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Introduction

The 32nd annual Sanibel Symposium, organized by the faculty of the Quantum
Theory Project of the University of Florida, was held March 14 to 21, 1992 at the
Ponce de Leon Conference Center located at the north gate of the city of St. Au-
gustine. Florida. About 330 participants gathered for 8 days of lectures and dis
cussions in a program that paid special tnibute to the scientific contributions of
Professor Per-Olov Lowdin of the University of Florida in his celebrated three
articles on density matrices, natural spin orbitals, the Hartree-Fock approximation,
and its extensions, published back-to-back in The Physical Review 97 ( 1955). The
daily schedule was packed with plenary sessions in the morning, and late afternoon,
and with poster presentations in the evenings. often lasting until midnight.

The format of the symposium adopied for the past 2 years was followed again
this year providing a compact 8-day schedule with an integrated program of quantum
biology. quantum chemistry. and condensed matter physics. The topics of the ses-
sions covered by these proceedings include Thirty-five Years of Progress in Electronic
Structure Theory, Density Matrices and Other Revelations of 1955, Non-Born-
Oppenheimer Methods, Atomic and Molecular Phenomena in Astrophysics, Photo-
induced Phenomena. Reactive Moiecular Collisions, Quantum Monte Carlo, Den-
sity-Functional Theory, Thin Films and Surfaces.

A special session on Theoretical Inorganic Chemistry was held in memory of
Arnold Karo, one of the real “old-timers™ at Sanibel.

All the articles have been subjected to the ordinary refereeing procedures of the
The International Journal of Quantum Chemistry. The articles presented in the
sessions on quantum biology and associated poster sessions are published in a
separate volume of the The International Journal of Quantum Chemistry.

The organizers acknowledge the following sponsors for their support of the 1992
Sanibel Symposium:

¢ US. Army Research Office (Physics)/CRDEC through Grant DAALO3-92-
0214, “The views, opinions and/or findings contained in these proceedings are
those of the authors and should not be construed as an official Department of
the Army position. policy, or decision, unless so designated by other docu-
mentation.”

¢ The Office of Naval Research (Physics and Chemistry), through Grant N0OOO 14~
92-J-1238.

o U.S. Department of Energy (Office of Health & Environment Research),
through Grant DE-FGO05-92ER61378.

e Hyper Chem. Autodesk.

International Journal of Quantum Chemistry: Quantum Chomistry Symposium 26, ix—x (1992)
4 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/0101x-02
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o CAChe/ Tektromx.
o The University of Florida. through the Office of Academic Affairs.

Very special thanks go to the staft of the Quantum Theory Project of the University
of Florida for handling the numerous administrative, clerical, and practical detwils.
The organizers are proud to recognize the contributions of Ms, Joanne Bratcher,
Mrs. Judy Parker. Ms. Robin Bastanzi. Mrs. Sue Linsley, Mr. Agusun Diz, Dr.
Erik Deumens, and Dr. Hugh Taylor. All the graduate students of the Quantum
Theory Project. who served as “gofers™ are gratefully recognized for their contn-
bution o the success of the 1992 Sanibel Symposium. The valuable help of Dr.
Charles Tavlor is gratefully acknowledged.

N.Y. Qitry
J.R. SaBiN
M. C. ZERNER
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Memorial Session
in Honor of
Arnold Karo

This session is dedicated to the memory of Arnold Karo who died last vear. at
the age of 63, after a vear-long battle with lymphoma. Arnold was a theoretical
chemist/solid-state physicist with the Lawrence Livermore Laboratorv. He received
his Ph.D. from MIT in 1953 and, after a brief service with the U.S. Army Chemical
corps. he joined John Slater's group at MIT as a postdoctoral fellow. where he
worked on lattice dynamics of crystulline materials. Arnold began his long asso-
ciation with L* in 1958 where he continued his work on crystalline materials.
including the first detailed calculations relating structural features of experimental
spectra to calculated critical features of the phonon densities of states. Many of us
knew Arnold from this period of time. He was one of the old-timers at Sanibel and
was one of the special people included in John Slater’s famous Sanibel solid state
theory group meetings that were traditionally held on the beach on Wednesday
afternoon. In recent years. Arnold carried out fundamental studies on chemical
laser systems and plasma properties of negative ion beams. This work was in support
of the controlled nuclear fusion efforts at L*. This memorial should not end without
mention of Arnold Karo. the person. He could simply and best be described as the
perfect gentleman. We have all lost a good friend.

I1. Harvey Michels

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, xxvii £1992)
« 1992 John Wilev & Sons. Inc. CCC 0020-7608/92/0 xxvii-01




Total Energies and Energy Gradients
in Electron Propagator Theory

J. V. ORTIZ
Department of Chemistry, University of New Mexico, Albuguerque, New Mexico, 87131 and
Quantum Theory Project, Departments of Physics and Chemistry, University of Flurida.
Gainesville, Florida 32611-2085

Abstract

From the second-order self-energy of electron propagator theory, one can obtain total energies for the
initial, N-eleciron state and the final. N + 1-electron states. Recent derivations and computational studies
have demonstrated the feasibility of calculating effective first-order density matrices corresponding to
the electron-binding energies. One-clectron properties and energy gradients of the final states are thereby
made accessible. Applications to the ground and excited states of CaCN and to €3 illustrate the capabilities
of this method. © 1992 John Wiley & Sons. Inc.

Introduction

Electron propagator theory has been applied in quantum chemistry chiefly to
the calculation of vertical ionization energies and electron affinities {1-7]. Calcu-
lations of ground-state total energies and one-electron properties have been con-
siderably less frequent in the literature {8-13}. Because electron propagator theory
is a direct method, one in which an energy difference is evaluated without recourse
to individual state energies or wavefunctions, it is, in principle, applicable to final
states of any energy. The prospect of using electron propagator theory to optimize
molecular geometries is therefore an attractive alternative to many correlated meth-
ods that concentrate chiefly on ground states. A recent derivation of gradients for
the second-order self-energy has shown the feasibility of this approach [14]. These
derivatives are combined with derivatives of the reference state total energy described
by second-order many-body perturbation theory [15-17] to yield derivatives of
final state potential energy surfaces. In addition, effective density matrices that
describe the density difference between the initial and final states enable calculation
of final-state properties when combined with initial-state density matrices.

1t is possible to demonstrate that the potential energy surfaces for the initial state
and the final states in this level of electron propagator theory have a common
origin; the second-order self-energy. Using this description of electron correlation,
one can obtain the second-order many-body perturbation theory expression for the
initial state total energy. Electron-binding energies calculated with this self-energy
therefore yield a unified treatment of total energies for the N-electron initial state

International Journat of Quantum Chemistry: Quantum Chemistry Symposium 26, 1-11 (1992)
© 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010001-11
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and the A £ [-electron final states. This unified treatment also affords one-electron
properties for each state.

Superoperator Formulation of Electron Propagatoer Theory

Using superoperator notation [4.18], the electron propagator matrix, G(FE). is

expressed as
G(E) = (al(Kl — H) 'a).
Simple electron annihilation operators with spin-orbital labels constitute the vector
a, whose length is the dimension of the spin-orbital basis. The identity supcroperator.
I, defined by
X=X,
and the Hamiltonian superoperator, F, defined by
HX =[X.H] .

operate on simple electron field operators or on products of field operators that
change the number of electrons by one, With the following choice of superoperator
metric,

(Y1Z)={(0|[Y'. Z}.10).

where |0 is an A-electron reference state, one obtains the participation of all field
operators that pertain to N + l-electron states. Note that no distinction is made
between particle and hole subspaces. for all manipulations occur in Fock space.

To avoid explicit consideration of the superoperator resolvent. (£ — 1) '. an
inner projection is emploved:

G(E) = (a|h)(hi(ET — IHh) "(hla).

where the vector. h. contains all field operators on which the superoperators act.
Partitioning of the last equation follows from orthonormalizing two subspaces. a
and f. The cnsuing block structure of G(F). where

(al(Ef — Hya) (al(ET - H)E)] '[(ala)
E) = £ R Y :
G(E) =l(ala) (al ”[(fl([il~1/)a) (fl(l;'lll)f)] [(f!a)]

thereby simplifies to
(¢ El1 — (al Ha) ~(alHf) J1'1
~(f|Ha)y El-(f{Hf) 0

Two separate strategies have been employed at this point. The first departs from
the observation that only the upper left block of the inverse matrix is neceded. This
yields

G(E) =[EY ~ (alHa) - (al| HO{EL — (£ €)] "(fiHa)] '.

A more convenient form leads to an alternative statement of the Dyson equation.
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G (E)=Fl —(a|Ha)—-(alH )

X[EY = (f1HE)Y] "(flHa) = G"(£) ~ Z(E)
where all terms not pertaining to the uncorrelated, Koopmans's theorem description
of electron-binding energies are contained in the last term. the self-energy matrix.
Poles occur when the determinant of G () vanishes: this is equivalent to scarching
for K. such that

[(a] Ha) + (al| H £)[Epiel = (fF1H )] '(F]H2)]C = CEp. .

In the second approach. one seeks the cigenvalues of the superoperator Hamil-
tonian matrix,

(al Ha) (alff)

(f1Hay (FIHE)]
Insertion of these eigenvalues into the partitioned form of G( £). discussed above,
leads to the inversion of a matrix with a zero eigenvalue: in other words. this

insertion is sufficient to produce a pole. Provided that the same superoperator
Hamiltonian matrix elements are used, the two approaches are equivalent.

Derivatives of Electron-Binding Energies

Having solved for a pole of the electron propagator. /... one can inquire into
its derivatives with respect to changes in the one-electron part of the many-electron
Hamiltoman. Such changes may correspond to external fields or to the field produced
by the nuclel arranged in a given way. Suppose that the Dyson equation approach

to discovering poles has been adopted. where
Epore = Cle + Z(E) )y £,,)C .

Defining the superscript. «. to denote differentiation with respect to a perturbation,
one obtains

Epoie = € (e + ZUE) | p- s,

pote

)C + C*(C + E(k)‘] -I‘.‘,W)C“

pole

! aZ(
+ Cf et + zn([;‘) + 14";0&_ .___(_.) )(‘ .
|, ,

e ot

Note that in the last of the three terms there are three portions that pertain 0
orbital energy derivatives. derivatives of the self-energy. where the /2 parameter is
held constant, and derivatives of the self-cnergy emploving the chain rule. This
cquation can be rearranged to

AZ(F) C )
I Fpoe

oF
= C"CFEpie + C'C Epoie + CH{e" + 270, 1,,)C

“pole "

12‘;;.,gc( | - (,‘{-

The left side of the previous equation is E .. divided by the pole strength, P, while
the first two terms on the right side vanish because
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(C'CYy* = 0.
Therefore,
Eooe = PC' (" + ZUE) ¢ )

Both P and C are generated in the process of finding the pole: only explicit differ-
entiation of the orbital energies and the self-energy matrix elements is required to
obtain E5..

A similar conclusion follows from the second approach to finding poles. Denoting
the entire superoperator Hamiltonian matrix as H, one may express the poles as
solutions of the eigenvalue problem

Ht = tEp. .
Differentiation leads to
Het + Ht" = " Epgie + tEfure
After multiplying both sides by ', one finds that
o = UH L.

pole

Having found a pole by this approach. one must evaluate derivatives of the super-
operator Hamiltonian matnx in order to calculate Ej,..

Connections between the two approaches are facilitated by partitioning the ei-
genvectors t into their a and f portions:

t':[‘, tf].

For a given pole. the Feynman-Dyson amplitudes, C. suffice to determine the
eigenvectors, t, through the following relationships,

t, = VPC
t¢ = VP[Eped — (F|HE)]"'(f| Ha)C.

Second-Order Expression

The second-order self-energy derives from an f operator manifold consisting of
products of three simple field operators. Only the Hartree-Fock (HF) contribution
to the superoperator reference state is needed. Operators with two-particle and one-
hole indices or with two-hole and one-particle indices are needed to produce all
second-order terms. Letting . j, &, / be occupied spin-orbital indices, a, b, ¢, d, be
virtual indices. and p. ¢, r. s be general indices, one can express the superoperator
matrix elements in terms of canonical orbital energies and transformed electron
repulsion integrals. The zeroth-order elements of (a| Fla),

Hoy = Spgty .

the first-order elements of (a| H f ).
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H, .. = {pilab>. a<b
H,., = {(patij). i<ij.
and zeroth-order elements of (£ | F/f),
Hypona = (6ot €5 = €)08,8, 00y
Houma = (e, + €, = €,)0,8,40, .

suffice to obtain second-order poles in either of the approaches discussed above.
Higher order expressions result from retaining additional terms generated by cor-
related reference state averages.

From the above expressions for £ .. one obtains

Tar — * It - o ST op% Y
L‘polc - E lp Hpqlq + z Ir* L }Ip.:uf![mh + pa [[' E H/'.uuluu
Py r w<h Id ar<y

o a * m
+ Z l:;h Z I[mb‘plp + z l:u Z }{auwlp + Z ian ? }lluh.lull/ul'

vy

ra<b P <y r (b e

* «
+ 3k 2 Ho st -
die g bl f

In second order.

1, = VPC,

and
fun = VP Egaie + 6, — ¢, — &) ' = (abl piyC,
I'
lay = V—P[E;mlc +e, — e — 3114 Z (11!1[741)(',. .
l?
Therefore,

Hisun M Hpanf 5
Spoe = P2 C}':'Cq{H‘p'u + 2 ( Lo —nd 4 Ll

bpﬂlc +& — £, — €&p I'lpnlc R TRl S 78

Py tu<zh
11/».1(:/» a

+ " I{lull,mh
hrmlc +e —e, e

X Hm/w )
h'mﬂc +e ¢, £p

i s Hy Moy Hp il
ie s [’:puh. +e,— ¢ — £ [anlc ‘e, e &

Illr.uu " ]luu.q
N aiatl e .
hpnlc e, —e - [ Lpnlv: + €y & T &

+
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Similar expressions will aris2 for more complicated forms of the self-energy matrix
or the superoperator Hamiltonian matrnix {14].

Reference State Total Energies

When added to or subtracted from a reference state total energy. electron-binding
energies vield final state total energies. A reference state total energy expression
derived from the same self-energy expression employed for the electron-binding
energies would provide a reasonable choice for the purpose of optimizing geometries
on final state potential energy surfaces. The ground state total energy is related to
the electron propagator through a contour integral that encloses the ionization
energy poles [' 21:

{ | . . .
(HY = ;Tr;—ff (h+ ENG(E)YdE .
’ P4 ST Jo
In the above cxpression. h is the matrix of the one-electron part of the electronic
Hamiltonian. Insertion of G,(E). where
G()(E) = (El —¢) ! -

in this equation results in the HF expectation value, that is, the energy expression
is correct through first order in the fluctuation potential. Closed forms for correlated
energies have been sought through an alternative form of the Dyson equation,

G(E) = GoE) + Go(EYZ(EYG(E),
which, in iterated form.
G(E) = Gy(E) + GUEYZ(E)Gy(E) + Go( EYZEYGu(EYZ(EYG(EY + + - -,

provides terms of various orders for a given choice of Z( £). A consistent counting
of orders in the fluctuation potential discloses that the matrix, h, introduces terms
of zeroth and first order when it is rewritten in terms of the Fock matrix and the
Coulomb-exchange potential matrix:

h=f-v,

By consolidating terms of the same order, it is possible to identify two separate
contrtbutions to the total energy expression through order n [12]:

1
2

!

h'ln) —
2

i
Tr—l—if (f+ ENGY"(E)dE - Tr—-~,f vG " EYdE
2wi Jo 2ni Jo

Second-order many-body perturbation theory can be recovered by inserting the
second-order expression
G'2(E) = Go(E) + Go(E)Z'V(E)Go(E)

into the first term on the left side of the previous equation {2]: the other term is
zero because G'''( £) vanishes.
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TaBte I CaCN bond lengths (A) and total energies (au).

Isomer State Ca-X C-N Total energy

CaCN Xz 2.365 1.206 —~768.7801299
Al 2.357 1.205 ~768.6941171
Bz 2.332 1.207 —~768.6924186

CaNC Xz 2.221 1.203 —768.7768773
ATl 2.220 1.203 -768.6892728
Bx* 2.210 1.203 ~768.6844680

Only the second-order self-energy matrix is needed to produce reasonable ap-
proximations for the total energies of the reference state and the final states in
electron propagator theory. Second-order many-body perturbation theory total
energies for the N-electron reference state may be supplemented by second-order
self-energy results from electron propagator theory to produce final state total ener-
gies for states with N + 1 electrons.

Applications

Reference state total energies and gradients at the second-order level are calculated
with GAUSSIAN 90 [19]. Electron-binding energies and their gradients are cal-
culated with a modified version of EPT90 [20]. Detailed formulas for the second-
order electron propagator gradients have been derived and presented in spin-orbital
form elsewhere [14].

Calcium Cyanide Ground and Excited States

Using the closed-shell cation, CaCN *, as a reference. it is possible to study the
ground and excited states of CaCN by adding various electron affinities to the
reference state potential energy surface. This molecule is an interesting test case for
the present methods for several reasons. First, there is a low-lying excited state with
the same symmetry as the ground state. Second, there is the possibility of linkage

TaBib I CaCN harmonic frequencies (cm™!),

fsomer State O X wretch TN arerch T
CaCN Xz 364 1969 143
Al 369 1973 144
B':" 375 1961 127
CaNC X'y 415 2082 89
A1} 416 2087 87

Bxe 412 2056 25
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Tagle HI. CaCN dipole moments (D).

Isomer State Dipole moment
CaCN Xz 6.485
A’lL 6.402
BiT* 6.516
CaNC b e 6.474
AL 6.362
Bz 6.845

isomerism for all states, that is, it is possible that there are minima with CaCN and
CaNC geometries [ 21]. Finally, there are questions surrounding the origin of emis-
sion bands that lie to the red of the lowest absorption frequencies {22,23].

A 55,3 p,2d basis for Ca, obtained from a previous study [ 241, is combined with
a 35,2 p,1d description for C and N [25]. All molecular orbitals are retained in the
post-HF calculations. The default convergence criteria employed for geometry op-
timizations in GAUSSIAN 90 are retained: a maximum force of 0.00045, a max-
imum root mean square force of 0.0003, a maximum displacement of 0.0018. and
a maximum root mean square displacement of 0.0012. Final state geometries and
total energies, calculated as the sum of the CaCN* second-order total energy and
the second-order electron propagator elcotion affinity, are listed in Table 1. The
Ca-X distance pertains to the nucleus oser to Ca in each isomer. Optimizations
on the A1l states performed with ar.. without a symmetry axis converge to identical
results. Evaluation of finite - —nces of final state gradients permits the deter-
mination of harmonic frequcncies, which are listed in Table 11. For the A 211 states,
the lower symmetry calculations are performed for the 24’ state that arises from
the degenerate state \a C,, symmetry. Most of the stationary points are minima,
although some of the harmonic frequencies are very small. One of the optimized
geometries has .n imaginary bending frequency. A definitive study of the relative
energies of the stationary points and their curvatures must await, at the very least,
a testing of basis-set effects. Because the expressions for the gradients of the cationic
reference state total energies and of the electron affinities include effective density

TaBLE IV. ?B; C3 properties.

Property CCSD CCSDT EPT
Total energy {(au) —-113.300286 ~113.328883 -113.330573
Bond length (A) 1.337 1.350 1.337
Bond angle (degrees) 68.3 68.0 68.6
w; a; (em™) 1668 1601 1677
wy & (em™") 687 638 720

w3y by (cm™) 1215 1194 1287
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TABLE V. 23} C} properties.

Propenty CCsSD CCSDT EPT
Total energy (au) —113.279310 ~113.321152 ~-113.326453
Bond length (A) 1.314 1.327 1.322
w; oy 1168
Wy Wy 260
w3 6y 25001 45h 2032
Energy relative to 2B, (kcal/mol) 13.2 49 2.6

matrices for one-electron properties, the sum of the reference state’s effective density
and that of the electron affinity provides a density matrix that describes the final
state’s electronic distribution. Dipole moments calculated with this information
are listed in Table I11.

C} Minima and Transition States

Potential energy surfaces for C; have been extensively studied with a variety of
theoretical techniques [26-28]. Among the difficulties encountered by previous
workers are multiple unrestricted HF solutions with sharply contrasting amounts
of spin comtamination for the * B, ground state of the C,, isomer. This finding
prompted a recent work in which coupled cluster energies calculated with unre-
stricted HF and restricted. open-shell HF reference states were compared with results
from a quasi-restricted HF reference state. The latter approach bears some resem-
blance to the present electron propagator method, for orbitals optimized for the
closed-shell molecule C; are employed. The same 45,2 p, 14 hasis used in the coupled
cluster work is used in these calculations { 26]. Tables I'V and V compare the present
methods to two methods based on an unrestricted HF reference configuration. cou-
pled cluster singles and doubles and coupled cluster singles, doubles, and triples.
The total energies for the electron propagator results are lower because no orbitals
have been discarded from the correlated calculations. Structures, harmonic fre-
quencies, and relative energies display close agreement with the coupled cluster
results. It is worth noting that coupled cluster singles and doubles calculations with
open-shell HF or quasi-restricted HF reference states yield results that are very close
to their unrestricted HF counterpants in Table 1V,

Conclusions

From the second-order self-energy of the electron propagator, it is possible to
derive a general description of the N-electron ground state and final states with N &
1 electrons. For the ground state, one must take care that orders in the fluctuation
potential are consistently treated; the simplest correlated example leads to the second-
order total energy of many-body perturbation theory. Procedures for evaluating
derivatives of this total energy with respect to changes in the one-¢lectron part of
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the Hamiltionian are well known. Evaluation of derivatives of electron-binding
energies from the electron propagator has been implemented recently, Only deriv-
atives of the superoperator Hamiltonian matrix are needed. Difference density ma-
trices emanate from the derivation. enabling the calculation not only of final state
gradients. but one-electron properties as well. In the case where a closed-shell HF
calculation defines the reference propagator, no <pin contamination is introduced
in the final state doublets. Applications to cases where ionization energies and
electron affinities are calculated in order to study the species of interest have shown
the versatility of this approach. One of the most atiractive aspects of the energy
dependence of the seif-energy matrix is reinforced here. for optimizations on excited
states of a given symmetry can now be undertaken routinely.
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Abstract

A new method is presented for the calvulation and analvas of state hnear and nonlinear response
properues. The mmethod involves the use of o perturbed clectron propagator formalism, and 1s a corre-
lated generalization of standard sct -level coupled Hartree-Fock (or RPAa) schemes. © 1992 John Waley &

Sony. Inc

Introduction

The theory and calculation of the response of a molecular system to an external
applied field [1] has developed into an important research area in modern quantum
chemistry [2.3]. since it embraces a vast area of research, from applied subjects
sucn as nonlincar optics {4] and material design. through to the theory of inter-
molecular forces. A recent review of a wide range of molecular properties is given
by Fowler [ 3}. The theorv and computational methods [8.9] for both static and
frequency-dependent molecular response properties have been refined over many
vears by many authors. The commonest methods of calculation involve SCF-level
response properties via so-called coupled Hartree-Fock (CPHF) approaches (in either
AO or MO basis sets) [10]. or the equivalent random-phase approximation (RPA)
[11]. which also gives direct access to the polarization propagator [6.7]. and hence,
to cxcitation. energies of low-lving electronic excited states, transition amplitudes,
and also frequency dependent polarizabilities. Algorithms for computations exist
inside most of the major ab initio codes such as GAUSSIAN XX. CADPAC.
HONDO. SYSMO. etc. The theory for computations, including the higher order
effects or correlation (e.g.. MCSCE approaches ). has also been detailed [12]. although
published calculations are as vet uncommon because of the cost. Polarization prop-
agator codes are also conventional. but in the guise of the RPA method. which is
accurate through first-order in terms of correlation. The higher order (in terms of
correlation ) versions of this (SOPPA. and its coupled cluster variant [ 8]) are com-
putationally expensive. and are unviable for all but the smallest molecules, such as
saturated first row hvdrides. The *heory for quadratic response is also worked out
at the sC+ 'nd McSCF levels {12]. although the correlated versions are not vet fully
implemented. Indeed. accurate near-basis limit calculations of quadratic response
are rare. cven at the SCF level.

International Journal of Quantum Chemistry: Quantu.n Chemistry Symposium 26. 13-30 (1992)
< 1992 Joh» Wilev & Sons. Inc. CCC 0020-7608/92/010013-18
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The aim ot this work is to present a new approuach to lincar and nonlinear cinitaliy
quadratic) static response tensors by exploiting the power and elegance of the ¢lec-
tron propagator (EP) approach [13.14] tor correlated calculations of the one-clectron
density. The £ is well known for accurate computations ol molceeular onization
and attachment energies. These emerge directly out of a ssstem of eigenvalue equa-
tions based upon the £p equations of motion {15]. The method is well-known and
established, but there is no obvious connecaon with response tensors. 1t is true,
however, that a numerically simple contour integration over a special contour, the
renowned Coulson contour [16]. directly produces also the correlated grownd siure
one-clectron density [19]. and hence, any one-clectron property expectation value,
The present work arose by trving to generahize an analysis of CPHE lincar response
tensors produced by Grant and Pickup [17]. This latter uses a breakdown of the
SCF first order perturbed one density into direct and induced terms, and hence,
produces an appealing picture of response in terms of polarization, back polarization,
and sclf-interaction of the perturbed density. The basic idea of the present work is
to study the effect of an external applied field upon the £p, and hence. to obtain
the correluted perturbed density through Coulson contour integration. There has
been an carly attempt at a Green's function formulation of the hnear response
problem [18]. though only in the SCF approximation,

The perturbed electron propagator is described in detail in the next section. The
third section gives the form of the dynamic perturbed selt energy at second order
in correlation, while the section after details the analysis of Grant and Pickup for
the correlated case. The fifth section outhnes possible calculations. while the fol-
lowing one describes the results of pilot calculations on 4 series of small molecules.
The last section briefly describes the use of the method for quadratic response,

The Perturbed Electron Propagator
Let us ronsider a static (time-independent) one-electron perturbation

WY =72 hhana, (1
e

in terms of an orthonormal spinorbital basis. This one-electron perturbation can
represent the effect of an externally applied electric or magnetic field, or even a
perturbation arising from the displacement of a nucleus [3]. In general. we must

acknowledge that a field may have a set of components, so that we must decompose
the operator

R = 2V F, (2)

into a sum over components labeled by the index =. The factors. F,. are vaniable-
strength factors. We can express the expectation value of the operator in (1) as

RS = (UG TRV Y = 3 iy apa,y = trh'p, (3

d
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where the one-density is defined 1n the normalization of McWeeny (2] We now
introduce the {causal ) electron propagator matnix [ 20 ] defined in terms ol its spectral
resolution as

N R IS + . hY
SR B R PR B Wupiwu;}

G = Ccdlh a, .
VBN R A N
/ wt ES - B 4 e

- o]
¢

B2 AR MM D o
- 1 w  Fo v EYT e

The one-density matnix can be denved firstly from the electron propagator via the
contour integration over the Coulson contour, ¢

i :
Z N N R AN < \
€| Gigp' = 3T del ) = L (W ia, e

T Ve

x WY Na vy e aid, o pre (S

i)

where the C-operator is 4 shorthand notation for the integration over the Coulson
contour encircling the tonization poles. and we have used the (V- Di-electron
completeness relation to provide the final two dentities.

We now return to the subject of response theon . considering that all the detinitions
above apply to a perturbed system in which the operator representing the external
field ( 1). has been added to the Hamiltonian, We are interested i expanding the
expectation vialue (3) 1n powers of the perturbation

N

"'\/’(Ili‘ o /ll!);kllH’* "/I!“A,l“* “‘/I‘“ L ((,’)

where the term A represents the ath-order response of the ssstem to the

ficld. In terms of the density the #2th order change in the expectation value is
SR e Y s 1@ DG (7
The electron propagator matrix satisfics the equation {13.14]
Gy = (wl - Flpi") = San ! (R)
where the Fock matrix (v the presence ol the pertirhing field
F(ﬂli” Y= R 4 B! 4 J{p';” y - K(p';” } (99

is expressed in terms of the perturbed HE density, which, assuming we use a basis
of MOs {defined in the presence of the field) implies

[I!|I,",, LI (10)
with
l p € oce
H,, , (i
Y e virt
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The two-electron part of (9) is commonly denoted by the G matrix

G p1F) = L0} = Kool o) = 3 (priigsdptth (12)

I

which is distinguished from the electron propagator by the lack of suthx 1. The self
energy matrix in (8) contains all the effects of correlation, and can be divided into two
terms

Zw) = Z(x ) + M(w) (13)

The first term on the left hand side of ( 13) is the frequency-independent (so-called
“constant™) term,

Zploc) = Z prhas)lon, — o'y (14)

which can be obtained in the limit as @ — o, since the dynamic self-energy. M.
is zero in this limit. Using arguments based upon the energy uncertainty principle.
we can interpret the constant part of the self energy as representing the instantaneous
response of a correlated many electron system to the presence of a hole or a particle.
The dynamic self energy, on the other hand. is dependent upon the frequency and
contains all relaxation and reorganization effects which are on a long time scale. It
is normal in the electron propagator formalism to expand the dynamic self energy
in a perturbation theory defined in terms of the correlation potential. In this way
we can define second- and higher-order electron propagators. It is vital to distinguish
this perturbation expansion in terms of the fluctuation potential from the entirely
separate one we intend to make for the applied external field.

It is convenient to include the constant part of the self energy with the Fock
operator to give

G, = (vl -~ F(p)) — M(w))"! (15)

The Fock operator above is defined in terms of the exact perturbed one-density.
We now make a perturbation expansion of the propagator in powers of the ex-
ternal applied field using

G =G"+G\"+G\"+ .. (16)
which is achieved via

F(p) = F(p)V + F(p)'" + F(p)) + - -

M=M(0)+MH)+M(2)+.,. (17)

and an expansion of the inverse. We can now identify the perturbed Green'’s func-
tions by expansion of ([5) as
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(;(:(). - (Lm‘l Fm; » ‘_\l'”') .

G\''= G"(F G
7 GITIES M (FT MG M) G
. (18)
The perturbed Fock operators are
F(p)'" = h'"" 4 G
Fip'" = h'" + Gp\'h
Fp)'"' = Gp\") "2 (19)

An expression for the first-order dvnamic sell encrgy 1s denived in the next section.
We can identify the individual terms in the expansion of the inverse as
G, = («l = F7 = M — F o AT — FC AT - eyt (20)
The densities appearing in the above eguations are correlated densities detined
through Coulson integration as
pi = CIGY" (21)
We shall now analvze the lincar response via the firsi-order coupled equations
arising from egs. ( 18) and (20):
P = @G (FY MG (22)
It 1s of some interest to investigate (22) in the HE linit, in which we put

G\ > (wl —¢)

MY =0 (23
where the matrix ¢ is a diagonal matrix of SCI- orbital energies. since we are working
in a canonical HF basis. In eq. (23} we have assumed that the basis set with respect
to which the propagator matrices are defined is a canonical Hi- basis. in which case
the zeroth order propagator is expressed entirely in terms of the diagonal matrix
of Koopmans' orbital energies. It totlows that

] f ,,'( i)
oty _ qp 5
g = =— ) dw (24)
M agi Je {(w

— e )w — ¢g,)

tfor two general MO indices. p and ¢. Using the notation. /. j € occ and ¢. h € virt,
and noting that only ionization poles (occupied Koopmans’s orbital encrgies in
the present context) are included in the Coulson contour. it is casy to show that

1 |

: w ————
2ni Je (@ - eNw —¢)

=0

-—~J‘ dw l = ()
2wi Je (w~ e, Hw ~ &)

I 1 } l (‘VQ)
— | dw 25
2wi Je {w—-eWw &) & —¢,
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so that the only nonzero blocks of (24) are

(1) NED]
9 _ Pta h ]‘ul

Prag™ 1Py T T (26)
€ — £, & — &y
which are just the well-known first-order perturbed SCF equations (or CPHF) in the
MO basis.

We now consider ¢q. (22} in the case where we have formally exact Green's
functions. We shall first analyze the equations assuming that the perturbed dvnamic
seif-energy M'"" — 0. Using the spectral resolution of the propagator (4). and
defining the poles

E =Ey—EY": E,=E}" — Eg (27)
and the Dyson spinorbitals

g(X) = 2 ()b, = 2 (0¥ a, | WE
; )

!

LX) = 2 ()b, = 2 (W la,| W5 (28)
4 r

1§

Using eqs. (27) and (28) in (4) and (22) gives the first-order coupled perturbed
electron propagator equations ( 1-CPEP) in the following form
Fiu'bybl + Fu'bubk

b‘/ - 15:1

Plo=3 (29)

where the matrix elements
Fu' = (@I FY LY. Fu = FYe) (30)

are expressed using Dyson spinorbitals rather than the plain MO matnx elements
found in coupled HF. Indced using the expression for the one-density function,

pl("‘v .X”) = Z ¢q(x)¢’[’(x,)*ﬂlqp . (3l )

g
it is easily seen that eq. (29) is just a Dyson orbital expansion of the first-order
perturbed one-density

ZH&umuv+mmmmm*

h-c - I;‘u

i) ’
pr (x.x") =

(32)

W

It should be noted that the Dyson spinorbitals form an unnormalized. nonorthog-
onal. and linearly dependent set of spinorbitals [21].

It 1s obvious that the 1-CPEP equations are identical in structure to the CPHF
equations, but using correlated poles and amplitudes instead of Koopmans's orbital
energies and MO coefficients. We have. of course, neglected the perturbed self-
energy. M'", a defect which we now remedy.
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The Perturbed Dynamic Self Energy

The dynamic self energy can be expressed through second-order in terms of the
corrclation potential as
Mo (w) = Ah(w) + MRAme( ) (33)

'

where the hole contribution

s pallifyifllgad (34)

“‘Ihulc(w) =
w=—¢& —¢+te,

!
1y 5
“ tu

and the particle part
(pillaby{ablqi)

w—¢,— ¢t ¢

A[p;.lniclc

1
™ ( ) = T)' Z (35)
=~ ah

We adhere throughout 1o the convention that orbitals labeled i, j, k., .. . . refer to
occupicd molecular spinorbitals, while ., b, ¢, ..., are virtuals, and p, ¢. ... .are
general in nature. The antisymmetnized two-clectron integrals are defined as

(pillaby = {pilaby — (pilba) (36)

The formulae shown refer to the basis of canonical spin molecular orbitals in
terms of which the H¥ reference determinant is specified. We now consider that a
perturbation of the form (1, 2) has been applied with an arbitrary set of infinitesimal
strength factors. /4,. In this instance, the orbitals are perturbed by the infinitesimal
field. We shall signify these perturbed orbitals by placing primes on the orbital
indices. We write the perturbed self energy as

My (@) = M (w) + MR (@)’ (37)
with
[’al"iljr><'-ljl||qaﬁ>

w—¢ —¢ +e,

oy |
My (w)' =5 5 ¢

i

s (& AN IZ N2 [¥]
Almﬂiclc‘w); — _:_ Z <I" "(l b /((l b "(]L} (38)

1 ’ ' ]
2oy w—eg—entoe

One subtlety in connection with (38) is that the indices, p. ¢, the matrix indices,
arc unprimed. The perturbed orbitals are orthonormal as are the unprimed oncs,
and are therefore a unitary transformation of the unperturbed ones. It follows that
we are free to express the matrix indices in any basis we choose. We choose the
unperturbed basis. We are not free to choose the basis in terms of which the i, j.
«aand a, b, i summations arc expressed. This latter basis must be in terms of orbitals
which make the perturbed Fock operator diagonal, i.c., a perturbed canonical basis,
We can expiand these perturbed canonical spinorbitals through first order as
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. ]'-(i,)
(py=1ipy+1p")=|p)+ 2 |q) —*— (39)

q*p gl' - 8‘1

where the unperturbed ( field free) orbitals and orbital energies are indicated without

the superscript (i.e.. e}’ = ¢,. and |g) = |¢'"")). The perturbation expression for

the orbital energies is
e, —>e, + bt =g, + FL) (40)
Substitution of (39, 40) into (38). followed by an expansion through first order
gives
(palliy(F" + F,” — FiM(iillga)
(w—¢ — g+ eu):
FCprlliy(iliqa) + (pallif) (ijllgr) Fro!
(€u - Cr)(w —& T + e,

M" " (w) = % z

ha

+35 3

Hd r¥a

F.(palijy{rillqa) + (pallri>(ijligay £

+Z 2 (41)
e (e, — &, ){w—¢, —¢ +¢,)

This expression contains three terms, the first arising from the expansion of the
orbital energies in the primed denominators, while the remaining two are from
orbital perturbations of the primed numerators. The first term varies as O( 1 /w®).
while the others have one constant (i.e.. frequency independent) denominator.
These constant denominators contain differences between particle (or hole) and
general spinorbitals. We usually expect many-body perturbation theory expressions
to involve only differences between occupied ( hole } and virtual { particle ) subspaces.
The summations in the second terms over r can be broken up into sums over
occupied and virtual spaces. After some magical but mindless manipulations. the
final expression for the first-order perturbed hole contribution to the dvnamic seif
energy is

(palliiyFi'{killga)
(w—¢ —¢ +ew—e —¢ +¢,)

M,(ull)holc(w) — Z

ikt

! s Cijligay Fu < pbllii
2”“,,((&)"5‘1“8,'{'8”)(“)»- C,*€/+{‘/,)

s I'V:;.l)<palflhl><bj llgu)y + < paihy; u'hya - Iﬁ"
.7:;, (¢, —exlw — ¢ — ¢, + &,)

| Fu'(pkliiyCilligay + patis gk F

(42

et

ok (e ~ e, Hw =~ &, &+ ¢,)

F4

The reduction of the particle part of the first-order perturbed dynamic self energy
is carried out in the same way to give
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It should be noticed that the first-order dvnamic self energy contains terms stricth
first order in the applied ticld. which involve the two-clectron interaction through
the perturbed Fock operator, F97 1 these terms are to he aveounted for enacthy 1
the ¢PEe procedure. then we must include the dynamic self energy in the iteration
scheme.
We now define the total first-order perturbed one-density via €22 as

I’I}H : ﬂ'll JEN Y] ) [l(;! 1ln (44)
where the static correlated one-density arises purely from the Fock operator portion
of (22). and the dynamic self-energy vontribution o the perturbed one-densin
comes trom the dviamic selt energy

[RRR

MUGL {43,

[)(;IMH‘ (J : (',iln
which contains a product of three trequency-dependent contributions.
The dynamic couphling schemie is implemented at second-order in the corrclition
potenual using ¢g. (45). together with (42) and (43). 1n the form
tEd - . Lt Lty N .
Phpe = 2 GG MG S A

[N IR

' {46)

where the precise form of the matnx elements. A, actually depends upon the oc-
cupancy of the spinarbitals p. ¢. 5. r. The precise form of the matris elements has
been derived by the author through sccond order in correlation. His casy also 1o
see that (46) 1s the correct form through all orders 1n correlation, although this
statement needs diagrammatic analysis for 118 proof,

Analysis of Linear Response Properties

We now consider the generalization of the analvsis of the lincar response which
has been described by Grant and Pickup {17] for sci -level lincar response propertios,
Using eqgs. (7). (45, and (46, and the cvelic invariance of the trace operation,
we deduce that

firy

K h(ll 1y ir (, : (;‘]'Uh”l(;‘x FHI: T h!]»ﬂ’]"""” (4‘,‘)

We can now proceed by elimimation of
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G\"hG"
from (47), using (22), to give
re ! GURNNGF N = @GR Y ) G
~r C1GGY ) MGGV (48)

We can recognize inside the equation above that the M'" term can be rewritten
in terms of the matrix A in (46) to give

<h«|l>(lv =1t @ { (G(.mh”))::‘ +tr 1)(-.“(;(0(1“) 1 @ : (G‘;m(;(p'\i |)).’ !

Fur h,delHd\n -ty ptrl'uhn(;(ﬂtll\) (4())
The final two terms of {49) are reduced by substitution of (46) to give the final
expression

<htl)>fl) - tr@);((;(lmh“)): . (G(lu)(;{pqln));: + l)(l“G(l)(lh)

. N . (H
+ Z { h/(ul/' Aznv.xrh :«“ - (’['11( 71 ) Aq/ml (’n( ) : { 5“)
s

The five terms in (50) can be interpreted in the following manner:

1. The static direct term. £ 2197 s the interaction between a one-clectron
field and a system of correlated interacting ¢lectrons which are frozen into the zero-
field form:

2. The static back polarization. £ . 1s the response of the system arising
solely from the field induced by the toial (static plus dynamic) perturbed electron
density;

3. The third term. £2¥9'™ the static interaction. is the self-interaction (Coulomb
minus exchange) of the perturbed one-density:

4. The fourth contribution. K2 _is the dynamic analog of the direct static
response; and

5. The final term. the dynamic back polarization. £'3""M* s the dynamic
analog of the static back polarization.

In the HE limit. the last two terms. which are purely correlation effects, are absent.
The first three contributions reduce to the terms described by Grant and Pickup.

It is instructive to write expressions for the first two parts of (50) in the Dyson
orbital basis. Using the spectral resolution of the electron propagator as before, we
derive

( 2)stat hack

k’(l)dlr N Z -
E-F,

i

ok < 181G DI
I:h)h k Z < i - - .

E - L, b

i

The three static contributions to the correlated linear response are all contributions
arising from instantaneous interactions. The hole and particle Dyson orbitals ap-
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pearing in eq. (S1) are just the correlated versions of the 11 MOS. They describe
holes and particles which. in the static equations. can interact with the applied
field, /1", and in the average field. G(p''). induced by the perturbed density, but
the hole and particle orbitals are not mutually polarized. These latter effects are
accounted for by the dvnamic contributions.

Algorithms for CrEp Calculations

The cpip approach can be implemented in at least two diflerent forms. The first,
the analvtic method. is to carry out all Coulson integrals ¢vactly, using the ap-
proximate calculated spectral expansions (i.c.. using poles and IMyson orbitals ox-
plicitly) computed using standard implementations of the EP method. Once these
arc known, the Coulson integrals can be carried out exactly as in (25), and they
lead to cquations such as (29). which involves sums over Dyson orbital matrix
elements and differences in hole and particle pole energics. The analvtic approach
requires the computation of all poles which contribute significantly to the response.
There are basically two kinds of poles in the EP equations. These are best discussed
in terms of the pole strength. defined as the norm of the Dyson orbitals, viz.

Po= (el Po={0 . (52}

respectively, for the hole (1onization ) and particle (attachment ) processes. The two
types of poles are those with pole strengths close to unity, and those with small
pole strengths, We shall term these primary and shake cvents, respectively. The
primary poles arc those linked to Koopmans's thecorem. in the sense that the re-
spective states arc dominated by configurations in which a hole (or particle) is
added to the 117 sca. These are the poles close to the Koopmans's orbital energies
in the outer valence and core regions of the photoelectron (ionization) spectrum.
Similar comments apply to the attachment spectrum. with the reservation that
discrete HE states may not exist for anions, i.c., we may merely be producing dis-
cretizations of the continuum in this case. The shake events are all the nonprimary
states dominated by configurations involving simultancous orbital removal (or ad-
dition) and excitation. These events tend to have small pole strengths, the intensity
having been borrowed from the primary poles. There are large numbers of these
shake poles even in small basis calculations, and it is well known that in the inner
valence region (for instance, involving ionization of 2s-like clectrons in first-row
atoms) of the ionization spectrum, the orbital picture tends to break down because
of the large numbers of shake poles interacting strongly with the primary poles. A
similar phenomenon occurs in the attachment spectrum. I we examine eq. (29)
for the perturbed density, we see a spectral expansion in terms of all particle and
hole poles. and the question arises as to which are important in deciding the po-
larizability, and which are not. This consideration is affected by two factors, the
first being quantitics in numerator, and the second the energy diflerences in the
denominator, In comparison with the cpiy cases, where only (Koopmans's) primary
poles are present in the sum, on introduction of correlation there are many more
terms, but the norms of the Dyson orbitals are all reduced. This latter effect may
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tend to reduce the polarizability. The “band gap™ implied by the difference E, -
E.,. however. tends 1o be decreased by the etfects of correlation. a factor tending to
enhance the perturbed density. The resultant polarizability arises from the net effect
of both of these trends and may be lower or higher than the cpiF values depending
on the case. The effect of the dynamic terms is unknown at this time, but is likely
to be very important.

There are basically two methods uscd for computing Dyson orbitals and poles.
The first is the Dyson equation approach, in which the zero eigenvalues of the
matrix inverse of eq. (&) arc computed. This method produces selected poles and
Dyson orbitals iteratively. It is not a uscful technique for obtaining «fl poles as
required in principle by the analvtic method described above. An alternative method
is the “large matrix™ method [22] derived from the algebraic superoperator of
Pickup and Goscinski [15]. This method exists in the form of a suite of programs,
SHEEP (the Shefheld Electron Propagator Program) [23]. SHEEP can iteratively
diagonalize an operator (1 equation containing information about primary and
shake ionization and attachment poles. or for small cases (in which individual
symmetry blocks have dimensions of less than 1000). it can do in core diagonal-
ization of selected symmetry blocks of the superoperator Hamiltonian matnix. The
test calculations given in this study are all based upon this latter option and. for
this reason, we do not claim to have produced a viable algorithm. The alternative
method to the analvtic one is to carry out Coulson integrals using quadrature.
Hence. one bases the coupled equations on the form (22). rather than (29). We
can define the quantity

Fpw = C{GIpGly ) (53)
from which it follows (neglecting dynamic correlation) that

{)(z I[rz; = Z I‘pq“\r f‘i\l ! (54)

Inciusion of dynamic correlation leads to
{1)

ﬂ |[7q = Z ( I’pq‘.\r + qu,sr)l:ﬁ\” . (55)

ry

The I and A quantities are both matrices labeled by four indices. They can both
be efficiently computed using numerical quadrature in the complex plane in the
traditional manner [19]. This quadrature requires only the construction of the
matrix G‘,”’(i:k) at specific frequencies w = iz, along the imaginary axis. the in-
tegration points being derived from a transformed Gauss-Legendre formula. The
construction of this quantity at second order in correlation is rather trivial, since

we need a linear process
Ly = }r T A Re{G(iz) Gloliz) ) (56)

k

A similar procedure can be worked out for the quantity A, Both quantities can
be computed only once and stored in core, or in a file, depending on the storage
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available. The 1" and A quantities do not depend tn any way upon the nature of
the perturbation. Eq. (55) is not the most ethaient way 1o organize the ¢ PP teratinve
loops. It 1s better to form the two subsidiary quantitics

A ;"Ll ‘ : { l‘,"u’»” ! "\i’w . )hl"“ {

L
-4

and

B = AU 0 A )i (3K}

in terms of which (26) can be rearranged as

(R i1y <N v -
Py "],"./ LA If/’(,'_u’l) Ui (39

e

The main cost s obviously in the procedure s the intal calculation of the quantities
I" and A The former i1s not very expensive provided one can (as seems bkely)
throw away shake processes with very large energies. Inaddition, s not necessary
tu use fully transtormed two-clectron mtegrals for the construction of 1. The it-
crations implied by (39) are actually no more expensive than ¢ P iterations, and
can be considered as a dressed™ (correlated) version of ¢pHt . The four-indesed
quantity, B_1s independent of the ficld, so that it can be used time and tme again
1o obtain response to different external ficlds (or nuclear perturbations). The matrix.,
A" does depend on the perturbation, and must be formed in a zeroth iteration
for ecach ditferent kind of tield. The cpi p procedure, whether i anal tic or numernical
(56) forms, can be carried out with or without the A terms arising from dvnamig
correlation. We refer to the two possifities as statie and dynamic ¢prporespectinely.

Calculations

The trial calculations were carried out with the O 11t and N> molecules ina
STO 631G basis set. The algorithm used was the static analvuc one desertbed in the
last sectton. The algorithm for the unperturhed 1P calculation was that ot Baker
and Pickup [22]. 1n which the superoperator matns comprsed 333, 341, and 1404
operators respectively, 13, 1 and 1R of which correspond to Koopmans's priman
processes. The individual symmetry blocks ot the O, (and D, for N2 point group
were separately diagonalized usimg a standard Houscholder method. and the poles
and Dvson orbitals were stored on the propagator dumpfile. A separate CPHE program
has been written to perform the iterative procedure. The algorithm uses symmetny
to cut down the time speat in the construction of the polar sums. The program
does not vet include dynamic selt-energy clfects. The method s able to handle
nperturbations from any external field, including multipolar clectrostatic, as welb as
magnetic cases. We have not included an option to handle nuclear derivatives.
although this s an obvious and relatively trivial extension of the methed. Results
for H-O are shown in Table [ and for tn in Table L 1t is unfortunate that it was
not possible to do calculations using extended basis sets as in Grant and Pickup
{171, This 1s because of the farge matnx diagonalizations required. Matrix sizes
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TaBrr L opur and ¢prp calculations of the dipole polanzabilitics of water éin au) using a S10 6316
hasis, € - 104.43° R 1.8104 au. The s-avis s the Cs axis, and the molecule s in the xz-plane.

Method State direet Interavtion Static back Ful! Component
CP FN027 2 RKY9 1.0491 6.6336 XA
0983y 06385 0.2486 1.393% “
32914 1.8967 0.7733 44148 124
cree, 2nd order 33113 31380 11568 72925 A
1253 0.9358] 04231 16373 3
36742 23343 0.9980 S 106 'y
cpre. tult H33 323494 30846 1.1360 7.2077 A
(1187 09314 04083 16416 W
3.6374 22790 ).9699 49466 77
¢pep, 3rd order S,0831 18RO BRUEN H.8916 FSY
10829 0.7798 L3153 §.5474 W

315003 1 9994 0.821% 4.6773 77

increase rapidly with the orbital basis. since the number of hole and particle poles
rise Hike #7m and nra, respectively, where # and m are the numbers of occupied
and virtual orbitals in the basis. Larger basis calculations await the numerical ap-
proach outlined in the last section. although we already have some tenative indi-
cations that fairly accurate polarizabilities can be obtained excluding the highest
orbitals from the four-index transtormation. This point needs further study. The
631G basis set we have used does not descnibe response effects (to dipolar pertur-
bations) very well, since 1t does not have the necessary diffuse and polarization
funcnons. The basis set is particularly deficient for out-of-plane directions. and this

Tawte L epur And cpre caleulations of the dipole polarizabifitics (in au) of hndrogen fluoride using
as10 631G basis. B - 1.7719 au. The molecule is oriented down the x-axis.

Methad Staric direct Interaction Static back Full Component
CPHIL 3.07914 1.7071 0.6622 41240 NN
0.4619 0.2908 0.1017 0.6310 vy
04619 (.2908 01017 06310 17
cprp, 2nd order 33927 1.8349 -01.7166 4.51359 X\
15292 00,3953 01584 0.7661 W
0.3292 0.39583 ~015RS (1.7661 4
opep, tull H133 33550 1.8004 0.69495 44559 PSY
05241 0.3%34 S0.1516 0.7559 n
0.5241 0.3834 01516 (1.7559 s
oprp, 3rd order 3.2357 1.6408 0.6255 4.2509 1SN
0).5040 0.3264 .1193 07110 W

0.5040) 0.3264 04193 07110 124
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results in poliarzabihues sohich e oo asvmmetne, The other man oot ot o
sl basis s that the mteraction component s toe larpe. This comes about because
obf the articral compression of the perturbed density e, the ondy vangtonal tiee-
donvisan terms of refatvedy contracted orbrtals, so that perturbed electron densis
s contined oo rebativeds sl volume. B the basis it the perturbed densats
wotld be much more delocahized, amd tus markediy deoreises the nateracnon from
the values seen heres Overdh this etiect pashes the direct static contanbution to the
total polanzabihity down o the 700 regron from the vdue expected i an esvtendaed
basis of = 907 - The etfect of conrelation s 1o raese the totad polarizabiiiy tor ald
companents of both ot these molecales he mereases are areestm the sevond-
order e calculations, amounting o 133 wlong the Coavs of T O and 908

down the € avs of 1 . Fhe merease across the HE-O molecuic s ven The fareest
percentage inerises due o correlation are seen i the out-of-plane ¢ perpendiculay
o the bond 1 the HE case Y directtons, namely 189 for HO and 177 tor v,
In absofute erms, about SO of the morease m second-order polarnzabibiny comes
from the direct erm both i the bond direction for 1. and across the molecule
tor H-O In the C- direction Tor HEO this figure s down to 637 0 Fess than 600 o
the increase perpendicular 1o the bond it and out of plane tor H.OL comes
from the direct term. Corretated valculations of dipolar polarizabiities have been
carried out by Sadley tor ty and HOL using the fintte field approach. in vonjuncton
with *1pe4 [ 247, The basis set used was o mediumesized basis, speciatly developed
by Sadier. and which produces exeellent polarizabilities, For this reason we cannaot
compare directiy with our own work. Sadley’s correlation corrections tend 1o he
somewhat larger than ours, This s probably partly a bases set etfect. but may also
arise becaus: our results do not include the etfects of dynamie correlation. Mea s,
ol course. correct 1o tourth vrder ina perturbaiion theony developed i terms of
the correlation potential, The ¢ Pt e method also includes tourth-order terms. since
“second order.” inan electron propagator sense. implies corrections 1o the el
cuergvin second order. By virtue ol eg. 68 there are correlation corrections included
in the evontual perturbed density which are scummed up through intinite order.
cpEpe also includes correlations in a seltf-consistent was by virtue of s iterative
nature. The au. or beheses, theretore. that itas at feast potentally o superior ap-
proach to methods such as Sadiey’s. provided that it can be ethaentdy carred out
m appropriate bass scts. Lhe pattern of resudts tor these two satarated molecudes
is boest evplained by lookimg at the changes in pole «© rength and polar energies on
imtroducing corrclation. Table HE shows orbital encrgies. pole energies. and pole
strengths tor HA-O ¢ tcutated in the second-order e approsimation. The 13 priman
pates and the tour Targest shake poles are shown taut of the total of 320 <shake
potesy i order of sncrcasing cnergy tor the Green's function resalts, One notices
immediatety that the changes from Koopmans's theorem to correlated poles are
Largest tor the wmization poles Tag to Thy . The percentage changes on correlation
tor the th-. 3a., b day . and 2be poles are 6470 1500 200 0 69 Cand N4
respectively, The largest refative changes. theretore. occur for the 3u, and Th, poles,
The v v and 7 perturbations imphed by a homogencous tdipotar) tiekd have By
B and A ssmmetry, respectivels, Phore are noatosm a 631G hasis transtorming
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Tagre 1, SCF orbital energies and kp2 pole energies (in au.) and pole strengths for the H.O molecule
using a 810 631G basis. The geometry and onentation are as i Fable ©

Designation Orbital energy Pole energy Pule strength
la, -20.5606 — 19,8426 11,7703
24, -1.3560 - 1.2518 0.6865
2a, shake 11931 0.2062

tb. ~0.7096 0.6644 09384
3a, ~0.53¢05 (14751 0.9200
b, -0.5014 -0.3996 0.9150
4a, 0.2036 01896 0.9817
b, 0.2997 0.2835 09760
3b. 10570 1.0138 (.8860
Sa, 1.1866 1.0905 08514
2h, shake 1.0993 0.3360
2b, 1.1644 1.1051 (1.5985
6a, shake 1.1589 0.2800
6a, 1.2157 1.1656 0.6073
4b. 1.3792 1.2429 0.6421
4b, shahe 1.3419 0.2533
7a, 1.6963 1.6171 0.8748

as As. so that for the y-perturbation, the hole-particle excitations produced by the
perturbation involve a, — b, and vice versa. The lowest ¢xcitations will provide
the highest contributions to the polarizability and. in this case, these are 1b, —
4a,. and 3a, = 2b,. The former is the lowest excitation, and the 20% lowering of
the 1b; on correlation provides the most important increase in polarizability on
correlation. The 2b, attachment pole has an important shake component which
steals intensity from the main pole. In this case. the marked reduction in pole
strength probably overcomes any gain in polarizability implied by the energy shifts
due to correlation. The x perturbation has, as its most important excitation con-
tributions. 3a; - 2b, and 1b, — 4a,. These are higher energy excitations than
those found for vy, so the shifts in poles after correlation have much less effect on
the polarizabilitv, The z-perturbation has slightly more effective excitation contri-
butions, with 3a; — 4a, being the most important. It is well known that second-
order EP calculations overestimate the correlation shifts in Koopmans’ ionization
poles. an effect which is corrected in higher order. This shows up as a reduced
polarizability for the higher order Green's function calculations.

The results for nitrogen are given in Table IV. They show quite a different pattern
to the other two molecules. N, has already been noted as anomalous by Grant and
Pickup [17]. since it has a static back component in the bond ( x-) direction which
far outweighs the interaction term. The effect of correlation this time, is to reduce
the total polarizability. but the reduction is smaller for the higher order Green's
function calculations. The perpendicular polarizability components behave more
like those for saturated molecules.
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Fastr IV, o And oprp caleulations of the dipole polanzalbines tn g of N ousing o s10 0314
basis, R 2074 au. The molecule is onented down the vasis,

Moethod Staue direct Interaction Stiatie hack Full (omponent
CPH |7 4668 01251 34378 141341 AN
39238 12121 (.2617 4.X742 W
RICARH 12124 02617 38742 Iz
cpree. 2nd order 162160 .21 29762 F1430K N
41302 1.2735 ().2864 S1AX Ay
4.1302 1.2735 1. 2K6Y S 116X 2
cprp, full H33 16,3237 0.167% 30766 13.6130 W
41439 1.2773 (L 28X1 S 1331 W
31439 1.2773 () 28X1 RN R 77
PP, 3rd order 16,9312 009749 JI828 FINTO6 N
3.0934 12109 0.2643 20400 W
30934 12100 0.2643 50300 27

Quadratic Response

In cpHE theory. the quadratic response can be calculated using only information
from the first-order perturbed density. The ¢pPEP version of the theory can be denived
straightforwardly using the formalism outlined previously. 1t is obvious that terms
arise in the second-order perturbed propagator which depend upon /', the second-
order perturbed Fock operator. and also the second-order dvnamic self-energy.
M7 1t is not obvious that these second-order terms can be removed from the
equations. We have been able to prove that this i1s so. however [25]. Neglecting
the dvnamic terms. 1t 1s very easy to show that

SRR ER IR NERE GRS 3]
(A = S L Lol P o by Lo (60)
o = ECE, — B (E, — ENE — E)

ind

The construction of quadratic response tensors is. therefore, relatively straightfor-
ward once the first-order cquations are sotved.
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Second-Order Green’s Function Simulations of the
Valence XpPS Spectra of Unsaturated Hydrocarbons
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Abstract

The second-order setf-energy s eapressed i terms of the 11 zeroth-ondes polanization propacatuor
1 he polanzabibhiy dependence of the many -body features 1 the omzaiion spectrag s assessedd By eans
ul secand-order Grreen's tunction simutation of the s safenoe spectra ot the F3-hesadiene. §4-houndiene
L3hesadene, PA-esclohezadiene. L d-avclohesadiene maolecutes. the open torms bemy consadered m
several contormations. Vanatons ia the one-particle and manv-bods teatures determmng the shape of
the spectra are also mnterpreted i wermis of the molecuiar primars and secondas structures e Tobn
Wiles & Sons s

Introduction

Extensive work on valence-shell photoctectron (01 ) spectra of saturated hy-
drocarbons hus been successtully conducted [1.27] on the assumption that there
15 4 one-to-one correspondence between the mam bands in the Pt ospectrum and
the molecular orbitals: most of the spectra of the saturated alkane molecuates
have been theoretically interpreted on the basis of the one-particie Hartree-
Fock (1) model and the Koopmans approsimation. Despite the neglect of
correlation and relaxation effects in the deseription of the womization process,
significant information on the primary and secondary structure of oligomence
and polymeric systems have been obtained. through the interplay of theory and
experiment. from Xps valence spectra, However in g recent study conducted
on model folds of ervstalline polvethyvlenc. it has been shown that imclusion ot
relaxation and correlation citects can he important when the scarch tor signature
of conformational changes m valence Xps spectra contes Lo the trichy question
of photoionization intensity [ 3],

On the other hand. for tontzation out of the valence orbitals o ansaturated
hyvdrocarbons, there are several expenmental [4-7] and theorctical [8-10]) in-
vestigations avatlable which indicate strong correlation and reorganmization etects
in the form of a shift of the wonization potentials by several ¢V and cven a
reordering of the cliective clectron encrgy devels compared to the HE approvi-
mation. In the more extreme situations, as for instance the wonization of an
clectron from an mncr-salence orbital, important interactions between eveited

Internutional Journal of QGuantum Chemistey Quantam Chemstiy Ssmposium 26, 3] 830190
o 1992 John Wiley & Sons. Ing COC 00207608 Y0100
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configurations in the ionized system can occur, resulting in a complete “break-
down of the molecular orbital picture™ [11-15] for the ionization process: the
intensity is spread out over several lines of comparable intensity. and the dis-
tinction between the main and the “shake-up’ lines is no longer possible. Even
in the case of a partial conservation of the one-particle picture, one should then
at least take into account the dispersion of the main photoionization intensities
in shake-up and scattering processes to obtain reliable simulation of the inner-
valence XPS spectra. this energy region being the one that provides the most
specific information on the molecular structure. However, reliable calculations
of ionization potentials and spectral intensities are difficult in the valence energy
region, the number of excited states that have to be taken into account to ensure
definite conclusions being generally very high. In addition. the energies and
interaction elements may be strongly basis set dependent.

Particularly well-adapted to the description of interacting particle systems,
the one-particle Many-Body Green's Function method { MBGF: also referred to
as the one-particle propagator method) has been shown to vield reliable simu-
lation of ionization spectra for a large variety of molecules [16]. In this contri-
bution. the second-order MBGF method is applied to the simulation of the Xps
spectra of similar molecuies differing essentially in their degree of conjugation.
Because of the decreasing quality of the molecular orbital picture for the ion-
1zation process. structural information will be difficult to obtain from the ion-
ization spectra of the most conjugated compounds. The aim of this investigation
1s to study the relationship between structural aspects (cyclization, isomerization,
and conformation ) and the one-particle and many-body features in the 1onization
speotra.

Outline of Theory

The one-particle propagator (Green's function ) is closely refated 1o the photo-
clectron spectrum. In time space representation, the one-particle propagator. defined
as.

Gt ) =1 "V Twbal:). a) (1) 1va)D (1)

describes the probability amplitude of propagation. depending on the time ordering
(1,. 1>), of an extra-particle (or a hole) from the HF spin-orbital X,(X,) to the H¢
spin-orbital X,(X,). because of dvnamic correlation cffects. In this expression.
R » 18 the exact ground state wavefunction and 7y is the Wick chronological
operator. The creation and annihilation operators are expressed in the Hersenberg
representation. The propagation of a hole being equivalent. from the point of view
of charge transportation, to the propagation of an electron backward in time. these
processes can be diagrammatically represented. using the Feynman convention, as
in Figure 1(a).

In the Green's function method. Hartree-Fock energies and wavetunction are
taken as a zeroth-order solution for a perturbation expansion. In the background
of the noninteracting HE ground state wavefunction, either hole or particle cannot
be scattered to other states. and the one-particle HF propagator is diagonal with
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a) exact exiact b} HF HF
propagator propagator paruculie huste
2>t > Propagatos propagater
i 2 { 3] [ 12 1 1
=
jplot Pt pou i
{virtual (xecupted
wndices) wndices;

Figure 1. Exact and 1t propagators.

Preee ey = e Y—n- + :@-*—-

Figure 2. The diagrammatic Dyson equation.

Figure 3. Partial expansion of the seft-energy using the polanzation propagator, P.

= and =

Frgure 4. Propagators involved in the second-order expansion of the self-energy.

respect to the 7 and 7 indices. The diagrammatic representation of the propagation
of a v particle or hole is provided in Figure 1(b).

Turning to the frequency representation. the spectral resolution of
the exact Green's function can be cast in the basis of the HF spin-orbitals as

[17-21}:
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G (w) =

n

-+

(2)

where the sums over m and p run over all the states of the N — 1 and A" + | particle
system. From Eq. (2). it is obvious that G(w) has poles at the (changed of sign)
exact vertical ionization and vertical electron attachment energies: the MBGF theory
provides a powerful approach to many-particle systems while retaining the one-
particle picture associated to the H¥ theory,

Carrying infinite summation through a renormalization [22] procedure, the exact
one-particle propagator can be expanded, in terms of the HF propagators. using the
diagrammatic perturbation expansion scheme provided in Figure 2. known as the
diagrammatic equivaient of the Dyson equation {23]. Interactions of the particle
or hole considered with the remaining electrons or holes in the system are introduced
through a nonlocal time-dependent effective potential: the irreducible self-energy
T [24].

Turaing to the frequency representation, this diagrammatic equation has the
algebraic equivalent:

G(w) =G w) + G’ () Z(w)G(w) (3)

with the HF propagator matrix calculated as:

Gi(w) =

+ if { virtual ind
6, if / virtual index ] (4)

w—¢ +i0" | — if i occupied index

[ts poles provide the Koopmans' value for the ionization and electron attachment
energies obtained. after inversion of sign. as the energies ¢, of the occupied and
virtual spin-orbitals.

The poles of the one-particle propagator matrix can be obtained solving iteratively
the equation:

detflw — e — Zw)]1 =0 (5)

Using the Hugenholtz convention. T is written. to the nth-order in the correlation
perturbation expansion, as the sum of all the time-ordered. topologically different
and strongly connected diagrams built up from n point vertices (each of them
standing for an antisymmetrized biclectron interaction element {if| |k1>) and (2n —
1) zeroth-order propagator lines {22]. For further discussion, it is interesting to
mention the partial diagrammatic expansion [25] of the self-energy in terms of the
exact polarization propagator P [26], this expansion being provided in Figure 3.

Applying the standard rules 10 write down the algebraic equivalent of the self-
energy diagrams, the above expansion can be expressed as:

I ,
22 2 pklinm G @)D Py () ){m gk (6)

< \
O R 3
K k7Vme?
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in which the correlation product is defined by:
A(w)OB(w)-:if AW)B(w — w)do’ (7)

In this expression, P(w), in the frequency representation. is the spectral resolution
[26] of the polarization propagator:

(¥ Laa) W YD lal al Vs,
w+ EY—EX+i0°

P,,‘A[(QJ) = Z

m#0

B <‘Pi§'}azall\1';‘,;><\lf;‘,;Ia,‘a,}\l';‘n>] (8)

w—Eq+ En—i0"

where the sum over m runs this time over all the excited states of the N-particle
system. This frequency dependent function is obtained as the Fourier transform
of

P, )= l'_|<‘1’8’|Tu‘{af([:)a;(f:)‘ ai(t)a(6) ) (9)

the former time-dependent function providing the probability amplitude of prop-
agation. in the background of the interacting system. of a particle-conserving per-
turbation. this time.

Taking (Fig. 4). in the above expansion, the zeroth-order HF one-particle prop-
agator as an approximation for G(w). and the HF zeroth-order polarization prop-
agator

+58, 0y + if I/ occupied and j virtual indices

Piiw) = } (10

@+ g —¢ 0" | — if i virtual and j occupied indices

as an approximation for P(w). and considering all time orders. it is easy. performing
the integration ( 7) in the complex w-plane, to derive from Eq. (6) the second-order
expansion [11.27] of the self-energy:

$0(e) = % s (pallrsy{rslqa) s {priab>{abligr)

2 wt e, e — ey 2

ury

(11)

;7,‘, wte — e, Ep
where the sums over « and b run over all the occupied (hole indices) HF spin-
orbitals while the sums over r and s run over alt the unoccupied { particle indices)
HF spin-orbitals. In the approximation of a diagonal Green's function matrix (also
referred to as the quasi-particle approximation ). the two components of the second-
order self-energy describe. to that particular order in the interaction elements. the
energy comtribution 1o the ionization potential of the dynamic polarization response
of the electron system 10, respectively. the destruction of the particle and the creation
of the hole resulting from the ionization out of one of the occupied molecular spin-
orbitals.

The components of the electric dipole frequency dependent polarizability tensor
are related 10 P(w):
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ag (@)= =2 (T )HCRITF D Py w) (1)
uk!

Using. as previously, the zeroth-order HF polarization propagator as an approx-
imation for P(w), one can derive from Eq. (12) the well-known Sum-Over-State
(s0s) formulation of the static ({requency independent) polarizability tensor:

altylr)Crity 1a)
&

& T &y

af(0)y=23

ar

(13)

Pole strength [15.22] related to the ionization of an electron in the spin-orbital
X, can be calculated, in the quasi-particle approximation as:

[, (9Zcw)) -
F(.—[l (———-—aw )} (14)

Defined as the residue of | /{w — Z..(w)) taken at the pole w,, 1t can be equated
[28] to the fraction of the photoemission intensity associated with a monoelectronic
process, the remaining fraction [I — I'.] being the intensity borrowed in shake-up
or scattering processes resulting from correlation and relaxation effects. In a one-
electron description, the self-energy would have no energy dependence. and the
pole strength would be 1 for all ionization potentials. In a real interacting system,
pole strengths larger than 0.9 can be referred to a quasi-monoelectronic process,
while pole strengths smaller than 0.9 are indicative of a breakdown of the molecular
orbital picture. Heavy breakdowns in the inner valence region are likely to occur
when the molecule possesses many low-lying energy states.

From Eqs. (6) and (12), it appears that the magnitude of the correlation and
relaxation effects on the ionization potentials, and of the breakdown of the molecular
orbital picture throughout the overall ionization spectra. can be ultimately related.
at least on a qualitative point of view, to the polarizability of the molecular system.
As other factors. such as the degree of localization [29,30] or the inner-character
of the ionized molecular orbitals, also influence the magnitude of the many-body
features in the ionization spectra, such a dependence might not be precisely assessed.
One has at least to recall that establishing such a dependence implies the comparison
between the dynamic polarization response of the molecular electronic system to
the internal perturbation that results from the ionization process. and the static
polarization response of this system to an external electric field.

Model Systems and Methodology

In this contribution. the MBGF method is applied. using the second-order expan-
sion for the self-energy, to the isomeric series: 1,3-hexadiene, 1.4-hexadiene. 1.5-
hexadiene: and the related nearly isoelectronic cyclic molecules: 1.3-cvclohexadiene,
1.4-cvclohexadiene. The xpS spectra. for the linear molecules presented in this
series. are simulated by taking different conformers as model systems. The 1.3-
hexadiene will be taken in its trans-trans-trans (TTT ) and cis-trans-trans (CTT)
conformations. The 1.4-hexadiene molecule will be considered in its envelope ( E).
trans-cis-trans ( TC'r ). and trans-trans-trans ( TTT ) conformations. The 1.5-hexadiene
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molecule will be taken in its Cis-trans-Cis (CTC), cis-trans-trans {C V1 ). trans-trans-
trans (17TT). envelope (E). and trans-cis-trans ( 1¢1 ) conformations. The corre-
sponding molecular structures are presented in Figure 3. cach compound in this
series being labeled using the alphabetical order « to /.

The calculations have been carried out using. at the ab i fevel. the GAUSSIAN
82 senes of programs [ 31]. The requestea convergence on the density matrix was
fixed to 10 * and the integral cutoff was fixed to 10 ' hartree. The use of the
extended 3-21G basis sets was imposed by the storage of the large number of
integrals needed for the HE-MBGE2 calculations.

Assuming the planarity of the hydrogen and the carbon atoms involved n the
vinyl groups. all the remaining geometrical parameters of the molecular + .iems
mentioned have been optimized ( Table I) at the SCF level. Among the hnear systems
considered here. the most stable 1somer is the conjugated {.3-hexadiene molecule
[Figs. S{a) and 5(b)]. Because of the increasing interruption of the conjugation
from the insertion of a methvlene, —CH>—. or cthyviene, — CH,— CH.—.
group in between the two double bonds. the next stable isomer is the 1.4-hexadiene
molecule {Figs. S{c) to 5(e)]. and the most unstable the 1.5-hexadiene molecule
[Figs. 5(f) to 5(})]. In each series of conformers, citing the different molecular
structures by order of increasing instability reflects decreasing direct (in the 1.3-
hexadiene series) or through-space (in the 1.4- and 1,5-hexadiene series) w-inter-
actions resulting from the larger separation of the C— C double bonds. In the 1.5-
hexadiene series. it is interesting to mention the strong destabilization of the structure
with the rotation of the vinyl groups in an cclipsed conformation {Figs. 5(i) and
5(j)] with respect to the central single Cy — C; bond. At least. the conjugated 13-
cyclohexadiene compound presenting [Fig. S(k)] a destabilizing butane-like frag-
ment in an eclipsed conformation. while the 1.4-cyclohexadiene molecule allowing
a double m-methylenic conjugation between the double bonds. the large similarity
of the energies for the two isomers results from a delicate balance between steric
and conjugation effects.

Phototonization intensities are computed using the Gelius model [32] for mo-
lecular cross sections. the relative atomic photoionization cross sections used for
Cs,. (o and Hy, being 100, 7.69. 0.00. respectively (in the valence region, core
atomic functions do not participate significantly). In the case of the spectra obtained
through a Green’s function approach. the Gelius intensities are multiptied by the
pole strength T, Simulated XpS spectra are constructed from a superposition of
peaks centered at the Koopmans, or MBGE2 values for electron binding energics.
The peak-shape 1s represented by a standard linear combination of one lorentzian
and one gaussian, both having the same height and width (1.5 ¢V ) over the energy
range considered. the peak-height being scaled according to the intensity previously
computed. The basis sct dependence of the trends obtained by comparing the vari-
ation of relative photoionization intensities in the investigated serics of molecules
have heen tested performing the same calculations within the minimal basis set
$10-3Cr Although the $10-3G and 3-21G hasis set can fead to rather different
spectra. both buasis scts provide qualitativelyv similar trends in the variation of the
sharpness and heights of peaks with the molecular structure.
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Geometrical parameters of the carbon backbone tor the selected compounds.

Muolecule eaergy tau)

Bond lepgths ()

Bond angles (%)

Torsion angles (%)

a) 1 3-hevadwne £11
FtRHEY - ~231.64K30

byt 3-hevadiene CT
FIRHE) = - 231692638

) fd-hevadiene b
FeRHEY - - 231694327

dr Fd-hexadiene TCT
F(RHEY 231685518

ey L d-hevadene 1177
F(RHE) 231 6K

£y 1 3-hevadiene CT¢
FIRHE) 231 ARY0TY

g) 1 S-hexadiene CTT
FRHE) = - 231687134

h) 1.5-hexadwne TTT
EIRHEY - - 231685396

11 . S-hexadiene B
FORHE: - 231682948

§ VS hesadiene 1O
F(RHEY - 241 .h72381

by 1 3-ovdehesadiene

FIRHEF) = 23).53ua7y

b | dcseloheradiene
E(RHEY} - 230 833K

Cl- €2+ 13208
C2- C3 = L4661
Ci-— 3 13216
Cd-C3 - 13186
C3- Co e 13316
Cl--€2 = 13207
C2— (3 14771
C3-- 4= 1,3209
Cd- C3 = 1.5203
CS - Ch = 546
CL--C20 13183
2 -C3 1Sy
Ci— (4 L5y
C3--C5 - 13159
C8- 6 - 139
Cre= C2 = 13163
€2 - C3 = §5183
C3—=C4 ¢ 15167
C3- C3 - 13160
C3 - Ch 1A
CLo-02 0 13156
203 - 18217
Cl-C3 - 13223
C3 - C3 - 13160
CS - Ch » 13198
Cl =2 = 1L316S
2 C3 - 1LSE
Cy— 4+ 1.5337
Ct - C2 = 1.3165
C2—C3= 1512
C3-—Ca - 153387
(4—C5 = 4 5208
C8—C6 = 13159
Cl—C2 = 1.3160
C2--C3 = 1.5193
¢33 v 1.5428
Cl- (2= 13157
C2--C3 = 1.5102
C3 -3 = 1.5767
Cl=--(2 - 13169
€2 - (3= 18228
C¥ 4 157X
C) - 2 - LIRS
2 Cye 1473
[GS T QLEERN IRV
C3 0 Ch = 1.5A48%
Cl €2 - 135K
C2- 3 LSt

ClL-C2= Che 124261
C2= C3~ €4 123584
C3 405 124040
C4--C5 - oo 112132
Cl- C2--C3 = 127181
2 C3--C3 126696
3= (4 C8 = 12415
4 3 Ch = (12181
Cl-= €2 C3 - 124782
C2=C3= C4 = 111209
C3-C4 05 = 124689
CA--C3- Co = 12471K
CL- C2-C3 5 123561
C2-- C3— 4 =~ 116933

C3 4 C5 = 128537
4 - CS--Co - 123412

ClL - C2-C3 = 1244992
C2 C3=Cd -~ 113290
C3 04— 5 = 124438

Cd O3S Ch - 124209

-2 —C3 -
C2—C3- 4 -

127.107
114.787

Cl=C2—Cl= 126789

CrC3—4 = 115.14]
C3—C3—C8 = (11930
Ca-—C5--C6 = [24.560

Ci - C2—C3 = 124612

C2 303 - 112,364
Cl=-2--CR = 124413
C2e C-Cd - 114729

C2—CY = 123066
(2 03204 119169
Cy- €203 121504
C3- 4005 - 12391
C3 - 0OS—Ch  115.307
Cl-- CY C3 = J12378S
C2--C3 4 = 112431

Cl=C2- C3==Cd = - (20876
(2=C3 - C4—CS = [ 18345
Ci- O3 - C3-—C6 ~ (180.000)

Cl—C2—C3—C4 = —115.743
C2- C3—=C4--C5 = (0.000)

Again because of computing constraints, the MBG¥ 2 calculations achieved within
the extended 3-21G basis set have been performed at the quasi-particle (QP) level
of approximation. Only the main ionization processes have been considered. The
second-order self-energy expansion is known to be quantitatively deficient, and no
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more than a qualitative simulation of the XPS spectra can be expected from these
calculations. However, as this approximation provides a simple but rather complete
description of the physics involved in the main ionization process. one should be
confident in the conclusions that can be drawn from our simulations.

Molecular Structure Dependence of the One-Particle and Many-Body Features in
the lonization Spectra

The photoelectron spectra of tne selected compounds. in the series of the hex-
adiene (and cyclohexadiene ) molecules. are displayed. using the same labeling order,
at the Koopmans and MBGF2/Qp levels of approximation. together with the cor-
responding MBGF 2 / QP poles presented as spike spectra. from Figures 6(a) to 6(1).
They all reflect the classification of the valence molecutar orbitals of a C,H,, -
{C,H,, ) molecule into n molecular orbitals of (C,, + H,,) character in the inner
valence region. and 2n — 1 (2n — 2) molecular orbitals of (C,, + H,,) character
in the outer valence region. Considering the very different C», and C-,, photoelectric
atomic cross section, the relative intensities from the inner and outer valence region
do not reflect directly their corresponding electronic population. Because of the
low X PS photoionization cross sections of outer molecular orbitals, the most specific
information on the molecular structure is likely to be obtained from the inner-
valence region.

The simulated spectra differ significantly from one system to another, confirming
the earlier proposition that the valence region of the XPS valence spectra can be
usefully analyzed in terms of primary and secondary molecular structures. As there
are many factors { cyclization, isomerization, conformation ) leading to such dissim-
ilarity, this observation calls for more systematic and detailed investigation.

Cyclization

Most of the simulated spectra for the open linear hexadiene molecules considered
here [Figs. 6(a) to 6(j)] show the characteristic accumulation of one-particle levels
in pairs at the edges of the inner-valence regions, these unresolved pairs of levels
resulting in the extremely sharp and broad peaks bordering the C,, valence bands.
In the outer valence region. the electron levels are so densely packed that a precisc
assignment of peaks in terms of molecular orbital levels is not possible in an ex-
perimental spectrum. Considering the overall energy distribution of the electronic
states, the inner-valence spectra simulated at the Koopmans level of approximation
are qualitatively similar to the corresponding spectrum of the n-hexane molecule
{33]. the most striking difference coming from the gap between the C;, and C,,
valence bands. and the shape of the C, valence band.

The inner-valence electron levels are better resolved [Figs. 6(k) and 6(1)] in the
case of the cyclohexadiene molecules. The electron levels arc ¢ither nearly degen-
erate. or separated by rather large and similar energy intervals, these structures
being characteristic of medium sized highly symmetric cyclic molecules. In the
outer valence region also, the electron levels fall into well-resolved structures. Con-
sidering again qualitatively the overall distribution of electron levels. the cyclic
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niolecules conadered here provide spectra closely related to the correspunding
spectra of the evelohexane molecule in condensed phase [ 341,

Isennerization and Conjugation

To compare the isomerization fingerprint in the \pS spectra of the open 13-
hesadiene, { d-hexadiene, and 1.5-hexadiene molecule series, we consider cach of
these molecules taken tn its more spatially extended 111 contormation. Thewr cor-
responding spectra {respectively, Figs, 6(ad, 6¢¢ ). and 6(hi] show shght ditferences
in the gap between the Cooand Cs,oregions, in the onizanon energy of the highest
(7) molecular orbital, and the energy splitting of the two = outermost levels. These
quantities decrease as the conjugation between the € C doudble bonds is pro-
gressivehy interrupted by the msertion of methylenic and cthylenic spacers. In re-
Tationship to the large vanaton in the amplitude of m-conjugation or through-space
interactions, the most striking cflect ol the 1somernization s ohserved i the outer
valenee spectra. On the other hand. the carbon backbone and the general bonding
or antibonding pattern of the moleculir orbitals of (- + H,.) character being
almost unchanged, only shight but continuous varistions are observed i the ianer
valence region when comparing. at the Koopmans level of appronimation, the
spectra of the 1.3-0 14- and 1.3-11 1-.exadiene isomers,

The spectra obtained at this level of approximation for the 1.3- and . d-¢velo-
hexadiene molecules also only display shight variations in the relative positions of
peaks and photoionization intensities in the mner valence region., because of the
large resolution of the Co, 1y levels. and almost because the general topotogy of
the carbon backbone remains also nearly unchanged. As in the case ot the hinear
hesadiene molecules, the wnization energy of the highest () molecular orbital
and the energy splitting between the 7 levels decrease strongly with the loss of
conjugation between the double bonds. lcading 10 a4 more sigmhennt change in the
shape of the outer valence band. In a UpSs spectra. because of the enhancement of
the photoionization cross sections in the outer valeace region. the cffects of isom-
erization on the m levels would lead 1o much more striking features than in our
simulated NPS spectra,

Going bevond the Koopmans approximation. the MaGE2 /0P calculations show
considerable ditferences between the spectra from one isomer to another with the
introduction of the many-body effects in the description of the ionization process.
Both MBGE2 spectra show an important contraction of the energy scale compared
to the H results, the relaxation etlects being exacerbated as long as we move from
the top to the bottom of the valence bands [ 33]. The outermost o levels are affected
during the tonization by much more weaker many-body eftects than the o levels.
In connection with the increasing relaxation effects. we observe (Table 1) a de-
creasing pole strength and hence vahdity of the molecular orbital picture in the
resion of the larger clectron tinding encrgies. We observe a much stronger break-
down of the molecular orbital picture in the inner valence spectra of the tulls
conjugated dienic molecules [Figs. 60a). 6(b). and 60k, the magnitade of this
hreckdown decrcasing (Table 1) in the spectra corresponding to methylenic and
then cethylenie structures, as expected from the loss of “internal™ polarizabihity wath
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TaBLe H. Many hody features in the tnner valence spectra of the selected unsaturated hvdrocarbons,

Molecule/
polarizability (a.u.) MO IP(HF (V) IP(GF2)-(eV) AP (eV) I
a) 1.3-hexadiene TTT 1 29.975 26.232 3.742 0.194
a = 49,61 2 28.574 25078 -3.499 0.301
3 26,754 23370 -3.384 0.832
4 23477 20613 -2.862 0.857
5 21.287 18.597 -2.690 0.865
6 20.517 17.962 -~ 2.555 0.964
b 1.3-hexadiene CTT 1 26924 25.796 -4, 128 0.489
a = 4778 2 28.497 24.474 -4.023 0.179
3 26.622 23.342 -3.280 0.845
4 23.523 20.618 ~2.905 0.856
) 21.917 19.250 ~2.666 0.869
6 19.729 17.248 ~2.480 0.870
¢) {.4-hexadiene E 1 29902 25914 -3.989 0.772
w = 47.33 2 28.582 24.946 -3.636 0.533
3 26.415 23.097 ~3.318 0.828
4 24171 21.278 ~2.896 0.866
5 20.631 18.202 ~2.429 0.876
6 20.435 17.921 -2.514 0.872
d) I 4-hexadiene TCT 1 29.864 25.842 ~4.022 0.670
a = 46.34 2 28.533 24911 -3.623 0.813
3 26,422 23.135 ~3.287 0.838
4 24,177 21.351 —2.823 087}
5 21.284 18.670 ~2.614 0.868
6 19.734 17.363 -2.371 0.878
¢) l.4-hexadiene TTT 1 29.826 25.790 ~4.026 0.640
o = 4595 2 28.594 24.962 -3.633 0.805
3 26.388 23,119 ~3.269 0.835
4 24.145 21.302 -2.084 0.870
5 20.794 18.359 -2.436 0.876
6 20.260 17.770 -2.490 0.874
) 1.5-hexadiene CTC 1 29.966 29.061 ~3.905 0.797
a = 4696 2 28.586 24.990 2.596 0.828
3 26423 23172 ~3.2581 0.851
4 24178 21.166 ~3012 0.860
5 20.871 18.371 - 2,500 0.874
6 19.718 19.473 —2.243 0.887
g) 1.5-hexadiene CTT | 2992} 26.007 ~3.914 0.789
a = 46,53 2 28.620 25.027 -3.593 0.82)
3 26.556 23.289 ~3.267 0.850
4 23.832 20.867 —2.963 0.861
s 20.728 18.304 2423 .877
6 20.243 17.886 -2.356 0.881
h) 1.5-hexadiene TTT 1 29.867 25.946 - 3622 0.777
a - 46.07 2 28.658 25.065 --3.392 0.815
3 26,681 23.400 -3.281 0.848
4 23.414 20.500 2914 0.863
5 20974 18.569 2.405 0.880
6 20.372 17.995 2377 0878
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Faste U (Conunued)

Molecule!
polarizability (au.) MO IPCHE)-(e V) IP(GE2)-(eV) AIP (eV) r
1) 1.5-hesadiene F 1 29,794 23 KSD 34944 0,790
a - 4687 2 28,822 25212 - 330 0.799
3 26.498 232142 32KS 0.843
4 23.603 20.630 2467 U.R60
b 21.073 18.550 2524 0874
6 19,967 17.647 2319 (I3,
1 heaadiene TCT i 29,733 25853 1891 .79y
a - 3875 2 2R.647 23032 latd (X113
3 26.614 23,364 3250 (3. 838
4 23518 20612 2903 (.862
b 21.283 1%.7349 - 25443 0.X72
6 20038 17.6Y9 RMREN 0).8R0
k) 1.3-evelohenadiene { 30.616 26.301 43138 0.664
a - 33 RT 2 27.606 23813 3794 0.763
3 27.341 23.561 - 780 4615
4 23290 20,242 - 3048 0.R36
S 21.805 18,741 -3.064 0.851
6 18,786 16,33 —2.447 0.869
I Ld-cvelohevadiene 1 20.6Kt 26477 - 4.204 0.520
a - 4384 2 27.681 24.012 - 3670 0.830
3 27.322 23578 --3.748 0.825
4 21748 20,678 -3.037 (.856
s 20.306 18.376 -2.930 (.859
6 18.746 16,367 -2.379 (.874

the increasing interruption of the wm-conjugation. For the 1.3-hexadiene molecule
in its morc stable conformation. the bre. kdown of the molecular orbital picture
[Fig. 6(a)] for the ionization process of the first two molecular orbitals is virtually
complete. a result that recently has been confirmed by an experimental investigation
on the closely related butadiene system [ 36]. For such systems. a very large fraction
of the main photoionization intensity is dispersed to a rich satellite structure of
shake-up lines. rendering delicate the interpretation of their Xps spectra.

Contormation

Because of large vaniations in the amplitude of interactions between the conjugated
double bonds. considerable differences are induced by conformational changes both
in the inner and the outer regions of the XPS spectra simulated [ Figs. 6(a). 6(b)]
for the selected forms (TTT, €TT ) in the 1.3-hexadienc series. In the inner valence
region. the two highest occupied molecular orbitals, exhibiting four and five nodes
atlong the carbon backbone. are strongly stabilized or destabilized with the en-
hancement of. respectivelyv, the bonding or antibonding contributions in the CTT
form. The resulting splitting of the correspo - ing energy levels at the low energy
edge of the (., valence band lead to the largest variation observed in the convoluted
relative photoionization intensitics. Moreover. at the MBGF2/QP level of approx-
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imation, a weaker (but still heavy) breakdown of the molecular orbital picture in
the bottom of the inner valence band is predicted ( Table I1) for the CTT conformer.
This can indirectly be related to a small but significant reduction of the molecular
electric polanzability with the cis-orientation of the double bonds. The vartation
in the amplitude of the many-body effects leads to observable variations at the high
energy edge of the C;, band.

As we run along the series of the 1.4-hexadiene conformers [Figs. 6(c¢) 10 6(e)}].
systems which provide strong methylenic and through-space w-interactions between
the double C, —C; and C4—C: bonds, significant variations are also observed
both in the inner and outer valence regions. The spectra simulated {Figs. 6(c),
6(e)] for the E and TTT conformers are very similar. reflecting a large resemblance
in the molecular structures. Indeed. from the point of view of intramolecular in-
teractions, the E conformer differs essentially from the TTT conformer only by a
gauche instead of anti orientation of the substituents with respect to the C.—C;.
and C; — C, single bonds. Considering [Fig. 6(d)] the spectrum obtained for the
TCT conformer, the most obvious variation also comes from the peak at the low
energy edge of the C,, band. The energy separation between the two electron levels
from which this peak results through convolution increases strongly, reflecting large
vanations in the bonding or antibonding pattern for the molecular orbitals of (C5, +
H,,) character resulting from the ¢is-orientation of C, and Cs with respect to the
C;—C, central single bond. In these series. significant variations in the magnitude
of the many-body effects arc also observed from one conformer to another. Our
calculations show important many-body effects in the form of a strong breakdown
of the orbital picture at the bottom of the inner vaience band. the importance of
this breakdown decreasing again with the methylenic conjugation and the w-inter-
actions of the C — C double bonds from the E to the TC and then the TT conformers.

On the other hand, the vinyl groups interact much more weakly in the 1.5-
hexadiene series of conformers, and significant variations can only be observed in
the shape of the inner valence spectra. Considering the conformers (CTC, CTT, TTT)
which provide an anri orientation for the vinyl substituents with respect to the
central Cy3-— Cy single bond. slight but continuous variations can be observed { Figs.
6(f). 6(g).and 6(h)] in their inner valence spectra. With the E. and 1TCT conformers.
once again. the most striking variation [Fig. 6(1). 6(j)] comes from the bordering
peak at the low energy side of the Cs, region. and the splitting of the electron levels
from which it results is reflecting the severe destabilization of the molecular system
with the rotation of the vinyi substituents in an eclipsed orientation with respect
to the central C; — C4 single bond. Despite the influence of the two extreme vinyl
groups. leading to rather important many-body effects on the ionization potential
and a small breakdown of the molecular orbital picture throughout the inner valence
energy range. the Koopmans and MBGE2 spectra are qualitatively similar.

Polarizabitity Dependence of the Many-Body Features in the Inner Valence
lonization Spectra

In recent articles [29.30] we have pointed out a dependence of the relaxation
and correlation contributions on the tonization potential with the size of oligomeric
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systems or the delocahization of molecular orbital, both factors influencing also the
electnie polarizability,

The heavy breakdown of the molecular orbital picture predicted in the inner
valence 10nization spectra of large conjugated molecules can be explained in terms
of a low molecular svmmetry group and the presence of a high density of excited
configurations in the low energy region. The observed trends reflect the analogy
between the mechanisms underlving the internal response of the molecular system
to the 1onization of one ot its electrons, and to the response to an external electric
field: small excitation energics to a large number of states favor both strong final
dynamic correlation effects on the 1onization process and large molecular electron
polarizabilities. From such considerations, it is interesting to attempt to establish
a correlation (Fig. 7) between the fraction of photoionization intensity dispersed
from the main inner valence linegs to satellite structures with the static spatially
averaged polarnizability obtained from a soOS calculation, Despite the variations in
the volume and shape of the molecular clectron cloud. despite the changes in the
relative orientation of bonds. the observed trend in this figure is a consistent en-
hancement of the probability to observe shake-up lines with the polarizability of
the most comjugated 1.3-: and 1.4-hexadiene molecular systems. In the 1.5-hexadiene
serics, on the other hand. these average probabitities do not provide such a variation
with the molecular potarizability, a result that can be explained if we assume the
additivity of the dynamic internal polarization effects due to the most polarizable
double bonds interacting weaklv, such an additivity for the static polarizability to
an external field being complicated by difference in relative bonding orientation.

Conclusions and Outlook for the Future

The quahity of the molecular orbital picture for the iomzation process has been

shown 1o decrease strongly with the degree of m-conjugation in unsaturated hydro-
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carbons, in indirect relationship with the molecular polarizability, making the in-
terpretation of the XPs spectra of highly conjugated compounds difficuit. To obtain
reliable information on structural questions from the ionization spectra, the inclu-
sion of relaxation and correlation contributions is important to describe. even at a
qualitative level. the effects resulting from variations in the primary and secondary
molecular structure,

in the particular case of the hexadiene series of conformers and isomers considered
here, the most specific information on the molecular conformation can be obtained
from the inner valence region. Changes induced by isomerization in the outer
valence spectra obtained with Koopmans and second order MBGF calculations are
quite comparable. However, important differences arise between the two levels of
description of the relative photoionization intensities in the inner valence region,
stressing the need for many-body effects to interpret that region of the XPS spectra.

To obtain more reliable and quantitative simulations, Green’s function calcu-
lations have to be achieved going beyond the quasi-particle approach and using a
more sophisticated scheme for the expansion of the self-energy. such as the two-
particle-hole Tamm-Dankoff-Approximation. This should result in an enhance-
ment of the trends observed in the many-body features occurring in the spectra of
the compounds considered. Photoionization cross sections should also be computed
by means of a nonparametric approach. and larger basis sets should be considered.
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Coupled Cluster Approach to the Single-Particle
Green’s Function

MARCEL NOOIJEN and JAAP G SNIIDERS
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Abstract

Diagrammatic and Coupled Cluster techniques are used 1o develop an approach to the single-particle
Green's tunction G which concentrates on G directly rather than nrst approximating the irreducible self-
energy ard then solving Dyson’s equation. As a consequence the ionization and attachment pants of the
Green’s function satisfy completely decoupled sets of equations. The proposed Coupled Cluster Green's
Function method (CCGF) is intimately connected to both Coupled Cluster Lincar Response Theory
{CCLRT ) and the Normal Coupled Cluster Method (NcOM). These relations are discussed in detail.
© 1992 John Wilev & Sons. Inc.

Introduction

The single-particle Green's function is a powerful tool to calculate ionization
and electron attachment spectra of molecular and atomic systems [1-9]. Vertical
ionization potentials and electron affinities derive from the pole positions of the
frequency dependent single-particle Green's function, while the spectral intensities
are related to the corresponding residues. In the field of quantum chemistry various
approaches, such as those based on Dyson’s equation [i1-4]. the superoperator
resolvent [5.8] or equation of motion techniques [9]. exist to approximate the
single-particle Green'’s function. If perturbation theory is used to arrive at the detailed
form of the working equations these methods are all closely related or equivalent
[6.7]. The methods based on Dyson'’s equation employ an irreducible self-energy
Z(w) that can be represented by a series of perturbation diagrams. The single-
particle Green'’s function, G(w), is then obtained from Dyson’s equation

Glw) = Golw) + Gp(w)Zw)G(w) = Gg(w) + Gp(w) Z(w)Golw)
+ Go(w) 2 w)Go(w) Z(w)Gplw) + - - -

By solving Dyson’s equation using some diagrammatic approximation to the ir-
reducible self-energy one implicitly performs a partial infinite summation of per-
turbation diagrams contributing to G(w).

In order to obtain acceptable results approximations have to be used that preserve
the analytical structure of the irreducible self-energy. The w-dependent part of the
rreducible self-energy has a spectral representation that is given as a sum over
simple poles [4]. These poles lie partly in the ionization part of the spectrum and

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 55-83 (1992}
© 1992 John Wiley & Sons. Inc. CCT 0020-7608/92/010055-29
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partly in the attachment part. Because of the desired structure or the approximate
irreducible selt-energy one cannot employ a simple order by order perturbation
expansion of the irreducible self-energy bevond second order. In higher order ap-
proximation schemes ( 2ph-1DA [ 2], ADC [4]) the irreducible seli-energy is therefore
defined by a partial infinite serics of diagrams. In such schemes there 1s one equation
that determines the ionization part of £ and one equation for the attachment part.
These equations are completely decoupled and by solving them one 1s implicitly
summing a partial infinite series of diagrams thut ~ontributc to the respective parts
of the irreducible self-energy. Both parts of the irreaucible self-energy are essential
for an adequate description of 1onization and electron attachment processes. The
coupling between the two parts of 2 is achieved through Dyson's equation that
subsequently has 10 be solved to obtain the single-particle Green's function. This
way both ionization potentials and e¢lectron afhinities are obtained from a single
equation and this may be considered the main characteristic of current Green's
function methods as applied to calculate quantities of spectroscopic interest.

Because of the similarity of the diagrammatic perturbation series for G and Z
the question arises if one could not define separate equations for the iontzation and
the attachment part of G directly instead of 2 and skip Dyson’s equation altogether.
Such a scheime can only be useful if both pants of the irreducible self-energy are
present in either resulting part of G. This is the starting point for the present in-
vestigation,

To arrive at decoupled equations for the respective parts of the single particle
Green’s function we start from the connected diagram perturbation senes for G{«).
The decoupling of the ionization from the attachment part of G(w) is trivially
achieved by considering only those time-ordered diagrams in which the (external)
anuibilation operator acts beforg the creation operator. The corresponding frequency
dependent diagrams constitute the perturbation series for the ionization part of
G(w). Analyzing this perturbation series and taking 1t apart we identify a number
of w-dependent connected excitation operators and define them in terms of their
diagrammatic perturbation series. Then. using essentially the techniques of Coupled
Cluster theory [10-15]. diagrammatic equations are presented that define these
operators in a recursive way. In the final step the diagrammatic perturbation series
that determines G(«) is reconstructed in terms of the w-dependent cluster operators.
The d yrammatic approach advacated here is potentially exact. Approximations
are introduced by neglecting connected excitation operators from a certain excitation
level onwards. The trunce .+ diagrammatic equations then determine a partial
infinite set of perturbation diagrams. which defines the approximation to the single-
narticle Green's function.

Having established the diagrammatics of the Coupled Cluste, Green's function
(¢CGF) approach we proceed 1o translate the diagrammatic equations into algebra.
From the algebraic equations it will transpire that the CCGr approach is intrinsically
related to Coupled Cluster Linear Response Theory, CCLRT. {16-23]. also known
as CC equation of motion, CC-pOM [18.20.21]. CCLRT in turn has been shown to
be related to the Fock Space Multi-Reference Coupled Cluster method [24-26] or
open shell ¢C {24,251 which presently is under strong development [27-30]. The




~4

h

COUPHED CTUSTER APPROACH

CCLRT equations for the principal 1onizaton potenualds and clectron atfimuies can
be shown to be equivalent to the cquations that derive from the one-valenct sectors
of Fock Space MR-Cc [31.32.28].

The diagrammatic Green's function approach presented here provides an alter-
native derivation ot “he CCHLR 1 equations and elucidates the inumate relation be-
tween Green's functions and Lincar Response in the contest of Coupled Cluster
theory. An advantage of the present presentation is that the derivation follows very
natural lines once the perturbative diagrammatic content of the «-dependent con-
nected excitation operators s estabushed. In a previous derivation of ¢t R 1 choices
that were made in the process were mentioned explicitly [ 20.21]. Also the connection
with Green's function methods remains clear due 1o the dugrammatic point of
view. On the other hand algebraic methods show clearly how the equanons can be
cast in a tractable computational scheme and allow an casy interpretation of the
ecquations. For this latter purpose the cquation of motion derivation of ¢CIR1
[18.20.21] is particularly useful. We will consider the FOM derivation and claborate
on these equations in relation 10 CCGY in order to arrive at equations for Feynman-
Dyson transition amphtudes and consequently ground-state propertics that derive
from the Coupled Cluster Green's tunction. At this point contact is made with the
Normal Coupled Cluster Method {NCea). [33.34] which allows evaluation of
ground-state expectation values in a CC framework. The ¢CGr can then be regarded
as the Fourier transform of a time-dependent expectation value within the NCOM
formalism,

The Single-Particle Green's Function

We assume a finite dimensional Fock space. that is defined through a suitable
set of orthonormal spin orbitals and if we refer to “exact’ results this applics to the
finite vector space considered. The system of interest consists of a number of pos-
itively charged nuclei at fixed positions, and A electrons. The Fock space Hamil-
tonian is given by

] - X St
II = A + }_‘ /},.‘,(1;111(, +
g I

Lo}

o~ . At af o ma
o b dgad, (i
TR

'y is the nuclear repulsion term, 71, denotes the sum of the matrix clements of
the kinene energy and nuclear attraction operators. while 17, are two clectron
integrals in 12127 notation. d,', and 4, are creation and annihilation operators
with respect to the one-particle basis functions.
The single-particle Green's function (or matrix ) is defined by [1.35]

Gt 'y = =W T nd 'y, ey s (2)
Here W, 15 the exact. normalized groundstate of the N-particle system under
consideration. d@,.(1). d (1) denote annihilation and creation operators in the Hei-

senberg picture and 77 -+« 1 1s the Wick ume-ordering operator, The components
of the frequency dependemt single-particle Green's function.
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G(w) = f dit = 1Ye™" G, ) . (1)

expressed in their spectral representation read

Gplw) = T ol dp | WYL M dy | W)
.
RS AL RIS AT AL 5
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w (Lu ED (4)
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where we suppressed the usual convergence factors +iy, which are unimportant in
this work. Vertical ionization energies and electron athnities are derived from the
pole-positions of G(«). while the Feynman-Dyson transition amplitudes
SV PG, . and so forth can be obtained from the corresponding residucs.
The single-particle Green's tunction also contains detaited information concerning
the groundstate. Both the one-particle reduced density matrix and the total ground-
state energy can be obtained by taking appropriate contour integrals that enclose
the tonization potentials [ 35].

To arrive at a perturbation expansion for the single-particle Green’s function,
the Hamiltonian is partitioned as

I‘} = 1)() + l‘.
1]() = l';“)) + S Cl,i\v(d;d,u). Wlth 1':”” = <(1’“| I}I(p()>

n

. by oAt A At
E ] ,xqr\"\(a/raruqa\) - ( 5 )

JATRARN

(S R

where we assume a representation in canonical Hartree-Fock orbitals. The operators
we use are always written in normal order with respect to | &, ). the Hartree-Fock
determinant. The use of Hartree-Fock orbitals ensures that the one particle per-
turbation in normal order vanishes identically. and this reduces considerably the
number of perturbative contributions (diagrams) that have to be taken into account,

The perturbation expansion of the single-particle Green’s function is treated in
many textbooks. (for example, Ref. [35]). and the result can concisely be written
as

(Bl T UG = )a (D) D)

Gttt = , : 6)
it ) (.\(I’(;!LY(‘Y/\ "1)!‘1’1)) (o)

which after invoking the Linked Cluster Theorem reads
Goh1. 1) = (DT a0 Ux . =2 ) Py Damnectes - (7)

All operators are now given in the interaction representation. The perturbation
expansion of ¢ ' ~=ives Froa the perturbation expansion of the evolution operator.
expressed formally as
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Equation (7318 represented diagrammaticatly by the sum over all topologically
distinct. closed. connected diagrams, that besides interactions trepresented by wiggh
lines) contain two external points labeled poand g. We represent these eaternal
points by crosses connected by a dashed line that runs from p to ¢, Typieal examples
of contnbuuing diagrams are given in Figure 1. Each #th order Feynman diagram
(containing # interactions ) gives nise 1 (a + 20! different ume-orderings or Gold-
stone dragrams [36]. Time runs upwards in these diagrams. The diagrams can be
divided in two distinet classes, according to the ttme ordering ot the external points.
If7> " then d (') acts before d,.(1) and the diagram contributes 1o the attachment
part of G,,,({. ). The dashed hine points downwards. If 7 < " then a,.(1) acts first
and the diagram contributes to the iomzation parl. These diagrams are characterized
by a dashed line that points upwards. This partitioning of diagrams remains vahid
if the internal time integrations and the Fourier transform of G, (. ¢"Yare performed.
It follows that the ionization part of ¢, («) 15 given by the sum over all time-
ordered diagrams where the dashed line points upwards.

The diagrams are evaluated according to the usual rules. as given for example
1n Cederbaum and Domcke [1]. With regard to this article the most impontant rule
concerns the energy denominators: With each level (between cach two interactions,
between an interaction and an external point, cte.) there 1s assoctated an energy
denominator which reads

Yo - 2 oefw) (9

-~
;
The sum over 7 runs over all hole-lines (directed downwards ). that are present at
this level. The sum over ¢ runs hkewise over ail particle hnes ( directed upwards ).
The w-contribution is present if the dashed (or w= 1) line cuts the level considered,
entering with a minus sign if the line points upward. with a plus sign otherwise.
Another important rule savs that a minus sign should be added for each hole-line.
and for each closed foop in the diagram. In this conncction it should be mentioned
that the dashed w-line is not treated as a real hine in the algebraic evaluation of

-,

Frgure 1. Perturbation diagrams that contnbate to G, (w). ta) s_cond-order contrbution
to the attachment part of G ¢ b)) Atth-order contribution 1o the lonization part.
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these diagrams in the sense that it cannot make a loop closed. it does not contribute
to the number of hole lines. nor does it influence the degree of connectedness of a
diagram. The dashed line 1s merely a help o the eve 1o facilitate the evaluation of
the diagram. in particular the w-dependence of the denominators. We will see shortly,
howveever, that the dashed hne plays a erucial role in this work.

Derivation of the Coupled Cluster Approach
to the Single-Particle Green's Function

Cluster Expansion of the Single-Particle Green's Function

Diagrammuatics. From now on we restrict ourselves to the tonization part of the
single-particle Green's function. G2/ (w), that is represented by those perturbation
diagrams contributing to G(« ) tn which the w-line points upwards. The derivation
for the attachment part would be completely analogous. Let us first sketch briefly
what we intend to do. To analyze the diagram series that determines G(w) we
consider an arbitrary diagram and cut off a number of its top levels {interactions
or external peints). What remains is a diagram that has free. open lines emerging
at the top. Such a diagram corresponds to an operator [10-14]. Different tvpes of
operators will be distinguished. depending on the presence and the position of the
dashed w-line and each operator is defined as the sum over all perturbation diagrams
of a particular form. As in Coupled Cluster theory all operators we use consist of
connected diagrams only.

In the next step we show how one can write down diagrammatic equations that
determine the newly defined operators in terms of these very operators, that is,
recursively. Iterating these equations generates the complete diagrammatic pertur-
bation series for each operator. The single-particle Green's function is written in
terms of these operators. analogous to the correlation energy in Coupled Cluster
theory.

In this section the identifications we make are purely diagrammatical and we
will not give a physical interpretation of the associated operators. In the following
sections the resulting diagrammatics is transiated into algebra. which is discussed
in detail subsequently and the connections with CCLRT and NCCM are made.

To arrive at the desired operators we proceed as follows, Take an arbitrary diagram
contributing to G(w) and mentally cut it across a horizontal line between two
successive vertices. Now consider only the part (diagram) below the honzontal cut.
This part consists in gencral of a number of mutually disconnected parts. which
are internally connected. open from above (there are free lines emerging at the top
of eack disconnected part). and closed from below {there are no free lines at the
bottom of the disconnected pans). Of course the part of the diagram below the
hypothetical horizontal may also consist of only one connected part.

A few remarks on nomenclature are appropriate here (Cf. Lindgren [11]). A
disconnected { internally connected ) part is just one piece in the diagram. Free lines
only occur at the top of a diagram (due to our stripping off the top part of the
diagram) and they correspond to creation or annihilation operators, that generate
excitations out of the reference state [, . Free lines directed downward and going
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Figure 2. Diagrammatic representation of w-independent connected ¢ Coupled Cluster)
operators 7.

into the diagram create a hole in |®,) (operator 4d,). free lines directed upward
and leaving the diagram create a particle (operator ¢)). Here and in the sequel we
will refer to holes through the labels 7,/ k., .. ., to particles with «, b, ¢, . . . . while
p.q,r, s are used for arbitrary spin orbitals. Lines that are not free but run from
one vertex to another are called internal. The term open means that the diagram
contains free lines and corresponds to an operator (of particle-rank higher than
zero). A closed diagram is a diagram without free lines and corresponds to a constant.
G{(w). the quantity of interest consists of closed diagrams only. We note that the
external points, represented by crosses, and indicating the particular matrix-element
of G(w) that is involved, are not free lines associated with an operator.

Now let us classify the disconnected parts that are obtained by applying the
hypothetical horizontal cut. A disconnected part may or may not contain the dashed
w-line. If it does not contain the dashed line it has diagramatically the same form
as a contribution to a connected cluster operator familiar from the Coupled Cluster
formalism. These are the first type of building blocks. The cluster operators are
given by the sum over all possible, topologically distinct connected diagrams with
one (T}). two (7). and so forth. pairs of free lines emerging at the top of the
diagram, where each pair consists of a particle and a hole line [10-14]. Diagram-
matically the various T -operators are given in Figure 2. where the rectangular boxes
symbolize a sum over all possible connected “paths™ leading to the frec lines as
indicated.

The second possibility is that the disconnected part does contain the dashed line.
Here we distinguish two subcases.

(a) The w-line emerges at the top of the disconnected part. At this point one of
the external indices of G,,,(w) is specified (p if the w-line runs upwards). The diagram
is a contribution to a new type of operator, denoted as $'"(w). Analogous to the
T-operators we have S\ (w). $¥(w). and so forth, symbolized by a box with 1.
2, and so forth, pairs of lines emerging at the top. where one of the pairs contains
the dashed line (see Fig. 3). These diagrams correspond to #, 2Ap. and so forth.

IRV, WA,
\ A A
E_L_] | fl

s e S wi s e

Figure 3. Diagrammatic representation of w-dependent connected operators 5% (w).
that generate (N ) particle states when operating on { g, ;. The dashed line 1s external.
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Figure 4. Diagrammatic representation of w-dependent connected operators K'™¥'(w).
The dashed line is internal.

ionization /excitation operators assuming that the w-line is directed upwards. The
box svmbolizes again the sum over all connected perturbation diagrams icading to
the cmergence of the free lines as indicated.

{(b) The w-line is an internal line. At this point both external points (i.e.. the
matrix element considered) of G, («) are specified and we denote the associated
operator as R ""(w). distinguishing single. double. and so forth, excitation oper-
ators. The corresponding diagrams are given in Figure 4. The box symbalizes the
sum over all “connected” perturbation diagrams with an internal w-line. with free
lines at the top of the diagram as indicated. ( The term connecred has a slightly
different meaning here as will be explained below).

A general diagram contributing to G,,(w) is given in Figure 5. By successively
drawing hypothetical horizontal lines between interactions one obtains mutually
disconnected parts that are internally connected and which are all of one of the
above forms 7, S (w). or R7(w). It will be clear that any disconnected part
constructed in the above way can always be classified as a contribution to one and
only one of the above operators. In Figure 5 it is also illustrated how both the
ionization and the attachment part of the irreducible self-energy enter the ionization
part of G which is known to be essential for an adequate description of ionization
processes. The diagram in Figure 5 is reducible as it falls apart if one cuts the line
that is present at the level of the single S ‘"(w) operator. The part below this cut
contains a fourth-order contribution to the ionization part of Z, while in the part
above the $'\( «) level one identifies a third-order contribution to the attachment

Figure 3. A general { seventh-order) diagram contributing to ¢, (w). Hypothetical hor-
izontal lines are drawn. and the parts below these horizontal cuts are identificd as contn-
butions to operators 7. S (w). or R () of definite excitanon level.
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A

x

Figure 6. First-order contribuiion .o R'™'(w). We define this diagram to be connected.
treating the dashed line as an ordinary line in this respeet.

part of 2. The attachment part of Z enters in our CC description through nonlinear
terms like SY"'(w) 7> and inclusion of these terms is hence a crucial ngredient of
the CCGF approach.

The perturbation diagrams that contribute to the operators 7, S w). or R'"(w)
can be evaluated algebraically combining the rules for w-independent operators
that are given for example in Lindgren [{1]. with the familiar rules for the w-
dependence of the denominators [1]. There are some subtleties, however, in con-
nection with the operator R "(w) that we will address now.

(1) Consider the diagram given in Figure 6. This diagram consists of iwo dis-
connected parts, but by adding interactions and closing the diagram, such that it
becomes a diagram that contributes to G(w). these parts will always get connected.
The parts cannot be closed separately because each of these parts contains an odd
number of free lines. This notion is completely general. Diagrams like Figure 6
occur if we apply the hypothetical horizontat cut, and we include such contributions
in the definition of the operator R"(w). It follows that if we extend the notion
of connectedness by treating the w-line as an ordinary line that may connect two
disconnected parts. the operator R ™ (w)is given by the sum over all open connected
diagrams with an internal w-line.

(it) Consider next the diagrams in Figure 7. Both diagrams contribute to
R '™ (w). If we add an extra interaction to this operator, as in Figure 8. we close a
loop in Figure 8(a). but not in 8(b). So the algebraic rules for propagating the
operator R "9'(w) are not unambiguously defined. We resolve this ambiguity by
adding one extra rule to evaluate the diagrams. The w-line is treated just like an
ordinary line in the sense that we assign a minus sign also to those loops that
contain the w-line. On the other hand we add an extra minus sign to any diagram

A -h

Figure 7. First-order contributions to R (w). 1a) The dashed line is part of a closed
loop: (b) The dashed line 15 part of an open line connecting the free lines at the top.
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Figure 8. The rules for propagating the operator R*¥(w) are not unambiguously defined.
In Fig. 8(a) a loop is closed. in Fig. 8(b) nu loop is closed.

that contains the w-line as an internal line. Since the perturbation series for G(w)
only contains closed diagrams where the w-line is both internal and part of a (non-
existent) loop the extra minus signs correctly compensate each other. This extra
rule resolves the ambiguity noted in Figure 8 as now a loop is closed in both cases.
Also the diagrams in Figure 7 differ in sign using the new rule, which is correct as
diagram 7(b) is an exchange diagram of Figure 7(a).

Summarizing we treat the «-line as an ordinary line in the sense that it may close
a loop, and it may connect two disconnected parts. If the w-line is internal an
additional minus sign 1s included in the algebraic expression corresponding to
the diagram.

The perturbative diagrammatic definition of the operators allows us to write
down diagrammatic equations for the operators directly. This can be understood
if we strip off the topmost interaction (or external point) of an arbitrary diagram
contributing to a particular operator and analvze the remainder. This remainder
of course consists again of contributions to the previously defined operators. To
derive the diagrammatic equations we proceed in the reverse way. A particular
operator can be formed by connecting a number ( possibly zero) of building blocks
(operators) to the topmost interaction element (or external point) such that the
total diagram has the structure of the particular operator under consideration. As
each building block symbolizes a sum over a/l perturbation diagrams of a particular
form the equations are exact if all possibilities of constructing the operator are
exhausted. This means that for A-electron systems up to N-fold connected excitation
operators of the various types have to be included. The equations have a recursive
character because a building block beneath the topmost interaction may be of the
same type as the operator under consideration. The factonization theorem (Frantz
and Mills {37]) ensures that automatically all relative time orderings between dif-
ferent disconnected parts are taken into account by the above procedure. Hence
iterating the diagrammatic equations generates the complete perturbation series for
each operator.

In practice the equations have to be decoupled by neglecting high-level connected
excitation operators and iteration of the diagrammatic equations then generates a
partial infinite set of perturbation diagrams.

To avoid the plethora of terms that is usually obtained if diagrams are drawn in
full detail. we only indicate which diagrams contribute. This is sufficient for the
definition and understanding of the equations. Detailed algebraic cxpressions




COUPLED CLUSTER APPROACH 65

(working equations) can be obtained by expanding the diagrammatic equations
and evaluating the resulting diagrams according to the rules.

To draw the diagrams we make use of the operator (' = ¢/, the wave operator
in Coupled Cluster theory. C is as usual partitioned in operators generating single.
double. and so forth. excitations out of {$,). The C operators are represented by
shaded boxes with pairs of particle hole lines emerging at the top and they are easily
expressed in T-operators diagrammatically (Fig. 9).

A second (and related) reduction in the number of diagrams 15 obtained if the
lines in the diagrams are not explicitly connected. but only the structure of the
contntbuting diagrams is indicated. In the diagrams we consider there are free lines
emerging at the top of the diagram (one line may be dashed) that indicate the
excitation level of the operator ( which may be zero if the diagram is closed from
above). There is an energy denominator associated with the free lines and this is
indicated by a dashed horizontal line in the diagrams. Beneath the free lines is the
top vertex which is considered to be a two-particle interaction in normal order with
respect 1o |®; ). or an external point. Beneath the vertex there may be 0. 1, or 2
operators. At most one of the operators contains the dashed line and corresponds
to an $'"(w). or R(”"’(w) operator. Also there may be a C-type operator, which
can be expanded in T-operators if desired. The expansion of the C-operator in 7-
operators is crucial in the ultimate evaluation of the diagrams as they determine
whether the diagrams are connected. The total number of connected operators be-
neath the interaction is at most four, In the diagram the lines are not yet connected
to the interaction, nor identified with free lines at the top and we use the subscript
C to indicate that only connected diagrams are to be included.

Figures 10 to 12 represent the diagrammatic equations that determine the op-
erators 7, S"(«w). and R ™) (w) up to two-fold excitation level. The diagrammatic
equations have a hierarchical structure and have to be solved in succession. Figure
10 represents the Coupled Cluster equations and contains 7-operators only. The
equation for S S™M(w) contains both 7~ and $”(w)-operators. Hence to solve for
S (w) requires knowledge of 7. R'"(w) (Fig. 12) depends on T and SN w).

“
ARSI
MMM%%&E

Figure 9. Diagrammatie representation of the relation ¢ . . and (", are rep-
resented by shaded boxes,
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Figure 10. Compact representation of diagrammatic recursion relations for 7. An inter-
action with a C attached to it denotes the sum over all topologically distinct connected
diagrams of the indirated form. (a) equation for 7. (b) equation for T;.

so this equation can be solved only after the equations that determine 7Tand $*"(w)
have been solved.

The equations for the different components of an operator [e.g.. 7. Fig. 10(a).
and T, Fig. 10(b)] are strongly coupled. Such equations are always treated together
and they are considered one equation in the following sections.

In Figure 13 (the ionization part of) G,,,{ w) is constructed in terms of the above
building blocks 7, §"(w), R (w), and d}. This equation for G,,(w) is derived
in the same manner as the operator equations. Strip off the topmost vertex (inter-
action or external point) of an arbitrary diagram contributing to G, (w) and anaiyze
the remainder. The various contributions are easily classified as given in Figure 13,

In Figure t4 it is illustrated how the equations can be expanded in detailed
diagrams that can be evaluated with the usual diagram rules [§.10-14],
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Figure 11. Diagrammatic recursion relations for $'”’(w). (a) Equation for S‘.")(w). The

first two diagrams correspond to the initialization of § (,m( w). where the dashed line emerges

from the external point. The other diagrams denote the propagation of $'”(w)-operators

1057 (w). (b) Equation for §7(w). The first term corresponds to initialization. the others
to propagation.

Figures 10 to 13 constitute the diagrammatic representation of the Coupled Cluster
approach to the single-particle Green's function. We end our discussion of the
diagrammatics of the CCGF with an account of the Coupled Cluster aspects of the
approach.

(1) The operators we use are all connected.

(11) In the diagrammatic definition of the operators, the free lines emerge at the
top of the diagrams. All interaction lines occur beneath the endpoints of the operator
lines, and consequently all operator lines end at the same level. Hence, if a certain
perturbation diagram is included in the definition of an operator it does not mean
that every different time-ordering of this diagram is included in the perturbation
series for this operator as well. We stress that there is a choice here. One might
alternatively conceive of an approach where operators are defined in terms of Feyn-
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Figure 12. Diagrammatic recursion relation for operator R'™(w). (a) Equation for

RV®(w). In the first three diagrams the « line runs into the cxternal point, initializing the

operator R‘,W’(w). The other diagrams correspond to propagation. (b) Equation for
R(f‘”(w). Contributions 1-4: initialization. Contributions 5-8: propagation.

man diagrams, with no restriction on the time-orderings included. This would be
in line with the original time-dependent perturbation theory and the concept of
Green's functions. However, the use of time-ordered diagrams is essential to de-
couple the ionization and attachment parts of the Green's function. It also allows
us to concentrate on the topmost vertex to generate rather simple diagrammatic

LI C
i

Figure 13. The construction of G(w) in terms of dg, S*(w). R'™)(w), and T

C
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Figure 14, Example of expansion of one of the compact diagrams contributing to
S‘z”)( w). Using nondegenerate {not antisymmetric) vertices for both the interaction and
T-operator. this single diagram corresponds to cight distinct contributions.

recursion relations. The restriction on time-orderings included gains relevance if
approximations are introduced. For example a diagram that contains a contribution
(in the sense of Fig. 3) from 7>-SY’(w) might contain a contribution from
SY(w) in another time-ordering of the diagram. This diagram containing an
sy )(w)~contn'bution might then be excluded from the partial infinite perturbation
series that defines the approximation to G,,(w).

(iii) Although perturbation theory is the starting point for our approach the
final equations are independent of the parti..oning of the Hamiltonian in a zeroth-
order order and perturbed part. This will be evident once the algebra of the equations
is discussed.

The above notions are characteristic for the Coupled Cluster nature of our ap-
proach.

The diagrammatic equations that determine the Coupled Cluster operator T
{Fig. 10) are usually presented in a difterent way. In the perturbative type of diagrams
we use there is an energy denominator associated with the lines above each inter-
action (if any) and all interaction elements correspond to V (instead of H). We
stress that it is precisely the use of these perturbative type diagrams, together with
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their Fevnman-like interpretation, that permits us to write down the diagrammatic
equations directly. No algebraic equation is needed to define the diagram series.
Nowadays the common route to Coupled Cluster theory derives from algebra. It
is straightforward to show how the perturbative approach follows from the con-
ventional Coupled Cluster equation. We will briefly reflect on the relations between
the diagrammatic C~upled Cluster equations and their “dgebraic counterparts. This
also serves to introduce some convenient notation.

We use capitals f and .4 to denote ordered strings of hole and particle labels,
respectively,

l:{il.iw ..... B <<
A=1a ax .. ..l g <dar<o- o<y (10)

The strings J and 1 are nonempty and have equal length. The cluster operator is
written
T=3Ti=3:10). (1)

1.1

-~

where Q7 is a string of quasi-particle (or ¢-) creation operators.
Qf =(dha,dhd, - -dhd,). (12)
which generates excitations out of | $y):
Qf |®0) = |97 . (13)

The amplitude corresponding to this excitation operator is given oy t. Of course
the operator 7T is usually truncated, for example, to one and twofold excitation
operators. This is not essential in the theory and we will not further specify the
sum over / and A. The projection used below is on the manifold of states
{1®7>} that have a nonzero overlap with the state T @, y. The Coupled Cluster
equations read

He' [ @) = Ege™ | @) = (& |e "He'|&) = 0 =
(@} I("iI*—I()('i + ¢ ""'l"'(""‘iflm) = (e
—( D[ Hy, T]1®0) = (&f |e Te! |9,) =
(Er— EDt = (711 Ve’ @0 . (14)
Here £; —~ K, = 2.c; ¢ — Zaea £a. The equations can also be given at an operator
level as

. 1 ~
Ti= g iveliad (1)
oA =4

where in the connected product { l( ""}(;;’ only those terms contribute that corre-

spond to the substitution operator 7. This operator form is precisely the content
of the diagrammatic equations given in Figure 10. The energy denominator asso-
ciated with the free lines at the top of the diagrams is explicit in Eq. (15). In this
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derivation we used the familiar substitution ¢ ' Fe” = { e’ ! which derives from
the application of Wick’s theorem. see. for example, Ref. [38].

Algebraics of the operator S$®){(w). Analogous to the operator 7. the operator
S (W) ts written as

SMwy= T SMiw) = T s @) (16)
LA 4.1

where 7, is an ordered string of hole labels (of length = 1) and .4 an ordered string
of particle labels (possibly of length zero). The length of /. exceeds the length of
A by one, for example,

S""}t(w) = .‘;“’)',"‘(w)fl','. = ‘\-'1’17,‘;-'::‘:‘,}%‘(&,)‘\‘(é“:‘d” t ";:u xdu a‘iu’ (17
and
S {w) D) = s () () = s (w)| D). (18)

If the operator S (w) is expanded up to N-fold excitations (the excitation level
being defined through the length of the string /. ) the set of states { { ®7. > | is complete
in the (N — I )-particle Hilbert space.

The diagrammatic equation given in Figure 11, that defines $'"'(«) recursively
can be directly translated into

- A -~ g y
S (w) = m ( { [VS‘N(U)I(‘(’I }(,‘ + I‘ip‘ﬂlr‘.z) (19)
The energy denominator is made explicit. The first term on the right-hand side
corresponds to the “propagation™ of S " (w): connect SN w) to a ¥V interaction
and possibly connect T operators to the interaction. too. such that the free lines
generate the ionization/excitation 7, —» 4. The second term generates the “ini-
tialization™ of $*”!{ w), the diagrams in Figure {1 where the w-line emerges directly
from the external point p.

Equation (19) can be rewritten by bringing the denominator to the other side
and writing it as a commutator of S ™'{ (w) with H,. Then we let both sides of the
equation operate on [&,). This does not change the content of the equation as
S"(w) contains only g-creation operators. In the next step we sum over the various
S (w)-components and project against ( &7, |. This leads to

(P11 — wSP(w) = [Ho, S"(w)]] )
= (&F e T([V. $'(w)] + a,)e” | &y (20)

Here we also used that each component of $'”(w) consists of g-creation operators
only, and the fact that V contains an even number of construction operators to
replace the connected products with commutators on the right-hand side.

If one uses next that [ H,, $'”'(w)] contains g-creation operators only and hence
commutes with 7 one may write
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(BF [(~wS™w) — ¢ TTH. S W) e ) @) = (o fe lde’ 190)  (21)

where Hy and I are recollected. )
After expanding S w) = ,, 5 s ()08 Eq. (21) reads

T (@i e (~wlf ~ [H. Q4 el |58 (@)
J.. B

= (@7 (e Tde’) D) (22)

Define the matrix A with elements

(S 1e I(H. 98 1e” |$0) (23)
and the vectors b'”’ with compc nents
(@i le"de 100 . (24)
Equation {22) for the coefficients s'”’(w) then transforms into
(—wl — A)s'"(w) = b (25)
which can be solved by diagonalizing A: A = UAU "' leads to
U(—wl — U 's'"(w) = b (26)
or
s w) = U(-wl — A)7'U D" (27)

This equation deserves further analysis. The most salient feature of the matrix A
is that it is nonsymmetric. This implies that the matrix U is nonunitary: U ! #
U’. The right eigenvectors of A are accumulated in U, while U ! contains the left
eigenvectors. The eigenvalue spectrum is the same for both types of eigenvectors.

The matrix A has previously been derived in the context of Coupled Cluster
Linear Response Theory (CCLRT) [16-23] in a number of alternative ways and
below we review the equation of motion type of procedure [18.20.21]. The EoM
derivation leads directly to an interpretation of the quantities A, U, U ', and
U~ 'p"” occurring in Eq. (27) and shows how Feynman-Dyson amplitudes can be
extracted from the formalism.

Equation of motion derivation of matrix A. Let us use a shorter notation |$,)
to denote I‘Pﬁ) and introduce a nonorthogonal basis for the (N — 1)-particle
Hilbert space

1) = e | @) =70 @) = del 10) = O, | Weed (28)
together with the bra states
(X =(d e T, (29)
which are dual to the states | X,) in the sense that

(XX = (D, e Te |8, = (&, 9, = 5, (30)
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and
THIAN L = S el e (e Pt (31)

A A

The set of states | |.V',)! is complete if the set of states ||y | 15, because the
operator ¢’ is nonsingular. It the set of states {[.\',\) | is taken 1o be incomplete.
Eq. (31) denotes a nonorthogonal projector on the space spanned by | [ X' > | . The
idempotency of the projection operator follows directly from the bi-orthonormality
relation (30).

Next one tries to find (N — 1)-particle eigenstates | W!* ' by expanding

FRRDED NP SYENTARL DR RN
A A
= E ('A‘.Q.\('i Id)u> = O»- | ‘[’('('>

A (3

In this last expression one recognizes the equation of motion ansatz. Using that
ol [y = [Wee) is the exact groundstate. the eigenvalue equation for state
| WYY can be written

{1?. s c\..f?x}/’ [®y) = (E.—~ En) T en i XD (33)
A

A
Projecting against ( X,| = (®,|¢” ! one finds

S (b, e TTH. Qe |®0den = (E, - Egca (34)
A

that is.
Ac, = AE.c, (35)

It follows that the expansion coefficients ¢, of | ¥{* '’} in the nonorthogonal basis
{1 X )} are obtained as the right eigenvectors of the matrix A. The eigenvalues of
A correspond to the energy differences E, — E,, that is, ionization potentials.

This equation is also used to determine energy differences in case ¢’ | ®, ) is not
an exact eigenstate of /. In that case the eigenvalue equation for |¥!*™"") and
Eq. (33) are not equivalent. The use of the ansatz | ¥ {* ") = O.|¥,) and the use
of the commutator to arrive at the equation that determines the energy difference
directly is characteristic for the equation of motion method. Other assumptions in
the above derivation are particular of the method and various alternatives are found
in the literature {20,21}.

(i) The choice of the operator O, which consists of g-creation operators only.

(i) The Coupled Cluster form of the (approximate ) ground-state wave function.

(iii) The projection on the states (X .| to cast Eq. (33) in 2 computationally
tractable form. A consequence of using this projection is the absence of an overlap
matrix on the right-hand side of Eq. (35).

(iv) The operator O, is not required to satisfy the killer condition <\I'(,IO, =0
which occurs frequently in equation of motion type of approaches. This is related
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to the parametrization of the operator O, (point {). The equation O, ¥, =
[WiY Y determines the operator O, completely and there is no freedom left to
satisfy an additional killer condition [39].
We note that the above specifications arise naturally in our procedure starting from
the diagrammatic perturbation series for G(w).

We now continue our analysis of the matrix A by defining bra-states, which are
required to be (N — 1 )-particle cigenstates of H

(PN = SPN DA = S A (N = Sdu(dle T (36)

3 a a

i

The coeflicients d, are determined such that

S d.{X N HX,) = Ed, (37

or to get energy differences

S d. (e [TH. Qle” 190) = dalE, ~ Ey) (38)

that ts, d,A = d,AF,. The expansion coefficients d, are determined as the left ei-
genvectors of the nonsymmetric matnix A.

As the vectors d, and ¢, are the left and right eigenvectors of A they form a bi-
orthogonal set. and they can be chosen to form a bi-orthonormal set:

d -c, =6, (39)
Similar results hold for the states | (" ""S and (¥.Y 1
(PN = 3 d (XX ), = 6, (40)
>
Also
PN FARLTE SIS IR P ST RO ¥
v Ao
=T IXOM(E]I =2 X =180 (41
A A

The above results remain valid if one uses a restricted set of states { | X',) | and its
dual basis { ( X,|}. 1'"¥"" is then a nonorthogonal projector on the space spanned
by { [ X\)} or a resolution of the identity within this space.

Let us now return to the interpretation of the operator S'"(w) and insert the
above resolution of the identity into Eq. (22)

TR e TS IWINONE N (—wf — [H, Q5 DT |05 (w)
Jy.B v

= (&7 (e Tde’) | B0) (42)

or
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E S <¢11’1(, "i‘l’f.'\ |>>(_w — I:‘f,'\ oy 131;){‘Iff;\ “l(’l [(bf’:‘)s””"*(w)

JoB o»

={® (e ldeHd

(43)
Comparing with Eq. (26) we identity
A, = (ED Y = K, (44)
U, = (XY Yy =, (45)
and
U = (Y "X =d, . (46)

From these identities and the definition of b'”’ [Eq. 24] it follows

U '™ =3 (¥ ”36’”‘1’}?‘><q’?}.]l’ 'I.‘;;v"7.|¢n> = (b "dp Yee)  (47)
1.4

and using Eq. (27)
S ®e) = T X L )(bi e T

[ O |
X(=w—=EN D+ E) Y DG e (48)
hence

Y Y, V)
—w = (EMNY - Ey)

e'SP (W) o) = SM(w) | Wee) = T (49)
which is used later on.

If 7 is expanded up to N-fold excitations and the manifold of states | ot is
taken to be complete the equations are exact. In this case |¥[* ') and
( W *~"| are both exact (N — 1)-particle eigenstates. which may still differ. however.
in thelr normalization (only the overlap of these states is specified. not their indi-
vidual normalizations). In actual applications one will use a restricted set of states,
or equivalently a restricted set of operators (.. We note a few interesting obser-
vations. Let us consider the concrete case of using a { 4. 2hp} manifold:

(O} =1{d}. {dddn}} . (50)

(i) The character of the states | ¥!" '’} and (¥ M1 s vastly different. Due
to the presence of ¢’ the states [¥,*" ") contain up to V-fold excitations with
respect to | $, ). With respect to {($,]. ™7 acts as a deexcitation operator and the
states ( W\ """ can all be expanded in terms of (4, 2hp) bra-states (®,].

(ii) The set of states { | ¥ "’} } do not, in general, form an orthogonal basis:

S AL FARDE X NS R (51)

where (W/* | is the adjoint of [¥!* ") This also implies that the operator
=, WY I M1 Jacks the requirement of idempotency and hence cannot be
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considered a projection operator. The orthogonality of approximate states with
different eigenvalues might seem to be a very desirable property. but one may put
a question mark here. If one would project the exact eigenstates on a certain trun-
cated manifold, the projected eigenstates would not be orthogonal, although in a
least-squares sense this represents the best possible approximation of the eigenstates
within the manifold.

(iii) From the analysis sofar one might expect that the ionization part of G(w)
can be constructed from the information that can be extracted from the equation
for S w) alone:

(<‘I’M ”|aq|‘l’((>)* ‘["\ Dld, |‘I’<<>
w“(F()”‘E“ )

Gpgl(w) =
_ 5 (Fecldy V™ D) (¥e P 1dy [ Wee)
w—(Fy ~ E ”)

(52)

According to the above expression G’”(w) is obtained in intermediate normalization.
but this is easily corrected by introducing a normalizing factor. The fact. however.
that the operator %, [ ¥ (Y% (¥ {*~"| does not represent a projection renders the
above formula useless in practice. ( This was born out in numerical experiments in
which Eq. (52) was utilized to calculate the residues of the single-particle Green's
function.) Therefore we continue our analysis and show in the next section how
one can build up the remaining part of G.

Algebraics of the operator R ”")(w) and the construction of G,,(w). The operator
R'™{w) is written

R'"(w) = Z RPE(w) =3 rro8u)Qf (53)
1B

J and B denote ordered strings of hole and particle labels. respectively. of equal
length, so Q% [ = | ®F » refers to an N-particle state. The diagrammatic equation
in Figure 12 that defines R'"(w) corresponds algebraically to

R0y = — (i PR ()} e}~ {(diS'" 0N’} ?)  (54)
(E,— Eg)

The first term on the right-hand side corresponds to the propagation of R (w):
Conncct R'"(w) to a V-interaction and possibly connect extra 7-operators. such
that the lines emerging at the top of the diagram generate precisely the excitation
J = B. The second term generates the initialization of R ‘™(w) where the w-line
disappears again in the external point labeled ¢. There are two subtleties however.
Firstly $'”'(w) is not necessarily connected to 4} by a real line. It may be connected
to d, by the dashed line only. An example of such a diagrammatic contribution is
given in Figure 6 as was discussed previously. On the other hand if a cluster operator
T is present it will always be connected to d). Secondly. there is a minus sign in
Eq. (54). The algebraic expression then agrees with the direct evaluation of the
diagrams using the rules as discussed in connection with Figures 7 and 8.
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Equation ( 54) can be cast in matrix form following essentially the same steps as
in rewriting the equation tor $'"'(w).

—(@f e T[H R (w)e! |90 = (@l e TdiS @)’ [9)  (55)

or

— S (@i e TH. QT @) r B (w) = —( @) le Tdle’ S (w) b))
B~ — — ~ ~ -~ {(56)
B M)

¢'™(w) can also be written as

CZIVErME 2500TE ZR /L

i) = Z : w— (Eq— ECT) e
using Eq. (49).
The equation for r'™’(«) hence reads
~Br"(w) = ¢'"N(w) (58)
that 1s,
riNw) = —-B '¢'"(w). (59)

using the newly defined matrix B and the w-dependent vectors ¢\ (w).

These equations hardly present a practicle means of calculating the coefficients
r'"”?(w). For each element (pg) and for each pole of r”*(w) one would have to
solve a large system of linear equations. We will arrive at a suitable method, however,
if we continue to construct G(w). The final diagrammatic equation in Figure (13)
translates algebraically into

Gh(w) = { PR w)e” ), — {alS " (w) )., (60)

where [ .c. stands for fully contracted, that is, no construction operators remain
uncontracted. The resulting expression is a number. The minus sign in the second
term agrees with the direct evaluation of the diagrams under consideration. The
equation is rewritten

Glw) = (Dol VR ™ (w)e” | &) — (BolajS " (w)|d0) (61)

as only fully contracted terms survive in expectation values of the reference deter-
minant. Hence

GlHw) =3 (] l}ﬂ.’f(’i.lq’o> r o Hw) - <4’oia;5‘m(w)l¢o> .
J.B by ~
) /7

Substituting Eq. (59) for r'"(w) one finds
G2(w) = — B ¢ (w) — (Bola}S P (w)e? {) (63)

(62)
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where we also used that one can insert ¢/ in the second term without altering this
expression as 4} has to be contracted to $'”(w) and only the constant term in ¢’
leads to a nonvanishing contribution.

Now define coefficients - through

z=—fB"' (64)
or
B+ =0 (65)

The z-coefficients can easily be solved for. They are the solution of an w-independent.
nonsymmetric system of linear equations. The crucial difference with Eq. (59) is
that now one has to solve only one such equation,

Using the coefficients z and the expressions for ¢"(w) [Eq. (57)] and
e’S"(w)|d) [Eq. (49)] one finds from Eq. (63)

(<c]>(,| + Z ZB<¢5}le_j.)dzi\pix--”><‘i,,(,'\‘””]d[r{\l’(‘('>
J.B

Grolw) = Z ST ETT 66)
. (Feeldy 92" T V141 W)
, w = (E,— EI"™")
where (\i/ccl is defined by the expression between parentheses,
(¥ecl = (Dol +lziz'*(4>f;e“"". (67)

Equation (66) clearly resembles the spectral resolution of the ionization part
of G(w).

The approximate ground-state bra <‘i’(~(~| is by now well established in the CC
literature [33,34]. It was introduced by Arponen in the framework of the Normal
Coupled Cluster method (NCcM) [33]. An important feature of (‘ifccl is that it
has an overlap of unity with the CC ket [W¥cc ). irrespective of the parameters z
and 7

<‘i’cci‘1’cc>=<q’o|€f|‘bo>+ > 25 @F Py = 1 (68)
18

It follows that the optimal values for the parameters z and f can be obtained from
a bivariational principle [ 33]: the requirement that / W | H| ¥¢c ) be stable under
a variation of either the parameters z or ¢ leads to the conventional CC equations
for the parameters ¢ and to the equations for the parameters z, as given in Eq. (65).
The variational principle implies the existence of a Hellmann-Feynman theorem,
which means that expectation values of an operator O can be obtained as

(0) = (¥cclO|¥ce) . (69)
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Hence the Noost furmshed the solution ot a fongstanding problem in Coupled
Cluster theory.

A second feature of the NCOM bra state W . which is ol great practical im-
portance. is its simplicity. Due to the fact that the components of {act as de-
excitation operators when operating to the left. the state Wi lies completehy in
the Hincar space spanned by | Dy 20/ 1 used in the detmiton of W Lhis
means that expectation values of the torm (69 can be calculated with relative case.
The same holds tor the transition moments that occur in the Coupled Cluster
Green's function [Eg. (66) ], Duc to the simplicity ot the bra's the expressions tor
the transition amphitudes can be caleulated m practice.

The state ¢ W | is also used to calculate Coupled Cluster energy gradients [40-
447, Similar manipulations as described above were used (o reduce the number of
linear equations to be solved when calculating the gradient [40-44]. The procedure
goes back 1o Handy and Schacfer {40} who used it when solving for the orbital
rotation part of the gradient. Adamowicz et al. [41] similarly showed 1t to be a
convenient short cut to calculate the ¢C energy gradient and the procedure is now
known as the Z-vector method [42). Koch et al. [44] regarded the z-coctheients
as Lagrangian multipliers and derived their equations from a variational principle.
The use of a vanational principle is clearly very useful when calculating energy
derivatives. Explicit working equations for the coethicients = have been given [42-
44] that aliow for an ethicient solution on a computer. Finally Koch and Jargensen
started from the bi-orthonormal formulation in their recent work on Coupled Cluster
response functions [ 22.23]. The matrix B[Eq. (56)]. which has a similar structure
as the matrx A [Eq. (23)] is used in CCLRT to calculate excitation encrgies [16-23].

Returning to Eq. (66) consider the calculation of

(Fecldy 1w 1 = S Checlale 1@ (@l e TS ) =0 (70)

et

1.1
where the vector ¢! is given by

N a4 ' L TR SR a1 I LI f
e' = [ ¢ illqt‘l b, )= (‘Pnlthl’l [P/ > + AR AT ae’ ey

EN
& AL TSSO VIPVE PN S IT TP (70)
n
It follows that (/,,(«) is then given by
Golw)=e"Ulw+ A) 'U 'b=e(w+A)'b" {72)

where the former expression is in direct correspondence with Eq. (66).

It was mentioned before that certain properties that derive from the ground-state
wavefunction can he obtained by calculating contour integrals over G{w) that en-
close the ionization potentials. Equation (72 ) allows us to calculate these contour
integrals analytically, The one-particle density matrix can be calculated as
—l—f Grlw)dw = pp, = e PUU B = e p!, (73)

1y

27i
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To calculate the total energy from the Green's function one also needs

1
— wGp(w)dw = e U AU 57 = —e - 4b'"), (74)
2nidip
1t follows that to calculate these quantities in our formalism one does not need 0
know the pole structure of G(w) explicitly.

Approximations

The equations considered sofar are ex~ct for N-electron system:s if all connected
operators are expanded up to N-fold excitation level (assuming a finite dimensional
Fock space, defined through a finite set of one particle basis functions). By solving
these equations one is hence impilicitly summing the connected diagram perturbation
series through all orders. In actual applications the equations are decoupled by
neglecting connected excitation operators from a certain excitation level onwards.
A managable and hopefully adequate set of operators arises from

T = f[ + T’_‘l
§P(w) = SV (w) + $T(w)
RUD(w) = R (w) + RY(w) (75)

that 1s, all operators are expanded up to twofold excitation level. For this approach
the acronym CCGF-$D is used. By solving the CCGF-SD equations one is implicitly
summing a partial but infinite set of perturbation diagrams. Given an arbitrary
perturbation diagram contributing to G(w) it is fairly casy to determine whether
or not this diagram is included in the partial CCGF-sD series, by applying the test
described below.

Mentally cut the diagram at a certain level (between two successive interactions,
or between an external point and an interaction, etc.). In the part below the hori-
zontal cut, each of the resulting disconnected parts (internally connected ) should
have at most four free lines emerging at the top. The dashed line is to be treated
on an equal footing with the other lines here. The diagram s included in thc CCGF-
SD series if it satisfies the above test at each level. This follows directly from the
diagrammatic definition of the approach (Figures 10-13), if one discards the con-
trtbutions that contain connected operators of excitation level higher than two.

The fact that the Coupled Cluster approximation to the single-particle Green's
function corresponds to a well-defined partial infinite series of connected pertur-
bation diagrams implies that the method is size-consistent. Size consistency is im-
portant (a kind of necessary condition nowadays) but it does by no means imply
that one .will also get sensible results out of a calculation. The aim in this kind of
diagram summation should be to sum over the important diagrams in a balanced
way. It is not so clear if the diagram series implied by CCGF-SD indeed constitutes
such a balanced series. The CCGF-SD approach to the single-particle Green’s function
is quite similar to the CCSD approach to the correlation energy however, and this
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is known to give quite satisfactory results tor a large number of svstems. This serves
as an indication that the approach presented here will lead to adequate results.

Conclusions

The diagrammatic approach we emploved to arrive a1 equations that allow eval-
uation of the single-particle Green's function is guite general. In a similar way one
may (re-)derive equations that determine for example expectation values ( leading
to the NCCOM equations [ 33.34]). the polarization propagator (leading to the CCl R
equations for excitation energies [16-23] and the corresponding transition ampli-
tudes). higk ot order response properties {Cf. Monkhorst {19]). and so forth. The
starting point is always the diagrammatic perturbation series for the quantity of
interest. If a diagram contributing to the series is taken apart as in this article. by
aaplving a complete horizontal cut between two successive vertices and one ¢c...siders
the connected parts beneath the cut as perturbative contributions to operators of
a particular type (compare our 7. S (w) and R'"(w) operators) one will be
lcad to a Normal Coupled Cluster type of approach {33.34]. It is inwresting to
note that the only choice made is the way that one takes the diagrams apart: the
identification of the building blocks in terms of their perturbative diagrammatic
content. The subsequent establishment of diagrammatic recursion relations for the
operators and the translation of the diagrammatic equations into algebraic equations
is mereiy a matter of technique.

Although the diagrammatics ts quite sutficient to establish the ¢CGy approach
and diagrams arc also very useful in deriving the detailed working equations. the
algebraic equations presented in the third section greatly help to clarify the general
structure of the approach. The algebra also establishes the intimate relation between
CCGF, CCLRT, and NCC . Indeed the diagrammatic approach advocated here may
be regarded as a powerful alternative to derive current extensions of Coupled Cluster
Theory which are charactcrized not only by the use of the exponential ansatz for
the wave operator but also by the use of bi-orthogonal scts of bra’s and kets of vory
different character. A striking example of the biorthogunal formulation is encoun-
tered in the final expression for the <ingle-particle Green's function [Eq. (66)].
where only the products of the Fevnman-Dyson transition amplitudes represent
meaningful quantities.

We end our discussion with an overview of the main teatures of the Coupled
Cluster Green's function method.

(1) The decoupling of the equations for the 1onization and the atachment ener-
gies greatly reduces the dimension of the problem compared to many other ap-
proaches to the single-particle Green's function. The ¢CGE-SD method for ionization
energies leads to an eigenvalue problem in the 4 - 2Ap space. The decoupling of
the (A — 1)- and {N + 1)-particle problems s also satisfying frcm a conceptual
point of view. In contrast to most other approaches to the Green's function well-
defined states are recovered in the CoGr formalism.

{2) The method i1s potentially exact. Inclusion of up to N-fold excitation/ion-
ization operators will lead to exact results for A-clectron systems. This is useful
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both in analyzing the method and 1in implementing / debugging the corresponding
computer code (we know for example which results we should get tor two-clectron
systems ),

{3) The method is size consistent. 1t shares this property with any method that
derives from a connected diagram expansion of the single-particle Green's function.

(4) Unlike many other Green's function methods CCGE does not depend on o
partitioning of the Hamiltoman in a zeroth order and a perturbed part. We have
only used perturbation theory to derive the method. In general the results do depend
on the division of the orbital space in holes and particles, that is, on the reference
state employed.

{5) Ground-state properties that derive from the ¢C Green's funcuon are closehy
related to properties obtained in the NCCM framework. The precise relationship
will be discussed in a forthcoming article.

(6) The eigenvalue problem that has 1o be solved to obtain onization potentials
is nonhermitean, with the possibility that one might obtain complex eigenvalues.,
or even the matrix may not be diagonalizable. Also the one particle density matnix

and the residue corresponding to a pole of G(w) is nonhermitean. The degree of

nonhermiticity may serve, however, as an indication of the quality of a calculation.

(7) The method uses a single determinant as a reference state. This limits the
applicability of the method to systems that can reasonably be described in terms
of a single determinant, analogous to the CCSD approach. On the other hand. this
also facilitates the actual application of the method.
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Alternative Ansitze in Coupled-Cluster Theory. 1V,
Comparison for the Two Electron Problem and the
Role of Exclusion Principle Violating (EPV) Terms*
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Abstract

The two-clectron problem s investigated using exponentially parametrized was e functions tor sarioys
different coupled-cluster (€¢C) methods, including regular. expectation value, ssmmetnized exprctation
value (e, unitary). extended, and quadratic configuration interaciion (¢1) variants. All are viewed as
arising {rom alternative energy functionals. This pedagogical evaluation demonstrates the diflerences in
these methods. including the role of EPV terms. ¢ 1992 John Wiley & Sons, Inc

Introduction

To ensure the extencive property {1.2}. many body methods (unlike ¢1) use an
exponential parameterization of the wave function
¥ =70 (H
where 7 is the cluster operator for n electrons
Ir=7+7-+T,+ -+ T,
. l < YRR +opis
7,,2—'—,: ot d b etk et {(2)
(" e tthab
with 7, j. k. - - « indices indicating spin orbital and operator labels for orbitais
occupied in [0). while . b, ¢. «+ - correspond to orbital and operator labels
unoccupied in |0 ). Orbitals are orthonormal and normal ordering is denoted by
{ }.We assume real amplitudes in 7.
The normat-ordered Hamiltonian defined by
Hy=H=(0|HI0> =3 f.ip'q
Py

+= 3 {pglrsyipta'se) = [+ 1 (1)
LRI N A

Bi—

i
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is composed of Fock matrix elements. /,,. and antisymmetrized two-electron in-

tegrals, {pgllrs).
With a wave function of the form ( 1). the expectation value of £ can be written

as

. Ote H e 10

AL m—_ = (\()[((" Hye') 10 (4)
The right-hand side of the equation indicates that the energy can be written as a
sum of connected terms only as was shown by Cizek {3]. Cancellation of the
denominator introduces the so-called EPV terms (see later): therefore. the energy
expression (4) and the associated stationary equations are infimite { 3} forany number
of electrons {i.e. even if T, = 0 for some »). Thus, variational determination of
the parameters of the wave function is not straightforward.

Alternatively, the traditional coupled-cluster method {4] is built upon projections
of the Schrodinger equation:

e 'Hve10) = AE10)
Using properties of the normal-ordered operators, 7 and H. this can be written
as:

(Hve) 105 = AEIOY

where the subscript ¢ denotes that connected diagrams only are included. To de-
termine the coetficients. this equation is projected against excited determinants. for
example:

(D% [(Hye")10) =0
<Dfllh {(H s £’7.)‘.‘O> =0

Projecting against the reference function we get the energy:
AE = (01(Hye), 10

Bartlett. et al. [ 5-7] introduced a de-excitation operator. A, to make it possible to
evaluate analytical derivatives with ¢ and MBPT wave functions, without requiring
an explicit determination of the derivative wave functions. From another viewpoint,
this means we can associawe an energy functional [8] with C theory in the form:

AE = (O](1 + AV Hye)10) ©

where A is a de-excitation operator. Because this functional is linear in A, the
stationary equations provide the usual decoupled equations for 7 in the form gi-
ven above. Stationarity of T will define the A equations.

Another variant on CC theory is offered by the so-called QC1{9] method. Assuming
canonical Hartree-Fock orbitals the equations are:
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DV THC O GO0 AYA
ST NG B G N QI | TAYA (7
and the correlation energy is:
AL O CT0

where the Q1 coeflicients, ¢y - 75+ 77/2 (e o oty and
Oy = 1. The above cquations are closely related to the tradional torm of the <«
method deseribed above. being a truncation of expt 773, Howener. this particular
truncation 15 sl exact for two electrons. We can also construct a Ot functional
analogous 1o Eq. (6) by invoking the same truncation of expt 77). which i

AL = ();[1[\(3 + .\|(Il\f(v( + (:‘ H (‘g (~))

AL G G DO
Realizing that the ¢ functional (6) has an exponential ket state and a ¢ type
bra state. it can be generalized using an exponential function also Tor the bra state:

Al 0teM ey 0

Unlike the A in Bqg. (63, which can have disconnected parts, A can be restricted o
a connected form with ¢ introducing appropriate disconnected products, This
functional defines the extended €O (LCC) method of Arponen et al, [&.10]. Now,
unitke that of the ¢C method. this functional 1s not lincar in A and theretore. the
stationary equations provide coupled cquattons for the vanables A and T

CDT eI e )0, = 0
S0teMH e IDY 0

This functional has some desirable formal properties. as it ensures that both 77 and
A are fully connected: however, such coupled equations can be computatuonally
inconvenient.

The Lo method 1s already closely related to the eapectation salue of the energs
(4). As mentioned before. the normal ¢ expectation value, Eq. (34) provides an
infinite expansion. Therefore in application truncation is necessary, In the ¢
(expectation value €C) method [11]. we used the order ol the terms defined by
perturbation arguments to truncate the expression. Recenthy, we investigated the
structure of the stationary cquations ol the untruncated infinite functionad {121:

CDe I eio 0 (%)
oteHeiD, -0 (9)

fora — 1.2 <« - n. We use D, 10 ssmbolize excited determinants, As we have
proven elsewhere [12] the set of equations detined by Egs. (8) and (9) becomes
exactly the following set of equations:
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(DL e (Hye! ) 105, = 0 (10)
OWe"HO) e D), = 0 (1)

The very tmportant consequence of the above form of the amplitude equations is
that the number of terms in them is finite because only four operators can be
connected to H,, (because it contains no more than two electron operators). Then.
the energy with the converged amplitudes can also be written in closed form:

AE = {0le! (Hye') 10D,

The advantage of the XCC method over ECC is that only one sct of equations (for
real amplitudes) has to be solved to determine 7 and to calculate the energy. On
the other hand. as we also showed in ref. 12 no simplified energy functional exists:
i.e., for the calculation of energy derivatives the original form of the AF functional
(4) has to be used.

An approximate functional can be defined. however, which is finite. In refs. 11
and 12 we choose the following form:

AE = %KOI(,/"([{_\.U’)‘,10>‘, + <0|(¢”’II‘\ ) e'10),] (12)

because it is symmetric in 7 and 7. and only one set of equations (for T or for
77) has to be solved. even for a gradient calculation. The method described by this
functional is equivalent to the SXCC (symmetric XCC) method, which is equivalent
to unitary (UCC{»#)) for low n-orders [11]. Since this method ensures the satisfaction
of the generalized Hellmann-Feynman theorem, it may be readily used to evaluate
analytical gradients and other properties. as demonstrated elsewhere [11.13.14].
Stationary conditions (amplitude equations) for this functional are:

YD, leT (HyeT) 105 + XD, l(e" Hy) e"0), =0 (13)
1O Hy)e' 1D + 1(0le™ (Hxe) | D), = 0 (14)

Both the functional and the amplitude equations are finite unlike the original ones.
One has to remember. however, that functional (12) is only an approximation of
the original functional (4) [12].

In this article we compare the above methods for the special case of the two-
electron problem. This is not a precise derivation of these methods. but rather a
pedagogical evaluation. This simple example, however. is very useful for under-
standing the structure of these coupled-cluster ansdtze. Except for the sxcc. all
methods are exact for two electrons, therefore, the same results will be obtained
from them. However, even though the final results are the same. the differences of
the actual form of equations defined by the different methods provides a deeper
understanding of their structure. Below, we discuss the role and properties of EPV
(Exclusion Principle Violating) terms. The different ways these methods handle
these terms provides the principal difference in alternative coupled-cluster ansitze.

For a more transparent analysis we use diagrammatic language in this article.
The detailed discussion of this formalism is given in ref. 15. Here we give the basic
definitions only.
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The normal ordered Hamiltonian is described by sia, undirected diagram torms,

Hy = b bdeal s Vioan v
where the first term is /, and the remainder arise from # . The cluster operators,
Iy and 7., are deseribed by the diagrams,

Y4

while the hermitian conjugate of them is denoted by the upside-down torm. These
are also their normat product torms,

Origin and Properties of PV Terms

EPV (exclusion principle violating) terms play an essential tole in many -hods
perturbation theory. Complete cancellation of the renormatization part of the energy
expression of perturbation theory i any order introduces such 1PV terms [16]. A
similar process can be used to cancel the denominator of an eaxpectation salue
energy oxpression as in Eq. (4 [ 3],

Schematicatly this process can be demonstrated by a simple model in which only
double excitations arc allowed. t.e.. 7' = 7751 the numerator of the energy expression
according to Eq. (4) is

Q0-Grade +Q0 00~ +G5edd

(0 0+CoeD- )(1-Q0D-Q0CD
The diagrams are drawn without regard to Epv terms. as the summations in the
first and sccond terms are independent from the viewpoint of intermediate deter-
minantal states. This means fabels in the first and second term can be the same,
which would mean allowing excitation from or to the same spin orbitals. The
denominator in our example has the form:

0

o)

{15)

1-00-0000- (16)
so that. after cancellation, the ¢nergy expression is
AE-00-0rad- (7

The above example was chosen 1o describe the structure of this canceliation in
a simple way. The price we pay for this cancellation is that for ¢even two clectron
terms like the second in Eqn. (17) that arise from Q-H 73/ . which would tormatly
correspond to quadruple excitations, have to be included.

The general case follows now, In this we strongly refer to the proof of theorem
! of ref. 12. There we have:

C L0le " Hee10Y  ole! Hee e e 10
AE = it e 2 T T
{0]le” e |0 (Ofe’ e 0y

{18)

The cancellation by the denominator can be performed onlv if the summations in
J—— . * . + . va -

Ts [see eq. (2)] in (¢! Hye), and in ¢’ ¢’ are independent. This means that
already on the left-hand side of the above equation the summation in 7'sand 77
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should be independent. This requires the inclusion of the 12y terms, The sum of

all such Epv terms. linked and unlinked. is zero. and any diagram of /7, ¢’ which

has two or more open lines with the same index vanishes according to lemma 3 of

ret. 12, The sum of all diagrams that one can create by closing these open diagrams
. - LN . . .

by pieces of ¢! is still zero. In that way we introduce connected and unlinked

dragrams also. In the next step we can cancel by the denominator. and we obtain:

AE = (0ie H e 0

This conncected expression contains the connected EPv terms.

EPV terms do not introduce nonphysical contributions to the energy as 1s clear
trom the above derivation. We simphy added zero 1o the energy expression in order
to be able to pertorm the cancellation. Thercfore. the resultis exact. For that reason.,
we preter the name “conjoint™ [ 17} rather than £Pv for the remaining linked terms.
On the other hand. the the latter name 1s very much used in the hiterature.

We now introduce the basic technique for dealing with those terms. We will need
this technique for later developments as well. Consider the - H 7°3/2 term—which
contribute to the 7> amplitude equation— for nwo electrons. In this case there are
only two different spin-orbital hele-line labels. The five possibie diagrams for this
term are given in Fig. 1. The last one is unlinked. the other tour are the usual
connected diagrams (see. e.g.. tef. 133, We would like to show that the sum of all
five terms 1s Zero in line with the above discusston. If two lines have the same label
then the end of these lines (where they are pointing) can be changed. This process
1s described in Figure 1. Note that the sign of the diagram may change by this
because the number of loops 1s different after interchanging the lines. Similarly,
one has to constder that the factor in the algebraic expression associated with a
diagram can change during this process. The rules can be summarized as follows:

I, Interchange lines with the same label.

CXv = -2 Q0
O - -1 00 \LY
CHKeyv = - N O QY
VooV = VO QY
QOVY =-(zwi)

Figure 1.

i
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Sign is determined according to the change m the number of {oops,

{a) Multiply by a tactor of 2t there 1s a new cqunadence (vertey or fine s
(hy multiply by atactor of 172 114 new permutation s posstble or the equin -
alenee of vertices s destrosed atter step s done,

‘s 1 J

Alternatively to steps 3(a) and 3¢b) the tuctor can be determined i the tollow-
INg Way:

3. Multiply by 2 it the ongmal diagrams are not ss mmetric but the one obtained
by step s divide by 2 an the opposite case: the factor 1s 1 otherwise,

The above rules. as every rule on diagrams. are based on the manipulation of
sccond quantized operators, Thus, tor example. rule 2 can he understood as a
consequence of the fact that changing the order of the operators causes the sign to
change.

Aswe see from Figure § the sum oFall ive diagrams is zero: the first two connected
diagrams cancel the unlinked one. This means that the unlinked diagram can equally
well be writen in g coanected way,

The third and tourth diagrams of Figure | cancel cach other. thus thes are not
needed for the cancellation of the unlinked diagram. This property of 1 PV parts is
well known. and has been used to define approximate ¢ methods (see faterd [ 18-
214]. as well as being integral to the older ey methods [22.23].

The Two-Electron Problem With Brueckner Orbitals

The casiest way to analyze the two-electron problem formally is to assume the
use of Brueckner orbitals [24.25]0 In this case. 1)~ O.so 7= 1. and the energy
expectation value can he written as

COHL TN  T10

AL e :
UM B RS T B A H)
L 0000000 x ()
1070

. . N . - e . . N . . -
since all higher products of ¢’ vanish." The denvative of A with respect to 77
may be written in diagrammatic language as

3

(.‘ 1ol ;‘%V Y - ‘JTA/ A
-00) (20

000 x VY
L ATRYe
VaRvY

According 1o the varational principle the parameters of 7. (or 'l'_t_) can be de-
. - N - PR | . . .
termined by requiring, for example. (dAFE/a7°2) = (1. From this we obtain

" In this scction we do not itroduce the 1V terms at the beginning, but instead. later. W get another
idea of ther ongim
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(1-CO IV VALY ALV -x) -
(Q0-C0-CD-0D-x )Ly -0
or using the definition of AL
VVLY M -x = AE - Y (22)

The latter is the diagrammatic form of the Ci1p equation and exact for the two-
clectron problem. We, on the other hand. attempt to get the CCD equation by
manipulating the former one. After rewriting it. we obtain

(1-@ VYAV Y% -QOVY ) -

(23)
0 Q0VYV- (00D -x)VV-0
Using the definition
i RAVAYASVAVAVAV RS, N RVAY (24)
this can be written as:
(1-00) () - vv-0 (25)

This equation has the form of a homogeneous equation in = . Note that, in the

second term, ¢ is contracted to <™ . that is. we sum over all labels. To ensure the
stationary condition (23), the following equation has to be solved:

VARVAVEVAVE RN RVAVEY (26)
The last term is an unlinked EPV term. Now we can use the results of the previous
chapter and replace the unlinked term with linked ones. As can be seen from Figure
(W T3y, = —(41 T3, Here the subscripts {7 and [ mean unlinked (last
diagram) and linked (first to fourth diagrams). respectively. Using this, we arrive
at the fullv connected (linked) cCD equation, which applies for any number of
electrons, as well,

W+ W\ T+ T+ W T3=0 (27)

Ja 1s the diagonal part of /.

Trvially, QCID (1.e.. QCISD with C, = T, = 0) is equivalent to CCD. Furthermore.
the above equation is the XCCD [12] and ECCD [8.10] 75 equation for two electrons.
Note that the general equation of these two latter methods (see Introduction) in-
cludes additional terms which vanish for two electrons.

Other methods can be derived also. From Figure 1 it is clear that to replace the
unlinked term we do not need all four linked diagrams. hence, the last two cancel
each other. Therefore, including only the first two terms the method is still right
for two electrons and leads to the ACCD = ACP-D45 = ACP of Dvkstra and Paldus
[18-21]. Moreover all the CEPA methods [22,23] calculate only the EPV part of
diagrams one and two of Figure |. Therefore. unlike ACCD, for more than two
¢lectrons, they are not invariant under virtual-virtual or occupied-occupied orbital
rotations,

Returning 1o the two-electron problem, the stationary energy can be written as
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AE-0D Q‘l‘ﬁ@_’%@%_@j&ﬁ .40 (28)

£

it the stationary condition (26} is satistied.
Finallv we are going to determine the functional of the various methods. Eg.
(19) is clearly the ¢1D functional with 7> = . Rewriting ( 19). we get

AE- 0. 00:00:00 0300 .

1-00 (29)
cqp. L2
, 1-00
where 2z 1s the strictly connected form of 2 as described above,
Introducing the new varable, As,
AN
= 30
A1 (30)
the functional becomes
NE- 0D (30)

This is the functional form of CCD. QCID. and ECCD methods for two electrons. It
also holds in the many-electron case for D and QCiD. Clearly, differentiating 1t
according to .- leads to Eq. (27).

In the two-electron case it is not necessary to solve an cquation for A- because
of its relationship with 7: This is not valid. however. if the number of electrons
exceeds the excitation rank in 7. In this case. cq. { 30) is only a better initial guess
for the .\. amplitudes than the usual A> = T'

The functionat for the XCC method can be obtained from Eq. (19) by full ex-
pansion of the denominator:

ANE-00+0 0@+ CD-x-CDQ0-
-Q00¢0-00 00 -0 0-xQD-
+J0470 O_D ‘-
-00- B - - &
which is infinite. Differentiating according to [+ we get for the stationary equa-
tion:

(32)

e - - Wi - DO @ -0 (33)

The solution is clearly the same as from Eq. (26).

The Two Electron Problem With Singles and Doubles

Inthiscase. 7= T, + T, f,, = G,6,,. and the energy functional has the form:

R + .
_{0le’ 21y 710y Numerator

AF —r— -
(0]’ Tl 1210) Denominator
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DENOMINATOR =
-1-7-00-00-00-00+ R
NUMERATOR -
“Tx TGP B0 Tea e Tar 00+ 00 (34)
000000+ 0T+ 00-TT- T+ 00
OO UT T T+ x-T T P
+00+00
The stationary conditions are <a_x1-;/a'r§) = 0 and (8.\1:'/8']'1) = (). which lead to
the following equations:
DENOMINATOR *( V- +\/V e\ VLV s\ V- x +
*V W +V/ \f-% ) - NUMERATOR (V V+VV ) - 0

DENOMINATOR *( V- % + X/ « \F T+ TV e \og (35)
VA RV RV VA RV SV (I TAVARAVAVAS
VT X+ TV %+ V% TV % \f-x
*V¥-x+V 0+ T ¥+VV ) - NUMERATOR®
(V+\VI-VT+WV)-0
The ccsp Method
For this method we define the following one- and two-particle variables:
= RVARVAVAVEVAVAVAVA R VAVES
VY- (D070 (VLYY V) (36)
CO=Mx oY + Vg » Vg - (0000
and with this it is transparent that we have again a homogeneous system of equations:
DENOMINATOR * ( °5 « 153 ) -
(BB (L VTV TVY)-0
DENOMINATOR * 1= -
(B )YV Y )-0
As before, linear independence requires that
-0 38)
5 -0

The two-particle variable has unlinked EPv and disconnected terms, while the one-
particle variable has only unlinked Epv terms. One can remove the disconnected
terms of the 7', =quation using the following identity, which is a consequence of
the T’y equation, which is embedded into the T'; equation:

(37)
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WV RV VM V2 V(0040 0) (39)
Recognizing this the two-particte vanable becomes:
s R VAMRAVAVARVEVAL VA VEAVAVEL SIRVAVIRSS
e A ‘A VAV,
YV oo (G0 -0 DVYVH(0D0-00IVY
and now all unlinked terms are of £PV type. Again. we can arrange them into
connected FPV terms using the above rules;

(4

(”\ ’lﬂjl-l)( = "(”\ -I‘:'/ﬂ|)([

(] " '1*‘) (' " ’1“)
51 \ ] I T AY i
3! , 3 ).,
S Lo
(;ll,\li _(;n\/z
- ' - [
(l " '1“)
A (e L
¢ 4' ()

QOVV-VYV QO

pe——

!Jk_
—
P
e
~
e’
~

—t’
N
1

As a turther demonstration. the Y\ 7577 case is given in Figure 2.
The two-particle vanable is now fully connected:

LN =+ Q0 vV
O O IAVAVA(R(
v 0 =-2 vv 00
v A/ =-1 v 0 Qv

w0 =+1 v 0Qv
Gwer) =00 vv-vyv(0Q

Figure 2.

]
I

il




96 SZALAY AND BARTLELY

frors

13
o= HNT o+ Wiy + BTy v W 7 0 ¢ BT TS

T} 13
+“‘TL+”‘M AN N

5\3
'./
-

sl (41)

(]
=

and the equation to solve reads:

73
WAT, + Wat+ W T+ W2+ 1+ W T
T T: T% T |
+W\—3'T+” ——:“\‘”\ 5 _‘_1T~() (42)

which is the CCSD T equation for any number of electrons.
In the same way. we can replace the unlinked Epv terms of the 7', equation using

(MToT) = —(W\T-T )y

T’J T,"
(e 5) {3,

For a demonstration see Figure 3. The fully connected one-particle variable then
becomes:

H

T

)
“

—1p

. _ . T}
o= LT+ BT+ W T+ Wo—+ W T-T, + u\»ji (43)

which leads exact'v to the CCSD T, equation of the many-electron system:

-~

T3 T
ST+ 3T+ WaTo + Wa =+ BAToT, + Wy

3
1
==0 4
2 T (44)

Using the fact that satisfying these equations means, for two clectrons, the ful-
fillment of the original homogeneous equation. the energy can be simplified to

ANE-00+070 (45)

1 e
WV
- ¥k

ked
V aéed(niied) + th‘l (17 iled

.5_,;‘( {utied) + Zu,(,d o) =

BN EVRAVAE

Yoo - - S e = - N A0 ined = 0
7] " 7]

Figure 3.
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which again is the COSD energy expression. The fact that we arrived at the COsp
equations and energy expression shows that the method is exact for two clectrons.
Finally, we determine the ¢osD functional. Using the definition of Eq. £ 36) the
cnergy tunctional of Eq. ( 34) can be rewritten as:
I [\
. et e
AE-Q0D0+00- Ldrlad Lfi .
DENOMINATOR
T o {46
-0 000

where. in the fast step. A was introduced as:

7’(\
" DENOMINATOR
S aon (47)
;@\. - —a 7\

MINATOR

This definition of A shows, that itis Ci7-like. ie.. A contains disconnected parts.
At this point the two- and one-particle variables in the functional include unlinked
terms. As we have seen above, it is passible to write them in connected form [see
steps from Eqgs. (39)-(43)]. Theretore, the final form of the functional ts

. . o
AE-00+00 -7 (48)

The derivative. according 1o A, leads to the ¢OsD eys. (42) and (44).
The ocist Method

We define the same one- and two-particle variables as for the cosp method with
eq. { 36), and follow the same steps through Eq. (40). Then, we do not cancel the
disconnected diagrams of the two-particle variable, but instead introduce a new.
disconnected vanable. In diagrammatic language

AYERAVELAYS (49)

or algebraicallv,

aboL Wb b

S MR I D A 0
The permutation of the indices on the 7'; amplitudes is required to maintain full
antissmmetry, This new variable corresponds 1o the ¢1 coeficient. Introduction
of the new vanable means using (5 = 75 + 1777 in the operator basis. We now
obtain,

. W N / [ SN
e ke Y (DY

P MY ALY Y - (D))
One should. of course. check whether the replacement is justified for all terms. This
can be done at the diagrammatic tevel. and this process is shown in Figure 4 for
the @, H'\ 7T» 1erm and for the energy.

The next step s, as in the ¢osp case. the replacement of the unlinked FPy terms
hy the Iinked one. The only difference to the former case 1s that now we use s
rather than 75, The one- and two-particle connected variables are then

p Wk, + £ I Cs + I T (S1)
o WLUE R WO WL 0L VR t32)

{(50)
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Vo o+ M

i
2SOl b

Figure 4.

Therefore, the amplitude equations are:
WoT, + T+ BvCo + oG Ty = 0 (53)
AT+ Ho+ BG4+ 4G+ 3 C3 =0 (34)
and the energy expression is:

AE = WG (

n
n

)

These equations and energy expression are the QCISD equations [9) for any number
of electrons and, as 1t follows from above. they are exact for two clectrons. One
should note here that the QCt Eqgs. (53)and (534) and ccsp Egs. (42)and (44) are
equivalent for two electrons only. In this case. all steps of our derivations are exact
and. therefore. the differences are hidden. Inclusion of the connected EPV terms
with the variable 7 {CCsSPb method) or C (QC1 method ). which are tetraexcited
contributions in the manvy-electron case. is essentially different. The relationship
of c¢sh and QCISD has been discussed in detail by Paldus et al. [26.27] and Pople
ctal. {28.29].
Using similar steps as for the CCSD method the functional can be written:
AE-0D+ - (56)
The xcc Method

We now define the one- and two-particle variables differently:

o VA ARVAVAVAVEVEVRVAVERD
sV Ve VY -{00+0°0) (WYY V)

EO- Ve Vo VT oY g o +
AT\ D+ T Y 57
RS AV RVA AV
V%V kY B0V VY-
(D00 Y VTV T-VY)




ALTERNATIVE ANSATZE IN 2O PHED-CHESHR THEORY RAY

Note the ditference with Fg. (363 the new one-clectron sanable contaims preces
of the two-clectron varable contracted /1. On the other hand. the two-particle
variable s oexactly the same as for cosp. With those. the 7 and 77 equations
beconme:

DENOMINATOR « (.7 -

;T R . . o
e R TN D EIRVIVE PRV S
{38)
DENOMINATOR =
i hod T R
RO AL N SO A N N A
- ;" -7 [ Y O

Again. the homogencous cquation has only the trivia! solution, theretore. the new
variable should vamish, Now, contrary to the cosp case. the /77 equation has unhinked
terms. which are not ey tvpe. One should cancel them. We use the cosp 1 bq.
{44y, This is justificd because we are lookimg for exact results tor two clectrons
and. i this case. the COSD 1 equation satisties this condition. We use the tollowing
cqualities:

Y .: (39}
With this
“'\[l A
i, to)

Alter replacing the unlinked eV terms with the linked ones. we obtain,

.. I \ 1

B0 WU T T T EE s T T
Lt I b

o RN ISR S0 LN A NS | RS SN R I o

l.‘i . Loege ¥ l cge
G L T T,

o DO ORI D, (61

Because the two-particle variable of Eq. £ 57) is the same as in the ¢OSD case above.
the connected two-particle varable is the same as for cosp:
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Ty
s o= WNT 4 By F UATa + W2+ Ty + W T T,
T T3 T3 . T
+u,\~3—!5+n‘\—2—+u¢\1:—2—‘+n_\z!-' (62)
[compare Eq. (42)]. The equations to solve are then
oo -0
(63)

&1 -0
At this point. one should note that the one-particle variable of Eq. (61) can be
turned into that for CCsD (43): all terms containing T’ add up 1o zero because of
the 7'; equation. This, of course, must be true. because both equations must be
exact for two electrons. They give, however, different results if we apply them to
problems with more than two electrons. tn this case. as we will see below, other
terms appear in the 7- equations. therefore, these terms do not cancel each other,
They introduce higher excitation effects (see later). The energy expression is the
same as for the ¢CcSD method but tor only the two-electron case.
Now we are going to show that the above equations are really XCC tvpe equations,
i.e.. they are the same as Eq. (10) for two electrons. The XCCSD equations, according
to Eq. (10). have the structure:

l . e 4,
Q‘(j",T, FUNT, + THT, + U\ T + 3 W T+ T\Wy+ T LT
AT 1 + . > PR | P l R . )
+T;”\T2+;T,(H\TT)(+”\71]34-;H\I}+;T,(ﬁ\T:TT)(

| oo N P
£ 5 TUMNTE), + o TIONT D, + TUHNTAT ), + 5 THHYT),

+ T )+ T:z(---))=O
and
. , . T, .
Qz(u f\‘]] + U N + ” ,,\,-'Tg + H ‘\,"7)* + ./(/TZ + " ,\'T;TI

. T N R T
PRV AT I By

+ T+ ’1‘;2(---)+T§(---))=0

All the terms denoted by (- - -) are EPV terms with more than two open hole
lines. Therefore. they are zero according to lemma 3 of ref. 12, and for two electrons
the XCC cquations arc exactly the same as the above. The conclusion is that the
xC¢ method is right for two ¢lectrons. However, in practice. some truncation of
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the finite cquanons s necessary [ IPwe want it to be night tor two electrons also
n this case. the hirst part should be retained completely and only the terms denoted
by { -+ <) can be truncated.

The vanishing of terms for two clectrans denoted by (- - ) suggest that these
terms represent higher excitation effects. This s in tine wath the findings of refs, 11
and 30-32. where terms like these were used o include higher excitation effects
into the CCsb caleulations.

As tn the Brueckner orbital case. the xoo tunctional s infintte. Using the dehinition
of Eq. (537). the original tunctional ( 34) can be written as

SY
DENOMINATOR
fecompare to eq. (361]. l’sing the above results, it can be rewritten into a fully
connected form,

E* J\ Q Jﬁ _Q:y: 63
LE-19 DENOMINATOR (=)
Now we expand the denominator completely:

{O3)

/.,_AE h :'

~ A T
A SRR R fe all "‘GTJ DENOMINATOR *

- DENOMINATOR® -
After replacing the unlinked £pyv terms it can be written as being fully connected.
Making it stationany according to 7" we get an equation which is satistied if Eq.
(63)1s satshied.

(66)

The tcosn Method

For this method we start at Eqg. (63). We define A ditferently as in Eq. (47 ):

AN
7T DENOMINATOR
(67)
',7'\'
- [ S S
" " DENOMINATOR
.o its not ci-hike. Ths feads o
"
/E ~_J ;L,.L \J—Q*CFT (68)

This s now very similar to the v functional. One has 1o remember, however.,
the defimuion of the one-particle variable [see Lg. (61)]: there are some terms
having ‘1‘,' in them. In the O case they should be A, The derivative ot (68)
according to AL Jeads to the Egs. (633, We have seen above that. at least for the
two-clectron case, the terms including '/': in the one-particle variable add up 10
sero, Therefore, replacing '1': bv A, does not change the amplitude equations, The
madificd one-particle vanabile s instead.
f 00+ W+ BT+ BT+ l; W T3+ A+ A 1,7,

| ) I
EAHNTS NN T, U T u'\'/‘,‘
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1 , 1 s s
+ 3 MWNT-T) + 5 A(BNT3),

&~

1 1
ta A (WNT) + M (WA TLT ) + 3 A(BT), (69)

and the functional becomes

AE-00-00-ck &
which is now the ECC functional.? If there are more then two electrons then the
replacemcnt of T: by A, is not justified because the cancellation of T) containing
terms does not appear. In fact, it causes a scaling of these terms (which represents
higher order contributions) by the denominator. This ¢ventually may cause an
unbalanced description.

sxce Method

The amplitude equation of the sXCC method is described by Eq. (13). As men-
tioned in the introduction, and shown in ref. 12, this method is not exact, i.e..
including all possible excitations in 7 the method is not equivalent to full ¢1. There-
fore, it is not correct for two electrons. Even if we know that already. it is interesting
to understand the origin of this deficiency to try to estimate its error.

We know from the previous section that the first term in Eq. (13} s zero for two
electrons (the XcC functional is exact). Therefore, we now investigate the second
term

(D" HO ") 10) (70)

only. It should vanish 1n the case of an exact theory.

For the sake of easier understanding we first return to the Brucckner orbital case.
We have to modify the two-clectron variable defined by Eq. (24) to a form given
by (70). To that end we now do not replace the last term by the corresponding
connected expression. because the term ( 70) does not contain it. We rather use the
following identity:

00-00 (71)

This follows from the definition of T'[Eq. (2)] and the symmetry of the functional
and amplitude cquations. Now the unlinked £V term is

' KAAY (72)
and the question is whether we can replace it by the corresponding connected one:
-GOVY - (T, WT,), (73)

I Transformation to the double connected structure [R.10} s not discussed here because it would
need a notation which would not be consistent wath the present oac, but the ranstormation s exact [ 8]
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According to Figure 3,
T TOWT (74

Lo the simple replacement introduces the further nonzero undinhed terms, We
need only the second and sisth werm of Figure 3 to replace the unlinked term. Thus,
the exact amplitude cquation can be writien as:

S NP N AN Y RSl AN | BN AN TR T 173

where subsernipt 206 means the second and sovth diagrams of Frgure 3 This equation
15 correct for twoe electrons, but unfortunately. not compatible with the form of
{70, In other words, not all dertsatives of the energy functional ¢ 129 are included
i the evact amphtode equation. Therctore, in order to have the funcnonal we have
o include all the terms of Figure § and. in addition. we have to add some terms
which cancel the second term of Eq. (74).

Using Eg. (26 we can write:

OSALY
QALY - -2 00 \LV
OAVAVAVARREE VIO ORY;

N
=
<
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|
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Replacing these unlinked £pv terms by linked ones, and inserting into Eq. (75).
we get:
Wt W Ty + T+ T T+ ST T,
FAATIO T, + LTV, 7, - 0

Here subscript r means that only specitic diagrams have 1o be included. There-
fore, once again, we do not have the whole derivauve ol the diagraums of the
energy expression. It is worth mentioning that this cquation has exactly those
higher-order terms which prevented us in ref. 12 from showing that the
(‘Dal(((""' Hy).e") 10> = 0 equation is exact.

The rule we see here is that the sum of all connected Epv terms is equal to the
sum of all unlinked EpPVv terms (see also Origin and Propertics of EPY Terms). The
exact equation of the two-electron problem does not include all unlinked EPV terms,
therefore, a subset of the connected terms are needed to cancel them. Hence, the
inclusion of specific diagrams into the amplitude cquation is not compatible with
a finite functional.

Now we return to the 7 = 7, + T case, We start with Eq. (60) for the 7,
amplitudes. Beside Eq. (71 ) we also use a similar identity,

0gL-00 (77)

Replacing the unlinked terms with the connected ones and remembering the rule
obtained above we have:

o= fy T+ BT+ TIWNT, + BT+ T+ TOH L + T T,
+TIHNT + ST+ TIWATLT, + 4T T
+TINT + TITAN TS+ TUBT, + STURAT,
FATTIAT + 3100 T
+ QOVD-VvOTD-0V0oQ-IVED (78)

For the T'; equation, from Eq. (40) we obtain.

Tasir L Total encrgy of the Hy molecule at 1 AL

Total encrgy

Method DZ Dze
Full ¢t 112671267 113962789

SXCC (4) 112671873

113963528

* This method 15 a truncated form of the sx ¢ method {11}
aceording 10 fourth-order, using hoth 7, and 7; as first-order
guantities.
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!
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4 (79)

KO 4

K-

P
N

As 1n the simplest case, the 72 cosp Eg. (42) can be used to replace unlinked
terms. This process again introduces specitic higher-order terms so that the exact
cquation is not compatible with the form (703,

The conclusion of this section 1s that even tor two electrons it is not possible to
have a simphticd ssmmetnie functional in an exact method. The erroris represented
by higher-order terms only. which are small and whose magnitude can be estimated
by perturbation theory arguments. Table 1 shows that a truncated form of sxoe
wives an energy vers close o the full ¢f energy tor two electrons,

Conclusion

In this studs. the tvo-clectron problem has been insestigated using an exponen-
tidly paramcetized encrgy functional, The exact stationary cquations can be shown
to become the COSDL QOIS HCOSD. and XCCSD equations, because these methods
arc eaact for two clectrons, The dilferent forms of the sarious cquations iHuminates
some of the connection between ¢osn and QoIS and also how higher escttation
ctieets are mmtroduced Yor more then two electrons in the FCCSD and NCosD miethods.

Fhe sxoosn method was found not 1o be correct tor two electrons, although 1t
faiks only because ot some higher-order terms. This small ditference may not atfect
the method for pracucal calculations. One should also note that, in practice. the
hnte but rather fong equations of the 1 osp method probably need to be truncated.
making other methods computationally competitive with FCC because they are
svmmetric in the 7 and i the 777 parameters. For SXCCL it very easy o evaluate
properties as the generabized Hellmann-Feynman theorem s satisfied [11.13]. Al
other methods require the determnation of both 77 and A to determine properties
faee. v refs, 73334 and 38,
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Coupled-Cluster Method for an
Incomplete Model Space

STANISLAW A. KUCHARSKI* and RODNEY J. BARTLETT'
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Abstract

The coupled-cluster method with muluidimensional reference space is studied in the case of the in-
complete active space (1AS). The latter was chosen as a subspace of the Hilbert space corresponding to
a fixed number of valence particles. Two different approaches for the normalization condition are analvzed.
When not imposing intermediate normahzation, the cancellation of disconnected terms is proven, ensunng
that extensive energics are obtained. . 1992 John Wiley & Sons, Inc.

Introduction

The selection of the reference space is a crucial problem in the multireference
generalization of the many-body perturbation (MBPT ) and coupled-cluster (CC)
theories. The most convenient approach to this problem would be an inclusion of
a very limited number of functions, possibly those which strongly interact and are
close in energy. The model space formed in this manner is usually incoraplete. To
make it complete would usually require taking into account many more functions.
not important from the viewpoint of the physics in the problem. This also enlarges
the size of the model space. and it brings about the problem of intruder states [1-
3]. The first is impractical and the second often fatal. It should then be concluded
that a reasonable answer to the problem would be an adoption of an incomplete
model space. This complicates the theory somewhat [4-6].

MBPT for an incomplete modet space was first considered by Hose and Kaldor
{7] where the disconnected terms occur and a generai method for their generation
1s suggested. The detailed analysis of the additional terms due to incompleteness is
given in Ref. {2]. The main question connected with the occurrence of the dis-
connected terms pertains to the (size) extensivity property {8}, This feature is
considered to be a prime virtue of MBPT/CC methods as compared to the Cl-based
methods. The coupled-cluster formulation corresponding to the Hose-Kaldor MBPT
approach was presented by Jeziorski and Monkhorst [5]. The ¢C equation given
there for an incomplete model space leads to disconnected terms in agreement with
conclusions reached by Hose and Kaldor,

* Permanent address: Institute of Chemistry, Silesian University, Szkolna 9, 40-006 Katowiee, Poland.
* To whom correspondence should be addressed.

Interrational Journal of Quantum Chemastry: Quantum Chemistry Symposium 26, 107118 {(1992)
¢ 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010107-09
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The problem of extensivity of the different approaches was addressed by Shepard
[91, who arrived at the conclusion that the presence of disconnected terms destroys
the correct scaling of the energy with a system’'s size. That statement had weakened
the importance of the incomplete model space approaches.

A new aspect of the problem was presented in the studies by Mukherjee [10]
and Mukherjee and Lindgren {11]. In their approach. they exploit the previously
introduced idea of the universal wave operator [12-14] defined. not only for the
given n-valence Hilbert space, but also for all other m-valence {1 < n) spaces, 1.e.,
for the entire Fock space. They call this method a Fock-space approach to distinguish
it from the Hilbert space approaches. e.g.. realized by Jeziorski and Monkhorst.
The conclusions drawn in Ref. {1 1] state that the incomplete model space may also
generate an effective Hamiltonian of connected nature. provided the wave operator
is a valence universal Fock space operator and once the intermediate normalization
typical of the Bloch approach is abandoned.

Another Fock-space approach to the €C theory was developed by Stolarczyvk and
Monkhorst [15]. Here the active space was expanded to include the whole spectrum
and. consequently, the model space lost its usual meaning. That would require an
alternative definition of the effective Hamiltonian as a quasiparticle conserving
operator.

The aim of the present study is to give a thorough discussion of the terms appearing
in the expansion of the effective Hamiltonian and in the ¢ equations for the
incomplete model case. Particular attention will be paid to the role of the inter-
mediate normalization condition in the generation of the unlinked diagrams in the
effective Hamiltonian expansion.

General Coupled-Cluster Equations for Multidimensional Reference State

The basic equation in the derivation of the CC equation is a generalized Bloch
equation {16.17]:

HQP = QPH P (1

When operating on the Bloch equation with the model space projector. P, we
obtain an expression for the effective Hamiltonian 77"

HeY = pHQpP — PxpPH"p (2)

where Q2 = P + X,
Acting on Eq. (1) with operator . i.e.. the orthogonal space projector. we obtain
a general form of the CC equations:

QHQP — QxXPI"P =0 (3)
Further analysis of Eqgs. (2) and (3) requires a specification of the wave operator.
Two matn forms of the wave operator will be considered in the present study. The

first one, based on Jeziorski-Monkhorst (JM) [5]. will be termed a Hilbert space.
ket-dependent exponential ansatz; whereas the second. corresponding to the Mu-
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kherjee~Lindgren (ML) formulation [12-14], will be termed the universal (or Fock
space ) wave operator approach.

Description of the Methad

The approximations introduced into the coupled-cluster method usually rely on
the truncation of the cluster expansion. In order to avoid excessive proliferation of
terms we adopt the method denoted in the literature as CCSD for the single reference
[18] or MRCCSD for the multireference case [6]. in which the cluster operator, T,
is approximated as

T(K) = T(K) + T2(K) (4)

i.e.. only single and double replacement amplitudes are included with respect to
each (i.e. K) reference state. The detailed form of the 7| and T, operators depends
on the type of wave operator assumed and will be specified later.

As far as the reference function is concerned, the two-dimensional model space
is selected. spanned by the functions &, and ®2°, i.c., the simplest case of the
incomplete space.

Hilbert Space Exponential Ansatz

The explicit form of the wave operator, {2, may be expressed as

Q=73 eltN1sHp (5)
«
where
T(K) = ; T:(K) (6)
and
Ti(K)= (LY Z e (Kyal -« aziye v (7

The prime in the last summauon reminds us that those components of T, (K),
which produce excitations within the model space. are excluded from the sum-
mation. S(K) is an additional operator, which depends on the choice of the nor-
malization condition,

In order to employ diagrammatic tecaniques in further derivation. the reference
function which would play the role of the Fermi vacuum should be selected. The
natural choice would be to assume also a ket-dependent Fermi vacuum, which
means that the particle and hole states will be redefined for each column of the
effective Hamiltonian matrix. This also means that the diagrammatic expansion
of the diagonal element of the effective Hamiltonian matrix will be expressed in
terms of closed diagrams, i.¢., those appearing in the energy expansion for closed-
shell theory.
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In order to proceed, the normahization condition should be specified. In the
following subsections twe options will be considered with the intermediste nor-
malization imposed or abandoned.

Intermediate Normalization Imposed

The intermediate normalization condition assumed in this subsection may be
expressed as

P =P (8)
This equality only holds for the specific form of the S(K) operator:
S(K) = [LL( KUK = 1K)y (K)o upty (9)

With these assumptions the effective Hamiltonian operator of Eq. (2} takes the
form

He™ = PHQP (10)
HE = (Bol He! 4. (10a)
() = [P '1{(,7’(0)‘(1))/ (10b)

In ord :r to obtain specihic diagrammatic expressions for the diagonal and off-
diagonal element of the above operator. standard techniques based on Wick’s theo-
rem are employed. The diagonal element, H% . takes the form. as previously men-
tioned. analogous to the energy expression in the closed-shell theory |see Fig. 1 (a}].

The off-diagonal element, 5 = W7 graphically denoted as* v({doubie arrows
refer to the active lev2ls) is given in Figure 1(b). The symbols. ¥ and “* . represent
the sets of diagrams occurring in the expar<ion of the effective Hamnhoman for
the complete model space { CMS) approach ait: are given in Ref. [19]. The difference
between the diagrammatic expansion of the W) element for the ¢MS and the
present treatment is represented by the last four dxagrams in Figure 1(b). all being
disconnected. Thus, the off-diagonal elements contain disconnected diagrams, absent
in the ¢MS theory. The origin of those terms may be attached to the fact that the
T, operator is allowed to carry active labels only.

The coupled-cluster cquations are given in Egs. (11} and (12). and their dia-
grammatic versions in Figure 2(a and b) for T, and 7T'» amplitudes. respectively.

a C‘—‘:’—’)-—-X+Q Q +Q;O+Eo
“g\ﬁjﬁ = #@B * XZ‘ ?% ' \/“’/‘\QB/

Figure 1. Diagrams contributing to the diagonal (a) and off-diagonal (b) element of the
effective Hamiltonian. Hilbert space type wave operator with intermediate normalization
assumed. ( uv ) «3) means permute indices in last diagram in the two possthle ways.




COMEBETHOD FOR AN INCOMPLELE MODEL SPACY ti

\4’;.(}\“(1:: 110’(’“'“4‘1’,\\5
LR T N (R e! Dy oy [ by (1)
]

CRYCRMOES - Hye ™ (g

CRWCRY IR I d s - N SRR e - DI, sl THY [ dg s (12)

!

The general structure of the CC equations 1s analogous 10 that of the ©Ms case
[19]. i.e.. noexphicitly unlinked terms contribute. The 7', equations are set up now
also for the ¢ ampiitudes. e, those engaging active tabels only. This s a conse-
quence of the incompleteness of the model space. The latter tact also atlects. o
some extent, the renormalization diagrams which are now slightly modified.

In the 7 equation two types of terms contribute: connected and disconnected.
This means that the explicitly unlinked terms are tully canceled. The con-
nected terms may be divided into two pans: (principal term graphically denoted as

. which is identical to that occurring in the CMS case and close to the diagrams
obtained for the closed-shell theory: and the renormalization term. denoted as
Y, which is somewhat moditied with respect to Ref. [19] and which is entirely
absent in the closed-shell theory [18]. The terms written in Figure 2(b) as discon-
nected diagrams are. in fact, of a connecied nature when their order-by-order struc-
tureis examined . In full analogy with the complete model space. they may be called
apparent disconnected terms.

The full set of renormalization diagrams, i.¢.. those represented in Figure 2 by
symbols s and ¥ » " is given in Ref. [19].

It should be mentioned here that although the €C equations are formally of a
connected nature, they also implicitly generate unlinked terms. This is caused by
the fact that the 1Y element of the H " involves some disconnected contributions
[see Fig. 1(b)]. Substituting the . disconnected component for the B2 element
in the CC equation will create a number of unlinked diagrams. This should be kept
in mind when dealing with the ¢C method based on the wave operator considered
in this subsection. as applied to an incomplete active space.

PR SR VAN A,
o 0 VY Y N )

Figure 2. Diagrammatic cquations for the single (a) and double (b) excitation amplitudes.
fur Hithert space formulation of the ¢ theory with intermediate normalization assumed.

i ab) indicates the inclusion of the fast dhagram subject to permutting the labels as
specified.
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Intermediaie Normalization Abandoned
The departure from the intermediate normahization may be written as
PQ# P (13)

This happens when we set the S(K) operator equal to zero. As a consequence, the
second term on the right hand side (rhz) of Eq. (2). known as a renormalization
term. does not disappear. The diagonal element of the H* operator, c.g.. for the
reference, $,, may be expressed as

= <q>gli1("]‘(0)lq)o> - <¢0!Xl@ud><¢ud1[{¢l?i¢“/ (14)

since the other reference function, ®,, does not contribute to the renormalization
term. The diagrams appearing in the expansion of HSl are presented in Figure
3(a). We observe the presence of the additional term as compared to the case
described in the previous subsection. This term is due to the renormalization com-
ponent of Eq. (2) or, in other words. due to the fact that the X operator can ,virodnce
the component of the model function. The off-diagonal element of H mu, L2

expressed as
HSG = (@ |He" " [ o) — (37 | X] o ) ol H [Py) (15)

where we took advantage of the equality (®37 [x|®5) = 0.

There is a basic difference between expiessions (10b) and (15). In the former,
the unlinked diagrams do not appear when applying Wick's theorem. since the
operator, e”'9*3® cannot generate the function 7. The elimination of the S(X)
operator from the exponent allows us to create the function &3¢ when operating
with ¢7'9 on ¢, and this has the consequence of creating unlinked diagrams from
the term (®27 | He”'? 9, ). The unlinked terms are also generated by the second
term of Eq. (15) and these cancel all those coming from the first term. The fuil
mutual cancellation is not possible, however, due to the term in brackets in Figure
3(a). The structure of the noncanceled diagrams points out its connected n:ture,
In fact, this is an EPV diagram shown as the last term in Figure 3(b).

The disconnected terms are now generated by the terms:

<q)axi ”1 (’“O) l¢0><q,ud‘ Ve‘f{())|4,0> ( tﬁ)

a ‘:=Eg+0-~x +QMX+Q—Q +®-—Q:D

o LY B B )

Figure 3. Diagrams contributing to the diagonal {a) and off-diagonal (b) element of the
effective Hamiltonian. Within the Hilbert space formalism without intermediate normai-
ization assumed. { ) denotes permutation of the nonequivalent lines.
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and also by the renormalization part of bq. ( 11, Exploiing the ¢C equation tor
the ¢ amphitude. we observe the partial cancellation of the disconnected diagrams
The surviving term [the second term i Figo 3(b)] s actually a connected ¥
diagrain. Thus, in this approach. only connected terms contribute to the off-diagonal
effective Hamiltonian ¢lement.

The €C equations derived for the present form of the wine operator are ideatical
to those presented in Figure 2. The cancellation of the unhinked termsan the current
case 15 a little more complicated. This is due to the fact that &b, ffe" @, is no
longer equal to H8h. Writing the 77, in the general form [Fq. 1 11)]. we observe
that the cancelfation of the unhnked terms occurs between the brst and second
term. This is also true for the CMS and wave operator deseribed in the previous
subsection. Here only parual cancellation takes pliace between them with the term
. 2. (with plus sign) surviving. The absence of the intermediate normalization
makes the term © &I x( e, nonvamishing and. as a result, the fast term of Eg.
{11) generates the diagram . ©.0 (minus sign). making the cancellation of the
unfinked terms compiete.

Fock Space, Universal Wave Operator Approach

In this scction we will discuss briefly the tormulation ot the same problem within
the Fock space scheme,

The tormulation of the Fock space ¢ theory relies on the wave operator defined
as

Q= el P (17

where | | denotes the normal product of the second gquantized operators. The
cluster operator 1s, as usual. separated into components corresponding to the single,
double, etc.. excitations

T T, + 7T 4. (1)

where
Fos e S (19
A At =~ N U pip ! )

The summation over ¢, runs over particle and active levels. and summation over
i; goes over hole and active levels. This means that active labels oceur both as the
creation and annihilation operators. Owing 1o this property there are possible op-
erators which are formally classified as double. triple. cte.. excitations. but effectively
generate the single excitation function ¢ eg. vy, . ¢l ¢te. and the same s
true for higher clusters.

The number of unknown amplitudes, defined according to Eq. (19). far exceeds
the number of equations. In order to solve the problem we need to include into
the model space also lower ranked sectors. containing different numbers of clectrons.
The standard way of constructing the Fock space operator is to proceed in an
hierarchical manner. starting with the 8" sector () and after solving the ¢
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equations go to the sectors S and S with one extra and one less electron
and solve the CC equations until finally ending with the 877 sector. which
corresponds 10 doubly excited configurations relative to du(P ). Now with all
single and doubly excited contigurations included in the orthogonal space. with
respect to the additional reference states. the required number of cluster equations
may be formulated. This allows the universal waveoperator to be unambiguously
determined.

The second approach which could be emploved here 1s to adopt the core as a
vacuum, which means the $"™ sector is now the doubly jonized configuration and
we will consider. also. the SY Y7 sector corresponding to four singly fonized conhg-
urations and finally the " sector which would include four determinants in the
complete case. or the two &, and $47 in the current example.

It was shown in Refs, [10.11,20] that the connected form of the effective Ham-
iltonman and the CC equations may be ¢nsured by retaining the above operators in
the expansion or. in other words. by dropping the intermediate normalization.

Thus. in the present case, we also end up with the connected structure of the
involved quantitics. However. the complexity of the problem is greater in some
respects. although computational considerations are such that Fock space caleu-
lations represent only a fraction of the time of the ground state ¢ solution [23].

Conclusions

It was shown on the example of the two-dimensional model space that the presence
of the disconnected diagrams in the effective Hamultonian cluster expansion may
be attributed to the intermediate normahization condition, Departure from that
condition eliminates disconnected terms,

The disconnected diagrams. present in the effective Hamiltonian expansion. are
the source of the unlinked contributions when iterating the €C equations,

The important observation is that the connected expansion of the effective Ham-
iltonian may be obtained for the Jeziorski-Monkhorst wave operator. L.¢.. an op-
erator defined for an incomplete n-valence Hilbert space [4.6]. The necessity of
the inclusion of the lower rank components of the Fock space approach is very
inconvenient from the computational point of view, particularty for probicms where
full potential energy surfaces. as opposed to energy differences, are derived [20.21].
It also confuses the usual meaning of “excitation.” as “spectator’™ amplitudes like
(" are part of “double™ excitation amplitudes. The number of equations which
should be considered is larger than that in the Hilbert-space approach.

One may anticipate that the later formulation of the multireference coupled-
cluster theorv will be easier 1o implement and more usctut in actual applications.
Elsewhere. this 1s explicitly shown tor the two-configuration. open-sheli singlet case
[22}. the héte noire of single-reference €C approaches.
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Abstract

The problems posed by the hyvdrogen atom in parallel ¢lectric and magnetic fields and in inhomogeneous
electric fields are treated simultaneously by means of perturbation theory. The applicauon of this approach
1s facilitated by the transformation of the Schrdinger equation into a recurrence relation for the moments
of the wavefunction which does not appear explicitly 1n the calculation. Two infinite sets of states are
considered as slustrative examples. one of them can be treated as nondegenerate. and the other requires
perturbation theory for degenerate states. Closed-torm expressions for the perturbation corrections to
the energy are obtained in terms of the hydrogenic pnncipal quantum number. The present calculation
extends and generalizes previously published results. © 1992 John Wiley & Sons. Inc.

Introduction

Perturbation theory without wavefunction is one of the simplest and most efficient
ways of deriving analytic expressions for the energy eigenvalues of relatively simple
quantum-mechanical systems. One version of this approach which comes from the
combination of perturbation theory with the hypervirial and Hellmann-Feynman
theorems leads to closed-form expressions for the energy coefficients of arbitrary
states in terms of the zeroth-order energy [1,2]. This method only applies to separable
problems, because onlv in such cases one can obtain the required recurrence relations
for the expectation values of properly selected operators. On the other hand, the
combination of perturbation theory and the moment method applies to a wider
variety of problems. and has been intensively used in tF: 5tudy of the hydrogen
atom in magnetic [ 3-6] and magnetic and electric { 7] fields. The first apphcations
of this method were restricted to nondegenerate states and states not coupled by
the fields. The latter can be treated as if they were nondegenerate thus facilitating
the application of the approach. Recently, the moment method was shown to also
be useful in the application of perturbation theory for degenerate states to the
Zeeman and Stark effects in hydrogen [8.9].

The purpose of this study is the application of the moment-method perturbation
theory to the hydrogen atom in paraliel magnetic and electric fields and in inho-
mogeneous electric fields. A previous application of this method to the former
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svstem consisted of a numerical calculation tor states that can be treated as non-
degencrate | 7], Here are denived anahvtic expressions tor the energies of these states
and also of a class of states coupled by the pertuibaon, The phissival probloms are
vuthined in the next section: the recurrence refations for the moments are denved
in the section following: examples of nondegenerate and generate states are treated
in the subsequent two sections, respectively: and. finalhy | results are discussed.

The Models

First consider a spinless hvdrogen atom under the combined action of 4 uniform
static magnetic field B and a homogencous clectric tield F both along the - axs.
Choosing an axially symmetric gauge {or which the vector potential A is related to
the magnetic field induction B by A = { B x r. then the interaction between the
atom and the felds is

%(w,-l.)w‘i—(w,xr): + ¢E-r. ()
where 1 s the position of the electron of charge —¢. L is the angular momentum
operator. and «, 1s the ¢yvclotron angular velocity of the clectron w, = ¢/meB. In
this last equation, »zis the mass of the electron and ¢ the velocity of light. The first
term in ¢eq. { 1)1s proportional to /... which commutes with the total Hamiitonian
operator because of the ovlindrical symmetry of the syvstem. Theretore. 1. is a
constant of the motion and without loss of generality that term can be omitted
during the calculation. and its contribution added at the end.

In atomic units, the energy and length are multiples of ¢*/a,.and «,. = h*j(me?),
respectively. and the Hamiltonian operator reads

o= 01+ Mar ()~ cos™ 1) + brcos 0] . (2)

where 1/, = ~¥7/2 — 1 /r describes the hvdrogen atom in absence of ficlds. ¢ =
B a'7[8me)y Jand b = Eafe. Here, Band & are. respectively, the magnetic and
electric field mtensities. and the perturbation parameter, A, is set equal 1o unity at
the end of the calculation.

For the hvdrogen atom in an inhomogencous clectrice hield along the = axis. taking
into account only the dipole and quadrupole contributions to the classical interaction
energy between the atom and the held {10]. one has to add
= $% 0 ey (3

6 oz
to the Hamihtonian operator for the isolated atom. Therefore, the total Hannmltonian
operator in atomic units reads

1= H,. + Mar'(1 - 3cos™ )+ breos 0] . (4)

inwhicha = —(a'76e)d6 /022 = Oyand b - 4 6(0)/e.
One can treat both prohlems sstmultancously by means of the Hamiltonian op-
erator
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IF W is an cigenfunction of £/, with cigenvalue 2 and £ belongs to the domam

of H.then (f] — Y WATE I AR L 0. In particutar. 1t 7718 of the
form.
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The second term on the night-hand side of this equation sanishes when n - NV
W3 =1/ N N=1.2 ..., Another chotce that simplifies this recurrence relation
is 1 = [m} because. in that case. the subscript ¢ remains unchanged and cqual to a
good guantum number. Under these conditions the moments

Is

l' n . I oo : ‘l, . ( N )

satisfy the recurrence relation

n+1 - XN | ) o
~——f\—’,——l,.,, , + ;[(l/)zi + Cimb o+ g+ Ly ontn L

b
- :1‘] - })]r 2n 2 Al:”/,n + )‘(ulx,n‘: o H”I;-ﬂv:«.‘ L bl “ r-‘;) 0. (9}

in which AL is the energy shift £ + 1/(2A7). In principle. this recurrence relation
completely determines the energy and the moments the same way the Schrodinger
equation does for the cnergy and the wavetunction. Hence. numerical caleulation
of the energy and moments from their recurrence relation is possible. as shown by
Blankenbecler et al. for anharmonic oscillators [11]. Here the recurrence relation
(9) is treated by means of perturbation theory: an approach which requires an
appropriate expression for the energy shift in terms of the moments. This point is
illustrated 1n the exampiles that follow.

Nondegenerate States

The only nondegenerate state of the spinless hydrogen atom is the ground state.
In addition to it there are some degenerate states that can be treated as nondegenerate
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because the perturbation operator does not connect them to other states with the
same ¢nergy. One such class of states is discussed here.

The first three terms in the recurrence relauon (9) vanish simultancousty when
j=J.on=N-1and |m| = N - J— 1. Jbeing cither 0 or . When J = () the
recurrence relation reduces 1o Moy o o Malo .y - wals .+ B Y)Y Inorder
to obtain perturbation corrections for an arbitrary value of .V it is convenment to
redefine subscript nas N = 1 + {and the momentsas 4, , =/, ,.,. The recurrence
relation is hinear in the moments so that one of them can be chosen arbitranly, and
the energy is independent ot this choice that plavs ihe role of 4 normahization
condition. In the present case, 4y, = | leads to a particularly simple expression for
the energy shift: AE = Mady > — oudss + hoty ).

The perturbation expansions for the energy shift and moments,

'

Al‘,‘ - Z I_“rh[“ .4“ - T ‘.l:i‘"Al' . (lO)

"

21 po

lead to the following expression for the energy coefficients:

tp by v

P ¥ tp 1)
Ilp - az‘!n.: - 0'().4 a2

"+ hVY p>0. (L)
According to eq. (9) the perturbation corrections to the moments satisfy the re-
currence relation:

NI C e ) : : ‘
,Atjj’zm SHUN+H DN+ i+ D =+ N= DG+ MY

L ( S
iU D+ EEALY

s 1
tg- 1) tg- 1) (g-
+ A{U(L“,‘lﬁ] - (l.*i,',;_x - [)A].L,+:] . ( 12)

The starting point of the hierarchicai calculation of the perturbation corrections
from this equation is given by

EHAE T (13)

which follows from the normalization condition. In order to obtain F,. one has 1o
proceed according to the nested loops: ¢ = 0. 1. .. .. p.j=0.1..... 2p — q).
andi=0.1.....3(p— ¢)— 1. Because only one expression for the energy suffices
to carry out the calculation one can treat this class of states as nondegenerate.

Degenerate States

The choice. J = 1. selects a class of states with |m| = N -2 . N=2.3..... In
this case it is convenient to define the subscript { accordington = N — 2 + iso
that the moments A, , = /, .., satisfy the recurrence relation
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+ A(Uu.‘;._"_“i (I.LA,.: ]’L.), . {14)

When 7 = Uand j = 1. this recurrence relation gives an expression tor the encrgy
shift in terms of the moments:

.3}'.‘.‘111 = 1\((1.]| ' ad. 1+ /’A!j__‘) . {15)

Straightforward application of perturbation theory, as in the previous section, shows
that the recurrence relanon ( 14) and cqg. (13) are insuthetent to solve the problem,
because the perturbation corrections to the moments and energy depend on those
for 1., and ;. The reason is that these states are connected by the perturbation
and have 10 be treated exphicitly as degenerate.

To obtain additional equations., j = / = () in the recurrence relauon ( 14), which
becomes

(A\- -] ),‘14\_ y + AI‘:.'I(U + \{ ﬂ'(l:]‘_‘_‘\ R h.'h _‘} = (), (16}
whereas. when j = Qand [ = — 1. ong obtains
"IU, i = ‘\{ AI‘;:!()_(} + A( (7(1.'1:‘3 - . l() AT I’. ‘ 1 )} f ( ]7)

Substitution of eq. { 1 7) into eq. ( 16) yields a second expression tor the energy shift:
A[l‘{x‘(u - ‘\( N-1 )4‘1()‘(0]
+ .\; U(J[.'!:_z - ’\( 1\' - l)l::} - U{:‘u.}, - \( ;\. - ).-1“_:]
_b[x’l: - [V({\'_ l)’||]: =0. (18)

The normalization condition. -4, , = 1. leads to a particularly simple expression for
the energy shift

AL = A(CI.“;»Z - 0’(1.-13,; + /).'13‘3) . (19)
which. when substituted into (18). gives
[-‘im - N(N—1 )-‘1“‘0](&“;,3 —odAdrx + bx‘:.:)

+ 0’(1[.‘12_1 - A( ;’\’ - l )133] - (1[4‘101 - 1\( A" -1 )-‘10,3}
e [)[,'11_3 -~ /V(x\' b I)AH] = (). (20)

According to eq. (19). the perturbation corrections to the energy are given by

. TORE) tpob) T
lip = a.l 1.1 - aad 3"} + b 3{3 . (21 )
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and thosc for the moments are obtained hicrarchically by means of

{1

WM fEL o o .
e STV = DIV D = (N 4= 208+ = DL

1 ‘ St s
U DA, S LY

L
-~ t

\

ty- 1} tg 1) ty 1)
tooad, oo —dd, 0y — f’:l,,[_,.g . {22y

starting from
1'|/1' = 5,:0. {23)

which comes from the normalization condition. These equations vield the pertur-
bation corrections to the energy and to all the moments in terms of those for Auy
which are determined by eq. (20} that play the role of the secular determinant in
standard perturbation theory {12]. For instance. after writing all the moments of
order zero in terms of .‘,‘,:f. by means of the recurrence relation (22). eq. (20) for
A = () becomes

(42

) 3
NTaN@AN + 1) + 3 /?].'hm

+ u;\'“[% ~ N(N + g) + (1 — ;\')].‘1 - 2 Nb=0. (24)
The two roots of this equation, which are both real. give the splitting of the pair of
degencerate states considered for each value of N, Expanding eq. (20) in A-power
series. and expressing all the perturbation corrections in terms of those for A .
shows that the resulting equation is linear in the corrections A% with p > 0, which
one can obtain in terms of corrections of lesser order already evaluated in previous
steps. Explicit expressions in the simpler case of the Stark effect in hydrogen (¢ = 0)
arc shown [8], but here it seems preferable to use a symbolic processor to solve
for Ay in every step. thus avoiding mistakes.

Results and Discussion

Throughout this communication, the states have been labeled by means of three
numbers that occur naturally in the recurrence relation for the moments N, {m],
and J. The projection of the angular momentum along the - axis is a constant of
motion with value mh, m = 0, +1, + + - and the energy depends on |m| which
appears explicitly in that recurrence relation. The number, N, is the principal quan-
tum number of the isolated atom so that the zeroth-order energy is Iy = —1 /(2N7)
1n atomic units. For low fields, it is customary 1o designate the states by means of
the hydrogenic quantum numbers. According to this convention it remains to in-
troduce the angular momentum quantum number /=0, 1, ..., Close inspection
of the expressions for the energy derived above shows that / = }m] = N — | for
the states treated in the Nondegenerate States section, because they are nodeless
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when A 00 On the other hand. for the pair of degencrate states, consadered i the
Degenerate States section. one has /A Ltorone of them and ¢ N 2oy
the other, both having e N 20 Phis conclusion tollosws rom the coctiivienis
of Al ineys. t 3 yand (1R ywhich reveal that. for N 0L one of the states is nodaloss,
whereas the other has exactty one radial zero. Tor exampie. when N 20 the pair
of unperturbed states are 2 and 25, Thus present approach agreos with standard
perturbation theory that leads toa 2~ 2 secutar determummt with nonvanishing
off-diagonal matnix elements tor such states. The sphiting of the energy Jeved due
to the adminture of these states 1s entirely due 1o the term 220 because the terns
proportional to « have sero otf-diagonal matriy elements,

The moment method feads w remarkably simple recurience retations which are
suitable for both numernical and anawyue caleulutions, Here the interest s i anah ue
expressions because they allow a clearer interpretation of the physical phenomenon,
Even with the help of the moment method. an analy ue calculation of order Luger
than the second would be extremely tedious without the assistance of a ssmbohic
processor such as Maple or Reduce. The former is used to obtam the results in
Tables I-1V. Table I shows the first four perturbation corrections to the energy of
the states with 7 = tre = N~ 1 of the hvdrogen atom in paraliel clectrie and
magnetic tields (o = 1), These results agree completely with the anads tic calculition
of Lambin et al. [13]. with the numencal caleulation of Johason ctal. {14] for the
ground state. and with the numencal calculation of Fernandes and Custeo [ 7] for
excited states. On the other hand. the coethicient of ¢~ < in the analvtic ground-
state energy obtained by Turbiner {13 ] through the logarithmic perturbation theor
must be wrong. Table 11 shows the perturbation correcuons to tiw energies ot the
pair of states with {sf N - 2./ N - Loand {0 N 2 for the same system,
Because the energy coetlicients become increasingly comphcated functions of N,
as the perturbation order increases. only the first perturbation correction tor arbitrars
Nand the first three corrections for A 2 are shown, Netice that the sphitting of
the pair of degencrate states is given by the sign of the square root in 1., This

Iagtt T Perturbation corrections to the energies of the states saith / i Vot tor the hudropen
atom i parallet clectne and magnetic fictds

I aN(N

| - .
I —;4.\‘(\ e NIRN O TONN - Ry - OI2N 18]

Eoo o aVUN - Dla  NSeNT C d3SANT RTINS L 6ROON - 21120 A2I6N T 0TS - Sl

Ey 13550 VA DA TOETYTIION - JaNI0TeONT - SO0 200 9T HadenN
TS0
JOJRUI22EN -+ HO6RTIINN - LIR262400 » o P NV ISIRIONN T 300490 T - 0d 304NN
CSROAKOON + TRAIINM) + APCRU20N T - 1239SSA T R92S0N - IRRON)
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Taste 1. Perturbation corrections to the energy of the states with {m| = N - 2./ = N ~ | and
. - . . . ~ £
{ = N - 2 for the hvdrogen atom in parallel electric and magnetic fields. Here 4 = Ap .

. 3
Ey = aNAN? = 1) + 2 A

A= glINT + HINT = IN] 2 (@ NTEN + 43N £ 93N ~ [SIN + 49) + 24ahNCN + 1)
+ 360N EaNT + 2uN + 3h))

Ey=12a + 12bd

E, = —2688a% — 4416ab4 + bY26884% ~ 29457) — 12b{a*(~25676847 + 131584.4) + ab(- 738564
+ 16000047 — 144964 + 3336) + P (211204° — 16564)/96b.1 + 6301 ~ 184a)

4
) = A [a%(~33016371200 + 3445186560004 — 11983257600004° + 1389363200000.4 %)

+a@(1707149312004° + 13453638348804° — 7846356674564 + 1013300659204)

+ a*P(—813416448004° + 1306287360004* + 340686297600.4° + 5184082608.1

— 1711936256047 — 265992240) + a’H*(78182400004° — 891713894404 ° + 429780372484+
+ 4091324448047 — 93727170244 + 10430371204 + 12091680) + a’h*(25643520004°

~ 230147758084% + 29958969604 + 48615655684 — 743295604 — 1004842080.4°

- 9250020) + ab(6303744004° — 18545241604° — 4816108804 + 378855360.4°

+ 362437204% — 96907054) + 55(632448004° ~ 309225604 + 25280104%)/[12b4 + a{80A
-23)P

{
= — 1) + (52942 + 60ab + 9H°)*
4 4(200+3h)[ 3a + (529a° + 60ab + 9b°)'"]

splitting is caused entirely by the electric field in agreement with the prediction of
standard perturbation theory. Thus far. no independent calculation of these per-
turbation corrections has been reported so the present results are compared with
those for the Stark (¢ = 0) and Zeeman (b = 0) effects in hydrogen obtained by

TasLe HI.  Energy coefficients for the states with / = [m| = ¥ — | of hydrogen in an inhomogeneous
electric field.

Ei = BENR2ANY - 1)

E, = __:; PNYN + DIENYI6N + 2087 + 28N + 56) + 4N + 5}

Fy= % BYENKN + D[ENYA8N? + 168N* + 240N + 36N? — 748N — 968 + 4N* — 22N — 102N
- 93]

[
Ey= ~ o HN'UN + DIENYG6560NT + 415120N° + 1167840N° + 1936800N* + 2486528N3

+ 6005776N? + 13623520N + 11373440) + EENH8960N® + 33160N* + 166160N* + §810400N?
+ 1665800N + 1165840) + 960N> + 4665N2 + 7750N + 4400]
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Taste IV Enerpy coethicients for the states wath i N - 20/ N jand/ 2ol hvdrogen
in an inhomogencous electric ficld. Here (1 - 10,

i . ,
Fyo T hVIIHINT eN - 81 3N
AENCNT SN D [ENNT 2 60NT s IXINT 330N £ 120 MEN2N - e )
AN RIAYRANENE PEPSR &
N2
£ 12MA 0 28)
Er o= 6P [EN20992040 - T0848) + SRIJORA - Tod16.15) » (416047 366307 - 2v6 1 L]

w1740 - 964 /&R0 - 278) + {2.1]

12 s .
Ey = T PHE213453370880 — 1906232183600 + 5648134624000.4° - S378424320000.4 Y

+ 540 328738487040 + 2010785780736.4 - 3602664284160.8° + 1317236736000.4 )

+ £46731274960 - 387592133924 + 176941339360.47 ~ 3392108288004 - [38304237320.4°
1 3824320512004%) + £%-41577480 — 58419532804 4 2306940710447 - 283333920044 1

~ [14458431488.4% + 1475927193604° + 2606080000.1%) + £(490590 - 29085480.1

+ 16R177360047 — 21160408324 - 9384504960.4% + 1660397875247 + 8547430004 %)
FEAC-3792018 + 120812404 - 6995808047 16033696047 + 40T980800.17 + 210124R00.4%)

bAARA2670 - 1030752007 + 210816004H)/[& 27 + 80.0) + 121}

A= [25F 2 (62587 + 60¢ + 914208 + 3]

the same method but a different symbolic processor (MUMATH ) and contrasted
with results from various sources [8.9].

Table 1T shows the perturbation corrections to the energy of the states with / =
fm] = N — 1 of the hydrogen atom in an inhomogeneous electric field (o = 3).
Because the whole perturbation vanishes as the electric field is turned off it is con-
venient to write a = bE. To compare present results with those obtained by Bednaf
[16] by means of the Lie algebraic method one has to substitute «/3 for ¢ and F
for h. The first-order corrections agree. but there is a slight discrepancy between
the second-order ones. which may be attributed to the long and tedious hand cal-
culation followed by Bednaf. Table 1V shows the perturbation corrections to the
energies of the pair of states with || = N — 2, /=N - land/ = N — 2. For the
same reason given before only the first perturbation correction is shown for arbitrary
N and the first three energy coefficients for N = 2. The author is not aware of
published results for these states to which he can compare present energy coefficients,
but they must be correct since they come from the same program that produced
the results for the other problem.

The moment method provides a systematic and simple way of applving pertur-
bation theory to various problems of physical interest. One obtains the perturbation
corrections hierarchically from recurrence relations which are suitable for both
analytic and numerical calculation. Their treatment by means of symbotic processors
is straightforward. so that ong easily derives analytic expressions of relatively large
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order which commonly facilitates the understanding ot physical aspects of the
problem.

Moment-method perturbation theory is preferable to loganithmic perturbation
theory [ 15] because the latter becomes much more tedious in the process of treating
states with nodes. Furthermore, it seems that this method has not vet been appiied
to degenerate states. If one is only interested in the energy the moment method 1s
more convenient, because of 1ts greater simplicity, than the Lie algebraic approach
[16.17]. The latter is certainly the most powerful method to derive analytic expres-
stons for all the relevant dynamical variables in the system. However, in the cal-
culation of such properties by means of perturbation theory, the moment method
is still useful tor providing a rapid and independent test of the energy coetlicients.
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Abstract

Relativistie pair correlation encrries of Xe were computed by emplosing a partid-wave expansion up
toorder 7, 5 The Dirac-Fock thi §oscr. and many-body pertarbation caleulations were pertormed
by emploving analvtic hass seis ob well-tempered GAUSSTAN-G pe tfuncions. A detnled studs ot the
pair correlatton energres 111 Xe is done i order to amaly 20 the nature of relatiostic and correlation ettects
1 this heavy-aton system, o 1992 John Wides & Sans, g

Introduction

The relativistic many-hody theory has been the subject of active resvarch interest
during the last decade. This is due to the increasing awareness of the importance
of relativity 1n describing the clectronic structure of heavyv-atom systems. and due
to the inadequacy of the physical model that neglects selativity or treats it as o small
perturbation. It is necessary to torteit the Schrodinger cquation in favor of the Divac
equation to describe the clectronic structure of heavyv-atom systems.

In the last tew vears, the relativistic many-body perturbation theory (MBp1 ).
which accounts for both relativistic and clectron correlation cffects, was developed
by a number of groups [1-9]. The relativistic MBPT algorithm. based on an expansion
in analvtic basis functions {4-91, has the advantage in that it provides the compact
representation of the complete Dirac spectrum. and greatly facilitates the evaluation
of the many-body diagrams using finite summations [6]. Furthermore. by invoking
the finite basis set expansion in terms of GAUSSIAN spinors (G-spinors). the
relativistic manv-body methods can be applied to molecular clectronie structure
problems in a straightforward way [10.11]. Applications of the relativistic many-
body calculations, however. have been limited to lighter svstems, because the ap-
plications 10 many clectron systems require large integral storage space and com-
putation time.

In a series of studies [3,7. 12,13}, we have developed matrix Dirac-Fock (pr).
self-consistent hield (scr). and relativistic MBPT calculations using analvtic basis
expansion in terms of G-spinors in order to account for both relativistic and clectron
correlation effects i heave-atom systems. The analviic basis expansion in terms

International Journal of Quantum Chemistry: Quantum Chemistey Symposium 26, 127-135 {1982y
o 1982 John Wilev & Sans. Inc. COC QU20-7R0K92 01012709
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of G-spinors has yielded accurate results for highly ionized systems, and shows
none of the signs of the near-linear dependency problems reported with S-spinor
basis sets [4]. In a recent study [13]. we also developed a way to reduce the com-
putationat burden in relativistic MBPT calculations on Kr and Xe by using contracted
G-spinor basis sets that retain both accuracy and flexibility in the core and the
valence region. The feastbility of a practical relativistic MBPT on heavy atoms is
examined by benchmark zlectronic structure calcutations on the ground state Xe
atom by using the contracted G-spinor basis sets. The Xe atom pussesses 54 ¢lectrons.
and is one of the heaviest atoms to which nonrelativistic and relativistic MBPT
calculations employing analytic basis functions that has ever been applied.

In the relativistic MBPT study on the xenon atom [13]. we have obtained the
relativistic second-order energy to be —2.7403 au. Its nonadditive contribution
[13]. due to the inteference between relativistic and correlation effects, was found
to be —0.0326 au. Although the electron correlation energy and the nonadditive
contribution are small in magnitude in comparison with the total bF energy of
Xe, they may constitute a significant fraction of the valence-shell energy. Because
of the large number of electrons involved, it is very likely that we will be able to
take only the valence-shell correlation energy into account in ab initio fully re-
lativistic many-body calculations on heavy-atom-containing molecules. Thus. it
is important to investigate what fraction of the correlation energy. as well as of
the nonadditive contribution in a heavy-atom system, 1s due to its valence shell
correlation energy. If a significant fraction of the nonadditive contribution comes
from the valence shell, then the relativistic and correlation effects are no longer
additive in the valence shell.

In the present study. relativistic pair correlation energies of Xe are compuied by
using a recently proposed contracted G-spinor basis set that is capable of reproducing
over 994 of the relativistic correlation energies computed by using the large un-
contracted G-spinor basis set {13]. The computed sccond-order pair energies are
partitioned into the core, core-valence. and valence shell contributions. in order to
study the nature of electron cori *lation encrgy in the valence shell of the heavy-
atom system. The objective of the present study is to perform a detailed analysis
of the relativistic correlation energies of Xe. in order to provide a benchmark for
heavy-atom systems.

Methods

The N-electron Hamiltonian for our relativistic MBPT calculations is the so-called
relativistic “‘no-pair” Dirac-Coulomb (DC) Hamiltonian {14,157,
H, = Zhp(iy+ L (HZ 1 /r) L, (1)

where L, = L. (1) L.(2)-++L,(N).and L, (/}is the projection operator onto
the space spanned by the positive-energy eigenfunctions, | ¢,, | of the radial DF
operator, F, [16].

Egn(r)=e,¢n(r) (2)
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Tasit L

Orital energies and towad

D1 energy of Xe (in au).
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Orbnal energics®
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P
2
3.\';-:
KT
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3ds.;
3(1’5 N
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4py.
4pas
4ds >
4(1'5:
SSI N
5pys
Spa:
h‘DFa,h
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1277.256
202.4646
189.6769
177.7045
-43.01016
~37.65910
—35.32304
-26.02319
~25.53694
~8.429622
6452115
-5.982547
=271LLS
2.63355]
- 1.009964
0.4923594
—0.4396173
-7436.88356
-7232.07173

*Computed by using well-tempered
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21519p13d G-spinor basis set.

* Towal Dirac-Fock-Coulomb SCF en-
ergy.

¢ Nonrelativistic limit computed by using
¢=10%

where
_ | AEES cll, + V4s
- CH,( + V'SI. VSS _ 2(.2 (3)
and
Pm(r)
onlr) = ( ) (4)
Q,.(r)

The radial functions, P, (r) and Q,.(r). are referred to as the large and small
components, respectively. P, (r) and Q,.(r) may be expanded in sets of analytic
basis functions [4-8.16].

In g-number theory, the negative-energy states are taken to be filled in the true
vacuum state, and the relativistic many-body perturbation theory is conveniently
described within the panticle-hole second-quantized formalism in which the occupied
positive-energy states as well as the negative energy continuum are taken to be
below the Fermi level [6,7].
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Tasir I Pair correlation energies of Xe tin milli-hartrees).
Pair encrgy
Pair ¢ = 1370370 ISR [ Inft.
Valence
SpSp -73.63 -73.81 HOUIR
SpSs -26.72 25.38 - 1.37
S558s -8, 849 578 0.1
Core-valence
Spdd - 138.39 13424 415
Sp3d - 13.18 12,50 -0.63
Spdp -17.73 ~-17.20 -0.53
5p3p -3.56 -3.54 -0.02
S5p2p ~1.23 ~1.16 ~(.07
Spds -3.09 -3.21 +(.12
5p3s -0.80 -0.85 +0.08
Spls —0.28 -0.28 0.00
Spis =011 -0.10 -0
Ssdd -49 .61 ~43.7% - 5.86
553d ~6.26 ~-5.29 -0.97
Ssdp -10.81 -9 .86 -0.95
Ss3p -1.80 ~1.59 -0.1
552p -0.50 -0.42 ={.08
Ss4s -1.59 - 1.52 -0.07
5535 -0.358 ~(.34 -0.01
Ss2s -0.11 =010 -0.01
Ssis --0.04 (.03 -0.01t
Core
4444 -409.53 -409.75 +0.22
4d3d =171.72 -172.86 +1.14
4dap - 187,64 184.91 ~2.73
4d3p ~48.42 -50.96 +2.54
4d2p —16.90 -17.33 +043
4das ~46.22 -46.10 -0.12
4d3s ~-11.08 -~12.4] +1.33
4d2s -3.85 ~4.19 +0.34
4dls ~0.16 -0.19 +0.03
3d3d —383.96 -382.72 -1.24
3ddp ~81.98 -77.41 -4.57
3d3p -200.96 -200.92 ~-0.04
3d2p ~-121.20 ~124.01 +2.81
3d4s ~27.40 -23.79 -3.61
3d3s ~50.62 ~49.59 ~-1.03
3d2s ~28.38 -31.20 +2.82
3dis ~-1.09 -1.26 +0.17
4pap -5393 ~53.23 -0.70
4p3p ~31.87 -31.33 -(.54
aplp ~12.31 ~11.69 -0.62
4apds -26.67 -25.67 —-1.00




CORRFLATION FNFRGIES OF XENON 131

Ty B A(Comomned )

Pair energy

Parr ¢ 1370370 ¢ il
dps 750 7.85 {38
4p2s 284 279 0.03
dpls 113 1.09 0.03
Ipdp S6.31 SSRT (164
2y 38,74 S624 250
Ipds 0.3 Q.46 1.03
3p3s -7 2713 0.21
Ips 13.25 13.07 098
3l 3.96 872 .24
2plp 135,37 131.82 375
2pds - 354 306 .45
23 1316 11.6] 1.33
2p2a q3.82 43.9% .84
2piy 3168 3108 (137
BRE R 4,70 3.56 0,14
453y BRI H 246 0402
4424 (LK 0.74 XI5
Isiy (.28 0.24 (103
KIRN 4.57 4,38 .02
RIS Ide 3.7 0.19
KR 1.29 1.11 018
22 7.70 7.43 027
sl 6.04 5.2% 0.76
tals S23493 2477 > (1.8

Inaseries of studies { 5.7, 12, 13,17, 18]. we have performed matrix Dirac-Fock-
Coulomb {Di°C) and Dirac-Fock-Breit (DFB) SCF calculations on many-¢lectron
svstems with a finite nucleus model. In these studies, we have emphasized alteration
of the boundary conditions such that GAUSSIANSs become the best form for basis
tunctions. Representing the nucleus as a finite body of uniform proton charge
accomplishes that feat [17]. With this representation of the potential, for exampile,
the cxact §; .~ solutions of the Dirac equation near the origin. we have

P(ryfr=1+4gr 4+ g+ « - (3)
QY r= fir+ furt + «.- (6)
so that, for « arbitrary parameters [17].
Pry=r+gr'+ -+« = rexpl—ar’) (7}
QUry= fr + fut + <o = Arlexpl - ar’). (8)

Thus. in the finite nuclear model. the GAUSSIAN functions of an integer power
of r are appropriate basis functions because imposition of the finite nuclear boundary
results in a solution which is GAUSSIAN at the origin [17].
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Figure 1. Partial wave analysis of the pair correlation energies (sign reversed) for the

ground state of Xe.

The G-spinors that satisfy the boundary conditions associated with the finite
nucleus automatically satisfy the condition of the so-called *'kinetic balance™ for a
finite value of ¢. The kinetically balanced G-spinor basis sets are precisely the form
given in eqs. (7) and (8). This is a consequence of the fact that the exponent of r
in the GAUSSIAN functions does not depend on the speed of light. In this sense,
the G-spinors are chosen to satisfy the condition of kinetic balance and relativistic
boundary conditions associated with a finite nucleus.

TasLe Hi. Core, core-valence, and valence contri-
butions of pair and nonadditive energies (in milli-

hartrees).
Pair
energy Nonadditive energy
Core —2384.64 -17.87
Core-valence --249.41 -13.43
Valence -106.24 -1.30
Total* —2740.29 -32.60

* Ref. 13.
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In a recent study [13]. we have performed relativistuic DEC SCH and MBPT cal-
culations on ground-state xenon with the well-tempered GAUSSIAN basis of Hu-
zinaga and Klobukowski [19.20] in a contracted and an uncontracted form. In the
present study. we have used the same well-tempered GAUSSIAN basis sets: The
DEC SCF caleulations were done Ly using the uncontracted 21519p 12 basis set.
Basis functions in the 21y, 19p, and 124 primitive sets were contracted 1o generate
the [14513p 10d] contracted set for MBPT calculations. The contracted set was de-
rived by grouping the functions of highest exponents (see Tuble 2 of retl 13). The
pair correlation ¢nergy calculations were performed by emploving a partial-wave
expansion up to order L, = S (13513p10d7 16 ¢50 basis set). The Xe nucleus
was represented as a sphere of uniform proton charge distributnion. The atomic
mass used in the calculations was 131,30 amu. The speed of hight used was 137.0370
au. To simulate the nonrelativistic Himit. a value of ¢ of 10% was used.

The virtual orbitals used in the study were calculated in the ficld of the nucleus
and of all the electrons (17 potential ). Goldstone diagrams have been summed to
compute the second-order pair correlation energies. Diagrammatic summation was
done within the subspace of the positive energy branch. 1.¢..in the no-pair approx-
imation [t4.13].

The D Hamiltonian used in the present study s approximate. In the Do Ham-
iltonian. one-electron interactions are treated relativistically as a sum ot Dirac one-
electron Harriltonians. whereas the two-clectron interaction is treated nonrelativ-
isticatly as the instantancous Coulomb repulsion. However. the energy shift induced
by the low-frequency Breit interaction in the scF and correlated calculations is
known to be significant for inner-shel orbitals of heavy svstems [R. 18], The effects
of relativity on the valence spinors. however. are almost entirely accounted for by
the ¢ Hamiltonian used in the present study.,

Results and Discussion

Table 1 displavs the total DFC energy. Fyyy (. as well as the orbital energies of X¢
computed by using an uncontracted 21519 p 134 G-spinor basis sets. This total DEC
energy is 0,017 au higher than the total DIC energy. ~7446.9010 au computed by
using numerical fnite difference DF program [21]. We have computed the non-
relativistic imit. [y, by taking ¢ = 107 in our DEC SCE calculations. This gave
~7232.07173 au. The relativistic encrgy lowering, which is the difference between
the total DFC SCF energy, i . and the nonrelativistic imit, Fyy, . is 214.81 au.

A number of quasirelativistic effective core potential calculations [22-24] have
been performed on diatomic Xe» and XeCl. In these calculations. the 5y and 5p
orbitals of Xe are taken to be the valence orbitals. All the remaining orbitals are
treated as the core orbitals. and they are replaced by a set of effective core potentials
for valence-only calculations.

In the present study, we also treat the 5S¢ and Sp orbitals as the valence orbitals
and the remaining as the core orbitals. Then the total of 66 second-order pair
correlation energies for ground state Xe¢ may be partitoned nto the valence. core-
valence, and core contributions. Table 11 gives the second-order pair correlation
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energies partitioned in this manner, In the table, the relativistic pair energies com-
puted by using ¢ = 137.0370 are given in the second column. The nonrelativistic
pair energies obtained by setting ¢ = 10* are tabulated in the third column. In the
fourth column, the nonadditive contrnibutions, i.e.. the difference between the re-
lativistic and the nonrelativistic pair correlation energics. are given.

The partial-wave analysis of the seccond-order pair correlation encrgles given in
Table II are schematically presented in Figure 1. Here. the magnitude of the rela-
tivistic second-order pair energies for the ground staic of Xe are presented as a bar
graph. From Figure 1. one can clearly sce that the dominant correlation contribution
comes from the 4d4d and 3d3d pairs as well as those that involve 4¢ and 34
orbitals (e.g.. 4ddp. 4d3d, 3ddp. 3d3p. ewc.). This may casily be understood
because the 4d and 3d shells cach possess 10 clectrons. and the dvnamical corre-
lations among these ¢electrons are not well accounted for in the DFC SCF step.

The valence. core-valence, and core contributions of the relativistic pair corre-
lations. as well as the nonadditive energies. are tabulated in Table [I1. The valence
and the core-valence contribution of the pair energy are. respectively. 3.9 and
9.1% of the overall second-order energy of Xe. The valence contribution of the
nonadditive energy, — 1.3 milli-hartrees. accounts for only 4% of the overall non-
additive energy. and only 1.2% of the valence pair correlation energy. This strongly
indicates that relativity and correlation effects are additive in the valence shell
of Xe.

Table II shows that a number of core pair energies are of comparable magnitude
but with opposite sign. Because of the large cancellation of the nonadditive encrgies
in the core shell. the overall nonadditive energy of the system remains small. Fur-
thermore, the core contribution of the nonadditive energy accournts for only 55%
of the total nonadditive energy. Because there is no such cancellation. the core-
valence contribution of the nonadditive energy accounts for a large fraction (417%)
of the total nonadditive energy.
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Nonorthogonality and the MO Energy Level Patterns
of Molecules Deduced Directly from Structural
Formulas by the New viIF Method as Compared

with Machine Computations*

OKTAY SINANOGLU

Sterling Chemistry Laboratory, Yale University, P.Q. Box 6666, New Haven, Connecticut 06511

Abstract

The MO energy level patterns of molecules deduced directly from the pictures of molecules (VIF
method) are shown to implicitly include the overlap integrals between highly nonorthogonal AO's and
to be invariant under crucial nonunitary transformations. Further, machine-computed MO levels are
found to readily vield chemically interpretable information such as the nonbonding MmO levels and the
nature of the HOMO and LUMO once the proper invariant quantity found here is subtracted out from
the numerical energies. The resulting EHT, Gaussian STO-3G. . . . type computed MO energy level
patterns then show correspondence with the viF-pictorially deduced level patterns obtained without point
group symmetries. € 1992 John Wiley & Sons. Inc.

This article is a contribution to the bridging of the gap between the pictorial,
electronic language of chemistry needed by practicing experimental or synthetic
chemists and the numerical results obtained by machine computations.

Conceptual and necessarily pictorial theory of valency based more and more on
the molecular orbital (MO) formulation teaches us to think in terms of bonding,
nonbonding, and antibonding MO energy levels. Computations on the other hand
yield a set of MO energy level values the lowest ones negative, a few of the highest
ones being positive numbers. Can these numbers be readily interpreted and be put
into correspondence with conceptual notions without going into a full. detailed
analysis of MO coeflicients and /or extensive use of point group symmetries as most
molecules are not symmetrical anyway?

Computational methods starting with Extended Hiickel Theory (EHT) [1]} and
going on up to Gaussian 90/92 [ 2] options RHF STO-3G and higher, fully include
in the calculation of MO energy levels, the overlap integrals S, between the valence
shell atomic orbitals ( A0) of different centers these being highly nonorthogonal.

The qualitative features of a molecule’s MO energy levels pattern are given by
three level pattern indices LP1 = { n,, n,, n_}, the three integers being the numbers

* This article is dedicated to Per Olov Lowdin who has done so much for the establishment of the
field of quantum chemistry worldwide.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 137-151 (1992)
© 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010137-15
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of bonding ( +), nonbonding (¢). and antibonding (-} levels. It has been shown
that [ 3] these integers already so useful for qualitative chemical reasoning are also
fundamental invariants [4] when isomeric sets of molecules (and their MO ham-
iltonians /) are transformed into other isomeric molecules yielding thermic and
kinetic reaction selection rules more general than any based on quantum numbers
and point group symmetries. Such chemical transformations can be carried out
pictorially [ 3] by simple-to-use pictorial rules applied to the VIF ( valency interaction
formula) pictures of molecules which look like amplified structural formulas (SF).
While SF depicts the eicctron density ( electron pair bonds. lone pairs) in the ground
state of a molecule, the Vii depicts an effective one-electron MO hamiltonian. 4.
The VIF therefore yields more electronic information, such as HOMO-LUMO reac-
tivity, than the SF. Further. SF has difficulty in dealing with nonclassical. nonoctet
rule structures, while VIF applies equally well to any electron-deficient, organo-
metallic, or unstable, transient species.

With the pictorial VIF rules one may also deduce the LpPi directly from a picture
of the molecule [3].

Nonorthogonality of AO’s, the MO Hamiltonian, and the viIF
We start with the abstract, basis-frame independent MO equation.
(h—EDHY> =0 ()

According to the principle of linear covariance [4]. Eq. (1) can be written in a
linearly covariant form which then looks the same in any orthonormal (O.N.) or
nonorthonormal basis frame for the valence shell vector space V), of dim = n. We
use

1= |e*){e,] (2)
and
{e*ley =684 (3)

with {|e,>} a valency basis set for V,, in general non-O.N. The 7 is inserted in
several places in Eq. (1) to get the form

(h, — ES,)c" =0 (4)

covariant with respect to the most general group, L(n). (linear group over }',).
The covariance principle used has been deduced and shown by this author [3,4]
to be a major consequence of the superposition principle, the primary postulate of
quantum mechanics.

Upper and lower indices balance out and are summed over 1 to n. Lower indices
we take to indicate covariant components, upper ones contravariant.

he ={edhley; M, = ou he=B8. (p#v) (5)
S, = e de) (6)
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The primary calculated (or semicmipirical ) quantitics are taken to be the covariant
ones. Egs. (3) and (6). Indices are raised using the metric tensor

AsT = S (7)
where
Ay, = 60,
Thus in matrix form
o3 (8)
the usual overlap matrix, and
=g (9)

its inverse. In most molecular problems § is nonsingular (| §} # 0) except in some
cases of far-Uv spectroscopy interest where a " A-catastrophe™ and its resolution
were previously mentioned [5]. The

{th,t =h (10)

is the usual {«,,. 3,. }-Extended Hiickel (EHT) matrix if non-O.N. AQ’s are the
particular basis set chosen and the EHT approximations are used on /.

More generally # may be a closer approximation to the Hartree-Fock-Roothaan
hamiltonian in which case a's and s may include major pieces of electron-electron
repulsions J,,. J,. as in the Pariser~Parr-Pople method [6] for 11-systems, and
CNDO [ 7] more generally. Even pieces of the all-external correlations e, e, may
be included as done using the many-electron theory (MET ) of this writer [8].

By linear covanance [4], however. the same form of the Eq. (4) now applies to
any other basis frame. For example in the MO-basis ( necessarily O.N.). 4, becomes
diagonal. as does S, — [,. = I* = §% . the Kroenecher delta.

There are also newly discovered unusual non-O.N. basis sets in which {4, }
hecomes the sume matrix as the h of another molecide. These topics are treated in
a previous set of articles [4] giving the foundations of chemical transformations
theory and its VIF pictorial implementations { 3].

Convenient starting points for MO calculations are | /1,,.. S, | taken in the non-
O.N. valence shell AO’s basis sct (as in EHT, MNDO [9]. RHr $TO-3G).

The MO energy levels | F, ) with i € |1 to #| come out very similar in any
approximate method of calculation in the case of the lower negative eigenvalues,
but differ widely in magnitude for the few highest and positive I, . These levels are
measured relative to the “total zero” reference, that of all electrons and nuclet
separated out to infinity,

Given a certain basis set (such as that of £HT or of $10-3G). all other bases
obtained by lincar transformations | T | on that {initially non-O.N.) set. leave the
(1P of b, Eq. (5). invariant. Thus the numbers ) n" _n’. n" i dre conserved since
T C 1{n). the linear group, aind A transforms adjointly
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h'= T'hT (10

~

as seen from h),. = T,'T,* h,, (covariant to covariant tensor transfocrmation ). The
eigenvalues { E; } themselves are of course not prescrved unless the transformation
is from an O.N. to another O.N. basis in which case T is unitary. In general T is
nonunitary.

The conservation of the MO-level pattern of / (true with or without the consid-
eration of S,, in Eq. (4), see below) with the { E, } relative to the “'total zero,” and
this (LP1)” are not however particularly useful for qualitative chemical reasoning
on the behavior of that molecule. We need to shift the zero of the energy and look
at the E, relative to separated atoms (and their free atom AO’s), to assess the bonding,
nonbonding, . . .quality of each MO level. To do this, one of the a,,’s is substracted
out from the diagonal elements of { 4,,}. A convenient one is that of a most fre-
quently occurring suitable A0, for example, that of carbon for the pyridine pi-
system (for sigma systems see Ref. [3]). As alternatives, one may substract a, the
average of all the «,, in 4. Taking the substracted one as the standard (std) «, one
has from the abstract form, Eq. (1),

h=h-al
and
(hR—EDI¥)=0
with
E=E-a (11)

This h was used initially in Hiickel’s pi-HMO with the large overlaps S,, neglected,
but here the a-substraction is done now on the abstract form for any molecule
sigma and pi, and as we will see below, without neglecting the overlaps.

Starting for the general case, with the abstract Eq. (11), we now apply the non-
O.N. unity trick, Eq. (2) for any basis frame and get

[(E)uv_ESuv]C“ :0 (12)
where however h = & — af has become

(B) = Ay — @S, (13)

The std non-O.N. AO basis set is such that each AO is normalized to unity, those
on the same atom are orthogonal, on different centers they are not. Thus

(h)y = — @ (14)
(h)y = B ~ aSu; (1 #v) (15)

If all «,,’s are nearly equal to a (std «), then
h,, = 0 (16)

but if only some of the a,,’s = o (std), there will arise some nonzero h,,’s.
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The original VIF's were drawn {even tor sigma systems), based seemingly on

[(hyy, — E“8,Jc™ = 0 (17)
where (ﬁ);’u =y, vow
but (hy,, = 8. (18)
(u #v)

To make it dimensionless {(h)¢, } is divided by a std 8. Then we have the corre-
spondence

[(h"). ) ~ VIF
Thus, for example. for an almost linear H,
2
VIF: (19

where each dot = a valency point, vp, and each line is a symmetrized dyad
Ve, y{e.] with the coefficient giving the line strength «,,, = 8,./8. All (h,)" =0,s0
there are no AO (i.e., VP) self-energy loops | e,){e,| in this VIF.

In the initia! viF [ 3.4] papers it was stated that nevertheless VIF includes overlaps
due to the principle of linear covariance, but proof was not given which is given
now in several steps.

Step 1. The VIF is actually drawn for (h),, of Egs. ( 13-15). where. for example.
for the H; species (e, — «)/8 = 0, and line strengths are x,. = (#,, — aS,.)/ B with
the std 8 = 3 — S using a std overlap value S. In the starting VIF’s nonnearest
neighbor (non-n.n,) lines are neglected as in Eq. ( 19). This neglect is not essential.
The effect on the LP1 of the inclusion of further interactions can also be examined
with the ViF-rules. For example if we take the n.n. 12 and 23 as equal and their
strengths as 8. then their « = 1 (if no x is written on a line in the VIF that line
strength is implied to be ¥ = 1). but 13 line will have a weaker strength x < 1 as
in

2

VIF: (19"
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[ This change would also allow one 10 examine how the Lp1 of lincar Hy evolves
into that of an equilateral triangular H; if one were to vary « continuousty and
apply the vir-rules].

The Vie’s drawn for h,, and (h)¢. are the same and yield the same LPL. This
constitutes the first step of the proof that inclusion of overlaps does not affect the
VIF theory going from Eq. ( 18) to Eqs. (14)and (15).

Step 2. The MO levels {E, } of Eq. (12) with overlaps in the second term. and
the eigenvalues { E¢ } of Eq. (17) are different. Even though Step | above showed
the srructural covariance under L(n), of (h), sc(h)., so that when simply diago-
nalized as individual matrices they should yield the same 1.P1 of their diagonalized
elements, the presence of §,, rather than 4, in the full equations Eq. (12). nced
be considered.

We show now that the LPi from 4 alone remains the same when the MO levels
are to be calculated from h — £S.

The overlap matrix occurring explicitly in Eq. (12’) below can be eliminated in
a number of ways.

(h —ES)e" =0
where
=1
while
¢ =1{af
and
¢’ = A,
or in matrix form
¢=S'¢c (12')

The § matrix is turned into the unit matrix | by any number of transformations
from the non-O.N. basis to some O.N. one. Any such transformation is nonunitary.

{a) The method used computationally in the EHT FORTRAN programs is to find
the transformation matrix corresponding to the act of Schmidt-orthogonalization
procedure (this matrix which is not unitary may be derived in the general case by
writing, then solving recursion relations).

(b) Another way is Lowdin’s [11] “square root™ $~'/° device which yields the
0AO (symmetrically orthogonalized AO’s) basis. Equations ( 20) show this method.

Multiply Eq. (12') from the left with $™'/2. Inserting S '/2S*!/? after the last
bracket, one gets

where
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Vo

N €20

(¢ Sull another way 1s: first diagonalize § obtaining its cigenvadues |y, and its
cigenvector columns which make up the diagonalizing unitary transtform L.

Sl)x.m : L §L' { :] )
where U7 = U 'and
S!)m;‘, o X
0 S
Next apply the nonunitany transform

5, b 0

0 R
viclding
1 =B'U 'SUB (21m}
The full nonunitary transform s
X {21n)

with X = UB.

In all of the methods above (and other possible ones). the nonunitary X used to
transform the svmmetric S, act as an adjoint transformation. £q. {21n). The same
X is now applied to the h. also self-adjoint. again in an adjoint transformation
vielding another self-adioint matrix h. nondiagonal.

Uit}

= X'hx (21k)

so the eigenvalue cquation becomes

-1}
i

o

.

( je=0 (21p)

with¢ = x '¢.

All the x-transforms in methods {a) 1o (¢) are nonsingular and they are clements
of the general linear group L(#). Thus they preserve the MO-level pattern indices,
Lptof h. that 1s.

W

= h. (21q)

Fo 13

In this case (unlike in Step 1), the | £} MO levels are also numerically the same
whether calculated from Eq. (21p) or from Eq. (12’) with 8§ explicit as in EHT.
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Note however that even in OAO basis Egs. (20), (21). it is the original non-O.N.
basis « that is subtracted out from the { E, } to get the chemically meaningful { £, }
relative to separated atoms.

E = hOAO _ 4]

and

E=E-a (22

One would have thought on the basis of the original 0AO justification [11,12] of
the pi-HMO theory [10] vis-a-vis dropping of overlaps, that aoao would be subtracted
from the E, and the A°*°, As we see this is not true. The starting non-O.N. A0
basis’ « is taken out. Just as well, since apac values greatly vary for the same atom
in different locations (even in H;) and they are difficult to calculate.

The proof for the invariance of the VIF method vis-a-vis overlaps is still not
complete. The two pictorial VIF rules applied to the initial VIF in any combination
and succession amount to generating various basis set transformations T on the
same molecule or to transforming molecules into other molecules in the same
equivalence class with all such T € L(n). As most of these T are nonunitary, at
each step of the VIF manipulations new overlap integrals will arise in the transformed
versions of Eq. (12). That the LPI remains invariant under all such nonunitary
transformations is proved in Step 3.

Step 3. Let us demonstrate the problem with a simple example. Take a square
configuration of Hy or the isomorphic system, the pi-system of cyclobutadiene.
Divided out by the single 8,. = 8, and the single « = «,, taken out

h=h—af ~ VIF® (23)
L 4 L

VIF?

@ °

where there are no loops at each VP as « has been taken out making the reference
zero of energy at o — ref. zero.

The line strengths are §8,./8 = 1. However Step 1 showed that the VIF and the
LPI that will result are the same with 8,, = (8., — aS,) = (B —aS) = f; « =
B../6 = 1 and VIF® ~ VIF (~ isomorphic).

The VIF is “reduced™ by the VIF-rules to get iso-LPI structures as well as the Lp1
itself (for the details cf. Ref. {4]) as follows:
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kit

S
(o (I
sC sC | |
- 4]
-(\//
57 (24)
) ( () )
sC 5C ’
LPI -— -— -1
i |
2
=N, =n =1 . . ‘ J
n°=2
with the MO level pattern:
r ™

U e S S ! ""~(a=>0)L (24)

. J

The two nonbonding levels are found. Assigning the four electrons for the neutral
species, we see the antiaromaticity for the cyclobutadiene pi-case. or the unstable
nature of a square H; (or the high activation barrier in a reaction like H, + D, —»
2HD with a square activated complex). (In this example the LPI could also be
obtained of course, with the Frost-Musulin mnemonic, cf, e.g., Ref. [10], which
is applicable only to single rings. ViF however gives such results for any polycyclics,
branched, bridged, side-chained hydrocarbons [13]).

Principle of linear covariance allows us to interpret each step in Eq. (24) either
in the MO-basis {thus MO Lp1 is read off directly from the last picture (No. of free
dots = no. of nonbonding overall MO’s). or in a localized orbital LO basis. In the
latter reading of Eq. (24), for the H, case, ones sees the reactions

H.— H, (linear) + H > H, + H+ H (25)

to be “allowed™ having the same LPI's and in the same L-equivalence class ( thereby
called structurally covariant (sc) [4]). _
Each picture in Eq. (24) corresponds to a { h,,} written in a new basis-set frame,
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transtorinations from one to the next in general being nonunitary thercby generating
new overlap matrices in the full equation (h,. — ES,.)¢* = 0.

During the reactions. Eq. (25), MO composite levels {E,} change. but the level
patterns, LPI remain the same. This is proved as

hm - hu'r' - hu"l" A (26)

Each basis and hamiltonian transformation occurs by an T € L(») and an adjoint
transform. for example,

hi=1~4

e it

T (27)

in each step of Eq. (24). By the fundamental theorem [3.4], these #’s all have the
same LPI. Further for each step, as new overlaps arise. the nonunitary transform
X shows the § term does not affect the LP1 as in Egs. (20. 21).

(b — ES") = (x'b’x ~ ED

sC

(28)

e

o N

7

o

’ ! 12

fl=u )
o3

(qed)
This completes the three-steps proof and we state the proved theorem.

Theorem on the Conservation of MO Energy Level Patterns
Under the Effect of Overlaps

Theorem

The VIF picture of a molecule (or reacting isomeric assembly ) drawn without
regard to the large non-O.N. AO basis overlaps yields the same MO level pattern,
LPI = {n,, n,, n_}, numbers of bonding, nonbonding, and antibonding MO levels
(relative to a chosen free atom AO self-energy) as if the overlaps were included in
a full (h — ES) calculation. The chemical ViF-rules transformations or the VIF
pictorial changes in deducing Lp1, while they imply nonunitary transformations
(among non-O.N. bases) leading to new overlaps still retain the same LPI. ( Proof
was given above.)

Remark. The simplest and qualitatively most useful VIF's for blackboard type
chemical deductions are drawn with nearest neighbor or proximity b elements only
(with the corresponding overlaps in S, implied). Next nearest neighbor terms in
El or any other terms of i may be drawn in more elaborate VIF’s to explore the
effects on the LP1, if any, of such refinements. A computer EHT calculation (or, e.g..
STC-3G) normally includes all 8,,’s and S,.’s. To compare such an EHT {E,}
pattern after subtracting out the chosen « from each E; = E, = E, — a, with the
LP1 predicted by a certain VIF, the S,,(3,..) terms omitted in that VIF can be deleted
in the EHT calculation using the input option L2 = . TRUE. in the program [1].

Some Numerical Examples

(1) Allyl pi-systern or Hj(linear)
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SC
VIF: .
SC/
(29)
e N
WPl= {n=n_=1n =1} D o) b
..___|..E_.
. v

This n.n. vIF omits the overlap between atoms | and 3. It shows clearly the presence
of one nonbonding level. That level is invariant if the 12 or 13 or both are changed
by any amount as seen with the VIF rule | (x-rule):

x (1/v)

SC (30)

( same LPI)

Thus the H, + D — H + HD reaction along a collinear path is 1.P1 preserving,
hence “allowed™ with a small activation barrier ( H§ linear or nearly so) indicated
relativetoa g (= (— 1/2)YD, of H>).
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TaBLE L. Comparison of MO energy level patterns by the pictonal VIF with those from sumerical
EHT® and Eti " calculations. Linear H; complex Hi - —H2 —H3 with R(12) = R(23) = 0.85 A. ay
= —13.6 eV. All E, in electron volts (V).

Vit
I =Molevel # EHT ~EHTD? direct level
{highest energy o lowest) E = K, ~ an EV=EP - oy pattern, 1 Pi*
(1) +25.72 +39.72! n =1
2 +2.07 6.00; n, =}
3) -4.79 -4.52: now 1
*The E(i)mo levels from full £HT calculation (Ref. [1]). The ay = ~13.6 is the invanant-subtraction

yieiding £, .

® The EP (i) MO levels from EHTD, that is, EHT with non-n.n. overlaps S, deleted in the input. The
(EP — a;) = £P level pattern coincides with the pictorial vIF resuit.

¢ Pictonially deduced [Eq. (29)] level patiem indices LPi = {1, no, 0. |, the striectieral covariant invanants,
also #'s of bonding (+), nonbonding (0), and antibonding (-} MO’s which agree with numenical calculation
after the proper {(covariant) subtraction.

A complete VIF, VIF; includes the 13 overlap (or $,3) line:

\
SC [
__k—_..
D a0y &
X —fe]—
L J
(n=1: n=2)
VIF,: (31)

The nonbonding MO level is expected to move up a little {dependent on magnitude
ofx < 1).

The same picture shows what happens when linear H; is bent into a trniangle.
The nonbonding HOMO moves up becoming slightly antibonding.

Tables I and Il show two EHT calculations, for linear H;, one with all overlaps,
another with 13 overlap deleted (EHTD). The a = —13.6 eV substracted £, shows
the same LPI’s as the corresponding VIF's.

(2) Cyclobutadiene pi-system or square Hy.
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1 2
@ A J

VIF

(n.n.) (cf. Eq. (24))
® —@3
4

and (32)
VIF )
f K K

& 9

from the n.n. only, that is, square. such that n, = 2 nonbonding levels become
slightly antibonding.

The same happens if the square H, is distorted to become slightly tetrahedral
(squeeze 24 lift up 3 out of plane). [One caution, however: the bonding level in
the quantitative sense, could go considerably lower affecting stability in the opposite
way of the HOMO].

Table HI shows the EHT computations for each of the two VIF’s and the E,’s with
a = —13.6 eV removed. The | F, | level patterns coincide with those of the pictorial
VIF deductions.

These examples further demonstrate how VIF implicitly takes into account the
overlaps in (h — ES).
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TasLE II. MO level patteens obtained by the pictonial ViF rules compared with numerical EHT/ERTD
calculations. Along linear H; reaction surfce Hl- H2—H3 at R(12) = 0.81 A and R(33) = 1.27
A (ie.. along Hy + H). The ay = ~13.6 eV. (All energies in clectron volts).

VIS
i = MO level # EHT® _EATD pictorially
(highest energy to lowest) E, =E = ay EP = ED - ay deduced 1Pl
(N +16.33 +18.85! n.o=
(2) +0.78 0.00} n, = 1
3 -4.15 -401! no=1
* The £ (1) M0 levels from full EMT calculation (Ref, [1]). The ayy = —13.6 is the invaniant-subtraction
vielding F, .

* The £ (/) MO levels from EHTD, that is. FHT with non-n.n. overlaps S, deleteted in the input. The
(EP - ) = ED level pattern coincides with the pictorial VIF result.”

< Pictorially deduced {Eq. (291] level pattern indices LP1 = {n.. n,, n_!. the structural covarignt invariants,
also #'s of bonding (+). nonbonding (¢). and antibonding (—) MO's which agree with numerical calculation
after the proper (covariant) subtraction.

YAt R(ZT) = 1.3 R(TInvik relative fine strength (x23 ) Sw/S) = 0.574 [cf, Eq. (30) showing « = v].

Conclusion

This article has shown how the MO energy levels obtained from computer MO
theory computations (such as EHT, but applicable with care also to MNDO, and ab
mitic e.g.. STO-3G) may be converted to MO energy level patterns from which
important qualitative deductions based on bonding, nonbonding, and antibonding

Tastt 1. Mo level patterns for a square H, complex with R = 1.00 A. EHT® and EHTD® calculation

{the iatter with only the non-n.n. overlapsdeleted)after the invariant-subtraction of as = — 1 3.6 €V coincide

with the pictonally deduced vir level pattern. LPt = {n,, n,, n_} which implicitly includes
the overlaps. All energies in eV.

VIFS
i = MO level # EHT® _EHTD® pictorially
{highest energy to lowest) E =E - an EP=E?~ ay deduced LP!
(0 +211 +153.2 no=1
() +3.65 0.0 .
(3) +3.65 0.0 c
(%) -5.57 -4.94} no=1

* EHT calcuation with PROGRAM FORTICONS (Ref. [1]).

® EHTD calculation with only the S (13) and § (14) overlaps deleted as nonnearest neighbors. The ay
is invanant-subtracted.

¢ vIF pictorially deduces [Eq. (24)] the MO level pattern, numbers of bonding, nonbonding, antibonding
levels refative to 1sy energy. ay.
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MO level types become possible. Correspondence with the MO level patterns deduced
directly from the viF pictures drawn from structural formulas or ORTEP diagrams
using the pictorial “blackboard™ type viF-rules is established. this article giving the
proof that, for one thing, VIiF implicitly includes overlaps. viF-method has a con-
siderable advantage in that many reactions, distortion. rearrangement pathways
can be readily and visually examined. Many seemingly different molecules also
become relatable to each other getting classified into fundamental classes, each class
with a given MO level pattern. In addition, now VIF selected molecules or paths
maybe made more quantitative, relationship to computation having been dem-
onstrated. High-level machine computations may be carried out once certain re-
action paths or species are readily chosen on the basis of pictorial viF-rules.
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Abstract

In this work use is made of algebraic techniques developed for the evaluation of Vibration-Translation
energy transfer in atom~-diatom collisions to obtain the ¢nergy eigenvalues of the one-dimensional quartic
oscillator. We have found that even our zero order approximation results are very close to the exact ones
and when second-order perturbation theory is used, they improve even for high values of the anharmonicity
parameter. £ 1992 John Wiley & Sons. Inc.

Introduction

The one-dimensional harmonic oscillator potential has been used extensively in
nuclear physics. high-energy physics, solid-state physics, and in atomic and molec-
ular physics [1]. Among this model’s many favorable characteristics, is that it is a
rather simple mode! and allows testing of different levels of approximations against
exact results. On the other hand, the evaluation of accurate energy levels of a quan-
tum mechanical anharmonic oscillator has received renewed interest since it can
be seen as a field theory in one dimension and it has becomu the testing ground
for new methods in quantum field theory [2]. Different techniques have been
applied to that end, optimized variational method [3], variational and coupled
cluster calculations [4], and matrix diagonalization techniques [5] to name a few.
Rayleigh-Schrédinger perturbation theory has proved to give good results when the
nature of the unperturbed Hamiltonian is changed to that of a squared harmonic
oscillator Hamiltonian with an adjustable frequency [6].

In atomic and molecular physics, in those cases where heteronuclear diatomics
are involved, the harmonic oscillator model has severe limitations since the presence
of anharmonicities cannot be included, nor can one study rearrangement collisions
because the potential supports an infinite number of vibrational bound states. For
homonuclear diatomics, when the collision energy is large compared with the energy
level spacing of the vibrational states of the molecule, anharmonic terms play an
important role, this is also the case for heteronuclear diatomics where the anhar-
monic terms are important even for low-lying transitions and low collision energies.
Some time ago, a study of the 0 — | vibrational transition in anharmonic oscillators

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 153-160 (1992)
© 1992 John Wiley & Sons. Inc. CCC 0020-7608/92/010153-08
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was made. including quadratic and cubic terms in the potential function [ 7]. more
recently, the onc-dimensional anharmonic oscillator including quadratic, cubic,
and guartic terms in the potentiat function was used for the evaluation of vibrational
transition probabilitics in collisions between an atom and a diatomic molecule
[8.9]. The anharmonicity parameters were fitted to adjust a Morse oscillator. The
results obtained with this model could be compared favorably with exact quantum
results [10] in a large energy range and for several transitions.

In this work. we cvaluate the energy spectra of a quartic oscillator using an
cxtension of the algebraic method developed for the study of TV energy transfer.
We apply a sequence of Bogoliubov transformations to the Hamiltonian in order
to obtain a set of transformed basis functions such that. afier each iteration. they
contain information from the quartic part of the potential in the previous iteration.
In the next section we describe the method. then we obtain the energy eigenvalues
for different anharmonicity constants A within two simple approximations. The
first consists in the evaluation of the cigenenergies for the transformed diagonal
Hamiltonian and the second, in the use of second-order perturbation theory to
treat that part of the transformed Hamiltonian which is not diagonal in the trans-
formed basis. We compare our approximations with exact numerical results [4.13]
and we also show the behavior of the coefficients of the Hamiltonian as a function
of the iteration number.

Theory
Consider the one-dimensional anharmonic oscillator Hamiltonian

M
A =Spir a4 axt, (1)

to ) —

now we express the displacement operator x in terms of boson creation and an-
hilation operators «.a’

.\'=—]~(a+a*). (2)

V2

then we get

% = /7/,“,

A 3 2 n 2 3
+Z(a4 +d4ata’ + 6ar + 64V at + 12ata + 64t + 4ata+ ot +3). (3)

with .#,, = («'« + 1/2) and we have written the Hamiltonian in normal order.
Now we decompose the Hamiltonian as the sum of two parts.

w o= (4)
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where
, A R : - . .
20 = 7, +Z(6a* + Rata+6a” +3)= T Goatu (3)
fheps g 2

) L Uy
= T Ay

forms a closed set under the operation of commutation. and # ‘,'

The Hamiltonian # "’ is a bilinear form in the operators ¢.«', so 1t is convenient
to apply a generalized Bogoliubov transformation to obtain a new set of operators
a'"’, @' such that the Hamiltonian 4}, is diagonal in the new basis [8.9]. The
transformation is canonical and thus must preserve the commutation relations
between the boson operators. Consequently, we get the condition that the deter-
minant of the transformation must be equal to one. The required transformation
has the form [11] (i = 0 for the first time we apply the transformation)

4 tey (X2 M
(l“ ”:l|al”+I:l(1(” (6)
st (XR M 7
a“ o= [3”(1“) l]‘ ul” ( )

and the transformation coefhicients are given by:

G‘D" 172
l(‘l):(l+—'—-——.:.'_‘__(“) (8)
(]“U - (f(lﬂ
P
by Gpa
z(:“:—-———‘ : "fm. (9)
(lnn - (’()()
; 1 e
Gu' = 5 (=G + 26 + VG, — 4G5z . (10)
1 T o
(’.'l'l) - (J':n))x =3 (G~ 2Gg + VG, — 4Gi2) . (1)

and the transformed Hamiltonian has been expressed as
20 =GN a a4 Gl (12)
When we apply the transformation to /V‘;”. we get a new Hamiltonian which
contains the same set of operators as the original one with coeflicients dependent
upon the 7,". The Hamiltonian we obtain after k transformations has the form
, - (A %
AR =S G Y (13)
(SRR

. J - L R NiS
and. since it is hermitean we have the restriction GG, ' * = (,, . In the case of a

quartic oscillator. the coefhcients G,‘,“ are real and we have the condition (if,“ =
(j,‘,“. The series of transformations mentioned above is done as many times as
necessary until the matrix of the transformation is as close as we want to the identity
matrix. indicating that we have minimized the anharmonic part of the oscillator.
As will be scen in the next section, the sequence of transformations has a very fast
convergence.

In Figure 1 we show the behavior of the coefficient (:",‘,' as a function of the
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Figure 1. Behaviour of the coeflicient of ¢’y as a function of the iteration number for a
fixed value of the anharmoniconty parameter X 1

number of iterations performed for A = |. Notice that after a few transformations
{say 5 or 6), ('i‘,l,‘} attains a fixed value, corresponding to the ircquency that a
harmonic oscillator should have in order to represent the anharmonic oscillator.
It is a characteristic value associated to the potential function as a whole. not only

G222
G113 ____
i 10.0 T 150 20.0
iteration

Figure 2. Behaviour of the coefficients (,22’ {full fine) and ¢4} ¢ broken line Y as a function
of the number of iterations for a fixed value of A = 10,
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near the minimum. The final frequency for the oscitlator 1s smalier than the onginal
one indicating that the corresponding harmonic oscillator should be softer thun the
anharmonic one. All the (,',‘,“ show a similar behavior for all the values of
A we have tested, they change significantly from their iniual values during the tirst
few iterations and after that. they all attain fixed values. generally different from
zero. As an example in Figure 2 we show Gy and G\ for A 10, Notice that
the asyvmptotic values of the (iff’ are smaller than originally, an indication that one
can try to apphy perturbation theory to this transformed Hamiltoman and hapetulih
obtain improved results.

Energy Eigenvalues

With the boson operators we obtained after A transformations. we cvalu-
ated the energy spectrum of the corresponding diagonal Hamiltonian » ' =
Soons GaR gt We show in Table 1 this zeroth order approximation after
10 transformations. the results obtained when we use second-order perturbation
theory [12] after the same 10 transformations, and the exact results of Hsue and
( .ern[13] for the ground and the first tour ¢xcited states of a quartic oscillator with
A= 1

It can be seen that the zero-order approximation gives veryv reasonable resulis
when compared with the exact. not only for the ground but also for the excited
states. The percentage difference

1:.11()) _ I.\
Ap = |0()><»£7—‘—~ (14)

<V
being a few percent at most. When we apply second-order perturbation theory to
the transformed oscillator. we improve the results significantly and it is interesting
to notice that this is so even for the excited states where simple perturbation theory
is known to fail badly. Notice that the percentage difference

L H))

| Ep o |
Ap, = 100 X ~———— (15)
E..
is 1n this case less than 3% in the worst case. that i1s. for n = 4.
Tasrk I Energy eigenvalues for a quartic oscitlator (A — 1.0).
n £ £y E. AEs SEy
0 R1250 80410 B0377 i1 09
1 281258 27223 273789 27 6
2 5.3625 5.0994 $.17929 7.4 1.5
3 90625 7.7537 7.94240 14.1 24
4 13.3125 10.6485 10.9636 214 hY
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Table 11 shows the results obtained with perturbation theory (after 10 transtor-
mations) as a function of A for the ground and first four excited states of the
oscillator and compare these with exact results {13]. Notice that perturbation theory
can be safely applied for the whole range of values of the anharmonicity parameter
= x < 1000.0. We also show the percentage difference A, defined above.

Finally. Table Il shows the convergence behavior of the ground state energy
eigenvalue in the zeroth approximation EL. when we have applied second-order
perturbation theory to the transformed Hamiltonian £ and the value of the
perturbation correction A',,“ for different values of A. For A = 1.0, the eigenvalue
changes drastically during the first few iterations but. after about 4 or §, tiic un-
perturbed results hardlv change and the contribution duce to the perturbation ap-
proaches a fixed value. When we increase the strength of the anharmonicity to
A = 10.0, we have to make more transtormations before attaining convergence:

Tastr 1L Encrgy cigenvalues tor a quartic vsedlator,

Ly

n Fo Ey Al A

0 53918 S3920 009 0
i 1.76930 1.76776 0 0
2 313862 K RS B RX 0
k! 4.628%% 4.39331 bb o
4 6.22030 613739 1.01 10
0 80377 L0300 AR 1.0
1 273789 272226 A7 1.0
2 547929 309939 154 1.6
3 7.94240 71.753367 2.38 1.0
4 1).9636 10,6483 287 1.0
0 1.50497 1.50974 32 10.0
1 3.32161 5.27491 8% 10.0
2 10.3471 10,1191 2.2 0.0
3 16.090] 15,5876 32 10,0
4 22,3088 21.6278 349 10.0
8 313138 314361 39 100.0
! 11.1872 11.0832 93 100.0
2 21.9069 21.3937 234 1000
3 34,1825 33.0599 328 100.0
4 47,7072 45.9808 362 100.0
0 6.69422 6.72184 41 10000
{ 239722 237488 93 1000.0
2 47.0173 43,9061 2.36 1000.0
3 734191 70.9864 R} 1000.0
4 102,516 9R. 7767 3.65 10000
0 11,4308 11.4733 3y S000.0
| 40.9517 40.5462 RR) S000.0
2 %0.3430 7%.3904 2.43 SO00L0
3 125,475 121.262 336 S000.0
4 173218 16X R{6 365 S000.0

2For A = SO000. I, was taken from Ref. {5,
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i By I I Lk
A 10
0 1.2300 79679 4332 0070
1 R6307 R IARLY L6068 0014
2 K7y KO137 IR )23
3 S350 RO567 A07N2 U019
4 B1264 RIA TN AOTR0O Uiy
3 AL1282 SU312 00740 Ul
6 81250 _R04Y3 L0758 0012
7 B1250 80502 00748 013
¥ B1250 RYISLI 0073 0012
9 R1250 ROADD 00750 0012
R [YX Y
4] E.0000 26153 53847 [ RIKS
i 21075 1.509%8 39776 00048
2 1.6833 {4674 21796 0.0376
3 1.5607 15116 04908 0.00066
4 13381 1.53040 03308 0.0010
3 18327 15114 02134 0.0063
6 15316 1.5087 (2283 0.0037
7 1.8313 t.5102 0216 0.0052
b 1.5213 15093 02172 0.0043
9 15313 1.309% 02144 0).004%

however, the importance of the perturbation term decreases significantly during
the first few transformations. Notice also that the ground-state encrgy obtained
after convergence is not necessarily the closest to the exact value: this indicates that
we are modelling the whole of the potential function, not onlv the region near the
minimum. For example, for A = 1.0. the result obtained with second-order per-
turbation theory after four iterations differs from the exact in 0.0009. less than
1%, while the difference between the second-order perturbation results after nine
iterations and the exact is .0012. The same kind of behavior occurs for A = 10.0
where again. the closest result is obtained after tour iterations. One could also make
the transformations state dependent and thus obtain enhanced energy for a given
state. If one requires more accuracy that can be obtained with a variational cal-
culation which uses the transformed states as a basis [14].

Conclusions

We have shown an algebraic method to evaluate the energy eigenvalues of a
quartic oscillator. After transforming the quartic oscillator’'s Hamiltonian, we can
safely use perturbation theory. The results we have obtained even before the use
of perturbation theory are close to the exact in a large range of values of the an-
harmonicity parameter and the use of second-order perturbation theory improves
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the results significantly. The same happens for the excited states of the oscillator.
The extension of the method to the double well and to the anharmonic oscillator
with cubic and quartic terms present is under study as well as the implementation
of a variational calculation using as a basis the A-transformed states and will be
published elsewhere [14].
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Studies in the Paired Orbital Method. IV.
Orthogonal Transformations in the Virtual Space

RUBEN PAUNCZ

Department of Chemistry. Technion Israel bustiute of Technology, Huaita, irael 320010

Abstract

The paired orbital method deals with the problem how to obtain the best pairing scheme in the
different orbitals for the different spins ( DODS) method. Once one has found those virtual orbitals which
are the best pairs of the occupied orbitals. one can use the same formalism for the energy expression
as used earlier in the alternant molecular orbital (AMO) method. Starting from the canonical orbitals,
one performs orthogonal transformations in the virtual space until the minimum of the total energy 15
obtained. An illustrative calculation on the water molecule for three internuclear distances shows that
the method vields 25-60% of the energy improvement obtained by a full configuration interaction method.
The percentage of improvement increases with the increase of the internuclear distance. < 1992 John
Wiley & Sons, Inc.

Introduction

In the theoretical treatment of atoms and molecules, the self-consistent field
methad (SCF) is an excellent starting point. The wavefunction is given in the form
of a single determinant in which # orbitals are doubly occupied. For the sake of
simplicity we shall restrict our treatment to the case where the number of electrons
is even (N = 2n). The orbitals are determined from the minimization of the total
energy of this wavefunction. In most of the applications, the orbitals are given as
linear combinations of given basic orbitals. and let us denote the number of basic
orbitals by M. The corresponding variational equations for the best coefficients
have been derived by Roothaan [1] and Hali[2]. After solving the equations one
obtains »n orbitals which are doubly occupied and. in addition. n, = M — » orbitals.
which do not have immediate physical significance. The latter are called virtual
orbitals.

The SCF solution gives good results for the total energy. bond lengths. and some
other properties of the molecules. The small error in the total energy (0.5% ) is still
too large when we would like to calculate transition energies, dissociation energies,
and so on. It is necessary to go bevond the SCF method. The difference between
the SCF energy and the best energy obtained in the given basis using the nonrela-
tivistic Hamiltonian is called the correlation energy. Several methods have been
suggested to treat the electronic correlation problem. One should remember that

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 161-169 (1992)
€ 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/010161-09
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the single determinantal approach already takes mto account. to some extent. the
correlation between clectrons with paraliel spins because the wavefunction is an-
tisymnaetric, and therctore, the probability of finding two clectrons with the same
spin in the neighborhood of the same point is zero. The single determinant does
not describe properly the correlation between electrons with antiparalle! spins.

Lowdin [3] suggested a simple method for the improvement of the one deter-
minantal representation. One should relax the restriction that each of the # orbitals
occurs twice in the wavefunction. One can assign different sets of orbitals to be
associated with « and 3 spins. The method is called different orbitals tor different
spins (DODS). The single determinant constructed in this way is not a pure spin
eigenfunction, but a definite spin state is obtained using the projection operator of
Lowdin [4]. This method is also called the spin-projected extended Hartree-Fock
(HF) method. An excellent review is given by Maver [5]. In a recent article. ¥
adakov [ 6] derived equations for obtaining the best orbitals in this scheme.

A simple vanant of the DODS method is the alternant molecular orbital method
(AMO) suggested by Lowdin [ 7]. The basis of the method and its carly developments
are given in a book by Pauncz [8]. The AMO method was quite successful for
alternant conjugated systems.

The paired orbital method (PO) is also a variant of the different orbitals for the
DODS approach. It can be considered as a gencralization of the AMO method. The
wavefunction is formally similar to the one used in the AMO method, and the
corresponding energy expression is identical with one derived by Pauncz et al. [9]
and de Heer and Pauncz [10]. The difference between the two approaches is in the
selection of the orbital pairs. In the case of AMO, Lowdin’s suggestion was very
successful because it used the special properties of alternant conjugated systems in
which occupied and virtual orbitals are paired according to the Coulson-Rushbroke
theorem [11]. The PO method secks the answer to the question of how to obtain
the best pairing of the occupied and virtual orbitals for a general system.

Pauncz et al. [12] have given an algorithm for the determination of orbital pairs
in a general system using the idea that these orbitals should be close to each other
spatially. The sum of coulomb integrals between the corresponding orbitals was
maximized. The method was tested for the case of water molecule. Harrison and
Handy [13] performed a full configuration interaction calculation for this case so
one can compare the result with the best possible treatment in the given basis. The
PO method, using five nonlinear parameters. recovered about 20% of the correlation
energy obtained with the full 1 treatment (256,473 configurations). Pauncz [14]
has derived the expressions for the derivatives of the energy with respect to the
nonlinear parameters, and he proved that the SCF encrgy is a maximum with respect
to the nonlinear parameters in the PO method. The structure of the PO wavefunction
and its relation to a limited configuration interaction method was investigated by
Pauncz [15). Refs. [12].[14].and [15] will be referred as L. 11, and [11. respectively.

The aim of the present approach is to obtain the orbitals by minimizing the total
energy instead of maximizing the sum of coulomb integrals between the corre-
sponding orbitals. Orthogonal transformation among the virtual orbitals will be
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performed to achieve this goal. First. we shall discuss the structure of the PO wave-
function and the energy expression, and then consider in detail the method of
orthogonal transtormations in the virtual space.
The Paired Orbital Wavefunction and the Energy Expression
The wavefunction used in the PO method is of the following form:
¥ = NAPD (1)« ca(m)B(n + 1)« - 3(2n) (H)

where A is the antisymmetrizer, N is a normalization constant. and O is the spin
projection operator. We shall consider the singlet state only (S = 0). ® is a spatial
(freeon ) wavefunction which is a product of one-electron orbitals:

D= (1) -, (mMr{n+ 1)« p,(2n) {(2)

In the PO (and in the AMO) method. the 1,’s and ©,’s form a set of orthogonal
one-electron orbitals in the following way:

“1 = aﬂt’/l + bl‘i"z'

L= al‘l’x - [’1¢:’ (3)
wherc g, = cosfl,and b, = sin . ¢, (i =1..... n) is a doubly occupied orbital in
the single determinantal SC¥ wavefunction, and i, is a virtual orbital with which
it is paired.

Let us introduce the overlap integral between w, and ¢,:
{ude s = A, = cos 26, (4)
There are three impontant functions of the A, which appear in the energv expres-
sion:
"o
A= T (-DVCS A+ @Sy, ... x). (g=0.1.2) (5)
Als
where x, = A; . ((S. k) are the spin projection (Sanibel ) coefficients [16]. For the
singlet state they are given as follows:

n
C‘<0.k)=<~1)‘(k)/m+1) (6)
and S;(x,...... X, ) (abbreviated as S, ) is the Ath symmetric sum formed from the
Xpooo0 X
Sn = 1,
Si= 2 X,
11

S'" =N e e X, (7)
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Ao 1s the normalization integral:
Ao = <‘l’n|‘l’n> (8)

Let us divide the energy expression into two parts. 1he first one corresponds to
the one-electron operators in the Hamiltonian (kinetic energy and nuclear-electron
attraction ). the second one to the two-electron operators ( electron-electron repul-
sion). The one-electron part is:

E=E.+ Eu/\

= zl W, — A(,‘.&w,)\,% (A + A (%)

Here
w, = h, + h,. Aw, = h, — h, (10)

and
h,=f¢j“h\lx, dv, /z,=f¢7"h¢,» (1)

that is. they are diagonal elements of the one-electron Hamiltonian over the occupied
orbitals and their virtual pairs. respectively.
The two-electron part reads as follows:

Es = (Ey + Exp + E2)AG! (12)

where

4

Elu = Z [‘4II‘YH + ‘41'1’71'1’ - Bl‘}u' - C‘¢6u’]

1=

Ey= 2 [T ) — AU, ]
(o)

Ey=-5 Z(i.)). (13)

1<

, d
Ay = (V8L + M) — (A + Ay
Y

, 0
Ape = (1/4)(1 — Al);'(,)T(AI + Ao

1

.. 0
B, = (1/2)(1 *M)é‘j’(h = Ao
X,

,. g
C‘,:(l_k:)"“'—x\| (14)
ax

!
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TG, )AL ). and Z(, J) are defined as follows:
Fi.jy=Tyv, + Uy + Topvi, + Tipya.
AL ) = Ad, + X8+ Ay + Aedy e,
2. )) = 2,6, + Zyp (15)

The basic two-electron integrals, v,,. 6,, and {,,, are respectively the coulomb.
exchange. and a new kind of integral which is characterisbc of the AMO and PO
methods:

Yo = LY by = (L), Co =gl )

(ijlkly = ff¢:"(l)¢j*m<ur.:wk(zw,-(z)dv, dvs . (16)
The A(#)-dependent faciors in eqgs. (15) are given as follows:
T,=(1+ A1+ A (a+ b+ A) + AN,
A, = (LHEANL+A AN a+ 2N+ X)) =1 = AN+ eAN)/2. (D)
Z, =sin 26, sin 20,(a + b) — (1/4) sin 46, sin 46,(h + ¢)

Z, =sin 26,sin 20,(a + b) + (1/4) sin 48, sin 4 8,(b + ¢) (18)
where
3 3’ 9
= As, = A v= Ao 19
a oy, b o, dx, b ‘ 9x,9x, ! t9)

From the expressions in egs. { [ 7) one obtains the corresponding factors involving
i"and/or j by reversing the sign of the A\, and/or A,.

Orthogonal Transformations in the Virtual Space

The main problem in the PO method is how to choose the paired orbitals [eq.
{3)]. We shall leave the occupied orbitals unchanged, these orbitals have been
determined from the SCF procedure. they minimize the energy of the single deter-
minant with doubly occupied orbitals. For a concrete example, let us choose the
water moleculc tn a double-zeta basis. The number of basis orbitals, M = 14: the
number of occupied orbitals. # = §: the dimension of the virtual space, n, = 9. We
are looking for a set of molecular orbitals in the virtual space which are the pairs
of the occupied orbitals. The original occupied and virtual orbitals form an ortho-
normal set, and we want to preserve this property, so we are looking for an orthogonal
transformation in the virtual space which will provide the 5 virtual orbitals.

Y

14
Yo = Z‘I’/"/lw .:Z vedi, (1= 1,5) (20)

Ao
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TagLe 1. Symmetries of the canonical orbitals in the water molecule.

Qccupied la, Qay RIS da, Sh,
Virtuai 6u, 7b- 8h, Yy 1(4h, Ha, 125+ 3, 14a,

The D matrix has n, rows and n columns. From the orthogonality of the #
columns, and from the normalization conditions, foilows that the number of in-
dependent parameters. n, = n.n — (n+n(n — 1)}/2) =n2n. —(n + 1))/2. In
the case of the water molecule we have 30 independent parameters.

The first § parameters determine a 9-dimensional unit vector:

dy, = cos(py) (21)
d~, = sin{p;) cos(p-)
dy = sin(p) sin(pa) cos(p)

dxl
ds,

The next 7 parameters determine 8 elements of the second column, starting
from the second element and using the same algorithm as given ineq. (21). The
first element is determined from the orthogonality of the second column to the
first one, and finally, the second column is normalized. One can continue this
algorithm, which is essentially a Schmidt orthogonalization procedure. It is an
essential point in this procedure that. if all the parameters are zeros. then we
obtain 9 columns in which the diagonal elements are equal to one an.. ..c rest
are zeros.

Beside the 30 parameters which determine the 5 orbital pairs, we have 5 more
variational parameters (8,, i = 1.5, if all the §’s are zero then we have a single
determinant with doubly occupied orbitals). The total energy is a function of the
30 + 5 variational parameters. Using the energy expression given in section 2. one
can minimize the total energy by the variation of the nonlinear parameters. In the
calculation we used the DUMCGF program of the IMSL library. this is a mini-
mization program using a conjugate gradient algorithm and a finite-difference
gradient,

The procedure outlined so far deals with the case if the molecular orbitals do not
belong to certain irreducible representations of the symmetry group of the molecule.
This is the case when we use localized molecular orbitals which correspond to inner
shells, bonds, and lone pairs. These type of orbitals have been used in the calculations
reported in 1.

The calculation needs less variational parameters if we use canonical orbitals
which belong to the different irreducible representations of the symmetry group

sin(p,) sin(p2)- - - sin(p;} cos(pg)

Il

il

sin(p,) sin(p2)- - -sin(p;) sin(p)




PAIRED ORBITAL METHOD. 1V 167

Tasre 1 Parred orbital calculations for the water molecule.

R, 1SR, 2R,
SCF ~76.009838 - 75803329 73395180
FCl —76.157866 76.014521] -75.905247
AE(FCD —€). 148028 ~0.210992 0.310063
AE(PO) —0.040704 -0.0835876 -0.191607
G 27.5 39.6 618

All energies in atomic units.

(In the case of water molecule the group is (%3,.). In this case. the occupied orbital
and its pair should belong to the same irreducible representation. Table I shows
the symmetries of the canonical orbitals.

Inspection of Table | shows that there are 3 orbitals of symmetry a, among the
occupied orbitals and 5 orbitals of the same symmetry among the virtuals. That
means that we have to form 3 paired orbitals as a linear combination of the 5
virtuals, all belonging to the a, symmetry. There is only one orbital among the
occupied and 3 orbitals in the virtual set which belong to symmetry b,, and finally.
one orbital both in the occupied and in the virtual set which belongs to b,. We
have to form three orthonormal vectors of length 5 (symmetry ¢, ) and one vector
of length 3 (symmetry b;). The number of parameters determining these vectors
using the same algorithm presented above is 9 + 2 = 11.

Results and Discussion

Hlustrative calculations have been performed for the water molecule. Here we
are able to compare the results with the best possible result obtainable in the same
basis. Harrison and Handy [13] have performed full 1 (FCI) calculations for three
bond distances. The calculations refer to the (>, symmetry at the O — H distances:
R., LL5R.and 2R,. There are 256,473 configurations.

The results of the calculations using the canonical orbitals are given in Table I1.
Table 111 contains the 4, values for the optimum orbitals.

TasLe §I. The 8, values for optimum orbitals.

8, b i fe f
IR, 0.00124 0.16014 0.25203 0.21120 0.18852
1.5R, ~0.03126 0.01968 0.42355 0.42497 0.07295
2R, 0.00041 ~0.00037 ~0.58337 0.59572 ~0.040 74

Sym. @ a by a h

J
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Comparing the results with those obtained in [ we sce a substantial improvement
in the quality of the approximation. In the carlier calculation, where the paired
orbitals were determined by maximizing the sum of the interclectronic repulsion
between paired orbitals. we obtained onty about 20% of the energy improvement
of the FCI. In the present treatment where we optimize the total energy of the PO
wavefunction the results are much better and the percentage of the energy im-
provement increases with increasing internuclear distance. The number of param-
eters determining the orbitals is 11. It was a quite surprising result that when localized
orbitals were used instead of the canonical ones, the results were quite close to the
results obtained with the canonical orbitals, but slightly inferior. This is surprising
because, in the latter calculations. 30 parameters have been varied for optimizing
the orbitals.

On the one hand, the results are satistving. as we obtain using 11 + 5 nonlinear
variational parameters 27-60% of the energy improvement obtained by the FCi
(256,473 linear parameters), and the wavefunction has a relatively simple
meaning as contrasted with the sum of 256.473 configurations: on the other
hand, this is still far from the accuracy one can obtain with alternative methods
(e.g.. coupled cluster method). We have to remember that our solution is still
not the best PHF solution. Lowdin [17] pointed out that we do not have to retain
the occupied orbitals as unchanged: by forming the paired orbitais. we can use
orthogonal transformations in the full basis {(in our case 14 orbitals). There is
still another approach in which one uses general spin-orbitals. See Takatsuka ct
al. [18] and Mayer and Lowdin [19]. We emphasize that. in our treatment. the
pairing theorem [20] was used consistcntly as an essential part of the theory.
The problem of how to obtain the best PHF solution by a practical algorithm is
still an open question.
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Abstract

A procedure to obtain the operational solutions of second order differential equations related with
Sturm-Liouville problems is presented. The method is based on the commutation relation between the
ladder operators themselves, with a certain structure, and the position and momentum operators. Even
though the creation and annthilation operators, derived by the proposed approach, factorize as expected
the corresponding differential equation. the method does not use, a5 original premise factoring. the
differenual relation under consideration. That is. the displayed procedure s quite different. simple. and
direct when compared with other procedures such as the factonization method of Infeld and Hull. To
illustrate the above, the usefulness of the proposed procedure is shown by tinding the ladder operators
associated to the quantum numbers # and / for various potential wave functions. « 1992 John Wiley &
Sans. tac.

Introduction

Since von Neumann introduced the operator algebra theory in 1929 {i], it has
plaved an important role in diverse fields of mathematical physics. Probably the
most important improvement brought about by the algebraic procedures has been
the factorization method of Infeld and Hull [2,3]. which permits one to obtain
ladder operators for Sturm-Liouville problems. For many years, the operational
methods have shown their usefulness in quantum mechanics problems, mostly in
the algebraic calculation of matrix elements where the factorization method has
been used along with other mathematical techniques such as the hypervirial theorem
[4] and parameter differentiation [$] method.

Recently Morales et al. {6] have proposed an alternative approach to obtain
ladder operators for potential wavefunctions from the algebraic representation of
the orthogonal polynomials with which the wavefunction is directly involved. Also,
that method was used to obtain, algebraically, generalized recurrence relations and
closed-form expressions for multipole matrix elements of hydrogen-like wavefunc-
tions { 7). However, in spite of its simplicity and usefulness, it scems at first glance
that such a procedure necessarily needs the previous knowledge of the wavefunction

Also at Universidad Autdnoma Metropolitana { Aze-CBI). Mexico.
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under consideration, which 1s contrary to the virtue of the usual factorization
method. This occurs because their procedure was applied 10 solve. operationally,
differential equations of orthogonal polynomials. Thus, in order to overcome that
apparent deficiency. in the present work we consider the operational solutions of
the Schrédinger equation {ur various potential wavefunctions by means of an al-
ternative procedure to the usual factonization method. That objective is achicvea
by finding two kinds of ladder operators: those shifting the # quantum number and
the ones acting on the / orbital number. or equivalent numbers, for the Coulomb,
Morse., and Paschl-Teller equations.

Alternative Approach to the Factorization Method

As stated above. in order to include the most general case of second order dif-
ferential equations containing first order derivatives. let us consider the relationship

al XY+ B, n)f+ Exon), =0 ()
into its operational form
Hafn =0 (2)

which is appropriate for obtaining its algebraic solutions. In that case. by assuming
the existence of the ladder operators ¢, such that

‘P:ﬁv = fasi (3
Eq. (2) transforms to
los. H,] + Hup} =0 (4)

where it should be noted that the /, functions were dropped in order to leave the
operators alone. At this point. by defining

Blx,n)=B(x,nx 1)+ 8%(x, n) (5a)
and
HEx.m)=&x,nx 1)+ £5(x. n) (5b)
one obtains
. d
[en, H,l = —(B‘(x.n)a+€1(x.n))¢i (6)

where we have used the identity H,,,, /., = 0. Thus, by commuting ¢, and 87 (x.
n)d/dx in the above equation, and reordering it, we get finally

- d d
s Hy =B (x,n)— | = —@iB8%(x,n)~— — £ (x, n)p} 7
@us Hy = B7( )dx] ¢B(n)dri( Yo (7
In order to solve this relationship for ¢ ;. it is necessary to propose some structure

for the ladder operator solutions. For example, if these are considered to be linear
according to
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d
e, =a’(x,n)+ b (x,n)~. (&)
dx

Eq. (7) becomes

d*a*(x. n) e Bant D) da((i: n) b ) d§(x, n)

—a{Xx)

dx* dx
+ [b"(.\'. n) ——-—-—*—-—dﬁ('\;:_! =D a(.x')(2 da:((j::, ", d‘bd(‘} n))
-3x,nx l)-@-—‘(;:—-ﬂ}[%
+ (b’(.\‘, )d‘;(‘)—z (. )W);%— = £ (x.m)a’ (x.n)

- [{F(x‘ myat{x, ny+ b*{x, n)(&’fx, n) + M)} —c—l-
dx dx

- (B (x, n)b” (x, n))—d—,. (9)
d\..

Thus, matching term by term in the above relation one gets the differential equations
system

Q(.¥)M+6(X n+1).‘z__..b( )M
dx* dx
- ¢t (x,ma*(x.n)=0 (t0a)
— B (x, myat(x, m) + 2a(x) FEM | b )
dx dx?
g . dp(x. n) dh*(x, n)
b (x,n)({; {(x,n)+ e )+6( )——-——dl 0 (10b)
20 x) db—(x,n)~(da(1)+ﬁ (x, n))b (x.n)= (10c)
dx a

which can be easily solved. In fact, b*(x, n) comes from Eq. (10c¢) as

daf x)
( dx

b’(x.n)=Afexp( +6’(x.n))dx) (1)

20 x)
On the other hand, in order to avoid the apparent redundance that comes from
Eqs. (10a) and ( 10b), the latter is rewnitten as

da*(x, n)

= P*(x,n) + Q*(x,ma’(x, n) (12)
dx
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where
Q7 (x, n)=%{‘;’(\;—)ﬂ) (13)
and
prim = L B (401 )
TR o

Thus, the a®(x. n) solutions are stratghtforwardly obtained by using Eq. (12)
into Eq. (10a) by means of

a‘(x, n)[a(_\r)(dQ—‘d(J;:;'—:'—2 + (Q(x. n))z) + Q7 (x.n)Bx.nx 1) — E(x, n)]
. dé(x.n) | .
= h*(x, n) i Pr{x, n)(a(x)Q (x,m) + B(x,n+ 1))
- a(x)-d—P%'—f—). (15)

That is, the ¢} ladder operators specified by Eq. (8) are then given from Egs. (11)
and (15).
Applications

In this section we are going to consider the algebraic treatment of the Schrodinger
equation for the Coulomb, Morse, and Pdschl-Teller potential wavefunctions by
assuming A~ = ¥1 hereafter.

Algebraic Approach to the Coulomb Potential Wavefunctions

For the hydrogen atom potential, the differential equation containing first order
derivative is given by [8]:

CoaRns(x) =0 (16)
with
. d 2d I n lU+1)
= - - — - 7
=gt i (4 PRI ) (7
where x = or with 0® = —8mE/h?and n = 2mZe*/oh*. There are two cases to

be considered: ladder operators ¢}, moving / and the ones acting over 1 according
to the properties

@1 Rai(X) = Roger(X) (18a)
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and

@aR,(x) = R, (x). (18b)
In the first situation, 8" (x. N =0and ¢ (1, 1) = iEﬂ(l +1/2+ 1/2)/x°, for which
Q(x.h=0and P (x. )= FU T 1/2+ 1/2)/x-. It follows that,
" 1+ 1/2%1/2

b7 (x.h)=7F1 and a’(.\‘.l)=~7—([+1/7+”’) .

That is, the ¢, ladder operators, shifting /, are then given by
$ =Tt - — {19a)

and

n I+1 d

2I+——.\' In (19b)

that are equivalent to the ladder operators published by Salburg [9].

We are going to consider the second case. In order to find the corresponding
¢, creation and annthilation operators, without loss of generality, Eq. (16} is mul-
tiplied by x? from left to right. In that case, 87 (x, 7) = O and £ (x, n) = ¥x for
which Q7 (x.n) =0and P*(x,n) = 1/2. Thatis, b*(x,n) = Fxanda’(x, n) =
x/2 — n ¥ 1. Straightforwardly. the ¢, raising and lowering operators are then

. X [ = x d
@n —E—n— m":l; (20a)
and
. SRR 20b
On 3 n ,\d“_ (20b)

are previously obtained by Badawi et al. [10]. It should be noted that both ladder
operators, ¢ . factorize the corresponding differential equation by means of

M - ‘ nz . —
(wm + 2 4—1—2)Rn./(.x) = () (21a)
(Pnyen tHI+1)—nin—1NR,(x)=0 (21b)

and conversely, from ¢, . ,¢ ., as expected.

Algebraic Approach to the Morse Potential Wavefunctions

The Schrodinger equation for this potential, according to Infeld and Hull [3].
is given by

lws,nRs.n(x) = 0 (22)
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with

. i l I, .
:U,.,,-‘-;;—;:"%((S'*;)(“ "5("' “n*) (23

where the variable changes v = —a(r — ry) + log[{8MD)!"*/(ah)]). s + | =
2MD)Y'*/ah), n* = —2ME/(a*h*).and s — n = 0.1,2 - - - let us recover the
original Morse differential equation as well as the corresponding energy spectra.

It should be noted that we have used a differential equation that does not contain
a first order derivative, that is, 8(x) = 0 and Q(x. 5, n) = 0. Then, similar to the
above case, two types of ladder operators will be considered: 67 ,,. acting on s and
n, respectively, according to equivalent properties of Egs. {18).

For those creation and annihilation operators, 47, s related. one has #7(x,
s)=F1 E5(x.5) = Fe',and P*(x. s) = le'leading toa™(x, s) = fe' — (s +
3 = 1). That is, the corresponding ladder operators are

1 d
CEoet - (s+ ) - — (24
8, 2e s+ 1) e a)

and

e‘-~s+ﬁ (24b)

.
b2 dx

as reported by Infeld and Hull [3]. The 8] case is worked out as before. That is,
by making
e MR, (x) =0, (25)
one gets ax) = e 2%, £3(x, n) = (£2n + 1)e ** and P*(x, n) = —ne . Conse-
quently. a*(x,n)=ne ¥ —(s+ 1/2)/(2n £ 1)and b*(x, n) = Fe *. Therefore,
the corresponding ladder operators shifting » are then given by
L5t I/zie"“i
2n+ 1 dx
as obtained by Huffaker and Dwivedi {11], after multiple variable changes, in order

to use factorization type F. Finally. the Morse potential equation is factorized
according to

8, = ne”

(26)

(6718, + n? — s)R, ,(x) =0 (27a)

2
(0:,“,0; +1—(‘“r ”2) )R.‘.n<x>=o (27b)

4 2n ~ 1

and, conversely, from #;,, .0, as expected.

Algebraic Approach to the Pischi-Teller Potential Wavefunctions
The Poschl-Teller (PT) equation is

Pl yRonn(x) =0 (28)




ALTERNATIVE APPRCACH TO FACTORIZATION 177

with
s d’ m+ g m+ g+ | m—g)m—g+ 1 .
Pﬁmﬁ:_j_(p(r Q{ g ), o H( g ))+Lm
dx* sin* px o8~ pxX

(29)

where x = r — rpand E, = 4p°(m + n + 1)°. Similar 1o the Morse potential case,
Eq. (28) does not contain a first order derivative for which B(x) = 0, and Q7 (x,
m, n} = 0. In consequence, for the n;,, creation and annihilation operators. with
equivalent properties to those given in Eqgs. (18). ™ (x. m) = F! and

JSm+g+1/22x1/2 m=—-—g+1/2+1/2
£:(x,M)=i'2p’( g+ 1/ /Jr g+ 1/ /)

sin” px cos? px
and
JSmA+g+ /22172 m—g+1/2+1/2
Pt(x,rn)=—p‘( g. ﬁ/ f + g ,/ ! )
sin- px Cos® px
That is,

a*{x,m)=pm+g+1/221/2)ertpy—p(m—g+ 1/2+1/2)tan px

in order to obtain straightforwardly

d

nm=pm+g+1/2+£1/2)cospx—p(m—g+1/2+1/2)tan pxid—r

(30)

in good agreement with Barut et al. [12]. Therefore, one can factor the PT equation
by means of

(n;v—ln;n + 492’"2 - En)Rm.n(x) =0 {31a)
(7);-;37);1'*’4[72(’”" ])E—En)Rm,n(x):O (3”3)

depending on the choice of 7,77,
Finally, in order to get the n; ladder operators acting over #, Eq. (28) is trans-
formed to

sin? px cos® pxPT,, . R n(x) = 0. (32)

In that case, 3*(x, n) = O and £*(x, n) = ¥8p%(m + n + | + 1) sin? px cos® px
for which Q*(x, n) = 0 and P*(x. n) = 4p*(m + n + 1) sin px cos px. That is,
b*(x, n) = Fsin px cos px and

m+gym+g+1)—(m—g)m—g+1)
2m+n+ 11

a*(x,n)=—§(

+ 2(m + n+ 1)(cos® px — sin? px)) .




178 MORALES ET AL

Thus, as the above cases, the n} ladder operators are then given by

e _ P m+gdm+g+y—(m—gym-g+1)
T 2 Qm+n+ 1% 1)

- . s . d
+ 2(m + n+ 1}(cos” px — sin- p.\')) F sin pXx ¢os pX ‘T (33)
AN

It is interesting to point out that the latter creation and annihilation operators,
as far as we know, have not been published elsewhere. However, due 10 the fact
that »; factorize Eq. {(32) through

_ ‘+__Qf m+gm+g+1)—(m—g)m~-g+ DY
Tretfin =4 2m + 1+ 3/2)
—2m+ gy m+gt+1)+d4(m+n+ 1y{im+n+2)

- 2(m-g¥m-—-g+ l))]Rm‘n(x) =0 (34a)

and

. e ((m+g)(m+g+l)—(rrr~;,')(r?1—xe+l)2
Ta-tln = 2m+n+1/2)

+4m+n+ 1) m+n)-2(m+g¥m+ g+ 1)

—2(m-g)(m—g+ 1))]R,,,.n(x) =0, {34b)

these ladder operators also could be obtained using the standard factorization
method.

Concluding Remarks

In the present work, an alternative procedure to the usual factorization method
has been proposed. That approach is generalized in the sense that it can be also
applied direcily to second order differential equations containing first order deriv-
atives. That is, although it is always possible to eliminate the first order derivative,
by a change of variable or a change in the function, the proposed method avoids
such kinds of unnecessary transformations. The method is simplified because it is
reduced to solve the commutation relation between the operator related with the
differential equation and a trial structure for the ladder operators under consider-
ation. As exemplified, for creation and annihilation operators with linear structure
on the derivative, the method applied to various useful potential wavefunctions
gives rise, adequately, to previously accomplished equivalent results. Advanta-
geously, the proposed procedure also permits determination of the two kinds of
ladder operators that characterize any potential wavefunction by means of a single
multiplicative factor in the original differential equation. Although finding such a
multiplicative factor is not trivial, the price to pay is comparatively inexpensive vis
d vis more cumbersome procedures that require the transformation of the equation
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according to a structure ad foc to the different classes and types specified by the
factorization method. Thus. our approach is quite simple and direct when compared
with other published methods. Also, it can be easily extended 10 obtain the algebraic
representation of other potential wavefunctions as well as nonlinear structures for
ladder operators.
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The Electrostatic Potential of a Molecule
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Abstract

In this article we discuss several principles and tools which should expedite deserniption of the electrostatic
potentials and electrostatic interactions of molecules. and show that these also Iead to some rather re-
markable results in the theory of the irreducible representations of the full rotation group SO 3). First,
by representing a molecule’s charge-density matrix over a basis of atomuc-like orbitals (on the various
atoms). we observe that nutside its charge distnbution the moiccule’s electrostatc potential is exactly
the same as if that charge distribution were merely a sum (and in the case of a finite orbital basis, this
is a finite sum) of point multipoles on each of the atomic centers and line muttipoles on the line segments
joining each of those atomic centers. Possible methods of approximating the field of these line charges
and line multipoles, as if they were due to point charges and point multipoles. are discussed. The calculation
of the interaction of point multipoles of high order, as is necessary for this procedure to successfully
calculate the intcraction of arbitrarily oniented molecules, motivates our second topic. Here we present
a differential operator which, when acting on the 3-dimensional defta function. produces the source
density for a scalar field that is exactly an (/.m) multipole field. Using the Hermitian adjoint of this
operator, we express the interaction of this (/,m) multipole with an external scalar field as the result of
this differential operator acting on that external field at the location of this multipole source. Irreducible
representation matrices of the full rotation group are then used. together with these relations, to simplify
the interaction of two arbitranly oriented multipoles of any orders. Finally. we use the representation of
the Condon and Shertley “‘raising and lowering™ relations on eigenstates of the z-component of angular
momentum. in an orientation that is not aligned with its fundamental basis states, 10 generate recrirsion
relations that allow simple calculations of the irreducible representation matrices of the full rotation
group, SO(3). and the special unitary group. Su(2). From these recursion relations we display some
useful symmetry properties of our parameterization of these matrices. that allow the entire matrix to be
very simply generated from an explicit calculation of only about 1/8 of its elements. « 1992 John Wiley
& Sons, Inc.

Introduction

This article presents a number of concepts [1-28] which should prove useful in
the efficient calculation of molecular electrostatic potentials and their associated
intermolecular forces and intermolecular interaction energies.

The electrostatic potential of a molecule has been shown to be very useful in
calculating the forces of this molecule, at medium-to-long distances, upon other
molecules [29]. Forces at this range are very important in determining the kine-
matics of a molecule [2,29-33,59], which become important in many aspects of
molecular physics, including biochemistry [2.7.31-42,59]. The knowledge of the
electric field and the charge density [7,35-45,59] of such an electrostatic potential

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 181-205 (1992)
€ 1992 John Wiley & Sons, lac. CCC 0020-7608/92/010181-25
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15 also usetul in determining the chemical reactivity at the reactive sites ot a molecule
[7.31-346.59]. which s very important in predicting drug acuvity [ 7.31-39.59],

Simple representations of the electrostatic potential of 4 molecule, in terms of
point charges at the centers of the atoms [2.31-30]. while providing simply cal-
culated values' for the field. are not of high-quality: and different methods for
computing these charges lead to different values for them [2.37.38.45-50]. Allowing
for point multipoles. cither on the atoms{7.37.3842.51-53] or on the bonds
[7.42.4951]. improves the numerical accuracy of the calculated potentials
[37.38.51}: but generally diminishes the stability of the mathemaucal representation
[38.51]: and experience has shown that. for the model to be stable and accurate
{especially globally accurate), it must also include charges [ 7] (or preferably. charges
and multipoles [7.51.42]7) on the “bond axes™ between the atoms.

Yet. how should we determine the proper positions and values of the charges
and charge multipoles to be used? How can we most simply calculate the interaction
energies of these electrostatic potentials? And. are there any auxiliary mathematical
functions or relations that will expedite these calculations? In the course of this
article we present information that we hope will be helpful in obtaining appropnate
answers to these questions.

First. we present a parameterization of the clectrostatic potential that is uniguely
determined by the density matrix over the atomic-like orbitals that are the primitive
basis orbitals for the molecular wavetunction. For Slater-type orbutals (S10s)
[21.54.46.47.30.34.]. such a description feads to an electrostatic potential which.
for field points outside of a volume (of appropriate shape) which is large enough
to {essentially '] contain the charge distribution, is [almost®] exactly represented by
point charges and point multipoles. on the atomic centers. together with line charges
and line multipoles on the line segments (i.¢.. bond lines) connecting cach pair of
atoms [ 3-9,54.55]. 1t is the field of the point multipoles on the atomic centers and
the line charges along the bond lines which. when represented by charges on the
atomic centers. leads 1o inconsistency and instability in the calculated values of the
atomic charges used 10 represent the molecular electrostatic potential [38.42.291 °
However, a representation of these line charges and hine multipoles by point charges
and point multipoles at suitably chosen points along the bond line [ 29] is adequate:

''Simple methods hased solely on point charges invoke a calculation algorithm that feads o numericalis
unsatisfactory field values at fur distances, since these tield values are obtained as timy differences of Targe.
nearly equal numbers: also. because of the long range of the field of a point charge. all source pomnts are
needed to calculate the value of the ficld at any held point [ 51},

4 Where more than one reference oceurs in the same citation, we have endevored 1o have the references
most relevant to that topic histed first.

P Here we are dealing with an asvmptotic refationship that is exponentially convergent and is com-
putationally useful for distances bevond about two bond lengths | 7.42.46 ]

¢ For Gaussian-type orbitals (€i10s ). the line charges and line mulupoles become replaced by many
point charges and point multipoles distributed along the hond lines {7.11.42.54-561. A more ethicient
paramcterization of the potential of the set of point charges and point multipoles along a ginven bond
line may be a moch smaller sct of line charges and line meilapoles, which parameterization s bkely also
much less affected by a change to a quite different tbut i valid) choice of basis ¢i10s than s the set of
pomnt charges and point multipoles along the bond line.
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and we show how such an optimally chosen set ot pomt cliinees aond pomt mutupeles
may be obtained.

Neatowe show how we can use this representation of the molecular potennad to
calculate mnteraction energies of 4 molecule with an externadd potential and with
other molecules: Such calculations are expedited by a knossledue {8210 of the
source charge densitios of the 7sohid sphencal harmonie” point multipole potentials,
and by a simple algonthm for quickly computing matncees of cach wreducible rep-
resentation “carned by these spherical harmonies under the full votation group
SO(3).

We introduce a basis for such rapid computattonal algorithms tor the rreduciblc
reprosentation matrices of SO(3) {and st 2)] buinvoking the Condon and Shortles
“ratsing and lowering relations”™ [13.13-17.221 on spheneal harmonics [13.14-
17.22] n a Cartesian coordinate frame ahigned moan arburrny onentation
[11.17. 16,13 ] with respect to the frame of the onganally chosen spherical harmonic
basis. This procedure vields recursion relations amope the matriy elements of any
chosen irreducible representation. which are usetul tor constructing compact an-
alvtical formulas for cach of these elements, and particularly suned for generating
their numertcal valtues for any given rotation. From this we also obtain a new three-
term recursion relation [16] for generating all of the spherical harmonies of g given
{-value from the m = { spherical harmonie, without differentiation. Finalls . using
the svmmetry properties of the recursion relations amona the matry clemenis ot
an irreducible representation. we derive some symmetny propertios |16 13387 o
these irreducible representation matrices that allow e algebrae expresaons oy
all of the clements to be obtained from explicit knowledge of shehth more than

/& of them.

The Electrostatic Potential of a Molecule OQutside of s Charge Distribution

The electrostatic potential, 1'( 7). due to the clectronie” charge density of i maod-
ecule. may be written as [12]
- pl 7
I ( ry ) - J‘ '
Fai~

where the charge density pf 7) may be eapressed as a bilinear torm over the atomie
orbital basis | x ]! as follows {2-61]:

* Such calculations of the interaction energies neglect the cflects of polarization {2257 <3 dgniess
the input information has alreads taken that into account k. but neverthelosc are sahid e the wed tield
limut, providing that the source of the external potential twhich here may be the Chare denan of one
molecule) does not significantly penetrate the appropriate solume aroand the other molecule

* Here we are pnimanly concerned with representing the charge denaty of the electrans, and we are
adopting the sign convention m which the electrome charge density ionegative and the chectronn chuaee
densits matrras negative defimite. Of course, the negatn e clectrome charpe densiis mat be s oimpleme e
by the positise charges on the nuclen reducing the nftimate cange ot the totad potential tor seutsad
maolecules o at most that of a dipole {1}




_—

184 LARSON. 1L AND LARSON

pFYy - SN xNAIP(xXPFYr (1

st

i A Haoo B

Here. -1 and B each label atoms, g labels an atomic orbital on atom 1, and r fabels
an atomic orbital on atom B. The expansion coethcients | P} torm the electror ¢
charge density matnys of the molecule in this basis of atomic orbitals. The charge
density, o 7). may be decomposed into a sum of intra-atomic parts | p (7} ! and
pairwise interatomic parts | p L#(7) ! as follows

pFY= S pdt Y+ 2 Y o) (3)
A 4 B>d

with [3-3]
palFy= 2 3 XHTIPLOGHTFN®

wl b oute A

plf= N T IXNAPAXEFNE + XYWL A (PN
u€

4B
l

Note that the intra-atomic piece. p (7). is expressed solely in terms of the orbitals
on atom . whereas the interatomic piece, p.7( 7). is expressed using terms in-
volving one atomic orbital on 4, and another atomic orbital on B. Thus,
o (7) represents an atomic charge density on atom .1, and pL*(7) represents
the “overlap charge™ connecting atoms .{ and B. We shall find that. for ficld
points everywhere outside of a sphere” (centered on the appropriate atom) large
enough to contain® that part of the charge distribution. each intra-atomic charge-
density term. p( 7). produces an electrostatic potential that is exactly exprassible
in terms of a point charge and a (small) finite number of point multipoles centered
on atom A [7]. However. the interatomic part, pL?( 7). produces an electrostatic
potential that is best expressible in terms of a line charge and a (small) finite
number of line multipoles along the line segment joining the centers of atoms A
and B[3-5.8-11.7].

i
|2V

TS XHFPAXEFN {4)
&

LA I li

The Atom-Centered Charge Density an.' Its Electrostatic Potential

The electrostatic potential, V"7, due to the charge density, p*( 7). that involves
only the atomic orbitals on atom A4, may be written

FA(F) = J‘pm( 72) 4’7y

ri2

J‘pa((r )(rw) drs sin 82 dps (5)

ri2

7 Note that for p2,%( 7). this region gencralizes 10 2 prolate cllipscid (i.c.. the region formed by spinning
an ellipse about its major ax:s} with foci on 4 and 8.
¥ See footnotes 9 and 3.
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and we may represent 1/ra by [12-16.11]

l ! 4 (r. ) !
N e e e N Y @ U Y o) (6)
e TR bry o . v

where the | Y, (0. ¢) ! are the standard <pherical harmonics {12-17]. Substituting
Eq. (6) into Eg. (3}, we find that for” r; > max(r:)—ic.. for 7, outside of the
smallest sphere { centered at 1) containing * the charge distribution—this vields an
expansion of the atomic charge potential 14 (F)) in the form

T

=0 Yealfogy)
+

l._:l(-l"]) N e > /7 |

PN I 0 5
fl!(,‘} H .

~d

We recognize this as a point multipole expansion [7.12.14] of this clectrostatic
potential about the center of atom AL with ¢, ,, as the value of the (/.21 -multipole
moment,

The Interaromic Overlup Charge Density and [ts Electrostatie Potential

The clectrostatic potential. 1°5%. due to the interatomic overlap charge density.
p LECF). of the pair of atoms. 4 and B. may be written [18.3-3]

iy
. - Poy { "3) Iw
VLT = f~—‘ - d'7s

ri2
LH s 1
D on ( r:) R N 5 \
ff.-‘—-,—— o (€3 — 3V dEdn~dg> (3)
12

wherc £ =1(r, + rg)/R.n = (ry — rg)/R. and ¢ [the azimuthal angle about the
bond axis] arc prolate ellipsoidal"’ coordinates {3-5.18.19]. (1 - § <« =« .
-1 == 1.0 = ¢ < 2m). and R s the internuclear distance. We can represent
{ /7> by'" the Neumann expansion [ 18.3.5]

1 2oL (~ tmhHy
— == TN (Y2 )(-w-» M,%_)
e RLTLT ( (L + )
¥ [J/m (g‘ )le (s ) )I)/n: (7]] )l,}m (7).‘ ,():mn‘u v (9)

For ¢, > max (&) —te.. for 7, outside of the smallest etlipsoid (with foci 4 and B)

® What we mean here by max(ry ) is the towest permissible value of the upper hmit of r; 10 which the
integral in Eo. (5) needs to be taken (to obtain the desired accuracy of the resuity. How exactly we
interpret this influences how exactly we can interpret many of aur subsequent statements [c.g. Fq (7]
concerming P AFyand p(F).

' See footnotes 9 and 3.

" We prefer the term “prolate Jhipsoidal™ to the more indefinite term “prolate spheroidal™ ased by
Abramowitz and Stegun [19] and several other authors.

' We are using the Abramowitz and Stegun [12.19.20] definitions of the #7" and @7 functions.
which, for argument (-1 = 1« = 1), differ by a factor of ( - }” from the standard definitions used by
many other authors [13-15].
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containing !’ the charge distribution—this vields an expansion of the overlap charge
potential 1 L%(F)) in the form

Paftry = 30 2 P () Q" (g e (10)
" r {-'m
The part of this potential belonging to a given a-value has. as its source, the singular
volume charge density {8.9.3,1]

ny

a ) 4
Ol FY = X)) — + lsgn(m)—(~) [6(38601)) (i)
ax ay

where the 8's are Dirac delta functions and A,{n) i1s (by definition) the line
(m.m)-pole density ™ [i.e.. the {m.m)-multipole moment per unit length} at the
point on the bond axis (the z-axis) parametrized by (£ = 1. —1 <= np = 1) with

(WR)E'” Iyimiid L "
'\m(’]):’:'?;m'(l - 1) o Z a[mPi (n) (]2)

i m
where ay,, 1s the same coetheient as that which appears in Eq. (10).

Thus. outside of the charge distribution, the electrostatic potential due to the
(distributed ) charge density of a molecule may be represented as if' it were produced
by the following sources:

1. Point charges and point multipoles on each atom. ( These represent the intra-
atomic terms in the charge density [ 18.3-5].)

2. Line charges and line multipoles along each of the line segments joining two

nuclel. ( These represent the interatomic terms (i.c., the “overlap™ terms) in the
charge density [ 18.3-5].)
For a given finite atomic orbital basis, the intra-atomic terms in the charge density
lead 1o a potential that, outside the charge distribution, is expressible in terms of a
point charge and a (small) finite number of point multipoles on each atom {7].
For this same basis. the interatomic terms in the charge density lead to a potential
that. outside of the charge distribution, is exactly expressible as that due to line
charges and line multipoles of order less than or equal to some (small) finite #1,,,,
[5]. This point charge. point multipole. line charge. line multipole representation
of the potential is uniquely determined by the representation of the charge density
as a bilincar form over the given atomic orbital basis [ 2-5.51]. Any valid simpler
representation [29.51] of the potential is appropriately obtainable as a canonical
reduction of the potential due to these point and line sources.

Possible ways to reduce the above representation '™:

¥ See footnotes 9 and 3.

M For sTO bases, or any basis with the correct asymptotic behavior at the nucleus and at infinity. A,
is a continuous function of n. However. for a Gaussian orbital basis. this “line-multipole density™ becomes
a set of point multipoles, “strewn™ over the line scgment joining atoms .4 and B [7.11.42,54-57}. so
that A, { n) becomes a linear combination of delta functions,

'* Gaussian orbitals do not produce a line-charge or line multipoles but, rather. produce point charges
and point multipoles along the “bond™ line [7.11.42.54-57}. Still. reduction of their number, in these
ways. may be appropriate.
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1. Replace the line charge and line multipole potentals for the pair of atoms |
and B {{rom the corresponding interatomic terms in the charge density ) by a point
multipole expansion about ¢.g. the center of the line segmient joining the nuclet of
atoms A and B (1.c.. about the center of the “bond™) [7.29]. ¢ This s mathematicalby
simple and fairly rapidly converging for most ficld points ofinterest.)

2. "Sever” the hne charge and line multipole densities joining atoms 1 and B
at e.g. the point equidistant from these atoms. and express the potential of cach of
these two “pieces’™ as a point multipole expansion about its corresponding atom
[7.29]. (This leads 1o a canonical representation of the total electrostatic potential
solely in terms of point mulupoles centered on cach atom [7.29]. However, 1t s
less rapidly converging than the procedure outlined in ( 1y above, and the caleulated
values oi the “atomic™ charges and mulupoles can be overly sensitive to small
changes in the wavetunction { 7.29] if the bond s asymmetrical and there s afarge
absolute value of the effective line charge density at or in the vicimits of the midpoint
of the “bond™.)

3. Replace the hine charge density joining atoms o and /2 b G point charge (at
the center of charge) and its complement [7.29]. This compiement thus contains
no monopole component and no dipole component. It therefore can be replaced
by an m = () point quadrupole (aligned along the bond line) and its complement.
with the quadrupole centered at the particular point on the bond hine such that s
compiement contains no poles of order less than or equal to that of an octopole.
One may represent this latter complement by a point hexadekapole centered at the
point such that its complement contains no pole of order less than or equal to 32:
and the procedure may be continued, with all generated point muitipoles Iying on
the bond line and being aligned in the direction of the bond line. Analogous pro-
cedures are possible for cach line multipole density joining atoms 1 and 8. ( This
should be the most rapidly convergent method of these that we have suggested.)

Mcthods ¢ 1) and (3) are appropriate when atoms .1 and & are close neighbors.
since they require fewer terms tor a given accuracy of the ficld values. When atoms
A and B are far apart, the line source being representea s of very small magnitude.
so method (2) may be preferred. since it does not place charges and multipoles
anvwhere except on the atomic centers.

Point Multipole Potentials, Their Source Charge Distributions,
and Their Interaction Energies

The above description for the electrostatc potential of a molecule. in terms of
point charges and point multipoles on the atomic centers and hine charges and line
multipoles along the “bond™ axes. is accurate and compact. leading to simple eval-
uations of the potential in the region outside of the sources. However. the mteraction
energy of two line multipoles of arbitrary orientation is presently awkward to cal-
culate. Thus. for the purpose of calculating interaction encergies of molecules. 1t
presently apprapriate to re-express the molecular electrostatic potential of at least
onc of the two interacting molecules solely in terms of point charges and point
multipoles centered on appropriate centers. 10 a manner akin to the reductinons
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suggested in the previous section. When this is accomplished. the interaction energy
of two molecules may be calculated using a procedure based upon the following
discussion.'®

The Charge Distribution of u Point Multipole Potential

The electrostatic potential of a charge distribution p(7) may be written {12.1.5]
¢(7)=f(;(7.7')p(?')d-‘7' (13)

where the Green's function, G(F. 7'), has the representation [12-16]

- = 1
G(r.r)=-£~_;;—:——_’-.'—-,-|—
sy AT ot
- E),,,.Z,21+ 1 Y’-"‘(g'“’)(,>)/+;()1.n,(0,¢)) (14)

From this, one can show that one source charge distribution that will produce the
potential [11]

Y7 = \\.f'é,i‘% Vim0, ) 7 (15)
may be written [8.9]
p(F) = L1D8(F — 3) (16)
where
Ly
ST l-m .
() ‘\FW(‘%) [—(—%—1‘%} for 0=m<!;

N ,'/ { -a— I-1mi _i___ __‘?__ i} ~
) \~\.'(/—lm|)!(1+cml)!(a: ax oy for ~I=m=0
(17)

We note that (£ "), the Hermitian adjoint of the operator .£ . may be written

1% Follow the appropriate footnotes in this discussion to be appraised of some of the relevant applications
of this approach. as well as its limitations.
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(L

| (” o (? . é " '. (} ’ A /
=)+ m) A\ 8s a IR_),' or sk

l (8)1 B E R 0
, - — or lsoms
(= tmh! + tmiy\a: ox r)_\'j
{18)
Expressions for the generating operators for the source charge distributions ot the
corresponding “‘nonorthogonal™ Cartesian multipole potentials are of an even sim-
pler form {8].'

The Interaction Energy of a Point Multipole With an Fxternal Potential

The {complex) energy of interaction of the (complex) multipole potential
Y(7) [produced by the point source charge density p'( 7)) and a (complex)
external potential ¢(7) may be writien [29]

1:"¢§i“'b’gf(/':rﬁ’ PV F)dF

1

f(i,‘,:‘a (F — 6)*D(F)d'F
fﬁ (F = ONLIDYS(F)d'F

= (LY D(F))s 5 (19)
(In any physical situation, the total interaction energy will. of course. be real.)
1t is easy to show that if we translate the potential ¢}(7) from the origin
¥ = Htotheorigin 7 = Fy. 8 (F ~ &) becomes replaced by 41(F ~ 7,) and we
have the generalization [15]
,rh - -
EVm® = (LY FY); 5, (20)
Also. providing the orientation of the Cartesian axes with respect to the axes of
definition of the polar angles (A. ¢) is preserved. our differential opcrdtors may be
cxpressed in terms of spherical coordinates with respect to any origin '™ as {15]

a 4 sinfi é
Py = cos T
~~a+1£:—¢' "“sin/}—(l—c cosha  w? 9
ay ar r o rsinh g
3+ii:—'v"’sin(iﬁ+e’ cosh o +-‘i(f—-—i (2N
ax ay ar r a0 rsinf d¢

" Such “nonorthogonal™” Cartesian multipole potentials occur in the far-held representations [57.56.42]
of the fields of charge distnibutions ansing from molecular charge densities represented in terms of
Cartesian Gaussian orbitals [57.56.42].

* Transformation to other coordinate systems, such as profate eftipsodal [19.18] tknown in these
references as prolate spheroidal ™). is also straightforward and can cxpidite such things as the calculation
of the interaction energy of our point multipole with a line muttipole.
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Simplifications occur it the Cantesian axes defining the spherical coordinate system
for the potential $( 7y are parallel " to the Cartesian axes defining the spherical
coordinate svstem for the multipole potential ¢4, 7). for then we may choose the
spherical coordinate system representing our ditferential operators 1o be the spherical
coordinate system natural to our potential ®( 7).

To illustrate this, we might choose b( ¥) to be an untranslated point multipole
potential ¥ (7). and let {r,. #,.. ¢.) be the spherical coordinates of 7, {the center
of the transtated ¢ (7). potential} in the coordinate system natural to (7). In
this case, the mathematical representation of the interaction energy. derived from
the above procedure. is exemplified by the following expressions. ™ valid tor § = [’
= 2withm = m' = #2and ~m = m’" = +2, respectively.

RGN 9 + 20 cos 24, + 35 cos 4,
([:'('vm»“’rn’ ,);r’/_lu' T e . S —= (:2‘!)
2 64r.,
i i 35('”4’:" Sin.‘ "‘,
(F o Wy )I r;" e e {(22h)

~ LY
S R,

[where the * signs are correlated in Eq. (22b)}.

When the interacting potential. $( 7). does not have its Cartesian axes ahgned
parallel to those of the multipole potential ¥ S7( 7). it may be appropriate that we
express ¥ L 7) in terms of potentials aligned to the coordinate svstem of € 7) via

the relations [17.16,13,11]

!
¢:’{)(7) = E ¢’r:nl!(;)[):ylzjm(lé) (23)

" /!

[ The corresponding source charge densities. p!)'( F) and { o)’ ( 7). are related in
exactly the same way. ] Here {0 (7)1 is the set of multipole potentials whose
Cartesian axes are aligned paralle! to those of ¢( 7). R is the operator which rotates
the Cartesian axes of ®( 7) to be parallel with those of ¥ (7). and D' (R) is the
irreducible representation matrix, of the full rotation group. appropriate to this
rotation. | This is the same irreducible representation matrix tor which the substi-
tution of ¥, (. ¢) for ¢ (F)and Y, (8. &) for ¢ \(F) in Eq. (23) vields a true
relation. [Here (4. ¢ ) and (8", ¢') are the spherical polar angles with respect to the
Cartesian axes of ' 7 and of §( 7 ). respectively.] | Because their natural Cartesian
coordinate systems are mutually parallel. the interaction energies between cach

member of the basis set of potentials. | ‘/,',f,"’( 7)!.and the external potential. $( 7).

" Such Tparallel axis™ representations are very common 1n the representation of the atomic orbital
hasis of molecules. and propagate to the representation of the charge distnbutions appeaning in the two-
clectron integrals of the 1/ 7,5 interaction. Thus, this simplification is vahd and refevant to the multipole
interaction representation of these integrals under conditions 1n which the interpenctration of the two
relevant charge regions may be neglected [3-5].

* We have obtained expressions for all ¢/, s, /. pr'y with [ and £ in the range 8 through 5. using the
svmbolic manipulation facihty of the Muthematiea program {25]. Some of these results are reported
elsewhere [24].
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may be casily calculated in the (47 @) coordinate system. using our former pmccdurc
Thus teature expedites the evaluation of the interaction energy between o (7 and
& 7) (whose natural coordinadte systems are here not mutually parallel) via the
principle of linear superposition.

It is also often convenient to represent the orientation of the axes of each ofliu.
potentials. ¢ Y F) and ®(7). with respect o a laboratory coordinate system.
via the rotation operators, R and R'™', which rotate the laboratory coordinate
svstemn. about its origin. into the coordinate system parallel to that of ¥ 1, and of
&, rcsputl\}l\ [17.16.13.11]. Now, consider & itsell’ to be a point mulupuk po-
tential, W', with its own orientation for its Cartesian axes, and let R be the
operator th.u rotates the laboratory coordinate svstem (about its ongin suah as o
make its new z-axis paratlel w the line through the unlcrs of ¢ I and Wi Then
we may detine thc sets of potentials ¢ 4" and | \l/,,, . having the same centers
as ¥t and v rt:spcm\cl\ but aligned with lhur common z-axis through the
centers of ¢ 1V and W1 as follows:

| ;
LR = ROVGRSPY SF) = X A IDLRPR™S7) ) (24a)

m ]
U ey Bt v e
Vo tF) = RYURYNY YW (F)

!
4

S S W FYD L RTDRYY T (24h)

oy 1

Let &171(r,») be the interaction encrgy between the aligned multipoles. ¢ (' 7)
and \I/)‘,j"( 7). [t is casy to show that

[EN A
4 mJn’( 4 l:)

Ll

f‘nm PN (FydF

= 6,!’{1”'(']‘)0’” m’ (253)
and we have just recently succeeded in proving™ that
6,/_,.“,(,‘ )_‘(__)/1.,,‘,[ (/'+/)’ ](L)i-l"l (35b)
e VO~ oy + m) (= s+ ot e .

Here. ;5 1s the distance between the multipoles, and / is the [-value of the potential
centered at the point having the larger value of the z-coordinate in the coordinate
system obtained by rotating the laboratory coordinate syvstem about its origin by
the operator R'’. These interaction energies are zero unless »’ = w1, making the

2 This is particularly relevant 1f one is following the classicat dvnamical interaction of molecules.
represented Gin part) by such electrostatic multipoles. in a laboratony coordinate system.

“ Atter one of us (ML} had verified this by explicit evaluation via Eqs. (18)-{21) [through therr
analogs of Fgs (220 with #, 0] for all integer { and " values in the range O through & tand thewr
allowed values of m). another 1G.C.L) managed to hnally prove it for afl integer / and [ tand their
allowed nr)
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rectangular matrix, 6'"/"(r,;). defined below. zero except for its diagonal. sym-
metrically placed. maximal square submatrix.

Let 6Y/°(ry2) be the (2/ + 1) by (20 + 1) matrix whose (m.m') clement is
&0 (r), and let DY(R) be the (27 + 1) by (2/ + 1) matrix whose (m“.sn)
element is D' (R). Then. it is easy to show that the interaction energy between
the original point multipole. ¢ })’( 7). and the point multipole. W [)/'( 7). is given
bv;’}

Ewﬁ,’,\wﬁ.”,?)( 1)
= (DR DR O (rp)(DIRYDOI (R, (26)

The & matrices are simply calculated using Eq. (25). All of the heavy orientational
information is contained in the D matrices. Symbolic programming [23] can al-
gebraically simplify the final expression and make it reasonably easy to compute
for values of [ and /' less than or equal 10 6. Most quantum chemical calculations
can be virtually exactly managed with / values less than or equal to 4. so this
represents a feasible route toward calculating the interaction energies of molecules
of moderate size. However, satisfactory implementation of this procedure, for the
evaluation of intermolecular forces in a dynamical setting, requires evaluating spatial
derivatives of such interaction energies for many different intermolecular confor-
mations. This is often best expedited by simple and rapid numecrical calculation of
the D matrices (and their derivatives) for many different orientations. The foun-
dations of a method for accomplishing such calculations of these D matrices are
presented in the following sections.

Angular Momentum Operators, Rotations, Euler Angles, Spherical Harmonics,
Pauli Spinors, and the Irreducible Representations
of the Full Rotation Group [Also of SU(2)]

Starting with the quantum mechanical definition of the positi- .+ operator. 7 =
¥, and the momentum operator. p = (h/i)V, the quantum mechanical angular

momentum operator. [, 1s derived to be: [15,17]

& A - h -
[.=FXp=—(FXYTV) (27)

{ Hereafter we shall take A = 1.) From the commutation relations between the
components of 7 and the components of /i one derives the commutation relations
among the components of I, that may be summarized as I, X L = il.. From these
commutation relations on 1. one may derive the Condon and Shortley relations
[22.17.15.13}):

2 The carefu! reader will note that the left-hand side of EQ. {26) [upen substituting the definition
from Eq. { 193} explicithy shows the necessary transformation properties required by the laws of physics
(e.g.. 11 invariant under any global rotation or translation ). whercas the nght-hand side is expressed
in terms of coordinate-dependent paramcters and, therefore, does not display these transformation
properties explicith. {However, the reader is invited to test that it does in fact transform correctly.
As an cxample. we point out that interchanging ¥ &, and ¥',.. which is equivalent to the transtormation
(1 &= I'Y(m e '), transforms each side of Eq. {26} into its complex conjugate.
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L1, my = mllomd (28a)
L.il.my = Vigh+ 1) ~ mim *\)’/ mt i (28b.¢c)
Here . = [, + L,. and ||/ md| is any set of states or functions that satisfy

these relations (e.g.. the sct of spherical harmonics | Y,,.(4. ¢)| belonging to a
given /-value).

Whereas uniqueness of the scalar wavefunction reguires / to be a nonnegatve
integer, the formal algebra that derives the Condon and Shortley relations requires
only that 2/ be a nonnegative integer. When we allow for the possibility that =/™ s
a half-integer. we denpte I as J and {as j to remind us that, when / 1s a half-integer.
every component of J has no single-valued scalar eigenfunctions [ 23]. The Condon
and Shortley relations are uniquely determined by the algebra. to within multiphi-
cative phase factors on the results of L. . from which the corresponding unimodular
phase factors on the results of L. are determined {17]. The Condon and Shortley
convention sets all of these phase factors equal to unity {177},

Now the R(¢. 1) rotation operator for a counterclockwise rotation by an angle
& about an axis labeled by its unit vector, /4, when acting on an entity ¥ upon which
7 can operate, may be represented {17] as

Rio. M)I¥) = exp(—ighi- T)I¢) (29)

From this and the Condon and Shaortley relations, we derive that {17]

R N . | «a h
R(p. AYlvy. vy = lv*'l.‘)[—h* a*J (30
where @ = cos(¢/2) — in.sin(¢/2)and b = —(n, + in1,)sin(¢/2).

Here {v,, v, } are the Pauli spinors (often denoted by { «, 8} ). and the matrix
involving {a. b, —h* a*} is the corresponding element of the special unitary
group, sU(2). The elements {a, b, —b*, a*} play a dominant role in describing
the irreducible representations of sU(2} and SO(3) (the full rotation group). and
may be expressed as shown above [17]. or in any of several other ways that par-
ametrize the rotations [17.11.13].

In particular, Rotations may also be parameterized by the Euler angles
{a, B, v} . which have each of the following two interpretations.

Bodv-fixed interpretation [ 11,58]: (1) Rotate the system counterclockwise about
the body-fixed z-axis by the angle a. (2 Then, rotate the system counterclockwise
about the present orientation of the body-fixed i-axis by angle 3. (3) Finally,
rotate the system counterclockwise about the present orientation of the body-
fixed z-axis by the angle v.

Space-fixed interpretation [17,581: (1) Rotate the system counterclockwise about
the space-fixed z-axis by v. (2) Then, rotate the system counterclockwise about
the space-fixed y-axis by 3. (3) Finally. rotate the system counterclockwise about
the space-fixed z-axis by «.

In either of these representations. the above-introduced parameters, a and b,
take on the values [17]:
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o g o i3 N
a=c¢ “"-"‘cos;c O b s e M sin s et (3la.b)

We now consider the normalized spherical harmonics § Y, (8, ¢) 1 [17.15.13.22].
Forany given /. theset { Y, (8. ¢)m =~/ —[+ 1. -« [~ 1,/! may be obtained
[17.15.13.22] by the repeated action of L acting on Y, (. ¢) = Ci{sin #)¢™,
choosing the magnitude of the constant (; by the requirement of normalization,
and the phase of (; by the requirement that ¥, 0(0, ¢) = .1, P{cos #). where 4, is a
positive constant. It is casy to show [ 17,15.13,22} that this set forms a basis for an
irreducible representation of the full rotation group. and we may write Y (0, ¢)
as shorthand for the row array [28] formed by the set of spherical harmonics
belonging to this /-value. Thus,

Y0, @)= (Y0, ). Yoo @)« o Yo (h@) Yo d8.¢))  (32)

which allows us to write

!
Yim(0. €)= Rlp. MY, (0. ¢) = 2 Y (0. )D (b, 8)  (33a)

'
in the form [28]
Y8 0) = R(o. HY (8, ¢) = Y0, 0)DV (. 1) (33b)

where D'"'(¢. 1) is the irreducible representation matrix [16.17] associated with
the basis Y"'(#, ¢) and the rotation operator R(¢. ) in the full rotation group
SO(3). [Here we need to distinguish between ¢ as an angle of rotation and ¢ as
the spherical azimuthal angle.] It is easy to show that the basis vectors [17]

[, ]
V2 V2
VN =(6. 6. 6)=(8.6.8) | L o _L (34)
V2 V2
0o 1 0
- -

(where é,. é,. ¢. are the unit vectors along the Cartesian axes) have the property
that [17]

R(¢, f)e'! = "D (¢, A) (35a)
where also [17]
R(¢. A)Y M0, @) = Y (8, 0)D (. ) (35b)

Thus, &'’ transforms according to the same irreducible representation. D', of the
full rotation group. as does the set of spherical harmonics belonging to / = 1. This
irreducible representation may be written in terms of the parameters
fa. b, a* —bh*}as[17]
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-

@’ Vouh h
Do V2a0 - D%y aa® s b by N 2urh {369
(—h*y V2a* h*y (aty

It is casy to show that under roiation. the Cartesian components (7. 4. 1) of
the vector angular momentum operator £ transform in the same was as the unit
vectors (G, L 6 Beeause of the relationship of (¢ 6L Sy o (6L G o this
means that [17.13]

| . [ T . )
[ RN AR e 1] R, m[ S A A ]uem. iy
V2o 2 i

R )
BTN A LA (37)
L’ “\

Now the Condon and Shortdey relations [Egs. (283]. when vsed in conjunction
with the spherical harmomices, 1Y, (0. ¢) 1L give

LYl @y = mY, (8. &) {38a)

I. Yooy o ViU NER VYoot e) { I8b.¢)

Using our definitions of the | Y, Fegivenin Egs. ( 33). together with our defininons
of (40 L 1 " eiven in Eq. (37). the insariance of the “laws of physies™ Chere.
the Condon and Shortley relations) 1o the oricntation of our reference frame requires
that also [16.13)

LY ey = mY (0. ¢) (39a)
1Y 00.¢) \“/(V/ 1Y ot 2 1YY ) {39h.¢)
Writing
L wldl. v 3.0ty L (40a)
1= ol + dal.. & yol. (0b)
L' =l +3 L.+ 1 {40¢)

we may read the Uvalues™ of the (a. 30 ) coethicients [rom the definttions of
(L' . 1.1 )and the matrix elements of D'V (o, 1),
The Condon and Shortley relation for L0 [Eq. (39a)] may bhe written as
(ol + Bodo 4 q0l ) S Vit @YD . 1)
wme
1
Y Yo e D (i) (41

me

which, upon substituting the entities on the nght-hand aide of Egs. (38) for the
products shovn on the left-hand side of Egs. (383, as they appear i Eg. (41 and
then comparing the coefhicients of the |}, on cach side of the equation. vields
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aoVI(+ 1) = ' (m' = YD, + B DY,

+ '\/0\/1(1 Y ) -mm 4 DD, = mDY, (42)
with
@ = —ab. gy = (aa* + B(—h*)). Yo = a*(—b*)

This equation allows one to obtain the efement DY), (for any row n in column m)
from the elements (DY, ., and D) or from the elements (D{,,, and
DI, )y or (except for n = m = 0) from the elements (D}, ,, and D", ), [all
of these elements belonging to the same column m of D'"]. As implied by the
coefficients, in using these relations, one may take the elements whose indices lie
outside of the range of the matrix to be zero. By this ineans every clement in column
m of D' may be generated from either D{)) or D'} The Condon and Shortley
relation for L. may be written as

i

(.:L‘iz,, ! /Bii—’.'.' + 71-L< ) Z Yl.m’(”» ‘p)Dir?m( d’- ﬁ)
.

m’

/
=VIl+ D =mm+ 1) S Y0 0)Du i (b, H) (43)

m=-]

which. upon substituting the entities on the right-hand side of Egs. (38) for the
products shown on the left-hand side of Eqgs. (38), as they appear in Eqgs. (43),
and then comparing the coeflicients of the { Y, } on each side of the equation,
yields

a Vitl + 1) = m'(m' = 1)Dy i + B'DY)

Ay VId+ D =m'(m' + DD = VI + 1) = mm + 1)D ey (44)
with
o, = a’.B. = =2a(=b*). v, = —(—b*)?

a. = —b* B =2a*b.v_ = (a*)’

The L', relation [with (.. 8., v.)] allows element D¢, to be obtained from
the elements { DYy, D), DYy i}, thereby generating an element in the column
m + | from its three closest neighboring elements of column m. The L' relation
[with (a., B., v-)] allows element DY), , to be obtained from the clements
(D, DO, DY L) thereby generating an element in the column m — 1 from
its three closest - eighboring elements of col'tmn m. Thus, using each of the (L,
L'.. L’ ! relations one may obtain every element of the D' matrix by any element
on its perimeter. In particular, using only the relations { L., L’ | . one may generate
every element of D from the element DY) = a?.

As will be shown in the next section, the symmetry of the D" matrix requires
also that the following relations hold. Thesc relations are images of the | Lo L.
L’} relations under the symmetry operation of simultaneously reflecting both the

matrix D'” and the matrix D''"’, each about its main diagonal.
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The mmage of Eq. (42) under this symmetry operation is;
VI + 1y = ' (= DYDY+ BaniDi
FAuVIL - Dy = m' '+ DD mDi (45)
with
ap = =l =b*) i3 = (aa® v (-h*yh) 5 = a*h

This relation* does for the rows of the matrix D' what the relation given in Eqg.
{42) does for the columns of B,
The image of Eqgs. (44) under this symmetry operation is:

VI + 0y — (' = )DL+ 3 DY

oy VI + Dy = ' + YD = VI 4 1) = i = YD e (46)
with

7

. =t 3 s ~2ab, v = b7
o = —(=h*) 3 =20 —h*) " = (a*)t

These relations do for the rows of the matrix D'’ what the relations given in Egs.
{44) do for the columns of the matrix D',

The Relationship of Column m = 0 of DY With the Spherical Harmonics

The so-called “addition theorem™ for spherical harmonics mav be written [ 15,14}

4 {
P/(COS ’?) = ’—1‘+ | Z

mo

)./,m(ﬁ- ‘P)( )'('.m(ﬂ’. (,C’))* (47)

where ¥ is the angle between a vector from the origin. pointing toward (f. ¢) and
a vector. from the origin. pointing toward (6. ¢'). Now, for any ¢,

> s 4’L,y S
H{cos §) = g 1 roly. ¢
and
Yo%, @) = R(a. 8. y)Yiolh. @) (48)

where the Euler angles (. 8, v) are such as to define a rotation R(«. 8. v) that
wili carry the original --axis into the direction of (4, ¢'). This may be accomplished
by choosing « = ¢'. 8 = 0. v arbitrary. Thus. we may now rewrile the “addition
theorem™

A reduction of Eg. (45 for 4 rotation about the 1-axis is given as Fq. (3.843 of Ref. {6,
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i

R.(u. .y Yl ) = : Yoad bl ¢){

mo

dx

- )vlnr(,“‘. ol (49
S e ¥') )

Since the coetficient of Yo,.(4. ¢) in this cquation is, by debinndon, D)ol 8. 4)
we have [13]

I)(/) ( 3 . _.:E_ﬂ: -1y, iy * 5
Shta, 3. ) 577 [ Yo, 00, ) {50

Also. since [135]) o
Vianr 20+

Yo @)= (- 1Y TN al teme® (51)
then {17}
Diota 8. y) = (~1) l’;i,f—f;' (sin 3) ¢ o (52)
but. from Eq. (31):
e sing = ~2ab (53)
S0
DYy = YCOU ny (53)
' (")
This is the same resu!t as is obtainablc from stepping down m-wisc {using Eq. (344)]
from (D})).; = a*'. which is the D}/ value obtained [17] froma* = " which

the m = [ function is (u,)”. where v, 15 the Pault spinor . Thy ¢ ~arung [15]
with Y;0(8, ¢) = 4, Pi(cos ). with 4, a positive nor™us auon constant, and gen-
erating the rest of the spherical harmonics via the uct n of the Condon and Shortley
L. operators upon Y. establishes.** via the connection of D), ., to ¥/, [as given
in Eq. (50)]. exactly the same irreducible representatoon . vrix g s < ™ained from
our recursion procedure based upon Egs. (42) and (44)-(46) (or the traditional
SU(2)-based procedure [16.17]). starting from D! = 4*/. Our recursion procedure
is capable of generating D' matrices for al! j-values {including the half-integral
ones). Recognizing the proportionality [Eq. (50)] between D{a(a. 3. 4) and
(Y,(B. a))*. we may use the - relation [as expressed in Eqgs. (39a). (40b). (41).
and (42)] to derive the following recursion relation for spherical harmonics ™

 Completion of the '/ matrix from this starting point may proceed by using this column m -~ ¢
of D" and the re ursion relations [given in Egs. (441]. to obtain the adjacent columns. then iterating
with these relations to generate the remaining columns of the matrix. This requires 2 knowledge of the
coefficients (e, . 3., v. Y which ate directly obtainable from either the matrix D7 or the pnmitive st 2y
matrix. For corsistency, all elements of I and D' should here be represented in terms of the Luler
angles (o, 8. v} with o = ¢. 8 = 4. [ Note that the m = 0 column of I(a, 3, ) does not depend upon
the Euler angle v.!

 With care. this refation is also desivable from some well-known properties and recursion relations
{19, using Eq. (8.3.1)1n Egs. (8.5.1).(+.5.2). and (8.5.4)] on the | P["{cos 7). Nevertheless. a search
of the available hiterature failed to reveal any citing of this relation [Eq. (55)].
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. I
} e L) e e e B
Vil v by omitar - 1)

X 2mcotfe XY 00 ¢y 4 VI + Ly ot v Dye S50Y 0 gy ] (38)

One may generate the entire set of spherical harmonics by stepping down si-wise
from
V(20! 20+
’ == ) ~ . f . (AR - R [N 3

(Yo, 0o, = Yo db0.¢) =~ (- 1) ST ' i {sin t) ¢ {56)
using this relation.” Because Eq. (55) does not involve differentiation. ™ it is ¢s-
pecially well adapted to generating numerical = values (at fixed # and ¢) for alt of
the spherical harmonics belonging to the same /-value.

Symmetry Properties of the Irreducible Representation Matrices of the Full
Rotation Group, SO(3). and of the Special Unitary Group. St'(2)

Because the spherical harmonices '}, (3. «) ) are expressible solely in term« of
the factors | cos 8. sin 3. ¢, ¢ "}, and cannot involve irreducible factors such as
Yo LD ot cos(@/2) sind/2) e 0 e the elements of column
1= 0 of DY {which are expressible in terms of the | V(3. )} ) are invariant to
the transformation (d = h)}{(—b* « ¢*) . such asisinduced by reflecting the prim-

.. , sy e ? . . e .
itive SU{2) matrix D''V(RY = [ } about its vertical midline. The sym-

,h* (1*
metry*of the operators 1., and 1., which. via Eq. (44), gencrate the s > 0 and
m < 0 columns. respectively, of D! from the m = O column.™ show that the
clement D .. (the image. under reflection about the vertical midline. of the
element D) may be obtained from the element DL, by the transtormation
(u <= b)Y —h* = ¢*)of the primitive elements [ ¢. b - b* ¢* | appeanng in the
expression for the element D), . This shows that the matrix elements of D'''( R).
related to cach other by reflection about the vertical midline. display the same

¥ Analytical performance of this procedure is alwavs possible. However. in the above form, it may
have numerical dithculties (i.e.. it may fack suthcient precision) when sin # 15 vey tiny. (OF course. we
should expect this, because when sin 4 is truly zero, all of the Yo, except Y, are exactly sero) To avord
thts problem, it may be preferable to rewrite Eqg. (55) directy in terms of P cos 9
(d™/dlcos AY"YP(cos #) = (- sin #) ™ PP(cos #), which are numernically more stable than the
S YimlH ¢y ncarsin @ 0.

 Unlike the standard procedure tor gencraiing the Y. through the action of the hinear differential
[16.13.17 ] operator 1. .

* To show this symmetry. it s approvriate to insert the factor 1in the form («)(a*) (b3 F*)yon
the right-hand side of Egs. (44).

Y This symmetry may be also seen by starting with the 77 +/ columns and. symmetnically, stepping
toward the center column from these [after first examining the symmetrical relationship of the generation
of the m  /column from DY’ -~ &' and the m {column from 0, A7 using Eg. (42)] and
ohserving that this generation procedure asenbes the proper vertical reflection interchange symmetries
to the clements of these columns.
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TasLe 1. The irmeducible representation matnix, I, of the full rotation group. sox3). expressed in
terms of the elements (a by A% «®? 0 the primutive SC(2) matm

moo Y m oo mo0 " ¢ 2 N
m o2 at 2uts Vouh 2unt o
m o= 2at-pm PREZAEIR VR U Voabiaa® v W A% i By Lut Narl
mo- Vou( -k Yot A*aa® ¢4 A0 Taa® + OB L aath B (SRt £ st Yoiriuy
moeo o 2a- Y [ C TN VRN LA VoMWl Bo s g%l WPt + o Aok 2ikuty
mo= -2 A MR AN (TSP MNP ey

interchanges of the elements {a. b, —b* «¢* ! as are obtained by reflecting the

a
__.h* [l‘

Also. because of the homomorphism between the irreducible representation ma-
trices { D'’(R)} and the rotation operators | R !, together with the homomorphism

primitive SU(2) matrix D'V I(R) = [ } about its vertical midline.

. s ) a h
between the rotation operators and the primitive SU(2) matrices {[ pe . ” .
~-h* a

and the fact that all of these entities are unitary, we have the following

P )L
A 2Lt 2L
e LTI e

Thus, [ D'”( R} is obtained from [ D' R)]m.m by the interchange (b = —b*)
in the expression for [ D'"(R)].  in terms of the parameters {a. b. —b* a*},
This shows that the matrix elements of D*( R). related to each other by reflection
about the main diagonal. display the same interchanges of the elements
{a. b, —b*, a* | as are obtained by reflecting the primitive SU(2) matrix

/2y B a b . e
D" {R) = about its main diagonal.
_h* a*

3 Here. the elements {a, b, ~h*. a* } must be treated as being totally independent. since this symmetry
property is lost when the algebraic expressions for the elements of the D' matriv are reduced [ 13.16.1 1],
such as by expressing {a. b, —b*. a*} in terms of the Euler angles («. 3. ¥) and then algebraicatly
reducing these expressions using the trigonometric identities.

2 Here. [D'"(R(5))}mm denotes the (m’. m) element of the irreducible representation matrix DY
for that operator R whose primitive SU{2) matrix is [s]. Also, R '(s) is the inverse of the operator R(s).
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By combining the reflection about the vertical midline with the reflection about
the main diagonal, we can show that ¥

a b " h d . ) -
Do = D (reflection about vertical midhine)
—p*  a* u*  —h*

o 4 b o (4 Pt - L
D3 = Dy, {reflection about main diagonal)
' . f,* tl* h (1*

- _ h* *

" a by b* a et e . al il

DYoo = Dt ( reflection about horizontal midline)
-h*  u* d h

7 h * . )
D' ,,,f( ) = l)f,i"..,,( )(reflecuon about cross diagonal)

-h* a* ~-h* u

These symmetries are illustrated by the matrix D' shown in Eq. (36) and the
matrix D'’ shown in Table I. Using these symmetrics. we can reduce the number
of matrix elements that need to be exptlicitly calculated to a fraction only modestly
greater than ) of the total number of clements in the matrix DY, The
(1. L' . L' yrotations given above. together with the above symmetry properties.
are cqually valid for (J-. J'. . J’ ) (with the substitution of j for /). and half-integral
values of j. Thus. this procedure also generates the irreducible representation ma-
trices D' R)Y. for all values of j. for the special unitary group SU(2).

Although not widely known, these symmetries have also been observed by certain
other authors [ 16.38]. Whereas in Ref. 38 these symmetries are described in thetr
Euler angle representation, in Ref. 16 they are described by means of an analysis
of the range of the index & in the traditional representation of the elements of the
matrix D', namely {16.13.17]:

. h . .
tiD‘”( R( “ ))} = ‘V’F(_j + u 3G = )N i - m)!

_/,* a*

att L(a*),.m' Ahm rn»k(___hg)lx

.
?’ (j+m—k)\j—m = Km —m+ kK

x (58)

These authors have used these symmetries 10 display some otherwise-hidden sym-
metries of the Wigner svmbols [16.26]. We believe that these symmetries are at
least equally transparent in our approach. We also believe that the recursion relations
given in Egs. (42) and (44)-(46) offer some distinct advantages [ over the explicit
expression of Eq. (58)] for obtaining complete columns (or complete rows) of a
D matrix cither in parametric* form (as functions of {«. h. —h* a*! or the

' As a shorthand. we are omitting the intermediate “function.” R, and writing D'"{ R(s)) simply as
D'(s).

* For parametric calculations. it seems best to multiply the nght-hand sides of Eqs. (42) and (44)-
{46) by unity. in the form (aa* - b h*})). 1o bring all cocthicients to the same degree in the parameters
Yac b - b* oa*
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parameters that define them) or in numencal form. For parametric calculations,
both procedures are enhanced by the use of a symbolic maniputation program such
as Muathematica {25]. and both benefit by the use of the symmetry properties
discussed above. However, the recursion relations produce the more efficient al-
gorithm, This 1s especially true for large values of j. where often several A-values
are needed and the evaluation and processing of the factorials can become a burden.
For numerical calculations, it is very easy to construct. from the recursion relations,
efficient algorithms that are also optimally numerically accurate. Whereas numerical
calculations using the explicit expression of Eq. (58) may be organized to be accurate
and moderately ethicient. numerical algorithms based upon the recursion relations
presented here have a distinct computational advantage.*

Conclusions

In this work. we described some concepts which should prove to be relevant to
algorithms for the efficient calculation of molecular electrostatic potentials and
their associated intermolecular forces and interaction energies. Our approach is
very similar, in spirit. to that of Srebrenik, et al. [42]. in that we find an expression
for the solution to Paisson’s equation for the region outside of the charge distribution.
using, as input. the density matrix over the orbital basts. We explicitly emphasized
the representation in terms of point charges and point multipoles whose potentials
are expressed as “sohd spherical harmonics™ specified either in terms of their mutual
orientation or in terms of each of their arbitrary orientations with respect to a
laboratory frame.*® The mathematical foundations for a complete quantum me-
chanical description of a molecule whose atomic orbitals have their orientations
described in this manner have been given earlier by Harris [ 11]. Whereas the specifics
of our results are expressed from this perspective, the general methodology is hope-
fully also relevant to the description based upon a global Cartesian coordinate
system. with Cartesian Gaussian orbitals centered vn cach of the atoms of the
complete system, as the reference basis { 57.56.31]. Using the source charge densitics
for the Cartesian point multipole potentials, many of the two-electron integrals of
the Coulomb interaction may be simply calculated as point-multipole interactions
[57]. For the interactions of two separate molecules. each in its separate Cartesian
coordinate system [57.56.31 ]. some of the methods described here for dealing with
multipoles of arbitrary mutual orientation may also be useful.

Our expressions for the multipote interaction energy rest upon a knowledge of
the source charge densities of the “solid spherical harmonic™ multipoic potentials:
and their effective implementation requires either a “parallel axis™ orientation of
the potentials. or an efficient way of calculating the matrices of the irreducible

* The authors of Ref. 16 present. as their Eq. (3.84), a verv restricted version of our Fqg. (45). and
state that it has . . . been found to be particulurly useful in numerical caleulations . . . Used together,
our set of six such refations [Egs. (42) and (44)-(46)] should be even more effective.

* Such a parameterization is especially relevant to a “rigid molecule™ [S2] representation of molecular
dynarmics, in which the electrostatic interactions can play a very important role and lead to the time-
dependent mutual onentations of the interacting molecules.
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representations (ot the full rotation group) “carnied by the sphencal harmonics,
Such an ethcrent algorithm can be based upon the recursion relations (among the
clements of these matrices ) presented here, which mn be implemented to gencerate
the reduced algebraie tormulas tor these clements, or to vers cthaently caleulate
their numenical values, from the tormula or numerical vidue of only one clement
on the perimeter of the matrix.

Our procedure for representing the electrostatic potential ot a molecule in terms
of point multipoles on cach of the atoms and line multipoles on cach of the “hond™
axes is uniquehy determined by the representation of the electronic charge density
matrix in terms of its basis of atomic orbitals. with orbitals on cach atom. One
weakness of this procedure is the dependence of the values of the atomic point
multipoles and “bond™ line multipoles on the partitioning of this orbital basis
among the various atoms of the molecule. An extreme of this dependence may be
iltustrated by a one-center orbital expansion (which, although grossiy inetficient. is
possible). which would vield a point multipole expansion of the electrostatic potential
of the molecule about that center. Such a point multipole expansion would be valid
only outside of a sphere that would “enclose”™ the charge distribution of the entire
molecule. and it would serve only a very small fraction of our needs. Fortunatels.
experienced quantum chemists have learned how to opumally parttion the atomic
orbital basis ot a molecule among the various atoms. and it 15 their work which
gives stability to our calculated values for the atomic point multipoles and bond
line multipoles and contributes greatly to the integrity of our method.
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Abstract

We extend the vahidity of the viral theorem for complex scaling to the case in which a molecule is
partitioned in different regions fulfilling certain prescribed conditions. There is a parallelism between
our results for complex scaling and those of the literature for real scaling. Therefore, we extend regional
virial relations useful to the treatment of bound states to the case of metastable states. «© 1992 John Wiley
& Sons, Inc.

Introduction

If the electronic density of a molecule in a stationary state is partitioned in several
regions separated by *“‘zero one-particle density flux™ surfaces, the virial-tvpe relations
are found to be valid in each of these regions with a high degree of approximation
[1,2}. On the other hand. the use of real-scaled molecular coodinates with fixed
nuclei, produces a formally different vanational condition for these relations [3].
The importance of this difference has been discussed recently using a very simple
model wave function for homonuclear and heteronuclear diatomic molecules with
fixed nuclei [4].

Moreover. using a real scaling technique, a general condition fulhlled by the
regional virial relations for a molecule in a stationary state with nuclei quantum
mechanically described, has been found {5]. Here we extend these results to the
case of a molecule in a metastable state [6-8].

According 10 our results, we can classify the molecular vinal-type relation in the
following way: there is a first type that we may call global. which is obtained when
all the coordinates. quantum mechanically described, are multiplied by a real scaling
factor and the physical space of the molecule is not partitioned [9-12]. These virial
relations are the more usual ones. and have been of great utility in the description
of the global properties of molecules in stationary states [13]. A second type is
obtained in the same way as in the preceding case. except that now. the scaling
factor is complex instead of real [14-16]. This type has also proved of great utility
in the calculation of resonances in molecular systems [16-18]. Recently, a third
type has been obtained using a scaling procedure in which only some of the co-
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ordinates, quantum mechanically described. are modified by a scaling factor: real
for the description of stationary states [19], and complex for metastable states [ 20].
In these two cases, a restricted number of the system variables is included in the
virial-type relations obtained. vielding more detailed information about the relation
between kinetic and potential energies of the particles than that provided by the
global vinal relations [19.20]. In contrast with these two cases, in the present study.
we consider the physical space of the molecule parntitioned, while complex scaling
factors modify all the coordinates of the system that are quantum mechanically
described.

Complex Regional Virial Relations
Let us consider a molecule described by the Schrodinger equation:
H(m|¥(n)) = E(n)i¥(n)) ()

where H(n) is the resulting Hamiltonmian. after all coordinates had been modified
by the complex factor 7 = ¢™. Assume that |¥ (n = 1)) describes a metastable
state of the molecule such that for angles Os fulfilling 8* < © < 7/2, where 0 <
O « x/2, the ket | ¥(n)) becomes normalizable (for an introductory view of the
complex scaling method. see, for instance, Ref. 21). Assuming that /(5 = 1) is
real. the extremum principle can be wntten under the form [14]:

. (W(r*) H(n) [ ¥(n))
E = 2
) = ¥ (<)

and we have the equalities H*(n) = H(n*). E*(n) = E(»*).and ¥*(n) = ¥(7*),
where H(n) is, in general, non-self-adjoint: and. £(n) may be complex (for a study
on the change of spectra associated with complex scaling transformation see Refs.
21 and 22).

Let us now define the quantity

() H() [ ¥(n) e,
(¥ (n*) [ () e,

ER(p)= (3)

where the subscript. R,, in the right-hand side of Eq. { 3) means that the coordinates
of the particle : are integrated only in the region R,.

The restricted region. R,, may be assaciated to either an electron or a nucleus in
the case that both kinds of particles are quantum mechanically described. On the
other hand, when the nuclei are considered to occupy successive fixed positions.
the region R, can be associated to electrons only. Here, we will consider the case
in which electrons and nuclei are quantum mechanically described. In general. the
region. R,, depends on the scaling parameter n. Taking into account this dependence.
and the fact that in the present problem the Hamiltonian also depends on 5. we
have
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dER _ Kawn*)

J — R,
an p. |H ~E I‘l’(n)>

R,

+<W(n*)|f1~5”'t§-‘—l'(}3’~)> +<‘I’(n")
LS

aff
—
an (n)>R‘

as, _
* fs ds. 5 (Y™ [ H = E”‘IW(n)>R‘}/<\P<n~'>|W(n)>R, (4)

where S{n), appearing in the last term of Eq. {(4). is the surface surrounding the
region. R(7n). Now, from Egs. (1) and (3), one immediately finds E(n) =
ER(q), which implies that the first and the last terms in Eq. (4) equal zero. On
the other hand, the third term in Eq. (4) yields:

(¥(n*)|0H /9| W(n))dr,

1
RS
where 7F(n)and VF(n) are, respectively, the mean kinetic and potential energies
which contribute to the energy, E®(5). according to Eq. (3). Therefore, from Eqgs.
(4) and (35), and the condition of stationarity of the energy, EX, with respect to
the scaling parameter, », one obtains

QCTRq) + ¥V &) (5)

awvr
2TR(n) + V() = n<‘l'(n*)|11— ER] ‘$> /(‘I’(U*)I‘I’(n)>k,. (6)

R,
Thus,

v
<\I/(n*)JH—ER'I?—5(;7-’~)> =0 (N
R,

will be the condition fer the complex regional virial relation
2T () = —VR(9) (8)

Equation (7) reduces to the condition of the real scaling case in the limit 5 — 1
{5]. Even in this situation, Eq. (7) is not an identity for any R,, but a relation only
fulfilled by certain regions, R, because of the non-Hermitian character of H , which
arises from the fact that for the particule, ¢, the space of integration is truncated
[5]. Another source of non-Hermiticity arises in our case of complex scaling from
the fact that the Hamiltonian, H(7), is itself a non-self-adjoint operator when 0 <
O <x/2

Tue condition for the boundary of the region, R,, given in Eq. (7). has to have
the same form as the condition for approximate wave functions in order to be
compatible with the regional virial relations associated to real scaling [3]. This
condition has been derived in Ref. 3 for the fixed nuclei case and, by following the
same steps detailed in Ref. 5, it can be generalized to the case in which the nuclei
are quantum mechanically described. In both the case of vinal relations for ap-
proximate wave functions [ 3}, and our case, the energy EX may be complex.
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Moreover, adding a term equal 1o zero 10 Eq. (7). we obtain

v W ( n*
W£22> + <L-(~’l-—) |1 - 1:'”~l‘l’(n)> S0 (9
an "

<‘l’(n"‘)lH—1:'R'l 3
n X,

which can be interpreted as a Hurley-type condition [13.23] for the fulfillment of
a Hellmann-Freynman tvpe relation, which will follow trom Egs. (4) and (9):
_(31:’“‘
dn

:<‘I’(n*)

GH
f‘“!\l’(n)> (10)
an x.

Similar to the case of real scaling [3]. we can also write the complex scaling
relations in the form given in Egs. (3)-(8). but now for approximate wave functions.
Given an approximate wave function. the condition. dE¥/dn = 0. will determine
an optimal value, ny. for . Then. a relation of the same form as Eq. (9) for n =
Mo, LC..

=0 {1l

. av oV (n*
<‘I’(n*)|f1—ﬁk‘l—a(l)> +< )

- ER
an [# ~ E l‘l’(n)>

R.in ny R.tn na

will determine the region. R, = RY. for which the virial relation. 27%(p,) =
~ 1" ®(54). holds, according to Egs. (3).(10). and { 11) and the stationanty con-
dition. dE%/dn = 0.

Conclusions

Expeninentally, it is found that ionization or dissociation processes in a relatively
large molecule can be frequently interpreted as occurring locally, in a small part of
a molecule. The region, R,, determined by Eq. (11), is a precise criterion to select
such localized regions where the process. responsible for the nonbonding character
of the molecular state, actually occurs. For instance the method of the #-trajectory
of the complex energy [21]. which is based in the virial theorem. could be applied
to the fragment of the molecule enclosed by a region, R,. fulfilling Eq. (11).

Given an approximate wave function for a bound state. it 1s well known that the
global virial relations associated to real scalings hold, independently of the quality
of the wave function considered, provided that this wave function is optimized
variationally with respect to the real scaling parameter [12]. This property implies
that the fulfillment of virial relations cannot be invoked as a criterion to test the
quality of a given wave function [12].

When one introduces the partition of the physical space. the fulfillment of regional
virial relations requires both the stationarity of E¥ with respect to 5 and that the
partition of the physical space be such that Eq. (11) holds. Thus. in this case,
although the stationarity of E¥ with respect to 1 can be obtained for a low-quality
wave function, the corresponding partition of the physical space induced by Eq.
(11) may be a criterion for the quality of the approximate wave function used.
This argument applies to both real regional virial relations [ 3.5] and to the complex
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regional vinal relations considered here. For instance. a purtiton incompatible with
the symmetry or other well-known structural teatures of the molecule will serve as
a criterion to discard a given approximate wave function,
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Abstract

We compute a number of properties for the 1'S. 2'S. and 27S states of helium as welt as the ground
states of Hxand H ;1 using Vanational Monte Carlo. These are in good agreement with previous calcalutions
{where available). Electric-response constants for the ground states of helium, H; and H s are computed
as denvatives of the total energy. The method used to cuiculate these quantities is discussed 1o detail.
1992 John Wilev & Sons. Inc.

Introduction

Variational Monte ."arlo is a method of computing the expectation value of an
operator {such as tt : Hamiltonian) and a trial wavefunction. ¥,. using Monte
Carlo integration [1-14]. Typically the adjustable parameters in ¥, are chosen so
as to minimize some combination of the total energy and its variance. In Ref. [14]
we computed a number of Hylleraas-type wavefunctions by minimizing the vanance
functional

o =3 [(HY, - 1:',,,‘1’,)3\11,3/“’,3}/{2 w%/u-,]} (1)
where ¥, = ¥, (x,) and where
4 | Z,7
11:_12V12‘__$‘_i+?_~+‘,?w1¢/_’i (2)
9 vy r ) r yavs r
“ u wt fal a<h Tub A< B Al

is the molecular Hamiltonian (4, B denote nuclei: a.b denote electrons). Unless
otherwise indicated. all values in this article are given in atomic units. In Eq. (1)
the weight function, w, = w(x,), is the relative probability of choosing the ith
configuration. x,, and exactly compensates for not having chosen it randomly. The
constant £, is fixed at a value closc to the desired state in order to start the opti-
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F1. 326135
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mization 1 the proper region. With these wanefuncuons we were able w accurately
determane the total energy

CHY = E(\I/AII\L',/W‘]/:‘[W,‘/H‘} (3)

!

of several simple systems, Onee a trial wavefunction has been optimized. however,
a number of propertics of physical interest can be computed using exactly the same
techniques which were developed to evaluate the wotal energy. In fact. the expectation
value

R [L,’,.-l\l’,/w,]/i (W7 /] (4)
' li

‘

and vanance

o= 2 {AY, - f-:i.At?;«\!f.-r‘\&f/wf]/{E: [‘l’f/",]} (5)

2

of simple operators (1) which act only on a single. previouslyv-optimized wave-
function can be evaluated at the same time as the total energy and with little ad-
ditional cost. Because all integrals are done numerncally. Variational Monte Carlo
enables relatively complicated expectation values to be evaluated easily. Unlike
analvtic calcufations. explicitly correlated wavefunctions present no more of a
problem than traditional wavefunction forms. When the Biased Selection Method
[4-9.11.14] is used to compute the Monte Carlo integration points. the value and
error of an expectation value converges independently of the weight tunction for
a sufhiciently large number of configurations. There is no time step bias. Unhike
Diffusion Monte Carlo [15-19]. Variational Monte Carlo 1s onlv capable of cal-
culating propertics involving the trial wavefunction: expectauion values involving
the exact wavefuncuon cannot be made. In praciice, however, Diftusion Montc
Carlo most naturally calculates mixed expectation values involving both the exact
and the tnal wavefunction.

In this article w2 show that 2 number of properties can be accurately computed
using Variational Monte Carlo methods. Besides being of general physical interest.
these properties provide an important check on the accuracy of the Biased Selection
Method. Because our trial wavefunctions were computed bv minimizing the de-
viations in //¥ /¥, an accyiate value for the expectation value of the Hamiltonian
does not automatically mean that other properties are sampled correctly. In the
next section we consider several expectation values of a number of simple atomic
and molecular svstems. Both ground and excited states are examined. The third
section describes our calculations of the dipole polanzability and the second dipole
hyperpolarnzabilitics for the ground states of helium. Ha. and Hi . Since clectrie-
response constants are derivatives of the total energy. their evaluation 1s considered
in some detail.
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Simple Properties

The HylHeraas-like trial wavetunctions we computed v Retll [T4] for sarious
states of the helium atom have the torm

Vo (L2 Py Soacie T e e )

A

where Py- 1s the operator which interchanges the coordinates of the two electrons
(+1 ftor singlets. — 1 for triplets): o, 8. and ¢, are the parameters to be optimized
with the minimization tunctional: and b . and «; are predetermined integer
constants. For comparison we also optimized a set of trial wascfunctions based on
Slater-type geminals (see, for example. Refs, [20-22])

Vo= (12 P S w2327 - ryyee e (7

N
The predetermined constants £, and ¢; allow the wavefunction to he distorted in
the = direction: a flexibility which will be needed in the tourth section 1o study
elcctric-response properties.
Table I shows that both a 50-term Hiylleraas expansion and a set of 8s Slater
functions (A, = ¢ = () produce a number of helium ground (1'S) state propertics

Tanit I Selected properties tin au of tae hebum 'S state.

Property Hilleraas® Slater” f ierature:
o 0.010 oo
; 2.90371(1) 20037243 D UO3TIRTS
Pl opie pi SRISH(AY S RINS(3) < %0734
reor ot 1L8SO() 1.8558(5) 1 83K9446
rtent et 338104 33801 13706336
e 2.375¢2) 23S0 2 WAG6L
riErter? 12.02(9) 12055 12,0348
’ [.4185(9) | AE89S)y 1.422070
r? 0.948(1) (193771t (1945818
ris 2.501(3) 25041 2516439
rif 1.49(4) 1.4902) 146477
Tiat, ~0.157(2) 01571 41590
n 54(2) S3.3(5) S3ORRO2
274(r,), 3.631(4) 2.62102) 36208
7HMEy), 0.1070(2) 0.1066¢1) (1106343

* Evaluated veing 1.024.000 configurations.
" Evaluated using 4.096 000 configurations.
° Reference {24].

9 Error per conhguration in the total energy.
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which are in good agreement with the literature [20.23.24]. A few quantities. how-
ever. differ from the “exact™ results by several standard deviatons. The Hylleraas
and Slater wavefunctions give values for {p= which are (0.13 + 0.01)% and
(0.053 + 0.J05)% larger than the exact result. This behavior is consisient with
these wavefunctions being optimized to shightly too high a value near the origin
{where p° ~ 1/r). It also indicates that we do not exactly satisfy the vinal theorem.
To do so would require a scale change in the expectation values. While this would
correct the virial theorem. it would also increase the statistical error in the energy.
The values for (r”) and (ri:) are about 0.5% too low which shows that the tnal
wavefunctions drop a little too tast at large 7. These small discrepancies are due 1o
the fact that variance minimization does not completely optimize the edge of any
wavefunction and to inadequacies in our samphing technique. This last problem
can probably be corrected by minimizing over more than the 4000 configurations
used in these calculations and by changing the form of the guiding function so as
to place more Monte Carlo integration points just bevond the edge of the wave-
function,

In Refl. {16] Caftarel and Claveric computed values of 7= -2.904( 1) and ¢ Py =
2.37(2) for the helium ground state using Diffusion Monte Carlo. This calculation
was performed with 400 trajectories and 40.000 time steps for cach trajectory. that
is. a set of 16 million configurations Since the statistical error in cach property
behaves like ¢/ VA (where N is the number of configurations). ¢, 1s a constant
whose value depends on the method used to generate cach contiguration, on the
method used to estimate the property, and on the quality of the trial wavefunction
(especially in the case of the total energy). This error per configuration is 400 times
smaller in our energy and almost 80 times smaller in our evaluation of <. Al-
though our Variational Monte Carlo results converge to expectation values of the
trial wavefunction rather than the exact result. Table I shows that tor this system
these expectation values are well within 1% of the exact result and can be calculated
using a much smaller number of configurations.

Table 11 shows that the properties of the triplet ground (2°S) state of helium are
in generally good agreement with the fiterature {21.24.25]. It should be pointed
out that the 34-term Hylleraas expansion which we use has an energy limit of
—2.1752253 [14]. In contrast, the set of 8s functions which constitutes the Slater
wavefunction produces a total energy which is much closer to the “exact” result.
Both trial wavefunctions have an error per configuration for the total energy which
is over three times better than that of the singlet ground state. This is because the
antisymmetry of the (2°S) state makes the wavefunction small when 7. is small.
Like the calculations in Table 1. a few expectation values differ from the results in
the literature by several standard deviations. The quantity <1>3> differs by (0.08 =
0.01)% when computed with the Hvlleraas wavefunction and by (-0.11 £ 0.01)%
when computed with the Slater wavefunction. The results for { r{, show a similar
behavior: differences of (—0.17 + 0.01)% and (0.10 * 0.02)%. respectively.

Unlike the wavefunctions used in Tables [ and 1, the trial wavefunctions for the
first excited singlet (2'S) state of helium were not optimized in an explicitly vari-
ational manner. Instead they were found by simply minimizing the variance, Eq.
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Fasir I Selected propertios (inauy of the hebiam 2°S state

t
~-4

Property Hy lleraas® Stater” faverature
9} (.003 0003
k 2ITI20600Y 272N MR R RS
PP 3334205 J3ESy 3 33045805
ron et S.069(2) SHENEY) LITAMAE
vt . ARTRY ARINIZ) MEUCRACRIR
iy 223D RERTIRS 2202647
reeon 8429 X4t RRETIVISR
N 4417 J40402) 3447535
ry! 0.2695(1) 0.2673¢ 1) 0 268107R T
i 22,6620 2327 23036204
ni 0.08960 ) (LURSED) LORRSEDY
TeTs Q007 16) 0.0070(0) 0007342
m 240 41508 31 83554060
2 A 26038 2630141 264071
A, 0.0 0.0 00

¢ Ervatuated wsing 1,024,000 configurations.
" Error per configuration in the total energy.
* Reference {25,
4 Reference [24].

(1), with £, = —2.145. Orthogonality with the ground state was checked a posteriori
using the Ravleigh-Ritz method described in Ref. [14] and found to be very good.
In Table 1l we show that the properties of the (2'S) state are in generally good
agreement with the literature [21.25.26]. The Hylleraas wavefunction consists of
a S0-term expansion while the Slater wavefunction is again constructed from 8s
functions. The values of ¢; for the total energy show that for this svstem the guality
of Stater wavefunction is much better than the Hylleraas. In fact. only two properties
for the Slater wavefunction differ by more than 4a trom the accepted values: < p°
by ( —0.080 + 0.014)% and (6(ry>;) ) by ( —1.06 £ 0.23)% . These two values suggest
that this wavefunction is spread out a hittle too much (in fact the smallest exponent
in Eq. (7) was optimized to 0.452).

For the H: ground state at the internuclear distance 1.4 a.u.. the Hylleraas wave-
function in Ref. [14] has the form

126

. o drag o % . “
V= (1 + Py 2 oaie " e )
Ao

X(rig + ) (e = ) (ry + g (R)
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Tante 10 Selected praperties Gnaouo of the hehum 'S state

Property th Heraus® Shawer L terature

ot 0.0 (004

I3 21439079y 2 HAY6 34 214397408
Peopioe 3281240 3288506 1 290u3%
roore SNN3) AU ARTRY] SYdni

Pt e 2.268(3) 227003 22TURESS Y
oo R ERRATES 2R
ro rs 8.2009) K29 82033669
ro 52083y RREL{TRSY 3.26064¢

r 0.2396(2) 0.2492( 0.24968338¢
ri 30 32.37(4) 32302

rs G420 RN 0.143743¢
Tt 0.00996) Q.0096(6) TRICNGE
n 30.200 J0.6(9) J1.11866T
ARTH 2614 261904 2 61RRYS:
z')(ri;) (.0083141) {LOUXSH D) G.O0R652

* Eraluated using 1024000 configarations.
P Error per contiguration in the total encergy.
“ Reference [25].
¢ Reference [21].

where .1 and B are nuclear positions. Although the Slater wavefunction in Eq. (7)
is for atomic systems, one generalization of this expression to molecular systems is

Vo= (14 Pio) T axiipitzie o b (9)

)

A

These basis functions are added on whatever combination of atoms (4 and B both
situated on the same atom: .4 and B situated on different atoms) will produce the
minimum variance. In Table IV we compare the properties computed with these
trial wavefunctions with the literature [27-32]. Our Slater wavefunction was op-
timized with a set of 9s functions and 7 p- functions (since the internuctear axis is
taken to be in the = direction) and yields a slightly worse ¢, than the Hylleraas
form. As a result. many of the properties computed with this Slater wavefunction
are also less accurate. This inaccuracy is partially masked by the fact that the form
of the Slater wavefunction {because it has fewer basis functions) enables us to
calculate expectation values with more configurations than the Hylleraas wave-
function in the same amount of Cpu time. The only significantly incorrect value
for the Hylleraas wavefunction, (é(r,;)), is off by (~0.15 + 0.04)%. Because the
electron-electron correlation is less important in this system than it is in helium
[t4]. properties which are functions of r,> are also more accurate.
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Taste IV, Selected propertics 0n au) of the He wround state. 13 aou along the ©ass
Property Hylleraas® Slater” [acrature
ot 0013 0.020
I3 1173440 1 1743802) 1173346000
poeopiens 2.330(1) 2336007 238007
[ AR 0.87011) (L8081 {18 3K
LSS AN Y L O6lich 6081y a7y

2U16812)

274D

AT VAR

SAT2IRYSY

ry: 3.6299) RGERINS]
r 0.58829) 1.38684) 0587303y
Fiq 1.54%(2) F.5509%) 1.S38N033Y
i 3.0316) 205013 RNTRISEARAT
ryq 0.910(2) G911 09127883
raly 2.700(5) 220 203928
Frafse 23233 2% 2214048
rialae 23R 23932 23R8 3709
20 0.160(2) 0.1625(%) 015963461
XpXa 00551 0.0574(6) 00351029 3¢
|
Fesizizd 1.017(2) 1.O30( 1) LO2296%61
. . . S )
X ) 0.7642) 0.7657(9) 0761692834
ros gy o) 25434 23610 2534635439
Q' 04733 0.430(3) 0.4568343¢
oL 0.27i4) (4.2602) (0.2R26°
AW 0.10202) 0. 1019(%) 0. 100602
2pi 13.004) 13.2(2) 13,2490
CA(E ) 0.459(1) 0.3600(5) 046015
oolry), 0.01669(6) 00165843 0016938

¢ Evaluated using 256.000 configurations.

® Evaluated using 1.024.000 contigu. ations.

CError per configuration in the total energy.

¢ Reference [28).

¢ sy values from Ret. {32].

"' The electric quadrupole moment for H, is detined as

- R IR T -

R2 -
# Reference [30).

P The electric hesadecapole moment for H; is defined as

Uy - RYR ¢ oxt vt e ob e 2b by e o8

"Reference [29],
! Reference [27).
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Earlier Diffusion Monte Carlo studies have computed several properties of this
system. Because they sample both the trial wavefunction and the exact eigenfunction,
their results should. in principle. be equal to the exact values within the statistical
error. In Ref. [ 18] Barnett et al. calculated values of 1.026(3) for ( z° »and 2.549(6)
for {r*" but did not list the number of configurations used to produce these results.
Caffarel and Clavene [16] computed values of —1.175(2) for the total energy.
0.587(3) for (r4), 2.169(9) for {ri). 5.63(5) for {ri:). 1.550(6) for (r,, .
0.908(4) for (r 5. 3.04(2) for {ri ). 2702 for (riarig), 2.33(2) for (ryaray ).
2.39(2) for {ry rp), —0.156(6) for {z)z2). —0.055(4) for {xx2). 1.02(2) for
{z7),0.76(2) for (x7). and 2.55(4) for {r*). These properties were evaluated
over a set of 50.000.000 configurations in contrast to the 256.000 configurations
our Hylleraas results used.

At its equilibrium configuration the ground state of the H ion has Dy, symmetry
and a bond distance of 1.65 a.u. For this reason we chose our Hylleraas trial wave-
function to have the form [14]

120
U, = (1 +P2) Y ale 0 merhr g — ng)*(ry + ng)®
ket
: ;
X (rag = rog)(ray + ) (ne — RO (ne + )™

+[AeCi+ B~ Cl) (10

where 4. B, and C are the positions of the three nuclei. Using the same form as in
Eq. (9). we have also optimized a Slater wavefunction for this system. When the
H7 ion is placed in the xy plane. a set of 18s functions. 8 p, functions, and 9p,
functions produces a reasonable wavefunction. In Table V we compare the properties
computed with these tnal wavefunctions. For this system we could find no published
properties except for the energy. This value has been recently computed to be
—1.3438279 [33] and —1.3438220 [ 34] using explicitly correlated basis functions
and —1.343835( 1) using Diffusion Monte Carlo [35]. The values of ¢, indicates
that the Hylleraas values should be much more accurate than those calculated with
the Slater trial wavefunction (with a systematic error less than the difference between
the two calculations).

All of the properties computed in Tables I 10 V were determined using Eg. (4).
Thus they require only that the wavefunction or its derivatives be evaluated ( both
of which are known ). For the function p- we used the weil-known relation

fdr\l-',pz\ll, = ~f d7¥ T, ()
and for p} we used [36]
fd‘rwlp?‘pl=fd7(v%‘yl): (12)

The delta functions were computed simply as
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Tastr V. Selected properties (in auo of the H ground state The
svstem s i an equiateral tnangle contiguration i the v plane with

R l163au
Property Hylleraus® Stawer”

o 0.023 0202

A 134371 BREAES
poopiopi 2.69(1) 2.705(0)
,1': E pfl + [rf: 0.793(3) (LRO$( D)
pioeploropl 1.103(6) 109K
s 1.99(1) FOR(S)
ris 3612 4.0000)
r.! 0.652% BO2S)
T4 L3728 [.369t4h
riy 2972 2955(%)
ra O856(H) 08372y
Tialis 259N QAR
T iFrg 242(H 2.302(6)
Yiala 249N Q4646
LR ~0.108(3) 0.106(1H)
YR -0.034(2) (03601

N I s -
A AR ) 0.760(4) 073212

M B . . -
e A=} 053414 0.339(2)
N . .
oSt v ) 2.06(1) 2.046(%)
TyoTs 0154 012142
pl 7.7(1H LRI}
CAley ) 0.3632) . 3R66(8)

oir;s): 0.0185(1H) 02705

* Evaluated using 64.000 configurations.
* Evaluated using 286,000 configurations,
¢ Error per configuration in the total energy.

(8(ry)) = fdl’ldl’:‘l’r("l-rz-r1:)5(l’;)‘i’,(rhf:Jl:)

= fa'rz\ll,(r, = 0.r.1)° (it

I

{o(r12)) fdr,dr:‘lh(h Fa,r2)o (Y (ry rar2)

il

fdl’w\l’,(r[ :V;.rg.()): (14)
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In both Eqgs. ( 13) and (13) the Monte Carlo integration is only over the s electron
and the weight of the configuration must be changed so as to retlect the fact that
r, is no longer chosen randomly.

Electric-Response Properties

When an atomic or molecular system is placed in an electric ficld. F. the Ham-
iltonian becomes

H(FYy=H(F=0)~ 3 Far, (15)

where r, is the position of the ith electron. The total energy of a ncutral S-state
atom or a symmetric molecule upon introduction of a static. axially symmetric,
homogencous held F is thus

F(FYy=FE(F=0)- % ol ), — EIZ Yuna FFp b Ey— + - (i6)
where we have assumed an implicit summation over repeated indices and the sub-
scripts run over the Cartesian coordinates (xv.).2). In Eq. (16} « is the dipole
polarizability tensor of the system and v is the second dipole hvperpolarizahility
tensor. For S-state atoms « and vy have only one independent component so we
drop these subscripts for helium.

To calculate the electric-response constants for helium we set the electric field
to lie along the - Cartesian axis. Since the Hamilionian now has a directional
preference. the trial wavefunction must be flexible enough to respond to this change.
Our Hylleraas wavefunctions do not allow one coordinate 1o be selectively preferred
but our Slater wavefunctions do. In the presence of small electric fields (F = 0.02
and £ = (1.04). Slater wavefunctions were constructed from 9s functions. 3p- func-
tions (B; = 1. ¢, = 0). and 1d.. funciion (b, = 0. ¢ = 1). Table VI shows that this

Tastt Vio Convergence of the energy. polanizability. and hyperpolarizability (in a.u.) of helium. N is
the number of configurations,

A EF =0 EF=00) FAE =004
16,6} ~-2.9038¢ 1) -2.9040( 1} 290481y
63,000 - 2.90383(4) -2.9041 1{4) ~2.90494(5)

256,000 —2.90374(2) -2.90401(2) ~2.90484(2)
LEAF =002 2EWF =002 CEWF = 0.04)
~ ~ K =0y - 8E(F =002 + 6E(F =10,

v §2 X
16.000 1.3(7) 1.33(4) 60N T
64000 1.403) 1.38(2) 74(415)

256,000 1.4(1) 1.371(9) 1820201

Diterature {40, 41 1.383192 419
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basis gives roughly the same statistical error as our £ 04 result. With these triad
wavelunctions, we computed the polarizabibity and the hyvperpolarizability tor he-
hum as derivatives of the enerpy

4k ECFY 2B 0y L 1)
— O o e e { 17
ars i, F
and
L L EQE) AR e 0 2B
| ) r ‘

These derivatives can be numerically computed in a number of wavs, We evperi-
mented with several formulas (see, for example. Rell [ 37]) and found hittle difference
between them. Once a particular formula has been chosen. the most direet way of
computing the derivative is to simply cvaluate the total energy of this system at
F = 0.0.0.02, and 0.04 and then subtract the appropriate numbers, Table VI shows
that this approach gives reasonable results but with a fairly large variance. Since a
large part of the statistical error in these expectation values should be the same if
the value of the electric field 1s suthciently smali (i.e.. only a minor perturbation ).
a much more accurate approach is to compute the differences directly, This tech-
nique has been used to determine the dipole moment of LiH [38]. molecular
derivatives [17]. and differences in potential encrgy surfaces [ 7.12.39]. When ap-
plied to our calculation of the polarizability. this method decreases the variance by
about a factor of 15 and gives a result which is in much better agreement with the
accepted value of 1.383192 [40.41]. When applied to the calculation of the second
dipole hyperpolarizability, however, we sce that the resulting statistical crror com-
pletely obscures the computed value. The reason for this may be that the optimized
error in the trial wavefunction is 100 large to detect the influence of this constant.
41.9 [41]. in the total energy. In a Vanational Monte Carlo calculation the cffect
of the clectric field on the total energy has to be larger than the statistical error in
the trial wavefunction in order to influence the optimization of the adjustable pa-
rameters. 1f the strength of the field is too large. however, then the composition of
the wavefunction will change significantly and the various expectation vatues used
to calculate the derivatives will no longer be strongly correlated. In fact. the tormutas
we have chosen may themselves become inaccurate because of contributions from
higher-order terms. While we have tried to strike a balance between these two
limits, a closer investigation of this probiem is clearly in order.

If the Hellmann-Fevaman theorem [42] is satistied. then electric response prop-
erties can also be obtained from the induced dipole moment. In most traditional
calculations this automatically occurs because the parameters in the wavefunction
are optimized so as to minimize the total energy. Since our Variational Monte
Carlo procedure adjusts the paramcters in the trial wavefunctions so as to minimize
the variance. the Hellmann-Fevaman theorem will not be exphicitly satisfied. For
S-state atoms the dipole moment alternative to Eq. (16) is
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1
w Y = e ‘o Yard o B 4 e i9)
where, for example,
pAFY = (VOFY D o)y (20)

4

Again for simplicity we drop the subscripts and obtain the expressions

9 FY -t -0
_“' s g = E(___)____ET(_____.“_A.) (2[ )
ar|, , I
and
Aul L H2h 2u0F) + (- F) ol 2F) (23)
', 247 -

Although p(# = 0) is zero for the systems considered here, we found that computing
this operator as part of Eq. ( 21 ) reduces the size of the statistical fluctuations. Table

Tasty VI Ground state polanzahilities (in au ) of vantous ssstemas, N 18 the number of configurations,

Pipole® Energy
Syvstem N {tq. (20 {kq. (1) Literature
He () 16.000 AU 1.3}
64.000 t4Hh 1.382)
256.000 1418 1.3710%) 1.383°
Ho (er.2) 16 400 3576 616
64,000 S5 6.2(3)
256,000 S5 6.3y . AR0"
H; () 16,000 . 15(5) 378y
64.000 4.06(3) 4.604)
256,000 4.1 4.4 4 378
Hi () 16,000 3480 2RI
64,000 1440 RIRTRN]
256,000 1440 KRIES) 34768
Hi (o) 16.000 14604 i
64,000 347Uy 14
256.000 347D 15 147684
H: () 16.000 hEETR)] 1.402)
64.000 2.16(2) 1.601)
256.000 2 16N8) 20 20778

* These numbers do not agree with those computed using encrgy derivatives hecause our wavefunctions
do not satsty the Hellmann- Feyaman theorem.

Y References [0, 41}

¢ Reference [43]

Y Reference {44].
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VI shows that this calculation produces a smaller statistical error than by, (17)
{over an order of magnitude in most systems) but not the correct result, Clearls
our calculations do not suthciently sausfy the Hellmann-Fevaman theorem to
justify using Eq. ( 19) despite the fact that ail our trial wavetunctions are reasonably
accurate otherwise. Although not shown, the calculation of the second dipole hy-
perpolarizability using Eq. (22)1s again inconclusive,

For the H» ground state polarizability calculations we used tickd strengths of
F = 0.01 and # = 0.02. When the field was placed parallel to the molecular axis
(i.c.. along the = direction). we simply needed to reoptimize our field-free wave-
function in order to obtain an adequate trial wavefunction. that 1s. one whose
vanance is comparable o the field-free value. When the field was placed perpen-
dicular to the molecular axis (i.e.. along the x direction ). we had to reoptimize our
field-free wavefunction and add 2p, functions. These trial wavetfunctions produced
polarizabilities which are in good agreement with those in the fiterature {43]. Not
surprisingly. the statistical errors for this system are larger than those in helium
since the S'ter waveiuncion s of poorer quality.

For the H; ground state we used a field strength of /7= 0.03 for the polarizability
calculations since the error per configuration for this system is 10 times larger than
in H.. When the field was placed along the x axis or the v axis, we simply needed
1o reoptimize our field-free wavefunction in order 1o obtain an adequate trial wave-
function. When the field was placed along the = axis (perpendicular to the plane
of the molecule) we had 1o reoptimize our field-free wavefunction and add 6p.
functions. These tnal wavefunctions produced polanizabilities which are in good
agreement with some unpublished RPA results by Sauer and Oddershede [44].

Conclusions

Variational Monte Carlo enables a wide variety of properties to be computed in
a straightforward manner. Since the wavefunction and its denivatives must be com-
puted in order to evaluate the total energy, many other expectation values can be
determined at the same time and with little additional cost. Although all the cal-
culations presented here have been done with wavefunctions which were optimized
using the variance functional. we examined the influence of other minimization
functionals [14] and found only slight changes in the values of these properties. In
general, most of the properties computed here agree to 1. or better (two or three
significant figures) with those values determined by more traditional methods. This
success verifies the accuracy of the Biased Selection Method. For the H< molecular
ion. our calculations provide the first look at the properties of this svstem,

The difference between our Hylleraas and Slater calculations show the effect that
changes in the trial wavefunction can have on the accuracy of different expectation
values. These two forms also illustrate the tradeoft one must frequently make be-
tween the complexity of a wavefunction and its computational cost. Because the
Stater-geminal form contains a large number of nonlincar parameters per basis
function. it usually takes much longer to optimize than the Hylleraas form (which
contains almost only linear parameters). Once these parameters are optimized
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however. the computatonal time needed 1o evaluate a trial wavetunction over a
large number of configurations scales as the number of basis tunctions. For this
reason a compact Slater-germinal form is usually preterable to a large Hylleraas
expansion for most purposes. Although all the properties computed in this article
were evaluated using wavetunctions optimized by Monte Carlo technigues, wive-
functions computed by more traditional methods could also have been used. This
might be done, for example. to quickly estimate some expectation value which
would otherwise be difheult to evaluate analyvtically,

To obtain ¢cven more accurate expectation values., better trial wasetunctions and
guiding tuncaons will be needed. In this article we computed all properties over
the same set of configurations. Although the guiding function which generated
these configurations was chosen 1o produce accurate energies. our calculations show
that it also gives goed results for most expectation values. Some propertics. however.
(e.g.. p*) are large (or small) in quite different regions than the total energy and
might be more accurately computed with a guiding function which places more
{or less) configurations in these regions.

Previous work has sfiown that the selection of a good wavefunction is essential
to the calculation of accurate electric-response properties {45-47]. Because of its
ability to casily evaluate a wide variety of wavefunctions (including those containing
interclectronic coordinates). Variational Monte Carlo should be a powerful method
with which to calculate these properties. While all our polarizabilities agree with
those computed by traditional methods (within the statistical error). Table VII
shows that the statistical error of these results do not always drop by the expected
factor of ¢,/ VN. This suggests that the guiding functions we use for these systems
are reasonable for calculating simple properties but not for calculating some deriv-
atives. Future work in this area must first concentrate on finding better guiding
functions and wavefunctions. Also needed. however. are algorithmic changes which
will lower the statistical error of taking the difference of two or more quantities.
One possibility might be to optimize the change between the field and field-free
solutions directly. Certainly any technique which enables the polarizabilities to be
calculated more accurately will also enable higher derivatives, such as the hyvper-
polarizabilities. to be ultimately computed.
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Localization of Wavefunctions From Extended
Systems Using Orbital Occupation Numbers
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Abstract

An algonthm s presented which produces localized cluster region orbitals which may be useful in
cmbedded cluster caleulations. The orbital occupation number matsix, n, for a tnad set of functions 1
evaluated using the density matnx computed from an extended system. Surpnsingly. when using Hartree -
Fock (117} orbitals tfrom finite cluster calculations, several partially occupied orbitals having n, different
from 2 and 0 are found, The o alization is accomplished by applying Jacobi transformation to o, mining
surrounding functions with the cluster region, so that the final set of locabized funcuons have 2, with
either 2 or (. Numerical examples of the algorithm are given for Li clusters simulating the Li( H00)
surface, « 1992 John Witey & Sons, Inc.

Introduction

Cluster calculations in combination with the standard tools of quantum chemistry
is a convenient approach to modeling local interactions on surfaces {1]. For example.
ab initio calculations on transition metal clusters have already been helpful in
rationalizing a number of surfacc properties. Recently. we have even found Hartree-
Fock (#r) calculations on clusters composed of the free electron-like Al metal
useful for proposing structures for H chemisorbed on the Al(111) surface {2].
Nevertreless, the truncation at the cluster edge is a drastic approximation to the
extended substrate. It does appear that properties such as adsorbate-surface ge-
ometries and vibrational frequencies converge rapidly with cluster size while ad-
sorbate binding energies are more problematic [3.4). Siegbahn and co-workers
have recently suggested that relatively large clusters often need 1o be prepared for
chemisorption bonding by making an excitation to the proper bonding state {5].
On the surface, such an excited state will always be easily accessible.

An alternative to the Siegbahn et al. strategy is to use an embedded cluster ap-
proach where the potential on the edge atoms is modified 1o simulate the potential
from the extended surface. There are a number of groups developing these proce-
dures [6.71, with the method of Whitten et al. {8] perhaps being the simplest to
implement into cxisting «b initio computer codes. The Whitten et ¢l. method es-
sentially localizes the delocalized functions of an extended substrate into functions
spanning mainly the cluster of interest. These localized functions are then taken
to form a basis set for use in the truncated calculation. Although Whitten et al.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 229-241 (1992)
. 1992 John Wiley & Sons, Inc. CCC 0020-7608/52/010229-13
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have now successfully applied their method to several applications there still remain
a number of concerns, including the locahization techmique, with the method [7].

In this article. we develop a better procedure for obraining the localized cluster
region orbitals, We start by using the results from a Hi calculation on the extended
penodic substrate. performed by using the CRYSTAL program developed by Pisani
et al. [9]. instead of the very large finite cluster results which Whitten ¢t al. use.
The CRYSTAL program alfows one to use the same basis sets in both the extended
substrate and the cluster calculations. From the density matnix computed by the
CRYSTAL program we obtain occupation numbers tor orbitals located in the ciuster
region. The cluster orbital occupation numbers are obtained 1n a manner stmilar
to a Davidson population analysis {10]. In such a population analssis one might
expect the occupied HF orbitals from a finite cluster when measured against the
extended substrate density matrix to have an orbital occupation number ot 2. In
the results section we show this does not alwavs happen, illustrating another feature
to be considered when using cluster models to simulate extended systems. In the
next section. we describe how the cluster region orbital populations are computed.
We then present an algorithm which transforms the cluster region orbitals into a
new set of functions having occupations numbers of' either 2 or (0. These transformed
functions are like the Whitten et al. localized functions. and they have tails which
connect the clusier to the surroundings. Examples of generating these transformed
functions are given in the second part of the Results section. We expect these new
functions to be useful in an embedded cluster procedure which will only require
minor moditications of existing @b initie computer packages.

Method

In this section. we present an algorithm which generates a sct of localized functions
1< i with orbital occupation numbers of cither 2 or 0 with respect o the density
matrix computed in an extended substrate calculation. The functions are localized
in a manner similar to the lincar combination of basis functions one obtains in a

cluster calculation. We start with cluster orbitals. »¢ . which have the form

bl = Y X, (hH
where X, are the basis functions centered on the atoms composing the cluster. The
cluster we pick initially is somewhat arbitrary. but then we can similarly define
surrounding functions ¢; which have X, on the surrounding atoms of the cxtended
substrate but outside of the cluster region.
The occupation number for a cluster function is computed according to

n, = C!SPYSC; (2)

where PV is the density matrix from the extended substrate calculation spanning
the same basis function types X,,. as used in the cluster region. and S is the matrix
of the basis functions overlaps. Davidson has described how the nomatrix can be
used in a population analysis [10]. The diagonal clement. n,,. is the occupation
number of the cluster function 4! . and should obeyv the inequality
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0« n, - 2 (3)

Howeser, the occupation number can only be used 1o assign clectrons to a definite
cluster orbital when the ¢ ! set is orthonormal. Presently, we Schmidt ortho-
gonalize the ¢ . starting with the basis tunchions at the center of the cluster and
working outward. but we expect other orthogonalization schemes to produce cquis -
alent results, 1 Orbtals from finite cluster calculiations also automaticelly satisfy
the orthogonality requirement on | ¢ | . In the first part of the Results section we
discuss the i, computed when using finite cluster HE orbitals. When the [ o) | is
augmented by additional functions from the surroundings sct. then these new fune-
tions are also Schmidt orthogonalized to the existing cluster functions.

The localized cluster functions ¢¢ with 1, either 0 or 2 are produced by performin2
Jacobi-like unitarv transformations which mix a cluster region orbital with an or-
thonormal surroundings function

¢ = plcosh+ drsinl ()
giving the resulting orbital occupation number
A, = n,co8” 0+ n,sin” A+ 2n,sin 0 cos ()

We use a ¢>;‘ with 1, > n,{n,, < n,) to reduce {increase ) the occupation number
of ¢! . The algorithm consists of the following steps:

1. Pick the orbitals to be included in the cluster region basis set and orthogonalize
them to produce {¢¢ |.

2. Select the extra functions | ¢/ ! which will be allowed to mix with the (¢ !
from the surroundings set. Schmidt orthogonalize the ! ¢! ! to the { ¢! . The
resulting ¢ correspond to the ¢; used in eq. (4).

3. Compute the orbital occupation matrix. using eq. (2). for all the ¢! and ¢!
functions and perform a Jacobi diagona'ization {11] on the cluster-cluster, nge-.
block.

4. Determine whether the final 7, should be 0 or 2. We use the scheme if

n, <é then w, =0 (6)
orif
n,>2-5 then H, =2 (7)

where 4 can be varied. but is taken as (.5 for calculations in the Results section.
When

db<n,<2—4 (8)

use perturbation theory to predict whether the cluster orbital prefers to gain or
lose electrons.

5. Perform Jacobi rotations of the type given by egs. (4) and (35) between the
cluster and surrounding orbitals. This step is performed iteratively, reducing the
n,, of those orbitals which want 4, = 0 first, and then increasing #,, for the 7, =
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2-type orbitals. The occupation number change in a single iteration was restricted
to 0.23 electrons. Convergence is achieved when no changes in the o, oceur.

In the Results section, we demonstrate the utihity of the above algorithm by
performing monolayer cluster und slab calculations to simulate the Li¢ 100) surface.
The (100) surface consists of Li atoms arranged in an array of squares. In the
calculations, we only include Li 15 and 2y orbitals via a STO-3G basis [12]. but we
expect the algorithm to still be applicable when using more extended basis sets.
The density matrix for the extended substrate, P, was computed by a CRYSTAL
[91 calculation on a monolaver of Li( 100) atoms. [n all of the calculations we usec
a Li-Li distance of 3.087 A. which was obtained by optimizing the Li monolayer
lattice spacing in the CRYSTAL calculation. This 3.087-A distance matches closely
the nearest neighbor distance (3.02 A) for bulk Li [13]. Since CRYSTAL only
performs closed-shell HF calculations, all of the cluster calculations were performed
on systems containing an even number of Li atoms. The different-sized clusters
are made by using different numbers of shells of symmectry-equivalent atoms around
the cluster center; the coordinates for each of the unique atoms are listed in Table
1. Finite-cluster HF calculations were performed on Lig. Li,q. Liy. and Liss and
the resulting #n,,, computed by eq. (2). are discussed in the Results section. Lix is
the simplest cluster. 1t has 2 central atoms. each surrounded by all their nearest
neighbor atoms. Li,, is obtained by adding the shell of next nearest neighbor atoms
surrounding Lig. Liz, and Lig, are built from Li,, by adding the next two series of
neighboring atom shells. Lisy and the component clusters are shown in Figure 1.

When the cluster functions are being localized to produce 7, = 0 or 2. we use
the extra functions in the order they are listed in Table [. For example, for the
¢ from Liy, 10 extra functions ¢! would come from the lattice positions (2.5.0).
(2.5.1),and (2.5,2).

For convenience, apart from when HF orbitals are used, the initial ciuster orbitals
arc taken as symmetry-adapted combinations. For the four symmetry-equivalent
atoms at the (£(i + 0.5), £ ) lattice positions. cluster orbitals which transform as
a;, a-, b;, and b: irreducible representations in the (s, point group are obtained.
For the two symmetry-equivalent atoms at (+(/ + 0.5). 0), only «; and b, orbitals
are obtained. All of the cluster calculations have been performed using a modified
version of the GAMESS package [14].

Results

The valence orbital occupation number obtained by using closed-shel]l HF orbitals,
in eq. (2), from the Lig, Lis, Lis, and Liy, cluster calculations, are illustrated
graphically by Figures 2-5, where n,, is plotted against the HF orbital energy. The
total sum of the core orbital occupation numbers, given in Table II, reflect that
each core orbital, as expected, is completely occupied by two electrons. Similarly,
Figures 2-5 show the low-lying valence orbitals are also essentially completely filled.
However, Table II shows that the total occupation number for the valence orbitals
exceeds the number of valence electrons available from the finite cluster. This extra
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valence population is a reflection of the orthogonalization procedure we use for
the cluster functions ¢ . The ¢ have the correct orthonormality condition
which enables using n,, 10 assign orbital populations. but the ¢| sull overlap
with orbitals outside the cluster region resulting in contributions 1o #,, from the
surroundings. Perhaps the most interesting result from Figures 2-35 is that the
high-lying occupied HF orbitals have #,, significantly less than 2. while the virtual
HF orbitals have n, much greater than zero. To emphasize this result. in Table
11, we list the occupation numbers for the highest occupied (HOMO) and lowest
unoccupied (1.1:MO) molecular orbitals. In a cluster calculation. one often as-
sumes the occupied (virtual) orbitals ace representative of the fitled {(empty)
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Figure 1. The Liy cluster and its components: Lix (central dashed lines). Li. (sohd
lines). and Li;, (outer dashed lines).

Bloch functions of the extended substrate. Our results here suggest that cluster
orbitals may not be as good an approximation to the extended substrate as one
would like. Below we show how our localization algorithm can produce more
favorable occupation numbers.

In Tables 11l and IV we present the results of applying our localization procedure
to cluster functions ¢¢ from Lig and Liy,. respectively. Instead of HF orbitals, the
¢¢ are now symmetry-adapted combinations of the 1s and 2s sT0-3G orbitals
centered on the equivalent atoms sets listed in Table 1. For example, the ¢¢ functions
9 and 10 in Table HI correspond to the symmetric and antisymmetric combinations
of the 2s orbitals at the (0.5.0) and (—0.5.0) lattice points. Similarly. ¢ functions
11. 12, 13. and 14 are the respective a, . d». b2, and b, symmetry adapted 2s functions
generated from the four equivalent lattice points { +0.5.=1). The first eight Lix
¢' are created in the same manner using symmetry-adapted combinations of the
I's orbitals. The numbers of extra functions ¢/ used in Tables I1I and IV match
taking all symmetry-adapted 2s orbitals from the appropriate set of equivalent
atoms. The first four qb,h used with Liy are derived from the (+1.5.+1) lattice sites:
further ¢! are added in the order they are listed in Table I. Only two ¢, are added
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Figure 2. The occupation numbers. n,,. from the HF Lig finite-cluster calculation versus
1iF orbital energy.

between 12 and 14 because these additional functions are centered on the (£2.5.0)
site. The nonorthogonality of the 1s and 2s sT0-3G functions is removed when ihe
{¢¢ ) and { ¢F | are Schmidt orthogonalized.

Since the initial ¢{ are not HF orbitals we obtain initial orbital occupation num-
bers n/, with a broad range of values. However, the trace of the cluster-cluster block
n¢ is still the same as that obtained with the HF orbitals, since both sets of functions
span the same space. The nf in Tables 11l and 1V give the occupation numbers
after the Jacebi diagonalization of the cluster-cluster block, n¢c. In the case of Liy
we find n!’ approaching 2 when the initial n/, are greater than ~1.1. Only ¢{ 14
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Figure 3. The occupation numbers, n,, from the HF Li,, finite-cluster calculation versus
HF orbital energy.

results in a n? approaching zero. In Table 1V, the ¢ for functions 31-46 have
n? very close to either 2 or 0. Initially, these 31-46 ¢{ only span the Li cluster,
the remaining ¢¢ come from basis functions located on the Lis, edge atoms, con-
nected by the dashed line in Figure 1, which surround the central Li,,. Thus, we
find the orbitals inside the cluster edge atoms to be either completely filled or
completely empty. A similar trend is evident for the Liy calculation in Table 1.
However, the total occupation number for the valence orbitals of these two atoms
is close to 4 rather than the 2 expected from a finite cluster calculation. Perhaps
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Figure 3. The occupation numbers, n,,, from the HF Li, finite-cluster calculation versus
HF orbital energy.

surprisingly, in Table IV, the total #n” for the inner Li, cluster is nearly 18, and
not 16. At present we have no physical explanation for these populations.

The addition of 4 ¢! 1o Lig reduces the total number of cluster electrons by
0.825 electrons. Each atom in the Lig cluster has a complete shell of neighbors
when there are 14 ¢F, and, at this stage, the transformed occupation numbers, 7.,
are fairly close to 2 and 0. Even better, 7, are obtained when 22 ¢ are used, these
extra functions span the same atoms in the Lii cluster used as a starting point for
Table IV. The #, for Lig ¢ with 22 ¢ resemble the n{, for functions 31-38 in
Table 1V. The remaining differences between the two sets of occupation numbers
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Figure 5. The occupation numbers. n,,, from the HF Liy, finite-cluster calculation versus
HF orbital energy.

are due to our algorithm using only a partial Jacobi diagonalization to transform
the Liy ¢¢. The Lig ¢¢ are essentially converged when 22 ¢7 are used, and only
slight improvements in the A, are found when the 2s orbitals from the next-next-
nearest shell of atoms are included in the localization. Having 36 ¢/ cxtra functions
corresponds to working with a Li,, cluster.

The different numbers of rp,'“ listed in Table IV correspond to surrounding the
Lisg cluster with 1. 2, and 3 extra shells of Li valence functions. The fiest shell, with
14 ¢, clearly improves the 7, for the 31-46 orbitals, making the small n/, closer
to zero. These 16 ¢¢ were originally derived from the inner Li,, cluster. Indeed.
some of the A, violate slightly the 0 < n,, < 2 condition, but we feel this a reflection
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Taste . Orbial occupation numbers, 7, computed from
the 1t calculations on the fiimite clusters illustrated m Figure 1.

a, ", Valenee Core

Cluster HOMO FUMO in, =n,
Lis 1.369 1.064 10.206 15,999
Ly 1.197 I 19,130 31999
Liw 1.292 1.288 34474 S9.998
Liga 1.411 1.275 49,177 879497

of the limitations on the numerical precision of our algorithm. When the second
shell with 30 ¢/ are allowed to mix with the ¢¢, the 4, for the Lij, edge atom
functions 47-60 improve considerably. At this stage. there are 17 ¢¢ with /i, greater
than 1.95 and the other 43 <}>,". with the exception of functions 50 and 59, are all
close to zero. Further improvements are found using functions from a Liy, cluster,
except for ¢ 55. which has a A, reduced to 1.480. The failure of orbital 55 is
because two of the ¢ have #,, equal to 1.557 and 1.495. thereby preventing an
increase in #,. Presently. we are performing step S of the localization algorithm by
allowing mixing with all of the ¢/ simultaneously. The problem we find with orbital
55 suggests that an improvement of step 5 might be to have a sequential mixing of
the successive ¢ shells with the cluster functions. This will be investigated as the
algorithm is developed further.

Tasri HI.  The valence orbital occupation numbers. 7, obtained after transformation of the cluster
functions, 'pf . from Lig usmg(dlffcrcm nu;nhcrs of surrounding functions. ¢, . The nf,. are initial orbital
. " N 2l . - N » . -
occupations for the ¢, , and the n,, are obtained after diagonalization of the nee block.

Number of ¢f
IR & nl, nf! 4 8 12 14 18 22 36
a9 1.775 1.991 1996 1997 1997 1997 1995 1997  1.992
by 16 1.147 1868 1989  1.99] 1988 1.99] 1.991 1.991 1.991
a 11 1185 0930 0479 0315 0478 0166  0.110 0080  0.072
as 12 1,100 LI00 0433 0322 0084 0484 0106 009  0.107
b 13 1.859 1859 1935 1993 198  1.9%4 1984 1984  1.98%4
by 14 0695 0271 0099 0049 0046 0046 0038 0034 0010
a 15 1.465 1.501 1794 1940 1937 1941 1999 1995 2004
16 LO86 0784 0.752 0444 0425 0242 0218 0145 0052
SO 15990 16001 15998 15999 15999 16000 16002 16000 15999
sy, 10315 10304 9479 9050 8739 8551 8442 8322 8211
g, (Initial) 4422 9308 13730 16.352 20847 25789  41.770

(Final) 5.249  10.563 15297 18106 22708 27773 43.865
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Taste IV, The valence orbital occupation numbers, 7., obtained after transformation of the cluster
. N . . . . - . ! . ! . . .
functions ¢, from Liy using different numbers of surrounding tunctions. ¢, . The n,, are imual orbital

occupations for the ¢, . and the #,, are obtained after diagonabization of the ng¢ hlock.

Number of (/:,1

o ) nf! 14 30 56
31 1,775 1.999 2.001 2.008 2019
32 1,148 1.996 2.028 2012 2025
33 1,185 0.132 0.033 -0.054 0.006
34 1.101 0.002 ~0.020 0.023 0.013
33 1.861 2.002 2016 2.021 2028
36 0.693 0.018 -0.022 -0.024 —-0.040
37 1.4658 2.007 2,008 2.008 2.008
kS 1.083 0.192 0.029 0.020 0.111
39 0.906 0.004 ~0.020 —0.018 —0.018
40 1E1d 2.007 2011 2.019 2.026
41 1.422 1.897 1.971 1977 1.978
a2 0.73% 0.015 -0.001 ~0.002 ~0.014
43 1.342 2.032 2,041 2.039 2038
a4 0.855 0.213 0.003 -0.013 0.003
a3 1.583 1.973 2,000 2.002 2.008
46 0.868 1.958 2.000 1977 1.997
47 1119 1.521 1.987 2.002 2004
48 0.938 1.391 1.977 1.956 1.990
49 1.140 0.455 0.052 ~(.008 ~0.036
50 0.857 0.349 0.223 0.130 —0.081
51 1.312 1.280 1.806 1.949 1.961
52 1.212 1.854 1.975 1.993 1.977
53 0.843 0.575 0.189 0.032 ~0.093
54 1.231 1.740 1.877 1.998 1.962
55 1.293 1.408 1.837 1.983 1.480
56 0.775 0.630 0.073 -0.042 0.008
57 1.428 1817 1.903 1.966 1.967
58 0.877 0.751 0.308 0.03% -0.059
59 1.493 1.052 0.616 0.343 0.143
60 0.848 1.199 1.290 1.953 1.987
seoe 59.962 60.000 59.991 59.998 60.010
MATES 34510 34.472 34.2101 34.243 33.401
o, (Initial) 15.595 33.645 63.337
(Final) 15.866 33.878 64.391

Summary

We have developed an algorithm which enables the localization of cluster func-
tions, ¢¢ , which have orbital occupation numbers of either 2 or (0 with respect to
the density matrix obtained from a calcuiation on an extended substrate. These
¢ initially consist of a linear combination of orbitals centered on a finite cluster
of atoms. Partial Jacobi transformations of the occupation number matrix, n. are
then used to mix the cluster functions ¢{ with extra orbitals, ¢/, on the surroundings
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atoms to produce the required 7i,. We are presently investigating whether these
localized basis functions are suitable for use in an embedded cluster procedure.
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A Comparison of Geometry Optimization with
Internal, Cartesian, and Mixed Coordinates
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Abstract

Improsements in MO programs and computer speeds have dramaacally increased the size of molecules
that can be optimized by MO methods. This has put a considerable strain on existing geometry optimization
techniques. For a given molecular system. the performance of a geometry optimization method can vany
significanily depending on the coordinates used. Nonredundant internal coordinates (2.g.. /-matrix
coordinates) are casily constructed and behave well for acyelic molecules but can be guite troublesome
for cyclic systems. Cartesian coordinates behave weil for nigid. cvelic molecules but can be guite poor
for flexible. acyclic systems. Mixed cartesian and internal coordinates have been suggested as a means
of combining the best of both approaches and are particularly conventent for cyvelic systems with flexible
substituents. The cfiiciency of these different approaches is compared for a number of molecules. « 1992
John Wiley & Sons. Inc.

Introduction

Geometry optimization is one of the important steps in almost any quantum
chemical study. With the advent of effictent methods for computing energy gradients
for ab initio molecular orbital calculations {1] and the use of gradient-based opti-
mization algorithms [ 2], finding equilibrium geometries has become almost routine
for many simple molecules [3]. The key to the efficiency of any optimization is
the choice of a suitable coordinate system. Strong coupling between coordinates,
narrow gullies, and curved valleys cause serious problems for even the best optimizers
{2]. Many geometry optimizations in quantum chemical calculations are carried
out using nonredundant internal coordinates, for example, Z-matrix coordinates
or similar definitions of internal coordinates. This is both convenient and cfficient
for many small molecules, since the Z-matrix is constructed from the natural co-
ordinates of a molecule, that is, bondlengths, valence angles. and torsions about
bonds. Such internal coordinates are normally not very strongly coupled. and the
optimization proceeds efficiently [3.4]. However for cyclic molecules, it is very
difficult to set up a nonredundant coordinate system without strong coupling [4].
There are a number of ways around this problem: cartesian coordinates, redundant
internal coordinates, or a nonredundant linecar combination of cartesian or redun-
dant internal coordinates ( e.g., symmetry adapted coordinates ). Pulay [ 5] recently
demonstrated that suitable combinations of redundant coordinates can be used
very efficiently in geometry optimization. Generating an appropriate redundant

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 26, 243-252 (1992)
©: 1992 John Wiley & Sons, Inc. CCC 0020-7608/92/810243-10
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internal coordinate system that minimizes coupling requires some shilt or a suitable
program [6]. The etfort in constructing such a coordinate syvstem s rewarded by
significant improvements in the efficieney of the geometry optimization [3]. The
other alternative. cartesian coordinates. is routinely used i molecular mechanices
[ 7]. Cartesian coordinates are unambiguous and casy o set up, but are moderately
strongly coupled. Traditionalh. cartesian coordinates have been asoided in mo-
lecular orbital caleulations because 11 was thought they would stow down optimi-
ation significantly. Recenthy Hehre et al, [8] showed that with a suntable initial
guess for the hessian and the geometry, cartesian coordinate-based optimization
could be guite comparable 1o internal coordinate-based methods. Cartestan coor-
dinates were better for ovetic and nigid molecules. but were poorer for flexible.
acychie systems. Cantesian coordinates also make constraints more dithcult to impose
{however. see Refs, {9]-{11]). As an alternitive to pure cartesian or pure internal
coordinates. Head {11} and Obara ¢t al. [12] have suggested the use of mied
cartesian and internal coordinates. In this anticle we compare the ethiciency of go-
ometry optimization based on internal. cartesian. and mixed coordinates.

Methodology

All molecular orbitat calculations were carried out with the GAUSSIAN 92 series
of programs [13]. The Hartree-Fock level of theory was used with the S10-3G
basis set {14]. Geometries were optintized with two difierent sets of internal co-
ordinates. cantesian coordinates, and mixed cartesian/internal coordinates. Starting
geometries were obtained by molecular mechanics minimization using MacroModel
{157 and the MM2 force field [7] (the € — H bonds were shortened by 0.03 A 10
take into account the systematic difference between MM2 and «fr inicio MO computed
C — H bondlengths). Internal. cartesian. and mixed internal/ cartesian coordinate
optimizations were started from the same geometry The imual estimates of the
hessians were generated from a simple valence force field transtormed to the co-
ordinate system uscd in the optimization [16]. The standard optimization rautine
in GAUSSIAN was used tor all minimizations [17].

For optimizations using mixed cartesian and internal coordinates. v, nable carte-
sian coordinates are treated analogous 1o variable internal cocrdinates, The tans-
formations for the coordinates and gradients from cartesian 10 internal coordinates
is

8¢ = Box and g, = (BMB') 'BMg,

where B is the Wilson B matrix [18]. If the Z-matrix orientation is used for the
cartesian coordinates of the molecule, Af is an identity matrix with the diagonal
elements for x,. J. 2., va, 1. 33 set to zero (i.e.. for those cartesian coordinates
that are always zero in the Z-matrix orientation). To add a few cartesian coordimates
to the internal coordinates, one simply defines the appropriate A-matny elements
for cartesian displacements (i.e.. an identity matrix . This approach has been im-
plemented in GAUSSIAN 92 [13]. The current specification of the /-matnix ge-
omeltry input already includes the possibility of defining some (or all) of the atoms
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by cartestan coordinates and the remainder by internal coorwinates. Unlike carlier
‘mplementations of mixed coordinate optimization [12]. the present approach al-
tows full coupling between the cartesian and internal coordinates.

For full cartestan coordinate eptintization. the structure input cun be via caressan
coordinates or Z-matrix internal coordinates { the cartesian variable names are gen-
erated automatically and passed 1o the same optimizer used tor internal coordinates
{17]). Even though translational and rotational invariance of the gradient should
assure that the molecule does not undergo overall translation or rotation during
the optimization. the hessian {or cartesian coordinate optimization is adjusted so
that the coordinates for overall translation or votation have large positive force
constants. effectively freezing these degrees of freedom (this is similar to the frozen
coordinates that can be used in regular geometry optimizations [13]).

Results and Discussion

Table I presents a selection of some monocyclic. bicyclic. and tricyctic molecules.
A number of these have been used in previous articies § 5.8 ] to test the performance
of geometry optimization methods. To assess the variability in performance of
optimizations in internal coordinates, a number of molecules were optimized with
two different sets of internal coordinates. Those in set (a) were constructed according
to the suggestions of Ref. {4] so as to minimize the coupling between coordinates
and to maintain the symmetry of the molecule during the optimization. These
internal coordinates, along with the starting geometries are shown in Figure |, The
tnternal coordinates of set (b) were chosen in a more cavalier manner without
regard to problems of strong coupling (e.g.. a six-membered ring is constructed as
a simple chain of six atoms). For cartesian coordinates, all 3 N coordinates are
allowed to vary. For mixed coordinates. the # atoms in the rings are described by
3n — 6 cartesian coordinates. while the substituents are attached using internal
coordinates.

Tastr 1. Companson of geometry optimization performance using internal, cartesian. and mixed interal/
cartesian coordinates.

Number of optimization steps

Number
of Number of  Internal
Molecule atoms  Symmetry  variables (@) (b)Y Cartesian  Mixed
2 fluoro furan 9 C, I 7 8 7 7
norbornan¢ 19 [N 15 7 s S
bicycto]2.2. 2 Joctane 22 3, 1 11 28 19 14
bicyclo[3.2. 1 joctane 22 C, KX 6 5 6 7
endo hydroxy bicyclopentane i4 C, i 8 18 9
¢-0 hydroxy hicvlopentane 14 C K+ 10 20 I
ACTHCP 16 C, 42 65 =81 72
1.4.5 trihvdroxy anthroguinone 27 C. S 10 11 17

histamine H”° 18 C, 48 42 > 1) 47
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2 fluoro furan

- .:,'*1‘ c )

SCHLEGEL

Starting geometry & intemat coonnate set (3)
N ¢
| \\ Cirt
- e CirR2a2

/ /4P C2r31a33 0

A C L\ C i 01r42a43 0
/HV\/%/ H) F1rs2a531eo
N [ O H2r61a63180
: k/ H3r71a72180
H4r82aB 1180

Number of optimization steps
internal coordinates (a) 7
internal coordinates (b) 8

7

7

cartesian coordinates
mixed coordinates

TN

(H

r1=1.4558/r2=1.3375/r3=1.3395
r4=2.1286/r5=1.3336/r6=1 0721
7=1.0724/8=1 0726/a2=102 5826
a3=101.6686/a4= 70.3774/a5=128.8779
ab=129.0378/a7=126.9982/a8=126.7 146

Starting geometry & intemal coordinate set {a)

norbornane \Q&/\ %ﬁ;\ c
J
y { N Cin

’@' {C 7 X C1r12at
. H C2r21a23 o2
; \3 C2r21a23-d2
= { C ) C3r21a22 d2
(M - C3r21az22-d2
n Hir32a33a3 1
{CTH H1r32a33a3-1
\_/‘\J) H2r4 1ad 3 180.
] H3r41ad2180.
f H4r52a51 céS
H4r162261 d6
\H/ H¢52a5 1 -d5
H5r62a61-d6
H6r53a51 d5
H6653a61 db
Number of optimization steps : ; :gg :g ; ‘gg

internal coordinates (a) 7
internal coordinates (b) 6
cartesian coordinates 5
m:xed coordinates 5

Figure 1.

11=1.5378/r2=1.5418/r3=1.0863
r4=1,0876/r5=1.0869/r6=1.0858

al= 92.5394/a2=102.1580/a3=113 4070
a4=115.0850/a5=110.2372/a6=112.0658
42=-56.4782/d5=-81.9032/d6=157.5926

Structures, starting geometries, and internal coordinate set (a3 for the molecules

in Table 1.

The table shows that for a variety of systems internal coordinates perform as
well as or better than cartesian coordinates. in agreement with Baker and Hehre
{8]. Secondly. the number of steps taken by optimizations using mixed cartesian
and internal coordinates is generally intermediate between pure cartesian coordinates
and well-chosen internal coordinates. Since mixed coordinate systems do not require
the carcful crafting of good internal coordinates for rings [4}. and since their per-
formance is equal to or better than cartesian coordinates, there is some mernit to

using mixed coordinates.

Fluorofuran. hydroxybicyclopentane, norbornane, and 2 bicvclooctanes are fairly
rigid and are well represented by the MM2 force ficld. Thus, relatively few steps are
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bicyclo [3.2.1] octane

Number of optimization steps
nternat coordinates (a) 6
internal coordinates (b) 5
cantesian coordinates 6
mixegd coordinates 7

bicyclo [2.2.2] octane

Numbser of optimization steps

intemal coordinates (a) 11
internal coordinates (b) 25
cartesian coordinates 19
mixed coordinates 14

Figure 1.

QPTIMIZATION
Starting geometry & nternal coordinate set {a)

c1rl

c1r2 290

c1r2 290 3180
c3r3 1a3 2 d3
¢d4r3 1a3 2-d3
c3rd a4 2 d4
cd4rd 1ad4 2-d4
cir5 2a% 3 90
h2 3ab 4 a6 1
h2r7 3a7 4 a7 1
h3rm 2a8 4 d8
h4r8 2a8 3-d8
h519 3a9 6 d9
h5¢103a106 d10
h6r9 4a9 5-d9

. h6ri04a105-dt0
) h7r113a119 di1
e h7r123a129 d12
h8ri1d4altg-di
h8r124a129-d12
h§r137a138a13 1
h8r147 at48 alqg -1

rt=0.9863/r2=1.1768/r3=1.5408
rd=1.5404/r5=2.2660/r6=1.0856
r7=1.0871/r8=1.0889/r9=1.087 1
r10=1.0855/r11=1.0865/r12=1.0868
r13=1.0872/r14=1.0859/a3= 74.7408

ad= 93.5429/35=130.0092/a6=113 4879
a7=110.7039/a8=111.4780/a9=109.6131
a10=112.0531/a11=108.8747/a12=109.9315
a13=110.3734/a14=109.2114/d3=-132.2131
394=115.7902/dB=166.7660/d9=117 9400
d10=-123.1354/d11=-121.1057/d12=122 3794

Starting geometry & intemai coordinale set (a)

C
Cirt
Cir22a2
C1r22a23120.
C1r22a23240.
C2r21a23d2
C2r21a26120
C2r21a26240
-11.290.30.
-21.190.60.
H1r3 990.2 180
H H2r31090. 1 180
H3r41a42d4
H3r51a52d5
H4r41242d4
H4r51a52d5
H5r41a42d4
H5r51a52d5
H6rd2ad41d4
H6r52a514d5
H7r42ad41d4
H7r52a51d5
HB8r42ad4 td4
HB8r52a51d5

r1=2.5790/r2=1.5396/r3=1.0895
r4=1.0867/r5=1.0868/a2= 70.0910
a4=109.2484/a5=110.4824/d2-6 3053
d4:114.9771/d5=-127 9986

(Continuedy
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Starting geomatry and semal coordinate set {a)

c

Ciri2

C1n32a21]

C 11142 a214 3d3214
C4r45 1 a145 2d2145
0446 1 2146 2 d2146
H 117 2a217 3d3217
H2r281a128 343128
r3g¢ 1a1392d2139
r3A 1 ai3A 2 d213A
r4B 1 2148 2 d214B
r5C 4 a45C 1 d145C
150 4 a45D 1 d145D
H 6 r6E 4 a46E 1 d146E

2 hydroxy bicyclopentane

H3
H3
H4
H5
HS5

H r12=1.5447/r13=1.4892/114=1.5367

145=1.5374/r46=1.4064/r17=1.0875
128=1.0877/39=1.0845/r3A=1.0839

Numbaer of optimization steps r4B=1.0877/r5C=1.0854/r50=1.0851

0 e e 16E=0.9423/a213=68.7631/a214=89.4219

temal coordi : 2145-90 6265/2146=111.3076/2217=109 2699

s @ 2128=109.1562/a139=116.009%/a13A=115, 6587

e oorana 2 a148=113.6734/a45C=114.7176/a45D=113.3309

a46E=108.0277/d3214=125.1018/d2145=-0.3599
d2146=114.4321/d3217=-113.9872/d3128=114 3015
d2139=-107,2585/d213A=107.0506/d2148=-118.5685
d145C=115.4893/d145D=-113.2697/d146E=177.3806

Starting geometry & intemal coordinate se.

ACTHCP

-
—

&8

BOLLAD WL
m”g%mummbm%
_NN4¢mggm:wm
cooaad a
MGG PONSa

IITIO0OIOIWOOOZO0ZO
moow

NN N DW= N =N -
N W =N 2N O

AMDOBPBIIFFEDID

)
n
-
[=X
n

r1=1.4763/r2=1.5142/r3=2.3316
r4=1.3397/r5=1.5277/r6=1.4667
r7=2.6282/r8=1.0872/r9=1.2263
rA=1.0141/rB=1.2516//C=1.0851
rD=1.0841/rE=1.0843/rF=1.0835

Number of optimization steps a2= 99.1882/a3= 64.9195/ad=112.8177
a5=101.7456/a6=122.6016/a7= 69.6216
internal coordinates (a) 65 a8=110.1242/a9=127.3698/aA=124.2840
cartesian coordinates >81 aB=126.5097/aC=110.4262/aD=111.8364
mixed coordinates 72 aE=110.9696/aF=111.1680/d3=-6.3596

d4=5.3108/d5=122,7439/d6=-34.1633
d7=29.1542/d8=-115,5422/d9=173.4622
dA=-179.3990/dB=-179.3990/dC=-75.3678
dD=163.4138/dE=123.1421/dF=-113.1194

Figure 1. (Continued)

required for the optimizations for any of the coordinate systems. Bicyclo {2.2.2]
octane can twist about the C; axis and this may account for the greater number of
steps taken by the cartesian based optimization. For the hydroxybicyclopentanes,
optimization of the rotation of the hydroxyl groups may be more difficuft in cartesian
coordinates. Rigid planar molecules such as fluorofuran and trihydroxyanthroqui-
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Starting geometry & internal coordinate set (o)

1,4,5 trihydroxy anthroquinone
1

112 za2

3r3 1a3 2180
4r4 3ad4 1180
215 1a53 0
66 2ab 1180
717 6a7 2180
118 ZaB 3180
919 1239 3180
C10110 53a10 1180
C 2rt1 1a11 3180
C12112 2a12 1 180
C13r1312 2132180
O 1114 31142180
O 4015 3aist o
H16r16 43163 O
H 5117 42317 3180
H Bri8 7al186 180.
O 7119 6at32 ¢
H20r20 7a206 O©
O 2r21 6a217 ¢
013122122222 0
H23r2313a2312 0
H 14 r24 13 224 12180
H 112510 a25 9 180.
H10r26 9.261 0

[eleleleloiotolelel gl

r1=2.8128/r2=1.4007/r3=1.4025/r4=1,3934
r5=1.4009/16=1.4025/r7=1.3934/18=1 3398
r9=1.3986/r10=1.3926/r1 1=1 399%/r12=1.4025
r13=1.3945/r14=1.2122/115=1.3656/r16=0.9757

Number of optimization steps r17=1.0735/r18=1.0735/r19=1.3653/20-0 G747
T T 121=1.2141/r22=1.3652/r23=0.9750/r24=1.0734

internal coordinates (a) 10 125=1.0737/r26=1.0735/a2= 59.7891

cartesian coordinates " a3=119.9130/ad=119 8322/a5= 59.7502

mixed coordinates 17 a6=113.9728/a7=119.8749/a8= 59.4339

a9=119.4018/a10=120.5069/a11= 53.9316

a12=120.5476/a13=119.9462/a14=120.1535
a15=123.2100/a16=112.4815/a17=119 9896
a18=119.9769/a19=123.2140/a20=112 5473
a21=120 3804/a22=123.0024/a23=112.3739
224=119.9078/a25=120.2592/a26=121.6324

Figure L (Conteaed)

none optimize readily in all three coordinate systems since there are no flexible
rings or internal rotors to cause problems. For trihvdroxyvanthroquinone. Baker
and Hehre were unable to achieve convergence with internal coordinates. but the
present choice of internal coordinates performed as well as cartesian coordinates.
ACTHCP and protonated histamine were the most troublesome molecules in the
present study. Both contain a very flexible tive-membered ring that changes con-
formation during the course of the optimization. Baker and Hehre found a minimum
for ACTHCP only with cartesian coordinates {90 cycles) [8]. In the present study.
internal and mixed coordinates both converged in somewhat fewer cveles (65 and
72. respectively). Internal and mixed coordinates behaved similarly for histamine
H ' : cartesian coordinate-based optimization had difficulties adjusting the flexible
hydrogen-bonded side chain and did not converge with 100 cveies.

With the reduction in computational cost and the improvements in aft initio MO
calculations over the last decade. 1t 15 possible to contemplate optinuzing the ge-
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Starting geometry & intemal coordinate set (a)

-

histamine H*

BEUIGROD

3a94d9
o1 alos5d10
r112a11 7411
H6r122a127d12
H7r36a1384d13
H7r146a148d14
HB8r157 a156d15
H8r167a16 16d16
HBr177al17 16d17

IITITZO00Z0002Z
SHENWNDNIN =R —

f1=1.3572/r2=1.3770/r3=1.3240/r4=2.1863
r5=1.4995/r6=1.5363/r7=1.5050/r8=1,0704
9=1.0495/r10=1.0708/r11=1,0854/r12=1.0851
r13=1.0846/r14=1.0849/r15=1.0450/r16=1.0437

Number of optimization steps r17=1.0450/22=110.7216/a3=105 5982/a4=73.1915
. P . T p . - a5=120.8022/a6=1 135238/37:1090633/38:131‘4886367
29=126.3666/210=126.3072/a11=108.7003/a12=108.1
imiormal coordinares (@) 42 a13=111.8514/a14=110.1194/a15=109 6284/a16=110.1589
canesian coordinates  >100 a17=109.329/d3=-0.2008/d4=0.0839/d5=-179.6823
mixed coordinates 47 d6=39.6818/d7=-62.5378/d8=179.9720/d9=180,0000

d10=179.8032/d11=121,5462/d12=-122.2758/d13=120.6163
d14=-118.2480/d15=-45.3540/016=120.9891/d17=-119.7540

Figure t. {(Continued)

ometry tor cach point on a potential surface scan. Such a relaxed surface scan
requires one or more coordinates to be constrained (i.e.. the coordinate(s) defining
the surface ) while the remaining coordinates are minimized. Internal coordinates
such as bon] lengths and dihedral angles are often the most convenient and mean-
ingful for surface scans. However, constraints on internal coordinates are more
complicated. to 1mpose when the optimization is carried out in cartesian coordinates
[9-11]. With mixed internal and cartesian coordinates, the surface coordinates can
be expre