded by all their nearest
neighbor atoms. Li j, is obtained by adding the shell of next nearest neighbor atoms
surrounding Li8. Li13o and Li 44 are built from Li,6 by adding the next two series of
neighboring atom shells. Li 44 and the component clusters are shown in Figure 1.

When the cluster functions are being localized to produce i, = 0 or 2. we use

the extra functions in the order they are listed in Table I. For example, for the
0, from Li 8 , 10 extra functions 0" would come from the lattice positions (2.5,0).
(2.5,1), and (2.5,2).

For convenience, apart from when HF orbitals are used, the initial cluster orbitals
are taken as symmetry-adapted combinations. For the four symmetry-equivalent
atoms at the (±U + 0.5), ±j) lattice positions. cluster orbitals which transform as
a,, a,, bl, and b2 irreducible representations in the C_:, point group are obtained.
For the two symmetry-equivalent atoms at (±(i + 0.5), 0). only a, and b, orbitals
are obtained, All of the cluster calculations have been performed using a modified
version of the GAMESS package [14].

Results

The valence orbital occupation number obtained by using closed-shell HF orbitals.
in eq. (2), from the Lig, Li1(, Li3-, and Li44 cluster calculations, are illustrated
graphically by Figures 2-5, where n,, is plotted against the HF orbital energy. The
total sum of the core orbital occupation numbers, given in Table 11, reflect that
each core orbital, as expected, is completely occupied by two electrons. Similarly,
Figures 2-5 show the low-lying valence orbitals are also essentially completely filled.
However, Table 11 shows that the total occupation number for the valence orbitals
exceeds the number of valence electrons available from the finite cluster. This extra
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unqUie atOrll,. at inc.reasing distanr.ce torom the
o-igi v,. hldh arC used to bh ild the diflerernI i

clusters and Irnmr the , rmmnetr,.-adapted
surroundirng, e\tra function,,. ,J.

Number ol lattice
:unctiorn nu mber at hI(lr posltions;

1 2 (0.5.0)
2 6 (f.5.11
3 8 L E5.1))
4 12 ((.Sbl
"5 16 lrr.5.2|

6 21) 01.2)
22 12 5T.h

8 26 12.51)
4 30 (0.5.3)

10 34 (2.5.2)
II 38 (1.5,3)

12 40 13.5.O)
13 44 13.5.1)
1-( 48 52.531
15 52 10(.5.4)
16 56 (3,5,21
17 60) 1(.5.4)
18 642 (4,5,0
Ik) 66 1 ;.5.3)
20 70 (4.5. I

21 74 (2.5.4)

22 78 (4.5.2)

23 82 (0.5)
24 86 ( 1.5.5
2 5 90) 13-5a
2(6 94 (4.5.3)
296 95.5.0)
28 lOll (2 5)
29 10-4 5.5. I )
30 108 15.5.21

valence population is a retlection of the orthogonalization procedure we use for
the cluster functions kh . The 0, have the correct orthonormality condition
which enables using n, to assign orbital populations, but the 0, still merlap
with orbitals outside the cluster region resulting in contributions to n, from the
surroundings. Perhaps the most interesting result from Figures 2-5 is that the
high-lying occupied HF orbitals have ni, significantly less than 2. while the Virtual
HU orbitals have n,, much greater than zero. To emphasize this result, in Table
11. we list the occupation numbers for the highest occupied ( iOMO) and lowest
unoccupied (I UiMO) molecular orbitals. In a cluster calculation, one often as-
sumes the occupied (virtual) orbitals ace representative of the filled (empty)
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Figure 1. The Li4 4 cluster and its components: Liý (central dashed lines). Li, (solid
lines), and Liv (outer dashed lines).

Bloch functions of the extended substrate. Our results here suggest that cluster
orbitals may not be as good an approximation to the extended substrate as one
would like. Below we show how our localization algorithm can produce more
favorable occupation numbers.

In Tables III and IV we present the results of applying our localization procedure
to cluster functions 0" from Lis and Li.,( respectively. Instead of tF orbitals, the
0! are now symmetry-adapted combinations of the Is and 2s STo-3G orbitals
centered on the equivalent atoms sets listed in Table 1. For example, the 0, functions
9 and 10 in Table IlI correspond to the symmetric and antisymmetric combinations
of the 2s orbitals at the (0.5.0) and (-0.5,0) lattice points. Similarly. 04 functions
I I, 12, 13, and 14 are the respective a,, a2,. b2, and bh symmetry adapted 2s functions
generated from the four equivalent lattice points (±0.5.±] ). The first eight Lis
C' are created in the same manner using symmetry-adapted combinations of the
I Y orbitals. The numbers of extra functions 01 used in Tables III and IV match
taking all symmetry-adapted 2s orbitals from the appropriate set of equivalent
atoms. The first four 0"f used with Lis are derived from the (±1.5.±l_) lattice sites:
further 0" are added in the order they are listed in Table I. Only two 0' are added
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Figure 2. The occupation numbers. n,_ from the in: Liý finite-cluster calculation versus
niu orbital energy.

between 12 and 14 because these additional functions are centered on the (±2.5.0)
site. The nonorthogonality of the Is and 2s Sro-3G functions is removed when the

{ I and { 0" } are Schmidt orthogonalized.
Since the initial 0o are not HF orbitals we obtain initial orbital occupation num-

bers n,, with a broad range of values. However. the trace of the cluster-cluster block
n(.. is still the same as that obtained with the HF orbitals, since both sets of functions
span the same space. The n' in Tables III and IV give the occupation numbers
after the Jacobi diagonalization of the cluster-cluster block, n((. In the case of LiM
we find n• approaching 2 when the initial n', are greater than - 1. 1. Only 4q 14
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the remaining 44, come from basis functions located on the Li 30 edge atoms, con-
nected by the dashed line in Figure 1, which surround the central Li 1, Thus, we
find the orbitals inside the cluster edge atoms to be either completely filled or
completely empty. A similar trend is evident for the Li8 calculation in Table Ill.
However, the total occupation number for the valence orbitals of these two atoms
is close to 4 rather than the 2 expected from a finite cluster calculation. Perhaps



LOCALIZATION 01 W AVIT.IN(I IONS 237

0.28

0.24

0.20

0.16.

0.12

0.061

0.04

Z 0.00
E0

-0.04

-0.068

-0.12-

-0.16

-0.20-

-0.24.

-0.28

nt

Figure 4. [he occupation numbers, n_. from the Iti Li finite-cluster calculation versus
HF orbital energy.

surprisingly, in Table IV. the total n,°, for the inner Li1 6 cluster is nearly 18, and
not 16. At present we have no physical explanation for these populations.

The addition of 4 40 to Li 8 reduces the total number of cluster electrons by
0.825 electrons. Each atom in the Li8 cluster has a complete shell of neighbors
when there are 14 0'. and, at this stage, the transformed occupation numbers. f,,
are fairly close to 2 and 0. Even better, f,, are obtained when 22 0, are used, these
extra functions span the same atoms in the Li 30 cluster used as a starting point for
Table IV. The ,i, for Lis 0, with 22 4) resemble the n'f for functions 31-38 in
Table IV. The remaining differences between the two sets of occupation numbers
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Figure 5. The occupation numbers. n_. from the tHF Li 44 finite-cluster calculation versus
HiF orbital energy

are due to our algorithm using only a partial Jacobi diagonalization to transform
the Li '8 . The Lis 4• are essentially converged when 22 0,' are used, and only
slight improvements in the fit, are found when the 2s orbitals from the next-next-
nearest shell of atoms are included in the localization. Having 36 o, cxtra functions
corresponds to working with a Li 44 cluster.

The different numbers of 0' listed in Table IV correspond to surrounding the
Li.yo cluster with 1.2, and 3 extra shells of Li valence functions. The first shell, with
14 (p", clearly improves the ii, for the 31-46 orbitals, making the small nl? closer
to zero. These 16 (4 were originally derived from the inner Li1 ( cluster. Indeed.
some of the fi, violate slightly the 0 ___ n,, _< 2 condition, but we feel this a reflection
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'I m.uS I I. Orbital occupation n1u mnxrs, n1.. computed from

the III calculations on the linite custers illustrated IT I igure I,

till n, ViValence Core

Cluster I OMO I (Mo "00 n

Ii• 1.309 1.064 10.306 15.,'99
L~i I. [ 97 l,:2 19.1301 31.999

1.i-92 1.288 34.474 59.998

U4i4  1.411 1.275 49.177 87.997

of the limitations on the numerical precision of our algorithm. When the second
shell with 30 0' are allowed to mix with the 01,, the i, for the Li31 edge atom
functions 47-60 improve considerably. At this stage, there are 17 ý55 with f,, greater
than 1.95 and the other 43 1 ., with the exception of functions 50 and 59, are all
close to zero. Further improvements are found using functions from a Li51, cluster.
except for &I 55, which has a t,, reduced to 1.480. The failure of orbital 55 is
because two of the Of,' have n,, equal to 1.557 and 1.495. thereby preventing an
increase in n,. Presently. we are performing step 5 of the localization algorithm by
allowing mixing with all of the 0fr simultaneously. The problem we find with orbital
55 suggests that an improvement of step 5 might be to have a sequential mixing of
the successive 01- shells with the cluster functions. This will be investigated as the
algorithm is developed further.

ITARIm III. The valence orbital occupation numbers. p1,,, obtained after transformation of the cluster
I

function., ,p(. from Li, using different numbers of surrounding functions. f, . The n,,. are initial orbital
occupations for the Ol, and the n,, are obtained after diagonalization of the f(-( block.

Number of 0'

IR fln, 0'• 4 8 12 14 18 22 36

a, 9 1.775 1.991 1.996 1.997 1.997 1.997 1.995 1.997 1.992
h, I0 1.147 1.868 1.989 1.991 1.988 1.991 1.991 1.991 1.991
a, 11 1.185 0.930 ).479 0.315 0.178 0.166 0.1t0 0.080 0.072
a, 12 1.1010 1. 100 0.433 0.322 0.184 0.184 0.106 0.096 0.107
h2 13 1.859 1.859 1.935 1.993 1.984 1.984 1.984 1.984 1.984
ty 14 0.695 0.271 0.099 0.049 0.046 0.046 0.138 0.034 0.010
a, 15 1.465 1.501 1.794 1.940 1.937 1.941 1.999 1.995 2.004
th 16 1.086 ).784 0.752 0.444 0.425 0.242 0l.218 0.145 0.052

" "",r n 15.990 16.001 15.998 15.999 15.999 16.000 16.(102 16.(00 1S.999

n,, 10.315 10.304 9.479 9.05) 8.739 8.551 8.442 8.322 8.211
1" n,, (Initial) 4.422 9.3018 13.7301 16.352 20.847 25.789 41.770

(Final) 5.249 10.563 15.297 18.106 22.708 27.773 43.865
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TABI: ! IV. The %alence orbital occupation numbers. fi,. obtained after transformation of the cluster
functions 0, from liy, using different numbers of surrounding functions. 5,p, ]he ii, are initial orbital

occupations for the o, and the n. are obtained after diagonalization of the nt( block.

Number of'4,

0"* n", n,',' 14 30 56

31 1. 775 1.999 2.001 2,008 2.019
32 1.148 1.996 2.0125 2.012 2.025
33 1. 185 0.! 32 (.0153 -0.054 0.(06
34 1,101 0.002 -(0.020 0.023 0.013
35 1.861 2.002 2.016 2.021 2.028
36 0.693 0.018 -0.022 0.024 -0 .040
37 1.465 2.007 2.008 2.008 2.008
38 1,085 0.192 0,029 0.020 0.111
39 0.906 0.1104 -0.020 -0.018 --0.018
40 1.114 2.007 2.011 2.019 2.026
41 1.422 1.897 1.971 1.977 1.978
42 0.738 0.015 -0.10011 - 0.002 0.0(14
41 1.342 2.0132 2,041 2.039 2.038
44 0.855 0,215 0.003 0.013 0.0(13
45 1.583 1.973 2.01N 2.00(2 2.0018
46 0.868 1.958 2.110( 1.977 1.997
47 1.119 1.521 1.987 2.002 2.004
48 0.938 1.391 1.977 1.956 1,990
49 1.1401 0.455 0.052 --0.008 -0.036
50 0.857 0.349 0.223 0.130 -0.081
51 1.312 1.280 1.806 1.949 1.961
52 1.212 1.854 1.975 1.993 1.977
53 0.843 0.575 0.1 89 0.032 -0.093
54 1.231 1.740 1.877 1.998 1.962
55 1.293 1.4019 1,837 1.983 1.480
56 0.775 0.630 0.073 -0.042 0.008
57 1.428 1.817 1.903 1.966 1.967
58 0.877 0.751 0.308 0.038 -0.059
59 1.493 1,052 0.616 0.343 0.143
60 0.848 1.199 1.290 1.953 1.987

", n,, 59.962 6(1.0(X) 59.991 59,998 60.010

in, 34.510 34.472 34.211 34.243 33.401
"" n,, (Initial) 15.595 33.645 63.337

(Final) 15.866 33.878 64.391

Summary
We have developed an algorithm which enables the localization of cluster func-

tions, •4, which have orbital occupation numbers of either 2 or 0 with respect to
the density matrix obtained from a calculation on an extended substrate. These
C initially consist of a linear combination of orbitals centered on a finite cluster
of atoms. Partial Jacobi transformations of the occupation number matrix, n. are
then used to mix the cluster functions 0, with extra orbitals, 0, on the surroundings
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atoms to produce the required i,,. We are presently investigating whether these

localized basis functions are suitable for use in an embedded cluster procedure.
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A Comparison of Geometry Optimization with
Internal, Cartesian, and Mixed Coordinates
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Abstract

I mproements in io programs and computer speeds ha• e dramaocallv increased the site at' o"ltcuies

that can be optimiied bý Mo methods. This has put a considerable strain on cxistiig geometry optimwiation
techniques. For a gien molecular system, the pertirmance ota geometry optimitation method can vary
significantly depending on the coordinates used. Nonredundant internal coordinates ('..g.. /-matrix
coordinates) are easil. constructed and behave Aell for acyclic molecules but can be quite troublesome
for cyclic s.ystems. Cartesian coordinates behave well for rigid, cyclic molecules but can be quite poor
for flexible, acyclic systems. Mixed cartesian and internal coordinates have been suggested as a means
of combining the best of both approaches and are particularly convenient for cyclic systems Aith flexible
substituents. The efficiencN of these ditlkrent approaches is compared for a number of molecules. ,t II2

John Wile% & Sons. Inc.

Introduction

Geometry optimization is one of the important steps in almost any quantum
chemical study. With the advent of efficient methods for computing energy gradients
for ah initio molecular orbital calculations [II and the use of gradient-based opti-
mization algorithms [ 2 ], finding equilibrium geometries has become almost routine
for many simple molecules [3]. The key to the efficiency of any optimization is
the choice of a suitable coordinate system. Strong coupling between coordinates,
narrow gullies, and curved valleys cause serious problems for even the best optimizers
[2]. Many geometry optimizations in quantum chemical calculations are carried
out using nonredundant internal coordinates, for example, /-matrix coordinates
or similar definitions of internal coordinates. This is both convenient and efficient
for many small molecules, since the /-matrix is constructed from the natural co-
ordinates of a molecule, that is, bondlengths, valence angles. and torsions about
bonds. Such internal coordinates are normally not very strongly coupled, and the
optimization proceeds efficiently [3,41. However for cyclic molecules, it is very
difficult to set up a nonredundant coordinate system without strong coupling [41.
There are a number of ways around this problem: cartesian coordinates, redundant
internal coordinates, or a nonredundant linear combination of cartesian or redun-
dant internal coordinates (e.g., symmetry adapted coordinates). Pulay [ 5] recently
demonstrated that suitable combinations of redundant coordinates can be used
very efficiently in geometry optimization. Generating an appropriate redundant

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 243-252 (1992)
'c, 1992 John Wiley & Sons, Inc. (CCC 0020-7608/92/010243-10
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internal coordinate s\ stem that mininmites coup lng requires some skilI or I, siItable
program [61. Tlhe etlort in constructing such a coordinate s\stem is resarded b\
signiticant impro\ements in the ethicienc\ of the geonlelr optimI/ation i .1. 1 t.
other alternative. cartesian coordinates, is routinel\ used inI nm0lccu lar mechanics
[ 7 ]. Cartesian .oordinates are unambiguous and easy to set up. but are modcratcl\
strongly coupled. 'raditionall\. cartesian coordinates haxe been axoidcd in mo-
lecular orbital calculations because it was thought the\ w ould slow do\\x n optimi-
zation significantly. Recentl\ tiehre et al. [81 showed that w\ith a suitable initial
guess for the hessian and the geometry, cartesian coordinate-based optimi/ation
could be quite comparable to internal coordinate-based methods. ('artesian coor-
dinates wxere better for cclic and rigid molecules, but were poorer fbr flexible.
acxclic sstems. Cartesian coordinates also make constraints more ditlicuLt to impose
(howexer, see Refs. [')]-[1Il). As an alternatixc to pure cartesian or pure internal
coordinates. Head [I lj and Obara et al. [12] haxe suggested tie use of mised
cartesian and internal coordinates. In this article we compare the elficicnxc ofgc-
ometr\ optimization based on internal, cartesian. and mixed coordinates.

Nlethodology

All molecular orbital calculations were carried out x\ith the (,AUSSIAN 92 ,eries
of programs [131. The Hartree-Fock level of theory wa,, used with the s io-3(.
basis set [141. Geometries were optimized with two dit,,rent sets of internal co-
ordinates, cartesian coordinates, and mixed cartesian/internal coordinates. Starting
geometries were obtained b\ molecular mechanics minimization using MacroModel
[15] and the M\N2 force field [71 (the C --- H bonds were shoitened by 0.03 \ to
take into account the systematic diflerence between Mtm2 and a!, mmi) Nv) computed
C---H bondlengths). Internal. cartesian. and mixed internal/cartesian coordinate
optimizations were started from the same geometry The initial estimates of tlhe
hessians were generated from a simple valence force field transtfrmed to the co-
ordinate system used in the optimization [l 6]. T!he standard optimization routine
in GAUSSIAN was used for all minimizations [17].

For optimizations using mixed cartesian and internal coordinates. -, riable carte-
sian coordinates are treated analogous to variable internal coordinates. The r,.ins-
formations for the coordinates and gradients from cartesian to internal coordinates
is

bq = Bb.v and g, (BMB') 'BMWg,

where B is the Wilson B matrix [18]. If the Z-matrix orientation is used tbr the
cartesian coordinates of the molecule, A! is an identity matrix with the diagonal
elements for .v, .VI .-Z Y, , 13 set to zero (i.e.. tbr those cartesian coordinates
that are always zero in the Z-matrix orentation). To add a tfew cartesian coordinates
to the internal coordinates, one simply defines the appropriate B-matri\ elements
fbr cartesian displacements (i.e.. an identity matrix I. This approach has been im-
plemented in GAUSSIAN 92 [13]. The current specification of the /-matrix ge-
ometry input alreadx includes the possibility of defining some (or all ) of the atom"
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b% cartesian coordinates and the remainder b\ internal cooruinates. Unlike earlier
implementations of mixed coordinate optimization [12 ]. the present approach al-

kwsý ful! coupling between the cartesian and internal coordinates.
For full cartesian coordinate optimization. the structure input can he via cartesian

coordinates or /-matrix internal coordinates ( the cartesian variable names are gen-

erated automatically and passed to the same optimi/er used tbr internal coordinates
[171). Even though translational and rotational invariance of the gradient should

assure that tho molecule does not undergo overall translation or rotation during
the optimization. the hessian fer -artesian coordinate optimization is adjusted so

that the coordinates for overall translation or otation have large positive force

constants, eflectively freezing these degrees of freedom (this is similar to the frozen

coordinates that can be used in regular geometry optimizatiotis [ 13]).

Results and Discussion

Table I presents a selection of some monoecxlic. bicyclic. and tricvclic molecules.

A number of these have bcen used in previous articies 15.81 to test the performance
of geometry optimization methods. To assess the variability in performance of

optimizations in internal coordinates, a number of molecules were optimized with
two diflifrent sets of internal coordinates. Those in set (a) were constructcd according

to the suggestions of Ref. [41 so as to minimize the coupling between coordinates
and to maintain the symmetv of the molecule during the optimization. These

internal coordinates, along with the starting geometries are shown in Figure 1. The
internal coordinates of set (b) were chosen in a more cavalier manner without

regard to problems of strong coupling (e.g.. a six-membered ring is constructed as

a simple chain of six atoms). For cartesian coordinates, all 3 N coordinates are

allowed to vary. For mixed coordinates, the n atoms in the rings are described by,
3n - 6 cartesian coordinates, while the substituents are attached using internal

coordinates.

TAMo 1 . Comparison of geometr- optimization perfbrmance using internal, caresian. and mixed interal!

cartesian coordinates.

Number of optimi/ation steps
Number

of Number of Internal

Molecule atoms Svnmmetry variables (a) b) (Cartesian Mixed

2 fluoro furan 9 C, 15 7 8 7 7
norbornane 19 C, t5 7 6 5 5
bicyclo[2.2.2]octane 22 ), I I II 25 It) 14

bicycio[3.2. I ]octane 22 C, 33 6 5 6 7

endo h~drox. bic.clopentane 14 C, 36 8 Is 9
c:o h. droxý bicylopentane 14 C( 36 IO 20 1I
M t,1iuP 16 C1  42 65 >81 72

1.4.5 tnhr droxs anthroquinone 27 C, 51 10 II 17

hi.tamine It1 18 C" 48 42 >10) 47
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2 fluoro furan

C . Starting geometry & internal coonnate set (0)

C I r2 2 a2
/ C2r31a33 O.

C0 C ,r42a43 0
F4 1r52a53 80

H-H -2r61a63180

0 H3r01 a7 2 ,80
H 4r82a8l1 180

Number of optimization steps r0=1.4558/r2=1 3375/r3=1 3395
. r4=2.1286/r5=1.3336lr6= 1 0721

internal coordinates (a) 7 r7=1.0724/rB=1 07264a2= 102 5826
internal coordinates (b) 8 a3=101.6686/a4= 70 3774/a5=128 8779
cartesian coordinates 7 a6=129.0378&a7=126 9982/a8= 126 7146
mixed coordinates 7

H Starting geometry & internal coordinate set (a)
norbornane .

H- C C 1Girl2aI

"C 2 r2 1 a2 3 d2
C 2 r2 I a2 3 -d2

.Ci -. C3r21a22 d2
H~~~ 3~~~ rH C I a2 2 d2

I~ ~ I Hr32a33a3 1C H ,./ H 1r32a33a3-t
H) H 2 (4 1 a4 3 180

"H 314 I a4 2 180,
H4r52a51 d5

(U, H• 4 rbH4r62a61 d6
SH 5 r6 2 a6 1 -d6

H H6r53a5 I d5
H6r63a6 1 d6
H 7 r53a5 I -d5

Number of optimization steps H 7 r6 3 a6 1 -d6

internal coordinates (a) 7 r1 =1 5378/r2= 1.5418/r3=1 .0863
internal coordinates (b) 6 r4=1.0876/r5=t ,0869Ir6=1.0858
cartesian coordinates 5 al= 92.5394/a2=102.1580/a3=1 13 4070
nrmxed coordinates 5 a4=1 15 0850/a5=1 10.2372/a6=1 12.0658

d2=-56 4782/d5=-81.9032Jd6=157.5936

Figure 1. Structures, starting geometries, and internal coordinate set (a) tbr the molecules

in I able I.

The table shows that for a variety of systems internal coordinates perform as
well as or better than cartesian coordinates, in agreement with Baker and Hehre
[8]. Secondly. the number of steps taken by optimizations using mixed cartesian
and internal coordinates is generally intermediate between pure cartesian coordinates
and well-chosen internal coordinates. Since mixed coordinate systems do not require
the careful crafting of good internal coordinates for rings [4). and since their per-
formance is equal to or better than cartesian coordinates, there is some merit to
using mixed coordinates.

Fluorofuran. hvdroxybicyclopentane, norbornane, and 2 bicycloocianes are fairly

rigid and are well represented by the MM2 force field. Thus, relatively few steps are
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Starting geometry & internal coordinate set (a)

bicyclo [3.2.1] octane
c I r2 290

- 1 r2 290.3 180
H.H c 3 r3 1 a3 2 d3

H ,c 4 r3 I a3 2 -d3
C 3r4 M a4 2 d4

Z . c 4r4 I a4 2-d4
c 1r5 2a5 3 90

Sh2r6 3a6 4 a6-1
C !- h2r7 3a7 4 a7 1

h3r8 2a8 4 d8
C~h 4 r8 2 a8 3-d18

P h5rr93a916 d9
H H '~rIO 3 alO6 dlO

C h 6 r9 4 a9 5 -d9
-C h h6 r104 a105-dt0

H h 7 h7r113a119 dll
, h7r123a129 d12

ýH h h8rl1 4a1t1 9AdlI
h 8 (12 4 a12 9 -d12H• h9r137a138a13 1
h 9 r14 7 a14 8 a14 -1

Number of optimization steps rlt =0.9863/r2=1.1768/r3=1 5408r4=1.5404/r5=2.2660ir6== .0856

r7=1 .0871/rS=1 .0889/r9=1 0871
internal coordinates (a) 6 r 10=, .0655/ri 1=1.0865/r12=1.0868
internal coordinates (b) 5 ri 3= 1.0872/r1 4= 1 0859la3= 74.7408
cartesian coordinates 6 a

4
= 93.5429/a5=130.009Z/a6= 113 4879

mixed coordinates 7 a
7

=1 10.7039/a8=1 11 4700/a9=109,6191
alO=1 12.0531/al l=108 8747/a12=109.9315
a13=110.3734/a14= 109 2114!d3=-132 2131
d4=1 .5.79021dI•8=66.7660id9= 117 9400
d I 0=-123.13541d 11=-121.1057/d12= 122 3794

bicyclo [2.2.2] octane Starting geometry & internal coordinate set (a)

C
C 1 rl

C 1 r2 2 a2 3 120.
C 1 r2 2 a2 3 240.
H 6 C 2 r2 1 a2.3d2
CH2 r2 la26 120.C 2r2 1 a2 6 240,
-• 21 1.290.630.
-21 ,1.90.60.
Hl1r3 990.2 180

H C H H 2r3 1090, 1 180

H 3 r4 2 a4 2 d4
S7 H3rS a52d5

H 4r4 1la4 2d4
H 4r5 1 a5 2d5
H 5 Hr4t Ia4 2d4

H HH H 5 r5 I a5 2d5
H 6r4 2a4 1 d4

H~H 6 r5 2 a5 '1 d5
H 7 r4 2 a4 1i d4

Number of optimization steps H 7 r5 2 a5 1 d5
H8r52a51 d5

internal coordinates (a) 1I
internal coordinates (b) 25 rl=2.5790/r2=1.5396r3=1.0895
cartesian coordinates 19 r4=1.0867/r5=1.0868/a2= 70.0910
mixed coordinates 14 a4= 109.2484/a5=1 10.4824/d2=6.3053

d4=114.977 I/d5=-127 9986

I-igure I. ('totinne'd)
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Starting geometry and ninernal coordinate set (a)

2 hydroxy bicyclopentane

C r21 a12833
H 3 r3 2 a2139 23

0 C Hr14A2a2 43Ad3214
H 4 r45 I a 145 2 d2145

0 H) 0 r46 4 a146 2 d2146

H 01=.47 2 aI482/17 3 13267

r2= .87r39 1 1.03952rd21 .039

Hat r5 481 3.74a4SC= 11. t 645D= 130
mixed~~~~~~~~~ cordnae 11 a46 E I c27/324 12.1814 5=O.59

H d21=I.57l46= 14.4 064/d027=-113.0875132=143
d281.07/39=- 0 .5 8 45/d213A=1 0.05082349 1858

Numerofopimzaiodsep 450=1 1.4893/r d1 r84/5D=-t1 .2697/14E173

~~~~~~~~Satn ge ety&internal coordinates sae0a159.2 a14= 11374 1=1929

caCtHCPa coriaec0a2=0.52al911.09a3 568
mixed~~~~~~~~~~~~~ coriae ri t4= 363/4C= 477401130

ClE= 08. 277d21412511B24= 3

N 7 rF s Id

H ~ ~~~~ rl1.73 t=.12 Q 3=2.0

r4=1 .397 r5=.27(1 .466 7

r 03 682 r9=1 .082./9=.26

C H1 ,0541rE=1 .04I1 d 0B 3

mixed~~~ corints 2=11.47696/a=11 .5 1 68/ d3-- 6.3596
d4=5.31 08/r5=1252.7496=-34.16 33
d7=29.6528Pd8=-1 72915.5221d6 3.42
dA~-17.Ollr3990fdB179C~.08OdC-5l37
dD=163.413/dE=123.0421/dF=l.083519

reuubre ofrth optimizationslfors any of 183 the15/4= coriae 2ytm.8Bc177 1222
ocaecntitera coriabotthes ( xsand 6 hi may= 1 /accoun2forthe reate numer o
stp ae ytcartesian basedaes>8 opiation For597aC th hy42/droxb1cc1o8364 es

cordnaes.Rgd plardnare moeuessc as~ fluorofuran~ an tr16 hyd3o=- anhr596
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Starling geometry & internal coordi'nato set (a)

1,4,5 trihydroxy anthroquinone C
C 1 rl
C Ir92 2a2

H" .. -,C 3,r3 1a3 2180

0 . C 4 r4 3a4 1 180
00 C 2r5 la53 0

"C 6r6 2a6 1 180
C 7r7 6a7 2 180

.. C I r8 2a8 3 180
C ' I C 9r9 1 a9 3 180

ýH ~Cl10r0O 9 a10 1 180
C 2r1l1 1all3 180

C C C C 2r12 2a12 1 180
C 13r r 3 1312al32 180
o 1 r14 3r142 180
0 4r15 3a151 0

C ,C H16r06 4a163 0
C C H 5r07 4a173180S.. .r'.. . . •H 8,18 7 a18 6 180.

c; C 0 . 7 19 6a192 0

H 20r20 7a206 0
0 2r'21 6-a217 0
0 13 r22 12 a22 2 0

o 0 H 23 r23 13 a23 12 0
0- -H 14 r24 13 a24 12 180

"H ," .. H 11 25 10a259 180.
H10r26 9-)61 0

r1 =2 8128/r2= 1 .4007/r3= 1.4025/r4= 1 3934
r5= 1.4009/r6= 1.4025/r7= 1.39341r8=1 3998
r9= 1 .3986/r 10=1.39261rl1 =h1 3999/r 12=1.4025

Number of optimization steps rt 3=1.39451r14=1 2122/r1 5=1.3656,r16=0 9 757
rf7=1.0735,'rlS= .0735/rl 9g13653/r20=0 9747
r21 =1.2141/r22=1,3652/r23=0.9750/r24= 1.0734

internal coordinates (a) 10 r25=1.0737/r26=1.0735/a2= 59.7891
Cartesian coordinates 11 a3=119.9130/a4=1 19 8322/a5= 59.7502
mixed coordinates 17 a6=1 19 9728/a7=1 19.8749/a8= 59.4339

a9=1 19.4018/alO=120.5069/al 1= 59 9316
a12=120.5476/a13=1 19.9462/a14=120.1535
a15=123.2t00/a16=112.4815/al7=1 19 9896
a18=1 19.9769/a19=123.2140/a20=1 12 5473
a21 = 120 3804/a22= 1 23.0024/a23= 112.3739
a24= 1 19.9078/a25 =1 20.2592/a26= 121.6324

iurc I. 1 (

none optimize readily in all three coordinate systems since there are no flexible
rings or internal rotors to cause problems. For trihydroxvanthroquinone. Baker
and Hehrc were unable to achieve convergence with internal coordinates. but the
present choice ol internal coordinates performed as well as cartesian coordinates.
A(M'Ii(P and protonated histamine were the most troublesome molecules in the
present study. Both contain a very flexible hive-membered ring that changes con-
tormation during the course of the optimization. Baker and Hehre found a minimum
for A(- I I I(T only with cartesian coordinates (90 cycles) [8 ]. In the present studyI
internal and mixed coordinates both converged in somewhat fewer cycles (65 and
72. respectively). Internal and mixed coordinates behaved similarly for histamine
H[ cartesian coordinate-based optimization had difficulties adjusting the flexible
hydrogen-bonded side chain and did not converge with 100 cycles.

With the reduction in computational cost and the improvements in atb milio Mo
calculations over the last decade. it is possible to contemplate optimizing the ge-
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Starting geometry & internal coordinate set (a)

N

histamine H+ C iH r
"H) C 1 r3 2 a3 3d3

-C] N 2 r4 Ia4 3 d4
C 2 2r5 1a53d5
C 6 r62 a61Id6

K> C N7r76a72d7H~~~~ H H 3r S5d
< CZ ): -- --- N H 5 -" 3-•-, Hr0a945d90

, H 4 0122 al2lt 7d12

HH 6 012 2 a12 7 d12
H7 r.36a138dl3"/."1 N ,H 7 ,_- H 14 6 a1458d14

, H 8 r15 7 a15 6 d15
H8rl67al616dt6
H8r177a17 16d17

"u-", rl = 13572_.r2=1.37701r3= 1.3240ltr4=2.1t863

H r5=l.4995/r6=1.5363/r7=1.5o5oirszl,0704
rg9= 1.04951l 0,=1.0708 1=1 =,0854/r12=1 .0651
r13=1.0846/r14= 1.0849/ri 5=1.0450#/!6=1 .0437

Number of optimization steps 1i 7= 1 .0450/a2=1 10.7216ta3= 105.59821a4=73.1915
a5= 120.80221a6=1 13.5238/a7= 109.0633/a8=131.4886

internal coordinates(a) 42 a9=-126.3666/a10=126.3072/a1 1*1087003/a12=108.1367
a13=1 I 1.8514/a14=1 10.1 194/a15=109.6284/a16=1 10.1589

cartesian coordinates >100 a17=109.329/d3=-0.2008/d4--O.O839/d5=.179,6829
mixed coordinates 47 d6=39.6818/d7=-62.537B/d8= !79 9720/d9= 180,0000

dlO=179.8032/dl 1=121,5462Jd12=-122.27581d13=120.6163
d14=-118,2480/d15=-45.3540/d16=120.9891/d17=.t19,7540

Figure 1. (rr, tlnt ied)

ometrN tbr each point on a potential surface scan. Such a relaxed surface scan
requires ont or more coordinates to be constrained (i.e.. the coordinate(s) defining
the surface) while the remaining coordinates are minimized. Internal coordinates
such as bond lengths and dihedral angles are often the most convenient and mean-
ingful for surface scans. However, constraints on internal coordinates are more
complicate,. to impose when the optimization is carried out in cartesian coordinates
[9-1 I 1. Wi, n mixed internal and cartesian coordinates, the surface coordinates can
be expressAJ in terms of internals, whereas cartesian coordinates can be used for
rings. Figuc 2 shows an example of a relaxed scan for protonated histamine as a
function el the two dihedral angles of the side chain. The five-membered ring is
detined in erms of cartesian coordinates: internal coordinates are used for all of
the substitu -its. The dihedral angles were stepped in 600 increments and the relaxed
energies wFe fitted to a double fourier expansion. The surface shows a deep diagonal
valley whe .- the RNH 3, group forms a strong hydrogen bond to the imidazole
nitrogen. Tl-e narrow, diagonal nature of the valley inUicates strong coupling between
the 2 dihe&' al angles. Provided both angles change in a concerted manner, the ring
formed by he hydrogen-bonded side chain can flex above and below the plane of
the imidaz, ie without significant change in energy. This deep, narrow valley with
a flat bottc n probably is the reason for the slow convergence in the geometry
optimizati,1 of this molecule (Table I).

Conclusions
('oordina'e systems with a mixture of internal and cartesian coordinates are

useful alternatives to pure cartesians or pure internals for geometry optimization
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Figure 2. Potential energs surlace scan for protonated histamine. I he dihedral angles

and o2 "ere stepped in 60' intervals and all of the remaining degrees ot frcedom lirn
optimized using mixed internal/cartesian coordinates.

and have been incorporated in GAUSSIAN 92. Rings can be represented more
easily in cartesian coordinates: side chains can be readily described by internal
coordinates. The performance of mixed coordinate optimizations is generall% in-
termediate between cartesian and well-chosen internal coordinate systems. Well-
chosen internal coordinates and mixed coordinates ma- require a bit more %ork
to set up but generally performed as well as or better than cartesian coordinates for
the examples considered iJr this study. Internal and mixed coordinates also haxc
some advantages for relaxed potential surface scans.
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Chemical Potential (Electronegativity) -Related
Quantities in a Model Multilevel System
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Abstract

Various chemical potential(electronegativity )-related quantities, gisen by reles ant denvatu cs of the
energy with respect to the electron occupation/density variables, are examined lir the model one-di-
mensional system consisting of m-levels occupied by electron moving in a common one-hod, potential.
The previously proposed hyperspherical orbitals, with the common radial factor, x - VFp, where , is the
electron density, are used to derive explicit expressions for approximations to the local. global, and orbital
".chemical potentials" ("electronegativities"). Rele ant Euler equations are summarized. and an illustrative

example of the harmonic oscillator is discussed in more detail. , I942 John Wiley & Sons. Inc.

Introduction

The electronic global chemical potential (negative of the global electronegativity).
given by the derivative of the system energy with respect to its number of electrons.

JAK = -X, = ME(N)/ON, ( I)

represents a key concept of the density' finctional theorY ( DET ) [1.2] and the related
charge sensitivity analysis (CSA) [ 1,3-8 1, in which some of its derivatives are used.
It appears as the Lagrange multiplier in the DFr variational formulation [91:

' [Ejp] - p,( p dr - N,)] = 0. (2)

incorporating the subsidiary condition of the specific particle number. N,, = f P,,

dr; here p is the electron density and the subscript, v. indicates the fixed external
potential. For the exact ground-state (equilibrium) density. p_,, the local chemical
potential (electronegativity) equalizes throughout the whole electron distribution
[9a]:

l,,(r) = 6Et;[p]/b(r)[,, = A,,(r') . . .v (3)

The properties ofju, and the orbital electronegativity, as defined by Hinze et al.
[101, have been extensively studied [1,6.9,11-13]. It has been pointed out that
electronegativily equalization (EE) of eq. (3) cannot take place in the Hartee-Fock
(HF) theory, due to the extreme orbital occupation constraints. Thus, in this ap-

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 253-264 (1992)
t) 1992 John Wiley & Sons. Inc. CCC 0020-7608192/010253-12
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proximation, only an approximate (average) global "'chemical potential" level can
be defined. This level has been approximated in recent studies as the energy per
particle, El/Nl 1.12]. or as the average orbital energy.

A Z I',c,, (4)
' I

where p, = tIN is the ith orbital occupation probability. it, is the occupation
number, and e, is the orbital energy [6].

The main purpose of the present study is to examine properties of various chemical
potential-related quantities, local, orbital, and global, within a well-defined and
realistic multilevel model system. We shall consider m-levels occupied by electrons
moving in a common one-body potential l'( ). This model has already been suc-
cessfully used to determine p = p[ V] relation and to investigate properties of the
so-called Paidi potential, V ',(x). originating from the density matrix idempotency
(orbital orthonormality) constraints [ 14-16 1. It realistically models, for example,
a multishell spherical atom (x = r), with the one-dimensional density p(.V) then
being related to the radial density [15]. A formally exact definition of such an
effective one-body potential I' = Vf[v, p] was given by Kohn and Sham [17].
though it involves a functional derivative of yet unknown exchange-correlation
functional. As in the previous development, we adopt the hyperspherical orbital
representation with the common radial function, X = p

Model

Consider the tn-occupied level one-dimensional system. within an independent-
particle approximation, in which electrons move in a common one-body potential,
V(x). The canonical orbitals 0 = (1 ..... k,,) must satisfy the associated one-
body Schr6dinger equations.

0," + 2(e, - V)4, z O. i = 1, 2. m. (5)

As done previously [161, we adopt the hyperspherical function frame [14] ] for the
doubly occupied orbitals:

f20• = XK, (6a)

where X determines the radial function "variable" of 0, and the anfgular functions,
K.

K1(x) = sin /'I(x) sin f_(x). .-sin _,,, (x).

K,(.v) = cos.1 (-v) sin j2 (x). .. sin /,/ (x),

KA'(x) = cos.'2(x)- . • sinf,, -(.v)

K,,,(x) = cos/J,, (X) . (6b)
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depend upon the (;n - I )-angle functions JYx) 1 and satisfy the familiar properties
of coordinates of a unit vector in the n-dimensional vector space. The corresponding
Euler equations. "'radial" (associated with a variation of X) and "angular" (associated
with variations of K). are summarized in Appendix A.

Chemical Potential Quantities

The energy functional [eq. (A 14)] of Appendix A can be expressed as a function
of fractional orbital occupations in the N < 2Dn case, by an appropriate scaling
procedure. Let us consider first the energy function of orbital occupations n = (n].

.I ... 1n,,M), where •7'," 1 n, = N. Rewriting eq. (6a) as

n,`20i= XK, i = 1,2, - i I. (7)

allows one to interpret this procedure as the occupation-dependent scaling of the
angular functions K(2) of eq. (6) into

K,(n)= K,(2)(ni/2)'' 2, i = 1,2, - n, (8)

where K(2) refers to the doubly occupied m-levels. It can, therefore, be termed the
angular orbital occupation scaling. It preserves a common radial factor, x, essential
for the hyperspherical representation (6), and thus, p and its derivatives. The scaled
functional of eq. (A 14) now becomes the following function of orbital occupations:

E~ p, K(n)] f (ý P , + 0. 7 C1(A). (9)

giving the rigid(i.e., orbitally unrelaxed) orbital chemicalpotentials ( negative rigid
orbital electronegativities),

f IM1=-X,--[aE(n)/0n,] =cifkdx--e,, i= 1,2,*...in, (10)

equal to the respective orbital energies in accordance with our earlier conjectures [6]-
In order to obtain the working function E(N), we can similarly modify eq. (6a)

to reflect the uniform (statistical) occupations of all In orbitals.

n, =7--N/m, i= 1,2,... rn. (11)

However, such a uniform occupation scaling can now be interpreted as performed
on either the angular or radial factors of the hyperspherical orbitals. First consider
the angular case with n = ii, to which eqs. (7)-(9) apply. The functional E[p,
K(ii)1 now becomes a simple function of N:

f,(N) = P(n(N)). (12)

leading to a measure of the global chemical potential given by the average orbital
energy [eq. (4)]:
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A= -X = cA /(9N) =_ ,= , (13)
in N,

Consider now the case of the radial scaling due to the uniform fractional occupations
of orbitals

fi/2, = xK,, i = 1, 2, in (14)

or, by comparison with eq. (6a),

x(fi) = X(2)(9) (15)

where, again, X(2) is the "radial" function for the doubly occupied electron con-
figuration. Such a radial scaling of the energy functional (A 14 ) gives

N

(N) --- N E(2) , (16)
2m

where E(2) is the electronic energy for the fully occupied m-levels (N = 2m) for
which the scaling factor in eq. (15) is equal to unity. The associated measure of
the global chemical potential (electronegativity),

p = -Xý = OE(N)/ON = E(2)/2m = E/N, (17)

reproduces the earlier findings by other authors [11,121.
This scaling procedure can be easily modified to account for any electron

configuration, by writing the orbital occupation numbers in terms of the global
number of electrons and occupation probabilities, n, = Np,, with the subsequent
N-scaling being attributed to the radial part of orbitals and the p-scaling affect-
ing the angular parts. Such a more general case is briefly summarized in Ap-
pendix B.

Let us now turn to the local chemical potential (electronegativitv) quantities.
Taking the partial functional derivative of the energy functional (A 14) gives the
rigid local chemical potential:

I bEfp, K] K ......
AW ) = =A X A•K ( ~ , - ,(x) = - X (X) , ( 8

where

W() p, K) = (18a)

Its space average gives the average global potential [eqs. (4) and ( 13)]:

A= f(,V)(x) d V/ f(x) d., (19)
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so that

A dN = f p(x) dp(x) dx. (20)

On the other hand, since the functional (At 5) already includes the functional
dependence of K = K[p, V],

E[p, V] =E[p, K[p, ']l , (21)

its functional derivative will provide the (orbitally) relaxed local (heIical potential
(electronegativiti):

Ure• (x) =_ 6E[p, I] X ( (22)
bp(x)

The explicit form of the functional derivative (18), obtained by using the expres-
sion (AI0) is:

P(x) = ( ') + V + V, = (P- - p V' dt. (1l8b)

The relaxed quantity of eq. (22) includes an additional orbital relaxation term due
to the angular potential, V,

8va[p, vJ
ure](W = U(X) + , (22a)

bp( x)

where the functional Vl[p, V] is defined by eq. (A 10). It directly follows from this
definition that

(- I f -=p pV' at)--• U(V), (23)
b5p 6P p bpS

since the contribution from the remaining terms vanishes identically.

Illustrative Example: Harmonic Oscillator

Consider a linear harmonic oscillator with units in which the Hamiltonian takes
the fort..,

1p2 1 X2.
H= -p + x (24)

2 2

we are assuming the first two states singly occupied: er = 1/2. e- = 3/2,
P = 02 + 01• = P1 + P2 = Ir-1/2ep-x),25

p=4+k=p+p-7~ 1 exp(-x 2 )Z, (25)

where Z = I + 2x 2, following the previous analysis [ 15.
We note that, for a single occupied level only, p= = 02-= 2 exp(-x2), one

obtains Va = 0, and all chemical potential quantities assume a constant value:

A = A (x) = A(X (x) = e' . (26)
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In the case of two occupied levels with the densitN distribution (25

I,, -/ Z , (27)
which gives the local chemical potential function

3pCV) -= - 2I 28}

when averaged over space this local quantity indeed generates tile global chemical
potential measure:

P 2 f A(v)p(x) Lv = 2 + 2 ) I (29)

It should be observed that, due to the presence of the space-dependent "switching
function," 1/,

1 3

P(O)-=ri and W() (30)

The integral function, U(x) of eq. (23). assumes the following form:

U(x) = (7 + 2)/(4/). (31)

For the purpose of calculating the orbitally relaxed potential prd(X). L(.v) should
be interpreted as functional of p and 1, in order to calculate the orbital relaxation
correction of eqs. (22a)and (23). This can be formally pursued by observing that
[see eqs. (6) and (25)]

/ = p/pm - K21 (32)

whose functional dependence on p and V follows from the Schrbdinger equa-

tion (MA).

Conclusions

The combination formulas, expressing the "chemical potential" of the whole
electron distribution i. i rms of potentials characterizing its constituent fragments

(spatial or functional), involve the relevant Iukuifiunction ( F) data as the weighting
factors. For example:

l i " I On, '9
j =. . " - • •• uF (33a)

3,, N idn, ON

bE a!-p(x) dvf pWF~l(x) A (33b)fp(,x) dxAr

--- Ae =. dZ u,(x)l)(x) dv (330)

: Jp,( V) oN f 3
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It should also be observed that. since j,(x) e, [compare eqs. (10) and
I 8a) ), the local orbital ehlctronegautiiivt is equali:(ed throughout the space at the

negative orbital energy level. The orbital local F-index,

I'(X) p,(_) =(x)OK (W) (41)A N

again measuring the orbital local occupation probability and appropriately nor-
malized,

fFx) d= I , (42)

automatically satisfies eq. (33c). Finally, one similarly identifies

02'(x •](X) pjo,()/n, = p(x)K,(_v)/n, . (43a)

F 'x)= --.v)A* = IV ,,(.,)1 n,,. (43b)

which automatically satisfy eqs. (34), and

F"U(x. _') = K2(x) 6(x - .') (44)

fulfilling eq. (35),
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Appendix A: Euler Equations in Hyperspherical Orbital Representation

Consider a general rn-level, one-dimensional, independent-particle problem, de-
fined by an external potential, I,(x). We assume the hyperspherical function frame
of eq. (6) for a closed-shell system:

fight(x) = X(.v)K,(x). i = 1, 2, n-. , (Al)

where X- p = 2 • • is the electron density. Eqs. (AI) imply that. at each
point in space, the optimum "'angular" functions, K(x), must behave as components
of the unit-vector in the m-dimensional vector space:

K,2x) = I, and hence, Z K,(x)K,(x) = 0. (A2)

The remaining subsidiary conditions are the usual relations of the orthonormality
of orbitais:
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S,, . qi, 1/2J X K,Ktv [K, i(A. 1.2. " . ,\3)

Therefore, the optimum orbitals correspond to the minimum otlthc auxiliar\ tufC-
tional.

t ' - x(. K;' 1 dI f k 1/ 2 x ,S- ). (A-4)

% here the energy functional is [161:

Ej K: 1.: 2] W x), t X, 2- 1x'"K,K'1 d\X . (A5)1

X groups the Lagrange multipliers associated with the orthonormality constraints
(:\V ). and NL.) is the Lagrange multiplier function corresponding to the local con-
straints ( A2 ).

[hc "radial" and "'angular" Euler equations, obtained by taking the Functional
dcri\ýi\ c of \A4 with respect to Xand K,, respectivcix. are:

4- 2 ( ):, x, I-;(

k':.'- 4 K -* 4,+ -- K,: . X, K,- -- K,

i = I. . " • 1. (A 7)

In order to identify the Lagrange multipliers. we shall manipulate the one-body
Schrbdinger equations (5 ) which. when expressed in terms of hvperspherical func-
tions, become:

K;,' + 2(X)K; *± + 2(,, - 1')K,. i .2. . (A8)

Multiplying the ith Schr6dinger equation by A,,, summing over all occupied
orbitals, and using the property (A2). gives the angular potential 1161:

I , M I X, -
[- v K,/F(AX' : >?c, -- I" (A9)

appearing in the effective pote"-ial term of eq. i.A6). As demonstrated pre\ iouslk
[15.161. the explicit functional form. 1,[x. I]. resulting from the one-diniensional
virial theorem, is:

8 [(r) 2fr[(),, (1]:
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Inserting eq. (A9) into the "radial" equation (A6) gives

SX,jK,K, = Z K>'. (AllI

Let us now multiply ith "angular" equation (AM) by K,: subsequent summation
over all occupied orbitals and using of eqs. (A2). (A9). and (AI l ) allows one to
identify v(.):

=-VX- -Xx V= -p I- fp. (AI2)
2 4

This expression transforms eq. (A7) into the following equation:

K,+ 2 K; + K1'+ 2 [Z I,,K, - VK 1 =0 .

which becomes identical with the corresponding Schr6dinger equation (Ag). when

X, 2 'e"* (AM3)

in accordance with eq. (All).

We conclude this Appendix with the explicit energy functionals resulting from
inserting the angular potential expressions (A9) and (A 10), respectively. into eq.
(A5):

I
E[X. K] = J [ (XX')' + X' K,, dv

=f(I p + p z K, dPV" Edp. ]. K (A14)

E[X, V= A(X,)i + (XX)r + OcXcp xo21 "dS l d

Cn pv'sd a, g scaling (Ao5)

These functionals provide a basis for deriving in the Chemical Potential Quantities
section. and in Appendix B, various derivative quantities related to the global. local.
and orbital "chemical potentials" ("elect ronegati vi ties-"). via appropriate electron
population scaling relations.

Appendix B: General Occupation Scaling

Consider a general scaling of orbitals,

(ANp,)" 2 0, =- XK, , (13I)
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%%here p, is the orbital occupation probahilit (N I, Np, ). We assuI1c that the scaled
orbitals "'' are kno\wn for the configuration n` ,V~p in question:

(Np,;') 1 ,C :. X(AV)KA, I -') x"K; , ( B21

together with the eigenvalues. r". The orbitals ( B ) tbr a general configuration n
p now consist of the N-scaled radial part [see eq. ( 15 fl:

x(N) X(VV") (13)

and the p-scaled angular parts [see eq. (8 ) 1:

K,(p) K', I1y!) i occupied orbitals. (134)

The energy function resulting from such a combined radial and angular scaling
of the functional (Al4) is:

F(N. p) ý (N/A.V)LY[X(A"'). K(p)]

f~~ I 
"0(NN 4 (uP") + ivL lite:') dx _=_EV. n) . ( 135)

where the summation is over all occupied orbitals. It immediately follo\.s from the
above expression that:

(I(.".P`p) l(N". p")/.", (136)

(OE( '. n)) = '. (137)

Therefore. the results of eqs. (10) and (17) remain valid for 'lly assumed scaled
electron configuration.
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Restricted Basis Functions for H 4 With Use of
Overlap Integrals of Slater-Type Orbitals
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FRANKLIN B. BROWN
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ANupepomoq'iir ( i ni/ualiwr% Researdi In tiac. II loidataieoXi Impi, 'rin I i//lah~,i / cd Ho 3id n

Abstract

-1 he Loudin o-linction method, augmented bN the computer-gecnrated ( matns. is applied to thie
I I -molecule. % I ( xi t(linear combination ol'atomnic orhitals) method is, emplosed using se~erdl %-
orbitals "~ ih equal screeningconstants. Precautioins are taken to asoid canicellation crrors- ilihebh achic% ing
con% ergence ,% ith increasingly higher orbitals. , 1,;2Jjoln w~ il's & son,_ Inc.

Introduction

We make an application of the Ldwdin a-function method to the determination
of the ground state energy of the hdydogen molecular ]on, 1- ' . using a basis set of
Slater-type s-orbitals with equal screening constants. EssentiallN. onix overlap in-
tegrals are needed for this task. This kind of problem was considered by Bishop
and Schneider [I I in their study of a new, integral transform. namely

Cr fT .s~)r" dn

where s(n) is a shape function. As a preliminary, they investigated a f.O linear
combination of atomic orbitals) using I s2ss4S S-Tos. Steinborn and Weniger [ 21
pointed out, in their study of H 5using "8-functions," that there 'sas probably an
error in Bishop and Schneider's treatment because of numerical Integration diffi-
culties.

We have made a more detailed study using orbitals from Ils to 8.s with analytic
methods [31 employing FORTRAN and, independently. .Mainhemca 141. Since
a Ma/w~inatica program for overlap integrals with unequal screening constants has
been published [51. we include here the required program for oserlap integrals
with equal screening constants (Table 1).

at-Function and Overlap Integral

Even, displaced ST() may be expanded in an infinite series of spherical harmonics.
the functional coefficients being designated as aY-tunctions. Assume that a local

lntcrnational Journal o4 QuantUmn Chemnistrx: O uantum (ihemmstir\ S\ inposium '6. W;2n0 Y(1410)

H912 John wiles & Sons, Inc.(C 'i(S1_ltOh-H
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TABLELI The .11whematia program lor overlap integrals With CqUal orbital ex\ponenfts.

azeta =a~zeta:
nnp=- l:hhp=O~mm=O:
nn= I~hh=O~h~hhp

cpoh nomia1'=Sum[d'(nn ± hh t-2h-2pp-2vp--2% -k--kp)*
rr'(2pp±2'v+i2vp~kp)*(.- 1)'(% +qp +p-t pp~hht'( - 1YI hh*
(2hh-2p)!*(2h-2pp)!/4'(hh+h -p- pp)/hhh--p)!*
p!spp!*q!Oqp!*vl*vpi*(hh+mm-2p(.px )!)

kp'*¶nn-hh+2p+2q±2!qp-k--kp)!).
1pO.Floorl(hh+ mm)12] .q.O.hh~mm -2p,
)v.O.hh+mm-2p-q. "pp,O.FloorI(h-mm/j21,
lqpO.h -mm--2pp 4 ,vp.O~h-mm- 2pp--qp:
SkO~nn-hh±2p±2q±ý2qp.
jkp.O~nn-hh+2p+2q±2qp- k 1I:

cmatrix =CoetflicientList[cpolynomial. d,r 1.
c~cmatnx:

kk=2'(nnp+nn)*(- l)'mm*Sqrt[(2hh+ l)*(2hhp+ I )*(hh-fmmn)!*

sel =Sum[c[[i+lj+ I]]*((- I )'j*azeta'( j+nnp-2hhp-hh~i)/(j-rnnp--hhp+ 1)
-(~n)hp!aea(-h-h 1)/2/ (j ~nnp--hhp+- 1))
ii.O,nnthh+hhp 40j..nn+hhp;k]:

se2 =Sumjclji+ I j+ 1t fl- 1 )"i¶ j+ nnp-hhp)!*azeta'
(j+nnp-2hhp-k~i-hh- I )/(j+nnp-hhp-k)!/2'(Lk+ 1).
'iO,nnA-hh+hhp: 4j.Onn+hhp;,: k.O.nnp-hhp+j l]:

overlap= kk*Expt -azcla)*(se I +rsel)

coordinate system (R. 0, ýp) is displaced a distance a along the ::-axis. In terms of
the original coordinate system (r, 0, ýp) we have [61

X = AR"%-e-RyIf(0, )

X =A 1 [2L+ I )(L + Ml)! 12'r 41r(I + Al)!)3

L47r(L - M)! 1-~ (21 + I )(t - ml)!

where

(Iif2/ + I W( -if)!.~.4 ~
ai U(a, ýr) 2(1 + Al)! 0,, ,)

and

Je le[ (r e) (r],- r < a

)'e ýr[ e)~ r r> a
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A= (2f)x* 2 [(2N)!] i;2 is the normalization factor: N, L, and .M are the quantum
numbers of the orbital; and ý is the screening constant or orbital exponent. Most
importantly, for our developments, the elements of the ( matrix are integers.

The overlap integral is defined as

S= f xaxX, dv

We place X, at the origin and Xb is placed at (0. 0. a).

Xa = . "r* - e L I~~f,(O

Xb = AR-Ne-rY(O, 1 )

Expanding X/, about the origin and invoking orthogonality of spherical harmonics,
we get [3]:

S(N'L'Af NLVM) = Ke- ' • C,-'(i.j)
:=O p1)( + 1, 'P "

t ~ ~ + 2o (t "k)!

where

p =a

t=j+N'-L'

u =j + N' - 2L' - L + i

v=i-L'-L- 1

w t-k+i-L-L'- I

and

K= 2A"+V(--l)M((2L+ l)(2L'+ l)(L+M)!(L A)!/2

(2N')!(2N)!(L' + M)!(L - M)! /
Also, M' = M and ý' = '.

Table I shows the programming of this formula in Mathematica.

Restricted LCAO Treatment of H1

In atomic units, the Hamiltonian for H; is

H , I I I

2 r, rh, a



268 JONES AND ETEMADI

We place s-orbital trial functions , at each nucleus, i.e.:

-a e-r Z CxrAx I

e- •R CR•-

Sztting • =,, + 'I',

I'tt€ = E¢.

The variational principle for this equation leads to a secular determinant fbr the
energy (eigenvalues).

The kinetic energy between a N' sTO at the origin and a N STO at a displaced
distance a is [71

I 2ý 2N'S(N' - 1, N)
(KE).0 , 2 -

2S(N', N) + [(2N'- 1)(2N')] /2

2ý'N'(N' - i )S(N' - 2. N)

[(2N' - 3)(2N' - 2)(2N'- 1)(2N')] 1/2

The matrix elements for the other parts of the Hamiltonian are standard, with
the potential energy between separated orbitals expressed as overlaps [71.

Results and Conclusion

Table II shows the energy resulting from the successive addition of more and
more s-orbitals to each nucleus of the H 2 molecule. The same orbital exponent is
used in each case and it is varied from 0.5 to 3.5; these results are plotted in Fig.
I for n 1, 3, 5, and 7. It clearly shows that, as the number of orbitals is in A

TABLE 11. LCAO calculations of H1 with s-orbitals and an internuclear
distance of 2.0 a.u.

Orbital
Trial function exponent Energy (a.u.) Authors

l,2s sTo -. 590450 Bishop and Schnied&r
1234s SlO -. 590502 Bishop and Schnieder
021 -. 59045 Steinborn and Weniger
031 -. 59082 Steinborn and Weniger
8 GTO -. 59089 Katriel and Adam

Is sro 1.24 -. 586505 This article
I s2s STO 1.63 -. 590450
123s sTO 1.96 -. 590830
1234s STO 1.96 -. 590830

I.... 5sSTO 1.59 -. 590893
I ... 6s STO 2.05 -. 590935
I ... 7sSTO 2.45 -. 590948
1.. .8S STO 2.78 -- 590951
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-0.35 N=1

-0.40

-0.45 N=3

-0.50

S-0.55 '

. N=5
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- 0 ,6 5 k. . ,....I ... ,
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Zeta
Figure I. Energy vs. orbital exponent for n = 1. 3. 5, 7 (sum of n orbitals).

on each nucleus, the energy is less dependent on the precise value of the orbital
exponent. Also, we note the presence of local minima in some of these curves.

Finkeistein and Horowitz [8] were the first to use Is orbitals on each nucleus
with an adjustable orbital exponent. Geller [91 used Is and 2s orbitals on each
nuclei with the same orbital exponent.

Referring to Table II, Bishop and Schneider [1] increased the orbitals to 4s, but
obtained an answer greater than our ls2s3s value. Steinborn and Weniger, using
their "B-function," spanned the is2s space with their 21 [2] and the Is2s3s space
with their 031, obtaining values with which we agree. Katriel and Adam [10] placed
eight two-parameter spherical Gaussians at each nucleus and claimed convergence
to -0.59089 a.u. As expected, we achieve this result with only five STO orbitals that
have only one parameter. We converge to six decimal digits, -0.590951, with eight
orbitals on each center.

The implementation of the Lbwdin a-function method with analytic procedures,
including the use of integer arithmetic, permits us to work with high quantum
numbers for s-orbitals to improve convergence.
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Basis Set Quantum Chemistry and Quantum Monte
Carlo: Selected Atomic and Molecular Results
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Abstract

We present results for the total energy. the first ionization potential, and the electron attinity of the
LiU Be. B. C, N. 0. F. Mg. Si. Ca. Fe, and Ge atoms using the coupled-cluster method with several
standard basis sets. including correlation consistent. polarized, and atomic natural orbital bases. We also
consider multiplet splittings in Fe and the activation hýrriers of the reactions, I'l - 1-12 - I and FH2

F + HI, These readily generated results are provided for comparison with Quantum Monte Carlo
values. c 1992 John Wiley & Sons. Inc.

Introduction

In chemistry there are several requirements that a theoretical method must meet
if it is to be widely applied to molecules and their potential surfaces. These include
treating different moleculai Seometwes with effectively equal accuracy and high
precision: routine application to open- as well as closed-shell systems; treatment of
excited as well as ground states: predictions of accurate energy differences between
ions and neutral systems: and predictions of other properties like moments and
polarizabilities. Powerful correlated basis set quantum chemistry methods have
been developed for all of the above and are now incorporated into several readily-
available, easily-applied program packages, such as ACES 1I [1]. Such applications
permeate modern chemistry and play a role which can be scarcely overestimated.
However, there are two fundamental problems which limit the accuracy of these
methods. First, there is an inherent inaccuracy in any basis set (this causes about
a I0%-50% error in absolute correlation energies in typical correlated calculations).
while the highly nonlinear scaling of accurate correlated calculations with the num-
ber of basis functions (as n' or n 7 ) makes it effectively impossible to converge to
the basis set limit. Second, for a sufficiently extended basis set, the treatment of
electron correlation is inevitably inexact.

Monte Carlo methods present the prospect of eliminating both of these problems.
however, in practice these calculations are more limited. In a Variational Monte

* Permanent address: Comenius University. Department of Physical Chemistry, Mlynska Dolina,

Bratislava 84215. Czechoslovakia.
' Also at Institute for Astrophysics and Planetary Exploration. One Progress Blvd-. Box 33. Alachua.

FL 32615.

International Journal of Quantum Chemistry: Q tantum Chemistry Symposium 26, 271-29• (1992)
c 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010271-20
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Carlo (vMic) calculation. for example. an analytic wavefunction (usually with ex-
plicitly correlated coordinates) is optimized and then used to calculate the energy
and other expectation values [2.3]. Just as in basis set rrethods, the error in this
method is due to the choice of wavefunction form. while Monte Carlo is only used
to perform the multidimensional integration. In a Quantum Monte Carlo (omc)
calculation the Schrbdinger equation is refbrmulated as a diffusion equation and
then solved stochastically [4-1 I]. This method. however, suffers from errors caused
by the fixed nodal structure of the importance function. As a result, these calculations
cannot obtain the "exact" nonrelativistic result unless one eliminates this nodal
error (by either a "released node" technique 1 12] or an improved weighting algorithm
[13.14] both of which have only been applied to a small number of systems). Sec-
ondly. the different time scales for ihe core and valence electrons make it difficult
for many of these methods to get accurate results for high-Z systems without in-
troducing pseudopotentials [15-221. damped core methods [23]. or convergence
acceleration techniques [24].

In this article we present the total energies. the first ionization potentials (IPs).
and the electron affinities (EAS) of several selected atoms and molecules of interest
to the QMC community. Our objective is not to offer "definitive" basis set results.
Instead, using a variety of standard basis sets and established "black-box" coupled
cluster (cc) methods and programs, we demonstrate the accuracy obtained (and
the cpu time required) for selected systems. These provide some comparative anal-
ysis of the quality of standard basis sets. We also compare our results with a rnumber
of other ab initio and Monte Carlo results which have been taken from the literature.

Method

The wavefunction in a coupled cluster calculation is based on the exponential
ansatz [25]

I0 = exp(T)4ý() (I)

where T is expanded in terms of cluster operators

T = T, + 7T + T, +. . . (2)

acting on the reference state (Do. In a CCSD calculation [26]. Eq. (2) contains only
the amplitudes from T, and T., These amplitudes are obtained from an iterative
procedure which contains summations over no more than six indices (the worst
step is noc^ni) The CCSD energy incorporates the effects from single and double
excitations and from disconnected triple (i.e., T, T2) and quadruple (i.e.. 1 T2) ex-
citations. Extending CCSD to include "connected" triple excitations, that is. CCSDT
[27], is much more time consuming (the worst step is n$,n,11). To avoid this cost.
noniterative methods that include T3 effects through fourth order were developed.
In a CCSD + T(CCSD) calculation [281. the effects from connected triples are com-
puted in a noniterative way using the converged amplitudes from a CCSD calculation.
These amplitudes are placed in expressions analogous to fourth-order MBPT and
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the resulting energy is then added to the CS('5D energy so this adds only a single3 4
nkX 1o,, step. The ccsD(T) method [29,30] extends ccst) + !((cst)) by adding one
fifth-order term which reflects the effect oftriple excitation amplitudes (as estimated
noniteratively from converged ccsD) amplitudes) on single excitation amplitudes.
Because this term is fifth-order, its contribution to the energy is small, except in
some pathological cases where it might offer a better noniterative approxi-
mation [29-32].

In most open-shell calculations we use a UHF reference. By monitoring the cor-
related multiplicity [331. no problems with spin contamination were encountered
at the CCSD level of theory. For comparison. we also report several results using a
restricted open-shell Hartree Fock reference (ROHF) coupled-cluster method that
has been developed in our laboratory- [341. This method further eliminates spin
contamination in UHF based cc calculations for open-shell systems, ROHIF-CC re-
quires that contributions due to off-diagonal Fock operators be included. In the
ROHFCC approach the term which extends CCSD + T0(CSD) to ('CSD(1) is of fourth-
order. The addition of another fourth-order term, along with a necessary restriction
to the use of semicanonical orbitals, defines the CCsD(T*) method. We refer the
reader to the original literature for a full discussion [34b]. We also wish to note
that even more sophisticated methods have been developed and could easily be
applied to most of the atomic calculations examined here. However. since their
applicability to large molecular systems is more restricted at present, they are not
routine enough to satisfy our current purposes. A general discussion of several such
methods and their performance can be found in recent review papers [35]. All new
results presented here have been obtained from the ACES II program [1]. For the
sake of brevity we do not present separate values for CCSD + T(ccSD) unless their
IPs and EAS differ from those computed with CCSD(T) by more than 0.02 eV (we
used a conversion factor I a.u. = 27.2116 eV throughout).

Calculations

As the aim of this article is to examine the performance of coupled-cluster methods
over a number of atoms, we have chosen to use mostly standard basis sets from
the literature. No attempt to optimize these basis sets for the specific purpose of
achieving the best EAS or IPs was made. In some cases, where general basis sets were
not available, such as Fe, we have added selected diffuse functions to previously
computed basis sets. A short description of each basis set is presented in footnotes
to the tables. The basis sets generally employed are those of Dunning [36,37]. the
Pot. basis of Sadlej [38-421, and the ANO basis of Widmark. Malmquist, and Roos
[43,44]-all of which are cataloged in ACES !I.

There are several observations apparent from the atomic results presented in
Tables I-XII. In those cases where the nonrelativistic energy limit is available, it is
clear that the best cc calculations have errors in the total energy of less than 0.2%,
but errors in the more relevant correlation energy (Ec,• = ENR--SCF) is as much
as 60% for Li down to 20% for F. Most of the error in the correlation energy is due
to an inadequate description of the I /r, 2 cusp when traditional basis sets are used,
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lA1m I 1. 1he lithium (S atom.

Method Encrg) (au.) t*') ,,VI i,' 1eV) Reference

SCI 7.4327260 (1122 5.342 IS91
Hyl!eraas 0.604 (7) 160l
Hylleraas -7,478060)1 5.391 X 16)1
V1iC 7.4768 (3) 131
QI(- -7.47809 (24) 0.6(X) (27) 5.386 08) [ I)]'
Q%(I ().611 (201 5.412 (8) [101f
(I)SD 0.617 5.342 [43)'
MCS'F 0.6)5 162]
MCSCF 5.388 [631"
MNP" 5.39175 1I) 1641
CCSD 5.39204 (8) [651
N.R. Limit --7.478060326 (10)

tliF -7.431696 0.129 5.322 this vork'
MNBPr (2) -7.444208 0.316 5.323 this vork'
CCS!) -7.446338 0.605 5.323 this work'
(CSD (T) -7.446342 0.608 5.323 this work'

UHF -714'2733 -0.127 5.343 this Aork'
MBPT (2) -7.447606 0.355 5.364 this uork'
C'St) --7.45(0062 0.608 5.370) this ssorkf
c'Si) (T) --7.450089 0.615 5.37t ' this %,ork'

Exp. 0.6180)(5) 5.392 167]

"Damped core used.
Pseudopotential used.
This basis set is the uncontracted version of the one described in footnote I.

d Numerical basis set.
"IPot: (10.6.4)/[5.3.2]. spherical basis. Ref. [401.
f ANO: (14.9.4.3)/[5.4.3.21. spherical basis, Ref. [431.

especially for the inner-shell electrons (see, for example, Ref. [45]) where most of
the total energy resides. The different percentages obtained reflect the percentage
of valence to inner-shell electrons, explaining why F has a lower error than Li.
Correlation among the valence electrons is more important to chemistry but less
important to the total energy. The QMC results are generally better by tenths of
a.u.'s. If we had wanted to get the best possible energy in our calculations, our basis
set would have been chosen to be more like those used by Sasaki and Yoshimine
[46] or by Feller and Davidson [47]. However, since the inner-shell correlation
energy is largely insensitive to the addition or removal of valence electrons, the
inner-shell basis set/correlation error has little effect on the first IPs or EAS.

On the other hand, the EAs are far more dependent on the choice of basis set in
the valence region for the obvious reason that an anion requires a better description
of the regions of space farther from the atomic nucleus. This means the basis set
should contain a number of relatively diffuse functions. Note that those EAS of
carbon which were computed with basis sets containing few diffuse basis functions
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T-.Bt i 1. 1he beryllium 0S) atom.

Method Fnerg\ (a.u.) 1, l(CV) Reclrencc

SC- 14,-573023 8.045 i59]

H % Ileraas 14.66t654 [681
N %W 14.6(t4 03) [2)

14.667 I 8(3) [II]

9.34 ( 1) [20)]
(iJs! 9.292 [431"

1(5(1 - 141i6698 [69]s
MBPi 12) - 14.6493-3 [70)1
((SD) 14.666690 [711

N.R. Limit 14.66737 (3) [691

14.571128 8AO30 this '%ork'

MBPI (2) 14.107349 8.677 this work'
(Vst) 14.627694 91 191 this work'

(C(SD (T) - 14.627807 9.194 this work'

Itot -- 14.572984 8.044 this ,ork'
MBPF (2) 14.608905 8.854 this w.ork'
((SD -- 14.025471 9.291 this work'

(Csi) (T) -14.625793 9.299 this work"

Exp. 9.322 [671

SThis basis set is the uncontracted version of the one described in foot-
note d.

SNumerical basis set.
rot.: ( 10.6.4)/[5,3.2]. spherical basis, Ref [401.

"ANO: (14.9.4.3)/f5.4.3.2]. spherical basis, Ref. [43].

differ from the experimental value by up to 0.4 to 0.8 eV. However, in standard
basis sets like the Pot, basis [38-42] or the ANO basis [43,44], sufficient diffuse
character is included to provide reasonable EAS.

Good agreement with experiment for both the ]Ps and EAS is obtained with the
POL basis [38-421 considering its relatively small size. Since it was developed for
calculating electric dipole moments and polarizabilities the POL basis allows a good
description of the outer part of the atomic (or molecular) electronic distribution
and so produces better EAS than other basis sets of comparable size. Another ad-
vantage is that consistent POL basis sets are available for a number of atoms.

The ANO basis [43.44] was optimized following an averaging procedure for the
correlated density matrix of the neutral atom, the atom in an external field, and
the corresponding positive and negative ions. For this reason it is capable of providing
good EAS and IPs for several first-row atoms, and such results are reported using
CISD [43,44]. Coupled-cluster methods as shown here, further improve upon these
CISD results, and we can usually obtain atomic iPs and EAS with a predictable
accuracy of about 0. 1 to 0.05 eV or better. For example, the iPs computed with
CCSD + T(CcSD) and CSD( T) agree with experiment to better than 0. 1 eV for
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TArty IFII. lhc horon (*P) atom.

Method Energy (a.u,) If (eV i cV% Reference

S(Q -24.529061 --0.268 7.59321
-V 24.6156 (6) 131

CISD 0.154 8.1714 1431'
CI -24.65(X) 0.15 [461
MRC! (SD) 0.278 [721
MCSCF (0.2668 (30) 17311,
N.R. Limit -24.65393 [74]

UHF -24.531929 0,463 8.036 this work'
CCSD (T) -24.510829 -0.137 8K161 this work'

UHF -- 24.532068 -0.600 8.038 this work'
CCSD (T) -24.605382 -0.196 8.228 this %4ork'

UHF -24.524003 -0.300 8,047 this Aork'
MBPT (2) -24.574888 0.143 8.180 this work'
CCSD -24,599022 0.115 8, 100 this %kork'
CCSD (7) - 24.600009 0.158 8.123 this work,

UHF -24.533044 --0.310 8.042 this work'
MBPT (2) -24.584516 0.213 8&283 this work'
CCSD -24.604625 0.172 8-199 this work'
CCSD (T) -24.606205 0.239 8.235 this work'

Exp, 0.277 (10) 8.298 1671

"This basis set is the uncontracted version of the one described in footnote f.
Numerical basis set.

'TZ2P: (10.6.3)/[5.3.2], spherical basis. Ref. [751.
d PVTZ: (10.5.2.1)/[4.3.2.1]. spherical basis. Ref. [361.

' POL: (10.6.4)/15.3.21. spherical basis, Ref. [391.
fANO: (14.9.4.3)/[5.4.3.2], spherical basis. Ref. [43].

almost all of the atoms considered-an average error of less than ? .. With this
same method, the EAS typically differ from experiment by 0.05 eV-an average
error of about 5%, and it is only that high because of the 14% error in boron and
an 8% error in oxygen. Of course, if an accuracy of 0.01 eV is required then a
careful analysis of both the basis set and the method of including electron correlation
is needed.

For the carbon atom we examine a number of basis sets. Obviously Cartesian
basis functions (i.e., six d- and 10 f-functions) will produce a slightly better energy
than spherical basis functions due to their greater flexibility. Of course. this slight
improvement comes at the cost of a larger number of basis functions and a greater
possibility of linear dependence problems. Although the EAS are clearly influenced
by inclusion of diffuse basis functions, the extra Cartesian components have little
added benefit.

In addition to more traditional ah initio methods, several EAs and ips have recently
been calculated using Variational Monte Carlo and Quantum Monte Carlo methodc



Qt'|• I \1" I(\. I \Rcrbn lp .or

Mecthod I ncres ia u 1 ]iV RC1,1icii

S.,. i 3" 6,86 0 541 ) Ii49 "
I ft 3,. 0 ",is 1 2,2 t •I I"
i 3' ot)7 7;42 t.44,1, I

RMi 3- 681020i' 4

37.848 (i I (
( (37.81"5 '6 1. • 21 2i21 [2t'

(SI) 1.1 7,I l15,0 [4.,'Q

CI 370393 1.1 [414,
PAR(I (SD) 1,262
NU st I 1 25 It 1 (
t I -((.,itl) T 37(81291 0.902 13 11"

I.It-tcS( 1 37-1221 1 1 . U I0 1
R iV-( (SD (1 ) 37.812216 1 .2 3 () 3
N.R. limit 37.84499 DI

1 it 37.688746 0.152 I)i S1 is k
, "S) (1) 37.'76293, 0.461 Iii.944 tht', ýork'

oIF 37.6'12123 0.31'7 1t-798 this rok*
('Si) (T) -3-.792934 1).86S II. 1(t this ý%ork*

L'W -37.6901638 0.458 111.8 15 this %kork"
MfPI 12) -37.759171 .171 11.142 this \kork'
(('S) 37.782747 1.0710 11,044 this Aork'
('(s) (T) 37.78400(8 1.116 1 l.15x this \%ork'

rt'o 37 6)0324 0.461 Ii. 82 this sork'
MBPIT (2) -37.758329 1. 177 11.154 this %kork'
((SD - 3 7.7N 1926 1,0177 I I W6 this tkork'
(-(SD 7 T) -- 37.783175 1.121 11.068 1 this A ork'

I'M -37.690333 0.462 IiX22 this work'
(cst) (T) 37.787743 1.17o 11. 137 this ssork'

UrH -37.691569 0.125 10.798 this ssork'
CCS' (T) - 37.789527 0.698 11.184 this %ork'

itIf. 37.693593 0.45) 111.806 this %ork'

MmP1 (2) - 37.771189 1.273 11.279 this \sork'
((St 37.790951 1.154 11,183 this ,orki
(('s) {T) ..37.793344 1-226 11.21(0 this %%ork'

Exp, 1.262) (31 11.26(1 11.71

\ Pvo : 1 2.6. 1.2,1)/[5.4.3.2.11. spherical basis. Ref (31 .
'pvoz sp. spherical basis. Ref. [311.
The energs vas computed ssith the standard oli4 method but the I \ and it' %scre computed with

the damped core method.
This basis set is the uncontracted version of the one described in tioonote I.
"Numerical basis set.
wD: Ref, 1371 - d 0.28, ('artesian basis.

"I Z2P: ( 10.6.3)/[5.3.21. (-artesian basis, Ref {75,.
" "F)t: 10.6,41/15.3.21, Cartesian basis. Ref. [1381.
Npot ( 10.6.4}115.3.21. spherical basis. Ref. (38.1.

'1( 10 6.4.1I/15.3.2. 11. spherical basis, Same basis set as the one described in footnote I but with 0' ( .76i.
PV i,: ( 11.5,2.2 I/[4.1.

2
.I 1. spherical basis. Ref [361.

Am): (14.9.4.31/V5.4. 1.21. spherical basis, Ref. [431.
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S\ I heI \ 1 lhc trogeln i's) a to

Method : nsergs (amu I it, (cVI ReWItVwc

S( I 54.40(1934 I1 958 1[5l
%,ft 54.i45i6 to) I'll]
QWlC 54.5765 ( 12) [ 71

('INt) 144541'
1I 54 i835 14 51 [4,7

N.R imit 54.-5X9 I[ 4l

t it- 54 40-2012 13 ;89f thils ,%ork"

t) (1) 54.524049 14.3419 this sork'

I IM 54.41-1686 13.893 this vwrk'
( st) 11 54.524873 14.451) this work'

lI'H -- 54.398447 13,925 thils Aork'
NtBPw 12) - 54.48791100 14.471 this sorkd
((st) 54.51)6555 14.328 this "ork'
('SI) ( T) 54.5()T77 1 14.337 this N•ork"

I fit 54.404366 13.91t5 this ssoik'

NIMtI 121 545 513296 146619 this %%ork'
((SD 54.52869)3 14.478 this work'
C'SD 1 T) 54.531443 14.502 this work'

Exp, 14.5.34 1671

" This basis set is the uncontracted s-ersion of the one described in foot-

note c.
h TZ2P: ( 10.6.3)/[5.3.2]. spherical basis. Rcf 175).

\ vrz: ( 10.5.2.1)/[4.3.2. 1], spherical basis, Ref [361.
POt.: 010.6.4)/[5.3.2]. spherical basis. Ref. [381.
v\•;O: (14.9.4.31/[5.4.3.21. spherical basis. Ref. 43,1.

These are reported in the tables. There is no doubt that at least for small systems
QMC can obtain highly accurate results provided that adequate computer time is
available.

The Fe atom, whose IP, EA, and energy splitting has been calculated with several
basis set ab initio methods as well as QMC, requires a separate discussion. Fe has a
complicated open-shell structure, with interesting multiplets. Our CCso calculation
was found to be slowly convergent, An analysis of the T, amplitudes (and to a lesser
extent T,,) showed that some values were above 0. 1. The sensitivity of ccsD( 7) to
the inclusion of a single fifth-order contribution which arises from the effect of T1
onto T, amplitudes (with all othe- fifth-order terms neglected [291) is demonstrated
by the significant difference in the EA of iron with the CCSD + T(CCSD) and CCSD(7)
methods. It is interesting to note that CCSD + T(CCSD) agrees with the experimental
EAS, fPs, and the (drs2 - d sI) multiplet splittings better than c's[( 7). The same
holds for EAs of oxygen and fluorine. We do not want to overemphasize this point.
however. Previous studies [29-32] have shown that the CcsD(7) energy is often in
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((N) 74j6j1641I' I .154 I this sr

It <SI) I ttli ) 75.iO 131l 13 I t I5 4"f(I this stotrk'

RI))t) 245 I-I l U 53't 1t rI tills qork"
51!01 121 T4.'t$1152 1 I 42Ž .I 3"-1 this st~irk'k

(I SI) 74>.,'1 4 I( I )( ) 4 1.4fi t;is is ,k
I t> SD 7 lIt (Sl) >11l! 6 3I1' I.i I I 44 I thils s,{rI'
(("Si) Ill .7> 11()112? . IS I 4t{l liiis ,tik'
((S 1"'I)) ! 7" , 1 II I 34 .3141 itl 'h its stirk2

iF. ,,p. .461tl If lX t"

I his basis set is htc tincontractcd Ncrshon of tht' one described in f1lnlt ,n tk
Numerical basis set.
• 1)6l 0.6 4),[• 3.2], spherical bhsas. Rdf. 13 ).

< 149t4 I 15.4 1.2] spherical basis. Ref. [431,

better agreement with higher levels of u (ecg. U(SDI) than is SI) -1 1-W(sD)
because the latter method can overestimate the effect of triples. ES'peciall\ for anions.
however. one often encounters difficulties in converging the correlation energ. and
in saturating the basis set. Thus a slight overestimation of the correlation energy
by (v.SD + R(((-Sl)) might numerically compensate for basis set problems and give
better agreement with experiment through error cancellation. Another possible ex-
planation is that when large T, amplitudes occur, the additional term included in
((SD(7") (which is usually positive) is overestimated. For iron (and the oxygen and
fluorine atoms as well) a comparison of both (U(SD) +- 7"P( (SD) and ((SI)(T) methods
provides valuable information about the convergence of the ('( v-ae•eunction in
these cases. As there are several additional fifth-order correlation corrections being
neglected [291. all should be considered in assessing the reliability of such noniterative
methods. as well as other higher-order corrections.
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I -\f1 I F II. flI he Fluhrine P) atom

NIethos Iliirg (a.u.) N tA )ev it' (e% I Rcferencc

S( I 99.409149 1.362 15i.717 [59
X \W 99.6736 (71 [3)

€sQ'9 .7 178 (6) I'l]

t.)( 99.7H)5 12 11 3.45 ( I I 1 141
MI+Pt 2}99.7299k I8(11

IB)') (2) 99.09642 1 3.692 18 11'
ft| 99.71 6 3.12 ta'
(II) 2.97(, 17.113 14313
MIR I (SD) 3.363 1721

( (SD 99.7076(10 3. F 85 Is I
(4Si) 7 ((So)) 99.712831 3.373 I[mil

(< (Si 1( 99,719347 3.36 [56]
N.R Fimit 99.7337 [741

til '99.4(12062 1.248 15,7)00 this \&ork'
(2P ) 1 99.5586{8 3.519 17.018 this work'

C('Si) 99.571428 3.(109 16.961 this work'
1S) 4 1 If( q)) 99.574135 3.265 1 7TM 3 this work'

('S) B 99.573746 3,210 16.995 this \xork'

t Hi 99.415792 1.179 15.65s this wkork'

MIII'I (2) 99.641246 3.647 17.320 this ,sork"

( SM) 99.652411 3.147 17.213 this Aork"
(-Si) I )( "sl) ) 99.657158 3.344 17.275 this work'

((St) (11 99.657008 3.314 17.272 this work"i

Exp. 3.4011900)4) 17.422 [671

Numerical basis set
This basis set is the uncontractcd wersion of the onc describeLd in footnote d.

1'f :1o 10.6.4)/f5.3.21. spherical basis. Red' [38],
(,O: (14.9.4.3)/(5.4.3.21. spherical basis. Ref, [43].

For the IPs and the multiplet splittings of iron our results are ver' similar to those
Raghavachari and Trucks obtained with QCiSE)(7) (an approximation to CCSD(eI))
148,49). These authors did not correlate the inner-shell electrons. In our calculations.
we have correlated all electrons and performed to two calculations with frozen
orbitals. A calculation with the (Is, 2s. 2p) electrons uncorrelated clearly shows
that the K and L shells may he safely removed from the correlation part of the
calculation. A similar calculation, however, with the ( Is, 2s, 2p. 3s, 3p) electrons
uncorrelated is completely inadequate especially for the FA. Removing the 3s and
3p electrons from the correlation part of the calculation produces IPS and multiplet
splittings similar to those observed in earlier studies [48-50]. This suggests that the
choice of pseudopotential. which is of interest in QMC and other studies, can have
an important influence on the quality of results.

In addition to the basis set used by Raghavachari and Trucks, we created an
extended basis set by adding more diffuse functions. No significant change in the
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-1 ,,Jil \ III. I hIc tIgneslui t kS .iflVn

Method ncrg. la u i (e\ Rcl.renme

SCI I aQ.ht14 6.61, ;Q

()M( 7 1, (211 1171)

( 77>'5 3 1 (IS1p
M ((2) 2((10349 [g2

I 199.83495 757 z;375

10/ | 199-.t(16624 6(.,6 5 this s 'l..
MBP1 (2) 199.7 2949 ti.3l5 thi•k (ilk'
(-S-D 199.726417 7, x'1this strk"
((SI,) I) 199.7271- 74 7.5 (1 this ýsrk'

I I 99.60863t) 6.6(16 this %ork`

MBP'I (-2 I-) I. 172 7.96-7 this •.l'km
.( sD 199.9432 14 7. 571 this swrk'`

(. s| 1( 19 .9472-2 7,(60 this %k ork"

Exp. 7.64h 6171

SPseudopotential used.
"]-his basis set is the same one d&scribed in Ibotnote d.
"I,()[ I I 3.10.4)/1"1.5.21. spherical basis. Rdf. 140].
1(41 :1I2.9,12.6)/[8.6.4.21. spherical basis, Ref. [831

Ip and the multiplet splittings of the Fe atom was observed but the i';\ was signifi-
cantly improved as would be expected. Although good basis sets for Fe are not as
commonly available as for other atoms, with some effort at their determination.
an accuracy of about 0.05 eV for cc methods including triples seems to be obtainable
for the t5As. iPs, and multiplet splittings of this system.

In Table XIII we present several examples of total times for some of the calcu-
lations performed here. The time required for the correlation part of these calcu-
lations is large compared to the other operations only for the largest atoms consid-
ered, that is. Fe and Ge. It should be stressed, however, that all electrons were
correlated in all our calculations including Fe. except as indicated for the second
and third calculations on Fe. so these timings represent the worst possible case. For
example, when we did not correlate the inner shell (Is, 2s. 2 p) in Fe. the computer
time needed for the '("c part of the calculation was 40`,ý of the all-electron calculation.
Not correlating the 3s and 3p electrons reduces the ,('c part of the calculation by
almost 90Q, to only 27s but the results are now greatly affected.

Unfortunately, there is only limited information available about the computer
time needed for other calculations. Unpublished QM" studies of Fe using a pseu-
dopotential which correlates only the 4s and 3d electrons required several hours
on an IBM RISC 6000 1221. These produced results, however, which are relatively
far from experiment. Using a Ne pseudopotential produced much better results
but required significantly more time.
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'1 \1 t1 II I [he sicon P) atom.

Method :nerg) (a.u.) I . (cV) w (eV) Ret-erence

SCI 288.85436 0.956 7.658 [5T)

QM( 289.0 (5) 1.3 (2) 8.3 (2) It5p
,.C 1(.39) (3) S.19 .)3 [lIIs

QýsIc 1.42 (2) 8.25 (2) [t911,

M IH (sW)) 288.)623 L.30 1841

).... 288.85 1653 0.859 7.645 this "ork'

Mtt' (2) 288.942521 1.309 7.952 tis vork'
'Sl- 288.962709 1.25i 7.9,4 this wiirk'

(,('Si (T) -288.964624 1.280 8.00() this wsork'

I II - 288.858016 0.848 7.638 this Aork'
MPi (2) 288.982419 1.380 8.044 this %ork'

C(-S) 289,000609 1.316 8.069 this vsork'
('(Sri ( T) -289.004355 1.375 8,108 this A'orkd

Exp. 1.385 )5) 8.151 [67]

"Damped core used.

"Pseudopotential used.
Pot.: (14.10.4)/[ 7,5.2]. spherical basis, Ret' [411.

d AN•,: )17.12.5.4)/[7.6.3.21, spherical basis. RefI [44[.

Because they have attracted the attention of the QMC community, and also because
they are two of the few molecular systems which are amenable to accurate exper-
imental and theoretical treatment, we report (C results for the activation barriers

TABL.,E X. The calcium (iS) atom.

Method Energy (a.u.) 11, (eV) Reference

S(f -676.75818 5.120 [59]
QM( 5.878 (32) [211-
MIPT (2) -677.5565 [451
MCSC)< 6.156 1851"

RHF. - 676.725485 5.121 this work'

UHF --676.725485 5. 00 this work'

MHPT (2) -676.868157 5.802 this work'

((SD -676.881490 5.950 this work'
ccSD) (T) - 76.884112 5,976 this work'

Esp. 6.113 [671

Pseudopotential used.

bNumerical basis set.

PO, (15.13.4)/(9.7.21, Cartesian basis. Re(. [401.
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I i i. , (,.c, l is 1)) • di lti. €I , ' )(

Method Energ. (a.u.) 3d44s - 3d'4Y ;d'4s 3d 
4

s' Rcter.'tnc,

- 1262.443-7  
2 103 6.052 .820

QMC 11~J.27 t8 ,t 5 0 44 (5)12t

tX-isi. ( T) 7.73 ().N6 1 4 91.1q
C(sD 1.34 150j
%US(C- 1262.50639 7.069 [X(I

10HF 1262.370937 I 988 6.h369 I.8 I this so'k'`
MBPt (2) -I263,045976 0.228 7.106 10.2115 this ksork'
C(SD) 1263.032 146 0.277 7.600 0.97 I this xs~rk'
(vS(1) t- 7" (u(s)) 1263.048305 0.065 7.738 0.1821 this ssork`
(',SD) (IT) - 1263.047266 0,j) 17 7.728 0.8710 this ssiik`

ROM-i 1262.364742 2,081 6.308 1.815 this A, It k,
MBPT (2) - 1263.045478 1.27k) 7.485 0.. 16 this vtrk'•
(CSI) 12031.032079 -0.279 7.60(0 (,9O71 this ý%orkV
('SOs) t- TI-'('SD) -1263.048324 0.066 7.739 ().8210 this xork"
('(Sl) (T) 1263.04726) (001o 7.728 0.861) this ýkork'
(.st) (T*) -1263 1047259 (.0)( 7 7.728 0.869 this %tork'

-l4( 1262.379979 1. V88 6( 31's 1 831 this ssiork'
MBPr (2) -1262.549399 0.100 7.411 o ) 552 this xkork'
('(SD 1262.5601155 0.293 7,594 I (.33 this Aorik-
((Si) + 7T(CCSD) -1 262.566816 0.030 7,688 0.895 this tsork'
(CSD (T) 1262.566465 --0.031 7.683 1)423 this work"

;HF -1 (262.371)979 -- 1.98,8 6.368 1.831 this ý%ork"'
MBPT (2) - 1262.893391 0.257 7.512 0.2( 7 this A ork"
CoCS) - 1262.884731 0.244 7.6014 0.974 this %,ork"

((.St) + 7T(((Sct)) - 1262.900067 0.146 7T741 1.816 this sork'r$
(CSD (7) -1262.899048 0.1)43 7.731 (0.868 this AoT ."

tH 1262.370979 V-1.988 6.368 1.831 this %%ork"
MBPT (2) -1263.046536 0.262 7.513 0(.212 this work'
(ICSD 1- (263.032458 -0.23Q 7.602 (0.966 this %kork'
('SD +- T(C('SD) - 1263.048671 0.151 7.740 0.809 this Aork'

('( SD (7) -1263.047628 0,1049 7.730 (0.861 this %%ork'

Exp. 0.151 (3) 7.870 0.87h 1671

Pseudopotential used which includes relativistic eflects-8 clectron'; esplicrtl, correlated.
Neon pseudopotential used which includes relatisistic effects.
This basis set is the same one described in footnote d.

d R : (15.11,6.3(/110.7.4.31. spherical basis. Ref [48].

"R I ext.: (15.1 1.7.4)/[10.7.5.4]. spherical basis. Same basis set as the one described in footnote d hu,
with an extra d , 0.034 and F -- 0.0945,

'With (Is, 2s. 2p. 3s. 3p) orbitals frozen.

SWith (Is, 2s. 2p) orbitals frozen,

The nonrelativistic value is 0.65 [48]. Most calculations here should he compared with .Ais salue.
Considering the rather large difference, however, perhaps the relativistic result should he reconsidered.
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t'.ii !XII. I hc germanium ITP) Jtoni

Method Energs a-u.) I % (cV i I, (e\ V) Rcfcrcnc

St 2075.3597 10.52 7) 44 4[591
QM( 2073 ix) 1.3 (1 X_.( (;3 1231.

U!it 2)75,2771953 0.883 7,444 1his 'Allk'"

MBPI (2) 2076 110639t 1.281 7.763 this %'Irk,

CS -S 2076054321 1.224 7.749 this "ork"
k St) -2076,0o4449 1.254 7 764 this work"

it .12-)2075.11493I 01871 7,440 this %', rk'
MN3I'r (2) 2'075.547394 1.299 7.84N this vkork"

('S 2((75.52355() 1.246 7 831 this ".rk'
S( t) 20)75.53j82(1 1. 277 7.858 this Ao r k'

21W75.1 174(1)( 0.872 7.413 this s.nrk'

('cSm) 1 2075.537821 1.276 7.851 this "ork"

t-xp. 1.233 (3) 7,899 [671

Damped core used.
Pot.: (I5. 1 2.9.4)/9.7.,.2l. spherical basis, Re(. [421.
B(: ( 15.12.6.1 )/10.7.3.1]. spherical basis. Ref. [871.

d B(: (15.12.6.11/[10.7.3.1]. Cartesian basis. Ref. [87],

of the H + H2 reaction in Table XIV and the interesting F 4 H, reaction in Table
XV. Diedrich and Anderson [5) obtained an energy for the transition state of
H - H -- H of - 1.659154(19) a.u. which is 9.61 kcal/mol above the exact value
for separated H + H, This calculation took about 80 machine days on an IBM
RISC 6000. Reducing the accuracy from 0.01 kcal/mol to 0.10 kcal/mol reduces
the computational effort by a factor of 100. Using coupled-cluster methods and a
[6.4.2. ] basis set ( 120 CG1 Fs) with no effort at further optimization, we obtain a
CCSD + rTCCSD) energy of- 1.658531 a.u. for H - H -I H and an activation barrier
of 9.71 kcal/mol. This required 205 s of 1pu time on a CRAY-YMP most of which
was spent manipulating the large number of 4-index virtual orbital integrals (ab/
cd) that occur for a calculation with few electrons but a large number of basis
functions. The cc part of the calculation took 12 s. Our barrier was calculated
relative to the energy of H + H, in the same basis set (the CCSD energy of H, was
-1.674004 a.u.) and is only slightly different from Liu's MRCI result (9.65 kcal/
mol) which used a superior Slater orbital [5.3.3.21 basis (156 sros) [5 1]. An ROI-1F
reference calculation produced almost exactly the same results as that based on a
UHF reference. To improve our result by the difference of 0. 1 kcal/mol from the
QMC result or 0.05 kcal/mol from Liu's result would take some effort. In other
words, it is the error bar we accept as the price of a routine "black box" calculation.

Like the H, reaction, the transition barrier ofF + 1-2 -- HF + F has been studied
using a number of different methods [8,52-571. Until a few years ago, the best ab
initio result for the barrier fell in the range of 3 to 4 kcal/mol [581. However. as



Q1 \N It (N MO)N 1. (\RI( 0 s

I \141 I \111 I' Ppcal I I) triC of the ) I I 1 / i.1ca uL i cF..ilCId

here U1 sckorn(Is on a ia'. N'mll

A I O\I Basis set I 'taIl 4 part

l.1t I I \,,,o. 46 ,lphL.r 442 3 t,
(Ct ii Pot . 24 sphr,. 20)

PS U., 33 spher I 6,1, 6

,',\), 46 spher. 30 I 5.0

N I lI Pot , 24 ',pher, I(I, " I.'
A'.0, 46 spher, 4. ;.7

t Pil. 24 sphcr. 7 4 2 '

Vx\O. 46 spher 23.2 5.

MigiRItl Pot 32 sphcr 102 4 6
BAt, 600 spher. S4 1) 22 2

MNg-t III Pot, 34 ('arl. X., 4

SilM It Po) . 32 spher IS S)t

,\o., 54 spher. 4N1 1 5 (I
C(a/RI)l: I-,([ , 42 (art 2.j) 1 ,2

I"I III R I. 7"2 spher. 209.7 162 6

R I ext, 84 spher. 339. )2X.5
RI e\t.. 84 spher.` 169.7 11()1

RI est., 84 spher.' 929 270

Ge/! :iI [Io . 64 spher, 169,6 129.2

"/All atonic" c'alculatinons emphl1\ D):, s rnlmelr\. I otal tim "+.is I •,•ell

.1s ( - llnl"' oh'iousl\ depend in the ourrilher of' iterati'.ons needed to

reach ton)'.ergcnce. Our s( 1 equations wAere con'idered con'. erged "hien

the mammum change in dcensit,, matrix elements s, as les,, than I1 0.1
cquatlions were convcrged "hen the m;i\imum change in amplitude.s

".as less than 10) ". 1 \picall. ,I) calculalions, required II0 to 2)) itcr-
ations, tO c.onmerge.

WVith Is.. 2ý. 2p) orbital,, fro/en.

With (Is. 2,., 2p. 3Is. 3p) orbital' troicn.

pointed out by Schaefer [58). the experimental estimates, which then ranged from
2.05 to 2.47 kcal/mol. were inconsistent with theory. Steckler et al. later estimated
an experimental barrier of 1.6 kcal/mol [52a). The first theoretical calculation that
supported a low value of 2.0 to 2.5 kcal/mol was the (CSI) 4 T(('CSD) and (CSl)l-
I results of Bartlett and Rittby [35a.531. These entirely ah iaito values were obtained
in the same basis as that of Truhlar et al. [52]. Their MR-Cl result was 3.69 which
was then empirically scaled to 1.6 kcal. Later, large scale MR-(I calculations of
Bauschlicher et al. [55] led to a barrier of 2.89 kcal/mol. but adding the Davidson
correction, which estimates the size-inextensivity error that remains in the MR-Cl

this value is reduced by a critical 0.75 kcal/mol. giving a value of 2.14 for the
barrier, falling between the Bartlett and Rittby [35a] values. Further computed
values by these authors [55b] are .8 I and 1.85 kcal/mol at the Davidson corrected

MRCI level and averaged coupled pair functional level. respectively. Later ('CSD 7)
results of Scusena [561 in an even larger [7.7.5.4.2/6.5.4.21 basis set gave 2.05 further
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TABtL: XIV. Energs harrier for the It i lit reaction. Ihis cncrgx is in atomic units and the bharer
height is in kcal/mol.

Method H-t H: energy H, en.rg. Barrer Rcference

QM( <9,70 (13H) [•l
QMC 1,6617 (2) 9.68 •8) [12]'
QMi" --1.674451 (23) 1.659154 (14) 9.61W 111 [5'
CISD -1.673977 1,658018 101. 1I 1 fi5l
MR(I 1,674142 1.658755 9.65 [51 ]
Hylleraas 1.673776 1.6366379 k.68 [N81

'tli - 1.633597 1.605521 17,62 this •ork"
%IBPI" (2) --1.666784 -- 1.646024 13.03 this %xork"'
CCSD - 1.674004 " 1.657992 10.05 this %k ork"'
CCSD + T(C'SD) -1.674004 1,658531 9.71 this Awork"'
(CSD (T) - 1.674004 -- 1.658500 9.73 this "ork"

"Barrier height calculated relatike to the separated H + f 2 energ.•.
SBarrier height calcu.ated as the diflerence H-, -- (H -+ H').

(6.4.2.1]. Cartesian basis. Constructed from Duijenvelhs 8s set contracted to 6s 1891 %, ith p and d
functions from Widmark, Malmquist. and Roos [43] and Dunning's f functions 136]. The bond legnth
of the linear H -- H--- H is 1.759 a.u.

supporting the 2.02 result of Bartlett and Rittby [35a]. The most recent MNRC + Q
calculations [571 also support these results, reporting a transition barrier of 1.93
kcal/mol. but this value is plagued by an unacceptably high (26";) Davidson's cor-
rection.

To be consistent with the philosophy of this article, we repeat the F + H, --

HF + F barrier using the standard ANO basis of Widmark et a]. [431. The results
are in Table XV. We used the two optimized transition state geometries, the earlier
CCSD + T(CCSD) optimized geometry of Bartlett and Rittb:' r35a, 53]. and the
CCSD(T) geometry of Scuseria [56]. Due to the flatness of the surface, the computed
barriers are nearly indistinguishable, causing a difference of only 0.02 kcal/mol.

Our calculations were performed with a (14.9.4.3/8.4.3)/[5.4.3.2/4.3.21 spherical
basis (92 CGTFS). The calculation at the transition state required a total of 207.3 s
of cpu time on a CRAY-YMP, of which 79.0 s was spent in the C(C part of the
calculation. At the CCSD(7) level the F + H, transition barrier of 2. 11 kcal/mol is
in excellent agreement with the prior CC results. Our exothermicity differs by a
kcal/mol from Scuseria's. despite his use of a larger basis set [56]. We find a 0.3
kcal/mol difference between our CCSD + T((CCSD) and (,CSD(7) results, with the
former giving the lower, value, 1.8 kcal/mole. which is close to the lowest barrier
estimates. The difference between a UHF and an ROMt: open-shell reference, was
found to be inconsequential.

In contrast, the F + H2 barrier height predicted by QMC is too high [81 in agreement
with the older ab initio results, while the exothermicity is a little too low [8]. Some
question as to whether the transition state could be bent [52b. 55a. 56. 571 (it is
assumed linear in all above calculations) has been raised, also.
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\I V, 'ncrgs harrier for the I| IfI, reaction and the esothrinicitt tor i I. 11 I I - I1
The energy and geonmictrN are go en in alom:ic unit% vhih.c ithe harrier he igh .and f lhe e\Llhcii ermiti are

gi sen in kca!niol

(;eiiiet•

Method |" I] IIIt 1 11 , F[nrgs Bariecr F'iitherm elllf, RelicIenc

MR( I ISO)) 2.i1 3 69
sW 3.00 1.46 1.59 j52aj
t. t)it -(cN) I 2.87 1.46 2.5( j. 

3 5aj
QRIt--( 1, 2.I-7 1 t .4 55 2.02 153. ,5al
(CSI) ) 2_.913 .445 2.05 3I I f 561

%1RC1 2.95 1.45 2.4o [571
MRCI Q ?.95 1.45 I).41 [5"I
QMC 2.57 1.48 1 10.,86l 117) 3.2 I 1.3) 29. 1.1') 18[1

1111 2187 1 1.455 101.53141)2 1 1.24 ho this %\orkv"
(CSD 2,87 I 1.455 - l(41.80(8363 3.11 28.6 thils vorkh
c'SI) +- T((-(SO) 2.871 1.455 100I1.81 .lS I I 1 .10 30 8 this %%orkt`

('St) IT) 2.871 1.455 • 10_.814455 2.11 307 this %,ork"'

ROMIF 2.871 1.455 1 M1.5248 11 12.33 161 this 'Aork)'
(USI) 2.871 1.455 - 1M10.808246 3.13 28,7- this "sork"'

.S) D - 7"(CcSt)) 2.871 1.455 100.815071 1.78 10tk) this ,kork•'

('('S) (T) 2,871 1,455 1- )0.814412 2.11 310.7 this ssork'
(cSt) (T*) 2.871 1.455 100.8 144()7 2.11 31).' this %%ork"

Estimated limits 1.6 54
for harrier 1.65 [55[

Experimental
exothermicil, 31.7 (21 I)J

"sE(c-Scaled External Correlation (extrapolated result).
ANO: (14.9.4.3/8,4.3)/f5.4.3.2/4.3.21. Cartesian basis. Ref. [431. in all present correlated calculations

the inner-shell electron was dropped. Gcometr of the transition stale optimized bs Ritthb and Bartlett
[531. The geometry optimized by Scuseria changes the harrier b. less than 0.02 kcal/nmol.

SEnergy of FIP): titF (('SD 7 "((c(SD)) --99.644471: uIII -cs,) (T) 99.644317: RomI l) T)
((,SD) -99.644397: ROFIF ('('SD (T) -99.644265, ROnF (c('st) (-'*) 99.644268. Energy of llrI(R 1.4021:

-USD- 1. 173506. The bond length of If. is taken from experiment: our optimized bond length coincides
with this value. Energy of toi (R - 1.73291: ( St) S - 7 (I(sO) - 100.367132: ( SD (T) I Y1),366738
The bond length of Flt is taken from experiment: our optimized bond lengths are almost identical with
it: R(CUSD + 1(.(SD)) - 1.734: R(Ccst•T)) r 1.733.

Collinear barrier.

Note added in proof: Since the acceptance of this manuscript a MRCI study by
Kendall. Dunning, and Harrison on the electron affinities of the first-row atoms
(J. Chem Phys. 96, 6796 (1992)) appeared as has a VMC study,' by Moskowitz and
Schmidt (J. Chem. Phys. 97, 3382 (1992)).
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Abstract

Simple anal•tic approsimations to the moments of electronic momentum i' (A .. 2. I. 1. 2, 3.
4, of the neutral atoms from h.drogen through uranium are presented. These approximations are generated
b. using Thomas-Fermi-Dirac-Scott and h~drogenic results to guess suitable functional forms. and
then fitting the latter to tabulated Hartree-rock owt) moments. The root mean square (rms) percent
errors of our best functions for j? s.ith A > I are less than 0.6%-. T-e best functions for - jand 1' ,
hawe a rms percent error of less than 21 1. The 2 1 2, moments exhibit ver% strong shell structure, and
our best function has a rms percent error as large as 121;. ,: 1992 John Wiley & Sons. Inc.

Introduction

Atoms are the building blocks of chemistry, and hence, the systematics of their
properties are of interest to all chemists. Gross systematics. as taught in introductory
courses, are often rationalized by qualitative arguments. A semiquantitative account
of the systematics can often be achieved with the Thomas-Fermi (-rF) and related
models [ 1]. The Ti model also gives the correct asymptotic behavior of some physical
properties of an atom in the limit of a large number of electrons. N [21. A quantitative
description of atomic properties requires a theory at least as sophisticated as the
Hartree-Fock (iir) model [3.41. Tables of many physical properties ofall the atoms
computed by the tFl. method have been published [4.51. Obviously, it would be
nice to find analytic formulae as simple as those of the Ti model and as accurate
as the HF model. Such formulae can be obtained by using simple models to guess
analytic forms that are then fitted to calculations based on sophisticated theories.

We focus on the electronic momentum moments (p,>, which are finite only
[6.71 for -3 < k < 5. These moments are rather interesting. (p '>/2 is the peak
height of the Compton profile [8]. ir(p) is a good approximation [9,10] to the
Dirac-Slater exchange energy of density functional theory [I I. ]'p 2 /2 is the elec-
tronic kinetic energy. <p3) is roughly proportional [9,101 to the initial value of
the Patterson function of x-ray crystallography [121. <p4) is proportional to the

International Journal of Quantum (hemistr\: Quantum ( hemistr' Symposium 26. 291-29,X8 (1992)
c 1992 John Wiley & Son%. Inc ((" t1020- 7 60lt92/(u,•l-A,8
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Breit-Pauli correction to the energy due to the relativistic variation of mass with
velocity [ 131.

We use recent work [14-17] on the Thomas-Fermi-Scott description of mo-
mentum moments in atoms to guess suitable analytic tbrms which give (pY / as a
function ofN and fit them to recent Hf calculations [18-20] of these quantities. In
this manner, we obtain simple formulae for (pA> which have root mean square
errors not exceeding 0.6%. for k > 1. and less than 2'C fbr (p and <, 1 .

Method

Dmitrieva and Plindov 114,15] have used the TV model including the exchange
interaction, and the Scott-Schwinger correction for strongly bound electrons [ 16.211]
to find

p 5 r 2 A '4 - 16 .6 0 , ' ( I)
37

(p 3) 2 N3(InN + 0.5578) + 1.720,7N (2)

(p)2 !.53749N' ý - A' + 0.53Q78N,%' (3)

(pý = 0.693747A'5 + 0.187N (4)

Dmitrieva and Plindov [14]. and Buchwald and Englert [117 used the Thomas-
Fermi-Scott model to find

(p-) 9.1759 N" + 0.0283N (5)

Note that eq. (5), unlike eqs. (I )-(4). does not include exchange corrections: the
latter behave as NA'3 for (p '>. The normalization cor ltion requires that

pP) = N.
We used eqs. (1)-(5) to guess functional forms for (p') and then fitted them to

HF data [ 18-20] for all the neutral atoms from hydrogen (N = I) through uranium
(N = 92), by minimizing the root mean square percent deviation, 6•,. using Powell's
conjugate direction algorithm [22]. We also record the maximum percent deviation.
62, and the value (N*) of N for which it is attained. In an attempt to report our
parameters to the "optimal" number [23] of significant figures. we list parameters
rounded as much as possible without degrading h, by I% or more.

Results and Discussion

Our functional forms for /p4) are listed in Table I. It shows that eq. (1) is a
decent starting point with 61 = 14%. Table I contains six functions that have h, <
1%. We recommend the penultimate function in Table I, because it has nearly the
lowest 61 = 0.55%. the lowest 6, = 2.1%, and the correct behavior in the limit of
large N.

Table II lists our approximations to (p 3 ). Eq. (2) is a fine starting point with 6 1
4.2%. Table II contains eight functions with 61 < I%. The function with the lowest
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"l]\gt I. Anak tic approximations to 1p
4 

it T 5 3 16 449. bh, - 6.000

F-unction Parameters

a,' -52. 229,.

a.V
4  11.0 19. 120,.

aNV a 6.498., 4.161 4.4 3). I
,'kv h, - 14, 103 1

a,4, - +v4 1, 13.3 6.1 37
t4\,4 -_ 1) -- -11.59. 3 3.742 o1.79 2.8

a 18.05,1, - 13.05. 0.49 22 4
3 ý 3.793

a.\" 17.V, a - 12.252. ,, 4.11396. 047 2. a

6 7.2774, 3 3,6785
(A c 5.26 1A) 4.3 4

a 4 -\4 + I, V c 5.226, -t 3.331 1'() 4.3 4
A" "' " =- 16.733, . 5.4349 0,99 4.5 4

" .02,• 6 • -25.613. c 14.206. 0.55 2.i 4

-5 3.581
a,4 c1 5,934. 6 14.556. 0.60 2.7 4

C - 3.6463

TABLE 11. Analytic approximations to ,(p
3
": ao = 3 2

/(
9
i-) 1.1318, b, 0.6313, 1.72(1

Function Parameters .6

o,\N" In N - 23. 100. 1
aN

3 
In N a 1.37 15. 100,

aN' In N a 2.185. o 2.874 12. 100. I
aN " a 2.0234. - 3.2404 2.8 19,

c",N' In N + b6,,V - 10. 63.

a4,\:' In N + hN 3  
b - 0.97 6.5 43.

a,('• In iv !1Nv h6 1.684. = 2.797 0.77 2.1 10

acN
3 

In N + hN' a 0.919, b = 1.589 1.5 6.4 1

aN
3 

In N + hN" a 1.174, 6 = 1.721, i - 2.733 0.59 2.9 4

aN' In N -+ 6.," a = 0,45099. cy = 219139, h - 1.7007. 0.44 2.0 4
d - 3.2140

an,,% In N , 60 N
3 + c'- -- 4.2 38. 1

aoN In N bhoNV + -N'7 ' c ' 1.26 2.1 i1. I

acN,
3 

In N + b0 N3 + cNV" c 0,908 2.3 9.3 I
aN' In N + hoN

3 + (N' l c = 1.12, y 2.51 0.98 4,5 4

aoN," in N + hN' + cN7" h - 0.722(1, c - 1.084 1.5 6.4 1

aoN
3 

In N 4- WN + cA"" b = 0.415. c 1.31 0.62 3.1 4

aN' In N + W,3 
+ cN,'

3  
a = 1.02. b 1.17, c 0.557 0.74 3.3 4

aN'In N ý- bN + cN h = 0.3714. c ý 1.348. -y 2.688 0.61 2.9 4

aN. 'In N +, bA + N b = 0U0002478, - 4.353, c = 1.714. 0.50 2.5 4

-Y = 2.776
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"I .>,1 1 11. Anakltic apprO4,mMtTOn,, to , a, I 53749, t, I. , 0 517S

hi;'U nt'OlO I'drd~ ll1c1er• :1,t

a.\ -21. 54. 1
a0." ' a 1.2:'S 5.3 27.
u.S' a " 1154.. 2.3•X (.iSO 54 1

a ,\" b.\z 6) .... (1.73 3.6 1l. I
a<\ 65 h,6 (1.536.1 2. t2 ((.91 5.3 2

a\"s +' hX" a 1.4276.1 - -(0.45301 1.2 6.0 2
a\"s b's.\ a 2.4537. 6 I.428. 17 2.784 ( 020 -• 6

(j.\ ' S (,\ t•,\' -- 1.I 7.? I
a,.\ 6 5'.X •(\" .:0.5(3 1.I 7.(1 I

41 69 (44

a." 's2 " (.5064.7 ) - 711 0.96 5.5

a's.\ • h-t)'s 5 /.V . I.817.' •~ 13(18. ], 1.922 11)77 5.0 2
a's hA + 's d.V 1, i- 0.0248 2 0 5.7 2

("',
2 

h \ c 01.6478. d 0.1544 I.84 54 2

v + ' + c2 d.\a /-1.105. c 1,141. d 0.457 0.67 4.2 2

....3782. , - t..
av + . c " d '' d 1.81.2(11 1,.511 26 2

6• 0.44%;; also has the lowest ,5,. 2. (1%:. but not the right asymptotic behas ior.
We favor the last function in the table: it gives almost as good a Iit and has the
right asymptotic behavior.

el"A' d - . 248

Table Ill lists our approximations to dp > Eq. (3) is nearly quantitative with 62

1.1 and 6$2 7.7%:f. Table Ill contains nine functions with ,5• < 1<;. The last

T\ i I. Anaytic approximations to 'pV a. 0 . d ).6.3747, s (1.187.

Function Parameters ,• D A

1.640 h = 1-- 84.4 21I. 2
a +'dd a -0.715 3.2 129. 2

a'" a as0.795. ha t v 1.6373 1.W 12. 2
a4 nd 6, = 1 Tabl II c.4 7.n 2

a•,5,s h'-s,\ ,6 :0.183 1.4 8.2 2
aAR k Io a 0.695. - 0 .177 1.4 8.5 2

(45%"' "hN hV1 = 0.I76. d 1.0)3 1.4 8.5 2
a,'-' h;'" a 0.626, 1.6833.4 0.241. d" 1.2132 1.4 8.3 2

) -0 (."4. 1' (1.17. 1 '5 0.0(173 1.4 1.5 2

a,-' 6 + "'s a 0.695. or 0.173. 0.00352 1.4 8.5 2
a, + - cN' /z h -0.013 1.4 8.5 2

a, /iS ±- ha . 0.695. 1 0.0229 1.4 84 A;
" A n 1? 0. (1 6. j3 2.0 1.4 8.5 2

aA + i.V a , 0.296. c , -0.1124. h = 2.21 1.2 4.3 5

a"N' -. V + cn0,, h (10432. c - 018501. -(2.266. 1y 1.46 1.2 4.3 5
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function in the table has both the lowest (- 0.50"; and 5,: - 2.0;. but not the
right asymp'otic behavior. We prefkr the penultimate function because it gives a
similar quality fit and has the right asymptotic behavior.

Table IV lists our appr ,6mations to Ep. .q. (4) is nearly quantitative with 61)
1.4' and ,, -- 79';. Table IV shows that no smooth function of N alone is able
to produce a better 5,. This is so because the residual discrepancies of eq. (4) show
a periodic pattern. Therefore. we tried to introduce an element of periodicity by
allowing the last three functions to include a term in n,... which is defined to be the
principal quantum number of the valence shell. The special case of Pd (N = 46)
has completely filled K. L. M. and N shells and had to be assigned n,, = 5 for the
sake of smoothness. Similarly. n,,, = 6 was assigned to Pt (N = 78). We tried very
many functions containing n,,. and fbund the last two functions in Table IV which
have a slightly improved 61, a substantially reduced h,. and the right asymptotic
behavior. The penultimate function is preferable because it has one less parameter
than the last function.

Fitting 'p i• is more difficult. Eq. (5) is not a good starting point (b, = 117"").

because the 1[[: 1p values arc strongly periodic as Figure I shows. Thus. it is
necessary to use functions containing variables other than N. such as n,,, defined
above. Guided bv hydrogenic formulas [1 4.15] for Kp 2 we also used as variables
A'- and A',- the numbers of s and p electrons, respectively, in the valence shell.
and an effective nuclear charge

Zt = Nc - ..r. (6)

in which A,, is the number of electrons in the largest neutral rare gas atom with
atomic number less than N. Table V shows a small selection of the functions we
tried. It contains four functions with 61 < 2",. Perhaps the last function should be
preferred. because it includes a TF-like A` 3 term.

40

30-

20-

I0

0 10 20 30 40 50 60 70 80 90

N
figurc 1 1) '., as a fanction ofelectron number. N. for the neutral atoms from hydrogen

through uranium. The solid circles are Hartrec-Fock values, and the solid line coi responds
to the penultimate function in Table V.
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I ,\l t % \ -\.aki tic ap)proxImit ions to 1)

f unction Ipramctcrsl

anpt " .,, "/,q 4 1 4.57. b - 0),6 1 0.4 9 7S

an +. 1A,, /,t, (a 1.63. 11 0.540. 0.01t81 2'( 41,

, b .,, - ' (-/,f (,i 1.306. h' (0.6085. 3 0,90(07.
c :0.07669) ),,t 2

an',- 5, , (a C i,,i (, .346. 1 . (.5836. I 0.93t4.

c -~0.08104)4 .,.3 '.
aii" bn• ,-t, ý. / t (a - 1.294. 0,5 , .5 194.1 0 .)958(,

-0.01532) 4.4 431 4,

a'zA: - hn,,, tA,,f, dl,,, (a I .37,. 1) 0 .5075, 0.4 14t64.

d -0. 1079 2.') 2.9 4

n"l C\,, (h, `tA/),,, (at -4.384,1 0'(.54454, 4).05692.
d~ --012714 25 4 4

aUP , _ n ,,, ( '-%b,) 4 d/ p,(t - 1.96,. it - 4.3. h O10.3,

d - 1.25. c --- .455.2 -t 1.) 1, d -- 0.574. 5 (. 566) 1., 59 4
an,,, n ,, (h\V, cN,\ ) ± dl'Ir (a 4 1.923.. b .- 0.3988.

S- .03659. d = 0.60410) 1.9 6,.7 4

an' ' n,, (b + c,.) - dl'. (a - 1.955. h - 0.3878.
c(3 0.005. d - 0.5369) L.8 6.4 4
ian +niV r,- n, (h+ ,) + dS, ) +/lýa (a 1.9618, ) -( 0.3 91.

t , 0.04799. d -.. 0.502 1. e =- 0.07253) 1,7 6.0 4

Fitting p' -2) is even more difficult. The asymptotic [ 14.15] form <p , constant
is no help at all. Figure 2 shows the marked periodi-. variation of the IIn- I 2>,

moments. We used the hydrogenic formula for ('p ) as a guide to generate more

120

#00

80 %

00 / I

40

20

0 10 20 30 40 50 60 70 80 90 100

N

Figure 2. 'p-) asa function ofelectron number. A'. 'orthe neutral atoms from hydrogen

through uranium. The solid circles are Hartree-Fock values, and the solid line corresponds

to the second function in [able VI.
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I akt[iotl pa.i • (wt 'r ')

ao2,f. n,, ) - 01 ,5 )a 40 o-0. /(. 1 1) ' I 1.8 14i

,3 0.10 . 3.41153. 0, 1 8oTh d 151 85. 1) (0 5 4 1 11 1 .

api ,, ii,. n /-~:,,dY (a 14 84. 1, 4.,1)6 .

So. " (). 0 4 I 2.3 .
, ' ' . , (1./ ill 1 (1) -N) 12 10 0

an.t - n 4/ !!\{ i S+'' 5 1\o, • C/rf,-(a 9.2s• , I 3i~./))

1,926. e (i.666 1' 0. (.6125. , 146,
3 0.9i" . 0.28031, 5 02')89. (0.2663) K o

, ,, C ' . ) 35 e/)p". a 28.'5b. , 404 1.
( 2.033.d. 3.276. S. 6. (, 0.4724. 1 0.94943.

"-- 0.2387. 0.1864, ( '0 0.201 ) s11
an . n 1. , 5 , \ 3 ',- i nd (u 286.86. 1 3.89 !10.

2.3068. d 2.81)0 ( 286.50. o (0.4934)2.. (0.97315

0.27619, 5 0. 13079 0(.017043. 0.453614 II 7s 78

than 30 different functions containing the variables used for, p and the Nariable
Nld. which is the number of electrons in the outermost d-subshell. TIable VI lists
the best of our functions but. unfortunately, none of them is a quantitative ap-
proximation.

Concluding Remarks

The root mean square percent errors of ,rur best functions for (i1) with k > I
are less than 0.6l%. The best functions for (p) and Kp "I have a rmis percent error
of less than 211.. These rms ,.-jrs are less than the errors in the Hl moments due
to neglct of electron correlation and relativistic effects. Thus. we think our best
phenomenol.gical approximations to 01"'> (k = 1. 1. 2, 3. 4) have real value.
More thought needs to be devoted to finding a functional form for p
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Quantum Tunneling lines: A New Solution
Compared to 1 2 Other M ethods

Ml\RK J It IIV

Abstract
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been the tir[Ni to state that thle transit time for Inn ne1Cling is fi nitc. aind III su1p7or-t
this efain i b anal\ mis. A\ ariet% ot difleren-t theoretical procedures has e been used
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cillatory perturbation of the barrier [8]: (11) kinetic time [,)]' and (12) the semi-
classical solution [10,111.

Values of transit time have been calculated using numerical solutions tor tunneling

by a wave packet in the time domain 1 12 1. Some consider this process to be "'without
basis." because it is not possible to identify a particular part of the transmitted

packet (e.g., the peak) with its incident counterpart [13]. 1This uncertainty is de-
creased by reducing the breadth of the wave packet, but then the spread of energy
is increased, which causes other errors.

Interest in tunneling times is not purely pedagogical. In devices, the charges on
both sides of a barrier move in response to a particle transiting the classically for-
bidden region. This movement of charge, which alters the potential, is dependent
upon the transit time [141. Failure to correct for this phenomenon causes calculated
values of conductance to diflier from measured values by one to two orders of

magnitude [151. Recent advances in high-speed devices based on tunneling in
semiconductors [16] requires a greater understanding of the tunneling process tor

design purposes.

Analysis

We assume tunneling occurs when the energy of a particle fluctuates sufficiently

to be above the barrier while crossing the classically forbidden region. Energy is
not conserved during tunneling, but the magnitude and duration of the violation
are limited by the uncertainty principle.

The energy-time uncertainty relation differs from the uncertainty relation for
momentum and positiorn iegarding both derivation and interpretation. It is known.
however, to relate the uncertainty of energy to the mean lifetime of unstable particles
[17 ]. Yukawa's successful prediction of the mass of the pi-meson is an example
[18]. We assume the most probable value for the product of the magnitude AE
and duration At of an energy fluctuation is h /2, where h -- 1.05443 x 10 i• Js/
radian, is Planck's constant.

Consider a particle with energy E incident upon a rectangular barrier with constant
potential V, and length d. as shio',n in Figure i. We assume that an energ. fluc-
tuation. AE. causes the particle to pass owcr the lmiicr with kinetic energ> ml':/

A

- I,

I I'

- ----- -
d 1

Figure I. T unneling of a particle through a rectangular potential harrier.
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2. x\here m is the mass of the particle and r is the selocit\ within the Classicallk
torbidden region. Thus, the magnitude of the energx fluctuation is

till",

If Al: is not constant during an energy tLuctuation, %e (6dCine the etlhctike energy-
time product bh

ALA,)cr > Al I)di(2)

which is equi' alent to

% A/l" .v dv
( AXlA;. ), -r J t'(.)(

From eqs. ( I l and (3):

Larqe Barriwr ( v,

If -AL"A'.l;), > h /.2.. the most probable 'aluc f1r the magnitude ol an tLt ci g
fluctuation pei iiiittilig tuilJliig is found bh rioin-imiiing the integiai In 4). 1 bus.
r and t,,,. the .,aluc % hich minimnies the integrand and is gi ýn elh

2( (,) 0 --- L) "

Setting v equal to v,_, in (4). gives the minimum eflfctive energ\-time product
as

ALl,~,.. f [2m ( 1',) L.)]. d (6)

From eq. (5). the transit time is given b\

t,-: [2(I .\) t,) dv(7)

Eq. (7) is equivalent to (he classical expression otr nontunncling transit time L '
> I[), except the sign of the argument of the square root is reversed. Thus. eq. (7 )
is referred to as the 'semiclassical" solution. but is considered to he an imaginary
quantit\ [ I 11. For a rectangular barrier, eq. ( 7 ) reduces to

"b il -7j;.20 (8)
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3, 4

S1

Figure 2. Energy-time product %s. Nelocit\ fbr the large barrier cast(.

For a rectangular barrier, the integral in (6) may be evaluated to show the criterion
(AEAt),,,e > h /2 is equivalent to

d[2m(l -E)]!>- (9)
2

Since (9) sets a lower limit on the height-length product of the barrier. we call
the case for which (7)-(9)are appropriate the "large barrier" case. Figure 2 shows
how (&XFAt ),tr depends on velocity for a "large" rectangular barrier when the velocity
is constant, and the duration of the fluctuation equals the transit time. The barrier
has d[2m(V- E)] '"2 = h. corresponding to d = 6.172 A for 7.9 eV electrons and
V = 8.0 eV. The horizontal line represents a value of h /2. The energy-time product
has a broad minimum near v Vm.

0.5

0.0 -- -
0 2 3 4

V/Vm

Figure 3. Energy-time product vs, velocity for the small bamer case.
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]here is also a small barrier ca•e •or %0 lich ( .•L.- ) -,. / / 2 I i•eui .•i sU h
ho. ( -\I- -,,t depends on ehoc it. Nor a "snialI" rectang ilar barnier %,ý hen thec I e lo I
is constallL and the duration of the tluctnat]ion equals hilt tranlllt tilme. I hIe harriel
has d 2m(I l-' 1-,' 1 h /4. corresponding to d 1.543 A for 7.9 e., elctrons
and I - 8t.0) e\ leh hori/ontal line represents a XaluC of th / 2. li(urc L3 shtss s .ha
the most probable \ alue for cncrgp fluctuatios, h / 2, o'cul s for l\so dilt.rvntl ýe-
locitics. ri /r,, t 0-.20 and 37. 2. .; iniin /ig the encrg -tilC produeCl ,s mnt required
for this case, so

.%here equa;it. pcriains \shen the duration of the tIluuLation equals the ltansit time.
It is conxenient to deline

d .\ ) . . . ( I I
t,.,( .5.)

From ( )Ot and ( I I I

f 2n( (x h' -[i ,),.-~i 121

From (5) and ( I I ). the transit time is gien bi\

, (x() .)• ,,x)

For a rectangular barrier. (12 1 and 1I 13 ) simptil\ to

f ~[o( V.JJ ~.) J] (A h- 14)
/: ( I -- /" 2 d ")

For a rectangular barrier, the criterion (or the small barrier case simplifies to the
following inequalit>:

h
dl 2 ( I I-,l' < (16)

Numerical solutions of( 14 )-( 16 1. assuming a piecewisc-constant \ ciocItN. shov.
that the transit time is indeterminate but hounded. Limits (or the transit time occur
ýkhen the velocits is constant, and the duration of a fluctuation equals the transit
time for equality in ( 14 ). Thus. (1 4) reduces to a quadratic that is solved tor ,,
and used with ( 5 ) and ( I I I to obtain the fbllowing intcr.al for the Nelocit_.
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[Ih [I j
2 d n I - I - - -hYO E )-e

+2din h-?

From ( 15) and (17). the interval for the transit time is

2;m12  2nzl 2

h. 1 . -- _] r I -4i [ 1 8m (L- ")

The two limits in ( 18) have the semiclassical time (8) as their geometric mean.
and an arithmetic mean of h /4 W- E), which is the value of transit time at which
the small and large barrier cases meet. For extremely small barriers (18) may be
simplified to obtain

nld2  h
III -< , S h - (19)

h 2(V1 - E)

Figure 4 shows the dependence of transit time on the length of a rectangular
barrier calculated with (8) and ( 18) for 7.9 eV electrons and V = 8.0 eV. The large
barrier case. where d > 3.086 A., agrees with the semiclassical time. At shorter
lengths, requiring the small barrier case, the two limits for the interval of transit
times are plotted.

Figure 5 shows the dependence of transit time on energy, calculated with (8)
and (18), for electrons with V = 1.0 eV and d = 1.7 A. The large barrier case,
where E < 0.6704 eV, agrees with the semiclassical time. For larger values of energy.
requiring the small barrier case. the two limits for the interval of transit time are
plotted.

IVA

4!

Figure 4. Transit time s.barrie length for fixed harner height and particle cnergv.
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, 7 - 7

Figure 5. 1 ransit time . particle encrg for a harer vith icd length and height,

Comparison With the Results of Others

Twelve different procedures used to determine tunneling times are listed in the
Introduction. Of these. the Stevens procedure [6]. and one method using an os-
cillatory perturbation of the barrier 1101, both result in the semiclassical solution.
The approach using Feynman path-integrals (51 results in the Bilttiker-Landauer
time, so it need not be considered separately. The scattering theon approach [6].
reduces to the phase time for a rectangular barrier. The two components of the
complex time correspond to the two Larmor times, and these equal the dwell time
for a rectangular barrier [4]. Thus, for a rectangular barrier. only six values of time
need to be considered: (I) phase time [191: (2) dwell time [19]: (3) BUttiker-
Landauer time [20]: (4) stochastic time [71: (5) kinetic time [9]: and (6) semi-
classical time [10].

Table I gives expressions for these six tunneling times for the cases of': ( I ) a very'
small barrier (d[21m(l' - E)j ' 2 < h and Id < h[2 FI/mi] 2): '") an opaque
barrier (dj 2msi'- E)] ",2 > h )" and (3) a delta-function barrier. I he latter case
is defined as the limit for infinite potential and zero barrier length. with I'd = hc,
where 1) is a constant and c is the velocity of light in a vacuum [41. Particles
sufficiently close to the top of the barrier satisfy ( 16 ). regardless of the barrier height
and length, but the small barrier expressions in Table I are only appropriate if both
of the requirements given above are satisfied. Each of the six procedures will be
considered separately.

Phase Tim'

It is seen in Table I that only the phase time is nonzero for a delta-function
barrier. This result, considered to be nonphysical, has been explained as an effect
of self-interference between the incident and reflected waves in front of the barrier
[41. It may also be seen in Table I that only the phase time and dwell time are
bounded as the length of the barrier becomes large, which is also nonphysical 113 1.
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1".x-, i I I I\prssironn fOr tLnnh ing tIn•mes ot dit' rnt lrn irm uiltionN tor w\ ¢ral limaing JCses "ith

r.ctan)ular harriers,

Small barrier I argc barrier 'i-tunclron barrrif

:LPhase time .... -
inlJd 2[ { I/ I: (11 " , -

2 I -

D~elliLme h4 .1 0I

2h I1-'

2r h
BUttiker-t.andaucr , :jSl2d] [_{~- ,LJ

2i , !;

Kinctic time d[. h ip2d/h i,

'211 L12,ih " 1l: f ,,, 1 S

Present solutiofn -,, < h d[ 0l---h "" " 2(1 - /"- 201 , )

Thus, phase time is not considered to represent the transit time. Numerical solutions
for tunneling by a wave packet [I 21 give (apparent) values of transit time that
approximate the phase time. but arc not simply related to the transit time [4.191.

I)well Tim,

The dwell time is claimed to be a measure of the time a particle spends within
the classically forbidden region. aweraged over all particles that are ultimately either
transmitted through the barrier, or reflected b% the harrier 119 1. I hus. dwell time
is only equal to the transit time for very small barriers, or at resonances, when the
transmission coefficient is near unity [4]. The expression for opaque barriers in
Table I shows that the dwell time is bounded as the length of the barrier becomes

large. which is appropriate because it is then a measure of the time spent in the
barrier region by reflected particles.



A part icle m. ith nonimcr spit i 11 m1Iag net ic field In's a hltghcr iohailitx1\ ,I tun-

rieding if the sp~in is aligned parallel. rathe'r than aiitiplairllcl. to thle iii.ieii1ctic fitk[
Ihits proferent jal transmission causesO an efleC~t xC roitation.x ckilicscd that dtitl

to I armior precession 1 201, 1 his effect i c rotation INs b)Ccn1 Used C\pe ientallx1111 t0

produce beams oft' polarlicd electrons and neutiron\- I hec But itker -1 a ridauci timei
20 ] is a modification of' the [arm or times in t\ hich the flCt Lcroaio1ls

described is combined %k tibl tile ( smaller I I armor precession to obtailn thle total

rotation. x hilch is used as a clock to meaIsure thle lttme tor a p)Articl to 1ra\erse thle
barrier. Sex eral obiectioris has e been raised regarding thle Miitti kr-l xidauer time
JI ).2 I. and a response %% as made to sonic ofthdemi 131

.SothINI/xi 11111c

A stochastic form ulat ion of qjuaIntumI FlMecaidIics ha" beenl Used to calc.ulate the
time for a tunneling particle ito traxerse a rectangul ar barrier - 1. I his lformulatioin
is essentialix a classic.al interpretation inl xx hiCh quainiiphnomecna are, treated
as randomn fluctuations similar to Brown ilan motion 1 221. Particles, are assumedIICL to
be subject to a stochastic force, generated h. q uant unii fluc~tuations resukli ni froml
the action of' a stochastic mx ariant thermostat, as, xx el as to esternal forces. It ma%
he seen in l'able I that thle lim-iting f*orms (if' tilie si chastic tiime for both smiall and
large bainrers are equal those Itir the Bbiitiker- I andauer time. O ur numerical sItudies
hax e shoxx ,n that the stochastic time Is icencrallx close: to thle BimitikCr--I andanler
time for other \Alues of the parameters.

Kinctrw 11mi'

de Nioura and dc -Albuquerque [ ( ] hax C des"cribed xx hatt xx e term thle kci
timne.'' xx ich thlex define as thle ratio of the densit\ of' particles iinthe baýrrierto thec
total fILu \xxithi n that region. J hec kinetic time, like dxx elI time, is, ax raged ox r all
particles in the barrier region whether thex are ult imatcl\ transmitted throiugh the
barrier or reflected. Thius, the kinetic time could not equal thle transit timie ecwept
fbOr %eri. small barriers. or at resonances, when the transmission coefficient is, near
uniit, The expression in I-able I fbOr the kinetic time f'or opaque barrier,, should be
thle time spent In the barrier region h% reflected particles., but this expression does

not equal that for thle dwiell timec. F~urthermore. this expression dep~ends e'xponcntiallr
on thle length of' the barrier, which has no clear ph\ sical hasms.

IThe semiclassical time)( 7 1 has been derixed b% studdyIng the sensin\ Wxit of itunintrchri
to: ( I Ioscillator\ perturbation of the barrier f I I : ( 2) miodulation oftheli Incident
"xxae [23 1:13(. temperature [ 24 1 :1 4 ) damiping 1 251;1 and 5 1 dr nainic cor-recti us

to the image potential [ 26 1 T Ihe scmiclassical ii rme is al ohi:ui ned Ib% the Stex cins
procedure [61. and h,. tin i ni mirg energr find nations 1
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The previous paragraphs suggest that. of the 12 procedures considered. outro the
B1ittiker-Landauer time. stochastic time, or the semiclassical time could possibl\
represent the transit time for tunTneling. Our solution 1or the large barrier caw is
the semiclassical time. and it also agrees ,ith tile 136 ttiker- Landater time and
stochastic time fbr opaque harriers.

For the case of very small barriers, the Biittiker-l.andauer and stochastic tinmcs
correspond to tunneling at the incident \.clocit\.. kihich is quite ditffrennt from the
semiclassical result, and each of these times ditffrs from the new solution. We
question the validity of the semiclassical solution lbr the small barrier case because:
( I ) an opaque barrier is required for derivations of the semiclassical time [10.23.24 1:
and ( 2) the semiclassical time diverges for energies near the top of the barrier.
contradicting experiments [ 27 ].

Discussion and Conclusions

We believe that indeterminacy of the transit time tbr the case of small barriers.
which is first suggested in this article, is reasonable because of the lower limit for
energy fluctuations set by the uncertainty principle. Others have suggested there is
a distribution of transit times [5.28.29 ) but not within this coltext. Most examples
considered by others correspond to the large barrier case. Typical parameters used
for Zener tunneling. field-emission ofelectrons from a metal, and losephson iunction
circuits, correspond it ( .l-At),,.,ri h equal to 20, 200. and 1000. respectivel\ [ 23 1.

Figure 6 shows the boundary between the large and small barrier cases, calculated
with (9) and (16), for both protons and electrons. This figure shows that the large
barrier case is generally appropriate when the length of the barrier exceeds the siue
of an atom, but the small barrier case may be required for problems on the scale
of the nucleus,

We acknowledge that the problem analyzed in this stud'. is idealized in that a
single particle with known momentum is incident upon a one-dimensional rectan-

Figure 6. Boundar'. hcts.~een the large and vrný01 harrier cases for proto'ns anid ek~ctr-ns.ý
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gular barrier. In tunneling phenomena. a particle is injected into the barrier with
a %ariable energp and orientation, and must go from one allowed state to another.
so a \ariety of factors affects the transit time [I 5.23.31)1.
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Reliable Hellmann-Feynman Forces for Nuclei-
Centered GTO Basis of Standard Size

REINALDO 0. VIANNA, ROGERIO CUSTO)DIO.* hEllIO CHAC'HAM.
and JOSE RACHID MOHALLEM
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Abstract

We use the continuous formulation tor the matrix Hariree-Fock method. called the generaior-coor-
dinate-Hartree-Fock method. to rephrase a theorem of Nakatsuji et al. concerning the improvement ot
the fiellmann-Fenman forces calculated with nuclei-centered (.io basis functions. We show that we
do not need to increase the size of the basis set in order to obtain reliable liellmann-Fevnman forces.
but just use a self-consistent set so that, starting with some s-type GIos. the p-tspe (i ios are a subsct of
the derivatises of those s-type (los. and so on. We illustrate this feature in calculatins on small dyatomic
molecules. c 1192 John Wilc\ & Sons. Inc.

Introduction

The Hellmann-Fevnman (l-IF) forces for nonexact wave functions are almost
always associated to floating wave functions [1]. a kind of function which is not
appropriate to most quantum chemical calculations. However, more than a decade
ago. Nakatsuji et al. [2] proved a theorem for the improvement of the HF forces
for nuclei-centered GTOS. They showed that starting with a parent standard basis
set, the inclusion of all the derivatives of those basis functions related to their
centers lead the Pulay corrections [3] to the HF forces to vanish. On the other
hand. even if the process is stopped after getting a desired accuracy, this procedure
raises the size of the basis sets in a undesirable way, which is why we think that
this technique has been receiving little attention 14].

The geometry optimization of molecules in ah initio calculations, either with
standard SCF procedure or simulated dynamics (SD) techniques [5]. needs an ac-
curate evaluation of the forces on nuclei, within the Born-Oppenheimer approx'-
mation. The analytical gradient is used for the sCo calculations, though being very
expensive (the only SD calculation we know so far used floating Gaussians within
the density functional theory [6]). The analytical gradient has two terms. One is
the HF force, which is very' easy to calculate since it does not involve two electron

" Permanent address: Instituto de Quimica, Departamento de Fisico Quimica. UNICAMP. 13081.
Campinas. SMo Paulo. Brazil.

* Present address: Guelph-Waterloo Centre for Graduate Work in Chemistry. Department of Chemistry

and Biochemistry. Universit. of Guelph. Guelph. Ontario. Canada NIIG2Wl.

International Journal of Quantum Chemistry: Quantum Chemistr% Symp(,sium 26. 311-318 (1992)
c. 1992 John Wiley & Sons. Inc. C('C 0020-7608/9210101),1 1-08
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terms. The other is the Pulav correction. whose calculation expends a lot ofcomputer
time. In order to have an economical way of optimizing geometry in ail initio
calculations of large systems, which includes simultaneous optimi/ation of energ.
and geometrx bx sr, [5]. we need to use reliable [f. forces without the aloremen-
tioned drawback concerning Nakatsuji et al.'s method. Also. owing to the current
tendency of doing a, initio calculations with saturated basis sets [4.71 it seems
unreasonable to include all the derivatives or to have two different sets, i.e., a parent
set and a derivative set. A solution is presented in this work. We rephrase the
theorem of Nakatsuji et al. in the scope of the generator-coordinate-fHarree-Fock
(GC-C1:) method. The continuous formulation drives us to new conclusions about
how to choose the basis sets in order to satisl' the HF theorem. We then show that
there are self-consistent sets. of almost the same size of the commonly used sets,
which lead to good HF forces. We conclude with illustrative applications to the
diatomic molecules H,. Lili. CO. and F,.

Theory

As in the applications of the GcIv- method to closed-shell mole-ules with 2m-
electrons [7b]. wc start with the choice of the MO in the form

Hk,,) = X'.. f daI.iiO)!@,),iir))>, a =I. .. ,n (11

In Eq. ( I) the first summation, over A. runs over the atoinic nuclei, and the
second. over n, runs over the symmetries of the basis functions 0., p. d .. .)
j!, j( a) are the unknown weight functions ( WI) and Pi,(a. j .) the basis functions
(normally (uios) witll 6-symmetry. exponent a. and centered on nucleus At. To
saw, notation we will drop the summation over the nuclei, since it does not affect
our conclusions.

Instead of starting with a complete parent basis which contains functions of
various symmetries as in Nakatsuji et al. [ 2], we start with only' s-type (i los. that
is. our MO are written as

I$,,) fda(a)O,(a" ). (2)

Apjplying the variational method, the w fwill obey the integral equations

f [/-(a, d) -- CS(a., 3)] f, (1(4) di3 = 0 (3)

where c<, are the orbital energies. S(a. 3) is the overlap matrix, and the Fock matrix
is

Is (n, 3) - (a h1$3)

+ I f_ f dh{2 f / , 1 ]th 1 [ ; ) I / -- 12( ' )')1j . (4)
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in standard notation.
Being 'I', the Slater determinant formed with functions ( 2) and R , the nuclear

coordinates, the force on nuclei A is given b\,

P ',=-<ii1]R '1" [f do A,-o(k )]OdlR,) (I

where d, is the center of the .i 1o. and

= -'d32>IofI)f(&I hi3)

+ 2 Jd' dj [2 1~ &(~) 6)lfG63dI .ý I / 2 ( )' 35

-2 J dd 2 Mt.) . . (6)

In (6). a' stands for ,(a, i ,) alR t,',a, • 0.
For GTOS. these derivatives yield p-type functions. So. taki, g R in tne / direction

for instance, we have

,0
a': CO,(. ,) = q,(a. .) (7)

al

For each a, A,(a) is what is called AO efror by Nahasaji et al. [2]. i i our case.
f da .A,(ca) is the error associated to the hole set oi .- ipc functions. roat s. the s-
type AO error.

Handling Eq. (6), in the same way of Ref 2 'ke get

A (a) f4 d/Zya) d + fd' fdid [2 +f -,fd6i

x [(ta'j(yt5 ) - )/2(a yII3•r)] - eA(a.,

(8)

This equation, with the use of(4). becomes

Aia) = 4 f 1 ({fdfOf,,(f3)(F(a'. 0) -- rS(oe', j3)]} (9)

Now, consider the MO written as a sum of terms of v and p symmetry.

!€,, : 7 f e4,,~a')O•(, -•,))(10)
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In this case. the H-lartree-Fock equation will be

j- d okl ,,(W )[Il".,, ( (. Al) ... e,,.S'.,,.(• . 0 0I I

1). Ca =- S ,

For Tp Eq. ( I I ) has two terms which should vanish separately. One of them
is what is inside the brace in Eq. (9). That is, as for (I ios

F,{'. 0) = - 'P, . ý3) 112)

the inclusion of the p-typ, symmetry functions will lead to vanishing of the s-type
AO error.

f da .1,0) = 0. (13)

We can go on with this process so that the errors associated with p, d. ..functions
will also vanish. [he derivative of a p-type ( ;o is a (d + s)-type (im, but as the
,%-types are already included in the basis we include only the d-type ones. This is a
convergent process. and we can stop it as loig as sorte convergence criterion for
HF fbrces is reached.

In order to solve the Hartree-Fock equations of the type ( I I ) we should discretize
them in the space of the Gro exponents, therefore getting Roothan-týpe equations
[7b]. This discretization may be guided by the w fin a process we call integral
discretization [81. This technique allows us to obtain a discrete form of the wi

Ja•,a) by plotting the linear coefficients of the (iros against the discrete values
of the exponents. a,, chosen in a mesh. a,! . Our development above is kept.
changing integrals over cy by summation over a a, 1 . The only additional condition
is that the exponents of the s. p. d • ... Os must be the same, so that the dist.
version of( 14) is obeyed. In principle, the same number ofitos of all symmetries
should be used. This seems to be a too-strong condition, however. since we know
that a I-type (ifo wfgets narrower as ( increases. Figure I illustrates these points.
In order tD discretize the various terms of the ifartree-Fock equations, like ( I I).
at the same level of accuracy. we may use meshe' that become smaller as / increases.

In fact. for a -- p, the two terms of( I I ). which must vanish separately, have
/,,(Y) and .,(a) as unknowns, respectively, the latter being narrower than the
former.

Summarizing our main conclusions:

I. We do not need a parent s, p. d . . . basis and another derivative p. d + s,
! + - . . basis. We need only a self-consistent basis where the p functions are
tne derivatives of the s functions, and so on. Derivative here means a p-
function with the same exponent.

2. We do not need to include all the derivatives. The set of exponents of the p
functions may be a subset of the exponents of the s functions, and so on.
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Figure I. The Acight functions for (a) s-tpe. lb p-t. and c d-ts o •;Ios centered

on nuclei Ibr the 1., molecule.

These points permit us to use common size basis sets for the first-row atoms.
This is a quite different procedure of that of Nakatsuji et al. [ 2] or even Cust6dio
and Godard [41. For instance, the total basis set parent plus derivative used in Ref.
2 for the LiH molecule has 14s, 1417, and 5d functions centered on the Li nucleus.

We have to say here that conclusion 2 above has already been introduced ad hoc

in Ref. 4: that is. they use the HF force as a criterion for choosing which derivatives
must be included to improve the wave function.

Applications

We have done applications of these ideas to some diatomic molecules, First. we

use H2 and LiH as test cases, to show details of the calculations, and also to compare
with the results obtained by Nakatsuji's method. As in previous works [7b.8] the
exponents are chosen in an evenly spaced mesh in the U-space,

Q, = Q,,,, + LM2. a, = exp(6.0OQ,) [-Dr < Q < +xj (14)

where we have a pair of discretization parameters (12,., AQl) for each symmetry
of the GuOs centered in each different nucleus. These parameters are not optimized
but chosen with a sight on the wfin probe calculations.

We set. for H2:
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this tigurc).

Na P,, 2.t(

6s .50 .20
5p31 .201
3d -. 11 .211

(Fig. I was not drawn with this basis but it illustrates how we choose the discretization
parameters.) For LiH:

Atom Nr ..

Li 9s -. 592 '216

5p.376 .216
3d -. 160 .216

H 5.S .349 .260

3p - .089 .260
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I Noi 1 I. Vile'mann-I esmani tlf toree and llartrcc-- Fok ground stac ital energ. I...it tilc
nuclear distance. R, tOr fI:I and I III. tIr ithc L.1. l itrc i ,ii x s e set% Conulsd'cre

R, fi 1 (1 1-tI r

I hi' korkI r 5pl3 1 W1 /-I.- ~ I~ s
t4 N,) s. 1.4-

lii ý.5p3d 2 2 L .-4 (1i)
lhis, ork) 1i 3.(26 t 25 ; -4 (ti ' 1.411i

(5.'. jl))

lift 9. 14. 51? ) 3M(5 4. 1-4 (I.1) 19x51
(R.,i 2) 4r, 4p) 1.7 1'-3 f

"D)ata -rom litheraturc. e\act cnerg\.
N Number ol primimInc,, in t"he Swt (parent dcri %atI\ cs) from Ref 2. htc arrcnt set is I" nIrac It d

We have calculated the total Hartree-Fock encry. and the fl F torce on a reduced-
mass nucleus for various configurations near the minimum energ. distance. R,.
We illustrate, in Figure 2 and Table I. the improvement of'the H t-Irce in I11 as,
we use the (6v). (6s, 5p), and (6s. 5p, 3d) bases. respectivel.. This improvement
is impressive, since the force decays b\ three orders ot magnitude from the smallest
to the greatest basis.

In this calculation, we noted that it is not an accurate procedure to calculate the
it-IF force at a minimum geometry provided by another calculation or esperiment,

since each basis has its own minimum geometry.
Results of our calculation on 1,iii are also found in I able 1- Ihc minimum of

the energy curve is at R = 3.026 a.u. and there the HiF IfMcC is 8.51'-4 aLu. it vanishes
at R - 3.032 a.u. Our result is equivalent in accuracy iO those in Rt,. 2. where a
much greater basis set is used.

In order to show that our approach applies skell to greater s~st,. s.e tested it
on the CO and F, molecules. We found proper to start with a siaddard sIi of-
tpc (-, ros. i.e.. from the D95 basis [9]. arid complete it in two wa\S. I-irst. taking

I Sti II. tlcllmann-Fcx nman force tHI) electri held. (, and Ilartrc--l-.k ground slte ral c nergY.
I-. at the minimum nuclear distance. R,. for (o and 1.. lor the hast sets displa~cd.

R, I If- force ( iclc'tric
System Basis set (a.u I (a.u. I lield a.t. 1u. (a.uI

(10., 7p. 4d. 2-/) 1103 4.51) 1L-2 (O) 5.74 F-3 IO) 112 ý(100Q
2.16 1-2 (C) 3.60 E-3 t(3I. (10%, 8p. 4d1. 21 ) 1.3,27 "r2.73 L-2 3.04 tL'-l 198 74823I;
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the two more diffuse (, ios as if they belonged to an exen-spaced set and use the
corresponding increment A.L to increase the set of',s functions. ,%hen it is needed.
Second. introducing the derivatives as in the above calculations. In tins .a.a we
built the basis sets flr C, 0, and F. shown in Table I!. together %-,ith the optimized
equilibrium distances R,,. the total energy, the electrostatic field C and the HFI
fbrces. We see that the HF forces are ver.v accurate. We could increase the basis to
get the E-3 accuracy but alwa.•s keeping its size smaller than that which we xvould
get by Nakatsuji's method ( 14,., 14 p1, 11 d plus six mixed dl derivatixes).

The total energies reported in Tables I and il show that our self-consistent basis
sets are also good lfor energy calculations. Theretbre, the need of some basis functions
to have the same exponent of others seems to be not a great restriction. In lact. the
basis sets like this have already been reported I101. though not in the context of
improving HF forces.

Conclusions

We presented here a wa, of constructing self-consistent basis sets of standard
size so that the HF forces are very good approximations to the forces on the nuclei.
Those basis sets can be used in place of the analytical gradient in s(F: gcometrN
optimization, with a great economy of computation. In fact, we are now using
these HtF forces lbr doing calculations with simultaneous optimization of geometry
and ilartree-Fock total energy by SD. in a work in progress 1 5b].
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An Investigation of the Performance of a IIlybrid of
Ilartree-Fock and Density Functional TIheory
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Introductioin

Systematic prediction oit molecular encrgy by quantumn Mechanical me1thodS IS
one of the principal ob~jectives of theoretical chiemistry,. In thle last licx. xearts. there
has been some success in developing methods w~hIch will reproduce e\ periniental
energies. such as dissociation energies. io niitation potentials. and electron allinities.
toan accuracst of±2 kcal/miol orfl. I eV. -1he(I.l ISSIAN-1 (Gi l Iand (IAl. SSI..N-
2 (Gi2 ) models [11.21 achie~ e this b,, al? inIo procedures, supplemented b\ a single
small semienmpirical parameter to allow for higher-order basis functions and higher-
order correlation corrections. I lowever. this level of accuracy Is onk reached at a
cost that rapidly increases with tile SiLc of the systemn ( an iterative N' step l'ollo~ked
by a single A\ step. w here A scales as the molecular su/e). There is. thereflore.
interest in methods which might reach similar precision more etfcientl\.

[)ensitt functio)nal theory, has rccntl% shos n promise in this direction. In par-
ticular. Becke 131 has proposed an algorithm M ilch. when applied to the same
experimental data set as used in (11 thecors. gives total atomnization energies of'
neutral molecules with an average absolute error of 3.7 kcal / mot. This result com-
pares with 1.6 kcal/mol for GI and 1.2 keal/mol tfor Gi2 theor%, but is obtained
at lowser cost and is more easily extendable to larger molecules. Other densits tune-
tional theories have also shown promise in this direction 14 1.

IMost denisity functional theories attempt to express the exchange and/or cor-
relation energies as functionals of the one-electron density p( r) (or of the mi- and
i,-densities p,,(r). pI r) l'or open-shell systems). E~xact functionals are unknoi~.n.

Itnernationalm Journal Aof uantumi (helmkisry, Quanium (hemiiIrN S~nmptimsmum 26. 119-11 1 I 99'

c 992 John Wile'. & Som'. Inc.((((52-NO91 B9.3
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but sonic general properties ha•e been elucidated and manw e flicit forms ha~e
been tried. The densities ,.o. ac etaini'd usuall\ % ia a sell-consistenit procedure.
based on the potential derixed from the exchange-correlation tuntionL! I Kohn-
Sham equations). However. it isquite possible to apply the same cnerg. functionals
to electron densities derived by standard (HF) theory. An extensive study of this
sort, using several functionals. has been published b\ Clementi and ("hakravorty
[6]. Such comparative studies should help our understanding of both the densities
and functionals as well as pointing the a, av towards improved treatments.

Our principal objective is to apply a combination ofenergy functionals from the
recent literature to a large set of Hartree-Fock densities. 1his set consists of the
atoms. molecules, and ions used in the G2 studyf 21. where they were tested against
well-known atomization energies, ionization potentials. electron affinities, and pro-
ton affinities. Here we make a parallel study, using a Hartree-Fock density and a
combination of exchange-correlation functionals due to Becke 171 and Lee et al.
[8]. Emphasis is on the development of a unique procedure for all species. with
well-defined total energies. which may be compared directly with Schr6dinger total
energies. insofar as they are known. Such total energies. which are rarely reported
in the current density functional literature, can then be used to calculate energy
differences, directly comparable to experimental data (as is possible with G2 theor\ ).

Method

In order to fhcilitate comparison with previous calculations. Ae shall use molecular
structures and fiequencies exactly as in G2 theory. All geometrical parameters are
found at the MP2/6-31G(d) level and harmonic frequencies at HF//-3t0(d).
These frequencies (scaled by the usual 0.893 empirical facior 191) are used to
calculate zero-point vibrational energies. Single-point Hartree-Fock calculations
are then carried out with the largest basis used in W2 theoi_. 6-11 I + G(3d1.2p)
[It)0]. Restricted (RHfI) and unrestricted Hartree-Fock (utilt) methods are used for
closed and open shell systems, respectively. The electron density. p. may be described
in conventional notation as itii/6-311 + G(3dl.210//MP2/6-31Gi(d). Tlhis is
then used for density functional calculations.

In density functionai theory, the total energy is written

E =. h', + E ,/+ + E. (I)

where E, is the kinetic energy of independent electrons haing the densitx p. ;', is
the potential energy involving nuclei (nuclear-electron + nuclear-nuclear) and El
is the overall coulomb repulsive energy

2, f f= 2 ( r' )r p( r,) dr1 dr (t2)

The remaining term E'1,F is the exchange-correlation energy, representing the energy
lowering due to the fact that the complete electron-electron interaction is less than
IF1 . partly because this incorrectly includes the interaction of a particular electron
with its own smoothed distribution, and partly because the relative motion of other
electrons is correlated, not independent as implicit in Eq. (2).
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In Hartree-Fock theor,. the energy is calculated as the expectation Naluc of the
Hamiltonian using the optimited single-determinant wavefunction with occupied
spin orbitals k,. This gives an energs

E,, = L' 4- F 1 , 1 t + 1¾'E (31

where E-, is the exchange energy

1 V. I ( lr 2 ) x,( 2)X 21 d-r ti/ (4)

integration being over cartesian and spin coordinates. lhis expression takes some
account of the tendenc- of electrons of parallel spin to be kept spatially apart b,
virtue of the antisvmmetr principle. However. as is ,,ell known, the Hartree-Fock
energy EFm takes no account of' the correlation between electrons of antiparallel
spin. The remaining part of the energy is thle correlation energ\ 1!' . which deals
with Y-3 correlation and also the remaining o-o and 3-3 correlation eft.cts not
included in the exchange part of Em,. F, is difficult and frequentl. expensive to
compute. In G2 theory, it is treated by a combination of Moller-Plesset (%IP) and
quadratic configuration interaction methods.

A common recommendation in density functional theory is to treat E% and E,
together as a single correction E,. determined by a functional E€f.p]. There is
some point to this. since the exchange energy by itself is not clearly det•ined for
densities other than Hartree-Fock, Nevertheless, in practice. E•( often ic split into
two parts, one of which has the appearance of an exchange correction and the other
the appearance of a correlation correction. However, the two do not necessarily
correspond to exact exchange and correlation, in the normal meaning of these
terms. Ziegler [I 11. for example. notes that poor results are often obtained if exact
(i.e.. Hfi) exchange energies are used in conjunction with certain functionals for
correlation. inste:Ad, it is better to use a different density functional theory (D -r)
functional for ex'hange to go along with the correlation calculation. Since the
exchange energy is well-defined (at least for pm ), we prefer to denote this partition
of E, as a division into a paralhe-spin (at + hd/3) part E,, and an antiparallel-
spin (nad) part EA,

S= Lp,[p.] - .:,,p,,] + E,[p,. p (5)

The parallel part. which is exchange-like, is the sum of an a- and a O-part. determined
solely by their respective densities p, and pj. The antiparallel part, which is cor-
relation-like, is a single functional E.A [p,,. p, which vanishes unless p,, and pj are
both nonvanishing and overlapping. A possible interpretation is that /,p takes ac-
count of both elimination of self-interaction and effects of full correlation of parallel
(ad + f3•) electrons (including exchange). while EF takes into account of the
remaining correlation between antiparallel (aO) electrons. We shall return to this
hypothesis in a later section.

We now turn to specification ofthe f,.nctiona!s. For the parallel part, we use the
expression introduced by Becke in 1988 [7]. and also used by Becke [31 in his
recent study of atomization energies. We shall write this as
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I IA~1~L-41- (6)

where

E[p 3 3 f1 ', 1 fi fi. 7
- r f I + J6M sinh i7

The first term in (7) is designed to reproduce the exchange energy of a uniform
electron gas. The second term introduces a correction for nonuniformity through
the density gradient 7p, the particular analytic fbrm being such that correct asymp-
totic behaviour is achieved far from the molecular centre. The parameter b is chosen
by Becke as 0.0042 to fit the known exchange energies for the inert gas atoms.

The Becke functional (7) is parameterized to give good atomic exchange energies.
However, as noted above, it may not always lead to good exchange energies tbr
molecules. It is useful to introduce a quantity

" = ,-- 1 E (9)

which measures the "'Becke 88 excess." or excess exchange energy implied by (7 ).
As will be seen in the next section. this excess is quite large for many molecules.
Since we are using a Hartree-Fock density, the values of E71" and E-% are both
computable and AE,' is easiiy obtained.

It remains to add the antiparallel correlation correction L, [p,. pj. Here we use
the form introduced by Lee. Yang and Parr (L8P) [1J. This originates in an older
study of ail correlation in the helium atom by Colic and Salvetti [ 12 1. The actual
form programmed is one equivalent to LYx presented by Michlich. Savin, Stoll.
and Preuss (MSSP) [13]. It is given fully by eq. (2) of this reference and need not
be reproduced in full. It does have the property of vanishing if either p,, or p, is
nonexistent, so has the appearance of representing only all correlation. We denote
it by E'".

It should be noted that both i.yp and Missi' applied the IYP functional to a
number of other atomic and molecular systems and sometimes obtained good results
when compared with known total correlation energies. Since E'," does not incor-
porate effects of aa or 13d correlation in any direct manner. the significance of this
is somewhat unclear. We shall use E',Y" only to represent the antiparallel part.

The (Becke 88 + Lee. Yang and Parr) correlation energy is then given by

E 1(" AF -_I-•xx + E-', (10)

and the corresponding total energy IE')" is obtained by adding the HIF and zero-
point vibrational energies

/ "= / 1 , + F-' N ' (II )



T he acua rceduIe 1".
I Obtain tile I lartrce-locitk cilrexl-.

2. ent~ ethe I lartrece-Fo ock1 exchange eaI!\ I.

3.Comnpute 1<'ý' and I- h\ riu meri'a! quadra'tureC and add 10 i![\ e'
-~.Compute P/. and add to 111\c /27;

D etailOfI Ilk ft henit mrical I aitegrationl schenie are gMa'I en atile \ ppendi \

Resu~lts and IDiscusoion

The wi )I proceduare just decscri bed has been) applieid I0 thle I atoms1111. molecules1.
and roas needled for cornipaisri;1 xx thl 111 C\ e 5 pen mc tal G' ki2dta ',Ct xIi \liCh \\Ce hiaxC
ceitended here to include I F'. I I . Hie, tic . 'seN c .\r. and -\i I us'ing, a molidified
x ersion oft thle ( IL 'SSI \ N 02 Sate1 ()f pronras a j 114 1. [hle source data l1istd In
'Iahie I are:

I .The proper ( unrestricted I lartree-Foick I ec~han~ge energ\ .> FX ith the lance 6i-
3 11 G 3 d/. 2p ) bas Is,

2. The Bocke-88 excess. A h,'I'. p Iven by lFq_() measuring thle amoWU nt Ix 1 hiCh
thle Recke f'unctionjal ) gives an energy Contribuion101 additional to V\

3- The estimate aof the total correlation encrg\ . /2-! , K gikl ena this theorx, as, the
Sum of'A2> and tile anrtiparallId part due to I cc. ) ang and Parr:

4. Thie total energx P ob-tained h% adding thle correlation to thle I lart ree-Fock
trg\ o gi xc 1". and then further modified by additmiri oft'llie /ero-poi at ecere'.

as listed elsex\ here 11 .2].

This set of data should prox e of value in assessing fihe role of varFious encrgv coil-
tributions: it is more comprehlensýive than most of the data published in the densit\
functional literature.

We begin vith infuOrmation about the total energies of atoms. For small atomis.
the total energy (corresponding to full solution of' tie Schriidilngcr equation I is
moderately "xell knox':n. either b\ high-level theory, or by somec combination of'
experimental and theoretical ionization potentials. [he mt 'It results arc cormpared
with same such %alucs in Table It. Agreement is generallx achiexed - ithin Ml mil-
li1hartrees ( mli I. although there is some varitilon. The IBecke-88 functional fails to
give the correct exchange energy Imr tile hyvdrogen atoni(ii 1 312.5; nih) h\ 2.8 111h.
leading to a significant error of' 3 nih. For tile heav ier atoms,. such as o)xxgen.
fluorine. and neon, there are, some partly compensýating errors- Onl thle one hand.
incompleteness of'ltthe orbital basis results in a 1 lartree-Foek erierg\ that is too
positive by about 2(0 mh Cor thle neon atom (based on thle III: limiit of - 1 2X,5470)
given by Weillard and (lcmenti [ 15 1)- On the other hiatnd. the miagnittude of, thle
correlation energy is ov erestimated in this treatment. I lere. xxe hawe 31.1 iiili
f'rom A and -383.4 nih from L',". giving a total of' - 414.5 mih. Ihle actual
correlation energx of'neon is close to -39) nih [161f.

Table Ill lists the total atomnization energies. 11A, from thle present theory, to-
gether with Gi2 and experimental dlata. This consists of'the 55 molecules of the (i2
set plus fI,.. The mean absolute diflerence bietween m.tINP and experiment Is 3,94
kcal/mal. which may be compared with 1.16 kcal/maol for W2 theory. Theti.''
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I AM I L SOUrce data.

kAo.. u>, 1. 1 h ii) hM le:uI: Ikoii in I(11

Ito 3I2 4027 12 ic'47)4)2

Ii (-st t) 5.) 47 i 7 4'9(, 1 415 .6 14 7 2

He - 2(,t,(, .91) s 85 -- 14651i fie' 25041)4 s5 S I~ ( 14 12 -

B31t68 t .9., I I S7 24 h4(67 R 349 1, . 102 )46 4 24 1 A241

s05474., 8 7 149.6 3 "81)8 (* 4?45.2 + 4.8 I 29)4 1', 42 _4

N'o ;.14. + (11L) 181.q 54.58(4 N* 6212,A) t 12 t I, 1 5 4 040X

0 -- 23 ()o 26,27 i07021 01 -"410 1+ 1 S I8X4 '4 >654q

IF IW1184'1 _1o.3 -341.4 1), -411 1- 9(,7j) 6 * 2 24 99j w469

Nc 1 42455 31 414.5 128 941 1 Ne* 11656. 1 144 6 12 45' W

Na 1404! 7.o 1-2 4 4244, 1 62.266", Na, 1 19022 N' 41)74 (6244 017

kMg 1 4599127 -- L0 -46(4o5 2W8.06')1 Mg, 15859+7 4 .3. 423 8 111 "8 ~7-7
Alt - 1801)04(4 8.4 48; 1 242. 1591 A1* 17X92.2 .1 .477 -. 24. 4

S1 -43.1 1 2 2 517.01 289).3690 SV .2(m), 1 8 ( 3 .5064 (6 189.1177

p -2+4 15 1.I 551.2 -- 41.2004 1" 2123684 ]( (44 s4(1 3 . 441.8855
s -2;()33.110 + I8.I -649.4 -398.)1 123 S' 24791. +(I 2 S69 Z 9 '3

(1 2-541 .1 + 149 --69.9 - 464). 1471I (V ~ 27262.2 204 629_-.1 o 4596734

A r .301834 + 25.9) 7. 24.9 . 527 Ar'4 298547 i25.2 t685 7 526.95174
C - 5 16 5 1 6 -( 1 6. 1 37.883, Si 20'445; 1 .9.' 52'S 289041(19

P -2 2766.4) 4 7 .1591.) - 34 1,2884

(38 IS5', -42.1 --319.4 -.7s 12'4 S 25(194.6 f Q.9 652O4 381
102,1112',) .602 -42-1.2 -998(169 ( 1 27 748 0, 12.1 7(2.4 46().2178

It- 6i94 +3 f i-3.3 -. 1.1588 (N -1-1 57.7 -36.9 -4i14 --9268416
1.111 2 1404.2 -. -81.1 8444 HUN (241. -- 3 SA(. 93.44424
Beli 30)84.3 .- 16.2 -91.A -15.2387 CO -133101.6 62 4 -54i.4 -~113.316-2

C [ 5423.0 4 5.5 -(911.4 -38.4049 HC() 1 3685.4 .59.2 564.7 -113.84(9
CH2 4 B,) 584.6 t 14,9 (96.4 -39.1 166 f)2CO 140471.2 49 6 -588 9 1 (4.47231
(H. CA, 5789.0 -6 3 -226.1 - 39.1(020 HC01I - 14843.6 .22.9 -618.3 1 (1 5.656ýe7

CH. -6227.3 Iý (57 -240.6) -39.7W9 N, -1(31050.9 79 8 -56146 _1044 5275,
ci -6592.4 ± 17.6 -276.4 -41)4460 H,2NNH12  - 14623.2 -332 6129.3 1-(14.1 8)

Nit -6936.7 -1.6 -236.8 55.2 IN) NO -- 147136.) 83,2 6419.2 129.94(X(6
H. 7286.4 -9,4 ,287.2 -. 8548 0, 1 6291.3 115f. 7 -6X2.9 45)1.3423

N 11, 766i1 6 -- (3 3 -330.9 -56.5(160 HOOH 174063.7 - W4)6 -739) 1 -151.5425

(311 8557.3 -24.5 -324.2 --7r.7339 F, -19936.3 -1 ;X 7 -811.4 1 499.1;522
011, -893031 38.41 -378.2 -76.4(42 CO, -21591.1 -((13.1 -9441.6 -188.5912
FI'l 104141.9 -4s.9 -4(W82 1 001.4547 Na, -284422.9 .2'A --868.140 324.5593
Sil -- 465. I 4 .5 - 545.7 --289.9765 Si, --404558.6 --6.1 11101.4 --578.8468
S5fh) (A 2 - 24047.6 +~22.9 -573.8 -290.589X P., -45181.14 -. 164 -1227 8 - 682.70(32
Sill, ('B),) --214053.3 304.8 -543.5 -290,5525 S2 --50(X51 0 + 1,8 1 301).01 -796.-385)l
541, 2)1413,4 +39.9 -573.2 --291.19017 CI, -55078. ± ? 14.3 (398.1 --924.384(3
S1114 - 2(78()47 +49.8 -598.6 --291.8275 NaC) -416888 '8 7 -- 123. -- -622.5593
PH 22984.8 -4197 --583.4 --341.8698 SiO -28548,5 55 6 -94146.8 -304.7174

Pit, -23328. _S 2'10 -617.2 -342.4866 P0 -3081)7 7 -607 452.14 -41(655i(7
PHi 23682.7 +27.6 -647.7 - 343.10)85 SC --3(3844() -21.3; -- 861.') 43f62)15)
511 '5371,7 + 17.7 -647.5 -398.7414 SO - 33218. 92 -54.4 -990.6 413.3827

S12 -572044 (8.14 -683.2 -399.3773 CIO) -35736.ý7 -31.5 -41019.8 -536A,1;134
(411 27889.4 145.0 -711.14 -- 460.8045 (IIF -37554.7 -52.6 -41098.2 55ý9.9862

1.1 . 3561().7 + 42.2 -12(4.6 -144.9903 Si,Hff -42683.6 +4499ý1 I I ('414 592.4896,
I F 119942 -- 3. 46 1.2 44)7.4382 CII,CI -3384919. 428.6 - 9"1.5 -548.44574

11(411 10(963 1 -2. -445.5ý2 --77.2852 CH3SH -316)41.5 430A. 9_11.4 -4318.63 42
H (CC11 11743 2 +5 5 -494.5 -78.5046 110(7 - 361477.7 -43.1 10(446'. 535.9644
Il,((H H1 2514.) 43ý2.7 - 518.5 -79.74448 S02 -4(427 7 -12S 13 77. 41. --- 48.6492
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1I,, -- / ,,) ,,O 1 p 24 i' '1 .

-16 4 9 24 , .3111e" I s, *

S'11 525 - 4 2.t 7 'l I ( IT~n I )' 1

5OH: N(,I ; .7f2 71ht 4-, H Ih t(l: h I t I I Mll I1h -h 44

764fp ii) 3 (, ; W'h It,( ( W I 4 I) ~ Ii , 41 Ifq I

I1 - "i'.4 3 124 34)I * Q 14s'7fl 1( 117•l +4.J, 2 4.0- t.1q • ;•'+l

Sill -4 5' 4 "-2 ' 4 5 3 +< II t'2 , 4 Nit, N 1<,
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iE" T'4S I 34 1 604" 142.' ýl9 S'" 49- -, 4 3i 4'+ T) 44"

t, 21S3'<4 3 .4.1 - 6 11) 3 143 40(15 51 4Fi," "'2 f 5', q 6 "), oý

"s1" 4 lo, 611 6 3"48.162 ()It 4

Sir4 ('I3') 2 4'3 . 'i' -5 9.11 S(-'46 0.4 724 - 3 7

CI I AX)5. IS 2': 3 SI'i -,I 'sfis' I, Iq 4 5'4.4 4)ioIt 1 it)

CIH" __5 -2 (1 -2i'' 3-1.1-1 "Sil. 2 1619 '24') 2ilSWt 'l I4

UI! 2 4. I ,. 2'13 , 342.,61 SF I1 2[ 12 .i •,_ 1 '10 63

\tl +01,.0I 34 ; 1 104 , 5.2229'• 1P 11 2, 31W"0 ) 12, 3 95 741 '411

NI:l 4 9 s 2 , t I.ll, 451" 11 1 i". 654.\ 342 5 -

)I I s5t35 , 60 Iq(,-W _Q 25537.2 .;'l 4 Ir .4 9 '..5, I

SIU. 1s'5:,4 ,..' " q 2 7 3,l.,5 1(" 2 1.. 7 (L 7 416 f4

0I) - 5 -J. I IS 24.11 S+.9T11 5d q)t14-' 9 -5.N 1-5(,.4 -7o)64

CIN: 1 5'1 s48.8 56 -I) .16.I.4 I , 2 14 1-.2 (,2 14 1

I 12 !I. Is lcrwu7je l r neutral at Itn1.'.

Nil /AL II hm i NII I') ll
t 

' IT)2I1-. 5 ' ,4 '-S

I: 0499K 0.497() 0. " 0•4 1 1.0

11c 75iX99 1.90126 .2.1042 6I
L.i 7.43) 20 .4-796 7.4781 1. a

Be 14. + 74..) 1 6 .5•; 74 14.6673 ' 9.q

B 24.5415 1 2- 1.6467 I124 -S39 7.2 -

37 .6903l 37.8199 37,845 1 -T~

N 54.31989 4.4S809 54.-895 8.h

()74.80913 75.01 17 7iMO1734s

I 99.4018 09.9742 9t.7310 1 1.9

Nie 12K."560 I!x.94 1 128.937 4,

l otal energies in hartrees: difllernces in mullihiartiree.
Baswd oin Ilarlrc- ick and correkitiln etimaes I151, hot with the I7M Shift COr7,etiOn

r4erseci3In sign a,. po.ted out 116].
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mean accuracy is cLtto cIose to that obtained b\ Beckc 3 1. 37 kcalio.. I,',cd
on the original 55 .ConlpotUnds. lie uses a combi nation of 1188 and a coirelation
correction based on the paramatri/ation of the 'rec-ciectron ga&, I \%osko ei al.
1I 71. We shall refer to this procedure as 119)2,

A detailed examination of the entries in lable IIl sho' s little ci orrelatwon %mlh
errors reported for 19•2. even though the e,.e-all pIrtiwmance s comparablc. I he
lit P binding energies are mostly too small. , hercas B92 lends to om crbind. \ large
tiBl 1P error occurs ftor the CN radical, for which P,, is 13.4 kcal/tmol too lmo 102

gives a value 6.A kcal/mol too high. This radical is known to be highlk spmi-con-
taminated at the t.:tf: level. 11 is therefore of interest to note that the restrictcd
Rot If density leads to a 11 •Y1' binding of' 174.0 kcal / mol. in mukh better agreement

with experiment. Other large III N'1 errors are found for (C " A,, and Sil- ,,. the latter
gis ing an atomitation cnerg. 17.2 kcal mtol too small. lh.ese errors are sprcL:d o.er
seven ionds. however. 1392 gi\es good agreement for these molecules.

Is %w i Ill. loral attonli/alion cncrw ,cs /l), (i kcalniol I.

Nolecule IlN "1, (G2 tLpl Niolccllc lit ) 1 (62 1 ,pt

Hl- M)3.4 104.4 10)3.3 :(N 3014.2 3112s 310.s
1.it! 55.)) 56.6 56.) CO 253 - 25) 25 2
Bell 52.8 45.5 46.9 t(() 21.1 214 _70.3
(H 80.4 841.5 79.9 i1C(O 3i54 I3
(I I. ('B3! 17 .5 1-8.6 179.6 If,( Olt 474. 9 482.3 480, 5
(CH I(A,) 6'6s.3 172.1) 170.6 N. 229.6 223.8 225. 1
(Ill 28" x 289.1 289.2 |i 7 NN 1t 408.7 404 4 405.4
('IL 387> 3)93.2 392.5 NO 155.4 1 5(1.6 151. 1

Nf 813.0) 77.9 79.0 01 124.3 115 t 118.04
NItA 175.7 17i). I 1)10.0 110011 253.7 252.1 252.3
Nt2 278.! 276.5 270.7 : 41.3 36.6 36 •
Otft 103 4 1 0) 4.6 101.3 CO. 381 .4) 384.6 381 9
0-11O : 218.4 219.6 219.3 Na. 16.1 19.2 16.6
F! I 134.6 136.3 135.2 Si. 68.3 73.. 74.4)
Sit!1 ('A,) 142.3 147.1 144.4 P7  114.5 114.7 116.1
Sill •'ll.) t118.9 123.8 123.4 S, 1()(1,7 97.4 4)0)1.7

Sill, 2()7,5 213.5 214.0 c(! 54.0 55 8 57.2
Silt, 295.2 3(04.8 32.8 NaCl 91.2 98.8 97.5
t)It- t45.7 144.9 144.7 SiO 185.9 188.8 19).5
PHi, 224.1 226.4 227.4 (SC 45.) 170,55 f69.5
sill 1 70. I 173.) 173.2 SO 124.4 12(0.8 123.5
(III 1001.7 1012.6 102.2 (10 59.4 61.2 63.3
t.i: 19 5 25.) 24.) (CIF 6)4.2 61..0 6(.3
lit. 135.2 137.5 137.0 Sill,. 482.9 5013.) 5(j() I
I IClI 383.x 387.2 388.9 (HC1 363.6 372.1 37)1.0
tt(cC(| 1 525.2 531.7 531.9 (i5 1St 415.6 445.0 445.1
!,C(( I I 654.6 666.6 666.3 t IOCI 455 7 156.8 156.3

(N I 16.2 176.0 176.6 SO. 245.8 248.9 254.0
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] I:I N I i ' FleIctron affinitis (t\ i

Mlolecul 61 F\11. Molcul'(e III N\ I, (12 1 Npi

C 1. 1 S 1.19 1.2h Si I.o I 18'
CH 1.11 1.13 1.24 Sill Oil I. IX, 1

(H2 0.A9 (1.)I w1.65 Sill. (l.9 1 1)9• .1.124
CH, -- I)0 0.04 0.o8 Silt 1 28 S 42 .144
C(N 4.56 3.97 3.82 P 0T. I0,64 0. -4,

Nit o.35 0_10 0 s Pit 0.S3 O,9, I iil
NiH.0 0.02 (.77 0.74 PI _. 1.08_ I 1 26,
NO 0.0 1 0.07 0.02 PO) 0.99 1.04 1.1t)
O 1.50 1.40 1.41, S 2.05 2.00'
Oft 1.7() 1.87 1.83 sit 2.19 2 lo 2 ',4
0: 0).42 0.47 0.44 S, I.51 1.0,6 ! 1+3
F 3.17 3.48 3.40 (1 3.5(,1 61 i 1' 5

(1- . 3 .

much too large. Like us, they use spin-unrestricted methods. The reasons tir this
anomaly are hard to pursue further as Ziegler and Gutsev do not report their detailed
energy components for the separate species CN and CN .

Table VI gives eight proton affinities that are compared with (G2 theory and
experiment. Here the performance of BLYP is quite good. the mean error of 2. I1
kcal/mol being not much greater than the value of I.04 kcal/mol obtained at the
G2 level. This superior performance is not surprising. since no change in the number
of electrons is involved and the electron configurations of the protonated species
are closely related to those of the neutral molecules.

Combining all of the 130 experimental comparisons in Tables Ill to VI. we
obtain an overall mean absolute error of 3.86 kcal/mol for the BLYvp model. This
is not much greater than the value of 3.7 kcal/mol obtained b> Becke [31 for
atomization energies only.

Parallel and Antiparallel Contributions

We return now to the interpretation of the separation of E-, into parallel and
antiparallel parts. El... and E",XP. As noted earlier, one possibilitv is that the parallel

TABn I Vl. Proton affinities (kcal/molh.

Molecule BIYP Gi2 Expt Molecu;: Bi RYp (2 ExpI

I1 97.7 99.2 1(00.8 SilL 153.7 153.0 15.4.
HCC1t 153-0 153.6 152.3 PH, 183.2 186.2 187. 1
NH, 2W0.5 202,5 202.5 I1s 166.5 167.7 168.8
H O 162.1 163.1 165.1 H(1 132.o 133.0 1 ,3.6



part represcents t he lull mu\lianec enery) plus further ellcrg los'criite due to extra
non-I lartrcc-l'ock ) correlation vlncrgx bctscenl4t and 'iý pairs liispcctioii ol'
[-able 1I clearlk shots s that tisI c-alnnot bc coir-cct In all casesN becaluse 1heIkCIcS
excess AXL i¾s s" u1tII's ''\10 iC indicatnug anl cncre' limcering of /,.N than tile
Mxcaitec cnce\y I hiis can not he corict. It To"% ussLp fOr Whe h\ dnroen atom'.~ "her

there is no electron correlation, buttil hCIk'Ck-X8 Cnleri [.'~Ill S to canlcelI til C0ou lomb
1,-!~ , aS it Should. [htits nias- of course. he J autilt 0I thle particular nlals tic'

form11 otf thl:e Hckc-~s cncrgý . Indced. h1,econstant /, il I-q_ 1 7 could be nerc~jased
so that A:' is /cro 6wr the hStdroen atom: all %alutes of AIP' Oar other s sems
then becomel neuzati' e. Iloxw c' c. %% e m ll niot i t~cI' tigate miodified fu nctionlaI" here.

A nother possibiIlik is that tilc partition ol'tcorre-lationl into AIL"I" and /-', gi~ es

the breakdoxu n oA (ri'ani uuthqu/n into parallel andi antiparallel par-ts ex cn thungh
this does niot work full fOr the isolated atomns. We hawe tested this idea bxý cxaluating
ome1) of these bindingý' contributions I&om11 Iable I {thle\ turn-l ouLt all to be positix )

and compare them xsrith thc corresponding parallel (mo 41Ia) and amitiparallel ti n31
c'ontributionS from an WtP treat ment ( t'mienl core or \alncme electrons" onixý %N ith
hie same basis. .\x here the parallel-ant iparallel partit ion is tinckluiiixocal. Ibisv corn-

parison as displa\ ed in [ able VII SIIOxx s moderate1 success foir thle simple lix drides,
C1I.,. Mi I OilM andl 1:11. Iloxx cxer. for the txxo heassý -atom11 mole1cules N, and 1:.-
the comparison is Much less suCccssful- IFor 1:_. the satisflictorx reproduction of tfe
total correlation hi nding a;s cidence~d h\ thle good dissociationl enfgý inl [table
Ill Iris ascribed mainl\ to the parallel ( fBecke-88 ) pait rather than to thle antiparallel

MP I part. At the Nt 2 Ow~ l. the opposite is true. Ix 'idenl. th sucs of the 111i 'uCCS1 M)1
procedure cannot be fu~ll'. understood alongv these line,,: nieN\ insight is needed.

(Ainclusiqns

T[he folosihni. conclusionsý are drass n from this work:

*. [he mt )T' pr-ocedure described, based on existing energ\ functionals and using
tile I lartirec-fock densits is capable ofgiQ ing total eniergies in reasonable agree-
rrem t -'2) mh ) with exact Sehr~cdingor energies. Knollar as these are known.

(ifi 2034 31 Jk- I AS 1

(M,2S.6 KA .91 W

oilf 21 N2-N 1 521( 41t 1
N4o '/116 hft I A7 1

I 4 7 91~ Sil 32-. .
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2. Various differences of BIN I' total energies reproduce good expcrimental data on
atomization energies. ioni/ation energies. electron attinities and proton alfinitics
to an accuracy of about .' cal/ mol or 0.2 eV. lE\en though this does not match
the greater accuracy achieved b\ 02 theory. it is a significant achievement for
a method of moderate computational Cost. The use of a single. ý\ell-dcfihcd.
theoretical procedure for all of these physical properties gives some coherence
to the theory.

3. The partition of the electron correlation into parallel (08X) and antiparallel
(IYP) parts does not always match the corresponding partition in simple Molic:-
Plesset theory. The significance of the individual components of BiYP (or other
comparable density functional treatments) is not fully understood.
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Appendix: Numerical Integration in Three Dimensions

Our preliminary method for evaluating density functionals such as ( 7) is closel,
related to that described by Becke [19] but, for various reasons. we have made a
number of modifications to his scheme which we now describe.

I ) Our cell functions P, (r) are identical to Becke's tor homonuclear systems. but
we have not found it necessary to adopt the "'atomic size adjustments" which
Becke suggests for heteronuclear systems.

(2) We employ Gauss-Laguerre. rather than Gauss-Chebyshev. quadrature for the
single-center radial subintegrations. This choice was motivated by the fact that
the true electron density is known to decay exponentially at large distances
from the molecule.

(3) We use 31 radial points on each center, scaled so that the 16th (middle) point
lies at the maximum of the radial probability function 47rr2rZ( r) of the valence
atomic orbital p(r) given by Sla!er's well known rules [20]. For example, the
16th radial point for a hydrogen atom lies at r - 1.0 au and that for a carbon
atom lies at r = 16/13 au.

(4) We use 72 angular points at each radial point. The distribution of these is
given by a special set of 12 points corresponding to the vertices of a regular
icosahedron inscribed in the sphere (the axes of the icosahedron follow the
"-standard orientation" conventions of the GAUSSIAN program), plus a general
set of 60 points generated by the rotation subgroup of the icosahedral group.
Such formulae. based on finite rotation subgroups of the sphere, are highly
efficient in the sense that the number of surface harmonics exactly integrated
by them is close to one per angular point. A clear exposition of the theory of
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this approach to quadrature on the surtace of a sphere can 11e Iound In thle
literature [ 211.

If the electron densitY jq r) itself is integrated using this preliminary scemlel thle
results agree with the total number of electrons to ks ithin a tew thousandths of an
electron for all of the molecules studied. Furthermore. %%e have observed that both
the 1388 and I ,I functional values are Comparatively insensitive to further im-
provements in the grid. Nonetheless. further wkork is undenkay to construct exen
more efficient integration schemes.
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The Gradient Expansion Approximation for
Exchange: A Physical Perspective

MARLINA SLAMET and VIRAHT SAIINI
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Abstract

In recent work. ,se have provided a rigorous phssical interpretation for the exchange energy and
potential ( or functional derivative) as obtained within the local-densits approximation 6ia the Harbola-
Sahni formulation of man%-electron theory. In this article, we analsze the gradient-expansion approxi-
mation ( il-, I) for these properties from the same physical perspective. The source charge distribution in
this approximation is the t;I-\ Fermi hole to O(v I). This charge distribution is unph.sical, so that the
resulting force field and work done cannot he dclined in a physically meaningful manner, and the
exchange energ. is singular. Thus. when viewed from the perspective of a source charge. the existence
of the gradient expansions for the potential and ener.y is questionable. We next discuss the con\entional
method of emplo.ing a screened-Coulomb interaction to eliminate the singularities due to the (a -t
source charge. and show, that it leads to inconsistent results. These inconsistencies are also intrinsic to a
proof of the inequivalence of the Harbola-Sahni and Kohn-Sham exchange potentials within the ,.-x,.
Thus. although the inequivalence of these potentials has been established b% other anal,,scs, this proof
is showAn not to be rigorous. Finall%. xse demonstrate that when the physics of the (;t -xk exchange source
charge is corrected bN the satisfaction of sum rules, the modified charge distribution then leads Io a well-
behaved local exchange potential and exchange energ. density. 'nd to a linite exchange energy. I he
consequences of our anal\ sis on the gradient expansions for the correlation and evchange-correlation
potential and energ% are also noted. , 1942 John VWdie, & Sons. Inc.

Introduction

In Hohenberg-Kohn-Sham density-functional theory [I ,2. all the many-body
effects, including those of the correlation contribution to the kinetic energy. are
incorporated in the exchange-correlation energy functional of the density. The cor-
responding local many-body potential seen by the noninteracting quasiparticles is
derived by application of the variational principle tbr the energy to be the functional
derivative of this energy functional. Thus, the relationship between the energy and
potential in this formalism is mathematical. The simplest and most commonly
employed of the approximations to the exchange-correlation energy functional is
that of the local-density approximation (IDA). In the IDA. each point of the non-
uniform electronic system is treated as if it were homogeneous. but with a density
corresponding to the local value at that point. Since the exchange energy per electron

International Journal of Quantum ('Chemistr,: (uantum ('hemistr. Sy mposium 26. 333-145 (1()(2)
199(2 .hohn Wle, & Sons. Inc. (('( (t(12-7(s)S/)2/o)33 -1
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for the homogeneous electron gas is known, the exchange component of the I i.x
energy functional of the density and its functional derivative are both known also.

The mathematical framework ofdensit. -functional theorv has recentl\ been pro-
vided a physical interpretation in the work of Harbola and Sahni [3.41. Accordingly.
the exchange-correlation potential and energy are unified ph.sicalk in that both
properties are described to arise from the same source charge distribution. This
source charge is the Fermi-Coulomb hole which represents the effiicts of Pauli and
Coulomb correlations between the electrons. As such, both the many-bodx potential
and energy are derived as a consequence of the Coulomb interaction between the
electron and the Fermi-Coulomb hole charge. Based on this formulation of many-

electron theory, we have in recent work [5 ] provided a rigorous physical interpre-
tation for the exchange (Pauli-correlated) component of the potential and energy
in the IDt.x by identifxing the corresponding source charge distribution. As a con-
sequence, we have also explained why the functional derivative of the t [.x exchange
energy functional is in fact a /onau fid' potential in that it is path independent. The
.DA exchange energy functional and its functional derivative are, of course. the

leading terms in the a prior, gradient-expansion approximation [I.2.61 (G; A) for
these properties. The fact that the leading terms of these expansions can be rigorously
interpreted indicates that it is meaningful to examine the (;lA for exchange from
the same physical perspective. In this article, we therefore analyze the exchange
energy and potential in the (WA from the viewpoint of the (larbota-Sahni inter-
pretation.

In the Harbola-Sahni formulation. the Fermi hole, which embodies the corre-
lations between electrons due to the Pauli exclusion principle, constitutes the source
charge distribution for the local exchange potential and the exchange energy. The
Fermi hole p,(r, r') at r'foran electron at r is derived in terms of the orbitals , (rr)
of the Slater determinant to be p,(r. r') = Iyt(r. r')0/2p(r). where -y(r. r') =
ZO*(r)O,(r') is the single particle density matrix and where the density p(r) =
"yir. r). The Fermi hole satisfies the physical constraints of charge neutrality
"p,(r. r') dr' = 1, positimity p, (r. r') >. 0. and value at electron position p1, r. r) =

p(r)/2. The source charge gives rise to an electric field, which is

Q~r) p, ( pr, r') (r 0 ' dr' .(I
f (r - r'K

so that the local exchange potential 11',(r) is the work done to bring an electron
from infinity to its final position at r against this force field:

It',(r) = - F 6,(r') dl'. (2)

The exchange energy, E_, in turn. is the energy of interaction between the electron
and the source charge, and thus

Iffp(r)p,(r. r') drdr' (3)

2 = r - r'I
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The potential. I',(r). is well-defined in that it is path-independent flrsymmetrical
systems such as jellium metal surthces [71 and spherically symmetric atoms [8 1,
or open-shell atoms [9] in the central field approximation. Equivalentl., fbr these
systems, the curl of the electric field vanishes. There is as \et no rigorous proof that
this is the case for nonsvmmetrical density systems. However, if for such systems
the curl of the field does not vanish [t0]. an accurate local exchange potential can
be obtained [3.4,6.11 ] from the irrotational component of the field, since it has
been show4n [12] that the solenoidal component is negligible.

The (EA for exchange to 0(V2 ) was originally proposed on dimensional grounds
by Herman et al [13]. The GiF., exchange energy functional and its functional
derivative are given as

p'"'[p] f Jdr t, p(r)0p(r) + C',f dr IVp(r)K`/p"'(r) (4)

and

A [P][p]: 4 e\p(r) + C, 4 Vp(r) 1 Vp(r) (5)6P 3 "3 pp7'.(r) p4
1'(r)

where t, = -3k,./47r is the exchange energy per electron for the homogeneous
system with k.(r) = [37r p(r)] t " being the local value of the Fermi momentum.
The leading terms of these expansions correspond to the LDA exchange energy
functional and functional derivative. The coefficient. C,, of the gradient correction
term was originally determined variationally by these authors. In order to understand
our analysis of these gradient expansions for the exchange energy and functional
derivative from the unifying perspective of a source charge distribution, we first
describe how the leading LDA terms are similarly explained.

Just as with the exchange energy. the single-particle density matrix and conse-
quently the Fermi hole can also be expanded [2,14.15 ] in a series of the gradients
of the density. This gradient expansion of the Fermi hole p',`(r, r'), where the
superscript Ui) refers [16] to the order of the gradient. has at present been derived
[171 up to terms of 0(V7). An analysis of the Fermi holes of this expansion to each
order up to )(V3 ). as applied to atoms. has also been performed [18]. We refer
the reader to Refs. 17 and 18 for the expressions of this expansion.

Now in the LDA for exchange, the source charge distribution [5] is p',)(r, r),
the GEA Fermi hole to 0(7). It satisfies the constraints of charge neutrality and
value at the electron position, but not that of positivity. This source charge can be
decomposed into a spherically symmetric component p',"' (r. r'). (the LDA Fermi
hole). and a nonspherically symmetric component which is comprised of a term
of O(V). The electric field due to this source charge distribution is 6(,''(r) =
--7k, (r)/7r, and therefore, the work done against this force field is the same as the
leading term of eq. (5) for the functional derivative. Since the V"X 6,(r) = 0. we
understand, from a physical viewpoint, why the functional derivative in the IDA
is a potential. Furthermore, it is only the nonspherically symmetric component of
this source charge that contributes to the electric field and thus to the work done.
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In turn, the exchange energy is the energy of interaction of the electronic density
with the source charge. However, it is only the spherically symmetric component
of this source charge that contributes to the energy. The resulting expression is thus
the same as the LD-,\ term of the exchange energy functional of Eq. (4). We em-
phasize that the orbitals employed for the determination of the IDA exchange cnergy
are not generated by the t.D.x Fermi hole p,•"(r, r'). but by the nonsphericaly
symmetric component of the source charge distribution. Thus, the tlarbola-Sahni
formulation provides a rigorous physical interpretation for the exchange potential
and energy in the LDA.. Furthermore. the accuracy of properties derived within the
LDA can now be explained by a study [5] of the source charge distribution as a
function of electron position.

In the next section we analyze the potential and energy in the f;o~x for exchange
from the physical perspective of a source charge distribution. Our analysis shows
that, as a consequence of the unphysical [ 18 ] nature of the G(A source charge, the
results for the force field. work done. and exchange energy are also unphysical.
thereby raising the issue of the existence of the expansions for these properties. The
conventional screened-Coulomb interaction method of eliminating the various sin-
gularities that arise due to the GEA source charge is discussed later in this study,
and shown to lead to inconsistent results. These inconsistencies are also intrinsic
to a proof by Wang et al. [17] of the inequivalence of the Harbola-Sahni potential
It', to the Kohn-Sham exchange potential. g. Thus, although the inequivalence
of these potentials has been established by other analyses [3.8.17 1. the proof by
these authors is shown not to be rigorous. We will also demonstrate that when the
physics of the GA exchange source charge distribution is corrected [191 by the
satisfaction of sum rules, the modified charge distribution then gives rise to a well-
behaved local exchange potential and exchange energy density, and to a finite ex-
change energy. Finally, we summarize our conclusions and consequences of our
analysis.

The Gradient Expansion Approximation From a Source Charge Perspective

The first step in the description of the G(A for exchange to O(7-2 ) from the
Harbola-Sahni perspective is the identification of the corresponding source charge
distribution. Since the source charge in the LDA is the (EA Fermi hole to 0(7), and
the fact that only odd-order terms [I 7] contribute to the electric field and work
done. implies that the source charge in this case is p',`(r, r'). the (WtA Fermi hole
to ()(V'). In contrast to the LDA source charge. however, this charge distribution
does not satisfy the constraint of charge neutrality. In fact, the total charge of this
distribution is infinite [18]. In addition. it violates the constraint of positivity by
possessing growing oscillations [ 17,181 in the region away from the electron position.
The only constraint it does satisfy is that at the electron position. To see the singular
nature of the GtLA source charge distribution. Figure I plots the cross-section in the
electron-nucleus plane of p I,"(r, r') for the neon atom employing analytical Har-
tree-Fock wave functions [201. The electron position considered, as indicated by
the arrow, is at r = 0.307 a.u.. which corresponds to the intershell minimum of the



(GR,,\DINi FXPANSION APPROXIMATION 337

20
Neon Atom,

Electron
at r = 0.307 a.u.

10

-0
RX

-10

-20 I
-1.8 -1.6 -0.6 0.0 0.6 1.2 1.8 2.4

r (a.u.)
Figure I. The (a,\ source charge distribution. p,"( r, r'), as applied to the neon atom

for an electron at r 0.307 a.u. The exact Fermi hole is shown (dashed line)-

radial probability density. The same cross-section for the exact Fermi hole is also
plotted as the dashed curve. It is evident from the figure that, in contrast to the
exact Fermi hole which is localized about the nucleus, the (6A source charge is
spread throughout space with increasing amplitude of its oscillations which begin
even within the atom. This same behavior of the source charge occurs [ 181 for all
electron positions. The concept of an electric field due to such an unphysical charge
distribution is thus meaningless, and consequently, the work done is undefined.
Further. we note that it is the terms of (V,3 ) of the source charge which cause this
to occur since, as noted earlier, the term of O(V) does lead to a finite electric field
and well-defined potential.
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The substitution of the GIL.x source charge (see Fig. I ) into Eq. (3) also clearly
shows that the exchange energy is singular. To see how this singularity in fact comes
about. we consider the Slater potential defined as [ 2 11:

, f p ,(r. r')

which is. equivalently, the exchange energy density. As in the I.:x. it is only the
even-order terms of the expansion Fermi hole that contribute to the Slater potential
and exchange energy. Thus, it is p¢,,2 (r, r'), the component of the (UA source
charge to 0(V2 ), that causes the singularity. since the total cha: of this distribution
is infinite [ 18 ]. In Figure 2. we plot the component p,2 (r, r') of the source charge
for the same electron position as in Figure I. The singularity in the energy density
and energy can now be seen to arise from the undamped oscillations of this com-
ponent of the source charge which also extends throughout space. (Note that the
charge in Fig. 2 is plotted up to 7 a.u. from the nucleus.) The singularity in the
exchange energy is thus consistent with the fact that the corresponding potential is
not well-defined.

The above conclusions with regard to the GEA, based on the perspective of a
source charge distribution, are also consistent with those of density-functional theory.

10
II

ii

8
Electron

-6 at r 0.307 a.u.

T"• 4
(51

•2

-2, ,, ,
-7.0 -3.5 0.0 3.5 7.0

r (a.u.)
Figure 2. The component p,2)(r. r') to O(7-) of the (itA source charge distrihution fior
the same electron position as in Figure I. The exact Fermi hole is shown (dashed line ).
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In density-functional theory one begins with the approximate energy functional
and obtains the potential as its functional derivative. The exchange energy in the
G-EA to 0(V2 ) is the energy of interaction between the electronic density and the
gradient expansion Fermi hole p,-'(r. r') to O(V7). This functional, as discussed
above, is singular. Therefore, its functional derivative has no physical meaning.

If it is assutm'd that the GEA exchange energy functional of the density, as defined
by eq. (4). exists. then it and its functional derivative can be employed in the self-
consistent Kohn-Sham schen.e We note that the functional derivative ofEq. (5)
is singular [ 13] for small and large electron positions, and therefore. convergence
factors have to be introduced [ 13 ] in the sellfconsistent procedure. , However, when
viewed from the perspective of a charge which gives rise to a force field, a potential,
and an energy. we see that the unphysical source charge calls into question the
existence of such expansions for these properties.

Elimination of Singularities via the Screened-Coulomb Interaction

One approach 114,22] to the elimination of singularities in the properties deter-
mined within the GEA for exchange is to introduce a convergence factor or equiv-
alently to perform calculations for the screened-Coulomb interaction exp(-Xr)/
r. This modification of the Hamiltonian eliminates the effects of the growing os-
cillations of the GEA source charge away from the electron. Thus, the electric field
[ 17 1, work done, Slater potential [ 17 ]. exchange energy [ 18,23 ]. and its functional
derivative [18], as derived from p (3"(r, r'). are now all finite.

In the limit of bare-Coulomb interaction as the screening parameter X vanishes.
the electric field is singular [ 17 ] as In X. This result is consistent with the conclusions
of the previous section, in which the undefined nature of the electric field and work
done for bare-Coulomb interaction was arrived at by an examination of the GEA

source charge distribution itself. In other words, the limit of the electric field for
screened-Coulomb interaction, as X vanishes, is the same as the electric field obtained
directly for bare-Coulomb interaction.

The behavior of the GEA exchange energy functional in the limiting procedure
is, however, mathematically inconsistent. The limit of the exchange energy as X
vanishes is not the same as the energy for bare-Coulomb interaction. To see
this, we note that the Slater potential I, 3"(r) for screened-Coulomb interaction
denved from the source charge distribution p," (r, r') is also singular [17] as In X
in the limit as A' vanishes. This result is consistent with the conclusions of the
previous section in which the Slater potential for bare-Coulomb interaction was
shown to be singular. However,

lim E"•,GI•A [p] = lim 1~ r f "."rd 7
X-0, ii' p -o2 p(r) Vi</ (r)dr (7)

is finite, and reduces [14,23] to Eq. (4) with coefficient C, Cs"h' corresponding
to that of Sham [ 22]. Therefore, it is not equal to the energy of interaction between
the density and the source charge. p•,3)(r, r'). which is singular (see previous sec-
tion), nor is it equal to (1/2) f p(r)[lim Vz.'( 31(r)] dr, which is also singular.
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Thus, we see that the method of employing a screened-Coulomb interaction to
overcome the singularities leads to inconsistent results for the various properties.
It also leads to an incorrect value for the coefficient (,. On the assumption that
the GEA-exchange energy functional exists, it is now accepted that the correct [ 6,241
coefficient is C, = (10/7) (,'hari. We note, however, that a recent temperature-
dependent perturbation theory calculation [2] leads, in the zero temperature limit,
to a result that is (" = (24/7) (.sh,.

The inconsistencies of the screened-Coulomb approach to the elimination of the
singularities in the GEA for exchange also bear on the proof of Wang et al. [ 17] that
the work done, ,i K, is not equivalent to the Kohn-Sham potential., U,, the functional
derivative of the exchange energy functional. Their proof is for slowly var:. ing
densities, so it is assumed that the exchange energy can be expanded in a series of
the gradients of the density. The authors then employ the fact that, whereas the
electric field due to the source charge. p ,3 (r, r'). for screened-Coulomb interaction
is singular. as In X in the limit as X vanishes, the expression for the negative gradient

'-,j G E A
-. ,A is finite for bare-Coulomb interaction. They conclude, therefore, that the

potentials P', and y, are inequivalent. However. as we have seen in the previous
section, the potential W, for bare-Coulomb interaction cannot be defined for the
GEA source charge. Wang et al. have in effect calculated the electric field due to an
unphysical charge distribution (see Fig. I ), and consequently. correctly arrived at
an unphysical result. Furthermore, the finiteness of A-Vp;' x is based on the as-
sumption that the GEA exchange energy functional exists. However. as also discussed
previously, when considered as the energy of interaction between an electron and
the source charge. the GEA exchange energy functional is singular. As such, its
functional derivative is not well-behaved, and therefore has no physical meaning.
Thus, when considered from a physical viewpoint, this proof of the inequivalence
of WA, to p_, is inconsistent. Furthermore. the fact that both the potentials. W, and
pu, are not well-defined within the GEA makes a comparison between them not
meaningful.

The inequivalence of the potentials, R', and u,. has, however, been established
as follows. Presently there are two definitions of the exchange potential, A, of
exchange-only density-functional theory. The first definition [25] states that it is
the difference between the local effective potential which minimizes the expectation
value of the Hamiltonian taken with respect to a Slater determinant of the orbitals
generated by the effective potential and the Hartree potential. The effective potential
and the resulting Kohn-Sham exchange potential p',"M are determined by the op-
timized potential method (oPM) [26]. The orbitals and the density of the OPM
differ [3,8,17] from those of Hartree-Fock theory, and consequently, the total
ground-state energies are an upperbound to the Hartree-Fock energies. The IF,
and A',)'P potentials are essentially equivalent [3] throughout space except in the
intershell regions of atoms, so that the total ground-state energies differ [8,9] by
only a few parts per million, with the results of the PVK potential lying above those
due to the optimized potential. According to the second definition (see sections
3.4 and 6.2 of Ref. 2) there exists an (as yet unknown) energy density functional,
E'"[pI (and its functional derivative ALVF). which achieves its minimum value at
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the Flartree-Fock ground-state energy at thie I larIree-Fock densit\. Ihus. it is clear
that the Harbola-Salini potential, 11 corresponds to neither ',)"fV nor ,

Finall\. we note that the anal.\tical expressions tor the tforcc field 6 ' ' " r and
the negative gradient -- ,¢ . due to the source charge p',"(r. r') for finite
screening. are diflerent. ( Numericall . hovexer, the two expressions Ifor fixed \alucs
of' the screening parameter. X. are practicall] indistinguishable throughout space
foratoms. ) Fhus. the corresponding potentials are also dilklrcnl. I lowever. although
for finite screening one obtains convergent results for the ýarious properties. it is
important to note that the description of the physics is still incorrect since the
source charge distribution p, r. r') still violates the constraint of charge neutrality.
Furthermore, except lbr electron positions in the deep interior of atoms, there is
elsexx here no value of the parameter X which can ensure this constraint. Thus. all
that the convergence factor does is to lead to closed-form analytical expressions.
but it cannot correct the erroneous description ofl Pauli correlations within !he IlA.

Elimination of Singularities by Modification of Source Charge

As we have seen in the previous section, the method ot employing a screened-
Coulomb interaction to eliminate the singularities in the (i• . for exchange is in-
consistent. In the bare-Coulomb interaction limit, the electric field is singular. but
the exchange energy is finite-albeit with an erroneous coeflicient for the gradient
term. 1-owe'\er, let us instead \icw the problem from the perspective of a single
source charge distribution giving rise to a local potential and energy. The cause of
the singularities is the (it x source charge p ( r, r') of 0(7.3). Thus, in order to
obtain finite and well-behaved results for the force field. work done. and exchange
energy. it is the unphysical behavior of this source charge that must be corrected.
An approach to this, fbr example, could be the generaliied-gradient-expansion ap-
proximation (I(;i \) method of Perdew [ 15 ], in which the conditions of positivit\
and charge neutrality are imposed [191 on this distribution, thereby ensuring that
it satisfies all the constraints of the exact Fermi hole. The work done and exchange
energy could then be determined from this modified but more physically accurate
charge distribution. This idea can, of course, be generalized to also include the ;V,
Fermi holes to 0(7) and 0((7"). since each modified ;0A Fermi hole. whether of
even or odd order in V, can contribute to both the force field and energy.

In Figure 3(b-d), we plot the potential 1f', for the neon atom, employing ana-
lytical Flartree-Fock wave functions [201 for the (i(,\ source charge distributions
to 0(7). (7(V2). and 0(7 ). respectively. For completeness. Figure 3(a) plots the
potential It", due to the (&,x hole to 0(V), wNhich is the iD.\ Kohn-Sham potential.
For comparison, also plotted (dashed line) is the potential If'\ due to the exact
Fermi hole. Observe [Fig. 3(b-d)] that. as a result of the fact that the (;(;A source
charges to each order are physically realistic, the corresponding potentials, 1It', .due
to them are all Axell-behaved. So are the corresponding Slater potentials plotted in
Figure 4(b-d). The Slater i.t-x potential [21] is given in Fig 4(a). The Slater
potential due to the exact Fermi hole is also plotted (dashed line) in each figure
for comparison. The resulting (;( i.,-exchange energies 1191 to each order in V are
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Neon Atom

(a) (b)
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-8 I -- , , . . , . - . . . . , .

0.01 0.1 1.0 10 0.01 1.0 10

r (a.u.)
Figure 3. The exchange potentials. It .for the neon atom asdetermined from the following
approximate Fermi hole source charge distributions: (a) the G(A hole to Ol7): and ib).
(c h and (d). the GGA holes to O(7), O((T -). and 0)(71. In each panel, the potential II',

due to the exact Fermi hole is plotted (dashed line)-

also consequently finite and are -11.90, -12.24, and - 12.47 a.u. in comparison
to the exact W, and Hartree-Fock theoru' values of - 12.12 a.u. and - 12.11 a-u..
respectively. Thus, correcting the unphysical behavior of the (iFA source charge
leads to well-behaved "', potentials and exchange energy densities and finite values
for the exchange energy.

Conclusions

Since a rigorous physical interpretation fbr the LDA-exchange energy functional
and its functional derivative is provided by the Harbola-Sahni formulation of many-
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Figure 4. 1 he Slatcr potent ial, I ,i fn the nco n a tutn ax doce rni ncd Iim [nhe tilll, 'Ixnoe

apprxitrtnate lerml hole xiurcc charge dixtrihutwolv f a )the I I ) \ hi dc. and 11, - an
(11, tile , himlex toi t)o7h, 017' ). andtih 0( I. In each panef- ihe Slaw ptenmi due ti1;'

the evact Fermi 1101C 1x ffliuttetded (& l~k ine)

electron theory,. we have examined the (ti \ b'r exchange to 1( roti the samec
ph\,sical perspectivec. In this approximation, (lhe source charge distribution In sshich
the correlations due to the Pauli exclusion principle are incorporated. Is tile (d
Fermi hole to OR V) As this charge distribution is unph\sical. thle Nxsork. requi,1red
to move an electron in its lorce field is undelined and the exchange cncrg\ is singular.
Thus. when viewed from the perspective of' a source charge. the existence of' the
expansions for the exchange potential and] energy are questionahle. [hle same con-
clusion can also he arrived at from the expression tlbr the to N-ecwhalnge enecrg\
f'unctional wkritten in terms ol'the Fermi hole to 0(7 I. 1 ihts Fuinctionial is; si~gular.
and thercibre. its [unctional derivative has no phv sic,!l meaning. 'Ibus, if' the C\-
pansions for the exchange-correlation potential and] energy are to exist. the singu-
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larities in the separate expansions tbr exchange and correlation must cancel. More
fundamentally, the unphysical components of the (it,% Fermi hole source charge
distribution must be canceled by those of the Coulomb hole charge.

Another consequence of viewing the cv. for exchange from a source charge

perspective is that it shows the proof of the inequivalence (within this approxi-
mation) of the work, HW., to the Kohn-Sham potential. pu,. to be inconsistent. The
proof is based on the use of an unphysical charge distribution so that the force field
and work done cannot be defined in a physically meaningful manner. On the other
hand, it is assumed that the energy due to this same charge is finite. These facts are
physically inconsistent and thus the proof not rigorous. However. when this un-
physical source charge distribution is modified, so as to make it more physically
reasonable by the requirement of satisflaction of various sum rules, then the resulting
force field and work done are well-defined and finite, as are the exchange energy
density and exchange energy.
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Nonlocal Exchange and Kinetic-Energy Density
Functionals for Electronic Systems

M. D. GLOSSMAN, A. RUBIO, L. C. BALB.AS. and J. A. ALONSO
Derartamntori de Fiot,'(i Tcuirria. L'no r'rsidad de a/lhad did. 1: 4'o~l t, 'a/lad,'lhd.l.,'atn

Abstract

The nonlocal weighted density approximation (\1t).-) to the exchange and kinetic-encrgý functionalk
of man\ electron systems proposed several \ears ago by Alonso and Girilfalco is used to compute. within
the framework of density functional theon', the ground-state electronic density and total energy of noble
gas atoms and of neutral jetIieon-like sodium clusters containing up to 500 atoms. These results are
compared with analogous calculations using the well known Thomas-Fermi-Weizs~icker-Di rac (I r\WD )
approximations for the kinetic (lFw) and exchange (D) energy densit\ functionals. An outstanding
improvement of the total and exchange energies. of the density at the nucleus and of the (r exi ' ation
values is obtained for atoms within the WDA scheme. For sodium clusters we notice a sizeable corn,.. 'on

of the nonlocal effects to the total energy and to the density protiles. In the limit of very large clusters
these effects should affet the surface energy of the bulk metal. ;, 1992 John Wilcs & Sons. inc.

Introduction

The density-functional theory (DFT ) of Hohenberg and Kohn [ I ] allows one to
study the ground-state (g.s.) properties of electronic systems in terms of the electronic
density p(7) instead of the many-particle wave function. The basic theorem of DFI
states that the total energy of a many-electron system can be written as a functional
Elp( 7)] of the total electronic density, and this energy is a minimum for the exact
g.s. density [I]. Consequently, the minimization of E[p(7)] with respect to the
density, subject to the charge normalization condition. leads to the g.s. density and
energy of the system, which is achieved by solving the Euler equation

6E[p]
ta-bp( -f)(I

where p is the chemical potential.
The functional E[p] can be written as the sum of several terms (in a.u.) [1,21

E[p] - I - f[i r'1.1i d7 d-' + p(7)V,(l) d- + ,1pJ. (2)

In this equation, the first two terms represent the Hartree energy, which includes
the Coulomb interaction between independent electrons. and the interaction of the

electrons with the external potential. V( i), created by the ions. The functional

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 347-358 (1992)
'• 1992 John Wiley & Sons. Inc. CCC 0020.7608/92/010347- 2
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F[p] in Eq. (2) is unknown and one must resort to some approximations. "lij] is
usually written as the sum

l"] i) 1=[p1 4 lh' (31

where T[p] is defined as the kinetic-energy functional for a system of noninteracting
electrons and I,, [p]. called the exchange-correlation (xc) energy. describes the
effects due to the Pauli principle (exchange energy) and to the remaining many-
body effects not included in the Hartrec and kinetic-energy functionals (correlation
energy). One can split further E,,[p] in E,[p] + EI, [p]. By neglecting the correlation
energy, E,[p], one is constrained to the independent electron model, that is to say,
one is working at the Hartree-Fock level.

The simplest approximation to F[p] of Eq. (2) is the so-called local-density
approximation (LDA) [2,3] and leads to the well-known Thomas-Fermi term TAp]
for the kinetic energy [41 and to the Dirac term K [p] for the exchange energy [5].
The corresponding functional, known as Thomas-Fermi-Dirac (TFD) energy. al-
though somewhat successful in computing global properties of the system, is locally
inaccurate. So. the next step has been to improve the local behavior of the energy
functional by expanding the kinetic and exchange energy terms in gradients of the
density p(7') [ 3 1. Although this represents an improvement, it has serious drawbacks.
The number of terms in this gradient expansion (GE) is unknown and, in practice,
one is able to deal with only a small number of terms. We should mention that in
order to achieve some particular results, the coefficients in front of each term in
the gradient expansion have been sometimes empirically fitted [61 but. evidently.
this is not a satisfactory procedure.

In order to avoid these problems, different alternatives have been developed.
One of them is the nonlocal weighted-density approximation (WDA). developed
independently by Alonso and Girifalco [ 7 1, and Gunnarsson. Jonson. and Lundqvist
[8]. Starting from the exact expression for the exchange and correlation energy.
and using a reasonable approximation for the exchange-correlation hole. the %Vi,\
scheme arrives at a nonlocal functional for the exchange-correlation energy which
avoids the use of gradient expansions. Moreover, if correlation is neglected in this
theory, Alonso and Girifalco have shown that a WDA approximation can also be
derived for the kinetic energy, which allows for a unified nonlocal treatment of the
kinetic and exchange energies [7].

In this article we present an exact (numerical) solution of the Euler equation
associated with the WDA model for the kinetic and exchange energy functionals.
In this way. we have calculated electron densities, total energies, and their different
components for neutral noble gas atoms. A comparison has been done with the
results obtained through other theoretical approximations, showing that the Wt,\
model is quantitatively more accurate than the usual gradient expansion functionals.
in addition to be free of parameters.

We have also used the WDA to calculate the g.s. total energies and densities of
neutral jelliurn-like sodium clusters, Nav, containing up to N __5 500 atoms. This
is a first step in order to determine the manner that the total energy per atom and
other electronic properties of metallic clusters evolve, as the cluster grows. to the
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corresponding properties of the bulk metal. By using the IN ix method we attempt
to assess, without the ambiguity of 1v[( X )W,' methods (X indicates here the ýalue
of the coefficient in the gradient term of the kinetic energy), the kinetic and ex-
change-correlation contributions to the evolution ot. for example, the ionization
potential of the clusters towards the work function of the bulk metal as the cluster
size increases 19-131. In this report. howe,er. we restrict ourselves Zo stud\ the
evolution of total energies and densities in comparison with other t\. pes of calcu-
lations.

Nonlocal \'Veighted Density Approximation

The exchange-correlation energy of a system of electrons can be x ritten exactly

in the following way 181

] f IFf , F'). 6 . ,:4)

where 6( F. !') is the pair correlation function. This expression can be interpreted
as the Coulomb interaction between two charge distributions: the charge density
p(l) and the exchange correlation hole charge p,,( P. F') = p( F')G( F. 7') w\hich
surrounds an electron at 7. The functional derivative of E,, [p] with respect to the
density, which is needed in the Euler equation ' I ). is called the exchange-correlation
potential

Vl, G() - 7) (5)6p(P7)

Since G (-P. 7-) is generally unknown, it is necessary to resort to some approximation
to it. In the L)A the product p( i')G( F. i') in the second integral in Eq. (4) is
replaced by p( i)Ghl I - 7': p( Pl)1. where i,[t I -- T' 1 p(7)] is the pair-corre-
lation function in a homogeneous system with constant density equal to the local
density p( -). Considering only exchange effects. (G/, is exactly know n in anal\tical
form,

9 (sin Y -VCos 4r t F - [(3 -T)I

this IDA approximation leading to the Dirac expression fir the exchange energy
KA,[]p mentioned above. On the other hand. in the nonlocal ýeighted-densit. ap-
proximation (WDA), the correct factor p( ') is preserved in the second integral of
Eq. (4) and G( i. !') is approximated by (•[ , - FI: • ( })]. where (4[: P
7' " -(V)1 is again the pair-correlation function of a homogeneous system. but
now characterized by an effective densit. • (-), evaluated at each point P bh using
the sum rule for the exchange-correlation hole charge:

f o(ri[['I - 'I: 0( •1) . (7)
h ti n tWith this ansatz, the exchange-correlation energy becomes:
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2 f

The Wi),\ improves the asymptotic behavior of I,,. that is. I,, decass as I ! 2r at
large r for a neutral atom. which dikflirs from the cxact beha\ ior onhx in the constant

This is an important improvement o'er the i I).\. which sho s an exponential
decay. The constant ' is due to the fact that the N\ ti) pair-correlation function
does not fulfill the symmetry property of the exact pair-correlation function, that
is. (;' ~( 71 it,) 4 (i'+ ( Fi'). This lack of symmetry is due to the dependence
of G"')+ on b( ).

As has been stated in the Introduction, one can also establish a wsl) approxi-
mation for the kinetic energy. The key is a relation between the one and tw•'o particle
density matrices in Hartree-Fock theory (see Ref. [71 for details). Although this
relation is not universal, it is exact for some cases of practical interest, like s\ stems
with closed electronic shells. Using that relation and the wi)A approximation for
the pair-correlation function G (of course at the exchange-onl\, or Hartree-Fock.
level) one arrives at the following approximate expression for the kinetic energy
[71

T"A DA [ ] f tT"'1 1- (9)

where the kinetic-energy density is given by

'A'XD[: p] = ('p2 ] + 2 p (10 )
8 p 4

with C. = (3/l0)(3r2)2'. The first term is a nonlocal extension of the local
Thomas-Fermi term (C',p;'3 ) and the second is the original Weizscker quantum

correction [ 141.
It is interesting to recall that the Weizsdcker term. Tw[p]. without an. other

kinetic contribution, is the exact kinetic energy for one-electron systems. Also 7'\N [f)]
should be exact for many-electron systems in the regions with very low electron
density [15]. The gradient expansion of 1[p] yields XTw[o] for the second-order
gradient term. with X = 1/9 [3]. A factor X = 1/5 was found by lromishima and
Yonei [61 by fitting the energies of atoms to ttartree-Fock results [1 6].

Model and Computational Details

By considering the WDA energy functional derived above, the Euler equation
becomes

I Vo7P7 1 ,2p

8 p1 4 p

+ Qi21;3 + -If p )j;,') "I t6 ( di')d ( I)+ i)p 3f )(7w
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where

l 1 (f) .- ,(F)+ r,(h)+ I,(F). (12)

I', is the total potential, sum of the external, electronic (IHartree) and exchange
parts ( notice that we have restricted ourselves to the exchange-only case, since our
intention is to compare with Hartree-Fock results). Equation ( I I ) must now he
solved coupled with Poisson's equation which guarantees self-consistenc. between
density and potential. Defining a function

g( + - p( F) f v ) d , (13)

where ft F) = [j ( i)/p( 7)j ' the resulting Euler equation closely resembles the
lorm of the IF IM% equation

K f /(F) + 8 t i, ( ( )"('k - . (14)
8 P, 4 P 3

In a former work by Deb and Ghosh [171, this equation was solved for noble gas
atoms using a function i,( •) evaluated hy means of Hariree-Fock densities [161
and the exchange potential V,{( F) was treated in the i i). of Dirac.

In a recent work by us [181. Eq. (14) was sell-consistently solved coupled with
Poisson equation for several neutral atoms. However. in Ref. 1181, we used the
exponential approximation of Berkowitz [I '] to the exact exchange pair-correlation
function of Eq. (6), that is, (i,(y) --- 1 /2c" 5. In the present work we have used
the exact (O,() of Eq. (6) and we have also employed a different numerical method
to integrate Eq. (14). By putting f(F) = p ( 1) and

1= J1() + g(1()-('(F) (15)

Eq. (14) can be •iewed as a Schr6dinger-like equation

1 + 1,(F)>() = 14(i) (16)

which we solve by the conventional self-consistent Kohn-Sham method for only
one orbital normalized to / electrons [20]. With the purpose of comparison we
also solve in this work analogous equations corresponding to the following local
-1 D(A)w functionals: X = 1/9 (corresponding to the exact second-order gradient
expansion of T[p]). , = 1 / 5 (corresponding to the effiective A found by Tom ishima
and Yonei [6]) and - I (which contains the full Weizsdicker term like the WDA).

In all these TIt.(A)) functionals the exchange energy is the original Kj[p] Dirac
term. Let us notice that our results for noble gas atoms are slightly different than
the results quoted by Tomishima and Yonei [6] and by Yang [21]. which used a
different numerical procedure. We have ised a logarithmic integration mesh up to
60 a.u. in the radial direction instead ol .e linear mesh in r'- used in Rets. [6]
and [ 211 and also in our previous work 118 ], Because of this change. we think that
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the present results (see the Results section ) are more accurate than the previous
ones in Refs. [ 6. 18. 2 !1: this comment affects, of course. also to the WkD.\ results.

To solve the Euler equation corresponding to metallic clusters we have adopted
a different numerical technique called the inawiarv xwtcp melhod [221 with the
boundary conditions [A 7,)], = [F)( 7')1, , = 0.

Results

Neutral ..I lol),

The calculated total energies for noble gas atoms are shown in Table I together
with those obtained through the TFD(X)w )Wmodel (see preceding section). and with
Hartree-Fock results [16]. The results of the calculation by Engel and Dreizler
[23 ], which included up to fourth-order gradient corrections to the kinetic energy
are also shown in Table I under the entry 1', + T_ + T4 (exchange was treated in
these calculations at the local density, or K0,. level). It is clear from Table I that
the \% DA results are the closest ones to HF. We stress that the wDA functional is
free from empirical parameters. Note also that the wi).,\ method is exact. at the tlf-
level, for two-electron systems like the lie atom. In this case the weighted density
ý obtained from the sum rule [Eq. (7 )] must be exactly zero. giving an exchange
hole equal to - 1 / 2p( l')-) the corresponding exchange energy balances in this way
the electron self-interaction contained in the Hartree term. As a test of our numerical
accuracy we have obtained from Eq. (7) values of j ( 1) lower than 10 - a.u. for
all 7. The WDA total energies of Table I are. to our knowledge. the most accurate
ones ever obtained from direct minimization of an energy functional fully expressed
in terms of the electron density'. The average error with respect to HF is only 0.4
per cent.

As the virial theorem is well obeyed, the accuracy of the kinetic energies in the
WDA approximation can be estimated from the accuracy of the total energies. On
the other hand. exchange energies are compared in Table 11. Again the WD-A results
show a better overall agreement with FI: than the results from rFD( X )W functionals.
This can be ascribed to the better description of the WDA exchange potential com-
pared with the local exchange potential from the Dirac term. The entry K/ + K,

"I A•I 1 I. Total ground-state energies of noble gas atoms (in a.u.) ibr several densits functionals: K I
TI iD,\)w. and 7., 4 T. - iT (tourth-order gradient expansion [2312 . Fxact Harnree-Vock (iII ) results are

gisen as a reference.

Atom lit VI DO l9)w If Tt1"•/Sw rIuw I.,1). TO T2 + 7I4

He 12.86 -3,22 2.82 1.48 2.86 2.96
Ne -128.55 - 139.88 - 128.80 -85.73 130.01 133.74
Ar -526.82 --561.80) - 524.75 -374.15 -526.83 542.12
Kr -2752.05 2896.93 -2744.16 2095.43 2754.79 2819.12
Xe -7232.13 - 7495.22 7208.54 --5695.87 7261.80 7383.55
Rn 21866.K - -. 17823.32 -22099.06 22256.3



KIN[FIIW-INI-RO) I 1ý:("I IO) .N %]_ 53

I ",Bi 1 11 1l\JIh1nge ýIlefgwst it l ohlc ga,,atoiw, (in a.ti.) lor ,w w~ral dcnsit%, titn,+'twlalk, Výl m . I iI) l?,\)\N

and &. & - (- 'LlA- I IlC I0rfj1 including up tl ,Liilh-iidC •t.M 1 i ifnt drrt~ lhills Iin Illl( ýLiicii, r iwuI ITtI i p+
to, secc nd-ordcr cirrrc ii.' , tor c\chaigc I •.31). 1 \dct i Idrlrcc.t-.ock i II I rctilt0, arc Ir.Crl as a rccrcncc.

.Stoi III 1 )1 ')11 \ I I1 5 II •. l'1 , , A.

1I1 C1.3 i (.71 (143 I0.- 1.4
Nc 1 11 !0,48 tII. 13 S.AII 121. o 10(94

Ar 311.18 2-.,t 26.1 22.t3 32.,5 28I.5 5

Kr 8l-.l 87 23 85.72 75 79) X297 81). I

V 19. 7 ! 9i.94 168.61) 1 52.67 21().7 74 1 09

Rn 387.5 - - 339.36 436.42 375.97

in Table II corresponds to a calculation by Engel and Dreizler [231 which in addition
to the terms mentioned above in connection w-ith Table I, also includes the second-
order gradient term in the expansion of the exchange energy. These exchange ener-
gies become of comparable accuracy to the w,., energies fbr heavy atoms. Notice.
however that the inclusion of K, slightly worsens the total energies obtained by
only including K, [23].

A comparison of the radial electron density of the Ne atom for the different
models is shown in Figure I. As expected for these approximate models, the radial
density profiles do not show the peaks that characterize shell structure as in the
Hartree-Fock case (see however the wDA results forjdlliwn-like sodium clusters
belovw). In comparison with the -1[t)( X)w models. the WDA densit.s seems to be
more compact. This statement also holds true for a comparison with the density
of the iI t)( I1/5 )w model, which is not plotted in the figure. Another test of the
quality of the atomic density is provided by the calculation of its value at the site
of'the nucleus. The ,DA results are given in fable [if for different noble gas atoms
together with the values obtained from Hartree-Fock and TID(X)W calculations.
The densities obtaitui:d from -ID( v) )w functionals (X = 1/9. X I / 5) drastically
overestimate the ii values: this is well-known [231. On the other hand, this behavior
is greatly improved in tile wi).s approximation which is the only one that leads to
realistic (that is. close to tiF:) value,- 4otice in this context t' .t a kinetic functional
containing the Weizsicker term alone. Tw. reproduces tI cusp at the position of
nuclei [24 1. The calculated wiD.\ densities for noble gases obey the cusp condition
within a factor of about 2/3. [p'(O)/2/p(O)],wr• - 2/3. whereas the iIt:1)(X)w

ftnctionals give too large tactors. Another related test for the goodness of the atomic
density is provided b\ the expectation value of .r The calculated /r '\ values for
the "N i,% and 1i MA Pw functionals are compared with tilF values in Table IV. We
see again that the wi~ method gives the best results.

.I,,]III1Il1-/jkL' .S'udiuni ('lo/erA

In the spherical eiflium model [9]. the ionic background in the cluster is con-
siiered as a uniform distribution of positive charge p, ( F) - p, 0( " R). The radius
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r/ 2  (a.u.)
Figure 1. Radial density (4irr~p) of the Ne atom versus r' - for the different models

compared in this article.

R of the ionic background is linked to the number of atoms N by means of the
relation •irR 3 = NQ, Q2 being the volume per atom in the bulk metal, and p" is
equal to Z/Q, where Z is the valence (Z = I for Na, etc. .. . ).

The external potential ;, created by this ionic distribution is

TABI Ill. Electron densities at the site of the nucleus for noble gas atoms (p(0)/Z/

Atom HUI TFt.( l/9)w TrVX 1/5)w If1\ U DtA

fie 0.4495 6.2964 2.3976 0.1179 0.4496
Ne 0.6199 6.4374 2.5716 0.1693 0,5555
Ar 0.6584 6.4383 2.6154 0.1868 0.5769

Kr 0.6909 6.4485 2.6275 0.2042 0.5960
Xe 0.(7063 6.4700 2.6334 0.2123 0.6025

Rn 0.7199 - - 0.2197 0.6054
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TARI F IV. .. r " exp uation xalucs uor noble gas atoms (n au.) Ior the nonlocal \, 1)-\ functional, as
compared Aith 1 I I Ms and laaritree--Fock results [281.

Atom It [I I II)) I/5)\s I f )D" \k D,

fie 3.37 3.65 3.23 1.75 3.39
Ne 31 I1 33.M8 30.710 21.38 3(1.84
Ar 69.72 73.79 69,57 51.72 69.60

Kr 182.85 190.26 181.63 143.76 182156
Xe 317.88 328,44 317.60 259. 18 321.30)
Rn 604.39 - - 5(06.22 613,28

-r 3 If r <R
47t. 0 2R 2R

I -- (17)

' 3 RV - 1 otherwise .

r

In our calculations for sodium clusters we include a local correlation energy func-
tional derived by Wigner 125]

0.4 4p( 1-)
E,[p] fj- 7.8 + (47rp(!)/3)-" d7 . (18)

We then solve the Euler equation 14 with 1'1(7) = VJ(?) + VV(7) + 1*,(7) +
,(-f), where .j,( ) is given by Eq. (17) and V(( ) = 31/6p is easily obtained

from Eq. ( 18). Then we obtain the g.s. electronic energy Ejp] and density of the
cluster. The total energy is E, = E[p] + E where E,,,,, is given by the
self-energy of the positive background. which is fixed for a given metal cluster of a
fixed size.

We show in Figure 2 the difference in the total energy per atom between our
results using the WDA + F., functional and the results obtained with the TFD( I /
2 )W + E, functional for sodium clusters with N <• 500. The choice of A = 1/2 in
the TFD( 1/2)w functional arises from a best fit to total energies and to Kr> 2 -l
values obtained by a Kohn-Sham calculation for the same clusters 1261. In the
Kohn-Sham calculations the kinetic energy of independent electrons is treated
exactly, the exchange energy was given by the Dirac IDA term KO[p] and the cor-
relation energy by the Wigner term of Eq. ( 18). We can see in Figure 2 that nonlocal
contributions to the kinetic and exchange energies are sizeable. In the limit of very
large clusters, the nonlocal contributions affect the surface energy of the bulk metal.
This point has been quantitatively studied by Tarazona and Chac6n [271 although
these authors used a different nonlocal kinetic-energy functional.

In Figure 3 the electronic density and the kinetic-energy density of Na2, 0 cor-
responding to the WDA and TFD( 1/2)w functionals (both including local Wigner
correlation) have been compared. The WDA electron density has more structure.
emulating the Friedei oscillations that appear in the density profile of a metallic
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Figure 2. Difference in the energy per atom of sodium clusters Na,,. between results
obtained with the WDA + E, and T1)( 1/2)w• i:,. functionals.

surface. The enhancement of the peak in the WDA density near the cluster surface
is similar to the enhancement of the Kohn-Sham density for a metallic surface
with respect to TFD(X)W calculations [ 27 ].

Conclusions

In this article we have solved (for the first time in an accurate way) the Euler
equation associated with the nonlocal weighted-density approximation for the ex-
change and kinetic energies, calculating electron.c densities, total energies, and
exchange energies for noble gas atoms. We have obtained improved results compared
with the results from TFD(X)W models. Also the density at the nucleus and (r ')
expectation values are substantially improved. In particular, the total energies are
the most accurate ever obtained from an energy functional fully expressed in terms
of the density.

For jc/liwm-like sodium clusters we find a sizeable contribution of the nonlocal
effects to the total energy. The WDA densities of these clusters show much more
structure (Friedel oscillations) than the correspondirj TFD( Žs)W densities.
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Figure 3. Electron densit, and kin etic-encrg. densits ol Na., obtained from the vk ) %
andf l)) , )w approximations.
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Current Density Functional Theorv in a Continuum
and Lattice Lagrangians: Application to

Spontaneously Broken Chiral Ground States
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Abstract

kkC I, ii ii Lia IC tlte el rrent-dciisi tfunctioi nal thcork tor sstmInI arbit rank I t ro ins apiow feldc s.

A set of sel Leon sisten t eij-ation i in coparable to the Kohn -Shiam cqIuationý fo r ordi narx de nin t im itional

theors Is, densed. and prosed to be, gauiie-ini anant and ito ,aotil% the continalIJI CilLiatioli I hesec CLqUIiatrm

of V ignale and R asolt insokei the ga age held correspondin ito t ile C sternal niza ,nut ic held a" %%el 'Ias a

ne%ý gauge filtd d in era ted en/u clv from the mamut-- /, si interact ii ni. cA nest extend tbhis fza uge thcor\

I folio"~ Ing Rasolt and \I, riuale I to a lattice t. UeasrpAnn bceliesd to be appitoptkate kk\ a tgthnii

Ham i toiniai in thle presne icc an c sternal mnagnetic twid We fi nails sain n the natuLre o f the gr ounid

state of' a strongix nonoinitontin electron gas in the presence of th, is ma -bod\. sclf-induced IVauce held.

1,1111ii %k lit,- & sins., InI"

Introduction

Since tile seminal at-ticle,, b, liohenherg and Kohn [1] and Kohn and Sham [2].
density functional theor). ( DI: ) has dcveloped into an important tool for thle treat-
mnent of man\ -body problems in condensed matter physics. Its practical Success
has prompted much theoretical Axork aimed at extending the applicabilitk of the
theor\ to ssstems more general than those considered In thle original studies 1 3.4].

-The interest of' this article is the formulation of the lvtf-d' l uncl iimiunal
thew-v , r systems in the presence ofan external magnetic field. Many rccen toxcilting
phenomena 15.6 1 Involving electrons in large magnetic fields are a strong motivation
for the need of such a formulation.

Magnetic fields have been tincot porated in the BIi t onl\ insofar as they cause
spin polarization [ 3.7-91 J'The Ibeat that orbital currents arc also induced has long
been recogni/ed 171. Here v-e incorporate this etl ,ect into the self-consistent f'or-
mulation of one-particle equations which lies at the heart of a practical Iniplemen-
tation of I)[< I .The basic variables arc thle particle (lensit% w( " I. and thle -para-
magnetic- current densijty. i,( ý I [see eq. (211]. [ he latter must be used rather than

Into-nationail Iu(mrnal ofOit iluaiitu ( hklileiiiis t o:1ieiiii iiii ittisiiii2..11i 1 I S?

\ii sublectk Lux I i itx ltlin fie I nlje lt-,. -

1i0il1hshiI",~ Johin V',ilek- N. Suit' ItII, i~iTi~.?IlV~l
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the physical current density [see eq. (3)1 because it uniquely determines the .ector
potential and the ground-state wvavefunction. Furthermore. since in the vaijational
principle the external vector potentizi is kept constant, the minimi/ation of the
energy functional will have to be with respect to i7. Consequcntk. a ke. ditficulty
we had to overcome is that a one-particle equations formulation does not a priori

satisfy the physical requirements of gauge invariance and the continuity equation.
In the following we demonstrate that both requirements can actually be satisfied

because of an exact transformation property of the exchange-correlation energy
functional, which we derive here. As a consequence of this transformation, the
exchange-correlation energy functional E,,[n. 7J]. which is now a functional of
both particle density and "'paramagnetic" current density, takes the form

E,.[n(-), j,( ) ) , n(i). t X ( 1(;))J (1)

(El, is a functional of both n(-;) and 7 × (j,(')/n(T)). This is the one of the
key results of this study, and it is this which allows the formulation of single-particle
equations in the presence of a magnetic field.

Current Density Functional Theory for a Continuum l.agrangian

We start with a brief discussion of the uniqueness and variational properties of
the energy. now in the presence of an external magnetic field; we follow the derivation
of Vignale and Rasolt [10]. The nonrelativistic Hamiltonian for a system of N
electrons in external scalar and vector potentials. 1'(7) and A(f), is

11 = T+ U + '+ Wt.

The definitions for the various terms are (e is the absolute value of the charge)

r=f ( 21n )•()

U = Ifd- f dF4' (F)• (-C') u(-i, TWIFW( ')•()

S= f di'V(?)n"P(i),

14 = lff dt'Dc;fdn"( i

The density operator is defined as n""(") -'(7)0(). and the paramagnetic
current density operator is

h11•( F)-- W'()•( - [71(•](• (2)
T(it

The physical current density operator is given by
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" F - i7'?"• F• t ..... ) F)• (3)

and satisfies tile continuity equation 1- .j/'( F: 0) ± in'"( F: )/ (. In the above
equations, we have disregarded spin in order to concentrate on the novel phssical
feature of the orbital currents.

We nov, run through the basic theorems of density functional theor. in magnetic
fields. Let j; (). (F). and n( F) denote the ground-state averages of the corre-
sponding operators: then the potentials. I '( ) and .1 ( ;). and hence, the ground-
state wavefunction. ý, are uniquely determined (apart from an additive constant
in the scalar potential) bx the knovledge of the density distributions 1,( F) and

,,( ) 10]. For. suppose that there are two sets of fields. IV( : 1..I ( ,:) and I'( F).
T '(7). giving the same ground-state distributions n( F) and j,,( F). l.et I •." and

,', be the two difierent ground states corresponding to the two sets of fields. Let
I/ and II' be the two corresponding Hamiltonians and h and L' the two ground-
state energies. Then. from the variational principle for the ground state of II. we
obtain the inequality

= ,E' + f d-n(,',Li() -"'(-P)J + Cf dj i,(-)

7,)c2 f dn(?)[. - )

Another inequality is obtained by interchanging the primed and the unprimed
variables, and summing the two inequalities we get the contradiction

E+ h'<E+ V'

which proves the theorem.
For the variational principle, let

1n' 7";1 - 1jn'. ;,] F ± Lt n j'l J,) (4)

,Ahere [ n'., -is the ground-state wavelunction corresponding to l'and I' ,. Then
the functional

j, [W.I j 7 = P W.,, j,'] + f 1/71'( (V;( ) +- d

.1() +2 _; f dn'-)1 7 (r) (5)

has a minimum wvhen n'and I , take the actual values corresponding to the potentials
I' and ..I. This follows from the variational principle for the ground state of II,
since
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which pro\es the theorem.
We now turn to the lormulation of the one-particle equations. We first detinc

the exchange-correlation energy functional /,, as fbllohs

I.i'. IA f1 . 7,] f i d:f dP'm( ,)1 i. ,')n( V) f k, In. 1.1 (0)

where
r ,[ ,,. G ,1 --- ý4 4.[ , .7 1 I' l, .; .1 • ( 7 )

and 4[n. j'/. is the ground-state wavelunction corresponding to ni and i/, in a
noninteracting version of the system Il]. 1 .[n .1, I is a Slater determinant of one-
electron orbitals. ý,. which satistv a one-particle Schridinger equation vith some.
as vet undetermined. eflfective potentials. The functional. 7T. is also expressed in
terms of the 4,'s. Putting this representation oF 7, in eqs. (0) and ( 5). and carrving
out the minimization of E,. A. determines the elective potentials. We get the
following self-consistent formulation |or the ground-state density and current:

n(F) = > ¢()e

= ___ \- J "(i~4() -1*(;))¢,((;1
2mi

2 /I-ihe + _F5 ; ,( ) • --- ..- ( ) (:( )+ 5 , ; )•

2m C 2mF

+ f(V) -- ,/ ',it',,: ) ,,•)}4 ( f 1,q ( ) (8)

The ground-state energy is giv.en by

L' -," dF'pz( )I( F V)n( ') dft,,( )n(F)

f- f d1,.( F)..1,,(F) 4 F[,,I, /11,. WI

Notice that the ctlective Ncctor potentialA 4 A/,, enters the Schr6dinger-like equation
linearl/

We now prove the important result. eq. ( I ). fbr the form of'/-.,, . Protf Consider
the transformation
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where M( T) is an arbitrar tfunction. Clearl, ttie transformation of the %kaetlunclion
is ti n../ ,] = [ . J,] exp[ i(c'/ / ) Ž" ) M f, ) I 1he transfornmatIon of/' is easilI
obtained from the definition (4)"

-i,,. 7;,1 =/I, 7,,1 + < d ip7,( ).V.A(;Y) + ,nw2 f ,,i( ,F)1j.( F)>

The crucial point about this equation is that the transiormation depends only on
I? and -,, not on the waxefunction. Therefore. the same transfbrmation applies
also to T,[n. J,], defined in eq. (7). Putting these results together in eq. (6). we
discover

M~c 1: . 1,, 7, -- ,,e l = E-,,, 7. j v 13 )

This is an evaci property of the E1, functional. Another way of expressing this
property is that P', can only depend on the combination T, )) -

j 7,fF)/n(-t))

EA n, = Ej<. il. (14)

We next prove that this form, in conjunction with eq. (8). implies 1" I 0, i.e.,
the static continuity equation is satisfied. Proofl. Taking the functional derivatives
of eq. (14) we find

C .,,[.I -× I(IS)
<, 7) iX 15

--, ..I,(F ). -- (16)t',.I C• 5It(? r c(F)
~5n( i) 11 - -.

Eq. (15) implies that (1nVF).-,?)) = 0. Since the Schr6dinger-like eq. (8)
already guarantees - 'j,( ) + (v/mc)n( )[.A( 7) + .A,, ( T ) 0 0. it follows that
7-( j- + (c/o/,w),,i) 7 = 0.

Current D)ensity Functional Theory for a Lattice Lagrangian

It was first suggested by Anderson [ 12 1 that the strong correlations of the carriers
within the copper oxygen plane (CuOP) otfhigh-7I materials could provide a mech-
anism for the superconducting condensation. Following this suggestion. various
spin singlet liquid flux phases [ 13-191 w ere proposed for a description of the normal
state. Such phases are characterized by self-induced eflizctive gauge field and these
are almost exclusively tormulated on tight-binding Itamiltonians. The extension
of'our results for the continuum Lagrangian of the first section to a Lagrangian on
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a lattice [9] is motivated by these suggestions. We provide evact formulation for
these gauge fields.

We start with the lattice Hamiltonian

f IH J~Ž A(~+ h.c. + 1 i,1  I7a)

where

F=- ,,: [ + c•' 3 r,,,,6,, + 1" ( 17b)

(F, .4. V'.- are matrix short hand notation for all the indices). In eq. (17). (.
and ri,,, are the Fermion (electrons or holes) creation and spin density operators.
respectively, at site i, with band index a and spin a. represent the most
general configurations of the Hubbard U's. e" are the band energies, and ý;.', are
the hopping matrix elements (where t,," = 1t*1 "'). A and V are the external vector
and scalar potentials.

We now prove two basic theorems equivalent to eqs. (4) and (5) of the continuum

case. ( I ) The quantities

x , GiC-,,,, IG> (18)

uniquely determine A (mod(27r)) and V (to within an additive constant) and.
therfore, the ground state I G( x)) and ground-state energy E..1 ( (X). Proof Suppose
there are two such fields. A. V and A', V'. Let ti and 1?' be the two corresponding
Hamiltonians with the corresponding JG) and I G') and ground-state energies,
EIA, and E. ', . Then

FAA.,G- lG>) < (G' ItIG')

and
I,. -( G'l G'l> < ( GI ff'ýI G)

Summing the two sides and using eqs. (17a) and (18) we get

+ F;,, < + F- .. .+

which is a contradiction and proves the theorem. (2 ) For fixed A and 1'. the ground-
state energy reaches a minimum for the correct X. Proo.f Let a different set of X'

originate from a second Hamiltonian. fi'. Then
E ,,( ') <- (;'(X')l !IiIG '(X')\ > (G (X ) IflI (; X )> =- E ,,. .X) (19)

Q.E.D.
We can next write EA,1 as

E (x),= l., •x7,. + c.c. + L,,(X (20a)
t 2
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where

It

According to eq. (19). we get the distribution of the X's by minimizing eq. (20a)
at fixed A and 1'. However, it is crucial to recognize that not all the x's are admissible
for variation since, according to eq. (18) (using the Schwartz inequality), these X's
must satisfy the constraint < 1. We satisfy it bv introducing auxiliary
orthogonal orbitals. • .. i.e.

(0,, 
(21a)

and we write

X irlr • ,.O •: (21b)

Minimi.ing eq. (20a). using eqs. (21a) and (21b). we get the following set of
equations written in matrix form

(F+ )I" uu (22a)

where Fis given in eq. (17b) and

(22b)

and the X,'s are Lagrange multipliers insuring the orthonormality of eq. (2 Ia).
Eq. (22a) is then solved self-consistently for the 10 , yielding the X's and E4,( X)

[eq. t20a)]. In solving eq. (22a) the lowest N values of X,'s are kept (N is the
number of Fermions). Provided E,.(x) is exactly known, the solution of eq. (22)
gives a rigorous description for the spontaneously broken ground state properties
of either chiral symmetry [13-191. spin symmetry, or both [20,21 ].

We can next prove that eq. (22) satisfies all the current conservations within
each band, a, and any spin current component configuration. The general proof.
however, involves nonabelian gauge symmetries: here we scale eq. (22) to only one
band and a ferromagnetic or anti ferromagnetic spin nonuniformity, therefore ne-
glecting spin spiral configurations (20.211 (i.e., F,,,,). Now from in eq.
(17) we get at once that

Y 1,,.,,, = Y [-., X,, "*.- x,] = 0. (23a)
J I

which is Kirkhoff's law. Huwever, simple use of eq. (22) leads to

Z [(t•F,. + /,,9)X,,,,. - (w,,. + /,,o)*x* o 0 (23b)

i.e., we must prove that
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X 1,.. ....- T°x.'., . (230)

Proqj: Eq. (17) is gauge invariant under A, .l,A, + (0', - 1;) and (',, -
C',. But the uniqueness theorem I implies that

E EX,,,) ,) = l ' "1 x1 ,, ) ( 24a

and so from eq. (20a)

E,, X/.,,) :E, e'l'; " Xl•,,,) .( 24b )

We next choose a special gauge transformation 0,' = 0 and 0' 0'" for all j #ý i.
Then. from eq. (24b). with 0" -- 0, we get

E,,(XIA,) - E(X•,,,,( I + i(O7 - 0;))) 0

= ( :E,) I _ (2,2, * " ]
which, from eq. (22b), proves eq. (23c).

We next scale down eq. (17) to a nearest neighbor hopping t,, = , (where
T, = r, = a are the nearest neighbor distances on a square lattice). The gauge
symmetry (GS) now leads to

E,,( ... ,,) =E,,.e""": "•X ... ,.)(25a)

and similarly for E(X).

We can always write

. , x .... ,, Ie'•'.';" (25b)

(• mod(2r)). So. GS leads to

E,,(X.,+ E,) =1i E-(I 7-. ; 1. ,,,, + C 01, - (25c)

We can show that the most general gauge-invariant form of E,, (X) is given by

E •,,(Ix ., ,x_ 1 ... X, .... l •.) /,( x ,•,t x....V") (26a)

where the basic gauge-invariant unit is

V = + + + ........ (26b)

i.e.. the sum of the phases of p around a plaquette.
It is not difficult to see that eqs. (21), (22). (25). and (26) represent the lattice

equivalent of eqs. (8), (9), ( 10). and ( 14)-( 16) and that, therefore, eq. (26) maps
to

-;(-7) , -• X"× n,(M) (27)
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Application and Conclusions

In this section. we apply the results of our continuum formulation of the second
section to a spontaneously generated broken symmetry chiral ground state. All
theoretical calculations of the ground-state properties of an interacting two-
dimensional (2d) electron gas show that, at low enough densities (i.e.. large r,).
the system spontaneously forms spin polarizations [22]. The issue we address in
this section is whether spontaneously broken current carrying states (SBCCS) are

also a realistic possibility in such an itinerant 2d system. The answer is yes, provided
the system is sufficiently inhomogeneous, as we describe next.

Prejudice against such SBCCS in favor of spin-polarized ground states originate
in the Landau diamagnetic response, X1, versus the Pauli susceptibility xP. Although
X1, is roughly of the same magnitude [231 as X1 , it is of opposite sign to X1.,, suggesting
that the system has no desire to accommodate such a SBCCS. This is true for the
weakly inhomogeneous Fermi liquid but for a strongly inhomogeneous system
(and particularly in 2d) things can be quite different.

For example, unique to 2d the energy of noninteracting Fermions in a uniform
magnetic field is equal to the energy in its absence, when the Landau levels are

filled [24]. This is different than the 3d Landau diamagnetism discussed above and
encouraging for SBCCS in 2d. The inhomogeneity further strongly enhances the
2d SBCCS as can be seen from the work of Hasagawa et al [241. Hasagawa et al
put the noninteracting electrons on a lattice. Making contact with our discussion
in the third section, we take the simplest one-band noninteracting version of eq.
(17). The Hamiltonian is now [24]

I1 = - 1 t , tr,, = i exp -i2r .f - dl] (28)

with A.(7) = B(O, x, 0). Its ground-state energy for several different crystal structuwes

is lower than when B = 0 for many appropriate ratios of electron densities and
magnetic fluxes.

To calculate for the SBCCS. we use the formulation derived in the second .section.
Now, from eq. (8). the transition to a SBCCS is clearly driven by a self-induced

gauge field .4,,1). whose origin is the exchange and correlation functional.

E,,n(7). 'x(.jrr(7)/(n(7)))). A realistic search for SBCCS then requires a
realistic form for E-,,: our conclusions will crucially depend on a reasonable form

(both in magnitude and structure) for E,,, We derive E, from the energy of a
uniform 2d two-component electron gas in arbitrary but uniform B(i) = B. In
the range of v. where the Laughlin liquid state is valid, we used our results for the
energy of a 2d two-component quantum plasma [25] at v = c, and 2. In the limit
when v - -f we use the Tanatar and Ceperly [ 261 E,, (n,,)Our Pad& form is then

E"• o l", V,) +• at1,4 E ,, (nio)
((.)~ i 4 LC( ~ (29)

lFu, I + av2

where a is chosen to closely reproduce the values of 19,(nI, v) at v =. i. 2. Our

form of E,, is finally given by noting that for an arbitrary but uniform B. j
T,( ) - (enCl/m A..( i) =-0. So, Vx(j,(F)/n) = (e/n,)xU7) = (v/ln).
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From the definition v-= no21r& n1)2r( h c/eB) and the usual extension[I] from
1-, 1,n(7) and from /,(V) (appropriate to a uniform B) to arbitrary j,(n ), we

get the corresponding local current density approximation (LCDA) form for
E,, (n(f). Vx( j•,(7)/(n(7) )))).

Actually, here we do not solve the full set of self-consistent eqs. (8-10). rather
we define a local current density functional approximation for T, in eq. (6): it is
gisen by

T,(n(f), _",(-7)): T1(n(7))

+ h I V_(7T hI n(7) - h 2(6 11( 7~) 2 + j( ]j) 2

0) lV"l' ..... 4l. .... *,,'A'"A "'4A "A'A
i'A

I 0 V WA~'4,4 A 1%. . . .&4 14 V V V V4V VV V V I

'44 Al V V V V V 444 ..A A 4 4 V V V V V 4

'4 4 v V A' A 1 1 * A A A 4 4 4 V IA IA .A . .A . . . A

I4 I V AbA P A ~ '~ I- I 1 *1 144-014

"A " v 1, k. ý . v , 1'-ý x A A 4 A4 4 A 'A A A 4A'

,A v , , $AA4 v v ' v ,, N,---" 4

4 I

4f '44w 4 .A

1 4

u'A

' 4 '1AA

AI

c; -

o A .. . . .1 ..... . . , ........A
o.0 0.1 6.2 0.3 D.A o.5 0,6 0.7 0.8 0.9 1.0

Figure 1. The current patterns in a unit cell of a symmetry-broken, current-carrying state
in a two-dimensional nonuniform, interacting electron gas. The density nonuniformity
corresponds to m */m :• 6.4 (see text). lrhc corresponding 1,ff( ) is made up of two
spherical wells, one at the corner and one at the center of the squares (see text), The two
s.pherical wells have depth V,.... .2 and I3... I in atomic units. and radii of R, - .278at,
and R2 ý .222a,,. The ,square corner is located in the center of the panel. The effectivedipole moments per square 141 - hea/2m, with ,v - m f d rj(() × 1. we get a A

2-1 :X 10 '. The dipole moments per each vertex are considerably larger.
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Nnil if . itrh ,i( 1)

tin( ) = n(7) and Y A' integ part of - _n-F ((30)
n i -p 'Y)

T,(n(7)) is the kinetic energy ofa 2d electron gas in the absence of B3.
For I,,Wt(f) I F(l) 1 1 d7'u(T7. 7 ')11' in eq. (8). wse take the following

geometry. We put one spherical well potential at the four corners ota square (0ith
sides of lengths 7a2e: al h i/ m' 2 ) and another spherical well at the center of the
four sides. We fix the electron density and use a depth well with elt'ective band
structure mass of m*/ni ý 6.4, and replace the in by m* in eqs. (29) and (30).

To find the nature oftthe ground state, we minimize eq. (5) [ using eqs. ( 29) and
(30)] with respect to n( 7) and hj,( 7) in the limra.(7) - 0. (Actually,, a pocrri.

j;,(7) is very small- we then do better. We solve the Kohn-Sham equations for
n(7) above the SBCCS [i.e.. eqs. (8)-( 10) with .. , (i) 01 and insert n( 7) in
eqs. (29). (30). and (5) to minimize with respect to 7,( r) below the SBCCS
transition). To facilitate the calculation and. in particular. the 7 ×

(j.( 7)/n( 7)) term, we work in a plane wave basis. The increasing inhomogeneity
(i.e., m*) then requires larger and larger basis set. The density n( 0l above the
SBCCS transition is calculated using up to 225 plane waves of reciprocal lattice
vectors K. Below the SBCCS transition, the current is expanded as j,(:) -)

cos (k - ) + SK sin( A- 7i)) where A-. d, = O. The total energy change
of eq. (30) was calculated by numerical integration of the unit cell of a 61 ' 61
point mesh. Eq. (30) was then minimized with respect to all the ('C and SK using
a "conjugate gradients method." Other details are sclf-explantorv in the figure
captions.

In conclusion, the formulation we gave for an interacting many-Fermion system
in the presence of an external magnetic field leads to a self-generated many-body
gauge field, both in continuum and on a lattice. We find that the exact gauge
structure of this field leads to the possibility of spontaneously broken current carrying
ground states in strongly nonuniform interacting Fermi liquids (Fig. I ). The SBCCS
is, however, not incompressible [12-18]. as proved by Rasolt and Vignale [9] (see
also ref. [27 ]). and therefore cannoi be a chiral state of the type suggested. e.g.. in
ref. [17].
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Precision in the Numerical Integration
of the Thomas-Fermi-Dirac Kinetic-Energy

and Exchange-Energy Functionals Using
a Modeled Electron Density

P. CSAVINSZKY
1),'prfzl it1 Ph io s % it tl ,I o•n omopmi I ni,•t'r•, 'I Ih , (LIfI/ Pit , ", , tV a i0446J

Abstract

In the f-ohenhxerg and Kohn fkrmulation of densits-functional theor% of an electronic s.stem. such
as the nondegenerate ground state ofan aton. the hasic %anable is the electron densits % I his quantit,..
howceer. is not known. For this reason, in an actual calculation of the ground-state energ., one ma'
resort ito a modeled electron density. This poses the question: %%hat is the accurac, hNond ýkhich one
cannot penetrate in the numerical es aluation of certain integrals when using the modeled electron density
and an integration technique.' Fhe present vork attempts to pros ide an answer to this question hb
considering the Ne atom as an example. by using the 1homas-Fermi-l)Dirac energs-dcnsitv functional.
a modeled electron density, and Simpson's ( three-point ) rule lor the numerical integration. , 1I1A; John

W1ile" & Sons. Inc.

Introduction

In the Hohenberg and Kohn [ II formulation of DIr. the (nondegenerate) ground-
state energy of an electronic system. such as an atom, is a unique functional of the
respective electron density. In a previous work [ 2 ]. using the Ne atom as an example.
the author used the TFD energy-density functional, modeled the electron density.
and carried out a variational calculation of the total atomic binding energy. In the
TFD energy-density functional. the kinetic-energy functional. and the exchange-
energy functional, must be evaluated by numerical integration. In the work cited
121. Simpson's (three-point) rule was applied. This raises two questions: ( I ) What
is the precision of the numerical integration with the modeled electron density,
and the integration technique selected? (2) Which integral (kinetic, or exchange)
will determine the overall precision of the variational calculation ofthe total atomic
binding energy? These questions are investigated in the present work.

The article is organized as follows: in the second section. the theoretical framework
of Ref. [2] is very briefly outlined. In the third section, the error estimates of the
numerical integrations based on Simpson's (three-point) rule are presented. The
final section gives the conclusions.

All quantities used in the present work are expressed in atomic units (the unit
of energy is the hartree, the unit of length is the bohr).

International Journal of Quantum Chemistr: Quantum Chemistry Symposium 26. 371-375 (1992)
c 1992 John Wiley & Sons, Inc. CCC 0)02047608O/9210t371-05
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TABLt I. Minimizing 'alues of the .arjational parameter,
/1, /-. /i. and talues of the (script) normalization and

orthogonalization constants N and R,

/• , /3 AV I

10.,828 ." 81-) 7.186• 1,7101 0. 1014

Theoretical Framework

The TFD total-energy functional is [ 21

tE-•)[p] = Elt"[p] + E,,,.[p] + E,[p]±LJ + E'l, (I)

where E'FD[p] is the kinetic-energy functional, L,,.[] is the functional describing
the (attractive) interaction of the electrons with the atomic nucleus. E,[p is the
classical (or the direct) part of the (repulsive) interaction among the electrons.
Ek t• [p] is the exchange-energy functional. and p is the electron density. The quan-
tities requiring numerical integrations. are

-1t)[p] = 10 3ir-)-3 3( 314rrr d' (2)

and

E~V° [p] - 2 ( i /347rr2 dr. (3)

In Ref. [2], the electron (number) density was so chosen that it is ( I ) finite at
the atomic nucleus, (2) exhibits an exponential decay with the distance from the
atomic nucleus, and (3) the radial electron (number) density exhibits the extrema
associated with the shell structure of the Ne atom.

In Ref. [2]. hydrogenlike wave functions [3] were used. and p was given as

p = [2R,,(Zi )' + 2R_,,(Z,, Z,)-' + 6R,,(Z3 ) 2J (4)

In Eq. (4). Z1, Z2, Z3 are variational parameters. used to minimize Eq. ( I ), and

/Z) = /V[R..(Z2 ) + ýIRI,(Zd)] (5)

is a 2s function orthogonalized to a Is function by the Gram-Schmidt procedure
[4]. In Eq. (5). the superscript un means unnormalized, while .N is a normalization
constant, and _W is an orthogonalization constant. Details are given elsewhere [ 5.

ETFrD[P has been minimized [2] with respect to the parameters Z1, /2, and Z4.
The minimization has been carried out by numerical integration, based on Simpson's
compound (or three-point rule) [6]. An integration interval from 0 bohr to 8 bohr
was found [2] to be satisfactory, subdivided into Al = 2048 equal subintervals (or
panels). The minimizing values of the variational parameters Z,, Z,. and Z.1.
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together with the ( script) normaliiation and orthogonali/ation .onant, N," and
'R. are listed in Table I. Table 11 gi\es the %alues ot the e2nergý componrlets.

At this point, it is convenient to rewritc IAls. 2 ) and ( 3 as

3 ( <"gir) 3dr x6)

and

\%here the integrands are given b\

.t,, r) - r'[2R ,(/. ) -4 2 1j{,,(/'• ý + 6 R ,• Z ) ] S

and

Ih(r) r 2[2R 1,,f ): # I :k:,(/ .. I, ÷jR 4  I,:] (9)I

Error Estimates

The question is posed: .%hat is the precision of the numerical integrations inoh ning
the integrals in Eqs. (6 ý and ( 7 ý. vhcn using Simpson-s three-point rule? Vor this
technique, the maximum ertors are gixen [61 b\

t- ...... ma 't:(, r)I )

.1 r B

and

(B - A')
rl rax IhIt r)

where the superscripts indicate the fourth derivatives ofg(r) and h(r).
To investigate the quantities denoted by max lkt,<'(r) I. and max !h'( r0. suc-

cessively refined tabulations in r have been carried out. The results sho,% that both
i,' 4 ( r). and Ih"'(r)l, have several maxima, separated by minima. The maxima

"1,,,-RI f If. Values of the encrgp components

(in a.u.).

140.21 / 3 ,.7 67 .9 1,,

140.26 33fi.7X, 67.t;, I II.3
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ARA t I Ill. Maxima Of t" . 'Ir),' as functions
of r (in a-u.) 1E! is the error as defined in
Eq. (10). The %alue of (B -.. l ig . is

1.035 x 10 V

max

r .-I.9 r: B 1<

0.0760 Iw.(07 , lo1 1t.042 10
0.1964 3,026 x 10) 3.131 II) 4

0.6415 6.339 x 10(4 f,560 1(0
1.0782 4.869,' x [ 5(039 .0
2.4177 3.069 X 10" 3.176 10
3.2743 7.449 >- 10 7.709 10

of 1g14)(r)I. as functions of r, are tabulated in Table Ill, while the maxima of
h" ((r)I are tabulated in Table IV.

Conclusions

The most pessimistic conclusion, from Tables Ill and IV are: the integral in Eq.
(6) cannot be evaluated to a precision greater than 1.042 X 10 2 and the integral
in Eq. (7) cannot be evaluated to a precision greater than 4.470 X 10 4 . This
conclusion pertains only to the case of l = 2048. A doubling of the number of
subintervals, that is. using M= 4096, would introduce a factor of 1 / 16. that would
permit precisions of 6.512 × 10 ' and 2.793 X 10 -5. As to the other maxima in
Ig 4 )(r)I and Ih 4 )(r)I. shown in Tables III and IV, no problems arise. These
maxima permit much smaller values for I El and I F1, even without doubling the
panels.

Another conclusion may also be derived from Tables Ill and IV. The integral
involved in the kinetic-energy expression is associated with a larger error than the
integral occurring in the exchange-energy expression.

TABLE IV. Maxima of Ih"'4 (r)l as functions
of r (in a.u.). If"l is the error as defined in
Eq. (1)). The value of (B - A)'1180 5f

4 is

1.035 X 10'1

max 4(r)

r ,A< r! B

0.0923 4.319 / 107 4.470 X 10 4

0.2513 7.242 X 105 7.495 x 10

0.6969 1.407 / I()4 1.456 × 10
1.2891 5.476 X 102 5,667 X 10
2.5071 5.255 / 10' 5.438 Y 10
3.9741 1.799x 101 1.861 -< 10 r
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Finally, one has to keep in mind that other numerical integration techniques [f6]
would give different error estimates.
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Electron Density Theory in Extreme Homogeneous
and Heterogeneous Environments and in

Intense External Fields
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Abstract

After a brief discussion of the deformation of the ground-state electron density asymptoticallN. in free
space homonuclear diatomics by dispersion interactions. dimers in dense homogeneous plasma will be
treated. Polarization interaction will be shown to lead to an R 4 interaction energy at large internuclear
separation, R, supplementing the well-known long-range oscillatory interaction. The releance of these
interactions, when suitably modified for a heterogeneous environment, to lateral forces hetween ('O
molecules chemisorbed on a transition metal surface will then be considered, with specific rcrcnc 1,
experiments on thermal desorption. Finally. the theory of the inhomogeneous electron liquid in intciv.c
magnetic fields wkill be briefly discussed, for both localized and delocalized electrons. c 1942 Jon•A ,i•k.
& Sons. Inc.

Introduction

In this article, electron density theory will be used in essentially two areas*:

(i) To treat the long-range interactions between atoms (and also CO molecules)
i,i unusual environments: and

(ii) To deal with atoms and, in principle at least, molecules in intense applied
magnetic fields.

While a (somewhat major) modification of conventional ground-state density-
functional theory can be applied to area (i), to date it has proved very helpful to
tackle area (ii), for arbitrary magnetic field strengths, starting from the so-called
Slater sum. Nevertheless, the aim again, in spite of this use of statistical mechanics.
is to calculate the ground-state electron density.

The layout of this article is as follows. In the second section, area (t) will be
motivated by briefly recalling how electron density theory can be used to calculate
the nonretarded dispersion interaction between atoms in free space. Then, the bind-
ing of a homonuclear dimer, such as Na2 , K2, Be2 , or Mg 2 , will be discussed, when
the dimer is embedded in a cold, dense plasma. It will be shown that the oscillatory

* This article was prepared specifically as part of a session on "Density Functional Theory in Extreme
Circumstances."

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 377-391 (1992)
() 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010377-15
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long-range interaction arising from a sharp Fermi surface must be supplemented
by a long-range polarization interaction which Calls otf as the in.erse fourth power
o1 internuclear distance. R. in contrast to the R "' dispersion interaction in fre
space. The third section considers the efftict of inhomogeneity of the environment
on the range of both types of interaction.

Area (!i) will then be treated in the fourth section. An approximation to the
Slater sum characteristic of the simplest density-functional theory. namely the
Thomas-Fermi (IF) statistical method. is generalized there to treat both bound
and delocalized electrons in a constant magnetic field of arbitrary strength. The
final section constitutes a summary plus some proposals for future work.

Long-Range Interactions in a Ilomonuelear Dimer
in a Homogeneous Environment

Free Vpace Dispersion Interactioni

To motivate the following discussion via electron density of atomic and molecular
long-range interactions in unusual environments, let us start from the 'well-known
dispersion interaction in free space. Then. neglecting retardation effects. the inter-
action energy, AE(R) say, as a function of internuclear separation. R. can be ex-
pressed in the form

AE(R) = - - large R limit (I

where the London constant. cb, can be written precisely in terms of the frequency-
dependent polarizabilitics a,(w) of the component atoms, i.

Egorov and March [ I ] have generalized the above result to treat the deformation
of hc ground-state atomic density in a homonuclear diatomic molecule due to the
above dispersion interaction. To do this. these workers use a result by Koide [2 ].
who wrote an expression for the dispersion energy AE in terms of wave vector (k)
and frequency (w)-dependent polarizabilities a(k, k';&'). Egorov and March show
how his result can be used, in conjunction with the Hellmann-Feynman theorem
[ 3], to construct an expression for that deformation of the atomic electron density
which, when inserted in the above theorem, will yield the correct long-range dis-
persion force - 6Q,/R 7, from eq. ( I ). No claim is made that the total atomic
density can be constructed at large internuclear separation, R. in a homonuclear
diatomic molecule in this way. It is only a correction to the atomic density such
that, when inserted in the Hellmann-Feynman force expression, will exactly re-
produce Koide's dispersion energy at sufficiently large R. Koide's result

AE 4A f A-exp(ik R) k exp(-ik'. R)

× j' duac(k, k'. iu)at,(-k, -k'- ihi) (2)



ItII I RO\ Dl1 \5 I 'lhR " n

call. of, course, read il b" Con1 cited tO a1 Ii0VC "Iic ti v ice 1~ d'M I" Siik i lk d
persiovi force reterired to abho c.

It is next to be nolted that an alterna~tis e. vind quik te gener. Cxpvcsý,Im 01 11tnIh
force ca n be %% ritten i n a nCutIrFl hitIn 1o11UClcar dj IaIt ) IIit -in)I mlcku ie buIlIt f rom In-.
dlisidUal atomis s it h atomic: ni vilmb, a. a

;<pr R I cir 3 1

\%here Is thle _7COMpOnet~ Of thc! ditAnceI of' tile 1`oint1 , t1rom1 nucleus d fIr

instance. [or the case of tsso hvdrogcen atomsI1. a and /- separated bN a distance R.
eq. ( 3 1 holds es, identls ý% ith / I .I 1cew F,. Is the tkrce oni u1LcleUS a Iii tile direction
ot'n ucleus h. taken as tile -- ax s. tý h1ilt: p( r, , R I tislte total electronic dcnsi t%

/,(r,, R) 2 j\f*( rý. r,'T( r, . r: ) J/r (41

wthll 'I' thle ground-state electronic xkaw e function. A-s it stands. eol. ( 3 ) is %.atid for
all R. Hiovtcer. at intermediate R at or around thle equilibrium bond length, thle
so!lutlion of' the two-center problemn is essential for the determination of- I; r! .R)
Al large R<. alternatiI els. the total electioinic densitý ma% be represenited b\ the
superposition (if two atomnic- parts, pta ) and p( 10). each of ts hich canl tic ssrittcin
as a sumn of' the unperturbed sphericall\ s runletric densit\ p-. and thle series ex-
pansion in inserse po%%crs of' R starting with the R term:

The spherical part. p, ( a. es% ide nt tI\in" Kcs /ero contIri butIIon ito thle inIteg~ral I n eq.
3). IThe RA component of the "ato I est pki). vwhich results in turn from

the R component of the mawe function. forms a quadru pole charge distribution
around nucleus a and, being s\ mimetric wkith respect ito coordinate Z,, I. it does not1
lead to an attraction betsseen thle w.0o nuclei (except tlar the R "'attraction betwceen
the quadrupoles fromi p( a) and pt 1/'lJ. The R component InI thle \lienit'% of nuleuCLs
a is slightl% larger in tile direction of nucleus /I than axwa\ fromn it [ 31. Thus, thle
force on thle nucleus results fi omn its attraction ito the centroid of the charge d ensity
corresponding to its associated] electrons. The \ an der Waals force Oc,/R' . from
eq. t 3 ). arises entirel% from the R component of the total density.

IDitterenitiating Koide's expression t 2 ) wkith respect to R. Egiiro)x and M/arch theni
use the molecular Form fatctor for X-rax scattering. /( k . R sas,. dehtned bv

N k. RI ptr. R )expfrk.A r) Jir.I(

to dense the equivalence



380 MARCH

S, R)- F 1 dkJ (k - k')2k (k R)-2 +F=-

x exp(- ik2_R)

X f duca,(k, k'; iu)ah(-k, -k'; iii). (7)2r,o

In eq. (7), F designates that part which integrates to zero: since eq. (7) emerges
from equating two integrands.

To summarize this free-space argument, the deformation of the ground-state
density, to accord with the known form of dispersion interaction, can be reduced
to a one-center purely atomic problem by the use of k- and ce-dependent polariz-
abilities. We now turn to contrast this with the interaction when we embed a dimer
in a cold, dense plasma; e.g.. Na 2 or Mg2 in their own liquid metal just above its
freezing point. Even at such a temperature, the itinerant electrons are essentially
completely degenerate.

Dimer Potential Energy Curve in Cold, Dense Plasma

Debve-Hflickel-Like Interaction Between Test Charges. Alfred and March [41
considered the interaction energy of two like test-charges Ze embedded in a cold,
dense plasma. The self-consistent potential, V(r), satisfies the linearized Thomas-
Fermi equation, derived from this simplest density functional theory (see also Ap-
pendix I):

V2 V= q2 V (8)

The inverse screening length q is given by
I2 4k, h
q ( o 9)

lrao me,

where the Fermi wave number, k1 , is related to the mean electron density, p,. in
the (originally homogeneous) plesma by

Po = k1 
(10)

In Ref. 4, V was constructed from the superposition of potentials. V, and V',
centered on the test charges Ze at separation R. This led to the repulsive interaction

(Ze)2

AE(R) = -- exp(-qR). (II)
R

Very recently, Perrot et al. [5 1 have allowed the displaced spherical charges centered
on I and 2 at infinite separation to float off the nuclei by an amount 6(R). The
displacement, 6, was then obtained variationally from the density-functional form
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- K :J A .dr ( tr classical potential ci|.•er tcrflis I 2

Minimizing this energy expression w ith respect to A leads back to

4-

Combining eq. ( 13 1 with Poisson's equation yields eq. (8,I.
The total energy E for q as in liquid metal Cu 15 1 , as calculated \ariationall

from eq. ( 12) by allowing the spherical blobs of displaced charge to tloat (rom the
test charges by the amount 6. It is then fbund that this D1ebxe-lftickel-likc thcor%
is deficient in a degenerate electron gas: one must allo, for diffraction ol' the de
Broglie waves representing the itinerant electrons offthe test charges. as first show n
by Corless and March [6]. However, again their treatment ýNas based on a super-
position assumption. Perrot et al. 1151 argue that this wave theor,., again allowing
"floating" blobs of displaced charge off the test charges. leads to

114
I' (R ý

at large R. The corresponding long-range interaction energy is no1
.' cos 2k,R constant

AE(R) R - - R- - (41)

the first term on the right-hand side of cq. ( 15) being given b% Corless and Nlarch
[6 1. while the I /R' term is from the "polarization" interaction considered here.
It must be stressed that it is essential to use the wave theor% to obtain eq. ( 15 ): see
the original argument for this R ' term in ref. 5.

Long-Range Interaction in a Ileterogeneous Environment

[C-.A! (Char.i, Embedded in Electron Dki'nxuv w! a .I hh'.IhA'lal Surfatc'

Below, following Flores et al. ( [ 7: see also Lau and Kohn [1 1). use w-iil be made
of the Bardeen model of a metal surface [f9. For this niodel. 1ot only tile unper-
turbed density. p1r). but also the Dirac density matrix, p(r. r ). is known. this
latter quantity allows the response function. "(r. r'). appearing in the relation
between a perturbing potential. I'. and the displaced charge, -11, it creates (see also
Appendix I ):

Ap(r) f i(r, r')I'(r') dr'. (16)

to be found. If the perturbation. l'(r'). is short-ranged, and in particular can be
modeled by ,bf(r'). then

Ap(r) - F(r, 0) (17)
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This leads to a perturbed density which oscillates, as tbr the bulk case. tiowever.
for test charges parallel to the planar metal surface in the (x vy) plane, the interaction
energy is now shorter range: the leading term in eq. ( 15) being replaced, in this
lateral interaction, by

..I cos 2kRAE(R) R• (18)

Range olfPolari:ation Interaction. While. in eq. ( 15 ), the oscillatory interaction
has range R ' times an oscillatory function, which therefore. except at or very near
the nodes of the cos 2kR factor, dominates the polarization interaction, having
range R -' it is important in the future to know- hether that situation also obtains
in the heterogeneous environment provided by a metal surface-since, in the parallel
configuration. eq. (18) shows that the range of the oscillatory term is reduced to
R 5 times an oscillatory factor.

27r* Resonance Mode• for CO Alo/ecuhes Interacting Outside
a Transition Metal Surf Žtce

CO Chemisorbed on Pt( III). It is of interest in the present context to extend the
discussion of the oscillatory long-range interaction in a heterogeneous environment
to treat lateral interactions between CO molecules chemisorbed on Pt( III).

The additional ingredient required to give a realistic account of such lateral in-
teractions on transition metal surfaces is the concept of a CO 2ir* resonance. In-
dependent evidence in support of this resonance model comes from:

(a) The analysis of the desorption measurement of Ertl et al. [10], by Joyce et
al. [111: and

(b) The study of a variety ofexperimental spectroscopic features, e.g.. threshold
energies, level shift, and line shapes, by Gumhalter et al. [12].

Briefly, the model can be understood by reference to Figure 1, which makes
specific the energy level spectrum of CO on a transition-metal surface. Both the
27r* and the 5a levels of the CO molecule are positioned relative to the Fermi level,
Ej. To modify, for a pair of CO molecules in the configuration para:,el to the planar
metal surface, the asymptotic oscillatory interaction - cos(2kR)/R 5 discussed
above, it is important to recognize that the 2r* level, which overlaps unoccupied
energy bands, will be broadened into a virtual bound state. With reasonable as-
sumptions about the interaction between the 27r* orbitals on CO and the metal
band wave functions, the broadening of the virtual bound state can be such that it
overlaps the Fermi level. It is this effect of such a state near the Fermi level that is
the dominant reason for the importance of the indirect interaction between CO
molecules on some transition-metal surfaces. It 1,irns out that the 27r* orbital in-
teracts predominantly ( 13 1 with the sp band of Ni, Pd, and Pt: this allows a model
to be constructed based on an sp band for tl;e metal and solely the 2 7r* level of the
molecule.
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cind to heenni a 'im. ial h•uniri•d.tAj Iq circtin I xl.wccx. t thix h1rn• o -tlcnc '[Ml,

tteripx. the I krmil lvtc. the indlreCt l•Ict'al micraction heivxcn aI pju ot 01C11.i-rhcd
( i cct ,mk cx_- c~n hc xu hx, iinti~a1ll citIanced.

\What is relevant then in the present contest is that the asx mptotic oscillator\
interaction is changed to

-\I,(R I - •3cost 2A,t + o )R'.19

Major changes then occur. From the 27r* resonance model, in the csprcssions for
the amplitude. 3. and the phase shift. q. These can. in ihct. le extracted bs analyiing
thermal desorption data as a function oftcoverage or ('0 chemlisorbed on Pt [ilil].
One finds 0 0.95 and ,3 10 J mol T .. The 2r* resonance model. " ith

reasonable parameteraiation. yields ,' 2 37,/8 and Al 10 J mol A
As discussed earlier, there is the possibiiity of incorporating as&,mptoticaltv an

additional polariation interaction: this has been seen to ha.e a range of R 'in a
homogeneous environment [5]. One anticipates, as 'ith the oscillatory term. a
shortening of the range to R , nit 5. hut further work is required on the eftect of
a heterogeneous ens ironment on the polaritation interaction.

We now turn to area ( ii ) ret•erred to in the Introduction: the lfcus again being
on the use of electron density theory in extreme circumstances. In area (iiI . these
circumstances are allorded hx the application of intense magnetic fields to atomic
and molecular systems (see also Schmelcher and Cederhaum 114-16 1).

"Ihonaas-Fermi Theory in Constant Magnetic Field of Arbitrary Strength

We turn from asymptotic interactions in homogeneous and heterogeneous en-
ironments to the treatment of bound and dclocali.ed electrons mo\ing in a constant
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inagictic hield olfarhilr ar\ stcngth. As cniphas/cd reicntll IO \ noIx iI and Mlarch
1] 7 I. the eroUlild-State C!cctronl dcnsitý. /,':( r, 1. I is then -on\cnitentI,. calculated \[ a
the so-called Slater 'urn. /,(r, 1). %kith i• IA,;I I• h(IIu0h nio bal sed on the
SiaWr sum. here it 1 r,'lcant to note the %%ork of Ii and Porous I I. ) 1] and the
earlicr stodx. of I larris and (Cna t 20].

/ ..... hItd 1. ow'

1 fe i homas Fernri thcor. in zero magnetic ficld, as is clear from the studies k
March and I urlr i 2 1 . cotrrtsponds .o the ftiiots ing app, iximanioin to the Slater
sut in r. I ).

/1 r. 3 ) /(13)e.xp( - 41l' r (20)

where .,,I , rd I is the partition funcLion per unit \ohlmc for frec clcctrons.,

I 'sing the laplace transfbrm relation hetxscen tile groundl-state e.'lec'tron dcnsiti
p( r, I;,). and the Slater sum. namels

/I r, d ) If J,, p( r. E)ex I (it) dl.2 1

one firds the zero magnetic field dcnsit -potential relation characterizing, the
"Thomas-Fermi theory as 14 ]

pl r. 1:') #(2nu) [i tlr( :j (22)

Inclusion ful Const.ant Alhviuwc/ Fied H

The objectixe below is now to generalize the abs\c argumnClt, to include the
modification of the electronic "'orbits" b\ the application of a constant external
magnetic field Ii of arbitrary strength. It should be emphasiied here that evcry thing
that follows is within the frameýxork ofra on,--electron Hamiltonian. gisen by

_-4_ V 1r) (23)>17

where the vector potential, A. represents the constant magnetic field. As usual, the
one-body potential energy 1'(r) should eventually be calculated self-consistently.

One wishes therefore to generalize each of the eqs. (20). ( 21 ). and (22) to include
the effect of a constant magnetic field. 1l. One follows the same philosophy as
above, namely, to solve first the free-particle problem, corresponding to Z,,(d)

A link bct~ecn %an dcr Waals interaction iii a heterogeneous metal surtace enkironment and dia-

magnetism of clectrons treated in the preent section is forged in Ariqendio 2. %here Rsd'erg altoms in
intense fields are discussed
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belov, eq. 2( -0) in1 thc lIIInIt I I te IIds t o /ero. and k ithenf to 1intIrot dI Lce I tr I I Ust a', in1
eq. 120 ).

Hite free-election problem has hCCnI ý'ACd b\ Sinldhicfilet and \\ul I 122)

sOlho obtainedi thle Slater. saml. dA.

(24)
NIT) ilh 111,1 I

Ný here u (IvI -4,7m,~Ii the Bohr niagricton. I.Li. 124 1 is, readf I h(sil 10 redCeIJk
to thle siilue /,A -I ( 2t '7) e orreSp~onding 10 eqI. (20) in1 thle limit1 If - ().
Ngain, t"r an asStuned spatial SlO~A I~ I ar\ Ing potentilal. tI ( in, 1 thle I imih111onlia
(23 ) . thle corresponding Slater Sum nIis :Ipproxi niated In) thle I hI IIS-f ICrili tcn

/ 0 r ) 1 )e\t)( dlr)2,

I crc / ~has thle tIin m 12-4 Sincec thle I aplace tralit rilflrn elat in 1i21 1 remainm,
intact for arhitrars magrnetic field I I. onec reacheS the f~rmr of thle grc mudk-silat
el-ctron dcnsitx 1)~ r . Lt as23

L~ .I) £ /~'.~d

Lqs. ( 2 J Ilad 26 )h C onSItitut thle desired general iiation of' the Ihoinas- F ermi
r eIa tition k2 Io incIud6e a conwslan I m agn et Ic Celd, I I., of' al'b I Ir a I s Irenh 23g [

Pilal I.ner 'id( M are h 123] hawe obta Ined resulIts based onl eqs. 25 )an d(6 a If ad
sample calcu~lations are prescntced in Figures 2 nd 3 F igure 2 correLsponds ito
*.swit,-hIinp olV" the clf'conisisten,, F (r): thle reSultSkkere obtained tfor elctied salimes
of' H bxý inserting the Laplace transfo'rm occtuirnng in eq. 12o) nurnericall\. I he
tero-ie'ld limit is .then ph; 1o as I n eq. (2 2 )for I '0: the Smooth dependence
onl energy Is no longer valid I'M Vi 0 heeauISC Ot the modification of the /ern-hield
encrg\ lesýel spectrunm b, l Iandaules elC quanti/ation. IFigure 3 shlums thle effe~ct (it
includi ng the IThomas-Vermii (I/I (Sell'-consitent neutral atollmi po cen tial

"( Iw of 111ru' 41( F14-14 laid lni'

While. as is, clear fromn thle abow diwwscuson, thle Inltemfied late magnetimc field
regitne must euirrentl\ bec treated numnericalls . because of the difficulties of obtaining
a compact closed] analytical formn for the Inin'ce Laplace traniSthrmi of'/ ,A

obtained f-rom eq. ( 24 1. it Iturns, out that, as, in thle /emo field limit L fil te extrv liltc
high field limit. 11. tends to infinits and canl also be handled analsticalls% IThenf one
can rcploee. inI eq. (24 ) the sin/i h% a single exponential term, to obtain

I,.- I

'I [I ins erse Laplace tra nsimrm of'/ I 3 )/!3 canl then bec co mpleted anl li sticalk 14)

pJ',;( /.) Constant Ml L* 01/ 2s)
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Figure 2. Depicts unitorm electron density p(E) for itinerant electrons in a constant
magnetic field of strength such thatgll = 0.5 atomic units. Essentiall, this figure represents
the generalization of the high field limit [eq. (28)l to intermediate field strengths. and
reveals features due to Landau-level quantization. Dashed curwe represents the zero held

p(E) given in eq. (22) with V(r) set equal to zero (after Pfaliner and March [231).

and the ground-state electron density in the Thomas-Fermi limit of slowly varying

V(r) yields

p,(r. E) = constant H(E- llt- l1r))" (29)

In fact, this result (29) has been derived much earlier using phase-space arguments
[24-281.

Summary and Proposals for Further Work

In this discussion of electron density theory in extreme circumstances. attention
has first been focused on long-range interactions in homogeneous and heterogeneous
environments. When one goes from a dimer in free space to a dimer in a cold.
dense plasma (e.g. Na 2 or Be2, in their own liquid metals near freezing). the non-
retarded dispersion interaction of range, R-'. gives way to the -,ymptotic form
(15). The oscillatory term comes from itinerant electrons contained in k space
within a sharp Fermi surface of diameter 2k 1 . The polarization interaction, of range
R 4 in eq. (15) appears to affect the small-angle scattering from liquid Na [29].
but quantitative work is not presently complete here.

Turning to the heterogeneous environment afforded by metal surfaces, for a pair
of atoms, or CO molecules, chemisorbed parallel to a planar surface, the range of
the oscillatory term in eq. (15) is reduced, the modified form of the oscillatory
component being giver in eq. (18). It remains for future work to establish the
precise reduction in range of the polarization interaction contribution, aR ', in
the homogeneous environment when one goes over to the highly heterogeneous
situation of chemisorption on a transition-metal surface.

The second area briefly discussed, that of atomic systems in intense applied mag-
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I- gure 3.I Modific'ation Of :Ivure _' as a result of including the I hi mon.t,- F-ermi ( 1/

s%]f-consistent neutral atom potential I ( r % si eq. I 2i). [he full line ciirrespind,, to I

0. 1he dashed curse is for the hare (Coulornh potential. I r) I Ir. kh ilie the dotted

cir.e represents the I hornas-I-ernti potential, Ihe constant inaitnetic felsd iv, along the :

axis. and upper curse corresponds to -- 0.5 and lowker to z (.8. again. in atomic units

In both parts of the figure. pl/ R.5Ž atomic units as in Figure 2. i Reproduced front work
of Pllal/ner and Mlarch ( 23 1 )

netic fields, has been tackled via the Slater sum. which can be viwced as an electron
density in classical MaxwelI-Boltzmann statistics. The ground-state density can
then be extracted by an inverse Laplace transform according to eq. (26). and ex-

amples have been presented [23] embracing both itinerant and bound electrons.

In future work. self-consistencv should, of course. be imposed, within this theoretical

framework. whereas to date this has only been accomplished based on the limiting

extreme high field result (29): numerical self-consistent fields then being presented
for atomic ions in ref. 30. For intermediate fields, the numerical inverse Laplace
transform techniques of Pfalzrner and March [23] should eventuallN allow self-

consistent calculations on both atoms and molecules (14-16.311 to be achieved.
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Appendix I

Asmnptotic Displaced Charge Round Localized Perturhatiov in Htomogeneous
and Jh'terogeneous Metallic El;nvironments

The purpose of this Appendix is to provide insight into the asymptotic interactions
in eqs. ( 15) and ( 18). This will be done within a linear response framework, Thus,
for a one-body perturbation, V'(r), one can write for the displaced charge A.(r)
the formal result

Ap(r) f F(r. r') V(r') dr'. (Al)

Form a/'Linear Revponse Function F in ]tofl,,eneotti Electron (Gas As derived
by March and Murray [21] for the homogeneous electron gas. the linear response
function. F, is given by

k jj(2kjr - r't)
F1joto(r, r') 7r - r - r, (A2)

where k has been written for the Fermi wavenumber. Whereas the Thomas-Fermi
result, Ap(r) = (q2/4r)V'(r). follows from eq. (AI) if 1'(r') is so slowly varying
that it can be evaluated at r' = r, and hence, brought outside the integral, let us
consider a localized perturbation represented by the model potential

V(r) = Xh(r) (A3)

Inserting eq. (A3) into eq. (A2) and using the asymptotic large distance form of
the first-order spherical Bessel function j1 (x) = x -2[sin x - x cos x], one readily
finds

A cos 2krA:(r) - r3 r large. (A4)

These so-called Friedel oscillations in a single-center problem have the counterpart
for the two-center case in the interaction energy. J-E(R) in eq. ( 15). as demonstrated
by Corless and March ([61, see also Ziman [ 32 ]).

Response Function F for a Barrier Model of a Metal Surface. For the Bardeen
infinite barrier model [9] of a metal surface. Moore and March [331 have shown
that the result (A2) for the homogeneous linear response function. F. is changed
to read

k 2 /j,(2kr - r'J) + j,[2k(jr - r'1 2 + 4zz')/2]
F(r. 0 Ir - r 1 + Ir - r'2 + 4zz'

2 ,l fk [ Ir - r ' l + ( Ir - r '1 2  + 4 7:')f oz] }>

1kr - r'I----"r. +4zz" ) for zr > 0

=0 otherwise (A5)



II H I R0\ D)1 \S1 I N I f t ()RS

and the unperturbed electron density is (I9

"A) ;' ~I f 1 A- ".t

where the planar metal surlace is exidcntl. in the ..- ) plane. taking again a
suitable model potential. haý ing no% the form

V(r) It )( : a) ) 5.,7

xhere X :(. v) is the component oftr parallel to the surface, %khule I ( X I remains
general. one can substitute eq. ( A7 ) into eq. (A I) to find. for 2A \ 1:

icos A.X cos 2k/,. i 4a )
.Ap(X a) I -• .\" .\ 2 +4a)}

4 cos A[\V (X-' 4a-' -

X ( X t4a) IX + X:N 4r , v' j

%%here the amplitude. .. depends on the Fourier transtbOrmn of I ( X ) at the diameter
2k of the Fermi sphere as well as on k itself. For N > a. one reco,,ers 'rom eq. ( AX )
an asymptotic decay as cos( 2kAX )/.\ which has as its counterpart in the tmo-
center case the asy mptotic fbrm ( 18) tfr the interaction energ. A/.( R ). lhis has
a diflerrnt range from that \x.hich would have been obtained hb direct use of a local-
density approximation in the homogeneous result (A4 f. Indeed. one has extreme
circumstances here for density functional theor\ due to the marked heterogeneity
induced by the metallic surtace.

Appendix 2

.llý ini EvLernal Fhild .s: Link Be'ltreel Dianaicim and Sutrha-c liAk ct\

The sensitivity of Rydberg atoms to perturbations, and the rich variety of ex-
perimental information than can thereby be extracted, has been important in the
revival of interest in the study ot atoms in external fields. In this general context.
the purpose of this Appendix is two-fold: (i) To link the diamagnetism discussed
in the section -Inclusion of Constant Magnetic Field. IF" and the heterogeneity
due to a metal surface (see "Test Charges 1imbedded in Electron Density at a Model
Metal Surface" ): and (ii) to summarite some salient points of theorx worked out
to date.

As to purpose I i) above, the instantaneous \an der Waals i vlW) potential rep-
resenting the interaction between an atom and a metal surface. as studied bv Lcn-
nard-Jones 1341, can be expressed in the form

, -z -(I /16,d )(.: + y 4 2:'). (A9)

w, hile the diamagnetic potential (see. e.g,. review by Kleppner et al. 1 351 ) can be
written as

... /l)(.\v ÷. f.),o (Am)
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with .,,, the cyclotron angular frequency.
As noted by Alhassid et at. [361. and others, the potentials (A9) and (A 1O) are

embraced by the general form

I'= r(,x + i + 2). (Al I)
This observation then prompts the study of the Hamiltonian..," representing a
Rvdberg atom, namely

pZ Z
.p.= _ _ __ + -Yt.X. + y1-2 + o3•_,_ ), (A I2)

2 r
where Z is evidently equal to unity for the hydrogen atom.

With regard to purpose (it) above, it should first be noted that. by employing
Painlev& singularity analysis and Lie symmetry invariance, Ganesan and Laksh-
manan [37] have shown that the system (for angular momentum I, = 0) is in-
tegrable for the three choices ý = I1, and 2 in the Hamiltonian (A 12). For these
special choices of 0, the existence of dynamical symmetries has already been pointed
out by Alhassid et al. [36].

For the case Z = 0 in eq. (A 12), the Slater sum of eq, (21 ) has been studied for
some cases by March and Tosi [381 and by Amovilli et al. [391. In addition. by
means of the inverse Laplace transform of the Slater sum discussed in the main
text, preliminary results for the Hamiltonian (A 2) for "t (0 are already avail-
able 140].

Finally, it is relevant to note that, again, for the case y 0. the angular momentum
and the Runge-Lenz vector are constants of the motion [41]. This well-known
situation is transcended in the work of Hulas and March [421. In their study. the
classical generalization of the Runge-Lenz vector is treated for non-Coulomb central
fields appropriate approximately to multielectron atoms.
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Quintet Electronic States of MoO: Gaussian Density
Functional Calculations
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Abstract

Spin-polarized I st, calculations otir MoO. both all-elchtron antd model core potential, are reported and
compared vwith the recent spectroscopic data. I he properties of the 511 ground state and oiur quintet
excited states are evaluated. their agreement with the experiment was found to be quite satisfactorý One
of'the states. '' is approached theoreticall% for the first time. ,]1)42 John %tlc% & Sons. In,

Introduction

Transition metal oxides form a class of chemical compounds of particular interest.
and have been investigated extensively for many years both experimentally and
theoretically [1-61. The nature of the bonding with oxygen in selected first- and
second-row transition metal oxides has been studied theoretically both within cluster
model treatments and in diatomics [ 1-4] in the hope that detailed knowledge about
the features of the metal-oxygen diatomic bond may provide some guidance for
the understanding of the interaction of oxygen with metal surfaces and within bulk
oxides.

On the other hand, spectroscopic investigation of the transition metal monoxides
has been a very rapidly growing field as it is an important class of unsaturated
metal-ligand complexes which have interesting electronic structures and, at the
same time, are relatively easy to prepare and stable at high temperatures. The
ground states and many excited electronic states of the entire 3d series of ansition
metal oxides have been already characterized experimentally 15]. The present un-
derstanding uf the 4d series of metal oxides is. however, much more limited.

Recently a thorough study of the spectra of the MoO diatomic has been published
[6 ], providing the first conclusive gas-phase investigation of this molecule, complete
with rotational analyses. isotope shift measurements. and assignments of several
electronic states. Some of these state- have never been approached theoretically.
thus it seemed to be of particular interest to extend the available theoretical cal-
culations for MoO.

Previously reported theoretical studies on the electronic structure of MoO have
been performed by means of self-consistent field HF and multiconfiguration SCT

* Currently leave from the Institute of Catalysis. Polish Academy of Sciences. Cracows, Poland.

International Journal of Quantum Chemistry: Quantum Chemstir Symposium 26. 393-399 (1992)
'c 1992 John Wiley & Sons. Inc. CCC (X)20-7608/92/010393-07
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calculations. l'olioed by single and double excitation (stwi') calculations (I. I-hese
computational techniques fall among the most accurate traditional quantum
chemical methods. however. onl\ at the highest degree of calculations at a large
expense of computing time do the\ prove to approach the e\perimental .alues for
transition metal oxides.

At the same time. the local-spin-densit\ fIst)) method appeared to be a % er.
useful tool for the description of the electronic structure of various molecules con-
taining transition metal atoms [71. i)rf -Based methods have proven to be numer-
ically very eflicient and lead to reasonabl. accurate results with moderate com-
putational effort. The introduction of the model core potential ( M(P I method into
the spin-polarized local-spin-density calculations extended the sctope of this method
to the treatment oflarge clusters containing transition metal atoms [8]. Thus, this
method has been chosen as a tool for the study of the electronic structure of the
MoO molecule.

In this study, spin-polarized itsi) calculations for MoO. both all-electron and
model core potential. are reported and compared with the recent spectroscopic data
of Hamrick et al. [6]. The properties of the 11 ground state and tbur-quinlet
excited states are evaluated. and their agreement with the experiment found to be
quite satisfactory. One of the states. 'E , is. to our best knowledge. described theo-
reticallv lbr the first time.

Calculational Details

The computations have been performed by means of the spin-polariled Ivst
method using both all electron 6FrF basis sets and with a MCP for molybdenum.
Calculations were done using the program. de,.lon,. developed by St-Amant and
Salahub [9.101 at the Universit6 de Montreal. A description of the theory and the
technical details of the program are given in Refs. 10 and 11.

An oxygen orbital basis set with a (621/41 / 1 * } contraction pattern was used,
while the all-electron basis set on molybdenum had a (633321/5321 */ 531 + I con-
traction pattern and the Mo McP orbital basis was (311111/31111/2111). The
auxiliarv basis sets, used in the fitting of charge density and exchange-correlation
potential, were 0 (4.3:4.3) and Mo (5.5:5.5). The model core potential for mo-
lybdenum was the one developed by Andzelm et al. [81 fbr Mo 4s. 4 p. 4d, and 5N
electrons treated as the valence shell. Only the local spin-density approximation
was employed in the calculations for MoO. however, its validity for molybdenum
compounds and the M('P scheme has been tested against nonlocal gradient-type
corrections for the molybdenum atom and for Mo2. The results indicate that these
corrections should have a minor influence on the electronic properties for the near
equilibrium region. Nevertheless, the detailed study of the electronic structure of
MoO within the nonlocal scheme is in progress and will be published soon.

Potential energy curves for all states of MoO were evaluated by point-wise cal-
culations over a limited number of points around the equilibrium geometry, and
equilibrium distances and spectroscopic constants were calculated from simple cubic
fits. We are also progressing in doing more precise potential energy curves, on which
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full ibrational-rotational anak scs could he pertbrmed. The reported dissociation
energies have been calculated for the minima of total energies with respect to atomic
energies corrected lor basis set superposition error.

Results and lDiscussion

.Mt1l0 A11d('u1 .11i/ and IM/llou i"ic

The results of the calculations arc summarized in Tables I and II For Mo and
Mo.. rcspectivel\. The reported computations have been performed wkith the all-
electron basis within local ( all/ 1.) and nonlocal (ail!/ P15 approximations. and %\ith
the use of the model core potential. both local ( MCP/ /.) and nonlocal ( MUP/ I')
exchange-correlation functional.

In Table I. the interconfigurational energy. E(,. - !' d5 -v LX .da . .s spin-
flip energy 1E.,, - t s I (I. N) -- 11( .s, d'.7 S), ionization potential. 1. and electron
atllnily.. 1. are listed fbr the molybdenum atom. The cncrgy of the t'dP configuration

1 \I I1. les, of the froicn core
a:ppromination tor MeI molccuIc.

I ccl R, IA] 1), 1 VI

MI Il.2.t5' 4.M
",II ';I 2.()5 3.39)

*\11l L 2.100 4.54
AII,' 2.14 2_95
I ( ) I li'.,)7 S

jp I .RXIS 4.2

Sec lahlc I tor ahhrcoiion'.
S'mm Rcf. 1,.
" From Rcf. 4.
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was calculated for the multiplet average (spherical Mo atom). The last two entries
are calculated as the difference between the total energies of the neutral atom and
the appropriate ion in the lowest electronic state. From Table 1. the agreement
between moo dl core potential and all electron calculations is very good. The nonlocal
corrections also do not change the overall picture in a qualitative way.

The agreement of ionization potential and electron affinity with the experiment
may be regarded as satisfactory. The calculations generally overshoot the value of

the interconfigurational energy by about 5011,,. but this is consistent with other
theoretical results (e.g.. compare AE,, 2.7 eV given by Harris in Ref. 12). There
are no other data available to compare the s spin-flip energy. but. it may be concluded

that the value is reasonable by comparing with the value for chromium. AE,,
1.1 eV (0.9 eV exp). computed by Harrison [131.

Similar conclusions follow from Table II regarding the Mo 2 molecule. The agree-
ment between all-electron and M(CP calculatio,,s is again very good regarding the

optimum bond distance. The value of the binding energy is, in general. difficult to
approach even by advanced quantum chemical methods. Here this quantity also

appeared to be sensitive to the assumed computational scheme. It may seem some-
what surprising that the nonlocal corrections lead to some worsening of bond dis-

tances and underestimated binding energy-it could likely be attributed to overall
difficulties in describing the Mo 2 molecule with symmetry adapted (DL,,) MOs

[1 4]. Nevertheless, all discussed entries from Table I! have acceptable values (com-
pare also R,. = 1.98 A and D, = 4.8 eV obtained from extended basis set calculations
by Baykara et al. [ 14 ]).

Finally. it may be inferred that the M(P for molybdenum within the local ap-

proximation provides a reasonably accurate description of its electronic properties
and bonding features and may be used in the calculations for larger systems.

AloO

Using the calculational technique described above, we have studied the electronic
structure of the MoO molecule in its ground 51I state and the following excited
states: ,'. ' , "A, and B' 5II. The dominant electronic configurations for these

IABLI III. Dominant configurations for
Iovh-Iving quintet states of MoO,

State Configuration

'+11 eT '/,4z 2 + 7r4,'

"ii+ aro,.r,4do-4dr'2

% ni•r'h4d5,5,% s '4dTi

r' f2.,/'4d&'5_s'4d~ rl4do'
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difficult to compute bN any s(! scheme, %Nhich vas also our casw. \,c did not
succeed in spotting the third state ot ll s nmmctr\, labeled b\ c\pcrlcmntalists a•
B >11. It can be still brought under discussion i tIhe Ito ? "1' states are ass&igned in
the proper order. The mutual interchange seems apparentl. to b,1 true for the I'A.
2Z states. where the data listed in [able IV do not agree %ilh the assignment given

in Ref. 6. Our assignment of "!" to the lower state iS fulls supported bh 5,l)( I
calculations. Bauschlicher et al. [2 1 report C \.sS I and sI X I calculations on 'I.

SII, and v! states. Only inclusion of the extensiwe (,I treatm1ent led to tlhe
impro ed in comparison with our bond distances ( R, - 1.71 A for the ground
state). Other parameters. however, such as dissociation energies, vibrational fre-
quencies, and relative position ofeseptets. had less reliable values, ('loser inspect ion
of the remaining entries in Table IV shows that our conclusions regarding the good
perlormance of the M(P for mol.bdenunm. interred from atomic and homonuclear
calculations. are also valid for the oxide molecule. Excitation energies. vibrational
frequencies, and rotational constants calculated with both computational schemes
agree closely with each other and wkith the experiment. Again. the largest discrepanc\
with experimental data was lbund for the second I1 quintet.

In the last column of Table IV the charge on the molbdenumin atom is given as
measured by a Mullikan population analysis. Its value maN be taken as a measure
of the charge transfer from the oxyger to the molybdenum atom. The model core
potential gives a larger charge transfer than the all-electron calculations, still smaller.
however, than III: calculations. Both schemes agree in describing the ' and •A
states as the more pronounced charge-transtler states.

Conclusions

The spectroscopy of the MoO molecule is still far from fully understood. howcxer.
good progress has been made [6]. The results presented in this study may be of
considerable importance for further resolution of spectroscopic data and may also
serve as independent support for available assignments. The ground state has already
been definitely established -, 511: also, the position of the excited 3A state seems to
he certain. Recent calculations can contribute to the tentative assignment of the
part of the spectrum in which the transitions 5II- ' and 'I11-5 are expected.

As low-lying triplets should also contribute to the spectrum of NoO in the same
region, the calculations for multiplicities other than quintet are presently in progress.
At this point, it should be stressed that the accuracy of the reported results is at
least comparable with other very extensive theoretical treLtments wkhich require a
qualitatively larger computational effort than the local spin-density formalism. Thus,
we are also attempting to obtain a more detailed description of the potential energy
curves, which would allow for more complete analysis. The results of such an
analysis for quintet, triplet, and septet states of' MoO will hopefully be published
in due course.
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Abstract

The pairwse intercorrelation betwccn 12 topological indicex is studied in benicnoid hxdrocarbons
with up to six rings- The functions used in the intercorrelations ý,ere linear, quadratic. cubic. posmer los.
and logarithmic relationships. the last t1so relationships failed to intercorrelate ilh selected topological
indices. The res-ilts obtained suggested that there are hasicall% three subclasses of independent topologkcal
indices in the ben, -noids studied. When contrasted with the pres ous findings in alkanes. our results
suggest that the ciclcity leads to the stronger intercorrelation oltopological indices than the branching
of a molecule. , t992 John ,'Ailc & Sons. Inc.

Introduction

It is well-known that the chemical behavior of a compound is dependent upon
the structure of its molecule. Quantitative structure-activity relationship (QSAR)

studies [I] and quantitative structure-property relationship (QSPR) studies J 21 are
active areas of chemical research that tbcus on the nature of this dependency 131.
Regression analysis [2]. expert system [4]. and other techniques are used to model
the prediction of property/activity of molecules from their structural parameters.

The structure of a molecule could be represented in a variety of ways [5 1. The
information on the chemical constitution ofa molecule is conveniently represented
by a molecular graph [2]. Usually hydrogen-suppressed graphs are used.

A number that is mathematically derived in an unambiguous manner from the
molecular graph is called a topohloical inde.x. Evidently, topological index must be
graph invariant [21. The first reported use of a topological index in chemistry was
by Wiener (61 in his study of paraffin boiling points. Since then, in order to model

* Dedicated to the memory of the late Dr. loan Motoc.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 401-408 (1992)
c 199; John Wiley & Sons. Inc. CCC 0020-7609/92/010401408
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various molecular p-operties/activities. a hundred of topological indices have been
designed [ 2 ]. Such a proliferation is still going on and is becoming counterproductdie
[7 ]. Therefore. we have decided to study the inute orc//ttim betxween difkLrent. at
the first glance unrelated topological indices, It is known for some time [21 that
topological indices reflect mainl% molecular sire and shape, and onk in a less extent
the, are sensitive to other structural features of molecules. [heretore. one should
not be surprised to find that a plethora of topological indices could be reduced to
a small number of independent. mutually orthogonal (or almost orthogonal ) to-
pological indices [ 8-I1 ].

Previously we have studied [12] the intercorrelation between 12 different topo-
logical indices [13] in alkanes. flere the intercorrelation between the same set of
topological indices is studied but now in ben/enoid hydrocarbons. The findings are
compared with those of alkanes

I'Opo(/%,li'jhul blkiU.ý Siudied

We have studied the same set of' 12 topological indices as in Refs. f 12.131.
The connectivity in a h'.drogen-suppressed molecule is represented by the mo-

lecular graph 6. Let N and A1 denote the number of /wmns( vertict.s) and hott/s
I t'!,'s ) in a molecule (molecular graph). respectively.

The first and the simplest index studied here is A. It is also called the total
adiacen'c.c old 4 mole.cul.

Let v, stand for the degree ( valency) of the vertex a in the graph (i. The /agrc/'
6roup indices. .11, and M2. are defined as 114 ]:

M,=Z c;;(,

.l, = • v, V,, (2)

where the summation in Eq. (2) runs over all bonds (a.l,) in (G.
The following adaptation of .f [ 15 1:

RI= , (cv~v,) ,2 (3)

is called the Ruidi( connectivitv inidOY. RI, and represents up to now the index
which has found the widest applications in the field [1.21.

The Platt indle. F, is defined [161 as the sum of the number of bonds adjacent
to each of the bonds in a molecule and is accordingly also called the ed.e total
adjaencv. It could be expressed as [ 17 1:

= e,,(,,-l1) (4)

The (iordon-Scant/churt inmdev, S, equals the number of distinct ways in which
an acyclic C -.. C C fragment can be superimposed on the hvdroven-suppressed
molecular graph [ 18 1. It does not represent a new index as it is easy to prove that:
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The remaining topological indice, considered here arc based on the distances in
a graph (. The distance, d.., between \ertlces a and t, in G equals thc number of
edges connecting a and t, on the shortest path in (, bet% cen them 12] R\ definition:

i4_ 0O

The sum of all distances in a graph 0 1:

defines the 11 hcer uidev. IF. This oldest topological index still finds its applications
in chemistry [171.

A half of the number of distances of length three in (G delines the polrrav number.

Let us consider the sum ot'all distances originating from the Nertex a:

Let1 r >,.= "d, (61

The sum represents an analogon of the 'ertex degree and iv, called the dwitmtv'
AU.M. Ur,_. of the vertex a [191.

Having the above in mind Balaban has delined. in analogy wkith the Randil"
connectivit\ index, the following index [201:

.. - Z (V)t',,,.} 0 (7)p 4- I A,,.

where the evclomatic number, p .1 -- N + I. equals the number of cxdes in G.
The Balahan index. .J. is the most discriminating Iopologic,1l index proposed
so •ar.

The Wiener index lWcan be written as [17 ]:

SIIV klf"4)~

where WA is the frequency of occurrence of the distance k in a graph. 1. stands for
the diameter (the largest distance) of 6. The frequencies Ili define the distance
distribution and enable a definition of the following index [ 171:

[, (9)
lf.
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This index is related to the sth moment of the distance distribution and is called
the sth mean square distance topolhgical index.. The indices DD DD, D), and D4
are considered in the present article.

Results

The intercorrelation of the 12 topological indices introduced above is studied
here for benzenoid hydrocarbons having up to six rings. This set of benzenoids
contains 115 structures and is taken from Ref. [ 21 ].

All topological indices considered here could be defined [13] in terms of the
higher order adjacency matrices [21 of a graph.

This observation serves as the basis of the program TOPIND which has been
developed by Razinger et al. [22]. Here we use the modified version [12] of this
program. Although there are existing more efficient algorithms for computation of
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Figure 1. Graph of strongly intercorrelated topological indices in benzenoid hydrocarbons
with up to six rings. The case of linear relationship.
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Figure 2. Graph o fstrong intmer orrcdated topological indict, in b•niCmnid 1hd(ho(Jarfinfl
%kith up 10 Mix. rings. Ihe cae of quadratic relalionship.

particular topological indices, the higher order adjacency matrices approach has
been advocated [ 13] as being able to point in more direct way to the similarities
and differences between the topological indices.

The intercorrelation of topological indices is studied here pairi'iis. that is. wke
investigate the quality of the functional relationship between the topological indices
T, and T,

T, = 1T,) 10)

or in other words we investigate the degree of similarity of their structural infor-
mation contents. The one-parameter linear, quadratic. cubic. logarithmic, and power
loh% relationships have been tested.

Quality of fitting these relationships between 1, and T, is giken hy the corre-
sponding correlation coefficient r,.;. ,Sirotd,,v if nler('forral('d pairm ol topoilf.nlal
indicce are those with r, , 0.98.
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Figure 3. Graph of stronglý intercorrelated topological indices in hen/enoid hsdrocarbons

%ilh up to six rings. The case of cubic relationship.

The correlation coefficients are usually presented in the form of matrices but we
prefer a pictorial representation: each topological index T, is depicted as a vertex i
and an edge (,.1) is drawn between i andj only if T, and T, are strongly intercor-
related. Such a drawing 18-10] we call the graph ql/strong/I imercorrelatd topo)-
logical indices.

The graphs of strongly intercorrelated topological indices for benzenoid hydro-
carbons with up to six rings for the linear, quadratic, and cubic relationships are
given in Figures I. 2. and 3. respectively. The topological indices MAl, D,, Dj, D,
D3. and D4 are denoted in the figures by MI. M2, D I. D2. D3. and D4, respectively.

One notes that the indices DI, D,, D, and D4 form a separate subclass of indices
independent of all the other indices. Only in the case of the linear relationship the
'ndex D, is strongly intercorrelated with the Balaban index J.

Let us note that for the linear relationship the Wiener index 4' is independent
ofthe other indices but for the quadratic relationship it becomes strongly correlated
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skithi F .khen one proCCCds to thle cubhic iCkit111nshi11
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D~iscussion
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conclude that the i v /14 Ill- I as presentled in benII/enoids leIads to the 5 roulcer in icr-
correlatioin of' indices, than thle branching-

Acknm% edtgment

We thank thle members of the I heoretical ei cal P'h -,sik- ( rItimp at thelk I esas
A&MN I n il \ crsit\ aI ( aLmn stI. levs ) for helpttmh suggestions,

BihlictgraphN

121 \s I rnilsik. 4 b,na i 14i "'i nd 1,p oI Cd cd1 Ri Pt"',~ Iii t~ilor I I
lI I tS isii. ( I Ni, ilL inid I ) kI ti ll, I i \tt~hli Ilk in - I', 1) ;

14 ~ ~ iii 41 ( opm m id % tIKciuicr~.N i J \tiili licmi I-. 1 1"

I S S RmnI(d . 1 t Iii Ilkill .4. i 4

I~ tI %~k wn I (in ho 69. 1~ i- 1
% I S at h ,mii ( nsii. ( I'ui %tito 6.4. I 4 )ý I'

\' I t. ttiibairi andf I. Mtzk Si I It !5. IC ;-Ji



408 HORVx lII A

[ 11 M. Randic, J. (hem. Inf. Comput. Sci. 31, 311 ( 1991
j 121 K. Koae,,i, D- Pla,',i, N, Tnnapfiu. and D- Il-orat. in MA VH/(HI-M/COMP iSX,, A.

Graosac, Ed. (Elsevirr. Amsterdam, 198•9). p. 213,

[13] M. Barsz. D. PlaNsii', and "!. lrinapstia, MAI(Ct 19.89 I 1986)
1141 I. Gutman. B. Ru-in, N. [rinajstiý. and C. F Wilcox. Jr.. J. (hem, PhMs. 62. 31391 IH75)
[151 M. Randi&, J, Am. Chem. Soc. 97. 6609 (1975).

116) J. R. Platt. J. Chem, Ph s. 15.419 ( 1947 .

[171 A. T. Balaban, 1. Motoc, D. Bonche%, and O. Mckensan, Topics Curt. Chemn. 114. 21 (19X841.

[181 M. Gordon. and G. R. ScantLebur\, Trans. F;arada' SovNic 60. 6041 19t,4).

[191 D. Bonches, A. T. Balaban. and 0. Mleken•an. J. Chem. Inf Comp. Sci. 20. 1006 1980).

[201 A. T. Balaban, Chem. Phbs. Lett. 89, 3Q9 (1982).
1211 J. V. Knop. W. R. Mulier, K. Szmanski. and N. Tnnajsti-, ('Cmpuwr (i'c'ratwn ,, ('crai'n

(Czss's owX.tlolccuh (SK [H /Kern. md. Zagreb. 1985 ),
[221 M. Razinger, J. R. Chretien. and J. L. Dubhois. J, Chem. Inf. Comput. Sci 25. 23 ( I .X I).

Received May 6. 1992



Correlated Ab lnitio Geometry and Vibrational
Spectra of Imidazole and its Different Forms

JOANNA SADLEJ* and W. DANIEL El)WARDS
l~'palrout~l o/ ( "h)ODl~rl tm. I 't~lrsl I• •1Idaho' •I,•,,u, hlah•, .•35 .

Abstract

The equilibrium geometrs. rotational c.onstants. and ',ibrational Irequenc.ies tor n•'utral imlda/,)le, the
protonated imidazole cation, the deprotonaled imida/ole anion, imidazole • ide and the imida.,ole-l~i
complex hase been calculated at the second-order MiI, le',el sith the •'-31(i* bass set, The .slide lbrm
of imidazole is fIbund to he 32.5 keal / nol less stable than the neutral fbrm. Infrared ,,pectra predicted
at this ke,.el of theory reproduce the experimental spectra sullicientts aceu ratel_• to enable a reliable
assignment for cationic, anionic, and slide torms and to confirm the interpretation of the st RS spectra
of imidaiole adsorbed on a silser electrode.., tI•2 John Wil¢•, & Sons, tra:

Introduction

lmidazole, a component of the amino acid histidine, plays an important role tn
biological systems acting as a general base catalyst, and as a ligand toward transition
metal ions in a variety of biologically important molecules. For aqueous solutions
(pH - 7 ). imidazole behaves like a base and forms the imidazole-cation form (im
H +). In strongly basic solutions (pH > 10), neutral imidazole undergoes depro-
tonation and forms the imidazole anion (Im) [i]. A tautomeric ylide form of
neutral imidazole ( ImY ) is known to exist and has been found as a reactive species
in exchange processes [1].

Recently, the adsorption of imidazole on the silver electrode has been studied
by surface enhanced Raman spectroscopy (sEts) 12]. According to the authors.
the spectra observed at more positive potentials cannot be interpreted in terms of
the complex between the imidazole molecule and Ag* ions. Their srERS results
indicated that different forms of imidazole can be observed at the Ag surface when
the electrode potential is changed. Thus they discussed their sets spectra in terms
of contributions from cationic, anionic, and ylide forms. The experimental vibra-
tional spectra for neutral imidazole in vapor, matrix, and solution phases are also
known [3].,as are the Na'im (in KBr)[14] and crstalline lm'Cl [5] spectra..
though the latter two are without assignments. We believe that correct interpretation
of the SI~RS results may well depend on the proper assignment of the spectra of
these various imidazole forms.

*Department of Chemistr-. University of W~arsav,. 02-093 Pasteur I, Warsav.. Poland.

International Journal of Quantum C'hemistr': Quantum Chemistt-v Symposium 26. 40'0-420 (1992)
t •, 1992 John Wiley & Sons, Inc. 'CCC(" 020-7608/92/010409-12
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The N ibrational spectrum of thbe iniidazole %k as a subject of a pre% ious tl IPiWO
calculation [• ] and a classical normal coordinate analsis 17 ]j hoex er. some of
the assignments are controversial 18-Il ]. In Ref [112 2. a 3-2 IG calculated spectrum
of 4( 5) meth.limidazole is mentioned, and in Ref. 1131. the results of a 4-210
calculation are presented. -his latter stud\ clearlk shows that it is necessar. to use
a large basis set and to take electron correlation into account in order to calculate
the geometr, and spectra with a reasonahle accuracv- We belie' e that more w.ork
is needed.

Computational Method

The alb inlit calculations were carried out using the GAUSSIAN 90 program
1141. All calculations \%ere done with the 6-3]G* basis set [151. and electron
correlation .kas included by second-order Moller-Plesset perturbation theory [16 ].

The optimi'ation has been carried out under the constraint that the molecules
are planar. The optimized planar geometries correspond to a minimum (not to a
saddle point) on the MP2-631G* calculated potential energy hypersurface. This
"was confirmed by the subsequent calculations of the vibrational frequencies. which
are all positive.

The optimized geometries were used as input data in the calculations of the
harmonic torce field. The second derivative of the energy was evaluated numericallt
from the gradients. The calculated Cartesian force field and transition dipole mo-
merits were transferred to a separate pi,.,am for the standard potential energy
distribution (PIt)) anal\.sis [171. T' I ternal coordinates were chosen according
to Ref. [18]. The convention fl,r atom numbering is shown in Figure I and
the internal coordinates used v . calculations are listed in Table I.

Results and Discussion

Mi ft'ludar Gci inet ,:,

Table 11 shov s the experimental geometry [ 17 1 for imidazole as well as the MP2-
631G* optim-ized geometries. dipole moments. and energies for imidazole limn.
the imida/, le cation lmH' ). the imidazole anion (Ir ). the ylide (ImY form
and the IndLi complex. The experimental geometries of the lmH ", , . and ImY
are not known.

Table 11 shows that. in general, the geometry predicted by the calculation is in
good agreement with the experimental data. For bonds between the heavy atoms,
the greatest discrepancies between the predicted and experimental values are no
I: rger than 0.015 A. The predicted bond angles between the heavy atoms differ
trom the experimental values by no more than I to 2'. The hydrogen substitution
on N4 changes the CN bond distances by no more than 0.095 A. and the NCN
and CNC angles by 4'. Opposite changes are seen in the anionic form of imidazole.
"The NCN angle increases and CNC angle decreases relative to neutral imidazole.
The changes caused by the simultaneous substitution of a proton on H4 and the
removal of a proton from (C2 are significant. especiall\ for the NCN and CNC
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Figure I. Numbering shchme tfr the %arious formns o1 Imidazole.

angles in dlidc "urm. The corresponding rotational constants obtained from the
optimized geometries of Im and the various other fbrms of Im are shown in Table
1i. A comparison of our results for neutral imidazole with the experimentally ob-
tained rotational constants [191 show a relative error of 0.4% and attests to the
quality of the MP2 calculated geometries.

Taulomerisin

The diflference of the total internal energies of the tautomers at 0 Kelvin has
been calculated as a sum Etot (MP2-63IG*) + ZPE (MP2-631G*) where the
zPL is zero-point vibrational energy. calculated from the vibrational frequencies of
the normal modes computed at the MP2-63 IG * level, without scaling factors. The
large (32.5 kcal /mol) energy difference between tautomers suggests that only the
neutral fbrm of the compound should be observed at low temperature in the gas
phase. However. the ylide form could be stabilized by solvent interactions and/or
the potential field of the silver electrode.

Popult ion Analt-si'

"Table Ill shows the total atomic charges for all atoms in each of the various
imidazole forms as calculated from the MP2-631G* density matrices. The positive
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TAB[ U- I, Definition of internal coordinates for the G', form of cation. (mlH') anion (Im ), and yhde
(ImY) of imidazole and lfr imidaiole molecule (tim). Number pairs are bond lengths, number triplets
are bond angles, number quartets are dihedrals. 11 out (a. h, 0) refers to motion or the proton out of the

plane defined b. atoms a. h'. .

lm1lW Im lmY Im

ql rtý2.3-) f il 2,4) qI q I rt:2.3)

q2 14.6) + r(3.5) q2 24l2A4)
q3 ?11.2) q3 Y4.6)
q4 ?I 5.6) q4 q4 r(5,6)
q5 46,8) ý- r45.7) q5 q5 4(3.5)
q6 r43.9) t- ?14.110) q3 43.9)
q7 (4.3,2) , a((2,6.4) + (2.5.3) q6 q6 4(5.7)

f /,4.5,6) + (3.,i.5))'

q8 18.5.6) - (8,4.61 + (7.6.5) - (7,3.5) q7 q8 r(6, 8)
q9 (10,2.4) - (10.6.4) - (9,2.3) -- (9,5.3) q7 r11.2)

ql0 112.3)-- r(2.4) q8 q9 q7

q1 I r44.6) - 43.5) q9 q10 q14
q12 4[6.8)- r5.7) q10 q12 (9.3.2) (9,3.5)
q13 ti3,9) -A44.10) qH (7.3.5. (7.6.5)
q14 (a - h (2.5.3) - (2,6,4)) ql4 q13 (8.4.6) (8,5.6)

+ (I aX(3,6.51 - (4,5,6))

q15 (1.4,2) - (1.3.2) q12 (1.3.2) (1,4.2)
q16 (8,5.6) (8.4.6) -- (7.6,5) + (7.3.5) q13 q15 q22
q17 (10.2.4) - (10,6,4) - (9.2.3) + (9,5.3) q14 q18
q18 (a - /(2.3.5.6) - (2.4,6,5)) q14 q16 q19

+ (I - a (4.2.3.5) + (3.2.4.6))
q19 111 out (4.2.3) q15 H9 out (3.2.4)
q20 H8 out (4.6.5) 1-17 out (6.5.31 q16 q18 118 out (5.6.4)
q21 H 11out (2.4.6) f 9 out (5.3,2) q17 117 ou• (3.5.6)
q22 (3,5.6,4) + b((4.2,3.5) + (3.2,4,6) q17 Z19

4 a((2.3,5,6) + (2,4.6.5)))
q23 f8 out (4.6.5) - 117 out (6.5.3) q418 q21
q24 H 10 out (2,4.6) H9 out (5.3.2) q20

"a -. -0.809, 1 = 0.309.

charge in ImH' is distributed among the heavy atoms, so C2 becomes more positive.
N3 and N4 become less negative. .nd C5 and C6 become more positive relative to
neutral imidazole. In contrast, the negative charge in Im is distributed across all
atoms except C2. The ylide form has charges quite similar to the neutral form. The
dipole moment determined from Stark effect measurements on Im is 3.667 ± 0.05
D [19]. while the dipole moment of Irm it, benzene, extrapolated to infinite dilution
is 3.8 D. Our calculated value of 3.95 D agrees well with these measurements.

Intrared Spectra

Our calculated IR spectra for imidazole as well as experimental results are shown
in Table IV. Our results for the other forms of imidazole are presented in Tables



\ IR 1\ ,I II( Rt \ Tit I\14I\11

1 11B 1 I \pertmcnitai [IX anj d \MP2- " ; ;k i* ophlmucdki o BUR hWLI IB.I•I Oh~irn'c",• d'111)'I

inh'lln lts f l[) ,It",.l /Pr I fl ict'cl). a1nd ro.la ttI,eh 1 - 1.'lM lll 1 . •, I.lH ( ( 11 )I lI tMI.jaiicL" arl.

d •.tirc c t titI Ori% BoI nd l.ngih, areC g w "- IT )n V .hlid 1 In•lo. arIc' III dc.rct. I 1 1, H' C IC To' Olew I 'il '.'Il t I,
O,) nluIrdi ru /kIdk ( 22i.•4 I - c\&up1 l h111 ' ,•hich ';4 1I 'la): 1•' 11111Cl\ I I dl".'

:llt litIn.Il ea1 1. 111 I " . I4'14q lI)

I'arramcirs Im I \pt( n Cllh ( ., II I( In') ISll I

R C A 4III I j1 I Os2 6 If, I 1O 1 4,2 I I!I I,
RI 24(\2 N 4 ' ) 1;• 133S4I i"4 1 I I 1546

RI(C'h\41 1.311 132 1.1355 35-4 I I
R(5I 4 ". t'4 I t)5 1 114 14,'p8-

.31112I f" I.1S16 U '45 I(118 I 1IS4 15""4!
R. N4( '(. ... I I I I..I ) 1 3 4 4,

R(II911') 12.(-s 1 50 1 14 OS154 1 441 1 4")S

RI( 61(111 1lIP 1.lP46 1 125 3111 .... 1 hr 12 4 l

1Il(fIIs) I 22 S
2  1 '4 21 )2 1 .1-x 1 WR\1 N(I' 2I 12 sP 1.001 14 94Ž I

lIll( (" 1 I I2 2".'N 12Ž2 I I I
1II5(6(~~~1 124 11 l21, 45 >1 I~ls 21

H3(2N4 112.6 12156 15h.51 I- 1Z4 1 2141c
9(5N3('21 1116.4 I I I1 5.36 11 ' I5 12 I21

i('5(6"\,4s 1115.7 .1.11 11511.51 1I 12.215 Ill NX linyt¢
l('6N4(2l (1)4 4.4 1414 IIl iI 5 ,5 , 115 2 ItU5 44

(lIt)N3('2) 1.. 2 .1 124._. -- !21 I5 I "
0 lN4('21 J) .-.. . . 1 "8

11t N4('t .1... 124 52

3.9 1.t1 1 53 5 1 " s

/Ii T)7.l71 511511 ON 1 II 5 , S (10 m I I 22 i 2 1(t"741 _h

,1 9 q 9.32l1 1 78,2?q 0.6 ;2- h22

B 9Q3740 9 1421 9,0•6 45347 q 045005 4 3HI)
4"-7 N Y- 44 4.59,5 44.4 4 954" 244Th's

V-IX. In each case, there are three main region, of the spectrum: a low•% frequenct
region. 500 to 900 cm i an intermediate frequenc region. 900 to 16001 cm ' and
a high frequency region 330(0 to 370(0 cm [, The relatic" error between the exper-
imcntal frequencies and our calculated frequencies is the largest Ior the C I I and
N - H stretching in the third region, though oxerall. the predicted %ihrational spec-
trum of imidaiole is in satisfactory agreement with the ecpcrimental data,

The tirst region contains the frequencies I,, to v,, w hich consist of NII and (U1I
wagging modes and ring torsions ( tors I. Our calculations predict the N I I ag mode
as the lowest frequency, in agreement with the espcrinmental data. I he 4-216i
calculation gives ring torsion as the lh'est frequenc\,
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The second region contains the frequencies v. to v- %k hich consis of" in-plane
deformation modes. As expected for a small ring molecule, the normal modes
contain contributions from the moxements of all of the atoms, and each of lthcse

modes has a large contribution from in-plane bending modes and the stretching

I -',oi i IV. MP2-WI31(,* lciqucnci•c tcm t) nd i w ininCnesitis t.moli tor imtdaliole.

No. S ni. 1, ttR Appro\. dcscrip l1\p) P.K'

1 .1" 526 87.4 qIll98 ).qi 7(22) N l \ag , tors 513' 38

2 ,1" 641 37.2 q16(53),q17(38).q 91 131 tors(S) - NH '•ag 626(."011
3 .1" 686 1.9 qI 7,48).qI6(40lql,1(13) !)0r4) ((',81 f662
4 .A" 693 11.8 q20('71 ('11 %%ag 723_721-8

5 ..11 771 42.10 q10 )980 (.t ag S06 X M)
6 1" 819 20.5 q21 11 ( ('16 %ag 855/85(

7 .. 906 7.4 qI 197) CNC def 890,892

8 ,1' 946 1.9 q1 f1(87) ('NC dlcf 9301 19W1
9 TI" 1106 26.8 q1335 1q51 1

6
).q(131) IlC(.d (\,,st 155, (156

I0 A-, 1129 23. 114(24),q12(23).q4(16) HCCd H iN( d 1()74/ 1(74

1 .1 ' 1 79 2,8 ql(31).q2( 8).q31-4) ('Ns1 11271

12 T. 12102 3.4 q30 15.qS(29) CNst 11 160I). 12(1-313

13 4 ' 1303 0.9 qI 5147).q14(22).q2(15) tl'5Nd - IlC~d 1260/1252

14 .A' 1402 1 .2 q2125).q3(24.q14123I (CNst 4 IiC(d I"' 3)/.1352
15 . U 1496 20.1 qS(3?".q12(2

7
).ql(20) (Nst + lNCd 14()5/1404

16 .1' 1537 19.0 q2(27q1. 5(24).qI 17).q913115) CNst 4 Il(CNd 1480/148(0
17 ..1' 1570 8.6 q4(421.q2( 15),q12151 C (s M (CNsIt i 1('Nd 5315!,

I 1, .' 3308 4.1 q8(84).q7( 13) ('*lst (31000)/
19 .1 3312 0.9 19(96) C( I t 3135I

20 .- ' 3336 0.9 q7(85(.qS( 14) ('lIt 31601/

2) .1 3674 71.6 q6(99) NtIst 3518 ;1504

Pf1iY's lowc, than 10'; not included.
P :: Perchard [31 (%aporui K King (91 (mwtrix).
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niodcs. PrI kius v orkers [1 .] haw asSigncd thie ha<nd vI 98 CI - (cor 1. I in in
aqu eou. Solution I as out-o.-plane ('1 defornation. We f ,ind that 1. 910 cmI

and L' 946 C111 1 cOITepOnd 10o ringt d(jfwrations. In agicement v. ith I-a cl a. 6

-1 li N 11 dc-formation modc w~as not aissiened in the kapor spIccOirum1. 10i [-an
et a!1, adopted theC Solution Raman N.IlI tic1o 1100) cm 1 16r this Fu nda mental. King

191 assigned this to thle hand at 1125 Cm1 ill thle mlatin\ SPOctruLm, basdI on theC
spectrum of psrole. Cordes and Walter [ 7 assigned , 1 1601 cm. as% (N(I ). l,% hi

Salome and Spiro I11 assigned v -l 143 1 cm as ;t N.I/). According to Our cal-

culations and Ii I analssis this nmodc is mot characteritic. In us. it sIees more

reaScnahle to assigned v,, 1496 cm ich contains 32', o-'N stretch and 27''
of 3 ( MN! I as this Ili ndamencrtal.

Wc find the C 11 stretch hands. I; ,and Ill t,, he the ",eakest fundarnils inl

tile spct~rumTI, Inl agreemenrt "sith the pr''s ious Calculations.

"lo p ro l (o/ S110 ,11" 'el'•')(I •,

[or the cation obrm. thle addition of a proton gies rise to three nell hans: "'.

and I In thle lithium complex. the ncer hands arc: ivr. v.. and I,!. in the an ion
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I xn RI VI. NlP2-431SG, lIL'quenclcS cm 1) and IR intwnNl1ics fKn;mok |I Ii mida/ool- inon f0rnm. In)

No. S% "I. 1.,i l:l 1ppr . dcsrrip

I A: 632 0.0 q17 79),q tor5j

2, 704 0.0 ( 14(103) lor\I 41W

3 12 710 11.0 qt 94, q1 712!) (Ill
4 B, 727 23.1 q,16482) (ilI wai

5 B, 772 qI i(99) (CA11 ag

6 II 931 20.3 ql (93 ('NC d,.f-41

7 A'1 936 4.6 16(80) (UNM" dell 51
8 t1 1121 0,3 q74(53).q4138 ) I(Cd I ("C C
9 B, 1130 29.9 191421.41(29).q81W3) (Nq! f I('("

10 -A, 1205 0.7 (12(52).q137) ("N
I I B: 1287 2.0 q] 2(54),q13(24) IIt"U Nd - H((d
12 A- 1 1290 1 t.3 q 1(49 i~q2(41 ) C N sI

13 B, 1390 2.5 9qg39W. 13(29) CNsi t (I(Cd
14 .1- 1513 6.1 q4(59),q7(29) C ( HCCd
15 B1 516 30.01 q8(47).q12(32,q1 3(I8) CNst HC2Nd

16 ..1 3191 114.2 q3198) Cjist
17 B1 3195 50(.5 q 10I 100) C(H( - )st
18 A 1 3224 72.0 q5197) CHh( )st

form, loss of a proton results in the removal of three bands as compared to the
neutral imidazole spectrum. The ylide form has the same number of bands as
imidazole spectrum. The ylide form has the same number of bands as imidazole.

The most important changes caused by the H-substitution is the shift of NH wag
mode (in the first region) to higher frequencies for the cation. ylide, and complex
forms, This is in agreement with the well-known observation that the bands due
to NH are much more sensitive to changes in structure and molecular interactions
than other bands in this region.

Contributions from the ring stretching vibrations, which form the ring defor-
mations are spread over many normal modes with frequencies in the second region.
Except for v7, vY the corresponding bands are not characteristic. and these two are
close to each other in the different forms.

Neutral Im has an N -- H deformation mode at 1496 cm ' and the protonated
form, the ImH ' cation has an additional N - H deformation mode at 1509 cm .
All of these vibrations have some CN stretch contributions. The deprotonated an-
ionic form does not have this mode. In the ylide form. ont cf these b(NH) fre-
quencies is shifted to lower frequencies (Ps = 1248), and the t -- H in-plane
bending vibration contributes significantly more to the ylide vP, 1458 cm ).
than in the imidazole molecule. However, one should notice, that ring deformation
modes v16, V17, and vi have lower frequencies than in imidazole molecu~es. Addition
of a lithium cation caused only small changes in frequency in the zccond region.

The bands due to CH stretching modes are very weak in the imidazole, but
became much stronger in other forms. They are shifted towards higher frequencies
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T.Nit t VII MP2-63 1G* frtqun:ncies (cm 'I and 1K in en•,,ies ikmminoll tovr rmdaotc-\lide lrm,
ImY. Modes that do not appear in neutral torm are marked

No . m . 11 P> Appro\ descrip

1 11, 592 21.5; q 1061L.,177(37) torsi4)

2 A. 593 0110 q I ik t9 7 to%(5

3 Bi 682 209 t/ 1 8190)1 CI( "1 *ag

4- A-t 688 0.0 j218751.q19(t3 Nil( A ag - tor%
5 .11 732 0.1) q2 1098) CII) I( wag
6 B1 761 2161.2 q 7(161 (/1 6 0 31) Nifi .ag t tors

7 Be 933 29 q 13(931 CN'4
8 .-I. 934 4.8 qXg3Lq8( I1) ('N('5). H(Cd
9 B_ 1083 20.2 q10143),ql5(37) CNst IiCCd

10 1, 1112 19.2 q8(471.q!(34) IC(CCd ,( Nsi
II AI I b1) 8.9 q2(661.q 7(24) CNsI IiCNd
12 .,t 1189 0. 1 q1(47),q8(25).q4(81 (CNst I(C
13* B, 1248 0.9 q91681,q14(22) CNst " NCd
14 R2 140h 4.7 q41544).q9t I9).q 431)) HCCd U 'N
I5 B, 1439 3.9 94)40)ql0) 391 C Cst C (Nst
16 .A, 1458 29.3 q7145t.q2)17) HNCd -t (N
17 .11 1627 7.4 q415 5).q7(20).t8117) " :. Cst 4, INCd

18 B1 3324 0.2 q 12(991 CI-1)st
19 .A,1 3345 (0.3 q5t

9 9
1 ( H((9

20 B, 3689 124.1 q1 If 100( NIl) --)st
21* A, 369(0 11.7 13(991 NH) ý )st

in the cation form and towards lower frcquencies in the anion form. The values
for vlide form are close to neutral imidazole.

In the third region there is a very strong NH stretching vibration, which is shifted
by about 62 cm ' towards lower frequencies in the cation form. 32 cm ̀ in complex,
and 15 cm ' towards higher frequencies in the ylide form. However these frequencies
can only be compared with the gas phase experiments, since the H atom is involved
in strong hydrogen bonding in the solution and in the solid state phase,

,SPLRS Spectra

Our calculated spectra for the cation and anion form of imidazole are compared
to available experimental results in Table IX. The experimental spectra of lm' Cl
[ 51 and [ (1m) Fe(CN)51, [ 4 ] have been published without assignment. However.
by comparing them with the published Raman spectra of imidazole, we have as-
signed the bands in the second region of spectrum. Table IX shows that the change
in experimental spectrum as protons are added or removed matches the corre-
sponding change in the calculated spectrum. Only the 936 cm '(in Im ) and 1639
cm ' (in ImH ') modes seem to deviate from experimental changes. One should.
however, take into account the experimental uncertainties in this data.
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Ilmil I VIII %iP'-6l!( ;* frcquvci.ics in cm ) and IR tilenIics kmn ili I1or imidaolc-I I cornpleN'.
Modes that do not appear in neutral imlilda/ole are marked

No. S\vm ,p I) Approx. descrip

I1 ." 149 829 q24(85) t C'N \,,ag
2 A' 175 71.2 q22'(,7) 1 C Nst

3* ..I4 495 123.0 /2373.q1411)
4 .1" 607 3,.8 q1 1q7()20) Nil ag o tors
5 -I" 6;9 78 ql6(50).q1

7
1 37)ql9(]9) tors(5) - NI) wag

6 .t" 695 1 7.8 ql 7140).16) 351.9l1) tors(4)

7 .V 730 2.9 q20(79 ) ('CH wag
8 .-F" 779 84.5 (118(1) (':11 wag
9 A" 809 2.3 q2

] I103) ('H \wag

10 .1' 933 6.9 q 1(801 ('NC def

II T.' 956 10,6 q1O(822) (NC det'
12 4, 1103 24.7 q13(37).q5 15).qI( 10) IC'('Id ('Nt
13 A' 1143 57,9 q14(20).q12125).q4(l 0) HCCd , I(NCd

14 A' 1178 4.2 qI)38.q2( I 8),q3( 10) ('NMs
15 A' 1206 1.6 q3(50.q5(27) CNst
16 A' 1298 5.9 q15(41).qI4(20).q2(16) IIC:Nd + It'(d

17 A' 1396 10.7 q2(23),q3Q20),q14(25) ('Nst I IC(d
18 A' 1474 48.1 q2130),q15(20),qI-20) ('Nst HN('d

19 .,' 1543 15.3 q(5 2 7 1,q1 2(2 4 ),ql( 12) ('NMt IfC\Nd
20 A' 1590 16.9 q4)40).q2(l,8).q12(14) (C Cst + (NM i H('Nd

21 A' 3319 2.2 q8(86),q7( 2). {list
22 A' 3328 8.4 q9(96) ('.s5

23 A' 3347 6.2 q
7

1
8 4

).q8( 14) ('list

24 A' 3642 175.0 t/6(991 Nist

for Im-L-'. ql to q21 are the same as fbr Im (Table II.

q22 = rf4.10).
q23 = (10.2.4• -- (10.64).
q24 - H 10 out (2.4.6).

The shift in frequency accompanying complexation with Li' were found to be
quite small, with most of the bands shifted to higher frequencies. One can compare
these calculated frequencies with the data of Salome and Spiro [I I]. who found
that coordination of imidazole with Co * ions had only a subtle effect.

SERS spectra of imidazole on a silver electrode (E = -0.7 V) is similar to the
normal Raman spectrum, with the following exceptions: The band at 1428 cm
is shifted to 1440 cm-', a new intense band at 970 cm' appears. and there is
considerable change in intensity for all bands. especially the band at 1162 cm '
[2]. All of these changes are reproduced in our calculated spectrum of lm-Li+. v,
of Im is shifted to higher frequency P,,) = 1543 cm-' in the complex. vlo in Im is
shifted to higher frequency '13 = 1143 cm' ' (calc) and shows a marked increase
in intensity. Our calculation also shows that the ring deformation frequencies, V7

and at in Im are shifted to higher frequencies v11, and vI after coordination with
the cation.
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I.%RHI IX A he comrparison lMkeen exrwC.'rioicnial and caIculated spectra to0 ca'ioknic and anoniki

tolrm s of ntidaol.c

Rarnan eserTimnenlal ('aCUlJtIdt - ht %%Io )rk

No fund. in

hn61] mi [61 ImI" 5] Imi [4] fi lil" Ini

915 917 923 Q06 9123 9

935 971 946 946 936
106 060 1079 0 16 1099 1 121

0198 I 1i()0 1106 1129 1135" 1131)

1135 1124 1t46 1179 1177 1205
S1160 1183 1237 1202 226' 1190

1260 1204 1276 I •03 1 12 , 287"

1328 1322 1313 1402 1369 139(1"

143(0 1415 1490 1497

N 1449 1511'*

1490 '459 1537 16106 1516*

1535 1530 1489 1570 1039? 1513

N--N'w band found in protonated species.
* -Bands found in the Si Rs spectrum (our assignment).

According to Ref. 12]. the new intense bands at 1640. 1490. 1375. 1300, and
920 cm I which appear in the spectrum at electrode potentials more positive than
-0.6 V are due to Im , We concur with this interpretation, since all but the 1640
cm ' band are present in our Im calculated spectrum. The bands reported at 1130.
1215, and 1450 cm 1 are present in our calculated spectrum of ImH *, These SIRS

bands which arise from ionic forms are marked by an asterisk in Table IX.
The authors [ 2 j cite electrogenerated surface species-most likely the vlide form-

as the source of the bands at 1025, 1285, and 1350 cm I. Based on our calculated
ylide spectrum and recognizing that our predicted spectrum is generally too high
in energy, we would tentatively assign these bands to vt, v, i.and v14 at 1112. 1248.
and 1406 cm '

Conclusion

We have shown that ah initio MP2-631G* calculations give the equilibrium
geometry of the imidazole very close to the experimental results. This is supported
by the close match between calculated and experimental rotational constants. The
ylide form is found to be 32.75 kcal/mol less stable than imidazole-neutral form.
The force field obtained at this level for imidazole and the cationic, anionic, and
ylide forms reproduces the experimental frequencies. An assignment of the observed
bands is proposed for cationic and anionic forms based on the comparison of ex-
perimental frequencies with those calculated theoretically. Spectra predicted at this
level of theory reproduce the experimental spectra sufficiently accurately to enable
a reliable assignment and to confirm the interpretation of sEiRS results about the
adsorption of imidazole on silver electrode.
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Ab Initio Post-LHartree-Fock Studies on Molecular
Structure and Vibrational IR Spectrum

of Formaldehyde

JOZt: S. K\S XIA'KOWSKI * and JERZY LIESZCZYNSKI
Di'eparlno'n 11C 04,011,1I 1a, A" 01N, I IIi Slat I Aori l.i~ Awn %It ,, osIpp' ;9'21

Abstract

II igh-lc lct a/;titn, ' studies usItIg the 6- if I • t,. 'p) hais, set s\ i th elct r l in i inkluded at
the seý:ond-orddcr MIllcr-Plesst ieriurhatton theor, are reported \t this leocl, full gcomneirs optnmt /atiu•'
%as 1ewir tformed. lolhomcd bh calculation of' the %thration al IR spectrum. Prctd lcid moIccu1.!r pa ra meters
i hond lengths, bond angles. dipole momcnt, rotational konstams ) and %ihrational IR spectra {harmonic
%%avenumbcrs. absolute intensities of itrnailde•,de and ats dculeratcd species agree crr %tcll kith the
experimental data. - 9•h)h' [Ain ,- & S,,ns. Inc

Introduction

The lormaldehyde molecule. C(11,) is a parent compound tor man'. species.
Among them. a class of chemically and biologically important systems possessing
a carbonlI group should he mentioned. Due to the small size of this model system.
it has been used to test a reliability of different levels of theorN.

The molecular properties (geometry, dipole moment, rotational constants) and
vibrational IR spectrum of formaldehyde are well kno% n. because this species has
been a subject of number of both experimental and quantum-mechanical studies.
A review of the theoretical studies goes beyond the scope of the present study.
Instead, we will refer to the most recent ab initirb studies, in which references to
previous studies can he found.

The aim of this article is an accurate prediction of molecular structure and vi-
brational IR spectrum (harmonic frequencies, absolute intensities) offormaldehyde
using the ah inaito post-Hartree-Fock calculations, namely, the second-order Moller-
Plesset perturbation theory (MP2) with the 6-31 IG( 3df. 2p) basis set that is a triple
valence basis set augmented by an extended set of polarization functions. Recently.
using the same level oftheorv an excellent agreement between theoretically predicted
and experimentally determined molecular properties of formamide has been no-
ticed [I].

* Permanent addrcs Instvtut Fitski. nmiersý,tet M. Kopernika, 87-1(t) Torufi, Poland.

Intcrnational Journal of Quantum ChemitrN: uanlim Chemistr\ Symposium 26. 421-426 (194I2

1992 John Wile,, & Sons. Inc. ('('( XI)2lI-7h08/92!0l111421-o6
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Computational

The geometry of the studied molecule was optimized at the electron correlation
MP2 level [2.3] using the triple valence 6-31 IG basis set [41 augmented b\ three
sets of d and one set of f functions on carbon and oxygen, and by two sets of'p
functions on h~drogens, respectively. The harmonic frequencies and absolute in-

tensities were calculated at the optimized geometry also at the .l'2/6-31 1(;( 3d1.
2p) level. All quantum-mechanical calculations were performed with the GAUSS-
IAN 90 program [5].

Transformation oftthe fbrce constant matrix in Cartesian coordinates to the force
constant matrix in internal symmetry coordinates allowecd ordinar, normal coor-

dinate calculations to be performed. as described by Schachtschneider [6). The
potential energy distribution ( m-r) analysis to assign the modes was carried out
using the PACK program [7]. This program was also used to calculate the vibrational
IR spectra (harmonic frequencies. absolute intensities. P14D) of deuterated species
of formaldehyde using the force constant matrix from the ah intio calculations for
formaldehyde itself.

Results and Discussion

Molecular (6cnetrv

The optimized geometry of formaldehyde, its dipole moment, rotational con-
stants, and energies are listed in Table I and compared with the available experi-
mental data. As we can see, the calculated bond lengths and bond angle agree very
well with the corresponding experimental data determined from microwave spec-

TARaI 1. Calculatcd [\12i6-311(i(3dt,2p)J and c\perimental
molecular parameters ) ft)rmaldehydc.

Quantit,, (alculation \pcrimcnt

,l C') 1.2046 1,206" 1.20 13 iIM
rf('!) 1.O977 I. -7X 1.0 1 (15(20)
,lI(1i I116.23 116.6 116.30 (251

S2.2o),• 2.33116X1 f
(2.729 )f

.- 287573,87 [6 29197(),57 (24)1
B 38944.1514 38836W455 H 3)
C 34299.2411 34002,20(34 (12)
lc, -113.90880)

114,34658

'Bond lengths (A), Nond angles (C). dipole moments (t)). rotational

constants (I-H/), energies (v i. MP2) (a.u.).
"" Ref 8ý 'Ref. 9: "calculated wsing the mi'2 dcnsity'. •Rct, Il 'cal-

culated using the So I density: 'Ref. 1.
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troscopic study of Duncan [9j. The calculated rotational constant. A. is higher
than the experimental constant by 2¼;. while the B and (' constants are predicted
to be higher only by 0.3¼ and 0.9g. respectively. than the corresponding experi-
mental values. The agreement between predicted (2.21 D) and experimental (2.33
D) dipole moments is also good. It is important to note that the dipole moment
calculated using the s('F: density is higher by 0.52 1) than that calculated using the
MP2 density (see Table 1).

Vibrational Spectrum

The vibrational IR spectra of formaldeh.de and its deuterated species have been
measured by a number of groups and analyzed in several studies (for review,' on
spectroscopy of CHO molecule see Ref. 12 ). Several levels of ah inilio quantum-
mechanical method (-HF, MP2. NMP3. and ('I) have been recently applied by Harding
and Ermler 1131 to predict harmonic wavenumbers and vibrational anharmonicity
constants for the studied species. Their article also provides the Positions of harmonic
frequencies for formaldehyde that were derived from the experimental information.
It is important to note that observed frequencies of CHO are very strongly affected
by Fermi resonances (compare the harmonic frequencies and normal mode fre-
quencies in Table 11).

Here the predicted unscaled frequencies for CHO agree very well with the ex-
perimental harmonic frequencies. The CH symmetric and asymmetric stretching
modes are about 40 cm - higher than the experimental frequencies. while the fre-
quencies of the remaining modes are higher only by 10-20 cm ', After scaling the
calculated frequencies by a factor of 0.988, the predicted harmonic frequencies
agree with the experimental values within 7 cm '

The predicted (unscaled) harmonic frequencies are, of course. higher than the
experimental frequencies of fundamental modes (the frequencies of CH-stretching
modes by 200 cm-' and those of the remaining modes by 30-60 cm '). Since the
anharmonicity of the fundamental modes are different for stretching and bending
modes, it is better to use two various scaling factors for different modes. Thus, after
multiplying the frequencies of the CH-stretching modes ( modes I and 5) by 0.933
and the frequencies of the remaining modes by 0.970, the scaled harmonic fre-
quencies (see Table 11) agree with the experimental frequencies of fundamental
modes within 10 cm-'. We shall note an agreement between the predicted and
measured absolute intensities of vibrational modes for formaldehyde (Table ii).
The correct prediction of the intensities of the IR bands is not an easy task and
requires high accuracy in prediction of the molecular geometry of a molecule and
also its dipole moment (strictly speaking. the gradients of the dipole moment) [ 15 1.
Since the present calculations accurately predicted both the geometry and dipole
moment of CH 20, the good agreement of the predicted absolute intensities with
the experimental intensities is not unexpected. We shall emphasize that for correct
prediction of the IR intensities for the formaldehyde molecule it is necessary to
carry out the calculation at the electron correlation level, because the SCF calculations
do not correctly reproduce the experimental intensities [ 16.17].
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TAsBii 11, (Calculated osji2/f6-3116(;3d'P.2p)) and experimental xihratinal IR spectrum of
(brmaldel'sde.

(.p.

Mode' Calc. cm cm (km/mol fen I) (Cm ) 1kmimolh

I CH s str 2979 64.1 2937 2,783 7i. i 7.i

(2943. 2779)1

2 C O str 1791 58.2 1778 1746 73.99 5.29

(1t 7'). 1737)

3 CHt bend 1557 9.4 1544 15i0) 11.15 :÷ 1.02
(1538. 15,)1

4 oopl bend 1209 7.0 1188 1167 6,49 - i0.64

( 1194. 1173)
5 CH1 a sir 3050 99.7 301(2 2843 87,6 8.12

(3013. 2846)
6 (1t.1 rock 1283 11.8 1269 1249 9,94 01.97

(1268. 1245)

The modes are orderd in the standard spectroscopic ordering.
" Absolute intensities.

Harmonic Aaxenumbers. see Ref. 13
d Wavenumbers of fundamental modes. see Ref. 12,
'Ref. 14.
'Scaled wakenumbers are given in the parentheses; the first frequencies are scaled frequencies by single

factor Lf0,988 to fit the harmonic experimental frequencies: the second frequencies are scaled frequencies
of CH-stretching modes (modes I and 5) by 0.933- and the remaining frequencies by 0.970 to fit the
experimental frequencies of fundamental modes, For discussion see text.

It is important to note that the v2 and tv, bands of the CH 2O molecule. as well
as the v, band of dideuterated species, can be well separated from the other fun-
damental bands. and intensities of the above bands might be obtained in a straight-
forward manner. However, the other bands (.t, and v, of both CH-O and CD-O:
v4 and v6 of CH2O: and vi, v4 , and vf of CD20) overlap each other in the corre-
sponding spectral regions. so Nakanaga et al. [14] have estimated the individual
band intensities of these regions through the simulation technique [181 using the
spectroscopic parameters of both CH 20 and CD2O species (rotational constatits.
Coriolis interaction parameters). The individual band intensities for formaldehyde
itself-those "estimated" from the experiment-are presented in Table 11. There
is still, however, some uncertainty in estimate of the individual band intensities
caused by "experimental simulation." To avoid this uncertainty, we have added the
intensities calculated for the overlapping bands of CH2O and CDO and compared
these values with the total intensities measured in the corresponding regions from
experiment (Table Ill). As we see, the calculations correctly reproduce the changes
of the intensities of fundamental modes on going from CH 2O to CD2 0.

Table IV presents the comparison between predicted (both unscaled and scaled)
shifts of the harmonic frequencies and experimental shifts of fundamental modes.
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The predicted shifts (scaled trequencies) of the modes 2. 2, 4. and 6 agree within
1(1cm s ith the experimental shifts, but fOr modes I and 5 ((I 1-stretching modes)
thle predicted shifts are higher b% 20-50 cm

In ,unimaarN. the applied %1p2/,6-3 i(t 3df. 2 p) calculations allow for an accurate
prediction of the molecular parameters and vibrationalI R ,,,pectru m oflorrrmaldehý de
(for an additional comparison of the calculated and expcrimental spectroscopic
parameters offormaldhide , including the svnimetry force constants. see Ref. 19).
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I I he Xii Its )f I tie an scaled harm itc frcq uruenjeI the sh ifIs of har monic irequenc Is sCiled h% 03),
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It has also been shown that. (.alculated at this level, intensities of IR vibrational
bands compare well with the experimental data. Though applied level is not leasibie
for larger molecular systems. the revealed data could be used tbr evaluation of lower
level theoretical predictions as applied to biological and chernicall important species.
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Vibrational Calculations on Water With Improved
Force Fields

MING-JU HUANG
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Abstract

B% using the ultl Watson Hamiltonian and a %ariational technique, the iowcr-lking ihrational statc
energies (.1 0) of H,0. H1DO, D:0 1i tO. DTO. and 120 are calculated froom a high-lcscl al/ mit,'
potential cncrgy surface. Ihe basis functions are products ofone-dimensional harmonic oscillator functions.
(ompanson is nixde with esperiment. and also with results obtained from dill'trent thcor•tical techniques.

1N92 John 55 flc\ & Sons, 1m:

Introduction

Bartlett et al. [I] have reported an at, initio valence quartic fbrce field for water
based on the CCSDT- I coupled-cluster approximation. This method [ 21 includes
effects of single, double, and triple excitations. Calculations were performed With
an extended STO basis set at 36 points in the vicinity of the equilibrium geometry.
There have since been two variational calculations of the vibrational energies of
water based on these al) initio data 13,41. Bowman et al. [3) used the triatomic
Hamiltonian in terms of mass-weighted Jacobi coordinates. The functions of the
basis set correspond to products of Legendre polynomials, and the matrix elements
of the Hamiltonian were obtained by Gauss-Legendre and Gauss-H-lermite quad-
rature. Jensen [41 used the Morse Oscillator Rigid Bender Internal Dynamics
(MORBID) Hamiltonian. and the eigenvalues of this Hamiltonian were obtained
by diagonalizing its matrix representation in a basis of Morse oscillator functions
describing the stretches, numerical bending functions obtained through the Nu-
mcrov-Cooley procedure.

In the present work. the procedure of Whitehead and Handy [51 has been used No
study has been undertaken to examine if the Whitehead-Handv procedure is the optimal

one for water with the new ah initio-improved force field. The valence quartic force
field has been converted to a slightly different force field for the internal displacement
potential and sPu potential [61. The vibrational state energies at .1 = 0 lbr HO. H DO.
D20. HTO, DTO. and T-O have been calculated by using the Watson Hamiltonian
and a variational technique. The basis functions are products of one-dimensional har-
monic oscillator functions, one corresponding to each of the three normal coordinates:
the integrals are evaluated by Gaus.s-Hermite numerical quadrature. The results are
compared with experiment and previous theoretical work [34 1.

Intvrnatlional Journal ot iQuantuni (hemistrs. Quantum (Chernisr, Srmposium 26. 42'-434 it 9921
S1992 John Wiley & Sons, Inc. ( 2(' -7(,2-708/) 21/0 10)42 7-(S
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IT Bi I . L he f xcc omns, nts n, i lit' w internal
displaceernnt coordinate tit of the al, mtli, t ) -

potential of Bartleit et al, I I

lerm t pe in potential Coefficient ot term t•h p

(AR): 42215 mdiA
AR, AR, 0. 1(X) md/A
ARAl0 02030•$I md/rad
(A)) 01.364316 md A/(radd)

2

(AR)3 -19.8(X)85 md/I ,)"
(AR,) 2ARJ -0.0396205 mdAA)2
(AR)-A91 -- 0(.042 md/IA rad)
AR, AR,•A --0.505 md/(A tadt
.R(A0)Y -0.153936 md/(rad)l
(Al)) -0.11470 8 mnd A/(rad)'
(-AR) 4  15.3282 md/(A)'
(AR,)3(AR,) -0.0543553 md/.A)l
(AR,)'(AR,)' 0. 141324 md/(A)•
(AR))(A0)) -0.208529 md/!TA rad)
(AR, )2( AR)(Al)) 0. 104264 md/lA:' rad)
(AR)"( Al))2  -0.07 md/IA rad )
(AR,)(AR,)(Ai)ý 0.31 md/lA rad,)
AR(A0)) 0.103583 mg/(rad)'
(A)) 4  -0.0285161 md A/irad)4

Method and Results

For J 0 states, the Watson form of the Wilson-Howard Hamiltonian for the
kinetic energy operator is expressed in terms of the three normal coordinates. QA.
and has the form

3 .- 6

U7 = 12 P + 112 h -/8 u_. + V

Heve Pk refers to the momentum conjugate to the normal coordinate. QA. so that

PA. = -ih(4/9Q1 ) (2)

The j•,1 refer to the inverse of the effective moment of inertia tensor. 7r,, is the
Cartesian component of the vibrational angular momentum, subscripts a and J1
refer to the components of Cartesian coordinates, and V is the potential energy.
which is exp.essed in terms of internal valence displacement coordinates.

The force field of Bartlett et al. (1I is given relative to the energy expression [71
V- =+'/2fRR(Ai + Aý) + 1/2ffoA2 +fR.AtA2 + Jý,(A, + A)A +•- (3)

where A, = AR, = R, - R,,(i = 1, 2)and A_ = R, AO = R,,(O - 0,). The equilibrium
geometry obtained from the calculations is R,, = 0.9591 A and 0,. 104.45'. in very
close agreement with experiment. The potential energy expression employed is a Taylor
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expansion in the displacement .S' ol'internal coordinates from their respectite eqUt-
librium values. The three internal coordinates are two stretches. AR,. AR. and one
bend. A0. The potential contains up to quartic terms in the displacements

F = 4 " K',,AS, A , KA ASSA + A S., AS, -IS, Ss; 4)

where AS, R, - RI,. AS, R, R,,. and AS, -0 .,.. -The force constants in
the internal displacement coordinate fit to the ab iniIo data for water are given in
Table !. The quartic Simons-Parr-Finlan (sF ) expansion of the potential energx is

I .. l,.p,p1  + 1 .,At, p, + V" L. 1,,p, ;p 1 )

where p, ( R Rli,)/Ri. 12 - (R, - R,, )/R,. and p- ( I--- fl, ). R, and R:. are the

two OH stretches. R,,. and Re,, are their equilibrium values, and 0 is the 11011-bond
angle. The force constants for the sp fit to the ah inilo data are given in Table II.

The basis function are products of the three harmonic oscillator wave functions
corresponding to the three normal coordinates of water. It was found that 204 basis
functions were sufficient for the first 20 levels of the vibrational problem. These
functions included all combinations of the excitation levels such that

n I + ( l/2)n1 + n, n- 7 (6)
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TAM I III. Vibrallonal cnergi'es (cm 'I in H() calculated

from ditf.rent potential expansions.

Stat" e S1 I: 'p.

ZPE' 4660f.5 4648.0 -

1'2 1627.0 1624.8 1595

21- 3219.7 3214.7 3151

3712.7 3656.2 3657
3810.) 3752.2 17,56

47771) 4769.1 4667
±, + 2, 5329.6 5266.8 ,5

i,: + V, 5423.1 5358.4 5331
6296.6 6285.2 6134

v, - 2,' 6911.9 6840.3 6775

2 v, - v 7002.8 6929.7 6871

21'1 7410.1 7218.A 720(1
1" ' 7499.3 7265.6 7250

21,1 7601.3 7444.6 7445

N, 7777.10 1762,o) -

S+ 3' 8459.7 8380.3 8274
3 v, + v'j 8549.5 8469.3 8374

2v, tv 9)21,7 882&.2 8762

4 1,2 + 1, 9108,0 8873.3 8807

+ 2v,1 921)1,9 9037.7 900)

a Zero point energy.

where ni. n2. and n3 refer to the excitation levels of the three normal mode wave
functions in the triple product of the basis functions, with subscript 2 designating the
"bending" mode. The numerical evaluation of matrix elements used 2304 Gauss-
Hermite points, 12 integration points along each of the "stretching" normal coordinates
and 16 points along the "bending" coordinate for H,O for the potential function in
Eq. (4). For the SPF potential, 2880 G&uss-Hermite points, 12 integration points along
each of the "stretching" normal coordinates and 20 points along the "bending" co-
ordinate, were used for the HO. HDO, D20, H-ITO. DTO, and T10.

The frequency parameters of the harmonic oscillator wave functions could also
be regarded as variational parameters. We took 13832.0 cm ', 1648.9 cm '. 3942.6
cm"'} for H20, { 2824.0 cm-', 1445.1 cm , 3889.8 cm'} for HDO. 2763.9
cm"', 1206.2 cm -, 2888.9 cm- } for D20, {2369.3 cm-', 1370.1 cm', 3888.7
cm-'}forHTO, 12361.9cm-',l114.5cm-',2835.3cm 'tforDTO.and ,2302.3
cm•, 1014.1 cm-', 2439.3 cm-' } for T20. The first number is for symmetrical
stretching, the second number is for the bending, and the third number is for the
asymmetrical stretching.

Discussion

The calculated energies of the lowest 20 vibraaonal levels of H20 given by the
internal coordinate (IC) and SPF representations are shown along with experimental



\IMR\ IION.A\ ( \1(' I NI I0NS )\ \\ I I R 43 1

el al "
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2p 32127 i394 3214f ~I151

•' 15,4 3656 I•6 2' i65
I, 3 5 S " I5 3"S
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V',t

47t,4.8 - 4-6 466,
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4,. 6so.ot -- ,285 2 6134
4v6 7 ) -8- 0• 4(1.. 1•
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7215.6 71p2 721S.l I 2fll
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2 7441 6 7441 7444 6 7445
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849. 461).3 74
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'I lie results are from the tl rnitlj USlcd potcrltia t o IotI Bto n iIl [
al. 1½I

data [8] in Table Ill. The Iw and sPti vibrational energies of states arising from
excitation of the bending mode are ver' close, even for high levels of excitation,
e.g.. 5x,. For the stretching modes there are more significant differences, 56.5 cm
for vi and 58.7 cm ' for vi. Energies of all states involving excitation ofstreching
modes are computed to have lower energies with the sF'! representation than with
the Ic representation.

Better agreement with experiment is achieved for the sil representation. The
agreement for states arising from excitation of just stretching modes is particularly
good. Both representations are less adequate at describing energies of states arising
from excitation of the bending mode. The results obtained by Bowman et al. and
Jensen show the same deficiency. This is discussed further below.

As noted by Bowman et al.. the superiority of the si representation can be
attributed to its more physical behavior away from the equilibrium. Thus, it has a
smooth Morse-like behavior, while the w representation may be oscillatory at com-
parable displacements.

In Table IV we compare our SP3 results with the data of Bowman et al. and
Jensen. The unadjusted data of Bowman et al. are used since it is a more valid
comparison. Our data are in extremely good agreement with those of Bowman et
al.. differing by less than 5 cm '. except for some of the highest energy states
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TABLtE V vibrational energtes (cm ') in I-IIX). D[0. and [11TO .ak'utated from
SFF potential.

HDO 12o 1110

State Caic. Obs. Calc. Obs. Calc Obsý

ZPE 4031.5 - 3347.4 - 3771.4 -

1429.4 1403 1199.8 1178 13567 1324
212835.( 2779 2380.9 2340) 269(' 4 -
2722.3 2727 2670.2 2668 2297.2 23(m)

V, 37049 3707 2784.1 2789 3 16 I 3717
3vP 4218.8 - 3543.1 - 41X)0.7 -

I'l - 4136.9 4120 3863.1 - 3635.6 -

"3 5114.2 5090 3973.8 1956 5)S-.7 -

4v, 5587.5 - 4685.7 - 5287.0 -

1, + 2v. 5514.9 - 5035.6 - 4956.4 -

-, .- v 650(.5.3 -- 5144.4 - 6372.1 -
2v1 5366.3 5364 5294.2 5292 4536.8 -

L' - vj 6417.4 6416 5375.7 5374 7265.6 72_(
2v' 7264.5 - 5525.5 - 7444.6 744i
5v, 6852.7 - 5809.2 - 7762.0 -

6949.7 - 6189.8 - 83X0.3 82i4
3

r, + v, 7870.6 - 6297.6 - 8469.3 8374

2v , , 6780.1 - 6484.7 - 8829.2 8"62
+ P., I V 7807.7 - 6564.1 6533 8873.3 88(07

1,2 ' 21'1 8666.0 - 6707,.3 - 91)37.7 9(YX )

considered. Our results are in excellent agreement with five of the nine energies
computed by Jensen. but there are significant differences for ,. 2v,. 2v1 , and v' +
v,. For the first three of these, Jensen achieves better agreement with experiment.
but for the fourth the errors are approximately equal but of opposite sign.

The greatest difficulty experienced in this and other work is the treatment of states
which involve excitation of the bending mode. This may arise from two sources. First.
as mentioned by Chen et al. [91, for nonlinear triatomic molecules the Hamiltonian
operator given in Eq. ( I ) is deficient for high excitations of the bending mode. This is
because of a singularity that occurs in linear configurations [10]. One way ofavoiding
this problem is to use the normal coordinate Hamiltonian of a linear system, as was
done by Carter and Handy [ I 1]. Another possibility, used by Bowman et al. [ 31. is
to treat the force constant for bending, p,. as a variable.which may be adjustedslightlý
to fit the vibrational energies. This procedure of effectivel. adjusting the potential led
to improved agreement with experiment [3]. A second source of error. which should
not be ignored, is the incompleteness of the ah milio treatment. In particular. the basis
set used does not contain f or g functions, which are likely to be important in the
description of the bending mode. While the harmonic stretching frequencies calculated
by Bartlett ct al. are in excellent agreement with experiment. (deviations of 2.4 cm
for w, and 3 cm ' for wj) the bending frequency has a significantly larger error (28
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T 10ii %I Vibrational cnergic (cm ) in 1)IO and IA)
calculated Irolnl Sill polCnli a .

1)10 1 )

State (a O)h'-. ( al:.

ZPIL (8A - 8'.
I 1 .8 -- 101 3.1 5

22W3.7 202.8 --

22 3.5 22 7 22. "

2734.4 2735 2303.2 231,-
3-' 3280.6 - 29. -

.:3401.6 3244.4

I," ÷ 1' 3834.6 3 Th.' S35x
4v: 4341.4 X- 71I -

4483,9 - 4238.4 -

2 r4917.0 - 43160,K

2rI 4536.4 - 4440.2
V L 50118.5 - 4543.6 453

21" 5389.0 - 4692.0 --
5386-1 - 49310 -

3, + 3v, 5 5 55. 2 52 14.0 -

3v, v, 5984.3 - 53401.1 -

24' * V, 5645.6 - 5447.11 -

V - 6116.5 - 5548.1 -

v2 2v, 6483.4 - 5691.5 -

cm ). In addition, the accuracy of the CCSDT-l method should be considered. al-
though this error is likely to be of less importance than the basis set error.

The lowest 20 calculated vibrational state energies for the HDO, D2O. HTO. DTO.
T,O isotopomers are shown in Tables V and VI. Available experimental data are also
shown [12]. The same general trends seen in the data for 14,0 are again apparent.

The results obtained in the present work and in that of Bowman et al. [31 are very
similar and it is pertinent to examine the differences in the methods more closely.
There are differences in the forms of the Hamiltonian and the basis functions used.
We have used the Watson Hamiltonian. while Bowman et al. used a scattering Jacobi
coordinate Hamiltonian in a body-fixed frame [131. The motivation for this choice
of coordinates over normal coordinates is that the Hamiltonian is well-defined over
the entire range of motion. including large-amplitude motion. Our basis functions are
products of harmonic oscillator functions, while those of Bowman et al. use Legendre
polynomials and harmonic oscillator functions. The use of Legendre polynomials is
recommended, since they are eigenfunctions of the angular part of the kinetic energ.
operator. However, it has been suggested [ 131 that it would in fact be preferable to use
harmonic (or Morse) oscillator functions, leading to reduced computer time. While
we have used just 204 basis functions, at least 980 functions were used by Bowman et
al.. although it should be mentioned that very similar results were obtained using the
same method and only 308 functions [ 3].
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Finally, we note another variational technique. the discrete variable representation-
distributed Gaussian oasis (n vR-AXil) approach. developed by BaC'iý and Light 14 ].
This oftifrs advantages over conventional variational methods for highlý ewcited vibra-
tional states. It has been applied to the Sorbie-Murrell sc miempirical surtace [ 151 for
the water molecule 116 ], but not to the force field of Bartlett et al. I I
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Multiphoton Absorption in Anharmonic Systems
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Abstract

We stud\ the multiphoton absorption of the diatomie Im h\ time propagating a %awe packet on the

electronic potential under the action ora monochromatic laer field. We applk the peudo-spectral split-
operator method for the propagation. We use dilffrent approximation,, for the potential and for the
dipole function. We find that the quantitati\e details of the absorption spectrum are sensitise to the

form of the dipole function. , 19Q•2 John ,N de\ & Son,. hný

Introduction

The behavior of molecules in intense laser fields has become of major importance
in recent years. The simplest case. from the theoretical point of view. of the diatomic
in a monochromatic infrared laser field has been studied by several authors [ 1.2 ].
As even the simplest mathematical model, the driven Morse oscillator, is not solvable
in analytic form. theoretical studies must rely on approximations. Some authors
have applied time-independent methods [3,41 while others have used a time-de-
pendent description [5-7]. Among the latter, propagation schemes range from
purely classical to various quantal techniques.

In this article we consider again the multiphoton excitation ofan isolated diatomic
molecule under the action of a monochromatic intense infrared laser field. We
exclude electronic, rotational. and collisional degrees of freedom. such that energy
can only be absorbed in the chemical bond represented by the interatomic distance.
considered as one-dimensional coordinate. We specify the numerical calculations
to the case of A" '1- 'state of the Hydrogen fluoride molecule.

This molecule has already received widespread attention from both theoreticians
and experimentalists. Neverthcles. except for kef. [6]. all previous calculations
use basis set expansions or Finite Difference schemes. Fer these methods. its ad-
vantageous to use functions in closed analytic form fbr potential energy and dipole
function. We want to investigate what sort of corrections are introduced using
functions in nonclosed form (e.g., cubic spline interpolations from experimental
datapoints). With the more recent pseudo-spectral split-operator method, which
we use, one can use straightforwardly any form of potential energy function (pro-
vided it does not contain derivatives with respect to space).

* Research associate IIKW. Belgium.

International Journal of Quantum Chemistry Quantum ('hemistr\ Smposium 26..435-441 (1992)
c 19'92 John Wiley & Sons, Inc. CCC (020-7608/92/010435-07
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We consider tv'o dillerent models for the internuclear potential: the Morse po-
tential and an expeirimentall\ based potential Cturve [N 1. Because of the delocaliation

of the %%alefunction after multiphoton absorption. we expect the form of the dipole

function to be relesant. l'heretbre we consider different versions of the dipole: the

linear approximation (et'cti\e charge). a simple analytical model [3 1. and an /h

initio dipole function recentl[ proposed in Ref. [9].
Starting from the molecule in its ground state. we pertbrm a calculation of the

time evolution over a number of field periods. In the calculations we use the split

operator method combined with the Fast Fourier Transform. As the multiphoton

absorption is a long-time process. the number of optical cycles is taken sufficiently

large. From these time-dependent quantities we derive meaningful averages which

wve then consider as a function of the field frequency and intensity. In this way N.e
obtain a consistent picture the fecatures of which we can study in the resonant and

nonresonant regimes. In this article we are particularly interested in the influence

of the approximations on the potential and the dipole. We shall concentrate on the

absorption spectrum.

Theory

We will Iollow the time evolution of a system with the Hlamiltonian

1t H , 4, 11 , (I)

where H, is the H-amiltonian of the unperturbed molecule (in units h I I

-exper..e ta --

-12.25

F2 3 Pn 5 6
R la.uA)

Figure I. Potential energ,, curves.
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7/

I(2)

"I.. I, - -- 4 ( i (2

IHere x R R whecre R? is thle interatomic distance and R,, its equilibrium" 'aluIc.
H, describes the interaction of' the molecule With the external laser field In thle
classical dipole approxirai-On.

H, - P L, Cos Q2i. (3)

The reduced mass m -- 1744.843 a.u. and the parameters of' I are those corre-
sponding to the case of' iii. For the potential I we consider two models

(a) Thle Mlorse potential

/)11 - exp( -c.X )f (4)

""hc 1) - 0_25X8 a.. R, 1.732) a2u.. and a % 1. 174 1 au.
bh) The potential V given b\ ('oon and Hl-amigCOrýgiou MliCh is defined b\

analstical expressions in thle regions of' small and large \v and by. tensioned cubic
spline fit to numerical data gisen in Ref. 18 1 for the intermediate region.

[or thie dipole Function p we ha e compared three d tifenrent approximations.
las J he dipole function propose( by Whalev and Light

yI)- exp( Uc -) . (5)

J he raeucs of the constants . 1 (.4414 a.u. and Bh 0.0064 a.U. are taken corre

Ref*. [3.
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(b) The linear approximation to ( 5)

w.R) ý- - (R,,)R (6)d R

which is consistent with the value of the effective charge used in [1] and [2].
(c) The a" initio dipole moment function of Zemke et al. which is linear at

small distances. zero tor R > 20 a.u. and given by a tensioned cubic spline fit to
numerical data given in Ref. [9] in the ýntermediate region.

In Figures 1 and 2 we show a graphical representation ofthe potentials and dipole
functions. Although very similar in the neighborhood of the equilibrium distance.
the discrepancy in the tail regions might influence the results because by multiphoton
absorption the molecule is excited to high lying vibrational states.

The electric field strength E is considered as a constant (monochro ._,tic field).
E and the field frequency Q are the two variable parameters of our model. We
consider values of E corresponding to a field intensity of 43.7 TH'i/cm 2. This might
be considered super-strong but not irrealistic in the context of our model. The
values ofQ are taken in the range 0.35 eV to 0.55 eV relevant for resonance with
the vibrational spectrum.

The time-dependent Schr6dinger equation. in units h = I. is given by

=1T2 (7)

-4.8
,:lnear -

exponental ...

ab initio .....
-5

-5.2

-5.4

-5.6 ::

-5.8 
..

-6 1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
omega (eV)

Figure 3. Time averaged energy versus driving field frequency. The electronic potential
is approximated by a Morse well. The dipole moment function is approximated by a linear
function (full line), an exponcntial model (long dashes) and an ab intijo expression (short

dashes). Intensity is 43.7 T7';cm2 . Energy and frequency in eV.
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-4 .9

-5

-5.4 6

-5.8

-6
3. 0.35 C.4 0.45 0.5 0.55 0.6 0.65

omega feV)

Figure 4. Time averaged energ\ %ersus driving field trequent.., Rh electronic potential
is approximated b% a Morse wvell (full line) and a spectroscopicall. determined curse
(dashed line). The dipole moment is an ab mitio function. Intensity is 43.7 Tll/cmn.

Energy and frequency in eV.

and must be solved subject to the initial condition that '( t = 0) is the ground state
of the unperturbed Morse potential. The time evolution is generated by the prop-
agator

U) = T exp (-i Il(s) ds) 8)

where T stands for the time ordering operator. The propagator is broken up into
short time slices

L'(t)=f U(c). t-eN (9)

with N large and e small. This allows one to use an approximate short time prop-
agator for U(z) which, in the split operator scheme, is given by

(t. t_) eexp I exp(-L) j dv,() exp (-L T (10)

and is correct up to second order in - [10]. The power of the algorithm lies in the
splitting of the V and T terms. The action of the first is evaluated while the wave-
function *I is in a coordinate representation. that is. defined by its values on a grid
in coordinate space. For the second, one transforms the wavefunction to the mo-
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mentum representation, using the discrete F.ourier Transform associated with the
grid. The ! operator is multiplicative in that representation, so its action is easy to
e aluate. Afterwards one transforms q/ back to the coordinate representation with
an inverse Fourier Transform. This is a viable approach because of the availability
of F1-ir softwrare that performs these transformations very efficiently.

Results

We have calculated the time evolution of the total energy 6(t) TM'( I) HIf, 1 'P( t
of the molecule for field frequencies 11 between 0.3 a.u. and 0.6 a.u. The Fourier
Transform was performed using an 256-point grid on the interval [0.6. 6.61 for the
_v-coordinate. These parameter settings ensure that there be no reflections of Fourier
components off the end-points of the domain in real or reciprocal space. Under
those conditions the computations are completely stable [ 10]. The number of time-
slices we used was of the order of 2700 per optical cycle, or roughly 8 slices per
atomic unit of time. This is sullicient for the split-operator formula to be applicable.

The absorption spectrum is defined by the time averaged energy

S=4..f(i) di6 . (11J

This converges to a stationary value if the time interval T over which the average
is taken is large enough. By inspection of the time dependence of 6 we find that
in cases of resonant absorption the convergence is rather slow [111. This implies
that the calculations should be carried through over a period of at least 150 optical
cycles. For a complete scan of the whole frequency domain, we have. for practical
reasons, made a compromise and restricted the interval to 30 cycles (see also [ I]).
In Figures 3 and 4 we show the time averaged energy as a function of field frequency
for different models of the molecule. These curves show a broad absorption region
between 0.42 eV and 0.55 eV with superimposed peaks corresponding to the mul-
tiphoton resonance frequencies (from three to seven photons visible). The four-
photon resonance is dominant.

Conclusion

In this article we have simulated the behavior of a light diatomic molecule in
the presence of an intense infrared laser field by performing a numerical experiment.
We have followed the time evolution of a wave packet (initially the unperturbed
ground state) in a driven potential. The choice of parameter values corresponds to
Hydrogen fluoride and a monochromatic field.

As an application of the split-operator technique to explicitly time-dependent
Hamiltonians. it shows that this method is well-adapted and flexible because it
allows an easy treatment of realistic potentials and dipole functions. This is due to
the fact that no matrix elements have to be evaluated.

The general results corroborate the conclusions of earlier studies using different
methods. The absorption spectrum shows a broad structure with superimposed
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peaks corresponding to n ultiphoton resonance Irequencies. lhe tour-photon peak
is dominant.

When thie dipole moment function is approximated successively by a linear linc-
tion, an exponential model function, and an at iutio expression we find that the

corresponding ahsorption spectra do no! converge s%stematncall\. In lact the linear
approximation. although quite drastic, seems to reproduce hetter the a/ mitio result
than the more sophisticated exponential model. In particular, the ratios of the tise-
photon and three-photon peaks to the dominant four-photon peak is atltcted quite
strongly. The replacement of the Morse potential b\ a spectroscopically determined
cur\e shows little eltect.
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The Photoelectron Spectra of Methyl 1Pseudohalides,
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Abstract

t hc tic I and [ie 11 Ipartocarcledn Pt ypeetrdan Aiit\ mcOIN 'h.e' 4t( \1,-\( S \1-\( ,

alS'N.nd Me'Sw( \ Ia 11o been1 Wýrkiaret \kmi ei arc tu'ed 011 ,i' a,,ý a,~, r errr

ca11:eLt10nt,' . jrMd their onivarisonr o oh ha~i-i e'.oktuta n lie I Jpeetra and li c I fIIc 11ha~ :ji-mk rt,

ratio' arntradrictiin% i0tind Lit ipre it iti %w ký arc largvIý rc~o I\ e I he te.Irlklw .Iitilcicii spclf o

the ionieric lormb aie wicitpreid 11mng .a eontaieNiqC Mod el to[ a mcthrn -di~iortcd \(N Lh~tm trebl

li hellotsr rt the hcax'. atirril' tc ai'ka alpcusserA , - ihil &5 \-11 .k NA

Int.rod uction

Alkvl evanates. isOesatiates. and their Sulphur and selenilum analogs. are the most
common examples ot' distorted linear triatomic ssstemns-a circumstance Nshich
has given rise to the very large number of papers dealing with the electronic structure
ol' these compounds [ 1 -8 1. In the case of' the methyl derctiv,.tles. howescr. contra-
dictions concerning the assignment oI' photoelectron spectra do ceist. It is the aimn
of this w,.ork to use Ilie I high-resolution spectra lI e I / lI e 11 hand intensit\ ratios.
air ifljfgr it- /4-31 (i ** and iir2 /4-31 G* * Calculations in an attempt to rcinotte
these contradictions and pro\vide more deliniti'.e assign ments.

fExperimental and Calculations

The ultra'. iolet ( UV ) PF. spectra we%(re recorded on a Vacuum Gecnerator% tV
(G3 spectrometer [91 using a (1.5-mmn slit and an anal',Ie/r energY of' 5 Cv. I he
instrumental resolution. defineCd at tol~l-widthj-hall' maximumi ( [WVI I NI) of,

Ar-P, ~. ýPj 2, '.as 15 meV. The sr~ectra were calibrated h\ adding small amnounts
of Argon and Xenon to the sample flow.

A111111t)o molecular orbital ( 100) c~alcualaions werte performed ('or all molecules."
loni/,ation energies were obtained using Koopmnans' theorem 1i 1I. 'lihe geomnetr\
of- each molecule was first optimi/ed using a standard 4-3 1~ G basis set for 11, C.
1%, 0. S and a I 5s,4.42d]j contracted basis set lbr selenium Il A ] ,n accurate
description oh the geometlry oa'C II tN( N m1oleCcules asý was pointed ouit earlier 112 1.
requires consideration of the correlation encrgics. As a reSUlt. the geome~tries of the

rin cr flairnai JrUM rumt QiIlQuaniur ( hem i'dr\ Otioan iunm ( henn'dr% S~ mipa sniti 26 ( -443-47';,;19
1')-'2 John 'A ie', &- Sort,, I inc. (((%li-({5Q il~4 -
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CH 3 NCO

16.75
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Hell
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Figure 1, The lie I and lie HI PI spectra ol meth.I isM.c\anate.

CH3NCX molecules were optimized in conjunction with second-order Moller-Ples-

set (MP) perturbation theory. All calculations were performed with the CADPAC
quantum chemistry package [13 ].

Results and Discussion

The spectrum of methyl isocyanate (CH 3 NCO) is shown in Figure t. The first
two bands, 10.6-11.5 eV, are unambiguously attributable to ionizations from the

nonbonding ir2 (a".a') orbitals of the NCO group, which toncurs with the assign-

ments ofCradock et al. [2] and Eland [31: [ 7r,(a",a'). 7r,(a'.a"), 4i,Me(a'.a"),3aJ]
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Relatise intensity

SxperinLnttal (Calcultacd
Symsem lie I lie 11 t Ie Illc i 117U/teV) Mi,2;4-316(* A, Mignmenl

1.2 0.284 0.336 1.18 .301 9.35 (a") 7
9.63 Ia') ,

3.4 0 175 .,239 1.37 12.0 14.05 (a')
14,07 ta")

5 0.092 0 0,01 0.93 14,60 15i87 (a, I
. 7 0.115 0.211 1.83 .16.0) 17.41 (a") (CIi

17.47 (1') ('tt,

8 (11.55 0. 145 2.64 17.9 19.74 (a')

and v,,( NCO) frequencies at 800. 1290. and 2150 cm ', respectively. (These modes
occur in the ground state at 852, 1437. and 2288 cm ', respectively [141,)

Our energy assignments in the 14-17 eV region ditlicr from those in the literature.
In this region, one expects ionizations arising from orbitals which consist ofa sym-
metry-controlled mixing of methyl group orbitals. CH 3 (a",a'). with NCO group
orbitals, r 1 (a".a') and no(a'). The broad system at 14 _5 eV and a shoulder at
14.15 eV, should be assigned to the two antis mmetric linear combinations of the
methyl group orbitals with the r, orbitals. the amplitudes on the methyl group

being dominant in both cases. Calculation supports these assignments. The 16.0
eV system contains an extensive vibrational progression in 800 cm '. This system
is assigned to the ,r (a") bonding orbital. which has dominant amplitude on NCO
group. This assignment is confirmed by both calculation (Table 1) and the HNCO
spectrum [3]. The irW(a') band, again derivative of the bonding combination of
7r, and NCO group orbitals. is obscured by the 16.0 eV band and by the next band
system at 16.75 eV. The 16.75 eV system, in turn, is attributed to an ionization
from the no(a') orbital. According to calculation, the highest-energy band at 18.0
eV can be attributed to an ionization of the T,.q(. orbital of the pseudohalide group.

T/%131 I Il. ('lNCSe.

Relative intensity
Experimental Calculated

System Ht' I lie 11 lie 11/He I 1E'/)eV MP
2
/4-3lG** Assignment

1. 2 0.230 0.293 1.24 8.90 8.90 1a") 7r.

8.99 (a')

3.4 0.279 0399 1.43 12.35 14.10) (a") 7.

14,10) (a')
5 R. I W 0.085 0.77 14.22 15. 10 (a')

6 0.081 0.12 1.49 15.8 17.72 (a") C( t,
16.5 17.76 (a') ('It,
18,I 20.10 (a') 17: N
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The ClI •NCS spectrum ditliers considerablh from that lbr ('l1 ,NCO (Fig. 2).
The tirst and second band systems, at 9.30 and 12.60 eV. are attributed to ionization
otthe ir, and -,r (a 'and a") orbitals of the NCS group. respectively. This assignment
is supported by quantum-chemical calculations and bh the tie I/He II intensity
ratios ( Table I1). The splitting of the 7r, bands is much smaller than in Ctt•NCO.
and is inlkrred from the existence of a shoulder. The intensity of the third system
at 14.60 eV decreases strongly, in a relative sense, in the Hie II spectrum and.
consequently, it can be assigned to the lone pair orbital of sulphur (n1). The broad
band at 16.0 eV corresponds to ionization of the methbI group orbitals. The band
at 17.9 cV is an 107( ,) event, in agreement with calculation (Table [I). These
assignments are in good agreement with earlier investigations [2.31.

[hie PF' spectrum of C(IiNCSe is shown in Figure 3. A striking resemblance to
that of CI! tNCS is evident. -1e tormer spectrum is shifted to lower energies and
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CH 3SCN

12-87/

16.9 10.07

! 15.8Hel • 15.2 13.0 1 0

13.7211

J'U130 A

' ' I'6 ' ' ' I' " . . .Hell 7 v/i

18 16 14 12 10 I1EeV
Figure 4. The He I and fie II PE spectra of mcnth, thi ho anate.

the r 2,ir 1 splitting is greater than for CH3NCS. The splitting of the 7r 2(a")/lr 2(a')

components is negligible and only a single symmetric hand is observed. The third
system corresponds to l(ns,). initiating in an orbital that is mainly localized on
selenium. Confirmation of this latter assignment is provided by the large intensity
reduction of this system in the He ll spectrum (Table Ill). The system at 16.1 eV
is assigned to orbitals localized mainly on the methyl group. The system at 18.1
eV is an l(a(,N) event.

The electronic structure of the isomers C1-3XCN is also of considerable interest.
The PE spectrum of CH 3SCN is shown in Figure 4. This PE spectrum has been
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Figure " I he Hc I and Ile II 1I1 spectIra of rncth\, Wle'n \lldliXC.

assigned b-I Neij/er et al. 14] and Andrcocci et al. [51. I[nortunately. the onls
assignments that a .ý quite certain refer to Ionizations from the outermost orbitals

7ri(a") and 7r,(a') Ihe 7r, system ofa" symmetry at 10.13 eV is very sharp and
narrow. The other -' component. a' symmetry, occurs at 12.13 eV. is a broad
band, and exhibits, 390 cm ' vibrational progression with maximum at v 3 or

4 superposed on an.,'her progression in 1450 cm ' (an SC'N bending for which the
ground state value : 440 cm ' [151)and CN stretching for which the ground state
value is 2170 cm ) The system at 12.8-13.5 eV also exhibits a vibrational structure

which has been referred [4] to as an "irregular vibrational progression." This vi-

brational structure . shown resolved at the top of Figure 4. Two clear progressions
may be seen: 1850 md 560 cm ' modes which are attributable to v, . stretching
(2171 cm ' in the m'ound state) and the vs( stretching (ca. 700 cm ' [51 in the
ground state). respt .'tively. The separation of the very sharp structureless peaks at

12.87 and 13.0 eV ts not vibrational, supporting the thesis that the former corre-

sponds to l[7r(a",, and latter to 1[7r,(a')] events. The fifth system at 13.72
eV. which exhibits a progression in 1200 cm ', is .:ssigned to the n, orbital (rather
than to 7r, as in [4]) because the intensity decreases in the He 11 spectrum (Table
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TABI F IV. CIIS(N.

Relatise intensit.
x,.penmental (alculated

System He I lie II lie lli1He I Ili'!(eV) i1f ,-3I1(** Assignment

I 0.099 0.141 1.41 10.07 10.33 (a-) )r
2 0.082 0.136 1.66 12 13 12.41 I'a1

314 0.124 0.220 1.82 12.87 14.10 (a")

13.1) 14.39 (Si) 1,
5 0. 101 0.09 0.89 13.72 1 5.23 (a') 1,.

6.7 0.177 0.212 1.2 15.2 16.54 )a a (,It;

15.8 17.11 (a") (.11[
8 0.051 (0.093 1.82 16.9 18.54 0a) a, N

IV). In accord with this, the calculations of Table IV predict a very small splitting
of the two ir1 orbitals (0.29 eV), in good agreement with experiment.

The assignment of the PE spectrum of CH3SeCN (Fig. 5) is very similar to that
for CH 3SCN. except that the ir2(a")/7r2(a') splitting is more pronounced. (AE =
2.2 compared to 2.0 eV in CHISCN), The first (9.60 eV) and the third (12.60 eV)
systems are narrow and sharp: the second ( 11.80 eV) and the fburth (12.80 cV)
contain vibronic structure which is not as pronounced as in CH3SCN. However,
since the electronic structures are very similar, we deduce, by analogy, that the
ir 1(a")/7rw(a') splitting is probably about the same size, namely 0.2 eV. The fifth
system at 13.35 eV is assigned to an ni. system, because of He I/He I1 intensity
ratios and correspondence with calculations (Table V). The bands in the 15-16
eV region in both compounds can be attributed to ionizations centered on orbitals
localized on the methyl groups. The band at -- 17 eV in both compounds can be
assigned to ionization from ascN and aw-n orbitals, respectiv\ey.

The results of the quantum chemical calculations mimic the experimental trends
(Fig. 6). The splitting of the ,r, bands is computed to be largest in CH 3SeCN and

"TAB[ L V. CH3 SeCN.

Relative intensity

ExlPnmenmal Calculated
System He I He II He Il/He I IE'/(eV) itw/4-31G** Assignment

I 0.094 0.09 0.96 9.60 9.76 (a") r,

2 0.A69 0.12 1.74 11.80 12.10 (a') T

3.4 0.126 0(.24 1.90 12.60 13.94 (a") Irl

12.80 14.10 (a) T
5 0.099 0.12 1.21 13.35 14.99 (a') n

6. 7 0.179 0.185 1.03 14.9 16.48 (a') CHt,
15.6 07.21 1a") CH;

8 0.057 0.111 1.95 16W8 17,94 (a') (TsN
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Calculated

IT2  •1 1me (Y

CH 3 NCSe - I I I I

CH3NCS I'~ .
CH3NCO ,1 nN ,I, . I I
CH30CN II
C H 3 S C N [ ..... I i . I
CH 3 SeCN I [ i1 I i i I

Experimental

2t 1  X 7lEMe 3

CH3NCSe I ! I I

CH3NCS Ii 1 I i I

CH3NCO I 1 1 I I

CH 3 SCN I I l[ I 'I 'I I

CH3SeCN , I'1 I
nN

9 11 13 15 17 1.P.(eV)

Figure 6. Calculated and experimental ionization energy correlation diagram of MeNCSe.
MeNCS. MeNCO. Me0CN. MeSCN. and McSeCN.

to get smaller in the series CH 3SeCN. CH 3SCN. CHIOCN. CH 3NCO. CH_,NCS,
and CH 1 NCSe. which accords with experiment. Indeed, this splitting is so small in
CH-iNCSe that we cannot observe it. The reason for this trend is embedded in
differences of electronic structure: According to calculation, the 7r, orbitals in the
-NCO and -OCN groups are more or less symmetric- however, as 0 is replaced
by S or Se. this symmetric distribution distorts and the 7r2 orbitals tend to localize
on the sulphur atom and, to a higher degree, on the selenium atom. Therefore, the
7r, bands of compounds containing the -NCX group will be less sensitive to sub-
stituent effects, and band splittings will be less sensitive to the bond angle at the



452 PASINSZKI EF AL.

/•/o.2.

2.0 2

/6

j / 5'

,</" // ~

z,/ , '7I

160 1,i,0 120 100

ýX_ annd C NJC ang e (degr-ee)

Figure 7. Calculated splitting of irw orbitals as a function of CXC or CNC angle. I.
MeSeCN: 2. McSCN; 3. MeOCN 4. MeNCO S. MeNCS, 6. MeNCSe.

nitrogen when X = S or Se; in compounds containing the -XCN group: however.
the sensitivity to substituent and the bands splitting will increase as the X-atom
gets larger. The electron distribution in the r, orbital should be opposite to that of
r_, the orbital now being localized on the NC fragment with an amplitude which
increases as the oxygen changes to S or Se. Since I(ir, ) is of high energy. 7r, usually
is heavily mixed with other orbitals. Consequently, the predicted 7r, splittings con-
trary to the ir, splittings are difficult to verify experimentally. Finally, the decreasing
energy of the two components of the 7r2 bands is. to some extent, a result of the
increasing C-X-C and C-N-C angle in the series CH 3SeCN, CH 3SCN, CH3OCN,
CH 3NCO, CH 3NCS, CH 3NCSe. According to ab initio calculations, these angles
are 98.70, 99.9'. 118.80, 139.70, 146.1 0. and 159.70, respectively.

The splitting of the ir, orbitals as a function of CXC or CNC angle is given in
Figure 7. The calculated bond angles at the minimum energy geometry are denoted
by an asterisk. It can be seen that the 7r splitting decreases as one goes from
CH 3SeCN to CH 3NCSe because the C-X-C angle is the smallest in CH 3SeCN and
increases thereafter.
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Study of the Diffuse Spectral Series
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Abstract

The diffuse spectral series. 2s-np 2 P-2s~nd 2D, of the boron isoelectronic sequence has been studied
through a one-particle scheme. by explicitly treating only the active electron. Oscillator strengths for
various transitions (n = 2.3: n' 3-16) have been computed with the quantum defect and relativistic
quantum defect formalisms, and results comparing very satisfactorily with other theoretical data have
been obtained. c t9'2 John Wile' & Sons. Inc.

Introduction

Within the last few years, the description, understanding, and prediction of the
physical processes that take place in the universe have been the object of increasing
attention. This has been partly due to the outstanding technological development
and the enormous amount of "rough" data which is awaiting careful analysis and
interpretation. However, the reproduction in the laboratory of the very extreme
conditions to which the constituents of the universe are subjected is, if not impossible,
at least extremely difficult, time-consuming, and expensive. Quantum-mechanical
calculations have, thus, become crucial in the accomplishment of these goals. How-
ever, in the estimation of some properties of astrophysical interest, theý calculation
of transition probabilities for a great number of lines is required. Re-ults for 1.7
million lines have recently been reported by Kurucz [I]. In addition to their astro-
physical importance, the intensities of the transitions of moderately to highly stripped
ions present an enormous interest for the diagnosis of Tokamak plasmas [2 1. and,
in general, for the development of controlled thermonuclear fusion reactors [ 3 ].

Reliable computational procedures are, thus, required. A method that has so far
proven to be very accurate for predicting transition probabilities and .- values for
transitions in moderately to highly stripped atomic ions. and in heavy atomic sys-
tems. is the multiconfigurational Dirac-Fock (DF) approach [4]. However, it is
fast becoming increasingly time-consuming and costly with the number of config-
urations included in the calculation and with the number of transitions to be studied.
Hence, it is quite convenient to develop methods which are both simple and reliable.

The usefulness of model potential methods in this type of problems has been
the subject of a review by Hibbert [ 5]. and of general comments by Crossley [61.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 455-464 (1992)
't. 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010455-10
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TAit.F 1. Oscillator strengths for np 2P-n'd 21) (ni 2.3, n -- 3-15) transitions in RP

Transition Q()o • Length Velocity S( .(

2/)-3d 0. t201 0.86 (--1 0.102 0.197 0.125
2p-4d 0.5302(-I) 0.40 (-0) 0.45 (-I)
2p-5d 0.2678 (-1) 0.21 (--I) 0.23 ( 1)
2p-6d 0.1529(-I) 0.12 ( -1) 0.13 (-1)
2p-7d 0.9531 (-2)
2p-8d 0.6340 (-21
2p-9d 0.4429 (-2)
2p- IOd 0.3215 (--2)
2p-I Id 0.2408 (-2)
2p- I2d 0.1850(-2)
2p- 13d 0.1452 (-2)
2p-14d 0.1161 (-2)
2p-15d 0.942 (-3)

3p-3d 1.023 0.860 0.919
3p-4d 0,4140(-I)
3p-5d 0.9374 (-2)
3p-6d 0.7080(-2)

3p--7d 0.4920 (-2)
3p-8d 0.3452(-2)
3p-9d 0.2490 (-2)
3p-10d 0.1841 (--2)
3p-I ld 0.1400(-2)
3p--I 2d 0.1085 (-2)
3p-- 13d 0.8612 (-3)
3p--14d 0.6921 (-3)
3p- I5d 0.5668(-3)

2 In this and the remaining tables. A(--B) denotes A• I0 n
SPresent work.

SRef. 17.
d Ref. 22.
' Ref. 23.

who considers some of them capable of achieving a good balance between com-
putational effort and accuracy of results, as compared with more complex theo-
retical procedures.

For several years, we have studied the behavior of transition probabilities, oscil-
lator strengths, and photoionization cross sections for several series of homologous
atoms [ 7] and isoelectronic sequences [8-10] through the quantum defect orbital
(QDo) method [I 1], which involves the analytical solution of a model Hamiltonian
that contains a semiempirical parameter. Quite recently, we have formulated the
relativistic version of the above procedure (RQDO). which has so far proven to be
highly reliable when treating heavy atomic systems [121.
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" 1 1F.4 II. t)'cilflaior strcngths [Ik •II "'-nd 1) (i 2-4. if 3-01 tran'taon' ( II.

lransition _}2 22 ' e14gth VcIacIl en,

21'-3d ((.'88' 44.2(6 .4.3,4

2(-4d 0.9728 I O.,W4 I 0.92 1
2p-.d 0,4450 t ) 10.44 1 0I 4.42 1

2 6d (1 124131 1 40.24 1 0 1123 41

3p-d3.9 0. O.02,

31-4d 0. 465 1(0.103 01.90 1 4
31'-5d (4.5554 1) ().47 1 1) 41.45 4 4I
3p-6d 40.2985i 4) 0.25 I 14 44.23 4 44

4p-4d 1.039 (.873 (0.899

4p-5d 0.4491 I 1) 0.66 4 1) 0.63 1 44
4,-Od 0.3111 1 ) 10.35 (41 0.33 1 44

I his \\ork.

Ref. 17.
'Ref. 221

In this work, we report oscillator strengths fbr several members of the boron
isoelectronic sequence. from BI to KrXXXVI. for which atomic energy data have
been fbund in the literature. The transitions studied by us involve levels of the
diffuse spectral series, np 'Pn'dW D). including those starting from excited states.
n = 2-4. and n' = 3-15 in some cases. For the lightest members of this sequence.
BI to OIV. only multiplet oscillator strengths have been reported. For the heavier
ions. starting at SiX. line-structure calculations have been performed, through both
OQo and RQI)O procedures.

This isoelectronic sequence offers interest to us not only from a methodological
point of view, as we shall mention later, but also because many of the ions belonging
to it. such as OIV. MgVIII. SiX. SXII. and FeXXI1, have been observed in many
astrophysical objects [1 3]. The abundance of SiX in the solar corona has also been
emphasized by Tribert et al. [141. who have measured lifetimes and report on
cascading effects and other experimental difficulties. Vernazza and Mason [ 15 ] also
point out the existence of boron-like ions in the solar corona.

The boron isoelectronic sequence has a ground level configuration Is22s22p 2P.
which can be considered as a one-electron system tone electron outside a closed
subshell). having a relatively simple Rydberg spectra. as EI-Sherbini et al. have
recently remarked [161. Hence. it seems appropriate that the use of one-electron
techniques in the treatment of these systems, in particular as the atomic number
increases and the closed subshell becomes more contracted. By employing a single-
configuration Hartree-Fock (0I:) technique. as well as a Coulomb-approximation
(('?\) approach. EI-Sherbini et al. [ 160] have obtained oscillator strengths of claimed
general accuracy.
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] \4,4 ill O1.0 'll tot.r ,ia•.ln ( or ?t'' P-1d1)/I (it >3. .?1 I2) Iro'l S111"n In \Ni'.

II 4
I rjisitiof l • )" ) I riilhI \iCho. it' o

21 -3d 44.3885 1) 354 (4.31 4'•

2 p0-4 4 0 11 )6 0 109 , ON4
21 '-5d )50)5( I 44,5 i) 44 ( , ) 7 f 1)
21,-bd )20 ,5 I) 4427 I 1) 0,25 1) h.,-,

-)l i,"t it 0.16 1i 1 0 49 1 0(4 14Y .
21,-Nd t) M-,25 I
21,-hid (), 7ý)1i ( 2'
2 1-Isl (0 .O23t 21

2p- I d 0.,'77 1

2-12d 0. 19"380 2 1

3p-3 d 0.4543 (1.415 4.441
31 --4d (02369 1.206 0 )1993
1-

5'd 0.
7

985 I, l) 4.70 4 1) 4).73 (4
3p--d 0.38984(. 10) 1).36 1 O35 ( 7

3p-7d " .22,2 2
31p-1d 0. 1396 .

31--9d 0(9360 1 2)
31- 10d 0.)06620 2)

ýp- I Id (1.48(0 0 -2)

3p--1 2d 0-3'469) 24

This Aork,
SRef. 17

R e " 24.

-1 .BI IV Osciliator strengths for np :'-n'd 21) (it 2.3ý n' 3-6) transitions in Oiv.

""ransilý -n Length Velocit. s44"

2p-3d 0.4517 ().455 o,437 0.48 6
2p-4dO. .1222 (1424 (. (16
'p-Std 0.5(717-4, ).52 ( 2) ( ().49 4)

2-6d 0.2705- 1) (0.27 (-1) 0.25 q I)

3p-3d ( .3534 o.322 0.337 0(13 Iy
3p-4d (02799 0.278 (0.274

3I-5d 01.951 ; 1, ) 0.92 1I) 0(.9(•1 (1

3p-6d 4).44S 14 0.43 (I) (0.42 (-()

IThis %kork.
"Ref 17.

Rei 22.



B44)"ROI IM \ I) lI( 881t, [SI

1 \AB I \ . Osc I [ator ,Ircngflih', t01 i' 21 )-4- f-' >ine-struc ture ird nrmI in K )r -1 hk4. in',

Ion I rLIn4tiolh (Q)1) i0)4 ) Rcl. Re! -"
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' d, 0 4"99 O 5 44.557 1

2t (.\IV 2 - ().4174 0.46 444

,4d, I. 0.64470 1)

i, .-P! I 4 .01w 0(.65527

""0 ScXVI, ).- . 41 ).f)9' O.62371 1.65
'.4,. l4, I6'9<J( I i 1 4.4,2711 I 44644( 1)

'., -4l< l 5669 ('.56)37 44.5S4

22 I AN 4 M I/' -- 3t' ! .6 13' 0.6263 44.6295 4.65
2p) I 4.63' 4 Id 44.6407 1 I 04.48 4 I) (0.644 ]1

21" 4, 0O.5403 04.5667 4.5,,3 4O.58
2 \ 2IX , 0-6 44.36s8 0 ('287 44.65

.4 -46368 j I ).6335 I 0644 ( 1)
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24 ( 2 1 \ 0. .- (4.63.24 (40622F (l'
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"26d )6X\ll 2' '-, 4164 Iý <'.,,, 04.634 44.65
1, .--d, 1)4j ( 61 1 4.638:.1 I 1 .04.58 4 ) (0 W; f 1
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1,.-d •. (4.6437 4 1 0.60358 1 14 40 ,8 6 I )
2p, - 3d, 0 57943 (0.,7i 09 ... 1)

34 SeXXX 211, -I - 0.6453 0.624-,
S17,-3d . 0.(1413 ( 14 0.6 63 1 1 t

-p 3 -4d., 05408 44.5711

36 Kr\XXII 21p: U-16,. 0.646 446225 o'('23

2p% :-VId 0.646 B 0 )f,5, 14) fu7 t )

2 1 t -, , ) .5 8 1 4 0 .5 7 t )5 0 .6 0 7



460 I.AViN, MARLIN, AND VAI !lJO

TARI .I. Oscillaior slrcngths (or 3p 21'-3d 2) tinc-structurc transi.tion IT) boron-hkC ,o01

Z ton Transition QIX RQIX) Rct 2

14 Six 3p,_-3di 0.813)( 1 0.8074 1)
3p, ,-3de. 0 0.8139 f 2) 0.8074 2;

3P3.2 -3d,,. 0.7325 I 0.7355 ( -- I1
18 ArXIV 3p, 2 -3d, 0.1062 0.1088 (4. 1,3

3p3,-3d3.2 0.10621 1) 1.0)2X 1) 0.1001 1)
3j3,2-3d.,,: 0.9558 ( 1 0.9438 ( 1) o.9 '3 1)

20 CaXIV 3p 1,2-3d1., 0.9382 ( - 1 ) 09700( -1)

-313,2-3d2 0.9382 2) 0.8965 (-2)
3pj .- 3d,..Ž 0.8444( I ) 0.8300 ( - )

22 TiXVUII 3p1,2-3d.,Z 0.8481 1 10.8880 1 I) 0.877 --1

31,1,,-3d, - 0.84811 2) 0.7966(- -2 0.782 (-2)
3p 3),-3d,- 0.7633 -- 1 ().7455 ( -. I) 0.73 1)

24 CrXX 3p, 2-3d, 2 0.7653 -I) 1 0.8129 (-1

3p~2-3d.: 0.7653 (-2) 0.7039(- 2)
3p 3.2-3d, z 0.6888 1 0.6677 1

26 FeXXII 3p,e-3d 32  0.7244 (- 1) 0.780)9 1 I 0.7765 1 )

3p, 2-3A4,, 0.7244 (- 2) 0.6517 -2) 0.6423 ; -2)
3p3,2-3d 5,. 0.652 1 I) 0.6271 (-1)

28 NiXXIV 
3
p,,z-

3
d2 0.6850 ( 1) 0.7506 (- 1)

3P3, 2-3d 3,, 0.6850 (-2; 0.6003 (--2)
3p 2,-3d., 0.6W65(- 0.5878)-) 1)

30 ZnXXVI 3p 1,2-3d 1.2 0.6577 ( -1) 0.7344 (- I
3p3 2-3d 3•z 0.6577 (- 2) 0.5587 (-2)

3p,,2-3d5.z 0.5919 (- ) 0.558- (.- 1)
32 GeXXVIll 3

p;,2-
3

d3;. 0.6394 j I) 0.7271 (-1) 0.712 I
3pY:2-3d 3iz 0.6394; 2); 0.5256 ) -2; 0.5078 2)

3p 3j.-3d,1 ,2  0.5755 (- I ) 0.5376 (-I) 0.5162 (-1)

34 SeXXX 3pj,2 -3d 3,Q 0.6015 ( -1) 0.7005 ( - 1)
3p 3s 2-3d,; 2  0.6015( 2) 0.4727 (-2)
3p31 2-3dM5 , 0.5414( -1) 0.4990 ( -- I)

36 KrXXXII 3p,, 2-3d3..: 0.6131 ( - I ) 0.7245 (-1) 0.704 ( -1)

3P 3,2-3d3 2 0.6131 (-2; 0.4671 (-2) 0.446 (-2)

3p 3 ,1 -3ds1 ,2  0.5518 (-.1) 0.55040 (-1) 0.478 (--1)

Note: QDO and RQDO from present work.

Cohen and Nahon 1171 also followed frozen core (FC) and limited multiconfi-
gurational frozen core (MCFC) procedures. In the former, all but a single valence
electron are kept fixed, and only a single radial equation need be solved for each
state considered In the latter, the choice of core configurations was limited to the
Is 22s 2•'S and ls 22p 2 'S complex. The resulting valence orbitals and energies were
employed in calculations of electric dipole oscillator strengths in the boron sequence.
obtaining what they consider to be very good results for all but a few exceptional
cases [ 17 7,

Here we are '- considenng transitions which arise from the jump of one external

electron to other levels located far out from a spectroscopically inert I s.2s2 "core."
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eXCept for thle con fig4U ration mixintg and scrics pr rhinsthat lilas takc place
in this "core." Ilos' e r. thle transitions %%es are sluds ing i itsokk lc lsels that seem,
to be tree t-r-0ni such in~teractions1 and. therel'Ore. %kkc hax c treated thle boronl-like
s,,stemns. for these purposes. ss ith aI central field mlodel potential. 'it a one-
particle scheme. InI both QDOi and RQI ) )Proced Ltires.

Method of Calculation

The quanltum defect orbital (to)method [5-- I I and Its relatis stic eencrali/a-
tion ( RQI)()) [121 belong to simple and reliable mnethods of estimiation of oscillator
strengths. We shall only brietil\ mention their fcatures, xx hich are ieles ant for thle
present calculations. The quantum defiect orbitals Lire the analstical solutMion Of
the one-particle ( nonrelativistie I Schroidingci equation sx ith a model H amiltonian.

[ (, d fx( x f 1 2/w 0, 0 1 \ II

,where atomic units Lire used throughout. 4" is theC nuclear charge acting on the
valence or R~dberg electron at large r. and,

X 7 -- ý) . (2)

wvhere / is the angular momienitumn quantumn number. ý) is the quantum defect, and
cis an integer chosen to ensure thle normialliabilit\ Ot)I' the quantum11 det~ct orbitals

and their correct nodal Structure. The eigenvalue. h"', depends, onix onl thle non-
integral part of'X and, hence, it is independent ofc. The qu1.antUmn detect is obtained
individuallv tor each state fromn empirical energy data. This carries along thle implicit
inclusion in the model Hlamiltonian of somec eflects not explicitl\ included Such as
core-valence polariiation and relativistic ellects. llossever. in thle calculation of'

properties concerning highl,. stripped ions and heaxy atoms. ti motatt i,
explicit account of relativistic efiects. T1he Rtoix theorv has recentIN been dev eloped
b% Martin and KarNwosski. and applied SUeCeSSftill\ to sonic hleavx, atonmic systems
[121. In the Rix)o method, the parameters appearing inI eq. ( I ) are replaced b\
others, that is. X by A. 5 by 5',Z,., by / ,,and k.;(' by c. in the following manner:

where

k( o 21k/k (4)

(t being the line structure constant. /the atomic nunmber. and] k thle qua-ntumi
number, for which we adopt the original convention of' Dirac [ 181
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j *. ] / + l. if/j - / ,- ,

/ = ,:,. I + (kf) (6)

E' being the experimental energy, and

= -(/•)/[2(fi - 6')'] = E'( I + -'L"/2)/(1 kL-")-,. (7)

where fi is the relativistic principal quantum number [191. This reformulation of
the QDO theory takes into account most of the relativistic eltcts and has, in our
view. imporaunt advantages. On the one hand, the RQtX) method does not add any
complication to the Q[)0 formal structure and. on the other, it creates a more solid
background for interpreting properties of highly ionized. heaý. atorns. In both
procedures. the transition integrals can be written as closed-form analytical expres-
sions, and their computation is quite straightforward and inexpensive.

Results and Discussion

Oscillator strengths for Is 2s 2np P_1 s2sn'd-D (n =2-4. n' 3-15 ' are dis-
plased in Tables I-VI. For the lighter atomic systems, for which relativistic effects
are not expected to be important. we have followed the QDO procedure and report
multiplet oscillator strengths only. We did also perform RQDO calculations., but
thef-values so obtained showed negligible differences from those computed with
the Qro method for BI (Z = 5) to OIV (Z = 8). Individual tables are devoted to
each of these ions, since a larger amount of energy data than for the heavier ions
(SiX to KrXXXII) was available [2.20]. Dankwort and Trefftz [21]. have carried
out a multiconfigurational treatment of the BI sequence, and confirm that relativistic
effects are unimportant for the calculation of oscillator strengths up to SiX (/ =
14). From this ion onward we report both QrX) and RQDO /-values. However, we
must be aware that relativistic corrections lose importance with increasing 1. and
for np-n'dtransitions. they cannot be expected to be ver- noticeable. In all cal-
culations, the integer c of eqs. (2) and (3) was alwa.s taken equal to zero. and the

dipole length formulation of the transition integral was alkays employed.
In Tables l-IV we show the QDO oscillator strengths. together with other theo-

retical results that we have found in the literature: the dipole length and dipole
velocity -values of the multiconfigurational frozen core (M(f () calculation by
Cohen and Nahon [17 ]. the refined superposition of configuration (SOC) results
by Weiss [ 22 1. and the frozen core (Ic) oscillator strengths obtained by McEachran
and Coajen [23]. Both Mf-c and :(' calculations consider the 2.S" subshell as part
of the atomic core. as described in the Introduction. Cohen and Nahon [I 7] stress
that for their McF(" 2p-rd oscillator strengths. their results are in much better
agreement with u( /-values [231 than for n ý-2j' transitions. 'This strengthens our
confidence in the adequac. of one-electron calculations for the transitions object



BO( RON -IF F] XI ()MFR S'iS IFI%' 403

of the present ýNork. Also Included in Some ol' thle tables, are thle results of' model
potential length calculations 11w G allas 1 24 1. and those of recent critical compilation
b-, Martin et al. 125 1.

Ihle (.?F) results ( lahleS [-I V ) ShILM a generall\ good agreement %, ith thle comir-
paratisellv calculatedi/-valtucs. UInf`0rtLunatCl%. no elperimnirtal nmeasu rementils seem)
to he available. As to thle RQI)( results (Tables V' arid VI ), It can he noticed that
they gencrall\ ditllr ver\ little from thle corresponding ()DO tine-structure I-NUIatICS
(obtained by mu Itipl ing thle Calculated mulJtiplet /-s aILus b\ý the appropriate angular
flictors) in the 2p J)-3 d -[D trainsitions, although thle ditlhrences increase %s ith tile
atomic number. as expected. The agreement %kith the comparative data is also ver\
satislactorv., For the 31) -1-31 2/D transitions. the RQDO and oQt)O oscillator strengths
begin to ditkr at loser / ,alLuCS than in the pre\ ious case. being that the agreement
with the comparative data is appreciably better in the RQf)() case.

Conclusions

It seems apparent that both QiX) and ROt)( procedtures ýie Id quite satislfIctorB
oscillator strengths for various transitions in the diffuse spectral series of the boron
isoelectronic sequence. Trhe adequacy of a one-electron treatment for these atomic
systems in excited states has also been proven. This mal, save computational time
and costs. and may serve as an alternative to ab ifliti procedures which explicitly,
account for electron correlation in the valence. 2.s2 2 p. shell.
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Abstract

Transitions originating from excited states in copper-like ions have been studied. Fine-structure oscillator
strengths obtained Aith both the quantum defect orbital ot×x)} and its relatiistic (RQi)o) counterpart
are reported for4p P - nd 2D(n 5. 6).Sp2P nd 2D (n -5.6). and np 2P -6s S (/ 4. 5

absorption transitions. v 1492 John Wite. & Sons. Inc

Introduction

Spectroscopy data on highly stripped ions are needed in fusion devices for plasma
diagnosis. as well as for estimating the effect of impurity ions in high-temperature
plasmas [I]. Moreover. the need for extended and improved data to match the
observational development in contemporary stellar spectroscopy has been vers re-
cently remarked [2]. Reliable values of transition probabilities and oscillator
strengths are needed to model stellar atmospheres. in particular to find chemical
abundances and the energy transport through the star. Estimation of these and
other important properties requires the knowledge of transition probabilities for a
very large number of lines in many atoms, including the highly ionized ones, for
which experimental data are either scarce or not available. Theoretical calculations
are often the only source of information on many transitions. The multicon figuration
Dirac-Fock method [31 offers the most reliable results. However, this approach
becomes very time-consuming if the number of transitions to be determined is vcrt.
large. On the other hand. other, much simpler methods, are usually much less
accurate. Therefore. developing procedures which combine reliability with simplicity
is quite important, not only from the practical point of view. but also because of
the physical implications involved [4].

In previous calculations of atomic transition probabilities and related properties.
such as oscillator strengths and photoionization cross sections, %ke have followed
two simple but rather reliable semiempirical procedures. T-hese are the quantum

Interndll•nal Journal of Quantum ("hernmistr. Qutnium (hernitr'-, S',mpoayun 'f,. 465-4-4 1 9',
S199(2 John WVflc & Sons. Inc ( ( (" f)2I)-h, i, 92 01]14(.5-;l )
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defect orbital (Qtx)) formalism [5-71 and the recentll proposed quasirelatiuistic
formulation (RQDO) of this method [ 8-111,

In this article, we report oscillator strengths for transitions arising from excited
states in moderately to highly stripped copper-like ions, computed through both
QI)O and RQI)() procedures Results for fine structure transitions in the principal.
4s ýS - 4p 2P, and diffuse. 4p 'P -- 4d 'D. spectral series, covering a large number
of copper-like atomic systems (from / ý- 29 to Z - 921) ha e been reported elsewhere
[12]. For the principal and diffuse spectral series, oscillator strengths of high accuracy
have been obtained, and the considerable improvement brought about by the explicit
introduction of relativistic effects through the RQt)O procedure has been made ap-
parent for the moderately heavy to heavy ions. Also, correct systematic trends of
the individual fine-structure I-values along the copper isoelectronic sequence, which
may not be adequately described at the low I1// end if relativistic efltacts are not
well accounted for. have been found when the RQDO /-values ha.e been plotted
vs. I// [12].

One of the goals of the present calculations is to test the ability of the Qt() and
RQDO procedures in yielding oscillator strengths for transitions that involve higher-
lying states. The latter have some specific usefulness within the context of'the more
general one remarked above. Recombination phenomena often proceed through
high-lying states, making their transition probabilities important for plasma physical
problems. A knowledge of higher-tying transition probabilities is also verx valuable
in the experimental measurement of lower level lititimes. since usually severe cas-
cade effects seem to occur in copper-like ions. at least in the cases examined by
Younger and Wiese [13]. Common methods tor establishing the cascade contri-
butions require an extensive set of theoretical estimates of lifetimes and branching
ratios [13.14].

In a very comprehensive study of the copper isoelectronic sequence through a
numerical Coulomb Approximation (N(•A) procedure. Lindgdird et al. [151 quote
Wiese and Weiss [161, and remark on the possibility of tracing isoelectronic and
homologous trends in oscillator strengths using additional theoretical estimates for
only a few selected ions. and. hence, saving further computations. However. they
also warn about the danger of very sharp cancellation etk..cts being likely to occur
in the transition integrals of alkali-like ions. which causes the /-value for a given
transition in one particular ion to be anoumalouslv small. As a consequence. Lind-
gdrd et al. [ 15 1consider it sensible to make independent calculations for individual
ions. Given the \ers time-consuming task that perfbrming man\ calculations with
sophisticated ah mli,, methods brings about, they find a solid justification for the
use of sermiempirical procedures.

Lindgard et al. [15]. as well as other authors who haxc studied these atomic
sIstems [17-201. remark that for ions of reasonabl. high ionipation stageI the ('ul

sequence is a pure alkali-like sstem v ith a single electron outside a closed 3d shell.
giving rise to a simple Rdberg-t pe spectrum. ltow eer. for to% charge states there
are problems which rcquir&'s some caution. f:or instance, there exist core-excited
configurations of 3d" 4snl tvpe that fall below the first ioni/ation continuum 3dM
'S. These can mix xith the R.•dberg series giving rise not ont., to a shift in the
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position of the 4s and 4p levels, but also to altering their spectroscopic character
[17]. In the neutral copper and first t c\ ions of its sequence, rather large pertur-
bations of the `P Rydberg series arising from mixing with the 3d" 4s4p 2p config-
uration have been reported [15.191. Froese-Fisher [181 found great improvement
in her calculated .,%alues for the resonance transition by the inclusion of the 3d"
4d4s and 3d" 3d4p configurations in the ground and first excited states. respectiely.
Lindgaird et al. [I 51 point out that the higher members of the 'P spectral series are
not vell described within the I s coupling scheme, and. hence, a single electron
picture may \ ield only crude estimates tor the lower members of the ('ul sequence.
Another problem that must be dealt with is, according to several authors
[15.17,18,20]. the core-valence polarization effects. which are mainly found to
occur in the lowv p, , and p, states. rather than in the si, . d;_, or d-, states [20].
Curtis and Theodosiou, in their accurate and extensive semi-empirical study of 4s
and 4p lifetimes and fine-structure f-values involving 4s-4p and 4p-4d transitions
for a \ery large number of ions in the Cul sequence (Z = 29-92) [17]. made a
remark that we find important: core-polarization and other types of electron cor-
relation, spin-orbit coupling, and other relativistic interactions, can vars with the
degree of ionicity along the sequence. Hence. the applicability of various a! iniio
approaches changes over the sequence. This strengthens our confidence in the con-
venience of applying reliable semiempirical approaches, such as the QDo and RQ[)O
methods. In particular, the latter has the advantage of being able to deal in a uniform

wa- v, ith the entire isoelectronic sequence. The correct performance of the RQt)O
procedure has already been proven at low and high /-values in other isoelectronic
sequence [1 0]. On the other hand. the serniempirical parameters of both QDO and
RQt)D methods account implicitly for core-valence polarization effects.

Computational Procedure

The QDO method has been described in detail in previous articles (see, e.g.. Refs.

[I5 and [6 1). So has been its relativistic counterpart. the RQ(DO procedure [ 8- 101.
We shall just summarize here the main features of the latter.

The relativistic quantum defect orbitals corresponding to the state characterized
b\ the experimental energy E' are the analytical solutions to the quasirelativistic
second-order Dirac-like equation:

[- ! -+ A(A + - )/r 2) ' no/r] (r)I 2 ( r) (I

where 1%,. = Zr,,,t I (v 12 l:"). (2)

c 12n 4 :"( U /2)/( I + oL')2 
. (3)

.1 - -- ± I - (4)

, is the iinc structure constant. 4 , is the nuclear charge acting on the .alence
electron at large r. n and /are the principal and orbital angular momeium quantum
numbers. t1 ix the relativistic principal quantum number. 6 is the quantum defect.

andJ is an integer that is chosen to ensure the normalitabilitv of the wvavwfunction
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and its correct nodal structure. The quani am defect, 6, is obtained empirically from
Eq. (3). Then Eq. ( I ) is solved analytically and the solutions used to calculate
transition probabilities and oscillator strengths (as well as other properties, if
required). The nonrelativistic QD) equation is obtained by setting a (- 0. Then
E' becomes the experimental term energy (averaged over the tine structure
components).

We have carried out calculations for transitions for which recent empirical energy
data were available [ 22-31]. Given the likely presence of configuration mixing. in
particular for the lower ionization stages in the Cul sequence, as indicated in the
previous section, we cannot establish whether in the atomic data used here the level
classification is entirely correct. Hence. we have not attempted to perform extrap-
olations or interpolations for those levels for which energy data was unavailable,
as other authors did [ 15 ].

Results and Discussion

In Tables I to IV we display the results of the present calculations, for some
representative ions of the ('Cl sequence. together with some comparative data.
Although the need for transition probability data concerning ions of this sequence
has been accentuated by their determination of impurity concentrations in high
temperature plasmas. the comparative data for the transitions studied here is rather
scarce. No experimental measurements seem to be available, and only theoretical
data from two sources have been found in the literature. These are, respectively.
the NCA [17] and RilF [21] calculations, of which some details are given in the
Introduction. None of these include explicitly core-valence polarization effects.
although. by using empirical energy data in their method. Lindgdrd et al. [ 17 ] give
some implicit account of these effects, as both our QI)O and RQDO procedures do.
Cheng and Kim [211 report to have found already for ions in moderate ionization
stages, not to mention the very highly stripped ions, that the explicit inclusion
core-valence correlation (for instance, through a polarization-corrected transition
operator). has very little effect in the calculated oscillator strengths.

For the 4p 2P - nd 2D(n = 5. 6) transitions, Table I. the comparative results
were not expected, a priori, to show a good coincidence with our computed./-values,
given the different input energy data employed in the reported procedures. This
was especially so in these transitions, which involve the perturbed 4p 2P state,
regarding which we make some comments in the Introduction. However, the agree-
ment between the RQDO and RH F/-values is fairly good for the 3/2-3/2 and 3/2-
5/2 fine structure transitions, in particular for n = 5. and, overall, it is much better
than the agreement of the QDO .- values with the R ii f: results. These features increase
with Z. quite probably due to the relativistic effects becoming stronger. A much
better general agreement is found among all sets of comparative data displayed in
Table II for the 5p 'P -- 5d 2D fine structure transitions. We should bear in mind
that the 5p 2P state seems to be free from the configuration mixing from which the
4p 2P state is reported to suffer. A good feature regarding the RODO f-values is that,
as Z increases along the sequence. all the three fine-structure oscillator strengths
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TAB[ i I. Oscillator strengths for 4p 2P--nd 2D (n - 5. 6) fine structure transitions in copper-like ions.

z Ion Transition Qlt) RQIO Rill

56 BaXXVIII 4 p, 2-5d-,2 0.1136 ().87511 - 1)
4p),,-5d : (). 1136 -1) 0.1348( -1)

4p, .- 5d-, 0.1022 0.1 12

57 LaXXIX 4p, -5d, 2 0,1194 0.9133 (1)
4p.--5d_,j 0.1194( I) 0.la19 (1
4p. ,-5d, 0.1075 0. 117 1

60 NdXXXII 4p1,<-Sd•, 0.1412 0.1071
4p3)2-Sd• r, 0.1412 (-1) 0.1688 (--1)
4P3 2-5d' 1 0.1271 0.1384

62 SmXXXIV 4 pj _-5d-,,: 0.1530 0.1152 0.1386
4 P3, -Sd;,' 0.15301( - 1) 0.1845 1 - 1) 0.2207 (-1)
4pj.-5d, 2 0.1377 0.1498 0.1795

64 GdXXXVI 4 p ,,-5d. . 0.1586 0.1148
4p3ý2 -5d1 , 0.1586 (-1) 0.1899 (- I)
4p.j 2-5d,,.: 0.1427 0.1577

66 D% XXXVIII 4pl,2 -5d,, 0.1646 0.1182 0.1470
4p 3l,2-5d. 2 0.1646(- 1) 0.2005 (-1) 0.2460 -. 1)
4p,,2-5ds,, 0.1481 0.1634 0.1969

70 YbXLIl 4p,.2-5d3:2  0.1778 0.1232 0.1512
4p,. 2-5d3 0.1778 (-1) 0.221-1 (-- I) 0.2684( 1)
4 p1 ,-5dd,, 2  0.1600 0.1776 0.2123

73 TaXLV 4p, ,-5d ,, 0.1890 0.1269
4 p,,2-Sdd, 0.1890() I) 0.2377(-I)
4 p3 :-5d,,: ( 0.1701 0.1901

44 RuXVI 4 p, .- 6di,..2 0.1389 (-- ) 0.1127(-1 I) 0.2350) - 1)
4pj 2-6d;,,, 0.1389 (--2) 0.1611 ( 2) 0.30561 (-2)
4p 2 .-6d5 , .|250t 1) 05.1343 1--1) 0.2594) - 1)

45 RhXVIl 4 pr ,2-6d3.i,  0.1706( - 1) 0.13781 -1
4P3 ._-6dy. 0.1706 (--2) 0.1935 --2)
4pv,-6d, 2 0.1535 (--I) 0.1657 (--1)

47 AgXIX 4p, ý-6d., 0.2383 1 ) I 0.1972 ( 1-)
4 pý 2-6dj., 0.2383 (-2) 0.2690} -2)

4p,:ý-d•, 50.2145 I) 0.2286( 1)

70 YbXIII 4p1,,-6d, 0.62)13( I) 0.4386 t 1) 0.60)1( I)
4p3 ,,-6d,.2 0.620.3 2) 0.6849 (-2) 0.8931 2)
4p,,,-6d, 0.5583 1) 0.6164( 1) 0.7375 1 )

"In this and the remaining tables. ,( - B) denotes .. I-0 "'. QI)o, RoIx), this work.

Rill . relativistic Itarirce-Fock [211.
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TABL.s It, Oscillator strengths "or 5p P-.nd 1) Pi 5. 6) line sruclure transimons in copper-

like ions-'

Z Ion Transition QI)() RQI)X) Rill N1"t

36 KrVIII 5pI ý-5dl 2 1.396 1.402 1.401 1.373

5p,..-5d,- 0. 0396 0.1388 0.1183 0.1353
5p1 ý-Sd• 1.256 1.253 1.249 1.222

38 SrX 5p 2-5dM3 1 .352 1.366 1.343 1.322

5p; -- 5d', 0.1352 0.1335 0.1311 0. 1290

5p, 2-5d, 1.217 L.209 1.187 1.168

39 YXI 5p -- d2, 1.321 1.339 1.3110 1.287

5pI 2-SdM. 0.1321 0.1301 0.1271 0.1249

5p,3-5d5d , 1,189 1.180 1.153 1.133

40 ZrXII 5pi2-5d, 1.286 1.308 1.276 1.251
5pý,:-5d,- 0.1286 0.1263 0.1231 0.1205

5p3 ,-5d, 1.157 1.147 1.118 1.1)95

41 NbXIlI 5p, 2-5dM., 1.2510 1.276 1.244 1.225

5pIZ-5d,., 0.1250 0.1223 V 1191 0.1172
5p,--5d, 2 I. 125 1.113 1.084 1.(167

42 MoXIV 5pl,-5d1",, 1.217 1,246 1.212 1.198

5p, 2-5d,,- 0.1217 0,1187 0.1153 0.1139
5P 3 ,.,-5d,,_, 1.095 1.082 1.()51 1.039

44 RuXVI 5p 2 -5d•, 2  1.152 1,188 1.152 1.134

5p 3,.,-5d,1 , 0.1152 0,1114 0.1080 ( 0.1060(

5P 3I2-5d1,2  1.037 1.020 0.9889 0.972-1

45 RhXVII 5p,;,-5d3,. 1.121 1.161 1.1107

5p•,,-Sd3,- 0.1121 0.1080 0.1026

5p3,2-5d5,2 1.009 0.9901 0.9429

46 PdXVIII 5p;,'-5dsj, 1.090 1.133 1.099 1.085
5p 32:-5d.,2  0.1090 0.1046 0.1014 0.9991 (-I)

5p 3s2-5d, 2  0.981 0.9612 0.9322 0.9203

47 AgXIX 5p,/-5d(312 1.063 1.109 1.0155
5p_31,-Sd3:,, 0.1063 0,1014 0!.9624 (--l1

5P3.,-5d5, 2  0.9567 0.9346 0.8958

48 CdXX 5p,-,-5d 3ý, 1.036 1.085 1,152 1.034

5P3,-5d3;2 0,1036 0.9838 (-1) 0.W5360 .1) 0.9349() II
5p.,.2-5d 2;z 0.9324 0.9086 0.8813 0.8624

49 InXXI 5p 1 .2-5d&2  1.010 1.064 1.016
5p3j.-5d, 2  0.1010 0.9549 -I ) 0.09118

5p 332-5d•,,2  0.909 0.8844 0.8513

50 SnXXII 5pj,2-5d 3,,2  0.9865 1,044 1.012

5p 312-5d3.,2  0.9865 t - 1) 0.9276 (- I) 0.8993 .- 1)
5p,,2-5ds,/ 0.8879 0.8610 0.8357
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YIBI I ILI ((; iu'd)

z Iol I ransifion QI)() R)IX) Rlil NI

56 BaXXVIII 5p1 -- Sd, 0(,8714 0.9487

5p,.,-5ds 0,8114 1) 0.78851 II

5p, ,-5d- 0.7843 0.7483

57 t.aXX1X 5p, -- 5d, (),8542 0(9363

5pi-5dl_ 0.8542 1 0- 1.7675 1 )

5p3 -5dpj 0,7688 0.7304

60 NdXXXII 5p, ,-5d,, 0.8136 0.9056
*5p - ,Sd _, 03.8136 (-- 1) 0.7139( 1 I

5p3 Z-Sd,., 0.7322 0.6895

62 SnXlxXIV 5pj,•-5d-- 0.7888 0.884(0 0.8683

5p3,,-5d' 1.7888 ( -1) 0.6797 1. 1 ) 0.h649 11

5p, 2-5d- 2  0.7099 0.6559 /O_465

64 GdXXXV1 5pI,;-5d, 2 0.7689 0.8843

5pý -5d , 0.7689(- 1) 0.6591 1 I)

5p3 3-5d, , 0.6920 0.6369

66 DyXXXV1II 5p,.,-5d,3 . 0,7533 0.8756 1.8491

5p,,-5d., 0.7533( -I) 0.6277 1-)l 0.611()9 - ])

5p3._-5d ( 0.6780 0.6202 0.6063

701 YbXLII 5pf .- 5d"" 0.7277 0.8652 0.8406

5p3 2-5d, 0.72771-1) (.581 1 1) 0.56491 I)

5p 3• 2-5d 5, 2  0.6549 0.5900 (0.5737

73 TaXLV 5p.,-.jd3 ., 0.7107 0.8643
5p.,,-Sd,.; 0).7107 (--1 ) 0.5481 1)
5p.j 2-5d,,, 0.6396 0.5657

45 RhXVII 5p,,2-6d,, 0.2336 (--1) 0.1599( 1)
5p3ý2-6d",,z 0.2336 (-2) 0.2969 (--2)

5p ,.--6d •,, 0.2102 (-- ) 0.2430 -1-)

46 PdXVIII 5p,,2-6d3l' 0.3226 (-I) 0.2366 1-1) 0.361)2 (-1)

5v,2-6d3,ic 0.3226 (--2) ).4107( .21 0.5856 (-2)

5p/,,-6d5,,, 0.2903 (- I) 0.3255 ( I) 0.4734 ( I)

47 AgXIX 5p~jj-6djf, 0.3963 (- I) 0.2910(- I)

5p,.,-6d.,,2  0.3963 t--2) 014922 (--2)

5p3,2 -6d5 i2  0,3567 ( - 1 0.4005 ( 1)

70 YbXII[ 5pj.2-6d0, 2  0.1497 0.8612 I) 0.1254

5p3,2-6d 3 !. 0.14971-i, 0.1826( I) 0,24801( 1)

5pj 2-6dý,2  0.1347 0.1643 0.192)

"See the footnotes to Table I: N(A, numerical Coulomb Approximation [I51.
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1.\HI I IL. ()sillalor strengths kIOr 4 ,P .1 - 6s :S hne struclurt" Ira•%iLiofl, in copp, r-like nons.

/ ion I radlnilon ot ROIX0) Rill N ( A\

33 As,, 4p1) .- N, 0 1 SO48 II 0.1844U1 1 0_2076n I 0 11759( II

4pV , 0,1,4( 1 0.2156( 1 0.(1 ( 39 1)

34 SeV% 4p, -t+. 0 146 ( I Il37! I) 02(086 1 (.1794( I1

4p; '-Ah lI1$4X I1) 0.21'2 I 1 0.1885( 1)

37 R IX\ 4p,, ,- X, "0 1 ) I) i. i • I 0!2065 1 0.1814 I1
4P ,-6st ) 816 2205 I) 0.1941 1 Ik

3( Sr\ 4pt .- Ix. o0 K 7_ B ,(•I(lk 1 1).2051 B 0.1812 1

4p1 . -- \ (0 lN, ) 11 0.2205S I1 0.1953k 1

S \1 4 .-- , 11 '2 I) 1 0.20351 1 (O1, 07 1I
4p1 -.+'Ni 0 $221 I ( 2032 I) 1 0.1965 1B

40 Zr\l1 4p O's. (I owit It 0 1'4k i O,2019( I) (1.1906( 1)
4p, ..- s 0 1S 7 1I 0.2201 ( I 01976 - 1)

41 Nbl\ I 4) 0 1 , 1. I.V"' I I 0.2)2 I- ) 0.1776 1)
4p1 _-6.., 0Is ,141 1 1 0.2198 I ) 0.1,60 j-I)

42 MoXI\ 4p :-hN, 0 'qI I) 1.1
7

-7k I1 0.(19854 I 0.1768 -1l
4p,.f-6s) 1.18117 I) 0,2196(-I) 0.1 )66( 1)

44 RuXVI 
4

pR ,-, O._6s, 5 1 1) 01 74N( 1) 0.1952( )I)

4p,- "S• 0(,.1796) 1 ) 0.2192( 1)

46 PdX.VII[ 4p, :-6s, 0.1779) I I 0.17371 I) 0.192( -V 1)
4 p3 -- 6s, 0.17911 1- 0.2190 (I)

47 AgXIX 4 p, 2-6s, ().1773 ( 1) ().1727( -1
4p, -6s1  0.1785 ( 1

49 JnXXI 4p, 0-6s, 1 (17661 -1) 0.1715 (-)

4p, ,-6s-, O. 1780 -I)

See footnotes to Table II.

become more similar to those of the relativistic Hartree-Fock calculation, and
depart progressively from those that not give explicit account of relativistic effects.
The 4p 2P -. 5s 2S QDO results (which are not to show fine-structure splitting in

the LS coupling scheme for p-s transitions), as well as the RQDO f-values, are in
general good agreement with both RHF and NCA results. Similar comments can be
made as to the 5 p 2P -- 6s 2• transitions, shown in Table IV. It is a common
feature in many atomic systems that relativistic effects have little importance in
calculated np -p n's transition probabilities and oscillator strengths.

Given the lack of data for many ions in some of the transitions studied, we do
not give here graphs of the fine structure f-values for individual ions versus I /Z.
which is a way to search for regularities along the isoelectronic sequence. However.
by inspection of the tables, it can be noticed that all the fine-structure fivalues
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T1\BI i IV. Oscillator strengths otr 5p P 6s S line structure transitions in copp.r-like ion%

z Ion Transition ()IX) RQIX) Rlll NV A

33 AsV 5pl j-6(:' 0.2459 0,24107 0.2288 102129
5pv 2-6% , 0.2484 0.240)9 .21246

34 SeVI 5p0,-6s,., ().2357 (0.2298 0,2 185 0,2193
5p3 --6s, (12385 0.2318 0,2220

37 RblX 5p., 2-6s]., 0.2164 0.20)91 0. 1956 0.18036
5p, 2-6s, ( 0.2199 0.2123 0. 1962

38 SrX 5pl,.-6s,. 0.2114 0.2036 0. 1897 0. 1772
5pý,2-6s,2 0.2151 0.2075 0.1939

39 YXI 5pj,2- 6 s.. 0.2068 0.1985 0.1844 0.1801
5pi,ý-6si, 0).21037 0.2023 0.1983

40 ZrXil 5PIi:.-6s]5 0.2036 0,1947 (3.1796 (. 1733
5p,1 2-6s,_( 0.2077 0.1995 0.1923

41 NbXII! 5pt,-6sj1  0.2(X'7 / .1914 0.1752 O, 1707
5p~ ,,-6s1 , 0.2051 (.-1962 (0.1911

42 MoXIV 5p 1 ,,.-6sj;,  0.1878 03.1875 0.1711 (0.1670

5p3;,-6s.!, 03.21019 O. 1933 O. 1885

44 RuXVI 5p j,2-6st1 , 0-1923 0.1813 0.1640
5pI,.-6slj2 0.1973 0.1885

46 PdXVIll 5p , 2-6s,,- 0.1889 0,1768 0.1579
5p3•_-6sj1 0,.1944 0.1847

47 AgXIX 5p, 2 -6sp,2  0.1864 0.1738
5p 3,2-6sj1 ,  0.1922

49 InXXI 5pj,2-6s12z 0. 1833 0.1694
5p3,,-6s,-2 0.1895

8 See footnotes to Table II.

obtained with the RQDO and the RHF approaches present the same systematic trends
in all of the reported transitions. This may be considered as a hint for the correctness
of our results.

Concluding Remarks

As in previous studies with the QDO and RQDO procedures, the adequacy of these
methods to yield good estimates of oscillator strengths seems to have become ap-
parent for the transitions reported here. Additionally, it also seems apparent, as has
been recently shown (8-10] that, when dealing with moderately heavy to heavy
atomic systems, the RQDO approach is undoubtedly to be chosen. It possesses the
great advantage of retaining the simplicity and lack of expensiveness of the RQDO
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formalism, while at the same time it gi% es good account of most of the relativistic
effects.
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On the Calculation of Oscillator Strength
for Electronic Transitions using

"Effective Core" Methods

JENWEI YU. JOHN DAVID BAKER. and MICHAEL C. ZERNER
Qiualatuit Ihoe'tri" Proetr. •,timew w'I (.tIwini w I movetrwJ ,t t-'/Oi- a,dc (oat•i•,td/. i- rita r .l /

Abstract

We examine the effect on calculated oscillator strengths tir electronic transitions caus.d b\ reintrodiucing
the nodes of %alence orbitals in eflectie core methods through a simple Schmidt orthogonali/ation. Ihis
refinement is then tested %%ithin the Intermediate Neglect of Diflicrential O erlap (I ,1) ) model. a ý.alcnce
orbital only model, in both configuration interaction and Random-Phase Approximation (im's) calcu-
lations. It is shown that the differences in oscillator strengths calculated using the dipole-length and
dipole-velocity formulations are reduced somewhat tor r -, * transitions and signifcantly for n
transitions, The oscillator strengths calculated from the dipctc-length tormalism b% the RPN model are
in best accord with experiment. (. 1942 John Wile, & Son,, Inc

Introduction

This articie examines the calculation of oscillator strengths in methods that do
not explicitly contain core orbitals. Semi-empirical methods, and those effective-
core potential methods that do not consider the inner-shell outer-shell nodal struc-
ture are thus germane. A simple orthogonalization scheme is introduced that is
shown to have minor effect on oscillator strength calculated using the dipole-length
formulation, and, perhaps not surprisingly, major effect on the velocity formulation.

Spectroscopy is a plot of frequency (or wavelength) versus intensity. Most theo-
retical calculations estimate only frequency. But the estimate of intensity is equally
important in assigning spectra, and can even be used to correct errors in calculated
frequency in making assignments among close lying transitions.

Recently. the Random Phase Approximation (RPA) with the Intermediate Neglect
of Differential Overlap for Spectroscopy (INDO/S) Hamiltonian has been used to
calculate the electronic spectra of benzene. pyridine, diazines. large aromatic systems
composed of fused benzenes [11, and free base porphin [21. These studies show
that the RPA formalism performs as well as does the singles only configuration-
interaction (cis) procedure for obtaining singlet excitation energies. but it gives a
better estimate of oscillator strengths and better agreement between the values cal-
culated from the dipole-length and the dipole-velocity formulas.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 475-486 (1992)
c, 1992 John Wiley & Sons. Inc. CCC (X)20-7608/92/01(1475-12
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.fj .-- LA k4' 1 >€,. r ,It€A• (I)
3 '

.1 , 1'• 2 (2)
j N'I

where/ are oscillator strengths tbr the kth excitation. I and 7 are dipole-length
and velocity operators, EA and OA are the kth excitation energy and wavefunction.
Oti- is the Hartree-Fock ground-state wavefunction, and the sum is over all n elec-
trons. The improvement of agre-ment is quite noticeable for ir -- r* transitions
but not for n - lr* transitions. Although the RPA formalism yields the equi~alence
between the dipole length and velocity results in a complete Hartree-Fock basis
[ 3.4], truncation of the basis does not ensure this. One might therefore be content
with results such as those reported in Refs. [ 1-2,5 ]. One can still ask the question.
however, why the RPA model does not improve the equivalence of calculated in-
tensities of n -• r* transitions to the same degree as it does to 7r - 7r* transitions.

From the forms of the above two equations. one can see that the length operator
places emphasis on the long-range region of wavefunctions, whereas the velocity
operator, because of taking derivatives ovcr coordinates, places emphasis on the
short-range region of wavefunctions where they change more dramatically with
respect to coordinates. Thus one can expect that the valence-shell basis set used in
the INDO/S method and most other effective core potential methods will not give
a proper description of oscillator strength by using the velocity formula due to the
nonorthogonality of valence-shell atomic orbitals to the neglected core atomic or-
bitals. From simple MO pictures. r -- 7 r* transitions involve only 2p orbitals but
n -- r* transitions involve 2s orbitals due to hybridization. The velocity formula
may thus not give proper oscillator strength since the 2s valence orbitals. which
have no nodal structure, are not orthogonal to Is orbitals. One scheme [6] to
orthogonalize the valence orbitals to the core is by Schmidt orthogonalization.

X,/ , ,- = AX,,/jX, 1 00X(11 1)] (3)

A"" / I , -, (4)

< X

where n and I are principle and angular quantum numbers. Note the recursive
nature of these two equations. According to this, the orthogonalized 2s basis orbital
becomes

N'-, = ,(X,- ,2,,X1,) (5)

and the normalization constant is

= (I - Aý 1,)j'•1 (6)
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Figure 1. Plot of4rrr2X (-- -and 4rr2 )C?'(, (- ).

where .1 is the overlap. Transition moments in Eq. ( 1) and (2) can be expressed.
after the solution of the spectral form of the RPA equation 17,8]. as

'I

<HF = ii iL2 X + Y ,,,>1X (7)

where X,, denotes occupied orbitals and X,, denotes unoccupied orbitals. A more
detailed description of the implementation of the RPA formalism can be found in
Refs. [I] arJ 12]. In this report which examines spectroscopic predictions of the
INDO/S model. X STO orbitals will be replaced by x' orbitals. Since all one- and
two-center dipole and velocity integrals are evaluated in the sio basis, we transform
the integral matrix to the orthogonalized basis before multiplying with the molecular
orbital coefficients obtained from the INIX)/S calculations. Such transformations
would not be required if only one-center integrals were evaluated, or if the molecular
integrals were calculated over the original basis set, as in ab-initio work.

One can see how this correction will change the results of oscillator strengths by
inspecting Figures 1 to 3 where representative graphs of overlap. dipole-length, and

1.0

0.8-

0.6

0.4-

0.2 -

0.0 .

1 2 3 4

Figure 2. Plot of41rrXrX.,(- - -) and 47rr 2 rxr, X -, I -).



478 ,I

1.0-

0.8-

0.6-

0.4-

0.2-

2 4

-0.4

-06

-0.8

-I0 -

d .d
Figure 3. Plot of4-rr-x,,--, F- - -) and 4xrrX,-', (-)

dr di

dipole-velocity kernels over 2s STO orbital with carbon exponent are plotted. First
we see that a spherical node is present in the X'. orbital in Figure 1. In Figure 2
one can see that this new orbital will not change the dipole-length property integral
very much, but there is a dramatic change to the dipole-velocity kernel in the 0 to
I bohr region in Figure 3. We report here the singlet electronic excitations, calculated
from RPA-INDO/S model with core orthogonalized valence-shell orbitals. of form-
aldehyde, benzene, pyridine, dibenzene. I,,4-benzoquinone monoimid N(para) di-
methyl aniline, and Mg-porphyrin. Corrections are applied to one-center integrals
and/or two-center integrals. The results and effect on timing of calculations are
compared with those calculated with noncore orthngonalized valence orbitals and
those from the widely used CIS-INDO/S model.

Results

The results presented in the tables are arranged in four main columns-the first
column contains data without any inner-shell orbital (core) correction, the second
with only one-center corrections, the third with full corrections applied to dipole
length and velocity property integrals, and the last column with full corrections to
all integrals, including the overlaps. From experience, we have observed that when
differences exist between length and velocity predictions, length values more closely
resemble experimental values. For this reason we define the % error as the difference
between length and velocity values relative to the length values.

Experimentally, formaldehyde has a weak (f = 0.00024) n -- 7r* transition,
which is forbidden in C 2, symmetry, with , = 28329 cm-' and maximum at
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I \si i I i alculalcd spcora o(tIV() I ie nlmcining of I - '. 1 ". anl tile 1o0lr main columnsndcnloicd
ds [ILI correction. "onc center. " I ()r ._2 t, . full" a;r a descrie•d in 11he e\I I., Is di

in 10)00 11 i I tim1e in secoi l%. and ratio 1 '1/

No correction (One vcintcr .2 r, , - till

t, t, Ratio I' Ratio ; ! R.tio i K Ratio I pc

63.8 O.t15 0.5310 1.3 1 0,164 0.2196 0.55 1. 6O 2 0.287 (0.5 , (6.1(1) 02 06 .56, *

sum 4.8'7 3.4(1( 4.80" 2.134 4.761 2.01 4.741 21 (),

R . RP\R' R11\

29.1 . . . . . ... . .. . . . ..- - -*

63.5 0.144 (0.627 0)23 1).14, O.3o1 11.40 01.142 I135)) 1)41 0144) 1)349 0,.40,

sum 4.082 3.912 4O)61 2,466 4.02 2.412 4.001) 2 402

lime* 1.32 1.5$ 2.12 2.11

• Seconds on a si \ 4r:.31.

I uiti I II. (alculatcd spectra of eniene [rnergx in 101)00 cm aind ratio I "/1 .

1 O1

No correction One center V 1.2 r. 1" Full

1 I' II Ratio f' - Ratio 1 I' Ratio I Ratio lkp

ii (I (1 (I

48.,x.

54.6' 2.114 1 0.445 4.10 2.045 -1.624 3.28 2.114') 0.649) 3.16 2.W5 6 0..653 3.15 -"

sum 3 87S 4 156 3.85() 2 28x' 3.819 2.1 17 3.7175 2.89

vf' R0\ RP\ RII\

37. ;- - - -.. - -.

43.3 .. - _ - - - .r

51 6" I.357 .1I081 1.25 1.3611 !.239 1.10 1.363 1.2519 L.OX 1.36S 1.26 1.08 r - r

sum 2.745 5.0667 2.721 3.1140) 2.694 2.85i1 2.656 2.81)

" ime+ 8.91 8.91 14.6X 14.50

I txperimcntal \alt,. of the oscillator strength is 1 ,8. Re. I 121.

f Seconds on a S1 \ 4/•;8(1
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33898 cm', and a strong 7r -* ir* transition with maximum at 64103 cm ' 19].
The calculated spectra for formaldehyde is shown in Table I. We see that both (is
and RPA give favorable excitation energies compared with the experimental results.
After the inclusion of one-center core corrections, the ratios between the two forms
of oscillator strengths are improved by about a factor of 2 for both (is and RPA.

With the inclusion of two-center corrections, the changes are only minor compared
with the one-center only results. Since the n -- 7r* transition is symmetry forbidden.
the oscillator strengths are all zero. The eflifct on the 7r -- 7r* transitions which
involves principally 2p orbitals is indirect and is explained by the presence of a --
o* configurations in the total wavefunction.

The calculated spectra for benzene. pyridine. and dibenzene are collected in
Table I1 to IV. The ratios between the dipole-length and dipole-velocity oscillator
strengths are all improved. Similar to the formaldehyde findings, the full treatment
of corrections does not significantly improve the results over those obtained with
only one-center corrections. Pyridine is of C2,. symmetry and has two low lying
n - Jr* transitions. As shown in Table Ill, the symmetry allowed transition has

TABLE Ill. Calculated spectra of pyridine. Energy in 1000 cm' and ratio = C '/•.

I - Or,

No correction One center + 1.2 - r.7 Full

j J/ Ratio /" .1 Ratio ." 11 ' Ratio .' I Ratio T.%p

CT CI Cl CI

36.0' 8.87 0.210 0,04 9.1 0.030 0.30 8.7 0.031 01.28 8 7 0.1132 0.27 n

(-3) (-3) (-3) 3)
44.2 ......- - - - - - - - -
38.82 0.061 0.011 5.55 0.061 0.014 4.36 0.061 0.014 4.36 0.061 0.014 4.36 r -

50.0' 0.067 0.021 3.19 0.067 0.028 2.39 0.068 0.028 2.43 0.068 0.029 234 r
56.34 0.732 0.037 19.8 0.735 0.162 4.54 0.738 0.173 4.27 0.742 0.177 4,19 7r - r*

56.7' 0.888 0.210 4.23 0.889 0.292 ".04 0.891 0.300 2.97 0.893 0.302 296 7r - r
sum 3,424 3.887 3,407 1.945 3.384 1.841 3.361 1.820

RPA RPA RPA RP.,

35.8' 8.2 0.231 0.04 8.5 0031 0.27 8.1 0.032 0.25 8.1 0.033 0.25 ; n-
(-31 (-3) (-31 (-3)

44.1 - - - - - - -.. - - n
38.1P 0.055 0.042 1.31 0.055 0.046 1.20 0.055 0.046 1.20 0,055 0.0146 1.20 •r - iv'

49.2' 0,099 0.083 1.93 0.099 0.101 0.98 0.099 0.102 0.97 0.0"9 0.103 0.96 ir -'
54.04 0.510 0.220 2.32 0.512 0.369 1.39 0.514 0,381 1.35 0.517 0.384 1,35 7r -
54.04 0.594 0.449 1.32 0.595 0.519 1.15 0.597 0.525 1.14 0598 0.527 113 ; r -i *

sum 2.413 4.714 2.399 2.597 2.379 2.481 2.360 2.458

Time' 8.99 8.76 12,90 14.50

Experimental value of the oscillator strength is 0.003. Refs. 1121, 1131.
Experimental value of the oscillator strength is 0.03, Refs. [ 12]. [ 13 1.
Experimental value of the oscillator strength is 0.20, Refs [12], [13].
Experimental value of the oscillator strength for these two unresolved peaks is 1.30, Refs. 112]. It "1
Seconds on a SUN 4/380.
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X N- N 0_-0
Figure 4. The strucoure of 1.4-benzoquinonc monoimid ,'I(pra) dirnelhyII aniline.

small oscillator strengths and with the one-center corrections the agreement of the
two oscillator strengths improves by a factor of about 7 for both CIS and RPA. The
agreement of the RPA estimated dipole-length oscillator strengths with experiment
is quite good for benzene and pyridine. A more interesting molecule to be tested
is 1,4-benzoquinone monoimid N(para) dimethyl aniline shown in Figure 4. It has
two weakly allowed n - r* transitions, one from oxygen lone pair and the other
from nitrogen lone pair, and a strong 7r - ir* transition. The calculated spectra is
reported in Table V. Similar improvement as noted in pyridine is observed. The
last example is Mg-porphyrin with the structure shown in Figure 5. With a small
9 X 9 active space for the ci. the core corrections do not change any of the cis and
RPA results since only 7r - 7r* configurations are included. The results of a larger
12 x 17 (,i that includes many a- -- a* configurations are reported in Table VI. In
this case, one can see that the ratios of the RPA results are already close to I without
any core corrections and the inclusion of corrections do not change the results very
much. The changes to the cis results are all small. The calculated dipole-length
oscillator s, rengths for the Q and B bands are too large, but the RPA model is again
in best agreement with experiment.

From the tables. one can see that inclusion of only the one-center core corrections
do much more to improve the agreement of the oscillator strengths calculated by
the two formulations than subsequent inclusion of two-center corrections, and the
timing nearly doubles going from the one-center only treatment to the full treatment.
The time spent to include the one-center corrections is almost undetectable for
small molecules and only 4 s more for systems as large as Mg-porphyrin. One notes
that in general the agreement of the sum rules calculated through the length
and velocity formulation follows the trend of RPA(core) > RPA(nocore) and
cis(nocore) > cis(core). It is further noted that the agreement between the sum
rules for RPA(length) and RPA(velocity) are greatly improved by using orthogo-
nalized orbitals. This would in turn suggest that this procedure would improve
equivalence between different formalisms for those response properties best rep-
resented as a sum over state solution such as polarizabilities [10] and NMR
shielding [I I].

Conclusions

With the introduction of a simple core-valence orthogonalization procedure to
valence-orbital only methods, we demonstrate a great improvement between os-
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Figure 5. The structure of Mg-INrph~nn

cillator strengths calculated with the dipole-length and dipole-velcwity formulations.
The RPA model stresses this equivalence, although one certainly does not expect it
for small basis sets. Nevertheless, even with the minimal basis set representation
of the INDO/S model, the ratios of the oscillator strengths calculated from the RPA
model for ir - 7r* excitations ar' brought. generally, close to 1. while the ratios
for n - ir* excitations are improwed by a factor of about 10.

In ab-initio calculations one should include all the corrections implied in the
core-orthogonalization recommended in Eq. ( 3). and this should involve very little
additional computer time, for this is not the time-consuming step. In fast semi-
empirical "echniques. such as the INDO/S examined here, we have demonstrated
that only the one-center corrections are really needed to accomplish this improve-
ment in calculated oscillator strengths, and in this case. there is a considerable
savings in time.

From the studies reported here and others we have made. the oscillator strength
calculated from the dipole-length formalism within the RPA model agree best with
experiment, and these resuits are not greatly affected by the nodal structure of the
valence orbitals.

Before concluding it might be recalled that semi-empirical methods such as INDO/

s obtain their energy parameters from experiment. Because of this the actual basis
set used is not directly specified. but might be considered to be of Hartree-Fock
quality, or even better. We have here related these orbitals to simple sTo's. Since
we have shown that most of the inner-shell correction is one-center it could be
argued that the atomic dipole and velocity integrals (one-center) might be calculated
from Hartree-Fock orbitals and tabulated. or even narameterized to be equivalent
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at the RPA--eel of theory. We have chosen not to do this. at least not Net. as the
dipole-length formalism w ithin the Rv, theor\ gives quite satisfaIctor\ results %hen
compared with experimental oscillator strengths. Ne ertheless one cannot help but
wonder what the eflicts of parameterizing the one-center velocity integrals. which
\ield somewhat less satisfactory results here, could ha\e on other calculated prop-
erties that require these integrals.
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A Comparison of Dipole Polarizability Obtained
From Linear and Quadratic Response Functions

WILLIAM A. PARKINSON"
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Abstract

Elements ot'the tirequenc' -dependent polariuahihtý tensor are obtai ned from the q~uad ratic response

function ( QR1 ). T'his is acconmplished frorn cludtlonsý it motion ( i oAl) s% hich relate oi~i % and the lnear

response function (I R1 ).the response functions, are esatuated %wthin the randomn-phase approsimation
SRPN ).%%she re thle t l)it Lire e \act in act iompletc basis. Ik nec. th e agreementI htscv n ccit R I and QR I( po.

Iari/ahihitý pros ides a criterion lor basis set selection whein calculating second- a, "ecll as third-order
properties. Numnerical esamplesý are pros ided for the static and d~ namic polariiahilit% o H01 1(
John %k Ics% &, Son%. Inc

Introduction

Propagators [I]I are response functions which directly measure the effect of external
perturbations upon atoms or molecules. For instance, the linear response fujnction
(L.RF) [2 1 and quadratic response function f(QRj ) [3,4J are propagators describing
the firequency-dependent polarizabilit% [ 21 and first hyperpolarizabilitv 5 of' a
system subjected to an oscillating electric field. The followving spectral representations
are given for the 1.RF[2

4, "s)). , 0 li niK' in KOln~ I BIO> /01 BI in>K mjl10

W/J W,, + it ii + W(Cm + it

and QR[ [31

2 (WB+ ("I- Wmn + it+ lin)(W( - Wn ill

K'0 I 1 Q Jin) < MnI B I n , n I/ n JA 10

+W( + W,, + it + iq?)(w, + w,+ i?

*Permanent address: Department of Chemistrx, and Phsssies. Southeastern Louisiana I nisersits.

Hammond. [A 701402,

Inernational Journal of Quantumn (hIemistr,.: Quantum Chemistr% Sy.mposium 26. 487-495 I 1992)
(,1992 John Wile% & Sons. Inc. ('('(' 002().76(1X192/010 l487- It9
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Equations ( I ) and (2) are first- and second-order retarded propagators Ill. ob-
tained upon expanding the ,-Fourier component of expectation value .1 ý subjected
to perturbing influences B and C 13,61. The frequency dependence of the pertur-
bations is related in the quantities wi and w, . with the expressions containing poles
with the state vertical excitation energies w, or w,, correspond to the applied fre-
quency of w, in the LRF case or wit. w• . or wi? + w, in the QRt case. When electric
field dipole operators are explicitly considered, the propagator residues correspond
to transition moments from the reference state 10) to excited state I in' lfir the
LRF 121, while the first residue of the QRI describes two-photon absorption 14.71
and the double residue determines the transition moment between excited states
13.81. The QRI: has been applied in frequency-dependent first hyperpolarizability
calculations [5] from a single-determinantal reference theory [3I which is based
on the random phase approximation (RPA) [ 9.101. Multiconfigurational response
theory calculations [4] have been performed faor QRi first hyperpolarizability [111
and finite-field second hyperpolarizability [ 121.

The above ,nectral representation are derived from two-time Green's functions
[1.131 which time-evolve according to an equation of motion (1,OM). Fourier trans-
form of the time-domain expressions then leads to the more spectroscopically in-
teresting energy formulations given in Eqs. ( I ) and (2), and also to E3OM in the
energy domain. This form of the EOM is readily recognized for the IRF [2 1

wfýA, B>XB {Olia[. A]IO) + (,A" [B, II])):. (3)

The right-hand side terms of Eq. (3) both use commutators, the first averaged over
the reference state wavefunction, and the second contained in a IRF involving the
time-independent Hamiltonian, 11.

Equation (3) may be iterated using superoperator algebra to formulate the prop-
agator moment expansion [ 14 ], leading to approximations of the exact LRF based
on Hartree-Fock. perturbative, or multiconfigurational wavefunctions [6.151.
Equation (3) is also traditionally used to obtain formally equivalent dipole length
and dipole velocity expressions of various sum rules [ 2 1. More recently this identity
has been applied as a means to develop relations between ground state expectation
values and LRFs [16-181. This approach provides an interesting solution to the
gauge origin problem of magnetizability [161. and is also particularly useful in
perturbative propagator calculations of second-order properties involving both a
ground state expectation value term along with a sum-over-states component, e.g..
the shielding effect [18). Using Eq. (3) the diamagnetic contribution to shielding,
which is normally a second-order operator averaged over the reference function, is
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represented as1 d I R1 , and 11a,1 thein b- c al uaItcd ýti t~o trnsta u1cC. the ~olrrelated
second-order polarriat IorI) p mipniat or r )I'i' 1 ýcxcI aIonI11 111 titlte parailgn c netre

Cterm I I\
[ he presenit %w rk also c\s)pIoits iI )\ bNut th IN I MnC k n) t il I ri idetiie het~ Ieen

the next rank of propagatoirs. c g.. the toflox' lilt expression

is anl enerp\-domlain r i (mf'or theC oR 1 1.t1 has been Shlum it that I Ile R< I'
far-m11ulatiOnl of' Eq. (4)I eXaLt. sot lhP iexpression pros des, a direct: ~oln nct n inl
betweecn the li tear. and quadratic responlse lii netions computed at thle RI'\ lexcwL
ILl Uationl ( 4) I xil here be usedJ to ecciuate seer md- and t hi rd-order properties---
specilicall%. it xxill he shoxsi Ininthe next section that a~ 03 I c1aluatd uSIng a positionl.
momentum, and] angular nmomentum operator is equLixalent to thle RI R1scwribing
the di pole polari/abilit\ of' a s,,stern. Since the lorm ulatiotisuso 1110\ aricttrlar nro0-
mentum. the QRI pol1ariahilitx %kill he 111inhecnil devpendentl on choice of c:oordilnate
origin. I he 11acn11tude o'lilthis origin dependence Is expressed as, a h'linet ion ol anit
in-,a riant OR I Sample calc~ulations are t henr proN idc for thle \5 ater molecule.

I o extract i)w dipole polarriabilt> expressions. the operators I B. and (are
Spei b~led as corn ponents, ot ph ,Iiti in and angular momentClum Iin thle frllot!in man-
ner;:

Ir:x. :v 1 .x .1 1

LxNplicit evaluation ot thle comm utators leads, to

I-he left-hanrd side ot FLq. 6 0 i reeopni ,ed as, the negat\ xc if the I RýI representation
t'or the \ S component of, dxam ic polariiabiltv 12 1. Ini the static-heid Ilimnit. thisl

expresion further siniplities, to

All other componentsl (i' the polaruahilivý tensor max he simin larl\ expressed.
"1 able I sumimarlivs the operator chr mies tOr diagonal elemenC~ts of thle ow I tat K-

hield polani ,ahi lit tensor that areC obtaine~d as a c01nseqLC1C ucic 11f th isW in
Lql. 41.

Si rcc I q. ( 4 )1,is satistied at the RI' S lex cl 13 1. tile Ki, ow R and i RI polariiahilities
mnust be identical Iin the li mit of c{ 'mlplcett basis. ( *omlparismmn of, ORI antd 1 10 po-
larrialilits x alLies rna\ thereflore primx ide a measure of* balance of' the chIose h asis
set tossard its, representation of both second- and thirdi-order prop~erties.
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TABI F I. Relations betueen I R1t and QRW static-held dipole ilanzabidit.k
components.'

QR- Origin-

LRt QRV' dependence'

x; ,) -2y,,•p,; X.l. .Independent

2Kýp;: .. L, , 2 P.'. A. ,

<KY: Y)'".-.• 2 \p, '3. l- - Independent
- 2( p;:)'.L, ).ao,--oI?., : .Y. p, " B•tJ -4)

(; Z " _2.).~ "-2 \p,; z. L ) . •,..., 2\.' p,; Z. p, : . ...

"Identities derived using Eq. (4).
, In the static field case. this and all other QRFS presented are equiwalent under

interchange of the operators to the right of the semicolon. For field-dependent
cases. the interchange of frequencies w, and w, is also required-

SFor a C_2 system (see text).

The second QRF on the right-hand side of Eq. (6) (when computed with W,.
0) is recognized as a component of the Verdet constant [19.201, which describes
optical rotation in a static magnetic field [ 21,22 1. Rearrangement of Eq. (6) provides
an expression for one contribution to the mixed-velocity Verdet constant

(Kip; x, iLz»),(.,o= WB(Ky'x, iL:)X•,• ,,+ ((x* x>», (8)

Calculation of Verdet constants in length and mixed-velocity representations can
hence be accomplished within the same formalism. This approach will be used in
a future publication to provide a stringent test of basis set completeness when
computing this property [23].

Alternative QRF Polarizabilityv Formulations

In the static field limit, the LRF and QRF spectral representations are invariant
to any permutation of the operators A, B. and C [see Eqs. ( I ) and (2) ]. Equation
(7) must therefore hold for any ordering of the QRF or LRF operators. However.
the polarizability equalities arise only when the position and angular momentum
operators are inserted in the specific order chosen for Eq. (5), as only then do the
EOM contain the appropriate commutators. To derive the static-field limit expres-
sions corresponding to permutation of the operators, it is necessary to employ two
different forms of the QRF EOM 17,241

wB((A; B, C>)),,,,,,-- ((A; [11, B], C)),,. 1,,

+ (([A, BI; C)>•, + '((A- [(*. B)>>,,,,, (9)

A -,; B, C)> ,,,= B(AB, [H, C1))>,,

2 (([A, C];B)),, + (A;[B.C1 +.( (10)



lkLuations ( 9 ) and I 10 1 are particularl com cnient tbOr cxtract Il di nanI Ia polar-

i,'abihIi-. Ihe trequencC -dependent components obtained floni l-q. ( 4 ) iHPkl,. C t.\Ao
(Q)RI s. x, hereas similar .relations can be obtained t0ron tlle a.1bo\ e" I (AsI a a Iln n.'lion
of oe•e QRI. ["or instance, uLsing lq. (I 0) and the operator choices I k II B
and ( I leads to

()r?'Igu- I)[p'tlC h'ntrt' ci (/ ' A'I I' ,r.-a/',Iii

The presence ot the angular momlentum operator. / ' introduces a co-

ordinate dependence into the QRI cxpressions: tor example, tile expression in Iq.
I 1 t under translation I f' d) becomes

X -: V .p . A I t - t

d, . p, . /1'. ., ,, d ,, \' p.. , , .!.. ,, (12 )

[:or a s\ stem of point groulp ( 1-%ith the principal axis along tile --direction. onlI

QRI s containing the ( 'artesian components .\.\x y: , or o2 { or their perm uLtations I

are nonmanishing. It follows that xi~ithin tlhe ( point group the \ x polari/abilit.
is gi\en exactll b% [q. ( II I. %N ithout consideration of the dislplacemen|t-\,.eighlted

QRI terms, becausc

C -I / ), 1.• • , ,, ., :I . p, .. .. , 13 )1

The same argument can be made for the (' ,-restricted vv component gi\en b\

.v: 1-. . , , llowe-er. along tihe principal axis, the QRI determining tlhe
-- polarnabilit' %%ould haw e the I'Ollo\ ing lorm

c,, -'p. 2 . .. ,,. (14)

l.rnder (' s~nnmctrv. tile c polari/abililv component %kill hence depend on the

displacement of coordinate origin as a function of the QRI p -" 1',.

This QRI< is an alternati'e measure on the basis set representation, as it must \anish
in the limit of complete basis. %lhere owerall origin in'ariance is achieved. The

translational properties of the )RF s listed in Table I are summari/ed there. assuming

a s',stem of(C point group srmmetr-,

Application to 1120.

To test the relationships, calculations of RP-N I RI and oRI polari/abilitv %%ere
performed for I1f() at the experimental equilibrium geometrx 125 i using basis sets

vwhich %ere described elsewNhere (basis A: 62 contracted (i ios W: Xl) ( C; : s. 1: 0(1!

(! (i ts) [ 51. [he molecule was oriented in the .\: plane with the c-direction chosen

as the principal axis. -[he expressions merc evaluated by a (R1 program [51 which
is part of the polartiation propagator package of the MI INI(II program systemn

[ 261.
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TARB I- 11. Comparison of the RPi- i RI and ORP.k x component ol %iaiic polarivahility for II 4).'

Basis ,2 j1_. , .\. . 1. II MIPIm Be Ip ,

.4 869 7-45
B 8.89 8,49
" 9.16 9.01 906 9.92 10.01 ±: .09

a All values given in a.u.

Ref. 28: ýRef. 29: 'Ref. 27

Tables 11 and IlI report the LRF .. and _'vv components of static dipole polariz-
ability, along with that obtained from the QRFs <<p,: x. L. >>,,,, , and <Kp,;
y, , respectively. These QRF components are origin-independent by
virtue of the C,, symmetry of the molecule (see discussion in previous section).
The RPA EOM identities are, of course. only valid in the limit of complete basis.
and the computed .vv tensor elements display a convergence trend as basis set size
is increased. Discrepancy of the RPA results with estimated experimental values
1271 are mostly attributed to the fact that RPA is only first-order in electron cor-
relation [31. and is therefore at the same level of theory as the included coupled
Hartree-Fock calculations [281. Fourth-order MBPr results 1291 are also listed,
from which it is clear that the correlation correction for this system is significant.

Table IV compares the static zz component LRF and QRF polarizabilities cal-
culated with the origin of the coordinate system located at (0. 0. 0) and (0. 0. 1.0)
a.u. Also included are calculated values for the QRF K(,: p/, )/ " , o. As the
results verify, the translation of the coordinate system is a function of this pi 3agator.

Tables V and VI contain the x.v and 'rv values of QRF and LRF dynarn:c polar-
izability calculated in basis set C. The QRF values are computed in two different
forms, one der;ved from the EOM of Eq. (4) and another obtained using the FOM
of Eq. (9). Although the polarizability arising from Eq. (4) is computed with two
frequencies and two QRFS. the values compare favorably with the single-frequency
QRF [Eq. (9)] and with LRF results. From the spectral representations [Eqs. ( I )
and (2)], it is obvious that a two-frequency QRF experiences three times as many
possible poles as either the single-field LRF or QRF. This effect is quantified in the
last three entries of Table V, where individual QRF values indicate the two-frequency

TABtiV I11. Comparison of the Rp,A, iR. and ORJ yv componeni of static polarizability for H20.'

Basis ',Y ; r .', o Y " , (1',l111 MBPI Exp.d

A 6.96 6.87

B 7,25 7.25
C 7.84 7.94 7.67 9.36 9.26 ± .09

'All values given in amu.
b Ref. 28: 'Ref. 29; dRef. 27.
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forms are indeed approaching their third resonance. It is compelling to note in
these instances the inter-relation of the ORIFS. In spite ot their marked dittkrence in
XaluC and their proximnit\ to resonaniCCs, their sum compar•es reasonabl. to the
other forms of the polari/ablit\.

Conclusiions

iquations of motion tor quadratic response functions hawe been applied to de-
Nelop relations between quadratic andt linear response functions. these identities
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TABLE VI. Comparison of HEtO yy dynamic polarizability computed from the Ri', I RI and QR,
expressions obtained from EOM Eqs. (4) and (9).'b

Eq. (4)' Eq. (9)

'•1 -2 L1p, y . --2(.x; ,. L . •, Total 2',Xy: P'. V: ', , .. .11 ,

.00 8.15 1.66 7.94 7.94 7.85

.06 8.86 4.55 8&03 8.03 7.93

.09 9.56 6.51 8.16 8.16 8.06

.13 10.77 9.42 8.41 8.41 8.31

.23 20.33 28.71) 10.20 10.18 10.07

.30 125.84 235.64 24.75 24.90 24.64

.46 1526.6 2612.8 8.86 14.44 9.31)

"All values given in a.u.
Calculated in basis C.

SComputed %ith w( = 0.13 a.u.

lead to formulas for static and frequency-dependent dipole polarizability from qua-
dratic response. The expressions are constructed from position, momentum, and
angular momentum, and have been identified as the response functions describing
the Verdet constant. For Q, point group symmetry. it is found that the origin-
dependence of the angular momentum operator along the principal axis is a function
of a translationally invariant QRF, while the other two Cartesian directions are
invariant.

Under the random-phase approximation, the equations of motion are exact within
a complete basis. and test calculations on H20 show convergence of the polarizability
values for extended basis sets. This provides a means to gauge the completeness of
the chosen basis set toward its representation of both second- and third-order prop-
erties.

The utility of QRF methods which use the RPA EOM have been demonstrated
here and in previous instances [ 5,7 ]. This work uses quadratic response to compute
properties obtainable at the linear response level but, more importantly, underscores
the fact that tractable relations exist between QRFs and L.RFs. There yet exists the
interesting possibility of applying this technique in the reverse sense- i.e.. using
LRFS to describe properties which would normally be associated with QRFS. providing
a means to extract third-order properties at second order.
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Gaussian-2 and Density Functional Studies
of H2N--NO 2 Dissociation, Inversion,

and Isomerization

JORGE M. SEMINARIO and PETER POLIIZER
D)epartmnt of ('1w, ", frirv. "niverw" o'i .Oreham r . \'tcw Or/eaton. !Lottti anat. -014N

Abstract

Sexeral computational approaches. includiiib Gaussian-2 (62) and nor'oal density functional theor-
SDI-,-.(;,). hake been used to calculate the energ\ requirements for 1a) H-N NO2, dissociation (through

N - N bond scission ). (b) inversion of the amine group, and (c) isomeritation through the nitro-nitrite
rearrangement, Taking zero-point energies into account, the G2 predictions are 53.6 kcal /mole for the
dissociation energy and 1.5 kcal/mole for the inversion barrier. The corresponding Dti-GG.\ %alues are
48.4 and 0.9 kcal / mole, and an activation energy of 48.? kcal/ mole for the nitro-nitrite rearrangement.
The Dt-;Gs results indicate that dissociation and rearrangement should be competitioe for HIN NO,.
The same conclusion Aas reached earlier by Saxon and Yoshimine on the basis o' MRCISD/6-3 I G*
calculations, although their computed energy requirements differ from the present ones bh approximately
8 kca//mole. (9 992 John Wiley & Sons. Inc.

Introduction

The decomposition reactions of nitramines are of considerable interest because
of the importance of these compounds as energetic materials 11,2]. Among the
likely unimolecular processes that they may undergo are N - N bond scission and
isomerization through the nitro-nitrite rearrangement. as shown in Eqs. ( I ) and
(2) for the smallest nitramine. HN - NO2:

HN--NO2  -1 2 N + NO, ()

HN-N02- -HN-ONO (2)

Saxon and Yoshimine have recently investigated reactions ( I ) and (2) compu-
tationally. at the MRCISD/6-3lG*//MCSCU/4-3lG level [3]. Taking zero-point
energies into account, they %und the N--N dissociatien energy to be 40.55 kcal/
mole. while the nitro-nitrite activation barrier was 40.70 kcal/mole, It was ac-
cordingly concluded that the two processes, Eqs. (I) and (2), are competitive.
Mclius and Binkley also studied reaction (I). using an MP4/6-31G**//HF/6-
3 1 G* procedure augmented by a bond additivity correction (BAC) [4]; they reported
an N - N dissociation energy of 48.0 kcal/mole, of which more than 5 kcal / mole
was the BAC contribution [31.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 497-504 (1992)
rc, 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010497-08
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T.!\8l 1 1. Oplirmi/ed gLonietries (in angstrollni and diligiccN) of( th' grI h nd sktc It l:N- , N)I

DI I -1 •01), t I-i4lN
tit /6-3 1 W \t'2/6-3 I( i D/,I'% > 12 '1 ' \pl I 'Pt'

N--N 1.356 1.399 1.371 1.41(, I -4 i..XI
N--0 1.1)1 L 23 13 1.2,(8 1 244 1,206 (.,3

N--H 0.988 1.017 .022 1.(02, 1 .004;5 I ft 9)
()-N-17) 127.0 27"7 127.4 1".4 4 30.1 1

1l-N--t 116.7 114.3 119.6 1 15. 1 Ii 12 09
]-N\-N'-( 23. 7 2. 22.9 28-6 21N. i

Rc'erence [231.
Refkrence [241.

As part of a continuing investigation of density functional t-..hniques [5.61.
using precise ah inilio calculations as a frame of reference, we hwve now examined
reactions ( I ) and (2) by means of(a) the Gaussian-2 (G2) procedure [71, and (b)
nonlocal densitv-functional theory DII). in the generalized gradient approximation
(DFrT-(i iA) [ 8,9 1. G2 theory is an ab initio method which has been shown to yield
atomization ene-gies, ionization potentials, electron affinities, and proton affinities
for molecules containing first- and second-row atoms to within an average absolute
deviation of less than 1.6 kcal/mole [7 1, relative to experimental results having an
uncertainty of less than I kcal/mole. However G2 imposes severe demands upon
computational resources. increasing with the number of basis functions as N',
compared to N' for DFT.

Methods

Gaussian-2

The G2 procedure is based on Gaussian-I (G1) [10, 111. with corrections
added to the energy. G1 uses MP2/6-31G* optimized geometries to compute

I iu II. Optimized geometries fin angstroms and degrees) of the ground states of NO: and NH,.

InI /6-3 (G* MI12/6-,11(* W l)VO'l' DZVF'I I xperinenlt

NO 2

N --O 1.165 1.216 1.209 1.225 1.197
O-N-O 136.1 133.7 133,5 132.3 133.8
Nil 2
N-H 1.0' 1t.028 1.041 1.0(43 1,024

H-N-H 104.3 103.3 102,9 101.8 103.3

Refterence [251.
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energies at the mi'4i6-3 I( ** level. These are improed through subsequent

m',4./6-31 I + ( . N.r,4/6-3 11 1 2df.p) and ( Ism) '1 )/6-31 1(j * * calculations:
the di fk.-rence betwecin each of these and the original Mi4/6-31 I1(.** energs is
taken to represent. respectiel\., the elfect of diftuse .VI;-unctions on the hear, atoms.
additional d and / polarization functions on the latter, and correlation be\,ond miP4.
These three corrections are assumed to be additive, Finall. an empirical term is
added. .\ hich depends upon the numbers of valence electrons of t' and i spins.
The /cro-point energy is computed from scaled FJ/6-31WG* frequencies.

T\ni[ i ,I . ()till/i/cd i mclrci,., I il anLig rot, and dcgrecc for

the transitton ,,late ol the niro n itritc rcalrranut cmcil. I+A (2.

1t2 0 1

NIN

DFI' (A ;A/iD/VPt' NC(' T'i-I Iii '

N I -N2 21 2. •5..
NI-- I 3.103 3.214
N2--01 1.220 I 212

N2-02 1.-.4 1I2117

NI--li 042 1,014
0I--N2-1-0I 131.7 133.1

112 -- N I - I 12.,5 I0)8.3
I2-NI-N2 (5.5 96

tI I -- N I -- N2 I 1m.5 I 1I.3
N I -- N2--0 I 0ý5.5 C96.4

N 1 -- N2-02 1MI.5 1 11.1
0)2-N2-0 I-N I 123.0 12
II! -NI -N2-01 I.o.o 1(02.5
12- NI -N2-()I 2.l o.7

Relerene 13).



500 SIF\II\\RIO) -\N\) 110!1 IIZR

.-AKI I V (.alciCllaed total Cntlgki'S. in hartrcc%. ftr grotUnd-Statc 1 INH N -. it dlw t 'idin p •.'d u0

arnd planar tIN-N(.

H,N-N()Ot--O

(ground sate) Nil\ NO planar!

ti it/-3 1(* 5;9.34i t ?.5 7) 204.01114) 25') 6 ,4"
'2/16-31 ,260.351 92 55.1 93-'5 2,-04 ;.t,859 260 14Th0

1P4i6- 31 lG** 260,5287 5.53 P 2204.6910t2 260,*.; 14 15
MP4'16- It (. 260.53715 55 757 %, 204.70294 2 1u 51 Ol
,tl,4i6-31 IG(2di'p) 260.66134 5 55.7 ?917 214.'9941 260 W5S"2
o( )St4jT)r/6-31 IG** 260.51069 ) 55,5444' 204.657ut I 20t i.5))439
G - T1().7411 -' 55.80452" 214 94463 26)." 1
62 -2(0.74621,S 55 '073" 24.8,4 163 260.423,J

NH -1 SD)./t)/% PIT 259.20225 55.41155 203.654 ' 25 0200()3
DFTMr-(i(\l)i•% t'T 2261.3 9234 55.95635 20)5.347,9 26) 389445

Reference [I 1 ].
Reference [7].

G2 theory improves G I by accounting tor nonadditivits oft Ihe (diffbtwe and pn-
larization function corrections and by including a third d function on the heav\
atoms and a second p on the hydrogens t 7 1. The empirical term is also moditied,
In the present study. the G2 calculations were carried out with the GAUSSIAN 90
program [ 12 ].

Den.vitr-Flamctional "TJiorr

The Hohenberg-Kohn theorem 113] states that the energy of a system of electrons
in an external potential v(r) is a functional of the electronic density p(r):

E[p(r)] = f v(r)p(r) dr + F[p(r)] (3)

1\I i VI. Calculated dissrxwiation energies and incrsibon bamcrm 1Ir
I |N--NO,. in kcal/mole. Zero-rmint corrections are not included.

l)issociation cncrg. Inersion harrier

tn /-3 liG* 3 1.5 I.9
,I2i6 3 IO* 56.2 3.1
%iM4/6-3- I 1( 48-2 4.1

-14/6-3 I i ** 47.8 3.8
Ii,4/6-3 (i (2 df.p) 52. 8 2.9

( Ili)I/6-111 i** 5 1.0 4.)
(if 59.0 2.5;
(J 2 6•L.O 2.4
1)1 f -1 "[11,%/1i/ \!1,1 84,() 0I.8

D~lI-((% [/ 55 X .
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Perde%% and kkang's expression %%as used fOr 1-'"," [. V'p I 18] \ when 710( r) L- 0,
this reduces to Dirac's formula tbr the unitorm electron gas [161. L' "Jp., 7p]
was represented b,. Perde\v's improved \ersion [9] olfthe lIangreth-Mehl functional
11 7]. This is made up of two terms, the tirst ( which is the only term when Vp v7

0) being the correlation energy of a uniform electron gas. This is expressed by the
Vosco-Wilk-Nusair functional [18.19]., which is based on the accurate quantum
Monte Carlo calculations of Ceperley and Alder [201. Thus our treatment of/',, [p]
can be regarded as a local spin-density approximation (ISDX) plus gradient cor-
rection terms. ( The i si).,\ assumes that P(r) can be viewed as unifbrm locally [ 2 11.)
An interesting re\Iiew and comparison of nonlocal functionals implemented in
de.1'on has been given by Mlynarski and Salahub [22 ].

A Gaussian basis set, the i)ZVPP, was used tor the orbitals p, in the present
computations: it is double-zeta for the valence electrons plus polarization functions
(approximately equivalent to the 6-3 I G* * )G The program de.lhm also requires
auxiliary basis sets tor fitting the electron density and the exchange and Correlation
potentials: this is done to reduce the computational effotr. We used the (4.3: 4.3 )/
(5, 1: 5,1 ) which includes four lone .- type and three constrained sets of s-. p-, and
d-type functions on the heavy atoms. and five .ý-type and one set of s-, p-, and d-
on the hydrogens.

Results

Tables I to IV present optimized geometries, at different computational levels.
for (a) ground-state HN--NO2 . (b) its dissociation products in Eq. ( I ), (c) its
planar form that is the transition state for the inversion of the amine group, and
(d) the transition state for the nitro-nitrite rearrangement, Eq. (2). Experimental
data are included where available: Table I shows that there are some discrepancies
in the latter. There is consistently good agreement between the M P2 / 6-31 G* and
the DVF-(i(iA results. In optimizing the transition state for Eq. (2), we took Saxon
and Yoshimine's geometry [31 as our starting point. The major changes are in
some of the angles involving the hydrogens (Table IV). Saxon and Yoshimine had
already noted that the 4-3 1G basis set does not position the hydrogens properly
[3]. For ground-state and planar H-IN -NO,, and for NH, and NO 2, the iFv/6-
31G* and MP2/6-31G* optimized geometries were confirmed to correspond to
local energy minima by verifying that they have no imaginary frequencies.

Table V contains total energies. calculated at several computational levels, for
ground-state H2N - NO>, its dissociation products in Eq. ( I ), and its planar form.
Zero-point energies are not included. These data were used to obtain the H2 N -- NO,
dissociation energies and inversion barriers that are in Table VI. In the G 1 and G2
procedures. zero-point energies are computed from scaled im--/6-3 I G* frequencies.
These give correction terms of-7.4 kcal/mole for the dissociation energy and -0.9
kcal/mole for the inversion barrier. If we take the 62 results as our standard. then
our predictions for the H2,N- NO, dissociation energy and inversion barrier are
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and I2 Varc cr\ similr. 484and 4-li kealfioIc, rsiCtr I l
~au jineludC /ero0-pc(iint cO[iIrrcetiofl.) I 1IN \\Cs IVIRc 1eiCh I Al' ' ' 'Cli-non01 a INid

Saxon and '~) hinric n1I31 tha thO Ow\ o pnwccses 11 N \I M )I- W.;mwn AM.
its rcarranL'clnlcllt to I1 N )\(). arec onllpctill~e. I lovY\C,,! k,, no!d lil Cl':W

ticcild to) he sw,lglticanltlr karlxr. hx abOult S keal, nIllic. than did txl-, Lul JC,-l !cd
d.issociatioin ecrierp is in l'ac \cr\ Close it, Illal i olitalicd ht Vx " \lj,nj and~~i.i

4.10) kcal .' rnoic. 'INI'ichl suppoj1rts then-r iInilLslll Ailk' khiV Ik I Ill

Sumann~rý

WCe 11\C Use tis he h i~h1 ' aCCo r-aIC (12 p~roced lifeIi to 3!! itO C Ill'. N 1

elaitionl cliers aInd tile int clrsiin bharrier oft FIIN \(4) uh olenIIll!Nt" l 1 )"

I j~ keal; iMc. rvspctineI\ Nonloca dcnsiv. fnt(3elional kalc/iil'lls" IIn I f( .

1)' 1' icd 48.4 and 0V3) kcal m11ole. bot l,%\ 01c 'Ilk, t. dIe lose Iltil (1h, 111,111 ire,

mos~t ol the re.sults oblained 11% other correclated 1/ 't> lC~ IntdiNi (liii In' I ( 4

iallue lbr the aetllkaion barrier of the ttitroui--rlic iiaryanlectlli 'I It \ \V
is 48.7 lkcal /inioii. i ndicaiting that it shoulld he compel lCHI1\C tI:h N1, ';lil 0 he

NNhonld.
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, b-Initio scu, Investigation of GIN-colic Acid
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I hc Ci m pc111kSt iI f Ic -h\ LI~ I\\ IAcid Ili Ill 0 1 ks gIx1, Wi Ic acd_ , is III snC h1 1OLcI CalI

initcrcs. fbr csarnplc as, an1 111PO "nt ilItcrmcitdiaic, in Ilth ph tolocspit'alor\ carbon
O\idation c\Iclc In higiicr plants, and algac: I 1.as nictallolic oll I., 2lItTC I 12 1
Or asI1C Ihnctabli Ofcusu O\1,C ia Iiin humanlIl I)CI nos4 [ 3 . VJ \s o" 10 III tilt. tutu rictional
MOICCUICs vkcll ýwl b .cd is, abic to ptfl. n Pr/>Iol il, colic. aicid. a" x'cl xsis o
pol \ lm'crc %\ ih lactic acild. is lliodcgradahlc and uiiiii cd Ibar abso rhabic soIu[s4-
6 to r carricr-S brO drug, dcl I Ci B 5 sc ips, and 101r prosthleCsc. ()ur 1crcsi-m Ill
ilkicOhc. aIcid arOsc Inl thIc 'oursc o anl urh-1111w siudx Ot -- ainnno acids and r-clatcd
C01 1OLp usIM -ISS 13 !P, c-alcuLatIios On gl\ colic acid l,%crc: prco ]I uusl', per-
lormcd h\\% o ci al. 114 1 andi h\ I hi ci 1aL 11 S. 10 J \cxI. on ci al. dcsc~ribcd
tiuLr cont ( urniatii un. %01,1 h ci icrcdtcL.rm ncdl \\Itl) a fiwsd w~t Of' h1 nd Icelt hsl adrl

\\tils 111 -hic4-3I ( 1ai No s Ci. ILTa CIt1 a OTIcoccirai'icd on1 mirr-1or sx mmcir0icall
coniriatlils xxhic tc\ phiin cd x unaiclt m~cthlods uISIng the 4- 2 1 ( i and

tilt t)-IS I ;xw bai ci.
\ compicic in\ stIII Cs Iii Of ot C III\ glictmc aid p)otential Cncr~g\ surLaH'cc Pl 1, xxki

t.lIrr~Ic oi]Il Oin I 1our ; drou as~ p Of lithc ii, W!'-1f I',ILI(]\ m1cnIion1Cd ahxC.

Ioa 4iCi \inirna

I h1C contOrml,14iINs dcscni1hed Iin Rd'. I xxcrc-ii, taken as, starting 11oint.s 1'or ourI
IUtudni 10rdn toilis st1.ds . fihc: i'l SoIt jikcolicI, acid cons~ists o, 11inC localmima

M'IIou othtlicm tOrnI issi)I plliiý (t m111irro III ninmtric, cunoml rncrs s iih (s\ mnifctr%
I Tiecn IlInt., ini1nin1a. Incliduiei the. 41lobal minlIl mull, arc Of ( ii Ks mer\ .l

c mciic aLc gllct'u rs dlata arc' txc t-1 inl thet, aplpcnld i x hic lso con1,ains thc

sJ'itructual lr it lac oIll su inW mci d 1Bl I: -Iii iMIUC nI nInaIIII
I hc CCaL cuLa ,1t Ii ns,\ - IC cr 1ImF Im Ili d \k itIi IIi tic p itourani ( I I NI I) S X sI ong ilhc

sltandard uid-inm;s I ( illi proctdtluic 1 1~ mid tilt, 1 t I( I', spIt I aICn11cc basIs sI'

\I I2~ All 1v c trics, aItt till.\ I pII) iniiedt Iti 11 1 a-1 dlinuig 1110 mum111 .lli I 001-11CJn-

lW Ij d Q'I. i twiuhru ( it iistptCitt 'i 'tp .in I H,

ihlp \\"r.\ ,u ih" u~'til
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square gradients less then 4 X I( 4 and 1,34 ) 10 '1- bohr AH All minima except
VII ) %%ere %erilied to haN e only real frequencies and saddle points to haNe exactlx

one imaginar\ frequenc%. I lie frequenct ',alues were calculated using unscaled
analytical second derivati es and the harmonic oscilla',r, approximation. Conformer
Vii is a stationary point of" intlexion. Such a point ma\ he regarded as a special
case ota local minimum. namel% one wAithot0i an cnergx harrier along one reaction
path [ 2 11. For such points the harmonic oscillator ap.)roximation is not adequate,
which esplains the imaginary frequency obtained for VII.

The ibllowing atom labeling is used throughout.

If2 01I /7
H1- . 02 (2 . '1

F-13 03 114

The minima of(', svmmctry compare well with the rotamers described by Hla
et al. [ 16]. Rotamer 2 of[ 16 turned out to be a saddle point, which interconnects
11 with its mirror image 11m.

H 0 It 0 1t. 0

C-c - C-C-- C-C/ ". / \ / i
0 0- 11 0 0-11 0 0-H1

H
ft tf

Similarlx. rotamer 7 was found to be the saddle point in the reaction VII -

VI1'. Rotamer 8 turned out to be a second-order saddle point.
According to an analxsis of the electron densities. two diltkrent intramolecular

interactions can clearly be distinguished in the various minima. Ill, on the one
hand, is stabilized by an intramolecular hydrogen bond with a IN. ..02 distance
of 1.97 A. On the other hand. the global minimum is stabilized by an electrostatic
interaction with an Hil .01 distance of 2.22 A. The 0)-H,. . ........ H inter-
actions in both i1 and the saddle point I! _' 11m are also of electrostatic nature.

Reaction Paths

Reaction paths concerning the internal rotation of the 03 --- CI bond (reaction
paths I and 2). ofthe CI ... (2 bond (reaction paths 3 and 4) .and of the 02 (-2
bond (reaction paths 5 and 6) were investigated in clockwise ( 1..3. 5) and coun-
terclockwise (2. 4, 6) direction. The results are collected in Table 1.

Some of the reaction paths may be gathered from Figure I. which shows a map

of the potential energ) as a function of the dihedral angles H I - 02 ('2 CI
and 01 C. ('2 02, with 114 --- 03 - CI -.-- ('2 :- 180'. The reaction paths
in this map confirm that VII indeed has to be qualified as a local minimum, w hich
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has no trn iin sacfttl cW to II 1 ilt"11. a dt olv 0..1
ot ~ ~ 4 he rac l w .I'l14111) 1% olU ,ZT 11cr~ f I re..-ol , ..I ý11fa

ni ilIA 1L C P I~il, C rZ'1 I I d h JI II 11 I I 1A 1Al

ind ce a recin 'lc .at rp~ rg al(al"1' 01 ['A ýCT~ ll11 '3W C I)ITI

hasII " Il Io tran ction l pate1 in fth rcatii i (1 I lic.ac bthr dis110h , IlsdleMIT ck~ mit5 brall1

torcing this heha'Aor-

Bai%is Set Influe.nce

Since aIT-inaw s I results of' II -bonided sftcls a\ cri t cal\ kcpcnd oni thic
baNst sc:, choice 22 the local ml i ni ma dcscri bcd abo\ c \.Ncie als"o opti inlm \%fill

the 1`61lo" i ngsta ndard hasisscwts: I )- 3K 12 3 1.- SI (-fl(~ I[2 1j.1 - 21(, i (24.6 -- 3%1(I
[251, 6- ý 1 [ S6 1. 0- 31 - i -25,.26]1 t)Lningst M1 I OS. 1.;4s basis set] 2 -. 6 --

3lI 2K ~l~*2 5. 21) 1,6.(* [251)and 6 - G*1 26.-11) N, Icr
this optini /ation lrequI~cncics, svre eakIculatted \%tx OhAlt bass1e. It turned Oult that1

the choice of basisý set Inflienctes thc relative encrgies and thle aluesý 0 ol mi1st JXconetrx

Parameters. but not the naturc of' thle stationar\ polints. Vs an evl niplc. 1 Ign re 2
shovos thle s alues of the bond length 0 2 ( 2ý in ll 11i me1111Ir\ nilt.11 iquclcl 1mi1in1 ma

%%filh tile arious basi sts I hcsc dfisplax. sindlicate that all basis sets esLcept the,
minimial on%\es ~ild idenlticlU treCnds 10r t egekmt idta. 11-1 abl IIlists the1 dC\ 11iat Illns

belkwcrf Ithee p,\er'nnntall\ kleerinuined and Othe ealendlab-s rotatil ma! co n,ýtant', I0,r

tile global in iinninu %with all basis sets menitioned. Ihs diew kiat.it mus arc less then

I Ifr al s ,pliIt alIecnkce anIid doif mhbIC /et bai W se11Wt S, an Id up1 to I'll)r 11asisY, set I ith
polariiation lunctions" and miiahasis sets.
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360

300-

2/40 -

(_.IIU 120- .

0

60 .-

0 60 120 180 240 300 360

H-O-C-C ;
I-igure L I he potential energp as a function orthe dihedral angles IH -- 02 -(2 CI
and 01 (I (2 02. with the dihedral angle 114- -03. ('C (C2 - IX80. 1he
local minima 1 I( /0" ). il( 40 / I 5W ). IN II( 0"i /0 ). and V' 16 / 130') are

part of this map.

There is, ho\sscsr. another kind ol basis set influence: the minimal basis sets and
the basis sets \&ith polarization functions give an additional local minimum VIII
of ( ', ,. mi etrv, Nshich has a \erv loss energy barrier in the reaction VIII I!I.

"('--(" • ***- /
C C / \

o 0 1) H-() 0

VIII III
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6i 31- G - - ••
6-31(.- G - -

6-31G•
631 G * 1

(IOs.5p; 4s)
6-31 -- G ••

63 G
6-31G * 0

4--31C G 6

4--21G *
:3-21G G

STO-6G * *
STO -3G *

1.38 1.42 1.38 1.42 1.38 1.42
I II III

6-31 "-G'- * *6-31 -G-- ••

6--31G* * * 0

6-311C; G S 0

(10s,5p.-s) -I
6-31 .... G 4

6-31--G 0

6-31G * *
4-31(; 0

4-21G S

3-21G G
STO--6G
STO-3G 6

1.38 1.42 1.3s 1.42 1.38 1.42

IV V VI

Iigure 2. Basis set influence on the optimized value ofthe bond length 02 - -(2 [A] in
all local minima of the glycolic acid PUIS, except VII.

"This harrier is 0.85 kJ/mol for the minimal basis sets. 0.33 kJ/mol for the 4-
31G**. 0.30 ki/mol for the 6-31G*, and 0.22 kJ/mol for the 6-31G** basis set.
Using the 6-31 +G* * and the 6-31 + +G * * basis sets VIll collapses with its saddle
point to a stationary point of inflexion, which has no energy barrier to !II.

Comparison with Glycine

The biological importance of hydrogen bonds makes a comparison of the
0. ..H - 0 and N. .. H -0 interactions worthwhile. The results of this study
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I.\B[I I L. .lh-mmlo I(RWit ) results, lfr thC gl\'oliiC acid conlirnahznio I othaincd kith %arous tandard
basis sets. Ihe absolute energies arc listcd in Hartrcc. thc rotatlonal co)nstanlt in ( / It I in ditleicnccs from

the cxspcwrimcntal %alucs [3 1 (I1, 10.69)0. I, 4.05 1 ). 1 2.Pi47 (ilI).

Basis L,, Ia. u. I1,

sTO-3 298.63524 01. 1642 0. 1 571 0. 1(15
sb o-6G 301.51535 0. 1187 0.1433 (0.o017
3-21G 3(H).96339 00009 0.0145 (852
4-3 1I -302 ,20754 0.0806 0.0097 0.0087
6-31 G 302.51371 0.0315 (1.114 0.0)066
6-31 ýG - 302.52526 0.02 1 0(1.)20 0.0)121
6-31 - +rG 302_52575 0.020. 1 100203 -().0121
( 10s. 5p/4s) 302.579 10 -0.0667 -().0676 0.045 I
6-31 IG -- 302.59875 0.0784 -0.00_"2 0.00141
6-3 I1( --32-.6_69, 0.2936 1.0647 0.0554
6-3 1G** --302.67352 0.3044 0.01673 0.0)577
6-31 +6** --302.68443 0.2888 0.0557 0.0503

and the analogous data for glycine [9,301 allow such a comparison in a straight-
forward manner. since both were obtained at the same "lexel of theory".

The mean value of the 03- -114 bond length in the conformations N' and VI,
which exhibit the same orientation of the -- COOH group as III, is 0.9515 A: the
03--H4 length in III is 0.9572 A, which means an increase of 0.0057 A due to
the intramolecular H-bond. The corresponding difference for glycine is 0.0082 A.
which indicates that the H-bond N . ..H - 0 is approximately 501T stronger than
the 0 • • H -0 bond. A similar picture is obtained from the 03 - H4 vibration
frequencies: the mean value in V and VI is 4006.9 cm '. the III value is 3924
cm . which means a lowering of 82.9 cm ' The corresponding lowering in glycine
is 142.3 cm 1 .

The different strength of the intramolecular H-bonds does not, however, influence
the kinetic stability of these conformations: the lowest potential energy barrier is
40 kU/mol for glycolic acid and 43 kU/mol for glycine.
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Appendix
Here the data of all local minima in the glycolic acid Pus are given, which were

obtained with the 4-31 G [20] basis set in RIIF calculations. Vibration frequencies
were obtained via analytical second derivatives and have not been scaled.
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The nuclear coordinates ofall local minima arc also available upon request from

tile authors by electronic mail.

(d~o/a- .lljujimtn I (, - - 302.?20- 54 a.- 4

Approximate gcometr-N:

H O•
H.. /

"C-C

o 0

(icometrN data:

Bond lengths: Valence angles: Dihedral angics:

I1 -- C' 1 .20-, 1 A

(. I -C2 1.4954 A% C2- (-C-O 124.t8W

O)1-C2 1.412,' A 2-I2--( I I. I2• O2-C(2--01 0.00"(

1 1-02 (1)54 .A I -1 2-(i2 112.9, ti 0-0-)2--01--( tfl(

Ht2.--(' 1 8 . A80O0 A 12--2--('1 108.84 112-C2-C(1-0O 121.21

[3-C(2 1,08AO0 A I 13-C-2-(' 1 1118.84, W t-2---C I -01 12 tI21

03-CI 1.3383..% 03-C-( -- (2 112.36" 03-"-C1- O2 18(000,

114-03 0(.9554 .A 14-03-C2 114.73' 114-03-Cl-C 2 1l11.00)

Vibration frequencies:

48.91(0cm 256,09 cmn 299.53 cm 505.99 cm 560.87 cm b69h.17cm

699.55cm 929.63 cm 1152.6cm f1160.9cm 1254,.0cm 1368.0 cm

1395.5cm 1466.) cm 1586.5 cm 16610.4cm 1931.2 cm 3234.5 cm

32-.6, cm 3960.5 cm 1  3963.0 cm

Vibrational icro point energy: 187,870 kJ/mol

Rotation constants: 3.0034. I(0 s5 4.01607 • 10' s 1(,7767 - [0' s

Local minitmou 11 (l.. -302.20513 a.u.. E, = 6.33 k//mol)

Approximate geometr\:

HH 0

"C-C/
O 0-H

H

(Jcomener data:

Bond lengths: Valence angles: Dihedral angles:

01--(l 1.2033 A

CI -(-2 1.4996 A (2--CI--Ol 125.19'

02--C2 1.4140 A 02-('2--('I 13.220 02--(2-(--0I 153.8W

!f1l-02 0.9527 A If 1-0-2-C2 112.970 111--02--2--(I 44.70'
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H2-C2 1.0847 1 |12--("2--('[ 1l07.62," _12-M.28-.(1--)0 82.6(6
H3-C2 1.0748 A H3-('2- CI 108.69' 113-('2I-('---()I 34 47'
03-0C 1) 1485 A 03--C!-('2 I1 1 910 O3-- '- - 29,2N,
H4-03 0.9552 A H," -03-C(2 114 56 114-01--(']-(2 179.41

Vibration frequencies:

87.836 cm ' 285.80 cm-' 380.44 cm I51 1.17 cm 575.( cm (• 647.63 cm
730.08 cm ' 908.1i cm 1116.0lcm II 55.2 cm 124t1.0cmin i353 I cm

1458.4cm-' 1489.2 cm 1540.0 cm ' 1654.6cm 1950.9cm11 319 3.6cm
3329.5 cm-' 3968.8 cm-' 3995.0 cm

Vibrational zero point energy: 188.843 kJ/mol

Rotation constants: 3.0809. 10' s ' 4.1898. 10"' s 10.0576. I0' s

Local minimum III (E,, = -302.20244 au., Er, 13.38 AJ/n, ol)

Approximate geometr:

HH 0

C-C/ \
H-0 0H 7

Geometry data:

Bond lengths: Valence angles: Dihedral angles:

01-Cl 1.2012 A
CI-C2 1,5102 A C2-C- I-0I 121.37'
02-C2 1.4269 A 02-C2-C1 107.180 02-C2-C 1-01 180,00"
H I-02 0.9497 A H 1-02-C2 115.43' H 1-02-C2-C I 180.(R0°
H2-C2 1.0804 A H2-C2-CI 108.59' H2-C2(--OI-M 59).240

H3-C2 1.0804 A H3-C2-CI 108.590 W3-C2-C1-0lI 59.24
03-Cl 1.3327 A 03-C I-C2 115.64' 03-CI-C2-02 0.0()1
H4-03 0.9572 A H4-03-CII 113,720 H4-0- CI-C2 0.00°

Vibration frequencies:

106.33 cm ' 267 .36 cm"' 349.91 cm-' 558.33 cm' 634.33 cm .' 6,9.52 cm
722.44 cm"' 920.03 cm ' 1138.8cm' 1146.1 cm-' 1237.3 cm' 137 1.3cm

1371.4 cm-' 1454.0cm"' 1563.1 cm' 1657.5cm • 1980.4cm ' 322 7 .2cm
"279.2 cm-' 3924.0 cm'' 4036.2 cm

Vibrational zero point energy: 189.097 kJ/mol

Rotation constants: 3.1009- 109 s ' 4.3097 • 109 s 1 10.3486- I10' s

Local minimum IV (Eei = -302.19965 a. u., ErIj = 20.70 k J/tiol)

Approximate geometrx.:

HH O-H... /
C-C

H-0 0
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Local minimumi V1 (L". -302. 18292 au. ,,. 0Y4.64 kJ/Pflol)

Approximate geometr\:

•....I /
C-C

H-0 0

Geometr% data:

Bond lengths: Valence angles: Dihedral angles:

01-Cl 1.1906 A
CI-C2 1.5068 A C2-CI-01 126.36'
02--C2 1.4080 A 02--2-C1 1109,04" 02-C2-C1 -0l1 0(.00
H 1-02 0,9510 A 111 1-02-C2 113.81' " H -02-C2-CI 1 Nl(). 001
H2-C2 101859 A H2-2-C-Cl I0X. " I2---(-2--CI-- 01 121.62'
113--C2 .0859 A 13-C2-Cl 108,12' 113-C2-0'-0I 121,62'
03-Cl 1.3611) A 03-CI--C2 113,25° 03-C I-(.2-0-1 180.001
H4-03 0.9512 A 1-4-03-C2 1 18013' 14-03-C- -C2 0).0'0

Vibration frequencies:

60,630 cm 187,97 cm-' 298.42cmr' 383.72cm ' 508.24cm 623,81) ca
700.67 cm-' 918.45 cm 1141.6cm 1175.7cm 1223.4 cm 1310.2 cm

1326.1 cm ' 1399.(1 cm-' 16(14.9 cm ' 1665.9 cm, 2017.1 cm 31(2.0cm
3197.5 cm' 40109.6 cm' 4010.7 cm

Vibrational zero point energy: 184.976 kJ/mol

Rotation constants: 2.9486. 1(0 s ' 3.9959. 10• s 10.5211 I 10' s

Local mnininutn VII (lE0 = 302.19810 a. it., h-ej = 24.78 k J/tool)

Approximate geometry:

H

H .. c-C

H `0 -0-H

Geometr\ data:

Bond lengths: Valence angles: Dihedral angles:

01-Cl 1,2(156 A
CA--C2 i.4967 A (C2-CI -01 124.380
02-C2 1.4224 A 02-C2-Ci 107.88' 02-1C2-0C1-01 - 125 SO'
111-02 0.9505 A HI-02-('2 113.82' HI-02-C2-C1 154X.950
1-2-C2 1.0826 A H2-C2-Cl 108.25' H2-C2--CI 113.560
H3-C2 1.0777 A Ht3-C2--C1 107,900 H3-C2-0-C1-01 5.05'
03-Cl 1.3403 A 03-CI--C2 112.74' 03-C1-C2-02 57,19'
1i4-03 0.9552 A 114-03-Cl 114.01' 1t4-03-Cl -C2 177.850
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Vibration frequencies:

98.490 i cm 71.080 cmn 294.46 cm 471 .52 cm 0 1),84 cm 628,9• cm
7 88.33cm 935.21 cm 110 7 .2cm 1137.2 cm 1271.8 cm 1323.1 cm

1389.2cm 1520.7cm 1596.6cm 1670.1 cm 19451) cm 3210,4 cm
3289.4 cm 3966.7 cm 4016.9 cm

Vibrational zero point energs: 186.833 U/mol

Rotation constants: 3.1893 - l01 s 1 4.1322. 10' s 9 g.50(07. -I s
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Multireference Moller-Plesset Perturbation
Treatment of Potential Energy Curve of N 2

K. HIRAO
D' •ttrimnt at ( "h(,iitrl'. ('ol'•te at ( /I'c, rol/ t du t 110n Noc Itiat .iIn'tl ol elti't'\llt %('l'il a1 .1q att

Abstract

A multirekfrence Moller-Plesst (IMR-MP) perturbation method. at the sccond-ordvr leocl, is applied
to the potential energ\ curs e of the ground state of N:, for comparison with a varietN of standard a1,

irnio methods. In spite of the drastic simplification, the .R-.Ip results arc \cr% reliable. The cncrgs
errors are almost independent of georneto. allowing unbiased treatment of potential cncrg. curs e. I he
potential ehficiency and accuracy of the MR-NIP approach are emphasized. ( ,92 John \•%ic, & So•iw Inc

Introduction

During recent years the ab initio molecular orbital theory has moved from a
qualitative theory to a quantitative one and being available to experimentalists.
The conventional correlated theories are generally effective, at least. for medium-
sized molecules in their ground state, near equilibrium geometry. Typically more
than 98% of the full Cl correlation energy is accounted for in a given basis set.
However, the difficulty with these theories is that, as the number of electrons in-
creases and the molecular bonds are stretched, the percentage of correlation energy
recovered can decrease substantially. We are now seeing a similar evolution of
techniques that are accurate for any large molecule in all nuclear configurations.
At the present time reasonable accuracy can be obtained, but this is not obtained
cheaply. In calculations of potential energy surfaces, it is particularly important to
use an approach which provides a balanced description of the various regions of
surface. In addition, the explicit determination of a wavefunction requires the cal-
culation of the variables. Unfortunately. the number of variables is normally much
too large for optimization, even though significant progress has been made in the
solution of large-scale secular equations. For these reasons there has been a growing
interest in multireference based perturbation methods [1-4].

In the previous article [4]. we have developed a multireference Moller-Plesset
(MR-MP) method, The essential feature of the theory is that the multireference
technique is used as a means of recognizing nondynamical. near degeneracy. cor-
relation effects and, as a consequence, of ensuring that a molecule correctly dis-
sociates into its fragments. Once these state-specific correlation effects are included
in a reference function. the remaining are composed mainly of dynamical, trans-
ferable pair correlations. It is really caused not by the full Coulomb repulsions but
by the sum of fluctuation potentials as discussed by Sinanoglu 15 ]. As a result of

International Journal of Quantum Chemistry: Quantum Chemistry Sympositum 26. 517-526 (19()2)
,c 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010517-11)
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]A•I 1I. Selected N, enCrgtes as a function ot lncrnuclcar sCpa'Itlkon 'ih II I.p h, sis I flerglcs IF)
are in hartrce.

r( i'2 I'4 W SCI I Q,

108.43726 108.7IhOS, I 08.1201 I 1011". 70l5 1O8 -121')

1.8 108. 90455 109. 19682 1119.21 th'7() 109 87194 109 20472
I.9 18.95 142 109.25562 1019.27558 109.24260 109.201 IS
2.o 10896801) 109.28553 109.30543 101).26741 109.28779
2,068 108.96062 101.294_13 4109.31385 109.27182 10929IN88
2,5 108.x3561 109, 2441 1 109.2659I4 1019) I 1154 i09 2 1 114

2.75 108.72623 1t9. 19773 109.231075 109.195001 109. 1,39 1Y

3.1 108.j 1885 109., 5147 109.23317 1 0.9) 01092 109 067112
4.0 108.28943 109.24161 1110.00465 1ON.(76169 108.92926

5.11 I(ON.100001 119.57697 1 15.94364 1018.63123 -

6.j 107.99052 I 10.0665 13I. 76845 108.56262

(100, 107.69824 1- - 08.4218 --

r (a(,) MsI -52 I s(I - 1 '6' IR-( ISI[) MR-I (M % MR-MIP2 "

1.5 108.517,7 108.526801 1018.71)8X0 10(8.7 18ý54 1018.69087

1L8 109.01134 101N)02217 11)9.2(1805 1019.21663 11), 18706

1.9 109.06853 109.07999 10Q.26634 10l9. 2 75 17 1019.24528

2.0 109.09626 109.101832 109.295 16 109.330422 1119.27416

2.068 1019.102901 10(9. 11534 W91.30254 109.311 76 100,.2S 103

2,5 109.03128 1019(04536 10(),23566 1019 245911 1(19.21659

2.75 1018.96255 1018.97652 1(09.16931 1 (19). 18011) 119. 5223

3.0 108.918)40 108.913101 1019.101861 1109.1211210 1119.0)418

3.5 108.82035 108-82749 1019.02613 1109.0139001 1109.11648

4,0 108.794019 108.79695 /118,98477 I119.00561 108 98290
5.0 108.78887 1018.78943 108.98040 108.991285 1118.96693
6.0 108.78889 108.78903 11)897879 1018,99110 108.96457

100, 108.78880 1108.788801 1(18.97786 108,99•1X(4 108.96374

"Reference (9).
t'-The minimum energy is 109.28251 au at r 2.1035.

the short-range nature of the fluctuation potential. pair correlations are nearly in-
dependent. Thus, the pair correlations can be estimated, to a good approximation,
by the second-order Moller-Plesset (NP) perturbation method [6] when near de-
generacy is removed. To the second-order energy. the electron pairs decouple. The
concept underlying our MR-MP approach is simple. That is, the independent electron
pair model is effective if no near degeneracy is present. In the previous article f41.
the MR-MP method was successfully applied to potential energy surface studies of
chemical processes involving single bond breaking. In spite of the drastic simpli-
fication the MR-MP results were very reliable.

This study has as its main objective the t-sting of the cflkctiveness of the MR-
MP approach for the description of a potential energy surface of the ground state
N2 . After a brief discussion of the MR-MP theory in the next section. computational
results are presented in the final section.
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Nlultireferzc! \Isller-Plesset Method

We start with the Mt(-s(-i -\aefunctions with energies that can be e\presscd as

16- 2 • L/" 4l • \ fa( ..J, -- ht .K,,) ( I)

where the summation tins omer orbital basis functions iit terms of which the

"•wacfunction i), described. Here the I, are given h\

21i - I ;F (2)

,%here 1) are diagonal elemnents, of the one-electron densit\ matrix, The av and b,,
are cncrgeý coclticicnt, and .1. and K,,, indicate the usual Coulomb and exchange
integral, rcpct•ucl. Requiring that the energy be stationary with respect to all

orbital % arialions leads to the general \ariational condition

0 x(3)

,Ahere F"' is the general ized 1lock operator
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1"'l •1• Lh+• a,., - Kt,K (4)

Now let us consider the perturbation theory based on the Mus(i- function. Many-
body perturbation theor% is useful onl\ if the zeroth-order Hlamiltonian H-<, is a
one-electron operator. Experience shows that. for closed-shell systems, the best
results are obtained with the %IP partitioning, that is. with the sum of one-electron
Fock operator as Ht. The possible choice of the one-electron operator for the MR
case is the generalized Fock operator given hy Eq. (4). However, one disadvantage
of the choice is lack of the physical meaning of the operator unlike the closed-shell
case. A one-electron operator which is closely analogous to the closed-shell Fock
operator can be defined for MU(S(F wavefunctions as

F I ± + .;( 2j, - K,) (5)

In order to remove the arbitrariness of the density veighting. we use the natural
orbilal.. That is. canonical M(s(I. orbitals are transformed to the natural orbitals
before perturbing. The complete active space (CAS) S( wavefunction [71 is invariant
to unitary transformations among the active orbitals, provided the (+i coefficients
are reoptimized. This definition is unique and can be extended to the virtual space.
The orbital energies for the doubly occupied orbitals correspond to the Koopmans"
ionization potentials and those for virtual orbitals to the Koopmans' electron af-
finities. The orbital energies for active orbitals are the average of ionization potentials
and electron affinities. The Fis not diagonal in a basis of orbitals. The one-electron
operator in the sense of diagonal form can be redefined in terms of natural orbitals

X, as
1> :Z tX,),X, !"(,,,y~ , I(6)
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which span the first-order space used here are mutually orthogonal. orthogonal to
all configurations in the reference. However, the first-order basis generated by double
excitations of the refierence wavefunction 11.31 is not orthogonal and orthogonali-
zation step is necessary to avoid the complications of perturbation calculations in
a nonorthogonal basis. The perturbation is V = H - H,,. This choice of i,) in the
Rayleigh-Schr6dinger perturbation series guarantees size consistency if the reference
function is size consistent. There is a very close parallel between the standard single
reference MP theory and its MR version. The first-order wavefunction, for instance.
contains only double substitutions. Singles cannot contribute due to the generalized
Brillouin theorem [8]. Triples and higher substitutions are also excluded because
any configurations having a nonzero matrix element with the reference function
do not enter into the first-order correction to the wavefunction.

The present MR-MP method is very efficient and cost eflictive. Neither iteration
nor diagonalization is necessary in the calculation of the first-order corrections.
The importance of efficiency cannot be overestimated.

Potential Curve of N2

The ground-state potential energy surface for N, has been well studied 19] by a
variety of standard ah initio techniques such as single reference (i singles and doubles
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method (.MR-LC(-M) [IlI]. W'e also apply our NIR-1-11 approach. at the second-order
level ( MRM2.to the bond-breaking process of' N,'. The basis set ( D P-4- ) and
geometries used in the present calculations were identical to those used bN Laidig.
Saxe. and Bartlett 19]. -The ref'erence space f'or the MR-MI P method was of the ( Ns
s( I type. -The ( -xs s(i w avetlunctions ,%ere obtained by distributing six electrons
among the six 2p active orbitals, corresponding to 52 reterence con figu rations. This
is the smallest active space which leads to thle qualitativel\ correct description of'
the triple bond dissociation process. On the other hand. MNR-C IS!) and M1,R-iCC* N1

results by Bartlett el al. [ 91 were obtained based on the (,.,s wli function with 176
reference functions. The %I(S('I: calculations wIll be distinguished via either a -. 52
or a - 176 suffix. 'The two Is-core orbitals were Frozen.

Results obtained b`r the potential curves of N, with the I~z p +- basis set are given
in Table I and F~igure 1. 'The dissociation energies (1),) and equilibrium distances
(r,.) are listed in -Table 11.

The sC!I potential well is over three times as deep as thle experimental values oft
9.91 eV and the equilibrium distance is nearly 0.03 A shorter. 'The single reference
based finite-order perturbation series was found to diverge beyond approximately
3.(0 bohr. Eiven in the minimum region the series is o~scillatory. The single reference
( siS) dissociation energy is still too high by over a factor of 2 compared to) experiment.
-The ( iS!) and experimental r,. values ditk'r by only 0.002 A. The full (I r,. in this
basis is estimated around 1. 113 A [191. If this is the case. the c'is! r, is nearly 0.02
A too short. The u'(SI), which is equivalent to our symmetry adapted cluster (SAC)

theory [ 12]j. appears to give a much better estimate of r,.. Also the Ovst) curve is
accurate out to 4.0 bohr. However, it was reported that ('(SI) curve bevond 4.5
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Figure 3. External, semi-internal, and internal contributions to the total correlation energ.
( IR ,R .M IP Ws(,I ). in hartree, as a function of the internuclear separation.

bohr cannot be obtained due to the convergence difficulties of the (vSD equations
[9]. Thus, none of these single reference based methods can describe all regions of
the N, potential curve to high accuracy.

Now let us examine the energy errors along the bond lengths. Since the full cI
calculations are not available in this basis set, we defined the energy error as the
difference between the computed energy and the MR-L.(C(CM energy. These energy
errors are displayed in Table 1II. In the calculation of potential energy surfaces. it
is important to keep this error as constant as possible, in order to obtain an accurate
surface. It is obvious from Table III that the single reference based methods cannot
be expected, in general, to satisfy this requirement. Appropriate multireference
based methods, on the other hand, can give a more balanced treatment and nearly
constant errors.

The dissociation energies and equilibrium geometries have been improved in the
MR based methods. The MCSCF-52 surface itself contains no substantial qualitative
defects. Like MR-CISD and MR-LCCM, the MR-MP2 energy curve dissociates correctly
and the three are nearly parallel. While the MR-MP is size consistent, the MR-CISD

is not rigorously size consistent just like any truncated ci. The present MR-MP2

gives D, = 8.67 eV and r,, = 1. 113 A. The D, is computed only 12% in error and
r, is within 0.015 A of experiment and nearly identical with the estimated full ci
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In F~iguire 2 weC drawk potCniaKl cur'\C fo r N, CO iputed In %Rt(5 1 -5? R-i

anid NiR-t ( ( \1 Methods Shitted suIch that thCI irepci e dis~oeiated energies are
/110. tHe NI( .( I-i-, l disociation energý ot '. 56 eV is, wýithin 0.22 cV ol the SIR-

I ( ( i result. I lo\Ne\ er. the %i( s( I -,;,- curw de\viates m~ost fitrom StR-i ( Si\ surface
It.1 thle reI-Oon surrounding 3.5 bohr. ()n thle contrar\ . thle MR -Ni 2 curseC i', q uLte

close to the Ni R-I ((CNI cuirx f or thle entire bond length',. 11I hs su1ggests that thle
higher order contributions are almost independent ot the in~ternuclear c,1,ontiguirationI
and therefore cancel in a calculation ol potential enleruy Surt'aces.

In terms of' thle Fermi sea Octermined b\ý thle retcrence function the flirst-order
corrections to the \\aefunction maLI lie classi tied in terms oft he number ( 0. 1. or

2of eXter-nal orhitals, introduced as internal. semii-internal, and externial. In t-able:
IV and Figure 3 we shoved external, semni-internal, and internal contributilonls to
the total correlation cnet g\ .) ass a lunI~Ction of the bond length.
Thle Internal correlation is found to be small x\itliln 0.01 au. thie seni i-inIternal
termls inIclude significant Single excitations Mi ichi arise from the failure of the rcft
erence fuLnction to satisfy the 116r101,uin theorem. lithoughl thle semni-internal cor-
relation is about hialf' of' thle external correlation near thle equilibrium distance. it
increases as thle bond length and becomes miaximumn at about 3.5 bohir and comn-
petitix e to thle external correlation. The external terms resemble the pair correlations
ol, thle c losed-shell theory. AS expected the external terms are found to he rather
1 nscrisiti to the change of'th heond length. Thlerefore, the total correlation curve
is almost parallel to the semi-i-nternal curx e. I his suggests, that the balanced dc-
scnption Of the po0tential CLrP es cannot be obitained before the scint-intetrnal terms
are correctlk taken into accountt,

'ihe %w -M t, method is designed to comipete dlirect l\ against the traditiontal highly,
correlated methods- Ihe theor\ retains the attractix e I.atures of thesingle retlerence
\t1, thecorý \x thou t a consequent loss of etlieienc\. f le M-i'results were shlownt
to comp~are ifivorabl-x wvith those of the hIghl\ correlated methods tfor thle description
of thle triple bond breaking. [hle present approach is xer\ poxxertul as a reliable
method for thle compu~tation of correlation eniergy where errors of' the order of a
tkxx percent are acceptable.
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Hydrogen Bonding: 'Methodology and Applicati
Complexes of lIt and I ICI wvith I ICN and CIl1.C

Abstract

A\ detailk-k Iin C~tgtWMITT Ia,, b'Ccn 0i,1dC Ot I hC itrctii~iol'grc iI d1CIWiIL-ilc k- rI nrII ic It 0II 1,1o II I

hirrdrnrII ciicrnrc',. an d sonlc kiltationll1 r1Woficrtilc of sclected II~dfoVc:--I'oTdctl oifilipfc\CS NI rud lii
anid %ibrational irCLuIM[ICSc tVCI c cc Oiiipiitcd AIrIIII! toir dlik'Lcr t Icwk ci'. i Ilcr iii (, n I. I'

to '6-31 .(( d. 11). ;1' ~ 1 (iihd. '11d \tf'.' - 60. p) ( orrlaI'ilon cnlcrs\ oIic l '0 1 ii wi k~iics

hindinv cncrrzicsIi( and k th as ba', jM d 1L kII11rý ICIi ', haw hccdicc IT CNcs Iic Ic' ha'. I Ici cs Ii T~INc Ii' Ib I IIb. II I Iu ,n I

.. orcliio -Casiic t oriFIcd \3~ !Cncc: doMNt bt-jNI p-. and Ilin ncatcd quadlrupi c-spiln b ,kn l -I " .

1A \ %I I'. it 1) 10 1d dJOnbiL' I tor tIpII)I C. antd Q 10 trnIllII (AtICý Id 10na r 1tiC I. andIII (, ',IIII C 1-'. 1inc b sis'ct'

a ugnlC IIttcd \\till dI IN oll1 Jol us oint iii. m i ' si nolh rgcn atolsi I~ W\ ) I liC rcsn1 its I ii C'. ud
sungc'.t that t ic II C IIIodo I,)p of \i itti I1(4 1 M P c- pt, I / - lck troniic cocry-ic, sx ithIout h c -oLWh1WII)riir'.

cOnFCctiin CsOMI)LUtd at \1i;' h t -I t (I Id, (I0 gLcOilIct-ic'. 1" '11i apprtl litc 111C~'CtIicai mn'd1CI for iitcqqtinurii

cmplescs R( N *.. II. 11 stub R I I or ('I I, and X I or (IT Ibisf modeli has becii appirck To ii\'1% t

the ,t1ructI urc'.. hind iingt cncirgic'. atI ah'.olu n it cro. hi ili ng cntha I I)It: at I ot ITT I in' I pI i at IT iC. .id n I brat In A)T11

trcqU0cnCc'. 01C tcsc 11Comicc I I-CTd'. arc nniicd. andI comnparisoinN are niade NWib A\. iabC \rlti I mcitlal

data.o , 141) John X ~ Ic ' r.III

Intro~duct ion

1/b inliti studies of' hydrogen bonding (late back about 2() years. In that time.
great strides hawe been made. but the demands on theory have also increased. With
new methodologies, improved algorithms. and supercomputers. it is incumbent
Upon t heorv. to prov ide reliable quantitative in formation about hydrogen-bondedd
systems with an accurac% comparable to that which can be measured experitmental]\.
['hus. a goal of modern theory is the reliable prediction ol the structures ot hxdrogen-
bonded complexes. their binding energies to about I kcal /mol. and their spectro-
scopic properties. 'Ihis article reports thle results of a systematic study of the de-
pendence of some of* these properties on thle le~eI of theor\ employed fo(r thle cal-
culations. [he computed results are evaluated h\ two criteria, one internal and thle
other external. [he internal criterion refiers to convergence of computed properties
with respect to frtherlf extensions of the level of theory: thle external is comparison
with experimental data. Ideally. when the Internal criterion has been satisfied. the
agreement between theorv and experiment should also be good. I inlfrtunatel\v.
there can be problems with the application of these criteria. Ini some cases. it Is ntlt
feasible from a calculational point of'\ view to go beyond a particular level of theorNy

In terna tional Jo u rnal tit' Quantioii n It hicnivt rx Quarnt iini ( hicntin .St %~5 ni pmuminni 26,. ý2 S-II4 1 (199)
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so the internal criterion cannot alksaxs he applied. In otiier cases, reliable cxpert-
mental data ma\ not be available. Despite these limitations. s\%stematic inmcstigatiols
of the methodological dependence of computed p1roperties of hydrogen-bonded
complexes are essential for progress in this area. 'I he results of such an inc'.etigation
will be reported here, and will be used to identilk an appropriate le~el of theor\ lbr
insestigating the structures and energies of hyldrogen-bonded complexes
R('N . .. iXV where R - It or CtI, and A F or CL.

Method of Calculation

The structures of the monomers 1-1'. HtCI, t ICN. and CI( ! 'N and the complexes
CH CN . H. .FI CN . f i[IlCK I IN. ..t11(, and I (N. .1(l ha\c been op-
timized at Hartree-Fock ( litH ) and at second-order mail\ -bod\ Moller-Plesset per-
tubationi theory [1-41 ( Ni1'2 ) with two diltrcnt basis sets. 6-31 (ii U) ani 6-31 ; (d.
p 1. 6-31G C (d) is a split-valence basis set with d polarization functions on nonh%-
drogen atoms [ 5,6]. 6-31 ±(( d. p) is the same split-valence basis with lirst polar-
izatiop functions on all atoms and diffuse tunctions on nonhydrogen atoms [7.8 -
Harmonic vibrational frequencies hawe been computed for all structures to \eril\
that they are equilibrium structures ( no imaginary frequencies) on the appropriate
potential surface. and to evaluate zero-point and thermal vibrational energies.

The electronic binding energy of each comple.x at absolute zero is delined as
APE<,(or -- 1), ) for the reaction RCN + FIX - RCN ...HX. where R - I-I or(Cl 1,
and X = F or Cl. The binding enthalpy, All ', can be obtained from AI". the
zero-point and thermal vibrational energies, and other thermal terms. with these
latter te-ms (rotational and translational energy terms and the PV work term)
evaluated -lassically. The nature of the zero-point energy • -rntribution and its de-
pendence ,,n the calculational model will be examined in this study.

To obtain an -stimate of the variation of binding energies and the basis set
superposition error [9] with basis set size, calculations have been performed on a
selected group of hydrogen-bonded complexes using the Dunning correlation-con-
sistent polarized double-. triple-, and quadruple-split valence basis sets (cc-pVXZ.
where A' = D for double. 7 for triple, and Q for quadruple) [10]. and these basis
sets augmented with Jiffuse s and p functions on nonhydrogen atoms (cc-pVXZ-+ 1.
with exponents of 0.04, 0.06. 0.08, and 0.10 for carbon, nitrogen. oxygen, and
fluorine. respectively. These basis sets were chosen because they systematically in-
crease the valence space as the polarization space is also increased, and include a
quadruple-split valence basis set. Since the GAUSSIAN 90 program [I 11]. which
was used for all calculations, cannot handle g functions, the Dunning quadruple-
split basis has been truncated in the polarization space to include three sets of first
polarization functions and two sets of second polarization functions on all atoms.
omitting the third polarization g functions on first-row atoms, and /functions on
hydrogen (cc-pVQZ' and cc-pVQZ'+). The Dunning basis sets have not been
defined for chlorine, so the chlorine basis used with c(.-pVTZ-- is the McLean-
Chandler ( 12, 9) basis set -"ntracted to (6. 5) [121 augmcnted with a set of dilfuse
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"-xBRI iL Inlermolecular distances (R. .A), changes in 11-A- distanccs ()rr A)N and changes' in 1 -- X
slretching Irequencies )"•,, cm ').

(-f(iN . .I II(N .... iIt

R 4 R

1t/6-3 t(Q(d) 2.878 0,007 140 2.923 .(1006 1(16
In /6-314 (G((/ 1) 2,850 0())I ( 234 2,9)))) 0).08 176
MP2/6-3 1(;(d) 2.835 0.009 . 162 2.875 0.0017 119
MP2/6-31I tG<d, p} 2.758 0.0 5 343 2.808 0.012 262

Fxperimental 334' 245t

CI I3CN . . .. H-I(' |HCN ... - t- 11

R? 5r 5V R hr

HF/6-3 1 Qd) 3.434 0,008 110 3.498 01005 73
t1f,/6-31 G(d. p) 3.462 0.0()8 - 103 3.522 O.006 -68
MF,2/6-3 1 Gtd) 3.324 0.012 173 3.380 0.009 - 126
Mi,2/6-3 I + i(d., p) 3.316 0.112 167 3.376 0).()9 113
Experimental 3.29 1C 0.0 13' 1 55 3.402' 0.),1 I

Refs. 17 and 18: 'Refs. 17 and 19: 'Ref. 20: dReCI 21.

im Table 1, show a strong dependence on method (1H vs. MP2) but little dependence
on basis set. At the highest level of theory [MP2/6-31+G(d, p)]. the computed
CI-N distances of 3.316 and 3.376 A for CH 3CN.. .HCI and HCN... HCi,
respectively, are in good agreement with the e-perimental values of 3.291 and 3.402
A. respectively, reported by Legon and Millen [20]. The 0.012 and 0.009 A increases
in the H-CI bondlength in the complexes CH 3CN- - • HCI and HCN - • HCI,
respectively, are also in agreement with Legon and Millen's values of 0.013 and
0.011 A• respectively [201. The decrease of 167 cm 'in the H-Cl stretching fre-
quency in CH 3CN ... HCI agrees with the experimentally determined decrease of
155 cm ' [211. Based on these data, it would appear that the MP2/6-31+G(d, p)
level of theory provides consistent structural data and spectroscopic H-X frequency
shifts for these hydrogen-bonded complexes.

Electronic Binding Energies

The basis set dependence of correlated fourth-order Moller-Plesset (MP4) elec-
tronic binding energies has been investigated for selected small complexes including
(NH 3 ), (H 2O) 2 , (HF) 2 , H3N... HF and HCN ... HF, all at their equilibrium
MP2/6-31 +G(d. p) geometries. Binding energies were computed with the cc-pVDZ,
cc-pVTZ, and cc-pVQZ' basis sets, and these same basis sets augmented with diffuse
functions on nonhydrogen atoms. Graphical data for the complexes (HF) 2. (HO)2,
and (NH 3 )2 in Figure 1 show that the presence of diffuse functions leads to a
significant decrease of MP4/cc-pVDZ hydrogen bond energies. For this series the
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magnitude of this decrease is dependent on the nature of hydrogen-bonded atoms.
increasing with increasing electronegativity. For ( HF1-F. diffuse functions decrease
the hydrogen-bond energy by 2.1 kcal/tmol: 1'or J H.0)2, the decrease is 1.0 kcal/
mol: and for (NH 3 ),, 0.5 kcal/mol. Figure 2 presents similar data for the complexes
(NH 3 )2, H 3N- . .HF and HCN. • -- HF. which have nitrogen as the proton ac-
ceptor. The 0.4 kcal/mol decrease of the MP4/cc-pVDZ binding energy of
HN. HF by diffuse functions is similar to the decrease for (Nit{,).,. suggesting
that the dependence is on the nature of the proton acceptor atom. Diffuse functions
lead to a small increase of 0.2 kcal/mol in the MP4/cc-pVDZ binding energy of
HCN- .. HF.

The MP4/cc-pVTZ hydrogen bond energies of (HF) 2 , (H,0)2. and (Nt 3li) also
decrease significantly by 0.9. 0.8. and 0.7 kcal/mol, respectively, when diffuse func-
tions are added. but there is much less dependence on the nature of the proton-
acceptor atom. Diffuse functions decrease the cc-pVTZ binding energies of( N13):
and H.N •.. HF more than the cc-pVDZ energies, but this may be a result of some
cancellation of other limitations of the cc-pVDZ basis. Diffuse functions have no
effect on the binding energy of HCN . • HF.

The addition of diffuse functions has a small effect on the MP4/cc-pVQZ' hy-
drogen-bond energies of (HF) 2, (H 20) 2 , and H 3N -. HF. decreasing them by
only 0.3 to 0.4 kcal/mol, and has no effect on the MP4/cc-pVQZ' hydrogen-bond
energy of HCN. -. HF. It is significant that the cc-pVTZ+ hydrogen-bond energies
of (HF)2, (HO)2, and HN... •HF are within 0.2 kcal/mol of the cc-pVQZ'+
binding energies. these latter ones serving as a possible benchmark of basis-set
converged values. In contrast, the cc-pVTZ binding energies of these complexes
are about 0.5 kcal/mol greater than cc-pVQZ' energies. and I kcal/mol greater
than cc-pVQZ '+.

Basis Set Superposition Errors

Computed electronic stabilization energies are subject to a basis set superposition
error (BSSE) [91, which results from the use of an incomplete basis set. This error
artificially increases computed binding energies. but the effect should disappear as
the basis set approaches completeness. The counterpoise estimate [91 of this error
and its basis set dependence for (H 20)2, (HF) 2 . and HCN-- - HF are shown
graphically in Figure 3. Diffuse functions reduce the basis set superposition error
dramatically. Using HCN ... HF as an example, the counterpoise estimates of the
BSSE are 1.8. 1.1, and 0.5 kcal/mol at cc-pVDZ. cc-pVTZ. and cc-pVQZ', re-
spectively. These corrections are reduced to 1.1,0.6, and 0.3 kcal/mol at cc-pVDZ +.
cc-pVTZ+, and cc-pVQZ'+, respectively. Figure 3 clearly shows that the coun-
terpoise correction overestimates the basis set superposition error, since the corrected
binding energies increase and approach the uncorrected values as the basis set is
improved. At cc-pVQZ'+, the counterpoise correction is reduced to 0.3 kcal/mol
for all of the complexes investigated. Table II ihows that the uncorrected cc-pVTZ+
binding energies of (HF) 2 , (H20)2, and HCN ... HF are essentially identical to
the uncorrected cc-pVQZ'+ energies, differing by no more than 0.1 kcal/mol.
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I X141 I 11, I'41cc-pV I I and %ti,4/c,-pVQZ - binding cnergics (kc.i; inoD) )kh and v ithout the

counterpoise correction.

cc-pV I Z cc-pVQZ'

(Correctcd I, ýicorrecl.d (orrcted 1 'ncorrcctcd

[|IF1)- 3,8 4.5 . 42

( IO " -4.4 5.1 5,0 4 7
|I N . . I 6.9 .5 7.4 7.1

Moreover, the counterpoise-corrected MP4/cc-pVTZ-f energies lie outside the range
of the corrected and uncorrected MPI4/CC-pVQZ'+ energies. These results, and those
reported in the preceding section. support the use of the cc-pVTZ+ basis set without
the counterpoise correction for the calculation of hydrogen bond energies at minimal
computational expense.

MP4 binding energies for the complexes of HF and HOi with HCN and ('H 3CN
have also been computed with the 6-311 + G(2d/. 2pd) basis set. which is the
same size as cc-pVTZ+-. The computed binding energies are --9.4, -7.7, -6.2, and
-4.9 kcalimol for CH3CN.- HF HCN. .HF, CHICN .. HCI, and
HCN- .. HCI, respectively. These energies are similar to but slightly greater than
the MP4/cc-pVTZ+ energies of-9.1. -7.5. -5.9. and --4.7 kcal/mol. respectively.
The counterpoise correction for HCN. -- HF at MP4/6-31 I + G( 2d/f 21d) is 0.8
kcal/mol. which is 0.2 kcal/mol greater than the MP4/cc-pVTZ+ correction.

v1i'4 I "Crsw (C 1" lh'ctronic Binding tie•gies.f/r ItCF. 1fF

It is known that in specific cases computed Moller-Plesset hydrogen-bond energies
may be slowly convergent [ 15 ]. Therefore, it is appropriate to examine the variation
of these energies at second- (NMP2). third- (MP3). and fourth- (MP4) order. and to
compare them with the infinite-order QCISD(T) binding energy. The computed
cc-pVTZ+ binding energies of the model ,'omplex HCN ... HF at twF, MP2, MP3.

and NIP4 are -6.2. -7.6, -7.3, and -7.5 kcal/mol. respectively. The QCISD(T)/
cc-pVTZ+ binding energy is -7.4 kcal/mol. At both MP4 and QCISD(T). the
triples contribution leads to 0.2 kcal/mol stabilization. The smooth behavior of
the rip energies. and the good agreement between MP4 and QCISD(T) suggest that
MP4 is an appropriate level of correlation to use for the complexes of HF and HCI
with HCN and CHftCN.

Zero-Point Energiu- and Fihrational Spectra

Zero-point vibrational energy contributions have a nonnegligible effect on the
stabilities of hydrogen-bonded complexes. but they also show a dependence on
methodology. Some insight into this dependence and the origin of the zero-point
vibrational energy contribution to binding energies may he gained by examining
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data t'ron two levels of theory, I1116-3 IG( a) and NiM12/6-3 I i ((1, p). Since comn-
puLted I Iartree-Fock vibrational frequencies lare too high relative to experimental
frequencies, it has been the practice to scale these, with a scaling factor ot 0.9 or
0.89 [22]. ( In a recent sLudy in this laboratory [141. and also in a study by, Schaelfcr
et al. [231. it was noted that the scaling used to reproduce frequencies may not be
the most appropriate one to use for obtaining zero-point vibrational energies. and
both studies suggested that a slightly greater scaling factor would be better. For the
purpose of this analysis, however, the standard 0.9 scaling of the I lartree-IFock
vibrational frequencies and the energies computed from them will be used.) Since
MN,2 frequencies are usually closer to experimental valuies, these have been used
without scaling.

Formation of the hydrogen-bonded complexes CI !;CN . .• I C, H'N .. .I I F.
C|I ICN . .. ICI, and -ICN C. ..I II givesrise to live new low-fIrequency vibrational
modes ( "dimer modes"). The normal coordinate analyses of these nmodes in the
IHN. .C I IF complex has been given by Woflord et al. [191 and are shown sche-
matically in Figure 4. i,, is the doubly degenerate d(imer bending mode in which
one monomner unit moves clockwise while the other moves in a counterclockwise
direction. This is the lowest-frequency dimer vibration. v,, is the hydrogen-bond
stretching mode, which changes the intermolecular distance. i'•1 is a doubly degen-
erate vibration which corresponds to an excursion of the hydrogen-bonded proton
away from its equilibrium position along the intermolecular F-N or Cl-N line.
This is the highest-frequency dimer vibration in these complexes, which varies with
hydrogen-bond strength.

The zero-point vibrational energy contribution from the new dimer modes leads
to destabilization of these complexes, whereas the decrease in the I l-X-stretching
frequency leads to stabilization. These six modes combined account for the entire
zero-point vibrational energy contribution to the binding energies of these com-

plexes. This is evident from the data of Table III, where the sum of the energies of
these six modes is compared with the zero-point vibrational energy contribution
computed as the difference between the zero-point vibrational energy of the complex
minus the sum of the zero-point vibrational energies of the isolated proton-donor
and proton-acceptr molecules. This implies that the vibrational frequencies of the
proton-acceptor molecule are essentially unchanged in the complex.

H-C--N H--F
V 4-.----. 4 - ---- -

T T |

|I I
V r

figure 4. IDiniernioesl AWf%~ff N . .. Ill'.
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I*-\BI I IMI. Zero-point \ibrational cncrgp contribu tlo i\ Ikcta. moll

D)imcr I ull
Modes ,M I-- Sum Calculation

('11 ('N Ilt:
0.9 Il 4i"-3 I 0 1( (d .61 0. 19 1 42 14(46

51P2 ,I6-31 (i G . p) 2.42 0.49 I..9 2_1

0.94 fi )0.'1-•!id IGO ) 0,14 1.41 1,46'

\iP2'6-8 (1 (d. p1 2.35 .1.37 I.98
('CN. - -HO(1

11.9) tit 6-31(6(d1 1.22 01.14 1,108 1.13
MP2/6-3! lid, p1 1.40 (0.24 1.22 1.2S

01.9 •) tit,,'-3 ildl 1.20 1.09 1.1 1 1 14

,'112 6- 31 (0 d. p) 1.45 1.16 1.29 133

Table Ill also shows that the zero-point vibrational energv contribution for com-
plexes with HF as the proton donor is about 0.5 kcal/mol larger when evaluated at
NIP2/6-31+G(d. p) than at 0.9-scaled If-/6-31G(d). This difference arises from
the contribution of the dimer modes, which is 0.8 kcal/mol greater at NiP2/6-
31 +G( d. p) than at 0.9-scaled 11F/6-3 I G(d). THis difference would be even greater
except for the underestimation of the shift of the H-F-stretching frequency at HF/
6-3 1 G(d). Table IV. which lists the energy contribution from each dimer mode.
shows that the diffierence arises primarily from vj, the doubly degenerate mode
which corresponds to the excursion of the hydrogen-bonded proton away from the
hydrogen-bonding axis. This is a higher-frequency vibration at MP2/6-31+G(d.
p). and the contribution from this degenerate mode to the zero-point energy of the
complex is 0.7 kcal/mol greater at MP2/6-31+G(d, p) than at 0.9-scaled HF/6-

I AM I IV. Zero-point vibrational energy contributions (kcal/mol) from dimer modes.

CH(-N. •HF HCN- - HF

U•:t~1 B' ~ ~ I t'ý '~

(0.9 / lff/6-31(i0 d) OA11 0.21 1.30 0.18 (1.21 1.17
MP2/6-31 -(G(d, p) 0.14 0.24 2.02 0.24 0.24 1.86

CHCN - HOI HCN- • -I ]('1

0.9 ," iti/6-31 i0d) 0).09 0.14 1(.0( 0.14 0.14 092
Mip2/6-31 (i(d. p) 0.14) 0.17 1.20 (1.16 0.17 1. 10
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Wotlbrd et al. [251 estimated a zero-point vibrational energy contribution of 1.9
kcal/mol for lIeN . . . iF, in good agreement with the M112/6-31 f G;( d, p) value
of 2.0 kcal / mol. Legon ei al. 1181 estimated a zero-point vibrational contribution
of only 0.7 kcal/mol for the C(IICN. ..1I complex, \xhich is significantly less
than the mp2/6-3 1 G(d. p) value of 2,1 kal/ mol. If this experimental estimate
is correct, the experimental electronic binding energy of Cl-I CN ...HF would be
equal to the experimental electronic binding energy of HCN ...H F as determined
by Wotlbrd et al. This does not seem likely in view of the stronger proton-accepting
ability of(CHl-CN. the corresponding experimental data for HCN . - HF nd the
computed MP2/6-31 J G(d. p) data.

Binding Enrm'rghis ol OCmlplexes and (Compari.sons with Evperimenta! Data

Based on the above analyses of methodology, the %Ir,4 /cc-pVTZ+ level of theory
without the counterpoise correction has been used to compute the electronic binding
energies of the complexes CH 3CN. ..HF. HCN. . . HF. CH3 CN. ..HCI. and
HCN. - • HCI at their MP2/6-3 t +G(d. p) equilibrium geometries. Zero-point and
thermal vibrational energies have also been evaluated from Mw2/6-31+G(d, p)
vibrational frequencies. Thus. the model used for these complexes is MP4/cc-
pVTZ+//1iP2/6-31+G(d. p).

Computed im4/cc-p VTZ+ binding energies tfr CH 3CN... HF. HCN... Ft4.
CH(CN ... HCI, and HCN- . HCI are reported in Table VI. These binding ener-
gies ( AE(• or -1),), measured from the minima on the Mp2/6-31-+G(d. p) potential
energy surfaces, vary significantly from -4.7 kcal/mol for HCN- .. HCI. to -9.1
kcal/mol for CH 3CN ... HF. This wide range results from differences in the proton-
accepting ability of HCN and CH 3CN, and the proton-donating ability of HF and
HCI. Substitution of methyl for hydrogen in HCN increases the electron density
on the nitrogen and the polarizability of the proton-acceptor molecule. Both of
these factors make CH.lCN the stronger proton acceptor for hydrogen bonding.
The greater charge on the hydrogen in HF compared to HCI makes complexes with
HF more stable than those with HCI. independent of the proton acceptor. The

TlAB I VI. MP4/cc-pVIZ 4- stabilities (kcal/mol) of complexes

of HF and HI with HCN and CillýCN.

Complex I),, - A)o All124

.I.3 N . 111: -9.1 -7.1 --7.6
'N- . . Il| -"7.5 4 -6.0

CI I N ...1- •-5.9 --4.6 4.8
l(N- ICI -HO 4.7 -3.4 3.6

SD,. is the dissociation energy measured from the minima on
the potential surfaces; D)( is the dissociation energy measured from
the zero-point vibrational levels of the potential surfaces: .l112"

is the binding enthalpy at 298 K,
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theoretCIical calculationIs Ot hi udi ng energies, a ndl mitla experimental data. \10"t pi)e-
x jOUS theoretical StudiCS ha' e reported hi ndifi neenrg-ies, at the I lartilce- I ock lc~ i-
of theorx . Amiong the more recent of these is the Stud\ Of I e \lIeiCda 1and F Finchi titc
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1-1C (A 1(-I C anIId (CI I &N - I I(' Con 1ptmt1ed I,\ ItIIt a snIaIIl I ha S is s cs thI11ot d IfIk use I1
'lu neCItions or polarizatilon fllnctions. I he ir I fart ree-Fock hIlnd I in c nergiescý are 5.-4

and --6.,7 kcal J mol. respeetis el\ . [hle I I( N ...I IF eonmpiex xsinvestigatedL bx
Somnasundramn et al. 1 27 1, using a large Z / amsisset Including ms o sets of polariztil in)
fnt'L~ion)s bUt nok ditIjLise funIctions. [hI Cr I lartrCe-1 Ock bindingi- energ>ý aP
keal / mllol. These b ind]Ing' energies a re gre a ter than11 theI I I c -pV 7) hi1 AdIneFcI ee-
gies compu)Lted Iin this work. ,k hich arc 1. 1 . 4. 1 . and 6. 2 kc.al/ mol for
i1,XI( N - [11. CIF I X( N - 1101. and I l( N . 11 repc is elf se eit fom

a comparison Of' these nuLmbers, and thle bin1ding energies reported Iin al VI,
electron correlation has a signi ticanit cttet. co nt ributi ng nore t han I kCal Mot 10t
the stabilization eniergies of these compleIXes,. BotsChwTi'aI 12,"' compuLted thle hi nHrIg
encrg\ 1), ) of' I l( N Ill: using thle P\ I' I~tethod to e al Liat thle elect.-ronl
correclation contribution. and obtainedC( a saIlC Iit'o 6.8X keal./ mol . I Ilk 1.is alu is (),7
kcafl / mol greater than that obtained Inl tilie prsntN21 studs . [ lie mos0't recent iTn es-
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hsý Wofibrd et al, [ 25 1 using high-resoIlution [11 R %pectroseop\ . [hle\ reported a
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mol. bu~t the zero-point and thermal ,ibrational energies diffe~r IiI onk 0_(12
kcal / mol.

Legon et al. [I18 ha\ve investigated thle CI I ,(N --- I 1F: comnple~x us ing miIrowas e
spectraiscip!.. Their reported value of'- 1),, is 6.2 keal /mol. wthich makes, this
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consistent with the computed MP4/cc-pVTZ i results. x hich shoA that
CII 'CN ...F is 1.7 kcal / mol more stable than I CN -- -IF. Hlowever. Legon
et al. estimated that the zero-point vibrational energy contribution destabilizes this
complex by only 0.7 kcal/mol, obtaining a D-,) value of - 0.9 kcal/ tol. This is
significantly less than the computed value of' 9. 1 kcal/mol. (iien that the com-
puted zero-point vibrational energy contributions to the destabiliiation of
HCN.. .HF and ('H1CN. •.• HF. are 2. I and 2.0 kcal/mol. respectively, and that
the experimental estimate tbr the iICN .. F complex is 1.9 kcal/mol. it would
seem that the zero-point vibrational energy change for CH;CN. ..IIF has most
probably been underestimated experimentally.

In a recent article. Ballard and Henderson [ 21 ] reported a stud% of the hydrogen-
bond energy of CHICN ...HCI based on F` IR photometry of'the IHt-Cl stretching
mode in the complex. Based on their temperature dependence measurements. these
authors calculated a A112" value of ---3.3 ± 0.3 kcal/mol. From this value and a
series of assumptions, they estimated - D,. to be --5.3 ± 0.4 kcal/mol. A recent
communication [30] has discussed these assumptions, and suggested that a better
estimate of-- D, would be -4.0 ± 0.4 kcal/mol, although this number is stiil subject
to some uncertainty. A more recent F[IR value of Al"' gives a room-temperature
binding enthalpy of -- 5.7 kcal/mol [31J. which compares favorably with the MP4/
cc-pVTZ+ value of'-4.8 kcal/mol. Mettee has also recently measured A12'' for
the LICN . • HCl complex, and obtained a value of -4.4 kcal /tool [311, in agree-
ment with the MP4/cc-pVTZ- value of-3.6 kcal/mol.
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SC-MEH-CI Calculations on the (NH 4 )4CuCI6 (D2h)

Cluster in (NH 4 ) 2CuCl4

E. A. BOUDREAUX, E. BAXTER, and K. ('CIN

ATparwwm ot (hcpin'rli. t. mttto"s1qN' ()rle'm At,ý Orhwf'l% 1,1iuti -un01 4S

Abstract

Calculations of electronic stu scture and bonding via the s(sti-11-1,1o method with limited Cu 3d. 4s,
and 4p configuration intelraction. hase been carried out on the letragonallk coordinated (1)-h snmctrx )
CuCl,(NIt- )4 structural cluster unit in crstalline ( NHit ):(+uCl,. The results are compared ssith those ut
other calculations. The calculated electronic spectrum. electric field gradient (tIt (), and magnetic data
are compared with experiment. c 1992 John 'Ailc & Sons. Inc

Introduction

While a number of articles dealing with the electronic structure of copper 11
chlorides have appeared over a period of years, the most recent, systematic, theo-
retical treatment is that of Zerner et al. [11. This study has shown that specific
effects on the energetics of the 3d levels in tetracoordinated CuC14 2 and axially
elongated CuCIl complexes. are very sensitive to the positions of the axial chloride
ions in these clusters. While the equatorial Cu - Cl bond lengths vary only from
2.264 to 2.332 A, axial bond lengths range from 2.78 to 3.26 A [2-9]. For the
purpose of this investigation, the (NH 4)4CuCI6 cluster, defining the nearest neighbor
interactions associated with the crystalline structure of (NH 4 )4 CuCI4. has been
selected for study. The equatorial Cu - Cl and lengths are close to being equivalent
[ 2.332 ( X2) and 2.300( X2) A j, and the axially bonded chlorides is at the relatively
close distance of 2.793 A [2]. The effective local symmetry is D.j, distorted toward
D~h. While this is only 1.3% distortion in terms of bond distances. it results in a
5%7 splitting of the degenerate E, orbital in pseudo- D41, symmetry.

Method of Calculation

Molecular orbital calculations were performed via the SCMIEH-NIO method, as
discussed in Ref. 10 and other pertinent references contained therein (i.e., Refs.
2-10 in Ref. 10). The AO basis functions were calculated from HF-SCF quasi-rela-
tivistic functions for CLI N. and H orbitals. The MO calculations were confined to
the incorporation of only the valence AOs derived from the atomic calculations.
The required atom charges and respective configurations used in this calculation,
are presented in Table 1. Pertinent bond distances and associated angles are given
in Table II.

International Journal of Quantum Chemistry Quantum Chemistry Symposium 26. 543-550 (1992)
Z 1992 John Wiley & Sons, Inc, CC(C (020-7608/92/l0543-(i8
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Ix91 It I. At-m ic basis functions.

Atom ('onfiguration

Cu 3d "'4.s -; 3d "'4' 41,': 3d ý4 -4p'
Cu" 3d '14s'. 3d'4.v": 3d4s' 4p1
CU* 3d ' : 3cP'4.s' 3d'4.%K3d'4.. '4j'
Cu" 3d': 3d'4-0: 3d'4 s 3d 740 '4p.

Cul' 3d'. 3dM 4s'. : 3d ', 3d'4,s41,'
Cl 3 2 : 3p"

CI 3s '3p': 3.N'3p"
Cl' 3,2 31j,4 3.A'3p'

N '2 1..S 22p
N" 2s22p3: 2I• ' 2p
N 22s`2p ; 2s '2p'
H - I., -

H-" Is'

As pointed out above, the (NH 4 )4CuCI cluster consists of a planar CuCl4, slightly
distorted unit, plus two axially elongated Cl, completing a structure having effectivelv
D2;, point group symmetry. Thus, this calculation differs from those made by Zerner
et al. [1l, who employed bond distances of 2.265 and 2.95 A, for equatorial and
axial bonds. respectively, in D4,, symmetry, with counter cations omitted. The
NH' groups were symmetrically dispersed between the axial and equatorial chlorides
at the ionic bond distance observed in NH 4CI.

Unlike previously reported SCMEH-MO calculations, molecular correlation was
included via configuration interaction over those MOs involving Cu orbital contri-
butions. This ci was limited to one-election promotions between the initially cal-
culated, occupied, partially occupied, and unoccupied virtual MOS. The final ci-
genvalues were adjusted for spin-pairing interactions, ligand field, and spin-orbit
splittings.

Electronic spectra were calculated from differences in total energies of ground
and excited doublet states.

TABLE 11. Bond distances and angles for (Nl 4)4V'uCI6 .'

Angles
Bond Distance (A) (degrees)

Cu -"Clq 2.332 90
CU -- Clqý 2.300 90
Cu -ClI,". 2,793 180
N-Cl 3.34-3,61 (3.48 ave.) Nonbonding
CI - HNH 3 (eq) 2.84-3.07 (2.96 ave.) Nonbonding
CI---HNH 3 (ax) 2,48-2,68 (2.58 ave.) Nonbonding

'Data from Ref. 2.
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".-', v! IV. Charges and populations tor (N11 4)4(Cu(l 6

Charge Orbital population
Atom or Aomnic

bond SCMI-ti-(I DA.IOL2.0 ct orbital S(,,tt -II DIOL2.0 (i

Cu (0.97 0.97 3d 9.75 9,54
4.s 0.273 0.490
41p 0.020 -

CI,, --0.74 --0.45 3p 5.74 5.45
.-0,72 0.43 3p 5.72 5,43

C -0.87 -0.76 31) 5.87 5.76
INH-) 0.92 0.58 - - -
Cu CI(.., - - - 0.198 -

CU Cl,.,); - - - 0.192 -
Cu ----ClI): - - - 0.149 -
Cl .. '- , - - -- 0.028 -
CI... Hj,_ - - - 0.066 -
N It - - - 0,569 -

-0.690

TABU- V. Calculated 'd-d" electronic spectra for CuCl•,

Method Symmetry d-Orbitals AE (eV) Reference

IN[X)-'i D., , -. V
2
-y

2  0,82 fIll
xv -- x I_),2  1.09
.Z:. V: X- 2 V 1.16

MSXa D4h, . 1.85 [IP
xV -, x2-1'2 1.51
X.:, V: x2-.2 1.75

SC-MI--(I' D2h x 2-. 1" , 0294 This work
X1y -- 1.24
xz -- 1.58
y* - 22 1.66

Obser%.ed 945 h 1.03 (7)
(or 1)2,?) 1.24

X : _ 1.58
yzI 1.62

The Cu -- Cl bond distances assigned by Ref. I arc: 2.265 A(eq) and 2.950
Maxa).

h It is not possible to unequivocally assign the orbitals in D2h symmetry, since

both z' and x 2-y 2 have an aR irreducible representation.



spect ra tra11nsitions for thle doulehIt .1d COnt ut~ration of1 ( 'l I I) MVe: ft R~

I le highest Ira nsition in'.1 e l S a remilo' al of thle I) -,. .denra' .siltle
i nto hI? li .,mand -H _i it aes oft l)-, s Ni T m c I r N. I ableI \ p)ro'. tides, A co1Mpariso of
/1U L~ek . ronlli qpL ctra calc ulated b'. di ikren t metlhods. fo r thle tel ragor.Ial ( w( I'

ei uISter. I n Ih is, '. ork. thle total enerere, Calculated IfOr bt ith UrO I~l d Jn Ilk Ci \,'eId states
"Necirc plo\ ed in den'.ing thlespcr

Ihlere appears to he nok published report of' thle solid state electronie specktruml of
N NI 14LCI but theicre iS a si ngleLer~ stalI SpectrumII repol-ted far StruICturall' IN irm lar

'it CI-, 3 [1. At Ihou Om thle aCtuI alI structure o111 hIs laIt ter COmpo N)und is a CI br IdIged
trimer. thle ('u (1 bonld distances are: owo each at 21.150 and 2.280 A\ in thle
equatorial plane and two at 2.780) \ III thle axial V ) direction. IhuIL. thle equLatorial
bonds average to be 2.3 1 5 -0.035 A. and thle aXial bon1dS at 2,-S A. are qui.1te
comparable to those reported for ( N 114 )7( uCl4, I 2, ] .lthough thle closest ( u Cu
distance In thle cesiumr salt. is Shorter ( 3.062 -N ) than the comparable distance in
thle ammonium salt (3.42 .. ). the efl'eet IS not significant, Since aj farmial (L C (U
metallic bond is 2. 50 A. This is apparentl% confirmedLI as fable V rex eals calculated
spectra for ( \11.4 )2,Cu(14 are in good agreement with Spectra obserNed for ('sý('u~l

JIrw Fici O(radjcl ell ('11

I or an'. atomn the electric field gradient (I I(i I maN bie spectifed h" I
eq'~~ 4j x.. .iwhich onk' the dia gonlal elements of 'the field gradlient tenisor

are nun'.anishing in axial s%~ nnmetr\ , InI this latter case, an as\ illnmctr parameiter.
~.is deli ned according to the foll~o'.'ing, equation

In thle molecular em'.rronnient. the tensor for the net ttI( at thle nuLcleus ofa Specific
atomn. .I. niaN be expressed in the I \n)-.No fvrmalsism h%.

N10) \) ( AO v))

I n f q 2 ) all diagonal and, off'diagonal contributions ev a!uated over -N( s pand

c,, must be e'.aILuated. [VMS also requires thle famniliar Sternheirner tactors. but these
rM List he calculated \k. ith refkrence to thle v ariation of the position of the electrostatic
charge relati'. to thle nucleus. This varies from thle USu~a~ll repoI-te~ -, Sternheimer
tactors,. x'. here the perturbing change is at a relati. eON large distance from thle nuIcleus.
andl is thuIs a constantl aIlue. 'Ihe1Se are '.er'. ditfiCult calculations, even fb(r isolated
atom-s oft'. ar\ Ing charge and configuration. All thle pertinent data essential for the
molecular cal1culation hlave been calculated and programmed 1-1, N0. ( rod/icke [ 121.

[h q1 (uad-upole f'rC(.UerIC\ at atom . I ,I'. is given b\ thle expresmim'n
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h " (I - Y2/13) 1 (3)2h

where Q' is the atomic nuclear quadrupole moment. Although the ti:(i is calculated
in atomic units (a,, 3). it is desirable to convert Eq. (3) to megahertz (MHz) units
with the factor 117.64 MHz/a,; 3.

The calculated EFG data for the (NH 4)4CuCI6 are presented in Table VI, together
with magnetic data. There are no observed EFG data reported for (NH 4 )2CuC,4.
but there are data for the analogs methyl ammonium and ethyl ammonium
salts [13].

However, Cu--Cl bond distances in these latter salts are somewhat different
from those found in the ammonium salt. This is likely to effect V.: in an unpre-
dictable way. Nonetheless, the agreement between calculated and observed nuclear
quadrupole frequencies is quite good (see Table VI),

Magnetic g Tensors and Moments

According to perturbation theory, the magnetic g tensor for an electron in a
chemical environment varies from the free electron value, ge, according to the
relation:

g1(i = x, yz) = g, + 2 L K SILiSO,>(O,,LJl(4,,))
. , -E ,

where the free electron, g, equals 2.0023 and

TABLE VI. EFG and magnetic data.

A. EFG data for Cu in CuCI6 (D2h) cluster

QCu Vl vPC.
(10-24 cm

2
) (Ao-

3
) (MHz)

31.64 (calc.)
-0.15 - 1.793 0.071 37.0 (obs. 0)

B. Magnetic data for CuCIl(D 2h) cluster

(ev) (ev) Cfc, CA-. (eV) g9 g j g, g,.fo (BM)

-0,107 -0.061 0-375 0.625 1.619 2,002 2.100 2.098 2.067 (calc.) 1.797 (calc.)
2.110 1.80 (obs.)'

(obs.)b

' Reported for (MeNH 3hCuCI4 and (EtNH 3)2CuCl4 [131.

b For (MeNH 3)2CuCI4 (D4hCuCI6 cluster): R(CuCl),, k 2.9 A [151.
For powder sample at 290 K [16]. The reported value was corrected for diamagnetic contributions.



Li" Si 0 1.n

in "~hich thle efllcti se spin-orbit Coup11ling Constant. X,\ is for all / atomis inkoh ed
in thle grou nd, , W and excited state !ti miolecular orbitals. It is con' ci~tent to
exprcss Eq. ( 4 )in termis of'an Lipper limit to the second-order corretion101, as sho~k n
in Eq. vd~i. 'ere Ali, -is t(or thle lotNest d-d exclcite state

10 1

These relationships haw been ex\pand (Ied I n d e IaIlI tbOr ( 'uC ' 1 anIId ( 'U( 'I telt ctra go)na I
Clusters ( D., ) by Sminth [ 14]., We ha% e 1*0llo\%ed the samne approach i n dew, I ng
simillar relationships for 1) s\ ninetr%

Molecular g tensors have been calculated f'romn the S(Al Hi -( I orbitals. [hei re-
quired values of' X, w.ere Interpolated 1rorn Calculated atomic \ ameIs. Js a l(unctionT
o111 net atom charge and orbital con tigurahion. Both the spatial components, and thle
aw rage g,, g, 3 (g..~ ) are presented in [able VI.

I[he etl'ectlx e magnetic niloment. u,, . nia be expressed to the [irsi order as,:

S IS) S + 1 )1 1 j 1 ; ; j BAt. 0

wNhere S is thle total spin Cot-lb the case in point) X_~ and N/~ are the etk'ectix e spin-
orbit coupling constants I Ibr the mectal (Cu ) and ligand (0 ), respectivly: k and

are the respectixe orbital coetlicients. The results obtained t('or thle magnetic
mioment are contained in I-able V I. It mia, be concluded that the computational
data presented here are in good agreement with those obserxed. [his also lends
support (o~r the calculated result that the unpaired electron In ( MNI,1 ),,CuCl4, is in
an Nw hav.ing Cu 3d. character, rather than an v 2-'1 7 orbital as isý usullyý11 t(Und
Ir ('uCli and ('u('14' tetragonal (104j; ) clusters [141
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On the Electronic Structure of Barrelene-Based Rigid
Organic Donor-Acceptor Systems. An iNmo Model

Study Including Solvent Effects

THIOM AS F OX. NIANFRED KO I ZI N, and NOIKIR ROSCHI*

Abstract

%k(' OrCresen J1n ] \DA hi I '1leCular-orhital in' stm(atIion ti? orizanic molecýulos containing a harr~clen
1110111 h11Jt pros I ldes d rigid i In KIk hetsse an a romatIic don or a nd a inalere ester accept or group. N10ecu tle',
ot this ti pc has e reLcentlý hecn ss nihesicd and charattcri/cd %pectrosýcopicall,. We dfiscuss thc groiund
state an %la rious CWSd ell st ales both miat , O and IT) SOl alHIn Si usem clifrer arc incorpo~rated h% use of
an electrostatic ast model ss hich v, not restricted ti a spherical casits hut allosss liur a c~as~t shape
that isý adapted ti the 54dU tC in iilC a IC. I he calculIat ions indicate Ist -kIi ng cliarne-tranl n.tcr i 1 ) '\Clitat 210ri

in thc ictzon o! the li rst a ronmatic transitit ns. es n in the gas phase. P'i' .141 Xk iiý 55Iis.

Introduction

Photoinduced intramolecular chiarge-transf'er ((1) and elect ron-t ranster (I

reactions liaxe recentl\ been studied intensivelk [1-41. Much attention is focused
on understanding the v ariouIs factors that influence the rate of v reactic ns. For
examrple. the nature of the thermod\ namnic driviIng force and its modification 15 1.
the effects of the surrounding solvent [ 1.0.7 ]. and the spatial relationship between
donor and acceptor moieties 1 2.8-I1)]. In early experimental investigations, thle
donor and acceptor units wsere separated by a flexible spacer which exerted only a
limited control over the spatial relationship between donor and acceptor groups
[4.11], D~etailed investigations ot' orientational effrcts were not licasihle since this
type of mecdiating bridge allowsed for a %ariation both in the actual donor-acceptor
distance as well as their relative orientation. In recent years. new insight into the
nature _ 'the donor-acceptor interaction wvas gained bs connecting donor and ac-
ceptor groups xýia a rigid bridge [ 12-141. In this wAay, both groups are not only held
at a fixed separation. but also In a definite relatie orientation. These wkell-defined
donor-acceptor s-xstems also made it possible to study effiects of the bridge that
go beyond pure geometrical implications, but comprise specific (-through
bond") modifications of the electronic interaction betwseen donor and acceptor
groups [1.8.15]

* \uithr to ss orn cirrcspiindene ',hiiald he addressed.

Internalionat 1 iurnal oif uanturn ( hemrstrv Ouantint ( hemistrx, S% niplsiurn 26,." 4;5 1 ( t ' (942

t'992 Joihni 'sic% & SOWs InL ( ( ( t~~)-76,8/92/010> 1-11
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Since most previous investigatior.; have been carried out in a condensed medium.
it was rather diflicult to achieve a separation ofthe solvent relaxation and its influence
on the i-,1 process from the effects ofintramolecular degrees of freedom. Particularly
the relative importance of the intramolccular and the soivent reorganization energy.
crucial variables in L r theory [2], could not be established reliably. In% estigations
of FT processes in the gas phase would provide an opportunity to overcome these
difficulties since, under such circumstances, the reorganization energy is on1 caused
by intramolecular rearrangements. Unfortunately, molecules exhibiting t-I char-
acteristics are normally rather large and involatile. However. recently a large family
of moderately sized donor-acceptor molecules has been s.'nthesized and charac-
terized [161 which holds promise of providing a breakthrough in studying this
problem. These molecules consist of a central barrelene unit (Fig. I) w hich is
substituted by annelated aromatic compounds as the donor unit and b\ two car-
boxymethylester groups forming the acceptor unit.

In this article we shall report electronic structure in\estigations of dibenio-bar-
relene-dicarboxydimethvlester (DBBD). the prototypical compound of this family
(Fig. 2). We will discuss the electronic structure of tDBBD by building this molecule
formally from barrelene and by successively adding donor and acceptor groups,
We will focus our attention on the role of the rather short barrelene -bridge" in
mediating the interaction of the donor and acceptor substituents. In addition. we
will employ an electrostatic cavity model [) 7.18 j to investigate the influence of a
surrounding solvent on the transition energies of the charge-transfer excitations.
The results of the extensive spectroscopic investigations as well as further theoretical
discussions will be published elsewhere [19 1.

Method

The geometry of the molecules under investigation was derived from molecular
mechanics calculations [201. Common bond distances were used for symmetry-

Figure 1. Sketch ol hlc~clo- 122.21 -2.5.7-octatricne (harrecknc).



DONOR-•.\C(P1OR SNS11AMS 553

MeO OMe

0 0

Figure 2. Sketch of dibenzo-barrelene-dicarboxymethylester (DBBD).

equivalent bonds. The carbon atoms of the carboxymethylester groups were found
to lie in one plane with the carbon atoms of the ethylene moiety. Relative to this
plane, the O--C--O moieties were found to be rotated about the C--C axis by
an angle of about 400 with the carbonyl oxygens pointing -outward". To preserve
the (C symmetry of the acceptor-substituted barrelene unit (see Fig. 2). in the
subsequent calculations a common angle of 450 was used.

INDO/S calculations [21,221 were performed to obtain the electronic structure
of the ground state and of the excited states. To incorporate solvent effects in the
electronic structure we used an electrostatic cavity model with a cavity surface that
is adapted to the molecular shape [18]. The model takes the polarization of a
dielectric medium into account in a self-c.,,sistent fashion. Details Jncerning this
electrostatic cavity model may be found elsewhere [ 17.181.

Results

The electronic structure of barrelene (bicyclo-[ 2.2.21-2,5,7-octatriene, see Fig.
I ) has been the subject of several studies [23-28]. The order of the frontier (r)
orbitals, a textbook example for simple group theory arguments, is determined by
the high symmetry (Dy,) of the molecule: e' < a" (HOMO) < e" (LUMO) < a 1. The
7r molecular-orbital spectrum is displayed in the middle column of Figure 3, also
depicted are sketches of these MOs as viewed along one of the three twofold axes.
In the following we will use the ir molecular orbitals of barrelene as a reference for
the discussion of the electronic structure of various substituted compounds.

The substitution of the barrelene "bridge" by two adjacent electron withdrawing
carboxymethyl groups reduces the symmetry at least to C,, and leads to a rearrange-
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2-

LU

-8:A:

Figure 3. Frontier orbitals of dibenzo-barrelene (t)-B). barrelene (B). and barrelene-di-
carboxomethylester (B-A) as viewed from a vertical C, axis.
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meatII 01'11 th molecularJ Orbitals ( Sec Fg. 3. I [ Ihe rItaIS0'ls l of CA0"L this acto-utItuteI d
barreclene ( B-A )are sketched onl the right-hand side of' Iigure 3. In1 this higure11 thle
i\ ie is along theui e LI (LI aXi's Of thle subSIILtcitu barre1CIClen comp)ound ( eCrtical

In Fig. I ). I Ioxs ever. all Contributions 1rom thle substItuentIs hlae been omnitted for
clarit% . An 1\1)( ) calculation finds onlxl a smiall energetic reclaxation ol the occupied
orbhitals. "x hereas a strong interaction of the virtu~al T orbitals of barrelene with the
electron % ithdra%%ing Substitue~nts Is observed. Iwo accept or-de rive d orbitals are
f1ound in the frontier orbital euerig\ region of' 1 -A. one symmetric. thle other one
antlisvminictric %N ith respect to thle vertical plane that contains1 tile SubhStitUted C
double bond. (This m1irror plane. althoughI no longer a 5\ i nimetr element of' thle
Substituted compound. niaý still be lin oked ito a rather good approxi tration.!i* lhe
antis, mincmtric acceptor-derived virtual orbital interacts strongly with that orbital
oft thle barrelenc I t mo c" set which has the same sý nmcmtr characteristic. Thle
bonding- combination thereof,. the it1 m()o 0'B-A. is lowered in energx 1w about 1 .5
eV. [Ihis orbital exhibits anl acceptor contribution ( COOMe ) of' 521" and a C C
7r bond contribution of' 40;". There is almost no z interaction wýith tile second
partner of the c" set w\hich originally %\ as sv mmetri c wvith respect ito the nodail plane
at thle Substituted double biond. The 7. orbital a7j interacts only wecakly w~ith thle
acceptor orbitals. File tsvo further v irtual orbitals of' B-A drawXn in Figure 3) tile
second and third from the top in thle right-most column ) hawe dominant acceptor
co ntrib utio ns. F rom tlIh ese fi nd InIgs a di1s t Inct e necrg y red uc t Ion ol1 1cII( th i ()t-t t I 510 (
excitation is expected for thle acceptor-subtstituted compound. This is one of' the
key fe'atures of the farimil oldonor-acceptor nmol ecules under discussion. Based on
the composition of the corresponding molecular orbitals this I F( x -t .t *%:) tran-
sition exhibits charge-transticr character as charge density is shifted -upward" from
the u nsubstlItuited **ethy lene" moieties to the acceptor-substituted "ethyl~ene'" moiety,
and to thle dicarboxvilethX lester units.

The orbitals of' the donor-substituted compound diben/obarrelene ( D1)-B) m-ay
be viewed either as orbitals of' a ben~t ( 9. 1 0)-dihvdroanithracene perturbed by a
bridging Cth\ leneC unit or as perturbed barrelene orbitals. Using the latter sebenie.
one ma% relate three occupied (/, h-i. . and /,,) and three x rtuLZI orbitals ( a11. el,
and] a-, to the barrelene orbitals c'. ei',. c" and a'j . respectik el\ Fig. 3). The additional
orbitals of1)D-B in this relexvant energy window, two occu~pied and twNox irtual orbitals.
mnax be rationaliied b\ rel'ercrnce to the l'iet that the frontier orbitals of' ben/ene
are aCtUallx comprised of degenerate pairs. el, ,.and k,' ,,. A significant interaction of'
thle twko heniene f-ragmients in a bent dihxdroainthraccne leads to a bonding and
antibionding, linear combihnation of each of these fo(ur beniene 7r orbitals. For sN m-
rnetrv reasons. the 7r and 7w* orbital,, of the bridging ethyxlene nioiet% can onlx mi\
kwih onc orbital in eachi of these submaniflolds. the one wvith proper nodal structure.
Therefore. \xs arrix at fixe occupied and hxC vir-tual orbitals as sketched In Figure
3. Since the F D )\ ) of'bentene is delocali/ed over thierinig one inds the anttiboniding
Interaction of the variotis C -' C 7 units rc'dme'd in the li Fm0 of' D1)3 compared
to mIm)Ft and. CO sequICntlv. the Fifli(m energy Is /ouv)cn' b\ 0.4 eV compared to
barrelene. [he virtual orbitals of' the ben/o-substituted compound are shifted to
lowecr energy by about (15 eV with respect to the c' lcxel of barreclene fOr analogous
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reasons. I'hereibre. similar to the situation in the acceptor-substituted barrelenc.
but not quite to the same extent, the gap between ii)t()o and I tl() becomes smaller.

From these results one would expect for both derivatives of barrelene a decrease
offthe energy of the corresponding IIoNio(-It M() transition as is indeed the case
lbr B-A where the lowering of the Hiovio-tNIO gap by about 0.6 eV with respect
to the value in barrelene is accompanied by a decrease of the energy of the iitoMO-

-LIM() transition b\ 6500 cm '. However. for the donor-substituted compound the
simple picture of the one-electron levels tails as a guide for the transition energy.
Although a small decrease of the 1iOMO-it r1 gap is found, the IL)o-(i model
yields a value for the liOMO-I tlMO transition which is about 3000 cm ' larger than
the corresponding value calculated for barrelene. As will be shown later. the tran-
sition energ. of the donor-acceptor substituted barrelene results from a combination
of both effects which leads to an o0crall decrease of the transition energy with
respect to the unsubstituted barrelene.

The one-electron levels of DBBD. where both the benzene and the acceptor groups
are attached to the central barrelene unit. are shown in Table I. The iontributions
from the various fragments of the molecule are listed in percent: C -- H denotes
the contributions of the two CH fragments connecting the two benzene rings ( Benz)
and the bridging ethylene unit (C :. C). In accordance with the acceptor-substituted
barrelene compound B-A. the LI'tMO (25a) of I)BBD is located on the bridging

ethylene and on the acceptor. It consists of 54#' ( C C and 34"; COOMe contri-

k ,m 1 I. Energv and Mulliken populations of pertinent molecular orbitals ol 'i03l) (in (C s% mmetrs I.

C--If denotes the populations of the fragments that connect the two ben/one rings (Ben/) and the
bridging eth. lene (C C): ('COOMe denotes the contribution of the acceptor groups. Ihle orital 24a is

the t1OM( ) of 1)13).

Orbital lnerg, (-Hf C C ('()()te[ Ben,
0> [c vf _;_" __'__

2 , I 1.55 1 I 98

2Ia I 5 I 0t 96 3
21, 10.51 2 12 MI 5
22a M(.2, I 8 88
22/, 9.7 6 42 2 40

2_/ 9.02 3 , 5 87

8.92 1 0 0 90'

24a 8.91 4 3 3 90
2P, 7.37 0i 24 4 72

""() OQ 54 34 11
250, ((.6: I 2 1 96
26a (74 0 t 98

1 0 11 ) II14 86
S1.21 1 (I1, 8

2/h 152 01 X8 14
2.Sa 2.05 1 37 1' 14

2,0' 2.77 21 43 21 1I
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butt Ions. omtparced 10 1) -1. thle It I1 ) enerexg' Is I Lered b', 09 k) C hrV c 1110h0111
nIIIera1CiOOn % It th t he aIcceptor-. I'l hC higher Ix I '1%1ng \ HAia Ita orbI) Ita zas tre It iCam nI ()IIhe

aromatic s\ stenis. acceptor ofrbitals fol)lowk at Ccx n hig hernergrmv. \one of' thle f6ir
lvý,hest occupied mnolecular orhitals carries all\ sigin fican t c.Ontri hft ions foiom thle
acceptor. At lovier energ,. one finds acceptor orbital,,. csSen tiallx of' o\\ ccii lone
pair character.

Onl thle basis of' the abox e discussion of thle electronic structure of MOM01 one

expects several lox -lI\ Ing excitations of" sonic chargeL transfer character from the
hhetoccupie orbitals in to thle t I \t. The calcul.ated excitatiOn enlerwies. tt

nonzero cartesian component of' the state dipole as %% ell as the correp~ondil n! ol--
cillator strength are show-n in ['able (I. 'IhIe lo\seSi transition ait '()-7()( crn results
from fihe I 151-f S) excitation and is -lassified as a 1) A\ transition. I hie
amnount or charge tiansielr IS Measured b\ thle change of' thle \ulliken popufation
of the acceptor m(,iet\ ( C C plus COOMe: also show n in [ableC II - About 0.4
atomnic units ot'chaige are transferred to the acceptor during this transition. I he

nethgher states up to about 42500 cm 1arc intra-aromatic transitoiol"(), .
that e~ihiit xer,, little charge transfer. The admix\ture of',A -* *\ type to thle state
'B Is an artil'ct of' the present imNDO parameterization xx hich places, it - -,* mr~n-

sitions too loxx in energ\ [17I.]'he next higher transitions hex ond 42(iOO cmn are
ecwitations into the orbital 2-1, -which is an almost pure acceptor orbital. Thiese
excitations may therefore be viewed as -classical- donor-acceptor transitions. The
nonzero component oJ tile state dipole also showýs the largest change l~ir these
charge-transfler ecwitations. From these findingvs, it becomes clear that thle goal of'

dsgiga rcale, nalcompound that exhibits a loxx-f\ing electron transf-I'r
excitation mnaN be xx ithin reach by, usinrg members of the barrelene based donor-
acceptor comp'exes [!91. ['irst exiperimental cx idence Supporting this Statement
has been obtained Fromn fluorescence spectra oft'ttftt in sarious sol' cts 16 (1.

1 ". I If ( W11CULIIW k!\C!ICd tjicý ot m itin ( -~ m cr u ~i n IIW Si flc C\0 1.m1ofi t hc 1-,arLc-

trm lcUNI" rcdm m b%. thle ihainpu (A ilic %\lhkcn iopuwtins )it tile C ( l) n t he )4 )Nie mokeles

I ncrpz state din'dCe (Y)seIatrf (h rane irfl
State 1cm 1 t~hCj lac t Iu. I (haiieier

Ij( 1 t I sI

I~~~ !3 ).4?1I

A~ N

4B41SIt, I h ) I 1 0I '1 ) -
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HoweN er. close inspection oflthe theoretical results presented here makes it e\ ident
that the lowest excitation of D103). although of definite c character. does not
provide an example for a photoinduced electron transltr excitation. In such a pho-
toinduced i: i piocess. an intra-donor excitation is lollmed by a configurational

change of molecular (and solvent) degrees of freedom A hich entails a stabiliation
of a charge-separated state that would otherwise lie too high in energ. 12..29],
The barrelene-derived ethylene bridge in itid pla.s a dual role in that it pro\ ides
a close spatial arrangement of donor and acceptor unit. But it also entails quite a
strong direct electronic coupling of these two moieties. The ethylene bridge ( C)
contributes substantially both to the donor JIoMo 24; , see Table I) and io the
acceptor "LMO ( 54f-f, ). Therefore. the lowest excitation is no longer of pure donor-
donor character from which an electron transfer process evolves, but exhibits direct
CT character. This may be contrasted with the nature of some higher lying excitations
of t'.ne D -, A which, after suitable geometrical relaxations, could evolve into
typical final states of an electron transfer process that originated from suitable
D -• D excitations. Examples for such "'precursors" of- r final states are provided
by the excited states 5.-I and 61 (see Table 11) which may be described as a mixture
of the excitations from the mo 214u into 25a and from MO 24!' into 17/ (see Table
I). In these cases one finds the acceptor orbitals spatially well separated from the
donor orbitals which allows classification of the transitions l1i - 5.-1 and I. --
6.4 as D - A excitations.

The different nature ofthe various c-r transitions is also reflected in the calculated
solvatochromic shifts. Typically, such shifts of I excitations may range up to 4500
cm I in a polar solvent [30]. Calculated values for the solvent-induced shift of
excitations of DBBD in an unpolar (cvclo-hexane) and in a polar solvent (water)
are collected in Table Ill The transition energies of the three lowest-lying excitations
with significant charge transfer are shown. The i-iOMo-I.vMO transition IB under-
goes a solxent shift of about 1000 cm 1, a moderate value which retlects the rather
low degree of charge separation. For the higher lying transitions with a more pro-
nounced cr character the red shift amounts to 1600 cm 1. As noted preiousl%
[17.18]. the difference of the shifts in the two solvents investigated is rather small
compared to the calculated shift on going from vacuum to an unpolar solvent like
cyclo-hexane. Here, it is important to note that the cavity model emploxed onlh
includes electrostatic contributions. but does not take dispersion interaction into
account [18]. A rough estimate of the dispersion contribution [17.31] yields an

i,\i.ti 1Il. Transition energies On cm ') of the lowest-
lying charge-transfer excitations of 0i10B in talt' and

solvated in cclo-hexane and in 1-t0.

State In vntuto cyc-hexane HIO

/B 30695 29650 24565
5.,I 42615 4097() 40855
6A 43795 42190 42180S
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additional red shift tor all transitions of about 230 cm ' in cyclo-hexane and 190
cm ' in water.

It is interesting to investigate the etlict of the surrounding solvent on the charge
density in the ground state and in the lowest lying (cI states of t)iI. We will use
the total Mulliken charges on t,Lie acceptor group (A) and the donor group (D) as
a rough. but informative measure for such solvent-induced changes (see Fable IV),
While the ground-state charge distribution remains neark unchanged upon sol-
vation, one finds the amount of charge separation remnarkablý increased in the
D - A excited states, an immediate reflection of the stabilization provided b\ the
surrounding solvent. The charge transtfer from the donor to the acceptor unit in-
creases by 301.T, but again this effect is significantly larger lor the proper (, states
5A- and 6.OA compared to the first excited state 1l.

Conclusions

We have analyzed the electronic structure of dibenzo-barrelene-dicarboxydi-
methyl-ester (DBBD) and we have compared the donor-acceptor substituted bar-
relene with both the donor- and the acceptor-substituted compound. The IN()O

model calculations yield a first excited state with definite (I characteristics, in
agreement with experiment [ 16 ]. We were able to identify the structural features
which are responsible for the fact that this molecule has such a low-lying CI state,
even in the gas phase. Ilowever. this transition, although accompanied by a sub-

T-R11 IV. Solvent efldkct on the Mulliken charges of the donor ()1
and the acceptor (A) unit of DBBi) fbr the ground state (1. 1) and tfr
various excited states (IB,. 1, and 60 f. rhe following quantities arc
displased: A. Mulliken population of the C ('-bridge and the
COOMe groups, D), Mulliken population of the henzene rings: D -
A. charge transfer from the donor to the acceptor monitored bx the

change in the population of the acceptor unit A.

Slate Vacuum cyc-hexanc 1t10

,I A 0.112 0.1 15 0.119
) -0.060 0.058 (0.057

III A -0.534 - 0.666 -0.678
1) 0.410 0.506 0.515

1 -- A 0.422 0.551 ().559

5. I A 0.674 -0.76Y 0.727
1) 0.515 0.575 0.533

D -- A 0).562 0.653 0),608

6.-1 A 0,641 0.713 0.741

D 0-483 0, 523 0,545
D -- A 1)529 0.598 (fi22
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stantial charge sep~aration of about 0.4 a~u.. does not exhibit thle characteristics that
are typical for a photoindUced 1:r process since thle ethyldene bridge bctxkeen donor
and acceptor groups contributes both to the initial and final state. l'herclb(rc it
remains to be seen to w&hat extent harrelene based compounds will be able to serve
ats models for the insestigation ol photoinduced electron transl'er phenomena [ 191].

In addition we have applied an electrostatic ca,. its model to investigate the elkect
of a surrounding sol~ent onl the energy of' various electronic excitations and thle
corresponding final state charge distribution. We showed that thle electrostatic in-
teraction leads to a considerable increase of'the charge separation for the (1 states.
Concomitantly, their excitation energ\y is lowered, but this shift Is onl\ of' moderate
size due to the short distance over which thle charge separation Occurs.
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Attempts to Calculate the Electron Affinity
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Abstract

Gas phase acrylonitrile electron affinity has recentl., been estimated to be in the range 0.) 1 to (002
eV. In spite of a strong theoretical prediction on the existence of stable anions for molecules haing
dipole moments larger than the critical 1.625 D. it has not been possible to obtain a posit.'c electron
affinity for acir3lonitrile (dipole moment = 3.9 Dl bv ah mimio sct- and mI2 calculations using 6-31(;.
6-31G*. 6-31 +G(d), 6-31+ ý-G(d.p). and 6-31 I + G-G(2d.2p) bases. , 192 John Wile' & Sons. Irw

Introduction

The formation of the acrvlonitrile anion, AN + e -• AN' AN:
CH, =CH--C--N). has long been known to play an important role in organic
electrochemistry [ 11. Recently it has received renewed attention with the possibility
of chemisorbing electrochemically the acrylonitrile terminal vinylic carbon on ox-
idizable metal surfaces and, from the resulting chemisorbed acrylonitrile anions.
to grow poly( acrvlonitrile ) chains via an anionic mechanism [12,3 ]. In spite of basic

differences between an electron transfer taking place from a cathode to a molecule
in an electrolytic medium and the formation of an anion in gas phase, good cor-
relations between calculated electron affinities ( FA) of the isolated species and their
reduction potentials are often obtained and used to assess the potential of new
monomers prior to their synthesis and polymerization [4 1. We ourselves have noted
a satisfactory relationship between the reduction potentials and the 3-2 IG and 3-
21+G tLtUtO energies (Koopmans' theorem) of neutral acrylonitrile and some of
its methyl derivatives [ 5 1. However. to be confident in such correlations one ought
to understand the important differences existing between gas phase 1:5 and reduction
potentials [4.5b]. Theoretical calculations on the relative stability of the anion.
both isolated and subject to the fields experienced in condensed phase. are expected
to give insight on the dominant intermolecular interactions responsible lfr these
dilkirences [61.

A classical theorem [ 7.8 1 states that polar molecules ha% ing a permanent electric
dipole moment larger than a critical value. I p,,! > 1.025 D. should ,ield a positive

lnternatlwandl Journal , (uantumi ( hcmiqtrý Ouantum ( hcmvstr. S mnposunl 2l. •. • I 'Ct
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electron athinitv. at least in the tixed nuclei appro\imation, Koopmans' appro\i-
mation of the vertical electron athinitx I \[IA ) does not predict stable isolated anions
for acrylonitrile and its methN I derivatives 15. ],In spite of'hax Ing permanent dipole
moments larger than the critical xaluc ( in that series: 3.69 p, -4.50) D). C\-
perimentallx [9 1, and 3.92 pi, 4.62 D theoreticallx ( Rin -3-2 1( ) [5bi and-
contrar\ to the prediction of* the theorem. Since Koopmnans' prediction off \s Canl
easily be seen to be deficient 1 101. more rigorous treatments incorporating relaxation
and correlation etflcts are needed to claim quantitative results,

A fitevature search tfOr theoretical results on the electron allinits of aerslonittrile.
the simplest in the series considered in Rel [5. surprisingly. indicates that only
three works have been published over thle last 20 xýears. all haxing been carried out
at the seniiempirical lexel and .ielding rather diff'erent results. Hiouk and Mun-
chausen [1ll obtain ivx +0.02 eV with a frontier orbital treatment. I !sing the
PPP~ method and the Koopmans' approximation. Younkin et aL. [121 predict a
much larger xalue. [.'\ --- 1.3 eV. From their scaled mwIf) Koopmans results.
Mirek and Buda [ 131 predict an experimental adiabatic electron alfinit\ ( Mxx of'
f-0.33 eVl.

Several experimental studies haxe been dcx oted to acrx lonitrile [1l4-181. hut it
is only recently, that the isolated acrvNlonitrile molecular anion has been claimed to
have been obserxed in collisional electron transfers from high-Rxdberg atoms. Kr* *
and Ar**~. mo AN molecules 1)I9). The collisional electron transf'er From Kr* * to
acrxonitrile. .. N ýt Kr* * - AN' , Kr' . indlicates that the experimental \i -\ of'
AN should be larger than the ioniiation potential of' Kr* *. that is. in the range
10.01 to 0.02 eV.

In x ie%% of the dispersion oftlhe theoretical results on acr\ lonitrile .\I \ present]\
axailablc, the rather lo~k experimental %alue (.01)2 eV )o a ojgae'olcl

exhi1biting a large dipole momrent due to the strong electron attracting nitrile group.
and the lack of rigorous theoretical treatments. \we attemrpt In this contribution to
comnpute thle \ ertical ( k [ \ ) and adiabatic (i m ) electron affinities of acrx loitrile

h\ ariouIs Id' ,itwi procedures Usintg sex eral basis, sets;.

AsPointed oUt in prex ions work, Onl a/b ,itii electron allinitx- calcu.lations, of'
isol1ated mTolecules. thc Cua~ltx of the xk axe function and therefore the basis set pla\
a major role 110.201,1. lie 6-13 I6 basis (I) [2 1.221 Is knoxxn tO \ICld equIlibrium
ve( imetries that compare Aecll ,% ith experiment I I1 and total energics, accurate
enough to obtain reliable results from total cncrg\ differences, It theref'Ore consti,1tutes
an accek~ptable reference basi. to be gradu-all% enriched Mx ith d thoseC atomlic tLiinctions
needed fo~r electron atfinitx caUlculations. I he basis sets .321 that xx ill be :on-
"sIdercd here: are tilc 111Gil). 6~-31 GI~d (ll), ()-31 ~(Id~pt I' iandki
I1 I I ( I 21d.2p) (t \ . thec po)nents. ot the po)lari/atiom and additional ditluse t une-
tiows in bawes ( ll) to i ( ) arc listed in I able I.

( alt I uations hax e been cadrr Ied out ý 111 dithse bases att the restIricte d I tIr iirce --
loc (i k Iii ) . u nrestricte! li artr-ce-1I ick Ii IItI and \ltiller-Plesset I %I[,) lexI %l\101it
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I \111 i I I_\4f4Ll1Ut11 4 ((C 1`10kt/Mt10 an dih I LAW IIIU iti1 s,~li' .1 , 11 % dd' Is I hc
t)-11( i bais4if). Flasis '.CI no)t.tio: ill) 6- i(,:ý 41114 0 11 od lij 11'

6-3 1 -- (itd. 1), 11. b-- ', I - it-',. 21) 1

Bas,,wtr1)Oil 0

II I -k i, I4(4 '4io(K

0,3M il. o )3>(

.1 hfl'n

y m)4s 0,0 IS (4 "43(s

Nitrogen

O.S0.5444 (4.544(444 0,800044 1,8260

yP-(.4 ' o.4)63') 0,.061W'

the (iaussian-9t) series of programis 1261 running onl a I ips5 I I computer. Standard
threshold conditions hlaw. been imposed: 10 (' a.u. as two-electron integral cutotl'.
10 fo'(r the requested convergence on the densits matrices, and 5. 10 har-
tree.hohr as tile minimum residual I"Orces on thle cartesian components.

Results

The equilibrium geometries, and the charge distribution Indices are presented
first. tollowoed by thle comnputed electron albnit\ results.

For each basis set, the geometr\ 441 the neutral and the anionic species, hase b een
Ifutl\ý optinii/ed at the Rill k li . and 1%,110 levecls. res;pecti~cl%. Fhe equihlbriumil
structures t`or the neutral and thle an ionic species, are predicted to bie planar. Ithe
notation fo6r the structural parameter,; ( bond lengths aind angles I is indicated In
I:igUrc I1. and die corresponding valuesý togethermx1ith the Mulliken net atomnic charges
q, and( thle dipole moment ip, are l isted in [able IfI Or P itl and I FF1 resuLltsl and
in -1 able Ill f'or si -2 Calk: ulations. Ini the case oft' lt calculations, S' is also giw n
to assess thle amount of' spin contamination present. as compared to thle Ideal

\)7 ~a IUC.
V~ith the ewceptioln ot thle C.N' bond lenigth. kk hich is gencralls, predicted to()

s~hort at thle I fart rce-- I (), lexecl. t he geometrical para meters, ofAacrxN loni trile calcu~lated
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H1  H3

CT C ) a2

a, r2

H,

C3

r3

N
Figure 1. Labeling con'ention used in rahlbe II and III to refer to the geometrical pa-

rameters of ae•r lonitrile, neutral and anion.

with all bases are in good agreement with gas phase microwave spectroscopy data
127]. The R1-- calculated dipole moments range from 4.26 to 4.36 D and are also
comparab!e with the experimental [91 gas phase value. 3.87 D. but in the average
they are overestimated b,' about 0.5 D. In spite of a strong dependence of the
Mulliken net atomic charges on the basis set. a general observation concerning the
polarity of the molecule can be made. At one end of the molecule. the nitrogen
atom bears a large negative charge. while at the other end the hydrogen atoms are
positively charged. (C and C; are consistently negative and positive. respectively.
while nothing definite can be concluded from the Mulliken charges for (G. The
results of geomctry optimization at the MP2 level are slightly. but consistently better
agreement with experimental data. the C('N bond length being the one that ex-
periences the largest improvement. The MP2 dipole moments are in excellent agree-
ment with the experimental value. The charge distribution is very similar to that
obtained at the RIll- level.

There is no experimental data on the molecular geometry of the acrvlonitrile
anion to compare with our calcuiations. Thus. we can only an,,Ivze the changes in
the geometrical parameters with respect to those of the neutral molecule and their
evolution with the basis set. Considering the till results first. the observations to
consider are an increase of'C C. ca. 0.10 A. a decrease of(" --C. ca. 0.05 A. and
an increase of ('-mN. ca. () 02 A,. djislances \, ith respect to the corresponding n,,nes
in the neutral molecule. As in the case of the neutral molecule. the length of( C.
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on C nehn. and a'w bns rspenctive\dcrae increase . afh 'bnd denrcatha on te other

hand. H ere also the charge pattern is cr% simnillar to that ohtained at the I il lce' i.

'#41 1111#7111

I n add Iit(ion to R I f . (IFII and \1 1) geconit r\ I. 4ptI ll i/utli~lls. S ringle poin11t ItI I I -d
and Uu rth-order Ni 6dIr- Plesst Ni \11 \, 3 and 4 ) cale ti lations based til the
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Y..i, i Ili. Selected N)nd distances tr,) and angles i(,) ol the equilibnum siructurc of neutral acr\ lonitrile
and its anion calculated at the MP2 le\cl. lengths in A and angles in degrees. Mulliken net atomic charges
(q,). permanent dipole moment ip, (in debe). and , S2 of ttm results. Basis set notation: (11 6-

31G. (1i) 6-31G*. I11) 6-31 G(_d). itV) 6-31 ( t Od. p4.I), 6-311 +(i02d. 2p.

Basis set (I) I(l) (Ill) (iP (V) FAp

Acrs lonitrile 4MP2)

r, 1.355 1.341 1.344 1.343 1.337 1.339 [27]
r- 1.448 1.432 1.433 1,433 1.431 1.426 [27]
r, 1,2013 1.182 1.183 1.183 1.171 1.164 [271
at 123.2 122.0 122.1 122.1 122.2 122.6 [27]
U, 116.1 116.6 116,6 116,5 116.5 115.7 [27]

q .. 0.27 -0.33 -0.40 -0.16 --0.18
l(_ -0.08 -0.16 0.01 0.04 0.17

q( 0.04 0.23 0.05 0.03 0.03
0.16 0.19 0.22 0.14 0.10

q" 0.17 0.20 0.23 0.14 0.110
0o 0.20 0.22 0,25 0.16 0.11
qN -0.23 -0.36 -0.36 -0.35 -0.27

!Pt, 3.73 3.79 3.95 3.88 3.87 3.187 [91

Acr\lonitrile anion IMip2)

r, L447 1.425 1.419 1.418 1,416
r, 1.404 1.390 1.398 1.398 1.397
r, 1,197 1.191 1.1 0 1.19() 1.180
"a1  124.0 124.2 123,0. 122.9 123.2
u2 1 !6.9 116.3 116,8 116.6 116.2

q--0.37 --0.46 -0.78 -0.56 --0.56
q. -.0.27 -0.33 -0.21 -0.15 -0.02

q9( -0.03 0.16 0.13 0.09 -0.01

071 0.03 0.06 0.15 0.08 0.04
q)j, 0.05 0.07 0.17 0.09 0(04
Ml 0.06 0.08 0.17 0.09 0.03
qN, -0.46 -0.57 -0.64 -0.63 -0.52

corresponding MP2 equilibrium geometries have also been carried out for 6-3 IG
(1) and 6-31 +G-(d) (111) bases to assess the convergence of the correlation correc-
tions. Total energies are listed in Table IV.

The dependence with the basis sets for predictions of VlA and AEA values cal-
culated in different ways are compared: Koopmans. AS(F and AMPX (.v = 2, 3.
and 4). Koopmans vertical electron affinity (v-,,N) is directly obtained from the
frontier orbital energies of the neutral system (V[A&O) ý -ett t,1O). Another meas-
ure of the electron affinity is provided by the electron detachment energy

AN- - AN'N e , approximated at the Koopmans level from the energy of
the highest occupied orbital of AN' in its equilibrium geometry. calculated here
at the IT II level. ([ .... c T) Total energy differences at the S(F and MP.\
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TABI I W. RKin, I tt. sP2 total energies (in a.u.) for the equilibrium geometries otaer' lontrilc. neutral
and anion. In the case of'MP3 and %w'4 results, the corresponding Mt2 equilibrium geomctric, hate been
used in the calculations. Rtit:* corresponds to total energ, of the neutral molecule in the eLuldihrium
geometr. of the anion obtained at the t in! letel. Basis set notation: (1) 6-31(j. II) 6-3 ((1i. 1I)I)

0 6-31+G(d). (IV) 0-31 + +G(d. p). (V) 6-311 i(2d. p).

Basis set (i) Il) (Ill} (IN) (XI

AcrM'lonitrile

RHF -169.69392 - 169.76801 -169.77343 169.77896 169.81922

RI-* -169.97895 - 169.75196 -169-75929 169.76492 169.80503
sir2 - 170.08303 -170.31611 170.32698 .170.35105 170.50)218
tir3 - 170.07376 - -- 170.31792 - -

\iP4(txO) -- 170.08826 1- 170.32294 - -

%tP4(SDQ) - 1701.09401 - 170.33088 -

Acrylonitrile anion

UH ,- 169.64552 -169.71569 -169.74013 -169.74629 169.78655
iP2 .170.01471 -- 170.25888 -170.29801 -170.32416 -170.48418

MP3 -170.01513 - -- 170.29111 - -

M P4(DQ) -- 170.02509 -- 170.29474 - -

MP4(sDQ) -170.03149 - --170.30339 - -

levels are used to estimate the vertical (VEA: anion in the equilibrium geometry of
the neutral molecule) and adiabatic (ALA: anion in its equilibrium geometry) elec-
tron affinities of acrylonitrile. These calculations are denoted by the self-explanatorx
notations: VLA.•sLI, VEAýMtp,. AEAls(-F: and AEAA.ttp,. Finally. we have considered
VEA " the vertical electron affinity computed as the difference between Uiw- total
energy for the anion in its equilibrium geometry and the RHF total energy of the
neutral in the equilibrium geometry of the anion. The results are listed in Table V.

The energy and symmetry of the relevant frontier orbitals, the HOMO and the
two unoccupied orbitals of lowest energy, tLUMOj and LU MO 2, for acrylonitrile and
its anion obtained at the RHF and UHF levels. respectively, are given in Table VI:
a' corresponds tc a state of a symmetry, while a" indicates a Ir symmetry.

First to note, is the fact that Koopmans approximation, VEA&11 in Table V. does
not yield a positive vertical electron affinity. On the contrary, the electron detach-
ment energy, ED- -, eventually yields positive values as the basis sets include po-
larization and diffuse functions. However, these values are an order of magnitude
larger than the proposed experimental value.

Total energies (Table IV ) still show the anion unstable with respect to the neutral
molecule, and the better theoretically grounded schemes considered in this article
to compute the vertical and adiabatic electron affinity do not predict positive electron
affinity values. The larger discrepancies are observed at the scF level where VEA.AS(T
and AEAjsý-(. range from -1.693 to --1.225 eV, and from -- 1.317 to -0.889 eV,
respectively. As the basis set is enriched with polarization and diffuse functions,
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T."ttI F V, Acf\ !,tnitrilc crtical (k It ). adiabatic (-- o\) , lcctron alfinities and electron detachment l)l A)

energ. (in eV). Basis set notation: (I) 6-31(;. (II) 6-31W. 0Ill) 6-31 Q(d). (IV) 6-
31 i• (id, p). (V) 6-311 t( i2d. 2p).

Basis set (!) (Il) (111) (I ) IV)

Acrs Ionitrile

S2.607 2.K012 1.7 j 1 0.915 0.880
IA 0.005 -- 10.0 ).454 0.469 0.512
,1 1.693 1.827 - 1.238 -1219 1.225
I I s, 0.918 -0.987 -0.521 0.507 0.503

1 -. 317 1,424 O-- 06 -)0.889 0.88
% -2.231 2.268 0.948 0.891 0.658

, :-aMP" 1.859 " 1.557 --().788 -0.732 0,490
At N - Il - 0.730 - -
.AL ,4,1-•, 1.719 - •0.767 -

A[ "%tI 4 \~)I - 1.70t - - '0.748 -

vE-:..-1 -rand AEA1,As(T slowly tend towards less negative values (Fig. 2). As expected,
the V:A..•sc(- data are considerably less negative than the VE.A,_S(, and AFA.IS(I. values,
but silll indicate that the anion is less stable than the neutral molecule at the HF
level, even at the computed equilibrium of the charged species. When adding cor-
relation corrections at the MP2 level, the situation is improved but the results remain
negative both for the adiabatic and the vertical electron affinity. The importance
of diffuse functions for the consistency of the treatment can be seen from Table V
where correlation corrections to the electron affinity are approximately 0.2 eV for
basis (I) and reduce to 0.03 eV for basis (II) as the order in the perturbational
treatment increases. This results tends to support the observation by Baker et al.

TABLI- VI. RH)- and UtI1F energies (in eV) of the IIOMo and the two unoccupied orbitals of lowest
energy, I.i:) 1 and L.t'MO: ofacrylonitrile. neutral and anion. Basis set notation: (I) -- 6-31G, (11) I- 6-

316*, (I11) = 6-31G(i(d), (IV) - 6-31 + +Ggd, p). (V) 6-311+ rGi2d. 
2

p).

Basis set (I) (i1) (III) (IV) (V)

Acrylonitrile (RWi:)

11 MO - 10.770 (a") - 10.821 (a") -- 10.963 (a") 10.960 (a") 11.026 (a")

Jk '-oo 2.607 (a") 2.802 (a") 1.711 (a') 0.915 (a') 0.886 (a')
ItMo, 5.153 (a') 5.348 (a') 1.850 (a") 1.459 (a') 1.432 (a')

Acrxlonitrile anion t;if-)

HIOMO 0.005 (a") 0.011 (a") -0.454 (a") -0.469 (a") 0, .512 (a")
I.11MG1  10.013 (a") 10.220 (a") 5.687 (a') 4.286 (a') 4.213 (a')

1,uMo. 10.983 (a') 11.212 (a') 5.746 (a') 4.308 (a') 4.230 (a')
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VEA KO VEAA'*SCF AEA AscF VEAAMP2 AEA AM P2 VE-A" ASCF It

0-

-2

I It III IV V

-3

Figurc 2. 1,olution %ith the basis set of the %arious electron aflinit). estimates fIr acr%-
tonitrilc.

[201] that correlation corrections at the Mw2 level can lead to good agreement between
theory and experiment.

Discussion

The critical dipole theorem is a very strong one. It implies that any isolated
molecule, in the Born-Oppenheimer approximation. should have an infinite number
of bound anionic states frovided that the leading component of a multipolar ex-
pansion of the long range part of the potential experienced by an incoming electron
is dipolar, and that the critical dipole is exceeded. Details of the short-range potential
(whether repulsive or attractive) are irrelevant to the existence of bound states.
although they do affect their actual positions in the spectrum. Indeed, the bound
states should manifest themselves in terms of negative unoccupied HF orbital energies
if the conditions of the theorem are satisfied. It is rather unexpected. therefore. that
a conjugated molecule such as acrylonitrile with the powerful electron withdrawing
C=N group leading to a dipole moment larger than the critical value of 1.625 D
does not readily lead to a stable isolated radical anion with the basis sets used. The
situation as it stands is rather disappointing because these basis sets, which have
been proposed and shown to work on more "innocent- anions [20.25 ]. are already
quite large and prevent larger molecules from being studied in this way.

Our results, combined with the analysis that leads to the critical dipole moment
theorem about [ 7,8 1, suggest that the state of the acrylonitrile anion should be of
a symmetry. resembling a Rydberg state. the electron distribution of the extra elee-



iron being localized in thle )os;iti'.el\ charged regions of aerylonitrile. that is. nearb)%
the hydrogen atomns and possiblý ~ and far from the electron rich areas, that is.
the nitrogen atom and the C C bond. Indication t r this is pro% idcd the fact that
the i~t iO, in neutral acrvlonitrile is o a' ( or (T) synmmetry lbr bases ([if ) to ( V)
which Include diff'use functions. w'hile bases ( I) and ( 11) belong Lo u" (or -,T) svm-
rnetrv. Hlowever, results onl tne anion at the tiii. and miP2 lceves indicate that the
additional electron charge is mainly distributed on thle C C -C_=.-_N backbone
wNhere, as indicated hi. N-Mulliken atomic charges. C, , C,. and N bear more negative
charge. 'in agreement with the fact that the anion tiomo is of a" (or ir ) s\ mmetry.

W'hile still so far a%%ay from a positive value. the use of more refined theories
(e.g.. hig]_her orders of Mi'. direct methods) is not justified, and unlikely to be rewarded
in leading to a more accurate (or positive) estimate of I.-x. Indeed. calculations
with largest basis set at the kiP2 level still yield an estimate for 1[A of ---0.5 eV. a
long way from being positive, Indicating that something quite fundamental, possibly
in the basis set, is still missing from the treatment. It is unfortunately difficult to
know what extra functions might need to be included-both in terms of angular
momentum and exponents. Intuition or trial and error is not desirable, not only
because basis set calculations-particularly on inclusion of correlation-represent
a major computational undertaking but also because there is a need to maintain
balance in treatment to avoid a better representation of the anion compared to the
neutral that might lead to spurious results in total energy differences.

The case of acryslonitrile serves to illustrate, once again, the difficulties encountered
in calculating ts.Yet, to get a detailed understanding of the electrochemical
reduction process in condensed phase. it is essential to know about the intrinsic
electron attachment capabilities of molecules, that is. gas phase electron affinity'.
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Isotope Substitution Effects on Preferred
Conformations of Some Hydrocarbon Radical Cations

S. LUNELL and L. A. ERIKSSON
Dciret 0QuantumI Chi'nnvri I- plywh!i I. pio'ervii I 1t- I20 ;'u1a.'

Abstract

"Irhe stability of different contorrmational isomers of pariiall. deuteratcd radical cations of ethane.
butane, and cctopropane is studied at the I F.Ws-.tG* and MP2-3',* ,e'e,-. li i s'hon %hat the
superposition patterns of spectra corresponding to different isomers. obsered in ESR spectroscop,. arc
accurately reproduced bN Boltzmann statistics based on difl.rences in %ibrarional icro-point energie,
(ZPE). proided that the temperature is high enough to o,•ercorne esisting barriers toward internal pscu-
dorotation in the cations. For the ethane and butane cations. the most stable conlormation, are, as
expected, those which are dcuterated in the short CH bonds, while -his is Found not to be the case Ir
the cyclopropane cation- The latter result is explained b\ shifts in the low-Ifrquene", bending modes.
which counteract the anticipated isotope etffct on the C--H stretching modes. , 19•2 Jhn Srce, &
Sons, Inc.

Introduction

Radical cations have recently been the subject of several experimental and theo-
retical investigations I[], partly because of their importance as (highly reactive)
intermediates or initiators in a large number of chemical reactions. The experimental
techniques used in most of these studies is low-temperature matrix isolation electron
spin resonance (ESR) spectroscopy, where the test compound is mixed with a matrix
substance (usually a noble gas, a halocarbon or SFO) in low-concentration ýIypically
1/10,000), after which the mixture is frozen and irradiated by -y- or X rays.

In the study of hydrocarbon radical cations. selective deuteration in combination
with ESR spectroscopy makes it possible to clearly distinguish between chemically
inequivalent protons, providing detailed structural information about the radical
cation in question. The important difference between the proton and deuteron in
this connection is, of course, their different magnetic properties. At the same time.
however, the mass difference between the two isotopes will affect the vibrational
properties of the radical cation. In a simple, uncoupled harmonic oscillator model.
the zero-point vibrational energy (ZPE) of e.g., a C--H stretching vibration is
proportional to Vk/mv, where k is the force constant of the C-- H bond, and mil
is the mass of the hydrogen atom. This implies that upon deuteration. the deuterium
atoms will preferentially occupy sites with large force constants in order to lower
the total ZPE. This is of special importance when chemically equivalent protons

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 575-585 (1992)
1: 1992 John Wiley & Sons, Inc (CC 0020-7608/92/010575- I1
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in the neutral molecule become incquivalent in the ioni/ed systems, as a result of
Jahn-Teller or other distortions.

In the above-mentioned ESR experiments, the deuteration is performed before
the radical is produced. In cases where it is possible to obtain diflerent substitutional
or rotational isomers, relating hydrogen positions which are chemicall\ equi\alent
before ionization, it may be difficult to observe a unique ground state structure. At
low enough temperatures, however, it may be possible to reduce the vibrational
(thermal) motions of the system enough to single out a unique ground state con-
formation. In the case of the partially deuterated species, the bonds ha%ing tile
largest forc2 constants are generally the shorter ( --- tt bonds: these \ ill thus be
expected to be occupied bN the deuterons. An illustrative case is pro\ided by the
methane radical cation where, by using doubly deuterated methane. ('l.1)D. it was
shown that the Jahn-Teller active cation distorts into a structure of(C2 , symmetry,
with two elongated (C--- H) and two shortened (('-- D) bonds 121. This has also
been confirmed by extensive theoretical studies of the vibrational motions in this
system [3,41. In a more detailed treatment, of course, tile full potential energy
surface must be calculated, and the vibrational energies extracted from this by
means of a normal mode analysis.

At somewhat higher temperatures, however, it may not be possible to deduce a
unique ground state conformation, and a superposition of spectra corresponding
to various isomers is instead observed. Let us, as an example. consider the ethane
radical cation. The structure of this species is such that two of the C --- H bonds
(in trans positions) are elongated and tilted inward (cf. Fig. I) [5]. These will be
referred to as the "in-plane" protons. The four out-ot-plane hydrogens with short-
ened C -- H bonds constitute the second set of chemically inequivalent protons.
The hyperfine structure is confined to the two in-plane hydrogens in the tran.x
positions. For example, in the doubly deuterated ethane cation. CH 2DCH 2D'. there
are three possible rotational isomers that can be observed experimentally, the spectra
of which differ strongly because of the different magnetic properties of the nuclei.
These are formed in such a way that none (I). one (I1), or both (Ill) of the in-plane
protons are deuterated, as depicted in Figure 2. The observed spectra will be a
superposition of these three isomeric types. The relative abundances of the different

Hi
H-6

CI L579

H4143.3 0 /.

/ H3
H2

Figure 1. The geometry of the 2A, electronic ground state of the ethane radical cation,
optimized at the MP2/6-31G** level (from ref. 5).
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isomers are deduced from the relative contribution of the corresponding spectra to
the observed spectrum.

In this stud,, it is shown that the relative abundances ofldillerent substitutional
isomers at a given temperature can be predicted from Boltzmann statistics based
on their ZPE diflierences. The partially deuterated radical cations of ethane ('-t 1I,).
n-butane (C4,1-). and cyclopropane (c-Cd-,.) are given as examples.

Method

Equilibrium geometries were calculated on the MP2/6-3 1(i** level for the ethane
radical cation and on the HF/6-3 IG** level for the n-butane and c-propane cations.
At the equilibrium geometries, vibrational frequencies and ZPI- were calculated
for the undeuterated and partially deuterated cations. using the same levels of ap-
proximation. respectively. The program systems, GAUSSIAN 90 [61 and GAMIESS
[71. were used. The relative abundancies ofthe different substitutional isomers were
calculated using Boltzmann statistics, based on the ZPE differences between the
isomers.

Results

(* "ILl,

The ethane radical cation is. like the methane cation. Jahn-Teller unstable. Re-
moving an electron from the 1e, orbital of the neutral molecule (D+,, symmetry),

the system distorts in such a way that two of the hydrogens become tilted inward.
as mentioned above. The cation thus attains a structure of C2 j, symmetry, and has
a 2,•. electronic ground state. Computationally. the MP2/6-31G** level has been
found to be the lowest possible level to reproduce the correct type of structure 151.
and has been used throughout this study.

Considering the three types of isomers (cf. Fig. 2). it is found that, lbr a given
stoichiometric composition, the diflference in ZPE between isomeric types I and !I,
and between isomers 11 and Ill, is approximately 1.5 kJ/mol. Type I. where only
the short. out-of-plane bonds are deuterated. is the most stable tbrm (Table 1). At
4 K, only the isomers with the lowest ZPE (11 for C(-[DCD, and CHD&(D4 , I for
the rest), are present. When the temperature is increased, the other isomeric forms
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Tl8IAt 1. MP2/6-3,IG** calculated /cro-point energies

and degencrac. factors for the %arious dcuecrated isonmer%
of the ethane radical cation. Isomeric týpe I has neiiher
positions I nor 2 cf'. Fig. I ) deutcrated. In type II, one of
the positions, I or 2. is deuterated and, in tipe III. both

H I and 1t2 hase been substituted for deuterons,

[)eutcrated ZPf I Degeneracy Isomeric
position (kJ/mol) factor type

-- 185.9422 I I

3 177,4849 4 1
1 1789780 2 I1

3. 4 168.9627 2 I
4.5 169,IX)67 2 1
3. 5 169.0173 2 I

1. 3 170.4508 4 It
I1 5 170.5081 4 11
1. 2 171.9890 I Ill

3.4. 5 160.4753 4 1

1, 3.4 161,8616 2 If
I. 3. 6 161.9628 4 II
1. 3. 5 161.9716 4 I1

2. 3.4 161.9737 2 11
1.2, 3 163,4505 4 Ill

3, 4. 5,6 151.9250 I 1
1 3.4. 5 153.3654 4 11
I 3, 5.6 153.4202 4 11

1 2, 3.4 154.8504 2 Ill
1 2. 3.6 154.8964 2 III
1.2 3.5 154.9036 2 Ill

I, 3.4. 5.6 144.8065 2 11

1. 2, 3. 4.5 146.2889 4 Ill
1,2.3.4.5.6 137.6673 I IIl

also start to be populated. At 77 K. the calculated ratio 1:11 (11:111) ranges from 5:
2 (CHD2CHD2) to 20:1 (CH 2DCD) (Table 11). These results are in qualitative
agreement with the experimental findings of the ESR measurements made in SF6

matrices at 4 and 77 K [8,9]. Analyzing the individual frequencies of the singly
deuterated species, it is shown that the differences in ZPE between the isomeric
forms can be accounted for by the difference in stretching frequency of one particular
C - H bond before and after deuteration (cf. Fig. 3). This difference is approximately
160 cm ' (1.8 kJ/mol), to be compared with the total ZPE difference of ca. 1.5 kJ/
mol. The uncoupled harmonic oscillator model thus provides a satisfactory model
for the observed behavior of the partially deuterated ethane cation.

n-(Ct4fI

The ESR measurements of the doubly and quadruply deuterated n-butane cations
(Fig. 4) in CF 3CCI3 , at temperatures between 4 and 120 K. clearly indicate a non-
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T.4BL II. Bollimann pxopulations and abundance ratios (in "; ) at 4.2 K and 77 K. calculated lar thc
diflerent isomenc contormations in fable I.

[E -~ [-.,)/Rt] Ahiundance ratio
Deuterated

position Isomeric IN pC 4.2 K 77 K 4 2 K 77 K

3 I 1.0 1 ,0 100.0) 954

1 I12.- to 0.007 _- 4.0

3, 4 1 I.i0 1 0 100.01 93.1
I. 3 II 3.I- 10 O 0.098 - 16f4
4, 5 I L.1 I 0 57.5 45ir
3. 5 1 0.738 0,984 42.5 45.1
1. 5 It 2 I • 10 0.006 - 8.8
1. 2 I11 8.1 -0 1 ' 0,0)09 - 0.2

3, 4. 5 1 1'0 1.( 1001)0 79.8

1. 3. 6 11 3.2. 10 ) 0.008 -0 7.8
1. 3. 5 If 2.5" toI 0.097 - 7.7
2. 3, 4 II 2.3- 0 to 0.096 - 3.8
1, 2, 3 III 9.9- I1 0.0 10 - 0.9

3. 4, 5.6 1 1.0 1.0 I00.0 70.2
1..3, 5, 6 I1 2.5- 10 o 0.097 - 27.2
I, 2.3.6 I3 I,0 110 •" (to( -- 1.4

I. 2. 3. 5 III 9.0. 10 0.0110 - 1.2

'.3.4. 5 II l.0 1.0 O10)0. 95.3
I, 2. 3. 4 111 3.4. 10 '• 0.099 - 4.7

I. 3. 4. 5. 6 If 1.0 1.0 (0).O) 83.5
1. 2.3. 4, 5 I1l 3.7. 10 0 ,.099 I 16.5

statistical superposition pattern of the different rotational isomers possible [10. 111
in analogy with the discussion made above. Defining the terminal in-plane hydrogens
by the H - C - C - C( - Me) and (Me-- IC-- C - C - H planes, the three iso-
meric forms, 1. 11, and I1l, are analogous to those for the ethane radical cation (cf.
Fig. 2). The statistical ratio between the three isomeric conformation types 1, II,
and III is for the n-butane-ll.4,4-d 4 cation 1:4:4. and 4:4:1 for the n-butane-l.4-
d2 cation, respectively. The in-plane C-- H bonds of the terminal methyl groups
are the longer ones, analogously with the ethane cation. For the n-butane cation,
the in-plane C--H bond lengths are 1. 1095 A, and the four methyl out-of-plane
bonds are 1.0905 A (MP2/6-3 IG*). Correspondingly, the ZPE for the species with
the out-of-plane positions deuterated are expected to be lower than those where
one or both of the in-plane protons are replaced by deuterons. This is also confirmed
by the calculations (Table 1l1).

The observed ratios for the partially deuteiated I,1,4,4-d 4 cation of n-butane at
77 K are not the statistical (degeneracy) ratios of 1:4:4. but rather 3.0:4.9:2.1. The
ZPE calculations at the UHF/6-3 IG** level, and subsequently calcuiated abundance
ratios, give the distribution 2.9:4.7:2.4 at 77 K [121, i.e., in excellent agreement
with the experimental data (Tables Ill and IV).
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Figure 3. Vibrational frequencies of the (a) undeuterated: (bN in-plane singly deuterated.
and (c) out-of-plane singly deuterated isomers of the ethane radical cation, obtained from
MP2/6-31G** frequency calculations. Cases (b) and (c) belong to the isomeric types I1

and I of Figure 2. respectively.

For the 1,4-d2 cations, the experimental ratio at 77 K is 6:3:(1). which is also
reproduced very well by the theoretical analysis. The theoretically obtained ratio
at 77 K is 6.5:3.2:0.3. At 4 K, the experimental distribution is 7:2:(0) which, from
the theoretical analysis, indicates that the rotational motion of the terminal methyl
groups are frozen at 40-45 K (Table V). The activation energy for the rotational

113 H4 H3

"I"v- 20 03.- 2  H4 H2~
C3 1. •186' -C -

H7 H9 HID H3C "

Figure 4. The HF/6-31G** optimized geometry of the gauche form of the n-butane
cation [1 2], showing the labeling used in Tables IlI-V.
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".AI L- Ill Calculated (HFI/6-31G**) /cro-po(int Nibrational energices and Bolt./mann pomulations for
the dikicrent rotational isomers of the n-butanc- 1.1,4,4,c-at ationll (f!F/3-2 Ki rcsults in parenthesces.

Statistical ZPF cnerg, expf(I[-FI(/R II Rotational
Undeuterated positions %%eight (kJ/mol) 1 77 K isomer

A. Trans conformation
5,.63 I 320,132 _ )OW I
5, 8 [5, K0) 6. 7: 6, 9] 4 320.461 0.5116 if
7, 8 [9, 10] 2 320.981 0.2271 Il

7, I0 [8, 91 2 321.1014 0,2157 HI
B. (ialc/h conformation

5. 6 t 320. 190 (32 3-028) 1.0000111 .()0011) I
5. 8 [6.7] 2 320.776 (323.3016) 0.4004 (0.6477) II

5. 10 [6. 91 2 320.744 (323.273) 0.42019 (01.6820) 11
7. 8 1 321.31)8 (324.103) 0.1 744 (0.1865) III
7. 10 [8.9] 2 321.1810 323.811) 0.2130 (0.2943) I11
9. 10 I 321.145 (323.679) 0.225)) (0.3617) I11

motion has been estimated to be 9.5-10 kJ/mol. with a frequency factor of 1.8
-3.9- 10'' s [13]. Inserting these numbers in a rate equation of Arrhenius type.
the lifetimes I second at 45 K. and I min at 40 K are obtained. Below 40 K. the
rotational motions may thus be assumed to have stopped, which agrees very- well
with the theoretical findings.

c-C3d

The cyclopropane radical cation is Jahn-Teller active, and distorts from the
symmetric D,3, structure, to an isosceles. obtuse triangle of C,, symmetry (Fig. 5).
The electronic ground state is -,A,. In the study ofthe different isomers ofthe doubly

TABI - IV. Calculated (HF/6-3 16**) and observed abundance ratios of the rotational isomers I-I11

of the n-butanc-l. 1,44.-d 4 cation (iF/3-21G results in parentheses).

Rotational isomer I 11 III

A. Trans conformation

Statistical abundance ratio I. 4 4

Calculated Boltzmann population I. 2.1466 0.8855

Calculated abundance ratio 2.5 5.2 2.3

B. (iauche conformation
Statistical abundance ratio 1 4 4

Calculated Boltzmann population I. (1.) 1.6426 (2,6594) 0.8254 (1.1368)
Calculated abundance ratio 2.9 (2.)) 4,7 (5.5) 2.4 (2.4)

Experimental abundance ratio' 3.0 4.9 2.1

" Ref. M(1; observed in CFXjCClI at 77 K.
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TARBI I V. Calculated (1lt:/6-3 IG**) and obsersed abundance ratios o! the rotational
isomers l-Ill of the gauche torm of the n-butane-1.4.-d2 cation.

Rotational isomerTemperature

(K) I it III

Statistical abundance ratio 4 4 I
Calculated abundance ratio 77 6.5 312 o.3

50 7.4 2.5 0.1
45 7.6 2.3 1).!
40 7.9 2.0 0. 1
30 9.4 0.6 0.0)

4 10.0 0.0 0.0
Experimental abundance ratio 771 , 3

4' 7 2 (1)•

Ref, I observed in CFCCI3.
, The contribution from isomer III is only approximate. because the center lines of the

spectra are affected by quartz signals [I I.
" Ref. I I observed in CF2ClCFCI.

deuterated cyclopropane radical cation. the ZPE were calculated at the UHF/6-
3 1G** level of theory, and the abundance ratios were computed as outlined above.
The ESR measurements with which the computational results are compared, were
performed at different temperatures between 4 and 77 K [141.

The six protons of the cyclopropane cation form two sets of chemically inequi-
valent atoms: the four "basal" hydrogens (R(C-- H) n: 1.075 A). and the two "top"
hydrogens (R(C-H) z 1.078 A), respectively. From the uncoupled harmonic
oscillator model, one would thus assume the deuterons to preferentially occupy the
basal positions where the C-- H bonds are shorter. However, the ESR measurements
of the doubly deuterated isomers of the cyclopropane-I.l-d, radical cation show
that the 1,1-substitution (i.e.. deuteration at the "top" carbon) is preferred at low
temperatures t 141. As can be seen from Table VI, the same result is obtained from
the theoretical calculations [151.

At 4 K. the observed ratio between deuteration of the top carbon (I) and the
basal carbons (II) is 2:1, instead of the statistical ratio 1:2. According to the ZPE

HI' HI

//- 476
1075 e\

H3Y C3  - C2 - H2
f 1 73 '

HY H2'

Figure 5. fhe optimized structure (11F/6-3 IG**. ref. 15) and labeling of the cyclopropane
radical cation (CG., symmetry.).
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i xi. V 1 I. Bohzmann disribtllln. and.
parcnwhe,,. cxilculzued abundance ratios, lar

the I.I and 2.2 (3,3) isomcrs of

c\ dopropanc

-I cirnprature
(K . 2.2 (3.31

100 I .0000 0.499i

(6,') (3,3)
7' 1 (0000) 0.3306

(7.') (2 Q 5)

5)) 1.0000 (0.1248
(S. ) (I. I1)

20 1 .0000 0(.0)010

analysis (Table VI). this corresponds to freezing the thermal eqLilibration at 100
K. This temperature agrees with the experimentally observed temperature for the
onset of a dynamical averaging between isomers l and 11 [ 14].

At temperatures below 50 K, only the isomeric type I has a nonnegligible pop-
ulation, which agrees with the experimental result obtained after annealing the
sample frozen to 4 K at slightly higher temperatures, in which only isomer I is
observed.

The results from both the theoretical and experimental studies show that the
uncoupled oscillator model alone cannot explain the preferred occupation sites of
the doubly deuterated cyclopropane radical cation. In an analysis of the individual
frequencies of the undeuterated and singly deuterated cyclopropane cations (cf.
Fig. 6). it was found that the changes in the high-frequency region (>2000 cm ').
corresponding to the C - H/C--- D stretching vibrations, are such that the ZPE is
lowered more for the isomer where one of the basal carbons is deuterated, than
wh,ýn a lop hydrogen is replaced by a deuteron (Table VII). This is thus in accordance
with the simple harmonic model. The fact that the opposite is observed in -eality
is, hence, a result of the strong effects on the low-frequency bending modes, which
generate a lower total ZPE for deuteration at the top carbon. than for the case
where a basal position is deuterated.

Conclusion

Vibrational analyses have been performed at the UHF/6-3 IG** and MP2/6-
31(G** levels on partially deuterated isomers of the ethane. n-butane, and cyclo-
propane radical cations. In the first two cases, it is found that Jeuteration prefer-
entially occurs at the shorter binding sites, where, on account of larger force constants
for C --- H stretching, the largest lowering of the total 7PE is expected. In the cy-
clopropane cation, however, the effects on the C-- P/C .D stretching vibrations
are compensated by strong effects on the low-frequency bending modes. thereby
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((C

2l J a Iic

Figure 6. Frequency distributions (cm') of the undeuterated (a) and CI and C2 singl%
deuterated 1(b) and (cl. respectiely] vcyclopropane radical cations. From ret. 15.

stabilizing those isomers where the deuteration occurs at the longer binding sites
(at the "top" carbon atom). For all these species, the Boltzmann populations and
abundance ratios are calculated at different temperatures. These analyses fully de-

TABLE VII. Vibrational frequency components in the high- and low-frequency
regions (cm 1) along with the total ZPE WkJ/mol) for the undeuterated and singli
deuterated isomers of the cyclopropane cation. The results are from UHF/6-3 IG**

calculations.

Frequency range

Deuterated High Ilow ZPE
position (2000-3500 cm (0-2001) cm ) (kJ/mol)

-la) 20200.29 16454.88 219.0073
CI. apical (h) 19321.48 15753.81 2)1."794()
(2. basal tI 1930(2.477 15869.69 210-3704



ISO I PIf St tWiI IO F It,10 1 Fl I C I S

scritxe the nonstatistical superposition patterns betsAeen ditkerent substitutional ISO-
mners. obser-ved in low,-tempewrature FSR experinieriv,
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Studies on CO Bonding to Rh Clusters Using an
Intermediate Neglect of Differential Overlap Theory

to Model Heterogeneous Catalytic Reactions

GUILLERMINA L. EStIUI and MIC(NAEL C. ZERNER
Q)uanitim A'eo¢rt I',l ('lr . t'imersar whl" o ititi~. til' t/,' P'orid(13_2611

Abstract

The interaction of CO %ith rhodium clusteis of difltrent stwes is studied b% nmcars o!0 Intermediate
Neglect of Differential Orbital (INtX)) calculations. Interactions of both a and r t.pe are ,ell-known to
contribute to the metal -- CO bond ftrmation- [he relatise importance of the repulsike Rh 5a ('O
interaction, with the metal and the back-bonding to the ,-* CO empt% orhb!al in the stabihi/ation 41 the
bond is analyzed as a function of the cluster size and the coord.itation geomctrs. It is found that the
shift ot charge in the larger metal clusters brings about a reductmn of the Rh 5n ('O repulsion, and
this redistribution is important to change the optimal CO bonding geometrs, from brnii,,tc to on wlt
'- 1942 John Wiley & Sons. Inc.

Introduction

The catalytic activity of metal surfaces can be modified in order to selectively
improve the performance of a given reaction. A rational modification of the metal

topology, electronic and/or magnetic characteristics by means it f the addition of
either inhibitors or promoters, that may vary from alkali metals to foreign transition
metal atoms deposited in controlled amounts, makes it possible to desiga the best

catalyst for a given reaction [1 -4].
The design of a catalyst is based on the knowledge of the effect that a given

modification will have on the activity of a given surface towaid a given reaction.

Understanding the interactions between small molecules and transition metal atoms
is, thence, a central matter for the design of electrocatalysts. Quantum chemical

calculations are particularly appropriate for this objective, as they give a quantitative
description of the interactions at an electronic level and a quantitative trend of

their change under the effect of different perturbations.
Second- and third-row transition metal atoms are the choice in industry because

of the selectivity of their reactions in normal environments. The large number of
open-shell orbitals associated with them makes, on the other hand, the quantum

chemical calculations of these systems a challenge for the theoretical chemist.

A great interest exists in characterizing the interaction of CO with transition
metal surfaces 15-121. Carbon monoxide provides a particularly suitable model

adsorbate because of the sensitivity of its properties to the characteristics of the

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 587-604 (1992)
•e 1992 John Wiley & Sons. Inc. CCC('(X)20-7608/92/010587-.8
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bond. It has the additional significance of acting as a poison for the catalytic oxidation
of small organic molecules on noble metal surfaces [ 13,14 1.

Rhodium, on the other hand. matches the requirements of being an important
catalyst in the oxidation of organic fuels and in energy conversion mechanisms
[15]. and, as an element of the 4d block has only received cursorN theoretical
attention.

Although surfaces may be approached as a continuum through the definition of
two-dimensional periodical properties [ 161, chemisorption at low coverages is usu-
ally better described, because it implies a localized interaction, by means of the
interaction of adsorbates with finite clusters that model the surface and the adsorbed
ensemble [17-19].

In this initial study, we analyze the interactions of a single CO molecule with
Rh clusters of different sizes to study the influence of the size of the cluster in the
description of the adsorption bond.

Different CO coordination geometries have been identified on both small Rh

clusters [20,21] and Rh surfaces 122-241. Whereas. according to ah initio calcu-
lations, two-fold (bridge) coordination is more stable for the small structures [Il].
experimental data indicate- a slight preference for the one-fold (linear. on top)
coordination on Rh( I I ) and Rh( 100) surfaces [23].

Interactions of both o and ir type are well-known to contribute to the metal -- CO
bond formation [ 5.12 ]. According to ah initio calculations. interactions of the o
type are mainly repulsive ( Pauli repulsion) [ 5-7 ]. The metal charge in a symmetry
orbitals hybridizes and polarizes away from CO to reduce the metal - 5a CO overlap
and. hence, reduces the repulsion. The interactions of the ir type are. on the other
hand. bonding. and are most important in the stabilization of the bond. Although
this model has been frequently used to explain the interaction of CO with transition

metal surfaces, it has been mainly built up using triatomic Me--CO molecules
[5-71 as examples. No systematic analysis of the relative importance of both in-
teractions for metal clusters of different sizes has been done at the self-consistent
field or more accurate levels of calculation.

In this work we will apply a version of the Intermediate Neglect of r•ifferential
Overlap (INDO) [25] model at both the self-consistent field (SCF) and the config-
uration interaction ((o) level, using the ZINDO program [261. examining the effects

of different size clusters, from one Rh atom to 15, on the bonding and structure of
the CO adduct.

These calculations are our first attempt to model CO interactions with Rh metal

surfaces. They also give us the opportunity to compare our results with those derived
from ab initio [ 10.11) and density functional theory 1121 calculations on the tria-
tomic Rh - CO systems and to support the use of the INDO model on more extended
metal systems.

Calculations

In order to better understand the localized interactions involved in the bonding

of CO to Rh metal models, we start with the Rh-CO triatomic molecule, increasing
then the size of the cluster up to 15 Rh atoms (Figs. 1-3).
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F:igure 1. Dilffrcni I Rh ], clusters anal,;cd b% mncans ofs( I -(1I I\IX) calculations. M
multipliciaN 2ý + I.

With the exception of the diatomic Rh,, which is also studied for the optimized

molecular geometry, the Rh -... Rh interatomic distance is fixed at the bulk value

(2.690 A ( 27]). Linear [Rh],, clusters (I _1. n <-- 5) are chosen as a common unit

for the different metal topologies. Calculations are then extended to lRh( I l I )]i,

and [Rh( I I I )] clusters in order to study the eflect of lateral metal atoms on the

Rh - CO bond, when going from a one-dimensional to a two-dimensional structure.

and that of the underlying metal atoms when going to a three-dimensional fcc one.

A Fock operator for the average energy of each configuration [28] is used to help

overcome the state degeneracies that hinder S('F convergence caused by the large

number of near-degenerate states associated with [ Rh ],, clusters. The average op-

erator is defined for the nine valence electrons of each Rh atom distributed in the
five 4d valence orbitals. The orbitals from the averaged operator form the reference
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Figure 2. Local density charge on the atomic centers of the CO molecule bridge-bonded
to the [ Rh], clusters o'diftlirent size-

for a subsequent projection over pure spin states by means of a Rumer Configuration
Interaction [29].

The geometry of the adsorbed structures is optimized by means of the Head and
Zerner technique [30-32], using the BFGS algorithm to update the inverse Hessian
matrix, For systems of high symmetry, such as metal surfaces examined here, it
becomes advantageous to use Cartesian coordinates in order to avoid possible sin-
gularities in the inversion of the metric matrix.

The INDO model that we use for these studies have been modified by choosing
the resonance integrals according to formulae that take into account different clec-
tronegativities. A description of those modifications is in preparation. All other
aspects of the method are as described elsewhere [25.33].

Two parameterizations of the INDO theory are used in these studies: one for
geometry, which utilizes two-center coulomb integrals calculated ah inilio: and one
for spectroscopy at fixed geometries, which obtains these coulomb integrals from
experiment [25,33-351.
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Figure 3. [Local densit> charge on the atomic conmers of the CO molecule linearly (on
9 op). bonded to the [oRh J clusters of different sie.

Geometries are optimized at the ROHF level of theory [28.36]. Spectroscopic
states are examined using the orbitals obtained from the Configuration Average
Hartree-Fock (CAHF) methods for a subsequent Rumer ClJ diagram.

Results

M~ultiplicit)" of!'th Clusters
By means of a Rumer ci. the average vectors belonging to the sCF calculations

are projected over pure spin states for each of the different structures. In this way.
the stability of different multiplicities for each structure is comparatively analyzed

at the ci level. The multiplicities (Af = S(S + I )) of minimumn energy are chosen

to represent both the initial (naked metal cluster) and the final (adsorbed ensemble)
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TABLE I, Energies (a.u.) relative to the most sLable state for the different multiplicities of [Rh]I, clustcr.

A/ 3 4 5 6 7 8 9 10 II 2 14

Rh 2  0.030 - 0.039 - 0.00X) - 0.142 -

Rh, - 0.028 - 0.022 - 01(XX) - 0,1)49 -

Rh, - 0.030 - 0.019 - 0(000 - 0.090

RhA - 0.036 - 0.034 - 0.(XX) - 0.041
Rh1,, - 0.010 --- O.(M) - 0.031 -

Rh,, - 0.037 - 0.0)15 - 0..(X)4 0.(XX)

states. Data collected in Tables I and 11 show that they correspond, without exception,
to intermediate spin states.

For the Rh2 diatomic we have examined two structures: the minimum energy
structure, which we can compare with the results of others [I 1,37-39], and the
simplest two-atom model of the surface. in which the interatomic distance is fixed
at r = 2.690 A.

The ground state of the Rh 2 diatomic is controversial, both its symmetry and its

bond length. At the level of theory we utilize for the larger clusters we calculate the
lowest energy state of Rh2 as a la2aIl 'TI 64,Tr7J.rr), with an interatomic
separation of 2.35 k. This agrees with the uvHF results of Mains and White (r
2.28 A) [Ill.

Balasubramanian and Liao [ 37 1. who have included spin-orbit and other relativistic
effects directly into their calculations, suggest 5A,(62% I u 21, 4 'I r S ) with't,,o' 4 git vrr) wit

r 2.28 A, as lowest lying. They do not report a 1, state. On the other hand, we

TABLE IL Energies (a.u.) relative to the most stable state for the different multiplicities of [Rh], (CO)
clusters of different geometry.

Mf 1 2 3 4 5 6 7 8 9 12 14

One-fold (on top) CO coordination [Rh], (CO)'
Rh 2  0.009 - 0.000 - 0.013 -

Rh, - 0.024 - 0.0(X) - 0.003 - 0.024 -
Rh4  0.032 - 0.022 - 0.000 - 0.008 - 0.049

Rh5  - 0.000 - 0.020 - 0.007 - 0.066 -
Rh i0  - 0.001 - 0.0(0)

Rh,, - - 0,015 0.(X)0

Two-fold (bridge) CO coordination [Rh], (CO)h
Rh 2  0.053 - 0.(X)0 - 0.025 -

Rh 3  - 0.009 - 0.008 - 0.000 - 0.060 -

Rh4  0.150 - 0.129 - 0.058 - 0.028 - 0.000
Rh, - 0.000 - 0.009 - 0.015 - 0.125 -

Rh13, - 0.007 - 0.000 - 0.012

Rh,, - .007 01.(X)



estimiate a tav.ix ing 'A, ,ltetc Ijonil I calkIctition', 5;NGi) cmi h luichr it) cnicrc
than oulr A,. alVashianwilnan and I W% ' A~ mate is a hcam N mi\iixtuc ot contig-
uratlions, .k ilth si/cahtc contrillutianN froil highcr clicrc con hticura,1 t ms that %%C
Itaxc laot iitcluded ill this( 1. Illicy Ctiaca ndncirxatI C\ it) lie aolmparcd
x\\ith anl cspcrimcintal \.line of __ Q _ It22c I411- kc'IcI', \\c obtaoin I a.itc a)
0.0) cV c'aimlatcd fran ileK dissaciation af tIll lacsc't Ncptct.

11,a et at L 34) 1 Wind a 'AI OW lao iv Vj I;!H 20' A, I as We hast
stahl.' ,ltei. illt a hindin eneirgy ato 1. 5. c\ X 'I. ( 1 2.7" 1% \sCalcu'Ilatcdt to tIc
-25 cmn iltihcr in cncrgx. Uhc 'A state 1 2.61 ) t.()rcIpanding ta that of
Balasuhramnanian andt I iao. is 2400t111 1iii Iichc In ciicl-p than the 'l. ,I tIck Inl-
teratont1ic distaitccs Calculated hx Ilkis cli al. arc alt Ilargcy than those ait' aur xx ark
an1d those af Boalasuhrainanjanl and I iaa I~ andi N\lains and Whitc It I 1.

Rcpicitin )ill- ar .ik ulahons utitia n the \I I method O~r 1 2 clecctrmn in cight
orhita IN I IT I a aTataI~ddsac t2'\t ccactwsit
orbital. lilt] perfrmingnii a (S1St) 11aml tile rck~rcticcs I ITat t'2.I

toI T I iTý2 a -N ). 1111LI IT a ýI Irt~ IT y. aieds til A. axcNt.
I1 he 'A,t mim it this colmwtO ix s 64H1) cm hiizlir in cncrcx . antiit thc m.sate is
I WS cms in hinhw Ile hitding cnergy is cmti niatctl as 1 .2 c\ .I hl, ivs rclts arc Ini
hcNI ataCrd xx ith IthasC ab-t iIinCd bsý BilaaStibram1,11all and 1 1a.10

Ialic I indicatcs that, at r 21W A, tile scptct sIN tice lowe st energy '.1iuOct rc.
xx hci tilec Icchnt it ntc dcscri hcd cartlicr to Csa nilll tile t,1gl hcNCI` Iarcc 1iutr i ut Ilhis
"sCptct aIso is catcnIlatCd to haome a itiui~iiat P' 2,5) \ adIsi 1 i *',*krclcktkcd Ileb
bo01und bx% about 01.6 CV as is ttile' . I hce NIrnctUlrcCO Icarcponlds to ito a;I Rh atonms
brautL),ht togcthcr \W101 thot sin coupling, hilt \% ith sainc \tI hx brdi/ation Icsplnsiloc
for ilic xcatk bondiiic.

I Ilc 1.nti bcr Of u n ~aI rcd clCCt rons is kept al mast canolstantl arau nd sct cii and
cih.for thce lincar I Rh 1. clusters I Itablc ).

Althou~gh far a diffIlCrcnt ( triangular) geomettry . tile ,.cnuline pII ic)itxl as, ours
1f .1 ) has bccn amund bx Mains and M ijte [Il I tIfr Rh; \khInch dcscriblcs a 'I

Rh atomn wcakly hound to a Rh., structunre, Ic Ileu li kcnI p)OpuLlalt ion anlal \ ',s or
ourI Iin ncar Rh -,st rducirc ( d iSCuSscd I atcr ) shoxv s that iii it , tormcd trI '011 a\% terminal

SRh atomis and onc ccntral AI) Rh atom.i
I-or a rhornbic planar Rhi truICtu~rc. Mai ns and W\hite IbUnd ain IlUttip~lictx cqnalII

to niinc, xx ith two IF and( Iwo A) RhI atomsn at oppo1sitc crticcs. Ini our linear structunre.
two tcrninal Rh atoms arc 1) and the two) central atomns I - Ili structure rcscrihlcs.
thouvii. t\%a Rh, nlolc4-iilvw'al' hound.

I tIc muttiptli)city ot the txx it-dilmcnlsional IRh }j, structurcrs ) ¶ 91Shaxx s' that
thicx c orrcspond ito more tightly honded st ru1ctIliVrs.

[tI ic multiplicity of tilc bilax crs descrxe fuIirther cornlmnts. Ihci most stabtc
miultiplicitx for tile [ RM Ii lI iiw siitc laxM crs U ), Corresponds to 0).8 unpaired
electrons licr SUrlace atomn. If this iu/1W/C' pe110mu is. trans16rrcd to the [ RhIt I I 1 I 1L
cluscr, x Inch has ithc Namc struclurc ot the topniast laxycr an I Rh I t I t1h. 12
tinpairctt Morons miighit he expected Air tbc I Rh ]p ctustcr. Lwrrcsponding to

It 12 or If I4t as It 13 is not :ompatihlc xx ith this cluster slimc Wc loulnd
tilc greater stalitity trW A! 1-4 1 1bi We W I o~xct inutlilicc xxond impx tile



594 unafe s A of 1) t I RNt lR

cancellation of the unpaired spins of the
second one, which may he seen as a partial description of a semi-infinite system.
as the second layer would also interact with lower-lying metal atoms in the bulk
solid. Higher multiplicities. on the other hand, may belong to unpaired spins of
the second laver and the borders of the cluster which, on the same basis, may be
canceled if a larger number of layers are defined. Knowing that we arc dealing with
an indeterminacy at this point, we choose 11 = 14 to model the bilayer cluster. on
the basis that the fractional number of unpaired electrons per atom in the first
metal layer is likely to be the most important concept for the definition of the
number of unpaired spins on the surface.

Coordination of CO decreases the multiplicity of the linear [ Rh ],, structures (the
particular case of two-fold coordination on Rh 4 will be discussed later) (Table Il).
The triatomic Rh-- CO molecule has a lower M than atomic Rh. The decrease of
the M of Rh, after bonding to CO is in agreement with UHF at) iniiio [I I] and
local density functional 112 ] calculations. The M is. however. preserved when one
CO is bonded to two- and three-dimensional structures, as the electronic spins can
be relaxed through the metal -- metal bonds to their most stable distribution.

A similar decrease in the local magnetic moment, not always reflected in a decrease
of the global magnetic moment, has been found from .st) calculations for the
adsorption of CO on Ni clusters [41]. On the basis of those calculations. the decrease
in the magnetization was related to the antibonding interaction of the 5a CO orbitals
with the sd band, which destabilizes and empties the upper-level orbitals. triggering
a spin-dependent rearrangement of the d electrons, which in turn. leads to the
decrease in the magnetization [42 ]. As this is mainly a localized interaction, it has
a much less pronounced effect on the magnetic moment of the metal atoms not
directly involved in the bond. The local magnetization change without global mag-
netization change has been found 141] for several coordination geometries and
cluster sizes. The lack of global magnetization change, on the other hand, was
explained as a compensation effect due to the increase of the magnet, moments
of the atoms not directly bonded to CO.

Both the q and the r interactions change the number of unpaired electrons in
the I Rh],CO systems and. thence. Al of the cluster. The final Al value will be the
result of a balance of both effects. However, when the charge in the a orbitals is
polarized to the adjacent atoms of the cluster, the local change in the number of
unpaired spins is only determined by the back bonding effect. This effect is not
large enough to give a net change in the global magnetic moment. On the other
haiiJ. the redistiibution of the electronic spins through polarization allows the
system to reorganize again to the minimum energy spin distribution.

A larger decrease is found for the smaller clusters as they do not have the ability
to spread the perturbation caused by the bonding. In our description. the interaction
of the 5a CO electrons with the Rh, and Rhi clusters decrease their multiplicity
through the filling of empty d holes in the sd band.

Adsorption Geometries and Energies as a Function ofthe (luster Size

The calculated optimized geometries of the [ Rh ],,CO species are given in Table
IIl, where they are compared with data derived from ah initio and IDF calculations.
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Thie equilibriurn geometries ss crc obtained through gradient optinmi/tijon. keeping
froien the coordinates of the metal atoms. Bond distancesý and bond angles sscre
optimni/ed simultaneousls. In order to model (0 ow-lop coordination on Rh,, and
Rh.4 Clusters, the translational movemenit 01 the (C0 molecule w~as restricted ito thle
axis perpendicular to the metal atom row. to avoid its evolution to thle most stable
bridge structure. Thlis procedure was not necessarx for model Rh; . Rhb. Rhl,. and
Rh,ý clusters, because there are relative minima in those structures tfor both coor-
dination geometries.

For all the structures analx/ed. we, found a coordination of CO perpendicular to
the surfaice, through thle carbon end. wxithout angular dleformation of the Rh-C-
o bond.

Both the linear and the bridge coordination involv interactions ot the fr and -.
txpe. ar Interactions are composed of a charge transfer from 5(T CO to empty metal
orbitals along A~ith a repulsivec interaction ( Pauli repulsion ) betwkeen thle electronic
clouds centered on the 5(7 (0 lone pair and the ad 'jacent metal orbitals- 7 Inter-
actions. on the other hand, imply hack bonding from the metal orbitals to empty
n-* orbitals oin thle CO.

For the (C-0) interatomic bond dlirected along the ---axis. thle one-fold (on-top)
Interaction linsolves, a Scr CO-d - Rh repulsion, together with charge transfe~r to
empty pI.- metal orbitals. Back bonding is completed] from 41, ., el Rh orbitals to
tile empt\ 2r* (0 orbital I Fig. 4( a (I Bridge coordination implies the interaction
of the c ý(r C) orbital x' ith ed, . t/, Rh orbitals. and charge transler to empt\ ppj)
metal orbital,, directied along the Me-Me bond. Back bonding not ornlx involves
Jd. -and d/, metal orbitals but also I/d and 1p 1 Fig. 4(b) 1. ielding a more eff~ective
back bonding interaction for this coordination geomectr\. D ue to the antibonding
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Figure 4. Molecular orbital interactions involved in the stabilization of the adsorption
bond. The z-axis is directed along the adsorption bond. perpendicular to the metal surface.
(a) One-fold ( linear, on top) coordination- ( a. I ) 5cr CO-d. 2 Rh interaction. Charge transfer
5,y CO--p, Rh. (a.2) Back bonding from do,:,d. orbitals to the 7r* CO. (b) Two-fold
(bridge) coordination. (b.1)! 5or CO--d_: d•, interaction. Charge transfer 5a CO--p,. p,

Rh, (b.2) Back bonding from the d_: d,:, a'.z. p. Rh orbitals to the ;r* CO.

character of'the CO 7r* bond, this more effective charge transfer results in a longer

C-0O bond for the bridge coordination (Table 111).
Binding energy values (BE) are calculated as the difference between the total

energy of the adsorbed [ Rh ]nCO structures and the sum of the total energies of the

metal cluster [ Rh ], and the CO molecule, for the most stable M of each structure

(Table 11), evaluated, at the C1 level, for the optimized geometries (Table 111).
Positive BE values indicate adsorption.
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It is well-known that the INIO method used here overestimates bonding energies
f34 1. Fo account Ior this, the S('F-('l BE values derived from INtX calculations
have been corrected by 2.5 eV per Rh-C bond to match the data derived from
other calculation procedures (Table IV) as no BE experimental values are available.
While the on-top coordination involves one Rh-C bond, the bridge coordination
in the linear [Rh I, clusters implies the interaction of one C atom with two Rh
atoms, for the same C-1Rh distance obtained in both cases. I lowever. in the two-
dimensional [Rh( III )],,, structures, first-nearest-neighbor and second-nearest-
neighbor Rh atoms are to be considered for CO bridge adsorption. On the basis of
the analysis of the atomic bond index matrix [431. a correction of a quarter the
value of a Rh-first-nearest-neighbor-C bond is added for each interacting Rh-
second-nearest-neighbor atom to calculate the Rh-CO BE correction. No further
correction is necessary for the CO interacti6n with Rh bilayers as the C-second-
layer-Rh-atom bond indices are negligible.

In agreement with ab inhiuo calculations for the interaction of CO with [Rh] 2
[I 1], we found a higher stability of bicoordinated CO on the [Rh],,( I < n_ 5)

TAIi FIV. Ilinidng Energies (11E) (eV) of the CO molecules on0 the lillierent structures.

[Rh]CO [RhI 2Co [Rhh3CO IRh(4 CO [Rh&('O [Rhj,CO [Rh],,CO

4.09 3.12 16l 3.57 3.53 7.20 6.42

One-fold (on lop) 1.59 01.62 0.89 I1.07 1.03 4.70 3.92
1.80i Unhondedd
2.40"b
2.660

7.54 5.84 7.67 6.84 11.39 10.0)

Two-fold (bridge) 2.53 0.84 2.67 1.84 5.14 3.76
(0.57d

4.41 4.22 4.110 3.30 4.18 3.,58

(.11 1.91 1.72 1.60 0.80 0.44 0.17

4.55 6.36 3.67 3.46 4.49 3 84

.(1' 2.05 3.86 1.17 0.96 0 74 0 11)

Raw data (italic) are corrected by 2.5 eV lpr Rh--(() hond,. ,cstaling the numnr luf hIinnItod on
the aloinic hond index inatrix (swe tenl).

* NII3 fllJ."N 12 11i.

I)'nsily riinctiona l ietirv 1' 21.
"d I 111 (1 llhis wilholit Correlatlion eli'cts.

Unergy difference (eVI lri positive when the bridge struclture is Piore stable than i•, onhn wvi ol-e.
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linear clusters. The relative energy difference ( BEl,,h•r,-BE,,,, ,,,) decreases as the
cluster size increases (Table IV). This trend is also observed tbr the two-dimensional
[ Rh( II1 )11 clusters. The addition of in-plane atoms does not appear to further
reduce the preference for bridge coordination over the on-top coordination. Since
on-top binding is experimentally observed. monolavers of Rh atoms do not appear
to yield a good model for the interaction of CO with a metal surface.

A similar BE tbr both geometries (Table IV) is found when the surface is modeled
bN the [Rh( I I )] bilayer structure. This fact reflects the importance of a proper
modeling of the immediate environment of the metal atoms that are defining the
adsorption site in order to reproduce the electronic interactions involved in the
adsorption bond. In the bilaver structures, the Rh atoms bonded to CO have the
same number of nearest neighbors as in the actual solid surface. We anticipate that
on-top bonding will be more stable within a three-layer model, as this will be better
able to distribute the a bond repulsions.

M ulliken Populv' ' ilon. . r'is

The analysis of the metal-CO bonding in terms of a. 7r interactions is usuallyv
based on population analysis results [44]. The change of the Mulliken populations
on the atomic orbitals after adsorption (coordination) allows one to separate the
different effects (a charge transfer. a polarization, and 7r back bonding) that are
involved in the definition of the adsorption bond. and to rationalize, then. which
is the more important effect for each structure (defined by the coordination geometry
and cluster size). For the Mulliken population analysis, the INDO basis is assumed
to be related to the Slater basis through symmetrical orthogonalization.

The corresponding orbital analysis after the INDO calculations shows that the
relative importance of the a. ir interactions is highly dependent on the size of the
cluster and on the coordination geometry (Tables V and VI).

There is good agreement between our analysis of the Rh-CO molecule and that
obtained from ab initio calculations. The charge transfer from the metal to emptN
7r* CO orbitals is the most important bonding interaction, and leads to an increase
of the population of the p orbitals centered on the C and 0 atoms (Table V). The
5a CO-metal interaction is not as effective, because the charge it, the a orbital
can only be distributed in the unique metal center. The overall effect leads to a
negative charge density on the CO moiety.

When more than one Rh atom is considered in the model cluster, the charge is
polarized to the adjacent metal atoms. This polarization causes the a charge as-
sociated with the adso-.ftion-site metal-atom to be directed away from CO leading
to a reduction of the a repulsion between the metol and CO.

This decrease of the repulsion in the a bonding allows a electrons of linearly
(on-top) bonded CO to be transferred to the metal, yielding a positively charged
CO. The magnitude of the charge transfer and back bonding effects do not change
when the number of Rh atoms increases in the linear clusters (Table V). The local
density charges on the C and 0 atoms, as well as the stability of the different
I Rh 1,,CO structures depends on the decrease of the Pauli repulsion in the a-bonding



(C( I1NI)IN(. I ) Rh ('11 NIS 1 RN 599

orbitals. which is ac'complished by either hybridiiation in WI'e Rh atom bonded to
CO or polarization to adjacent atomic centers.

Due to the symnnietry of the orbitals involved in tile interaclion ( Fig. 4 ). r back
bonding is more eflfctive ftr the two-old coordination, and the ('C molecule has
a negative net charge when bonded to f Rh ]2 and [ Rh 1; structures. I lowever, since
the polarization of the charge to the adjacent atoms is not only important for the
linear but also for the two-fold coordination, it is important Ior the model that CO
be bonded to infernal atoms for both geometries. [ Rh ]4 is therefore the smallest
structure able to properly describe most of the effects involved in the interaction.

When CO is bridge-bonded to [Rh 14. the decrcase of the repulsion in the a-
symmetry orbitals allows a greater T donation, which becomes evenl more evident
than the back bonding change observed along the 7r-type orbitals, and the coordi-
nated CO molecule is again chaiacterized by a positive charge. The importance of
the extra stabilization of the [Rh 14CO bridge structure through polarization of the
charge is reflected by its multiplicity, M (-rable I1). The reduction of the multiplicity
of this structure from Al 9 to a lower value empties the i ioMO orbital, which is
responsible for much of the charge polarization to the terminal Rh atoms in the
linear cluster (Fig. 5). The stability of the structure decreases by 0.7 eV when the
multiplicity changes from 9 to 7.

When the cluster is defined by more than one row the charge is mainly polarized
away from CO to adjacent rows. This more efliective reduction of the aT repulsion,
which is reflected in a shorter Rh-C bond length (Table ill), and in a larger
positive charge on the CO molecule (Figs. 2 and 3). stabilizes both coordination
geometries. Although the relative energy difference decreases (Trable IV). a single
layer Rh cluster is not enough to reproduce the experimental results of a slightly
higher stability of the on-top coordination.

In the bilayer metal clusters, there is a competition for the use of the $ and 7r
orbitals of the adsorption site between forming a bond with CO or with other metal
atoms of the second layer. The lower availability of the 6 and 7r orbitals decreases
the back bonding (the C-O bond length is shorter. Table 111) and lowers the
calculated stability of the CO adsorption, more markedly for the bridge structure
than for the on top one.

The charge transfer from CO to the metal is more efficient than in a single layer
metal cluster (larger positive charge on CO. Figs. 2 and 3) because the charge is
also polarized to the second metal atom layer.

As the back bonding effect is more important for the bridge coordination, the
decrease of this interaction, which is reflected in an increase of the negative charge
on the Rh atoms bonded to CO. results in a destabilization of the two-fold vs. the
one-fold coordination. Although not directly involved in the coordination, the pres-
once of the second-layer metal atoms reverse the sign of the energy diffterence between
two- and one-fold coordination geometries, yielding the experimentally observed
result.

We might conclude, then, that bilayer [ Rh( I I I ! clusters are ol'the appropriate
size to model the adsorptive interaction with a CO molecule.
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T.-,w \ . Changeý in the .Mulliken pfi)pUllhltn, Oil the Rh. C. Xd11) t:i,',c Ofrhmt•iS And CO mlclculhr

orbital,, throagh hitiar Coordiolation

Ataom Be),ioIc coordialtionl A.cr toordlrnijt~atl

Rh('O Rh' . d 094 0(}4s , 7 dS d

C 1. 79 99L ; 1.41 12 0 ,

OI 61 I,ý 4 4 2 1 , ( 0 4 5 0
(() OARI) 419) i W 1t , 4,41),'

Rh.('() Rh,' 1.00 It I5 p (1 (11 *1 •3 0 P 2d d
Rh: l.0(1.s ((1.; %p"•;3 d (1'i lt.l~ 8. !(I;4

C 1.79) 1.994, I ,3, 2 1p

0) 7?8 442-' ' t, 4.51 p
('() 6.1( 60 40(10 5.44 a 4 46

Rh,(CO Rh, I1190 0.09;' p "79 (1 0.25 0 . 14 ;' S.4 (I

Rh,' 0 2t 0,14 S, d o.5(1 0.52 1491' , 36 d

C 1.79t 1.99 p 1.31 2.10}p

O 1.78 4.42 p 1.-(, 4.45;

CI) 6.(1) ' 4.0R ,r 543 q 4.44 7

Rh4C() Rh, 0,.40 (. 12 0(.2 (115 p 8 30(1

Rh,' 0.7(1 (1.2, , 8.102 d 0.601 (t)52 p) 8 2I d

Rh, 0.70 , 0.2( S .0)2 d ().57 0 ((.2,•1' 8.201 d

Rh, 0.40 0 f.12' 8.3
5 

d 0.49) 0.15;p 8 11 d

C 1.7I ), 1.99 I.'I 2.1101p

O 1.7 , 4.42 1 7 6 4 501p

CO 6.00( a 4.0(H Tr 1.43 , 4 47 ?r

Rh,('() Rh, 0.34 • 0.I0)' & 15 d 049 0 (l1l1p 8(1.52 d

Rh- 0.7(0 (0.26 p 8.2( (1 ().(17 0,11.3 1 8 .1 d

Rhi' 0.30 (0.27 p 8.47 d 11.65 , ( 049!' " 3, ,

C 1 .7 9 1 _k . ) ̀ p 1I. 3 1 , C " , "

O 1.78, 442; 1.7( 4.53;I

(CO 6.O( ,0 4.( ) -,r .44 4 51

Rh,,'() Rh! ((.5() (0401) 7.9f- .1 0,53 0.(1. ; j. 8..1(5 4

Rh 2 ' 9.0) 071 (i 7.x3 , (1 1 ,' ;, 7.S3,

Rh, 0(.90 (1.79 i 7.X3 d ((.911 , ' 7.0'4 4
Rh4 0.56 0.41)(p 7.96 d 0.54 O.31 i (.2(1 d

Rh, 0.59 (. ;2 /1 7.97 d 0.55 .36 p s.((tý d
Rh6 0.64 0.49 p 7.14 t/ 0.6 1 0I.42 1, 7.N, 8.

Rh, 0.59 0.12 1, 7.9• ((.52 ((.32 ') 7.71 d

Rh 0(.59 10.32 1 7.'7 d 11.55 1.3 ;' 8.06, d

Rh, O.h4 0.49 , 7 74 ( 0.61 042 .,, 7 SS d]

Rh,,, 0.5') . (1.32 1, 7.1)7 e ( '.52 0.32 1, 7.71 d

C 1.79 1.)'(t 1.22 2.35 ;

1 1 "9 442 ;) 1.-(, 4.49 p)
(CO f 0)) N 4 )1 il 5.3(1 7 4.53 1,
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Atom 11CI~'sLrde lItLf N11.1 rt lLII

Rh A*O Rh, 0,30 0.4"/, r s" d, S' a II/ "S a
Rh::' O 3 ' , ' "I I ! I O"N", -" p
Rh, 0.IS3 "II O.14S/ 7 4• 11 ('K•.I021 44 ,I

Rh (1,50 ý4.4,11, 7"s" d ) 0 • ()41 i' " S,, d~

Rh- 0 54 0 4') p ' I,), I d

Rh,, (54'5 04.9;'/ 5 U0, 05) ,";2) ,HI/ 5,,

Rh, 0.55 ( .49 p, '.4X i4 0J I4 It ' i

Rh,, (0 2 )07 6d 't, , I) - ('4 a

Rh,,. 0.55 0.49/ 'S4 d I " '5! " / ":

RhI 0.64 • (.S;' 7 '' J 1 * II >' i, - 4f "

Rhl, 064 ' 1 "5 : 7 I- ) (•t, * 01!" p 40 LI

Rh: 0.5 () 'i) 7,',q I 0 ('. ) 0 s'' 1, R0?4 ,1

Rhi, 0.74 C •S9 , It 5 51' * I 5L ,44 d

Rh,, 0*.58 0061, 60) Li 0). 6 (1 h _ 4 Li

C 1.79 * 1 991', I.21 21 S
0 1. ,'N 4 421, 6 4 "h
C) 6.00 a 4,00) ,2') - 440 .

IMetal atom coord , t' ted to the U(0) molecule.

Conclusions

We characterize the metal-CO bonding as a -r donation from the metal coupled
with a ,r donation from CO. This latter interaction call become less rcpulsi',e bs
spreading charge to neighboring metal atoms ir order to reduce the repulsion be-
tween the 5a CO bond and the chelating Rh atoms.

The CO molecule must be bonded to internal surtace atoms (as regarded to edges
and ends) to properly model this charge transfer efli-ct. In addition, the second
metal layer is of utmost importance in modeling the metal-metal interactions.
avoiding in this way an overestimation of the back bonding to the ('0 molecule.
A'nd correcting for the preference of bridged ss. on-top bonding.

Although a four-metal-atom cluster detines the minimum si/c for 'i good qual-
itative description of the interactions involved in the CO-metal bond. three-di-
mensional bilaver clusters are really necessary to reproduce experimental findings
on a metal surface. We might extrapolate from this that large clusters cannot be
modeled bN fewer than the number of atoms needed to define the adsorption site
environment with the same number of neighbors as in the actual metal surface.

We find that, although back bonding from the metal to the CO is the most
important bonding interaction in the Rh-CO molecule, as is also found from alt
inito and L.sD calculations, charge transfer followeo by polarization of the charge
to the adjacent atoms is the most important et.ct when the interaction with larger
metal clusters is considered.
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"'ABI L VI. (hange,- in the Mulliken populations on fie Rh. C. and 0 atomic orbitals and on the (C()
molecular orbitas through t(o-fold coordinaton.

Atom BeMore ioordination After coordination

Rh2 (CO Rh' 1.00 0.15 p 7.83 d 0.34 0.29 p 8,31 d
C 1.79A. 1,99 I 1.22 2.46 pt
O 1 .%8( 442 p 1.76 4.591)
CO 6.0( r 4.(X) ir 5.30 j 472 Ir

Rh,(O Rh,- 0.90 v 0.09 It 7.90 d 0.40 o 0,27 p 8.1 d1
Rh,' 0.26 s 0.19 p 8.50 d 0.51 (0.48 p X.06 d
Rh, 0.90.t 0.191) 7.90 d 0.96 0. 12 p 8.35 d
C 1.791 1.9 9 1p 1.21 A 2.46N
O 1.78 s 4.42 p 1.76 0s 4.56 p
CO 6.00( 1 4.00 ir 5.310 a 4.71 ir

Rh 4CO Rh, 0.40 s 0.121p 8.35 d 0.84 s 0.11 p 7.97 d
Rh,' 0,70 s 0.28 p 8.02 d 0.52 , 0.45 p 8.19 d
C 1.7 S 1.99 1 1.21 S 2,41 p
o 1,78 . 4.42 p 1.76 S 4.49 p
CO 6.(10 0 4.00 7r 5.30 .r 4.54 ir

RhCO Rh, 0.33 s 0.1(0 1 8,35 d 0.09 (" 0.14 p 8.72 d
Rh,' 0.70 R (1.26 1 8.20 d 0.40 .s 0.42 p 8.14 d
Rh,' 0.301) 0.27 1 8.47 d 0.54 ( 0.30 1 8.05 d
Rh, 01.70( M .26 p 8.20 d 0(.14 s 0.40 p 8.57 d
Rh• 0.33 s 0.101) 8.35 d 0.02 s 0.101p 8.65 d
C 1.79s t.99p1 1.23 s 2.45ip
O 1.78 s 4.42 p 1.76 s 4.5611

CO 6 (X0 T 4.(X) r 5.35 a 4.65 ir

Rh 1,CO Rh, 0.56 S 0.40 p 7.96 d 0.49 .1 0.33 1 7.92 d

Rh,' 0.90 S 0./8 p 7.83 d 0.62 s 0.93 p 7.89 d
Rh, 0.59 s 0.32 p 7,97 d (.52 S 0.33 p 7.96 d
Rh, 0.64 s 0.49/p 7.74 d 0.51 s 0.60 p 8.08 d
C 1.79s 1.99 p 1.13 s 2,40 p
O 1.78.s 4.421p 1.76 " 4.48 p
CO 6.00 a 4.00 Ir 5.22 a 4.62 2r

Rh,,(CO Rh, 0.50 s 0.47 p 7.85 d 0.52 s 0.52 p 7.41 d
Rh2, 0.83s 0.98 p 7.47 d 0.92 s 1.03 p 7.42 d
Rh, 0.54 -N 0.49 I 7.87 d 0.55 s 0.52 p 7.80 d
Rh6 0.75 5 0. 7 6 p 7.60 d 0.84.s 0.81 p 7.56 d
Rh, 0.55 s 0 4 9 p 7.84 d 0.57.5 0.51 p 7.82 d
Rh, 0.71 s 0.70 p 7.66 d 0.61 s 0.75 p 7.67d
Rh,, 0.64 s 0.78 p 7.57 d 0.68 . 0.80 p 7.51 d
Rh, ( 0.58 s 0.66 p 7.69 d 0.59.s 0.67 p 7.59 d
Rh 4. 0.74 s 0.89 p 7.56 d 0.84 s 0.92 p 7.48 d
C 1.79 s 1.99 p 1.0.S 2.34 p
O 1.78 s 4.42 p 1.75 s 4.40 p
CO 6.00 a 4.(X) r 5.24 a 4.44vr

"Metal atoms coordinated to the CO molecule. Only the populations on nonequivalent atoms are
reported.
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Electronic and Magnetic Properties of
Organometallic Clusters: From the Molecular

to the Metallic State
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Abstract

Wke h a% e perfor meid a linear ci mbin Lition of'( ;aiLuss~in -1 pe irbi tit Is. 1. i oca IdensiN I u nut tInda I
I N. calcu lations on) a series if'lItm- andl higth -ruclearnt\ carbon\s atcd \i clusters and on theii naked

couniterparis W5e hanc f ound that ns hile the bare Ni cluster',docuthhit seseral lcatarcs in common %kit
the hulk metal. the lowk-nuelearits carbons\ LaOW Clusters do( not sho\s an % nmetlich bhas tor Stfns of- a
deteloping metallic character arc found for high-nuclearit.% \i cluster carhonx Is A here it is possible ito
distinguish between "surf~ace" atonms. ns hich are dijrccll\ interacting v. th ifheI liurand sphere. and -bull,'
altomrs. Mitch are on~ls interacting with other metal atomns. rhrough the anal~srs at the magnetic properties
of these ss stems it is possible ito formulate a genural model wkhich rationali/es both the met0allic. heha iiior
of'the free Ni clusters and the nonmetallic behas ior in certain carbon~lated Ni clusters. I his, miodel is
based oin the perturbations. tndueed h\ the ligands on the electronic, structure of the mietal atoms in the
cluster. ' 1,)o'i 2joh m Ir& il Som Ins

Introduction

Molecular metal clusters constitute a relatively \.oufg hield in coordinatlion
chemistr\ [ I w hich opens new perspectives lbor understanding the transition from
the molecular to the metallic state. Molecular metal clusters can be obtained in
solution, hut also exist in the solid state. giving rise in sevcral cases to crystalline
structures [ 2 1. WVhen a crsstal is obtained. it consists ot'an assemhl\ of' identical
macromolecules. the inorganic Clusters.\, which arc composed ot' a core ot' metal
atoms surrounded b% a shell of ligands. wvhich include carbonyls. phosphines, and
atoms. such as ('T S. 0. etc. 'This ligand shell is essential 1'(r the chemical stahili/ation
of the complexs and for preventing the coalescence of the metal core% to f'Orm large

(orrespiruding author.

Inicrnational Journal Ot()Uanium ( hernisqr.% tiuanuni (heinirstr S~niposiunr 5 it (it 1
1)2John Wile% L sons. Inc ('('( 00t1).0tS i IooX
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metallic particles: furthermore. it provides an "'insulating" phase between the metal
cores. These cores are usua!ly composed of a few ( from 3 to 10- 15) metal atoms
but. in some cases, the size of the metallic part of the cluster can be considerablý
larger. Clusters containing up to about 50 metal atoms have been si nthesized.
crystallized, and characterized by X-ras diffraction techniques [2]. Much larger
clusters. containing several hundreds of metal atoms have also been synthesized
[lc): for these "giant" clusters. which start to resemble colloidal particles, it has
been impossible to obtain crystalline structures and the characterization of' the
stoichiometr and shape of the cluster "molecules" has been done by high-resolution
electron microscopy.

These inorganic compounds, containing a frame of a few hundred metal atoms
are an ideal class of materials for investigating the evolution of the properties as-
sociated with metallic behavior. A great advantage compared to other methods of
producing isolated metal clusters, like the cluster beam techniques [3], is that
considerable yields (of the order ol' a few grams) of the material can be obtained
through chemical synthesis: moreover, inorganic clusters are stable under normal
experimental conditions [2].

In this way it has been possible to perform a series ol' physical measurements on
clusters of various size [4-8 1. Recently, EXAFS studies [5] on Aul,( PPh3,),, 12C,.
where the Au, unit has a cubo-octahedral structure. have shown that the X-ray
absorption edge of the cluster has several features in common with the bulk. Also
the photoelectron spectra [61 of this gold cluster shows striking similarities with
that of the metal. On the other hand. significant differences have been found with
M6ssbauer measurements [7 ]. because the response of the "surface" Au atoms,
directly interacting with the ligand shell, is different from that of the "internal" Au
atoms, where the average coordination resembles that of the bulk. A similar effect,
i.e.. a different behavior of the "surface" with respect to the "'bulk" metal atoms
in high-nuclearity clusters, has been recently proposed in order to interpret the
spin-lattice relaxation time and the metallic Knight shifts in `4Pt NMR experiments
on a Pt3,,,qPhcn,O,(O cluster [8]. Even more interesting for the understanding of
the development of a metallic behavior are the magnetic measurements performed
on carbonylated clusters [4]. Interestingly. all the low-nuclearity clusters, with a
metal core composed of up to about 10 atoms. are diamagnetic. Temperature-
dependent magnetic susceptibility measurements on larger clusters, composed of
about 40 metal atoms. exhibit a total magnetic moment per cluster of the order of
4-9 PH [4]. The average magnetic moment per atom in bulk Ni is 0.6 up [9]: for
a cluster containing 40 atoms, this should correspond to a total magnetic moment
of 24 unpaired electrons, while the observed moment is much smaller [4].

All these data indicate that the ligand shell induces strong modifications in the
electronic structure of the metal frame so that some of the metal-like properties
are retained while others are partly or totally lost. Moreover. some of these properties
change asa function ofthe cluster nuclearity. Clearly. the large body ofdata collected
on these systems requires rationalization in a comprehensive theory. In this article
we present a unifying theory which accounts for the different behavior of ligand-
free metallic clusters, like the ones obtained in gas-phase cluster beam experiments.
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and of molecular metal clusters, usuallI prcpared by organomnetallic s; nthesis, [lhis
theor\ is based on electronic structure calculations performed w ith the linear com-
bination ofGaussian-t~pe orbitals ( '... to). local dcnsit\ functional I)t ) method

[10,121, which allows a self-consistent all-electron treatment.
We vwil show that the surrounding ligands stabili/e the organometallic cluster.

but also that they deeply modif\ the electronic characteristics of the metal atoms
of the cluster. The perturbation of the ligand shell is strong enough so that a!l the
"metallic" properties are lost for the "'surlfce" metal atoms. while some "metallic"
behavior is still present on the "bulk" metal atoms. provided that the cluster is
large enough to allow for such distinction.

Computational .Method

All the calculations have been carried out by means of the I ( I o-) n)i method
[10-12]. This computational technique is quite Well suited for the studs of the
transition from molecular to metallic sxstems. Here we recall onl\ the major teatures
of the method. Further details can be found else%%here [121.

In the I ('G;-I.oIDFi method one has to solse one-electron equations dericd 'n
the Kohn-Sham approach to density functional theor- I 10. 1 1]:

[ -- t'v , - t'(r)] ý,(r) ,4,(r)

where the local potential. v(r). is composed of the nuclear-clectron attraction, the
classical interelectronic repulsion. and the exchange-correlation potential, ut, (r).
In the present investigation, tv, (r) is taken to be the \- variant of the I DI ap-
proxi mation

v', (r) - -3/2 a¥ [( 3/17r)t(r)]•

where p(r) is the charge density

p(r)

and a is set to 0.7.
The t('(i-rO-LDI: method makes use of three Gaussian-type basis sets. one for

the construction of the Kohn-Sham orbitals: one to fit the charge density. p(r),
when calculating the interelectronic repulsion potential: and one to lit the exchange-
correlation potential. v, (r). All-electron calculations have been perfbrmed in order
to determine the cluster ground state using a spin-polarized version of the method.
The filling of the one-electron levels is done according to the fractional occupation
number, ION, technique 12 ]: according to this procedure, one lormall. broadens
each one-electron level by a Gaussian (half-width 0.3 eV) and fills the resulting
density of states. DOS, by the appropriate number of electrons. Thus, a cluster Fermi
energy is determined in a self-consistent way, and need not result in an occupied
highest occupied molecular orbital (HOMo) that contains an integral number of
electrons.

The calculations have been performed on a series of bare and carbonylated Ni
clusters of various sizes: the cluster structures are taken from the corresponding X-
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ray crystallographic data [2]. In some cases, the experimental structure has been
idcealized to take advantage of the symmetry properties of the compulational pro-
gram. To give an idea of the complexity of the calculations, we mention that the
basis set for the largest cluster considered. [Ni 44 (CO )j]" , consists ofabout 3304)
contracted functions: the compound contains 1 4(0 atoms and more than 190M) elec-
trons. depending on the net charge, n.

The accuracy of the method in predicting electronic and structural properties of
carbonVlated Ni clusters is shown, for instance, b, the results of' the partial opti-
mization of the Ni-C distances in Ni (CO),,: the optimal r( Ni-CO. terminal)
1.76 A and r( Ni--CO. bridge) = 1.86 -k are in excellent agreement with the aserage
experimental bono lengths. 1.75 A and 1.90 A., respectively [2].

Free Ni Clusters

In the last decade, the knowledge of the phssical properties of small. ligand-free.
metal clusters has grown considerably thanks to the development of sophisticated
experimental techniques in which gas-phase clusters are produced under controlled
conditions and investigated by means of photophysical measurements [3 ]. In ad-
dition. accurate quantum-mechanical calculations have been pertbrmed to interpret
the experiments and to predict other properties that are not easy to obtain exper-
imentall [t 13 ].

Gas-phase Ni clusters have been studied theoretically [12.14-191 and experi-
mentally [201. The present t DF calculations indicate, in agreement with oth:r
theoretical investigations [14-18]. that Ni clusters are highly magnetic. see Table

TAr 1 I. Binding energp per atom. B!1/n (eV): Fermi energ\., t. (cVi: total..•., . . , and
average. n, N,/n. number of unpaired electrons in bare Ni. clusters,

Ni, from Ni,,(IO),,, ri. r. BE/no LV . 1

Nil from Ni,(COl 2.38 1,35 2.93 2.49 0.83
Ni. from Ni4(COI,. 2.38.2.81 1.69 3.11 4.20 0.94
Ni, from Ni.i('O)1 2.38. 2.77 2.03 3.47 6.84 1.14
N i from Ni(C'()v 263 2.56 3.54 7.92 0.99
Ni,(i from Ni((C(Oh,, 2.63 3.22 3.44 4.24 0153
Nid from Ni(COW PR)t 2.65 2.()9 3,59 7.92 0.99
Ni, from Ni,(('O1, 2.38. 2.7' 2 33 3.27 8.11 0,90
Ni,, from Ni 3 ,(iefCO)2,, 2.55, 2.72 2_40 3.47 8.79 0.88
Ni,,,e From Ni,,Ge(('O):,, 2.55. 2.72 2.83 3.48 5.58 0 4
Nil, from Ni.('(CO),, 2.40, 2.46. 2.63 4.15 373 2644 0.83
Nt 3 ('G from Nij:('1-(C)), 2.40. 2.46, 2.63 4.95 3.77 10.13 0.32
N144 from Ni 44('O)4, 2.58 4.10 3.71 32.66 (.74

"the Ni-Ni distances (in A) are fixed at the experimental values found in the carbonslated cluslers.
Binding encrg. per atom computed as [nihNi) I iz((') 4 Ij(ie) l:Ni,(,Ge,)/In 4 1 4 ol,
Square antiprism.
cube.
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1. [he magnetic behaN ior of' the small clusters. lhich is reminiscent of the f.rro-
magnetic ordering oftthe hulk metal, can he explained by the nature of the chemical
bonding in these s\ stems. The low-I. ing electronic states in Ni clusters arise from
the interaction of Ni atoms in the 3d" 4.\. configuration. While the 4.s orbital is
spatially ',ery diffuse, the 3d orbitals are contracted and hight' localied" therefore,
Mhen ,wo or more Ni atoms interact to form a diatomic or a larger aggregate. the
interaction insolves nmainly the 4.s-leels, whereas the 3d-3doverlap is weak. [he
bonding originates from the coupling of the 4.k electrons via the formation of a
partiall% occupied 4..-manifold. while the 3d "'hand' is narrow and the unpaired
3delectrons are onl\ partially coupled. This results in an average number of unpaired
electrons per Ni atom close to one for small Ni molecules like Ni . which probably
has a IŽ, ground state [-2I]. or Ni - for which a >X, linear molecule is virtually
degenerate with a '..A equilateral triangle 117 ]. As the cluster grows, the number
ofelectronic spin states grows ser. rapidly. forming a dense manifold immediately
aboe the ground state. The energý separation between these states is much smaller
than the thermal energy. A I. for room or even lower temperatures. For high-nu-
clearit> gas-phase Ni clusters it becomes virtually impossible to compute all these
states and to determine the electronic ground state and its spin multiplicity. In this
respect. the I N technique used in this work when determining the occupation
numbers of the Kohn-Sham orbitals in the i.1i: approximation is ideallv suited
because it provides an aierage over the several close-INing electronic configurations
of a cluster.

The Ni clusters considered in this work are somewhat "special" in the sense that
their geometr\ was taken from the corresponding structure of the metal core in
carbony lated Ni clusters 121. The Ni-Ni distances. Table I. and the geometr of
the Ni,, units are thus nonoptimal for a free cluster of the same size. For this reason,
the axerage number of unpaired electrons per atom. n, - 0.7-1.1 (Table I). is
considerably higher than the magnetization of bulk Ni. 0.6 /l, per atom [9]. This
larger magnetization arises mainly for two reasons. First. the Ni-Ni distances in
the Ni,. units considered are often larger than in the bulk, where the Ni-Ni sep-
aration is 2.49 A: second, the a\erage coordination of the Ni atoms in a cluster is
much lower than in the hulk.

The dependence (If the magnetization of these two lactors, metal-metal distance
and aerage coordination, has been anal•,ed by computing a Nij 4 cluster for dif-
fercnt \alues of'r( Ni-Ni I (see Table 1l ). Ni 4i is a regular octahedron constituted
by an inner core of'six Ni atoms surrounded by 38 *'surtace" Ni atoms. Thus. it is
possible to distinguish in the cluster two týpes of atom. tile "bulk" Ni atoms. Nil
in the notation of Figure I and Table It. w ith 12 nearest neighbors ( NN ) and three
t).pcs of"surface'" Ni atoms. Ni2, Ni.3 and Ni4. with 9. 7. and 4 NN. respectively.
Six distances. from r(Ni-Ni) 2. 1• A to r( Ni-NiO) 2.68 A hae been considered

[ Iable ll ). 1 he minimum of the potential energy cure. r, (Ni-Ni ) - 2.36 ,k is
about 5' shorter than in the bulk. I-or this distance, the magnetiation of the
"hulk'" Ni atoms is p/,( No I ) ).64. quite close to the bulk ýalue. The magnetization
of the "'surface" atoms. 0,65 (Ni2 ). 0.66 1 Ni3 O. and 0.72 ( Ni4 Juil per atomr, exhibits

a trend opposite to the a'crage coordination. [his is due to the narrowing of the
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TAtL- II. Binding energý per atom. BE/n (cV): Fermi cnergN. E, (cV): ionization potential. IP (cV):

total number of unpaired electrons per atom, A, I N,, - N It_ and their distribution between "'bulk"
and "surface'" atoms in Ni,, as function of the Ni-Ni distances (n A).

U npaired Electrons/Atomr

Bulk Surface

rN--Ni) BlE/n IP N, Nil Ni2 N3 Ni4

2.18 3,99 - 3.88 24.1 )0.50 0.54 (.53 0.64

2.28 4.31 - 3.84 26.9 0.58 0.60 0.tt0 0.6,

2.38" 4.40 - . . 3.79 29.0 0.64 ).65 0,66 0.72

2.48 4.30 4.97 -3.75 30.9 0.68 0.69 0.70 (0.75
2.58 4.09 - -3.71 31.7 0.72 0.73 0.74 0.79

2.68 3.83 - -3.67 34 2 0.74 0.76 0.78 0.82

Bulk Ni

2.49' 4 .4 4 d 5.35' - 0.60 - - -

Number of unpaired electrons per Ni atom. see Figure I for definitions. Nil has 12 nearest neighbors.
NN: Ni2 has 9 NN: Ni3 has 7 NN: and Ni4 has 4 NN. NI for bulk nickel magnetiza,:in would be

44 x 0.6 26.4

C'lose to the equilibrium value. r,, - 2.36 A,
From R. G. Wickoff, (r'rTIcd .Strwtuir(' (2nd Ed.) (Interscience, New York, 1964).

Heat of formation of gaseous atoms from the m,tdl' rom L. Brewer and Gi. M Rosenblatt. Adv.

High Temp. Chem. 2, 1 (1969).
"IWork function of the (I 11) surface: frot' . ' iaker, E. B. Johnson. and G. I. C. Maire. Surf- Sci.

24, 572 (1971l)
'From ref. 9.

bands and to the concomitant promotion of electrons from minority to majority
spin bands as the .Average coordination of the atom decreases. This effect is re-
sponsible for the n5% enhancement of the magnetic moment of the first layer of
Ni( 100) with ;espect to a bulk layer [22]. The change of the Ni-Ni distance has
a pronounceJ effect on the cluster magnetic moment. A - 10% decrease of the Ni-
Ni distance corresponds to a Ž20% reduction of the magnetization for the high-
coordinated Ni atoms and to a a 10% reduction for the low-coordinated ones. A
2t 10% increase of r(Ni-Ni) results in the enhancement of the magnetic moment
by ---10% (Table I1).

The Kohn-Sham eigenvalues are, unlike the Hartree-Fock orbital energies, not
dicctly related to ionization potentials (IP). but only after allowing a proper re-
I.'xation as done when applying Slater's transition state approach. Of course, an
alternative for determining an IP is to do a ASCi: calculation. We find that with
this technique the lowest [P of Ni 44 at r(Ni-Ni) = 2.58 A to be 5.66 eV, which
is reasonably close to the bulk work function, 5.35 eV (see Table I1). and to the
IP of gas-phase Ni clusters of this size, a0out 5.7 eV [23]. Note the difference in
the cluster Fermi energy. which is ---3,7 1 eV at this distance.
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Ni3

Ni4 t

t~

Figure 1. Geometry of the metal frame of the Ni(z(CO)3, and of the Ni.4(CO) 4, mkAcular
metal clusters: the CO ligands are not shown for clarity.

In Figure 2 we present the local density of states. LDOS, for Ni 4 s. The I.DOS curves
have been obtained by Gaussian broadening (half width = 0.1 eV) of the one-
electron energy spectrum of majority and minority spins. The contribution from
the 4s orbitals has been distinguished from that of the 3d orbitals (see Fig. 2a).
The most obvious characteristic of the 3d-level distribution in Ni 44 is that the
majority-spin d levels are completely filled, while there is a tail of the minority-
spin dband extending above E1. The LIDOS curve for Ni 44 shows a strong similarity
to the Dos curves of bulk Ni [241: two intense features are present in the spectra
at the Fermi level, E1, and •2 eV below it; the 3d band is z_4 eV wide in both
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211

27

4 o}:i

41 1 ,

I
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Figure 2. Ni,ý density of states (in arbitrarN units) generated by Gaussian broadening of
the one-electron energies with a Gaussian function of fixed haW-width 0. ! eV. (a) (- )
Ni 3d contribution: ( ------ ) Ni 4sp contribution. (b)( - ) "Surface" Ni atoms con-

tribution: ( ------ ) "bulk" Ni atoms contribution.

cluster and bulk regimes. In Ni 44 , however, there is a characteristic low-intensity
feature below the d-band which is due to the bonding combination of the 4s orbitals.
This peak. at =-5.5 eV below E,., corresponds to the very stable totally symmetric
bonding combination of Ni 4s orbitals. Topological arguments suggest that this
orbital is always occupied in bare Ni clusters, thus stabilizing the structure [ 25.26 ].
The rest of the 4s band is distributed over a large range of energies, as is to be
expected because of the nodal structure of the weakly bonding and nonbonding
4s-derived MOs in Ni44. In Figure 2b, the contribution of the "surface" atoms to
the total DOS has been separated from that of the "bulk" atoms. However. apart
from the obviously different intensity which reflects the n-6:1 ratio of "surface"
versus "bulk" atoms, the two DOS curves exhibit the same shape.

Interstitial Atoms in Ni Clusters

Many of the isolated molecular metal clusters include main group atoms, i.e..
C, Si, Ge, P, H. etc., in the metal cage [2]. The global effect of these internal atoms
on the electronic structure of the cluster is reminiscent of that of impurity atoms
in the bulk metal, at least as far as the magnetic properties are concerned. Hydrogen
or carbon atoms adsorbed on a Ni surface induce a local quenching of the magnetic
moment of the surface atoms [271. The same effect occurs when carbon or ger-
manium atoms are introduced in the bare Ni cluster (see Table I). In NiRC, the
total number of unpaired electrons is reduced by almost 50% with respect to Ni8.
In Ni, 0 Ge. a single interstitial Ge atom reduces the number of unpaired electrons
from 8.8 to 5.5 (Table I). In Ni 32C6. the six C atoms. occupying the six square



alI I[IT'IpInI cax itIies ol the NI I ICILusteC I(see I I. f~ I ) ' 1 rd Cc Jh aC*,1'. :11 crace [al/at I IOT
from 0,88 4,~ per atom Ii) Ni ; to 0.3-2 p,~ per aItoml In Ni (' hicli trepresentIs I
quenchI~inlg of' tile ori4gin1.1 rnagtntic in onlieit h%' about M)

Ithe origin of-this Spin quenichline IS conne1Mctd ito the 0'.crlap bct'.'.ccn the si nif'
occupied~ PSp) hxh'L brid 1t11 ort ls on 1 tl inipuijit\'I tom~s and tile N1 'I/ oiitlls, I hIls
Icads to th 1w k1rmationl of strongcM ln od n usqetsi ann.Iiied
tile nter-Stit ml 11oMs, ii~d uc aconsiderable stabili /at 011 of-h I e olct et 1Ii icL-.% as
call be scen fomi the \.ahties of the aitom iationi c nerp' ( I able If).

The Magnetic and "MIetallic- IPropertie% of' Ni C arbon%] I (It%.frs

I:rom tile presiods anlal sis. It IS po(ssileI 1o Conclude that smlall. ligand-f'lCC. Ni
cIluSters ha'. man' featureFs inl Cor1n 110 '., Ith tilie ho lk melltal. lI ils does not me1anl
that a cl I ster of' aI fek tenIs of, atIomIls alTCad% p ossesses thIIe Co IIecIt\ c. I)roperties o
thle bulk, bultsinpi that tile natu ic of'the chemilcal interaction bet ' ecu tilhc coll-
stit u ti niN aos hence sc'. eral dcii'. ed clectronk:i properties. Is simiPlar Iin a finite
cluster arid Inl thle esten~ded er'. sta

[ile sit uation is coinpletelv dlitfken-i tolr carbon' kited meta~l Ci ustCrS. 1 or* MaOu
easit has beenI alssumed that thle structurall and speCtroscopic si inilarities ill ill-

oigaiiic clusters and bull, r eýtals are due to an intrinsic si inilarit'. of' thle metal-
ninetal interact ion Iin the tv ) regimes 1 2,81, Only rcccntl\ . phi sicall meaCsure Ments,
14 1 and th1coietical1 calculations1 [h -033 1 hase shtmil n1that this simillarit\'1. is1no

entICI ii ci just i ed (Itn o' thle in1ost impo1rtant signIs o1' thle di fk'rCnCC bet'.'. een bar
adiuaicad Ni clustcrs. Is the diff~erent magnetic blica'. or, We ha'.%sis ii

series of pre' iOUs, studies' t 31-331 that thle addition of the ligand shell to thle bare
Ni ci Uster has1' thle CflCI. of quenchin1g, in)st of the mlagncti /ation of the bare particle.
File magiietic moments of' thle -'surfnCC" N'i atomis are coinpletelr suLppressed: for
ci usters1 \kshere all the N*i ato ms are dircctl'. coordiniatcd to, thle (0 liganlds. this
resuLlts Inl a diiaImagneItic s\ s em[3In -1-3,31. Yhe electronic mechaiiism hehild this
eflect is thle electron transfer frorn the 4.N Ni iirbital Into the 3d,/shell [26.311-133
I lis, transfi.r is rinduced 1b\ tile repi'.IS\ e in1terCtion 01"1the diff'Use 4s-deri sed mectal
%t(S %issith thle 5aT CO'C lonie pair 1134 1. I hie 4,\-deri'. d orbitals are dcestabili/ed and
pushed above thle Fermi level: thle 4s electrons eiid up Iin the 3t/ banid, '.hich Isl
noss% energeticall' fasorable. *\ cos alenlt boind Is thecn foirmned betseen the f'illeid 3 i1
orbi tals and the 2*si rt ual orbi tals of the C C)Iigands. Because', of thle back d0I a-
tion hiron thle mnetal to CO( . the finial popu lation of the 3d shell is lo'.er thani 3

131-331I.
'I lie same mechanismn cauIses thle iocal1 queiLChilig of' the Imagne~tic mollen~t Ill-

duceil h% a sIingle COt molecule adsorbed on at Ni surface 1.15..,61. Ill pariVCular.
Raati arid] Salahub found that the nearest neighbor N'i atonis are Lnreatl' alf~ccteit
ss bile thle second neighbors are onl\ noioeratclý afk~ctd. a fetu~~re of considerable
importance inl '.cx ie'A(the incomlplete magnetictqueniching foUnld Inl higli-nulear~dit\
organiometcallie clusters ( see belov, ).

the net result of this, ligand-i nduCed con1figuration change Iin earboti lated clusters
is that thle 4ý-hand is f'orniallr emipt\ and( the 3d1-hand is, for'nallk filled. ()f course.
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some 4%-3d/ mixing occurs. because it is Ilikorable tor th tiform atIfon ol' the co16aeIt: 1
bonds with the ligands. but the final result ol this strmi uI lectronic redistribution
is that the electronic structure of' the metal core in) the c.1rbons ki1ted cluster has
litt'e In common with that of the corresponding ligand-frec metal clustler.

'This description, xshich fully accounts I'M the obsersed behavior ot'smiall ligated
clusters containing less than 10l-20) metal atomis, remnain% alid also I'Or larger- ag-
gregates, %% here somne 01 the metal atoms are not coordinated to the ligand sphere.
In [ Ni ,Pt~,,fCO ).,,' [2h] the six Pt atoms are in the "bhulk" oit the cluster. I his
cluster has been modeled in our study b\ a (N14( ('0())1J` cluster "~here the Pt
atoms of the corL have been replaced by Ni atoms ( Fig. I ). In contrast to thle case
for "small" carbonvilated clusters, we found that this large cluster exhibits a per-
mnanent magnetic moment corresponding to about three unpaired clecirons (I [able
Ill ). The analysis of' the spin distribution showks that the magnetic moment o)['the
surface Ni atoms is completel\ suppressed. while that of the six internal Ni atomns
is reduced to _-_-.5 jul, per atom (see Table Ill ) as opposite to 0.72 jul per atom in
the hare Ni4.,, Table I1. This result provides a consistent explanation lor the obser'ed
temperature dependence of the magnetic susceptibility of [ Ni ,%X~((O)~Is hich
indicates a total magnetic moment of' ýý4,up 4]J. Similar results have been obtained
for the Ni (CO),,. cluster which is composed of 8 "bulk" and 24 "surf~ace" eIuiv-
alent atoms. see Figure I and Table Ill.

The existence of a permanent n:;gnetic moment in high-nuclearitv carbon\ lated
Ni clusters provides a solid indication that, in order to observe the beginning of a
metallic behavifor, the cluster must be large enough to accommodate internal metal
atoms. In the next section we will show' that the appearance of metallic properties
depends on the structure of the txos near the Fermi level. This, in turn, is a function
of the ratio between the "bulk" and the "surface" atoms in the cluster.

Density of' States Around the Fermi Level and Related Properties

Recent physical measurements on inorganic clusters [4-81 suggest that the ligand-
induced perturbations on the electronic structure ol' the metal atoms are of short

"I-Iuill.ý f-rmi energx L, (eV: total number of unpaired electrons per atomn A.? A5 ;,- 11
a nd thei r doýt inbut ion hetA e..n "hu1k' a tnd srface - aiomis i n \ ariou% Ni clusic-rý

Unpaired Vlecctrons/mAomn

Bulk Surf-ace

Ctuster I.) I, V, Nil Ni2 N, 3 \i4

Ni, 2.40. 2.46 3_74 26.4 0.74 0.$ -- h

NI,(CO)~, 2.41). 2.46 -5.49J 3.9 ((.50 0 WX - -

Ni144  2.58 3.71 3 2 7 0.72 0"7 ,1 0,A '4 (.74
Nij4 ( .) 4  2-5m .5 3.4 0.56 0.0 1 0.0 1 0).02

N mheir of unpaired electrons per N; atom, wec Figure I or delinitioni.



OR( \\ AltI I \1 1 (It NIslI RN

range and inxo~lxe mainl\ theil tc aom hse con"cIluions" aIre based not
onix onl NANIR and mlacntictI SsuCeptlbilit\. but Also oil speci tc he'lt TMaso icnIentIIs
onl the Clusters Pt;Peiil) ad P~d, hei 'Ij_)-,, 1 4- I. h1s c~luterIs Mre suLlf-

ficientl\ large that a considerable fraction, about hialf or more, oft he metail atomsý
is iln the -'bulk" Of thle cIluster. LhS u t. tiflte appearance of1 mletallic properties Is
indeed connected to thle fraction oit "'bulk*' atom',. it should be clearlx bsr able
in clusters of, thil si/c.

Iw\o f'eatures of the N NI R signal arc of' interest in determining Michthecr thle [It
nuclear spins are in a "'metallic'' or in an ''insulating"' en, ironnmenit, One is. thle
comlbinlationl O'chemlical sh1ift v. ith its associated K night shift. the latter beinv a
signature of' metals, xx hich is, due to the Pauli spin susceptibilit\ ofthe1 conduIction
electrons: the second is the n uclcar-Npi n lattice relaxation time. I i.In i nsu lators.
'II is \ cr\ long~ xN hule. for Metals, thle Conduction electrons pro\ ide anl etlicient
channel tfor the relaxation So that 1I is relattix et\ short. On the basis of' the field-
dependence of F . the "-Pt N\1R signal of the 1t,, cttister has been decLomposed
in t%%o contributions. oine at a resonance tx pical of insulators wvith a long F, aind] a
second component at a resonance t~ pieal for metals \%ith a short value of'~ F,[alj.
IThIis xxotIld be consistent %k ith a contribution to the Signal due to thle 162 ''surtace''
Pt atoms, and a "metallic" term due to thle 147 "tilk" PIt atoms.

The presence of' two kinds of' metal atoms in a ligated ciluSter IS also Consistent
with txso other experimental ob-,crvations rel:ited to the elketlwixe ~s near E,.The
magnetic susceptibilit\ of the ldý,_ Cluster ,xas found to be about one-third ol that
of bulk Pd: about the samne factor xxas obserw d for thle 6ectronlic contribution to
the specific heat. C -, 1'. ofthel cluster %,.herc -r is a coefficient directl\ proportional
to the t )() around thle F~erm i lcx l. The appearance oit' anl electronic contril-ution
to thle specific heat is considered a stringent test of' metallic 'elliasor. I ikk thle
K a:iiht Shift. the observation of a linear specific heat term requires thle cluster t )S
at LFj to l'orm a quasi-contiilrn i i. For Pd, -, is about one-third of'1the bulk x alue]
[81b1 F aking into account that in Pdý there are 25- 1 _-50'; I"surlace" atoms. it
has beei, possibie to explain the factor one-third b,, assuiming, anl almost complete
eli mination of the ''surface" atoms contribution to the tx) s near I and a reduction
of' the contribution of the next inner sphere of ''uk atoms {Mb 1, B oth these
aIssumptions arc tfull\ Supported h% otir theoretical m odel.

The perturbat ion induced h\ thle ligands, invols ing mainlx. but not onl\. the
"surtace" atoms, is consistent x\ ith the conmputed reduction of the magnetic moment

in lie cabhonyated Ni and \i44CcLuSters lable III ). White the magnetic moment
of thOw srac' atoms is completel\ suppressed. that ol'the "core" atoms is redticed
b\ 2t10"; with respect to the freeC cIluster ( compare I'able,, I and I II ). I hence. the
modifications itiduced bx the I igand sphere. although-1 of'short range. also aff'ect thle
iinner metal ot~ims to somne extent.

Further support for thle proposed internretation of the experimental results comes
tromn tire anals sis of' the computed t)Afor the Ni,, ('0Y LCluster ( Fig. 3) -1 tie
contribution to thc I )(),, of the "surface'' Ni atoms hasý beenl separated fromn that of
the "*bulk" Ni atomns. It is apparent that. xs hile inl theC ''surfa1ce' Component, the
nlatoritv arnd minorit\ t)(),, mirror eacliother, resulting in a complete Spin painring.
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Figure 3. Niýý(CO )., den,;it% ostataes (in arbitrar-. units) generated b•ý (auý;sian broad-

ening of thet one-electron energies with zi Gaussian f'unction (it fixed half'-v Odh 0-1. c €'

"( )"'Surface" Ni atoms; contribution: (. .. "bulk'" Ni atomns contribution.

the "'bulk'" component exhibits a residual magnetic moment. Moreover, the con-
tribution of the "'surface" Ni atoms to the TDOS at h', is negligible: the "'surface-"
atoms' 3d-band is, in fact, well below 1Ej as the consequence of the chemical in-
teraction with the CO tigands and, in particular. of the charge transfer. or back
donation. into the 27r* CO M10s. Clearly. all those properties directly connected to
the Dos near Ej:, depend largely on the number of "bulk'" atoms in the cluster.

In the clusters considered here. the ratio of the number of -bulk'" atoms to the
number of "surface" atoms is too small to allow the formation of a quasi-continuum
around the Fermi level. This is indeed shown by the one-electron energy levels of
Ni,•(CO)_, (see Table IV). which has no "bulk" atoms, and of Ni,(CO)4,. which
starts to exhibit some "'metallic" behavior. The average one-electron energy sepa-
ration around E!. in Ni s(CO), , ý- t70 meV. is typicallN molecular. but also in the
high-nuclearity Ni44(CO)48 the average spacing, n-40 meV. is still larger than kT*
at room temperature, -,,24 meV. In order to reach a quasi-continuum. clusters of
a few hundreds of metal atoms are required as is the case for the Pd,,, cluster.

Conclusions

Molecular metal clusters stabilized by ligands represent an interesting class of
materials for the study of the evolution of metallic properties as function of the
cluster size. In this work we have shown that the electronic properties and the
bonding nature in bare and carbonylated Ni clusters are completely different. While
naked Ni clusters have several features reminiscent of the bulk metal, Iow-nuclearity
Ni cluster carbonyls, containing about 20 metal atoms or less, have nothing in
common with the solid, because the ligands induce strong modifications in the
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1.\141 I IV ()ne-decctron einr;. lCel% in the vicinity ol'the cluster Fermi cnerg. (or cluster IIoM4)M In
Ni,( ( ))j, and Ni 44(( ()).,' l1ie position oft"e 1 Mmo and ol'whe Ferni energy is indicatcd 11 Ni aseparating

line. Ihalici aret uscd to identify the virtual levek.

/(IlO~tu) 5.07 eV Ni,4(('(),,. 01,. E, 5.53 eV

'2.5 24 ',, 3.51 57 t., 5.69)

IN' a' 4.64 5 ,) 3..81 42 a, 5.74
591":, 4.08 57 e, 5.82

33 ' 5.07 ml ., 4.12 44 ti, 5.96
17 e" 5.83 2) a',, 4.20 56 1:, 6.09
32 eC 5.88 45 tj, 4.24 43 ti, •6.33
29 ') k' 5.93 5,s t ',, 4.53 78 tl,, (1.35

2 a1 6. 16 43 a. 4.54 18 a." 6.36

6 a,' 6.20 5 9 :,, 4.68 23 e,, 6.39)

17 a, -6.28 ,,,, 4.81 56 e, -.6.43
16 C"" ,3 58' 1:. --5.06 55 ell 6.54
28 as -658 e,\ -'•5.07 57 12,t .6.71

-11 C' ,•6 19 a1.7 -5.30 77 t ,, 6.72
15 e" 6.69) SOt 1j,, 5.33 55 t:ti 6.18.4
30) e' -.7.031 79 It,5.49 41 a,,• 68
29 C, -7. 16 122 6.87

56 1-7.X)

electronic structure of the metal atoms. In relatively small clusters, where all the
metal atoms are directly interacting with the ligands or, in other words, are on the
".surface" of the clusterthis results in an almost complete suppression of the "me-
tallic" character of the bare Ni cluster. This is shown, for instance, by the dia-
magnetism or the carbonylated clusters, whereas the naked ones are ferromagnetic.

When the ligated cluster becomes large enough to have both "surface" and "bulk"
metal atoms, sonic metallic character is retained. This metallic character is directly
connected to the density of states at the Fermi level. In a high-nuclearity molecular
metal cluster this is determined only by the number "bulk" metal atoms, because
the contribution of the "surl'ace" metal atoms is negligible.
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Orientational Ordering of Adsorbed Monolayers
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Abstract

We &t up a model for the adsorption cnerg finl a losý,d-packcd hexagonal monola.er deposited on

a substrate surface of the same structure. but diltcrent lattice constant, as a function of the epita\N angle
bet%,een the principal axis. The surface substrate potential is expressed in the lforn ofa periodic potential
%kith s,,mmelrx and periodicit, of the substrate surface. The particular case of lead underpotentiall,
deposited on AgI I I i is examined.

Introduction

Recent in situ grazing x-ray diffraction experiments on the under-potcntiall\
deposited (UPD) monolayer of Pb deposited onto Ag( I ll) [I] have shown that
Pb monolayer is compressed 1.202 from bulk lead. The first order diffraction peak
was 0.037-A wide in the radial and azimiathal directions, indicating that. even in
an aqueous env ironment. the lead monolayer forms a well-ordered two-dimensional
(2D) solid, A rotational epitaxy angle (the angle between the adsorbate Pb and
substrate Ag lattices) of 4.4' was observed.

The aim of the present article is to set-up a model to determine the relationship
between the substrate periodic potential and the rotational epitaxy angle.

The Model

Since the effect of the substrate atoms can be expressed in the form of a periodic
potential with the symmetry and periodicity of the substrate surface, we expand
the potential energy per surface atom in a Fourier series of the form.

I '0 T

where the (i's are the 2D reciprocal lattice vectors of the substrate surface and
R= (vv) is the position of an atom on the top layer. The coordinate axes (v,)
in real space form an angle of'(2/3)'. The lattice constant of the 2D hexagonal
lattice is a. Eq. ( I ) can also be written in the following manner:

International Journal of Qiuantun ('hemistrv: Quantum (hemisiir S% mposumi 26. 62 1-032 ( 1992)
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V( R) = [a,,.4 cos((I'. R) + ,,. sin(6. Rd (2)

If we truncate eq. (2) after the second surfiace Brillouin zone of'Ci. we obtain

V(R) r,,, + dcos(27rx) + cos( 27r.v) + cos 21r(.x -. ))1

+ O[cos 2ir(.v + v) + cos 21r( 2x - Y) 4 cos 21r(2j k .) (3)

where a() = C o,, aj.,A = if

f[(h.k)] = [ 1,0), (0. 1 , - 1.0 , 0 -). (0I--1 1 . (.-1 1.1 )](4)

and a,,, = j if

[(h,k)] = (11 , --2,t ,1 ,L-2),(--I.- 1) (2,-I 1 ,(- ,2)] 5

The summation over sin( G- R) is identically zero because the sine is an odd func-
tion. The coefficients of the cosine in even- surface Brillouin zone are equal to each
other. It is possible to write down the coefficients of eq. (3) as a function of the
substrate potential in a small set of characteristic points of the substrate unit cell
(see Fig. I).

Let us call V., the potential value at the hollow site ., 1' ", is the potential at the
bridge site B, and the zero of the potential energy is taken at the top site T. After
some algebra eq. ( 3 ý can be wyriten as follows:

1(R) = (3/4)IVB - (2/9)lW.dcos(2irx) + cos(2r)') + cos 27r(.x - v)J

- [( 1/4)1'1 - (2/9)V4 I[cos 2rr(x + Y)

+ cos 27r(2.v - ') + cos 27r(2 - x)]. (6)

since

v(,,, (3/4)1'11. a= -(2/9)1V4, j= -( I/4)IF + (2/9) 1 ", . (7)

Using eq. (3) we define the function ik(x,y).

Top Top

A (hollow)

Bridge

A (hollow)

Top Top

Figure I. Schematic top view of the ( I I I face of Ag. (A): Hollow site: (B): bridge site.

and T indicates the top site.
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3( A) . lV()

which is bounded by I( 0(y) • I< this function can also be written in the Ibilowing
way,

k(x.v.) = f [cos(2r.v) + cos(2ry) + cos 2r(.k - .v)

x.,
+ X2 [ cos 27r(x + Y) + cos 2 7r(2x - Y) + cos 27r( 2 ' -- 2 )] (9)3

with

(10)
Jai + 1j31 lal + 10i

The relationship between the coefficients of eq. (6) and eq. (9) is

(8/9) X' + XV, K. (x1 # 0) (It)
X1

In Figure 2a and b we show a three-dimensional (3D) and a contour plot of
30(x. r) in orthogonal Cartesian coordinates.

Let us now consider the closed packed hexagonal monolayer of lead with lattice
constant A, underpotentially deposited on Ag( 1 11 ). Figure 3 shows this particular
situation when the epitaxy angle is 0. Open circles represent the adlayer of Pb, and
full circles represent those of the Ag( 1 I1 ) substrate.

Consider now the Hamiltonian for the interaction between the adlayer and the
substrate surface plane,

SV(R(12)

where R, is the position of the ith adatom. This Hamiltonian is the potential seen
by the Pb atoms due to the substrate, and it is described by eq. (6). We note that
V(x,y) in eq. (6) does not describe the total interaction potential energy of the
top Pb layer with the substrate, but rather the relative energy change as the atoms
in the top layer change from one site to another. We are mainly interested in
knowing the angular orientational energy per adatom (AOEA) imposed by the
underlying substrate potential. We know that, in general, there are two competing
interactions:

"* the adatom-adatom longitudinal interactions; and
"* the adatom-substrate transversal interactions that pin the surface atoms to

their "in registry" positions, as is established by the 2D Frenkel-Kontorowa (FK)
model [2,31.

In the present article we study the limiting case in which the two interactions
are decoupled. We study the AOEA for a given fixed constant adsorbate lattice
parameter.
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\.o 0. *
0 0 0.0

* 0 o'Q 0 •

00
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00
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Figure 3. An example ol'commeivsurate latiices7 FUlR black circles are sUbslrate at0Ms.
tem-pt\ circles are adsorbat atom%. I becdotted linesind icate at.% 4- 1 )(A t I )commensur-ate

uni* cell: in this cawe. AN 3 and the lattice parameter ratio A1/u 13.13.

;1 ugular Orientational Ene©'v

To evaluate the binding energy per adatom, S(O). over a cell of adatoms with
(N + I )(N+ I ) sites, we form the summation

S~~fi) =: z~ +V ~ ( R,,m) - (13)

• O • • ,,I OV '1

where the second term is the AGFA. From eqs. t(2) and (12)

S(O9) =t'gK + Z ah~l 2:: cos((;ikRfimn)j (14)
N ( .A . 11

The symbol L e means that we have excluded from the summation the term

( euk) (0.0). It should be noted that every term V(R1,,) in eq. ( 13) should be
weighted by factors 1. a or .. depending on the location of the adatom in the cell.
inner, edge, or corner, respectively.

We performed summations over the set (hk) specified by eqs. (4) and (5).
wh,, represents the location of a Pb atom on the adlayer in the adlaer reference
"system. x'j' (see Fig. 3).

h = . h e t every, (1 5(s )
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( j, j,) are vectors of modulus ,A. the lattice adlayer constant. For an epitaxy angle,
0, the coordinates of the (m,n)th Pb atom in the substrate reference system (x.Y)
are

X = AT(O)R (16)

x- )

R (17)

T(O) is
T(O) = 2r3 (sin(wr/3 + 0) -sin 0

3( - sin 0 sin(r/3-O0) (18)

Therefore, the (mn)th Pb atom will have the following coordinates in the substrate
reference system, A,.

x = mrtl(O) + nt12(8) (19)

y = mt 21 (O) + nt22(0) (20)
The dot product, GhAR.,.,., of eq. ( 14) is then

GhkR.,' = 2rA [(tlh + t2 1k)m + (012h + t22k)n] = mrLhk(O) + nvpk(O) (21)a

The summations in the brackets in eq. (14) can be divided into three different
groups, depending on the location of the (m,n)th Pb atom in the surface unit cell
(inner, edge, corner). It is important to note that the AOEA is due to the summations
in brackets of eq. (14) because the coefficients a,2 k do not depend on the angle 0.

After some algebra we get
in ner 

h()+ lkUhk(O) = Z COS(Gh,. RTx.-) = Cos

Ira.n) 2

sin[(N - l )M,•(0)/ 2 ] sin[(N - )vh.(O)/ 2 1 (22)× sin[Ahk(0)/21 sin[PhA(O)/2] 22

edge

Shk(O) = cos(.k- A,,) = + Cos + P1,k)

sin[(N - Ihk(()/2] + (COS) + 1os[ + h()

sin[(N - I )V!k()2] (2  3
sin[v/,A(O)/ 2] (3

corner

whk(O) = Y cos(GhA - R,.,)
(m.n)

= I + coslN(,hk(0))1 + cos[N(v/,A(0))]

+ Cos[N(/phk(0) + Vhk(O))] (24)
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TABLE l, St ot the lIovest +alues ot'N and
lattice constant ratios I./a for commensurate

adlayers. compatible %%ith eq. (27Y

N .- /a

3 V1313 : 1,2018
5 6/5 - 12

13 9t3/1 3  
.1I1991

28 V 1 -9P8 1.2000

Therefore. eq. (14) now becomes

S(0)= VOO+ N I ahk[UhIA(O) + ( l/2)sA(O) + (1/ 4 )Whk(O)] (25)
(hA)

Usin;g eqs. (4) and (5) and the coefficient ajA = (a or [)

S(O) = vOO + -2 a 2 (uhk(O) + ( l/ 2 )Shk(O) + (I / 4 )wjk(O))
N I(h~k I

+±3 0 ( Uhk +( I/2)sh9(O)) + ( I/4)vtIA())) (26)
(h.A)2J

where the sets (h,k), in the summations are over the first and second Brillouin
zone as done in eqs. (4)and (5).

0o80 .

060

0.40

0201

0.00

-0,20 1 1 L .•.
0 10 20 30 40 50 60

angle(O)
Figure 4. Plot of F(0), eq. (28), the normalized angular orientational energy per adatom,
AOEA, on the substrate potential shown in Figure 2a, with the commensurability ratio of

Figure 3.
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rABI 1 II. (A) and (B) shn% 1hC dependence o I''() o), th1 rclaui.e '..wight of the 1rt hxmoml .

and the second harmonic ..x a tb ell k ith A 3 a,1n . I d 1 .

AA
,\ -3 ['/a (13/3 .\ 3 (:o ;133

0.0 1 .0 -0.683 Q 0. 1083 3t0 23 ( A I.) 0.I83 o 0.6831 2 0 3)

0. I 0.9 0.6 ( 4;4 0.,(986 30 23 0. I 0.9 D.). O86 06o 1 94 23 30)

0).2 0.8 0.5468 0.0889 30 23 0.2 0.8 (0.0889 O.'546 23 3 0
(0.3 0.7 0.4783 ).0792 30 23 I (. 0.7 - .00792 0.4787 23 30

0.4 0.6( 0,4098 0,0695 31) 23 0.4 0.6 0.(W95 0.40,) 23 30

(15 0.5 -0,3413 0,1(598 30 23 0.5 0.5 0).0598 0.3413 23 3V
0.6 0.4 -0.2728 0.0663 30 8 (Rh 0(4 0.06f6)3 0.2728 ( 30

0.7 0.3 • (20442 0.078 1 30 10.7 0.31 o.j)787 0.2042 8 30
(0.8 0.2 0.357 0.09f2 3A) 8 (.8 D'.2 ((04(2 0.1 57 "i 8 0
0.9 k) I 0 0. 1O.o" 0.1039 30 7 09 o. .1 03) ! 09 (672 3

.O 0.0 -)0.()277 0.1(181 17 7 1.0 (M.0 0.181 ( (.0177' 7

0.9 0.1 -0.0251 0.1(180 17 7 0(( 10. 1 0,1086 (1(0 51 7 I
0(.8 -0.2 -0.0225 ; .1378 1 7 30 0.8 ((.2 0.111 378 ((.1225 30) (7

0.7 - 0.3 - 0.0244 0.20160 23 311 (0.7 0(.3 0.2060 (1.0244 3 1 2

0.6 0.4 0.0364 0.274; 21 30 0.6 0.4 0.2743 0.0364 30 23

0.5 0.5 - 0.0484 0.3426 23 30 (05 (1.5 0.3426 0.0484 30 23

0.4 0.6b -0.0604 0.41018 23 30 0.4 0.6 0.4108 0.0604 10 23

0.3 -0.7 )0.()723 0.479t 23 30 0(.3 O.07 0_479)1 0.0(723 30' 23
0.2 -0.8 -0.0843 (0.5474 23 301 - 0.2 0.8 0.(.5474 ((.0843 3() 2"

0.I - 0.9 -0.0963 0.6156 23 30 -0.1 (0.9 0(.6(56 ((.0963 31) 23

0.0 10 .- (0.1(083 0.6839 23 30 0.0 H) • . 0.6839 0.11083 310 23

It is important to note that the size (N + I )( N + I ) of the unit cell is deter-

mined by the ratio A,/a, which, in our case, must be such that the adsorbate is
in some way commensurate with the substrate. albeit with an arbitrary (large)
cell size.

In a previous work [4] two of the authors had studied the requirements
on the potential when the lattice constants A and a between an adlayer
of UPD Pb and the Ag( Ill) substrate was determined with an ac-
curacy of

-- 1.2 <2. 10 '. (27)
la

Although there are an infinite set of numbers in that small interval, there is only a
small set of values that allows both lattices to be commensurate, for low values
of N. Figure 3 shows an example when A/a -= r3/3 - 1.2018 and A' = 3. In
Table [ we quote the small unit cell sizes and their corresponding lattice constant
ratios.

From eq. (26) we define the function
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T.t I Ill. (A) and (11) show the dependence of I'(1) on the relatie weight of thc tirt harnmonic. %,.

and the second harmonic. x:, Iir a cell with N 5 and .-I/a - 6/5.

(A) (B)

N :- 5 Ala - 6/5 A' 5 A/a 6/5

X 1 V.\' 1(0 .1 l'( f.l m) X,, O, - . 1'(0,,,) I'( m# 1 1,, #

0.0 1.0 -0.3533 0.0979 30 26 0.0 1.0 -0.0979 0.3533 26 30

0. 1 0.9 -0.3173 0.0882 30 26 --0.1 0.9 -0.0882 (1.3173 26 30

0.2 0.8 -.0.2813 0.0785 30 26 --0.2 --0.8 -0.0785 0.2813 26 30

0.3 0.7 -0.2454 0.0688 30 26 -0.3 -0.7 -0.0688 0.2454 26 30

0.4 0.6 --0.2094 0.0591 30 26 --0.4 0.6 0.0591 0.2094 26 3(0

0.5 0.5 -0.1735 0.0493 30 26 -0.5 - 0.5 -0.0493 0.1735 26 30

0.6 0.4 -0.1375 0.0396 30 26 .0.6 -0.4 - 0.0396 0.1375 26 30

0.7 0.3 -0.1015 0.0299 30 26 0.7 -0.3 -0.0299 0.1015 26 30

0.8 0.2 -0.0656 0.0275 30 15 -0.8 --0.2 --0.0275 0.0656 I5 30

0.9 0.1 -0.0356 0.0301 9 15 -0.9 -0.1 -0.0301 0.0356 15 9

1.0 0.0 -0.0396 0.0328 9 15 -- 1.0 0.0 - 0.0328 0.0396 I5 9

0.9 -0. 1 --0.0356 0.0410 9 30 --0.9 0. 1 -0.0410 0.0356 30 9

0.8 -0.2 -0.0316 0.0757 9 30 --0.8 0.2 -.0.0757 0.0316 30 9

0.7 -0.3 -0.0288 0.1104 26 30 --0.7 0.3 -0.1104 0.0288 30 26

0.6 -0.4 -0.0386 0.1451 26 30 --0.6 0.4 -0.1451 0.0386 30 26

0.5 -0.5 -0.0485 0.1798 26 30 --0.5 0.5 -0.1798 0.0485 30 26

0.4 -0.6 --0.0584 0.2145 26 30 -0.4 0.6 -0.2145 0.0584 30 26

0.3 -0.7 -0.0683 0.2492 26 30 -0.3 0.7 -0.2492 0.0683 30 26

0.2 -0.8 --0.0782 0.2839 26 30 -0.2 0.8 -0.2839 0.0782 30 26

0.1 -0.9 -0.0880 0.3186 26 30 -0.1 0.9 -0.3186 0.0880 30 26

0.0 -1.0 -0.0979 0.3533 26 30 0.0 1.0 -0.3533 0.0979 30 26

SO() - v I

- 3(Ial + 1#31) 3N 2

i[.' • [X/tA (,() + ( 1/2)s/,(O) + (I / 4 )wA(O))

4-.', • (Ux,2(O) + ( I/ 2 )s4,(0) + ( I/4)whA(O)) (28)

where x, and x. have been defined by eq. (10). We notice that I F(O)I 1. In

Figure 4, we show a plot of I'(0) for the parameters

Ala = V.3/3. N = 3. x, = 1/2, A -1/2

The period of the function is ir/3. as required by the lattice's symmetry.

In Tables 1l and Ill we display the dependence of '(O) on the relative weights of

the first and second harmonics. as well as the maxima and minima of this function.

We learn from these tables that for a larger unit cell the values of I'(0) decrease.
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-since a bigger number of locations of the substrate potential are sampled. In fact.
the as\mptotic limit of 1(" /) for N -- -. is tero.

\nother interesting property of l'(f) is that the locus of their extrema does not

change continuously as the weights of the first and second harmonics are changed.
Ihere is a small and discrete set of epitaxy angles, fl. for which I'(0) has maxima
and minima, and the transitions from one regime to another are abrupt.

Discussion of Results

Wc are particularly interested in establishing the set of \alues ( V,. V1) (see Fig.
I It tha"t ill enable the Hlamiltonian described by eq. ( 12) to predict a low epitaxy

anglo (4_4'" ) as is experimentall. found [ I I in the UJP[D of Ph on Ag( I I I ).
F-ron I ables If and Ill we learn that the lowest angle values for which NO(fI) shows

a minimum are 0 - 7' and 0 -. 9. which are obtained using

I1a - H13/3. A . 3... . -..- I. v, - 0. fi,,; _ 70 I,(0,,) . 0.1II1

and

Il 6/5. a- 5. .\ 1  I. . . 0", - 9 ( Om. -.0.0396

In cvery case. the coefficient of the second harmonic is zero. but they represent
mutuall\ cxclusive alternati'es as V, cannot he positive and negative at the same
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time. We should remember from eq. 1 7) and ( 10) that the signs of,\, and VI are
diflerent. Therefore. we are going to select the first set of'values because the,, provide
the epitaxy angle that is closest to experiment, and has the highest AOEA.

From eq. 28 ) and, using the Fact that for 0 () we have 1 - 0. we obtain the
AOEA

S(P-,,) - V 3 Fj ',,,) (29)

or from eq.( 7)

S(O,,:) - (2/3)I 1- (2/3)1 V, (111 ..,) (30)

Therefore, the AOEA for vx: - 0 is (2 / 3)1 V, 1'(0 ,,,). The substrate potential that
yields an epitaxy angle of f,,, 7' when the ratio of the lattice constants is ./a u
V13/3 is

t'(R) (2/3)I", -- (2/9)ij{cos(2r.\) + cos(27rv) + cos 2ir(. .-- )]

V, > 0 (31)

A 3D plot of this potential is shown in Figure 5. The corresponding contour plot
is shown in Figure 6. Figure 7 displays '(0) as a function off) for this set or param-
eters. A well-defined minimum tbr 0 = 7' is observed. For reasons of symmetr
there is another minimum at U = 53', which is equivalent to the one at 0 = -7
We should mention that in the Pb/Ag( I I I) UPD. in addition to the peak with
0 = 4.40, a similar peak at 0 = -4.4' is observed [I]. There is a small difli~rence
in intensity however, presumably caused by anisotropies in the sample.

Finally we can fix the sign and the relative potential values at the bridge and
hollow sites using eq. (7).

I'll = (8/9)1'1 and V, > 0 (32)
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Calculations of Thickness Dependencies in the
Properties of Ultra-Thin Films

J. C. B()l I I(II R

Abs~traict
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Introduction

It h as been more than 15 \cars since it I\as dvnmonstrated that thle %\ork f'unctionit
of an ultra-thin (atomic scale )jecllium film ex11hibit quantum oscillations as, a tuneII-
tnon of the filmn thickness [1.2 1. Since that time, a number of theoretical ins estigati ins
have addressed this quantum su/e ellect (ost ), \xith emphasis onl thle question of,
whether or not QSF will he evident in thle work functions of' real ultra-thin filnm"

Uil Fs) 1 3-9)1. All hut two [3.91 of these ins estigations sscec conducted %\1111 the
lattice parameters fixed at hulk values.

A much larger body of theoretical work (too much to fullks refhcreiice has. beenl
directed toward using first principles I. JIT calculations as a tool tor moideling thle
one-electron properties of' surt~ces, or interlaces [ e.g.. Ref's. M-I 12 1 -Once again.
thle tJTI lattice parameters generally have been constrained ito match bulk lattice
parameters: although. in a few cases, the interplanar spacings of thle Outermost
layers have been allowed to relax [e.g.. Ref' 12j1.

Yo date. only a handful of first principle,, studies [3.9,I13-201I hase tocusscd on
the properties of the UT~s themselves ( be-,ond the monolayer les elf) at their ossn
equilibrium lattice parameters. This relatise scarcity of geornerý-optimiized L 11
calculations is understandable since they arc quite demanding coin putat ionally.
Howvever, even the ti~w results published so fa~r have revealed a numbevr of interesting
(and often counterintuitise ) thickness dependencies in thle properties of' fiLsF.

The results of a number of gcometry-optimized UilL calculations perf'Ormed
with the linear combination of Gaussian type orbitals-fttting function { i (1 (; [-iI I

I nternational Journal it Quanitum Chemistr 'k Quantum ( hemiisirs S\1mpuiONIUm 2f,. 60(i 4 -1- 1t I
\it suhjo t) In opk right within the tUnited States
PublishedJ lit John Will:\ & Sons, Inc. 1 ~'i 7 sa oiV-tw
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technique are examined [9,21,221. Two fundamental questions will be emphasized.
( I ) Do the lattice parameters and electronic properties other than p exhibit a ,sl?
(2) How rapidly. as a function oftilm thickness, do the properties ofa UTF become
bulk-like'?

In the next section, the L-CG I:FI method is described. Geometry-optimized
I C'G tF-J: calculations are discussed for a number of monolayer and dilayer systems.
and for Li n-layers (n = I -- 5). Some conclusions are given in the final section.

Methodology

The results presented here were obtained within the context of density functional
theor, (mDir ). using the f-edin-Lundqvist [231 local density approximation (LIA)
for the exchange-correlation terms in the total energy and the potential. The solutions
to the LD., one-electron equations were obtained via the I.C;TO-FF technique as
embodied in the computer program FILMS [9,21,22 1. This method is an all-elec-
trons, full-potential, electronic band structure technique which is characterized by
its use of three independent Gaussian basis sets to expand the one-electron orbitals.
the charge density, and the exchange-correlation energy density and potential.

The purpose of the charge fit is to reduce the number ofcoulomb integrals required
by ensuring that only 3-center integrals appear in the total energy and one-electron
equations, instead of the usual 4-center integrals. In FILMS. the expansion coef-
ficients for the charge density are obtained by variational minimization of the error
in the coulomb energy due to the fit [211. Once the necessary coulomb integrals
have been evaluated analytically, the variational fit can be accomplished by solving
a simple linear matrix equation.

The exchange-correlation fitting technique acts as a rather sophisticated numerical
quadrature scheme which allows an accurate evaluation of the exchange-correlation
integrals on a relatively sparce integration mesh. The expansion coefficients of the
fitting functions are obtained from a weighted least-squares fit to the exact exchange-
correlation energy density or potential on the mesh. This fitting procedure can be
reduced to solving another linear matrix equation whose elements are obtained via
numerical integration. The fitted energy density and potential can then be used to
analytically calculate the matrix elements of the secular equation (and total energy)
to a much higher level of precision than that of the numerical integration. In FILMS,
the exchange-correlation fit procedure differs from that used in Ref. 21 in that the
"-exact" exchange-correlation functions are determined from the fitted charge density
instead of the orbitals. This change substantially reduces the time required for the
Sw- cycle by obviating the need to generate the exact density on the numerical
integration mesh.

Although the above description of the LCGTO-FF technique is valid for all of the
results discussed here, the program FILMS has evolved rapidly during the 8 years
spanned by those results. Fortunately. comparison of the results produced by dif-
ferent versions of FILMS (and diverse basis sets) reveal no substantive changes.
For example. the predicted value of the Li monolayer lattice constant has varied
by less than I
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hulk \klucs

I -laeri' theorN Bulk" thcorI t Bulk, C\1p l-awcl thcflc IwtBlk, Ihcor.

l i '5, 5. Sr {• , ' .I j. II '

Na 6.64 6b' 6)2 Ii SI I6

K 8.28 8.3 So pI ,I
Rh 8.92 81) ' ) I i

Be 3.99 4 1') 4I 312
M g 5.68 5.94 ,1 o 7 I.2 ol1 'j

Ca 7111 7.(18 7.4, I 11 2 24
Sr 7.91 7.6) S. 12 1 099) I 0)
(" g) 4.64' 4.15' 4 (•57 7 S S

Ref. 22.
" Ref. 24 f.MI II in k sttructurc, \I.I in 1ý'c rtfLIctur'l.

Rcf. 27.
Rd' 25 Ohep struc.).

"Ref. 19.
Rel' 26.

Rd" 28.

Results

Before examining the results ot'geometrv-optimized UTF calculations, it i'; useful

to consider the intuitive coordination number model ((NM for the la,,er by layer
growth of a UTF t9.17]. The (CNM is based on the assumption that the nearest
neighbor separation of a system will increase with its coordination number. lhus.
one would anticipate that for a given element at zero pressure, the nearest neighbor
distance of the bce structure (coordination number 8) will be less than that of the
fcc structure (coordination number 12). as is generally the case. Similarly, if one
were able to simply remove some of the neighbor atoms in a system, the bond
length would be expected to contract due to the improved screening ofthe remaining
neighbors.

Applying the UNM to the layer by layer growth of a UlT produces a very simple
intuitive picture. For a monolayer, the reduced coordination number relative to
the bulk should result in a nearest neighbor distance a which is substantially reduced.
When a second layer is brought in to form a dilayer. the intraplanar nearest neighbor
distance a should be intermediate between the monolayer and the bulk. As additional
layers are added. a should rapidly converge to the bulk value. Similarly. for a
dilayer. the interplanar separation d should be smaller than that of the bulk. For a
sufficiently thick film, the interplanar spacing should steadily increase as a function
of the depth inside of the film and should rapidly converge to the hulk .alue.
Although it would be unrealistic to expect the (NM to hold for all real materials.
it does provide a useful reference for assessing UTF geometry optimization results.
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In+ all of thec calculations d iscussed her,.'l it IS, as~suo ed that the til1 s are in the
hcxagonal close-packed I hcp) phase- except b'r gr-aphite. Ihis is consistent w+ith
the fact that mot'st of the elements coimidered here cry stallije into a close-packed
structture ait l : (1 and P (.: D.Iue Ito length considerations. oni., thle alkali metals

A+Ms)b. alkaline-earth metals ( ALMs I. and graphite are considered here.

.A It ) iQ /+'1+{>"'

Iable I compares calculated monola~xcr lattice constants uz, and binding energies
1L, fo~r the A\Xs [221. thle +\EMs 122]1 and graphite [ 1] with theoretical [24-261
and experimental I 27.281 bulk ' alues. Note that ReL 24 assames that the AM
structure is bod', centered cubic ( bce 1. unlike the monolayer ealeulations. For 1.i.
la abe 1 also includes at theoretical bulk value of a,, for the hcp structure [25]. As
expected from thle (",\1. the bee salue of U(. is smaller than the hop value. Similar
results could be exp~ected fb+r the other AMs.

Three trendyr are immediately apparent from fable i. ( I ) For all of the monolayers.
1<, is sensibly smaller than the corresponding hulk value. ( 21) The theoretical hulk
nearest neighbor distances exhlibit the usual LDA underestimate of lattlce parameters
(ILt)A xaluc :-experimental xalue). emphasizing the importance of comparing
theory w+ith theory in this analssis. (31 G(iven that use of the bce structure produces
an underestimate of thle theoretical bulk az, for the AMs. it is apparent that the
C-\M is I'ollo~ed for 7 of thle 9+ entries in Fable I. The lattice expansion exhibited
bs the L~i and Sr monolayers relative to the hulk is a significant anomaly which, in
the case of lIi. persists even sshen thle comparison is suith the larger hcp lattice
constant.

Analysis of the predicted one-electron properties ot the monolayers also reveals
interesting trends. Figure 1 showas the electronic hand structure and density of states
( DOS ) for an AM monolayer [I ~1] Although this particular band structure is tbr
li., it is qualitatixelyv similar to the hand structure of any other AM. The hori,.ontal
dashed line in Figure 1 indicates the energy at w+hich one additional electron state
per atom wvould be occupied. Thus. Figure 1 would look like the band structure of
an AI-NI il the tFermi lesel swerc t~aken to he thle horizontal dashed line. The most
important qualitatis+e dittUcrcncc betw~een the hand structures of AM and ,\EM
monolayers is the partial occupation of the p.-derived hand around 1" and the
corresponding peak in the occupied density• of states tbr an A\EM. There is evidence
that h~r the .\LMs. this band is a precursor to a partially o~ccupied I 00(01) surface
state 11i41.-

In Table II. the w~ork functions (ol and densities of states at the Fermi level
( n( ++' 1) of'the AM and AEM monolavers [22] are compared with experimental
values [ 29}] o1f + and theoretical bulk values [ 241 of ,(l 4)). [or hoth the AMs and
the ALMs, the monolay<er w~ork functions are larger than the corresponding bulk
\alues, T his suggests that the electron density of the outermost layer of the semi-
intinite solid is (brawn into the surfaiee thereby reducing the surface dipole barrier.
[he AMs arid ALMs exhibit distinctly dilk~rent trends in z(- p). with the AM
ronom'la+,.er values heini le'ss than o)r roughl\ e~luaI to the bulk values and the AEM
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CENSiTY CF STATES
I iure 1 1lihe electronic hand structurv c eV and dcnsjit ot statcs I qates, cV) fo a I
monolaser are Nons, n.it cslnerj~esiO 2fl% TCIStC 10 tile Iermi energy (solid horr/onhal
hil e Ihe hon/ontali d :ished li ne Indicates I the en ergý at -ss h ich one addi tional electronl

per atom \ ould he occupied.

monolaver values generall\ being larger than the hulk values (except ['r CalI. 'The
enhancement of n( -- cp) for the AEM monolaye'Lrs is due to the surface state in
Figure 1, with the most dramatic example being B3e for "hich the hulk- is a poor
conductor and the monolayer is a good conductor.

lF. 11 \lonola~er "snrk function QIand densitt ot* states at the Fermi level oi( ow1 compared it)
experimental salues oif,,, andj theoretical hulk satues, of M(cI

Ssstemn I -Laser thteor\ Bulk esp, -1.a~er theor\ Bulk theor\

Li 1. CX 0.( 4;52 0.48
Na3.16 2-75 0.44 145

K 2.61 2.30 0 (80,7
Rh 2. 45, -2. 10.7o"3 0,90
He 5.31) 51o (0.34 O.114
Mg 3.09, 3(66 0 60 0 45
Ca 3 15 2.X 7 .5 1.50
Sr 2.92 2.59) 1.11 0.311

Rcf. 22

Ref 29)

Ret' 24
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Dilhi ers

For three of the elements in Fable I (Li. Be. and C', dilayer calculations have
been performed. Table III compares the calculated 113.17.19] monolayer and dilawcr
lattice parameters with theoretical [25.26,30] and experimental [27,28.31] values
obtained for the close packed crystal structure. The most interesting teature in
Table IIl is the fact that each of the systems behaves ditflrently.

For graphite, the diflfrence between the monolayer, dilaver, and bulk lattice
parameters is negligible, as one would expect for a loosely bound layer compound.
Given the sensitivity of the lattice parameter calculation for graphite due to its
exceptionally weak binding, this result is quite reassuring.

For Be, the CNM is followed for the intraplanar spacing a (i.e., monolayer value <
dilayer value < bulk value). However, the interplanar spacing dshows an anomalous
2.4-c expansion compared with the theoretical bulk value. Since the initial publi-
cation of this result in 1985 [13 ]. there has been a measurement of the relaxation
of the outermost layer of the Be (0001 ) surface which reveals an anomalous 5.8'C;
expansion [ 32 ], in qualitative agreement with tne dilayer calculation.

The behavior of Li is opposite to that of Be. with d following the CNM and a
exhibiting anomalous behavior. In fact. the value of a is diverging from the bulk
value (i.e., dilaver value > monolayer value > bulk value) [171. This curious be-
havior motivated a careful study [9] of Li n-layers with n = I 5.

Li n-Ia er.'

In Table IV. calculated n-layer lattice parameters for Li (n = I -- 5) [9] are
compared with theoretical [ 25 ] and experimental [ 31 ] bulk values. The value of

T.,BIt rIII. Monolayer and dilaser lattice parametcr. (a intraplanar
parameter, d interplanar spacing) compared to theoretical and

experimental bulk values (au).

Li Be C (g)

a d a d a d

IL 5.74' - 3.995 - 4.64' -

2L 5.81, 4.25 4. I0b 3.46 4.64' 6.49
Bulk 5.65"1 4.64 4.25" 3.38 4.65' 6.45
exp. 5,881 4.81 4.331, 3.39 4.65' 6.34

SRef. 17.
" Ref 13.
'Ref. 19.
6 Ref. 25.

Ref. 30.
rRel' 26

Ref- 31.
Ref. 27.
Ref. 28.
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1 \ill I IV I i j-L eri Latitic paralnete , rs 1 ilraplanar
NepIa rat IokT). d lerpla naIr I :Ia rat lon. i inferor, e

e\tcrnor ITron Ret 1) are icoapared iflh thetoc kal IRct.
251 :nd e\perimnenlal (Ref."tI ) bulk \alies.

S\ Stell aa u I d,(l ( 1 Lti

itl. 5. 3 ....

21 5T -. 2
31 5. -5 4.39
41 5.6 4..38 4.32

51 5.A7 4 37 4.41

bulk theor\ 5. l5 4.64 4.64

bulk C\p. 5.88 4.81 4.81

the intraplanar spacing has a maximum liar the dilayer and then rapilly converges
on the bulk value. It was noted in Ref 9 that. for the dilayer and the trilayer, the
energý shows a long nearly flat minimum in the range 5.70 < a < 5.80 au, For tile

4- and 5-layer tilms, the minimum becomes vell-localized near the bulk value of
a. This behavior may be attributed to the existence otfa true interior for the 4- and
5-1a,,er films. In contrast, the interplanar spacings tfr the u,-layers have not begun
to converge on the bulk value by n = 5. a disheartening result fbr those ',ho w7ould
calculate surface relaxations by only varying the positions of the outermost one or
two lavers.

In Table V. the binding energies per atom (E,), interplanar binding energies

(I, , defined as the binding energy of the n-layer minus the binding energ. of the
monolayer), and the ratio of E, to its corresponding bulk value are compared for
the Pt-layers [91 and the theoretical bulk crystal [25 1. Although the n-layer values
are behaving sensibly (i.e. monotonically converging on the bulk, the rate of con-
vergence is very slow). In Ref: 9. it was noted that the ratio R E ,;()/I',(-i.

could be fitted b, the expression

1 ,••i I \' ('alculated equilibrium cohesi.e energies :',(eVjalom I.

raterplanar binding energies 1,eV/atom ). and the ratio o"'F, to Its
crsstalline salue L:,( f I thr hi n-laxers 'Reft 4) compared sith

theoretical bulk ,alues IRet'. 25).

55stem 1, 1,, /E l, I

It I I. M( 0.00( (1.00

21. I. ;,) 0.29 o-.46
31. 1 48 0.18 01.601
41. I5( 0.41 0.65
qI 1.53 1.43 (.0 8
Bulk 1.73 (1.61 1.(l(
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R(n) : [arctan[0.12(n - I )]/arctan(- )]" . (1)

This implies that reaching 90c;, of the crystalline interplanar binding energy would
require n = 17 while 95"( would require n : 33- another indication that modeling
a macroscopic sample may require a very thick film.

Some of the one-electron properties of the Li n-layers [91 are shown in Table
VI together with experimental 1291 and theoretical 1241 bulk values. It has been
noted [9] that the experimental work function for Li is in disagreement with all

theoretical calculations and may b, ,,nreliable. If the experimental value of 0 is
ignored, it becomes clear that the one-electron properties are rapidly convergent.
It also is apparent that the QSE in the work function of Li is minimal.

In contrast to the weak QSE in 0, the density of states itself shows a rather
interesting form of layer dependence. The densities of states for the 5 Li n-layers
are shown in Figure 2. Since the density of states for a two-dimensional parabolic
band is a step function, and the occupied band structure of Li can be represented
as a series of parabolic bands (one for each layer). the density of states for a given
Li n-layer has a stair-like form, with one step for each layer. Thus. n(c) exhibits a
quantized behavior which has a one-to-one correspondence with the number of
atomic layers.

Conclusions

It is evident that UTF properties are in many cases distinctly different from those
of the corresponding bulk systems. For example. all AM and AEM monolayers

have larger work functions than the bulk. In addition, the AEM monolayers tend
to have an enhanced density of states at the Fermi energy due to a p.-derived sur-
face state.

The structural parameters of several of the UTFs considered here exhibit anom-
alous behavior relative to the CNNM. At the monolayer level, Li and Sr both manifest
an expansion relative to the bulk. Among the dilayers. Be shows an anomious

"T'..BI E VI. Calculated work function (4), density of states
per atom at the Fermi level (n( -4)). and occupied bandwidth
(W) for the Li n-layers (Ref. 9) compared to theoretical (Ref.

24) and experimental (Ref. 29) bulk values.

n(- 0)
System ,p(eV) (states/eV) W(eV)

II 3.56 0.49 2.2
21. 3.63 055 3.1
31. 3.60 0.58 3.4
41. 3.61 0.46 3.5
51 3.56 0.47 3.6
theor% - 0.48 3.6
expt. 2.90 --
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Figure 2. The density of states per atom (states/eV) is shown as a function of one-
electron energy (relatixe to the Fermi level. eV ) for the Li n-la(er films: (a) I-layer: (b)

2-la'.er: (c) 3-layer: (d) 4-layer: (c) 5-layer.

expansion of the interplanar spacing compared with the bulk value (a result which
is supported by recent experimental data) [ 32 1. while all of the Li n-layers exhibit
an anomalous expansion of the intraplanar separation.

The study of Li n-layers ( n = I --- 5) reveals that the rate at which a UTF evolves
into a bulk depends upon what property is being considered. The work function.
density of states at the Fermi level, occupied band width, and intraplanar spacing
are all rapidly convergent to bulk values. In contrast, ihc.i~nterplanar spacing and
binding energy are very slowly converging quantities and may requirc tens of layers
to adequately model the bulk. This result calls into question any surface relaxation
calculations which only allow the outermost one or two layers of a film to relax.
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Finally. the densities of states for the Li n-layers exhibit a stair structure with
the number of steps being equal to the number of layers. Whether or not the size
of this QSE is large enough to be measurable remains to be determined.
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Application of Thin Films Method in the Study of
Alkali-Semiconductor Interaction
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A bstract

The cofliputat to n of atonhle structure frorn first principles is a ch aII!engiitg thcorciieal I ndejr or I hfie
com pie xit grosss substantia I I'%%hen dealIing, A ith tilm ns an d surfacces,-, 'cause tine can no l onger ex plIt iI
the three-dimensional periodicit>. Here Ase expound upon the self-consistent field pseudopirtential slab
method ý4ith local densit> approxmmation to studsý thin film% and ordered oxerla~ers on surfaees. Plane
wAase basis sets are used berause the% are free fiom lineair dependene> problems due to their orthonormal
properties. I he results are illustrated b> in~estigating the atomic structure of- metal oserlavers on the
Sii1)'OO 11- I surface at initial coserages. Major emphasis is on alkali metals. but Al is included for
comparative purposes. The nature of the interactioni and the role of P1ejeris distortions, in metal-wrnti-
conductor energetic,, are presýented. 1910 Jonhi Wiles t4 Sron%, Inc

Introduction

Professor Lbwd in graciously reminded us bN quoting P. Debye that we should
use brain power before using computer power in solving problems. Clearly, this
advice is easy .tc f'ollow if one is gifted with the Lbwdin brain. Unfortunately. many
of us working in the area of surfaces and interfaces are not so blessed. Most of us
use the computer as an extension to our brain power. Supplementing brain power
with computer power is often a necessity. Working for the IBM Co-rporation. I am
glad it is so! This paradigm is certainly valid in resolving some issues connected
with metal interactions with Si((001 )-2 X I. the subject matter of the present study.

The computation of atomic arrangement is challenging considering that the
atomic reconstruction of various clean Si surfaces have involved efforts extending
over several decades. Even in the current year it is not uncommon to encounter
publications on this very subject. Thie complexity arises from the fact that, when
dealing with films and surfaces, one can no longer exploit the three-dimensional
periodicity. The adsorption of metals on Si can lead to further complications.

In this article, we primarily study the interaction of alkali metals (AM ) with
Si (00 1 )-2 X I surface at Initial coverages. A brief description of s~mple metals like
Al is only included at the end for elucidating certain aspects of AM-Si Interactions
by comparison. Understanding of the atomic and electronic structure of metals
adsorbed on semiconductors is important for fundamental and a variety of appli-
cation areas [I].

International Journal of Quantum Chemistry: Quantumn (hemnistry S~mposium 26. 643-655 (19921
~.1992 John Wile% & Sons. Inc. CCC 0t20-761)X!92/01I0643- 13
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Numerous investigations [1-41 carried out recently for the interaction ot AM
with the Si(001 )-2 :,, I substrate are due to the fact that Si1001 ) is among one of
the 1ew surfaces [5.61 ý%hich can be driven into a ncgati,,c electron alhnitv (NFi\ )
state. An NE-.A state is achiexed when the \acuum level falls helo% the conduction1
band edge of the semiconductor. The carriers excited across the band gap can then
escape vwithout an\ additional energy cost. thus making fobr efthcient emitters. It is
worth noting that the deposition of AM alone on Si(()() I ) is not sufficient to dri~c
it into an NEA state. The AM must be supplemented by ox\gen to achieve the
ultimate lowering of the work function. A large number of calculations 17-161
have attempted io predict the optimum AM overlawer registry pattern. Since that
itself has generatrd so much debate we havy- strayer: somewhat from our main goal.

The nature of AM-Si bond continues to draw substantial attention to explain
the work function reduction. Extreme views have been expressed [ I 1- 8 J. ranging
from the weakly covalent to the strongly ionic. Alkali metals adsorbed on other
metals have been characterized by Langmuir [191. Gurney [201 and, more ret.entl.,
Lang [21]. as having an ionic to metallic transition with increase in coverage.
Muscat and Batra [221 further developed thcse models. Based on the ab initio
results of Batra and Ciraci !23] bond length relaxation was introduced as a com-
panion to the transition. This enabled one to obtain quantitative agreement with
the change in the work function data [221. Bond length relaxation haw recently
been confirmed experimentally [24].

At low coverages. the AM atoms are believed to he mostly ionized. The AM
overlaver turns metallic at higher coverages. This intuitively plausible picture of
ionic to metallic transition is being questioned [25[. Values of charge transfer (AQ)
from AM to Si have been obtained in the range 0 < .AQ < I. In this stud., we
argue persuasively in favor of an ionic-bonding picture. Our conclusions are based
on self-consistent field pseudopotential calculations and physical arguments, We
describe briefly the pseudopotential slab model with plane wave basis sets for in-
vestigating electronic properties of surfaces and interfaces. Other methods have
been discussed by Trickey et al. [26].

Pseudopotential Method for Surfaces

Surface electronic structure calculations are complicated due to the loss of trans-
lational invariance in the direction normal to the surface. By now, a number of
theoretical models have been developed to overcome this difficulty. We employ a
slab model in which the three-dimensional periodicity is artificially imposed. The
slab has the correct two-dimensional crystal periodicity. but the third dimension
(:) is terminated after a finite number of layers. To study clean and adsorbate-
covered surfaces, empty space is introduced between slabs and the entire assembly
periodically repeated along the :-direction. The empty space serves to isolate the
slabs of atoms and. hence, a solid vacuum interface is simulated. Since the new
geometry has three-dimensional periodicity. most of the standard methods for band
structure calculations can be adopted to treat this model. The price that is paid is
that one has to deal with a large unit cell. The band structure technique used in
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1. The pseudo-wavetunction is smooth inside the core region and matches the all-
electron wavefunction outside the core region. The decoupling of the valence elec-
trons from the ion-core has insured that the valence wavefunctions will be smooth
and easily represented with a small number of plane waves.

One method by which al) initio ion-core pseudopotentials can be obtained from
atomic calculations has been given by Bachelet et al. [2?]. The basic idea is to
generate a potential by inverting the Schr6dinger equation. The angular momen-
tum-dependent. all-electron atomic potentials, 1'. are screened to produce the
atomic pseudopotentials, V,. The atomic pseudopotential. I -,. must produce the
same eigenvalue for the valence electron as the all-electron potential. The final bare
ion-core pseudopotential, 1 ,,, is obtained from the neutral pscudopotential V"
by subtracting the coulomb. exchange. and correlation potential from the pseudo-
valence charge density. This scheme guarantees the maximum transferability of
the ion-core pseudopotentials.

Once the ah initio pseudopotentials have been determined, the Schr6dinger
equation is solved self-consistently in the plane wave basis set. Being orthonormal,
such basis sets do not have any linear dependence problems [29]. One can also
study convergence systematically by altering the energy range of the plane waves.
The plane wave basis sets are efficient for describing semiconductors and alkali
metals.

Structural Results for Alkali Metals-Si(O01 )-2 X I

Atoms in the surface layer of clean Si(001 ) have two dangling bonds each for
an ideal bulk truncated structure. The 2 X I structure is obtained when these atoms
dirnerize along the x-direction (generating a a-bond) resulting in rows of dimers
along the y [ 110] direction. Each surface atom nominally has a single dangling
bond. Since there are two Si atoms per surface unit cell, one gets two bands (ir and
7r*) in the gap region. which are only partially occupied. The AM atoms interact
with these dangling bond orbitals located near the Fermi level. Six probable ad-
sorption sites labeled by the letters H. B. C. D, T, and Y are shown in Figure 2. At
V. a ML coverage there is one AM atom per 2 X I cell (3.39 X 10" atoms/cm-)
in one of the above-mentioned sites.

In 1973. Levine [30] proposed, for Cs adsorption on Si(001 ) that, at low cov-
erages. this metal occupied a quasi-hexagonal hollow site (H) above the rows of
dimers. The H-site occupancy offered a simple explanation for negative electron
affinity (NEA) because it left the long bridge (B)-sites. where the adatom connects
two dimers in adjacent rows. unoccupied. The coadsorption permits the oxygen
atoms to submerge under the B-sites to cause additional (beyond that produced by
AM) lowering of the work function required to achieve NEA. The C-site has ad-
sorbates above the third layer of Si and, due to reconstruction, this is a more open
site than H. Others have called [12.13] the C-site a "valley bridge site" (T3). and
the B-site a "cave site" (T4). The dimer bridge site, D, locates the adsorbate above
the midpoint of the Si dimer. In the top site. T adsorbate is above one of the dimer
forming Si atoms. The Y-site is an off-centered site between the H- and the C-sites.
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Figure 2 Top viess describing the positions o1 metals on Si(O01 )-2 1. 1 Filled and
empty circles denote metal and Si atoms, respectively. Numerals in the circles indicate Si
atomic la~crs. (a) H-, B-, Y-. C-, D,- and 1-sites hawe been labeled in the 2 -, I unit cell
shown by dotted lines. At 1/2 a Mil. coeragc. onl% one of these sites is occupied by metal
atoms per unit cell, (b)The 2 / 2 unit cell sho%kn h% dotted lines used to study Ax Peierls'
distorted structure of metals at 1/2 a IML (c) rhe 2 x 2 unit cell shown bN dotted lines

used to study dimeritation of metal atoms (AY distortion) at 1/2 a ML.

Scanning tunneling microscopy (STM) work [31-35] on alkali metals at low cov-
erages is responsible for revealing the Y-site [ 341.

STM experiments [31-35] have provided valuable information about the geo-
metrical arrangement for AM on Si(001 )-2 X I. By carefully monitoring the density
of bright spots and deposition time the adsorbed AM atoms have been identified.
Hashizume et al. [311, from their STM data, earlier suggested that at low coverages.
Li, K atoms are adsorbed on the top (T)-site above one of the dimer-forming Si
atoms. This data has been reinterpreted [32] in terms of the Y-site adsorption.

Our total energy calculations for the adsorption of Na on Si(001 )-2 X I at /2 a
ML coverage have been reported earlier. The symmetric dimer model given by
Abraham and Batra [36] was employed. The energy-ordered sequence we found
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for the Na/Si system in the order of decreasing stability is E(H) : E(B) < F(Y)
< E(C). The D- and T-sites were found [101 to be much less stable. The computed
bond length of 2.6 A, was smaller by about 0.3 A from the value obtained in a
LEED study [37].

Without numerically intensive computer calculations one could not have guessed
that the H-. B-, Y-, and C-sites are competitive adsorption sites at 1/2 a ML coverage.
Given this input one can now put forward physical arguments to wrap a stor,
around it, This is what we eluded to in the Introduction about supplementing brain
power with computer power. Clearly. a computed potential energy surface is desired
for complete understanding. As a prelude to that we present a calculated potential
energy line passing through the likely adsorption sites, as shown in Figure 3. Since
full-relaxation calculations were not performed one should view the results shown
in Figure 3 for qualitative or semiquantitative purposes only. A general conclusion
to be drawn from Figure 3 is that, at ½iý a ML coverage, no single site has a clear
monopoly.

The above assertions are consistent with the conclusions drawn from the STM
data. At -0.2 ML coverage, the coexistence of adsorption in several sites has been
reported [ 35 1. At ½/2 a ML coverage the well-known, one-dimensional linear chains
parallel to the Si dimer rows have been confirmed [35] for K on Si(00l )-2 X I.
Although they were unable to deduce a definitive adsorption site, the H-site is fully

compatible with this STM data (35 !.
A cluster model calculation [13] has suggested that an AM adsorbate in an H-

site may be unstable toward a Peierls type of distortion. It was noted [13] that a

OOCC

Figure 3, Total energy of Na-Si (00)1 )-2 x I (referenced with resp•ct to the Hl-site) at

112 a ML coverage along a line passing through various competitive sites. Posi live energies

correspond to less stable structures.
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/ig-zag chain, obtained h, moniong alkali metal .toms as i'om the t -ite b

equal and opposite amounts (_%. ) along the .\-direction. as show n in Figure 2 bh.
can have lo\%er energ.. We discuss this in the next section.

A note of caution is appropriate at this time. In all our considerations sse had
thought all along that results for all alkali metals are expected to he similar. We
expressed our conclusions ofteen using Na and K interchangeabl. It has become
clear trom somc recent Nork [38 1 that such a position nma\ not he dkcndable. It
has been pointed out that K and Cs on Si( I I I ) do shoss results khich depend on
the AM under consideration. For example. Cs leads to removal of the r-bonded
reconstruction on Sit Il II ), whereas K does not.

There are some hints in the calculations which suggest AM-specilic results. For
example. tile cluster calculation by Freeman et al. 1151 pointed out that the B-site
is a more tahorable adsorption site that the H-site when K is considered. In our
calculations [S. I)0]. the H-site was t'aorcd. The revised cluster model calculations
by Freeman et al. [151( including full relz,.xation) hate found that. tor K-Si. the
binding energies at the it-site (2.394 eVi and at the B-site (2.38) are comparable.
It is therefore now stated [151 that either of the two sites can serve as a possible
chemisorption site for K atoms. The major eflect of surface relaxation was dem-
onstrated by Batra [I O] earlier. This is now being corroborated by the cluster model
calculation bh Freeman el al. [15]. Their computed value of charge transfer of
-0.6e at the H-site clearly rules out the suggestion ( 171 that the bonding is covalent.
"A bonding energy of'- 2.4 eV also aigues against the proposal [ 171 of a weak bond.
"A strong ionic picture , also supported b\ a cluster model calculation [ Il based
on the a/ ipwiio Hartree -Fock method. The strong bonding picture is also consistent
with the recent band structure calculations by Morikawa ct al. [39 ]. as well as the
thermal desorption rest Its of Tanaka et al. [401.

The C-site is preferrcd I over If- or B-sites) bx sonme recent pseudopotential cal-
culations 114] for K o- SitOO 1 )-2 :< I at 12 a ML coverage. All these calculations
clearl\ suggest that thk potential energy surftace is rather flat. This. incidentally.
should be the case \, qn ionic bonding is predominant. Covalent bonds, being
directional in nature. to .,d to have potential energy surfaces [411 ssith well-delined
peaks and %allevs.

The structural resut- can now, he summari/ed for AM adsorption on Si(t)tO )-
2 I at a NIl. co-,, age. For Na. the li-site is a prelfrred site. For K. tile If-.
B-. C(-. and Y-sites all _encm to otI.r themselves as potential adsorption sites - ith
the 1t-site still holding ,bit olfan edge ovcr the other sites.h lie substrate relaxation
; Li s a crucial role in a' ri\ ing at these conclusions. [he AM Si bond is decidedly
stront -2 c V per alk di metal atom) kith a bond length [42,43 in tle range 0f
2.6- 3.3 A.s

Pt Acrls Distortion al I /2 a \1i. (Coerage

An objection to the .Isorption at the If-sites was raised from the results obtained
11 a cluster model ca!. ulation [ 131 for the K-Si sxytcm. According to these cal-
culations the total cnerby of the AM chain continued to decrease upon introducing
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zig-zag distortions ol .arious amounts Ax. shown in Figure 2(b). These findings
were rationalized bv appealing to Peierls theorem [44]. according to which a mono-
atomic chain can always lower its total energy by lattice distortionz. The cost ot
lattice distortion is offset by the electronic energy benefit up to a certain critical
distortion. It was thus argued that the AM chain is inherently unstable and should
undergo some sort of Peierls distortion. Realizing that dimerization of alkali metal
atoms by longitudinal distortions is not likely due to steric hindrance at the surfhce,
the authors [ 13 ] settled on the zig-zag distortion.

Our calculations done for the Na-Si system did not show any energy lowering
due to the zig-zag distortion. This was obviously of some concern because. appar-
ently. our numerical calculations seem to be violating the fundamental Peierls
theorem. The latter demands an energy lowering in a one-dimensional chain due
to reduction in the translational symmetry which opens a gap at the new zone edge.
Eventually, we realized that, although zig-zag transverse distortions lead to an ap-
parent reduction in the translational symmetry., they do not lead to any gap opening
at the zone edge. We chose to call such distortions as leading to gapless Peierls
transitions [45]. This does not contradict the well-known Peierls theorem which
is valid only for longitudinal displacements. For completeness, we give an elementary
proof based on tight binding arguments.

In a one-dimensional chain oriented along the 3v-direction. ±Ax distortions along
the x-direction double the apparent size of the unit cell. The new primitive trans-
lation vector becomes 2a.' and the corresponding reciprocal cell is reduced to - r/
2a <_ k, < 7r/2a as in the standard Peierls case. But we now show that, unlike the
standard Peierls case, these transverse distortions are not able to lift the degeneracy
at the zone edge. ±+r/2c.

For simplicity, we consider one orbital 0 per atom and construct the system
wave function as a linear combination of Bloch functions, X,. localized on atomic
sites j(= 1.2 ) in the unit cell

x,, (7) = c,,,I,(F. Z) + c"(_,;(. k). (I

The Hamiltonian matrix tt,,(k) =(x,[tx 1), can be written in the form.

Ii,,(k) T e +'' r 4 f-)-7JI () + ,, - R,.)d7. (2)

Denoting the diagonal elements (which are obviously identical) E. and the off-
diagonal terms by u and u*. the 2 X 2 matrix at the zone edge is

where u can be expressed in the form.

I ifu = • x • .3 2-R. ¢•I4( •-¥ ,)T (4)
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In the nearest neighbor approximation, tile structure factor in the above equation
reduces to cos r/2. leading to u = 0. In fact. u vanishes identically even when all
distant neighbor interactions are included. Thus, the band at the zone edge is doubly
degenerate. with X,., = L,. For the half-filled band under consideration, the Fermi
level passes through this degeneracy point and the system is metallic.

Thus, unlike the well-known Peierls case with longitudinal distortions, the trans-
verse displacements do not open a gap at the zone edge. Total energy may or may
not be lowered upon zig-zag distortions, depending upon materials-specific inter-
actions, however. For AM adsorbed on Si(001 )-2 x I at the H-sites, there is no
energy lowering due to the zig-zag distortions. A small energy lowering due to
longitudinal displacements cannot be ruled out. But these displacements have to
be rather small, because any sensible reduction in AM-AM distance leads to a large
repulsive barrier due to ion-ion repulsion energy. Hence, we conclude that Peierls
instability considerations do not preclude AM adsorption at the H-sites.

Nature of Alkali Metal-Si Bonding

There have been some suggestions [17,18] in the literature that the interaction
between AM and Si is weak at 1/2 a ML coverage. It is difficult to reconcile this with
STM data where AM atoms have been shown to form one-dimensional chains
parallel to the substrate Si dimer row directions. In the proposed geometry. for say,
K on Si(001 )-2 X 1. the nearest neighbor K--K interatomic distance of 3.8 A is
considerably shorter than the bulk equilibrium distance of 4.6 A. For Cs, the de-
viation from the bulk bond length (5.2 A) is even greater. This suggests that AM
atoms are being forced to locate on the repulsive part (>0.5 eV) of the potential
energy surface in the AM-AM coordinate. From thermal desorption experiments
[40], binding energies of 1.6 and 1.9 eV have been obtained, depending on the
adsorption site. The overall stabilization of the structure must then arise from AM-
Si interactions. This interaction has to be substantial and. in fact, most theoretical
calculations [8-15] estimate this number to be in the 2-eV range. The origin of
the stabilization energy must lie in the image interaction between the alkali ion
and the Si surface.

The predominantly covalent AM-Si interaction proposal [17] is also not being
supported by the s rM data. At intermediate coverages ( -0.2 ML) the AM atoms
have been shown [35] to occupy a variety of adsorption sites. Covalent bonds are
usually highly directional [41] in nature and tend to be site-specific. Several total
energy calculations [10. 14.15 ]. and the Na potential energy line shown in Figure
3. support multiple adsorption sites in agreement with the STM data. Thus, both
the data and the current calculations argue against a purely covalent bond. Multiple
sites can be consistent with a weakly interacting metallic overlayer on St(001 )-2 X
I surface. However, we have noted above that the bond energy is -2 cV, which is
certainly not weak. Hence, the overall interactions must have a strong ionic con-
tribution. This conclusion is also supported by cluster calculations [ 11,13 ].

The precise quantitative value of the charge tr;-nsfer. AQ. from AM to Si. lacks
consensus. All values ranging between 0 and I L, " been quoted in the literature.
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This is not too surprising since there is no unique definition 60r AQ. The computed
charge transfer value depends on the model used. The spatial and spectral distri-
bution clearly suggest that the beid is substantially ionic. We believe that the si %
observations are consistent wth the Langmuir-Gurney picture of ionic interaction
at low coverages.

The magnitude of surface core level shifts upon AM adsorption in photoemission
experiments have been used as a measure of charge transfer. Recent work by Rifle
et al. [46] for K on W( 110) and Si(001 ) is prototypical. Based on small observed
binding energy shifts, it was concluded that there is little or no charge transfer. The
complication associated with relating the core shift to charge transfer arises from
the fact that the net core shift [47] arises from two contributions of opposite sign.
The charge transfer from AM to Si shifts the Si core level toward the vacuum level
(lower binding energy). But the extra-atomic Madelung contribution. of opposite
sign. cancels the greater part of this effect. Thus, the net core level shift may well
be negligible even when AQ is significant. Only the intra-atomic contributions of
the core level shift is related to AQ. This quantity is not directly observable and
must be supplemented by either theoretical calculations or by other empirical data.

Bagus and Pacchioni [481 have also illustrated this by going to the extreme of
representing K with a point charge of +1 on Cu( 100). The calculated shifts in
binding energies of Cu surface atoms in the range of 0.1 eV are clearly much smaller
than the shift expected due to the large electrostatic potential. The substrate charge
polarizes to offset the shift due to the point charge. The conclusion being that small
binding energy shifts can be fully consistent with ionic interaction.

In summary, we can state that AM-Si interaction is strong. with a substantial
ionic component. Perhaps a consensus on the precise value of the charge transfer
from AM to Si is not necessary. We believe that the Langmuir-Gurnev picture of
ionic to metallic transition only supplemented by our distance relaxation concept
is valid. The H-site at 112 a ML coverage is somewhat favored. In conformity with
the concept of the ionic bond. sexeral other sites should. and do. lie close in energy.

The Aluminum-Si System

We summarize our findings for the interactions of Al with the Si(001 )-2 X I
surface to contrast with alkali metals. Lander and Morrison [491 first reported that.
at room temperature. Al deposition on Si(O01 ) leads to a disordered phase at low
(_<0.5 ML) coverages. It is only recently that Ide et al. [50] reported a number of
ordered surface structures determined by LEED and AES for AI-Si(OOl ) up to I
ML. Different structures appeared, depending on the coverage and substrate tem-
perature. Nogami et al. [511 have produced STM images of Al on Si(001) revealing
metallic dimers that run perpendicular to the underlying Si dimers rows below 0.5
ML, as shown in Figure 2(c).

Thus, experimentally, Al. unlike K or Na. is capable of producing metal dimers
[50-52]. The unit cell here is 2 X 2 Si(001 ) as opposed to 2 X I for alkali metal
adsorption. STM Experiments [51] show clear evidence of dimers up to 0.5 ML.
Our total energy calculations [531 support the formation of metal dimers. At 1/2 a
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\1 I.- the structure shown in F-igure H ce I. ý\ here Al d imers are forined near thle ii-
sites on thle reconstructed SUrlace. IS stable. The stahilit\ of' thle structure has its
origin in thle faict that Al and substrate bonds are tfull\ saturated at this coscrage.
Our11 calculation shov-s that, near I ML 1. the surface reconstruction is lifted. We now
ha% c ideal I X I substrate but Al dirners are present in a I X 2 structure. Once
again, all bonds are saturated. The origin of' thle dimers is explained in terms of
standard (lonrgitudinal ) Pelerls [441Jdistortion of'a nearly one-dimiensional metallic
system. Unlike the AM-Si case, the substrate reconstruction 'is lifted at about 0.5
ML coxerage of Al. The Al-Si bonds are primarilv covalent.

Conclusion

We haxe provided the atomic and electronic structure of ordered metallic lasers
on the Si(O 01 )-2 X I surface using theoretical techniques suited for current com-
putational machinery. [he interaction ofIAM witi Si is primarily ionic, but for Al
it is covalent. Peicrls distortions can explain the Al-Si structures. The basic 2 X 2
unit cell seen by LEED arises because Peierls distortions lead to significant energy
benefit for AI-Si(0{)l ). No such benefit arises in the AM-Si sy stem, Our results
help explain the dramatic work function reduction and support the proposal tor
NFIA by Levine [301.
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Extreme Sensitivity of Corrugation Strength
on Diffraction Resonance Line-Shapes for the
Gas-Surface System He(21 meV) / Cu (115)
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Abstract

An example of an isolated resonance with highlh non-Lorentzian linc-shape has been found for the
gas-surface diffriction system He(21 meV )/Cut (15). When the corrugation strength parameter lbr the
surface is ver slightl_ varied, the signature of the narrow resonance structure shifts. v 1992 John Wile
& Sons. Inc.

Introduction

In previous works [ 1.2 a good agreement between calculations and experiments
over the whole incident angular range for the gas-surface diffraction system, He( 21
meV)/Cu( 115), was obtained. The agreement concerned both the off-resonance
elastic relative intensities in between the selective adsorptive resonances and the
line-shape signatures of the narrow resonance structures. This kind of resonance.
called selective adsorptive resonance, is associated with a temporary vibrational
trapping of the scattered atom at the surface. A very simple phenomenological
model potential was used. It contained only two parameters, the lattice constant
and a corrugation strength parameter.

The system is effectively two-dimensional and for a chosen incident angle, -. the
parallel and perpendicular momenta of the incoming particle are given by

{p,= Po sin -y

P -Po CoSl = -(p-(I)

where !/(2,11)pf is the kinetic energy of'the incoming Helium atom ( h = I in this
article). The coordinate system is chosen such that x is the parallel coordinate and

is the reaction coordinate with positive direction pointing from the surface.
As the corrugation is periodic with period a. the parallel momentum may change

by an integer multiple of the shortest reciprocal lattice vector. This gives rise to a
discrete set of diffracted heams with diffraction angles -y "', as function of the

* Currently on leave from the Department of Quantum Chemistry. Uppsala Univcrsitv. P.O. Box
518, S-751 20 1'ppsala, Sweden.

International Journal of Quantum ('hcmistr.: Quantum Chcmistry Symposium 26. 657-. 5 ((992)
( 1992 John Wilev & Sons. Inc. ((' 0020-76(09/92/010)657-019
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incident angle y (see Fig. I. In the diffracted beamn labeled v. the momenta aije
given by

pi I ý p,, sin -y p, + 2

11 (2)

1: Po Cos I (Ih" (p 2L

where v runs over those integers such that p"' is real. v = (0 Gives the specularly
diffracted beam with 7 ))= y

If the integer. n, is such that p'n) defined in Eq. (2) Is imaginary, nt labels a closed
channel. The asymptotic energy in the perpendicular motionl/2 )(P 2

I 1(21f)(17(2 - (p, + n2ir/a)ý) is then negative and it may match the iiith vibrational
bound state energý h *,, of the surface averaged potential, ~Z I la, fj ~x

:)dv. Put another way. the total energy 1/(2.1I)pO may match the nflh -vibrational
bound state of the diagonal potential

for channel n. This state is labeled by( G'?)). When the corrugation -Induced coupling
is included, it becomes a Feshbach resonance carrying the same label. Its resonance
energy becomes E',, = F, -- X12 with lifetime T- =_1 h/ F I/ 1'.

The relative intensities of the diffracted beams and in particular the line-shapes
of the selective adsorptive resonances can be calculated by means of the on-shell
T matrix elements for the system. t(p' ~- p) =p ( p,, + iO)jIp >. where T =
V + V G;-V. V is the potential for the system. and G;:. Is the outgoing Green's

Fiuet h rahso'ste e t iiacinanls -" ora'eefccHlCo

H~acrdn oeqs I)() h ubr tsm 1tears ed ietervbl
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function. If the Green's function is expressed by its spectral resflution. the hIea\
part of the computation is the sum Mnation O\ er discrete states and integration o+ er

the continua. symbol icJly
'"... R, "R

In the present, as well as previous works [1.2]. the dependence of the \wae
functions on the perpendicular coordinate w+'as expanded in a basis set. As a con-
sequence. the integrations in Eq. ,4) were replaced by summations over the dis-
cretized continua. In order to reguiariie the energy denominators, the integration
contours were rotated do\%n on higher-order Riemann energy sheets by using tile
complex coordinate method. To achieve this. the perpendicular coordinate that
was identified as the reaction coordinate was scaled bh multiplication b\ a complex
phase t'actor in accordance with the Balsle_-('ombes theorem. The resonances that
,%ere unco'ered by the rotated continua became square integrable and joined the
first sum In Fq. 14 ).

In the experiments on the present gas-surface system performed bs. for instance.
Perreat .nd I apuiouladc [ 3 1. the beam energy 1W, is kept fixed and the incident
angle, I . is % ared. As a consequence, it is the continuum and resonance energies
in Eq. 14 that -,arx as a function of -,. When. in resonance with a particular
resonance !abeled I rcs. 1W,, equals the real part of the selected resonance with
complex energp t,. , ,I ".,- i", ",)/2. lhe term

1 Li.... :•:( "t )

in Eq. ( 4) then has a fast k'ariation as % is .aried around -yc..
In addition to tile resonant term fullilling ReEW., . there is a background

contribution to the scattering amplitude. The background contains contributions
from all continua as scll as all resonant and bound states that are not in resonance
vith / J.. lhe background also contains the contribution from the direct st.attering
term p' I''p

In order to obtain a [orentzian line-shape or its tilted relatives for a resonance
structure. there are two conditions that sh uld be satisticd. I-irst, the resonance
should bhe izo/itcd. Second. the background contribution to the scattering amplitude
should vary 'lnt/v oser the range of the resonance structure. It is. in principle.
possible to obtain a Lorentuian line-shape whose origin is non-lorentzian In the
sense that man\ resonances and continua cooperate to build up a Lorenttian line-
shape. Such an esoteric situation is not considered in this article.

In this stud, the resonance labeled ( ,, ) is studied. It is isolated, but its narrow
structure is highly non-LIorent/ian due to a fat varying background. It is found
that when the corrugation strength parameter is varied in a serx narromk interval.
the resonance line-shape changes its signature.

Results
The same computational scheme and the Same physical and technical parameters

were used as in Ref 2. e, cept for the corrt,-',tion rength parameter, h, that was
saried. h is one of the two parameters in the corrugation function
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,P( N) ah cos(. )

that describes the shape of the surface. This corrugation tunction is used to modulate
a Morse potential such that the interaction between the gas atom and the static
copper surface is modeled by the corrugated Morse potential

1'x,, z) =P Dl : e.2, j (7)

The number, V, I la ell""), is defined such that the surface average of the
potential equals the uncorrugated Morse potential. For the copper surface. 1) = 6.5
meV and h = 1.05 A•I. The lattice constant for Cu( 115) is a = 12.5 Bohr.

As a consequence of the corrugation, there is coupling between the parallel and
the perpendicular motion. Since the corrugation is periodic, to each incident angle
'y there is a set of outgoing angles , -y' 4 }k, that is determined by the modulus of
wave vector of the incident particle, I,. and the lattice constant, a. -y i"s = It Gives
the direction of the specular beam and " ' " gives the direction of the particular
nonspecular beam that is especially studied in this article. The latter is determined
by the condition p, sin -y' p, sin -y - 27r/a.

In Ref. 2. it was found that the choice h = 0.027 lead to reproduction of exper-
imental specular as well as nonspecular intensities. In this work, this parameter is
varied and the line-shape of the selective adsorptive resonance labeled ( '1,) is studied.

Figure 2a shows the specular intensity versus incident angle for a set of corrugation
parameters in a wide range. When the corrugation strength increases, the peak
intensity. the level shift, as well as the width of the resonance change in a monotonous
fashion. Also. the off-resonance intensity decreases monotonously.

The intensity for the nonspecular beam labeled P = - I as function of the incident

angle is displayed in Figure 2b. Also, the off-resonance intensity decreases monot-
onously when the corrugation is increased. This is in agreement with the general
tendency that when the corrugation increases there is an increased probability of
big changes of parallel momenta in the diffraction scattering process. Comparison
of the intensity pattern for the corrugations h = 0.030 and h - 0.035 might lead
to the false conclusion of a nonmonotonous change of the level shift for the reso-
nance. Comparison with Figure 2a reveals that this is an artifact. The underlying
reason is that the background scattering amplitude does not vary slowly within the
range of the resonance width. The true resonance position is exactly the same for
all scattered beams a!,hough a fast varying background may induce displacements
of the apparent positions.

However, the most important feature of Figure 2b is that the resonance minimum
for the nonspecular beam. v = - 1, turns into a maximum when the corrugation is
increased. As shown in Figures 3 and 4, this change of resonance signature happens
very fast. In fact, the signature change happens in the very narrow interval 0.0315
h : 0.0325. For the intermedi';te value. h = 0.320, of the corrugation strength
parameter, the resongijces appear neither as a minimum nor as a maximum. Instead.
the resonance structure resembles a "leaning arcus tangent" curve. If the background
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Figure 2. Branching ratios or relaiise intensities. v,( -, ) -- I11 ý i2 ersus incident
angle -y for four difleirent values of the corrugation sýtrength paramneter in the "sIde interval
0.020 - it -' 0,035. The adjoint starred set ol curwes shosss, the corresponding background
intensities dJefined as the square modulus of I ~ occurring in Eq. ( X. a ) Sp" ulair

relatise intensits. v 0). (h b Nonspecular relatixe intensits.v I



662 F NOD.%,i

Non-specular beam v=-I
; i-'" 3h-•00291'

h.=00301

i ........... ......... .. =..-.;

-C. 1iU3> A

C- -.-----.-.---------- ------------

70 72 74
Incident angle

I igurc 3. Nonpecular relatixe intensitie,,i, - I. as in I igure 2b. but %Nith seen cor-

rugai•on strengths in the smaller inter.al 0,021) •h I0 .0 .35.1he dashed line disp.ia.s the
"leaning arcus tangent" line shape ohiained tfor h - 0,032.

would have been slowly varying, one would probably get a tilted Lorentzian

line-shape.
From Figures 2a and b one might guess that the effect of the resonance term in

Eq. (4) is to simply add something that "rides" on the background. However. there

is a sery strong phase interference. This could be seen from the starred set of curves

in the same figures which shows the background diffraction obtained when the

resonant term is simply omitted in Eq. (4). This background diffraction does not
show the slightest similarity with the apparent off-resonance "background."

A phasor diagram will be used here in order to display the interference between

contributions from the background and the resonance term. The phasors are defined

as +7/,, I kg,,L • '-. where

.# ,,•l / I~'W •" - P)
1fi.,(P 4- P)-

(P 2 1"I) 1(--___) R_____

f 111( P ) P ) I/ 1,., . - .

f h,',l,,i ,•,,g " hP)I '• p) /:•.• -1,.,(8)

%&,here the subindex "res" denotes the particular resonance under study, in this work

the one labeled ( J,'. [he reader is reminded that the l'k,- is kept fixed. whereas
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Figure 4. Nonsoecular relative intensities, v g... ct as in Figures 'h and 3. hut ýwh fi•e
corrugation strengths in the very narro%, inter,,al 0.07,1 - h - 0.033i. *fie dashed line

displays the to leaning arcus tangent" line shape obtained scr h 0.032.

Phasors, non-specular beam v=-I

bydte ie.Ec oa hsr ends-in..do..on.he...n..hat.repe..nt..te...u.. roo

t p i
70 72.5 75

Incident angle

Figure 5. Phasor diagrams versus incident angles corresponding to h 0,0).311 in I-igure"

2b. "The total phasor for each incident angle has been rotated ,uch that the%. point upwxard.

The background phasorn are displayed by straight solid lines anti the r")nance conlrnhutwnm

by dotted lines. Each total phasor ends in a dot on the line that represents the sqluare root

of the corresponding intensity in Figure 2b
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all the other quantities depend on the incident angle -y. The resonance term stems
from the term in the first sum of Eq. (4) whose Re/E',,,, rc /, 1.... For the other
symbols, see Ref. 2. The relatixe intensities or the branching ratios for the various
outgoing beams (labeled by v,) are given directly by the square modulus of the total
phasors. The peculiar square roots of the ratio between the perpendicular com-
ponents ot'the initial and final %ýave vectors enters in Eq. ( 8 ) due to the p~articular
geometr_ of the scattering situation.

Figure 5 displays the phasors corresponding to h 10,030 in Figure 2h. The
absolute phase of the sum of the background phasor and the resonance phasor is
irrelevant. For each incident angle the total phasor has been rotated such that it is
real and positive. The dependence on the incident angle is displayed by translating

the origias of the phasors along the horizontal axis.

Non-specular beam v=-I

75

710 72° 730
•70 .74°

760Ca

Ca
E

- Reapart 1

I igurc 6. Phasor diagrams xcrsus incident angles .orresponding to h - 0030 in F:igure
2b. I hcý are the same phasors as in Uigure 5, hut Aith a common origin. Each ih'.dual
phasor ha-s hew. nsc•ad ,ben rolalked such that the residue-s R, j I") of the resonance term

in I-q. (9) is real and positie.
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Figure 6 shows the same phasors but in a traditional phasor diagram with all
phasors beginning at the same point. Here each total phasor has been rotated such
that the residue Rre, in the resonance term in Eq. (8) is real and positive. The
purpose with this kind of rotation of the phasors is to make the phasor diagram to
resemble those with/i.ved residue and resonance energy but with varying total energ\.
Note that when increasing the incident angle from -y z: 68' to I - 76', the resonance
phasor decreases its phase by about 180'.

Concluding Remarks

For kinetic energy, 21 meV of a He atom impinging on the Cu ( 115) surtace the
physical value of the corrugation parameter is h - 0.027, as was determined in Refl
2. This value lead to reproduction of experimental specular as well as n,,nspecular
intensities. In this work. this parameter was varied and around the increased value
ofh = 0.320 it was found that the resonance pattern displayed a dramatic sensitivity
on the corrugation strength.

Although this extreme sensitivity was demonstrated tfr a nonphysical value of

the corrugation strength, it may be possible to lind a similar effect in experiments.
Salanon et al. [4] has determined the energy dependence of the corrugation strength
parameter for the system He/Cu( 110). It was found that the corrugation strength
increased monotonously with increasing He energy. Hence, it is plausible that it is
possible to find a He energy for the system He/Cu( 115) such that a slight variation
of this energy would cause a dramatic change in the resonance pattern.
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Abstract

The electronic and structural properties of the single N and the pair N_ compleh substitutional impurity

sstems in t pe-IV semiconductors ( C, Si. and Cie) are investigated through an a/, mtio I." ,o cluster
model, We find that the stable position for N atoms ( N and N:) is off-center with dislocation in a III
direction to form sp: bonds %kith the host atoms. Particularly for ionized complex N:' there is a symmctr.
break loering the point group s.mmetr\ of the system rrom Dtd to ('I. We present also the results for
hyperfine interactions oser the impurits and its nearest neighbor vhich for isotropic terms are in lair
agreement with the experiment. ,. 1992 John Wilc\ & Soms. Inc.

Introduction

The aim of this work is to investigate the behavior of the N and N. impurity
systems in group-IV semiconductors like diamond (C). silicon (Si), and germanium

(Ge) which are of considerable technological interest. In spite of the large number
of theoretical studies of N in diamond [1,2] and silicon [3.41 and recently in ger-
manium [5 ]. this is the first calculation of the N. complex in these semiconductor
materials. From the experimental point of view N in diamond and silicon is well-
known: electr'mn paramagnetic resonance (FPR) [6.71 data indicate that in both
cases the center is distorted from T,' symmetry, the impurity being displaced along

a ( I I ) direction. Using an ab initio cluster model we predict the general role

piayed by N atoms in type-IV semiconductors, Also. we present the total energy
surface for ionized N,, where v e obtain a symmetry break (C i% ) different from the
neutral system which is (D3,j). The magnetic hyperfine interactions, isotropic and

anisotropic. are calculated and compared with experimental results.
We use two types of clusters to represent a small piece ofa semiconductor crystal:

the NX 4H,2 cluster (X- C. Si. orGe) to study the single N impurity centers. where

the N atom is surrounded by X atoms as in the crystal (without distortions)- and

the N 2X5 H ,8 cluster (X= C. Si. or Ge) for studying the impurity pair N. complexes.
where each N is surrounded by 3Xatoms and a N atom (as they are in the nearest-

neighbor substitutional sites). The role played by the H atom is to tie up the crystal
atoms valences on the surface of the luster in sp' bonds. Initially all geometrical

International Journal of Quantum Chemistry: Quantum ChemistrN S,,mposium 26, 667- 672 tI N92)
c 1992 John Wiley & Sons. Inc. C(CC 0K120-76,/'92/t2l(tfI67.(t6



parameters~ are assumed as in thle pure ersstal. and in all calculations, tile II atomis
are fixed at the cr'.stalli ne positions.

[he electronic structure is obtained using an all-electron all au/lu ( V~) procedure.
The molecular orbital espansion is os er the contracted gaussian basis sets, and all
one-electron. txo-electron. and ow.rlap integrals are ftidk calculated. We hase used
basis sets proposed bl, Dunning and Iliaý 181 : 4s contracted to 2's tlir If: 9s5p
contracted to 1s. 2p f~or C: and I 2s. sp contracted to 6;s. 4p) tbr Si. For Oe s'.e used
the *ilusinaga-xmttt hasis set [(9)1. 1 he calculations vere pcrbormecd using the
program (IAMESS [101 in both restricted Fiartree-Fock (RHI I and unrestricted
}Iartree-Fock (I t it ) schemes.

Results and D~iscussion

Simelc N Imup-111,

[' sing the procedure described inl the last section kwe anal\. zed the orbital Structure
andi total-energ\ surfaces tfor a large number of positions of the N-imnpUrlit coupled
w-,ith displacement of'one of the nearest neighbors in the clusters, In all three semi-
conductors ( Ci.Si, and Ge Ithe substitutional N impurit\ introduces an a, anti-
bonding orbital in the energx gap region and. a higher energ\ iu. state. leading to a
nondegenerate -A, ground state in T,, sl~mmretrv. It is inmportant to note that no
pure Jahn-Teller distortion is expected.

For the three doped Semiconductors wýe find that the systemns distort to a C;%.
svmnmetr\. In Figure I '.%e showl the total energy surface obtained from our calcu-
lations for a grid of 65 Coupled displacements bet'meen N and X - bulk atom in tile

Ill1 ' direction. The arrowv in the figure indicates the Tj initi:i1 configuration. As
w,,e canl observre the N' is unstable in TLI sxmmcntr% in all three senmiconductors.
mroving toC, (s'.snimetr,ý. We must stress that. in diamond and silicon, if ke displace
onl\ the N a tom keeping the first neighbors fixed. no o~l-center energ\ minimum
is f"ound: In order fir this to happen, it is essential that the C or Si atom is alloN~ed
to mloxe in the ,IlIl direction awixN 1rom the ti imrpurit\ . 'These results Lire inl
agreement -,% ith Schult/ and Mecssmer 13 1. tor N in silicon. The atomic displacements
obtained from our Calculation of the mninimia in the energý surface aire: foLr the N-
atom. In a TiIdirection akl'av trom theC Tj Substitutional site. 0,23.A in diamond.
0).47A in Si, and (0.49A in Ge: for the ligand atom in thle ()\' axis in ,IllI direction
a,.ka\ fromn thle impurit\ . 0.36.\ in diamond, 0.47A' in Si. and 0.48A in Ge. For
these coupled displacements. thle gai i(cutrtoaeeg\i (I Vdiamnd.

0)72 e in Si. andl 0.63 eV in (le.
A,, v. e said in the Introduction. there are I I'R 16.7.1 1I] results f'or N in Si and (je

'.k.hichi prox ide a detailed picture of the centers. In Fable I \wx compare our results.
for the isotropic (. I) anld anisotropic ( 13) terms of'thle Ih 'pertine interaction, '.Nith

experimental data. Wke obtain an oserall agreement. '.'.Oh thle exception of the values
for anisotropic termi in Si ( although1,l present thle obsersed trend I '.%lhici Is sers small
and] rot eas\ to calculate %k.i th a small cluster.

Ii nall%.. .%I% rind. for thle minimiuni-energ,\ a G%~ configuration. for all three s'.s-
terns- It Is important to observe that thle enlergy lexcl in) thle enecrr\ gap ( Ll T isv not
prvd om i na ti I rorn \. tli is c ncru\ Ic'.ci is cioncentIrated in the host atom located in
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I alu

N N , , N

atom in bulk atom

Figure 2. Schematic orbital representation of a substitutional N, pair in a type-IV semi-
conductor (see text). vtM indicates the top of the valence band.

the N2 pair were occupied taking into account the six dangling bonds coming from
*he ligands in the crystal, each one occupied by one electron. In all semiconductors
studied we obtained an a,,,-orbital above the valence band maximum (vBM), with
a strong p,-character coming from the N atoms, which is fully occupied, leading
to a nondegenerate 'A.1 ground state. Here also we analyzed the total-energy surface
for a large number of positions for both N atoms displaced in the K Il I ) direction.
For all three systems in the neutral-charge state (a•l) the symmetry remains D3d,
that is, the lowest total-energy configuration corresponds to a symmetrical dislo-
cation of the two nitrogens, in the ( I Il) direction, moving away from each other.
Each N atom will use three valence electrons to bond with its ligands in the crystal.
leaving two electrons to form alg-bonding and ai,-antibonding orbitals, which are
fully occupied. These orbitals come from the symmetrical and antisymmetrical
combinations of the "lone-pair" p, . Although, at the minimal energy, the N--N
distance is higher compared to the undistorted bulk, the electrons in ag (N - p,)
prefer to be equally distributed between the N atoms, but locally each one looks
like a lone pair. In other words, each N atom becomes threefold coordinated, going
to a planar-like geometry. In Figure 3 we show our results for the impurity N2 pair
in (a) carbon, (b) silicon, and (c) germanium. The displacements, in percents,
plotted in the figure are relative to half of the initial N - N bond length. From
Figure 3 we observe that the displacement increases from diamond (d = 0.38 A)).
to germanium (d = 0.85 A). These results were expected since the covalent radius
of N is small which can move more in a type-IV semiconductor with higher lattice
parameter.

We also have investigated the total energy surface for the ionized system,
Si:N2. When the complex defect is positively charged it undergoes a distortion
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Figure 3. Total Energy curve for N, in diamond, silicon, and germanium. The displace-
ments are in the ( I I I ) direction. The percentage represents the dislocation relative to the

half crystal bond-distance. d represents the value of the displacement.

from the D3d to the C 3v symmetry, differently from the neutral system. Now one
of the nitrogens (N 1) stays almost at the same position as in the neutral case, and
the other nitrogen atom (N 2) displaces from the initial substitutional position only
37% (d = 0.42 A) in the ( I ) direction. Therefore, there is no inversion symmetry
in the system. The gap orbital a, (at), which is now occupied by one-electron, has
a very strong p,-character from N', and the resonant state a, (a,,) has predominantly
a p,-character from the N 2 atom: each one behaves as a long pair occupied by two
"1unbonded" electrons in N and one electron in N'. In Figure 4 we show a contour
plot of the total-energy surface. the contour spacing is 0. 1 eV.

In conclusion we obtained for the N and N2 systems in type-IV semiconductors
large lattice distortions, where the role played by the N-atoms is to form a three-
fold coordinated system going to a planar-like geometry and forming a sp2 hybrid-
ization with the host atoms. Particularly for the N2 in silicon we obtained a break
in the symmetry with atomic rearrangement to the C3v configuration.
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N displacement (A) 0~ 11l)
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Figure 4. Contour plot of the total energy surfaice for coupled displacement of N'. in
positixelv charged system, in the ( IlIl) direction. The contour spacing is 0.004 hartree.
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Ab Initio SCF Calculations on Mn-Related
Defects in CaF2
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Abstract

We report on the progress in a studx to determine the structure of radiation-induced Mn defect
complexes in CaF,. The purpose of this studN is to correlate the calculated transition energies with those
measured cxperimentall. and to determine what etlect the inclusin of the external lattice field has on
these transitions. Unrestricted open shell Hartree-Fock Self-Consistent Field (tut) calculation.s, \,ere
performed on the unperturbed F-center [Ca.,FVac]` S : 1/2. the unperturbed Mn- center [MnF.]'
S = 5/2, S . 3/2 and the Mn >÷ perturbed F-center [Mn.(Ca.FVac] " S 1: I 1/2. S : 9/2 defect clusters.
A method by %,hich the effects of the external lattice field ma. be incorporated in the SCF procedure is
developed and used in these calculations. Se.eral transition energies are calculated and Mulliken population
results for these clusters are presented and discussed. c 1,992 John ',Wile%. & Sons. Inc

Introduction

CaF2 :Mn has long been the subject of intense study because of its importance
in the field of thermoluminescence (-rT) dosimetry [1-5 ]. While this material has
been used in radiation dosimetry [6]. the fundamental absorption and emission
processes involved in the production of-TL have only recently been understood to
a limited degree 17-10]. One of the main questions remaining, however, is the
exact nature of the various Mn-related defects and the mechanisms by which these
defects control the dosimetric and absorption properties (see, for instance. Refs.
[71, [8], and Ill]).

Over the last two decades, a considerable amount of experimental data has become
available. Optical absorption [ 3-5,8.9 1. photoluminescence [ 12 ], Ti, [ 1,27, 10.111,
and optical dichroism [13] measurements have led to a wealth of experimental
data from which different models and energy level assignments have been put for-
ward. Of particular interest is the work of McKeever et al. [81 in which they describe
a sernes of studies of Mn absorption in CaF,:Mn using a variety of methods, for
samples with varying levels of Mn dopant. and over wide temperature ranges, While
the experimental details are reported elsewhere [ 8 1, it is worthwhile to briefly outline
their conclusions.

As a result of the experimental studies, a plausible explanation for the observed
absorption spectra for irradiated samples seems to be that the Mn 2• ions enter the
lattice substitutionally and are associated with radiation-induced defects such as F-

International Journal of Quantum Chemistr: Quantum Chemistry Symposium 26. 673-686 (1942)

1992 John Wiles & Sons. Inc. CCC (020-7608/92/010673-14
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centers. This idea is further enhanced by the observed thermal quenching of the
absorption hands and the appearance of an intense -11 signal at 495 rim during
heating following irradiation. This model envisions several types of Mn-detiect com-
plex each differing as to the location of the radiation-induced defect %Nith respect
to the Mn-'> ion, the type of the radiation-induced delfct. and the number of Mn-
ions within the complex [81. However, a remaining question is whether the obser' ed
spectra are due to internal Mn transitions or whether the transitions actually take
place within the F-center.

According to the internal transition model, the association of the Mn >" ion with
the F-center gives rise to a spin exchange coupling %hich in turn increases the
oscillator strength of the Mn- transitions by a factor of 10'. Since the ground
state of the 3dM5 electrons in Mn>' is a spin sextet the excited state transitions all
require a spin reversal and hence are highly forbidden. This and parity considerations
lead to excited state lifetimes greater than 10 ý s and oscillator strengths of the
order 10 1" - 10i7. Thus this theory relies on the perturbation of the neighboring
defect to increase the oscillator strengths so that the internal Mn-> transitions be-
come visible and give measurable absorption peaks.

The alternative model to explain the observed spectra and its annealing behavior
does not rely on the enhancement of the oscillator strengths as such. This model
stems mainly from the observation that a 564 nm absorption band quenches at the
same temperature as the lower wavelength bands leading to the conclusion that the
564 nm band is due to the same defect as the lower wavelength Mn-related ab-
sorption bands. Since the quenching of the Mn-related bands is accompanied by a
TL emission at 495 rim, and since this emission has already been confirmed as
being due to the first excited state to ground-state transition in Mn2' (Ref. [8]),
it follows that the 564 nm band is not due to Mn -" transitions. Therefore. the lower
wavelength absorption bands are also not due to internal Mn> transitions. A model
that could explain this behavior is that the transitions actually occur within an P-
center perturbed by one or more Mn> ions.

The above two models notwithstanding. optical dichroism measurements [13]
indicate that the optically active defect possess CQ, symmetry with an alignment
along the K 100)-direction. While several defect structures could possess this sym-
metry [114] (such as M-centers or Mn/ft-centers). this alignment indicates that the
center could consist of an F-center perturbed by two Mn -2+ ions.

In this article we discuss the results of ab initio self-consistent field molecular
orbital calculations performed on the unperturbed F-center [Ca4 FfVac] " S = 1/
2. the unperturbed Mn>' center [MnF8] 6 S = 5/2. S = 3/2, and the Mn-perturbed
F-center [ Mn 2Ca2 F6Vac] " S = 11 /2, S = 9/2 defect structures. The main purpose
of this investigation is to verify or exclude one of the above models by determining
which one produces energy levels which correspond most closely with the observed
spectra.

The calculations were performed using the set of programs GAUSSIAN 90 ( Ref.
[15)). A new feature recently added to these programs is the SOLVENT option
which allows the placement of charges outside the cluster. In this way one may
place either external point charges or points about which a spherical distribution
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of charge may be placed. This improved option allows the possibilit\ that one maN
construct an external field that would model an infinite lattice both in symmetrN
and in electrostatic variation within the sC'1 cluster. As a result, it has recently
become possible within these programs to determine the effects an external field
has on the transition energies.

The Calculations

('lusier Geometry and Basis SO

The I MnFg]• cluster consists of a Mn 2 ion surrounded by eight F ions arranged

in 0j, symmetry. With the Mn>' at the origin the F ions are located at (±(.

_ . +- ). where a is the F-Fdistance, taken I-t be 2.7314 A (ref. [l4 ). Figure

1(a) shows the geometry of this cluster. The [Ca4 Fe,Vac ]'' cluster was constructed
so that the vacancy site is at the origin surrounded by the four nearest-neighbor

a aa a a a a a a a

Ca>4 ions arranged in Tj symmetry at (- a. a).( a. -a),(a. -. -). (-

a a
a_ a.). and the six next nearest-neighbor F ions at (+a.O,O), (O.±aO). (O,0.±a).

Figure 1 (b) shows this cluster. The [MnCa2 FVacl ' cluster has the same geometry

z

aZ
x

[o VAC

O Ca2 _

/,a

0 Y

Figure I. (a) Mn-impurity. [MnF•] 6 , and (b) unperturbed F-center. [CaaFVacI"
clusters used for the present calculations. This figure also shows the geomctr> of the Mn-
perturbed f-center. [Mn 2Ca2F6 Vac]j" cluster if two of the Ca2 ' ions are replaced by two

Mn 2" ions.
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"F.\•t I 1. t he csonents i Bohr "and I he Coethlen Is of the (iausslaln funll"on. tWU'd as the \ ationat
basis set in the pres, nt stud\. Ihe contraction tcoeih:ient, mulhipl, the single norinahckd ( auimnans I he

notation .if , 0) mean, , , I (i'I

(Caleurn IHuorinc Mangane--

Shell t.pe Exp. Coetf. Lsp. (octI. I s ( octt

s 8.8764 2+1 1.7541 2 1,041 •31 1.922, 21 ,.8 7
f, JI I 754 21

1.339 + 3 .22 I I.-26 1 1 7 t 2) 1 .113 11 319 1i 1,226' 11
3.0171 1) 4.422 i 3.,2 • 4.6010 1 3 (17 4 1 4 42' I1
8.164 I11 5.5 1;16 1 9,293 i.2 ' 1t 8.1644( - II 5.51o II

-I."2' '2t -1.060, I) 1[39 9 11 7.9ý 5 21 1.22i 21 1.060 (I
1.327 1) 6.361 t 14 1162 5.839 1 I .11 1_127 • 61. 1 1 1
5458 4.354( 1) 3.232 I 5,1)76 I1 5.458 4 354( It

s 9.586 2.2569 I) 8.407 2) 7.t169 1 9.5i6 2.256 II
L535 7.285( I) 3.27 ( 2) 3.161 1) 1.535 7.285 1

6.139 -1) 4.0294 I) 6.139 I1 4 029 14
s 1.0161 -.I) 6.976, 1I 1.0164 I 6.96)

35744 21 3.442 I) 3.5741 2) 3.4424 14
p 3.498 (+2) 2-956 -2) 1.911 1) 5.2364 21 3.498t,24 2.15 2) 2t

8.161 4 1) 1,871 1 I) 4.146 2.585 1 i) S.161 .1) I 7X 4 I I
2.497 V I) 5.0760 I) 1.o72 5.083 1) 2.497 11 5.04761 1
8 359 4.518 1 I) 2 13 8 1--I) 4.634( 1) 8.359 4.517 1 )

p 4.973 1- ) 2.291 I -- I) 1.004 2.7381 1) 4.9731 1) 2.291I 1)
3.526 3.25841.1 9.5984 2) 3.58!i - I 3.526 3.25ý I I
1.334 5.647 - 1) 3.3601 1) 5.439 (-1) 1.332 5.641 11

p 8. 1524-2) 8.148 1-I) 8.1521 -2) 8.1484 )
"7.9634-11 2.6541 1i 2.963) I1 2.654 1

d 2.096 + 1) 6.373 2)
5.516 2.822 )
1.668 5.196 -I)
4.629 . I1 4,433 11

d 5.499 1.561) I "I
1.311 4.8924 14
3.098 -1-I) 6,.72) 2)

as shown in Figure I(b) except that two of the Ca> ions are replaced by Mn->
ions. It should be further noted that for these calculations the lattice constant a in
all the clusters was taken to be the equilibrium F-- F distance for the perfect lattice
and thi•t no relaxation effects were considered.

The choice of the variational basis set is perhaps the most important consideration
when attempting to perform accurate scr: calculations for many electron systems.
Basis set related errors have been reviewed extensively in the literature [161. Of
particular interest in these calculations is the correct modeling of the Mn 3d orbitals
which are believed to be the ones primarily responsible for the observed transitions.
As always in calculations of this type, one attempts to choose a basis that is both
flexible enough so as not to unduly bias the results and limited enough for practical
use. The general strategy adopted here was to construct the core orbitals mainly
from standard basis functions used for atomic calculations of the F ions and Ca
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Figure 2. The variation in the ratio of the potential at the Mn: site to the potential at
a F site due to the external lattice as a function of lattice size abh)ut the( Mnf:,) cluster.

The cut-off point at 2X647 Bohr best satisfies the Madelung ratio condition of I.(XI5.

about the [MnF8 ]'- cluster. The external lattice consisted of +2 and -I point
charges arranged in the fluorite structure representing the Ca-> and F ions. re-
spectively. The Madelung potentials at the Mn2' and F sites are -19.95 v and
10.73 v. respectively [141. After subtracting the electrostatic contributions to these
Madelung potentials by the SCF cluster ions, the Mn-site to F-site Madelung ratio
was found to be 1.005. From Figure 2 it can seen that an external lattice extending
out to approximately 20.647 Bohr produces a ratio of about 1.004 which compares
well to the desired ratio. Hence, for the [MnF8 ] calculations the external field
was modeled by placing outside the cluster point charges arranged in a fluorite
structure out to a radius of 20.647 Bohr. In total, this consisted of 412 point charges
of which 140 had charge +2 while the remaining 272 had charge -I.

For the F-center clusters a slightly more involved approach was required. Figure

3 shows an overlay of the ratio of the potential at a Ca2' site to the potential at a
F site (0). and the ratio of the potential at the vacancy to the potential at a F
site (0) as a function of external lattice size about either the [Ca4 F,Vac] " or the
[MnCa,F6 Vac] '' cluster. The external lattice for this figure consists of +2 and -1
point charges arranged in the fluorite structure. After subtracting the electrostatic
contributions to the Ca-2' and F site Madelung potentials from the S('F cluster.
the Ca-site to F-site Madelung ratio was found to be 2.399. The problem is then
to find an optimum external lattice size that will produce this desired Ca-site to F-
site ratio and simultaneously produce a vacancy-site to F-site Madelung ratio of
1.000. While Figure 3 shows more variation than Figure 2, nowhere are these two
conditions simultaneously satisfied. As a consequence, it was necessary to choose
a lattice size that best approximates the desired conditions then vary the charges
and/or the radial distribution of the charges on the point ions so as to produce a
field that would satisfy the above Madelung ratio conditions.
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Figure 3. The variation in the ratio of the potential at a Ca-" site it) the potential at a

F- site (l). and the ratio of the potential at the sacancN to the potential at a I site (I'I
as a function of external lattice size atout either the [Ca4 F-Vac I" or the I MnCa:F6Vac I"
cluster. The cut-off point at 21.283 Bohr best satisties the condition. V(r )il'(r• ) 2394.

From Figure 3 it is seen that the desired conditions come close to being satisfied
for a point ion arrangement out to a distance of 21.283 Bohr. This arrangement
contains a total of 446 point ions of which 298 have - I charge and the remaining
148 have +2 charge.

The optimization scheme adopted for the present study envisions the SCF cluster

surrounded first by an active shell in which both the charges of the ions and the
Gaussian exponents of the point ion charge distributions are varied. Surrounding
this shell the remaining point ions have only their charges varied. This will be
known as the point ion shell. For the present study, the active shell was taken to

extend from just outside the SCF cluster to a radius of I 1.3 Bohr containing a total
of 50 ions of which 26 will have an initial charge of- l and 24 will have an initial
charge of +2. The point ion shell was then taken to extend from just outside the
active shell out to a radius of 21.283 Bohr cuntaining a total of 396 point ions of
which 272 will have an initial charge of I and 124 will have an initial charge
of +2.

To calculate the field due to an arrangement of N ions each having a spherical
charge density described by a normalized s-type Gaussian. we consider an external
charge density of the form, S

p(r') = q, e- '-RI 2  (1)

where q, is the total charge of ion i at location R, with Gaussian exponent 4,. The
potential V(r) is then,

Sfe rl\ R/1

V(r) = , |- -_ ri dr'. (2)
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Integrating o~cr all space, the eC\pression fOr the potential then becomesl.

e rl'[•i :R; r I

rr

, here here the error function is dceind. erf k ) ' e ,/u. thc final Ce\prCs-
sion tor the potential including both the acti\.C and point ion shelk becomes,

lir) :: 'T" " [. FR' - rlj \. erl[•,.,jR• ri]

r!] err. R r

R. r A R~r
d , I l5

where, tor instance the notation. . means that the sum is to consist of all F
ions in the active shell only. The terms, T' • , . : become variational
parameters to be adjusted so that I t r, ,)I (ri ) 2.39)t~ and I '( r,,, )/ I ( rj ) -I .H0.

It should be noted that the above procedure is not a fit but merclý an optimization
since the number of "data points" is two whereas the number of adjustable param-
eters is six. This leads to a large "degeneracy of fit" meaning that a large number
of dilfferent parameter combinations satisl\ the tit criteria. This probtem could be
responsible 1or physicall-v unreasonable optimi/ed parameters. For instance, itf ,,

and ý/ are set to 2000 Bohr 2 to form tight Gaussians. the charges of the both the
active and point ion shells take on very large positive and negative xalues. Since.
from the initial selection of the lattice size the Madelung ratios onl. var\ ,ightl\

from the desired ones, one would expect that the charges in both the active and
point ion shells would also vary slight]y from their initial Nalues. Hence. it w•as
found necessary, to allow c,, and/or ý/ to vary as well.

In a series ofoptimizations, in which diftierent initial parameter sets wert. c\per-
imented with, it was generally found that. upon optimization. the value of ý, only
slightly effected the outcome of the value of •,,, when ýt was chosen to form tight
Gaussians about the F ions. When /,. was varied so as to allow a more diffuse charge.
the value of' -,, also varied to produce a more diffuse charge about the Ca ions.
Since F ions form the shell just outside the cluster, it was considered desirable to
model them as tight Gaussians (/. - 2000 Bohr 2) and allow , ,, and the charges
in and outside the active shell to vary.

The parameters chosen to produce the external field in the present study vere:
q" -0.9818. ; 2000.0. t<, 2.0186. , a = 0,06164. q --0.9977. q"
2.0052. These parameters gave an essentially exact agreement to the desired Ma-
delung ratios. Figure 4(a) shows the variation in the potential from the Vacancy
site to a Ca-site in the /-center cluster and Figure 4(b) shows the variation from
the Vacancy to a F-site for the same cluster. From these figures it can be seen that
the desired variations are achieved with the above parameters. The potential profiles
are as expected, and the deviations from the initial charges are small which is also
expected. The charge on the Ca ions within the active shell is more diffuse than
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S = 5/2 both with and without the external field contributions. Ihe same till-
calculations were performed on the first excited spin configuration. S : 3/2. also
with and without the external field. In addition to the ground state of the S : 3/2
spin configuration, an additional excited state of this spin was calculated with the
aid of the method of singly-excited configuration interaction (cis). The (IS method
enables one to calculate states that exist in the space spanned by single substitutions
of the reference state. It is a useful tool in identifying excited configurations that
are reachable by a single particle interchange. Thus. it is sometimes possible from
a (IS calculation to determine the initial guess that would be necessary to coax the
tUHF procedure into convergence for an excited configuration. In this regard. excited
state multiconfigurational self-consistent field (MN's(,v) calculations [2 1.221 will be
helpful both in terms of correcting the presently calculated transitions and eluci-
dating transitions not presented here.

At present. within the context of UiF calculations we have identified with certainty
two transitions within the [MnFx]" complex. The ground state to first excited
state transition ("A,, - 4T,( 4G) [(t~g),(e,)( t2x),'] ) has a tujiv energy of 3.44 eV.
This differs from the experimental value for this transition of 2.81 eV (Ref. [8])
by 0.63 eV. Errors of this magnitude for d-to-d transitions in Mn-related defects
in other hosts have been reported in the literature [23]. For instance. Richardson
et al. [23] report a utHF error of 1.6 cV for the ground state to first excited state
transition for Mn defects in ZnS. Table 11 shows a summary of Mulliken population
analysis for the clusters and states considered in this study. The table shows the
results obtained both with and without the external field for the Mn defect and F-
center clusters. For the Mn defect cluster, this analysis shows that the effect of the
external field tends to localize the electron charge density slightly more about the
fluorines while reducing it about the central Mn. This appears to be true for both
the ground and excited states. However, the effect of the external field on the ground
to first excited transition energy is minimal. That is. it does not change the 11mI:
calculated transition energy until well past the number of significant figures reported
here. This observation is consistent with studies of Mn centers in other hosts [ 231.
The excited configuration (t:g)?(e)(e,) was found to have a Utlu: energy 4.23
eV above the ground state. The state appears to be either the 4T "( 4G) or 4E,( 4G),
A firm state designation will not be possible until the MCSCF calculations are
complete. Nevertheless, this would place this state approximately 1.09 eV above
its experimental value.

UHF results for the unperturbed F-center, [Ca4FVac] " cluster show transitions
that correspond to excitations from the 2A, ground state to the triply degenerate
2T2 state in T, symmetry. The UHF energies for these transitions are 4.66 eV and
4.14 eV with and without the external field, respectively. These are spin-allowed
transitions. The oscillator strength for the isolated F-center cluster was calculated
to be 0.055. In the presence ofthe external field this value reduced to 0.042. Table
II shows the total atomic charges from a Mulliken population analysis for the ground
state both with and without the presence of the external field. This result shows
that the effect of the field is to localize more charge in the vacancy and slightly
more on the fluorines while reducing the charge on the calciums.
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TABLE II. Summarn of Mulliken population analysis for the Mn deflect t[MnF,] ), the F-center.
([Ca4FVac]'). and the Mn-perturbtd F-center. ([Mn,("a-,Vacj") clusters obtained from iiI

calculations both with and "ithout an external held- The charges are in atomic units.

Cluster and state Atomic site Isolated cluster (luster with external field

[MnF]+- +'Al, Mn 1.8495 1,8X79

F -0.9812 -0.9860
4 TtG) Mn 1.8473 1.853

1P• -0.9810 -(1.9858
.0.9808 .0.9855

4I:• 4G) or4 E~ 4 Gl Mn 1.8371 1.8750
P-- --0.9814 -0.9862

-0.9778 "0.9826
[Ca 4F,,Vac]" 2A, Vac. -0.5004 01)6001

(a 0.8409 0.8684
F: 0.3106 .- 0.3126

1Mn(Ca.-FVacl•' "rA, Vac -0.0672
Mn - 1.3921

Ca - 0.9299
F( I ),- - -0.2986
Fl2) .... 0.8492
F(3--6) - --0.6072

10? Vac... -0.0980
Mn - .4252

Ca 0.9265
FR 1 )1 -0.2989
F(2) --- 0.8672
FW3-6) -- 0.6098

In both of these states F atoms lying in a plane passing diagonally through the center of the cube in
Figure l(a) have identical charges.

In this clustei F( It is the F atom lying between Ca atoms. F(2) lies between the Mn atoms, and
F(3--6) signify the remaining F atoms in Figure I(b).

Theories of the F-center in the fluorite structure have essentially relied on point
ion models 1141. To date, there has been very little work that approaches the 'heory
of the F-center in the alkaline earth fluorides from an ah initio standpoint. Past
theoretical work has mainly consisted of various pseudo-potential formulations
which differ mainly in the degtee by which the anisotropy of the potential is taken
into account [ 14] or semi-empirical multiple scattering Xca methods [24,25 1. Both
of these methods are semi-empirical in nature and as a consequence provide tran-
sition energies that agree well with experiment. In the alkaline earth fluorides, the
F-center has lI' symmetry and the anisotropy is expected to be more important
than in the alkali halides. Bartram et al. [26], for instance, emphasize the importance
of this anisotropy to account for the observed discrepancy in energies from pseudo-
potential calculations and the observed F-band in CaF2. In their calculations they
expand the point ion potential up to L = 6 but argue that better agreement would
be achieved if polarization, distortion, and ion size effects were taken into account.
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While these considerations are tuite inmportant, it ILUMs I"he CI1plhasizLd th;l hat
the ah un/uit approach the form of the potential must be niodcled indepcndeintly
of the s(1 variational scheme. It is therefore quite conceivable that the discrepanc%
in the /-center transition energies as compared \kith the experi mental aiuc -f 3.31)
eV ( Ref. [141 ) could he due to an inaccurate modeling ofthe external potential as
,well as the obvious need br including correlation ctlects. In addition. k e ha e not
considered the eftlects of allowing the nearest-neighhor calciurms to relax. Ithis Xuld
certainly have a significant effect on the calculated transition energY [ 18 1. I mpro\ e-
ments in this regard should include higher-order terms bcond the \ladelung con-
stant in the point ion potential expansion and a greater number of points %\ ithin
the cluster upon wvhich to optimize. This could be of crucial importance in /"-center
calculations wvhdc even the first excited state wavefunctions are expcctcd to he
much more diffuse than the localized ground state. The solution is to perform
configuration interaction calculations up to tripl\ or ewen higher-order substitution",
or to nerform multiconfigurational s[,i calculations. Both options are curren,,\
under investigation. However, it is presently unclear how polarization effects could
be incorporated in an a, Uitlio s(1 lbrmalisn without greatly increasing the site
of the s(1- cluster.

ULIF calculations tbr the Mn-perturbed /--center. [Mn,('a F Vac] . clustcr
could only be performed in the presence of an external field. Without the c,\rernal
field selftconsistent results could not be achieved -ith this basis. However. since
we feel that we are using a sulficiently flexible basis, this convergence problem must
indicate that the correct modeling oft he field is ofcrucial importance in the anatksis
of this cluster. This cluster has (C, symmetry so it is assumed (though not proven
here) that these transitions represent excitations from a ".A, state to %arlous excited
states of spin multiplicity ten. The first excited state of this multiplicty has been
identified 0.48 eV above the ground state. This cluster has been proposed as a
possible model that would ýscribe the experimentally observed transitions [8].
This model envisions a Mn-perturbed /I-center in which the observed transitions
take place. From Fable If. however, the results ofa Mulliken population analysis
show that compared to the unperturbed F-center, the electron in the Mn-perturbed
/--center does not stay in the vacancy but becomes localized on the fluorines that
neighbor the manganese atoms both in tCe ground state and in the first excited
state. These calculations seem to indicate that an electron in the vacancy not a
stable configuration for this cluster. As a consequence, no F-center is actually formed
and therefore no absorption bands can be attributable to transitions "within" the
F-center. As further evidence, the 0.48 eV energy associated with a spin flip ofthe
"F-center" electron is too small to account for any of the observed spectra. This
result further supports the alternative model that the observed spectra is due to d-
to-d transitions within the Mn ions perturbed by a vacancx.

A model of this type could also explain the thermal quenching behavior observed
in the absorption bands [81. In particular. this model would need to explain the
presence and behavior of the 564 nm band. It has been shown experimentalWy that
this band quenches along with and at the same rate as the other lower wavelength
bands [8J. The quenching of these bands is related to the production of't f at 495
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11111 which has been shown to le due to the first excited state to ground stale transition
in Mn" Ibr unirradiated samples. Optical bleaching of this band would also need
to he explained by this model. The experimental results [I 31 show that bleaching
at 560 nmn causes this and the lower wavelength bands to decay at the same rate
with no associated luminescence. Taken together, this evidence strongly indicates
that the 564 nrm band is due to the same defect as tile lower wavelength bands.
Any model must, therefore, explain both its presence and behavior. The results
presented in this article tend to favor the internal-transition model, and until a
more comprehensive series of calculations is completed, the question as to whether
this model explains the presence and behavior of the 564 nm band is still open.
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Ab Initio Factorized LCAo Calculations of the
Electronic Band Structure of ZnSe, ZnS, and the

(ZnSe)I (ZnS) 1 Strained-Layer Superlattice

T. S. MARSHAL.L and T. M. WILSON
OPMonplIhllloll Sl 'd Stia " R"•/'%arlI I.labora ri'. eplarltmn't of I' "•1t"N. Oklah ,mna Stl•l' I litiv'rsliv.
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A bstract

We'e report on the results of electronic hand structure calculations of bulk ZnSe. bulk ZnS. and the
(ZnSe.j( ZnS )j strained-layer sup,.rlattic (I• S) using the all' inq' factori/ed linear comhination of atomic
orhitals method. The bulk calculations were (lone using the standard primitiwe nonrectangular 2-atom
Ainchlende unit cell, while the si s calculation was done using a primitive letragonal 4-atom unit cell
modeled from the ('uAu I structure. The analytic fit to the Sl s crystalline potential was determined h.
using the nonlinear coelbicients from the hulk fits. The (I'tv time saved bI lactoriiing the energy matrix
integrals and using a rectangular unit cell is discussed. ý, 1992 John Wiley & Sons. Inc.

Introduction

Recent advancements in crystal growth techniques have allowed for the growth
of* high quality (ZnSe),,.(ZnS),, strained-layer superlattices (sls's) with clean in-
terfaces and precise control over the monolayer thickness (i.e.. the set of m .n k
values). The elastic strain is introduced into the superlattice through the 4.5%
mismatch between the lattice constants of ZnSe (5.66 A) and ZnS (5.41 A). Because
of this strain, desirable electronic properties are found in these sLs's that are not
present in either of the constituent bulk materials. The strain has been found to
depend on the monolayer thickness and should this thickness exceed the critical
value (ca. 200 A), then the strain is broken and dislocations are formed at the
interfaces [l 1. Photoluminescence measurements on long-period ZnSe-ZnS sL.s's
(20-100 A monolayer thickness for each constituent material) grown on GaAs
substrates by metalorganic vapor phase epitaxy (MoVPI-), metalorganic molecular
beam epitaxy (MoMlil), and metalorganic chemical-vapor deposition (MocVI)
showed an intense, sharp blue emission from the ZnSe quantum wells. The peaks
were observed to shift towards higher energies as the thickness of the ZnSe quantum
well layer was decreased f2-41. This has led to a recent interest in ZnSe -- ZnS
heterostructures as prime candidates in the development of'a blue-emitting semi-
conductor laser diode and the need to achieve a good understanding ol'the electronic
properties as a function of monolayer thickness.

,1t, hlilie I'.CA0 electronic band structure calculations of the ( ZnSe ),,( ZnS),, SI.'s
are presented with three dilficulties. livery increase in the monolayer thickness

IhlernallionWil Journal &l'Otianium C'henlry: Quantusm t.hem t (Cry Sym(un I 21, t-71 (1992)A, 199'2 Jo~hn Wiley & sm•,Ist. hi'c,.•-fOiq11161191
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requires ( I ) tile determination ofa ne\- stable lattice structure, ( ii ) a redetermination
of tile crsstalline potential or cr stalline charge densitO. and (iii) a larger number
of atoms per unit cell. The impact of varying the flRltn',:a\ci lhicknics, is 1e101V
severe tfor the short-period si s's I i, n < 7 ) than tir the long--period st s's. liowc'er.
for the latter case. the massive number of multicentered integrals that need to he
evaluated and stored present the most imposing problem. Stable structures for the
si s's can be determined using the valence force field ( \ iI) or Keating model, in
which the stable si s is found b\ minimizing the deformation cnergy [ 5-7 J, e
show that it is possible to etifctivel, reduce the second difliculty by using the non-
linear coefficients from the analytic tits to tile bulk cr\stalline potentials. described
in the next section. in the fit of the si s cr\stalline potential. In this way, the tit to

the sis crystalline potential requires ontl a linear least-squares lit. which con'erges

quite rapidly.
To handle the burden of the numerous multicenter integrals. we use the odh /1init1

factoriied linear combination ofatornic orbitals (Fi (,\u)) or tight-binding method
of Laton []. -The strength of the i ,(-,\o method is that fora unit cell .ith rectangulir
s\.mmetrv. the fhctorization of the energy matrix integrals into x-. v-. and _-com-
ponents ctlbctivelv reduces a X" problem do\n to a 3N.' problem. \Nhere V represents
the number of equivalent lattice sites vwhich need to be sum"d over to reach the
required convergence of the integrals. Furlhermore, onlk the integrals involving

unique equivalent lattice sitcs need to be evaluated and stored. Inside a sphere of
radius R. the number of equivalent lattice sites is proportional to R . Hionerer.
the number of such unique sites is typically on!v proportional to R. As a result,
the amount of (pmt time needed for the evaluation of the integrals and disk space
fbr their storage can be signiticantly reduced. To date. the viI. No method has been
used to determine the electronic hand structure ol bulk copper ( I-atom/unit cell)
and a ( 100) copper surface (33-atoms/unit cell) [81: alpha quart, (9- and 18-
atoms/unit cell) and quartz with an oxygen vacancy (72-atoms/unit cell) [9]:
berlinite (18-atoms/unit cell) [101: and bulk ZnSe (2-atoms/unit cell). bulk ZnS
2-atoms/unit cell), and the (ZnSe)h( ZnS) st..s (4-atoms/unit cell.) I this wvork].

Method and Approach
C'rvta'luine IPolenlial

In this work. it was assumed that the exchange correlation interactions can be
adequaleil described by tlhe local density functional approximation ( 1.1).\) as for-
mulated by Slater [ I]. The crystalline potential. which exhibits the periodicity of
the lattice, is numerically calculated for a specified grid within the unit cell from

the superposition of self-consistent spherically-symmetric atomic charge densities.
The atomic charge densities were calculated using a modified lilerman-Skillman
code [121. where it was assumed that the Zn atom was in the first excited state
while the Se and S atoms were in the ground states. This numeric crystalline potential
is then fitted into the tollowing analytic expression

I'(r) "'" r[ -- tR, + tJ) 4 I,(r [R, - C,])) + lh 4r)
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where

I Iir ...r)r

" 'r " T' eC p J-)

and

l ; r ) ... -\ K I,,( )e p -;. (r C') '

The sector C connects the origin to some arbiltrars point i n the latti.c ah.it hich
the Fourier series is expanded. The I 'I r) term is an expansion of,,-like ( 1aussian-
type orbitals ((i ()'s). which were chosen to ease the burden of the mu lticC;e'cr
integrals and are certainly amenable to factorization. In it\ present ftorm, on the
other hand. integrals involving the 'I( r) term cannot be Lacbori/ed. l lomescr.
since the purpose of this term is to reproduce the C(oulombic sigularlt .• ,. can be
chosen to be large so that the fllowing fit can be made

expa e•p ,r
rx

This factorizahle form of I-':( r) was not used in this article as the unit cells used
were small enough that the (ptm time saved would hawe been less than the time
needed to calculate the tit. Together. the I' ( r) and 1 i:( r ) terms can ' ijewed as
an analytic atomic-centered potential M viý). displaying much the same hehax ior
as an atomic potential in the region close to the nucleus. The i\ and d,'s of the
A.(P's are calculated h\ means of a nonlinear least-squares lit and are not unique.
Generallv. thcoe coefficients are determined so that onil the K,, 0 term of the
Fourier contribution needs to be considered and often e~cn this term can bc
ignored in nonself-consistent calculations. Table I lists the coefficients \C calcu-
lated for the .'P's of hulk ZnSe and ZnS. The rms errors \ere 5.675 -* If au.
for ZnSe and 5.610 ) I 0 a.u. for ZnS, The lone Fourier contribution was
determined to he -0. l0 a.u. for ZnSe and -0.40 a.u. for ZnS and had an negligible
efifbct on the R.NS errors.

For the ZnSe .--- ZnS si.s's. every increase in monotaxer thickness requires a new
fit to the crvstalline potential. From a (-p time aspect, it "w\ould be impractical to
generate a new fitted crystalline potential for each sis. For the short-period SI s's.
a set of coefficients for the A(P'S would have to be determined f'or each monolascr
and this can quickly add up to an imposing nonlinear least-squares fit. Just for the
(ZnSC)2(ZnS)' SLS. coefficients would he needed for each m(i, at the sites of Sc.
S, Zn at the interfaces. Zn between Se layers, and Zn hetween S lavers. T'O reduce
the ('pt: time. we feel that an effective approximation to the tit ofithe S1 s crsstallmne
potential would be to freeze the nonlinear coefficients from the bulk fits and allmw
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TABL.E 1. "The nonlinear and linear coefficients for the anal tic atotnic-centred p•'entiak o~lnSe and
ZnS. The rms errors for the fitted crstalline potcr.itals "ere 5 675 -0 10 au. tbr Inst and 5 6111

101 a u bIr ZnS.

ZnS¢

Zinc A(P Selenium A(1'

do 2685.07(X) J', 2707.52(X)
;3- 0.0805989 a, 0.2616660 1, 0.0635699 Y 0.(536461
42 0.2644960 a. 07784020 4, 0.2151610 1. I 11896(X)
3 0.8679790 a, .3.91474(M) 4) 0.728240( Y, 7 3,78516(X)
d, 2.84839(X) a4  15.647500 J4 2.46483()0 , 414 ,0)59(X)
4, 9.3473700 ,r, -*;45.2468(X) 4, 8.3425300 O, 46.47231K)

30.6746(X) eob 91.8833M0 d, 28.2364(8) a, 102.039(M)
d8 100.66300 a, 193.01(0 37 95.5698(X) a, 214,65919

330,339(X) a? ,. 347.568(X) , 32.3469(X) 06 402.861XX)

1, t084.5000 a, - 679.266(X) I, 1094.8200 ar 768.09 1(1
ý310 = 3557.4500 a2  930.48400) 4,, 37015.57(X) 17,1 1175.92(1)

ZnS

Zinc A'CP Sulfur MP

30 = 2638.4100 do, 2162.75(X)
43 = 0.0939085 al =--0.2921120 d, 0.0613623 a, 0.2643280

42 0.3026590 o2 -0.8512680 42 0.2023960 a .-- 0.8859110
0, 0.9754470 a3 --4.6016300 il4 0.6675780 17) 3.04029MK)
d4 3.1437800 114 - 16.957600 d4 , 2.20192(X) a, 7.47656(0)

d,5 10.132200 o• -47.231700 j35 7.2627800 a: ,. 22.3073(M)
4,= 32.655100 o6 . 93.792000 j3, 23.955400 a..43,721"7(X)

37 105.24500 a7 -195.10700 07: 79.01380W a --95.690700
d= 339.19500 ai -347.04600 4,, 260.61700 ag . 166.66 100
&, 1093.2000 "9 = -667.30400 3 859.61400 Y, - 327.906(0)

itio 3523.2900 eym - 940.24700 4,o 2835.3300 aUl 437.739(0)

the linear coefficients to be adjusted to describe the change in potential brought
about by the interfaces. In this way. only a linear least-squares fit would be needed
and considerable CPu time savings should result. We calculated two potential fits
for the (ZnSe), (ZnS), SLS: one in which the set of nonlinear coefficients from the
ACP's for the Zn from ZnS were used and the other using the set of nonlinear
coefficients from the ACP's for the Zn from ZnSe. The latter gave a slightly better
rms error (6.316 X 10-3 a.u.), so we opted for that fit. Table II lists the adjusted
bulk linear coefficients for this fit. We have determined that approximately only
3.0 X 10-4 a.u. accuracy is lost by using this approximation and not generating
both new nonlinear and linear coefficients for the (ZnSej 1 (ZnS), SLS. Furthermore.
our studies suggest that as the monolayer thickness is increased significantly (i.e..
long-period SLS'S), the accuracy lost by using this approximation will become neg-
ligible.
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IT, 3. 1 15. 0•202(4 H1•44 i<.4.' 4l

a 4 54 J,2( 1 -(4 K) IT," I 44 IT 7.1q1., 444
J, 4 7() ax 4('.7') 1200 'T, 22 ",')2 I Iill

IT, ' I j53'041 'I,. IO 1.4;.161i4, 4 I .4 (x I
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1-or these calculations. uncontracted atomic jGaussian basis sets constructed for
use in at) inilit molecular calculations xere used for Zn [13 1. Se [14 1, and S [15 1.
Because the .-w,+P's behawe much like the atomic potentials in the region close to
the nucleus, the core states o1 the bulk materials are expected to he very similar to
the atomic core states of Zn. Se. and S. Contractions can then he pertl'trmed on the
.+- and ,-(i io's of Zn and Sc to construct the atomic-like Zn and Se I 2.S. 2/. 3S.
and 3p corc basis functions of ZnSe. Similarly. contractions can be performed on
the s- and 7p-(] r0's of Zn and S to construct the atomic-like Zn and S I s. 2.N. 2p.
and 3s core basis functions and the Zn 3p core basis function of ZnS. The contraction
procedure we use is straightlbrward. Each Bloch function consists of a lattice sum
inolving a single atomic (i I()

,,,,.k.r) 0 A - N 'exp ik- - R, '" exp -, ir -- [R, 4 t]i ,

so that the single electron ,ka~efunction becomes a lattice sum inolwxing those
uncontracted (i i ()'s

(k. r) ,\ ' " " N' (.',,';,, exp, i k. R,

S p, r R, + t,

The wavefunction associated Aith the F-point core state of. sa\ Zn Is in ZnSe. will
then only have nonnegligible (C. s invoking the Zn s- lo's. The normali/ed
atomic-like core basis functions constructed using the (`'.;,"s as wkeighting factors
will have the following form

F,,,(k. r) d " " .. -" Ir [R, + t11] :
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measnaureenits.,

ItI ( 5(1 )t~l(A,] - ,V ,( ai I\ VII a il'VS I- spl.

I', l'" S3 -12.37 1 12.N6 I 1 82 15.2 6),

1"1' •448 6 7 -7.5o

", 2 41 2 8 1.S. 1.45 2'!4 2 i24
1. 7.14 7 .38 5.81 5.7.7 6.61, 7%1( 1

1 1.93 Q 7 t)

\a, 12.084 1(1.94 11.55 1.79 ) 1 4, 12.5 (4),

. , 4.1 5 4.38 4.6k) 4-8-2 4. 1 5. (.3)W or 5, I

.\A 1.6 1 1.71) 2. 16 2.20 1 .0i I OW3)

', 5.17 4.42 3,18 2.81 4.19

A,, 5.54 6.10) 3.64 3.47 4 49
', 1 ,' 1O.S5 111.50 8

I.-I 12 26 11.31 11.83 12.1of 111. 84 13 1 (3)'

1. 4.21 4._7 5.15 5.21 4.411

,0.62 (.h6 (1.85 o1.87 0.64 1.3 I r'"or ( -2)

4.16 4.23 2191 2.63 3. 7
1.,, 14.4 1472 6.71 6. 36 7.31

1.,-+ 1 4.78 .; 3.76• 3.51) 4.4., 4.1)1•

.,- .A, 6.78 6.21 5.34 5.018 5 84 6.0111'

Reference 116].

" Reference [21].

Reference [19].

Rccrence [171.

No orthogonality conditions are placed on these contractions. The valence states
of the bulk materials can then represented by these atomic-like basis functions
augmented by seieral uncontracted diffuse (;to's from the atomic bases. For the
ZnSe -... ZnS si1s's. the bulk core basis functions can be directly transferred over.
The justification for doing this is straightflorward. First, the bond lengths in going
from the bulk materials to the si.s's change only slightly (less than I"' ) so that
there will not be any new significant overlap contributions from nearby orbitals.
Secondly. the primar" terms of the fitted bulk crystalline potentials involved in the
construction of these basis functions are the " ,(r)'s. and innermost gaussians in
I $"(r). which change very little in going over to the s-s's. These basis functions can
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aind Bergsitresser P I Ilhis Iii hrina~tionl prwx ides us, x tillhilhe n1CIcans to (IlernIn
the Ctlect is cilss of thec I ii vI mcithod and I Ii] d) er k ~in11c Illhc cieet , bais c 11 1"i
onl hcl conduction11 and x aIicICC bands. I oir thcsc eak:lculatiii. tiel 4,111d'lid i a

nonrecta nul-la r /i ncblendc 11if CIIi ccli xx a -usd. I heC 11i1i mit xcLtIMte5etr

k% hiere thle Zn atom is, positonedi at

aiid thle Sc or S atonil I" losi tionedi at

.4

Thc notation a represeciis thle laittice constant for eithecr /n sc or /11's I he t '
niethod is nlost tlket -is e xxCT hen ted ce CI ll ha ecagla "I' iii mclil r. I Wtile',,, Vi 1k

caenatios.xxe i n dha'~c attiji ied ii i l f mtrxh s iip ciloo Ilii: a Ire
nonprl 1ii0i% c 4-atoni unit Mell I IIIs xa,, not doneC so0 sc C ould k co1n)'lpa C theC nee'kde
( it time for tilese C1calcu,1lations xitlt that of1 thle I /Zuse I!.I /IIN tN S1ý. k\smel dt',~e
hla\ c a pri niitix ctang.'diuLarI 1unit Ck-ll. I liese t, tim c111Iinpanison \ XIII Ilk, pie'.eniecd
InI tie 1net seCtlit.

*\ni apprii\iiriatiiti ofteni uwdx to edLC 11eC the cin pleit% an1d ( 'l time1 of theC
ca1-lculation is, to rcnioxc the more diftFUse (," t ' io011 the basis. 1 IC \\11 se xht clcet
this ksould hase on1 the hand strctre IxCrnTos ed thle mos0t difiIe Ný- .1

I 11 1421 roii thle /n basis. I heC resuhti1 nilhad strttutA nIt s1100da od pe
sciitalt i A th'dde s alcnce slates and handl~ raps) kA. ~c iir /Ilnlc and 00t) c\ o
/ns) I I Cluding the. /i 4% bnd.I( hiixxeci- oserall awcllrac*s \Nas lost \kith [Ihe eon-
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duction hands as their resulting energies \werc several eV too high. Returning the
ditLuse Zn s-(iio to ,he basis, the calculations %.ere repeated. The resulting band
structure showed that the valence states deviated from the pre\ ious results b\ onls
a 6ev hundredths of an eV. 'The conduction bands showed impro~erncnt. though
the energies mere still a te\, eV higher than expected. As a result of the conduction
bands being lowered, the values of both band gaps decreased.

To improve the representation of the conduction bands. wke augmented the Zn
basis with a diffuse p-(i [0 (0. 15000). Contractions were performed according to
the procedure outlined in the previous section. The resulting basis functions were
then augmented with uncontracted diffuse (;lo's (including the additional Zn
p-c, I ) to bring the basis size to 102 basis functions 1t(r ZnSe and 72 basis functions
for ZnS. -The resulting electronic band structures are shown in Figures I and 2.
Tables Ill and IV list the calculated energies at high sx mmetr- points in the Brillouin
zone. Also included in these tables are experimental results and theoretical results
from the semi-ah initio ot (.xo method. i.((; o method, PVMB method. and oPiw
method. A consequence of using the additional Zn p-(c to can be seen in Figure 2,
w\here the L., state for ZnS is ca. 0.2 eV lower than the L,, state. Our results are
very similar to those obtained by Huang and Ching using the o .Xo method. but
significant differences are present in comparison to the i (;o. PvMB, and oP'P
methods. In general. our upper valence bands and conduction bands lie higher by
a lie% tenths of an eV to a few eV than the corresponding bands from the other
three methods. This is a result of our calculations being nonself-consistent. while

ZnSe (2-atom unit cell)

12

10 L

4
> 2 rt

2- 2r-. --- ".-0
>55

wJ -4 X

-6
-8 ____ Zn 3d

-10 X-12 r_2X , ... Ll

-14
x W L F K

Figure I. The energy hand structure of bulk ZnSe (2-atm s,/unit cell). The resulting
band gap is direct.
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]'\II IX IN Ihle CJcaLculatd el-n're,,s -r (in S at high a in nietr.\ po(1inS In hei Binllovin ionc MIi aic
are in electron \ ohs and me~aSured with respec, ito thei to oft thc ý alcncc hand at the I -potnnl I ho result s
are fron rivI I I~ %t using the fu I I Slater e ac I lange correlalio n [I h I, '%orls [. t I ( u\i) III IM'anl ad Istab11ile SI a Ier
ecwhanee correlation -o miatch thle e\perirmntalu I Iandk gap [)- 1.,%, sel-consistnt I t .I ) UsIIng thle semnI-
relaý11\itiLs NkIe Wgner chandrgi! correlIation [2311. wsI C ons-istent I,\ \tit tusng thle ( 'eperle\ -\ \ler e\Iac hn gc
correclation 1221, self-consistent om% _,sing the full Slater ewchang- correlation J-241. and espcrninienal

mea'u~rementl;.

fI I(\ 01 ( M) I ( (A) P),% SIt) *'s at

V,2.66 12.27 I-2.89 1 3.o, 6 ý1.7 1.3 ý4)

7.82 b.4 7.514.1

7.45ý 6.4
(,)I1) 0.004 0A1) 1. 041 01.0

F, .1 3.81 1.2h 1.ý96 3.'-:
1¾ .799.221 7.014 h. 45 7.

1', ~~14.35I.5

111.84 10.804 1 .67 1 1.88 (1029 12.0 Or'
A;, 3.67 .9 4,49 7.61 3.93 §41

1. 16 1.52It 2.1 2.3) 1.6125(
A, 6.44 5. 76 3.61 3.18 5. 0 1

A6.58 7.6 1 4.5S 4.018 5.95
121.33 10.92 I10. 70

1,12.0)4 11.18 I 1.97 .12.11 1 0_66 12.4 41 W
1,4404.25 -5.20 5.38 4.211

(.1i9 (4.56 0,84 01.94 (0.61 1.4 (4)"

51 5. 44 5.64 3.65 3. 24 4.9f)
1¾10.47 104. (10 7.51 0i96 8.62

1., -. 1 , 6.1362(144 4.18 p.57 5._8lI
9.00( 7.3ý3 SO8( `548 6,.6,2 f

Reference [16].
SReference [201.

determined using the vw~t, model, as was done in the Works of Bernard and Zunger
and of' Nakavamna. A primnitiv~e tetragonal 4-atom unit cell -was used with the fol-
towing lattice vectors

a,=a, 1 /2. ---1/12, 0 ). a, a. a( 1/2, 1l/2. 0 ). and a, a_-(( 0. 0 1

where a,~ and a- are the lattice constants which are. respectively. parallel and per-
pendicular to the Interface. Furthermore, a. can be expressed as 2d,l,. 4. 2d',
where the ti's represent the interatomic distances along the :7-direction. The positions
of' the atoms are: for Zn

(0,0. 0 ) a nd t, (a, /2. 0, 2 c

for Se
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I AlitI I . I tIc l ie alctllacd lnerl, , io, tar ilil, I h/Se),W /nS), SI S

t tihe l"-point ill the (uvAt I lBrilhouin /tinc. All %altuc arc

ncastircd in clccthion %oils anad icasuired with respect to (lhe

top otl'he valencc hand m11axhlliti I l. Ich rctullts are tamn I I cm'\

[this, \aork]. slf-consistent PVMII (1201. and sell-consistent
psutedopotential 1281. For Rel. 1291, %alues %%etr taken froaml
the graph% and are only approaimate. Where degeneracies are
broken. the r.,presentattion in the ,,indhlcnde structure is gis,.:i
Iollolte(d by the ne% rcpresentation in tlhc ( uAu I structure.
the values inside the parentheses indicatC the dcegencracie,.

I I ( AO) ISMItI S(P

Sc 4s/S 3s hands
I", ( )I3. 11 13.01 11.0

.l ( I I12.09 t 1.85 10.3

Zn 3d hands
1"4,- I:, 0 ) 8 .57 7.78

-, I'lt, (2) 8.56 7.78

.\'5 (I) 8.38 7.65
•.V, (2) 8.38 7.53

I I., ) ~, M 8.23 7.,40
I',, - 1•, (I) 8.23 7.40

8.23 7.33
Xl',. 1I 8.012 ý7.12

Upper valence hands
X,\l ( I ) 4.14 4.4 3.8
A's, (2) 1.99 - 2.33 1.8
I, I,- l . ( I ) 0.24 01.06 0.15
IF, ,. 0'01. 02) O,.4i O.00) 0.1)

Conduction hands
,, ( I) 2.63 1.61 2.5

.,, (I) 5.62 3.06 3.4
X,, (I) 5.72 3.70 4.1
',, -' ,. (I) 18.47 6.1)08 6.6

1 ",, (2) 8.50 6.07 6.6

tIII (a,1/4, a,,,14, s•,,.).

and for S

14-- (i/4. t-i,,/4. [2dh, 2 4 d/,, s])

Th.e values we used for these lattice conSLints and interatomic distances were taken
from the results ol' Nakiyarna's Vii, calcuhliltions [ 281.

At high symmtcry points. the following approximate correspondence relations
exist between the sis (denoted hy the prime symbol) and the bulk materials
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(ZnSe)l(ZnS)1 SLS
A Z

X "

*Zn Ose Os
Figure 3. The (ZnSe ) ZnS • straincd-liatr superlattice.

I" - I '- + X/,.

,m1'-*, X, + V,

and

A'- I, "+ It.

The relations are approximate as the expected degeneracies from such foldings are
removed due to ( *) the anions now consist of both Se and S and (ii) a, is not equal
to a- [221. The resulting band structure is shown in Figure 4. Table V lists our
calculated energies at the 1'-point in the CuAu I Brillouin zone along with the
results of Bernard and Zunger and those of Nakayama. As was the case with the
bulk materials, our upper valence bands and conduction bands lie higher than the
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(ZriSe)1(ZniS,)1 S3LS (4 atomi uniit li

12 -000"12

10 -10

8 r8

6 6

4 4

> 2 2

E~-2 -2 Fn

W - 4 -4

-6 -6

-8 11 P_ ___ -8

-10 -10

-12 -12

-14 -14
A N1 F'

corresponding bands from the tw el ossetmetho ds. 11e spe1enI".)
being done on these ZnSe ZnS si s's are Wi the areas of' pertecti n ig vlml tb: tc-
niques and measurements on the long-period S1 "S\ -3,,._0 t hat n oi k.011)1 !'(M
ot experimenital results tI) our calculations Is; possible.

A Mulliken populatio~n analysis ofonr restilt, at thle r -point sh ~sthle h i11mi lo l t.

For the two F', states ot' the lower valence hands,, the bottom 1,, 111iiedi /!Is~
and thie top is localized in LnSe. JTle hecav\ -hole I *', state is lociedlIL In liH I~C
laver, while the light-hole I",. state Is a mix heokeen the /rise I cit. -;( . I 1d /Ills

(ca. 421 ( ) la\yers. The l", '<State (i e.. the Conduction banid 11minWimlu ) %X~,t( liii nIlk tI,
be o.minant Zn. while the I'.(A and l".', .Vý, states sliom ed snliall anlit'lt nts
sand p mixing with the Se and S anions. Iresentl%. ý%c have calcuflations Inip is

to determine if, as the monolayer thick ness Is increased. I i) the localiatil of 11t:e
heavy,- and light-hole states Ini the ZnSe layers becomnes mo re dfist inet and IIi I Ow
Y',~, state will also become localized in the ZnSe a es I lie Resu1(ts Of \Aka'. ",ini
work on the ( ZnSe )~,. (ZnS ),,, Si ,ss. for m -< 4. showeCd that thdnical a io t thc

heavy,- and light-hole states in the ZnSv lasevrs did becomne mo re us int .il in-
creased monolaver thickness. Howevecr, his resultsý did not sho~k the ,amec distinct1
Iocahi/atiion for the V,', state.



7(j) % \RSt I\ It \\0 )ý (I st, SI\

Suimmar)

All kit thle c-alculathiols for this article % etc done oil thle is"t i 411 3 4'(9W _!44)(
enipuie~r. I or scalar ,odo. thle IBNs " ill run at the equ"Am :ie speed Ai (h ij\
miP. F-or xectori/ed code. m~hich shouild gi'e a signlificant d~umcii ini c m nine

ox er he scalarw is rion. t he imI f is appro in mawte 204' sloxxef than the ( ax l'uesentIlIx.
"xxoik is under "xax h, x ectoriie: the I I ( v) code. I :lM the bthulk 2-aton unim cels, thle
eliergx matri\ inutegrals I ecluding those nl ngt he I I r ) terms " xcrc 10ctoried.
I Itx cxr. s1 ince tile ccl s xxcr ei on iCetaIlien Lii. a redII111 firo n toli anll prohlern
Couln d not he Made. I h11C III little-, needed fo)r their e alI ation and constrUci ion
of tilie cllergx matrix %kas ca. 20 I /2 lin i fol rltse and ca. 20~ mmli ho iinS. Fihe
tetratgOrlal 4-atomiflit 1111Cell uISed for thle (/risk, I inls~ I. si' alloxx ed tile reduction
to a 3's problemll toir the factori/ablc: integrals. F or ihis, ase. onusý c~a 7 1 :' 2 1P

miin xx ere needed for the cx aluatialljf of the ilIteeralS and constrmuction 001i the iegx
m~atrix. Although'l the size of the unit cel is double that of the ,inehlende unit cel.
onl) a third of die i.Pt time \\ as required due to tile rectaingular s\ in iietr

The ( PIt timle needed for the diagonali,'ation of' tile energ\ malari s is roughl\
proportional to tilie ii urn her of' basis i~nictiOnS cube~d. For cachi k po01nt. thle (
tim11 req inrcd to dtagonaliie thle eniergs matrix and sok e for the eiiieix cturs "xas:
co. 2' s ior 7.nS. ca. 41 s for tune, anld ca. 3 minutes for thle IZnSe i)tI/nS ij . to

demonstrate how drastically these timeIs rise xx ith larger NIaSe. %\C calculfated- energies
of the I ZnSet)(ZnS tj st s at a 10%x ligh sjnlmmetx\ poivits usiny, a retnglr (-
atumi uinit cel. I :. ex aluationi of the in iegrals and construct ion of the enierg' matrix
needed ca. 1 /2 Pt I h, "xhich xxas thle expected faictor of tour increase in timec from
the 4-atom unit cell H owex e. each k point needed Ca. 2 1 /2 hi A'( vi, time fbr
the diagonali/ation of tfie niatri x and Solution Of thle CigeaxCctorS. For thle long-
period si As. this large timne demand xxiii be the prime dilfieuit'x for hand structure
calculations. Vectori/ing thle code will certainly help redceLLC this time, as x% ould
freco'ing tie core. 11hoeter. Iminproved techniques Kwr the diagonal iaton oh tMe
enery nmatri x need to be considered as xxell 11~2 J.

THe experimental studies reportig the ble emissions and peak shifts xxere %%ork-
Ing xxith long-periodI,, st s. So hefbre "xe can make aris definnix e coiiclusions re-
garding! the prospects of using AnSe ZnS si s's iii the dIcxelopmnirt of a blue-
emitting, semiconductor laser diode. further Calculations (inl progre-ss) of these NI Ss
tOr increasing mnonolayer thicknesses Lire required. [hle purpose of this artic.le \xxas
to establish the, It (5 method as anl effectivke techniqueI ifir stuldying, tile long-
period St s's. We belies c: we has e done this by showking that i ) for a unit Cell wkithi

.neiular s; mmeitrv. factoriiation of the integrals grcatl\ reduces thle amount of
Pti~ timek- needed fr their evaluiation and ( 6 1the results of our hulk, in Se. bulk

inS. and tWe ( /nSe ninS), si s calculation coinprai- "a d to the results oftahler-
sel 4-conIsisttit methods.
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Ab Initio Factorized LCAO Calculation of the
Electronic Structure of a-SiO 2

T. IM. WiLSON and E. E. LAFON*

C omputtuiont' .ISo~lid .%IoIt', Rewearth L/o'ratforlv. Ph) AU Isepart•i nt, (00atoma lai t.,ta it It nt•o r• I.
std/lial'r. Ok41honia '4"417

Abstract

We report on the results ol0calculalions ot" the electronic structure of ,t-quartz that %%ere made using

the first principles, flactorized linear combination of atomic orbitals method. Results wcre obtained ior
the primifise 9-atom. and orthorhombic 18- and 72-atom unit cells. Application of this method it) the
calculation of the electronic structure of the neutral ov.gen %acancN in o-quart/ is discussed and results
obtained using a 72-atom unit cell are given. , 1992 John Wilc% & Sons. Inc

Introduction

The at initio linear combination of atomic orbitals (L'AO) or tight binding
method has been shown capable of accurately predicting the electronic band struc-
ture and associated bulk properties of insulating. semiconducting, and metallic
solids [ 1-5 ]. Recently, the method has been extended to the study of surface states.
complex crystals, and amorphous materials that require large numbers of atoms
within the unit cell [6-10]. These extensions are made possible by the fact that the
tight binding method requires an extremely small number of basis functions per
atom to accurately describe the electronic structure of a solid. Nevertheless, as the
number ofatoms within the unit cell becomes large, the ('Pu time needed to calculate
and disk space needed for storage of the enormous number of multicenter integrals
required for an accurate determination of the electronic structure place practical
limits on the size of the problems that can be treated by this approach.

A recent mathematical reformulation of the ah initio I[tAO method, the Factorized
LCAP (FLCAO) method, has greatly increased the size of the problems that can be
studied using this approach [8]. Within the framework of this formulation it is
shown that, for those crystals which have cubic. tetragonal or orthorhombic sym-
metrv or can be "forced" to assume such symmetry by simply choosing a larger
nonprimitive unit cell, (i) the number of multicenter integrals to be evaluated can
be reduced from an N3 problem to a 3A' one, where A' denotes the number of
equivalent sites within a radius R about a given center in the unit cell. and (ii ) the
multicenter integrals, per se, need not be directly calculated. We report in this
article on the results of a study of the electronic band structure of a-quartz and of

* Deceased.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 703-716 11992)
c 1992 John Wiley & Sons. Inc. CCC 0020-7t608/92/010703-14
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the neutral oxygen vacancy in o-quartz. and in an accompany. ing article our results

for ZnS. ZnSe. and the (ZnS) 1 /(ZnSe)} heterostructure t I ll that were obtained
using the Ft.(-\) method.

Factorized i,(c,,o Method and Approach

In this section we briefly summarize the relevant tleatures of the vi u\O method
as it applies to this calculation and refer the interested reader to Ref. [ 8 1 for further
details. As with all band theoretical methods, we are interested in obtaining the
single particle states of electrons in a solid. We assume that the electron-electron
interactions can be adequately described by a local crystalline potential that exhibits
the periodicity of the chosen unit cell. The exchange/correlation interactions %%ere
described using the form of the local density functional approximation to the ex-

change first suggested by Slater [1 2 ]. This appears to work quite well tbr nonself-
consistent calculations such as the ones that are reported on in this article. A nu-
merical crystalline potential is calculated for a predetermined grid of points from
a charge density that is obtained from a linear superposition of free atom atomic
charge densities. It is further assumed that the crystalline potential can be written
in the form

V'(r) I ̀ (r) + I'`(r)+ V4 (r). (I

where

(r) -a,, exp[-d,,(rl. 1  ].

VA(r) _ ' UL.(C) exp[iK -(r - C0l.

and where r,, f r - (R, - t,,) and C is some point in the lattice about which the
Fourier series is expanded. Since the decomposition of I (r) is not unique. the
I "' (r) and I• r) contributions are chosen in such a manner as to make the Fourier

contributions from I "(r) negligible. In this study we found it sufficient to retain
only the K, = 0 term. This decomposition greatly simplifies the evaluation of the
multicnter integrals when the variational wave functions for a point k in the Bril-
louin zone are expressed as an expansion of Bloch functions formed from Gaussian
orbitals,

Many crystals have either cubic, tetragonal or orthorhombic symmetrn. and many
others can be forced to assume such rectangular symmetr bv simply choosing a
larger unit cell than the primitive cell. For example, the Bravais lattice of a-quartz
is hexagonal where the primitive lattice vectors are given h-

a, 1  a(3`2,-il.0)/2, a, -: aM }l..). a, -0 (0.0. ).1 (2)

and contains nine atoms. three silicons. and six oxygens. For this primitive unit
cell. the primitive vectors of the reciprocal lattice are
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multicenter integrals need not be evaluated and that onIy the It'-matrices need to

be calculated and stored on disk. These tw~o features not onl\ lead to a significant
increase in the speed of computation. hut also leads to a significant reduction in
the amount of disk storage. Vectorized computer codes are in the process of being
developed for the iBM 3090-200S that utilite these features of the FI.x\-() method,
although the scalar %ersions were used to calculate the electronic structure of . -
quartz that will be reported in the next section of this article, and of ZnS, ZnSe.
and the I -I heterostructure in an accompanying article [I I].

Energy Band Structure of a-SiO,

Review

In this section we present the results of our calculation of the electronic hand
structure of t-SiO,. Among the oxides, quart/ is a rather unique material. It is
extremely stable and can be grown with high quality. Due to its pietoelectric nature,
it is widely used as the key element in precision frequency control [1 3 1. Because
of its high technological importance, its crystal and electronic structures have been
intensively studied both experimentally and theoretically for several decades. Alpha-
quartz, also known as low quartz, is stable at room temperature. It exists in both
right- and left-handed forms. corresponding to the enantiomorphous space groups
M = P3,21 and D! = PI312 1. respectively. Here, we only consider the right-handed
form, although both forms often exist in real crystals. The unit cell contains nine
atoms and was discussed in the previous section. At 293 K, the primitive lattice
constants are a = 4.9134 A and c = 5.4052 A 1141. In addition to the 9- and [8-
atom unit cells, energy bands were also calculated for the 72-atom orthorhombic
unit cell where, the lattice parameters were chosen to be (in terms of those for the
18-atom cell) A', - A.. AF = 2A,. and ,-A - 2,4.

There have been sevteral recent band structure calculations reported for alpha
quartz 17.15-19 ]. Chelikowski and Schluter [15] made a self-consistent pseudo-
potential calculation of the valence band structure that gives good agreement with
experimental data for the band gap, optical spectrum, and photoemission spectrum.
The calculations of Calabrese and Fowler [16] were made using the mixed-basis
function method for a crystalline potential that was constructed by superimposing
atomic HIartree-Fock-Slater potentials obtained from the Herman-Skillman codes
[20]. The results reported in Refs. [7], [17-18] were obtained from nonself-con-
sistent tight-binding calculations that differ in the way the exchange was treated,
the choice of basis, and the method used for decomposing the crystalline potential.
The calculations of Li and Ching [1 8 1 are noteworthy in that they report the energy
bands and densities of states for all the polycrystalline forms of SiO 2 . The calculation
of Dovesi et al. was made using the periodic llartree-Fock method [21] with a
minimal sto-3G basis. They compare their SU1:7 results with those obtained from
s([- Hartree-Fock calculations for the molecular cluster SiOH, and find very

good agreement between the two sets of results.
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"The crvslalline potential used in this calculation was constructed hysuperimposing
atomic charge densities that were calculated using modilied I lerman-Skillman codes
[20 . The atomic conlfiguration of the Si was assumed to be 3s' 3p '. and the Slater
form of the exchange [121 used throughout. The crystalline charge density was
determined along nonequivalent directions about the oxygen and silicon sites in
the lattice, and used to calculate the crystalline potential. This numerical potential
was the deconvoluted into a superposition of atomic centered analytic potentials
as described by liq. I ). The linear and nonlinear parameters appearing in these
expressions were determined by a least squares fitting process. and the results are
given in Table I. For this set ol' potential parameters, I ̀ (r) 0. I ", , .15 a.u.
and gives a fit potential having a rms error of 7.8h,• !0 ' a.u. with respect to the
numerical crystalline potential. For our basis, we chose the atomic Gaussian sets
of' Veillard [22] for the silicons and the (10/6) basis of' Iluzinaga [231 for the
oxygens. None of the Gaussians were omitted from either basis as is often done in
order to reduce the computational burden. Several methods were studied for con-
tracting the basis. including those contained in the articles cited, through calculations
of the states at selected k points in the first Brillouin zone for the 18-atom unit cell.
These had little to no effect upon the valence band states, but sonic showed significant
efl'cts on the conduction band states. The method of contraction which we have
found most appealing, and was employed in our Ili-VI studies [ I 11. goes as follows.
A calculation was made ror the 18-atom unit cell at the I' point using the fully
uncontracted basis. For this basis, this gives rise to 570 BIloch functions. The coef-
ficients of the Bloch functions for the core states can be readily identified as being
predominantly due to smnimetrized combinations of atomic-like orbitals that can
be expressed as a linear combination of the basis of one type olfatomn. These coef-
ficients are renormalized and used to describe the core orbitals in subsequent cal-
culations. F-rom the results for the valence and conduction band states, it is possible
to determine which of the uncontracted Gaussians can be omitted from the re-
mainder of the basis. In this case, a 342-member contracted basis was constructed

';II i I 1. ('oellicicnts anti exponential parameters% o1 the analytic lit polential% IP and I"•.

(0 8,0 2(002.65 14.0 ,(112.6.
I 0,536899 0.197593 1.62780 0.3 17549
2 1,8861 I,16285 4.44274 1.15059
3 8.4 1624 4,( 1) 13 11.7732 4.01768
4 19,4726 14,2877 20,873. 13.1)I 13
534.875% 4. 1368 61138W 46,0441
6 71,4705 154.882 122.423 1554.18
7 1,5,591 571.433 .54.029 570 818
8 222.912 4262.111 039(0828 42800i)
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s• hich had negligible eftfect on the calculated bands. We calculated an indirect band
gap energ. for a-quartz using the 570 uncontracted Gaussian basis of X.39 eV and
8.47 eV using the 342 contracted basis. In Figures I to S we show the results of
our calculations of the energy band structure and densities of states ( 1)(,s) for i-
quartz. For purposes of comparison with earlier calculations b, other methods,
and due to the difficulty in displaing twice as man\ states in a figure of this size.
xwe only show a detailed plot of the band structure for the 9-atom primiti\c cell.
The i)x)S's. shown in Figures 2 to 5 are for the 18-atom unit cell results, although
we could detect no discernable differences between the i)os's obtained for the two
cases. which is as it should be. It should he noted that in going from the 9- to the
I 8-atom unit cell, the volume doubles and the number of occupied states per reduced
k-vector also doubles. The V point for the 18-atom cell contains both the I' and .1f
points of the 9-atom cell. A good picture of the bands for the 18-atom cell along
this direction can be seen from Figure 1 by recognizing that At folds o'er onto F,
1. onto ., where the "foldc" is made at I- M. A similar folding over of bands occurs
in going from the 18- to the 72-atom unit cell. This results in there being 96 occupied
states per k-vector in the 72-atom unit cell's oxygen nonhonding
"-2 p' band.

a -S1O 2

2 -0 0 10 20

ENERGY (eV)

Iigurc 2. Calculated dcnsitv ot states for +-quari/.
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In Figure 4 xie slio\ the calculated valence hand 1)( )s and( ha~ e also plotted the
experimlentallx measured \-ra\ and ulltra%.iolet photoemnission spectra for tt-quart/
for comparison [24.251]. The agreement should he considered to be quite g'oo~d
snce the theoretical ixMs does not contain ans corrections l'r intueilline

broadening effects nor tfor the diffierent optical-ahsorption cross section for elect rons
of' diflerent quantum numbers 126~ 1. 1the ltour-peiaked structure in the calculated

I))S ihicli from the partial 1)(),, results sho-\\n In Figure 3 wec attribute to thle 0
-2p Sit (3p ) honding hand between 4 and 9 eV. is in agreement ýkith tile

\ps dlata 12~71 J In Fgure 5 we compare our calculated i) 5 for the states near thle
bottomn of' thle conduction band l, ith cieteci, c photoionliatioti cross section data
128 1 . The data smuggests that there is, a conduction band diensit\ of states peak at
ahout I cV abovei the bottomn of- the conduction hand. [he calculated ~ Sshows%

a shoulder in that range hut thle first peak occurs ca. I ek' higher and ma\ reflect
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Figure 5. Comparison of the calculated conduction band densit% of states with the effecti'.¢
photoionization cross section aT, for <--4uartz.

the fact that this calculation is not self-consistent. Our calculations using the con-
tracted basis give an indirect band gap of 8.47 eV from K -- F,, although the ! -.
F, transition is only 0.01 eV above this. The experimental gap energy. E,, as
determined from photoconductivity measurements is 8.9 eV [291. The difference
between the value for E, obtained from our calculations and the experimciaal value
can be attributed in part to our use of the Slater exchange and to the fact that the
calculations are not self-consistent. This value is somewhat smaller than those ob-
tained by (i) Heggie et al. (8.61 eV) [7]. who used the Wigner interpolational
formula for the exchange and correlation, (ii) Li and Ching (8.8 eV) [18]. that
was obtained from an OLCAO calculation where they used a value for the exchange
parameter of a = 0.8 and a minimal basis. and is larger than that calculated by
Batra (7.6 eV), who used the extended tight binding method with the Kohn-Sham
exchange [17]. Nevertheless, aside from the calculated values for the gap energy.
the calculated valence band widths and positions are in generally good agreement
with experiment, and with previous LCAO calculations, in spite of the fact that all
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Figure 6. Oxygen "2s" valence bands for .- quartz.
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were made using highly contracted basis sets. It should be noted that the contracted
basis used in this work is three times larger than the minimal basis ( 114 for the 18-
atom unit cell).

In Figure 3 and Table 1I we show our results for the partial densities of states
and Mulliken population analysis of the valence bands and of the states near the
bottom of the conduction band. They clearly show that the major contributions to
the valence band states are from the oxygen s- and p-orbitals, with only small, but
as we shall see important. contributions from the silicons. The contributions to the
low lying states of the conduction band arising from the oxygens and silicons are
comparable, whereas the silicon p-orbital contributions dominate the higher con-
duction band states. The six bands shown in Figure 6, (from bottom to top we
label these 1 - 6). comprise the lowest of the valence bands of a-SiO2 that the
population analysis shows to be predominantly oxygen "2s" in origin. From the
results of this analysis and that of the coefficients of the LJAO Bloch functions. it
was possible for us to develop a simple model for describing the origin and ordering
of the states of this band. We begin by placing a silicon at the center of a tetrahedron

1.00•

-0.5 7 Q2Pn-i

--2.14
3,71 :a-i 2 I S11 S12

-r 529

z ( 2P,,IU

6.86 ,

8.43

•1000 I
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Figure 8. Oxygen "2p" bonding and nonbonding vatence hands for (Y-quarti.
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formed by four oxygens. lhe silicon can form sp ' hybrid bonds xith the '2.'
orbitals on all four oxygens. These bonds are strong and help hold the tetrahedron
together, They gi'c rise to a Aow- ,ing , bonding state, where the silicon p-orbitals
have no role for a perl'ect tetrahedron. and a higher 3-fold degenerate 1+ state.

where the silicon s-orbital similarly has no role. In o-quarti/. the SiO4 tetrahedra
are not perfect as there are two Si -- 0 long bonds ( 1.612 A ) and tw\o Si 0'0 short
bonds ( 1.607 A ), and the angles between them are not those ofa perlct tetrahedron.
Therefore, these cancellations are not exact. We now bring together these SiO)
".molecules," or fragments, to form (.-quartz and assume that the resultant wave-
functions can be represented b-, linear combinations ofthe bonding Mo's. ( I (3MO))
[30]. This results in a twelve M\o basis from which 12 Bloch functions can be
constructed. only 6 of which are linearly independent. From this procedure we find
that the three lo~ker bands arise from the .1 I states ofthe constituent S10 4 fragments.
The oxygens are strongly bound to the central silicon with large overlapping charge
and is why they are shifted to such low energies. Band I produces the most bonding
charge, where every overlap bettoeen the .1 MO's is positive. Bands 2 and 3 are

again made up of the totally bonded A I Mo's. but combine out of phase in order
to maintain orthogonality to the band I state. In this %vav. all the possible in- and

out-of phase combinations of the SiO, A1 NMO's are used up. Thus, bands 4. 5. and
6 haxe no other choice but to form Bloch functions from the higher energy T>. SiO4
states. The bonding between the silicon p's \\ith the oxvgen 2s's in these bands is
not as favorable as that of the silicon s's with the oxygen 2s's in hands I -- 3. In
fact, in band I there is I 1' Si (s) but in band 6 there is 0"; Si (s) and only S" Si
(p). As a result. in bands 4 - 6 the oxygens are more or less on their own and.
due to the small overlap, there is little dispersion. This analysis carries over to that
of the six lowest bands of the conduction bands sho)vn in Figure 7. and accounts
for their striking resemblance to the oxygen '2s" bands shown in Figure 6.

Hmvever, an extension of this analysis to the oxygen 2p,, bonding and 2p, non-
bonding bands (see Table II). shown in Figure 8. fails to provide any clear insight
into the nature of the bonding. Instead. we find that the 2p, and 2p_ band states
can best be described in terms of I ([MtOS formed from Si0 MO's. where each of
the Si'O fragments involves one long- and one short-bond, that is. we picture o-
SiO, as a network of Si-0 fragments. In the p, bonding band, the p-orbitals on the
central oxvgens ".point" in a direction r rallel to a vector that lies in the Si --- 0 --Si
plane and from the long-bond silicon to the short-bond siiicon for halfef the oxygens.
and anti-parallel for the remaining half. Similarly. the analysis of the p, nonbonding

"J .HBI III. ,\nalvjsis of 11hC n\xgcn '" 2' and "2p' atcnrcc hands in -Sz()-

Band INi, Si(p) O(s) Of(p) Width Oý I

"3.34 3,02 91.2 2 1.5

""2p, 0, 4 (0.8 94.76 4"'p, 0.44 31)2 0).55 94.76 2
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and the nnn oxygens. There is a second. well defined "vacancy" band ca. 0.5 eV
above the bottom of the conduction band, which gives rise to a calculated value of
5.2 eV for the observed 5.0 eV ( I, absorption band (341. Rudra and Fovler [391
calculated this splitting to be 6.6 eV using the MIND)O/3 technique. However, al-
though our calculations include lattice relaxation effects, since they ( i ) arc not self-
consistent, and (ii ) involve no corrections to the IDA for treating the exchange, the
good agreement of our results with experiment may justifiably he regarded as for-
tuitous.

Summary and Conclusions

In this article, we have reported the results of our application of the recent re-
formulation of the .(*\o method to the calculation of the electronic structure of
a-SiO 2 and of the neutral oxygen vacancy defect in this material. Although the
calculations are not self-consistent, they represent the most comprehensive study
vet made of the electronic structure otf and the nature of the bonding in. o-quartz.
These calculations. along with those for a 33-atom thick (100) copper thin film
[8]. and for the I-I ZnS/ZnSe strained-layer superlattice [11]. clearly establish
the FL-.Ao method as a powerful and practical technique for determining the elec-
tronic structure of surfaces. amorphous materials, strained-layer superlattices. or
defects., where large numbers of atoms must be included in the unit cell, and a
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rectangular "'su percell'" can alhmost alwa\s hi' emlploCed. 'I Is mIakes posibIc tihe
factori/atioll o1'then1 multicenter intcgrals that rcstilts in a considerable redluction oI'

co'mputatlional comllexly .it l and ('I, time. therck mnaking this technique compeltitie
wvith I -\l,\v and I N I() nmethods [401 that are lfrcquently employed in such studies.

I he deconvotlution of the crystalline potential shown in Eq. ( I ) dilflkrs in an
important way froib the one that has beeCn used with considerable success in the
study ol'thin fii,1lns using the I ) method I101. T[here. the crxstalline charge density

and exchange potenlial are separately fit to a linear conibnation ofgaussians. This
method results in a significant reduction in the complexity of evaluating matrix
elements involving ,. but it does not yield expressions for the multicenter potential
energy integrals that arc flactori/able. In the reformulation described here and in
Relf 18 1, the only matrix element that does not flactorize involves I Since the
sole purpose of this term is to reproduce the coulombic singularity, the exponent
J1,, is chosen to be quite large (see Table I ). It has been shown that good results can
be achieved by simply fitting I" to a sum of Gaussians [8.41]. thereby making all
the matrix elements tactorizable. The 1:1 ('A(O method is ideally suited to vectorization
and work is underway to vcctorize and make the programs self-consistent.
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F'inite Elemients and Partial Wai es
in Scattering Calculations

J \\ I I\1)i RlRl R(3

Abhstract

I'lIC JFLI 1,11' IM fuII 111't ICli, are IY t I 1V I dl ( MCCI llt 1. tI ii II I Il\ 1 i,T 'l

an1a1l: s cs of, rotationall\ ix arliant sx Aell), I heir application Ill tile thcon. flaonil-
diatonil sCatteri ng. the partial xx~a ax lli led to sox\con xcru.i nr scric t, for

scattcrinc. cross, scctiows sIlwC Owc hxalv\ pzlactcs hwxc vcixcmlwl laygc Inortlna
anld ro tational ciicrg% lIccls Lix a Ii ich dC~IN1\. I h1C usc oft hc IBOrn1 airpprO\m~aton
and Its C\Icnsli ins. xv~hich zrc i(IcLILatc Iin clast ic and sonic I nelastic proccss'cI gecls
to he qu ilt: m nixk( c 1 `01r rcacti xc pro ccsses. All algori ib nis ifor cacti xC scat teri ng
airc Coniputationall\ dcmiandlIng and (lie search is going, onl for mimlplilications and
noio'Cýcncral mlcthods thatCI 1ca effchicnl- i mplemnte ld onl morc x arIcd coliuputcr

I h is notc mxil til t attcempt to rcxicxx h state usI of' rcact ixc scaticrinrg t hci v:
I an na\ and Millecr rcpresent txx o majlor li ncs ot dcxcopii pmcn as ,%irticsscd at this
Sanihl- S\ mposl~iu. Ihcl 11urpo11sc Is to 110int towIards sonmc possihilitics foir gcncral
and t`OrrmaII \ si mple trcat mcnts h% nicans ota Ii nitc clcmcnt nmcthod i mplemcntaliOnl
of tilc h\ pcr-sphcrical l'Ornulation. As Initiatcd b\ ( ;ronxxall and Bar-tlctt II I thc
h\, pcrsplhcric.all approach xx\a% prcscnted Iin KCnIhlcs, hook f _2 I 11L and as later uISCd
fiCILcqcntlx Inl atomic phx sics. It is niow. also cstahlishcd as a useful rcprcscritation)
Iin rcactiwx scat Icri nc as \w liax c lcarncd from I an nla\ s ~tictrc. Fi nite clcment
mictiods airc also gaininug reccognition as cllectix c tools of thc trade. JIhc\ appeal to

clanuiiiccmists through the famil iar basis sct cxpansions and tilc variationlal
Sr~inz i I lcie numcrical adx antage arise% from tilc sparsc matns ,trUct1IrCs anld tilc
pot ssihilit ics to appi\ thc ful1l machi ncrx of' cificicut li ncar aigchra rout ri cs. If ugc
matri S pn ihlcms, dot appecar. hut 1 ovW inls teachiinrgs has pro\ dcii us" xNxih a rich
arscnal of partitioning tooku, In ncr pro~jcctions, and pcrt Lirhatit m schcmcls xx ithl xx hich
\,,C max~o attack formidable tasks.

Intrn~iuuruipm Imirnal Ot nlunuunu I hennuu rt Q11JI11(i?"I 1C MIn~'ir 5nlt-un .YIINIMl '24 9911

f,-_, Johnn k. h s un'. fitc((C11(-(Is' ui .1
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After this preamble tllo%%ws a sect io on the particular diti .Culties IN ith the partial
',save expansion and preliminaries are given on the ihite clement alternative. A
pre-, iousl, reported pilot calculation on the free rotor is relfered to in the third part
and a mapping from the rotor to the potential scattering problem is given in the
flurth. Generalizations to the thrce-particle problem -ire discussed in terms of dis-
cretized hyperspheres in six- and seven-dimensions in the fifth section. which is
tollomed by a 60w speculative remarks.

Partial Wa•es

Schr6dinger's equation in tile time independent case. and the associated boundary
conditions, derive from the condition of stationaritV ol' the functional

f (,'[ I[V( ýx)-(.012 
-7 ,

+ I d/.\.[()*,(.\) + 4( )*4()j

- fý (\,(.,)* f dtR(.s.y)41(v) (I)

The wave function 'I_( is defined on a domain 2., with the boundary 1'. in R".
An auxiliary function I(x.) is defined on IY and equals the normal derivative of
+(.x) there. The integral kernel R(.~y) provides the boundary condition

''x) = f. dyR(x~y),4( y) € (2)

Mass weighted coordinates are implied and units are chosen so that E is the total
energy of the system and lf'(x) is the potential. A more detailed account is given
elsewhere [ 3 ].

It is assumed that the boundar. IF and the potential W ( x) are invariant under
the operations of a group ('. This is formulated in terms of a function. S(.). w-ith
the properties

S(V) =0, xC F (3)

and

gS(x\) = S(g Ix) Y . gý gE .G VEF (4)

Similarly it holds that

glI( x) = i'(g Vx)= (x). g E G, .\ C (5)

for the potential. It is then conventional to expand the wave function in terms of

the irreducible representations of the group:

'() Z ,,,,,,,,'(g Ix)D,.(g)* (6)



C ontinw grios oups.. in partiular the tlire-diniriesrl nal rot.1tion eru.oliker pa,-
tra ictert/atIoni Ix Ith \ arra hle\ ý 1I(I _ Vx has C4r e k It' (.1 or Ina te 11 01 inw r ttelo Ix W1b 10t 1iCe
internal ones.

Se.attering probiemis leadi to \noax it'IFIetit~ri xx nh 111111 .1;IrIIMhuIC .01id Ot rrinrl
den,,xatix e at the hou nklarxýFlt1 ig kt)1,1IN I 11C ,tbnra l ILIe Vidal [Itid I hI I ttii ti c1 x Iti N
are wpeer id in icrrn% of ftree wo aes td the h in

xx here the spher1iACal B'~selI frietrOTNi are the a1ui jl~Udes of1 the trt [rlat xx axCs On a

sphere in R'. \n driutration kit their niar1gnutl~de ' is 'i\Cen in I I'AIIe 1, he oer~tr

behak O ror xiii iICreCasine np 11IIII.de rrunit the order of 111h.. \panst& n esýccds the
argunment iii the IBessifuc tio isL 1ndr1101 PI111 si ýVO the p~roblemI. ( )Ht' Ireis sx11CIN stemn
\,xI11 th1 hree 11 d roe k a I LIt1ni reLjlunreS, at the -lal:\ xecoil'101 isrn enerx Ot I C\ .an
areri.merit of at ]Cast 60 10h ensure the aNs\ ftlIC fhli ormn

It is real tid that an es pns"in such ais (6 ) decouple the woniportents At the
"awa Know icin belonun nig to di Krcrit ii Td rckuar Ie Crepresen tat1 otis anrd that1 a 1ni u lii-
eOMpoIen~tt 5\ stern Of the degree o1f the dMi enIoni0 of1 the repILsresenationl Iremains
fo~r cacti I he rgeneral ease of rotationai s\ niiruietr\ go2", 111 eslistimlate that a1 ea em tat io
\\Incjhi has a cost It 1it fior /eno total anjU tar mo011ment %611 xi ha x a raee tcOf

hi~~~~~ 0i 0t -1.1 1 tU A2 t

I utI rtiizft li~I~ixtttiii 4-
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In the case that .1 partial 'aes are included. Ihe ICesti mate , ould Indicate that it
",sill be 20 million times more expensivc to dot) the full calculation for 11 than thie
I t) case F\perience, as reported at this meeting. shoý s that the structure of the
matrices in the angular momentuLm eigenstate form admi•t' a scalhng hecrc the
matrices require %%ork proportional to the first power of the dimension and the
total etiort runs as the second poter ot the largest eigenm alue. lilcient alternati' es
ha\e a market.

Discrete variable representations [4 ] utili/e orthogonal basis functions associated
\% ith a lattice determined from the proJection kernel tora gi,,cn function space [ 5
The relevant kernel for the rotation group,

. ' ( 2 j I ) i l( 1

is expressed in terms of the derivalive of a (hebh\shc' polynomial of the second
kind in the variable i. which gives a measure of the magnitude of the composite
rotation i, •'. It provides no automatic %a\- to find a suitable lattice. such as the
discrete Fourier transform and. in a single dimension. the (Gaussian integration
rules do. The rank of the kernel is (,/ t I )(2,1 -+ 1 )1 2.1 -•3 3/3 and the discretization
w.%ould correspond to the construction of a subset of this order wNith 'distances"
between elements such that the kernel would be diagonal.

Were it possible to generate a set of suitablh distributed elements of the rotation
group, the associated. localized basis functions would have a global character with
an oscillator% behavior as given by the tfrm (9)•. This will necessitate the inclusion
of matrix elements between distant neighbors and there will he no particular sparse-
ness pattern. In contrast, the finite element method otlters a regular wa\ oldiscreti/ing
diverse spaces and involves a basis of strictly localized. albeit nonorthogonal. func-
tions. The matrix patterns are reflections of the connectivit\. in the discreti/ed
structure and indicate \%avs to handle the large matrices b% partitioning methods.
outer and inner projections 16 1. and Lanczos techniques [ 7 1. An equal number of
points in the finite element method and the discrete variable representation will
give an equivalent resolution in terms of"distances" bet'een group elements. The
finite element approach will not be as accurate for the high angular momentum
components included in the discrete variable formulation, but does include higher
components. One might expect that the finite element method basis should co'er
the relevant function space equall] efficient as the partial va'e expansion. and that
the associated computational etfort should he less.

Rigid Rotor

A pilot study of the rigid rotor has been performed [ 81 in order to examine some
particular discretization procedures. The Euler-Rodrigues parameters 19] for the
group SI (2 ) were used to obtain approximate representation matrices for ,SO)( 3 ).
Thus we have that the relevant domain 1. is closed and consists of the three-di-
mensional, unit hypersphere in R'. Boundary terms disappear from the functional
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I I IIInd tha i I\l -I i•, I I'| i pi I L'I)I(r) l t II thI "I t" I tn ý Ic'

to thtc lo h ION\ ing loll'cIOft. lC l oll I" mhc c l I" ofI Ilk' 0ci.ll,1( 11ill l tl1t1 ifI

tile"thc' nl ,.cd lincd b, the princ,'Wa MI llm e I.nIn , I I l .tic i / I I

/%I W 11 , (t , ( I I
2 

o, , ,, , I, )

( C I, a tI IIa I I I I C I' I' o a t ' I/ "(I €'! €''€

V A I."tff I II

ýkith stationar\ \aILtIe /cr orfOl cigcn' al uc Aý I hc doma1,1in

0 fl- , !, - .T k ..o, : i t I

i% cu r\ cd and ,v c chose to cniplo\ Is( )ipaa'lIlet ric fjiltc ccicurctis %\ it It I 11i1d -dcvercc
pol\ non jaRs.

The h\ pcrsphicrc -tt. as parti11to iord Init 1 384 cq iii I alcni i ruIlp[IC WC scs cacl, ncTwo-
crated from a prim ift clone.

!!, : kC : I . k, ,

b% means•a of' permutations and sign changes o' thc coordraics. I hc wc oh 3,4

operation,, fiOrm a group knoss n as a ( oxete reflection irotip 110 It Is uclicratcd
h\ i set oh reflectinos. ,i mi larl as thie clucm its il!thc rotatin grop Inas he
posed of' to reflection% 1. I herc ar 768 ltces. 404 cdgcs. XlI x ItiC J and I 7

nou des in an isoparameht c I nie clement approiinmatiolln hrcn thc hir cd-' ir pic'

is, mapped on a straight onc through third-dcgrc polynonilals in standard hariccnitric
coordinates [ I [h•1.'rle ioxetrr grounp Is tlc s1n citir• giroLn) pOf tilelI'\IT, uth jonA ( I I )

v hcn all the moments of' Inertia arc equal. that Is for thc spherical rotor-. Iti has 201
irreducible represntations. A gencral rotor admits a loxle s% nnicir\ goup \kith
32 elements and 17 irrcduciblc representation,,. ( ic of these is. Ih01 dimensional

bhlile thle rcmaining ones arc of h th first degree and arc admisiblf for .` i l 3 . hIs-
group has been used to block diagonale rc tle matrx Into one block ot din mcnson
0). six oi dimIension ';I. and nine od'(fiinnlllolpn\inl7. (alc latlons, h Itr the sphlericlt

rotor demonstrate that thisi simplc approximation gi\ns angular niomicntrin t igen-

hale us t rcasi)nnahle accura\. thle 4) statcs correpondirghohc tManif hold fir .1
hoccur in the raining Le : 1 h. 23 12. 6.
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The Euler-Rodrigues paranletertiation of the rotation group is readil\ trans-
formed into the axis-angle parameteriiation in terms of the direction ol the axis
of rotation in R and the magnitude of the angle. These parameters are defined on
a solid sphere domain in R . ('onversel%. one ma' convert a solid sphere domain
to a part of the unit h\ persphere in R 4 and use the tesselation ol this as a means
ot generating a suitable set olsimplexes and nodes for a standard scattering problem
in R . Thus we may put

S(.\'1.X.\,, ) (" 1 ,t.(L i> 0): (t C It (14)

for the interior of the unit sphere in R' and

X , (.1-X '..\ ) - (n l.' t. o'): la 0: O k . (I5)

for its boundarv. The tesselation of the sphere with the previousl ofltred set of
simplexes will give a structure with octahedral symmetr\ since the subgroup of the
Coxeter group which leaves one component of a four-vector invariant is isomorphic
to the octahedral group 0,,. There will be 48 spherical triangles. 72 edges, 26 vertices.
and 2118 nodes on the boundars. A similar resolution will be accomplished with
an expansion in spherical harmonics including angular momentum terms of order
14. The intelior of the sphere will have 779 nodes and the resulting network will
be made up of tetrahedra of very similar volume.

Intricate networks can be constructed for the h,,persphere in fkour dimensions
110]. They arise from the great variety of regular polvtopcs which exists in this
particular case. The five Platonic solids in three dimensions do not generalize in
higher spaces. only the tetrahedron, the octahedron, and the cube possess higher
dimensional analogues [10] and for three-particle quantum mechanics in the center-
of-mass system we expect that only the regular polytope corresponding to the oc-
tahedron will be relevant.

General Ilyperspheres

Atom-diatom scattering problems lead. in the Born-Oppenheimer approxima-
lion. to a six-dimensional problem. A finite element application will necessarily
involve a considerable number of nodes and we will give a preliminary account of
the consequences of the kind of tesselation which was used previously. Thus we
consider a hypersphere in seven dimensions:

(V (YO,.a I V ( J4M

(V (b') + a ~ ±O + aL + Cy + CV2 (16)

It will then be possible to generate 7!21 = 645.120 simplexes from the basic one:

T7 I¶l):•: I Ž(1 >_ c a1_ Ž• a- Ž> a• Ž- a• > as > a•, > - (17)

by means of the appropriate Coxeter group I10]. A third-degree version requires
745 4 1 X nndes, which nlay be patitiored Fo that 102,024 nodes have (Y, = 0 and
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2 1 b) hIxIJ\Ce k! )Iorl dl I1x. k 1 thi 1ul 11)ul 111 a ma ts k )1d1cmIl )I oitlc
i2.2IRt tioa s\ nm.intctr Is IrCdticeId.V t A ictah( I ratIIk , an Ix i I I c II ý'l ut an

adapted ihisis xx hici \\Ill c-al-se a block for \k.~ xith cubici s.\ miii mt UNALbel and kit-
u~lCIsio0lts Ib0Ut ,Of tile 01ri111,l. I he 4"sClaIMn sUpp11orts I)article p)CM1iilt,1itio
S\ Illnlt tF\ "x hen~ I k 0 arc equal.. b)utt doeks not uIto111it aialx," k141 ldt'd t Ik'k e C',lI ~laIll',
forI t hr Icc Idcnt ical ato ms.

ihe 1C (ose\ter 1iOUp I I ( )Irepn inet) thc tessClat1 it'l Inl ,Ix \ litiensit )11s has
40.0,80 lelmcnts and c~an be st rue! urcd as, the -4,X-Clenteiu OCtahedral ii yitp aind ).;,)

coscts [ S J. I IhTcc is thIS a basic domin,1 Inl tile tc~sselatlin co01"NsitLt Ot (Ilc union01
oft thle basic si m pJes \ and IIL 95) others t~ rnied hx tile k.,oiset genera"tors. ( )nlx\ h1alf
of these are neeessa1rx Mx enl there is particle Labe s\ nimetr\ It is, axx kxxaIrd it, imagine
thle Conl n1Ct It\ Inl thle si 5dimlensional, iiNpies11C struetlfC ur uhel 1 aenfa1onCf
sUm tialeI numb11ering, of' the nodes. thle s% mttetCIr\ aMtl1\Nis. a. thle aCtual1 0,111-41tion
of non/ero matri\ elements ate quite direct. Progres~s is, bei ti made Inl thle conlstrueL-
tion of comnputer codeCs.

It is not anticipated that thle 400.00 rAift nodesý xxinch ate distributled oxer thle n i1Crior0
anld bL [I ndar\ of'tihe si-dii Illenlsi ormal111 M-1CIiC %% pIshr Ix ill Cu a sa IIs faCTOrx deLIC11 I~ ionI
of anl atoril-d jatom scattering problem. O ne %\.Ill neced a denlser miesh inl certain
parts, of thle space. Ih]is can also be accomplished rather automlaticalix% bx sti bdil-
x isions of' thle pre\ ious desiVcn1 It %k ill then he qutliec ohx \n touat111 nIlan of the nex'%
nodes %% Ill be Uniiimportant and tile tinlite element literature prox idesN mlan\ schemelis
for the% elimination of Insignificant detail. Sex ral oft' these methiods correspond to
the welknw uantumi chemi-ical methods for thle contraction of large basis sets
to smaller ones,. [here remiains inl the finite element. method thle possihilitx tif' re-
taini mg. strict localitN.

Specuilat ions
It -is adxoctted Iin this article that thle tinlite elemen~t representationt1 fr the quIanttim

mechanical x aroiatoal problem is tfcasihle. The use of aCCUrate angular mlomlentumn
eigenfuncttons is not obviously the most eflicient. Scattering problems do not require
a xer% high angular resoluitionI. partictilarlx xx het no d ifk~refltial cross sections, are
sou1.ght, and mla' he dealt \% ith Iin termis of'a discreti,'ation of'the directions In Space.
)nlx ft data are ax ailable to support tile present x iew. xxi il a m11.ultitud of'cal-

cullations haxw demotnstrated the poor performance of the partial xx axe expansion.
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Theoretical Mr'odel Studies for Surfrhtce-NMolecuk'
Intertactiiig Systems

1 IIROSI II N\kAKA[S11.11

A [s I ractI

stir ac-c itC Ii' uI't' m~ict~ ~ii 2% k~ c n W M id iiii ii W.ulk'I .11V II i)O L .V tItuIII tltgJ% %Wll' Il C1t% .3t% lit hlwitfitAict

tluhtI ttlk g tile., chuo it iica tioti Itv"ttrhtct' h11 it ahidii t ill.' t hth' tt'i' % I I I% . .11 411lljý :ii t'u hIIi-% L' 4tIIA 101 11V Itttthr'

.tntj ',t~dttl. dlii Of CI hIppInR tICA10' , i .1 t 1110tt'i I drt ihh'tit dtINtItI M itodhel t tI t'hit ()li *111 1%IIS .( tI%~ (rItt 1th1
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VcIIIVtltutn ý It V lr( 4Int o l% n(I 011 ) u fc. I act liat' hunt o v 1i .111-1r.1 k1%le, le itltfi lo td 1 1III-

Introduction

C henmistry and physics (f'tmi %uIIa(-molecLule Interaction andlL reacdtionl5 stk~emls are
of inuch Interest From both P11111l% scientific and Industrial standp~oinlts. Since these
interactions, involve finite and infinite svstemls. miodeli ngs are necess1.I*V fot' theo-
retical Investigations of' these Systems. Since thle rcsuilts of' thle I inestigatlonls are
largely dependent tipon the nat ure and the quality of, thle mnodel adlopted. %%e ha' e
to carefully examine thle models for su rfaIcC-m()l1cule interactions and reactions.

Electron correlations are very Important since we are mostly interested inl the
system involving transition metals. Since surfaice has many dangling bonds, it usually
has several lower excitedl states and fuirther the catalytically active state is not nec-
essarily the ground state, so that our theory should be able to deal with both ground
and excited slates in a same accuracy. Moreover, electron ;ransfi'r is sometimes oif'
crucial importance fiwr surfahce electronic processes and thereflore should be described
accurately. -

('luster model ( ( -Ni ) has been most 1Frequently u~sed h\ qulant u in chemists fin'
investigating cefiei so rpt ions antd cata lviic react ions on mela Il and seni icond itch w

surfiaces. ft alm has a direct i in pl ica tion in thle field of' cluster chemist r\ 1-gr 'mwi ng
up vcry rapidfly in recent years. I lowever, as a model of stirliace reactions, this model
has a defect that it neglects the effieet of' bulk metal. F or inucl udi ng such elk'ct,
C rim Icy, P'isan i, anid others proposedlfihe embedded ciluster model (I 1-3j1 and Nak-

atsu pi thle dipped adc usiter mo del 1 4.5
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Figure I, Conceplual sketch of the cluster model ((M). embedded cluster model ( IM ),

and dipped adcluster model DX,, ).

Figure I is a sketch of the concepts of the embedded cluster model (tECM) and
the dipped adcluster model (DAM) in comparison with the CM. We define the
combined system of admolecule plus cluster in the CM as adtluster. Then. the (M
is a free adcluster model. In the LCM. the cluster part of the adcluster is "embedded"
onto the shaded cluster of atoms which are thought to represent the bulk. The
direct interaction between the admolecule and the shaded part is neglected but its
effect is taken into account effectively, using the Green's function formalism, in
the calculation of the adcluster. On the other hand in the DAM, the adcluster is
dipped onto the electron bath of the solid and is let to be in equilibrium for the
electron exchange between the adcluster and the solid. This equilibrium is governed
by the chemical potentials of the adcluster and the solid.

DQBý

Figure 2. Schematic representation of the embedded cluster mr•del.., is the adsorhate.
B the cluster, and D) represents the solid,
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Miore dctai Is ýk 11 he puhl Ishid sonlckN 1cfrC I n the Iiteritic f1r I- -)1

W\C alS0 gIx C III th1S ICCILurC NOuIC rcstlitts of' tile thcorcit cal qtjl 101 111,, ph1
chem ical dcconi ositionl Nrc1act iof'1 pcrat aiganatc lon)I It. I I -

EmfbedIded ( luster Model Applied to11, lI hemis4rJptimii oin a L ithiumi Sa-tc

We Ilse here the tmodcratickl\arge embecdded ciutesicI \11 I 1Model of ~~ai
Ranctick. and 011h121" [1.3 1 . 1Ilgnr1C 2 ill USHrAtcs tile dClInIIt n o(0 11w mokdcl. I I" anI
ildsorhatc.ý I? S tilec userLS di rccthf I nteracti ng w\ith 1 . and /) rcptrcscmn K th, m~l d

III thw closcd-shell I Iartrec- I ock-Root haan approti i lltkl~l.

tile ( reccn\ fuinction 6~ and tile nImaim Q arc detincd h%

v, hicrc S and F arc. rcspccfi\ el\. Ithc o" crlap,1 a nd I ockI111 nariccs. Ilt he fr~cn [nc110ionl
(Is furtheir \\ rittcii as

6(1,C - IIfS v4

"IICIc X \ ad a stand [or tile hasis inltile I ( v appros limat ion and I', s hk \1(
coethclicnt o, tile orhital (r, vwith tile orbital Cncrp\~ I he csscntlill stcps ol tile I ( m
mwx he ,ummiirl/ed as, Ibliovs.

I )Neglect the direct iniceractionl hct~xccii . I and I)

lcltc e Irec B? 1) sx scm m-Ithiout I
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(3 ) Calculate onlN the A + B system using tile equation derti,,d from t-q, (6)

and approximate the interacti--o betweecn B and 1D to he a constant wvhich is given

from the second step above.

QUI I(G1,: (71M) -

We have adopted basically the calculational scheme given ta y Raven c k and Gpurasl

but added some modifications for Improving convergence in the Grcen functon

calculation. Details arc described elsewhere [ .n ]

We have haopplied the embedded cluster model to an 11, adsorption on a Li( 100)

surf(ace. The nculated model systems aru as followsq

1n aproima cluster interacting with H a

W1 Ouster d teracting with Hc

(3) Li, cluster interacting with H,

(4) Li 4 embedded onto Li I(, interacting with -,
(5) Li, embedded onto Li,, interacting with H,

Figure 3 illustrates the systems. The Li clusters arc taken out from the Li( 100)
surface with the lattice :onstant fixed at 3.52 A. The shaded l1i, is the smallest
cluster in the (M or the embedded cluster in the [-cM. The gaussian basis is double-
zeta (31 1) set for hydrogen and STO 36 plus diffuse s function (- 0.076) for
lithium.

The assumed reaction pathway is displayed in Figure 4. The [CM is applicable
only to the region from position I to position 10, since there the direct interaction
between H, and th- region D may be neglected. In this region the cs calculations
for the systems (4) and (5) above should simulate respectively the full-cluster cal-
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culations for () e d (). As a Cluster model t calcuar ton cl r, wIther perform cal-
culations up to the positions 3 to 15.

Figure 5 shows the potential curves obtained by the -M and lsM. The minimum
geometries and the corresponding energies are summarized in Table .The following
results may be deduced.

(I) Embedding the Li4 cluster onto bus the le r clusterthe curve for the Li4
cluster model is shifted up to those for the Li4 embedded cluster models. This is
reasonable in comparison with the curves obtained hB the full-cluster model cal-
cu lations.

(2) The value and the position of the barrier calculated by the ('M is dependent
on the cluster size, but those of the I':(M is less dependent on the size of the region
I). The barrier of the !l(CM is higher than that of the full clutster model, since the
approximation of the fixed electronic ellizet of D on BI can not fully describe the

relaxation of the system.

TAlIl ! I. Adsorption site. adsorption barrier, adsorption energy, and atomic population oin I I at the
most stable adsorvplion geoietry calculated by the cluster and emh.dded cluster models.

Adsorption Adsorption Atomic
Adsorption harrier energy ipopulation

(luster site (kcal/nmol) (kcal/mnol) on II

11i4 cluster on-lop 40,0 18.1) 1.25
Hi,, d uter 3-1old.lholho, 84.8 31.2 1.23
H1i4 cluster bridge 72.3 14.2 1.22
li 4 enhedded onto IHi, on-toll I)?.2 24.7 1.2t)
liJ Cmihdded ointo I .,, Hin-tioll I111.8 .'? 1,28
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Figure 6. Illustration of the concept ot the dipped adcluster model.

(3) The ECM gives a minimum at the on-top geometry. though it is less stable
than the separated system. The corresponding full cluster model does not have
such a minimum. This minimum may be artificial because the present FrCM is too
small for the regions of the points 9 to 12: the direct interaction between H2 and
the D region is not negligible there.

(4) In the CM calculations, the most stable geometries are the bridge site (position
14) for Li 14, the three-fold-hollow site (position 15) for Li ,, and the on-top site
(position 13) for Li 4 . The stabilization energies are summarized in Table I.

(5) The atomic charges of the adsorbed hydrogens are given in Table I and are
between -0.2 and -0.3.

-149.3

U -149.41

'-149.5 -02 (1Xg+)

-149.6

CQ V- (2FI)
-149.7

-149.8

I I ... I I
1.0 2.0 3.0 4.0 5.0

0-0 Distance (A)

Figure 7. Potential energy curves for the ground states of dioxygen anion species. 02

and 0'. calculated by the SAC/SAC-C| method.



I he t'rr1t IC Sni Ik)'IIC1 tith Ir I Cnt IV V Ici Is athe d'itiult. Itt (l, 1c'rdr of ik rr IIj
ClsterCI IIOLICI Nshorrld rpIdkjIreeI thIose of flt. I L~ltulkIrI\ter Irodk-l. [hi- IcNuli\ ,Iloxr
Ill [igure 1) are hx lit) leanls 1wlax t fic to lithe curbIJO lcll ci rýtn le 1k ic In )I Ow
hland. 0* 111 1) reeronl o0, theC rircd Icd clri MiOdtl sho~uld hk. cronlceltd r cp-
I-Cesentinli! aI hboiirdar\ oft'lir bullk rlircial insIicd AIan oulter p'arr ot 1h ii c1kiir

11hC pr11cseri r-csult Nhoxx n i Iju~ FiLIC i) IN tA~hk*ir i a0 ký1i~tic \ Nf1Lcc' hereI ii t' 11 v

peri-jmerital estlinratriris onl Ilhc potentilal si lol~I i lit, ci\,'krtI\C " diit iI

I Lý onl a1 1.1 surace, eSpCcial11 lx MCI =Itx Ac , ard ~
For doing~ I (Alo Calctilatrotis. Ik e 10x to alclte0,1 lit' B /i 1)rtr x l
1- ,or 1 1 in) tile IIrC~enlt c-alcuLlations. 1 or' stu~d\IrrirJ ctltiatxit T arIcta

surface. I,\ hax e to deal Ix ithI transition nicta.1, and dor rir, I/, kn alc~jxol ira u

ex en this SIMe of' cluster IS Still a ha~rd J011. I 'L Iherl~l. a1cco itr kwt'CIC- kclcct Of corctat, h is

are \er\ I mportant for dealirng xih suIch sxsen.I Irerlot-rC. sisatrxafliarn
of, thle I( CM to trans1it ionl Metal sir rtaI'CCS areV ratII hedI itheiCli. a1 pr1CsCnt.

Dipped .Adchrster Miodel

For su rt'.rCe-IIIOICLeuintrat u IIII'xI~ \strsICII Ill I.I, cli e~l~ct ral hCslerl NUxsc T ri

FaIce and admIoICLeIcu is Ii InpOrtantl. tilie ( \1 andI the I r(S \1 ih, ristllicierit.l as 111r as thek
Cl uster suec is not large enough. I ImI xcxen therel arc, HIran x.J' cssInll I\ hclIt lie let. k n"tIkl
transter seemi-s to be \CIrA impor1111tant (\\ ccii and halo12Cerlient isorpt onl 101 aIl Iet HIC
surface. tlie roles of alkali nietals and ia crsa', fi urloters ',nd the actMI N

cleciropositixe metals fbOr dissociatix adsorptioriso ()I CO. V, arnd ,4 161r1li 1 liw
dipped adeIlulster Model D [)\1\I 114,5 1 ha.s beer i proposed 1,0r deallm inxxit liSuch s

terris. Sincec this model has beenl pLi bli1Slied 5 C\ ears aLo. tIe aI o I t CU1s arc 1!1 %i C 1kM

briet]r for beinrg pertinent to tile tolloxxinrg applicaltions.
IFigurr 6~ illustrates tile concept of the I) \M lire addLICI Vrte rI aCinnbi nd xster

of' an adniolecule and a cluster arid it Is dipped onto the electron "batlf oIt the
bulk metal. Thecn. electron arid spill esehangeVS occur- IMet~f III cciiINT t1i11eute rd
thle Solid un~til tilie eqiL~librium is CStahl sheCd 1`01 the e'Cliarrgeý. 1 heC qiir r
woul.1d be estabhlished( when'I thle Chern lkical po0CItent ia ' o1h t lie zrdcl ust-COr' bee m i~e~tia
to thle chemrcal poterIitral of' theC sUriaCe.

or riore gcnerall\ xxMhen the fIloxx i ng condition IS s.atislied.

mnin( L( j) Iin thle range -- r1i)

where /-1' n ) is tile encrgx ot'the add Uster as a franetio oil'of the, iiurniler otelect:11,01im

transferredI into the adc uster and ju thle chemical potential of' the snirlbic. 'Ac note
that ni may be a noninrteger si rice wke arc deC~tlilrig with aI partiall SxSten.ý Ill thirs iii' rdel.
the cluster atoms need not to supplx, all the electrons trarisferred inrto lieC adulste-~r:
some are supplied rorn thle electron bath of' the solid.

Previously. we explained sex eral general behaI.iors of'thIe LJ( ii ) en rx s an diihrr

implications 141. Dependinrg o)1 thle shape of the Fit 0, curvIe. elilier a partial clctrCi 'ri



tralnster or one or tk o ( Integral I electron tra'ns6%:r 1mA% oc'cur. W\e haws c rposed
the niolIeccu I ar orb ItalI modelI of' thIe d I Pped adtId LI uslr 4 WC11 C\ au N asLu 1ed 1 11t1

0onl\ [Ie aCti e NO 01' thle adjuter.IIC like Ii ),\I( ), I I \I ), or s( )\It ), is, partiall\ titIled
in thle elect ron-tranrsterl process. I here are W~ o C\tremec % ;a. ol* spin occupaiX onl it
thle aeti\C \ M . ()Ie is thle hlighest spinI cou~plin 1n1 hic I sin elcrnIs i
occupi)ed and after thle Occupation reaICIchS u nit\ thle spin elect ron is Ohen added.
Th le other is the paired spin couliJAng Inl \01hIe CLequal n ii ii her of (t and 3 spin

electrons occupy the actiC em(). The tbrnircl modelc is local]\ paaagei and [lie
latter al~xa'\ s diamia~gnetic. Energeticall\ .the former is more stable than the latter.

When an electron is traiisl~rred fromn a suirface to an adniolecule. the electrostatic
interaction betweenI them \k0ould become Important. Vor a metal surlace. the so-
called imrage ftOrCe ý%ouldW occur and its inclusion "'as describ- ed I n Ret 5I'. ForI a
sem1icondUCtor Srltace. thle Interaction should be More 0Lo11cahe anld SUchI treatmnent
was describted I n Relf [ 4 .

Potential C'uries of IDioxygen Anion Species

In thle nextN Section. %W Stud\ 0- chernisorption on an Ag sUrthecC. On a Metal
suirlace. oxs cci is adsorbed Iin molecular and. dissociative states and the% are neg-
aIti-el% chiarged as superoxide. 0, peroxide 0I; and atomic anions 0 and 02
Here, "e investigatec the bondings and the potential cuirves of' the dio\\gen anion
species 0) - and 0-, in their isolated free states for gi\ Ing, a comiparative basis j1 2.

The gaussian basis is thle fIt Llinaga-[)nigt9~ / spst[ I PlI dIls
s,.p functions ( o -0.059) and polari/ation d fuLnctions ((k 0. 3)) 0 hic h gi' es the
electron atfinit\ of*(o\\genl atom as 0).97 CV. after electron correlation is Included.
in comparison with the experimental valuC Ot' 1.311 CV.

We calculate the potential curses of'O. and] W b\, the .s xc s~ mmtr\ adapted
cluster)/S-W-CI method [14-161: W;y is calculated by the s%( method. since It Is
a closed-shell molecule. and 0 , is calculated h\ the S.\(--( I method as a cation
produced from 0' .F~igure 7 sho\%s the result. Table 11 giv~es a1 sri1 nimary of, thle
spectroscopic constants. The superoxide 0, is a stable molecule wkith the dissociation

I \m~ t 11 ttw bod Ivngth R_. ,hrUfionAd 1tre(Ijim%~ I, v ~oiin nr\/, lcrnih\i
and evoss, dhjrgv orft lbe 0-w and 0- mcici ~1a gas pha'sc and or itic supero\itic 0: )..Ilo peroxide

%pc)ic, on a sik cr stiri~lic.

Spccics Mecthod A)N (C11 ,A I V (CV I pcr

01 \ - 1.44 lilt() 40 6i -'4

CsPit. i1 0(91 19

0,11.67 5 4 2194 i.ip2
on '\ -g 5,udacc S- V . i) 1\ i.47 9-4. 1(155 0154. ([110

C\pit,ii
Y"V on \g suri'Acc ~-i )\ .64

Qspfl. 1.47 1i.iis 628, ca. 11

I iii p 1i'vt i
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ivgethilen oxid eih [A'0.70 Sevra Theorei-ca)l sties hale beItien publ9ishe using

s~i% nitohcicl~is I on I i of Ic lectro correlatin Ic re-ulsio *):[hItg they coulde dechribed
th\-en geomer nd th1 irtoa21eunyo heasre 2ingo gemn

witheperimet A uther ModelApled to rerouc the adsorption eineg and the dSsfcia

ci elv asorbeptates Actualny mo Surac la01iterea(sort tonv invertgiestwre becatuse
Wei sythin skhats ther reasocnto ctlth icr lcies in ts modearil, that is. th'e ( i. Ien

givingctlvi ofxth e electro tiSeve rom theobukretial Stode theaver bend tulihed el urstaicg
imgelorc interuion blcetween correandionAgs rf.whhaeinlddnte

flAl butl no in the20] (Naeepce b moTanhorg thise s oulstem.ib
Whe geiersytk g(~asa d~s and ch irt onslfeII1C i'tI dersidbe-on bidgeorm inteeeratin

xthexerA-Aisetanc tie\ fixled ato reproduc A.1 which pisth enuliriumn tl distancin th
soivv d. The gassiantbsis setfor Ag iMst Calculatd adf sorptdiose writhe thre negative.r

Woenthia fhar Kr creason1.ofor oxyganlute lies setis thdel shame as, thatued (in The

Belltor'tedon electron coalrfrelation calulk ealtons wie have~s appid the moleculosari
orItale model ofntheradipp eted ser usiang the highs sp.winh couplingclodel. Ih ie

imbulk Agoli toI the adctr.e haveced tohereforeperforme tssseletoncrelto
Walulaionst forate Ag~Oa anio als the andCI~dIdeluse usingdte for/m-c mnerathod.

The 4-11 whchistapplcabe I o fLath ground And wihItlexc(1ited11 dstates ofI btnetralean

eltern transforKrcred states. We haxvec inlued ballti the valene elctos togethuer winthe

th loe d-cetoinsf g.it electron correlation caCIalcul, e ations. dth olcua

resurtan L is audisplay sown the poetilcurvescefhr theeprocess ofansfer from otol
bukAg dspped oto the meadl ulk. Whe broken lines aore therfrnesueltst wtou th-e electrion
cacuatior ns () an thle sol'aidone wit the edluserousng transer (ui Withoutthed

the6 ] wheisorpiodes nplM ot occugr.un Anote boenxined stleoteof byt nAeutral and
corsod oteelectron transli.rred state.W1,aicued withi the vadeceelectrromnA. togte 0ith
thoug dlethis st'ate iatrcvthmin imu iscto cor lesso stable~than tespaaesse
wIch-i IV disla o ofl thes tnta curves incud thtiae frorces corrctons tprahe osnto

tg(ipped corsondto the mecalcbula.Tiebokns ainds doiotepli the occurrenwiehoft the eeto

02e cheinisorption dontes notheccr, handthe protentia , gieno1wthe ld line', which-)

is for the electron transfierred State of' thle DA'M, stabilizes as 02 approaches Ag2.
T[le asterisk at abotut 2.5 Ais obtained liv the optimizaltion of' the 0-0 dlistanee
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at the 0-) distance of' 5.78 k. The dissociati'w state is calculated to he m~ore stable
than the molecular adsorption state by, about 40) kcal / mol: the corresponding ex-
perirmental % alue *is 31 to 3 3 kcal / mol [22 1.

Thus, using the i1\%i and the s \-o.l method. %'.e Could succeSSI'ilik describe thle
0, chemiusorption on an Ag surface. The inclusions of the electron tranisfer fi-rom
the bulk Ag metal to the adcluster and the electrostatic image tborce correction
described by the iDvst and the electron correlations tb(r several losser surfaice states
described by the SAC-Cl method are the reason of'the success ot'the present stud\.'
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An Adiabatic State Approach to Electronically
Nonadiabatic W~ave P~acket Dynamics

6. P %R I %N I*~ and 1). R. YV \RKO'\\

Abstract

i ' l It I*,-' I~ h %k IIita ! "", !J I IIIIV- k ik, Il ' 1 CHI. %I\L IM' k kIc~l I Iw I Iaý I I, I! C s I t ppi
v i ihc\t: il V , 01.lCd .inst is I~~ h Cj~ III kai1 ~ laa "\Ih Ih JI~l I'Id aiI''ihi

il l 4I'cara Ill f I C %1,( N I Ih '~ttit'N .1d I ,,i ýh .,1 1,1" iCJ" ~I~I' . i \ Is I I Ill* 0111i; 't I1

Inltrodu~ct ion

I hie adab.it IC rc rcelcnIat In I Ill J is al tLIn th III Cm LIlta l cnCl)p Il kin I) ILn Ill ei lln I st I-\
1Ill cpcc tat tilneIh elci' ronic States arc Ca~lCulltCd X~ltj til hc n uclc Ii .d Ill
spacek--ý.1a1d sfic nn ll:. h C'.oIIl uio Of the nlucici on thle aISSOCIacd p-OtCntial1
CIlC~k.` snrlaccs isC ls-tUdled. 1 hs s lcs r xelI separated. ),I is axencrall'. a vood
approm i mat ii ato Ii cs rid thcie uILcicar 11101tion to a Single Cdctiron ic statc Bo Horn--
()ppC 1 hici 111Cr a ppl-\ I mlat lonl 13.41J. When tv rmr urlcsncs r cni tc
klosc ti aglcthcr til' h , is is no Iogcr til hCLS cas ~cCs ncc c n cicear ki ntl~ CIc cncrg\ prlloducCt
dcrI-] atIi'c copinsse cci. (4) 1in tllc ies sectIoion I that ICalln iducc tionadiabatI C

I sion d\naa 1cVar tircated not nl thle adiabaiN1c rcrectin.bt Inl tile No-callcd
dwl' 4 iii( repreCsciitat loll 25-- 1 1. Inl thil' representation. the deni\ at i\ coup!111 Ill i
-trank;s1rLrrc in1to tlac plotentiall part of the I lamiltonian. I his approach Vs uibisi
kkhlcn a sharp t%~ olded crosIng 1i. Ctucoun1Cred Or at1 highl collisi'on Qjenrg\ I 11an
MSh-is 1 Llccn i \ cr\ sucs~l\.particuilar!' In atom l-atoml collision, jI 1 1.

I though tile diabatit rekpresen tation l" is l conTructed Ce'.plicitl%\h toc f"Ici talc d\ nlail iCfs
calultios.thcý approsimat lion01s in ll\ 0 d Inl tilc contruLction1 of dNiabat icsttc ad

their implic.ations tor thc accuiracl\ 01 d'.nam ics, calculations arc rarely addrcsscd.
()nll, I the adilabatic r-ilCcprcsctationl has a tril iq tie defin ition: adiab-atic states diagonal i/c
th1c clcctron ic II a in 1ill.1 ita. Cn the other -hand.d,thbam1uu sonictI nics k 10521' deli ned
as,% Ilo ( 1 11/101h . anld an Infinite ntimbn of (liabatic rcprcsentatiows can bie detincd.

Vs disc ussed bh\ ( ;arrtC1 t and Ir Illilar [ 2 1 . IM hI-o bod caIsse iori dtab-atic r-cpreCsil-
tat I ats cal~lbcdsinushd C ()Il is, hIbUtdInCd bh\ etffecting a transtorniation hror

MOT"'"nn ~I i's d" 1jp! , 1 t'Iisi IIaii k iniiirisi i i ch'' .5L

lu 1 sit is.i (I 1 1 Tai
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an adiabatic basis to a ne% basis for which the first derivaciie coupling %anishcs.
F. T. Smith prox ided the first formal definition for this type of diabatic stales in

diatomic molecules [7.131. This definition was later extended to atomn-dialom
systems by Baer[81, Recentl\. this problem "as also examined bN Mead and Truhliar
[9]. who separated the derivative coupling vector into a longitudinal part and a
transverse part. The\ were able to show that while the longitudinal part can alwa\s
be transformed away, in general. the transverse part cannot. Onl. diatomic s\ stems
constitute an exception to this rule. In this latter case. Ntriwhv /iabaui--according

to Smith's definition-and adiabatic representations, are perfectly equixalent. For
more than two atom systems. it is in general not possible to build a strictl\ diabatic
representation. Howve er. Mead and Truhlar showed that appro.vimate'tI diabatic
states can be built if. for example. the transverse part of the coupling is nc< lble.
The second class of diabatic representation, in the terminology of Garrcti and
Truhlar, does not use a mathematical transformation but, instead, is based on
physical arguments. These states are only approximately diabatic. For example.
nearly diabatic states have been defined as states that preserve a particular molecular
property [ 14-16 1. or in terms of a particular set of atom-like orbitals [ 17 1. Patcher
et al. have considered the use of block diagonal matrices to define approximate
diabatic states [ 18 1.

To summarize, most of the diabatic bases used in the literature are only approx-
imatelv diabatic-in the sense of Smith-either because the system under study
contains more than one internal degree of freedom, or because they have been
deliberately built on an intuitive basis. The use of approximate diabatic bases in-
volves approximations which are largely uncontrollable (see next section). and

have not been studied quantitatively. It is important to understand the limitations
involved in the use of such states in dynamics calculations. One of the goals of this
in'.estigation is to present a dynamical method that will allow such studies.

Previously. only a limited number of time-independent quantum dynamics cal-
culations have been performed in the adiabatic representation [19] (see also ref-
erences in Garrett and Truhlar [2 ]. Baer [201. and Sidis [I I]). A principal reason
for this is that the derivative operator can lead to difficulties in the nuclear dynamics
calculations when a sharp avoided crossing is encountered or at high collision energy
[11l. Another reason appears to be the complexity of solving the time-independent
Schridinger equation when the first derivative operator appears. In this article we
use a time-dependent wave packet method to overcome this difficulty. A particularly
appealing aspect of time-dependent methods when compared with conventional
stationary close-coupling techniques [2,21-23]. is that it requires only minor mod-
ifications to be utilized with an adiabatic basis instead of a diabatic one. The extra
derivative coupling terms are easily computed bx means of Fourier transforms
[241. routinely used in wave packet propagations. Perhaps surprisingly, there do
not appear to have been an\- previous calculations using a time-dependent adiabatic
state formalism. Time-dependent wave packet treatments in approximate diabatic
bases have been reported [ 25-29 ]. These approaches. in general. neglect all deriv-
ative couplings, an approximation which may not be justified in practice [see dis-
cussion of cqs. ( 16)-( 18'].
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alkali atom and \ a halogen. '\ lcrnati' ci x. lieh diabatic statcs approach is ad xan-
tagcous in instanccs xxien sharp Spikes cexist inl the dcrl\ixtix c coupling niatri \ ele-
ments. An cxamplc IS tilc ArI I Sxstcm xx hcrc thc tkxo diabatic charge transfer state's

prsill)i intersection scam xx hich run~ts para-llel to thle Ar--I I, diistanIce anld eXtcn~ds
to mu init\ 13,1. At large distanes tilc chargc ex change pr'obailitM is /ero and.
ZICCOIdlingl\ . thedcl a e coupingM betwcen the two adiabatic states is in iliniteix
sharp. In this region, at transl)rnIation to a dliabatic rcpresentationwudLcltt

thle accurale propagation of' the xx axe packet.
[1lie aldiabatic State xXacpaket Method eSp)ouIsd herein has' thle usual adxantagcs

alttri buted to timeI-depen~dent meIthods. Ill oneC single Calen lat ion a waxke packet
gixC csrsults ox er at whole range (of nergies. A nothcr attractive h'CiturC o1' the xx ave
packet techniqueLI IS thatl It permitslt thle strainght lor\x ard treatment ol'collislon-indUced
dissociation. Ii his process is hard to decscribe inI a time-i ndlepeiiderit l`01rnIahisni beh-
cauLse o OIthe dIi lien lt\ of recpresenltingi thle Con tin Ii in i of'x i brational batsis I'u netion

137 I. .lthough Ill 1.1nItId menCIsionaL quantumIIII scatterinrg caII lculation1S. ill general. re-
quire sgifCnm Iclt amounts,111 ofcomputer timec I 3Y-40 1, wave packet1 methods scale
better xx ith thle n u mher imf states and thle number)Cl of degrees of' fre-edom than ltime-
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predissociation problem because it constitutes a stringent test of the algorithml. The
resonance lifetimes are derived from Smith's collision-lifetime nmtri\ 143.45.40 1.
which is expressed in terms of the S-matrix ficr the system. In this case. a \er\
accurate propagation of the wave packet is required so that the moduli as Nell as
the phases of the S-matrix elements are obtained with negligible errors o'er a sub-
stantial range of energies [46].

The tbrmulation in terms of adiabatic states also gives us the opportunity to
studv' the influence of the adiabatic correction (see eq. (18b) in the next sect.on).
also called the Born-Oppenheimer (tio) diagonal correction, on the dynamics of
the system. This term is generally considered as negligibly small. Hoevcr. somc
studies [19.47.48] have shown that the adiabatic correction can play a significant
role in predissociations.

Next we present the time-dependent coupled electronic slate Schr6dinger equation
and outline its solution using wave packets. The results of the MgCI (A :Il ) lifetime
calculations are presented and discussed in Results and Discussion. and the final
section gives a brief summary and conclusion.

Theoretical Approach

Time-Dependcnt Schrifdinzer L'qualiol and ("ouphed i&.'h'c ro/tic .Dale l.vpan.s ion

For an electronically nonadiabatic process. the time-dependent Schr6dinger
equation is given by (we use atomic units throughout):

ll(rR)*•(r.R.t) = i Ot)

where r and R represent the electronic and nuclear coordinates, respectively, and
11 is the total Hamiltonian in the space-fixed coordinate frame:

It(rR) = N T'(r,R) '(r.R). (2)
'2m,, M-.

In eq. (2). 7") is the nuclear kinetic energy operator and I"' is the nonrelativistic
BO electronic Hamiltonian. The total wave function, *,. is expanded in a complete
real orthonormal electronic basis set ! ý4 :

*'(r,R14.) = - Xý(R,/)ý4(r.R) .(3)

Projecting eq. ( 1 ) onto the ýk gives the fbllowing system of equations for the time-
dependent coefficients (wave packets) Xe.:

T~x,(R,t) + _Y /-,A(R)Xk(R.1) - "S 1 /' a (
_- - ( f R) X.(R./) = i X,(R.t)

(4)

with
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,,. R) 11. (R ) .. h ' R • 5

/ tjR) * (r-R)ý /P (r,R)4 (r:R) (6)

I (R) (,(r:R)- ttR- 4 r:R)) " 7)
OR ,, i),,9

./I:(R) r:R r, R

Because our electronic hksis tlnc' t,m,n ;-c real unali nrlt h r'rnrml, lh' der at \e
matri x. ,. is antis}imnictric and the cIl'mcnls off on(1 h. ,;Ilist\

I,:;•R• , Rf t R) + R fRI.R) .

\hich is \alid onis fiar a complete basis.
At this point. we hawe the choice otw-orking in ditlerent electronic representations.

In the adiabatic representation. denoted ' the basis functions are cigenfunctions
of 11':

C .,(r ;R ) ý 11 (r .ýR ) I ý', r :R L ̀ , '(R i , .( 1 1

while in a rigorousl\ diabatic basis, dcnoted , the matrix clement, of (/iiR,
should sanish [71:

"o , )rI, ~(R) ) •r;R) - 4'.(r:R)) ":1 (I

Io see the implications of' eq. ( II ) it is convenient to make the assumption that
the process under study can be described using only tmo of the infinitx of electronic
states. In this case. the slates in question are connected hv the followming transfor-
mation. which depends on a Lunction 0(R). to be determined:

('W((r:R) (costNR) sin N1R) I'4(rR) (,2)
•,I'4(r;R) sin 0(CR) cos 1(R) ] '4(r:R)

Inserting eq. ( 12) into the requirement eq. ( I) gives the system of equations

0( R R13OR,,

wherc C,"'(R) is given by eq. 8 ). using adiabatic \wavc functions. Eq. (13) is
solkcd b\ partial integration. In order for H(i R ) to he tiniqtuely defined the condition
for an exact derivative must hold:

N R. 0 .(.4



742 P\F,1 k%, I \\DNI)" \RK(%N"

Combining eqs. (13) and ( 14). and using Cq. (9). yiClIds the follok Fit, c(onTdition1

In general. this equation cannot be satishOed. except b\ the tri, ial solution made of
constant ( independent of R) \wa\c Funcdons 191. lhus. /.1," cannot be rigorou .i
excluded from eq. (4) [sec eq. ( 17) below]. lloweer, since this term is dilficult to
e-valuate, it is common practice to omit it. minalix, note that for a diatomic s\1stems
for which there is only onw internal degree of freedomn eq. ( 14 ) becomes triv ial.

For two electronic states the time-dependent coupl,'d equations (4 for the adi-
abatic and diabatic cases. respectivel., can be written

It/

, . --- ,h - + IFTX J-j +[ .. .. (h. Sa .i?'": - -'T,--i -7
S2m, " •R,, m,,

S..... t [•l 16 )

and

.,i' 1 .. h ii" ; I ' K"; - " - --

(17)

with obvious notations, and where the variable R has Ken omitted for simplicit.'.

In -q. ( 16.). it appears clear'v that the derivative operator is responsible for the so-
called adiabatic correction hl'(R). Note that this correction apr, "ars also in the
diabaic eqs. ( 17): it vanishes rigorously only if the twvo-state basis is as'-umed
complete Isee eq. (9 '1.

If the two-state basis approximation is used, the matrix elements of [I:',, and
hr', satisfy the relclions

/ 7, R ) ... . .. ) = -[ ,,2 (R). ( l ba)

and

hI,(R) 0 . ( 18c)

Under the approximations ( l8a-c) the adiabatic and diabatic bases are equivalent.
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I m't t'I.'ket Pro pagwation

The propagation in time ,.nd spacc of the coupled kave packets xj and X:--in
the following we will often refer to -the .axe packet" although two coupled wave
packets art, actually propagated-is carried out bý means of a grid method 1491
using an expansion of the evolution operator over Clhebvchcx pol. nomials [501
and using fast Fourier translorms [51,521] (FI-l') to calculate the action of the
derivative operator on the w,.ave packet [531. In a recent comparison of several
algorithms, this combination was tound to be one ofthe fastest available fbr systems
"with a time-independent Hamiltonian [1541. The method will be described only
briefly here since wave packet techniques have been extensively reviewed [49,55,56].

The time-ewolution operator corresponding to the time-dependent Schr6dinger
equation (I) can be expanded as f4 1.571:

exp( -Wilf.) : exp(-iI) V ,,, I (19)

where Af is the time step and the 7i,(x) are Chebychev polynomials [24]. defined
over the interva' .+ 1,1, hat obey the recurrence relations:

T,F. 1(.X) - 2x1',,(x) - 7T, 1(x) . 20a)

7'I(x) = I. (20b)

TL(V) = x. ( 2 0c)

"The coetficients, c,,. are given by:

C,, = (2 - 8,)-i)J,(.ELt) (21

where the J,, are Bessel tunctions of the first kind.
The Hamiltonian is scaled so that the eigenvalues of II., are limited to the

interval [- + 1]:

II -( 22a)

-E =E,, E.,,n)/2, (22b)

E (E .n.. + LFIIn )/2 . ( 22c

Ein and '.M,\, are the minimum and maximum eigenvalues of 11, respectively.
Following Mowrey and Kouri [461 we determine E .. as the lowest potential matrix
element and E•,,, as the sum of the highest potential matrix element and the largest
kinetic energy that can be described on the grid. that is, 7r2/( 2mAR 2 ) where AR is
the R stepsize.

To follow a predissociation process, the propagation of the wave packet must be
pursued lbr a duration at least equal to the lifetime of the levels under study, that
is generallx several picoseconds or more. To avoid the reflection of the wave packet
on the boundaries of the grid, a negative imaginary potential is used to absorb the
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wake packet [41-58.591. As established by Neuhauser et at. 1411. in this case IhC

energy domain. !-W has to be extended by approximately -'; to compensate for the
fact that Chebychek pol\ noiflials \ ith a complex argument ari- not bounded.

The action of the Hamiltonian on the waxe packet is calculated b\ discreti/ing

the coordinate R on a uniform grid. -he action otthe electronic coupling is obtained
by a simple matrix multiplication for each grid point, since the potcntial energý
operator is diagonal in the coordinate representation. Io exaluatc the action of the
derivative operator we make use of' the flact that this operator is diagonal in the

momentum representation. The vave packet is successivcl\ Fourier-transformed
to the momentum representation. multiplied b\ the appropriate momentum on

the momentum grid, and back Fourier-transtormed to the coordinate representation.
Both the kinetic energy term and (in the adiabatic representation ) the deriative

coupling are computed by means of FFV.
In the particular case of the predissociative s~stem studied here. we consider

4j1 to be a metastable bound ground state and ,t to be a bound excited state (see
Fig. I ) such that the diabatic states. ij'/ and '. represent the purel\ bound and
dissociative states. respectivel\ [1431, Asvnmptotically. the wave packet for the open

channel can be expanded in terms of incoming and outgoing plane wkaves:

ýMR 0l -- ) gk[e S,;,"'!R]C !ý da 21 (31

In this equation. k is the wave number. k - / 2n: m,( k) is chosen as a (jaussian

distribution: and S;,( n 1. 2 in the adiabatic, diabatic formulation. respectivel) I

represents the onl\ open-open S-matrix element. Using stationar\ phase arguments.
it can be shown that, after the collision (R - -f- and t- , ). only the outgoing
wave contributes to the asymptotic form [4]. By examination ofcq. 23) it is seen

10000 *----76

S22 P 0.

8000 
4

I\ -4

6000 I2a

4, 00) .. .-- o o

C 4000 8-

2 LO
1P

2: ,000 .2 ..

4h 0 45 50 5 5 60 6-5

R(ao)

Figure I. Potcntiai cn•ri - ctur'c s nd crie ;tlia'c coupling, I "t R). for ith 1.211 .tdiazihati
,,talcs ol' g('I. Ihe 0 1iraltio .l ,•tcIl (iftrh dlihawll :11 %aIde tit) 10 1' 8 are illyo i)hd ated
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that the S-matrix element can be extracted from the wave packet as a Fourier
transform oither over the distance R or over the time / [41]. Here we choose the
second alternative and express N,,. as

k c ~'S. ...- ,,( ) ,5r3 C R, . t)e"'' tit (24)

where R, is some fixed asymptotically large distance. In practice. we "watch" the
wave packet as it crosses R, . and then use a FFI to evaluate eq. ( 24). Monitoring
the modulus of S,.,,. which should equal one over the energy domain of interest.
can be used to ensure that the propagation was continued until only a negligible
part of the wa'e packet remained in the interaction region [46].

Finally. for any Na~e number k. Smith's collision delay-tiime [451 is given by:

T = -iS*,, ,,25)

where the derivative of N,,, was computed by means of a FFI-. B\ plotting T as a
function of the energy it is thus possible in a single propagation to localize the
resonances and determine their lilietimes.

Application to .14k0(fI ,II) tIredi.,Sociation

The 1.2'11 adiabatic electronic states of MgCI (Fig. I ) were computed in ref. 43
where a set of r~gorously diabatic states were deduced by a unitary transformation
chosen to satisfy eq. ( I I). The relativistic eftficts included in ref. 43 have been
neglected here in order to simplify the analysis. The 1.2-II diabatic states were fit.
respectively, to a Morse curve

JE'-= E( 1211) - V, + D,[1 exp( -,(R - ))f . (26)

where V' = 0.0. D, = 26581.05cm K 13J 0.718643 a,' andR, = 4.159150 a4).
and a decaying exponential

-'ý E(2-11) = + DZexp(- 2R). (27)

where V, --530.09 cm D, = 2.760.693.25 cm and 4 = 1.290188 a,'. The
diabatic coupling interaction was fit to a Gaussian function

IfI - Ill 'II2"I22 = 1), exp( -j,(R - R0 2). (28)

where D 769.62cm ' 03= 0.618122 a,• 'and r = 4.8900 a0
In order to facilitate a precise comparison of the adiabatic and diabatic treatments.

the adiabatic potential energy curves and derivative couplings used in the present
calculations were derived from the diabatic fit through the transformation

J~ + ]ýd+ -- )2 +4
-l2 2 - E- + 4II1 (29)

E_ (1'!- )W1-aR - (3( E' - Eo)-aR(12 ,ad)2 + 41 1 (30)
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rather than through a direct lit to the ah nitio points. In the anticipated applications
of this method. the adiabatic potential energy surtices and derivative couplings
would be obtained directly from the ah initio data, without anN refierence to diabatic
states.

Results and Discussion

We chose to illustrate the method on the v - 8 vibrational level of Mg(I ( 1211)
(see Fig. I ). whose lifetime is approximately 0.3 ps. No attempt to calculate longer
lifetimes was made, although, in view of the stability of the integrator, this is pcrlixctlv
feasible. The energy profile of the collision delay-time (Fig. 2) was obtained after
propagating a Gaussian wave packet of width 0.25 a) centered on r -- 8. The
calculation was carried out with the maximum accuracy available in double precision
over 8192 steps of 10 `' s on a grid of 2048 points between 3 and 30 a0,. The wave
packet was analyzed at R = 2 1 ao and absorbed by an imaginary potential linearly
decreasing from 0 at 22.5 ao to -500 cm ' at 30 a0 ;: the reflected part was approx-
imately 10 " of the primary wave packet. After the propagation, the modulus of
the open-open S-matrix element was equal to one within 0.08':;. The CPU time
on an IBM RISC 6000/550 workstation was approximately 3.5 s and 4.5 s per step
for the calculations in the diabatic and adiabatic representations. respectively.

Figure 2 presents the results of four different calculations. The resonance energy
profile obtained from the wave packet calculation in the diabatic representation is
compared to a time-independent close-coupling calculation using a log-derivative
propagator 1431. These results are in excellent agreement. as expected. The reso-

03

U) 0.2

h /
E0/E

S~/

V• 0.0 -\

-0 1

3700 3750 3800 3850

Energy (cm 1)

Figure 2. Resonance profile of the collision delay-time. The wa~e packet calculation in
the diabatic representation (solid line) is compared with the calculation in the adiabatic
representation, with the adiabatic correction i-"'(R) included (dashed line) or neglected
(broken line). The result of a time-independent calculation (full circles) is also presented.



nance curse represented b\ a broken line \\as obtained b\ propagating the %ka~e
packet in thle adiabatic icpresentation \ý here thle adiabatie correction h"'' R1 1? k
-> 1. 2 ) -xkas arbitrari1\ set to zero. This has the ctlket of'changing significanilv\ thle
resonance shift ( -- 170.3 instead of -. 1,52.2 cmn I) s nýell as the hlcltini ( 01.18 instead
of 0_19 ps ) Although this phenomnenon has also been noticed b-, Other authors
1 I9.47.48 1, the adiabatic correction is .er% often assumedi negi gIb i I prdsso-

elation calculations.

Summary and Conclusion

The %%axe packet method developed here permits d\tnamics calculations to be
carried out explicitl\'in tile coupled adiabatic state representation. This methodologx
is introduced to exploit recent advances in computational electronic structure theo(.r%
which permit efficient evaluation of derivative couplings betv cen adiabatic states.
This approach will also enable the study of the implications Of using diabatic rep-
resentations in the treatment of nonadiahatic processes. Relative to procedures
involving diabatic bases. this procedure Is straighttborward to implement. requiring
onk one extra EFT evaluation, and thle computational effiort is comparable. Note.
however, that for vibronic problems of large dimensions. it has been reported that
the propagation in the adiabatic basis was much more costly than in the diabatic
basis f1311. The method is currently being extended to higher dimensions in order
to study electronic quenching processes, including H,( B ;) by lie [42]
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Introduction of External Field Effects in the Frontier
Molecular Orbital Theory of Chemical Reactivity
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Abstratct

I-sternal held effhocs arc introduced in both charge and orbital control terms of KIaopian-Salem
formalism tor the stud% of chemitcal reactis it\ in condensed phase. An analstical expression is derised
for the change of the interaction energy betsseen a nucleophile and an eleetrophile from gas to solution
phase. The resulting simple expression contains the efliet ot the external held, in) terms of the sariaflon
of the electrophilic superdeloealizabilits indexs associaited with the highest occupied n' Yccular orbital
t ioxio) of the nucleophile. kws classical reactions are analsied ito illustrate the usefulnessand reliahilit%

o" the proposed formalism. ItN,2 John Wkiles & Sons, Inc.

Introduction

-The language of frontier molecular orbital (t:Nio) theorx has been incorporated
for many years into the discussion of chemical reactivity. The widespread usage of
terms like 11ON10 and li~t:xo is a measure of the success that this kind of approach
has accomplished 'In the different fields of modern chemnistry.

'rhe current application of FA10 theory is usually based in gas phase molecular
orbital calculations which provide the basic variables to be used in the llmo ana~ysis.
namely, atomic charges, monoclectronic energies. and coefficients of the LCA0 ex-
pansion associated with those relevant orbitals which are suppc:sed to directly de-
termine the reactivity pattern of the system under study.

On the other hand. most of the chemical processes occur in the presence of a
liquid environment. It is also wiell known that the medium often participates in
these processes In a nontrivial way [ 1-3 1. Therefore, the modeling of a reacting
system in solution via a gas phase molecular orbital stud% leaves a lot of information,
concerning the relevant substrate-medium interactions, out of the analysis.

Klopman [4_5]1 sug~gested a simple formula to account tbr the interaction energy
between the reacting systems that partially included electrostatic interactions with
the medium. Within this approach. o)nlx, the charge-control term wvas modified to
.I nclude electrostatic interactions with the medium using a model compatible with
the Born formula [6]1. Since the orbital-control term was derivýed in the framework-
of perturbation theory, both the coefficients and the monoelectronic orbital energies

International Journal of Quantumn Chemistry: Quantum ( hemistrN S, niposlum _26. 751-760 (1 992)
1992 John Wilc% & Sons. Inc. (C0021)-7608/j92/01075 1-10
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were represented by using the unperturbed wavefunction of the isolated system
(i.e.. in the absence of the polarizable medium).

In other words, within the Klopman-Salem fbrmalism, the influence of the solvent
on the chemical reactivit\ pattern is introduced in an unbalanced way that modifies
the charge-control term, but it leaves the orbital-control term invariant to the in-
fluence of the polarized environment This appraximation is equivalent to consider
that the Mo energies move in a constant amount, equal to the solvation energy of
the whole system, when passing from the gas to solution phase.

Sanchez et al. [ 71 have discussed the electrostatic interactions as a factor in the
determination of the ttOMOs of a number of benzene derivatives in liquid solutions.
Significant variations in the MO sequence, involving changes in the HOMO nature.
were observed. A formal treatment for the NIO shifting under the influence of an

external field was presented recently 18]. A very simple formula was obtained
within a variation-perturbation treatment of the problem which expresses the MO

shifting from gas to solution phase in terms of a solute electronic polarization
contribution and an electron-solvent interaction term [8].

Based on this last approach, we propose in this work an extension of the Klopman-
Salem formalism in order to include external field effects on the orbital-control
contribution. The resulting formalism will be applied to the study of two well-
known systems: the alpha effect observed in the OH and OOH nucleophilic
reactivity pattern and the internal return rearrangement of F and CH., on the
allylic substrate.

Theory

The main objective of the FMO analysis of chemical reactivity is to predict the
reactivity pattern that is to be expected from an analysis of the weak interaction of
the reacting system. In other words. the slope of the interaction potential at low
values of the reaction coordinate is used to qualitatively obtain the relative location
of unspecified transition states for the reaction under study. A natural approach to
represent this process is a perturbation theory method.

Klopman [41 and Salem [1)] proposed a simple scheme based on the interaction
of the molecular orbitals of the reacting subsystems. The following expression was
derived:

" : [q, + q d .;, + V + V , '" I (

where q, and qj, denote the electron densities associated with atomic orbitals a and

h1. and ý,,S, are the resonance and overlap integrals between atomic orbitals a
and h. QA. Q, denote the net atomic charges on atoms A and 1. and RA, is the
interatomic distance. c• .. and (,1 are the coefficients of the I (AO expansion, C'. (, !
represent molecular orbital energies, and r is the dielectric constant of the medium.

Klopman showed that Eq. ( i ) may be reasonably reduced if the ansatz that only
frontier molecular orbitals account tbr the major part of the reactivity pattern is
accepted [41. The simplified expression becomes:
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vhere (fand Q,. represent thle net charges' of' tile ICti, C sites of, thk nucleophile
and electrophile. respectivel'. According to Klopman's approach 14 1. reduction of
Eqi. ( I )to EqL. ( 2 ) follow~s essentially from thle consideration in eneigx o fthe highest
occupied molecular orbital ol the nucleophile. o,,. and the low\est virta n-UImolecular
orbital of the electrophile. c,.

We maN immediatcl\ see that the effect of' thle polarizable environment is partially
introduced into this formalism, because It affcts the hirst ( charge control ) termi of
Eq. ( 2 ). Substraction ofithe corresponding energy \ariation in vacuunm gi)ves:

Ii l/~'](3)

iFquation 1 3 )tells us that the change in react I %It., when passing from gas to
solution phase is given b\ thle electrostatic solute-sol wilt iercion enrg ( i~e..
twice the Born's solvation energy contribution of the solvated active sites of' the
nucleophileC and electropilile. respectively ). We immcndziatelx see that such an ap-
proach does not include information concerning the variation of' thle electronic
structure of' thle reacting system From gas to Solution phase. We Propose then to
introduce electrostatic soksent elliects in both charge and orbital control contri-

I.et LIS ['11 rie q 2 1 for the sanme s\.stem in vacuum and Iin the presence of' the
Sok ~en t:

andi

rcs'pectixel.
Substraction of Eqs. and ( 4) gix es. f'or thle variation of the interaction energy

from gas 1o soIluion ph)Iase:

I? cic

7 [ ,,U) (F,() ,('/[M -_ C,( )

In deriving Eq. (6). a first order variation in the net charge

has been assumed wkith Qi the net charge onl atom A in) \acuon: higher terms have
been neglected.
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Equation (6) expresses the variation of the interaction energy between an hlec-
trophile and a nucleophile from gas to solution phase in terms ol'three contributions:
the first one corresponds to a Born-like solute-solvent electrostatic interaction en-
ergy: whereas tile second accounts for the charge polarization contribution. The
third term contains, in a complex way, the eftiect of the polarizable medium on thle
orbital control contribution.

This last term may he further simplified if we express the molecular orbital energy
shifting induced by electrostatic external eftlects according to tile model proposed
by Contreras and Aizman [8]:

5ie, - ,lo + iq .(e ,(8)
Io )KRC ,O

where the first term of Eq. ( 8 ) is the electronic polarization contribution of the Me
CF, [8]:

=', =KjF[?(. I~e)) -t(I. P(I)),I.I (v'))

whereas the second contribution represents the electron-solvent interaction, ex-
pressed in terms of the occupation number of the unperturbed MO I',. nO(i). and
the average reaction field potential.

Based on Eq. (6) and using the convention that the gas phase I.tuMO energy.
e,( I ). is a reference state ( i.e.. et ( I ) 0). we may write:

5('/ t(y). (10)

because the occupation number of the i M() is zero by definition.
From Eq. (8). the energy shifting of the I-UMo of the electrophile is expected to

be negligible as compared to the corresponding variation of the Iiomto '4 the nu-
cleophile [the second right hand term in Eq. (8) vanishes for the electrophile].
This approximation is valid for soft electrophiles and also for intermediate cases.
In those cases. the approximation bec< 0 may be used to gel the approximate

expression:
r -" Z [ c ._.•! )t c•( ) 12 _ [c~,,( I ) .c7,( I)121-

[ C]C ,c 0  )-c(I
•. 2 $• ,,-,\ F• [c'.,,(e'•c/ 1()]=" .. [c*'.,',( I )c7,(A I )J2 (1UC"M " "1 el (Ce) ee(1

Next. we introduce the orbital electrophilic superdelocalizabilitv index:

to 2e t p i e (12)

to get the approximate expression for the orbital-control contribution
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/32 i [S7:(e)( cY,())2 - S( ( I )i I )21 (13)

where S1'( I ) and Sl'(r) are the electrophilic superdelocalizability of the HOM(O of
the nucleophile in gas and solution phase, respectively.

Substitution of expression (13) into Eq. (6) gives the desired final result

-AE - I -- I/-] + 4
-e R R

Ni r

+ Z [S"()( "")l S02( ])(c/( W))2] (14)

Equation (14) expresses, in a rather simple way, the variation of the interaction
energy between an electrophile and a nucleophile from gas to solution phase.

Results and Discussion

In order to test the usefulness and reliability of the formulation presented above,
two classical reactions in solution will be discussed here, with the method imple-
mented at CNDO/2 level:

z
to A.D:
H,•( / 0 2-• x

. ....... -'H
H

zt
cH3

16A' I "H

H/ R

H

Figure I. Molecular modeling fbr the 1.3 internal return rearrangement of - and

(CIH on the aliyi substratc.
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1,3 Internal Ret urn , Ilvi" Rearracng'mel

The model for the migration of F and CH 3 on the allvl' frame is shown in
Figure 1. Barriers for the rearrangement were calculated in vacuum and in the
presence ofa highl. polarizable medium (e : 80). In the case ofCH ,local geometr\
optimization was included to account for inversion of configuration. In both cases.
gas phase calculations reveal a barrier for the 1.3 migration with a common transition
state consisting in an ion pair. This structure corresponds to the symmetrical form
of the complex (i.e., with the nucleophile located midpoint between the imaginar'
C-C3 axis). The unsymmetrical form, with the nucleophile associated to the ('
or Cl' ends, present substantial covalent character.

For the allyi+/F' system, the electrostatic solvation entails a reduction of the
barrier if about 50% (see Fig. 2). The overlap population analysis (see Table 1)
reveals that the ion pair degree increases with the strength of the rciction field. As
a result, a strong electrostatic solute-solvent interaction accounts for the reduction
of the barrier by a strong stabilization of the transition state. This anralysis reinfoices
the previous results reported on this sytem [10], where the hypothesis of'acid catalysis
was completely discarded [ I11].

In the case of the allyl'/CH3" system. electrostatic solvation effects produce a

ENERGY [KcaI/MoIj
120

100

80

601

40

20

0.6062 1.2126 1.8187 2.4249
REACTION COORDINATE JAG)

Figure 2. Barriers for F - migration in vacuum ()and solution ( )pll'se.
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bhrr.'.r reduction of' abitit 10", (see Fig. 3): in this cast, the overlap population
analysis s:kows that a significant covalent character in the transition state is present.
and no si mificant variations are observed with respect te the change of phase (sec
Table 1). As a result. a xýýeaker electrostatic solute-solvent interaction is operative
in this system VVW ma, then postulate, on the basis of the population analysis, that
the internal return rearrangement in the allvl /F sstem is charge cuntrolled.
,khereas for the all>yl '/(t! 3 s> stem. it is orbitall\ controlcd. We will show that the
same conclusion may be obtained through a formal i io) analysis based on
Eq. (14).

The study of the internal return rearrangement barrier entails the comparison
of total energies of the reiacting system from gas to solution phase. Equation (14)
gives onlh the interaction energy variation contribution to the barrier for this process.
A standard energy partition procedure is needed to correctly identity all the con-
tributing terms to the total energy varaation from gas to solution phase. This can
be seen from the 1fllowing argument. Let the total energy of the reacting 1 and B
systems in gas and solution phases he written as':

E,.( ):: :'( )+ /"/?l(1I) 4+ / l(I)( 5

aid

l-' thik rcl~i' ) ti t ) n t lrI)+l. po( )16)

%k' tii•aný a rtcferc:c 1')r Wt~ggctvrng toi relevant point
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I-Igure 3. Barriers for (' , migration in sacuum (it and solution - ) phase.

Subslraction of Eqs. ( 15) and (16) gives the total interaction energy variation
from gas to solution phase:

j -~ l:',,,,.1) + / i1, ) 4 6.1E (17)

-1 t. , 11. (ontribution to the total interaction energ. fOr fa) the internal return

rearrangement on als I' and (h) the alpha elfkct in the nucleophilic attack ot'0011
and OfI on p-nitrolphenyl acetate in solution.

Charge controP Orbital control'
Suhstratc Nucleophilc contribution contribution

AIlsl" f: -4.93 o. 3241"
('! ().I() 00.(,3d2

p-Nitrophen> I acetate Oif 2.,9 0, 1632
OOH 1-15 (.)7,12

"j Iis cotitribution is the mum of first and s%,'ond term, of.tq. ( 17 t and first and
second terms, of Eq. f14). ii electron vols.

"I Ilis contribution represents the third term of (q. ( 14. ill units ofI.
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tile It I N COCfhicents kof thle el ctrophi le xas 1 .00 1) Nin bt phalses or01 tile 1ils 1 1
anId a Il I \11 ( , I Ix ,StemI Ils. [hil' reut-CL IindicatS that. It~i tW I proeses Ct~ i !he it al

suercocl~aiIl In 1 abl I I \\C r'Cp`10 thle resul~ts A'1mrrne- I sine1! the lI)AV It HIll
olth i I'I1 i1)1era",t I , ncle rgý % ariIa ti k)n)s 1ronIII -i s I tosluto phI Io bot ws 111N1;I en II cIs ItI
maxI hk s~een ItV [lte Charg12Celollt r 1 Lc011110-1bu1 ioni Is he flead nerIcmic xii the
internal,1 reCtLur-n rcarraI~nIeenl tollr thle F Case. Ini thek (' II; situiti. on ih l arc
conlrIoli Contribution pla\ s againlst tihe process. \\ here-as thle orbitlJ cifint k' in ItI I-
button appears as tile Iri\ !I- Ijirce till thle rIrene t. 1Is aki) xxorill rliiofliuleth

that a gIohaI total energ \x anation of 'abott M) kcal m IlA s o~illmri ned ]I Ih I I I
ina close,, agreemlent xithl thle compI)cte caLcIrlaflon10 sunLr1i-ed i Il I hirre -

Tis], result Is reli nhaced h\ tile Cltct that. ill general. 'l,

[hicelm enhaced nucleophi lic reach xi\ It% A( )011 I\\ ith respect to A I inl s(Ai ii io
has heen thle obicct ofl'some research [ I -",I 3 J 1K Iopman and [-rivrs"iApM usi l
ariguct. Ill faxr kif a s eristi olxnt and orbilal tethca to cmla h 11 1he ins ersin

of reacti it. between hes twto n uLclepIC0)11Sles x Ii rspect toI hei reactI D u~n %5ilii I?'-

ii it ropnr IOI ace) ate 1 13 1. 1 heCSe an.t hors pnipo~sed a 1 %t( ) a nat Si s ba "!n a
phase :alculalion ,togehe Jxil q.III his conlus.Oionl wtas con brined bier ibs

( ontrm,ýs and A11i, manI [81 M10 hUsed a toirnalaisu accou n ting fim- thle \to cnclteres
shi ftii nr, nduced by electrostatie sol';ationl. [l)"o.-ser. tilts last appr(.oah x ;Is not1 a

tlrmai I \t, anal s~scisofthis ch ~mical process. We decided then Ito lex iluttssse
to make a I \ 1( I anItaIysis hased onI Fq. 1 1 -7 [h . reIst,ýi-C , Its (re is 01;axked in1 ;-I ab I I.
It Ina\ he seen that Ili total interaction energx \ariat ion I'rom teas t0-, siliiuiin phase:
is, lower In 00H)I than 'It 'Is 1ou011O accountnllg tol thle enaA- elisis
0011 ais COlompa red VItith 011 Inl S0luio.110

(oCluding Remnarks

sIn a prex rous theCoretical reSUlt gjix i g thle %V) r e neres li ft i tie Ii nIL uced h%
Oci tmostatic esternlaf el'cts. a I \1() !ohirnialsnII tbrt thle ehen-,i real reat r x-ii i si "IIitilI ii

Iia, beeni developed. Thie resulting simple expresNsion introdcesCC- aChar 'ge po)klari'ation1
con trihutim n in tile charge control term. The orbital cointrl cmiti)rihi it i is also
nmu~id fie(.b thle presenlce if a pola ri/ýhle niedilunl. and it is, exprcessed Iin I crnt ()I'
the a ri.tl~ icrofan orbital clectroph ihic superde-local i ahi li t\ index

'I ttx well1-known chemical reCt11011 ions hae bee anl sie I hie Iinternal retuiirn
rearrangement of I - and ("1 - onl thle alkxI ,substrate inl solultion is shown1 ito occur
b-. charge c-mintrol Iin the: t'Ormcr and orblital cii nlrmol iT ri teliter c I heitna, s

ofI the reacrtixitx pattern oW thet n uICleoph101 i;ttacIfA 01 ()()1 J Id a i I I t iss an Is
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p-nitrophenN Iacetate substrate in solution is in agreement w ith experimental data
and also in agreement with the accepted explanation of the solution alpha ekihct
observed in this system.
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A Fibered Space Approach to
Chemical Reaction Mechanisms

GLORIA E. MOYANO and J04. L. VILLAVl-('tS*
St11po d(e Qutt1 •a I•iirt. 1 )'l0o•r, ou it r t /t Qnni;: a1. tl dtc i•'r•iu/ad ta ,tt./ O ( ,"it

Sw•lal~ Fet act Bo~hi•'IJ, ( oh 1011114"

Abstract

In this article we generali/e the necessars conditions for a topological definition of the .oncept of
molecular structure, showxing thfti ; may he independent of the particular criterion ýhosen. as iong u-, it
fulfills some general conditions ano ;nay gie rise it the concept ofa calegor, ofstahle chemical stiucturcs.
We proceed to introduce a local metric in the objects of this catcgorý b,. using the propcrtievs c•f mc• ic
space bundles, and thisallows us to propose a general sstern of reaction mechanisms suthin mis frarnckork
of the theory of categories. We conclude b% proposing a single diagram tmiat enwmpascN mc holc
theor% of stable structures and reaction mechanisms. ,. 1'92 John \VWile & Sons. II,

Introduction

Theories of chemical structure are among the foundations of modern chemistir.
They originated in the second half of last century with attempts to establish spatial
organization for atoms within molecules in order to explain the existence of isomers.
It then became possible to explain the differences between chemical or physical
properties of molecules constituted by the same atoms in the same number as
originating in differences between geometrical arrangements of their atoms and to
explain chemical reactions as rearrangements, or modifications, of these geometries.
The development of quantum mechanics lead to the combination of these structural
models with quantum methods, transforming the search ot'configurations of min-
imum energy and the study of paths joining them within the potential energx hv-
persurface in central problems of chemistry.

However, there is one main shortcoming: these treatments are semiclassical.
They properly treat electrons as quantum particles, but treat nuclei as classical
entities. Thus they lack essential consistency in spite of their proven utility for the
theoretical study of chemical reactions. For this reason, in recent years, several
efforts have been made to overcome this problem by constructing topological (more
than geometrical ) definitions o6 the tutidamental concepts of chcmical struLture
and reaction mechanism.

Several proposals have been made in this respect [1 -4], some of them based (n
partitions over the nulear configuration space 15 1, taking advantage of some prop-

* IJ whom correspondence should te addressed.

International )ournal of Quantum ('hemistrs: Quantum (hemisir, Symposium 26. `6 I -771 H 9'92)
". 1992 John Wiley & Sons, Inc ( 110( 2 0 (1)2!h IIw2 I(-1761 - I
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erl-tes of molecular sx stemls such as electronic energý or electronic densits. computed
vwithin the Born-Oppenheimer approximation. More recently, somec steps toward
a genteral definition of chemnical structure. independent of thle somnewhat arbitrary
choice of particular criteria. have been given [ 6 1.

The interest of chemnists in a general theory of'structure lies fin the hope that this
may be useful in explaining molecular properties. parlicularlv. reactivity. Somec
authors 17.81 have stressed the need to refi~r. even in topological models,, to the
metric properties of the space. N1I. of nuclear configurations. in order to carrN on
local analysis related to spectroscopic properties and to establish the frontiers of'
sets representing chemical Structures when reaction mechanisms are defined.

As "e already have a general definition of'stable chemical structures 161. from
w\hich the particular one based on energy stable catchnient regions' or molecular
graphs may be obtained, we wish to generalize this definition, by, adding to it the
metric characteristics permitting us to carry on local analysis and to put forward a
general scheme of reaction mechanisms [9 1. More specifically, we will use fibered
spaces with metrical properties fIG] to define the mode! of'stable chemical structures.
and we will trv and establish the characteristics required in metric models of'stable
chemical structures in order to construct an abstract model of reaction mechanisms.

The Mletric Mlodel of Stable Chemical Structures

Let u. be a molecular system of N atomic nuclei and n electrons. For a given
electronic state of p. the Born-Oppenheimer energy functional, E( K). is well defined
over the reduced space of nuclear configurations, NiM.

In order to construct the metric model of stable chemical structures, let us consider
the set IK'1 whose elements K E Mi are such that

7RE(K) =0 and H-RE(K)>( (0

where Vi and HRl, are the gradient and the Hessian matrix operators in a system of
nuclear coordinates of NI. W'e consider that each one of these equilibrium config-
urations is representative of a configuration set corresponding to a stable chemical
structure.

;Gente ral dlefinition ol stable chemical structure giisen in Ref. 16 1 is based on proper partil ions of the
nuclear configuration space, [)ifterent partitions must lead to classes, each of' them containing points
whi~ch are equisalent to one energy minimum. Classes oorresponding to the same minimum must be
cquipotent in oider to obtain topologicallý equisalent definitions. 11.5.6 1 of' %table chemical structure
with the possible partitions. Stable catchment region topology, is presented as a ease fultilling the abose
condilotis. Since stable catvhment regions are associated with encrgý minima. theN lead to a torpological
definitiomn of molecular structure [6f, ditfirent to the one proposed bsý Me~ev Elf. who use%, ltir this
purpose. the catchmtent regions associated with all critical points of the hweprsurface.

[ Itie redluced space tI nuclear coiifigurations, is, well knows n h\ cliemists I his space i, looseR\ derined
xs the i 3 A -f'-dhrimensjo ma I space remaiin in g alter elimination oit the rotat ional an tutra nslat ion al degrees
Ofredn Ir(l11 lroni the 3A -dirnensional space ot the nuclear coordinates of i mIolecule e'Ontai now \ nuclei.
*A more rigorou. detinition has beenr gisen b %Ileic% as the space wshere the element,, Lire classes A oit
points oh "R corresponding, to rotations, and translatiiins ofi a partitolar nuclear geomct r% It iv, in)
generiral- a mi n-1 uclidean space



I:ollo\kl ng Mezex III, xC eCall D)."! the set conta ii lie the nc,' rts K " Mfo
w h ,ch F'IK) is 1101 \\ell deli ned, Ic~ause 11 the I)CersU riace IN a had da pprox i mat on

to the espected x a Le of electronic e~nerex ixe. "xhere the Born -O )ycnhifinciri it
proxiriation is not a good one. and hence. the Ii 1st and seconmd den ~atic ofls 1 [4K
are not xxell 'Ldefined.

Let us define:

i Am- i: 'r' - ; El 1. and K~,j a set Wt h the disRete topokog Ix he,
a representatixe elementof ).
(11-2 ): G -:K :. G and %I are the samec set. hut weC x ill Use di fflernt p u

for each one of them.ý
(.11-3 ): equixalence relations in MI.~. E/ El J . For a gixen CkjUi% LdenCe ri~ilikon.

%we definec a function. p. such that:

p G F~'

K -~K"'. jtfK - 1- :

K K, .- t'K K." 2

The idea is that if a nucler con tiguration of minim unii enrgy, is repcscntitae of'
a particular chemical structure. configurations corirespoindiig, to small geomnetry
detlormations xx ill represent the samne chemical structure ( thex wkill he eLIluIxalenlt ).
w~hereas large enough deformation -will gixe rise to difli~rent chemical strUCtures or
even to geometrical arrax s ofnuIClei not corresponding to aný Stahlc chemical struc-
ture. Relationship (2 ) f'ormalites this intuitive chemical notin of eqfuixalence.

Seeral ditlirent critera may he used to define equivaence relations: fr enample.
tw~o points may he equixalent if the steepes;t descent pathis from them lead ito the

Same mlinimum1 [I I6 Af or may nw e quix alent. if' they hax e the samei molec:ular
shape graphs f 21 or if' tihe has e the same miolecular graph ob-tained- from thcir
eharge density 14.61.

( 1-4 ): 1 is the set oh all functions. ,: 1' -~ C Vt * C T. stuch that p -id t1. As
TI i s a d isc rete topologi calI space. cx erx tu nct io(n C El I iS Cont In11Uo0UsN. I hen.r fu n ct ion
omaps eachti rnimmun on all its equlix alent configurations.

4.1- : a metric d: CG -* [0. -f IJ. such that:

rd( K2. K,) i y 1'P( k, P( K;

diK,. K q((K . K) if'p(k K) p(k)

xx here function q Is dcfincd b\

i K.ý K') min p(x i ~ K. C' C K':4

and. as has been shWnn I T Il 11 it has Al the properties (it a metric onl N1. Inl this,
defi nition. j, rcprcsýcnts the metric Of the IK rlihdeati 3 \-di meisitNllaIl sace hkim
"xxhih NI has been MObtie I.12 11 wse Wootnote 2 V In this xx aý a couplc oi points,

corrcespondf ig to ditleret chemical structures xx illlbe an i nfinite (histinec.- xx hereas
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for equi\alent points we retain the usual metric properties of nuLh.lear configura-
tion space.

A bundle of metric spaces maý be built wkith objects (l-I) to ( h1-5). because
they satisf\ the existence theorem for metric space bundles (see Appendix ). In the
usual language of the theory of metric space bundles [ 10, 13 1, the topological space.
T, is commonly called the basis space. and C is called the fibered space, Ior each
t E T. the set p '(t) is known as the fiber on t.

In other words. T is a discrete point set having as many points as stable chemical
structures may be obtained with the given set of nuclei. C is the nuclear configuration
space with subsets of the equivalent nuclear geometries corresponding to each
chemical structure. Each of these subsets is the fiber corresponding to the repre-
sentative point of the structure.

With metric d and the a functions we define the c-tubes around eacih a as the
sets of points of G, whose distance from a point of the image of a is less than a
given E > 0. The e-tubes are closely analogous to the open spheres of radius c. which
can be obtained in any metric space.

In the above-defined structure (G. p. T). G is the set of all nuclear geometries.
The topology generated by the r-tubes on G is equivalent to that obtained by the
disjoint union of subspaccs p '(t) of N.

In this context. subspaces

represent stable chemical structures, because p :j() is the set of contfigulations of
NI. chemically equivalents to one of thw 1 :7 K"'. acording to the paiticular
criterion chosen.

To a better understanding of the topology of G. we may remember that for each
fiber, p '(, t E 1T. the metric, d, is a restriction of the global metric. q 7 ], of Ni.
The "local metric." d, allows the retrieval of the characteristics of differentiability

of E(K) within each stable structure, i.e., within each A".
This is an important step. because the derivatives of the "potential" electronic

energy. E(K), allow local analysis in the chemically equivalent neighborhood of

each minimum.
We call d "local" hecausc it provides a metric tor each separated chenical struc-

ture. For different chemical structures, the distance is infinity and they may not be

compared with this criterion. This has the advantage over a global metric. In a
global metric. two different points in N1 located at a distance. r. may or may not

correspond to the same chemical structure. and thus. one does not have a good
criterion to dctine a chemical structure. The particular criterion that may be used
to build these metric models of chemical structure should lead to topologically
equivalent definitions: i.e.. they should lead to the construction of a set of objects
(G. p, 1) having in common the same space T and a set of isomorphisms.

U: (G, p. T)- (G.P', (6)

I he morphism. Iv ,,ketn oblctts ( C. p.] are continuoutt,, Ificiuon. Ii i't v, ad katih i U a i' -i, wl- qphisn'l

it and onIk ilit et•ists a morphirn ui . . p'. ) -' (G. p. I I %%ith ii I i• t, (the identlit oer e G)
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such that the diagram

U: G G,

'U t ) I

commutes.
G is the reduced space of nuclear configurations endowed with some structure

according to the particular criterion chosen for the definition of equihalent points.
Let us say. tor example. equivalent points corresponding to the same chemical
structure are all those having steepest descent paths that lead to the same minimum
in the potential energy hvpersurface [1,6]: p is the projection function that maps
all these equivalent points on the minimum. K . and 1 is the point sel containing
one point for each chemical structure.

G' is analogous to G but with a different criterion, e.g.. in G' those points
having the same molecular graph are equivalent, and p' is the corresponding
projector [ 3.4,6 ].

What the commutability of Di means for any criterion of equivalence chosen
fulfills the given conditions is that all these criteria give rise to equivalent formal
results. and the concept of chemical structure contains that which is common to
all of them.

The set of objects and morphisms mentioned in the former lines conforms a
mathematical structure called a category [ 13 1. and thus, we have defined the caleor.l'
(1f stahle nit'a/I truct tres.

The existence of isomorphisms between two models (G. p. T) is possible for a
discrete T only if the restrictions , i and r,, are V -isomorphic. Here. c - (G. p.
"T) and 71 = (G'. p'. T) an(i V'_c T. That Is. from local isomorpfisms representing
the same chemical structure, we obtain, quite natluaily. global IsonMoirphisms be-
tween all possible structures for a given molecuiar sksticn and, hence, an equivalence
between all definitions of stable chemical st uctures.

Toward a General System of Reaclion Mechanisms

.,% subject of major importance in chemistry is the study of reaction iechanisns.
1:roin a topological point of view it has been treated in se'eral x.a\s, One \,%y as
been to propose a formai definition ofa reaction mechanism: cither as a homotop|
ciass of paths on N it. 14]. ie.. as sets of continuous paths that can be transformed
continuouslk into each other: or. in catastrophe theor- context. as structural dis-
continuous changes produced in response to smooth ,hangcs in certain parameters
(control parameters) governing the system behavior [ 15 1.

On the other hand, eltlrts have been made to establish. for a given chelmical
- stem, all possible reaction mechanisms. b•-icd on f61umal deiinmions. and to anail/c

the mathematidal structure (e.g.. the group structure [14] ) of the complete set of
reaction mechanisms.
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Our proposal is in the latter sensL. We take for this purpose an approach based
on Mezey's definition of a regular reaction mechanism [ 11. Nevertheless, we try to
apply it to sets obtained from general criteria, of which the one based in steepest
descent paths on the energy hypersurface is just a particular one.

For any partitioning scheme ofNM. the procedure to find possible reaction mech-
anisms consists in determinirg the frontiers, with respect to the global metric of
the nuclear configurations space, of every set representing a chemical structure.
and to determine, for each pair of such sets. if the intersection of their closures in
the global metric topology is nonempty [1.4]. which implies the pos,,ibility of con-
necting such a pair by means of a reaction mechanism.

Mezev defines, for the particular case of energy catchment regions, a neighborhood
relationship, N, allowing one to study a reaction mechanism algebraically [1. 141
in a similar way that is done with an interrupting circuit: i.e.. assigning the values
1 and 0 to the possibility or impossibility, respectively, of connecting the two struc-
tures by means of a reaction mechanism. The purpose ofthis section is to generalize
the neighborhood relationship. N, by allowing it to be applied to any model of
chemical structures belonging to the same category. in order to obtain equivalent
networks of reaction mechanisms.

The expression that we shall use to define the general neighborhood relationship.
N, is:

N I ifA• A(" *0N=~'A" (7)

[0 in every other case

where A"' is the closure of A"' in the global metric. The most current situation.
and perhaps the most important one from a chemical point of view, arrives when
mechanisms in which two sets associated with two different energy minima are
neighbors, i.e., when the intersection of the closures of the pair of sets with respect
to the global metric of M is not empty. In this case, one talks about a regular
mechanism [I]. We can visualize the difference set. (A(" -- A'). the frontier of'
A"' (in the global metric). as that containing the unstable intermediate structures
of the reaction mechanisms.

We will try and obtain the conditions for relationship (7) to give equivalent
reaction mechanisms. when applied to equivalent models of structure. This is not
an arbitrary restriction, but an essential one in order to have a coherent general
model of chemical structure and reaction mechanisms. That is, if in a particular
realization of the general model, we can establish a reaction mechanism involking
a given couple of chemical structures, we must reach the same conclusion by working
with any other particular realization of the model. In the following, we try to de-
termine the implications brought by the mentioned restriction for objects and
morphisms in the category of stable chemical structures.

The metric of model (G. p. T) of stable chemical structure does not possess the
global zharacteristics that would allow immediate application in G of neighborhood
relations. N. Nevertheless, it is possible to characterize the metric models of structure
leading to the equivalent reaction mechanism, by relating G and NI by means of
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the identity application id: C -- NI. Clearly, id: p '(t) -• G, is continuous and
each p 1(t). t E T is both open and closed in the topology of G. Accordingly, the
topology of G is finer than that of M. and hence, the function id: G - NI is
continuous. The possibility of building equivalent networks of regular reaction
mechanisms implies, on the first hand, the necessary existence of morphisms, M,
between each pair of objects (G. p, T) and (G'. p', "'I) such that if A and B are the
closures with respect to the global metric q of any pair of sets representing stable
chemical structures, then:

A, BCG

ifA n B # 0 -- m(A) n mn(B) 0 0,

and if A n B 0 -- W(A) n1 m(B) = 0
Every isomorphism, u: (G, p. T) (G', p'. T). of the stable chemical structures
category satisfy the former condition, due to the fact that tbr every function f:
Y - Z. if f is one-to-one and onto and (X,),,I is an arbitrary family of subsets
belonging to Y. then [161

J(, x,)= n.,n(x,) (9)

implying that, for any pair, A, B, whenever A. B C G. if A n B 0 •. then
u(A () B) = u(A) n u(B) * 0, because u is one-to-one and onto, and if A n
B = 0, then u(A n B) u(A) nu(B) = 0.

As a consequence of this result, if we can guarantee in some way that the iso-
morphism, u. relates each set of G corresponding to a stable structure plus its
frontier, AG', with the set corresponding in G' to the same stable structure plus its
frontier. A(G, then all reaction mechanisms between every pair of sets of G will
also be reaction mechanisms for the corresponding sets of G'. The isomorphisms
of the category of stable chemical structures relate each structure A(; in G with
A,, in G', but it is then necessary to extend the relationship to one between each
pair AG), AC(,. That is. it is necessary that the same isomorphisms, u, relate the
closures, with respect to the global metric of M, of sets representing stable chemical
structures in model (G, p, T) to the closures of the corresponding stable structures
in (G', p', T), with respect to M'.4 That is, there should exist isomorphisms u:
G -- G', that may be extended to homeomorphisms u': M -- M' such that the
following diagram commutes:

U: G,•G

id id'

U': M M' (D2)

' M' is the same as M. but for clarity we designate it with a prime.
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This is a condition satisfied by e'.ery isomorphisin u: (G, p, T) -- (G', p'. T) tbr
which u and u ' are uniformly continuous, because id: C - M and id': G' NI'
are uniformlv continuous as well (see Appendix). and if we define subset R of .N
(and G)

R = U3 A"' U ini.NI(A•,,•,) (10)
'le

where the A"). i E 1, represent the p-'(K"'-)) for each K"('' e T and
int,N, (A,,,,) represent the interior of A.., i.e.. of p '(K,,,i) in the topology of NI
(the one associated to the global metric). This means that each A") is the set
corresponding to a stable chemical structure in G. The A") are disjoint, open sets
in M (see Appendix) and Ni is connected; accordingly, A .. is closed because of

MI= U A"' (11)

R is dense in M, due to the fact that

R = U A") U intN, (A..) = U A"') U Al (12)
lEi ic1

then

U A)( U Ae,.,i = U A") U A,.•.t = M (13)
iEi i

Let us consider that R has the topology induced by that of M, i.e.. R is a subspace
of M. R is also a subspace of G because G is the disjoint union of A"' and the
Ae., each one of them with the topology induced by that of M.

The restriction of u: G - ' to R is uniformly continuous [ 16 1, and the function
k = idou: G -- G' -- M' is uniformly continuous, being the composite of two
uniformly continuous functions. Then, the restriction, k I R: R -- M', is uniformly
continuous. Every function, kI R,, uniformly continuous, defined in a dense sub-
space. R, of a uniform space M, taking its values in a uniform and complete
Hausdoiff space, M', may be extended [16] to a unique function, k, uniformly
continuous, of n in M', k: M -- M'.

Isomorphisms u: G -- G' are also isomorphisms at the fiber level, meaning that
the restriction of u to A ..I C G is an isomorphism between A•,, and A',,,,. where
A,,, CG'.

The restrictions

k i A_,: A,, -- M' A k At,,,' A,,,, -- M' (14)

are uniformly continuous.
Let us remember that they both coincide in the interior with respect to M of

A,.,,, and also that int%, (A,,,,) is a dense subset of A•,, (in the subspaces topology

of NI). Accordingly, if the extension of kII is unique, then kI A,,,, and kI A, are
identical. This implies that k: NI - ' is one-to-one, onto, and uniformly contin-
uous. One may apply the same arguments to u in order to conclude that (k,
is one-to-one, onto, and uniformly continuous, i.e., k is a homeomorphism.
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Summarizing, this result ma\ be expressed as tollowks: the unitbrmlv continuous
isomorphisms of the categories here defined relate sets corresponding to the same
stable chemical structure plus its frontier. B\ different definitions we can build
equivalent systems of chemical structure in the sense that they belong to the same
category and hence. these isomorphisms guarantee equivalence in reaction mech-
anisms.

Conclusion

The characteristics of the metric model of chemical structure and reactivity pre-
sented herein may be expressed by means of the following commuting diagram:

u': M N'M

id id'

U: G

T (D3)

which, in the inferior, triangular, part expresses the equivalence condition in the
particular realizations of the concept of structure, and in the superior, square, part
expresses the equivalence in algebraic systems of reactivity associated to each one
of the particular criteria of structure discussed.
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Appendix

Aleric Spaces Bundle

Definitions:

(a) G and T are topological spaces
(b) p: G - T is a continuous and onto function
(c) d isa metric d: G X G - 0 [0, +.,] for p, satisfying:

(c-I) Vu, v E G, p(u) * p(v) '- d(u, =+-f

(c-2) Vu. v E G, d(u, v) = 0 - u v

(c-3) Vu, v E G, d(v, u) = d(u, v)

(c-4) Vu, v, w E G, d(u, v) _< d(u, w) + d(w, v)
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(d) a: U -- G, where U is open in T, is a continuous function, called local
section, such that poa = id U (the identity in U)

(e) Te(a) = { u E G: p(u) C U = dom a. A. d(u, a(p(u))) < ec (where dom
a is the domain of a) is a set known as the c-tube around a.

The triple of (G, p, T) is called a bundle of metric spaces, if Vu C G and Ve >
0, 3a: u E T(a). and if the collection of the T(a), e > 0, Va form a basis for the
topology of G [10 ].

Theorem o'f, Existence of ,etric Space Bundles

(a) T a topological space
(b) p: G -- T an onto function
(c) 1 a set of functions a: U -• G (U an open of T). such that Va. p-a = id U
(d) d a metric for p.

If the following conditions are satisfied [10]:
(E-I) )Vu C G A Ve>O, 3a E 1: u C- T(a), and
(E-2) Ve > 0 A V(a, 0) C " X 1. the set { t C T: d(a(t). 3(t)) <c } is open in T.

then G may be given a topology 7, such that:
(T--1) T has a basis spanned by the TAa). where - > 0 and a lt is the restriction
to an open U C dom a. of a function a C 1.
( T-2) Each a E 1 is continuous, and
(T-3) (G. p. T) is a bundle of metric spaces.

For objects (Al-I ) to (M-5):
Given any u C G, the function a(p(u)) = u belongs to '2, because p(u) is a subset
ofT and poa(p(u)) = id (p(u)). Then u C5 T,(a), where

T,(a) = {x E G: p(x) C dom a, A, d(x., a(p(x))) < e, Ve > 0I,

because p(u) belongs to dom a and d(u. a(p(u))) = 0. In this way. (L-1 ) and (I,-
2) is satisfied. because, given any couple (a, #) C- X I-, a: U, -" G, /3:
U, -- G y U., U2 C T, then subset ) t C T: d(a(t), 0(t)) < c V, > 0 } is a part U3

of T and, as T has the discrete topology, it is an open set of T.
In order to show that isomorphisms u: (G, p, T) -- (G', p'. T), such that u v

u I are uniformly continuous, may be extended to homcomorphisms in such a
way that Diagram (D2) commutes, it is necessary to remember that:

(a) M and G are Hausdorff spaces because they are metric spaces.
(b) M and G are metric spaces and then they are uniforms. with a uniformity

U. where U is the collection of sets Ur ) (-, 1) E X X X. 63(x-, ) < c
Ve > 0 If, where X is the metric space and 6 is its metric [16].

(c) From (b) it follows that the uniformity of G is finer than that of NI. which
is a condition [16] for function id: G -- M to be uniformly continuous.

(d) We consider that the catchment region A"•'( of a minimum is an open set
in the metric topology of the reduced nuclear configuration space.

(e) 3"R is connected, because it is the 3N-dimensional Euclidean space. Hence,
M, which is a quotient space of 3'R, is also connected [16].
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(f) 3"R is complete, and N1 is obtained by taking the quotient of "R with
respect to equivalence classes K, closed [17] in the topology of' "'R And.
as N1 does not have isolated points, it follows that NI is complete.
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On the Additivity and Interference of Interactions
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Abstract

There is a very simple criterion showing whether two (or mtre) ilamiltonians (tescrlN5 strictl. addocis
effects. Based on this criterion, an attempt is made to develop techniques that "ould permit trcatmenl
of ditferent not strictly additive interactions by separating out their components. % hich can he considered
strictly additive, and describing the nonadditi,,e ( interfercnce I eft1cts as some perturbation. As a first
result, a promising scheme has hen dci eloped for estimating matrix cigenalucs I,, an N procedurc.
x, 1992 John Wile% & Sons. Inc.

Introduction

Considering different physical and chemical problems, one often encounters a
situation in which some almost additive effects can be recognized. Nevertheless,
such quasi-additivity usually is not utilized explicitly in the quantum chemical
theories, owing to the absence of a proper formalism. (Implicitly, of course. all
theories utilize some additivity assumptions.) We have started, therefore. to develop
special techniques for treating quasi-additive interactions, hoping that this will lead
to results which are useful both in understanding chemical phenomena and in
facilitating their treatment in the framework of ah initio quantum chemical theory.

Criterion of Additivity

Let li't and H8 be two Hamiltonians describing strictly additive interactions.
This means that each eigenstate of the system can be characterized by a pair of
indices i and j such that the energy is equal to E,* + E". If these Hamiltonians
are defined over finite basis sets of dimensions m., and mr1 , then the total Hamil-
tonian = H.1, + Hy should be defined over a space of dimension m.., × mr1 ,
spanned by a basis obtained as (properly antisymmetrized) products of the two
basis sets. The matrix elements of the Hamiltonians can then be characterized by
two pairs of indices (e.g., HI,,)(k1)). It is easily seen that the Hamiltonian matrix It
will describe strictly additive interactions t"' and 11' if its matrix elements can be
given as (or can be transformed to)

II010kl) = H11,1j + jiAtlj/ (I)

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 773-779 (1992)
• 1992 John Wiley & Sons, Inc. CCC 0020-7601t/92/0i0773-07
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or. in matrix form:

I] I tol I' 110i (2)

where I ' and 11" are the ni, X m., and mti, X ml, unit matrices. respectivel,. In the
strictly additive case, the eigenvector c of the secular equation lie -: /,'c %kill also
represent direct products of the cigenvectors [ I ] obtained 1or the individual problems
111c-1= Ec;' and 1"'c' = E.c z. respectivel: C,,: c ' ® 0',. So, the additive

eigenvalue equation becomes

( i' ® 1" + I' ® 1 )(cl® c -c" (1:') 4 E,)(c,' ® c') (3)

Any nonadditivity can be characterized as a deviation from this equation. Two
types of effects can cause such deviations. There may be terms of the I lamiltonian
which are not exactly equal to the values predicted by the strictly additive scheme.
We may call them direct nonadditive interaction terms. Another type of eftkct is
connected with the differences in the dimensions of the actual eigenvalue problem
and that of the strictly additive model. due, for example, to the Pauli exclusion
principle. This causes nonadditivity which may be called interference of interactions.
It appears that effects of this type should be responsible for some characteristic
chemical phenomena.

Some Generalizations

Generalization to the case of three or more Hamiltonians can trivially be done
by induction. So the Hamiltonian matrix in the case of three strictly additive in-
teractions I'i'" W, and tI' has the form

it = n @ ® !o+ II+ 1101® I0'-f 1 ® l® !i!, (4)

The eigenvectors in the strictly additive case arc c,,A = c,' ® c'? ® c'1 . the cigenvalues
E-,, EI' + EF + E',

Generalization to the overlapping basis sets can also be done easiv. If matrices
II '" and 1t H are referred to nonorthogonal basis sets with the overlap matrices S
and S", respectively, then the strictly additive composite eigenvalue equation be-
comes

(t' (® S11 + S' ®g t)(c' 1 ® e') (E,' 4 E7)(S'1 0 S)(cl'® ) (5)

X3.
Fiur 1. m

Figure I. The simple two-electron model discussed in ihe text.
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0 0.4 0. 2 -0. 3 0.4 0.9

0.4 2.0 0.2 -0.2 0.12 0.2

0.2 0.2 3.0 0. 3 -0. 3 -0.2

-0.3 -0.2 0. 3 1.0 0. 0.1

0.4 0.12 -0. 3 0.2 L.0 -0.1a

0.5 0.2 -0.? 0.1 -0.12 1.8

-1 3

**-'--3 ,- .-

Figure 2. A 6 X 6 matrix and the performance of our scheme as compared with that of

the standard PT in approximating its lowest eigenvalue. (The horizontal full and dashed
lines represent the exact solution and the result of our approximation, respectively.)

Nonadditivity as a Perturbation

If the Hamiltonian matrix H describes a quasi-additive situation in which one
can recognize the almost (but not strictly) additive interactions described by the
Hamiltonians /i- and II1, with known solutions, then the strictly additive Ham-
iltonian Hto = t!A (& I + I At ® H R can be introduced as an unperturbed Hamiltonian
and the difference V = H - Ho as a perturbation. The secular equation becomes

(H° + V)(c1 0 ci" + Ac,,) = (E,, + E + AE,,)(c,' 0 cf, + Ace,), (6)

and can be treated by usual perturbation theory.
Usual second-order PT often gives additive contributions, but none of the inter-

actions is treated exactly. Our scheme permits exact treatment of individual inter-
actions, and only the deviations from the additivity are treated by PT.

In the overlapping case, H" is given as

11t = Ht' 0 S" + S" OH ,
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- Q

Figure I A 10 X 10 matrix and the performance of our scheme as compared %kith that
of the sta~ndard PT in approximating its lowest eigen'.alue. (The notations are the same

as on Fig. 2.1

and one has to introduce also the deviation (if any) of~ the overlap matrix as -IS -

S - S' ® SB. One then obtains a nonlinear perturbational equation

(11" + V - EAS)(cl" ® c!3 + .Acj,

(E' + E, + AE,,)(S ®9 S'")(c-' 9 c" 4 A) (7)

which is to be treated in an iterative manner. (On the left-hand side E = E, +
,+ AE, of course.)

In the cases of interferences caused by the exclusion principle, the Hamiltonian
1n is defined over a linear space of a dimension mi <an., X moh. In such a case one
has to extend the space by introducing pnrtural, - m u additional abstract (non-
physical) states, requiring that they should not interact with the physical ones. (The
off-diagonal elements of the Hi-matrix should be zero.) Under these conditions the
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Figure -4. A\ 6 6 matixs and ithe pertlormance ol our schemec as compared ýAilh that of
the stan( Ar V' in approximating iW, Ionsest eigensalue. iI he notairons are the s"jo1c as

on Fig. 2.)

inclusion of the nonphysical states will not influence the physical solutions. hut
will only lead to somne nonphysical solutions of the secular equation, which should
be simply discarded. At the same time, the introduction of these nonphysical states
may be important for separating out the strictly additive components of the inter-
actions.

The Simplest Physical Model

Two electrons of the same spin occupy mainly orbitals X, and X, but can also
undergo some delocalizations to a third orbital X ' . Situations of this type occur.
for example. within any electron -correlation problem: the absence of a full additivitv
of the pair correlation energies shou!d he partly connected with the impossibility,
of excitations in which both pairs utilize the same virtual orbital (Fig. I.

The excitations X, -- * X3 and X2 -~ X,~ give an additive energy correction in the
second-order PT. but dot not represent truly additive effects, mainly because the
Pauli principle does not permit a state with both electrons excited to X3~. The Ham-
iltonian matrix is (taking the energy of the state I X7IX'S, > as zero):
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We define the extended eigenvalue problem having the same physical solutions
(and also an unimportant nonphysical one) with the Hamiltonian matrix

1t ' -- a c e 0

be d 0
00 0 C +dý

This matrix can be considered as the sum of the unperturbed additive Hamiltonian
(direct product) describing the two delocalizations as they were independent. and
a perturbation: ti' = t11 + V. where

0a h 0 
/0 0 0

h 0 d a V c 0 h V0 -

0 b a c'+d 0- -a

One can transform V to the basis ofeigenvectors of the auxiliary strictly additive
problem as V - (U- ' U ")"V( U4 ® .9 U and then standard PT can be used to
"account for nonadditivity.

Estimating Matrix Eigenvalues
We need a method for estimating how much the lowest eigenvalue differs from

the coiresponding diagonal matrix element IttN,. We first make an additive esti-
mation based on the exact solution of all 2 X 2 eigenvalue problems of the matrices

( ,0 A), )

i.e., sum the "energy lowerings" predicted by all such subproblems [ 3]. Nonad-
ditivity corrections then are calculated for each pair i <j of"excitations." i.e., for
the 3 X 3 matrices

0 110, 110,

1t,0 It,,-tt( 1 II .
1 111, I,)

This is performed by using second-order PT following the scheme described for
the previous simple model. (Exact solution for the 3 X 3 matrices may also be
done.) Our experience is that this method always gives reliable estimations, even
if the off-diagonal matrix elements are large and standard PT is badly divergent.

Examples

Figures 2 to 4 show examples of small matrices for which the off-diagonal matrix
elements are large enough to make the usual Rayleigh-Schrodinger PT either con-



ADDI)VI1Y AND IN RF-RITRUNCI 01 INMrRACIIONS 779

verge rather slowly or be divergent. At the same time our scheme of estimating the

lowest eigenvalue in all cases gives very good approximations to the exact cigen-

values. Of course, in the cases when standard PT convergence is rapid, the new

scheme does not fail either: in pra'tical examples it always gave results better than

fourth-order PT. although it is easily seen that our scheme is only a - V procedure.

Discussion

The primary aim of this work has been not to develop a new scheme of'estimating

matrix eigenvalues (although it may be useful as well), but rather to illustrate that

the idea of introducing auxiliary siricttl' additive problems and then treat nomad-

ditivity as a perturbation is a promising one: it does work in the simplest cases and

even in models which exhibit considerable deviations from the strictly additive

limit. This success will motivate us to apply the approach in different actual problems

of quantum chemical theory.
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Abstract

The C2Q potential energy curves for the interaction of Ga. Ga', and Ga2' with the hydrogen molecule
were calculated using the pseudopotential method of Durand et al. and triple-" raussian basis sets,
Electronic correlation has been taken into account by IR(-i + MtP2 calculations. We studied the 2 B1,4p),
2A.(4p), 2A,(5s). and 'B2(5p) surfaces for the Ga + H2. the 'A,. 'B>, and 'B2 surfaces for Ga' + H, and
the 2A(4s) 2B2, and 2Al(5s) surfaces for the Ga' + H2 reaction. We first analyzed the unrela'ed H,
approach to the metallic center, followed by the angle relaxation. The reactivity in all the interactions
studied are analyzed with a model mechanism. previously proposed by us. : 1t92 John Nvil'v & Sons- tinc

Introduction

Experimental and theoretical studies of group (Il1). (IV), and (V)-hydrides have
recently been increasing in number [1-3, and references therein]. Many of these
hydrides are sou ces for the corresponding elements to generate semiconductor
layers comprising these elements in chemical vapor deposition (CVD). Therefore.
the bond energies. ionization potentials, and appearance potentials of such hydrides
have been the topic of several studies. Theoretical calculations may be quite valuable
for the elucidation of the low-lying electronic states and the computation of bond
energies and adiabatic ionization potentials [3].

On the other hand, the quantum chemical study of AH 2 (where A is a p-block
element) systems and their ions helps to understand the nature of bonding and
reactivity trends in p-block elements. Also, these systems serve like models for
chemisorption and catalysis studies. Especially, gallium is used to substitute alu-
minum in zeolitic materials [4]. Gallium-containing zeolites for light paraffin aro-
matization have received considerable attention and have been suggested an inter-
mediate Bronsted acid strength with respect to the boron- and aluminium-containing
forms [5].

* Also at FFS-Cuautitlin, UNAM. Mýxico.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26. 78t-791 (1992)
c. 1992 John Wiley & Sons. Inc. ('('( )020-7609/92/4t10781-11
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Balasubramanian has investigated the geometries and the bond energies of Gall,,
and GaH,W (n = 1-3) complexes, through CASSCI'FJ/SO(7I calculations using pseudo-
potentials [2]. For Gall2 the ground state was found to be a 2 A, bent state (r,. -
1.58 A, t = 120,30) while the ground state ofGata is a '_' linear closed-shell
state. The configuration for the 2A, ground state of GaH_ was missing in that report
but it is mentioned to have a coefficient of 0.97, both at the saddle point and at
the bent minimum on the calculated potential energy surface. The Mulliken pop-
ulation analyses exhibit Ga(2.87), H(1.03). and Ga(2.17). 1H(0.92) gross xalence
populations for the ground states of GaH_ and GaH_. respectively.

Armentrout has reported preliminary experimental work of the Ga' 4 D. re-
action using guided ion-beam tandem spectrometry [6). He has found a similar
behavior to that for Al' + D2 ; there is an apparent threshold of about 9 eV but the
relation with electronic states is not mentioned.

Mitchell et al. have encountered an extremely low cross section for quenching
Ga (2S excited state) atoms by H2 in gas phase experiments, in contrast with the
case of methane [7]. From this and from a similar study for Al using the matrix
isolation technique, Parnis and Ozin have concluded that the occupation of a valence
p orbital is not always an essential factor in these reactions, particularly when an
insertion mechanism is involved [8].

In this work we report the potential energy surfaces for Ga, Ga', and Ga2' in-
teracting with the H2 molecule. We studied the ground state and some excited states
for each reaction. First, we approach H, to the metal atom keeping the H - H
bond unrelaxed, and then we relax it with the M - H distance fixed for the Ga +
H2 and Ga÷ + H2 reactions. For the Ga24 + H2 reaction we just present the unrelaxed
"-urves. Once the minima have been localized we proceed to fully optimize these
points.

Also we analyzed the results in the light of our model proposed for the Zn, Zn'
and Zn2+ + H2 interactions [9], based on the conclusion [1,10-12) that the reactivity
of the M' + H2 reactions is controlled by the electronic configuration of M', whether
it corresponds to the ground or to an excited state, and not simply by the multiplicity
or the total angular momentum or the relative energetic position of the electronic
state under consideration.

Computational Details

Self-consistent field (SCF) and Multiconfiguration SCF for the excited states fol-
lowed by Multireference configuration interaction (MRCI) + second-order M6ller-
Plesset (MP2) perturbative calculations were performed for the lowest electronic
states of Ga + H2, Ga4 + H2, and Ga2

1 + H2.
The SCF calculations were made with the PSHF code, a modified version of the

HONDO program which uses the pseudopotential method of Durand et al. [ 13]. We
are thus left with an [Ar]3d'° core and 3 valence electrons (4s 24p') for the gallium
atom. The pseudopotential parameters can be found in Ref. [141. The gallium
gaussian basis set with contraction is of triple-" quality for the 4s, 4p shells and a
d-type polarization function. The s and p exponents and coefficients were taken
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from Ref. [151. This s and p basis was augmented with the two diffuse s and p
orbitals and the d-type polarization function of Kim and Balasubramanian [161,
since we were interested in studying excited states which differ in a unit on the
principal quantum number from the ground state.

The calculated energy differences for the lower part of the atomic spectrum for
Ga [ 171 are in good agreement with experimental results and can be seen as asymp-
totes to the right in Figure 1.

The MCSCF algorithm [ 181 was used to determine the optimal molecular orbital
(MO) set to be used in the MRCI treatment. For the open-shell states we first make
a restricted-ScF calculation and then we improve the molecular orbitals doing a
MCSCF calculation using only the configuration of interest. In the closed-shell cases
we use directly in the MRC1 treatment the RSCF optimal molecular orbitals.

The variational and perturbational (second-order Moller-Plesset) MRCI calcu-
lations were carried out using the CIPSi algorithm 119] in its three class version 1201.
Firstly, a reference space S containing NCF determinants is diagonalized and used
to generate the perturbational space P. Then, a much larger space (S -+- 1) is used
to obtain a better variational energy but it does not generate any more determinants
in the already fixed space P. Finally, one must substract the contribution of A! from
the overall perturbational energy originally calculated in P. This means that A! (a
subset of P) is composed of the determinants in P having the largest MP2 coefficients,
In the present calculations, S, M,. and Pcontain approximately 20, 2000, and 200 000
determinants. respectively.

In practice. the size of the reference space S is determined by the norm (using
the intermediate normalization) of the resulting perturbational part of the wave
function. The ratio norm(M)/norm(P) is closely related to the ratio variational/
(perturbational + "ariational) contributions to the total energy and it was used as
a measure of the relative quality of the description of all the studied states.

Results and Discussion

In Figure 1 we present the C2, potential energy surfaces corresponding to the Ga
+ H2 reactions. Figure 1(a) shows the curves for the unrelaxed approach of H2 (at
its equilibrium geometry of 1.4 a.u.) to Ga in four of the lowest states, 2B2(4p),
2A1(4p). 2A,(5s), and 2B2(5p) which are diabatically related to the (2P;4s24p.),
(2P;4s24p'), (2S;4s 25s'). and (2P;4s 25p .) atomic states of gallium, respectively. All
these curves are totally repulsive.

In order to see if these curves would go down when one allows the hydrogen
molecule to break, we followed the well-known strategy of opening the H -Ga - H
angle while keeping the Ga-- H distance fixed. Now, if any of the unrelaxed ap-
proach surfaces presents a well we can use the equilibrium distance of that minimum
to keep it fixed while allowing the angle relaxation. Nevertheless, since we lacked
any criterion to tell us what Ga--1 distance would be suitable for our purpose,
we decided to work with the Ga - H distance which results from considering the
arbitrarily chosen Ga---H 2 distance of 2 A (3.84 a.u.).

Figure 1(b) shows the surfaces corresponding to the celaxation of the H - H
distance, keeping now the Ga- H distance at 3.84 a. a. The I 2B2 and 22B2 curves
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Figure 1. (a) C 2, potential energy surfaces for four of the lowest electronic states of GaH 2

as a function of the Ga -- HI distance. Keeping H? at its equilibrium distance of 1.41 a.u.:
(b) C2. potential energy surfaces for four of the lowest electronic states of Gall, as a
function of the H --- Ga -- H angle (in degrees). Ga-- H distance for each state was kept

constant at 2 A.
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higher than the C;a ( SI I ll(,r) 'ragnients ssth a (,a II dislaTce ]f 2.,l" a F.

In Figure 3 we show the surfaces corresponding to the unrelased approach of !1,
to Ga* leading to the I "AI (ground state). I113,, 2-A,. . 3\. and 4-',A states.
adiabatically correlated with the Ga"*(- S:4s'4) 14 a'T). C.;a( P:4s14p- , i ( .
Ga >"P4p, + ll4 1,7'L Ga W'(!:4p') ± Ha(), (aT'(S:4sS 4 tIsl). anld
Ga (-S:5s) -+ t 1(af) fragments, respectisel\.

The ground state has a well at a distance of 3.5) a.u. -,hich lies 30.6 kcal/mol
belov, the (ia:'(:S,4s') + -[, fragments. The I -B2 and the 2"B. surfaces shov\ an
asoided crossing at a distance of 6.24 a.u, The 1 'B, state then. has a %\ell at 3.21
a.u. and 96.9 kcal/mol deep with respect to the diabaticall\ correlated Ga2 '('P) t
Il_ fragments (we recall that all the well depths are corrected for the error at the
dissociated fragments). The 2"A, surtace has a well in the region of the asoided
crossing of the 'B1 cures. This minimum lies 47.0 kcal/mol below the Ga:( P) ¶

H2 fragments at a distance of 5.57 a.u.
The 3-'Al and 4'A; states also present an aoided crossing at a distance of 6.24

a.u. This produces a well 82.9 kcal/mol deep at a distance of 3.31 aJu. for the 3-A!
state with respect to the Ga2 '('S-:5s1 4 111 fragments.
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Figure 3. (', potential energN surfaces for four of the lowest states of~ia i" as a funcltion
of the Ga2' H, distance. (*) Thes" curves have as as'.mptotical levels the IFt"
Ga!'P:4s'4p') and 11 H - (;a'TS.4s'5s') fragments for I- P and 32A, molecular states
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The total valence S(F Mulliken populations fbr the ground states of (jai.,.
GaHl, and GaH2' are (Ga:2.97. H:I.015). (Ga:2.12, 11:0.94) and (Ga:l.33, It:
0.84), respectively, with Ga- H2 at 2A and k,:eping the If - H distance unrelaxed.

Now using the first interaction mechanism of our proposed model for the similar
Zn reactions [9], let us discuss each one of the studied reactions. We briefly recall
this mechanism that leads to attractive interactions:

(a) a charge transfer from the hydrogen-bonding a orbital towards the cempt\ or
half-filled s subshell of the center .-I and

(b) a charge transfer from the p, orbital of the center I to the antibonding ar*

orbital of H,.

In order to identify each of the studied reactions we have labeled them according
to the electronic configurations of the separate interacting fragments.

Ga + H,

(1) 12BA(4p):4s 24p. + a2. This reaction leads to a repulsive interaction because
the 4s orbital is doubly occupied. Condition (a) of the mecha,-iq:n is not satisfied.
As the angle is increased this situation is not changed and the resulting curve is still
repulsive. The charge transter from the 4p, orbital towards the aY* mo is not a
sufficient condition for the interaction to be attractive.

(2) 1-A,(4p):4s24p' + a2. This interaction is repulsive because the 4s orbital of
Ga is doubly occupied, thus no charge transfer from the a orbital is possible, that
is, condition (a) is not met. As the H - H distance is relaxed, the repulsive character
is maintained until the appearance of the avoided crossing where the original con-
figuration la22a43aj is changed to la22aj lb, which, as we have said. is originated
from the Ga(2S;4s'4p 2) + H2 fragments. Then the two conditions of the mechanism
are fulfilled and a bent stable structure is formed as expected. The laj2al Ib- con-
figuration of the bent complex (0 = 114') is related to the second term (2S,.2) of
the even series arising from the atomic 4s14p 2 configuration that resonates with the
continuum states of the even P series generated from the 1s24p' atomic configura-
tion [17].

(3) 22A1 :4s 25s' + a2. In this case, condition (b) is not met because there is no
longer any p, orbital from which it were possible a charge transfer to the a7* orbital
of H2, thus leading to a repulsive interaction. The charge transfer to the 5s orbital
from the a orbital of H2 is not a sufficient condition for an attractive interaction.
The avoided crossing of this 22A, curve with the 32A, surface produces a small
attractive region which is not however important for this state because very soon
it suffers another avoided crossing, now with the 12A1 state after of which the 212A,
state is repulsive again,

(4) 22B2(5p):4s 25p' + G2. Here we have again a p, orbital capable of charge transfer
to the a* of H2 but we obtained a repulsive potential energy surface. This is a
similar situation to that found in case (1) but only with a p, orbital of greater spatial
extension; again, since the 4s orbital is fully occupied, not even the condition (a)
of the mechanism is fulfilled here. On the other hand, one could consider that the
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5s enmpty orbital could accept Char-ge from [the I orbital. \ewriri hess. owicici
lations Sliot this 5S orbital Coupted to the (1 orbi tal \0hich leads to a rcpuki ce
interaction. Ihis canl be exp~lained lls thle I lct that a change from it 4 to ti 5
\%as made in the principal quantum number. thus jpr1OdUC11ne a grealter des1;1bili/atio
of thle 4S % irtual orbital than that found f'or thle 4'. \irtuZ1 orbital inl thle /1)
(I1,:3d1"4p' ) i H, react ion-

,a* T I/-,

III thle case of Cia ;Ie haqaia l iminlar be'rto th~it oit Tile /n
If.[ reactions [91. The three cuir'cs reported hero can ho espkii ned bs tile s,-ie
arguments uISed in Zn reaction'.. Fxcept fi r the ''.'. 0' the Id orbitals ]in thle
\ atenee shell of' Zn (thle 3d shell is taken into accowt Mi InIIh pseudopotential (or
Cia). w~hich k- e have foand do not plav a major role in thet interact ion mechanism.
Ga* has the same eleetronie configuration as Zn.

(I 1 Ai:4s: -(r' Here a repulsive interaction occur's f0r the unrelaxed approach
because the 4s orbital of'Ga is doubl\ occupied. and there is no occupied p, orbil 'il
fromn vhich charge could be transt~rred to I I-, Neither condition Is met. Ilfowxeer.
the If -- If distance relaxation miodifies thle repuklw character of the cuir'e since
this state SUffers an as oided crossing xI ith the 2-"A, state arising fromn the Ga'Ov4w4
I l-( J*.) frainmrents. x\ hich leads to a 1 !'. linear comiplex composedW of a completel\
broken TI I-Molecule %k ith a ia' ion I n-be~tx'een - This 1inear copefies abo% e thle
fragments because there Is no charge transter. nor trom the 41p, to the aT* orbital.

nor from thle a to the 4s orbital. In order to satisfy both conditions, this reaction
wo(uld have to come from the Ga*t4p) f HI t , fragmlents. but the gallium ion in
this elect ronic state does not exist.

16. 7) ' B,:4s '4p' - T. These potential ctierg\ sUr(lices slio\I an absolute mini-
mum and both conditions of the interaction mechanism are fulfilled. The clitlerence
between these reactions w ith the same configuration is onl thle greater loss ofexchange
energy of the triplet wh~en the bond wilth H1. is formed: this tact is responsible for
a smaller energy gain as compared \ith tile singlet state, according I,- ith the argu-
ments of( (arter and ( Joddard [2 11.

As in the case of Zn. the optimal bent structures after Hi [I relaxation are
explained if- one thinks that thle oxerlap between thle 4s andi orbitals reaches a
maximum at a certain (ja' 11- distance, beyond which repulsion takes over.
wxhile the overlap of the 4p, and u7* orbitals increases w~ith the 11 Ga 11 angle
because of the orientation of-the 4p, orbital.

('a , 4

(8) 1 -A,:4s' 4~- rrý. Here condition 1b) is not met because there is no p, orbital
from whiich a charge transfer towards the rT* could take place. One -would therefore
expect a repulsive curse, f-however, a possible explanation is that an admixture of'
the covalent and electrostatic interactions Produces thle observed attractise Surface.
This electrostatic versus covalent behavior has alread\ been studied b\y IRausehlicher
et al. [221 for the Nb2*-alkene interaction. lfthe metal atomn %ere not doubly charged.
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the fulfillment of condition (a) alone would not allow an attractic cure to he
produced: however the L'icctrostatic attraction produced by the Ga>` ion replaces
condition (b) of the proposed interaction mechanism and the oxerall result is a
relatively shallow \,,ell at short distance (3.50 a.u.). ['he lact that the well is found
at such a short distance can be explained by noticing that the charge transtir from
the (T MO of H2 to the singly occupied 4s orbital of gallium can only take place in
the region swhere the overlap between these orbitals is not negligible.

(9) 22B,:4pl + (72. In this reaction the two conditions of the mechanism are
satisfied. The electron in the p, orbital can transfer charge to the n* orbital of H.,
and the a orbital can transfer charge to the empty 4s orbital of Ga>'. Moreoser.
there is also the attractive effect on H, ofa strongly electron-defficient species which
results in a deep well as it has been shown.

The resulting attractive curve of Ga2'(2P) with H, suffers an avoided crossing
with the purely repulsive curve arising from the (Ga'('P:4s'4p!) + H, fragments.
The stable complex (recall that H --- H distance is fixed at its equilibrium value) is
formed following the 22B2(Ga 2 ('-P) + H2 ) surface and passing through a nonadi-
abatic transition to the l 2B,(Ga'('P) + H,)curve to reach the absolute minimum.

(10) 4:A1:5s' + -•', For this reaction, a similar situation arises to that found in
reaction (8) with a single electron on an s orbital but with a larger radial extension.
Since the condition (a) of the mechanism is met, the incoming a orbital can go
nearer into Ga2> [the well is found at 3.31 a.u. instead of 3.50 a.u. for reaction (8)1
thus producing a deeper well for this case than that in reaction (8).

Also, as in reaction (9), an avoided crossing with the purely repulsive curve
arising from the Ga'((S:4s'5ss) + H5,(,7) leads to a stable structure on the 32A,
surface aftera nonadiabatic transition coming from the Ga-"( 2S:5s') + H2 fragments.

Conclusion

We would like to point out the important role played by the resonant
2S(4s'4p,) atomic state of gallium which is responsible for the formation of the
stable 2A, bent complex in the Ga(2P:4s2 4p:) + H, reaction.

Another new feature observed is the fact that for the Ga'( S:4s2 ) + H. reaction.
the electronic configuration of the linear complex is diabatically related to an excited
state of H,, that is. to the Ga'('S:4s2) + Hz(I,:a* 2 ) fragments.

For the Ga 2 ' + H, reactions we found that most of the excited stable complexes
were obtained as a result of avoided crossings with the Ga' + 1-1, reactions. This
situation is new since these crossings for the Zn>' + H2 reactions take place at
much longer intermolecular distances [9]. Finally. we also found that the electrostatic
interactions play a key role since for the isoelectronic Cu( 2S:3d .4s') + H 2 [23] and
Zn*( 2S:3d"'4s') + H 2 [91 reactions, the unrelaxed approach was totally repulsive.
Therefore the enhanced electronegativity of Ga> became important in this case
and leads to the admixture of covalent and electrostatic interactions.
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The Activation and Elimination of H2
by Zr Complexes
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Abstract

An ab inito analysis of the reaction of molecular hydrogen with the Zr-imido complex ( NH, )ZZr. NH
is reported. Several interesting points are noted. The calculated stretching frequencN of the Zr N bond
in (NH 2 )2Zr ý- NH is 860 cm - when properly scaled to account for electron correlation effects. The
value supports the assignment of an infrared (IR) band at 865 cm 1 to the Zr N stretch of a tetra-
hydrofuran (THF) adduct of the putative reactive intermediate ( NHSi' )2Zr-- NSi'. Although a weakly
bound, H, complex is found. the interaction is small ( 1.3 kcal mol ') compared with experimentally
characterized H,, complexes. Variations in bond lengths and intrinsic stretching frequencies demonstrate
that it-bonding for amido (NH,) ligands can be substantial in a coordinatively saturated complex. H,
activation by the bis(amido limido reactive intermediate is calculated to be significantly more favorable
by the 1,2-addition of H, across the Zr -- N bond to form the tris(amido)hydride than a sigma-bond
metathesis pathway. The transition state (TS) for the addition of H2 across the Zr ' N bond of the
bis(amido (imido complex is 9.8 kcal mol 'above the charge transfer WCT) comple+x. (NH )2Zr- NH.H*
at the MP2 level: the reverse process, extrusion of Hi, from the trics(amido)hydride has a 28.2 kcal mol
barrier. The geometry of the four-center TS is of interest, deviating markedly from that of a square and
being more "kite" shaped (i.e.. one obtuse and three acute angles). Mulliken Bond Overlap Populations
suggest that there is some interaction between the Zr and the H atom being transferred (H,) in the
various lSs studied. It is suggested that the interaction plays an important role in the ability of the Zr-
imido complexes, and indeed other high-valent. multiply bonded complexes, to activate X -x H 1 X -- H.
C. Si. N. and H ) bonds. The design of materials and catalysis precursors which enhance the metal-
hydrogen interaction in the TS could conceivably lead to lower chemical vapor deposition (CVD I pro-
cessing temperatures and higher catalytic activities. ýc Ic)Q2 John Wiley & Sons. Inc.

Introduction

Multiply bonded transition metal complexes (L,,_. 1 M z ER,, 1) have attracted

considerable experimental interest 11-5) for the selective functionalization of hy-
drocarbons, particularly alkanes. The elimination of small molecules (LR) from
organometallic precursors (L.,M-ER,,,) is of interest in the synthesis of solid-state
materials. [ME)], by chemical vapor deposition (CVD). Many CVD processes are
thought to involve coordmnauveiv unsaturated, multiply bonded intermediates which

eventually polymerize to form a solid-state material [6,71, Thus, in some sense
many catalytic processes can be considered as being the reverse of reactions of

interest in CVD [Eq. ( I )I.

* E-mail: cundaritzmemstvx I memst.edu
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Cummins et al, have proposed that an (NHSi') 2Zr, NSi' intermediate.
Si' - Si(t-bu), is capable of activating the C ---- H bonds of benzene and methane,
and H, [I]. Walsh et al. have demonstrated that zirconocene-imido complexes.
Cp.Zr - NR, are capable of activating the C-- H bond of benzene: the presence
of a Zr-imido intermediate was confirmed by x-ray cTystallography [2]. Ti-imido
complexes similar to the biý(amido)imido Zr complex show distinctly different
reactivity (i.e.. they do not activate C --..H bonds) [31. Rothwell and co-workers
have characterized a Ti-imido complex and studied its reactivity: when
(Ar"O)•(pY ')Ti -N-Ph is refluxed in benzene for several hours no C-H activation
products are observed [4]. How.ever, Doxsee et al. have demonstrated the utility
of vinyl imido complexes of Ti [51 in organic synthesis.

Cummins et al. [I] discovered that various tris(amido)alkyl complexes of Zr.
(NHSi '),Zr-R ( R - CH '!, Ph. cyclo-C(,H , ). when reacted with 3 atm of molecular
hydrogen in a cyclohexane solvent yield the corresponding hydride, (NH4Si ')Zr-
H. Furthermore, reaction of the iris(amido)methyl complex with D, resulted in
the formation of (NHSi '),(NDSi')Zr-D and methane. Coupled with analogous
studies of the reactions of Zr tris(amido)alkyl species with methane and benzene.
the data suggest a tis(amido)imido reactive intermediate. (NtHSi') )Zr NSi'.
formed by the elimination of one equivalent of alkane. The /i4v(amido )imido then
reacts with H, (or R-H) to yield the final product. (NHSi '),Zr-H (or (NHSi ')3Zr-
R) [2]. Two pathways can be envisioned for the conversion of the bis(amido)imido
to the tris (amido) hydride. The first route is the addition of H-H across the Zr ...- N
bond of the his(amido)imido intermediate to form the tris(amido)hydride. ,itch
is supported by the reactivity of the related CpZr NR complexes I I]. An~uther
path is the addition of H, across the Zr-amido bond of(NHSi') 2Zr --- NSi'.resulting
in (NHSi')(NH.S."')(H)Zr:-:-- NSi'. which then undergoes rapid H-transfier from
the amino (NSi'HA-) to the imido (NSi') ligand to yield the tris(amido)hydride.
The latter pathway, sigma-bond metathesis, is lent credence by the reactivity of the
related Ti complexes 131. the fact that facile H-transfer in nitrogen-containing
ligands is known in other high-valent, transition metal systems [8]. and the real-
ization that sigma-bond metathesis represents a viable alternative in many organo-
metallic reactions when compared to traditional mechanisms [ 9 ].

Imido complexes of the early transition metals have been envisaged by many
workers as intermediates and precursors in CVD processes leading to solid state
transition metal nitrides [6.7]. Titanium tetrachloride has long been known to
interact with organic amines to form Lewis base adducts and in some cases polymeric
materials formed by the extrusion of volatiles such as HiCI. In many cases, imido
complexes are proposed as plausible intermediates along the pathway to the solid
state material [101. Recently. Winter et al. have reported a mechanistic study of
the formation of thin films of TiN from TiCI4 and t-butylamine [6]. When TiCI4
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Figure 1. Calculated structural data for important minima anid transition states on the
P1,S for the reaction off I., and fNH,-yZr NHL Zr atoms are represented hx cilcles %kith

diagonal lines, N' h% crossed lines, and Hf by open circles.

determinant energy [ 18]1. For this reason. the correlation energy is calculated using
second-order Mollcr-Plesset (NI132) theory [ 22 1. The core electrons are not included
in the mP2-active space. All quoted energies are determined at !vil2 level of theory
using the RHIF-optimized geometries with the zero-point energy (zrr~f) correction
included.

Results and Discussion

(nfinal Inferacltion off I, and tihe Bishlinido) linido Complexv

The imido reactant. (NH 2 )2Zf =-- NH-. has a C', minimum which is nearly planar
[21]. The geometry about the Zr and amido N atoms is roughly trigonal planar
while the Zr-~ N-H angle is nearly linear ( 1 79'). as expected. The Zr-imido (i.e.,
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Zr-NH,) and Zr-amido (i.e.. Zr .- NH ) bond lengths are calculated to be 1.83 and
2.10 A• respectively, in goo-] agreement with values for experimental models. Char-
acterized Zr ..- N bonds are 1.868(3) A for Zr( NIAr )2( p ')'(N.Ar) and 1.826(4)
A for Cp-Zr(:- N-t-bu)(THF) [2.•3] :he Zr-amido bond lengths in the former
complex are roughly 2.13 A [23]. The calculated Zr N stretching frequency is
955 cm ': it is important to note that this is not an intrinsic stretching frequenc\
[20]. Vibrational frequencies at the R11E level are usually scaled by 0.9 [241 to
account for electron correlation effects (1,ir -,(scaled) = 860 cm '). An infrared
(IR) band at 865 cm ' was assigned to the Zr -- N stretch of the THF adduct of
( NHSi')2Zr-: NSi'[ 1]. Our calculated r'z, Nis in agreement with the assignment
of the IR band to a Zr - N stretch and thus lends support to a hik(amido)imido
intermediate [I] in the experimental system.

A weakly bonded complex, (NH 2 )2Zr .- NH-H,. was isolated as a minimum,
1 [25 1. The complex has a (', geometry and the reactant fragments are little changed
from their separated geometries. The H atoms of the H2 fragment are nearly sym-
metrically disposed with respect to the Zr atom, one ZrH distance is 2.46 A,- while
the other is 2.44 A. The binding energy of the H, is only !.3 kcal mol '. Upon
"-coordination" of the H,, the ZrN bonds stretch by less than 0.01 A from their
values in (NNHI)2Zr-- NH. The largest change is in the H-H bond. stretching by
0.02 A. Subtle changes in the electronic structure can be measured by calculating
the intrinsic stretching frequencies [201 and comparing to values for isolated mol-
ecules. The Zr-amido and Zr-imido intrinsic stretching frequencies for I are 624
and 970 cm ', respectively, or 9 and 21', lower as compared with \NH 2 )2Zr -- NH.
Thus, some weakening of these bonds is taking place when hydrogcn coordinates,
presumably by donation of electron density from the T11, into metal-nitrogen an-
tibonding molecular orbitals (Mos). The H2 intrinsic stretching frequency goes
from 4646 cm ' in "free" F-l, to 4469 cm 1 (-447 ) in "complexed-" H,. There is a
small amount of charge transfer from the H, to the imido, 0.13 electrons as deter-
mined from a Mulliken Population Analysis.

Addition l'1oI, Atcro•ss the Zr .... N Double Bond of (Ntt:)-Zr -.- N/l

The 1.2-addition of H, across the Zr--= N double bond of the his(amido)imido
leads to the tris(amido)hydride, (NH 2 )3Zr-H. 2. The complex has a C3 minimum,
with Zr-N bond lengths of 2.06 A. Interestingly, the Zr-amido bond length is 0.03
A longer than that calculated for the simple amido complex, H Zr-NH, indicating
that 7r-bonding in the formally singly bonded amido ligands can be important.
Another indication of the strength of the 7r-bonding of the amido ligands is provided
by their competition with the imido ligand for the dir AOs. The Zr-imido intrinsic
stretching frequency in the parent molecule. (H )2Zr - NH. is 29 cm , higher than
in (NH4)2Zr NH: the Zr-imido bond is 0.03 A shorter in the former compared
with the latter. The importance of ir-bonding in early transition metal imido com-
plexes has been the subject of much discussion by experimentalists [26]. Kapellos

et al. have studied the phenomenon for the coordinatively unsaturated case, M * -
NH,- [271. and the present results demonstrate that 7r-bonding for amido ligands
can be substantial in coordinatively saturated complexes.
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The 1.2 addition of H, across a Zr N double bond ( I - 2) immediatel'
suggests a four-center transition state. where H-H and Zr N bonds are being
stretched while Zr-H and N-H bonds are being formed, Indeed, a transition state
fitting this description is found. 3 [281. The TS for the addition of H, across the
Zr - N bond of the his(amido)imido complex is 9.8 kcal mol 1. above the charge
transfer (CT) complex. 1. The product. ( NHll),Zr-Hl, 2. is 18.4 kcal mol I stable
than the CT complex. Thus, the reverse process, extrusion of H, from the
tris(amido)hydride has a 28.2 kcal mol ' barrier. The activation enthalpy for the
elimination of methane from (NHSi')-bZr-CH, is 25.9(4) kcal mol . As Steigerv~ald
and Goddard [29.301 found for the addition of H, across metal-carbon single bonds.
the TS deviates markedly from that of a square and is more -kite" shaped. with
one obtuse and three acute angles. The ZrN, bond in the TS is 1.89. 0.06 A ( 3'V )
longer the Zr-imido bond in (NH,) 2Zr NH, while the Zr. I-t, bond is 2.07
A, 8c; (0.16 A) longer than that in (NH,) 3Zr-H. The H-H and N-H bonds in 3
are stretched much more significantly: 0.22 A (301' vs. H,) and 0.51 A/ (50-, com-
pared with (NH,),Zr-H). respectively. The Zr• N.-H. angle in TS 3 is nearly
linear ( 1760). The data suggest a late TS when the reaction is viewed as ( NH2 )ZrI-l
(3) -- (NH,) 2Zr -NH. H,, The kinetic data fbr (NHSi');Zr-CHt I1I has been
interpreted as supporting a TS with "substantial Zr-- C bond breaking (1./4 -I
25.9 (4) kcal/mol) in a relatively constrained transition state (ASI = 7( 1 ) eu .C"
These calculations seem to be in qualitative agreement with the experimental results.

The most interesting point about transition state 3 is the short Zr ... II, trans-
annular distance, 1.98 A. which is only 0.07 A (4%) longer than the Zr-terminal
hydride distance in the tris(amido)hydride. and 0.09 A (5(",) shorter than the
Zr ... H, distance in 3. It is reasonable to expect that low energy 4d A Os on the
high-valent Zr are available to stabilize the H being transferred (as well as the t1,
and NiHf fragments) in the TS, H,, thus lowering the TS versus a system without
vacant, lower energy d orbitals (e.g.. a main group element or a late, low valent
metal) and facilitating the reaction. As a rough measure of the strength of the
interaction between the Zr and the various hydrogens, the Mulliken Bond Overlap
Population (BOP) was calculated for the various ZrH interactions and compared
to a "normal" terminally bonded hydride ligand. The ZrH BOPs were calculated
to be 0.16 (1I,) and 0.38 (11,) which compares with a value of 0.70 for the terminally
bonded H in (NH,).Zr-H.

Sigma-Bond Metathesis

The sigma-bond metathesis pathway (I -- 5 -- 4) leads to an interesting product.
Zr(NH)(NH 2)(NH3 )H, possessing a Zr-imido. Zr-imido. and Zr-amino (i.e.. Zr.
-NH 3 ) bond in the same complex. Thus. there is a formally double (imido), single
(amido), and dative (amino) ZrN bond in 4, which should provide a good challenge
for the computational methods. The various ZrN bond lengths are calculated to
be 1.83 A (imido), 2.10 A (amido) and 2.41 A (amino) in the C, minimum, 4.
Rothwell et al. 1231 have characterized the complex Zr(py') 2 (NHAr),( N-Ph),
which has Zr-amido bond lengths of 2.13 A and 2.14 A. Zr-amino bond lengths of
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2.36 A and 2.38 A. and a Zr-imnido bond length of 1,87 A. [he calculated %alucs
differ from the experimental model b, !<-2`c; which is excellent despite the datlcrenccs
in coordination number and steric congestion.

In the sigma bond metathesis pathway, as in the previous mechan1ism, the most
obvious choice ofTS geometry is a fbur-center one. Tfhe calculated barrier to addition
of H, across the Zr-amido bond is 17.9 kcal mol '. nearly twice that for the addition
of H, across the Zr-imido bond. The high barrier to addition of -, across the Zr-
amido bond is consistent with a much lower driving force for the reaction:, the
amino(amido)imido complex is only 1.0 kcal mol ' more stable than the (-I
complex (I ). TS 5 can also be described as kite-shaped. As before. there is a short
Zr. ..H transannular distance. 2. 14 A. 0.16 A longer than for the previous TS.
The longer ZrH, distance in 5 vs. 3 suggests less interaction between Zr and i1, in
the sigma-bond metathesis TS. However. the calculated ZrFI, MIulliken Bond Over-
lap Population in 5 is similar. 0.18, to that calculated for 3.

('onversion of Zr ( Nll) ll to Zr il) fN11:) (.N71"II)

The conversion of 2 to 4 (by way of TS 6) entails H-transter from one amido
group to another. A similar process has been implicated in the formation of
(NNHSi')( Cl )(THF)Ti -=. NSi' from (NNHSi '};Ti-Cl bv elimination of NHS-'Si [ 31
and in bis(amido ) complexes. The geometries of the products and reactants (2 and
4) have been discussed and compared to available experimental data above. The
removal of NH, from Zr( NH)( NI I,)( NHj ) H is calculated to be quite endothermic.
36.3 kcal mol . Our calculations indicate that a H-transter process for Zr model
complexes (2 4 or the reverse) has a high barrier. The TS for the reaction 4 --
2 is 23.8 kcal mtol above the Zr(NH)(NH,)(NH0)H minimum. Complex 4 is
17.4 kcal mol ' less stable than the tris(amido)hvdride.

Several things distinguish TS 6 from the -""tted transition state for the addition
of H-H across the Zr--: N bond of(NH 2 ),Zr -=. NH. The most noticeable difference
is the significantly smaller M-N-H angle of the erstwhile imido ligand ( 161 0 vs.
1760) in 6. The small M-N-H angle suggests that the transition state is early if the
reaction is viewed as Zr(NH )3H -, Zr(NH)(NHe)(NH0)H. The transannular
Zr . . .IH, distance of 2.11 A (vs. 1.98 A) is similar to that found for the sigma-
bond metathesis TS. 5; however, the calculated Mulliken Bond Overlap Population
for Zr .. -H, is three times smaller for 6 (0.06) than 5 (0.18). If the reaction is
viewed as the addition of the N-H bond of ammonia across the Zr -... N double
bond of Zr(NH,)(H)( --- NH). then the greater electronegativity of N will make
the H being transferrel more acidic and thus less likely to be stabilized by the high
valent metal. The lower degree of stabilization of the H being transferred in TS 6

correlates with the higher activation energy for (4 -- 6 - 2) versus ( I - 3 -- 2)
despite the comparable driving force for each reaction ( 17.4 kcal mol ' for the
former: 13.4 kcal mol ' for the latter).

Intrinsic Reaction C'oordinate fromn CT ('ompleX, 1, to Tris (Amidol hyvdride. 3

The intrinsic reaction coordinate (IRC) [3 1] for the conversion of the CT complex,
1, to the tris(amido)hydride. 2, by way of transition state 3 was studied in order
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Fiure 3. Schematic representation of the relative energies for the minima anti transition
states in this studs. The energies are reported in kcal nool , computational details are

given in the text. The numnihring schzme coincides with that in Figure I and the text.

calculated charge on the H which is slightly farther from Zr is +0.02 while that
which is 2.44 A away from the Zr (i.e.. closer to the imido N) has a calculated
atomic charge of +0. 11. Wolczanski et al. [ I I have postulated that the great polarity
in the Zr=-- N bond (Zr' 1.46 =::- N " 8. by a Mulliken Population Analysis) induces
a polarization of the C- H bond which assists in its activation. The present com-
putational results support the contention.

The calculated activation energy for the addition of H, across the Zr- N bond
of one of'the amido ligands (1 -- 5 -- 4) is roughly twice as high as for the addition
of H-, across the Zr -- N bond (I - 3 - 2). Furthermore. even if the
amino(amido)imido complex (4) is formed, the high barrier to form the observed
product. a tris(amido) complex. is so high as to make the second H-transfer step
(4 - 6 - 2) even more unfavorable. One small point of interest is the much larger
calculated dipole moment for the sigma metathesis TS (5) versus the 1.2 addition
TS (3). 3.16D and 1.61D. Perhaps in a sufficiently polar solvent, the two processes
may become more competitive, although there is still the high barrier for the second
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1 hie most inieresti ug poiniit from the I R( is that cornprcssion of' flit /I N -Il
angle takes place alter t he 11 t It 'e ssentialls transhIclrrd to tile jut 1do Nto
f'orm the third amnido ligand of' the trisl awi~do )ivhdride. 2. At N,, 1.21
bohr* ainlU on the reaction coordinate ftbr the II' aCtisation /Climin1ation proccs,,
[ ig. 2 ). the Zr comprle\ bears a striking rcsemrblance to thie isoelcctronic ( in tcl ils

of* valencc clectrons) I]a ('-If 1ragiment in electron-dcticicnt alkLi dcncs..
[A-M ('( R 'IR '.These cormnplIQ s ha %c Ia ('-I I angics cosc ito 90" a" res ealed
b\ neutron diffraction !h 1]. [he fact that it-bondfing in anildeN is significant ( videc
mupraij makes thle analog% more complete- Ihle distortcd Ila C-IlI a ngles, suggcst
i nc:ipie nt C'-f h ond brca king. shich is ,u pport ed h\ I ongcer tha ýIn norillalI ('-Il b ond
lengths [38], in the alkslidene 011)i R I to esentUall\ sicid an al k\lid-sne
( -- --CR ). i.e., analogous to thle process I -3 -~ 2 [t011mosed along thle I RC. I Aper-
ilnentaill\ Schrock has shown that distorted l a-aiLs lidene complexcs canl be pushed~l
even f'urther hw increasing steric congestion [ e.g.. bs addition of' pliosphiuce ligands

3 -8 1. Eq. ( 2 )] to eli m inate tol uene. Taking the experi meu tal data for the related
Ta comnplexes and combining! them s ith tilte CompuI)Ltational reCs1,lts tor /Zr suggests
tss o possible extensions for fuLture comtputational

CpT (('11I i-Ph g C (I piiP 21 PLIe -

and experimental wNork. F~irst. analogous complexes oftheli formi I .Zr-N( II )R and
_Ta C( 1-1l R ma\ slioss the same interesting distorti mn 1391. Second. inlcrease(]

steric congestion in ( ti precursors of the tx pe Zrt NR );R bs thle coordination of'
L-ewis bases may lower the barrier lbor extrusion of' solatiles. and thus allowk tbr
lowker ('vI) processing teMPL ratures 1401.

Although one should as id putting too much lt'ith1 in quantitat ise comnpa rison,,
based onl anl arbitrar\ partitioning of tho total electron densit\. thle Mulliken Rond
Overlap Populations, suggzest that there is anl appreciable interaction, Ibet\,secn tile
Zr and the transannular l1t f R ) in the TS tIi)r I "-addition across thle Zr N bond
of'( N I-I- ),Zr NILI 3. The Interaction max, has e an important role to plat. In the
abi litv, of the Zr-imIn do cornplexes. and i ndeed other miulti plN bonded comnplexes
with ear)\, high-salent mietals, to acti\ ate X-I I ( X I I. C. Si. N. and I I) bonds.
More activity is expected from catalysts svhich are dcsigned to s icld reactise inter-
mediiates in w-hich thle interaction is enhanced. Simple considerations ss ouid lead
one to prc(lict that the transannular Interact ion should be ciflhanced h\ a more
ciectrophilic metal and nucleophilic transannular hxdrogcnl. [hle h\ pothesis is sup-
ported h\ the greater reactio. its, of Zr-inildo cornplcses [I L2 s hien compared to -1
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analogues [3,4 1. Zr( X/,. =: 1.33) is significantIN moreekectropositise than"Ii ( X,
1.54). and thus the Ti in Ti-imido complexes wvill be less electrophilic wshen Comn-
pared with a Zr analog, Mulliken charges tor the parent mictal-imido comnplexes.

(UI )2M - NH. are Ti =N and Zr' N ISimilarly,, the sý nthesis
of materials precursors which enhance the metal-hydrogen Interaction in the TS
for elimination of volatiles could allow lbr lower processing temperatures in ct
For example, the relative elect ronegati vit y ofSI versus C leads one to predict, hased
on the present results, that silvl-substituted complexes may have a greater degree
of stabilization of the 1- in the T S for elimination ofsilanes. and ma% he pref~rable
as low-temperature CVL) precursors. Studies are underway to test these hypotheses
and their effects on the mechanism of X -- H bond acti'vation and the reverse
process, extrusion of X H- --bonded molecules.
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Solvation Effect on the Tunneling Rates
of Proton Transfer
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A hstract

uoorkfinljit \ka, wincpm IiCLO I.i(, l\( "s)i )-2. L'm lplptcd I lc !IAhlh n moflf )accu r trawoilsliOn-Sdmi s II Si1CS\cs

I. %crC NUMIC& 8-II1-- , %hl'crC is ithhcr \t1, or I I,()ntld fili H/ i s okl So. hl• n \,ss
nmodcled \n lit 55.0cr nmolecule', aiil.d h•d to ach sidc ol Ihc pcrlpndsc'uiar risis l~irsug•h ihc hr'sls,¢ III" at

ditIMccnIl dstiancc, I1"!'. /- \ and 0) ( On-linc I dlssantcc, %%crc a],o I aricd. |I oscr aid iiarrsvr;cr hariicrs
,A cr obs•rhscd wh th 0h ch) c poil onlirng of tilh ,oklanmg mso ccuics hIs c[lcci Is, rClcc tld In hi ghIr
itnucling prnhah.lthths Ihus. •,oIx.tio11 t~ix trle ttIonIc phconotcion III prrton-lrdNslcr protcs,.c,

Introduction

"The problem of enuironmental eflecls upon the proton translt -cr processes hb
considering solhent ellects has been. in dith'crcntl waxs. attacked [I-l(1]. lhe tran-
sition state theory of chemical reactions is the basic paradigm of current chemical
and biochemical thought [ I [he account of macromolecular catalysis, such as
enzvme catalysis, dictates that the primary function of the catalyst is the stabilization
of the activated complex [121. A macroscopic approach to the general idea of
catalysis can be stated as Ibllows:

Reactant i Catalsst [Reactant.Catalisi I

[Reactant.Catalyst I - I Acti\ated complex.(Catalyst I Product + Catal~.st

[he close interaction hetwecen catalyst molecules and actixated complexes result
in the Iowering of the free-energy barrier Iwhich separates the initial reactant stale
and the final product state. The function of the catal\ st is to produce the necessarx,
molecular distortion in the reactant molecules. in order to generate the configu-
rations proper of the transition state. [his process is endergonic. C(ompensator\
binding interactions to the catalyst must give rise to the activalcd complc stabi-
lization, thus leading to the obhcr\ed rate accelerations over the uncatalwed process.
Some en1,Nme may have e•oked in such a \a-, that part of their calal.tic power is
derived from their ability of altering the height of encrg\ harriers but also their

hItvrnational Journal oI.)iInIli[ ( "heinisr. QU,111aiu ) (" ismisir\ lSipi)lini 2'. Si ,' 8 1 I )

11092 John kulcT, & A ssrvs. Inc (4 (( iiiill.•ihiS , ii -I )
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Figure 1. Energy profiles Al, BI. Cl. D)1. 1:. when F/O 2.90( \• hil eFN A is 2.901.
2.,5, 2.75 _' 65 and 2.55 respctiwsk.

shapes. The induction of lower and narrower energy barriers increases the contri-
bution of tunneling in chemical catalysis. In a previous article [ 13 ]. we found that
solvation of proton-transfer bridges led to increased contributions to the magnitude
of tunneling. We present here a more complete study of the stereochemical features
of solvation to the amount of tunnel effert in proton-transfer arrays.
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tIyurrt 2 t ncrip: prihlek to r N 2P 75 ,j- I :() 2.?5 A and ditFt0r 1 nt s aling rn1oJcuh'N
orw'n tillons .

Acid-hase catalvsis is a common molecular mode of cnzýmc catalksis. The mo-
lecular machinerd which performs these processes have become a most refined
I'eature in hiomolceular s~stems. The attempt to model a large array of' solvent
molecules seems to be successful although cxtrapolations of the rcults to the cases
of supcrmolecules is rather difficult.

Mlethod

Fnergy profilcs with respect to the reaction coordinate and the nrespcCtivC tunneling

rates we're senmiimpiricallv. (Nix)/ 2. computed in the cases of coupled motion of
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TABI 1I. (alltic aceleralion and relatkc in.rcrnm nt ot
tunneling probabilit. for ditlfrent distances.

I.'A.4 1"/0 A AIK•, KJMol ' ca /

2.90 2.90 - - -

2.90 2-7 -0.669 0.76 I.X) 15
2.90 2.45 . 3.527 0.24 I .0081
2.7i 2.90 - - -

2,75 2.75 1150 0.77 1.0013
2.75 2.45 3.4 9 0.25 1.0)069
2.55 2,90 - -

2.55 2.75 -(0,616 0.78 1.0006
2.55 2.45 - 3.240) 0.27 1.0036

two protons along the reaction coordinate. The fbllowing H-bonded systems were
studied:
Coupled motion of two protons along the reaction coordinate in the case of:

"H\

0/
H

H I H\ /

H-N-H---t -H-N-H (I)
/ 0H !H

H

H\

0

H
and coupled motion of two protons along the reaction coordinate in the case of:

HH

0
/

H

H\ H

O-H-F-H-O (2)/ ,

H H
H

/0

H
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-~ H20 E E2\
-96,5594

\N.

-96.56C6 -

/x

<•-96.5602 1

9 6'6

-96.5630 - T- N IT -
o1

t t __ \

296.568 - H \ -S\

--96,5624 --

-96.5630 ý 10 mea-w- tThe'watT :Iv o 1mT-lc T wTer atTached Frpenicular-I
1 ,!6C0 1.2'00 I•2600 1.3100

GTACTiCN COORCANATE A,

'I gure ? lop of ihe cncrg\, harrie.', loTr F\ 2.55 *\. F</() 2.'l A% c'ur~c I" I. F-/(')
2.75 A i; 12 antd I"/O( 2.45 A :urw' I>13,

In order to search about the behavior of these cases tor large and short distances
EN.% and K.) (on-line) they were made to take the values: 2.95 -- 0).05n A with nt

.1...0~ meanwhile the water solvation molecules were attached perpendicularly

to the bridge PI7 at diff'erent distances IP/0 - 2.95 0.05n /A with n - I ..... 10.
In both cases the water molecules hydrates the Is( at diflerent orientations around

the vertical axes, hut the angle F -! --- 0 is 1 50.
For the case ofthe proton transfer reaction ( I ) the energy profiles look like curves

Al. B1, I. DI. EI in Figure I for l', - 2.90 A. 2.85 A, 2.75 A. 2.65 A. and 2.55
A. respectively, while I/O -. 2.90 A (off-line).



812 t.A\- H -It- Ml.w(t),A A\NI) N I vI \.S(IRID \

1 X11t I1. (atal. ic aLcclcratwU and relaoc in•m.erj ntn o'
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Fi ) A /o!( A A .,,KJ~lol ý ca , i

2.90 21. 90.
2.ut 2.7 0.54" fi00.

2.45 3.0, 02• I)

2.5 2.4 • . 3
2.5 2 . -10

2.55 25.�5 049 0 82 X )il

2 55_245 2.;th 0 34 ]1

In the case of the proton transfer reaction ( 2). similar \ariations were made and
the energy profiles resemble a similar firm. but the coordinates werc calculated
considering not onl, the translation of the protons but the simultaneous variation
of the angle fl: H -- 0 11 from 117.9 to I (14.( when going from iI 0 to 110 or
vice versa. As in a previous article [131 the tbllowing functions were used:

0 - 117.9 - 2.(0 or 0 104.0 + 2.0- (3)

with

6.95( 1.0 exp( -nui'0.3))i( 1.0 csp( -- d/0.3)) (4"

where d is the total proton translation, u is the size of each step. and ni goes from
zero to the total number of steps.

Using cubic spline fitting. the energ\ profiles as Functions of the reaction coor-
dinate were adjusted and the tunneling rates were calculated ftr both cases near
the activated state wkhcn the protile is approximated by the parabolic form:

l(.x) I •( •iv/,)( 2( .v!/x,) (51

where x, is the distance of an\ point along ,oe reaction coordinate respect to the
position of the activated state and I , is the corresponding height barrier.

According to the JW'KFI method, the barrier penetration factor K is:

K h f ,"2.0m(( ) /-.') dx (6)

wvhere h:" ',' ,( I 0 xit a 1t).0 in the top and a 1.0 at the bottom of tlhe

tunneling harrier.
For L/ at the bottom, one obtains from I '.q. ( 6)

A ( \,,12h )V2m l ,,. (7)

"The transmission coetllcicnt ftbr the case of incoming protons from the left-hand
side is:
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Nxhich can be expressed as:

c' xp( 60 ()9), .•0) i(

when x,, is in ..\ and I;, in cV.

Taking the centcr of the ssaxc packet a, reprccnti .hc proton at the lctk-hand

wvcll Mllich hit the barrier in the fundaenltal state ',\ith af frcqueic\,:

i , h / r,"n b , ( I . I 1031 ") It) I f

xvherc 2J is the distance in A\ bctwecn the turning points in the left-hand side ",'eli.

If the full particle hits the barrier with that frct uencv and 6ith the transmission

coefficient giwen bN Eq. ( II ) then the fraction of the particle that al a given energy

is going to tunnel per second is the tunneling rate:

('! .- (12 )

log(I 13 2I.9;, ,,1, (13)

tl!drogen-hond distances used vxcve 1 .(4( 1 in I IO. 1 . 5 .0 ii i. anf. t,.7) N,,

in Nti.
As in the previous work [I131 there is good agreement \kith the infrared spec-

troscopy data 14 1.

Discussion

'ilie energ\ profiles ohtained in both cases. for ditlerent distances hetci•,en the

donor and le acceptor \cre similar t) those 0f Figure 1. shming that for short

distances there %%as not a double potential ,.selI but a single one. Ihe as mmnletr\
in that figure is because the water solvatinitg molecule is oriented in such a x',aý that

the oxygen is in the right-hand side in the plane with angle f il() of 1t50 '. I la% ing
those 'xater molecules in the perpendicular plane to the horiontal axes one ohbtains

sý mmetric profiles as in the case of curve ('s in Figure 2. that figure shows three

orientations of the solvating molecules since cursc (I correspond to the oxygen in

the left-hand side and curve ( R to the oxygen of the vkatcr solating molecule in

the right-hand sidet.
In the cases ot double potcnilal wcils Ohe Schriidingcr equation \kas sol ed Using

the potential function kk hich is obtained Iw cubic splint titting, the cnergx cigenr attc

tor .khich conxcrgenc, ,,as reached was l•ovcr in thc rinht-hand \,ell than in the

left-hand ,,ell. thhe reaction .clocitý iv. a,, Arrhenjus. IXSO shov, ed it must he
proportional to the cxponcntial fun':tion (15 I ot the actlation enlcrg, Iu

then there is a kind of catalytic acceleration:
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In the cae of reaction |Uq. ( I ). Fable I contain,. data tor large, ntcrrcdiate, and
short donor-acceptor distances, and one can see tile ditlhrence li /P,,, I in K /nmol
between the curt es in Figure 3 - ith respect to the corresponding one tor the larger
solvation distance. F/0. and also the catal.,tic acceleration at 30)0 K, i-hich can
be compared, at the same temperature, to those v\hen the solxating Nxxater molecules
approach. On the other hand in the case of Ihe reaction I-q ( 2 ). Fable II contains
the data ior large. intermediate, and short donor-acceptor distances and one can
also compare, at the same temperature. the diltierence in /:,.the catalytic accel-
eration with respect to the corresponding one to the situation in which the solh ating
water molecuie:; are farther away.

Lower and narrower barriers .%ere obtained with the close positioning of the
solxating molecules as can be seen in Figure 3.

On the other hand. in the last column in Tables I and 11 tile relative increment
/('/C, on the tunneling rates probabilities are reported near the top of the barrier,

as an example at 3/4th oflthe barrier height. in those energy proliles corresponding
to a closer positioning ot the water solvating molecules, with respect to tile case of
large solvating distance. It can be seen that to a closer positioning of the \xater
solvating molecules, it corresponds to lower barriers and higher log C, which accounts
for bigger barrier penetration probabilities beftre the proton reaches the top of the
barrier. This indicates also that tunneling occurs at a frequentc,, of 10' reciprocal
s. The effect is significant but it is expected that a larger effect could be obtained
upon the addition of more solvating water molecules.

Catalysis is a concept that assumes situations which account for lovwer and nar-
rowVer activation barriers and tunneling of proton transfer is probably an essential
mechanism which accounts for the extreme elficiency ol'biocatalNsis. Therefore the
correct positioning of solvating amino acid residues in enzyme active sites seems
a most plausic,le reason to explain the high catalytic accelerations observed in en-
zvme-catalyzed processes.
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Calculation of Barriers to Proton Transfer Using a
Variety of Electron Correlation Methods
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Abstract

I .he wl,:ett lieN CCI" n ; .OSl ;CtC x n i C•C.I.C, i 'l 11 SC NCtof t, t I and ti 'lO& n I ll C C i. Ftltn coreita-td prItol l

trailcli poTtte aN iN CitsCtig .ted lt.r the .L'mC .In l II I : N 1 tA )., . and IhI . %I( NC I calcCulation"
can accoirad tl dte ic rmne proton tran5.'Nr harriers. proNsdctl th' c.orrclaticon is hIiited lo fihe plCCton

.ra ,ler pr•.oN I hie proper correlatcd spack. can he lCht.IC CL i t CCIt" w 'v -,]N I% Ii l Ct C'lnollica Il CLcupied s"I os

1re firCt C hiil'etd to a Jocali at on. \ ariouN mean, ire tcstted ot ineludu g additional electiron :ortclaiton

into the ,i( s( I nC'olCs. ( N andl ( t I) calculatitonN are lperfoinCed t0 Iotlong C t ýC S expansion s of the
%k w IInCtlciilon tusing SCrioC , dtlifraent •. s tr re•lerence Nase itinctions rhc ,tit NC I iC-i rewilts are

C\mCeICnC. -oig l\daerl p eIld LtcLitL !l f CIt iXce CIirtli'lal %I',. C5 lthough it IN iniportaiC thait the itkCCpict

oCbiCliC.N he balanced hct%'%ccn lhe donor and ;Ictcpt• r. I oc.,lli/iC t the otCCUpled NiCiS prior lo the %MI( NCI
pj.ill the c:a cit ltlol lCC diCin C•I It': l CC to CulhCr C tin i lpro trne Cnt. hI'St rth e slt ar cr comlipared toI ( CO•com-

po1i.ttlloin kiCirg the caf•lCniCC l orbil ai ( aid I, citl are not preCeded hi M1( l( I preparation olI the %kia't
lincfliol ) aid tlo MC llcr-P"JoNet ic~ ulte , It -'i h. l k tIc, &, SoICI ji'

Introduction

Because of its fundamental nature and its prevalence in various important chem-
ical and biological reactions. the proton transfer process has been the focus of
increasing attention [I-5 ]. A number of ah iniiio quantum chemical calculations
have been addressed to evaluation of the potential energy surface for the transfer
of a proton from one molecule to another across a preexisting hydrogen bond. Past
w:ork has indicated that electron correlation introduces significant perturbations
into the Harlree-Fock ( III) potentials 16- 161. The majority of correlated studies
of proton transfers have utilized the Mioller-Plesset (mP) perturbation technique

[6- 1 I]: other methods investigated have included coupled cluster and configuration
interaction [12-i6]. Common to all of these approaches is the assumption that a
single electron configuration can serve as an adequate retkrence state. While such
an approach max not be wise if the proton were required to transfer a long distance.
it is considered quite satisfactory for K-bonded complexes, wherein the two sub-
s' stems are within 3 A( or so of one another, an assumption which has been verified
fo.; "i number of systems [17-191.

The central objective of this communication is an analysis of the possibility of
usirt, multiconfiguration s(-i: methods to calculate proton transfer potentials, in-
cluding electron correlation, in an efficient and accurate manner [201. A prime
drawback oftM( S( I is the necessity to make an arbitrarv choice as to which molecular

IhticrnahC inlal JIirnal (it Quantutn CihcmitrN: QuanituCum ('hernisrN Siiposiuni 2
6. 8I17-8 35 (1992)

99 111 l< Ch 1. &i S•n•n. Il't ( C( 00211-7(tl1/9211 I 1 7-19
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orbitals to include in the expansion. Ifence, this ý ork includes an examinatiOl of
the effects upon the correlated was efunction of including N arious combinations of
orbitals in the \l(-s(: expansion. The proton transfier barrier will then be determined
using the combinations which best represent correlating the proton transfer. A
multiconfiguration method yields a certain fraction ot the total correlation energy:
the remainder may be recovered bs a configuration interaction approach. I'herefore.
singles and singles + doubles configuration interaction calculations, taking as a
reference point the multiple determinant solution obtained b\ the Mo(s( I method.
are tested as well. In addition, the dit1'rences betw\een using multiconfiguration
and single configuration reference wave functions are explored b_ comparison with
the results of a single reference (ci study.

A standard IIt calculation yields canonical molecular orbitals xhich arc delo-
calized over the entire complex. These Mos can be transformed b\ a locali/ation
procedure into a set of orbitals which are much more concentrated in one region
or another of the system. The concentrated nature of these orbitals should allow a
more complete treatment of interactions deemed important with a minimum num-
ber of orbitals in the expansion. Another question considered is whether such a
localization does in flct offer a superior frainesork for the i(csci machinery. for
both the situation when a subsequent cI calculation is performed and when one is
not. F[or example. can the wscut procedure be accomplished more elticientlv using
the localized MOs representing the A -H bond and the Y lone pair. as compared
to a larger number of delocalized Mos?

The final question that this communication addresses is the effect of increasing
the proton transfer distance. What is the maximum If-bond length. beyond which
each type of method yields unreliable results'?

Computational Details

Most of the calculations discussed here were performed using the General Atomic
and Molecular Electronic Structure System ( GAMESS) [ 21 ]. All calculations were
performed using the split valence 4-31(G basis [221. The primary focus of this work
concerns the multi-configuration self-consistent-field ( v( (1) [231 and configu-
ration interaction ((i) methods [24]. as implemented in GAMESS. The full op-
timized reaction space (IORS) approach is used for the M(S( I portion of the cal-
culations. FORS includes all possible combinations of electron excitations from the
chosen occupied orbitals to the chosen virtual orbitals. As a result, the number of
configurations included in the calculation rises dramatically with increase in the
number of orbitals chosen. Our version and implementation of GAMESS allows
approximately 10 orbitals to be included in the reaction space.

M(S(CI F)RS wave functions are computed and used as beginning wave functions
for (I expansions, which involve all virtual orbitals that are not included in the
MwS(F active space. The (i portion represents a complete active space (('As) cal-
culation 124 ]. The ('I calculations include all single and single + double excitations.
(,Is and (lSt). respectively, from the MCSCF reference wave function into the re-
maining virtual orbitals. The (AS (i calculations add a large number of configu-
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rations to the alrcady cxtlnsi'%e \U S('I calculations, thus the maximum size of the
MCSCF-actii e space is reduced to flour or possibly six orbitals depending upon the
particular system.

Localizations were carried out using the Boys criteria t?5], as implemented in
the program. The occupied i.NOs were then substituted for the canonical orbitals
in the NICSu FORS calculation. GAUSSIAN-88 [26] was used to carry out the
Moller-Plesset (1%111) calculations.

The energy barrier for proton transfer is investigated for four symmetrical H-
bonded complexes, HF-,. H-N , H02,. and H.-0,. The transfer barrier is evaluated
as the difference in energý between the midpoint of the transfer and the starting or
ending point (equivalent due to the symmetry). The rigid molecule approximation
is applied so that only the central hydrogen atom is allowed to move during the
transfer. All other bond angles and lengths remain constant throughout the transfer.
Previous studies have indicated that this is a reasonable approximation for these
systems [27-29]. The midpoint structure is that in which the central hydrogen
atom is placed halfway along the F- F, 0 - 0. or N - N vector. For the endpoint
structure, the distance of the bridging hydrogen from the donor atom, along the
same axis, is determined by a scF/6-31 IG** optimization. H, is used to designate
the central hydrogen undergoing the transfer while the terminal hydrogens are
denoted H,.

The following geometrical parameters were used to construct the complexes. For
HF: • the F - F distance was set equal to the observed value of 2.28 A [30J . resulting
in a midpoint F-H, distance of 1.14 A. The optimized endpoint structure is
somewhat arbitrary for this complex. since the potential contains only a single and
symmetric minimum. The optimized hydrogen position for the starting point was
arbitrarily set slightly closer to one of the fluorines, at a distance of 1. 113 , (the
transfer potential is extremely flat for longer distances). The midpoint structure
has D, ;, symmetry, while that of the endpoint is C',,.

The geometry around each nitrogen atom of H7 N, is tetrahedral with r(NH)
equal to 1.00 A. The two tetrahedra are staggered with R(N - N) = 2.95 A. The
N--H, distances are 1.475 A and 1.043 A in the mid- and endpoint structures.
respectively. The symmetry of the midpoint is D3d and the endpoint is C,.

The length of the bond between the oxygen and each terminal hydrogen (H,) in
H3•, is 0.957 A. and each 0- H, bond makes an angle of 104.50 with the 0--0
axis: the two terminal hydrogens are in a trans arrangement with respect to the
0- 0 axis. The oxygen atoms are separated by 2.74 A, with r(OH) equal to 0.997
A in the endpoint structure. Even though the midpoint structure is formally of C'J,
symmetry. the calculations were limited to C,. The endpoint structure has C',
symmetry.

In each OH, subunit of HO. the 0 - H, distances are 0.957 A and the H,OH,
angle 104.5'. The HOH bisectors are disposed 120' from the 0--0 axis. trans to
one another. The 0--0 distance is again 2.74 A. The distance from the nearest
oxygen to the central hydrogen is 1.012 2A in the starting structure. The symmetries
are Cj, and C, for the mid- and endpoint structures, respectively. As with H1O1.
only C', symmetry is explicitly used in the calculations.
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st+ and Mi, Calculations

The 4-3 I1 basis set was used for all calculations. )f course, the results with this

basis set cannot be taken as definitive values of the transfe.r harriers, hut the spirit

of this studv is directed more along the lines ofexamining the merit ofeach indiv idual
computational method rather than determination of a precise barrier ofexperimental

quality. In that vein, the specific basis set choice is less critical than the consistenex

and reproducibility of the calculated barriers. As a .ardstick of the accuracy of a
given calculation, comparisons can be made of the calculated barriers with those

found using other methods, Table I reports the barriers computed for each system

at the SCF lexel with the 4-3iii basis, set as well as the results at various IC\Cls of
MP perturbation theory. The negative barriers listed for FlIF refer to the greater

stability of the midpoint than ofthe somewhat arbitrary endpoint, since the transfer
potential of this system contains a single symmetric well, The trend observed in

each case is that MP2 lowers the barrier quite substantially relative to S('I:. 11 is
raised a bit by MP3 but lowered again at the MP4 level, all in accord with trends
noted previously [16,18,19]. The data using the larger 6-311 G** basis set are

included to indicate how changing the size of the basis aflfcts the calculated proton

transfer barrier at various levels of correlation. In the following, we will consider
the MP4/4-3 IG results as a sort of benchmark by which to judge the accuracy of'

the various calculations, also based on 4-3 1G.
Before discussing the various methods investigated, the s('c orbitals will be sum-

marized. The systems investigated here are isoelectronic, each having 10 occupied
orbitals- The MOs in the midpoint geometry represent either symmetric or antisym-

metric combinations of the two subunits, with equal weight. The MOs are consid-

erably more localized in the endpoint configurations. where each orbital pair consists
of two similar orbitals. one located primarily on each subunit. The first two Mos
are composed of the Is orbitals on the first-row atoms, leaving eight valence orbitals.
The third and fourth MOs are similar in character except they involve the 2s rather

than Is functions of F. 0. or N. and the terminal hydrogens. The symmetric MO

of this pair also contains a certain contribution from the central hydrogen. The
next six MOs incorporate primarily the p orbitals of the first-row atoms and terminal

hydrogens where symmetry-allowed.

I xI .L 1. s. i And .Mollcr-Plessct proton transtier barriers (kcalimoh.

Basic set S(I ,iP2 %I,3 oP4

HF- 4-3 IG 0.059 0. )5 - 0()92 0.077
! 7N 4-31G 11.15 5.61 6.94 5.k6

H 30, 4-31G 6.71 0.54 2.42 1.16
Yt 1O0, 4-31G 6.24 0.94 2.57 1.52
tO• 6-311(G** 10.00 4.45 6. 1 4.33
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\prinlie Issue \%It fil e \ti N( I aprl"ilIr~~ is, P~roper sclecktioti of a ,maiilflurtiiber
01 0iiblitil's 10~ 'a.d II tilei ~e Cs pansionl \ strailIithir\\ aid initial apiproach 'ý to
IneldTde thelk 1011di I rc and ci IT IVm)diIj nit IIOMII itbttlneOrbital'. ofl \% hat Oii dCCII.\Iii'

thC. Most imlportant minterctions. -Since, it is, tile motion of II,,he rlt4ineý! hl tirogeni
ý\ hich is under studs . thle orbitals' illiportance C %\II tic anals /Cd In term,, of' thircf
intecractionl -N ih thil- Cellter I he situation IN compI)I'lcate Ini that one des~ires to
ensure that the orbial' used hAr tWe enid and midpoint ge metris arc coImparabl.
Oi rot idenitical. I111 tis [l ot IChIICsed. thle eneresl of-11 onqtrtlkict' nrcsill be artifiCialls
limsered %\I.ith respect to the i'tlrer

()nIC Might r'easoirail'. NUIOse that ,irils o-rbital'. vd ilch cont:ain a sienifiecint
koInttIbIition f-ront 01r itls1 Oft the 'central fhsdrogcn ( i.e . -intecract" \ýitlt I I I neekd
he Iincluded In a 'M s( I 0cx .alnaton of Ithe, tr'nsf~icr barrier. I hiI aissirtionr kaN tested
fl. peri-trwi ng threicc e' of CaiCUlatrl'iv*. \ tIr-S !Roupoforitl' to include Iin the
Cwsuitaion pro'ieduie IN a p~artiall sel Of those %\ hiCh Cannon10 InICI.aCt xI \ Ih1,.A
second ChOiCe n IM Ok c a More co mplete set of' noninteracting, orbitals.. \ I/. all ofl
the niitreiitoccupied Orbitals. and thekit' correCspIondingý- x irinal \1( IN. \ thirdi
choic buiA' on the s ovnd in that, in addition to a Complete sample cfit oninter-
IcITing O rital'. onle inI& k'ludes OccupIlied Or\11 iruaI orb Ital' I thatI nax int1eract.

Sinc-e the basis of' the central hs'dt'oieen contsists. Cntiielx (i' orbital' x'.thin the
cones 1o thle 4- (basis setý 1 1 'canl pjai-lica)te Iinl thle m ldpi ult geiimetr\ I on lx

in \"tN isxhich ane '.x iIk'rimeri xxh respec~t Wo a planeC perpenIdicuLlar to thle li1-ond

asts.- \dditional orbital'. are able to interact Inl thle Case Of' the enldpo1int dueI to its

lcixer wiirncmttr. \w both III and 11 N : ontaini an a\is of Ns n-uetn's coincident
"axnh the \ -H-\ - ask. oiil the MORCleclr orbital'. Consisting prianlars of the atomlic
I: and N 2', arid 21, orbhitals. of r, Oft pe ss m etrx areC able to interact with1 thle

c-entral hxdrogk'n. I hec orbitals cointai ninig thet V and NN 22p, and -2j atomnic orbitals
are ori hogonai to tlvs, asis and heicing to thle -,or c-sx mmeitr% designations, and.
heiCe. Can not iIIJ, rittatl III Chtenet!ral lix dr-Ooen. I ti cont~rast. thle (0 H1 0 asis
offI I( arid HAY . is not a pri'pr roation amis I her'e is, bosses- ci' a 55 metrs
plane, x itch ýontais the 0 11 0 I fine as, %%ell as, the terminal hxdrognets Iii
1I ( J) - in. bisctls thet I I ( ) 11. a~nttles in I1 -0 [he n's 2N. 21,.arid 2 1,1 orbitals
contained Iin this plane can interaict sxith the central hx~drogen. Mx ille thle tsxo 2p'

orbi tals perpetCidiCU far to thisl, plane can not. InI these sx stemns, it is thle a" or'bitals
xMIiich are prohiited fRo m interacing xxith the central Sx dr 'en WxIiie interactioin
xx ith aI is allossed.

Fihe results, of, a series of \t( V I calc'ulaIItion insol\ Ing noninteracting orbitals
are listed In Itable IH. For both Il I- and It N .: -x "nI MI Ofthe tMO occup~ied Ir

(or c) pairs of'orbitals is VMSltie along with one of'Wte x irual pairs (the MIrs row

for each com ples 1 .the harriersare quite high. xx elI abox e the S( I \aIltie. Ii his result

refect a strng i Watanet'. espeekiall frw I IF sitet the m I data indicate a singe
sxIIMII MniIILII merc i im it %inibch a Cent rat position of'ltire proton is tawored. ]'han. is.

lie barrier corn puted as, the energ\ difference betsx een thle tsx i proton positions
shiMIniixild aI~ neCgatlix harr-ier, a resuti It on firmned hr I able 1. fihe second rows
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I ii. ( . lcudit pro~tojn If,1llicI ,rl c K III &I i'fnýhI In l~ ,~l \ "Imm v

14 7. rI II 'T2 o W

I 1$).Ia 'T,' Id 04I6"',

ua 2a, 341" 4a" 0 6

d' 2ai' 9aI OdI ( a i2a 3~Ia14a 6 2
11.04 a~d 3d' i,

I a 2a'1 3d'4d' 6.17

I '2J 'a'4a9a I0a, 6,16

Sý ninctr\ demgnatan'. cai"pidI, tile Imwjtpaint qrkleuC1

illustrate the effiects of adding another pair ot occupied and virtual 7r or e Mos to

tile set. resulting in a complete treatment ot the noninteracting orbitals. The results
arc harriers, vwithin (0.1 kcalt/ mol of the Scsvalkie. The thivd rows re'veal that the
addition of either occupied or ý,irtual (7 or a-ty pe NMos. which can interact with the
central hydrogen, have no further effect on the calculated proton transfer harrier.

The situation for the o\ygen-cofltaining systems is somewhat different in that
there are onily two occu pied a" vios prohibited by their symmetry from interacting
with the central hydrogen. Taking these two and adding one a" virtual produces a
rather high harrier, as in the first calculations for H- P, and HO- . Adding a second
vacant a" reduces the harrier to within 0. 1 kcal / mol of the sut: value in either ca ie.
This barrier undergoes very little change thereafter. whether more vacant a" Iios
are added or if the vacant list includes a' mos.

The high harriers for the first calculation on each svstem can be attributed to a
preferential stabilization by the m(-sci: procedure of the endpoint of thle transfer in
comparison to the midpoint. This preference may he associated with the change
in character of the individual Mos as the proton is transferred. For instance, the
I it,, and I ira, Nios of 1-11', distribute themselves evenly among all four atomic 17,
and 1), orbitals in the midpoint structure, while in the endpoint structure they aie
concentrated on thle 1p orbitals of the proton donor atom. Excitation from these
,Sios A111l therefore be similarly concentrated on the donor atom in the endpoint
structure in comparison to the midpoint. However, the ( lir~, I rt,,) pair undergoes
a reverse polarization in which density accumulates on the acceptor rather than
the donor. Combination of the latter pair with ( I ir,,. ]7rt,,) can offer a more balanced
framework. Indeed, use of both pairs in the excitation list, along with the four
corresponding virtual Mos. does result in much lower barriers, near the suri- value.
V'he same situation applies to 1-17N, where the ( I ',.I c,,,) pair must be combined
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with ( I •,•,, I C, ) to achieve the necessar, balance. Similar conclusions are rac.hCd
for II O; and t I-.O where balance requires I a'" and 2a" as occ'upied ,1 )s ( coupled
with appropriate virtual pairs).

In total then. when a complete treatmenit ot'orbitals that are not ss nmenictrallk
disposed to interact \Ith the transferring hxdrogen is utilicd, the single-configu-
ration S(cl barrier is obtained, indicating that the hs drogcn position does, nmi i•t1'aet

the amount of correlation resulting from these orbitals and does not aid in incor-
poration of electron correlation into the proton transfer harriers. As a result. lhex
need not be included in the allowsed excitations of these calculations, I lJkeser. it
an incomplete treatment is used. one obtains rather erratic results, The barriers are
considerably higher than better-correlated calculations would indicate and e en
higher than the uncorrelated s(F results. Thus. these interactions must be either
completely included or completely excluded from the correlated space.

We now shift our attention to those orbitals whilch may interact directl] w•ith the
central hydrogen. Initially. it should be noted that previous results indicate that the
occupied orbitals included in the M('S(I active space must he balanced with respect
to the donor and acceptor atoms to achieve reasonable results. especiall% Or inter-
acting orbitals 120]. As a result. onl. orbital combinations previously found to be
balanced will be included in this study. In principle, the (-S(I- results %%ill depend
only on the number of occupied and virtual orbitals of each symmetrm that arc
included in the active space. Since only orbitals that can interact %Aith the tranistferring
hydrogen need be conridered. the remaining procedure seems straighillorward: i.e.
to merely include the desired number of these orbitals. L; nIt'ortunatel\. that is not
the case for these systems. Even though the remaining orbitals hase the proper
sy mmetro, it is not certain that they will lead to the desired correlated space. In
actuality, several different correlated spaces. man% containing lone pair or I I, con-
tributions. can result. Each different correlated space represents a different local
minimum. The desired minimum contains the maximum amount of proton transfer
correlation with a minimal interaction with the terminal h.sdrogens and lone pair,.
It should be stressed that the desired correlated space is not the loýxest in encrgv

because while including correlation from the othei interactions may lower the cal-
culated energy substantially. those interactions are not relevant to the proton transfer
process.

The interactions that are included in the correlated space can be determined b\
investigation of the multiconligurational Ifartree-Fock (M(-tF natural orbitals
that result from the M('S( 1: procedure. Terminal hxdrogen incorporation is deter-
mined by inspection of the coefficients of the M(III- natural orbitals. particularly
those with small occupations. The 11, interaction is considered significant if any 11,
atomic orbital coefficient in these orbitals is greater than 0. I. It is more difficult to
ascertain the extent of lone pair correlation. Each situation must he evaluated in-
dependently: however, the simplest method of assuring exclusion of lone pair cor-
relation is to minimizte the lone pair character of the occupied orbitals that are
included in the M( "S w active space. [or each of the complexes studied. the energies
and resulting proton transter barriers from the best Mks(I calculations, using the
above criteria for isolating the proton transfer correlation. are listed for a variet\
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(A onideniie HI ,& rl M Wk2k e~' ennný x WiF211 it" 11212cnc 11%. liallicr

p tcim liaF is 01lo t . th S12l. 111111c":1, \ di XI, 1) t 111 111.1 IMIICr calculated InI thltl "

Should Ke l 1utI e.I o'.ct on!, %%S mel X\ LmIcd and tour \iritual orbitaksar
inclUded Inl the N1( sý Ic eSp~ac 1ý J neCai-JI\C haFC rritr pOd uKCed I )\ eral I - thle
barfrier-s CalCI kited fol' Ill:, arie eC \.pt k1011.111 errlTatk I he d I Ili( Llt I H piTiducnt a
convistent barrier For this comiples is not sprin.since each fluorine contains
three ]one pairs and the ,snlnictric confibmaiin i of each fluorine\ lonte pairs is, of'
thle pr-opeT-,rnsmcmtrv to inieract %ttl iii -I N1 th1C '. I c\' e. thle 1 -Il. interaction
and thle svrnrmetric loe pwr corn iina ton m lit\ 10 Fdrm11 10111 roccupied irhitalN.
effecfjvelv preventing Alie separation oltIhe ocCen pied interact ions Into lone pair a nd
11, and rcsuilti ng it ll ut insueeessful v( 5 treatment oh the proton t ransfer cor-
relatIon.

One miniht en imsion that mcms~i ealculat ion's onl IA, w~on Id has e problemis
similiar to those for II. . because each lone pair can be considered to be replaced

bya terminal hv~drogen. allossing the Symnlintrie Combination to againl interact s' ilh
the proton transfer correlation. I he result shossn in ISable Iindicate otberxsise.
The ealculated barrerv are reasonable. lei ng conistentl\ niidssay between thle v
and sip' %alues Alwo. the barrier derciates "hen the correlated space is increased
by addition of a third %irtual orbi tal, A subse1,CIL nent add ition has on lx a small eflket
because the interaction is, suthiceniku handled w.ith three irtu1-al. I hie barrier cal-
culated using thle tour appropriate occupied orhitals is somesst hat larger due to slighOt
11, correlation. The res;ults tor these coniplev,- ditlkr, because for 1i- the terminal
hydrogen fiteraction can be eliminatedt hx careful ly including inl thle active space
only virtual orbitals "xhich have no iterimial hxdrogen character. thus prexenting

"mi HF11. ( :lchIittF Iigicrc &Wrlcc Ii, 'rToll Ir~jilsiLr hacrrer, dkeal moll I mvi MtI))

's\o yFNctui
oc ut pi ck! %!~,I CM Ii 1 lii itf'

i;9,256920, -99 7'1)781 1)

4 FII'M 21.(23 44 F1901.2694216 4, 11)

4 3 1 '1) ) 26'' F 4ý1 6 I )9925<0384 1.10-1
a 43 F1+ 2551)622- 199 '02'0139 1), 16

HN2 2 F F 2.0253642 F1 6 ;40-1018 S. 5'
2 3 F 12. 6 2i5 5 35 1 1- 64F15028 8,13
2 4 FF2 i28 1)23 F) 1t264F14400 8jF7

I O2 2 15F .221471i 151,23 t10205 3,96
2 2 121 16556W 8 15_'ý -72481) 4 16
2 4 12F'61F52.1747-244 37-?9



anxl correlation of this tx pe. O n the, 01thW! tiild. till' t.cr,1oi nis t tesctoil
IllF because thle lone pailr character canlnrt h;. etfeli\Clxk' chmiin"Ictld h cillic
thle occupied or % irtual orbitals.

[or thil '~e-onanne 'oniplteXt th deiI en etiUoTIIIIIW lu \01,1 o~hwlN~~ to
Include are Iligttly\ mlore Cm~lctk It Inot sxkdli,-icnt to -im~pi 'hltlw xitil
that do not hix e terini nal h ~droilcn chroe nc 111n, .11"o alSo esa ii11ii thle retal e
proportion ot Q. and 0;, in the orbitals. SiI,% til e potin Iransl"I r ioccult aloIni
the i-axis, thle 0., orbitals are cenltral to) thetrilkr I flkIexer. M tle terminal hx\
drogcns Interact xx th thle o\\xeen xi~ a ha lix bnlaion of tile 0( 'Iand I)I I)hI tj I.
As a result, Sign ificant xiina _). characLter' x III \ ICld LI uprfOd Lict Ix\ C ure*'latiloll ex e'n
withIout an\ direct 11, Contribution to [thc ,Irlull orbital.

[or 111%0, there are onl\ three app opriatc x Irtuall orbitlw. II all thIncc aic Included
In thle a!ctive spa)Ce. Su~bstanItalII c1 oorrlation results. \iso.k "light If cot elation1 Ps
introduced when onix txxo ofl te %irtuaLls aIre HinCIOludeI 'ortuiiatc'l\ tile .11111,unt 01'
1I, correlation incorporated Is eq u ixalent inl both strtct ot es. based on the H;, coed-
fieients ( largest is II.141 and( OCeupanXI,: lli,0)73 ) of the niatural orbital. [he cbarrier
calculated in fhis, case is 1,9 kcal / mlol. xhI"hi ixii bets ccii the 5( I and \11I'
results- F-or YL~O. More aippropriate %so oaks arc as itýallke and ciltler 1vk oll or tour
v irtual orbitais can be included inl tile actisc spcesitliotit noprtneiutci
0.., and 11, character. The barriers calculatedl aic -[16 and .~)kcal" fill']b tol- Io
and tfour x irtuals. respectixclx Ihs lis, \ales reatistctr bcnail ShlIutlx, klaree
than those f~or 1-1-0 - .as seen for thle \'w0 results as secll. Inl addition, as sxith
Il-N' the barrier decreases hx approximiatcl% 0_4 kcal/Iiroot whenl hlesihilitN is addedd
by increasing thle si/c oh the ajctisespc.

Overall, tile correlated space. and flths tile q ualit\5 (it anl '\I( so I calcullation is,
highk sensi tixe to tile choice of orhi Ia Is that areV neICLICC Ide titlte aeiCUxc space. When
the correlation is liminitedl to thle proton trawite~r process. ci nsistent resuII JIts aeOh-
tamned. prox ided there is a proper balanice betsseen thle donor anid acceptor. ()th-
erxsise. the barriers are Inconsistent and unoreliable. O ur results inldica'te thatl onhx'
orbitals which are allossed hx sx, mrnetrx to intjeraoct w ithte transferring h\ drogen
need be included inl thle Na so, active space. H oxxever, not all orbitals %kith thle
proper sx n netrY lead to the correct correlated space. Care must be taken to exclude
those orbitals, either OCCLupie~ or xmirttial. that can introduce interactions other than
those pertaining directly to the proton tratislir. U sing x iilual orbitals iii addition
to one appropriate antibonding counterpart of' each occupied orbital lowe.rs the
barrier by allowing more correlation to occur mx ithotit introducing newN ty pes oh
correlation. [inallx. it should be noted] that It can be extremely dlifficult to determine
whether a given set of' orbitals wvill generate the desired correlated space xx ithout
performing the calculation. This obsers ation limits thle general uIsefulness of' this
approach because additional calculations muILst be performed to guaranteco thle quLItxII
of the results.

The localization procedure changes the character of' the ~ccuipied orbitals such
that each MO corresponds to a distinct bonding or lone pair orbital. For both thle
end and midpoint geometries of HI-M. localization prodiuces a coi c orbital. one
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F I1 bonding orbital and three lone pairs ftr each 1: altom. Ihe four F-centered
orbital' airc arranged tetrahedralix. relatise to the 1: - It bond lying alog the

I- . f: axis. The localized ox\gen and nitrogen orbitals in the other complexes
adopt the same spatial arrangement. hie localized orbitals no longer belong to
irreducible representations of the point group of the complex, pre% enting sn mmetrN
l'rom being used in thie calculation..A\Ithough the loss of sx nlmetrv ma\ seem to
create a problem in choosing the orbitals to include, it does not. Onl. the occupied
orbitals M hich consist of the 0. N. or F interaction with the transferring hydrogen
need be included. For the \irtuals, the decision process, as described for the canonical
occupied orbitals, must still be tvsed to choose the best combinations.

Fhe data pertaining to the desired correlated space obtained using localized mo-
lecular orbitals in the .icS(si active space are listed in Table IV. It is immediatel\
e\ ident that localization produces a dramatic improvement lor |-IF: . Whereas the
cani-nical m, s failed to yield consistent barriers since only one combination gaxe
the correct sign. quite good results are obtained using occupied I \M()s. With two
sacant orhitals a b',,(1-'r of I 07 kcal/c ol is ',btained. Each additional k irtual M%
liwuCded in the active space raises the barrier very slightl\. The values are in excellent
agreement with the ,it barriers in Table I. These results confirm that the difficult\
in producing acceptable values \%ith the canonical orbitals is due to the contribution
of the fluorine lone pairs in the occupied orbitals.

The results for Fl-N computed using the two N -- H, orbitals are virtually iden-
tical to those obtained with the canonical orbitals. The only diflierence is in the case
with two occupied and four virtual orbitals where the barrier changes from 8.17 to
8. 13 kcal /mol. This ditlkrence is due to a very slight decrease in the H, contribution

to tie correlation. For both HP, and !"150 Z only the two 0 ----- H, localized orbitals
were included in the M(S(t active space. In each case. the results are again nearly
identical to those obtained using the canonical orbitals. The one exception is that
reasonable natural orbitals can be obtained using four v irtuals for H130, as compared

I \ 1 1 . (1'a 111cdatc cnc ruic, illarlrec) and proton iransder harrier,, Ikcali/mol using, \i( rind
localh/ed occuplQid orbitaL

No. ot* No. ot Midpiolln Endpoint
oscupicd irrfual cncrgý encrgp l:

I I 2 199.2696317) 199.'695203 .017 is
2 3 199.2 7'22054 199.2120789 -0,0'794

2 4 199.2'726319 199,2725035 0 .0805

2 6 1992733423 199.2732119 . 0.08 8
|t-. 2 2 12.6253642_ 112.6390208 8.57

3 12.6285535 112.6415038 8.13
2 4 112 6289767 112.6419410 8.13

II,) 2 2 151.2247169 151.231 1205 3.96

2 4 151.2283470 151.233845( 3.45
12 2 52.1658668 152.1724891 4.16

4 152.1686 0111 152.1747249 3.79
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hut it is Still CqUrxAlIir Qr NOtl strIcturS and thus Ioes umo allo I Ow ,h Aail
lanriii. Ilie trend oad renrne theC cak-lcuated lmarrir It III[ and 11 () -!
pro\irna~tcl\ 0.4 keal nliol 1), iiireia'iiie the si/C 01 te,11C spa. C Illnd !I n'.to

this colilple as xx clt.
()xcral]. the I W M I results 1usine1 IoCa~lid occupIied \i MIs lar k'ih 01iracrue In 1

princip~le, tire correlated ,pace should not depenld onl tile axtulal 01uitr1te.'
thle occu~pied orbital'. inIcluded iI thle 3c0iW Cspace. hut shou~ld be idClitICal x ICOIK
tile% are tocali/ccl or not. HIh hairier', calCulAtcdI LisHIiw locali,'d orhi[tais 11 a nle ride
\ u-i lls II ide~ntiCal tIo th1ose obtar n)ed Iil or I I IIIIc an Iri %I( mi sI ca Iil. IIIIIkI [1',, 111 iI
catie that the canonical alulations did Manti&l cliiiriate an%~ hmtc pmt o!
tcrrnu1nal hrdrogCIn interaction. Cxcept rim- I IfI I herer I, ain 'IddituonOl d a~ue

created h\ locali/ini. thle occupied or-bital'.: the character oIt thle \ irtual tirbutrlk i'
not as Lr ucial. thuis there can he slight contrihutionls from theC lone. pair" ) ol hnim a!
hrdrogenw xx ihout creating the additional convbeltron. because those cicnicnts dl
not Ceist inl thc occupied orbital'. I hos also enlables Calculations, to hcý. ue'U(Csstill
performed using extrat o rtual orbitals.. Mnchre increI-asCs thc almounl (!! thc
correlation and lokC]ms tilie Calculated barr-ier.

Tafl-e \ presents the results oh I calculations" oft hle t ralnster harrier usi ne a s i
configuoration referenice. I hie hort two rowss of f able \ shoxx that %% her nall orbit als
off If I- are included. a barrier of' 0.09~ kcal / mol is x alck iitcd at cit icr the dooh bl
or triple excitation cx ci Renmosing the core orbtsl Has no effect on V ic calcuamic
barriers wh ile eliminating thle occupied -,r orhitals. \\ iich are unahlc to interact
d irectls xx itli thle transferringig hydrogen, has x irtt uallý x1 noI ektcit IICr. Ill fact tI.c
onlxl result that dill'rs apprecuahls is that obtained xx heni onlx thle ic 3')pair.

composed largel(it'o the 2 1?: atomic orbitals. is used \xxitir double eccitations. but
thiso(.4-kcal diffierenice x ankihesxwhen tri ples are-, added. I lle last Io'm deittlinst rates
that rincludring quadruple excitaios has no further effect onl the cieneme (iftcreriec
hetsx Cecu thle end- Anrd in idpoinlt'.offiII_ . tile ( i barriers fi r H[I I-1-C age iicIrxilh

the correlated kal ties obtained hx the alternate Mulr-Pestapproach a rd iscIM
in !Able L

[he first kw rows fir 11N -Vin fable V Suggest a harrier of 7.5 kchalý . oL. again
u nhariged by deletion of the core orhi tls This result is sonic .5-keal Ii iiiicr t harn
tWe VNi v)xaluei. hut lu it cloe to M.t' Remoxi rg thle occulvieh ir (c) odrbi maosmai
the calculated barrier to T8X heal 7.6 for triple excitations,) Ire 2(1!. and .
orbitals are composed primarils of thle 2.s atomic orbitals. xslile thle 211ritl
contribute to la),and 3a-,,extensivelx. ExcMitio frmi the latteripair oni; proxides
a snimilar harrier. sirtlualkx uriaflkted by the lesel ofI ecorrelalion conisideredl. Inl
summrarx . consistent and accurate barriersý mlax be obtained x60 imlicxci a smadl
n urniher of iccupied mm). pros ided some care is exercisd in theirn- ic

For H ;O ., a (ohiruls calculation usingi all orbital', bothI occupied and s irtual,
x iclds, a harrier of' 2.74 heal /mol. aI result which is againiualtd hx 1neelest Of
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I \t~i S+ ( .,Iclv'fd.',t I irt!(! t[Ln'tcT bi!'.c Cci, !kcji ni~s!! • +•

\ irtu,.,

i-1 1i 2.u h~~ 1 11 11-1)
Ii), ' CV;,I I~ I:,l.ll' ~l-Nll, 3 \1 /

1. r23, IT ~ ~ 1•,II 21 2 uiII~

23 I, 7 3 T-21
11IiIT

II 0 1 IN 4

iT " j, It 1t 4 It', I 4
fl-N ,- 2.3,1 *� 1. 2. , c It- ''1. Ic. 1-

2I 3
il .NI 2 2,a.

Na3  .a... , I , -a

2a,.a,2 :,•a ,11-32 4 ."

3a.3..6.SI 2, I I - 24 2 2.74

S. 1 .2 . 3 ,4 , S a l 2 1 1 - 2 4 2 2 .a)

S1.21" I -24 1 274

56, 87. l 12a" -432 •
5.,.7.4" 1i1-24 2 25(3

11-24 No2.4

I 1()" !,2,3.4.5.i.7,.54 1,24" I 1-2 2.,54
3,4,5,b,7.,541 .2i' II t2 ," 25,4
5.~*5.7 4 1.24" i 2-S 2.9,5
5,6,7.5 I-I 2 2 X.

5,(.7.5a" Ii-2 .- +.6•
5.6c(I,2a" II-+5 2 9.9(1

5.6a12'!. II-2 S 9.).,

SS•< niclr\ designlationls corres~pond to the uidpoi 1n t rlucttira.SVirtual o~rhitalk ar, numbeared I'r nl• Itnsse~t ~enrrc\ I I )i hig.hest t'lerc\ 2.0., 24. I+ilntl 32 ior
I lie I I. ):,0. t I<O•, and 1tt . e1" pcctiseI> I

•Maximum alI~owcd ex\citationf Iesci• in the i C\I'Rdlmti,'i

the core orbialas. The harrier is lowered slightly by removal of the t'~o 2.s orbitals.
but the corresponding triples calculation ,,ields a harrier 0.4 kca! lw.er. The M'3

barrier for this system is 2.4 kcal/mol, quite closc to the 2.3 obtained here with
triple excitations in the (I expansion. The occupied a" orbitals have only a small
influence since. when thes are removed both the doubles and triples barriers, increase
by only 0.1 kcal.

A barrier of 2.84 kcal / mol is calculated for t1LO. ihen all orbitals are included.
Again. the IL core orbitals may be ignored.) limiting excitations to a' orbitals

changes the barrier by only 0.1. The two 2s-based or the a" orbitals can also be
eliminated at little cost in accuracy and raising the level to triples has minimal
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impact as kxell. I lhe last INo rows rc\cal that i nhulan1ced Occupied s'es J)r(Kduce
oNerlk high barriers, as in all previous studies.

In ,ulinlmar\. the ('I results reported her. are-C in cood coincIidence ,xxith \.oll lCr--

PIesset computations mxith the same hasis set. cspeciallx %ii'3. C ore orbitals need
not be included as the results suktr little deterioration in their absence. lox cx er.

orbitals of more than ono S\mmetr\ are often necessary: their importance can he
determined in each case by performing a fe,'x sample calculations. Increasing the
excitation level from two to three lowers the calculated barriers h\ roughl. ft I0-10.3
kcal/ mol. An additional but smaller reduclton results frorn inclusion ofquadruple
excitations. Theretore. calculations limited to doubles can proxide an excellent
upper bound to the barrier.

.MCS(I. 4- ('1

in this section. the multiconfigurational wave function obtained from a given
collection of occupied and xirtual ,tos is used as a starting point Ibr a configuration
interaction calculation. The important occupied orbitals should be included in the
MCS(',i active space for maximal llexibilitx. Therefbre. the combinations that were
found to be successful in the prior MNCs(- calculations xwill he used here as \-ell.
Different combinations are investigated to determine how dependent the M(F 4.
cI results are on the quality of the MCSc'I relf'rence wave function. The same com-
binations of occupied and virtual orbitals are used, wvhenever possible. tbr both the
('IS and Cis[ calculations so that the etl'ects of changing the excitation level can be
evaluated explicitly.

Table VI contains the MCSt- 4+ 4t. results lbr HFi using two fairly %-.ell balanced
occupied sets. along with two balanced and one unbalanced virtual set. Ihe
(3o(.,3u,) set contains the two F 21) orbitals. and the larger occupied group adds
the two F 2.s orbitals. The negative barriers listed for all six combinations indicate
correctly that the midpoint geometry is slightly tavored. The values agree nicelx
with the (-1 calculations in Table V. indicating that the multiconfigurationai nature
of the wave furaction does not perturb the character of the potential. There seems
to be little sensitiity to choice of occupied and virtual sets as ahl oaiiers are ap-
proximately --O.8 kcal/mol. The onl. exceptions are (,Is computations that use
an unbalanced set of th, "e virtuals: the barriers here are still negative but probably
overly so.

In the case of HN , the two occupied combinations are first the two 211: orbitals
and then the four 2s and 2 p, orbitals. With the 21. orbitals and the lo,,west two or
three virtual orbitals, tile ('IS barrier is fairly high but is reduced afler including an
additional virtual. Similar :suits are obtained with the 2s and 211: orbitals. except
fhe values are lower. nsi) Calculations using the 2p: orbitals and either virtual
combination yields a barrier of 8 kcal. (The corresponding calculations using the
second occupied pair were too large to be performed.) These results indicate good
consistency at the C'ISD level. as compared to much greater sensitivity of barriers
to orbital choice for cIs. The ('1St) barrier oF8 kcal/ mol is in accord with the best
(I result of some 7.5 in Table V.

The first two sets of occupied orbitals of H O, listed are unbalanced. 'Fhe con-
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i il% I VI. ("atculated ipoton trans\Il hdrlrer% ikca.tiol, i n uine I aind a ',It "•i I0,eIrcI[We.i 'ci . Ith. II.

11 1i UI

()Ocupicd orbitaki orbitqials, IND.1

IIt!: 3oT3a, 4 ;•Sr, 1.hIS4• I tI• I

3a,3,% 4 OX ;4 0i08I

2,T,31,r2a,,3aj, 4,7',3o,. 0 ,089S• 0 0 K

2,4,3,;,2,Y,,3a,, 4o,5,, ,S 4,,,. 0.08X-2 0 ON46

tNg3a 
2,,3- 4aI ', 41.74 N ()7

2aj.2az,,3a,.3a., 4a,4a.S,,5a, 5,06
|I;O' 5a7a I h, 12u, 3.lX 2S.$ I

6a'8a' I 3a'14a' 10 i" IS 7

5a'6a'7a' ' 9a 'I l' 3M6ý 2 21
5a'6da'7 'ga' I I 2, (a.A (2 I .816
54'6a'T73aIa'13 I4a, 3'SI 2.11
5u46a67cd8a' 14a'I 5a" 4.36 2 w0

5'Oa'7a'8a' 13l54a' 10.03 2 ;4
7a'8a' ya' fla 6.12 11 04

7a'8a' 14A (1.1 1 1.92
5a'6Na'7 a' 9a' 10(j, 2.23 2 65

5a6u 7'ga' I I 1 21a' 1.64 2.5q
5a'6a'7a'8a' 14a'I 5a 2.90
5u'6a'7a'8a' 4a"24' 9a a 104 1.74
5a'6a7u'8u' la"2a" I la 12a 1.011
5a'6a'7i84a' la"2a" 14a'll5a' 7 16

SSymmetry designations correspond to the midpoint structure.

sequent transfer barriers are quite large. as with all previous unbalanced occupied
groups, particularly at the CISD level. Much more reasonable results are obtained
for the balanced (5a'6a'7a'8a') quartet of occupied orbitals. Although the cis barriers
are somewhat erratic with respect to choice of virtuals, the data are much more
consistent at the singles + doubles level, with barriers all right around 2 kcal/mol.
Unlike the cis case, even the unbalanced ( 13a'. 15a') virtual pair produces a value
similar to the others, indicating that raising the order of correlation to the doubles
can overcome an unbalanced set of virtuals. These (ISI) barriers following MCSCF

are quite similar to the single configuration (I results in Table V, reconfirming that
a single configuration is sufficient as a starting point for ('I.

The first group of occupied orbitals for H502' is not balanced. The second com-
bination of occupied orbitals. which includes all those that can interact directly
with the central hydrogen, was not sufficiently balanced for the McSCF calculations.
The third combination adds the oxygen lone pairs. which help halance the orbitnks.
Three different pairs of virtual orbitals are tested. Two of these pairs (9a'l Oa') and
(I la'l 2a') are balanced- the third, ( 14a'l 5a'), is not. At the cis level, the unbalanced
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(7a'8a') pair leads to fairly high barriers, which are further clevated using Si.',
The imbalance prevents the ('ISI computations from relie• ing the problem, similar
to H3O0,. Results are improved when ( 5a'6a') are added to the occupied Mos, with
barriers calculated in the 2-3 kcal/mol range at either level and ý%ith an' of the
virtual combinations. (The (1Sl) calculation using ( 14a'l 5a') would not converge
because of the imbalance of the virtual orbitals.) Addition of the la"21" ox\gen
lone pairs reduces the barriers somewhat (although in this case. a high barrier
occurs with the unbalanced virtual set ). The best qualitv (-is[) barriers again are ic
accord with the ci barrier it, Table V, wherein all Mos are included.

Overall, the M(Sci: + ('1 results are quite successful. (-Is Results are fairly consistent
although, in a couple of instances. the barrier is unreliable because the M(,(.: active
space is too small for a ('I singles calculation to include all of the necessary virtual
orbital interactions. The CtiSD results are excellent. In all cases, the values are nearly
independent of the virtual orbitals included, and are comparable to those found
using other correlation methods. The method's success is due to the extra config-
uration interaction compensating for any omission of important orbitals from the
MCSCi- active space. largely negating the need for balanced virtual orbitals. However.
the occupied orbitals must still be balanced or the resulting barriers are unreliable
and excessively large. A prior M(SC'I- does not appear to produce any significant
perturbations upon these correlated potentials. In addition, the quality of the M(s(i[
reference wave function is not especially important in the determination of the
transfer barrier.

Localized NI(SC'F + CI

Localization simplifies the choice of which orbitals to include in the ,CsuV ex-
pansion and reduces the number necessary. cI makes much less critical the choice
of virtuais. Therefore, it was deemed worthwhile to investigate the eificacy of em-
ploying both methods simultaneously: the results are reported in Table VII.

Following localization of HF2-, the two F-H orbitals were used in the MCSCF
expansion. The data suggest very low sensitivity to Lhoice ofvirtuals. All barriers
_rc correctly negative. Indeed. there is minimal dependence for (is and no depen-
dence at all for (71St) where all values are -0.08 kcal. comparable to the previous
results. The cis results obtained for H301 are rather poor, exhibiting a 13-kcal
range of barrier relative to choice of virtuals. However, the (,sti) data are in excellent
coincidence. all around 3.2-3.3 kcal/mol, The results for "-hO and HI7N_ are
nearly identical to H30,. (Is yields inconsistent barriers. which are improved by
including doubles as well, with barriers of 3.6-3.7 and 8.0-8.1 kcal / mol, respectively.
Overall, application of CISD. following localization, provides results that are superior
to those obtained by CISD from the canonical MCSCF or by MCSc-F from a localized
set of occupied Mos.

Distance Dependence

The calculations reported above have each corresponded to a particular fixed H-
bond length. It is important to consider also the range of length over which a given
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IpiI i1. (anculatid plO insl r Ku I: l cr i t e:aIr' k ,'rm ol) sI[I III ud d '01 1 S I r CIl ItCli A'h - ii l•this 't10
I~l II oca IlI/td OCC't'u;Cd orbI hIalk

Occupied

oi'iutll surluaI inhtitus- I i I'it

IIF: 2 f:'-t,4f5jo1,• .•
2 1:-11, , O.1166 L.X

|:--It0 7 a,51,, (.46) (U l 'S I
2 F--.I I. 4q 5, ,5tiu4i. )0.01S 3 I s.) ,2

2 t:-- I 4 ,. .,, ,,0081 1.0.l82
2 t II 6a.7a,

4 n,5., .0(65 t ) I52

2 F---II, 2 r_,2,-r,. 2,-,.,2-,.I 0,110 0.08 I
tIN 2 N --tlJ 4a 14a,, 1(0.t)) X 0 7

N H-t 6o,7,5a:•, 951 7 911,"

2 N -H, 4a.5c2 aC 4 a,, 5.74 7.95
2 N - 1tt 5a,6a11 ,511:. 7.101 7.0

"2 N-II 5 a1,7cz6a1,6 a.75 8.073

2 N -11 4al6a ,I4ae,,5a2 ,, 680 7.97

2 N--1t 4a ,7at7
4
a 1 ,,f u, 1.68 X07

2 N- H1 4 a 4a,,5,6a,, 12.35 8C15

I ( 2 O I I 9dI Oil 6. 15 3.28
2 0- I 1h1 2d 01.73 3. 1
20 1)I 13d14a' 6.23 3.34

f H1 154a16d 5.46 .2
2)- H 1441A 5a 6.69 3 31
2 0-H, 13Hd154 12.65 3.34

2 ()-Ht, 9dI410 I lal 2a' 3.25 3..15
2 0--H, 9d'a' 10l 3d14d 01.60 3.30
2 0-It, I lal12aW 31a14d 3.39 3. 20
I2 0-11, 9d'"10l' 6.12 3.68

2 (0- Ht, I I d 12d 4.06 3.65
2 0--H, 1 5id I6a 8.91 -

2 ()--t`1 9'10(1,1 1al 2'd 2.37 3.62

2 0-1H, 9d' 0al 54)l 6a" 5.94 3.74

S.mniclr\ designations coirespond to the midpoint structure.

theoretical method will be reliable. For example, it is clear that a single determinant
would represent a poor starting point for a correlation calculation when the proton
is midway between two groups very far apart. In order to investigate this question.
a series of calculations on H7N is detailed. varying the internuclear N-N distance
between 2.95 and 4.5 A. In the midpoint geometry, H, was placed equidistant from
the two N atoms. as before. The r( N-H,) distances in all endpoints were taken
as 1.043 A, consistent with the shorter H-bonds above.

The calculations without localization utilized the (3 a,,, 3u,,,) pair of occupied
orbitals. After localization, the two N-1-I, orbitals were used. For each of the
M(S('F methods, two combinations of virtual orbitals were investigated. The first
included the lowest energy pair, and the second added 5aj.. The (,I method included
either all doubles or all double and triples. The results are displayed in Table VIII.
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T,,l I VIll. (alculated pr0 1m transfer harrierý (kcal mol) ior I,, %aJ r'g N-. N dkIJ C

Occupied' Virtual' 2 2 3 I I5 0 1 4 fi 4 23 4 ý()

M',(I 3aja~., 4a•4a., 8. V 21 00 31.4- 46.w;5 .0- 74 s "I 110

3a3a J5a4, 8. 13 3 1 -1 46,1 ~ 6 2 S' -5

L.ocalihcd
1(5(1 2 N-If 4a,,4az, 8 37 21.00 33I47 46.95 ht) -4 S 1 -1) WO)O

2 N-H, .5c,,4a-• 8.13 20) 50 32 S5 46.1, 51 7)) "2.') ,9 S 38
NM( S( I

(i'.)) 3a,3w,, , 8.0)7 20.43 32.75 4.6.)) 51) ,2 '2.N4 85)6
3a,, 3a, 

4
.5aL,,4

a
k,, 7.98 20.38 32.75 46.j)7 5') 62 72.4 8-4 16

Localized
M(S"( I

(ISl 2 N-ti, 4a"4a2,, 8.07 20.4., 32,75 4V,.4) 5 ., 2 .,4 5 f5,

"2 N-11, 4.5ua,,4a,, 7 08 20.38 321 7, ; 6(17 1' N' •6' 8.36

I 
3

a,
3

J, Douh~c, T.83 I0, 17 45.8) 1'). .11 .2 S' ; '.I

Ta•3-, Triples 7.73 20,)43 32.33 4 ,.5, 5. 712. , S 4.80

"SN mmcirs designations correspond to the midpoint structurc.

For each R( N-N) distance considered. the s(d barrier is appreciabl higher
than correlated values, as expected. All of the methods show an extremetx similar
dependence of the barrier to the transfer distance. For e~er" 0.25-A increase in the
N-N distance, the barrier rises bN roughly 12-I15 kcal / mol. Most surprising is the

insensitivity of the correlated barriers to the particular method eniplo.ed. Barriers
differ very little, regardless of whether calculated by the simple t( s(,1 scheme. with
or without prior localization, whether a standard ('I or one using the i(-s( I wave
function as a starting point.

Conclusions

Although the Nw(S(I calculations are usually able to calculate consistent proton
transfer barriers, results are improxed by including combinations of the other meth-
ods investigated. Localization of the s(v-occupied orbitals prior to the M(s(t cal-

culation relieves some of the difliculties of choosing the proper orbitals to include
in the calculations and allows additional virtuals to be included. The additional
virtual orbitals result in more correlation and better barriers. When using Boys-
localized orbitals. the calculated barriers are similar to those of other correlation
methods. The barriers are approximately -0.80 kcal/mol for HF.-'. 8.1 for
H-N., 3.4 kcal/mol for ItAO,. and 3.8 for t-1,O.,.

More dramatic results are observed when following the MS. calculation with
(*i. When a single electron is allowed to be excited from the N(wS(F reference ((Is).

the results are improved regardless of the quality of the reference ;(-(F calculation.
but they are still not completely reliable. Excellent and consistent barriers are ob-
tained when two electrons are allowed to be excited ((Is1)) from any of the .(s(i
reference wave functions studied.
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Although both variations ofler improved results, they take advantage of difi'rent
aspects of the M,'sc'r procedure. The M,( s(c 4 (1j calculations alleviate the ditffcult\
in choosing the virtual orbitals needed to produce the desired correlated space by
allowing all of the virtuals to interact in some way. However, the overall quality is
still extremely sensitive to the occupied orbitals chosen: they must have equal con-
tributions from the donor and acceptor in both end- and midpoint structures. In
contrast, the localized MCSC[: eliminates some of the uncertaintk in choosing oc-
cupied orbitals. Only the orbitals involving the transte.rring hydrogen. usually two
of them, need to be included in the M(SUv active space. Therefore, additional
virtual orbitals can be included, making it easier to include all important interactions.

Combining the methods resulted in easier choices for both sets of orbitals. The
localized MCSC*F + (,is results are not a signiticant improvement over the other
methods, but the localized NiCS(i: + (ISr) results are comparable or better than
either method by itself in terms of both consistency and accuracy of the calculated
barriers. The best values obtained in this way are -0.08, 8.02. 3.26. and 3.68 kcal/
mol for HF3. H7N.. H3O . and HO,. respectively.

The disadvantage of the CISD calculations from an M('s('t reference, either lo-
calized or canonical, is that they take significantly more computer time. especially
when compared to the single reference c-I or Mp calculations. For example. a ('ISi)

calculation on H7N• can require an order of magnitude more computer time in
comparison to the others. On the other hand, it requires a smaller group oforbitals
to achieve consistent results. economizing on computer resources in that way. In
addition, the CISD calculation gives a great deal of useful information pertaining
to orbital interactions and the contributions of individual configurations that are
not available from the Moller-Plesset perturbation data.

One may then conclude that the (ISD method, using localized orbitals. is a reliable
and cost-effective choice, particularly if analysis in terms of orbital interactions is
desirable. MP3 or MP4 calculations are cheaper and may be run on a tighter budget.
M(S(-F using localized orbitals can be accurate, providing proper care is taken. On
the other hand. MCSCF calculations are not the best choice if neither prior localization
nor subsequent (-I is attempted. MCSCF. Followed by ('Is. is not recommended
either, since much more consistent results can be achieved by increasing the (I to
singles and doubles at only a moderate additional effort.

The distance dependence of the proton transfer is handled consistently by all
methods. In each case, the calculated proton transfer barrier increases approximately
12-15 kcal/mol for every 0.25-A increase in the N-N distance, indicating that a
single reference wave function can represent a long distance transfer.
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Towards a First-Principles Implementation of
Density-Functional Theory at a Metal Surface
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Abstract

The implementation of the densitv-functional scheme requires the knowledge of the exchange and
correlation potential. V',,. as a functional of the electron densits. In the local-density approximation
( I f),N) this potential becomes a function of ihe local salue of the density. This anral: breaks down
qualitatively at a surface because of its neglect of long-range electron-electron correlations in the presence
of strong charge inhomogeneit%. This breakdown is of relevance in the context of %arious surface spec-
troscopies. We outline a scheme for going beyond the I i. without invoking gradient expansions. This
scheme is based on establishing an interrelation between density-functional theor, and many-body per-
turbation theorv_ In this scheme V,, is obtainable from the knowledge of the electron self-energy 1,..
We solse an exact integral equation relating these two quantities for the electron-gas surface with use
of the (,,k approximation for the self-energy. We establish a "nonlocal" ielation between V,, and the
electron densit_ which allows us to carry out nonlocal densit. -functional calclations, with the same ease
as I DW-based calculations- We present results of the first application of our method for the case of Al
and Pd surfaces. In addition, we report on work in progress desoled to a detailed comparison of the
densit,-functional and quasiparticle pictures of electronic excitations at a metal surface. , 1992 John
Wfle; & Smo,,, Inc

Introduction

Most first-principles calculations of electronic properties of solids are based on
the use of density-functional theory [1.21. This formulation of the many-body
problem provides a universal scheme for treating the effects of Coulomb correlations
via the introduction of an exchange and correlation energy functional and associated
exchange and correlation potential.

In a solid the electrons are embedded in a periodic ionic background. which
makes the system inhomogeneous. The presence of a surface adds a new source of
inhomogeneity on a microscopic scale. However, in the implementation of the
density-functional scheme, the vast majority of papers have resorted to the use of
the local-density approximation (LDA) [I]. in which both sources of inhomogeneity
are simply ignored in the treatment of the crucial electron-electron interactions.
The crudeness of this approximation notwithstanding, it has proved capable of
yielding, when used in conjunction with either all-electron schemes or norm-con-
serving pseudopotentials, accurate values [2] for cohesive energies. lattice param-

International Journal of Quantum Chemistry: Quantum (hemtstrx Symposium 26, 837-852 (1992)
c 1992 John Wiley & Sons. Inc. 00('C (t20-7649/'92/010837-16
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eters. and bulk moduli (which are tvpicall% obtained to within a tfew percent of
their experimental %.alues).

Because of its neglect of long-range correlations, the vim, gives rise to a surface
barrier with a qualitatively incorrect asymptotic behavior, i.e.. exponential decay.
rather than the expected inverse power law. Until recently this failure of the IDA

at a surface was perhaps academic. However, probes such as inverse photoemission
[3-6 ], two-photon photoemission [7-9 ]. the scanning-tunncling microscope [ 10-
151, etc._ have recently produced a wealth of data on observables such as binding
energies and lifetimes of image potential-bound surface .states [3-6,16-231, tun-
neling currents in the scanning-tunneling microscope [ 10-15 ]. resonant-tunneling
rates for ion-surftce collisions [24], etc., whose values are atfrcted by the details

of the surface barrier, in particular. by the presence of its image tail.
The physics behind this qualilative treakdwirn of the IDA at a surface is easy to

visualize. In a many-electron system a given electron is surrounded by an exchange-

correlation hole. which arises by virtue of both Coulomb correlations and the an-
tisymmetry of the many-body states. In the IDA the exchange-correlation hole is

spherical, the electron being at its center. This is a good approximation in the bulk
(indeed the exchange-correlation hole is spherical for the homogeneous electron
gas). Now, as the electron moves outward through the surface, the exchange-cor-
relation hole must progressively distort and lag behind the electron (since the hole
must remain in the solid). However, in the IDA the exchange-correlation hole
remains spherical, and centered at the position of the electron, as the latter moves

out into the vacuum, Hence the I.DA entirely misses the key features of the long-
range correlation eflects which are the origin of the image effects. ( It is well known
that the tD..\ yields accurate values for "global" ground state quantities. such as
work functions, which are not affected significantly by the presence of the image
tail of the surface barrier [2].)

Thus, in the study of various surface phenomena [3-24] the LDA must be su-
perceded by a theory which properly accounts for long-range Coulomb correlation
effects and their interplay with the extreme inhomogeneity of the surface environ-
ment. The theoretical challenge involved in this endeavor is significant. In particular.
the phenomena of interest cannot be addressed by treating the inhomogeneity of
the electron system perturbatively (i.e.. gradient expansions do not suffice). What
is required is an approach in which the basic features of long-range Coulomb cor-
relations and strong charge inhomogeneity are treated from first principles within
a consistent diagrammatic approach.

In this article we outline a method which incorporates these physical requirements.
The same is based on defining the exchange and correlation potential of density-

functional theoryy. V,. in terms of the electron self-energy of diagrammatic per-
turbation theory. , An integral equation relating these two quantities is solved
exactly for the electron gas-vacuum interface with use of the GW approximation
tbr the self-energy.

From the solution of that integral equation for l',, (. ) we establish a "nonlocal"
relation between I, and the electron density which allows us to perform nonlocal
density functional calculations with the same relative simplicity as tDA-based cal-



culations. This scheme has been tested so far ill calculations of the electronic qrLuC-
ture of lowý-index surfaces of Al and Pd. Because our method proper[\ accounts
for long-range Coulomb correlations, a R.dberg series of image surface states y ing
near the vacuum le\ el is obtaine-d on the same looting ýk ith the conventional cr. stal-
termination surlace states, The bindinng eneroies oft lhe image states and the associated
eff'ecti'1 masses compare favorabl, with experiment. Thc image slates. and the
physics behind them. are bhcond the I1I)\.

Finally. we present preliminars results of a comparison ofthe dcnsitv-functional
and quasiparticle pictures of electronic excitations at metal surfaces. lhis comparison
is based on a joint analy sis of I ,, and Ž,.. and ofdensit. -functional and quasiparticle
%\akc functions. WVe find that once the main celI'ets of the long-range electron
correlations are incorporated into F, . this local potential becomes a fair approx-
imation to the real part of the electron selfencrgy for lov. frequencies. On the other
hand. the imaginar\ part of the self-energy. which is related to the damping of the
quasiparticle states, has no counterpart in density-functional theory. We show that
Im 1, is highly nonlocal in the surface region. This intrnnsic feature of electron
propagation near a surface has yet to be implemented into the optical potentials
used in state-of-the art multiple scattering calculations [251.

Ealuation of the Exchange and Correlation Potential at a Metal Surface
From the Knoiledge of tile Electron Self-Energy

Density-functional theorx [ 1,2] provides a formally exact procedure f|r calculating
the ground state electron density and the total ground state energy ofan interacting
many-elcctron system. In essence this method establishes a rigorous mapping be-
tween the intractable system of 102' interacting electrons and a much simpler system
of noninteracting electrons moving in an appropriate eftlctive potential.

T-he mathematical framework for this mapping is embodied by the Kohn-Sham
(KS) equation [II

where the ellcctheti one-electron potential I ,(i) is defined by the equation

IIf,( ý-) =_ F',( ,.0 4- (,, £ ) . (2)

where I',(.0 is the usual electrostatic potential. All many-body elfects enter
Eq. ( I ) through the exchange and correlation potential I',,( i). defined by the
equation

l,, (•) -(3)
Old/:) "

where n, In] is the exchange and correlation energy functional. l-quations ( I)
( 3) are to be solved seltfconsistentlx with the 6ollowing one-electron-like equation
tor the electron densit\
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n(s) = .,j,,..) .(4

The exact form of the energy functional FE,, In] is unknown. Thus, approximations
must be introduced in the treatment of the electron-electron interactions. In the
LDA the exchange and correlation energy density at each point of the solid is assumed
to be given by that appropriate for a homogenecus electron gas (jellium model)
with the local value of the density [I]. This approximation yields a T',, which is a
/unction o/the local value ofthe density. Now, from basic quantum-mechanical
considerations we know that the electron density decays exponentially outside the
surface (tunneling). It then follows immediately that the LDA surface barrier a-'
decays exponentially into the vacuum [26], unlike the expected image-like behav ior
of the correct surface potential.

As noted in the Introduction, there is significant interest in the study of various
electronic processes at surfaces influenced by the presence of the image tail of the
actual surface barrier [ 3-24]. Several models for E,,[n] have been proposed in the
literature in order to enforce the presence of an image tail in an ad hoe way [ 27.28 ].
In our work we take a more fundamental approach, geared towards a first-principles
investigation of the joint effects of long-range Coulomb correlations and the rapid
rate of change of the electron density at the surface.

Since a suitable functional E,,[n] is not available [29]. we do not base our
method on the definition of V,, (-x) given by Eq. (3). Rather. we proceed by making
use of an interrelation between density-functional theory and many-body pertur-
bation theory which was first established [30] and applied [311 in the context of
the band-gap problem in bulk semiconductors, and in the construction of a 1', for
the insulating state of matter [ 32].

Of course, if one had at hand an accurate implementation of diagrammatic per-
turbation theory for real solids, in particular, near a surface, one could in principle
bypass the density-functional scheme altogether (which, as originally formulated.
applies for ground-state properties only). However, given the well-established power
of this method, which is traced to the relative simplicity of its implementation in
terms ofa local effective potential, it is of interest to obtain a V,, which incorporates
long-range correlation effects.

The exact one-electron Green's function of many-body perturbation theory.
g( 1, '1 E), satisfies the equation [ 331

[E - h(X)Jg( ,,'} E) - f d-x'"2,,(1,"j E)g(.i",2_'l )E= (.X '). (5)

where h(l) is the Hartree Hamiltonian

h( fl - -' + V,,( (6)
2m

and 2,,( ,J'[ E) is the nonlocal, energy-dependent electron self-energy. The self-
energy can be thought of as the true "potential" in which a quasiparticle propagates
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(via g). and to which it contributes self-consistently via the exchange-correlation
process.

Similarly. we introduce a Green's function for the KS Hamiltonian.
go( X•..V I ). which corresponds to propagation of what in this article we will refer
to as a KS electron [ i.e., an "electron" described by a density-functional wave func-
tion ] in the presence of a local potential, whose many-body part is I V,. The density-
functional Green's function obeys the differential equation

[E - h(.T) - 1,-)1g(.-'1) = 6(T - V'). (7)

and is related to the quasiparticle Green's function by the Dyson-like equation
(which we write down symbolically)

g = go + 'o , )g. (8)

From Eq. (8) and the requirement that both Green's functions yield the same
exact ground-state density. i.e.,

n( .T) =-kg(.X,lt .,t + 0')

= ig Ix',l•t + 0') (9)

we arc readilv led to the following exact integral equation relating [',, and I., [30-
321.

f d 3x K, I,, ) f dEg0(:X,XIj I E)g(:,ý I E)

f 'v dX2 fd.Eg,,(ýý, Ig)IS,,(j•j, IlE)g(X2,• E) . (10)

Our approach consists in viewing Eq. (10) as defining V,, in terms of the self-
energy I, By including the effects of long-range Coulomb correlation and the
rapid density variation at the surface into the self-energy, these effects find their
way into T',, in a fundamental way.

"The state-of-the-art in the computation of the electron self-energy in solids [31,34-
361 is the Gw approximation due to Hedin [331.

2;1X,, 2 1E) = f dE'e""1g(21.i, 2 I + E')i'(2, 2 . F'), (11)

which is the first term in an expansion of the self-energy in powers of the dynamically
screened electron-electron interaction 14', defined by the equation (which we write
symbolically) [331

R4 = v + vXv, (12)

where v is the bare Coulomb interaction, and X, is the time-ordered density-response
function. The response function satisfies its own integral equation [37]
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X, X + X•',, 13)

where X is the irreducible polarizability. The physics behind Eq. ( 1 2) is the screening
of the Coulomb interaction between a pair of electrons embedded in a many-electron
system. Similarly. Eq. ( 13) reflects the self-consistent screening of charge fluctuations
induced in an interacting electron system.

In the present work we have set X = X'. where X" is the electron-hole pair bubble
(i.e.. the random-phase approximation for the polarizabilit) ). Thus. we ignore. e.g..
excitonic effects such as are contained in ladder diagrams [ 38].

First-Principles Solution for V, for the Electron Gas-Vacuum Interface

We have solved Eq. (10) for the electron gas-vacuum interface with use of Eq.
( I ) for the electron self-energy 139]. Our calculations are performed for a slab
which is thick enough [four or more Fermi wavelengths] that we have a good
representation of the I', for a semi-infinite medium. The time-ordered response
function x, is expressed in terms of its retarded counterpart X, via a Lehmann
representation [ 33]. Following standard practice [ 31 ]. we have set g, = g throughout,

It should be noted that Eq. (10) is homogeneous. which makes it very unstable
from the numerical viewpoint [40]. Furthermore. its kernel is singular. a reflection
of the fact that the electron density drops to zero in the vacuum outside the surface.
In addition. we would like to emphasize that:

"* Since g, depends on the function we seek, i.e., I ',. Eq. (10) poses a self-consistency
problem., which we solved by iteration. Wave functions and energy eigenvalues
for the computation of updated I, and go, are obtained by feeding the solution
of Eq. (10) into Eq. ( I ). Fortunately. one or two iterations suffice.

"* XY is computed self-consistently forajellium slab: we do not imposean. restrictions
on the rate of spatial change of'the electron density" at the sirface [ 37 1.

"* The full energy dependence of XR is kept. We do not introduce a plasmon-pole
approximation because the lack of translational invariance in the direction normal
to the surface renders Landau damping important even for small wave vectors.

It should be noted that the solution of Eq. (10) for the homnogeneous electron

gas is given by [41]

IV,. = ,(k = k,: L = I;). (14)

i.e.. V, in the bulk equals the self-energy evaluated at the Fermi surface (where it
is real). Equation (14) defines the LDA within the self-energy formalism. The LDA
results we compare with below were generated from this (exact) result with use of
the bulk (;W self-energy [42]: we will refer to this potential as the LDA-CiW ,,.

In Figure I we show the solution of Eq. (10) for r, = 1.5 [this value of the
electron-gas parameter will be of interest below, when we discuss the calculation
we have performed for Pd]. The solution to Eq. (10) is compared with the corre-
sponding LDA-GW potential, and with the image potential

e2

4(z- zo)
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SURFACE BARRIER
From GW approximation for the Self-Energy

Z-0.1

-..... Vx,(LDA-GW)
.03[U~.Ir3">-."705Vmg Vxc(GW) / '/ s15

wI

>-0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
zF/F

Figure L V",, at a simple metal surface for r, 1.5. The solid curve is the solution of

Eq. (101 obtained with use of the (ik% approximation for the selfenergy. The dotted curve
is the corresponding L.D, potential. and the dashed curve is the classical image potential

given by Eq. (14).

where : is the coordinate normal to the surface and Z:o is the position of the effective
image plane [ 39,43 ].

From Figure l it is clear that our solution for V,, (z) becomes image-like outside
the surface. This is an important improvement over the LDA in the context of
experiments which probe various electronic processes whose interpretation is related
to the presence of the image tail of the surface barrier 13-24 1.

The physics of the many-body surface barrier experienced by a KS electron [the
solution of Eq. ( 10)] is quite interesting. As noted elsewhere [391, the classical-
image limit of the barrier, V,, (z) -- -e"/4z for Z > 27r/k,., is established by virtue
of the Coulomb correlation effect present in 1. Thus, this limit is "universal": it
is the same for a KS electron and for a classical, distinguishable, test charge.

Our conclusion that the classical-image limit of the surface barrier for a KS electron
is a Coulomb-correlation effect confirms by actual computation previous statements
by Almbladh and von Barth [44] and Sham [451, but it disagrees with recent
conclusions by Harbola and Sahni [461. [Since the method of the latter authors is
formally quite different from ours, the reason for this difference is not entirely
apparent.]

In addition, we have also shown [39] that the numerical value of the effective
image plane zt, includes a significant contribution from the exchange process. It is
then clear that the image-plane position that governs the surface barrier that self-
binds 1 KS electron necessarily differs from its counterpart for a test charge. In
other words, the _70 for a KS electron is not obtainable via the well-known Lang-
Kohn linear-response result [261 which equates the image plane position appropriate
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fora test charge with the centroid oftthe ,harge induced at the surlace bx an external.

unirbrm electric field.
The above conclusion (which is of definite importance in surt.ce physics) is

corroborated quantitatively by the following example. For r, -- 2.07 (corresponding
to At) the image-plane position extracted from the image tail of V, is f,, : 0.72 t
0.1 a.u. (measured from the jellium edge-the origin of coordinates in Fig. I ).
while from linear response in It..-(i' we obtain :,, 2 1.49 a.u. Bv comparison.

the phenomenological V',, of Ossicini et al. [281 yields :,, - 0.85 a.u. lbr r, = 2.0.
which is rather close to our value. The IDA linear-response value obtained by Lang
and Kohn [261. also for r, = 2.0. is :,, 4 1.60 a.u.

A Scheme for Performing Nonlocal Density-Functional
Calculations for Real Metals

With the solution of Eq. (10) for V, (z) at hand, we have developed a scheme
for performing nonlocal density functional calculations in which long-range elec-
tron-electron correlation effects are included from first principles.

Starting from the position of the first Friedel peak of the density, and moving
out into the vacuum, we have constructed, by a point-by-point "tabulation" of the
solution of Eq. ( 10) and the electroi, density n self-consistent with it. a one-to-one
relation between V,, and n '- be symbolized as l',,(r,: n' '). [We note that we
start from the first Friedel peak in order to make the relation one-to-one.] This
relation (illustrated in Fig. 2 for r, = 2.07). derives implicitly from a functional
EL, [n] containing the physics of the nonlocal self-energy.

While the u!timate theoretical significance of a relation such as the one represented
in Figure 2 remains to be elucidated I this may require the actual determination of

0.8

0.6 V . x (r. n 1 /i3 )I

CX0.4

0.2

r,=2.07

0.0
0.0 0.2 0.4 0.6 0.8 1.0ni1/3

Figure 2. "'Nonlocal" relation I,, 's' 'constructed from the solution of Eq. 10).
obtainr'd with use of the (;w approximation for the self-energx. The electron number
densit\ is normaliued to its valuet at the lirst Friedel peak inside the jellium: 11 0
corresponds to the vacuum. t-1his relation has been parameteried bv the functional

form given in 1q. ( 16).1



the functional lK. , [itJ] the spirit of such a relatIonl IS Clcarý I het same I ()Shook n
in Figure I [ obta Ined h\~ eXpliCIt SOlIUIition o f tile integralI equat Ion (10 )1( can now
he obtained dfirectiý f rom thle Sell-conSistenit Sol ution ol the KS eq uation ( Eq. (I )I
in the presence of our I',, ( r if I' I) relation. matched to I iI t -~inlte ici n it\ of'
the first Friedel peak of the densitx lI is repreSents a nmajor Simplification relatix e
to solving E~q. ( 10) Ihtius the iUt ... rP/ I &'qua/lon foIr I lw ha\ III Ole I y: ol sred omect
and /Mr till /or each va/lit o/ I_ J AS Fig. I Suggests. thle precise poi nt M here thle
matching just alluded to is done is not important, since thle nonlocal and local
potentials are quite close numerically x~er an appreciable inler\ al.1

A preliminary paramneterization of Our I, r,,; ) relation in terms ol'a simple
analytical form is as tollowks:

+-a x,(6

wvhere x n it . Interesting]\. in the cases we have considered sota.r [r. 1.45. (1,7.
and 3.931 the ,'xponent a turns out to be \er\ close to uinity, while the other
exponent is substantially smaller (3 ý 0.1 ). 'Ilhus. kc interpret 1.q.( (16) as consisting
o-'an t.t!) -ljke term (the hrst one). wNith a surface correction I ~he second term)

giving rise to a IV, whc decavs" much more slowly than the density.
We would like to stress that while the 1form given by Eq. ( 16) has worked very

well in the fw cases for xkhich it has been tested so far( see helm% I the same cannot
be taken as final at this earl\ stage in the deveclopment ot'our method. It is presented
in these Proceedings in the spirit of a report of w\ork in progress: other forms are
still being tried. and a larger database over the metallic range of densities must vet
oe collected and analvied.

The next step in1 our progranl m. /I huh Imil ifun Iv ItkIplhlit'Pll/ 11,! a recipet la Ia1 ii.

n/nhil inctirportaitil the el/eels oQrong (hawgv inhOIwlepk'm'l:, aII McO mrfat'. is to
use our electron-gas I ', ( r,: n1 i' relation for a real metal surface. We turn to
discussing that q uestion next.

Image S~taws in 11

The first application ot the above method [ 391 was a nonlocal density-functional
calculation of the electronic structure of'.AII( 100). performed bv making use of Eq.
(16) in the Kohn-Sha-n scheme defined b\ Eqs. ( 1) (2). and (4 . In the self-

consistency procedure for this three-dimensional calculation, the "nonlocal" l' 'is
matched to I*, in I.DA-(;W in the , icinitv of the nominal jellium edge. As noted
above, the precise point where the matching is done does not affect our results.

Now in the implementation of'our scheme an efkctive value of r, must be defined.
W'e have adopted the following criterion: We average V, over the unit cell, and
extract a value of r, f-o~n the Vt)-G , versus nt relation. The three-dimensional
surface barrier determined with this criterion joins smoothly with the bulk V,,
potential. In the present case we obtain r, . 2,07. [We note that we obtain the
same r, value using other \ersions of the IDA).. such as Ceperley-Aider [421].

T he calculation is performed in a periodic-slab geometry, with usc of a plane-
"xake baSis set. and ah/ inillo norm-conserving pseudopotential:, [471. Since the
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new physics included in our method is related to the existence of'image states Awhose
wavefunctions are localized many atomic units outside the surface. a large xacuum
gap between consecutive slabs must be utilized. Moreover, in order to separate the
members of the Rydberg series of image states, the physical slab must be at least
25 atomic layers thick. Both requirements lead to the use of a \cry large
unit cell.

In Figure 3 we show a weighted density of states (tX)S) near the vacuum le'vel.
for both nonlocal and IDA calculations. The ix)S is defined by the equation

El', k 1 0, ,,(!J h - , (17)

where the weights Q2, are defined as the ratio of the charge density contained in an
appropriate volume of the vacuum gap (chosen such that it encompasses the state
under consideration ) and the charge density in the whole supercell. Both local and
nonlocal calculations give the same results for the conventional crystal-termination
surface states. In particular. the energy position of an occupied surface state obtained
at F [391 agrees very well with the photoemission data of Levinson et al. [481.
However, the i, DI entirely, misses the Ridheri .scriev•# iiagwe swatc', as illusirated

in Figure 3.
We note that in Al there is no gap in the projected bulk band structure near the

vacuum level. The nontocal dens; t-functional calculation yields image-like eigen-
states over a finite energy range, which accounts for the broad bumps observed in
the DOS. These image states correspond to resonances.

Finally, we note that the binding energy of the n = I resonance compares favorably
with the location of the image-state peak (ca. 0.45 eV) in the inverse photoemission
data of Heskett et al. for AI( I I).

4 n=3 n4

Image States for AI(1 00)
" 3

.0n=2

0 2
v n=1

CD ~ LDA-_
"- - - - - - - ---

0
-1.0 -0.8 -0.6 -0.4 -0,2 0.0

Energy (eV)

Figure 3. Weighted density ofstates near the vacuum level Ior Al( I(1 ), at -'. The solid
curves correspond to the image-state resonances, the dashed curves are the corresponding

IDA results. Energies are measured from the vacuum level.
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Image Slat.l•s in Id

A similar calculation has been pertbrmed for Pd( I I I ). 'I he main technical dif-
ference in relation to the previous case is the use of a mixed basis consisting of
plane waves and localized Gaussians. [he latter are introduced in order to account
for the presence of d-electrons in this transition metal.

The criterion put tbrth above to define an effective value oftr, ,ields in this case
r, = 1.5. A measure of the reasonableness of this choice is found in the fiact that
the crystal-termination surface states obtained from our procedure agree verN wetl
with those we obtained via a conventional ttDA calculation [performed with use of
the Ceperley-Alder [42] result for the exchange-correlation energy]. This agreement
refers to energies measured from the Fermi level [421.

In Figure 4 we show the surrface-projected bulk band structure. The solid lines
indicate the surface states which we have identified by inspecting their energy lo-
cation, appropriate DOS, and the decay of the associated wave functions into the
bulk. Both nonlocal and xD..X-G\w calculations give the same results for the crystal-
termination surface states. This is a consequence of the fact that these states are
localized enough to the immediate surface region that they do not probe the image
tail of the "nonlocal" surface barrier.

In addition, the nonlocal calculation produces a Rydberg series of image states
inside the gap spanning the vacuum level. The presence of this gap renders these
states true surface states, and not surface resonances, as was the case for Al. For
the range of values of the vacuum gap that we have used we have been able to

"IL

,La

2 0)

•1) w•w,.v,*V ' or

Figure 4. Surface-proje-ted bulk hand structure tor Pd( LI I I The solid curses show the
surface states. Note, in particular, the n - I image state in the gap at the %acuum lesel.

Energies are measured from the Fermi level.
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separate the n = I and n = 2 members of the Rydberg series: only the it I branch
is shown in Figure 4. The calculated binding energy at IP ftr this state is 0.72 cV.
its dispersion with wave vector is free-electron like. vith an eflfctive mass of 1.03.
For the n = 2 state the corresponding binding energy is 0. 17 eV. and the ctl-cti~e
mass is 1.01.

We are aware of three experimental investigations of the image states of Pd( I l)
[49,50,511. The experimental results are summarized in Table I. together with our
theoretical results. It is apparent that the binding energy and eflective mass tbr the
n = I state compare quite well with two of the experimental observations [ 49.501,

Density-Functional and Quasiparticle Pictures of Electron Propagation
at a Metal Surface

As noted in the second section. a quasiparticle propagates in the presence of a
complex, nonlocal, energy-dependent "'potential". the electron self-energy :,,. A
KS electron, on the other hand, propagates in the presence of I,, which by definition
is a real, local, energy-independent potential. It is of considerable importance to
assess the extent to which the simpler density-functional picture can approximate
the more accurate quasiparticle picture of electronic excitations near a metal surface.

We close this article by discussing a few preliminary results which shed some
light on this issue. In Figures 5 and 6 we show representative results for the real
and imaginaryt parts of I, (qjw1 zz') ithe two-dimensional Fourier transform of
the Gw self-energy given by Eq. ( 10)) for particular values of the two-dimensional
wave vector q. and of the frequency w. In Figure 5 we have placed ý'at the position
of the jellium edge: in Figure 6, z' is about a Fermi wavelength into the vacuum.

The contrast between both sets of results is striking: While the main feature of
both real and imaginary parts of 1, in Figure 5 is the "local" spike occurring at
z = z', and the same applies for Re 1, in Figure 6, in the latter figure the spike in
Im "S, as function of z occurs markedly away from z = z'. Figure 6 leaves no doubt
that the imaginary part of the self-energy becomes extremely nonlocal as the electron
moves into the vacuum.

The above finding highlights an important feature of the propagation and damping
of a "real" electron near a metal surface. This feature should be part of a realistic
many-body description of various electron-surface scattering probes.

"TABLE I. Comparison of calculated and measured binding energy and effective mass for the ni
image state of Pd( I I I). The corresponding theoretical numbers are also given for the n = 2 state.

Binding energies are in eV.

Present Ref. (491 Ref. [501 Ref. 5 I]
theory (Expt.) (Expt.) (Expt.)

n = I Binding energy 0.72 0.65 ± 0.1 0.75 0.5
Effective mass 1.03 1.0 1.0 1.0

n - 2 Binding energy 0.17
Effective mass 1.01

____________ ________ __ ____ __________________ _ __ - I________________________
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q,=0.01 kF (i)=1.34EF
0.25

0.00 . "..

N

-025

IRe I

-0.50
........ -Im Y'-X 1 00 :

-0.5
-2 -1 0 2

Figure 5. Real (solid curve) and imaginar., (dotted cure) parts of the (;W, self-encrg\.
[See tex!] :'has been set at the jellium edge. I he vacuum lies tbr : > 0.

We emphasize that the scale of the nonlocality of hn 1,, is the Fermi wavelength.
and this is the same scale of length over which the electron density decays to zero
at the surface! We conclude that the present problem must be addressed via an
approach such as the one employed in the present work. that is. Coulnomb correlation
eflicts must he treated on the same fioting with the strong inhomnoIeneitv of the
electron charge density at the surfrace.

A direct study of the difference between the quasiparticle and density-functional
pictures can be carried out by solving the quasiparticle equation

qji=O.O1 kF ()1 .34EF
0.05

N -0.05

- Re I
-0,10 Z'

S........... Im I X l1 00

-0.15
-2 -1 1 2

Z/XF

Figure 6- Same as Figure 5. but for :' ca. X, ( :-21r/k, ).
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V- --m'V+ I 4(X()jq:iu'( X)+fd' I A L('• l'•),.,":( .) ... = I1;. '',,,( )• (IX)

self-consistent., and comparing quasiparticle wawe functions and energies with
their density-functional counterparts. obtained from Eqs. (1 )-( 4).

As an illustration, let us assume that q/,,, - 'I',,.I. Subtracting Eq. ( I ) from Eq.
(18). and dividing b. the either vaxe function [w\hich ,,e will call 4\] xields the

equation

fd v.(.X.I•)4'(. 1 ) i' ) = l-'..,-" t 1p 1 . (19)

whose first term on the left-hand side can serve as an approximate effective local

quasiparticle potential [we will refer to it as I .] that can compared with V,
This comparison is made in Figure 7, in which we use the wave function 'I

whose DFT eigenvalue equals 1 .34 E, which is the energ\ at which the self-energy

is evaluated. The qualitative behaA~ior of V., and L~is indeed similar. Note that
if the difference between both potentials plotted in Figure 7 were :-independent.

the quasiparticle wave function would be identical to the DfI wave function. The
relatively small z-dependence observed in Figure 7 suggests that both w~axefunctions
are indeed quite similar in the surface region.

We conclude that once the long-range correlation effects are included into the

density-functional picture. the, DF-T A~ave functions. and associated surface barrier.
become a fair approximation to the quasiparticle wave functions, and the real part
of the selfenergy. r specti\el\, A more complete analysis will be presented elsewhere.

ac ...... .................

........... vxC(DFT)
025 

-

-Veti(TI)

-..- 0 50

-0.75...................

-100
-2 -1 0 I 2

Z/),F

FIgure 7. (or )arison of a local elfectt.c potential constructed from the quastparticle

picture[ fir'o ter n on tIle lelt-hand side )ft q. 1 191, a th h xchinge-corrciati•n potential
of dcnsit.-functional theor\
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Neural Network Studies. 4. An Extended Study of
the Aqueous Solubility of Organic Compounds
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Abstract

A study has been made of the effect of using different numbers of hidden units in a neural network
modeling of the aqueous solubilitv of a wide range of'organic compounds. A training set of 331 compounds
was used and the trained neural network was tested on a prediction set of 19 compounds. Between two
and five hidden units "ere used with %arying numbers of iterations. Comparisons are made with the
results obtained from our previous studies, one which used a neural network with t8 hidden units and
another based on regression analysis. By using a smaller number of hidden units in this stud%. better
performance has been obtained than either of the previous studies. c 1992 John Wilex & Sons. Inc

Introduction

We have recently shown that solubilities (aqueous solubility) and distribution
between solvents (partition coefficients) that depend on solute-solvent interactions
are well described by equations that include linear combinations of the calculated
values of selected molecular properties [ 1.2 1. In drug design. a theoretical method
which could reliably predict drug delivery, transport, distribution, and biological
activity information such as aqueous solubility and partition coefficients would be
extremely valuable. Although aqueous solubility is generally easy to determine ex-
perimentally. this is not always appropriate and is clearly impossible to achieve
until a compound has been synthesized. A theoretical approach which provides a
reliable measure of a drug's aqueous solubility could be used by the drug designer
to eliminate some of the large number of candidates for a drug from synthesis and
experimentation. The consequent saving in time and resources could then be di-
rected to the better candidates.

In earlier articles of this series [ 3 ], we have pointed out that the neural network
approach would seem to have great potential for determining quantitative structure-
activity relationships and be a valuable tool for the medicinal chemist. The basic
idea of the neural network goes back to the 1940s [41, the same era as that of the
von Neumann-type digital computer [5 ]. It was not until the 1980s, however, when
Hopfield [6] published a clear description of a neural computing system whose
interconnected elements seek an energy minimum, that interest in neural networks

* To whom cerrespondence should be addressed.

International Journal of Quantum (hemistry: Quantum (hemistrs Smposium 26. 853-867 (1992)
S1992 John Wilcs & Sons, Inc. ('('(- 0020-7608/92/010853-15
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was revi' ed. Neural networks have only recently been applied to chemical problems.
such as using artificial neural svstems to predict protein structure from amino acid
sequence information [7.81 and applying neural networks to spectral identification
programs [ 9 ]. nucleic acid sequence analysis [ 10 ]. and QSAR problems [ 11.12 ].

In this study, we have used neural network with difltrent numbers of hidden
units to study aqueous solubilities with the same training set. prediction set, and
molecular descriptors as before [1.3a). Comparison is made with the results obtained
from previous studies using either the neural network [3a] or regression analysis
techniques [I].

Theory of Neural Networks

A neural network model consist of layers of brain-like neurons with feedforward
and feedback interconnections. We have used the back propagation algorithm [13 ].
Topologically. the network consists of input, hidden, and output layers of neurons
or nodes connected by bonds. A three-layer neural network was used in our study
and is shown in Figure 1.

E-ach neuron in the input laer s,.s is resealed to a value region between 0 and I
b\ the tollowing equation.

Si = ( ; -I' ...... M )/ I',... I .,, ) 1

\,here I, is the value of the ith independent variable, 1,, and i;, are the
minimum and maximum values of the ith independent variable. Each neuron in
the hidden layer. S,, is connected with each neuron in the input layer by the squash-
ing function

S,(jj) =( c +exp(-v,)) (2)

where

0,,,tpu, la,,,.r 0 1

I liddcn Livr SI S2 S3-----------55 bias

Input laver Q s3--------------------------sI 7 bias

I p . I he n. i ral ntem -,'k topol,•,. ousd in our ,iudic. I lhe nct,% rk confsit,, o 1 7

1p1)t u I ncuron., oTIn outLpu)t itCironl anid a Iariahlc number of hidden neuron,,.
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y;s= + ws,+0, (3)

where w, is the weight that connects the hidden unit j with the input unit i: f) is
the weight that connects the hidden unit/with the input layer bias unit or a char-

acteristic value for neuronj. Again. each neuron in the output layer. Q,,,. is connected
with each neuron in the hidden layer by the same type of the squashing function

,y,)= (I + exp(-y,) (4)

where

y,,f= ,,,S, + 0,, (5)

where W is the weight that connects the output unit in with the hidden unit i.
0,,w is the weight that connects the output unit it with the hidden laver bias unit.

Training of the neural network is achieved by minimizing an error function E
with respect to the weights w,,. iT,,,

E = L , = ,'12 Z (ap ,, - o ,,,,) : 2
1, M

where F,, is the error of the pth training pattern, a,,, is the experimentally measured
value, which has also been scaled in the same way as in Eq. ( I ). and O,,,,, is the

calculated output of the net.
The training is carried out according to the following equations.

,,'"n = H . + ' 1761±1O,,, (7 )

w = + •,5, '8)

where 17 is the learning rate with values typically much less than I (we use 0.25),

n and n + I superscripts designate consecutive iterations in the sequence. b, is given
by

61 Wpm,,, - o,,,,,OP,,( I - O,,,,) (9)

and 6, is given by

6F (a,,, - O,,,,)O,,,, I OI,,,)l4,,nS,,( I - SI,I) 61 4 If ,,,, I - sp,) ( 10)

m t

Similar equations are used for the 0, and 0,,,. The training continues until the error
function E is converged, that is. the sum of the squared errors falls below a threshold
value.

We also added the momentum term to the weight adjustment in order to enhance

the stability of the learning process and decrease the training time.

,AI"ýf l - -4?I - 5'1" "671 M; I"")

where a is the momentum coefficient, assigned as 0.9. The momentum term was
also added in the same way as Eq. ( I I ) to v,,. 0, and 0,,,.



856 BODOR. ItWANG. AND IIARG•T

Methods

The methods used are essentially the same as our previous work on octanol-
water partition coefficients [2] (log P) and aqueous solubilities [1] (log W).
where more details are given. First, the molecule is sketched on our IBM PC/AT

computer terminal with the ChemnCAD software, which generates a starting ge-

ometry. After converting the coordinate data file to the format of AMPAC [14]
input files, geometry optimization is performed by the semi-empirical AM1

method [141. From the AMI1 optimum geometry and the atomic van der Waals
radii, the molecular volume, surface area, and ovality are calculated by numerical
integration techniques [ 1.2 1.

In our regression analysis of log W [I]. we derived a 17-parameter function to
describe the solvation phenomena. The 17 parameters represent the most important
subset of the possible 56 descriptors. Our previous neural network approach [ 3a I
and this study are based on the same subset of 17 parameters used in the regression
analysis.

Results and Discussion

The same training set of 331 organic compounds [l.3a]. was used in the present
study. A wide range of organic molecules were included. such as hydrocarbons,
halohydrocarbons, multiply substituted benzenes, polynuclear aromatics, ethers.
alcohols. aldehvdes, ketones, esters, nitrile, and nitro compounds. The experimental
aqueous solubilities were taken from the compilations of Hansch et al. [15 ]. Hine
and Mookerjee [16]. Mackay et al. [171. and Kamlet et al. [181. with additional
results from 21 other sources [19-39]. The values of the solubilities are for at-
mospheric pressure and 25 °C.

The same 17 descriptors based on calculated molecular properties have been
retained for this study, as previously, as listed and described in Table I. A three-
layer neural network was used comprising 17 input neurons and one output neuron
with the number of hidden units varied in order to determine the optimum archi-
tecture. The 17 input data and the experimental log W values for each compound
were resealed to a range between 0 and I, as described in Eq. ( 1 ). In order to
decrease the training time of the back-propagation algorithm, we used the method
of Rumelhart et al. [401 and added a momentum term to the weight adjustment
of the previous weight change. The learning rate was improved by enhancing the

stability of the process.
The performance of a neural network depends an many variables, including the

number of training examples, the number of hidden units, and the degree of ho-
mology between the training and testing sets. Few hidden units may be insufficient

to extract all the pertinent features of the data, while too many units will cause the
network to "memorize" the dataset.

In Table II. we show the effect of various hidden units with different starting
weight ranges on neural net training and prediction. Two to five hidden units
with different starting weight range and iterations gave standard deviations be-

tween 0.269 to 0.480. By comparing with the last study [3a1. in which we used
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lTAI 1 I. Selected properties of the organic compounds.

Parameter Dtfinition

S Molecular surlace
lalkane The indicator variable for alkancs
D The calculated dipole moment
Qn The square root of the sum of the squared

charges on nitrogen atoms
Qo The square root ot the sum of the squared

charges on oxyg,-n atoms
Qn2 The square of Qn
Qo2 The square of Qo
Qn4 The square of Qn2
Qo4 The square of Qo2
V The molecular volume
S2 The square of the molecular surlace
C The constant
0 The ovalitv of the molecule
02 The square of the ovality
ABSFHQ The sum of the absolute %alues of atomic

charges on h~drogen atoms
A BSCQ The sum of the absolute values of atomic

charges on carbon atoms
AMINE The indicator variable for aliphatic

amines
NH The number of N H single bonds in the

molecule

18 hidden units and obtained standard deviation for the training set of 0.229
and 0.43 for the prediction set. respectively, we found that by using a smaller
number of the hidden units the standard deviation of the training set was in-
creased, but that of the prediction set was decreased. High accuracy for a training
set can be obtained by using a large number of hidden units, which may overtrain
the system and 'ý ad to a net with poor predictive power. Having this in mind,
the best results were obtained with five hidden units, and 10 000 iterations with
starting weights in the range - I to 1. The results obtained for the training set
are given in the Appendix. The standard deviation (0.269) is better than that
obtained from the regression analysis, 0.299 [1]. The results of the prediction
set are given in Table Ill. Importantly, the standard deviation for the same
prediction set from this five hidden units neural network is better than both
previous studies, the neural network with 18 hidden units (0(43). and the regres-
sior. analysis (0.36).

In conclusion, it has been shown that correlating aqueous solubilities with :truc-
ture within a neural networks with a relatively small number of hidden units give
a better performance than either a neural network with 18 hidden units or a ' gres-
sion analysis.
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OAt on Iil'eIdl liel nllll n. and I )Ild'elOll

iv he 'ar-tlng \ei))lteool aie 11) ranre
oI 2 to I tnid I to 2

No- of

ItCt.1t.lOlS I hiddenll UII)t,, I 1i,.n1ig s',,t Pfrldiilior set

11 Ol 10)) 2 ( .362 0.38
20 4 ()(0 2 I0. lf,5 0.37
10 (000 I 0.337 0.30

20 (M) o 0.33 "0 ). 1
10 (10I , l4.3()07 (.'33

IS 000 4 0. M02 (.314
2l (o(1 4 o' "o.; 0.34

10( O (O.371 0.43

1 hc starting ks eight kiivors are in the ranige o" I to I.

10 o000 4 0.321 0.43
210 0001 4 0.291 (0.38

it) (000 5 (0.269 0.34
20 0)(i)1 5 0..252 0.3'6

1 \13 f Ill. Predicted results for log VW using neural ntekorks.

:\spt. Est INN) Flst (RAIl I f Est i NN( 3a] Ref.

I 4-heptanol 1.40 1.33 1.61 1.40 1181
2. hone 2.35 -2.24 2.03 2.72 (251

I .I-diphenlxethlllenre 4.52 S.15 5.28 5.2 125]

4. l-crc,,ol 0.)I 07'9 0(44 0.53 1321
5. tcostcroilLe 4.08 3 74 4.49 4-,6(1 121
6 2,4,4'-P( l. 6.24 6,.04 5.-6 ,596 (331
7. )xarnei hasone 3.59 3.48 3.5v 3.4"7 29)

-. 4-chloro,. .roben/ene 2.85 - 2.5( 2.66 1.83 [18]
S -PCB 5.06 5.75 - 5.45 575 (341

l H. 2,-P(B 5.21 5.68 5.35 -5.52 [4]
It " 1,6.P1 IB 6.16 ('.12 i.88 .6(.24 1341

12. fluore. 4,92 - 4.56 4.78 -443 [17]
13. ;.\ Rcie 6. 17 5.67 6.39 6.04 f 17]

14. indan 3.04 3.17 3.2" 3.10 (171
I . 3-ernch ils)p rdirnc (1.04 0.23 0 .17 • ().,11 [is]
If'. I509ul1:olillc 1.45 1.7 1.24 1.11 [18]
I'. letr-iI.dro lran 0(48 I0.33 0.74 (.59 118i
I ' cortiSonc 3.27 3.33 3.55 2.95 (321
9 2-n:wlhthol 2 25 1.9 1 .61 2)X(8 1321

I he standard ICý iti n is 1 3.14
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Appendix: The experimnental and estimated log W using neural net1torks
(NN in IlI~I)

C7ase Expt. fLst CNN) IRA)] I] 1N\1[ 3 al Re).

I I -octeneŽ --4.62 3.8 5 -4.27 4,02 16
2 I .2.4-trimethNIbenzene --3.32 i_ 67 3.63 35))t [16
3 I .4-pentadiene -2.09 1.97 '.()7 2.08 [6]1

4 1.5-hexudiene --2.69 2_64 ".91 '.80 [1()]
5 1I.0-heptadienc -3.34 -3. 11 3.36 3.21 [1
6 I -hexcnte 3,23 2- 2.87 -- 3.12 3.0)2 [161

7 1 -hexi'n-3-ol --0,.S9 -0.32 -0.69 -0.33 [IS;]
8 1 -penteric --2,68 ).231 -2.44 -2.3,8 [161
9 I -pelcnw-l-oI 00(2 0.05 -0.23 0.01I PSI
10 2.2.3-irimeth, -3-pentanol - 1.27 -1. 10 -1.71 1..26 [15]
I I 2.2-dirneth\ 1-3-pentano! -- 1. 15 -0.89 --1.06 -0.78 [ 15]

12 22dimlthvlpentane -4.36 --4.32 -4.34 --4.006 128]

14 23dimeth\ 1-2-butatiol -0).41I ---0.40 0-(.69 -0.31 129]
I1 i 23-dimcti. 1-2-pentanol -01.91 ---0.62 -1.11 -(1.5;9 129]
16 2.3dimeth\1-3-pentantl -0,.86 --().76) -1.17 -0.67 [29]
17 2.4-dimeth\ 1-2-pentanol 0.90 -0.889 --.40.79 [29]

1 14-dimeth\.1-3-pentanol - 1 .23 IAW) ý17 -088 [29]
19 ._-.4-dimethxl1-3-pentanonc -1 30 .1.19 -- 1.201 1.14 [I1
20 2.4-dimethvlpentane -4.39 --4.30 -4.39 ---4.10 I]
21 2-hepenc -38 -3.45 -3.75 --3.S8 [S

22 2-hexanol --087 ---(.66 -1.00 -0.71 [S
23 2-heplanonc -1.42 -- 1.23 1 451 -1.31) 1S
24 2-he\eii-4-oI -. 0).40 --A.36 (11 (( --0.34 1I5]

25 2-methyl- I-propanol (1.11 ) 0.23 026f 0.3)) [IS]
26 2 -m ct h - 1- 2 -hu anol1 0.09 -- 1.8 --(.34 .--0.07 [181
2-1 2-met ih\ I-2-hexanoI -- .1)07 -(1.89 1- 1 .30 --11.85 [IS
2X -'-meh,, I-2-pentanol -0.49 --0.41 -(1.72 --11.34 116,1
21) 2-ncth\ I- 3-pentanol --1)-71 -- 9.53 -0.65 --0.41 [ 6]
31) 2-meth\ I-4-penten-3-o1 -0.50) --0.3(0 --1 04.1)2 [IS]l
31 2-mclhxlpcntane --. 9 -3.78 -- 3,89 -3.62 [16]
32 2-pentanone --0.18 --0(1.7 --(124 (1.1)4 118]
33 2-pcntene --2.54 -2.24 11- 2.6 .3 [
34 3.3-dimeth'ýI-l -htitanol 0-1.501 -18 --0.81 --(.75; [291
35 3.3-d imet h %I-2-butanol -0.64 -(0.5(0 -(1.i8 0-(137 [2')1
36 3-ethJ-3-pctitnoI -(0.87 -(1.71 1.18 (,.65 [29]
37 3-hexanol -- 18) -(.62) --. 8X7 1.9 (16]
38 3-hexanone ---(1.83 ---(164 -(.9 -(1.57 1IS
39 3-methvl--hutanol ---0.51 (03(.43 .- 013 5 1151
40 3-methNl-2-hutanol --0.2I -0(.15 0--1.17 -05 (lO [1)
41 3-mcth\ I-2-hutanone --1 2 --().()3 (1.13 (0.09 [IS]
42 3-methyl-2-pcntanol (,17I -01.55 --(.64 __0(.43 [IS]
43 3 -m et h yl.-2-pen ta n on -0.67 0,.5 1560-.2 [5
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Est -st
Case Expl. Est INN) iRA)iI1 (NN)[3a] Ref.

44 3-methyl-3-hexanol -1.00 - 0.93 1.33 --0,88 1291
45 3-methyl-3-pentanol -039 -0.42 --0(73 --0,34 [29]
46 3-methylpentane -3.83 -3.80 .--3.81 --3.54 [tif]

47 3-pentanol -0.21 --0.18 -...0.29 -0.14 [15I
48 3-pentanone --0.23 -0.09 --0.23 0.00 115]
49 3-penten-2-ol 0.06 0.02 -0.36 --0.10 [15]
50 4-heptanone -1.44 -1.21 -1.41 -- 1.21 1151
51 4-methyl-l-pentene -3.24 -2,83 -3.00 -2.95 [16]
52 4-methyl-2-pentanol -0.79 --0.64 -0.92 -0.65 [161
53 4-methyl-2-pentatione -0.71 -0.57 -0.69 -0.54 115]
54 4-methyl-3-pentanone -0.81 -0.65 -0.70 -0.56 [15]

55 4-penten- I -ol -0.15 -0.03 -0.16 0.00) [15]
56 5-nonanone -2.58 -2.57 -2.30 --2.20 [15]

57 anthracene -5.39 -5.0(8 -5.34 -5.28 [341
58 benzyl alcohol -0.45 -0.40 -0.21 -0.30 f 151
59 butyl acetate -1.37 -1.42 -1.55 -1.21 [16]

60 cycloheptane -3.52 -3.05 -3.15 -3.09 [20]

61 cycloheptene -3.16 -2.83 -2.89 --2.84 [15]
62 cyclooctane -4.15 -3.56 -3.71 -3.55 [20]
63 cyclopentane -2.65 -2.04 -2.18 -- 1.96 [16]
64 cyclopentene -2.10 -1.83 -1.91 -1.76 [16]

65 ethyl butyrate -1.27 -1.50 -1.65 -- 1.29 [15]
66 ethyl decanoate -4.10 -3.97 -3.81 -3.80 [15]
67 ethyl formate 0.08 0.15 0.23 0.22 [16]

68 ethyl heptanoate -2.74 -3.01 -3.08 -2.47 [16]

69 ethyl hexanoate -2.36 -2.56 --2.62 -2.07 [15]
70 ethyl isopropyl ether -0.55 -0.56 -0.50 -0.51 [15]

71 ethyl nonanoate -3.80 -3.61 -3.74 -3.49 [151

72 ethyl octanoate -3.39 -3.38 -3.43 -2.98 [151
73 ethyl propyl ether -0.69 -0.61 -0.46 -0.51 [16]

74 ethyl valerate -1.77 -2.07 -2.16 -1.69 [15]
75 1-heptanol -1.80 -1.43 -1.56 -1.45 [16]

76 heptane -4.53 -4.34 -4.73 -4.44 [16]
77 hexane -3.96 -3.78 -3.97 -3.71 [161

78 isopropylbenzene -3.38 -3.40 -3.57 -3.28 [16]
79 isopropyl acetate -0.54 -0.59 -0.92 -0.50 [161
80 methyl butyrate -0.78 -0.86 -0.99 -0.82 [15]

81 methyl butyl ether -0.99 -0.72 -0.66 -0.80 [151
82 methyl isobutyl ether -0.90 -0.72 --0.58 -0.73 [15]

83 methyl isopropyl ether -0.03 (.10 0-15 ).13 [15)
84 2-methylnaphthalenc --3.84 -3.96 -4.08 -3.77 [331
85 methyl propionate -0.15 -0.24 -0.40 -0.21 116]

86 methyl propyl ether '-0.38 0.04 0.03 -0.04 [16]

87 methyl sec-butyl ether -0.73 -0.56 -0.35 -0.39 [15]
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Est Est

Case Expt. Est (NN) (RA)[ II (NN4[3al Ref.

88 methyl t-butyl ether 0.21 -0.51 -0.45 -0.40 [151
89 m-nitrotoluene -2.44 -2.64 --2.18 -2.45 [15]
90 in-xvlene -2.86 --3. 11 --3.11) --3.05 (211
91 N-methylaniline -, 1.28 -- I.I - I.II -- 0.)9 [19]
92 N,,-dimethvlaniline -2.04 --1.64 - 1.59 -2.03 [191

93 octane -5.24 -4.82 --5.33 --4.()9 [161
94 o-toluidine -0.87 -(1.73 - 1.04 -0,68 1191
95 o-xvlene -2.79 -3.01 -3.02 ---2.95 [21]
96 propyl butyrate -1.92 --2.09 -2.20 -1.68 [161
97 propyl isopropyl ether -1.33 -1.31 --1.13 -1.21 [15]
98 propyl acetate -0.73 -0.80 -.. 1.03 --0.73 [15]
99 p-xvlene -2.83 -3.16 -3.17 --3.15 [211

100 styrene -2.57 -2.80 -2.96 -2,87 [33]
101 t-butylbenzene -3.60 -3.95 -4.10 - 3.73 [191
102 1.3.5-trimethylbenzene --3.40 -3.79 -3.76 -3.76 [21]
103 aniline -0.41 -0.53 -0.33 --0.46 [15]
104 m-toluidine -0.85 -1.14 -0.80 -0.98 [191

105 toluene -2.29 -2.48 -2.52 --2.47 [20]
106 benzoic acid -0.78 -1.21 -0.45 -0.83 [19]
107 phenylacetic acid -0.91 -1.60 -1.13 -1.23 [171
108 nitrobenzene -1.80 -2.32 -1.66 --2.07 [16]
109 ethylbenzene -2.91 -2.95 -3.04 -2.93 [28]
110 n-propylbenzene -3.30 -3.47 -3.56 -3.33 [20]
III biphenyl -4.33 -4.23 -4.55 -4.25 [33]
112 naphthalene -3,62 -3.36 -3.70 -3.50 [33]
113 pentane -3.27 -3.21 -3.55 -3.26 [16]
114 cyclohexane -3.07 -2.59 -2.65 -2.60 [30]
115 methylcyclopentane -3.30 -2.64 -2.71 -2.67 [16]
116 methylcyclohexane -3.79 -3,08 -3.16 -3.12 [281
117 isopentane -3.18 -3.23 -3.34 -3.04 [15]
118 cyclohexene -2.59 -2.32 -2.37 -2.33 [16]

19 dipropyl ether -1.44 -1.42 -1.11 -1.24 [18]
120 diethyl ether -0.13 0.09 -0.11 -0.09 [18]
121 ethyl acetate -0.06 -0.24 -0.37 -0.11 [30]
122 methyl acetate 0.46 0.29 0.17 0.49 [18]
123 propyl formate -0.51 -0.41 -0.34 -0.32 [16]
124 2-hexanone -0,78 -0,64 -0.90 -0.62 [15]
125 2-butanone 0.49 0.45 0.36 0.58 [18]
126 cyclohexanol -0.42 - 0.30 -0.26 -0.18 [16]
127 l-octanol -2.34 -2.13 -1.85 -1.91 [16]
128 1-hexanol -1.21 -0.81 -0.97 -0.78 [161
129 1-pentanol -0.59 -0.23 -0.19 -0.10 [15]
130 2-butanol 0.29 0.29 0.12 0.27 [15]
131 1-butanol 0.03 0.25 0.04 0.19 [15]
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[st Ist
Case Expt. Yst (NN) (RA)[ I] (NN)[3a] Ref.

132 benzene --1.68 --1.94 - 2.13 1.80 [33]
133 methane -2.82 --2.51 --2.46 -2.38 161
134 ethane -.2.70 -2•29 -2,27 2-45 [16
135 propane --2.85 -2.39 --2.49 -2.34 116]
136 butane -2.97 -21.72 - 1.01 -2.68 [16]
137 2-methvlpropane -3.07 - 2.74 -2.92 --2.56 116]
138 2,2-dimethylpropane -3.34 -3.28 -3.36 - 3.04 116]
i39 2.2-dimethy]butane 3.67 --3.82 --3.75 -3.45 [161
140 2,2.4-trimethNlpentane -4.67 -.4.71 --4.75 -4.40 [16]
14t ciý- t,2-dimethvlcclohl.\ane -4.27 --3.55 -3.64 -3.53 1161
142 ethslene --2.33 -1.44 - 1.51 -1.96 [161
143 propylene -2.03 -1.31 -1.56 -1.71 [25]
144 1-butene --2.40 -1.66 --1.99 - 1.87 [16]
145 2-methylpropene -2.33 -1.64 -1.91 -1.79 (16]
146 Irans-2-pentene -2.54 -2.29 -2.69 -2.46 [16]
147 2-methyl-2-butene --2.56 -2.24 -2.45 --2.29 1[ I t6]
148 3-methyl-l-buiene -2.73 -320 -- 2.33 -2.28 1161
149 /rans-2-heptene -3.82 --3.51 -3.93 -3.79 [16]
150 1.3-butadiene -1.87 - 1.52 -1.80 -1.64 116]
151 2-methyl-1.3-butadiene -2.03 -2.00 --2.16 -2.05 [161
152 2.3-dimethyl-t.3-butadiene -2.40 -2.61 -2.71 -2.68 [16]
153 butylbenzene -3.94 -4.06 -4.13 -3.91 [16]
154 2,3-dimethylbutanol -0.37 -0.64 -0.60 -0.49 [16]
155 nitroethane -0.24 -0.31 -0.25 -(0.13 [16]
156 I -nitropropane -0.80 - 1.04 -0.82 -0.78 [30]
157 2-nitropropane -0.73 -1.03 -0.67 --0.52 [16]
158 2-nitrotoluene -2.32 -2.39 -2.27 -2.20 (16]
159 1-methNlcyclohexene -3.27 -2.94 --2.96 -2.95 [16]
160 2-methyl- I -butanol -0.46 -0.31 -0.37 --0.30 [11]
161 2-pentanol -0.28 -0.17 -0.46 -0.19 [15)
162 diphenylmethane -4.70 -4.79 -4.85 -4.70 [23]
163 phenanthrene --5.21 -5.01 --5.55 -5.31 [33]
164 isobut'l acetate -1.28 -1.37 -1.52 -1.20 [16]
165 2-butylbenzene -3.67 -4.02 -4.10 -3.82 [16]
166 pentamethylbenzene -3.99 -4.74 --4.67 -4.51 ( 18]
167 1.2.4.5-tetramet h Ibenzene -4.34 -4.30 -4.23 -4.22 [33]
168 Irans- 1.2-diphenvlcthvlenc -5.79 -5.17 -5.24 -5.27 (33]
169 3,3-dimethyl-2-butanone -0.72 -0.51 --0.43 --0.54 (251
170 isopropyl formate -0.63 -0.29 -0.23 --0.25 [16]
17! isobutyl tbrmat - 1.00 -- 1.04 --0.77 -0.90 [16]
172 isopentyl formate -1.52 --1.63 -1.41 -1.43 [25]
173 methyl henzoate -1.53 -1.82 1--.21 -. 75 [16]
174 ethyl benzoate -2.22 -.. 2.2-,0 --1.77 --2.05 [18]
175 ethvl cinnamate ---3M 3.0((7 -2.23 - 3.00 [30]
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l*st lFst

Case Expt. Est (NN) (RA) I] (NN([3a] Ref-

176 t-anivlbenzene -.4.15 -4.46 --4.58 -4.21 [16)
177 2,2.5-trimethylhexane --5.05 .. 5.09 - 5.34 -5.07 [1201
178 1,3-dimethylnaphthalene -4.30 --4.58 -4.59 4.36 [I 7]
179 1.4-dimethytnaphthalene -4.16 --4.63 --4.73 ---4.64 [17]
180 2.3-dimnethyinaphthalene --4.70 - 4.50 - 4.5(1 -4.21 [17]
181 2.6-di methyInapht hate ne --4.89 -4.71 -4.63 -4.64 [17)
182 I-ethyInaphthalene -4.20 -4.44 -4.61 --4.24 133]
183 benzaldehyde --1.21 -1.66 -0.83 -0.96 [16]
184 acetophenone --1.34 --1.41 -0.98 - 1.36 [16]
185 2-ethvl-2-hexenal -2.46 -2.19 -2.21 -2.37 [25]
186 butanal -0.28 -0.78 -0.17 -0.28 [25]
187 hexanal -1.30 -1.22 -1.19 -1.0A8 [25]
188 2-ethylbutanal -1.52 -1.40 -0.86 - 1.31 [251
189 2-ethylhexanal -2.13 -2.13 -1.68 -. 1.98 [25]
190 acetone 0.88 0.84 0.90 1.02 [18]
191 nitromeihane 0.20 (1.34 -0.10 0.33 [18]
192 methanol 1.56 1.24 (.0.96 1.55 [18]
193 ethanol 1.10 1.06 0.91 1.25 118]
194 1-propanol 0.62 0.73 0.54 0.75 [18]
195 cvclohexanone 0.01 -0.19 0.07 -1.23 (181
196 N,.\-dimethyl acetamide 2.11 1.56 1.22 2.0(10 [18]
197 quinoline --130 -1.84 -1.39 - 1.24 [18]
198 furan -0.83 --0,59 --0.15 -0.81 [30]
199 pyridine 0.47 0.45 0.27 0.58 [181
200 benzonitrile -1.65 -1,58 -1 M06 - 1.65 [18]
201 1,4-dinitrobenzene -3.33 --3,40 --3.37 --3.25 [18]
2102 acetonitrile 0.53 0.47 0.12 (1.56 [18]
203 propionitrile 0.33 0.25 --0.09 0.26 [18]
204 butyronitrile -0.33 -0,30 -0.57 -0.22 [181
205 prednisolone -3.18 -3,69 --3.11 --3.22 [29]
206 hvdrocorlisone -2.97 -3,24 -3ý59 -3.03 [291
207 phenol -0.08 -0.20 0.07 -(1.12 [32]
"208 O-cresol -0.65 -0,74 -0.55 -0.83 [32]
209 At-cresol ---0.71 -(0.74 -(1.51 --0.66 [32]
210 1,3-dibromopropane --2.08 -2.70 - 2.43 --2.55 [15]
211 I 1.3-dichloropropane -1.62 - 1,98 --2.0 -- 1,98 [16]
212 2.2'-PCB -5.35 --5.50 -5.05 5.41 [33]
213 2-bromopropane -1.59 1,79 -- 1.67 ... 1.62 [161
214 2-chloropropane -- 1.41 - 1.48 - 1.48 1.35 [16]
215 diiodomcthane -- 2.34 -2.113 - 2.54 -.. 1.92 [151
216 hexachlorobcnzene -6.78 -.- 6.13 -6.12 -6.51 [391
217 bromoben/ene -2.55 -2.62 2.58 -2.61 [33[
218 I-bromobutanc --2.36 ---.152 -2.31 2.34 [16]
219 bromoethane - 1.08 - 126 1.28 ... 1.12 [16]
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Est Est

Case Expt. Est (NN) (RA)[I] (NN)[3a] Ret:

220 I-bromopropane -1.70 -1.81 -1.74 -1.71 [16]
221 chlorobenzene -2.35 -2.34 -2+24 -2.31 [33]
222 chlorobutane -2.14 -2.19 -2.11 -2.10 f16]
223 chloropropane -1,46 -[50 --1.54 - 1.45 116]
224 fluorobenzene -1.87 -1.97 -- 1.83 - 1.90 [25]
225 iodobenzene -2.78 -2.92 -3.00 -2.94 [191
226 iodobutane -2.94 -2.81 -2.57 -2.63 [16]
227 iodoethane -1.60 -1.52 -1.56 -1.41 [16]
228 iodomethane -1.00 -1.27 -1.35 -1.08 [16]
229 iodoprorane -2.20 -2.13 -2.03 -2.05 [16]
230 isoamvy bromide -2.88 -3.12 -2.80 -2.77 [16]
231 isobutyl bromide -2.44 -2.48 -2.23 -2.27 [161
232 isobutyl chloride -2.00 -2.18 -2.05 -2.09 [151
233 m-chloroaniline -1.37 -1.45 -1.20 -1.43 [19]
234 rn-dichlorobenzene -3,08 -2.99 -2.83 -2.85 [161
235 o.-chloroaniline -1.53 -1.50 -1.00 -1.38 [19]
236 o-dichlorobenzene -2.98 -2.85 -2.64 -2.70 [19]
237 p-dichlorobenzene -3.28 -3.26 -3.22 -3,00 [16]
238 1,2,4-trichlorobenzene -3.57 -3.83 -3.55 -3.52 [19]
239 chloroform -1.21 -1.36 -1.69 -1.29 [16]
240 chloroethane -0.93 - 1.06 -1.15 -0.99 [16]
241 trifluoromethane -1.98 -2.10 -1.28 -1.80 [16]
242 1, 1-dichloroethane -1.29 -1.26 -1.40 -1.05 [16]
243 1,2-dichloroethane -1.05 -1.22 -1.23 -0.78 [18]
244 1.2-dibromoethane -1.67 -1.87 -1.74 -1.60 [16]
245 1-chloro-2-bromoethane -1.32 -1.53 -1.44 -1.16 [16]
246 1, 1, 1-trichloroethane -2.00 -1.73 -1.97 -1.66 [18]
247 1,1,2-trichloroethane -1.46 -1.59 -1.64 -1.18 [16]
248 1,1,2,2-tetrachloroethane -2.77 -2.22 -2.41 -2.26 [25]
249 p-dibromobenzene -4.01 -4.14 -4.03 -4.06 [33]
250 cis-1.2-dichloroethylene -1.44 -1.29 -1.42 -1.17 [25]
251 trans- 1,2-dichloroethylene -1.19 -1.54 -1.93 -1.58 [16]
252 2-iodopropane -2.09 -2.11 -1.99 -2.00 [16]
253 1,2-dichloropropane -1.61 -1.89 -1.65 -1.34 [16]
254 1,2-dibromopropane -2.14 -2.57 -2.16 -2.17 [16]
255 1. 1-dichlorobutane -2.40 -2.74 -2.45 -2.50 [16]
256 I-chloropentane -2.73 -2.86 -2.62 -2.55 [16]
257 2-chloropentane -2.63 -2.87 -2.66 -2.56 [16]
258 3-chloropentane -2.63 -2.82 -2.49 -2.52 [16]
259 chloroethvlene -1.75 -1.16 -1,20 -1.27 [16]
260 trichloroethylene -2.12 - 185 -2.23 -1.72 [25]
261 tetrachloroethylene -2.62 -2.89 -3.14 -2.57 [17]
262 1-bromo-2-ethylbenzene -3.67 -3.75 -3.69 -3.64 [16]
263 bromomethane -0.81 -1.13 -1.10 -0.95 [16]
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Est Est
Case Expt. Est (NN) (RA)[I] (NN)[3a] Ref.

264 dibromomethane -1.- 18 - 1.44 - 1.70 -1.28 [16]
265 tribromomethane -1.91 - 2.28 -2.80 -2.03 [161
266 chlorofluoromethane -0.82 -1.06 -1.02 --0.72 [16]
267 chlorodifluoromethane - 1.45 - 1.67 -1,34 -1.56 126]
268 dichlorodifluoromethane -2.53 -2.82 --2.26 -2.61 [27]
269 bromotrifluoromethane -2.70 -2.64 -2,01 -2.55 [161
270 lI,-difluoroethane -1.31 -1.19 --1.18 -1.30 [16]
271 pentachloroethane -2.64 -3.20 -3.30 --2.97 [251
272 hexachloroethane -4.47 -4.66 -4.37 -4.71 (38]
273 1.1.2.2-

tetrachlorodifluoroethane -3.19 -3.49 --3.63 -3.14 [161
274 1,1.2-

trichlorotrifluoroethane -3.04 -3.20 --3.32 -'-2.90 [16]
275 1.)-

dichlorotetrafluoroethane --3.23 -3.32 -3.14 -3.13 [16]
276 1,2-

dichlorotetrafluoroethane -3.09 -3.36 -3.18 -3.08 [16]
277 chloropentafluoroethane -3.49 -3.78 -3.08 -3.64 [16]
278 methyl fluoride -1.23 --1.39 -1.19 -1.13 [16]
279 methyl chloride -1.00 - 1.13 -1.05 -1.03 1161
280 dichloromethane -0.81 -1.07 - 118 -0.95 [37]
281 tetrachloromethane -2.30 -2.33 -2.69 -2.05 [25]
282 3-PCB -4.73 -4.75 -4.60 -4.69 [31]
283 2-PCB -4.84 -4.85 -4.69 -4.66 [331
284 2,4'-PCB -5.07 -5.34 -4.87 -5.49 [31]
285 3-chloropropene -1.28 -1.34 -1.35 -1.28 116]
286 o-bromocumene -4.19 -4.34 --4.16 -4.14 [16]
287 1 1I. 1,2-tetrachloroethane -2.18 -2.30 -2.56 -2.29 [25]
288 1.2-difluorobenzene -2.00 -2.01 -1.69 -1.89 [29]
289 1,2-dibromobenzene -3.50 -3.51 -3.46 -3.51 [29]
290 1,2-diiodobenzene -4.29 -4.16 -4.49 -4.35 [33]
291 1,3-difluorobenzene -2.00 -2.20 -2.17 -2.14 [29]
292 1,3-dibromobenzene -3.38 -3.75 -3.60 -3.57 [29]
293 1.3-diiodobenzene -4.55 -4,49 -4.49 -4.33 [33]
294 1,4-difluorobenzene -1.97 -2.36 -2.57 -2.11 [29]
295 1.4-diiodobenzene -5.25 -4,92 -4.92 -5.07 [29]
296 1,2,3-trichlorobenzene -3.76 -3.56 -3.28 -3.47 [29]
297 1.2,4-tribromobenzene -4.50 -5.08 -4.82 -4.77 [29]
298 1.3,5-trichlorobenzene -4.44 -4.14 -3.84 -3.97 [29]
299 1,3,5-tribromobenzene -5.60 -5,42 -5.04 -5.56 [291
300 1,2.3.4-tetrachlorobenzene -4.25 -4.56 -4.11 -4.35 [34]
301 1,2,3,5-tetrafluorobenzene --2.31 -2.66 -2.77 -2.65 [35]
302 1,2,3,5-tetrachlorobenzene -4.77 -4.81 -4.30 -4.42 [33]
303 1.2,4,5-tetrafluorobenzene -2,38 -2.88 -3.16 -2.63 [35]
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Est Es1

Case Expt. Est INN) (RA)l I] (NN)[3a] Ref.

304 1.2.4,5-tetrachlorobenzene -4.96 .5.08 --4.50 5.11 [34]
305 pentachlorobenzene - 5.28 5.60 5.07 5.34 [361

306 1 -lluoro-4-iodobenzene -3. 13 3.52 3.68 3.34 [35]

307 1-chloro-2-fluorobenzene -2.42 -2.43 -2.20 -2.20 [35]
308 1 -chloro-3-fluorotwnzene -2.35 -2.54 -2.47 -- 2.46 [351
309 1-bromo-2-fluorobenzene -2170 --2.75 -2.59 -2.61 [35]
310 1-bromo-3-fluorobenzcne -2.67 -2.88 --2.83 -2.79 [35]
311 1-bromo-2-chlorobenzene -3.19 -3.19 -3.04 -3.1 1 [29]
312 l-bromo-3-chlorobenzene -3.21 -3.37 -3.21 -3.20 1291
313 1 -bromo-4-chlorobenzenc -3.63 --3.65 -3.57 -3.40 [29]
314 1 -bromo-4-iodobenzene -4.56 --4.54 -4.47 4.5, [29]
315 !-chloro-2-iodobenzene -3.54 -3.52 -3.48 3.51 [29]
316 1 -chloro-3-iodobenzcne -3.55 -3.74 --3.63 --3.55 [29]
317 1-chloro-4-iodobenzene -4.03 -4.07 -. 3.99 -3.91 [29]
318 betamethasone -3.77 -3.5S -3.57 .- 3.82 [29]
319 progesterone -4.42 -4.63 -4.32 -4.51 [29]
32(0 buttamine 0.96 0.88 0.80 1.02 [18]
321 propylamine 1.52 1.37 1.42 1.61 [18]
322 pentylamine 0.27 0.22 0.19 0.31 [IK]
323 diethylamine 1.03 1.17 0.96 0.94 [18]
324 ethylamine 2.06 1.68 2.05 1.91 [18]
325 hexylamine -0.25 -0.41 -0.43 -0.33 [18]
326 heptylamine -0.90 -0.96 -1.04 -0.85 [18]

327 octylamine -1.46 -1.42 -1.54 -- 1.41 [18]
328 trimethylamine 1.32 1.34 1.62 1.40 [18]
329 triethylamine -0.26 -0.36 0.09 -0.32 [18]
330 dipropylamine -0,54 -0.35 -0.39 --0.47 [ 18]
331 dibutylamine -1.44 -1.61 -1.43 -1.51 [18]
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Abstract

The ground-state cnerg. of the negative hydrogen ion in a variety of plasma model enironments has
been calculated using a new pair function code which takes screening into account. The models that
hase been studied range fam simple Debye screening to more realistic electron-ion potentials derised
from densit% -functional theor 1992 John Wile\ & Sons. Inc.

Introduction

The potential between electrons and ions plays a key role in plasma studies as
well as in studies of atomic processes in plasmas. The ultimate goal of an ah inimio

description of plasmas is still a formidable task of many-body theory. In particular
for nonideal plasmas in which the kinetic energy average is much smaller than the
potential energy the difficulties are compounded by the existence of bound states
of the constituents (atoms and ions) states. This requires an accurate treatment of
both the global and local properties of the plasma. In spite of considerable progress
made in the formulation of a fundamental theory of nonideal hydrogen plasmas
[I and reports on applications to helium [ 23 a comprehensive ah initio treatment
of general plasmas is still a development of the future.

The study of atomic processes in plasmas on the other hand is one of the most
active areas in conjunction with plasma diagnostics for the fusion energy program
as well as for astrophysical research, It is well-known that the accuracy required
for a meaningful evaluation of atomic processes is quite high. Atomic processes
are sensitive to local plasma environments. Quite frequently these are either totally
neglected in the corresponding calculations or roughly approxirnated by merely
introducing a finite correlation sphere or application of simple Debye screening.
These approaches reflect essentially the fact that we know much less about local
properties in plasmas than their global aspects. With the appearance of increasingly
detailed computer models of the plasma, however, there is hope that the potentials
required for atomic calculations including the environment can be refined. It appears
appropriate and timely to study alternative approaches for the extraction of realistic
electron-ion potentials from detailed plasma calculations and to develop new
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methods to dynamically couple the plasma electrons to the atomic electrons. The
present study is our first step in this direction.

At present the majority of plasma calculations are based on the one component
plasma model (o(-P) which takes the electron component as a background providing
a uniform charge density throughout all space mainl\ to ensure charge neutrality.
While this approach nmav be adequate for high-energy plasmas it iF inadequate for
our purposes because the artificial immobility of the electron background introduces
stronger spatial fluctuations of the calculated ion densities and the associated po-
tentials than are to be expected in reality. Fortunately there are calculations in the
two-component plasma model (TCP) available [ 31 the results of which have enabled
us to design strategies for the refinement of potential functions to be used in future
calculations of atomic processes in various plasma environments. Unfortunately
such "rCP computations are still all too rare and the existing ones do not directly
cover the region of interest for the study atomic processes. Density-functional theory
is our choice to obtain the required information about the plasma environment.
Alternative approaches are Monte Carlo methods or Molecular Dynamics ca!cu-
la, ions which will not be discussed here any further, however.

Another current topic of increasing interest and full of surprises is the research
on highly charged ions stimulated by the availability of efficient ion sources and
experimcntaily restricted so far mostly to studies in the vacuum but always with
the declared direction toward applications in plasmas, in particular, the study of
impurities. There is a considerable need for theoretical extrapolation of the vacuum
results to plasma environments. Although our studies are presently focused on
hydrogen plasmas, in particular, the study of negative hydrogen ions, the methods
can be applied directly to the study of highly charged positive ions as long as a
nonrelativistic theory is feasible and, with moderate modifications, to heavier ions.
The step to more complicated plasmas is planned for the future.

In the next section we summarize the framework of density-functional theory as
applied to hydrogen plasmas. In the third section we will discuss the one "realistic'"
potential we have extr;cled so far. The fourth and fifth sections are reserved for a
brief explanation of the pair function approach and the discussion of our results
for various plasma models. A more general discussion of our findings and possible
plasma conditions for which our calculations may be appropriate follows in the
final section.

Density-Functional Approach

Here we summarize the main reiations from density-functional theory applied
to hydrogen plasmas [ 3 ]. The equations tor the electron subsystem are given by

[__,/,•2 + I'.(r)]l, (r) e1 ,(r) (I

where v designates a quantum state 1,, 1. in) ife is negative and (k, I. m) if c
12k

2 referring to a scattering state.

-,(r) -[/r + V1,(r)] + V',(r) -- I'," (R) (2)
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where
f p(r') - n(r')

,(r) = -- r'J dr' (3)

and the exchange potentials are taken in local density approximatfon. The key
quantity here is the distribution function for an ion-electron pair

g,,(r) = n(r)/n,,, (4)

which is related to the bound, free and average electron densities

n(r) = nh(r) + An' (r) + n,, (5)

with

n'(r) = Z (21+ I )ljf,.. A.) (6)

An 1 (r) 7r- k 2 dkAf(k,,,) • (21 + I )[R 1(r)-j](rk)l} (7)

f'(v, , = 1/[1 + exp(e, - ,j,)J31 (0 -- I/kqT). (8)

For the ion subsystem the most relevant relations are the pair function equation

g,,(r) = exp[-0V1 (r)j (9)

with

Vi(r) = [/r + V,(r)] + V,(r) (10)

where the average correlation potential is given by

F,(r) -(l/13 )pt flh(r') + 3',(r')lh( r - r'j) dr' . il)

Finally we define

In g(r) - 0[l r + Vp(r)] + p. f [h(r') - In g(r')]h( Ir - r'I)dr' (12)

with h(r) = g(r) - 1.

Realistic Potentials

Once the distribution functions g,(. and g, have been obtained by iteration we
use the densities n(r) = n,,gj,((r) and p(r) = p.,,.g(r) in Poisson's equation
V2 V(r) = -47r(p(r) - n(r)) for the evaluation of a "realistic" potential. This term
is used here to express the fact that important features of the plasma environment
have been included albeit in an approximate and averaged way. Subsequent com-
putations can be considerably accelerated if we use analytic potential functions
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which are fitted to the realistic potentials. In Figure I we present a fit employing
the analytical form of a Debye-Laughton potential

I' (r) = A exp(-r/D)[l/r - BrI exp(-Cr/I))] . (13)

This form reproduces the potential curve obtained from one of the few existing
T('P calculations [3] so well that in the graph the curves cannot be distinguished
in the displayed region. We have used potentials of this form in resonance calcu-
lations previously in a study of shape resonances in the s-wave channel [4]. The
plasma conditions of this particular calculation support only one bound state of
the neutral atom at an energy of -0. 140148 a.u. For the pair function calculations
reported next we have therefore to change the parameters of the Debye-Laughton
potential so that the model supports several bound states and in particular also a
bound state of the negative ion. Model calculations of plasmas under corresponding
conditions are well under way but not completed.

The Atomic Pair Function

Numerical pair functions [51 have become an important tool in the study of
atomic structure. For helium-like systems they offir a rather convenient way to

FITTED POTENTIALVrr) -:(Acx×p(--r/D))!,---Brcxp(- (C -I• )r/D)

15.0
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Figure 1. Fit of an analytic function to a realistic potential for hydrogen plasma ( F

10). The radius of the correlation sphere is 2 a.u. The parameters of the Debye-Laughton
potential [fEq, 13 are A I. B .223, C - .596, 1 4.737. .
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obtain accurate, numerical bound-state wave functions. For larger systems the con-
struction of pair functions is a feasible alternative to the correlation of single particle
functions, in particular, the infinite summation of ladder diagrams [6] and [7 1.
The calculation of pair functions with screened Coulomb potentials is new and
requires some justification.

The theory of atomic pair functions will be outlined only briefly. Relevant details
can be found in a pioneering publication by Mdirtensson [81. Altho',gh we use a
code of own provenance because oý the modifications required by the inclusion of
plasma screening the description of the finite difference techniques provided there
can serve as a guide also here.

For two-electron systems the equation for the pair function pa, (shown in figure
2) is given by

[C, + /, -ho(l) - ho(2)] p,,,) = Y Irs>rslIl'lab +

- p, ,,Icdl Flab + p,,,) (14)

P air fur cton
-1 b: Oc=Od-1OOOL=O

Figure 2. Plot of a pair function. Only the s-contribution is displayed. The variables x,
and x2 are the radial variables of the Iwo electrons given here in terms of mesh points,
The choice of the parameters corresponds to simple Debye screening with D = 1000 which
is very similar to the unscreened Coulomb potential. A logarithmic grid r = exp(x) has
been used. The parameters of the Debye-Laughton potential are A =I. B = C = 0. D1

1000.A = 0.
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Here Pis the model space spanned by a subset of eigenfunctions of an approximate
Hamiltonian consisting of a sum of single-particle operators h,(i). We notice that
the pair function pm. complements the product functions I ,/ .'rhe right-hand side
is a functional of p but-starting with an educated guess-sse use the function
obtained in the (n - I )st step as right-hand side for the nth iteration until con-
vergence has been obtained within a preset tolerance. The one-electron problem
connected with h( has to be solved first:

hoti) = -7"212 - ZIr, + I'. (15)

In order to include, for example, Debye screening the matrix elements of I are
chosen as

V,= (il - Z[exp( -r/D) - Il/r I)
core'

+ ( <iclexp( --r/D)ir jcr -,.icjexp( -r/I))/r Icj< (16)

More realistic choices for V have been studied also.

Results

In Table I we present results of the present calculation for increasing Debye
screening (decreasing values of D) and compare the ground-state energy of the
negative hydrogen ion to the binding energy for the neutral atom in the same
plasma environment. Both values decrease with increasing screening. As long. how-
ever, as the value in the last column is more negative than the corresponding entry

TIAR) cF I. The gound-state eergr of the H -ion (last column) tr some values of)the Deye parameter
D) (column 1 is compared to the ground-state energy of the neutral atom (column 2). Columns 3 and
4 show the results of the present pair function 'alculation obtained on a grid of 45 / 45 points and the
values of the Richardson extrapolation, respectively. In the pair function results s. p. and d partial waves

have been consistently included,

It -ion HI -ion If -ion
D H1-atom (N ý 45) (extrapolated) (c;(t)

X --0.500000 -0.527613 0.527322 -0.52775(
1000 -0.499(0)1 -0.525871 - 0.525696 10)525754
200 -0495019 0.517935 -0.517883 -0.57818
100 --0.49(X)74 -0.508135 -0.508118 0. 5080'18,
50 -0.480296 -0.488846 -0.488662 -0.488808
35 -0.472049 - 0.472854 0.472540 0,472745
34.25 -0.471430 -0.471702 0.471535 0.471588
34 -.0.471225 -0.471305 -0.471249 -0.471191
33.5 - 0.470848 0.470543 --0.470343 --0.470343
32 -0.469668 -.0.468149 -0.467981 Q0468699
20 .. 0.451816 -.(.434280 0.434033 -0.442189
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in column 2 the negative ion is bound. We notice that at %alues of ') about 34 or
less the two-electron system ceases to be bound.

What happens when we go beyond the bound regimen? Does the system emit the

second electron immediately into the continuum or do 1leatures of the combined
and predominantly localized system persist even though the energy coexists with
the one-electron continuum'. Our studies are not \et at the stage to provide a quan-

titative answer to this question.
The faict that even beyond the bound region our calculations \ield states with

distinct energies and electron densities not much dilkrent from the bound s\ stems
ma. be an artifict of the chosen computational approach. We do not believe in

this explanation, however, because in similar circumstances for heavily screened
one-electron systems we were able to explicitly show the resonance character of the
corresponding solutions [4 ]. But more studies are required here. The comparison

data in the last column have been obtained "rom correlated wavefunctions in the
generator coordinate representation described elsewhere [9] and have been included

here only to assess the accuracy of the present calculations given in columns 3
and 4.

One further point is worth mentioning: While the results in the last column are
obtained from a variational calculation, the same is not true for the numerical pair
function results which may happen to lie below the t.ue energy %alues. In siew of
the demonstrated accuracy of the results this distinction is of little relevance for all
practical purposes and so we have abandoned this control in the tollowing inves-
tigations.

In Tables II, Ill, and IV we have extended the study of the stability of the negative
hydrogen ion to other screening environments. We proceed from the simple Debye
screening model to more realistic potentials which in principle should be obtained
from pair distribution functions of two-component plasma simulations as above

but are at this time only represented by sequences of analytic potential functions
which may or may not have any resemblance to realizable situations. Future effiorts
will show if any (or all!) of these potentials can be associated with real plasma

conditions.

TABLY It. The energy of the H -ion for several values of the parameter B. %th .A 1. C 0. 1)
,000. 0.

H-ion H! -ion It -ion
B H-atom iN - 35) (N -. 45) (cstrap, lated)

.002 -0.497004 --0.52203) -0.521889 0.52 1685
.005 -0.494008 -0.516056 -0.515915 0.515699
.010 -0.489016 -0.506083 0.505943 A-.505729
.01 38 -0.485221 -0.498489 -0.498339 0.498109
.020 -0.479031 -0,486122 -0.485973 0.485745
.030 -0.469046 -0.466191 --0.466050 -0.465834
.040 -0.459061 -0.446143 -0.446104 -0.446044
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I .xfit I II[ I lhe encrgý ot the II -lon 1br so -ral l ot the 4lalr~ rlocr B. •t% 1 I ( 0. 0
lot,). u 0

I1 -itl I -in I ) -on
1? I I l-Jtor 4 N 51 \ 4 5 c \t r4r S.d

.42 0.488 104 0.5 044(41 1, , 142M, 1 k( 4 1 I1

.45 )0.485149 0.49856 t4 498446 (1 4,4Y'-1o
0.11of 0.480422. 1,488828 0-4x8" I 4 4S 3-
All I 30 -0.47,47.) o 4g 14 4 044 121, I,.4S, ' I

.o210 0,470 0 72 0.4r,934t, 0 469 10 0 1 46x 7 f

.030 0.46152)0 0.449 74 .44,6' 0 449;_54

.040 ().450(689 0,.43•3 14 (-43 025, 0.43 1 42

Discussion

Although our foremost motivation tbr investigating the negative hydrogen ion

at this time was dictated by the need to assess both the accurac. and efliciency of
our newly developed code the problem fits well into the overall scope of our research

program on atomic processes in various plasma environments and the question
arises whether there are plasmas for which our results are meaningful or Ahethcr
they are just of computational interest. Ii is well-known that the negative hydrogen
ion is very weakly bound even in the vacuum and obviouslv in a screening envi-
ronment the binding decreases. However, it has been established that H in the
solar chromosphere is (together with neutral hydrogen and the positive ions of
calcium and magnesium) one of the fbur major contributors to the absorption of
radiation from the sun. This affects the opacity of the sun chromosphere substantially
[10]. Obviously there is a favorable plasma environment. The corresponding tem-
perature is assumed at 4400 K but even at much higher electron temperatures
between I1 000 K and 15 000 K where negative hydrogen ions are merely tem-
porarily formed in collision processes their contribution to the overall continuum
radiation is not negligible as collisional-radiative models have established [ I1].

T.AL.Ls IV. The energy of the I1 -ion for several ,.alues of the parameter B. ih .A I. (1 0. 1)
50. P 0.

II -ion iH -ion H -ion
B H-atom (N _ 351 (A' - 45) (estrapolatedl

.002 - 0.478355 0.485223 0.4951501 0,485023

.005 -0.475443 0.479546 -0.479463 0.4793361

.010 -0.470590 0.470069 0.469988 .0.469864

.0 38 --0466902 -0.452917 0.462711 0- 462396

.020 --0.460885 -0.451171 -0.451041 0.450842

.030 - 0-451179 0.432175 -- 0.432100 0.431985

.040 .0.441738 0.4135401 0.413470 0,413363
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If Ne I Inal IN ask Ithe q)uest Ion. under ~lIch equiI lbriu conchIit)ons t he opupl at ion
of' iegati\ e hi\ dIrogen ions is otf a pprominate I\ thte same order as thle populIat ion Of
thle neutial s\stem \\e hawe to go to much lowýer temnperature ranges and the result
\%ill critically depend on thle electron densit\. ILet u ISaSsum71 for a moment the
\alidity of the simiple Debse screening model. In this model thle binding encrgN of
the second electron at a screening \ialue of 1) -40 corresponds ito approximatel%
0. 1 eV and at 1) 35to 0.0 14 eV. From the Sahla-Bolt/mann population distri-
bution (see, ecg.. HUutchinson [ 12) this translates into detachment (Ioniziation)
temperatures Of 1 77 K and I I I K. iespectix el\. ITb an electron densits of'

n, t10 cmn [.or a lov~er electron densit\ NAmlue Of I0" cmI the corresponding
numbhers are F 728 K and 7'- 4 K. respectixely. A. wery important h'eature of this
anat~sis is theý strong dependence ot the population onl the binding energy and this
quantit\ itself depends criticall\ on the adopted model for thle screening.

In the future me plan to include screening also tbOr the electron -elect ro n repulsion
which here is still taken as thle hare Coulomb Interaction. It is expected that binding
increases slightl\ when the repulsion is screened. So Car. howev~er. we hawe neither
developed a con\ ineing screening model of' the simplicity of the [)ebve-liuickel
type nor calculated thle elect ro n-electron distribution fulnction fronm which the
screened interaction can be deduced.
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Abstract

ACES II. a netk program s\,tcm flr id, ram, clctronic structure calculations ts dcrnhcd I he strengths
of vs i ý i inolhe the use of man\-Nidý perturbation Thco\ ( MI, I ) arkd coupled-cluster I( ( t iheor.
tor calculating [he encrgý. gcometrx.ý spectra. and propcrties of small- to medium-s/ed molecules I hi,

paper gi\ es I b. ie" fosrs ics ol" the %( I s II project. describes man\ lcalurcs of the program 'stern. and
dcuictlCits a nlunmber Alitenclhimark calculations , 1j'2 John \%it,, 1ic son%. In,

Introduction

Since the early part of 1990. a new program system for quantum chemical cal-
culations has been under development at the University of Florida. This suite of
programs, known as ,AE:.s it ill. is idealv suited for users who are interested in
performing highly accurate calculations on small to medium-sized molecules (up
to 5-10 nonhydrogen atoms, depending upon the symmetnv of the molecule). The
program system largely reflects the research interests of its authors, and specializes
in the treatment of electron correlation effects using the techniques of quantum
many-body theorv. namely many-body perturbation theory (MBPI) [21 and cou-
pled-clu~ter l((-) [3] theory. In addition to the standard many-body approaches
found in some other program systems. ACES II has many additional capabilities. In
particular, the program includes a number of powerful treatments for open-shell
molecules, and allows the calculation of energy gradients at almost all levels of
theory where the energy is available. Additional features include analytic calculation
of the second derivatives of the energy at selected levels of theory, evaluation of
NMR shielding constants at both S'F, and MBPT levels, and direct calculation of
ionization potentials, electron affinities, and excitation energies. As such, it provides
a unique tool for the study of molecular potential energy surfaces and spectroscopic
properties (particularly for open-shell systems) at very high levels of theory. In
addition, the program makes efficient use of molecular symmetry. The CPU time

* Uurrent addres. l.chhrstuht ft'rl hcoretische Chenoie. Institut fIur PhNsikalische Chemmic. Iiniersilat
Karlsruhe. [)-7500 Karlkruhe. Germany.

Current address: I-rank J, S•iler Research laxNrator., USAF Academ\,. Colorado Spnngs. CO 8084R,

International Journal of (uantum ('hemistrm: Quantum Chcmistry Symposium 26. 879-994 j 19921

. 1992 John Wile%. & Sons. Inc. ((C W)20-760l9,92/)i010879-16
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required for the most costly steps of correlated energý and gradient calculations
scales inverselh with the square of the order of the largest Abelian subgroup of the
full molecular point group [4], with the result that ('( calculations carried out in
the Dr,, subgroup with approximately 250 basis functions can routinely be carried
out on a Cray-YMP in less than I hour of CPU time.

With the exception of the modules for calculation of molecular integrals and
their derivatives [5], every line of AC..S ii has been written in the last 2 years.
Consequently, it has been possible to specifically target the programs for modern
hardware architectures and computing environments. Because most scientists now
have access to a wide variety of computing options. a great deal of eflbrt has been
expended to make ACES Ii as portable as possible. The amount of machine-dependent
code has been kept to an absolute minimum: routines which are intrinsically ma-
chine-dependent (such as those for obtaining timing information, allocation of
memory. etc.) are kept in a special library director'. The program has been developed
mostly on the Cray-YMP at the Ohio Supercomputing Center (with extensive ap-
plications carried out at the Florida Supercomputing Center). and has also been
ported to other machines available to us locally ( FPS-500. IBM RISC workstations,
Sun SPARC, Silicon Graphics). Porting to other architectures is generally a trivial
task and can easily be accomplished in a few hours. In addition, arithmetic operations
have been written to exploit the features of vector computers as much as possible.
Indeed, in the modules which solve for the MBPT and (-c" energies. all operator
products are carried out with BLAS matrix multiplication routines, which are avail-
able in machine-optimized form fror. most vendors. On vector computers such as
the Cray-YMP. very high sustained execution rates (in excess of 250 million floating
point operations per second, or MFI.OPS, running in single processor mode) can be
achieved for larger (or less symmetric) systems where matrix sizes can be very large.
Finally, to exploit the larger core memories available with modern computers.
special in-core options are available which reduce the amount of disk input/output
(I/O) to a minimum. The result is a set of programs which can produce answers
to chemical problems with a very reasonable amount of CPU time.

In the following, we briefly describe the AC'ES 11 program system and describe
many of its features. After this, we present results and timings of a variety of bench-
mark calculations carried out at the Ohio and Florida State Supercomputer (enters.
These applications have been chosen to illustrate the variety ofcomputational op-
tions available in ACES 11 as well as the performance of the program on a modern
supercomputer. Additional benchmark timings may be found in refs. 4 and 6.
Finally, we summarize and discuss some othcr aspects of the A'Tis t1 proiect.

Overview of Program Architecture

Currently, the ACES 11 program system consists of approximately 20 principal
executable programs. or modules. The level of modularity is perhaps best illustrated
by listing the execution sequence for a cc singles and doubles ((CCSD) energy cal-
culation and describing the actions cf each module. The first executable, which
serves a number of purposes. reads the input, determines the molecular symmetry,
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principal axis system and rotational constants, generates the 3 X 3 (reducible)
Cartesian representation matrices and permutation vectors for all group symmetry
operations in both the full and Abelian subgroups, determines all internuclear dis-
tances and bond angles. and calculates transformation matrices relating the input
coordinates (either Cartesian or Z-matrix internal coordinates) and the principal
axis Cartesian frame. The second program calculates the one- and two-electron
molecular integrals, using either generally contracted or segmented Gaussian
basis sets. A third program determines a number of transformation matrices which
are required to manipulate the basis set. such as those relating the basis set in
Cartesian and spherical harmonic representations. svmmetry-adapted to "bare"
atomic orbitals. etc. The next program in the sequence solves the sell'consistent
field (scF) problem using either restricted or unrestricted Hartree-Fock (RHIF and
UHF, respectively), or restricted open-shell Hartree-Fock (ROHI:) methods. In ad-
dition, it checks the symmetry of the one-particle density matrix, and determines
the irreducible representations of all molecular orbitals. After this, the fifth program
in the sequence transforms the two-electron integrals from the atomic orbital (AO)

to the molecular orbital (Mo) basis. Another program processes these integrals and
writes them to a direct-access file, ordered to facilitate post-SCF calculations. This
program also performs the trivial task of evaluating the second-order MBPT
[MBPT(2)] correlation energy. Finally, the CC/MBPT program is called and the
CCSD energy and wavefunction are evaluated. The complete execution sequence is
determined and subsequently controlled by a single FORTRAN program.

Due to the high level of modularity present in ACES Ii, the programs need to
communicate with one another. This is carried out via word-addressable direct
access files. Large dimension quantities such as two-electron integrals, density matrix
elements. etc. are stored on "lists" in an order which is optimal for CC/MBPT
calculations, an idea carried over from the ACES program system [ 7 ]. written mainly
by Bartlett and Purvis in the 1970s and 1980s. Other quantities such as SCF eigen-
values, information regarding the molecular geometry or symmetry. etc.. are stored
on the "JOBARC" file, and addressed via simple character string labels such as
SCFEVECA for the a SCF eigenvectors. Two sets of two subroutines (one each for
reading and writing) control all I/O to the data files. One is used for the "'lists"
and the other for the JOBARC file. When permitted by the amount of available
machine memory, many or all of the "'lists" [a series of logical records] can be read
off disk at the beginning of execution and held in core throughout the calculation.
resulting in significantly reduced I/O loads. In addition, all I/O to the list files is
carried out by reasonably sophisticated routines that maintain a buffer cache which
often contains the requested information and. therefore, does not require a physical
disk read.

At the beginning of execution, each program calls a special subroutine which
loads all common blocks with information, allocates the memory required for the
calculation and initializes the 1/O channels to the JOBARC• and list files. In some
sense, this routine serves to bring the executable "up-to-date" with regard to the
previous steps carried out in the calculation. At the end of execution. each module
calls another special routine which updates the files with information from :he
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calculation, purges the I/O caches. and closes !he 1/O channels. A great benefit of
this strategy is that program interfacing is an extremely easy thing to uo in ACES
II. One only needs to define a few common blocks in a standard way and call the
special routines at the beginning and termination of execution. All code in between
these calls has easy access to all of the information accumulated by the calculation
up to that point.

Features

The ACES II program system has a great number of capabilities for perflorming
electronic structure calculations. As a result. it is not possible to give an exhaustive
list of the available options here. Instead. we present a representative selection of
some of the important features below, and include a brief description of the methods
and algorithms used. In the following, we have not tried to provide an exhaustive
list of original literature references. Rather, we list explicit citations only for some
newly developed methods in ACES 11 and frequently refer to review articles otherwise.
These articles should contain most of the original literature references. In addition.
an extensive compilation of literature references is collected in the bibliography of
the ACES II Program Manual. which is available upon request. The manual also
contains significantly more information about the computational methodology in-
cluded in the ACES 11 program.

* Simple input of molecular geometries via a Z-matrix or in terms of Cartesian
coordinates: At present, geometry optimizations and transition state searches
must be performed with /-matrix input, but all other calculation types support
both forms of input. Calculation options are specified via approximately 90
keywords, all of which have sensible default values. As a result. a geometry
specification and a handful of keywords arc all that is required to run a cal-
culation. As an example. an input deck to run a ('cSt)(T) harmonic frequenc,
calculation for ammonia is given below.

Ammonia frequency calculation
X
N I RX
H 2 RNH I A
H2RNHIA3T
H2RNH I A4T
RX= 1.0
RNH= 1.011269
A=I 12.6960417
T= 120.

*ACES2 (CALC=CCSD[T], BASIS=TZ2P, SPHERICAL=ON. VIB=FIND1F)

The keywords chosen specify the calculation level [I(cSD( r )]. the basis set
(TZ2P). whether spherical harmonic or Cartesian basis functions are used
(Cartesians are the default, necessitating use of the keyword), and the specific
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t\ lie of calcula ItonII. M itch is a fin I t-dilflrencc harmionic- Irequcnex ufaltz Iit) r.
Note that all matters relating to molecular S\ mmiletr\ are handled internall>
bý thle programn and are transparent to thle user. I'he sx mhol -X- IS used] to
denote a dumnmx atorn, which often facilitates thle constructi~n of /-nilariceS.

"* Nnalysis of /-matrix Input h*(r both s~btleC and ohViouIS problem,,. l~anipics,
of this might include inequivalent coordinates given thle same name. optimli-
zation of coordinates M itch regard to which the enierg\ is stationar\. optmnh,-
zation of too man\. degrees of freedomn ( more than the number of totall\ Sý ii-
metric degrees of freedom for thle molecule under Study ). etc. rhec probiles
are identified and described in thle output, often with suggestions regarding
possible improvements in the /-matri x coordinates.

"* [se of internally storedl basis sets. which can be selected bý ke~xkords: The
programs support the recent correlation consistent iwvI~. I,\ I . and iVQ/
basis sets ot' [Dunning 181. the basis Sets used hý the (iA*iSSIAN. program
system (sio-3G_4-3I(1.6-3mi*. etc.QjI. Dunning's DZandJZ hasissets[lO1
xx ith and wNithout polartiation functions which have been optimized b\ our
group 11I1. basis sets developed h\ Sadlelj tor thle determination ofnmolecular
properties [ 12 1. and thle generally contracted basis sets of Widmiark ct al. 113 1

"* F\ alutialon of thle energy at the s I and a number otecorrelated \i'I and (,(
levels, including NiBil through fhurth-order fmBi' 114 1 and ( c, through the
( uSI) 4 11 ccsP). cc(stn( I ) and ((csi I -n ( n - -3 ) approximations 1 2.3 1:
.Also included are cv methods based on a uinitar\ ansati. It :c. in particular
I cc(st)( 4) and (*Xs[)I1(4 )l and so-called quadratic configuration interaction
methods [Qc Is[) and oo:iswI) fl). which can he considered as approximate ( c
approaches. In addition to RI it and t n: reference functions. an\ single Slater
determinant can be used in these calculations. Although this is somew hat tIv\ial
for c-c methods by virtue of their invýariance with respect to the par-titioning
of the electronic Hlamiltonian. special techniques have been deceloped lor
,-I fi,[ [14.151 to allowv completely general spin-orbital reference functions.
While mBi'r applied to an arbitrary reference Function is likely to converge
sloxxlv\ and to he less useful for application to chemical problems. a particularly
important special case of this approach is the Use Of ROI if- reference functions
in onviF calculations. This R0OHF-NIBP[ method has been shoxxn to be preferable
(more rapidl\, convergent ) to tit Ii-NRivi in cases where the flater sutfiers from
appreciable spin contamination [ 14.15]

*Analytic ev aluation ofthe energy gradient for closed- and open-shell references
RiII 'and tilw) at the sci:. mBT( 2). MBP-I( 3), SDQ-NFI BT(4 Mi. MIW(4-). (VD,

Q(ISI). QCIS)([ F. UCCSD(4). l'CCSDT_(4) . ((SI. CUStD I (ccsD). and
c* sD( I ) levels [161]: Other than ,xcFS if. no program systemn which is generally
available at this writing has gradient capabilities beyond N.BP'T (2). other than
a tke which have either o(Xi or cc gradients. limited to closed-shell Rill ref-
erences. In addition. ROIII-MrjtPI (2) [151 land ROHE :-CCSI 117]1 gradient methods
have been de, eloped and implemented in the past _2 years. as well as those
based on quasirestricted liartree-Fock (QRIIF) references [181 at the ((si)
level [ 19 1. In the latter approach, an Rill: calculation is first carriedl out for
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the molecule in a diflirent electronic state which usuallN has a difltirent number
ofectrons. Electrons are then either added to, removed from. or redistributed
among the resulting RMIE orbitals and the resulting set of occupation numbers
is used in the c( calculation. The (RIw:-('('St) approach benefits from tile
insensitivity with respect to orbital choice characteristic of((' methods which
include single excitations [20]. and has recently enjoyed success in the solution
of problems where the more traditional reference functions exhibit pathological
behavior. These include symmetry-breaking problems [211 and ioniiation po-
tentials dominated by lower-lying occupied orbitals [ 18 ].

"* Analytic evaluation of second derivatives of the energy at the s( i and MBPr( 2)
levels using R11E [22]. YI-F [231. and ROt-F [24] reference functions: At present.
symmetry has not been fully exploited in the processing of the derivative two-
electron integrals. but this is a target for impi jvement in the near future, ACES
n is the first program which can perform analytic open-shell I iiit: and R0)111

second derivative calculations at the MBPT(2) level.
"* Analytic evaluation of one-electron properties at all levels %here gradients are

available: Properties include dipole, quadrupole and octopole moments, electric
field gradients. Darwin and mass-velocity relativistic corrections. and one-elec-
tron densities in the (diagonal) coordinate representation [25 ].

"* Analytic calculation of NMIR chemical shift tensors at the SCf [261 and MIBPT( 2)
[27] levels, using the gauge-including atomic orbital method (GIAO) [281:
ACES 11 is the only available program with the capability to calculate GIAO-
based NMR shifts at the correlated level. It has recently been shown [27] that
the correlation contribution to NMR shift tensors can be appreciable, so the
GIAO-MBPT(2) method is hkely to be heavily used in future applications in

this area.
"* Stability analysis of RHF and UIW wavefunctions: The program calculates the

second-order variation of the energy with respect to rotations of the orbitals
and reports all instabilities (which correspond to negative eigenvalues in the
orbital rotation Hessian). The eigenvectors corresponding to the instability
are classified according to symmetry and type (internal RHF instability, internal
UHF instability. RHF - UtHF instability), and may be used to "push" the sfE
eigenvectors toward the right solution. SCF Calculations restarted with these
modified eigenvectors generally converge to the lower solution.

"* Direct calculation of ionization potentials, electron affinities, and excitation
energies using both Fock-space (ES-Cc) [291 and equation of motion (0OM-
(() [30] coupled-cluster methods: Calculations can be based on either closed-
or open-shell reference states. Again, these methods are unique to AC-S H1.

"• Optimization of molecular geometries using quasi-Newton. full Newton-
Raphson. rational function approximation [ 311 and Morse-adjusted Newton-
Raphson [32] methods: Transition state location can also be performed using
the eigenvector following technique [33].

"* Calculation of ope -shell singlet states at the ('C level can be carried out using
a generalization of recently developed Hilbert space multireference coupled-
cluster techniques [34]. This is an additional unique feature of ACES II. and
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expands the range ol" molecules amenable to high-lcel n(methods. In partic-
ular, it allows the stud. of man.s excited electronic states.

"* Automated calculation of' harmonic vibrational f1requencics and infrared in-
tensities by numerical diflerentiation of'gradients and dipole moments. or "ia
numerical ditlerentiation of' tile energy: These calculations can be bacd on
one of two algorithms. In the first. s-, mmetr\-adaptcd. mass-\%cighted ('arte-an
coordinates are constructed for the molecule ( these have the distinct ads ant:ig,"
of' ha% ing a unit metric, or "'(-matrix") and translational and (optionall\)
rotational components are removed bh proiection. I hse coordinates arc then
used as a basi, for constructing the force constant matrices. A second algorithm
is a-ailable which exploits the intrinsic redundant} in the ('artesian torece con-
stant matrix in an optimal w,,a [135 1. resulting in the absolute minimum number
of'points required in the calc'lation fhowever, these must often be carried out
in vers low (or no) symmetry. Due to exploitation of svmmetr\ in v( [s II.
however, the first method is usually preferred. These features. which are alvays
required to calculate vibrational frequencies at high level of theory fbeond

BPI( 2)1 are the most sophisticated numerical differentiation procedures
av.ailable today.

"• Identification of the irreducible representations fbr normal modes. molecular
orhitals and electronic states. Unlike many programs. the assignments can be
made in all possible point groups. In addition, the irreducible representations
in the Abelian subgroup are given as , 'cil. This is an cxtremely useflul 1ýature
for constructing correlation diagranms, analyiing orbital interaction;, etc.

"• |hrough its usO of the MN1tI (tV I integral program and the \n.\(t s integral
derivatise program [51. \( is if allows tihe use of gcneralls contracted basis
sets in all encrg\, gradient, and Hessian calculations.

Benchmark Calculations

Although .w(t-S Ii was only begun - relatively short time ago and is under continual
development, it has already been used in a large number and wide saricty of studies
(see for example refs. 21.27.36-38). Topics include investigation of symmetry
breaking phenomena. accurate calculations of properties and potential energy sur-
faces of small molecules, and heats of formation ot'azacubanes. While tile varying
sizes of tile systems have necessitated the use of varying qualities of basis sets. in
virtually all of these studies (*( methods [most commonly ((Si) and ('(SI)( 1 ''

have been used to treat electron correlation. This is testimony to the particular
efficiency of these parts of the program. which is a consequence of the philosophy
on which the program was based. That is, the principal goal has been to extend the
range oi systems which are amenable to (( treatments.

We now describe some recent applications of AClES II. The first application we
shall consider is some of our own work on isomers of the ('4 molecule 137 1. This
molecule has been of particular interest since it was suggested that a closed-shell
cyclic isomer was comparable in energy with the open-shell cumulenic linear isomer.
a ,uggestion contrary to chemical intuition and to early calculations on carbon
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clusters. Mian\ c:alculations haxe since confirmied that thie txý,o isomers are indeed
close in energx. We recentl\ began a further studN of these tio'o isomers x'hich v~as
intended to go hex ond pre' iOUS %Nork and pro% Ide a reasonabis de ntixke stud\,
Fo this end geometries of, both :sorners .%ere optirnii/ed using Mill, I ( 2), ( (SI). and.
vst)) I ) methods and the 1,\ / basis set. I larmionic %ibrational frequencies and

somec one-electron properties \ýere computed at the ( ( SI) I lill\ I / let ci using
analytical gradient techniques. Cartesian polarization functions vkcrc used, leading
to a total of 140 basis functions. Refined estimates of' the energx diflkrence wecre
computed using these methods and the larger piuji basis set ( is4pl/2! I [g). [or
this nasis. spherical harmonic polari,,ation functions \%ere used. leading, to at total
of 220 basis functions. In these calculations, a closed-shell Rill reference function
w,%as used for the rhombic isomer and an open-shell tfit reference function "ast
used for the linear isomer. Tliming data are shiow.n in 'Iables I and If. Table I shoAs
times for the various modules needed -in gradient calculations, and Fable If showsk'
the times for the large basis set energx calculations.

I \mt 1 1. 1 ininig data tin sccrinkifl lOr niidulcs iif the \ xi i

)rfogrinl si;tcm tor (4 s)i) v% ti' / gradlient cak ukathif onf 1bocir

(_ jand rho ni hic i. ( 1, C1411 basis lii fit fis. all ecIclro0inS

corvetatcdc Data are pTcs,-nseiA icr giadient I-AlClatiOns at inic
equilibrium gciorneties, cliniputationral ,%mmnemr io , and
for geilmetrics difiplacedi aloing s~nmmcir\ ltiisscrinF nliods',

(cornputational ,.% riflit isN it(

tLineair C, Rhombic (ý

XMol 143 2'7 111 220)
xsf89 96 20 36

xftran 84 197 23 64
xintprc 104 210 41 82

xsec (iii), 1183
xeCC (total) 25219 6642 1309 24901
xIambda 626 1835 29) 761
xdens 9S 611 377 104
xanti 35 49 1II5
xbcktrn 85; 183 29 53
xvdint 957 1574 589 123)1

In these calculations the xvcc module performs three tasks:
(i) sol~vs the ((51) equations. 60 evaluates the triples amplitudes
and energies (60i evaluates the coniribution of triples amplitudes
to one- and two-pantide densits matrices and lambda equations.
For linear (', in D, svmmetrYl ss have given times for all three
steps, while for the other calculations just the total time is available.
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The f'unctions oft'he modules whitch are uscd in the benchmarks presenrted here
are as t`ollows.

xvmoI: E aluates one- and two-electron integrals.
\vscf: Solves the s',t equations.
xftran: Perf'orms the t'o-electron integral transl'ormation.
xintprc: Sorts transt'ormed two-electron integrals, and prepares lists ftircorrelatccl

calculations.
xVCC: Solxes the (-( equations, evaluates mIit't and (-( energies. In gradient cal-

culations in-.olving triple excitations it also cvaluates contributions of' triples to
one- and tw,ýo-particle density matrices and lambda equations.

\lambda: Sol~es the k equations for the response of' the (v amplitudes to thle
perturbation. and calculate,; certain elements of the canonically transtbrmed Ham-
iltonian IJI ý exsp( -~ T) 9 exp( I'). Onl% the latter function is carried out for t s.(-(
and Vos-(*c calculations.

xfsip: Calculates Ionization potentials using the I- method.
\dens: Evaluates one- and two-particle density matrices.
\anti: Resorts thle tw\o-particle densit matrix in preparation lbOr xhcktrn.
\hcktrn: iranslorms the t\No-particle densitx matrices f~rom thle MO t10 thle AO

basis,
xvdint: Evaluates one- and two-electron integral deriv atives.

-The timings clearl% shoss thle suitability of* ACt -ý 1frlrescl acltos

Indeed, 'in th-: iarge basis wet calculations, thle one- am,] twvo-electron evaluation
time is larger than thle time for the ('calculation! Also. a recurring f'eature of larg~e-
scale calculations with v Its it is that disk space limitations occur betbre CPI.f
limitations. especiall\ for open-shell syrstems. Certain of these times wkill be improved
in the near future. For example. 'it ma\ be seen that (,( calculations 'With Rill-
reference l'unctions take ahout half' ot the timne of' I tIIl ret'erence functions. even
though a higher ratio should certainlx be possible. At present, bey ond restriction
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to just two of the four possible tripl-excitation spin cases, our triple-excitation
routines take little advantage of the simplifications possible with a closed-shell RHF

reference function.
The principal results of this study are shown in Tables II and IV. Table Ill shows

the calculated harmonic vibrational frequencies and infrared intensities of the two
isomers, while Table IV shows calculated isomer energy differences. One particular
conclusion apparent from this wvork is that previous calculations on linear C4, done
at the S(T' or MBP1 (2) level with .pd basis sets. do not describe the infrared intensity
of the asymmetric stretching frequency of linear C4 well. As fbr Table IV, these
results indicate strongly that once a certain level of basis set quality has been
achieved. further extension favors the rhombus. For further discussion and more
data, the reader is referred to a forthcoming full study on this subject 1371.

To illustrate the application of methods for the direct calculation of ionization

potentials, electron affinities. and excitation energies which are included in A(T.S

i1. we present results and computational timings for a calculation of the ionization

potentials of the nitrogen molecule. These results were obtained with the Fock-
space c( model truncated to single and double excitations (FS-ccSD) using the
generally contracted basis set of Widmark et al. [ 131. In this calculation, which was
performed at the experimental equilibrium geometry ofN2, the PVQZ basis of Dun-

I .AI IV. A\hsolute and relative energies of linear and rhombic (C. Absolute energies are in tlairces

and relative energies are in kcal mol

Basis Method Rhombic C. I inear (C, A

11% 1 / I'I -IMhPI(2) 151.809967 151-790495 12.22
11 I7 L --( ('SD) 151.819119 151.827996 -S.57

P%. I/ I IiIt-((SI)( I) 151.858459 151.862829 -2.74
P\- 47 1 I1it4(UI) 151.78885k) .151.790875 1.27

I'V()/ IIII -(C(SD . 1((,S[)) 151.83 1014 -151.829326 I,.06
Iv / VIf III SIXI ) - 15 1.829918 151.827295 1.65
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ning [81 was used and all Cartesian components of the polarization functions r.k'.re
included, resulting in a basis set of 140 contracted GAUSSIAN functions. As seen
from the results in Table V, the ionization potentials obtained with the I s-<,( siD
approach are in good agreement with well-established experimental results. It should
be stressed that the theoretical \alues %ere obtained in a single calculation, under-
scoring the power of direct approaches for determining this type of property. An
additional advantage of the is-(u method is that the final state wavefunctions (the
states of N ) are rigorously spin-adapted when the reference state (the N, ground
state in the present example) is a closed-shell system. As a result. spin-adaptation
can be used to simplity, the calculation and significantly reduce computational cost.
Nevertheless, evaluation of the reference state ('st) wavefunction and energ, rep-
resents the majority of the cost of a vS-cc ionization potential calculation. This
feature is reflected in the timings presented in Table VI, where the ionization po-
tential calculation (xfsip) represents only 21.-2 of the total CPU time required for
the job. The overall execution time (265 seconds) should be contrasted with the
amount of time which would be required for a A•CSD evaluation of the ionization
potentials. In addition to the reference state RI{F-CCSD calculation on N- (which is
also required in the FS-CCSi) approach ). such a state-by-state solution would also
require open-shell (vst) calculations (using 1-11F, ROtHF. or QRItF reference func-
tions), each of which would require roughly three times the resources and computer
time of a single RHI--C(SD calculation. Hence. one would be trading the negligible
cost of a FS-CCSD calculation for additional steps which would require an order of
magnitude more time than the reference CCSl) calculation itself. Clearly, the P-

CUSt> approach represents a cost-effective means for calculating the photoelectron
spectra of molecules, For open-shell reference states, of course, the spin-adapted
feature and corresponding computational simplifications are lost. Nevertheless, the
I-S-CCSI) step is still much cheaper than the open-shell reference CCst) calculation
and the attractive features of the direct computational approach are retained. Our
implementation is the first to generalize the vS-c' method to arbitrary single-de-

\i uF Valence ion tation potentials of
the N\- mnolecuile, eualu.iid vith the i ,-( ( SOt

method tL'vog the i'\ Q/ haso. of Ref_ 8. The
e-prcrnlenical hond length 1I.097 ,v) was

uwd in these calculations tIhe calculated
result,, represcnt F Sre cal ioni/ation

potcntialk. %%hilc the e .perimenial results are
adiahatFki \aluc, from Ref. 41.

toniation potential WeVI
I inai

state l.S-( " Dpt.

2- . 15 3, 75.5

I1,. 1 .31 I3,
Zx-,, ::81.98 7 I 8..9
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terminant (restricted and unrestricted with respect to spin) reflrence functions [40) I
and initial calculations using this open-shell reference Fs-'C, method have provided
encouraging results.

Another recent application is a study of spiropentadiene (CGH 4 ) by Shavitt et al.
136]. This molecule is the smallest member of a class of highly strained organic
molecules, and was recently synthesized by Billups and Haley [39]. Since experi-
mental characterization is not yet possible. Shavitt et al. undertook a theoretical
study to compute key structural. spectroscopic, and thermodynamic data for this
molecule. In order to obtain a heat of formation. it was desired to perform a MBmP(4)
calculation with the correlation-consistent polarized triple-zeta valence plus polar-
ization (PVTZ) basis set of Dunning [8]. For C. this basis set is 4s3p2d1 fand for
H it is 3s2p I d, leading to a total of 206 basis functions for C5 1H4. This demanding
calculation could only be done with ACES in and not with any other packages to
which Shavitt et al. had access. As a result of the efficient use of symmetry and
vectorized algorithms. the calculation was straightforwardly completed with ACES
if in roughly 2 hours of CPU time. Moreover. the calculation was performed slightly
more than 1 year ago (July 1991 ). and there have since been improvements in the
programs which would reduce this time somewhat.

As a final example of the performance of the ACES 1t program, we present com-
putational timings for a CCSD calculation carried out on the At,B 4 H18 molecule.
This molecule belongs to the D2,, point group, and the calculations were performed
using 238 basis functions. As seen from Table VII. the entire calculation required
less than I hour on a Cray-YMP. The most expensive stage of the calculation was
the evaluation of the CCSD energy, requiring slightly more than 20 minutes of CPU
time. It should also be pointed out that this phase of the calculation achieved a
sustained execution rate of 254 MFLOPS, clearly demonstrating the highly vec-
torized nature of ACES II and its suitability for modern vector computers such as
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the Crav-YMP, It also serves to illustrate that the initial development ot the ,.I's
ii system has made promising advances toward the goal stated early in this section-
to extend the range of systems which can be addressed with high-level ('('/I I
methods.

Summary

In this study. we have presented an overview of the new ACES II program system.
Although the program is relatively new. it has unrivaled capabilities for performing
very accurate calculations on relatively small systems. particularly for open-shell
molecules. As such, the program system should be very useful for detailed inter-
pretations of molecular spectroscopy and reactivity. Its availability within our group
has led to a tremendous growth in the scope of chemical problems that we are able
to address with high-level CC/MBPT methods, and its straightforward input has
greatly simplified the process of running production calculations. In addition to its
value as a research tool for chemical applications, the streamlined design of ACES

it has also facilitated implementation of new theoretical methods by our group.
Anyone who has ever worked in the field of quantum chemistry program devel-
opment knows that interfacing new programs can be one of the most difficult tasks
which must be performed. In ACES 11, the interfacing process consists of beginning
and ending each module with specific subroutine calls and following a few simple
rules. The rapid rate at which new theoretical methods have been incorporated into
ACES II in the past 2 years attests to the overall design of the program system.

At this point, it is appropriate to describe what AC-S !1 is not. As discussed in the
Introduction, the program system reflects the research interests of its authors, all
of whom are or have been members of the Bartlett group at the University of
Florida's Quantum Theory Project. Our focus has been in the development and
implementation of correlated cC/ MBPT energy and gradient methods, and we have
tried very hard to make these programs as efficient and flexible as possible. Cal-
culations carried out in the course of our research are almost always performed at
levels which go beyond the SCI' approximation. and usually beyond MBI( (2). All
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such methods have a computational dependence " hich scales at least is stceply as
the ,x.l/ power of the number of basis functions. As a result. we hake paid some's hat
le, attention to stages of the calculation which, for the studies we commonlI pursue.
are significantly less expensive than the rate-limiting steps of the calculation. As a
result, we do not claim that AtS It is the program for e, ers one. Indeed. it is
certainly not the best program to use for the %ers common task of perf'orming
energy calculations and geometry optimiiations at the s(* lesel. nor hae Nxe made
efforts to date toward implementing direct methods for s(ci and MRI'i (2 ) calcula-
tions. an area where great progress has recently been made bh other groups. In
addition. AMTS 11 does not have the capability to perform multiconfigurational s;(u
calculations, although it does have limited multiretlrence (c capabilities. Nct-
ertheless. A('ES II is an extremely efficient computer program for the calculation of
energies and gradients at corrz.lated levels. Although we have chosen not to compare
the timings presented in the previous section with those of other programs. enough
information has been supplied regarding the calculations so that curious readers
can easily make their own comparisons.

ACES I1 is under extremely rapid development and is expected to continually
improve both in the scope of its functionality and in its performance for existing
methods each ,ear. One of the most important areas in the latter category involves
improvement of algorithms for carrying out relatively low-level calculations for
%er- large or nonsy;mmetr,, nmolecules. In developiing the program system, we have
concentrated mainly upon developing and implementing methods so that the cal-
culations which we commonly carr- out can be performed with a reasonable amount
of computer resources. Indeed, the evolution of algorithms in xcis if gcnerall\ has
gone from a full in-core implementation to more sophisticated out-oftcore methods
as the\, have been needed bh the jobs run in our research group. At present. the
memory and disk space requirements of ACES it are such that essentially all of the
jobs run by our group can be carried out in 8 megawords of computer memor,,
and I gigabyte of disk storage. Hfowever. other users might run into memory or
disk space limitations for very large jobs. and we are acutely aware of this short-
coming of the program system. Indeed, our collaboration with the Ohio Supercom-
puting Center and its collection of quantum chemistry users has led to a few incidents
of this type. and we have resolved the problems. In the few months previous to this
writing, a number of improvements have been made to A'tS 11 to improve memory
and disk requirements at the wIit',(2) level. These have been sufficient to assure
that essentially any calculation type (gradient, second derivative. NMR shift. etc.)
carried out at this level can be performed in only a few megawords of memory. In
the future, we will direct some of our efforts toward eliminating remaining memory
and disk space bottlenecks. Nevertheless. the rather small group of ACLS it authors
are actively in'olved in developing theoretical methods as well. so implementation
of these ideas will continue to be the primary focus of the A(CES 11 project. Those
who are interested in doing very accurate work on the spectroscopy and potential
energy surfaces of small- to medium-sized molecules may greatly benefit from the
use of the AMtS I1 program system. Interested readers can receive information
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about obtaining the program b-y sending an electronic mail message to
".aces2@(tqtp.ufl.edu.-
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